Replace "link" with "sh_link"
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
342 abfd, shindex);
343 return NULL;
344 }
345
346 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
347 return NULL;
348 }
349
350 if (strindex >= hdr->sh_size)
351 {
352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
353 (*_bfd_error_handler)
354 (_("%B: invalid string offset %u >= %lu for section `%s'"),
355 abfd, strindex, (unsigned long) hdr->sh_size,
356 (shindex == shstrndx && strindex == hdr->sh_name
357 ? ".shstrtab"
358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
359 return NULL;
360 }
361
362 return ((char *) hdr->contents) + strindex;
363 }
364
365 /* Read and convert symbols to internal format.
366 SYMCOUNT specifies the number of symbols to read, starting from
367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
368 are non-NULL, they are used to store the internal symbols, external
369 symbols, and symbol section index extensions, respectively.
370 Returns a pointer to the internal symbol buffer (malloced if necessary)
371 or NULL if there were no symbols or some kind of problem. */
372
373 Elf_Internal_Sym *
374 bfd_elf_get_elf_syms (bfd *ibfd,
375 Elf_Internal_Shdr *symtab_hdr,
376 size_t symcount,
377 size_t symoffset,
378 Elf_Internal_Sym *intsym_buf,
379 void *extsym_buf,
380 Elf_External_Sym_Shndx *extshndx_buf)
381 {
382 Elf_Internal_Shdr *shndx_hdr;
383 void *alloc_ext;
384 const bfd_byte *esym;
385 Elf_External_Sym_Shndx *alloc_extshndx;
386 Elf_External_Sym_Shndx *shndx;
387 Elf_Internal_Sym *alloc_intsym;
388 Elf_Internal_Sym *isym;
389 Elf_Internal_Sym *isymend;
390 const struct elf_backend_data *bed;
391 size_t extsym_size;
392 bfd_size_type amt;
393 file_ptr pos;
394
395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
396 abort ();
397
398 if (symcount == 0)
399 return intsym_buf;
400
401 /* Normal syms might have section extension entries. */
402 shndx_hdr = NULL;
403 if (elf_symtab_shndx_list (ibfd) != NULL)
404 {
405 elf_section_list * entry;
406 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
407
408 /* Find an index section that is linked to this symtab section. */
409 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
410 if (sections[entry->hdr.sh_link] == symtab_hdr)
411 {
412 shndx_hdr = & entry->hdr;
413 break;
414 };
415
416 if (shndx_hdr == NULL)
417 {
418 if (symtab_hdr == & elf_symtab_hdr (ibfd))
419 /* Not really accurate, but this was how the old code used to work. */
420 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
421 /* Otherwise we do nothing. The assumption is that
422 the index table will not be needed. */
423 }
424 }
425
426 /* Read the symbols. */
427 alloc_ext = NULL;
428 alloc_extshndx = NULL;
429 alloc_intsym = NULL;
430 bed = get_elf_backend_data (ibfd);
431 extsym_size = bed->s->sizeof_sym;
432 amt = symcount * extsym_size;
433 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
434 if (extsym_buf == NULL)
435 {
436 alloc_ext = bfd_malloc2 (symcount, extsym_size);
437 extsym_buf = alloc_ext;
438 }
439 if (extsym_buf == NULL
440 || bfd_seek (ibfd, pos, SEEK_SET) != 0
441 || bfd_bread (extsym_buf, amt, ibfd) != amt)
442 {
443 intsym_buf = NULL;
444 goto out;
445 }
446
447 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
448 extshndx_buf = NULL;
449 else
450 {
451 amt = symcount * sizeof (Elf_External_Sym_Shndx);
452 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
453 if (extshndx_buf == NULL)
454 {
455 alloc_extshndx = (Elf_External_Sym_Shndx *)
456 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
457 extshndx_buf = alloc_extshndx;
458 }
459 if (extshndx_buf == NULL
460 || bfd_seek (ibfd, pos, SEEK_SET) != 0
461 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
462 {
463 intsym_buf = NULL;
464 goto out;
465 }
466 }
467
468 if (intsym_buf == NULL)
469 {
470 alloc_intsym = (Elf_Internal_Sym *)
471 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
472 intsym_buf = alloc_intsym;
473 if (intsym_buf == NULL)
474 goto out;
475 }
476
477 /* Convert the symbols to internal form. */
478 isymend = intsym_buf + symcount;
479 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
480 shndx = extshndx_buf;
481 isym < isymend;
482 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
483 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
484 {
485 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
486 (*_bfd_error_handler) (_("%B symbol number %lu references "
487 "nonexistent SHT_SYMTAB_SHNDX section"),
488 ibfd, (unsigned long) symoffset);
489 if (alloc_intsym != NULL)
490 free (alloc_intsym);
491 intsym_buf = NULL;
492 goto out;
493 }
494
495 out:
496 if (alloc_ext != NULL)
497 free (alloc_ext);
498 if (alloc_extshndx != NULL)
499 free (alloc_extshndx);
500
501 return intsym_buf;
502 }
503
504 /* Look up a symbol name. */
505 const char *
506 bfd_elf_sym_name (bfd *abfd,
507 Elf_Internal_Shdr *symtab_hdr,
508 Elf_Internal_Sym *isym,
509 asection *sym_sec)
510 {
511 const char *name;
512 unsigned int iname = isym->st_name;
513 unsigned int shindex = symtab_hdr->sh_link;
514
515 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
516 /* Check for a bogus st_shndx to avoid crashing. */
517 && isym->st_shndx < elf_numsections (abfd))
518 {
519 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
520 shindex = elf_elfheader (abfd)->e_shstrndx;
521 }
522
523 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
524 if (name == NULL)
525 name = "(null)";
526 else if (sym_sec && *name == '\0')
527 name = bfd_section_name (abfd, sym_sec);
528
529 return name;
530 }
531
532 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
533 sections. The first element is the flags, the rest are section
534 pointers. */
535
536 typedef union elf_internal_group {
537 Elf_Internal_Shdr *shdr;
538 unsigned int flags;
539 } Elf_Internal_Group;
540
541 /* Return the name of the group signature symbol. Why isn't the
542 signature just a string? */
543
544 static const char *
545 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
546 {
547 Elf_Internal_Shdr *hdr;
548 unsigned char esym[sizeof (Elf64_External_Sym)];
549 Elf_External_Sym_Shndx eshndx;
550 Elf_Internal_Sym isym;
551
552 /* First we need to ensure the symbol table is available. Make sure
553 that it is a symbol table section. */
554 if (ghdr->sh_link >= elf_numsections (abfd))
555 return NULL;
556 hdr = elf_elfsections (abfd) [ghdr->sh_link];
557 if (hdr->sh_type != SHT_SYMTAB
558 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
559 return NULL;
560
561 /* Go read the symbol. */
562 hdr = &elf_tdata (abfd)->symtab_hdr;
563 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
564 &isym, esym, &eshndx) == NULL)
565 return NULL;
566
567 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
568 }
569
570 /* Set next_in_group list pointer, and group name for NEWSECT. */
571
572 static bfd_boolean
573 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
574 {
575 unsigned int num_group = elf_tdata (abfd)->num_group;
576
577 /* If num_group is zero, read in all SHT_GROUP sections. The count
578 is set to -1 if there are no SHT_GROUP sections. */
579 if (num_group == 0)
580 {
581 unsigned int i, shnum;
582
583 /* First count the number of groups. If we have a SHT_GROUP
584 section with just a flag word (ie. sh_size is 4), ignore it. */
585 shnum = elf_numsections (abfd);
586 num_group = 0;
587
588 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
589 ( (shdr)->sh_type == SHT_GROUP \
590 && (shdr)->sh_size >= minsize \
591 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
592 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
593
594 for (i = 0; i < shnum; i++)
595 {
596 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
597
598 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
599 num_group += 1;
600 }
601
602 if (num_group == 0)
603 {
604 num_group = (unsigned) -1;
605 elf_tdata (abfd)->num_group = num_group;
606 }
607 else
608 {
609 /* We keep a list of elf section headers for group sections,
610 so we can find them quickly. */
611 bfd_size_type amt;
612
613 elf_tdata (abfd)->num_group = num_group;
614 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
615 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
616 if (elf_tdata (abfd)->group_sect_ptr == NULL)
617 return FALSE;
618
619 num_group = 0;
620 for (i = 0; i < shnum; i++)
621 {
622 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
623
624 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
625 {
626 unsigned char *src;
627 Elf_Internal_Group *dest;
628
629 /* Add to list of sections. */
630 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
631 num_group += 1;
632
633 /* Read the raw contents. */
634 BFD_ASSERT (sizeof (*dest) >= 4);
635 amt = shdr->sh_size * sizeof (*dest) / 4;
636 shdr->contents = (unsigned char *)
637 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
638 /* PR binutils/4110: Handle corrupt group headers. */
639 if (shdr->contents == NULL)
640 {
641 _bfd_error_handler
642 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
643 bfd_set_error (bfd_error_bad_value);
644 -- num_group;
645 continue;
646 }
647
648 memset (shdr->contents, 0, amt);
649
650 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
651 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
652 != shdr->sh_size))
653 {
654 _bfd_error_handler
655 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
656 bfd_set_error (bfd_error_bad_value);
657 -- num_group;
658 /* PR 17510: If the group contents are even partially
659 corrupt, do not allow any of the contents to be used. */
660 memset (shdr->contents, 0, amt);
661 continue;
662 }
663
664 /* Translate raw contents, a flag word followed by an
665 array of elf section indices all in target byte order,
666 to the flag word followed by an array of elf section
667 pointers. */
668 src = shdr->contents + shdr->sh_size;
669 dest = (Elf_Internal_Group *) (shdr->contents + amt);
670
671 while (1)
672 {
673 unsigned int idx;
674
675 src -= 4;
676 --dest;
677 idx = H_GET_32 (abfd, src);
678 if (src == shdr->contents)
679 {
680 dest->flags = idx;
681 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
682 shdr->bfd_section->flags
683 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
684 break;
685 }
686 if (idx >= shnum)
687 {
688 ((*_bfd_error_handler)
689 (_("%B: invalid SHT_GROUP entry"), abfd));
690 idx = 0;
691 }
692 dest->shdr = elf_elfsections (abfd)[idx];
693 }
694 }
695 }
696
697 /* PR 17510: Corrupt binaries might contain invalid groups. */
698 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
699 {
700 elf_tdata (abfd)->num_group = num_group;
701
702 /* If all groups are invalid then fail. */
703 if (num_group == 0)
704 {
705 elf_tdata (abfd)->group_sect_ptr = NULL;
706 elf_tdata (abfd)->num_group = num_group = -1;
707 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd);
708 bfd_set_error (bfd_error_bad_value);
709 }
710 }
711 }
712 }
713
714 if (num_group != (unsigned) -1)
715 {
716 unsigned int i;
717
718 for (i = 0; i < num_group; i++)
719 {
720 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
721 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
722 unsigned int n_elt = shdr->sh_size / 4;
723
724 /* Look through this group's sections to see if current
725 section is a member. */
726 while (--n_elt != 0)
727 if ((++idx)->shdr == hdr)
728 {
729 asection *s = NULL;
730
731 /* We are a member of this group. Go looking through
732 other members to see if any others are linked via
733 next_in_group. */
734 idx = (Elf_Internal_Group *) shdr->contents;
735 n_elt = shdr->sh_size / 4;
736 while (--n_elt != 0)
737 if ((s = (++idx)->shdr->bfd_section) != NULL
738 && elf_next_in_group (s) != NULL)
739 break;
740 if (n_elt != 0)
741 {
742 /* Snarf the group name from other member, and
743 insert current section in circular list. */
744 elf_group_name (newsect) = elf_group_name (s);
745 elf_next_in_group (newsect) = elf_next_in_group (s);
746 elf_next_in_group (s) = newsect;
747 }
748 else
749 {
750 const char *gname;
751
752 gname = group_signature (abfd, shdr);
753 if (gname == NULL)
754 return FALSE;
755 elf_group_name (newsect) = gname;
756
757 /* Start a circular list with one element. */
758 elf_next_in_group (newsect) = newsect;
759 }
760
761 /* If the group section has been created, point to the
762 new member. */
763 if (shdr->bfd_section != NULL)
764 elf_next_in_group (shdr->bfd_section) = newsect;
765
766 i = num_group - 1;
767 break;
768 }
769 }
770 }
771
772 if (elf_group_name (newsect) == NULL)
773 {
774 (*_bfd_error_handler) (_("%B: no group info for section %A"),
775 abfd, newsect);
776 return FALSE;
777 }
778 return TRUE;
779 }
780
781 bfd_boolean
782 _bfd_elf_setup_sections (bfd *abfd)
783 {
784 unsigned int i;
785 unsigned int num_group = elf_tdata (abfd)->num_group;
786 bfd_boolean result = TRUE;
787 asection *s;
788
789 /* Process SHF_LINK_ORDER. */
790 for (s = abfd->sections; s != NULL; s = s->next)
791 {
792 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
793 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
794 {
795 unsigned int elfsec = this_hdr->sh_link;
796 /* FIXME: The old Intel compiler and old strip/objcopy may
797 not set the sh_link or sh_info fields. Hence we could
798 get the situation where elfsec is 0. */
799 if (elfsec == 0)
800 {
801 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
802 if (bed->link_order_error_handler)
803 bed->link_order_error_handler
804 (_("%B: warning: sh_link not set for section `%A'"),
805 abfd, s);
806 }
807 else
808 {
809 asection *linksec = NULL;
810
811 if (elfsec < elf_numsections (abfd))
812 {
813 this_hdr = elf_elfsections (abfd)[elfsec];
814 linksec = this_hdr->bfd_section;
815 }
816
817 /* PR 1991, 2008:
818 Some strip/objcopy may leave an incorrect value in
819 sh_link. We don't want to proceed. */
820 if (linksec == NULL)
821 {
822 (*_bfd_error_handler)
823 (_("%B: sh_link [%d] in section `%A' is incorrect"),
824 s->owner, s, elfsec);
825 result = FALSE;
826 }
827
828 elf_linked_to_section (s) = linksec;
829 }
830 }
831 }
832
833 /* Process section groups. */
834 if (num_group == (unsigned) -1)
835 return result;
836
837 for (i = 0; i < num_group; i++)
838 {
839 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
840 Elf_Internal_Group *idx;
841 unsigned int n_elt;
842
843 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
844 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
845 {
846 (*_bfd_error_handler)
847 (_("%B: section group entry number %u is corrupt"),
848 abfd, i);
849 result = FALSE;
850 continue;
851 }
852
853 idx = (Elf_Internal_Group *) shdr->contents;
854 n_elt = shdr->sh_size / 4;
855
856 while (--n_elt != 0)
857 if ((++idx)->shdr->bfd_section)
858 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
859 else if (idx->shdr->sh_type == SHT_RELA
860 || idx->shdr->sh_type == SHT_REL)
861 /* We won't include relocation sections in section groups in
862 output object files. We adjust the group section size here
863 so that relocatable link will work correctly when
864 relocation sections are in section group in input object
865 files. */
866 shdr->bfd_section->size -= 4;
867 else
868 {
869 /* There are some unknown sections in the group. */
870 (*_bfd_error_handler)
871 (_("%B: unknown [%d] section `%s' in group [%s]"),
872 abfd,
873 (unsigned int) idx->shdr->sh_type,
874 bfd_elf_string_from_elf_section (abfd,
875 (elf_elfheader (abfd)
876 ->e_shstrndx),
877 idx->shdr->sh_name),
878 shdr->bfd_section->name);
879 result = FALSE;
880 }
881 }
882 return result;
883 }
884
885 bfd_boolean
886 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
887 {
888 return elf_next_in_group (sec) != NULL;
889 }
890
891 static char *
892 convert_debug_to_zdebug (bfd *abfd, const char *name)
893 {
894 unsigned int len = strlen (name);
895 char *new_name = bfd_alloc (abfd, len + 2);
896 if (new_name == NULL)
897 return NULL;
898 new_name[0] = '.';
899 new_name[1] = 'z';
900 memcpy (new_name + 2, name + 1, len);
901 return new_name;
902 }
903
904 static char *
905 convert_zdebug_to_debug (bfd *abfd, const char *name)
906 {
907 unsigned int len = strlen (name);
908 char *new_name = bfd_alloc (abfd, len);
909 if (new_name == NULL)
910 return NULL;
911 new_name[0] = '.';
912 memcpy (new_name + 1, name + 2, len - 1);
913 return new_name;
914 }
915
916 /* Make a BFD section from an ELF section. We store a pointer to the
917 BFD section in the bfd_section field of the header. */
918
919 bfd_boolean
920 _bfd_elf_make_section_from_shdr (bfd *abfd,
921 Elf_Internal_Shdr *hdr,
922 const char *name,
923 int shindex)
924 {
925 asection *newsect;
926 flagword flags;
927 const struct elf_backend_data *bed;
928
929 if (hdr->bfd_section != NULL)
930 return TRUE;
931
932 newsect = bfd_make_section_anyway (abfd, name);
933 if (newsect == NULL)
934 return FALSE;
935
936 hdr->bfd_section = newsect;
937 elf_section_data (newsect)->this_hdr = *hdr;
938 elf_section_data (newsect)->this_idx = shindex;
939
940 /* Always use the real type/flags. */
941 elf_section_type (newsect) = hdr->sh_type;
942 elf_section_flags (newsect) = hdr->sh_flags;
943
944 newsect->filepos = hdr->sh_offset;
945
946 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
947 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
948 || ! bfd_set_section_alignment (abfd, newsect,
949 bfd_log2 (hdr->sh_addralign)))
950 return FALSE;
951
952 flags = SEC_NO_FLAGS;
953 if (hdr->sh_type != SHT_NOBITS)
954 flags |= SEC_HAS_CONTENTS;
955 if (hdr->sh_type == SHT_GROUP)
956 flags |= SEC_GROUP | SEC_EXCLUDE;
957 if ((hdr->sh_flags & SHF_ALLOC) != 0)
958 {
959 flags |= SEC_ALLOC;
960 if (hdr->sh_type != SHT_NOBITS)
961 flags |= SEC_LOAD;
962 }
963 if ((hdr->sh_flags & SHF_WRITE) == 0)
964 flags |= SEC_READONLY;
965 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
966 flags |= SEC_CODE;
967 else if ((flags & SEC_LOAD) != 0)
968 flags |= SEC_DATA;
969 if ((hdr->sh_flags & SHF_MERGE) != 0)
970 {
971 flags |= SEC_MERGE;
972 newsect->entsize = hdr->sh_entsize;
973 }
974 if ((hdr->sh_flags & SHF_STRINGS) != 0)
975 flags |= SEC_STRINGS;
976 if (hdr->sh_flags & SHF_GROUP)
977 if (!setup_group (abfd, hdr, newsect))
978 return FALSE;
979 if ((hdr->sh_flags & SHF_TLS) != 0)
980 flags |= SEC_THREAD_LOCAL;
981 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
982 flags |= SEC_EXCLUDE;
983
984 if ((flags & SEC_ALLOC) == 0)
985 {
986 /* The debugging sections appear to be recognized only by name,
987 not any sort of flag. Their SEC_ALLOC bits are cleared. */
988 if (name [0] == '.')
989 {
990 const char *p;
991 int n;
992 if (name[1] == 'd')
993 p = ".debug", n = 6;
994 else if (name[1] == 'g' && name[2] == 'n')
995 p = ".gnu.linkonce.wi.", n = 17;
996 else if (name[1] == 'g' && name[2] == 'd')
997 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
998 else if (name[1] == 'l')
999 p = ".line", n = 5;
1000 else if (name[1] == 's')
1001 p = ".stab", n = 5;
1002 else if (name[1] == 'z')
1003 p = ".zdebug", n = 7;
1004 else
1005 p = NULL, n = 0;
1006 if (p != NULL && strncmp (name, p, n) == 0)
1007 flags |= SEC_DEBUGGING;
1008 }
1009 }
1010
1011 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1012 only link a single copy of the section. This is used to support
1013 g++. g++ will emit each template expansion in its own section.
1014 The symbols will be defined as weak, so that multiple definitions
1015 are permitted. The GNU linker extension is to actually discard
1016 all but one of the sections. */
1017 if (CONST_STRNEQ (name, ".gnu.linkonce")
1018 && elf_next_in_group (newsect) == NULL)
1019 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1020
1021 bed = get_elf_backend_data (abfd);
1022 if (bed->elf_backend_section_flags)
1023 if (! bed->elf_backend_section_flags (&flags, hdr))
1024 return FALSE;
1025
1026 if (! bfd_set_section_flags (abfd, newsect, flags))
1027 return FALSE;
1028
1029 /* We do not parse the PT_NOTE segments as we are interested even in the
1030 separate debug info files which may have the segments offsets corrupted.
1031 PT_NOTEs from the core files are currently not parsed using BFD. */
1032 if (hdr->sh_type == SHT_NOTE)
1033 {
1034 bfd_byte *contents;
1035
1036 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1037 return FALSE;
1038
1039 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
1040 free (contents);
1041 }
1042
1043 if ((flags & SEC_ALLOC) != 0)
1044 {
1045 Elf_Internal_Phdr *phdr;
1046 unsigned int i, nload;
1047
1048 /* Some ELF linkers produce binaries with all the program header
1049 p_paddr fields zero. If we have such a binary with more than
1050 one PT_LOAD header, then leave the section lma equal to vma
1051 so that we don't create sections with overlapping lma. */
1052 phdr = elf_tdata (abfd)->phdr;
1053 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1054 if (phdr->p_paddr != 0)
1055 break;
1056 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1057 ++nload;
1058 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1059 return TRUE;
1060
1061 phdr = elf_tdata (abfd)->phdr;
1062 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1063 {
1064 if (((phdr->p_type == PT_LOAD
1065 && (hdr->sh_flags & SHF_TLS) == 0)
1066 || phdr->p_type == PT_TLS)
1067 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1068 {
1069 if ((flags & SEC_LOAD) == 0)
1070 newsect->lma = (phdr->p_paddr
1071 + hdr->sh_addr - phdr->p_vaddr);
1072 else
1073 /* We used to use the same adjustment for SEC_LOAD
1074 sections, but that doesn't work if the segment
1075 is packed with code from multiple VMAs.
1076 Instead we calculate the section LMA based on
1077 the segment LMA. It is assumed that the
1078 segment will contain sections with contiguous
1079 LMAs, even if the VMAs are not. */
1080 newsect->lma = (phdr->p_paddr
1081 + hdr->sh_offset - phdr->p_offset);
1082
1083 /* With contiguous segments, we can't tell from file
1084 offsets whether a section with zero size should
1085 be placed at the end of one segment or the
1086 beginning of the next. Decide based on vaddr. */
1087 if (hdr->sh_addr >= phdr->p_vaddr
1088 && (hdr->sh_addr + hdr->sh_size
1089 <= phdr->p_vaddr + phdr->p_memsz))
1090 break;
1091 }
1092 }
1093 }
1094
1095 /* Compress/decompress DWARF debug sections with names: .debug_* and
1096 .zdebug_*, after the section flags is set. */
1097 if ((flags & SEC_DEBUGGING)
1098 && ((name[1] == 'd' && name[6] == '_')
1099 || (name[1] == 'z' && name[7] == '_')))
1100 {
1101 enum { nothing, compress, decompress } action = nothing;
1102 int compression_header_size;
1103 bfd_size_type uncompressed_size;
1104 bfd_boolean compressed
1105 = bfd_is_section_compressed_with_header (abfd, newsect,
1106 &compression_header_size,
1107 &uncompressed_size);
1108
1109 if (compressed)
1110 {
1111 /* Compressed section. Check if we should decompress. */
1112 if ((abfd->flags & BFD_DECOMPRESS))
1113 action = decompress;
1114 }
1115
1116 /* Compress the uncompressed section or convert from/to .zdebug*
1117 section. Check if we should compress. */
1118 if (action == nothing)
1119 {
1120 if (newsect->size != 0
1121 && (abfd->flags & BFD_COMPRESS)
1122 && compression_header_size >= 0
1123 && uncompressed_size > 0
1124 && (!compressed
1125 || ((compression_header_size > 0)
1126 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1127 action = compress;
1128 else
1129 return TRUE;
1130 }
1131
1132 if (action == compress)
1133 {
1134 if (!bfd_init_section_compress_status (abfd, newsect))
1135 {
1136 (*_bfd_error_handler)
1137 (_("%B: unable to initialize compress status for section %s"),
1138 abfd, name);
1139 return FALSE;
1140 }
1141 }
1142 else
1143 {
1144 if (!bfd_init_section_decompress_status (abfd, newsect))
1145 {
1146 (*_bfd_error_handler)
1147 (_("%B: unable to initialize decompress status for section %s"),
1148 abfd, name);
1149 return FALSE;
1150 }
1151 }
1152
1153 if (abfd->is_linker_input)
1154 {
1155 if (name[1] == 'z'
1156 && (action == decompress
1157 || (action == compress
1158 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1159 {
1160 /* Convert section name from .zdebug_* to .debug_* so
1161 that linker will consider this section as a debug
1162 section. */
1163 char *new_name = convert_zdebug_to_debug (abfd, name);
1164 if (new_name == NULL)
1165 return FALSE;
1166 bfd_rename_section (abfd, newsect, new_name);
1167 }
1168 }
1169 else
1170 /* For objdump, don't rename the section. For objcopy, delay
1171 section rename to elf_fake_sections. */
1172 newsect->flags |= SEC_ELF_RENAME;
1173 }
1174
1175 return TRUE;
1176 }
1177
1178 const char *const bfd_elf_section_type_names[] =
1179 {
1180 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1181 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1182 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1183 };
1184
1185 /* ELF relocs are against symbols. If we are producing relocatable
1186 output, and the reloc is against an external symbol, and nothing
1187 has given us any additional addend, the resulting reloc will also
1188 be against the same symbol. In such a case, we don't want to
1189 change anything about the way the reloc is handled, since it will
1190 all be done at final link time. Rather than put special case code
1191 into bfd_perform_relocation, all the reloc types use this howto
1192 function. It just short circuits the reloc if producing
1193 relocatable output against an external symbol. */
1194
1195 bfd_reloc_status_type
1196 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1197 arelent *reloc_entry,
1198 asymbol *symbol,
1199 void *data ATTRIBUTE_UNUSED,
1200 asection *input_section,
1201 bfd *output_bfd,
1202 char **error_message ATTRIBUTE_UNUSED)
1203 {
1204 if (output_bfd != NULL
1205 && (symbol->flags & BSF_SECTION_SYM) == 0
1206 && (! reloc_entry->howto->partial_inplace
1207 || reloc_entry->addend == 0))
1208 {
1209 reloc_entry->address += input_section->output_offset;
1210 return bfd_reloc_ok;
1211 }
1212
1213 return bfd_reloc_continue;
1214 }
1215 \f
1216 /* Returns TRUE if section A matches section B.
1217 Names, addresses and links may be different, but everything else
1218 should be the same. */
1219
1220 static bfd_boolean
1221 section_match (Elf_Internal_Shdr * a, Elf_Internal_Shdr * b)
1222 {
1223 return
1224 a->sh_type == b->sh_type
1225 && a->sh_flags == b->sh_flags
1226 && a->sh_addralign == b->sh_addralign
1227 && a->sh_size == b->sh_size
1228 && a->sh_entsize == b->sh_entsize
1229 /* FIXME: Check sh_addr ? */
1230 ;
1231 }
1232
1233 /* Find a section in OBFD that has the same characteristics
1234 as IHEADER. Return the index of this section or SHN_UNDEF if
1235 none can be found. Check's section HINT first, as this is likely
1236 to be the correct section. */
1237
1238 static unsigned int
1239 find_link (bfd * obfd, Elf_Internal_Shdr * iheader, unsigned int hint)
1240 {
1241 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1242 unsigned int i;
1243
1244 if (section_match (oheaders[hint], iheader))
1245 return hint;
1246
1247 for (i = 1; i < elf_numsections (obfd); i++)
1248 {
1249 Elf_Internal_Shdr * oheader = oheaders[i];
1250
1251 if (section_match (oheader, iheader))
1252 /* FIXME: Do we care if there is a potential for
1253 multiple matches ? */
1254 return i;
1255 }
1256
1257 return SHN_UNDEF;
1258 }
1259
1260 /* Copy the program header and other data from one object module to
1261 another. */
1262
1263 bfd_boolean
1264 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1265 {
1266 Elf_Internal_Shdr ** iheaders = elf_elfsections (ibfd);
1267 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1268 unsigned int i;
1269
1270 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1271 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1272 return TRUE;
1273
1274 if (!elf_flags_init (obfd))
1275 {
1276 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1277 elf_flags_init (obfd) = TRUE;
1278 }
1279
1280 elf_gp (obfd) = elf_gp (ibfd);
1281
1282 /* Also copy the EI_OSABI field. */
1283 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1284 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1285
1286 /* Copy object attributes. */
1287 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1288
1289 if (iheaders == NULL || oheaders == NULL)
1290 return TRUE;
1291
1292 /* Possibly copy the sh_info and sh_link fields. */
1293 for (i = 1; i < elf_numsections (obfd); i++)
1294 {
1295 unsigned int j;
1296 Elf_Internal_Shdr * oheader = oheaders[i];
1297
1298 if (oheader == NULL
1299 || (oheader->sh_type != SHT_NOBITS
1300 && oheader->sh_type < SHT_LOOS)
1301 || oheader->sh_size == 0
1302 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1303 continue;
1304
1305 /* Scan for the matching section in the input bfd.
1306 FIXME: We could use something better than a linear scan here.
1307 Unfortunately we cannot compare names as the output string table
1308 is empty, so instead we check size, address and type. */
1309 for (j = 1; j < elf_numsections (ibfd); j++)
1310 {
1311 Elf_Internal_Shdr * iheader = iheaders[j];
1312
1313 /* Since --only-keep-debug turns all non-debug sections into
1314 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1315 input type. */
1316 if ((oheader->sh_type == SHT_NOBITS
1317 || iheader->sh_type == oheader->sh_type)
1318 && iheader->sh_flags == oheader->sh_flags
1319 && iheader->sh_addralign == oheader->sh_addralign
1320 && iheader->sh_entsize == oheader->sh_entsize
1321 && iheader->sh_size == oheader->sh_size
1322 && iheader->sh_addr == oheader->sh_addr
1323 && (iheader->sh_info != oheader->sh_info
1324 || iheader->sh_link != oheader->sh_link))
1325 {
1326 /* PR 19938: Attempt to preserve the sh_link and sh_info fields
1327 of OS and Processor specific sections. We try harder for
1328 these sections, because this is not just about matching
1329 stripped binaries to their originals. */
1330 if (oheader->sh_type >= SHT_LOOS)
1331 {
1332 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1333 bfd_boolean changed = FALSE;
1334 unsigned int sh_link;
1335
1336 /* Allow the target a chance to decide how these fields should
1337 be set. */
1338 if (bed->elf_backend_set_special_section_info_and_link != NULL
1339 && bed->elf_backend_set_special_section_info_and_link
1340 (ibfd, obfd, iheader, oheader))
1341 break;
1342
1343 /* We have iheader which matches oheader, but which has
1344 non-zero sh_info and/or sh_link fields. Attempt to
1345 follow those links and find the section in the output
1346 bfd which corresponds to the linked section in the input
1347 bfd. */
1348 if (iheader->sh_link != SHN_UNDEF)
1349 {
1350 sh_link = find_link (obfd,
1351 iheaders[iheader->sh_link],
1352 iheader->sh_link);
1353 if (sh_link != SHN_UNDEF)
1354 {
1355 oheader->sh_link = sh_link;
1356 changed = TRUE;
1357 }
1358 else
1359 /* FIXME: Should we install iheader->sh_link
1360 if we could not find a match ? */
1361 (* _bfd_error_handler)
1362 (_("%B: Failed to find link section for section %d"),
1363 obfd, i);
1364 }
1365
1366 if (iheader->sh_info)
1367 {
1368 /* The sh_info field can hold arbitrary information,
1369 but if the SHF_LINK_INFO flag is set then it
1370 should be interpreted as a section index. */
1371 if (iheader->sh_flags & SHF_INFO_LINK)
1372 sh_link = find_link (obfd,
1373 iheaders[iheader->sh_info],
1374 iheader->sh_info);
1375 else
1376 /* No idea what it means - just copy it. */
1377 sh_link = iheader->sh_info;
1378
1379 if (sh_link != SHN_UNDEF)
1380 {
1381 oheader->sh_info = sh_link;
1382 changed = TRUE;
1383 }
1384 else
1385 (* _bfd_error_handler)
1386 (_("%B: Failed to find info section for section %d"),
1387 obfd, i);
1388 }
1389
1390 if (changed)
1391 break;
1392 }
1393 else
1394 {
1395 /* This is an feature for objcopy --only-keep-debug:
1396 When a section's type is changed to NOBITS, we preserve
1397 the sh_link and sh_info fields so that they can be
1398 matched up with the original.
1399
1400 Note: Strictly speaking these assignments are wrong.
1401 The sh_link and sh_info fields should point to the
1402 relevent sections in the output BFD, which may not be in
1403 the same location as they were in the input BFD. But
1404 the whole point of this action is to preserve the
1405 original values of the sh_link and sh_info fields, so
1406 that they can be matched up with the section headers in
1407 the original file. So strictly speaking we may be
1408 creating an invalid ELF file, but it is only for a file
1409 that just contains debug info and only for sections
1410 without any contents. */
1411 if (oheader->sh_link == 0)
1412 oheader->sh_link = iheader->sh_link;
1413 if (oheader->sh_info == 0)
1414 oheader->sh_info = iheader->sh_info;
1415 break;
1416 }
1417 }
1418 }
1419 }
1420
1421 return TRUE;
1422 }
1423
1424 static const char *
1425 get_segment_type (unsigned int p_type)
1426 {
1427 const char *pt;
1428 switch (p_type)
1429 {
1430 case PT_NULL: pt = "NULL"; break;
1431 case PT_LOAD: pt = "LOAD"; break;
1432 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1433 case PT_INTERP: pt = "INTERP"; break;
1434 case PT_NOTE: pt = "NOTE"; break;
1435 case PT_SHLIB: pt = "SHLIB"; break;
1436 case PT_PHDR: pt = "PHDR"; break;
1437 case PT_TLS: pt = "TLS"; break;
1438 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1439 case PT_GNU_STACK: pt = "STACK"; break;
1440 case PT_GNU_RELRO: pt = "RELRO"; break;
1441 default: pt = NULL; break;
1442 }
1443 return pt;
1444 }
1445
1446 /* Print out the program headers. */
1447
1448 bfd_boolean
1449 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1450 {
1451 FILE *f = (FILE *) farg;
1452 Elf_Internal_Phdr *p;
1453 asection *s;
1454 bfd_byte *dynbuf = NULL;
1455
1456 p = elf_tdata (abfd)->phdr;
1457 if (p != NULL)
1458 {
1459 unsigned int i, c;
1460
1461 fprintf (f, _("\nProgram Header:\n"));
1462 c = elf_elfheader (abfd)->e_phnum;
1463 for (i = 0; i < c; i++, p++)
1464 {
1465 const char *pt = get_segment_type (p->p_type);
1466 char buf[20];
1467
1468 if (pt == NULL)
1469 {
1470 sprintf (buf, "0x%lx", p->p_type);
1471 pt = buf;
1472 }
1473 fprintf (f, "%8s off 0x", pt);
1474 bfd_fprintf_vma (abfd, f, p->p_offset);
1475 fprintf (f, " vaddr 0x");
1476 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1477 fprintf (f, " paddr 0x");
1478 bfd_fprintf_vma (abfd, f, p->p_paddr);
1479 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1480 fprintf (f, " filesz 0x");
1481 bfd_fprintf_vma (abfd, f, p->p_filesz);
1482 fprintf (f, " memsz 0x");
1483 bfd_fprintf_vma (abfd, f, p->p_memsz);
1484 fprintf (f, " flags %c%c%c",
1485 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1486 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1487 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1488 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1489 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1490 fprintf (f, "\n");
1491 }
1492 }
1493
1494 s = bfd_get_section_by_name (abfd, ".dynamic");
1495 if (s != NULL)
1496 {
1497 unsigned int elfsec;
1498 unsigned long shlink;
1499 bfd_byte *extdyn, *extdynend;
1500 size_t extdynsize;
1501 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1502
1503 fprintf (f, _("\nDynamic Section:\n"));
1504
1505 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1506 goto error_return;
1507
1508 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1509 if (elfsec == SHN_BAD)
1510 goto error_return;
1511 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1512
1513 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1514 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1515
1516 extdyn = dynbuf;
1517 /* PR 17512: file: 6f427532. */
1518 if (s->size < extdynsize)
1519 goto error_return;
1520 extdynend = extdyn + s->size;
1521 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1522 Fix range check. */
1523 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1524 {
1525 Elf_Internal_Dyn dyn;
1526 const char *name = "";
1527 char ab[20];
1528 bfd_boolean stringp;
1529 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1530
1531 (*swap_dyn_in) (abfd, extdyn, &dyn);
1532
1533 if (dyn.d_tag == DT_NULL)
1534 break;
1535
1536 stringp = FALSE;
1537 switch (dyn.d_tag)
1538 {
1539 default:
1540 if (bed->elf_backend_get_target_dtag)
1541 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1542
1543 if (!strcmp (name, ""))
1544 {
1545 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1546 name = ab;
1547 }
1548 break;
1549
1550 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1551 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1552 case DT_PLTGOT: name = "PLTGOT"; break;
1553 case DT_HASH: name = "HASH"; break;
1554 case DT_STRTAB: name = "STRTAB"; break;
1555 case DT_SYMTAB: name = "SYMTAB"; break;
1556 case DT_RELA: name = "RELA"; break;
1557 case DT_RELASZ: name = "RELASZ"; break;
1558 case DT_RELAENT: name = "RELAENT"; break;
1559 case DT_STRSZ: name = "STRSZ"; break;
1560 case DT_SYMENT: name = "SYMENT"; break;
1561 case DT_INIT: name = "INIT"; break;
1562 case DT_FINI: name = "FINI"; break;
1563 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1564 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1565 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1566 case DT_REL: name = "REL"; break;
1567 case DT_RELSZ: name = "RELSZ"; break;
1568 case DT_RELENT: name = "RELENT"; break;
1569 case DT_PLTREL: name = "PLTREL"; break;
1570 case DT_DEBUG: name = "DEBUG"; break;
1571 case DT_TEXTREL: name = "TEXTREL"; break;
1572 case DT_JMPREL: name = "JMPREL"; break;
1573 case DT_BIND_NOW: name = "BIND_NOW"; break;
1574 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1575 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1576 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1577 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1578 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1579 case DT_FLAGS: name = "FLAGS"; break;
1580 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1581 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1582 case DT_CHECKSUM: name = "CHECKSUM"; break;
1583 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1584 case DT_MOVEENT: name = "MOVEENT"; break;
1585 case DT_MOVESZ: name = "MOVESZ"; break;
1586 case DT_FEATURE: name = "FEATURE"; break;
1587 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1588 case DT_SYMINSZ: name = "SYMINSZ"; break;
1589 case DT_SYMINENT: name = "SYMINENT"; break;
1590 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1591 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1592 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1593 case DT_PLTPAD: name = "PLTPAD"; break;
1594 case DT_MOVETAB: name = "MOVETAB"; break;
1595 case DT_SYMINFO: name = "SYMINFO"; break;
1596 case DT_RELACOUNT: name = "RELACOUNT"; break;
1597 case DT_RELCOUNT: name = "RELCOUNT"; break;
1598 case DT_FLAGS_1: name = "FLAGS_1"; break;
1599 case DT_VERSYM: name = "VERSYM"; break;
1600 case DT_VERDEF: name = "VERDEF"; break;
1601 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1602 case DT_VERNEED: name = "VERNEED"; break;
1603 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1604 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1605 case DT_USED: name = "USED"; break;
1606 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1607 case DT_GNU_HASH: name = "GNU_HASH"; break;
1608 }
1609
1610 fprintf (f, " %-20s ", name);
1611 if (! stringp)
1612 {
1613 fprintf (f, "0x");
1614 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1615 }
1616 else
1617 {
1618 const char *string;
1619 unsigned int tagv = dyn.d_un.d_val;
1620
1621 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1622 if (string == NULL)
1623 goto error_return;
1624 fprintf (f, "%s", string);
1625 }
1626 fprintf (f, "\n");
1627 }
1628
1629 free (dynbuf);
1630 dynbuf = NULL;
1631 }
1632
1633 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1634 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1635 {
1636 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1637 return FALSE;
1638 }
1639
1640 if (elf_dynverdef (abfd) != 0)
1641 {
1642 Elf_Internal_Verdef *t;
1643
1644 fprintf (f, _("\nVersion definitions:\n"));
1645 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1646 {
1647 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1648 t->vd_flags, t->vd_hash,
1649 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1650 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1651 {
1652 Elf_Internal_Verdaux *a;
1653
1654 fprintf (f, "\t");
1655 for (a = t->vd_auxptr->vda_nextptr;
1656 a != NULL;
1657 a = a->vda_nextptr)
1658 fprintf (f, "%s ",
1659 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1660 fprintf (f, "\n");
1661 }
1662 }
1663 }
1664
1665 if (elf_dynverref (abfd) != 0)
1666 {
1667 Elf_Internal_Verneed *t;
1668
1669 fprintf (f, _("\nVersion References:\n"));
1670 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1671 {
1672 Elf_Internal_Vernaux *a;
1673
1674 fprintf (f, _(" required from %s:\n"),
1675 t->vn_filename ? t->vn_filename : "<corrupt>");
1676 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1677 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1678 a->vna_flags, a->vna_other,
1679 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1680 }
1681 }
1682
1683 return TRUE;
1684
1685 error_return:
1686 if (dynbuf != NULL)
1687 free (dynbuf);
1688 return FALSE;
1689 }
1690
1691 /* Get version string. */
1692
1693 const char *
1694 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1695 bfd_boolean *hidden)
1696 {
1697 const char *version_string = NULL;
1698 if (elf_dynversym (abfd) != 0
1699 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1700 {
1701 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1702
1703 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1704 vernum &= VERSYM_VERSION;
1705
1706 if (vernum == 0)
1707 version_string = "";
1708 else if (vernum == 1)
1709 version_string = "Base";
1710 else if (vernum <= elf_tdata (abfd)->cverdefs)
1711 version_string =
1712 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1713 else
1714 {
1715 Elf_Internal_Verneed *t;
1716
1717 version_string = "";
1718 for (t = elf_tdata (abfd)->verref;
1719 t != NULL;
1720 t = t->vn_nextref)
1721 {
1722 Elf_Internal_Vernaux *a;
1723
1724 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1725 {
1726 if (a->vna_other == vernum)
1727 {
1728 version_string = a->vna_nodename;
1729 break;
1730 }
1731 }
1732 }
1733 }
1734 }
1735 return version_string;
1736 }
1737
1738 /* Display ELF-specific fields of a symbol. */
1739
1740 void
1741 bfd_elf_print_symbol (bfd *abfd,
1742 void *filep,
1743 asymbol *symbol,
1744 bfd_print_symbol_type how)
1745 {
1746 FILE *file = (FILE *) filep;
1747 switch (how)
1748 {
1749 case bfd_print_symbol_name:
1750 fprintf (file, "%s", symbol->name);
1751 break;
1752 case bfd_print_symbol_more:
1753 fprintf (file, "elf ");
1754 bfd_fprintf_vma (abfd, file, symbol->value);
1755 fprintf (file, " %lx", (unsigned long) symbol->flags);
1756 break;
1757 case bfd_print_symbol_all:
1758 {
1759 const char *section_name;
1760 const char *name = NULL;
1761 const struct elf_backend_data *bed;
1762 unsigned char st_other;
1763 bfd_vma val;
1764 const char *version_string;
1765 bfd_boolean hidden;
1766
1767 section_name = symbol->section ? symbol->section->name : "(*none*)";
1768
1769 bed = get_elf_backend_data (abfd);
1770 if (bed->elf_backend_print_symbol_all)
1771 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1772
1773 if (name == NULL)
1774 {
1775 name = symbol->name;
1776 bfd_print_symbol_vandf (abfd, file, symbol);
1777 }
1778
1779 fprintf (file, " %s\t", section_name);
1780 /* Print the "other" value for a symbol. For common symbols,
1781 we've already printed the size; now print the alignment.
1782 For other symbols, we have no specified alignment, and
1783 we've printed the address; now print the size. */
1784 if (symbol->section && bfd_is_com_section (symbol->section))
1785 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1786 else
1787 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1788 bfd_fprintf_vma (abfd, file, val);
1789
1790 /* If we have version information, print it. */
1791 version_string = _bfd_elf_get_symbol_version_string (abfd,
1792 symbol,
1793 &hidden);
1794 if (version_string)
1795 {
1796 if (!hidden)
1797 fprintf (file, " %-11s", version_string);
1798 else
1799 {
1800 int i;
1801
1802 fprintf (file, " (%s)", version_string);
1803 for (i = 10 - strlen (version_string); i > 0; --i)
1804 putc (' ', file);
1805 }
1806 }
1807
1808 /* If the st_other field is not zero, print it. */
1809 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1810
1811 switch (st_other)
1812 {
1813 case 0: break;
1814 case STV_INTERNAL: fprintf (file, " .internal"); break;
1815 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1816 case STV_PROTECTED: fprintf (file, " .protected"); break;
1817 default:
1818 /* Some other non-defined flags are also present, so print
1819 everything hex. */
1820 fprintf (file, " 0x%02x", (unsigned int) st_other);
1821 }
1822
1823 fprintf (file, " %s", name);
1824 }
1825 break;
1826 }
1827 }
1828 \f
1829 /* ELF .o/exec file reading */
1830
1831 /* Create a new bfd section from an ELF section header. */
1832
1833 bfd_boolean
1834 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1835 {
1836 Elf_Internal_Shdr *hdr;
1837 Elf_Internal_Ehdr *ehdr;
1838 const struct elf_backend_data *bed;
1839 const char *name;
1840 bfd_boolean ret = TRUE;
1841 static bfd_boolean * sections_being_created = NULL;
1842 static bfd * sections_being_created_abfd = NULL;
1843 static unsigned int nesting = 0;
1844
1845 if (shindex >= elf_numsections (abfd))
1846 return FALSE;
1847
1848 if (++ nesting > 3)
1849 {
1850 /* PR17512: A corrupt ELF binary might contain a recursive group of
1851 sections, with each the string indicies pointing to the next in the
1852 loop. Detect this here, by refusing to load a section that we are
1853 already in the process of loading. We only trigger this test if
1854 we have nested at least three sections deep as normal ELF binaries
1855 can expect to recurse at least once.
1856
1857 FIXME: It would be better if this array was attached to the bfd,
1858 rather than being held in a static pointer. */
1859
1860 if (sections_being_created_abfd != abfd)
1861 sections_being_created = NULL;
1862 if (sections_being_created == NULL)
1863 {
1864 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1865 sections_being_created = (bfd_boolean *)
1866 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1867 sections_being_created_abfd = abfd;
1868 }
1869 if (sections_being_created [shindex])
1870 {
1871 (*_bfd_error_handler)
1872 (_("%B: warning: loop in section dependencies detected"), abfd);
1873 return FALSE;
1874 }
1875 sections_being_created [shindex] = TRUE;
1876 }
1877
1878 hdr = elf_elfsections (abfd)[shindex];
1879 ehdr = elf_elfheader (abfd);
1880 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1881 hdr->sh_name);
1882 if (name == NULL)
1883 goto fail;
1884
1885 bed = get_elf_backend_data (abfd);
1886 switch (hdr->sh_type)
1887 {
1888 case SHT_NULL:
1889 /* Inactive section. Throw it away. */
1890 goto success;
1891
1892 case SHT_PROGBITS: /* Normal section with contents. */
1893 case SHT_NOBITS: /* .bss section. */
1894 case SHT_HASH: /* .hash section. */
1895 case SHT_NOTE: /* .note section. */
1896 case SHT_INIT_ARRAY: /* .init_array section. */
1897 case SHT_FINI_ARRAY: /* .fini_array section. */
1898 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1899 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1900 case SHT_GNU_HASH: /* .gnu.hash section. */
1901 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1902 goto success;
1903
1904 case SHT_DYNAMIC: /* Dynamic linking information. */
1905 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1906 goto fail;
1907
1908 if (hdr->sh_link > elf_numsections (abfd))
1909 {
1910 /* PR 10478: Accept Solaris binaries with a sh_link
1911 field set to SHN_BEFORE or SHN_AFTER. */
1912 switch (bfd_get_arch (abfd))
1913 {
1914 case bfd_arch_i386:
1915 case bfd_arch_sparc:
1916 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1917 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1918 break;
1919 /* Otherwise fall through. */
1920 default:
1921 goto fail;
1922 }
1923 }
1924 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1925 goto fail;
1926 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1927 {
1928 Elf_Internal_Shdr *dynsymhdr;
1929
1930 /* The shared libraries distributed with hpux11 have a bogus
1931 sh_link field for the ".dynamic" section. Find the
1932 string table for the ".dynsym" section instead. */
1933 if (elf_dynsymtab (abfd) != 0)
1934 {
1935 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1936 hdr->sh_link = dynsymhdr->sh_link;
1937 }
1938 else
1939 {
1940 unsigned int i, num_sec;
1941
1942 num_sec = elf_numsections (abfd);
1943 for (i = 1; i < num_sec; i++)
1944 {
1945 dynsymhdr = elf_elfsections (abfd)[i];
1946 if (dynsymhdr->sh_type == SHT_DYNSYM)
1947 {
1948 hdr->sh_link = dynsymhdr->sh_link;
1949 break;
1950 }
1951 }
1952 }
1953 }
1954 goto success;
1955
1956 case SHT_SYMTAB: /* A symbol table. */
1957 if (elf_onesymtab (abfd) == shindex)
1958 goto success;
1959
1960 if (hdr->sh_entsize != bed->s->sizeof_sym)
1961 goto fail;
1962
1963 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1964 {
1965 if (hdr->sh_size != 0)
1966 goto fail;
1967 /* Some assemblers erroneously set sh_info to one with a
1968 zero sh_size. ld sees this as a global symbol count
1969 of (unsigned) -1. Fix it here. */
1970 hdr->sh_info = 0;
1971 goto success;
1972 }
1973
1974 /* PR 18854: A binary might contain more than one symbol table.
1975 Unusual, but possible. Warn, but continue. */
1976 if (elf_onesymtab (abfd) != 0)
1977 {
1978 (*_bfd_error_handler)
1979 (_("%B: warning: multiple symbol tables detected - ignoring the table in section %u"),
1980 abfd, shindex);
1981 goto success;
1982 }
1983 elf_onesymtab (abfd) = shindex;
1984 elf_symtab_hdr (abfd) = *hdr;
1985 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
1986 abfd->flags |= HAS_SYMS;
1987
1988 /* Sometimes a shared object will map in the symbol table. If
1989 SHF_ALLOC is set, and this is a shared object, then we also
1990 treat this section as a BFD section. We can not base the
1991 decision purely on SHF_ALLOC, because that flag is sometimes
1992 set in a relocatable object file, which would confuse the
1993 linker. */
1994 if ((hdr->sh_flags & SHF_ALLOC) != 0
1995 && (abfd->flags & DYNAMIC) != 0
1996 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1997 shindex))
1998 goto fail;
1999
2000 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2001 can't read symbols without that section loaded as well. It
2002 is most likely specified by the next section header. */
2003 {
2004 elf_section_list * entry;
2005 unsigned int i, num_sec;
2006
2007 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2008 if (entry->hdr.sh_link == shindex)
2009 goto success;
2010
2011 num_sec = elf_numsections (abfd);
2012 for (i = shindex + 1; i < num_sec; i++)
2013 {
2014 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2015
2016 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2017 && hdr2->sh_link == shindex)
2018 break;
2019 }
2020
2021 if (i == num_sec)
2022 for (i = 1; i < shindex; i++)
2023 {
2024 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2025
2026 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2027 && hdr2->sh_link == shindex)
2028 break;
2029 }
2030
2031 if (i != shindex)
2032 ret = bfd_section_from_shdr (abfd, i);
2033 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2034 goto success;
2035 }
2036
2037 case SHT_DYNSYM: /* A dynamic symbol table. */
2038 if (elf_dynsymtab (abfd) == shindex)
2039 goto success;
2040
2041 if (hdr->sh_entsize != bed->s->sizeof_sym)
2042 goto fail;
2043
2044 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2045 {
2046 if (hdr->sh_size != 0)
2047 goto fail;
2048
2049 /* Some linkers erroneously set sh_info to one with a
2050 zero sh_size. ld sees this as a global symbol count
2051 of (unsigned) -1. Fix it here. */
2052 hdr->sh_info = 0;
2053 goto success;
2054 }
2055
2056 /* PR 18854: A binary might contain more than one dynamic symbol table.
2057 Unusual, but possible. Warn, but continue. */
2058 if (elf_dynsymtab (abfd) != 0)
2059 {
2060 (*_bfd_error_handler)
2061 (_("%B: warning: multiple dynamic symbol tables detected - ignoring the table in section %u"),
2062 abfd, shindex);
2063 goto success;
2064 }
2065 elf_dynsymtab (abfd) = shindex;
2066 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2067 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2068 abfd->flags |= HAS_SYMS;
2069
2070 /* Besides being a symbol table, we also treat this as a regular
2071 section, so that objcopy can handle it. */
2072 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2073 goto success;
2074
2075 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2076 {
2077 elf_section_list * entry;
2078
2079 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2080 if (entry->ndx == shindex)
2081 goto success;
2082
2083 entry = bfd_alloc (abfd, sizeof * entry);
2084 if (entry == NULL)
2085 goto fail;
2086 entry->ndx = shindex;
2087 entry->hdr = * hdr;
2088 entry->next = elf_symtab_shndx_list (abfd);
2089 elf_symtab_shndx_list (abfd) = entry;
2090 elf_elfsections (abfd)[shindex] = & entry->hdr;
2091 goto success;
2092 }
2093
2094 case SHT_STRTAB: /* A string table. */
2095 if (hdr->bfd_section != NULL)
2096 goto success;
2097
2098 if (ehdr->e_shstrndx == shindex)
2099 {
2100 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2101 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2102 goto success;
2103 }
2104
2105 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2106 {
2107 symtab_strtab:
2108 elf_tdata (abfd)->strtab_hdr = *hdr;
2109 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2110 goto success;
2111 }
2112
2113 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2114 {
2115 dynsymtab_strtab:
2116 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2117 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2118 elf_elfsections (abfd)[shindex] = hdr;
2119 /* We also treat this as a regular section, so that objcopy
2120 can handle it. */
2121 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2122 shindex);
2123 goto success;
2124 }
2125
2126 /* If the string table isn't one of the above, then treat it as a
2127 regular section. We need to scan all the headers to be sure,
2128 just in case this strtab section appeared before the above. */
2129 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2130 {
2131 unsigned int i, num_sec;
2132
2133 num_sec = elf_numsections (abfd);
2134 for (i = 1; i < num_sec; i++)
2135 {
2136 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2137 if (hdr2->sh_link == shindex)
2138 {
2139 /* Prevent endless recursion on broken objects. */
2140 if (i == shindex)
2141 goto fail;
2142 if (! bfd_section_from_shdr (abfd, i))
2143 goto fail;
2144 if (elf_onesymtab (abfd) == i)
2145 goto symtab_strtab;
2146 if (elf_dynsymtab (abfd) == i)
2147 goto dynsymtab_strtab;
2148 }
2149 }
2150 }
2151 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2152 goto success;
2153
2154 case SHT_REL:
2155 case SHT_RELA:
2156 /* *These* do a lot of work -- but build no sections! */
2157 {
2158 asection *target_sect;
2159 Elf_Internal_Shdr *hdr2, **p_hdr;
2160 unsigned int num_sec = elf_numsections (abfd);
2161 struct bfd_elf_section_data *esdt;
2162 bfd_size_type amt;
2163
2164 if (hdr->sh_entsize
2165 != (bfd_size_type) (hdr->sh_type == SHT_REL
2166 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2167 goto fail;
2168
2169 /* Check for a bogus link to avoid crashing. */
2170 if (hdr->sh_link >= num_sec)
2171 {
2172 ((*_bfd_error_handler)
2173 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2174 abfd, hdr->sh_link, name, shindex));
2175 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2176 shindex);
2177 goto success;
2178 }
2179
2180 /* For some incomprehensible reason Oracle distributes
2181 libraries for Solaris in which some of the objects have
2182 bogus sh_link fields. It would be nice if we could just
2183 reject them, but, unfortunately, some people need to use
2184 them. We scan through the section headers; if we find only
2185 one suitable symbol table, we clobber the sh_link to point
2186 to it. I hope this doesn't break anything.
2187
2188 Don't do it on executable nor shared library. */
2189 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2190 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2191 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2192 {
2193 unsigned int scan;
2194 int found;
2195
2196 found = 0;
2197 for (scan = 1; scan < num_sec; scan++)
2198 {
2199 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2200 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2201 {
2202 if (found != 0)
2203 {
2204 found = 0;
2205 break;
2206 }
2207 found = scan;
2208 }
2209 }
2210 if (found != 0)
2211 hdr->sh_link = found;
2212 }
2213
2214 /* Get the symbol table. */
2215 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2216 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2217 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2218 goto fail;
2219
2220 /* If this reloc section does not use the main symbol table we
2221 don't treat it as a reloc section. BFD can't adequately
2222 represent such a section, so at least for now, we don't
2223 try. We just present it as a normal section. We also
2224 can't use it as a reloc section if it points to the null
2225 section, an invalid section, another reloc section, or its
2226 sh_link points to the null section. */
2227 if (hdr->sh_link != elf_onesymtab (abfd)
2228 || hdr->sh_link == SHN_UNDEF
2229 || hdr->sh_info == SHN_UNDEF
2230 || hdr->sh_info >= num_sec
2231 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2232 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2233 {
2234 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2235 shindex);
2236 goto success;
2237 }
2238
2239 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2240 goto fail;
2241
2242 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2243 if (target_sect == NULL)
2244 goto fail;
2245
2246 esdt = elf_section_data (target_sect);
2247 if (hdr->sh_type == SHT_RELA)
2248 p_hdr = &esdt->rela.hdr;
2249 else
2250 p_hdr = &esdt->rel.hdr;
2251
2252 /* PR 17512: file: 0b4f81b7. */
2253 if (*p_hdr != NULL)
2254 goto fail;
2255 amt = sizeof (*hdr2);
2256 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
2257 if (hdr2 == NULL)
2258 goto fail;
2259 *hdr2 = *hdr;
2260 *p_hdr = hdr2;
2261 elf_elfsections (abfd)[shindex] = hdr2;
2262 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2263 target_sect->flags |= SEC_RELOC;
2264 target_sect->relocation = NULL;
2265 target_sect->rel_filepos = hdr->sh_offset;
2266 /* In the section to which the relocations apply, mark whether
2267 its relocations are of the REL or RELA variety. */
2268 if (hdr->sh_size != 0)
2269 {
2270 if (hdr->sh_type == SHT_RELA)
2271 target_sect->use_rela_p = 1;
2272 }
2273 abfd->flags |= HAS_RELOC;
2274 goto success;
2275 }
2276
2277 case SHT_GNU_verdef:
2278 elf_dynverdef (abfd) = shindex;
2279 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2280 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2281 goto success;
2282
2283 case SHT_GNU_versym:
2284 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2285 goto fail;
2286
2287 elf_dynversym (abfd) = shindex;
2288 elf_tdata (abfd)->dynversym_hdr = *hdr;
2289 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2290 goto success;
2291
2292 case SHT_GNU_verneed:
2293 elf_dynverref (abfd) = shindex;
2294 elf_tdata (abfd)->dynverref_hdr = *hdr;
2295 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2296 goto success;
2297
2298 case SHT_SHLIB:
2299 goto success;
2300
2301 case SHT_GROUP:
2302 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2303 goto fail;
2304
2305 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2306 goto fail;
2307
2308 if (hdr->contents != NULL)
2309 {
2310 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2311 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2312 asection *s;
2313
2314 if (n_elt == 0)
2315 goto fail;
2316 if (idx->flags & GRP_COMDAT)
2317 hdr->bfd_section->flags
2318 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2319
2320 /* We try to keep the same section order as it comes in. */
2321 idx += n_elt;
2322
2323 while (--n_elt != 0)
2324 {
2325 --idx;
2326
2327 if (idx->shdr != NULL
2328 && (s = idx->shdr->bfd_section) != NULL
2329 && elf_next_in_group (s) != NULL)
2330 {
2331 elf_next_in_group (hdr->bfd_section) = s;
2332 break;
2333 }
2334 }
2335 }
2336 goto success;
2337
2338 default:
2339 /* Possibly an attributes section. */
2340 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2341 || hdr->sh_type == bed->obj_attrs_section_type)
2342 {
2343 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2344 goto fail;
2345 _bfd_elf_parse_attributes (abfd, hdr);
2346 goto success;
2347 }
2348
2349 /* Check for any processor-specific section types. */
2350 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2351 goto success;
2352
2353 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2354 {
2355 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2356 /* FIXME: How to properly handle allocated section reserved
2357 for applications? */
2358 (*_bfd_error_handler)
2359 (_("%B: don't know how to handle allocated, application "
2360 "specific section `%s' [0x%8x]"),
2361 abfd, name, hdr->sh_type);
2362 else
2363 {
2364 /* Allow sections reserved for applications. */
2365 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2366 shindex);
2367 goto success;
2368 }
2369 }
2370 else if (hdr->sh_type >= SHT_LOPROC
2371 && hdr->sh_type <= SHT_HIPROC)
2372 /* FIXME: We should handle this section. */
2373 (*_bfd_error_handler)
2374 (_("%B: don't know how to handle processor specific section "
2375 "`%s' [0x%8x]"),
2376 abfd, name, hdr->sh_type);
2377 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2378 {
2379 /* Unrecognised OS-specific sections. */
2380 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2381 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2382 required to correctly process the section and the file should
2383 be rejected with an error message. */
2384 (*_bfd_error_handler)
2385 (_("%B: don't know how to handle OS specific section "
2386 "`%s' [0x%8x]"),
2387 abfd, name, hdr->sh_type);
2388 else
2389 {
2390 /* Otherwise it should be processed. */
2391 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2392 goto success;
2393 }
2394 }
2395 else
2396 /* FIXME: We should handle this section. */
2397 (*_bfd_error_handler)
2398 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2399 abfd, name, hdr->sh_type);
2400
2401 goto fail;
2402 }
2403
2404 fail:
2405 ret = FALSE;
2406 success:
2407 if (sections_being_created && sections_being_created_abfd == abfd)
2408 sections_being_created [shindex] = FALSE;
2409 if (-- nesting == 0)
2410 {
2411 sections_being_created = NULL;
2412 sections_being_created_abfd = abfd;
2413 }
2414 return ret;
2415 }
2416
2417 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2418
2419 Elf_Internal_Sym *
2420 bfd_sym_from_r_symndx (struct sym_cache *cache,
2421 bfd *abfd,
2422 unsigned long r_symndx)
2423 {
2424 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2425
2426 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2427 {
2428 Elf_Internal_Shdr *symtab_hdr;
2429 unsigned char esym[sizeof (Elf64_External_Sym)];
2430 Elf_External_Sym_Shndx eshndx;
2431
2432 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2433 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2434 &cache->sym[ent], esym, &eshndx) == NULL)
2435 return NULL;
2436
2437 if (cache->abfd != abfd)
2438 {
2439 memset (cache->indx, -1, sizeof (cache->indx));
2440 cache->abfd = abfd;
2441 }
2442 cache->indx[ent] = r_symndx;
2443 }
2444
2445 return &cache->sym[ent];
2446 }
2447
2448 /* Given an ELF section number, retrieve the corresponding BFD
2449 section. */
2450
2451 asection *
2452 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2453 {
2454 if (sec_index >= elf_numsections (abfd))
2455 return NULL;
2456 return elf_elfsections (abfd)[sec_index]->bfd_section;
2457 }
2458
2459 static const struct bfd_elf_special_section special_sections_b[] =
2460 {
2461 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2462 { NULL, 0, 0, 0, 0 }
2463 };
2464
2465 static const struct bfd_elf_special_section special_sections_c[] =
2466 {
2467 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2468 { NULL, 0, 0, 0, 0 }
2469 };
2470
2471 static const struct bfd_elf_special_section special_sections_d[] =
2472 {
2473 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2474 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2475 /* There are more DWARF sections than these, but they needn't be added here
2476 unless you have to cope with broken compilers that don't emit section
2477 attributes or you want to help the user writing assembler. */
2478 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2479 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2480 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2481 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2482 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2483 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2484 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2485 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2486 { NULL, 0, 0, 0, 0 }
2487 };
2488
2489 static const struct bfd_elf_special_section special_sections_f[] =
2490 {
2491 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2492 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2493 { NULL, 0, 0, 0, 0 }
2494 };
2495
2496 static const struct bfd_elf_special_section special_sections_g[] =
2497 {
2498 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2499 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2500 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2501 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2502 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2503 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2504 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2505 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2506 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2507 { NULL, 0, 0, 0, 0 }
2508 };
2509
2510 static const struct bfd_elf_special_section special_sections_h[] =
2511 {
2512 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2513 { NULL, 0, 0, 0, 0 }
2514 };
2515
2516 static const struct bfd_elf_special_section special_sections_i[] =
2517 {
2518 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2519 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2520 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2521 { NULL, 0, 0, 0, 0 }
2522 };
2523
2524 static const struct bfd_elf_special_section special_sections_l[] =
2525 {
2526 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2527 { NULL, 0, 0, 0, 0 }
2528 };
2529
2530 static const struct bfd_elf_special_section special_sections_n[] =
2531 {
2532 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2533 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2534 { NULL, 0, 0, 0, 0 }
2535 };
2536
2537 static const struct bfd_elf_special_section special_sections_p[] =
2538 {
2539 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2540 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2541 { NULL, 0, 0, 0, 0 }
2542 };
2543
2544 static const struct bfd_elf_special_section special_sections_r[] =
2545 {
2546 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2547 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2548 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2549 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2550 { NULL, 0, 0, 0, 0 }
2551 };
2552
2553 static const struct bfd_elf_special_section special_sections_s[] =
2554 {
2555 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2556 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2557 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2558 /* See struct bfd_elf_special_section declaration for the semantics of
2559 this special case where .prefix_length != strlen (.prefix). */
2560 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2561 { NULL, 0, 0, 0, 0 }
2562 };
2563
2564 static const struct bfd_elf_special_section special_sections_t[] =
2565 {
2566 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2567 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2568 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2569 { NULL, 0, 0, 0, 0 }
2570 };
2571
2572 static const struct bfd_elf_special_section special_sections_z[] =
2573 {
2574 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2575 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2576 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2577 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2578 { NULL, 0, 0, 0, 0 }
2579 };
2580
2581 static const struct bfd_elf_special_section * const special_sections[] =
2582 {
2583 special_sections_b, /* 'b' */
2584 special_sections_c, /* 'c' */
2585 special_sections_d, /* 'd' */
2586 NULL, /* 'e' */
2587 special_sections_f, /* 'f' */
2588 special_sections_g, /* 'g' */
2589 special_sections_h, /* 'h' */
2590 special_sections_i, /* 'i' */
2591 NULL, /* 'j' */
2592 NULL, /* 'k' */
2593 special_sections_l, /* 'l' */
2594 NULL, /* 'm' */
2595 special_sections_n, /* 'n' */
2596 NULL, /* 'o' */
2597 special_sections_p, /* 'p' */
2598 NULL, /* 'q' */
2599 special_sections_r, /* 'r' */
2600 special_sections_s, /* 's' */
2601 special_sections_t, /* 't' */
2602 NULL, /* 'u' */
2603 NULL, /* 'v' */
2604 NULL, /* 'w' */
2605 NULL, /* 'x' */
2606 NULL, /* 'y' */
2607 special_sections_z /* 'z' */
2608 };
2609
2610 const struct bfd_elf_special_section *
2611 _bfd_elf_get_special_section (const char *name,
2612 const struct bfd_elf_special_section *spec,
2613 unsigned int rela)
2614 {
2615 int i;
2616 int len;
2617
2618 len = strlen (name);
2619
2620 for (i = 0; spec[i].prefix != NULL; i++)
2621 {
2622 int suffix_len;
2623 int prefix_len = spec[i].prefix_length;
2624
2625 if (len < prefix_len)
2626 continue;
2627 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2628 continue;
2629
2630 suffix_len = spec[i].suffix_length;
2631 if (suffix_len <= 0)
2632 {
2633 if (name[prefix_len] != 0)
2634 {
2635 if (suffix_len == 0)
2636 continue;
2637 if (name[prefix_len] != '.'
2638 && (suffix_len == -2
2639 || (rela && spec[i].type == SHT_REL)))
2640 continue;
2641 }
2642 }
2643 else
2644 {
2645 if (len < prefix_len + suffix_len)
2646 continue;
2647 if (memcmp (name + len - suffix_len,
2648 spec[i].prefix + prefix_len,
2649 suffix_len) != 0)
2650 continue;
2651 }
2652 return &spec[i];
2653 }
2654
2655 return NULL;
2656 }
2657
2658 const struct bfd_elf_special_section *
2659 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2660 {
2661 int i;
2662 const struct bfd_elf_special_section *spec;
2663 const struct elf_backend_data *bed;
2664
2665 /* See if this is one of the special sections. */
2666 if (sec->name == NULL)
2667 return NULL;
2668
2669 bed = get_elf_backend_data (abfd);
2670 spec = bed->special_sections;
2671 if (spec)
2672 {
2673 spec = _bfd_elf_get_special_section (sec->name,
2674 bed->special_sections,
2675 sec->use_rela_p);
2676 if (spec != NULL)
2677 return spec;
2678 }
2679
2680 if (sec->name[0] != '.')
2681 return NULL;
2682
2683 i = sec->name[1] - 'b';
2684 if (i < 0 || i > 'z' - 'b')
2685 return NULL;
2686
2687 spec = special_sections[i];
2688
2689 if (spec == NULL)
2690 return NULL;
2691
2692 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2693 }
2694
2695 bfd_boolean
2696 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2697 {
2698 struct bfd_elf_section_data *sdata;
2699 const struct elf_backend_data *bed;
2700 const struct bfd_elf_special_section *ssect;
2701
2702 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2703 if (sdata == NULL)
2704 {
2705 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2706 sizeof (*sdata));
2707 if (sdata == NULL)
2708 return FALSE;
2709 sec->used_by_bfd = sdata;
2710 }
2711
2712 /* Indicate whether or not this section should use RELA relocations. */
2713 bed = get_elf_backend_data (abfd);
2714 sec->use_rela_p = bed->default_use_rela_p;
2715
2716 /* When we read a file, we don't need to set ELF section type and
2717 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2718 anyway. We will set ELF section type and flags for all linker
2719 created sections. If user specifies BFD section flags, we will
2720 set ELF section type and flags based on BFD section flags in
2721 elf_fake_sections. Special handling for .init_array/.fini_array
2722 output sections since they may contain .ctors/.dtors input
2723 sections. We don't want _bfd_elf_init_private_section_data to
2724 copy ELF section type from .ctors/.dtors input sections. */
2725 if (abfd->direction != read_direction
2726 || (sec->flags & SEC_LINKER_CREATED) != 0)
2727 {
2728 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2729 if (ssect != NULL
2730 && (!sec->flags
2731 || (sec->flags & SEC_LINKER_CREATED) != 0
2732 || ssect->type == SHT_INIT_ARRAY
2733 || ssect->type == SHT_FINI_ARRAY))
2734 {
2735 elf_section_type (sec) = ssect->type;
2736 elf_section_flags (sec) = ssect->attr;
2737 }
2738 }
2739
2740 return _bfd_generic_new_section_hook (abfd, sec);
2741 }
2742
2743 /* Create a new bfd section from an ELF program header.
2744
2745 Since program segments have no names, we generate a synthetic name
2746 of the form segment<NUM>, where NUM is generally the index in the
2747 program header table. For segments that are split (see below) we
2748 generate the names segment<NUM>a and segment<NUM>b.
2749
2750 Note that some program segments may have a file size that is different than
2751 (less than) the memory size. All this means is that at execution the
2752 system must allocate the amount of memory specified by the memory size,
2753 but only initialize it with the first "file size" bytes read from the
2754 file. This would occur for example, with program segments consisting
2755 of combined data+bss.
2756
2757 To handle the above situation, this routine generates TWO bfd sections
2758 for the single program segment. The first has the length specified by
2759 the file size of the segment, and the second has the length specified
2760 by the difference between the two sizes. In effect, the segment is split
2761 into its initialized and uninitialized parts.
2762
2763 */
2764
2765 bfd_boolean
2766 _bfd_elf_make_section_from_phdr (bfd *abfd,
2767 Elf_Internal_Phdr *hdr,
2768 int hdr_index,
2769 const char *type_name)
2770 {
2771 asection *newsect;
2772 char *name;
2773 char namebuf[64];
2774 size_t len;
2775 int split;
2776
2777 split = ((hdr->p_memsz > 0)
2778 && (hdr->p_filesz > 0)
2779 && (hdr->p_memsz > hdr->p_filesz));
2780
2781 if (hdr->p_filesz > 0)
2782 {
2783 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2784 len = strlen (namebuf) + 1;
2785 name = (char *) bfd_alloc (abfd, len);
2786 if (!name)
2787 return FALSE;
2788 memcpy (name, namebuf, len);
2789 newsect = bfd_make_section (abfd, name);
2790 if (newsect == NULL)
2791 return FALSE;
2792 newsect->vma = hdr->p_vaddr;
2793 newsect->lma = hdr->p_paddr;
2794 newsect->size = hdr->p_filesz;
2795 newsect->filepos = hdr->p_offset;
2796 newsect->flags |= SEC_HAS_CONTENTS;
2797 newsect->alignment_power = bfd_log2 (hdr->p_align);
2798 if (hdr->p_type == PT_LOAD)
2799 {
2800 newsect->flags |= SEC_ALLOC;
2801 newsect->flags |= SEC_LOAD;
2802 if (hdr->p_flags & PF_X)
2803 {
2804 /* FIXME: all we known is that it has execute PERMISSION,
2805 may be data. */
2806 newsect->flags |= SEC_CODE;
2807 }
2808 }
2809 if (!(hdr->p_flags & PF_W))
2810 {
2811 newsect->flags |= SEC_READONLY;
2812 }
2813 }
2814
2815 if (hdr->p_memsz > hdr->p_filesz)
2816 {
2817 bfd_vma align;
2818
2819 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2820 len = strlen (namebuf) + 1;
2821 name = (char *) bfd_alloc (abfd, len);
2822 if (!name)
2823 return FALSE;
2824 memcpy (name, namebuf, len);
2825 newsect = bfd_make_section (abfd, name);
2826 if (newsect == NULL)
2827 return FALSE;
2828 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2829 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2830 newsect->size = hdr->p_memsz - hdr->p_filesz;
2831 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2832 align = newsect->vma & -newsect->vma;
2833 if (align == 0 || align > hdr->p_align)
2834 align = hdr->p_align;
2835 newsect->alignment_power = bfd_log2 (align);
2836 if (hdr->p_type == PT_LOAD)
2837 {
2838 /* Hack for gdb. Segments that have not been modified do
2839 not have their contents written to a core file, on the
2840 assumption that a debugger can find the contents in the
2841 executable. We flag this case by setting the fake
2842 section size to zero. Note that "real" bss sections will
2843 always have their contents dumped to the core file. */
2844 if (bfd_get_format (abfd) == bfd_core)
2845 newsect->size = 0;
2846 newsect->flags |= SEC_ALLOC;
2847 if (hdr->p_flags & PF_X)
2848 newsect->flags |= SEC_CODE;
2849 }
2850 if (!(hdr->p_flags & PF_W))
2851 newsect->flags |= SEC_READONLY;
2852 }
2853
2854 return TRUE;
2855 }
2856
2857 bfd_boolean
2858 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2859 {
2860 const struct elf_backend_data *bed;
2861
2862 switch (hdr->p_type)
2863 {
2864 case PT_NULL:
2865 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2866
2867 case PT_LOAD:
2868 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2869
2870 case PT_DYNAMIC:
2871 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2872
2873 case PT_INTERP:
2874 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2875
2876 case PT_NOTE:
2877 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2878 return FALSE;
2879 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2880 return FALSE;
2881 return TRUE;
2882
2883 case PT_SHLIB:
2884 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2885
2886 case PT_PHDR:
2887 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2888
2889 case PT_GNU_EH_FRAME:
2890 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2891 "eh_frame_hdr");
2892
2893 case PT_GNU_STACK:
2894 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2895
2896 case PT_GNU_RELRO:
2897 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2898
2899 default:
2900 /* Check for any processor-specific program segment types. */
2901 bed = get_elf_backend_data (abfd);
2902 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2903 }
2904 }
2905
2906 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2907 REL or RELA. */
2908
2909 Elf_Internal_Shdr *
2910 _bfd_elf_single_rel_hdr (asection *sec)
2911 {
2912 if (elf_section_data (sec)->rel.hdr)
2913 {
2914 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2915 return elf_section_data (sec)->rel.hdr;
2916 }
2917 else
2918 return elf_section_data (sec)->rela.hdr;
2919 }
2920
2921 static bfd_boolean
2922 _bfd_elf_set_reloc_sh_name (bfd *abfd,
2923 Elf_Internal_Shdr *rel_hdr,
2924 const char *sec_name,
2925 bfd_boolean use_rela_p)
2926 {
2927 char *name = (char *) bfd_alloc (abfd,
2928 sizeof ".rela" + strlen (sec_name));
2929 if (name == NULL)
2930 return FALSE;
2931
2932 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
2933 rel_hdr->sh_name =
2934 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2935 FALSE);
2936 if (rel_hdr->sh_name == (unsigned int) -1)
2937 return FALSE;
2938
2939 return TRUE;
2940 }
2941
2942 /* Allocate and initialize a section-header for a new reloc section,
2943 containing relocations against ASECT. It is stored in RELDATA. If
2944 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2945 relocations. */
2946
2947 static bfd_boolean
2948 _bfd_elf_init_reloc_shdr (bfd *abfd,
2949 struct bfd_elf_section_reloc_data *reldata,
2950 const char *sec_name,
2951 bfd_boolean use_rela_p,
2952 bfd_boolean delay_st_name_p)
2953 {
2954 Elf_Internal_Shdr *rel_hdr;
2955 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2956 bfd_size_type amt;
2957
2958 amt = sizeof (Elf_Internal_Shdr);
2959 BFD_ASSERT (reldata->hdr == NULL);
2960 rel_hdr = bfd_zalloc (abfd, amt);
2961 reldata->hdr = rel_hdr;
2962
2963 if (delay_st_name_p)
2964 rel_hdr->sh_name = (unsigned int) -1;
2965 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
2966 use_rela_p))
2967 return FALSE;
2968 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2969 rel_hdr->sh_entsize = (use_rela_p
2970 ? bed->s->sizeof_rela
2971 : bed->s->sizeof_rel);
2972 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2973 rel_hdr->sh_flags = 0;
2974 rel_hdr->sh_addr = 0;
2975 rel_hdr->sh_size = 0;
2976 rel_hdr->sh_offset = 0;
2977
2978 return TRUE;
2979 }
2980
2981 /* Return the default section type based on the passed in section flags. */
2982
2983 int
2984 bfd_elf_get_default_section_type (flagword flags)
2985 {
2986 if ((flags & SEC_ALLOC) != 0
2987 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2988 return SHT_NOBITS;
2989 return SHT_PROGBITS;
2990 }
2991
2992 struct fake_section_arg
2993 {
2994 struct bfd_link_info *link_info;
2995 bfd_boolean failed;
2996 };
2997
2998 /* Set up an ELF internal section header for a section. */
2999
3000 static void
3001 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3002 {
3003 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3005 struct bfd_elf_section_data *esd = elf_section_data (asect);
3006 Elf_Internal_Shdr *this_hdr;
3007 unsigned int sh_type;
3008 const char *name = asect->name;
3009 bfd_boolean delay_st_name_p = FALSE;
3010
3011 if (arg->failed)
3012 {
3013 /* We already failed; just get out of the bfd_map_over_sections
3014 loop. */
3015 return;
3016 }
3017
3018 this_hdr = &esd->this_hdr;
3019
3020 if (arg->link_info)
3021 {
3022 /* ld: compress DWARF debug sections with names: .debug_*. */
3023 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3024 && (asect->flags & SEC_DEBUGGING)
3025 && name[1] == 'd'
3026 && name[6] == '_')
3027 {
3028 /* Set SEC_ELF_COMPRESS to indicate this section should be
3029 compressed. */
3030 asect->flags |= SEC_ELF_COMPRESS;
3031
3032 /* If this section will be compressed, delay adding setion
3033 name to section name section after it is compressed in
3034 _bfd_elf_assign_file_positions_for_non_load. */
3035 delay_st_name_p = TRUE;
3036 }
3037 }
3038 else if ((asect->flags & SEC_ELF_RENAME))
3039 {
3040 /* objcopy: rename output DWARF debug section. */
3041 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3042 {
3043 /* When we decompress or compress with SHF_COMPRESSED,
3044 convert section name from .zdebug_* to .debug_* if
3045 needed. */
3046 if (name[1] == 'z')
3047 {
3048 char *new_name = convert_zdebug_to_debug (abfd, name);
3049 if (new_name == NULL)
3050 {
3051 arg->failed = TRUE;
3052 return;
3053 }
3054 name = new_name;
3055 }
3056 }
3057 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3058 {
3059 /* PR binutils/18087: Compression does not always make a
3060 section smaller. So only rename the section when
3061 compression has actually taken place. If input section
3062 name is .zdebug_*, we should never compress it again. */
3063 char *new_name = convert_debug_to_zdebug (abfd, name);
3064 if (new_name == NULL)
3065 {
3066 arg->failed = TRUE;
3067 return;
3068 }
3069 BFD_ASSERT (name[1] != 'z');
3070 name = new_name;
3071 }
3072 }
3073
3074 if (delay_st_name_p)
3075 this_hdr->sh_name = (unsigned int) -1;
3076 else
3077 {
3078 this_hdr->sh_name
3079 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3080 name, FALSE);
3081 if (this_hdr->sh_name == (unsigned int) -1)
3082 {
3083 arg->failed = TRUE;
3084 return;
3085 }
3086 }
3087
3088 /* Don't clear sh_flags. Assembler may set additional bits. */
3089
3090 if ((asect->flags & SEC_ALLOC) != 0
3091 || asect->user_set_vma)
3092 this_hdr->sh_addr = asect->vma;
3093 else
3094 this_hdr->sh_addr = 0;
3095
3096 this_hdr->sh_offset = 0;
3097 this_hdr->sh_size = asect->size;
3098 this_hdr->sh_link = 0;
3099 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3100 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3101 {
3102 (*_bfd_error_handler)
3103 (_("%B: error: Alignment power %d of section `%A' is too big"),
3104 abfd, asect, asect->alignment_power);
3105 arg->failed = TRUE;
3106 return;
3107 }
3108 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3109 /* The sh_entsize and sh_info fields may have been set already by
3110 copy_private_section_data. */
3111
3112 this_hdr->bfd_section = asect;
3113 this_hdr->contents = NULL;
3114
3115 /* If the section type is unspecified, we set it based on
3116 asect->flags. */
3117 if ((asect->flags & SEC_GROUP) != 0)
3118 sh_type = SHT_GROUP;
3119 else
3120 sh_type = bfd_elf_get_default_section_type (asect->flags);
3121
3122 if (this_hdr->sh_type == SHT_NULL)
3123 this_hdr->sh_type = sh_type;
3124 else if (this_hdr->sh_type == SHT_NOBITS
3125 && sh_type == SHT_PROGBITS
3126 && (asect->flags & SEC_ALLOC) != 0)
3127 {
3128 /* Warn if we are changing a NOBITS section to PROGBITS, but
3129 allow the link to proceed. This can happen when users link
3130 non-bss input sections to bss output sections, or emit data
3131 to a bss output section via a linker script. */
3132 (*_bfd_error_handler)
3133 (_("warning: section `%A' type changed to PROGBITS"), asect);
3134 this_hdr->sh_type = sh_type;
3135 }
3136
3137 switch (this_hdr->sh_type)
3138 {
3139 default:
3140 break;
3141
3142 case SHT_STRTAB:
3143 case SHT_INIT_ARRAY:
3144 case SHT_FINI_ARRAY:
3145 case SHT_PREINIT_ARRAY:
3146 case SHT_NOTE:
3147 case SHT_NOBITS:
3148 case SHT_PROGBITS:
3149 break;
3150
3151 case SHT_HASH:
3152 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3153 break;
3154
3155 case SHT_DYNSYM:
3156 this_hdr->sh_entsize = bed->s->sizeof_sym;
3157 break;
3158
3159 case SHT_DYNAMIC:
3160 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3161 break;
3162
3163 case SHT_RELA:
3164 if (get_elf_backend_data (abfd)->may_use_rela_p)
3165 this_hdr->sh_entsize = bed->s->sizeof_rela;
3166 break;
3167
3168 case SHT_REL:
3169 if (get_elf_backend_data (abfd)->may_use_rel_p)
3170 this_hdr->sh_entsize = bed->s->sizeof_rel;
3171 break;
3172
3173 case SHT_GNU_versym:
3174 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3175 break;
3176
3177 case SHT_GNU_verdef:
3178 this_hdr->sh_entsize = 0;
3179 /* objcopy or strip will copy over sh_info, but may not set
3180 cverdefs. The linker will set cverdefs, but sh_info will be
3181 zero. */
3182 if (this_hdr->sh_info == 0)
3183 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3184 else
3185 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3186 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3187 break;
3188
3189 case SHT_GNU_verneed:
3190 this_hdr->sh_entsize = 0;
3191 /* objcopy or strip will copy over sh_info, but may not set
3192 cverrefs. The linker will set cverrefs, but sh_info will be
3193 zero. */
3194 if (this_hdr->sh_info == 0)
3195 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3196 else
3197 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3198 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3199 break;
3200
3201 case SHT_GROUP:
3202 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3203 break;
3204
3205 case SHT_GNU_HASH:
3206 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3207 break;
3208 }
3209
3210 if ((asect->flags & SEC_ALLOC) != 0)
3211 this_hdr->sh_flags |= SHF_ALLOC;
3212 if ((asect->flags & SEC_READONLY) == 0)
3213 this_hdr->sh_flags |= SHF_WRITE;
3214 if ((asect->flags & SEC_CODE) != 0)
3215 this_hdr->sh_flags |= SHF_EXECINSTR;
3216 if ((asect->flags & SEC_MERGE) != 0)
3217 {
3218 this_hdr->sh_flags |= SHF_MERGE;
3219 this_hdr->sh_entsize = asect->entsize;
3220 }
3221 if ((asect->flags & SEC_STRINGS) != 0)
3222 this_hdr->sh_flags |= SHF_STRINGS;
3223 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3224 this_hdr->sh_flags |= SHF_GROUP;
3225 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3226 {
3227 this_hdr->sh_flags |= SHF_TLS;
3228 if (asect->size == 0
3229 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3230 {
3231 struct bfd_link_order *o = asect->map_tail.link_order;
3232
3233 this_hdr->sh_size = 0;
3234 if (o != NULL)
3235 {
3236 this_hdr->sh_size = o->offset + o->size;
3237 if (this_hdr->sh_size != 0)
3238 this_hdr->sh_type = SHT_NOBITS;
3239 }
3240 }
3241 }
3242 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3243 this_hdr->sh_flags |= SHF_EXCLUDE;
3244
3245 /* If the section has relocs, set up a section header for the
3246 SHT_REL[A] section. If two relocation sections are required for
3247 this section, it is up to the processor-specific back-end to
3248 create the other. */
3249 if ((asect->flags & SEC_RELOC) != 0)
3250 {
3251 /* When doing a relocatable link, create both REL and RELA sections if
3252 needed. */
3253 if (arg->link_info
3254 /* Do the normal setup if we wouldn't create any sections here. */
3255 && esd->rel.count + esd->rela.count > 0
3256 && (bfd_link_relocatable (arg->link_info)
3257 || arg->link_info->emitrelocations))
3258 {
3259 if (esd->rel.count && esd->rel.hdr == NULL
3260 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3261 delay_st_name_p))
3262 {
3263 arg->failed = TRUE;
3264 return;
3265 }
3266 if (esd->rela.count && esd->rela.hdr == NULL
3267 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3268 delay_st_name_p))
3269 {
3270 arg->failed = TRUE;
3271 return;
3272 }
3273 }
3274 else if (!_bfd_elf_init_reloc_shdr (abfd,
3275 (asect->use_rela_p
3276 ? &esd->rela : &esd->rel),
3277 name,
3278 asect->use_rela_p,
3279 delay_st_name_p))
3280 arg->failed = TRUE;
3281 }
3282
3283 /* Check for processor-specific section types. */
3284 sh_type = this_hdr->sh_type;
3285 if (bed->elf_backend_fake_sections
3286 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3287 arg->failed = TRUE;
3288
3289 if (sh_type == SHT_NOBITS && asect->size != 0)
3290 {
3291 /* Don't change the header type from NOBITS if we are being
3292 called for objcopy --only-keep-debug. */
3293 this_hdr->sh_type = sh_type;
3294 }
3295 }
3296
3297 /* Fill in the contents of a SHT_GROUP section. Called from
3298 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3299 when ELF targets use the generic linker, ld. Called for ld -r
3300 from bfd_elf_final_link. */
3301
3302 void
3303 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3304 {
3305 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3306 asection *elt, *first;
3307 unsigned char *loc;
3308 bfd_boolean gas;
3309
3310 /* Ignore linker created group section. See elfNN_ia64_object_p in
3311 elfxx-ia64.c. */
3312 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3313 || *failedptr)
3314 return;
3315
3316 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3317 {
3318 unsigned long symindx = 0;
3319
3320 /* elf_group_id will have been set up by objcopy and the
3321 generic linker. */
3322 if (elf_group_id (sec) != NULL)
3323 symindx = elf_group_id (sec)->udata.i;
3324
3325 if (symindx == 0)
3326 {
3327 /* If called from the assembler, swap_out_syms will have set up
3328 elf_section_syms. */
3329 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3330 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3331 }
3332 elf_section_data (sec)->this_hdr.sh_info = symindx;
3333 }
3334 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3335 {
3336 /* The ELF backend linker sets sh_info to -2 when the group
3337 signature symbol is global, and thus the index can't be
3338 set until all local symbols are output. */
3339 asection *igroup = elf_sec_group (elf_next_in_group (sec));
3340 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
3341 unsigned long symndx = sec_data->this_hdr.sh_info;
3342 unsigned long extsymoff = 0;
3343 struct elf_link_hash_entry *h;
3344
3345 if (!elf_bad_symtab (igroup->owner))
3346 {
3347 Elf_Internal_Shdr *symtab_hdr;
3348
3349 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3350 extsymoff = symtab_hdr->sh_info;
3351 }
3352 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3353 while (h->root.type == bfd_link_hash_indirect
3354 || h->root.type == bfd_link_hash_warning)
3355 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3356
3357 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3358 }
3359
3360 /* The contents won't be allocated for "ld -r" or objcopy. */
3361 gas = TRUE;
3362 if (sec->contents == NULL)
3363 {
3364 gas = FALSE;
3365 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3366
3367 /* Arrange for the section to be written out. */
3368 elf_section_data (sec)->this_hdr.contents = sec->contents;
3369 if (sec->contents == NULL)
3370 {
3371 *failedptr = TRUE;
3372 return;
3373 }
3374 }
3375
3376 loc = sec->contents + sec->size;
3377
3378 /* Get the pointer to the first section in the group that gas
3379 squirreled away here. objcopy arranges for this to be set to the
3380 start of the input section group. */
3381 first = elt = elf_next_in_group (sec);
3382
3383 /* First element is a flag word. Rest of section is elf section
3384 indices for all the sections of the group. Write them backwards
3385 just to keep the group in the same order as given in .section
3386 directives, not that it matters. */
3387 while (elt != NULL)
3388 {
3389 asection *s;
3390
3391 s = elt;
3392 if (!gas)
3393 s = s->output_section;
3394 if (s != NULL
3395 && !bfd_is_abs_section (s))
3396 {
3397 unsigned int idx = elf_section_data (s)->this_idx;
3398
3399 loc -= 4;
3400 H_PUT_32 (abfd, idx, loc);
3401 }
3402 elt = elf_next_in_group (elt);
3403 if (elt == first)
3404 break;
3405 }
3406
3407 if ((loc -= 4) != sec->contents)
3408 abort ();
3409
3410 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3411 }
3412
3413 /* Return the section which RELOC_SEC applies to. */
3414
3415 asection *
3416 _bfd_elf_get_reloc_section (asection *reloc_sec)
3417 {
3418 const char *name;
3419 unsigned int type;
3420 bfd *abfd;
3421
3422 if (reloc_sec == NULL)
3423 return NULL;
3424
3425 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3426 if (type != SHT_REL && type != SHT_RELA)
3427 return NULL;
3428
3429 /* We look up the section the relocs apply to by name. */
3430 name = reloc_sec->name;
3431 if (type == SHT_REL)
3432 name += 4;
3433 else
3434 name += 5;
3435
3436 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3437 section apply to .got.plt section. */
3438 abfd = reloc_sec->owner;
3439 if (get_elf_backend_data (abfd)->want_got_plt
3440 && strcmp (name, ".plt") == 0)
3441 {
3442 /* .got.plt is a linker created input section. It may be mapped
3443 to some other output section. Try two likely sections. */
3444 name = ".got.plt";
3445 reloc_sec = bfd_get_section_by_name (abfd, name);
3446 if (reloc_sec != NULL)
3447 return reloc_sec;
3448 name = ".got";
3449 }
3450
3451 reloc_sec = bfd_get_section_by_name (abfd, name);
3452 return reloc_sec;
3453 }
3454
3455 /* Assign all ELF section numbers. The dummy first section is handled here
3456 too. The link/info pointers for the standard section types are filled
3457 in here too, while we're at it. */
3458
3459 static bfd_boolean
3460 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3461 {
3462 struct elf_obj_tdata *t = elf_tdata (abfd);
3463 asection *sec;
3464 unsigned int section_number;
3465 Elf_Internal_Shdr **i_shdrp;
3466 struct bfd_elf_section_data *d;
3467 bfd_boolean need_symtab;
3468
3469 section_number = 1;
3470
3471 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3472
3473 /* SHT_GROUP sections are in relocatable files only. */
3474 if (link_info == NULL || bfd_link_relocatable (link_info))
3475 {
3476 bfd_size_type reloc_count = 0;
3477
3478 /* Put SHT_GROUP sections first. */
3479 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3480 {
3481 d = elf_section_data (sec);
3482
3483 if (d->this_hdr.sh_type == SHT_GROUP)
3484 {
3485 if (sec->flags & SEC_LINKER_CREATED)
3486 {
3487 /* Remove the linker created SHT_GROUP sections. */
3488 bfd_section_list_remove (abfd, sec);
3489 abfd->section_count--;
3490 }
3491 else
3492 d->this_idx = section_number++;
3493 }
3494
3495 /* Count relocations. */
3496 reloc_count += sec->reloc_count;
3497 }
3498
3499 /* Clear HAS_RELOC if there are no relocations. */
3500 if (reloc_count == 0)
3501 abfd->flags &= ~HAS_RELOC;
3502 }
3503
3504 for (sec = abfd->sections; sec; sec = sec->next)
3505 {
3506 d = elf_section_data (sec);
3507
3508 if (d->this_hdr.sh_type != SHT_GROUP)
3509 d->this_idx = section_number++;
3510 if (d->this_hdr.sh_name != (unsigned int) -1)
3511 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3512 if (d->rel.hdr)
3513 {
3514 d->rel.idx = section_number++;
3515 if (d->rel.hdr->sh_name != (unsigned int) -1)
3516 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3517 }
3518 else
3519 d->rel.idx = 0;
3520
3521 if (d->rela.hdr)
3522 {
3523 d->rela.idx = section_number++;
3524 if (d->rela.hdr->sh_name != (unsigned int) -1)
3525 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3526 }
3527 else
3528 d->rela.idx = 0;
3529 }
3530
3531 elf_shstrtab_sec (abfd) = section_number++;
3532 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3533 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3534
3535 need_symtab = (bfd_get_symcount (abfd) > 0
3536 || (link_info == NULL
3537 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3538 == HAS_RELOC)));
3539 if (need_symtab)
3540 {
3541 elf_onesymtab (abfd) = section_number++;
3542 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3543 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3544 {
3545 elf_section_list * entry;
3546
3547 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3548
3549 entry = bfd_zalloc (abfd, sizeof * entry);
3550 entry->ndx = section_number++;
3551 elf_symtab_shndx_list (abfd) = entry;
3552 entry->hdr.sh_name
3553 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3554 ".symtab_shndx", FALSE);
3555 if (entry->hdr.sh_name == (unsigned int) -1)
3556 return FALSE;
3557 }
3558 elf_strtab_sec (abfd) = section_number++;
3559 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3560 }
3561
3562 if (section_number >= SHN_LORESERVE)
3563 {
3564 _bfd_error_handler (_("%B: too many sections: %u"),
3565 abfd, section_number);
3566 return FALSE;
3567 }
3568
3569 elf_numsections (abfd) = section_number;
3570 elf_elfheader (abfd)->e_shnum = section_number;
3571
3572 /* Set up the list of section header pointers, in agreement with the
3573 indices. */
3574 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3575 sizeof (Elf_Internal_Shdr *));
3576 if (i_shdrp == NULL)
3577 return FALSE;
3578
3579 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3580 sizeof (Elf_Internal_Shdr));
3581 if (i_shdrp[0] == NULL)
3582 {
3583 bfd_release (abfd, i_shdrp);
3584 return FALSE;
3585 }
3586
3587 elf_elfsections (abfd) = i_shdrp;
3588
3589 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3590 if (need_symtab)
3591 {
3592 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3593 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3594 {
3595 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3596 BFD_ASSERT (entry != NULL);
3597 i_shdrp[entry->ndx] = & entry->hdr;
3598 entry->hdr.sh_link = elf_onesymtab (abfd);
3599 }
3600 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3601 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3602 }
3603
3604 for (sec = abfd->sections; sec; sec = sec->next)
3605 {
3606 asection *s;
3607
3608 d = elf_section_data (sec);
3609
3610 i_shdrp[d->this_idx] = &d->this_hdr;
3611 if (d->rel.idx != 0)
3612 i_shdrp[d->rel.idx] = d->rel.hdr;
3613 if (d->rela.idx != 0)
3614 i_shdrp[d->rela.idx] = d->rela.hdr;
3615
3616 /* Fill in the sh_link and sh_info fields while we're at it. */
3617
3618 /* sh_link of a reloc section is the section index of the symbol
3619 table. sh_info is the section index of the section to which
3620 the relocation entries apply. */
3621 if (d->rel.idx != 0)
3622 {
3623 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3624 d->rel.hdr->sh_info = d->this_idx;
3625 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3626 }
3627 if (d->rela.idx != 0)
3628 {
3629 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3630 d->rela.hdr->sh_info = d->this_idx;
3631 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3632 }
3633
3634 /* We need to set up sh_link for SHF_LINK_ORDER. */
3635 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3636 {
3637 s = elf_linked_to_section (sec);
3638 if (s)
3639 {
3640 /* elf_linked_to_section points to the input section. */
3641 if (link_info != NULL)
3642 {
3643 /* Check discarded linkonce section. */
3644 if (discarded_section (s))
3645 {
3646 asection *kept;
3647 (*_bfd_error_handler)
3648 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3649 abfd, d->this_hdr.bfd_section,
3650 s, s->owner);
3651 /* Point to the kept section if it has the same
3652 size as the discarded one. */
3653 kept = _bfd_elf_check_kept_section (s, link_info);
3654 if (kept == NULL)
3655 {
3656 bfd_set_error (bfd_error_bad_value);
3657 return FALSE;
3658 }
3659 s = kept;
3660 }
3661
3662 s = s->output_section;
3663 BFD_ASSERT (s != NULL);
3664 }
3665 else
3666 {
3667 /* Handle objcopy. */
3668 if (s->output_section == NULL)
3669 {
3670 (*_bfd_error_handler)
3671 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3672 abfd, d->this_hdr.bfd_section, s, s->owner);
3673 bfd_set_error (bfd_error_bad_value);
3674 return FALSE;
3675 }
3676 s = s->output_section;
3677 }
3678 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3679 }
3680 else
3681 {
3682 /* PR 290:
3683 The Intel C compiler generates SHT_IA_64_UNWIND with
3684 SHF_LINK_ORDER. But it doesn't set the sh_link or
3685 sh_info fields. Hence we could get the situation
3686 where s is NULL. */
3687 const struct elf_backend_data *bed
3688 = get_elf_backend_data (abfd);
3689 if (bed->link_order_error_handler)
3690 bed->link_order_error_handler
3691 (_("%B: warning: sh_link not set for section `%A'"),
3692 abfd, sec);
3693 }
3694 }
3695
3696 switch (d->this_hdr.sh_type)
3697 {
3698 case SHT_REL:
3699 case SHT_RELA:
3700 /* A reloc section which we are treating as a normal BFD
3701 section. sh_link is the section index of the symbol
3702 table. sh_info is the section index of the section to
3703 which the relocation entries apply. We assume that an
3704 allocated reloc section uses the dynamic symbol table.
3705 FIXME: How can we be sure? */
3706 s = bfd_get_section_by_name (abfd, ".dynsym");
3707 if (s != NULL)
3708 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3709
3710 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3711 if (s != NULL)
3712 {
3713 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3714 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3715 }
3716 break;
3717
3718 case SHT_STRTAB:
3719 /* We assume that a section named .stab*str is a stabs
3720 string section. We look for a section with the same name
3721 but without the trailing ``str'', and set its sh_link
3722 field to point to this section. */
3723 if (CONST_STRNEQ (sec->name, ".stab")
3724 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3725 {
3726 size_t len;
3727 char *alc;
3728
3729 len = strlen (sec->name);
3730 alc = (char *) bfd_malloc (len - 2);
3731 if (alc == NULL)
3732 return FALSE;
3733 memcpy (alc, sec->name, len - 3);
3734 alc[len - 3] = '\0';
3735 s = bfd_get_section_by_name (abfd, alc);
3736 free (alc);
3737 if (s != NULL)
3738 {
3739 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3740
3741 /* This is a .stab section. */
3742 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3743 elf_section_data (s)->this_hdr.sh_entsize
3744 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3745 }
3746 }
3747 break;
3748
3749 case SHT_DYNAMIC:
3750 case SHT_DYNSYM:
3751 case SHT_GNU_verneed:
3752 case SHT_GNU_verdef:
3753 /* sh_link is the section header index of the string table
3754 used for the dynamic entries, or the symbol table, or the
3755 version strings. */
3756 s = bfd_get_section_by_name (abfd, ".dynstr");
3757 if (s != NULL)
3758 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3759 break;
3760
3761 case SHT_GNU_LIBLIST:
3762 /* sh_link is the section header index of the prelink library
3763 list used for the dynamic entries, or the symbol table, or
3764 the version strings. */
3765 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3766 ? ".dynstr" : ".gnu.libstr");
3767 if (s != NULL)
3768 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3769 break;
3770
3771 case SHT_HASH:
3772 case SHT_GNU_HASH:
3773 case SHT_GNU_versym:
3774 /* sh_link is the section header index of the symbol table
3775 this hash table or version table is for. */
3776 s = bfd_get_section_by_name (abfd, ".dynsym");
3777 if (s != NULL)
3778 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3779 break;
3780
3781 case SHT_GROUP:
3782 d->this_hdr.sh_link = elf_onesymtab (abfd);
3783 }
3784 }
3785
3786 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3787 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3788 debug section name from .debug_* to .zdebug_* if needed. */
3789
3790 return TRUE;
3791 }
3792
3793 static bfd_boolean
3794 sym_is_global (bfd *abfd, asymbol *sym)
3795 {
3796 /* If the backend has a special mapping, use it. */
3797 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3798 if (bed->elf_backend_sym_is_global)
3799 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3800
3801 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3802 || bfd_is_und_section (bfd_get_section (sym))
3803 || bfd_is_com_section (bfd_get_section (sym)));
3804 }
3805
3806 /* Don't output section symbols for sections that are not going to be
3807 output, that are duplicates or there is no BFD section. */
3808
3809 static bfd_boolean
3810 ignore_section_sym (bfd *abfd, asymbol *sym)
3811 {
3812 elf_symbol_type *type_ptr;
3813
3814 if ((sym->flags & BSF_SECTION_SYM) == 0)
3815 return FALSE;
3816
3817 type_ptr = elf_symbol_from (abfd, sym);
3818 return ((type_ptr != NULL
3819 && type_ptr->internal_elf_sym.st_shndx != 0
3820 && bfd_is_abs_section (sym->section))
3821 || !(sym->section->owner == abfd
3822 || (sym->section->output_section->owner == abfd
3823 && sym->section->output_offset == 0)
3824 || bfd_is_abs_section (sym->section)));
3825 }
3826
3827 /* Map symbol from it's internal number to the external number, moving
3828 all local symbols to be at the head of the list. */
3829
3830 static bfd_boolean
3831 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3832 {
3833 unsigned int symcount = bfd_get_symcount (abfd);
3834 asymbol **syms = bfd_get_outsymbols (abfd);
3835 asymbol **sect_syms;
3836 unsigned int num_locals = 0;
3837 unsigned int num_globals = 0;
3838 unsigned int num_locals2 = 0;
3839 unsigned int num_globals2 = 0;
3840 unsigned int max_index = 0;
3841 unsigned int idx;
3842 asection *asect;
3843 asymbol **new_syms;
3844
3845 #ifdef DEBUG
3846 fprintf (stderr, "elf_map_symbols\n");
3847 fflush (stderr);
3848 #endif
3849
3850 for (asect = abfd->sections; asect; asect = asect->next)
3851 {
3852 if (max_index < asect->index)
3853 max_index = asect->index;
3854 }
3855
3856 max_index++;
3857 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3858 if (sect_syms == NULL)
3859 return FALSE;
3860 elf_section_syms (abfd) = sect_syms;
3861 elf_num_section_syms (abfd) = max_index;
3862
3863 /* Init sect_syms entries for any section symbols we have already
3864 decided to output. */
3865 for (idx = 0; idx < symcount; idx++)
3866 {
3867 asymbol *sym = syms[idx];
3868
3869 if ((sym->flags & BSF_SECTION_SYM) != 0
3870 && sym->value == 0
3871 && !ignore_section_sym (abfd, sym)
3872 && !bfd_is_abs_section (sym->section))
3873 {
3874 asection *sec = sym->section;
3875
3876 if (sec->owner != abfd)
3877 sec = sec->output_section;
3878
3879 sect_syms[sec->index] = syms[idx];
3880 }
3881 }
3882
3883 /* Classify all of the symbols. */
3884 for (idx = 0; idx < symcount; idx++)
3885 {
3886 if (sym_is_global (abfd, syms[idx]))
3887 num_globals++;
3888 else if (!ignore_section_sym (abfd, syms[idx]))
3889 num_locals++;
3890 }
3891
3892 /* We will be adding a section symbol for each normal BFD section. Most
3893 sections will already have a section symbol in outsymbols, but
3894 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3895 at least in that case. */
3896 for (asect = abfd->sections; asect; asect = asect->next)
3897 {
3898 if (sect_syms[asect->index] == NULL)
3899 {
3900 if (!sym_is_global (abfd, asect->symbol))
3901 num_locals++;
3902 else
3903 num_globals++;
3904 }
3905 }
3906
3907 /* Now sort the symbols so the local symbols are first. */
3908 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3909 sizeof (asymbol *));
3910
3911 if (new_syms == NULL)
3912 return FALSE;
3913
3914 for (idx = 0; idx < symcount; idx++)
3915 {
3916 asymbol *sym = syms[idx];
3917 unsigned int i;
3918
3919 if (sym_is_global (abfd, sym))
3920 i = num_locals + num_globals2++;
3921 else if (!ignore_section_sym (abfd, sym))
3922 i = num_locals2++;
3923 else
3924 continue;
3925 new_syms[i] = sym;
3926 sym->udata.i = i + 1;
3927 }
3928 for (asect = abfd->sections; asect; asect = asect->next)
3929 {
3930 if (sect_syms[asect->index] == NULL)
3931 {
3932 asymbol *sym = asect->symbol;
3933 unsigned int i;
3934
3935 sect_syms[asect->index] = sym;
3936 if (!sym_is_global (abfd, sym))
3937 i = num_locals2++;
3938 else
3939 i = num_locals + num_globals2++;
3940 new_syms[i] = sym;
3941 sym->udata.i = i + 1;
3942 }
3943 }
3944
3945 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3946
3947 *pnum_locals = num_locals;
3948 return TRUE;
3949 }
3950
3951 /* Align to the maximum file alignment that could be required for any
3952 ELF data structure. */
3953
3954 static inline file_ptr
3955 align_file_position (file_ptr off, int align)
3956 {
3957 return (off + align - 1) & ~(align - 1);
3958 }
3959
3960 /* Assign a file position to a section, optionally aligning to the
3961 required section alignment. */
3962
3963 file_ptr
3964 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3965 file_ptr offset,
3966 bfd_boolean align)
3967 {
3968 if (align && i_shdrp->sh_addralign > 1)
3969 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3970 i_shdrp->sh_offset = offset;
3971 if (i_shdrp->bfd_section != NULL)
3972 i_shdrp->bfd_section->filepos = offset;
3973 if (i_shdrp->sh_type != SHT_NOBITS)
3974 offset += i_shdrp->sh_size;
3975 return offset;
3976 }
3977
3978 /* Compute the file positions we are going to put the sections at, and
3979 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3980 is not NULL, this is being called by the ELF backend linker. */
3981
3982 bfd_boolean
3983 _bfd_elf_compute_section_file_positions (bfd *abfd,
3984 struct bfd_link_info *link_info)
3985 {
3986 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3987 struct fake_section_arg fsargs;
3988 bfd_boolean failed;
3989 struct elf_strtab_hash *strtab = NULL;
3990 Elf_Internal_Shdr *shstrtab_hdr;
3991 bfd_boolean need_symtab;
3992
3993 if (abfd->output_has_begun)
3994 return TRUE;
3995
3996 /* Do any elf backend specific processing first. */
3997 if (bed->elf_backend_begin_write_processing)
3998 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3999
4000 if (! prep_headers (abfd))
4001 return FALSE;
4002
4003 /* Post process the headers if necessary. */
4004 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4005
4006 fsargs.failed = FALSE;
4007 fsargs.link_info = link_info;
4008 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4009 if (fsargs.failed)
4010 return FALSE;
4011
4012 if (!assign_section_numbers (abfd, link_info))
4013 return FALSE;
4014
4015 /* The backend linker builds symbol table information itself. */
4016 need_symtab = (link_info == NULL
4017 && (bfd_get_symcount (abfd) > 0
4018 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4019 == HAS_RELOC)));
4020 if (need_symtab)
4021 {
4022 /* Non-zero if doing a relocatable link. */
4023 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4024
4025 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4026 return FALSE;
4027 }
4028
4029 failed = FALSE;
4030 if (link_info == NULL)
4031 {
4032 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4033 if (failed)
4034 return FALSE;
4035 }
4036
4037 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4038 /* sh_name was set in prep_headers. */
4039 shstrtab_hdr->sh_type = SHT_STRTAB;
4040 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4041 shstrtab_hdr->sh_addr = 0;
4042 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4043 shstrtab_hdr->sh_entsize = 0;
4044 shstrtab_hdr->sh_link = 0;
4045 shstrtab_hdr->sh_info = 0;
4046 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4047 shstrtab_hdr->sh_addralign = 1;
4048
4049 if (!assign_file_positions_except_relocs (abfd, link_info))
4050 return FALSE;
4051
4052 if (need_symtab)
4053 {
4054 file_ptr off;
4055 Elf_Internal_Shdr *hdr;
4056
4057 off = elf_next_file_pos (abfd);
4058
4059 hdr = & elf_symtab_hdr (abfd);
4060 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4061
4062 if (elf_symtab_shndx_list (abfd) != NULL)
4063 {
4064 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4065 if (hdr->sh_size != 0)
4066 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4067 /* FIXME: What about other symtab_shndx sections in the list ? */
4068 }
4069
4070 hdr = &elf_tdata (abfd)->strtab_hdr;
4071 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4072
4073 elf_next_file_pos (abfd) = off;
4074
4075 /* Now that we know where the .strtab section goes, write it
4076 out. */
4077 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4078 || ! _bfd_elf_strtab_emit (abfd, strtab))
4079 return FALSE;
4080 _bfd_elf_strtab_free (strtab);
4081 }
4082
4083 abfd->output_has_begun = TRUE;
4084
4085 return TRUE;
4086 }
4087
4088 /* Make an initial estimate of the size of the program header. If we
4089 get the number wrong here, we'll redo section placement. */
4090
4091 static bfd_size_type
4092 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4093 {
4094 size_t segs;
4095 asection *s;
4096 const struct elf_backend_data *bed;
4097
4098 /* Assume we will need exactly two PT_LOAD segments: one for text
4099 and one for data. */
4100 segs = 2;
4101
4102 s = bfd_get_section_by_name (abfd, ".interp");
4103 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4104 {
4105 /* If we have a loadable interpreter section, we need a
4106 PT_INTERP segment. In this case, assume we also need a
4107 PT_PHDR segment, although that may not be true for all
4108 targets. */
4109 segs += 2;
4110 }
4111
4112 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4113 {
4114 /* We need a PT_DYNAMIC segment. */
4115 ++segs;
4116 }
4117
4118 if (info != NULL && info->relro)
4119 {
4120 /* We need a PT_GNU_RELRO segment. */
4121 ++segs;
4122 }
4123
4124 if (elf_eh_frame_hdr (abfd))
4125 {
4126 /* We need a PT_GNU_EH_FRAME segment. */
4127 ++segs;
4128 }
4129
4130 if (elf_stack_flags (abfd))
4131 {
4132 /* We need a PT_GNU_STACK segment. */
4133 ++segs;
4134 }
4135
4136 for (s = abfd->sections; s != NULL; s = s->next)
4137 {
4138 if ((s->flags & SEC_LOAD) != 0
4139 && CONST_STRNEQ (s->name, ".note"))
4140 {
4141 /* We need a PT_NOTE segment. */
4142 ++segs;
4143 /* Try to create just one PT_NOTE segment
4144 for all adjacent loadable .note* sections.
4145 gABI requires that within a PT_NOTE segment
4146 (and also inside of each SHT_NOTE section)
4147 each note is padded to a multiple of 4 size,
4148 so we check whether the sections are correctly
4149 aligned. */
4150 if (s->alignment_power == 2)
4151 while (s->next != NULL
4152 && s->next->alignment_power == 2
4153 && (s->next->flags & SEC_LOAD) != 0
4154 && CONST_STRNEQ (s->next->name, ".note"))
4155 s = s->next;
4156 }
4157 }
4158
4159 for (s = abfd->sections; s != NULL; s = s->next)
4160 {
4161 if (s->flags & SEC_THREAD_LOCAL)
4162 {
4163 /* We need a PT_TLS segment. */
4164 ++segs;
4165 break;
4166 }
4167 }
4168
4169 /* Let the backend count up any program headers it might need. */
4170 bed = get_elf_backend_data (abfd);
4171 if (bed->elf_backend_additional_program_headers)
4172 {
4173 int a;
4174
4175 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4176 if (a == -1)
4177 abort ();
4178 segs += a;
4179 }
4180
4181 return segs * bed->s->sizeof_phdr;
4182 }
4183
4184 /* Find the segment that contains the output_section of section. */
4185
4186 Elf_Internal_Phdr *
4187 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4188 {
4189 struct elf_segment_map *m;
4190 Elf_Internal_Phdr *p;
4191
4192 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4193 m != NULL;
4194 m = m->next, p++)
4195 {
4196 int i;
4197
4198 for (i = m->count - 1; i >= 0; i--)
4199 if (m->sections[i] == section)
4200 return p;
4201 }
4202
4203 return NULL;
4204 }
4205
4206 /* Create a mapping from a set of sections to a program segment. */
4207
4208 static struct elf_segment_map *
4209 make_mapping (bfd *abfd,
4210 asection **sections,
4211 unsigned int from,
4212 unsigned int to,
4213 bfd_boolean phdr)
4214 {
4215 struct elf_segment_map *m;
4216 unsigned int i;
4217 asection **hdrpp;
4218 bfd_size_type amt;
4219
4220 amt = sizeof (struct elf_segment_map);
4221 amt += (to - from - 1) * sizeof (asection *);
4222 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4223 if (m == NULL)
4224 return NULL;
4225 m->next = NULL;
4226 m->p_type = PT_LOAD;
4227 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4228 m->sections[i - from] = *hdrpp;
4229 m->count = to - from;
4230
4231 if (from == 0 && phdr)
4232 {
4233 /* Include the headers in the first PT_LOAD segment. */
4234 m->includes_filehdr = 1;
4235 m->includes_phdrs = 1;
4236 }
4237
4238 return m;
4239 }
4240
4241 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4242 on failure. */
4243
4244 struct elf_segment_map *
4245 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4246 {
4247 struct elf_segment_map *m;
4248
4249 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4250 sizeof (struct elf_segment_map));
4251 if (m == NULL)
4252 return NULL;
4253 m->next = NULL;
4254 m->p_type = PT_DYNAMIC;
4255 m->count = 1;
4256 m->sections[0] = dynsec;
4257
4258 return m;
4259 }
4260
4261 /* Possibly add or remove segments from the segment map. */
4262
4263 static bfd_boolean
4264 elf_modify_segment_map (bfd *abfd,
4265 struct bfd_link_info *info,
4266 bfd_boolean remove_empty_load)
4267 {
4268 struct elf_segment_map **m;
4269 const struct elf_backend_data *bed;
4270
4271 /* The placement algorithm assumes that non allocated sections are
4272 not in PT_LOAD segments. We ensure this here by removing such
4273 sections from the segment map. We also remove excluded
4274 sections. Finally, any PT_LOAD segment without sections is
4275 removed. */
4276 m = &elf_seg_map (abfd);
4277 while (*m)
4278 {
4279 unsigned int i, new_count;
4280
4281 for (new_count = 0, i = 0; i < (*m)->count; i++)
4282 {
4283 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4284 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4285 || (*m)->p_type != PT_LOAD))
4286 {
4287 (*m)->sections[new_count] = (*m)->sections[i];
4288 new_count++;
4289 }
4290 }
4291 (*m)->count = new_count;
4292
4293 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
4294 *m = (*m)->next;
4295 else
4296 m = &(*m)->next;
4297 }
4298
4299 bed = get_elf_backend_data (abfd);
4300 if (bed->elf_backend_modify_segment_map != NULL)
4301 {
4302 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4303 return FALSE;
4304 }
4305
4306 return TRUE;
4307 }
4308
4309 /* Set up a mapping from BFD sections to program segments. */
4310
4311 bfd_boolean
4312 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4313 {
4314 unsigned int count;
4315 struct elf_segment_map *m;
4316 asection **sections = NULL;
4317 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4318 bfd_boolean no_user_phdrs;
4319
4320 no_user_phdrs = elf_seg_map (abfd) == NULL;
4321
4322 if (info != NULL)
4323 info->user_phdrs = !no_user_phdrs;
4324
4325 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4326 {
4327 asection *s;
4328 unsigned int i;
4329 struct elf_segment_map *mfirst;
4330 struct elf_segment_map **pm;
4331 asection *last_hdr;
4332 bfd_vma last_size;
4333 unsigned int phdr_index;
4334 bfd_vma maxpagesize;
4335 asection **hdrpp;
4336 bfd_boolean phdr_in_segment = TRUE;
4337 bfd_boolean writable;
4338 int tls_count = 0;
4339 asection *first_tls = NULL;
4340 asection *dynsec, *eh_frame_hdr;
4341 bfd_size_type amt;
4342 bfd_vma addr_mask, wrap_to = 0;
4343
4344 /* Select the allocated sections, and sort them. */
4345
4346 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4347 sizeof (asection *));
4348 if (sections == NULL)
4349 goto error_return;
4350
4351 /* Calculate top address, avoiding undefined behaviour of shift
4352 left operator when shift count is equal to size of type
4353 being shifted. */
4354 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4355 addr_mask = (addr_mask << 1) + 1;
4356
4357 i = 0;
4358 for (s = abfd->sections; s != NULL; s = s->next)
4359 {
4360 if ((s->flags & SEC_ALLOC) != 0)
4361 {
4362 sections[i] = s;
4363 ++i;
4364 /* A wrapping section potentially clashes with header. */
4365 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4366 wrap_to = (s->lma + s->size) & addr_mask;
4367 }
4368 }
4369 BFD_ASSERT (i <= bfd_count_sections (abfd));
4370 count = i;
4371
4372 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4373
4374 /* Build the mapping. */
4375
4376 mfirst = NULL;
4377 pm = &mfirst;
4378
4379 /* If we have a .interp section, then create a PT_PHDR segment for
4380 the program headers and a PT_INTERP segment for the .interp
4381 section. */
4382 s = bfd_get_section_by_name (abfd, ".interp");
4383 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4384 {
4385 amt = sizeof (struct elf_segment_map);
4386 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4387 if (m == NULL)
4388 goto error_return;
4389 m->next = NULL;
4390 m->p_type = PT_PHDR;
4391 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4392 m->p_flags = PF_R | PF_X;
4393 m->p_flags_valid = 1;
4394 m->includes_phdrs = 1;
4395
4396 *pm = m;
4397 pm = &m->next;
4398
4399 amt = sizeof (struct elf_segment_map);
4400 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4401 if (m == NULL)
4402 goto error_return;
4403 m->next = NULL;
4404 m->p_type = PT_INTERP;
4405 m->count = 1;
4406 m->sections[0] = s;
4407
4408 *pm = m;
4409 pm = &m->next;
4410 }
4411
4412 /* Look through the sections. We put sections in the same program
4413 segment when the start of the second section can be placed within
4414 a few bytes of the end of the first section. */
4415 last_hdr = NULL;
4416 last_size = 0;
4417 phdr_index = 0;
4418 maxpagesize = bed->maxpagesize;
4419 /* PR 17512: file: c8455299.
4420 Avoid divide-by-zero errors later on.
4421 FIXME: Should we abort if the maxpagesize is zero ? */
4422 if (maxpagesize == 0)
4423 maxpagesize = 1;
4424 writable = FALSE;
4425 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4426 if (dynsec != NULL
4427 && (dynsec->flags & SEC_LOAD) == 0)
4428 dynsec = NULL;
4429
4430 /* Deal with -Ttext or something similar such that the first section
4431 is not adjacent to the program headers. This is an
4432 approximation, since at this point we don't know exactly how many
4433 program headers we will need. */
4434 if (count > 0)
4435 {
4436 bfd_size_type phdr_size = elf_program_header_size (abfd);
4437
4438 if (phdr_size == (bfd_size_type) -1)
4439 phdr_size = get_program_header_size (abfd, info);
4440 phdr_size += bed->s->sizeof_ehdr;
4441 if ((abfd->flags & D_PAGED) == 0
4442 || (sections[0]->lma & addr_mask) < phdr_size
4443 || ((sections[0]->lma & addr_mask) % maxpagesize
4444 < phdr_size % maxpagesize)
4445 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4446 phdr_in_segment = FALSE;
4447 }
4448
4449 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4450 {
4451 asection *hdr;
4452 bfd_boolean new_segment;
4453
4454 hdr = *hdrpp;
4455
4456 /* See if this section and the last one will fit in the same
4457 segment. */
4458
4459 if (last_hdr == NULL)
4460 {
4461 /* If we don't have a segment yet, then we don't need a new
4462 one (we build the last one after this loop). */
4463 new_segment = FALSE;
4464 }
4465 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4466 {
4467 /* If this section has a different relation between the
4468 virtual address and the load address, then we need a new
4469 segment. */
4470 new_segment = TRUE;
4471 }
4472 else if (hdr->lma < last_hdr->lma + last_size
4473 || last_hdr->lma + last_size < last_hdr->lma)
4474 {
4475 /* If this section has a load address that makes it overlap
4476 the previous section, then we need a new segment. */
4477 new_segment = TRUE;
4478 }
4479 /* In the next test we have to be careful when last_hdr->lma is close
4480 to the end of the address space. If the aligned address wraps
4481 around to the start of the address space, then there are no more
4482 pages left in memory and it is OK to assume that the current
4483 section can be included in the current segment. */
4484 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4485 > last_hdr->lma)
4486 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4487 <= hdr->lma))
4488 {
4489 /* If putting this section in this segment would force us to
4490 skip a page in the segment, then we need a new segment. */
4491 new_segment = TRUE;
4492 }
4493 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4494 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0
4495 && ((abfd->flags & D_PAGED) == 0
4496 || (((last_hdr->lma + last_size - 1) & -maxpagesize)
4497 != (hdr->lma & -maxpagesize))))
4498 {
4499 /* We don't want to put a loaded section after a
4500 nonloaded (ie. bss style) section in the same segment
4501 as that will force the non-loaded section to be loaded.
4502 Consider .tbss sections as loaded for this purpose.
4503 However, like the writable/non-writable case below,
4504 if they are on the same page then they must be put
4505 in the same segment. */
4506 new_segment = TRUE;
4507 }
4508 else if ((abfd->flags & D_PAGED) == 0)
4509 {
4510 /* If the file is not demand paged, which means that we
4511 don't require the sections to be correctly aligned in the
4512 file, then there is no other reason for a new segment. */
4513 new_segment = FALSE;
4514 }
4515 else if (! writable
4516 && (hdr->flags & SEC_READONLY) == 0
4517 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4518 != (hdr->lma & -maxpagesize)))
4519 {
4520 /* We don't want to put a writable section in a read only
4521 segment, unless they are on the same page in memory
4522 anyhow. We already know that the last section does not
4523 bring us past the current section on the page, so the
4524 only case in which the new section is not on the same
4525 page as the previous section is when the previous section
4526 ends precisely on a page boundary. */
4527 new_segment = TRUE;
4528 }
4529 else
4530 {
4531 /* Otherwise, we can use the same segment. */
4532 new_segment = FALSE;
4533 }
4534
4535 /* Allow interested parties a chance to override our decision. */
4536 if (last_hdr != NULL
4537 && info != NULL
4538 && info->callbacks->override_segment_assignment != NULL)
4539 new_segment
4540 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4541 last_hdr,
4542 new_segment);
4543
4544 if (! new_segment)
4545 {
4546 if ((hdr->flags & SEC_READONLY) == 0)
4547 writable = TRUE;
4548 last_hdr = hdr;
4549 /* .tbss sections effectively have zero size. */
4550 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4551 != SEC_THREAD_LOCAL)
4552 last_size = hdr->size;
4553 else
4554 last_size = 0;
4555 continue;
4556 }
4557
4558 /* We need a new program segment. We must create a new program
4559 header holding all the sections from phdr_index until hdr. */
4560
4561 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4562 if (m == NULL)
4563 goto error_return;
4564
4565 *pm = m;
4566 pm = &m->next;
4567
4568 if ((hdr->flags & SEC_READONLY) == 0)
4569 writable = TRUE;
4570 else
4571 writable = FALSE;
4572
4573 last_hdr = hdr;
4574 /* .tbss sections effectively have zero size. */
4575 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4576 last_size = hdr->size;
4577 else
4578 last_size = 0;
4579 phdr_index = i;
4580 phdr_in_segment = FALSE;
4581 }
4582
4583 /* Create a final PT_LOAD program segment, but not if it's just
4584 for .tbss. */
4585 if (last_hdr != NULL
4586 && (i - phdr_index != 1
4587 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4588 != SEC_THREAD_LOCAL)))
4589 {
4590 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4591 if (m == NULL)
4592 goto error_return;
4593
4594 *pm = m;
4595 pm = &m->next;
4596 }
4597
4598 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4599 if (dynsec != NULL)
4600 {
4601 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4602 if (m == NULL)
4603 goto error_return;
4604 *pm = m;
4605 pm = &m->next;
4606 }
4607
4608 /* For each batch of consecutive loadable .note sections,
4609 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4610 because if we link together nonloadable .note sections and
4611 loadable .note sections, we will generate two .note sections
4612 in the output file. FIXME: Using names for section types is
4613 bogus anyhow. */
4614 for (s = abfd->sections; s != NULL; s = s->next)
4615 {
4616 if ((s->flags & SEC_LOAD) != 0
4617 && CONST_STRNEQ (s->name, ".note"))
4618 {
4619 asection *s2;
4620
4621 count = 1;
4622 amt = sizeof (struct elf_segment_map);
4623 if (s->alignment_power == 2)
4624 for (s2 = s; s2->next != NULL; s2 = s2->next)
4625 {
4626 if (s2->next->alignment_power == 2
4627 && (s2->next->flags & SEC_LOAD) != 0
4628 && CONST_STRNEQ (s2->next->name, ".note")
4629 && align_power (s2->lma + s2->size, 2)
4630 == s2->next->lma)
4631 count++;
4632 else
4633 break;
4634 }
4635 amt += (count - 1) * sizeof (asection *);
4636 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4637 if (m == NULL)
4638 goto error_return;
4639 m->next = NULL;
4640 m->p_type = PT_NOTE;
4641 m->count = count;
4642 while (count > 1)
4643 {
4644 m->sections[m->count - count--] = s;
4645 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4646 s = s->next;
4647 }
4648 m->sections[m->count - 1] = s;
4649 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4650 *pm = m;
4651 pm = &m->next;
4652 }
4653 if (s->flags & SEC_THREAD_LOCAL)
4654 {
4655 if (! tls_count)
4656 first_tls = s;
4657 tls_count++;
4658 }
4659 }
4660
4661 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4662 if (tls_count > 0)
4663 {
4664 amt = sizeof (struct elf_segment_map);
4665 amt += (tls_count - 1) * sizeof (asection *);
4666 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4667 if (m == NULL)
4668 goto error_return;
4669 m->next = NULL;
4670 m->p_type = PT_TLS;
4671 m->count = tls_count;
4672 /* Mandated PF_R. */
4673 m->p_flags = PF_R;
4674 m->p_flags_valid = 1;
4675 s = first_tls;
4676 for (i = 0; i < (unsigned int) tls_count; ++i)
4677 {
4678 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4679 {
4680 _bfd_error_handler
4681 (_("%B: TLS sections are not adjacent:"), abfd);
4682 s = first_tls;
4683 i = 0;
4684 while (i < (unsigned int) tls_count)
4685 {
4686 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4687 {
4688 _bfd_error_handler (_(" TLS: %A"), s);
4689 i++;
4690 }
4691 else
4692 _bfd_error_handler (_(" non-TLS: %A"), s);
4693 s = s->next;
4694 }
4695 bfd_set_error (bfd_error_bad_value);
4696 goto error_return;
4697 }
4698 m->sections[i] = s;
4699 s = s->next;
4700 }
4701
4702 *pm = m;
4703 pm = &m->next;
4704 }
4705
4706 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4707 segment. */
4708 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4709 if (eh_frame_hdr != NULL
4710 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4711 {
4712 amt = sizeof (struct elf_segment_map);
4713 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4714 if (m == NULL)
4715 goto error_return;
4716 m->next = NULL;
4717 m->p_type = PT_GNU_EH_FRAME;
4718 m->count = 1;
4719 m->sections[0] = eh_frame_hdr->output_section;
4720
4721 *pm = m;
4722 pm = &m->next;
4723 }
4724
4725 if (elf_stack_flags (abfd))
4726 {
4727 amt = sizeof (struct elf_segment_map);
4728 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4729 if (m == NULL)
4730 goto error_return;
4731 m->next = NULL;
4732 m->p_type = PT_GNU_STACK;
4733 m->p_flags = elf_stack_flags (abfd);
4734 m->p_align = bed->stack_align;
4735 m->p_flags_valid = 1;
4736 m->p_align_valid = m->p_align != 0;
4737 if (info->stacksize > 0)
4738 {
4739 m->p_size = info->stacksize;
4740 m->p_size_valid = 1;
4741 }
4742
4743 *pm = m;
4744 pm = &m->next;
4745 }
4746
4747 if (info != NULL && info->relro)
4748 {
4749 for (m = mfirst; m != NULL; m = m->next)
4750 {
4751 if (m->p_type == PT_LOAD
4752 && m->count != 0
4753 && m->sections[0]->vma >= info->relro_start
4754 && m->sections[0]->vma < info->relro_end)
4755 {
4756 i = m->count;
4757 while (--i != (unsigned) -1)
4758 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4759 == (SEC_LOAD | SEC_HAS_CONTENTS))
4760 break;
4761
4762 if (i != (unsigned) -1)
4763 break;
4764 }
4765 }
4766
4767 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4768 if (m != NULL)
4769 {
4770 amt = sizeof (struct elf_segment_map);
4771 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4772 if (m == NULL)
4773 goto error_return;
4774 m->next = NULL;
4775 m->p_type = PT_GNU_RELRO;
4776 *pm = m;
4777 pm = &m->next;
4778 }
4779 }
4780
4781 free (sections);
4782 elf_seg_map (abfd) = mfirst;
4783 }
4784
4785 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4786 return FALSE;
4787
4788 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4789 ++count;
4790 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4791
4792 return TRUE;
4793
4794 error_return:
4795 if (sections != NULL)
4796 free (sections);
4797 return FALSE;
4798 }
4799
4800 /* Sort sections by address. */
4801
4802 static int
4803 elf_sort_sections (const void *arg1, const void *arg2)
4804 {
4805 const asection *sec1 = *(const asection **) arg1;
4806 const asection *sec2 = *(const asection **) arg2;
4807 bfd_size_type size1, size2;
4808
4809 /* Sort by LMA first, since this is the address used to
4810 place the section into a segment. */
4811 if (sec1->lma < sec2->lma)
4812 return -1;
4813 else if (sec1->lma > sec2->lma)
4814 return 1;
4815
4816 /* Then sort by VMA. Normally the LMA and the VMA will be
4817 the same, and this will do nothing. */
4818 if (sec1->vma < sec2->vma)
4819 return -1;
4820 else if (sec1->vma > sec2->vma)
4821 return 1;
4822
4823 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4824
4825 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4826
4827 if (TOEND (sec1))
4828 {
4829 if (TOEND (sec2))
4830 {
4831 /* If the indicies are the same, do not return 0
4832 here, but continue to try the next comparison. */
4833 if (sec1->target_index - sec2->target_index != 0)
4834 return sec1->target_index - sec2->target_index;
4835 }
4836 else
4837 return 1;
4838 }
4839 else if (TOEND (sec2))
4840 return -1;
4841
4842 #undef TOEND
4843
4844 /* Sort by size, to put zero sized sections
4845 before others at the same address. */
4846
4847 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4848 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4849
4850 if (size1 < size2)
4851 return -1;
4852 if (size1 > size2)
4853 return 1;
4854
4855 return sec1->target_index - sec2->target_index;
4856 }
4857
4858 /* Ian Lance Taylor writes:
4859
4860 We shouldn't be using % with a negative signed number. That's just
4861 not good. We have to make sure either that the number is not
4862 negative, or that the number has an unsigned type. When the types
4863 are all the same size they wind up as unsigned. When file_ptr is a
4864 larger signed type, the arithmetic winds up as signed long long,
4865 which is wrong.
4866
4867 What we're trying to say here is something like ``increase OFF by
4868 the least amount that will cause it to be equal to the VMA modulo
4869 the page size.'' */
4870 /* In other words, something like:
4871
4872 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4873 off_offset = off % bed->maxpagesize;
4874 if (vma_offset < off_offset)
4875 adjustment = vma_offset + bed->maxpagesize - off_offset;
4876 else
4877 adjustment = vma_offset - off_offset;
4878
4879 which can can be collapsed into the expression below. */
4880
4881 static file_ptr
4882 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4883 {
4884 /* PR binutils/16199: Handle an alignment of zero. */
4885 if (maxpagesize == 0)
4886 maxpagesize = 1;
4887 return ((vma - off) % maxpagesize);
4888 }
4889
4890 static void
4891 print_segment_map (const struct elf_segment_map *m)
4892 {
4893 unsigned int j;
4894 const char *pt = get_segment_type (m->p_type);
4895 char buf[32];
4896
4897 if (pt == NULL)
4898 {
4899 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4900 sprintf (buf, "LOPROC+%7.7x",
4901 (unsigned int) (m->p_type - PT_LOPROC));
4902 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4903 sprintf (buf, "LOOS+%7.7x",
4904 (unsigned int) (m->p_type - PT_LOOS));
4905 else
4906 snprintf (buf, sizeof (buf), "%8.8x",
4907 (unsigned int) m->p_type);
4908 pt = buf;
4909 }
4910 fflush (stdout);
4911 fprintf (stderr, "%s:", pt);
4912 for (j = 0; j < m->count; j++)
4913 fprintf (stderr, " %s", m->sections [j]->name);
4914 putc ('\n',stderr);
4915 fflush (stderr);
4916 }
4917
4918 static bfd_boolean
4919 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4920 {
4921 void *buf;
4922 bfd_boolean ret;
4923
4924 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4925 return FALSE;
4926 buf = bfd_zmalloc (len);
4927 if (buf == NULL)
4928 return FALSE;
4929 ret = bfd_bwrite (buf, len, abfd) == len;
4930 free (buf);
4931 return ret;
4932 }
4933
4934 /* Assign file positions to the sections based on the mapping from
4935 sections to segments. This function also sets up some fields in
4936 the file header. */
4937
4938 static bfd_boolean
4939 assign_file_positions_for_load_sections (bfd *abfd,
4940 struct bfd_link_info *link_info)
4941 {
4942 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4943 struct elf_segment_map *m;
4944 Elf_Internal_Phdr *phdrs;
4945 Elf_Internal_Phdr *p;
4946 file_ptr off;
4947 bfd_size_type maxpagesize;
4948 unsigned int alloc;
4949 unsigned int i, j;
4950 bfd_vma header_pad = 0;
4951
4952 if (link_info == NULL
4953 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4954 return FALSE;
4955
4956 alloc = 0;
4957 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
4958 {
4959 ++alloc;
4960 if (m->header_size)
4961 header_pad = m->header_size;
4962 }
4963
4964 if (alloc)
4965 {
4966 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4967 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4968 }
4969 else
4970 {
4971 /* PR binutils/12467. */
4972 elf_elfheader (abfd)->e_phoff = 0;
4973 elf_elfheader (abfd)->e_phentsize = 0;
4974 }
4975
4976 elf_elfheader (abfd)->e_phnum = alloc;
4977
4978 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
4979 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
4980 else
4981 BFD_ASSERT (elf_program_header_size (abfd)
4982 >= alloc * bed->s->sizeof_phdr);
4983
4984 if (alloc == 0)
4985 {
4986 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
4987 return TRUE;
4988 }
4989
4990 /* We're writing the size in elf_program_header_size (abfd),
4991 see assign_file_positions_except_relocs, so make sure we have
4992 that amount allocated, with trailing space cleared.
4993 The variable alloc contains the computed need, while
4994 elf_program_header_size (abfd) contains the size used for the
4995 layout.
4996 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4997 where the layout is forced to according to a larger size in the
4998 last iterations for the testcase ld-elf/header. */
4999 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5000 == 0);
5001 phdrs = (Elf_Internal_Phdr *)
5002 bfd_zalloc2 (abfd,
5003 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5004 sizeof (Elf_Internal_Phdr));
5005 elf_tdata (abfd)->phdr = phdrs;
5006 if (phdrs == NULL)
5007 return FALSE;
5008
5009 maxpagesize = 1;
5010 if ((abfd->flags & D_PAGED) != 0)
5011 maxpagesize = bed->maxpagesize;
5012
5013 off = bed->s->sizeof_ehdr;
5014 off += alloc * bed->s->sizeof_phdr;
5015 if (header_pad < (bfd_vma) off)
5016 header_pad = 0;
5017 else
5018 header_pad -= off;
5019 off += header_pad;
5020
5021 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5022 m != NULL;
5023 m = m->next, p++, j++)
5024 {
5025 asection **secpp;
5026 bfd_vma off_adjust;
5027 bfd_boolean no_contents;
5028
5029 /* If elf_segment_map is not from map_sections_to_segments, the
5030 sections may not be correctly ordered. NOTE: sorting should
5031 not be done to the PT_NOTE section of a corefile, which may
5032 contain several pseudo-sections artificially created by bfd.
5033 Sorting these pseudo-sections breaks things badly. */
5034 if (m->count > 1
5035 && !(elf_elfheader (abfd)->e_type == ET_CORE
5036 && m->p_type == PT_NOTE))
5037 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5038 elf_sort_sections);
5039
5040 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5041 number of sections with contents contributing to both p_filesz
5042 and p_memsz, followed by a number of sections with no contents
5043 that just contribute to p_memsz. In this loop, OFF tracks next
5044 available file offset for PT_LOAD and PT_NOTE segments. */
5045 p->p_type = m->p_type;
5046 p->p_flags = m->p_flags;
5047
5048 if (m->count == 0)
5049 p->p_vaddr = 0;
5050 else
5051 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5052
5053 if (m->p_paddr_valid)
5054 p->p_paddr = m->p_paddr;
5055 else if (m->count == 0)
5056 p->p_paddr = 0;
5057 else
5058 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5059
5060 if (p->p_type == PT_LOAD
5061 && (abfd->flags & D_PAGED) != 0)
5062 {
5063 /* p_align in demand paged PT_LOAD segments effectively stores
5064 the maximum page size. When copying an executable with
5065 objcopy, we set m->p_align from the input file. Use this
5066 value for maxpagesize rather than bed->maxpagesize, which
5067 may be different. Note that we use maxpagesize for PT_TLS
5068 segment alignment later in this function, so we are relying
5069 on at least one PT_LOAD segment appearing before a PT_TLS
5070 segment. */
5071 if (m->p_align_valid)
5072 maxpagesize = m->p_align;
5073
5074 p->p_align = maxpagesize;
5075 }
5076 else if (m->p_align_valid)
5077 p->p_align = m->p_align;
5078 else if (m->count == 0)
5079 p->p_align = 1 << bed->s->log_file_align;
5080 else
5081 p->p_align = 0;
5082
5083 no_contents = FALSE;
5084 off_adjust = 0;
5085 if (p->p_type == PT_LOAD
5086 && m->count > 0)
5087 {
5088 bfd_size_type align;
5089 unsigned int align_power = 0;
5090
5091 if (m->p_align_valid)
5092 align = p->p_align;
5093 else
5094 {
5095 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5096 {
5097 unsigned int secalign;
5098
5099 secalign = bfd_get_section_alignment (abfd, *secpp);
5100 if (secalign > align_power)
5101 align_power = secalign;
5102 }
5103 align = (bfd_size_type) 1 << align_power;
5104 if (align < maxpagesize)
5105 align = maxpagesize;
5106 }
5107
5108 for (i = 0; i < m->count; i++)
5109 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5110 /* If we aren't making room for this section, then
5111 it must be SHT_NOBITS regardless of what we've
5112 set via struct bfd_elf_special_section. */
5113 elf_section_type (m->sections[i]) = SHT_NOBITS;
5114
5115 /* Find out whether this segment contains any loadable
5116 sections. */
5117 no_contents = TRUE;
5118 for (i = 0; i < m->count; i++)
5119 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5120 {
5121 no_contents = FALSE;
5122 break;
5123 }
5124
5125 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5126 off += off_adjust;
5127 if (no_contents)
5128 {
5129 /* We shouldn't need to align the segment on disk since
5130 the segment doesn't need file space, but the gABI
5131 arguably requires the alignment and glibc ld.so
5132 checks it. So to comply with the alignment
5133 requirement but not waste file space, we adjust
5134 p_offset for just this segment. (OFF_ADJUST is
5135 subtracted from OFF later.) This may put p_offset
5136 past the end of file, but that shouldn't matter. */
5137 }
5138 else
5139 off_adjust = 0;
5140 }
5141 /* Make sure the .dynamic section is the first section in the
5142 PT_DYNAMIC segment. */
5143 else if (p->p_type == PT_DYNAMIC
5144 && m->count > 1
5145 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5146 {
5147 _bfd_error_handler
5148 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
5149 abfd);
5150 bfd_set_error (bfd_error_bad_value);
5151 return FALSE;
5152 }
5153 /* Set the note section type to SHT_NOTE. */
5154 else if (p->p_type == PT_NOTE)
5155 for (i = 0; i < m->count; i++)
5156 elf_section_type (m->sections[i]) = SHT_NOTE;
5157
5158 p->p_offset = 0;
5159 p->p_filesz = 0;
5160 p->p_memsz = 0;
5161
5162 if (m->includes_filehdr)
5163 {
5164 if (!m->p_flags_valid)
5165 p->p_flags |= PF_R;
5166 p->p_filesz = bed->s->sizeof_ehdr;
5167 p->p_memsz = bed->s->sizeof_ehdr;
5168 if (m->count > 0)
5169 {
5170 if (p->p_vaddr < (bfd_vma) off)
5171 {
5172 (*_bfd_error_handler)
5173 (_("%B: Not enough room for program headers, try linking with -N"),
5174 abfd);
5175 bfd_set_error (bfd_error_bad_value);
5176 return FALSE;
5177 }
5178
5179 p->p_vaddr -= off;
5180 if (!m->p_paddr_valid)
5181 p->p_paddr -= off;
5182 }
5183 }
5184
5185 if (m->includes_phdrs)
5186 {
5187 if (!m->p_flags_valid)
5188 p->p_flags |= PF_R;
5189
5190 if (!m->includes_filehdr)
5191 {
5192 p->p_offset = bed->s->sizeof_ehdr;
5193
5194 if (m->count > 0)
5195 {
5196 p->p_vaddr -= off - p->p_offset;
5197 if (!m->p_paddr_valid)
5198 p->p_paddr -= off - p->p_offset;
5199 }
5200 }
5201
5202 p->p_filesz += alloc * bed->s->sizeof_phdr;
5203 p->p_memsz += alloc * bed->s->sizeof_phdr;
5204 if (m->count)
5205 {
5206 p->p_filesz += header_pad;
5207 p->p_memsz += header_pad;
5208 }
5209 }
5210
5211 if (p->p_type == PT_LOAD
5212 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5213 {
5214 if (!m->includes_filehdr && !m->includes_phdrs)
5215 p->p_offset = off;
5216 else
5217 {
5218 file_ptr adjust;
5219
5220 adjust = off - (p->p_offset + p->p_filesz);
5221 if (!no_contents)
5222 p->p_filesz += adjust;
5223 p->p_memsz += adjust;
5224 }
5225 }
5226
5227 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5228 maps. Set filepos for sections in PT_LOAD segments, and in
5229 core files, for sections in PT_NOTE segments.
5230 assign_file_positions_for_non_load_sections will set filepos
5231 for other sections and update p_filesz for other segments. */
5232 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5233 {
5234 asection *sec;
5235 bfd_size_type align;
5236 Elf_Internal_Shdr *this_hdr;
5237
5238 sec = *secpp;
5239 this_hdr = &elf_section_data (sec)->this_hdr;
5240 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5241
5242 if ((p->p_type == PT_LOAD
5243 || p->p_type == PT_TLS)
5244 && (this_hdr->sh_type != SHT_NOBITS
5245 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5246 && ((this_hdr->sh_flags & SHF_TLS) == 0
5247 || p->p_type == PT_TLS))))
5248 {
5249 bfd_vma p_start = p->p_paddr;
5250 bfd_vma p_end = p_start + p->p_memsz;
5251 bfd_vma s_start = sec->lma;
5252 bfd_vma adjust = s_start - p_end;
5253
5254 if (adjust != 0
5255 && (s_start < p_end
5256 || p_end < p_start))
5257 {
5258 (*_bfd_error_handler)
5259 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
5260 (unsigned long) s_start, (unsigned long) p_end);
5261 adjust = 0;
5262 sec->lma = p_end;
5263 }
5264 p->p_memsz += adjust;
5265
5266 if (this_hdr->sh_type != SHT_NOBITS)
5267 {
5268 if (p->p_filesz + adjust < p->p_memsz)
5269 {
5270 /* We have a PROGBITS section following NOBITS ones.
5271 Allocate file space for the NOBITS section(s) and
5272 zero it. */
5273 adjust = p->p_memsz - p->p_filesz;
5274 if (!write_zeros (abfd, off, adjust))
5275 return FALSE;
5276 }
5277 off += adjust;
5278 p->p_filesz += adjust;
5279 }
5280 }
5281
5282 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5283 {
5284 /* The section at i == 0 is the one that actually contains
5285 everything. */
5286 if (i == 0)
5287 {
5288 this_hdr->sh_offset = sec->filepos = off;
5289 off += this_hdr->sh_size;
5290 p->p_filesz = this_hdr->sh_size;
5291 p->p_memsz = 0;
5292 p->p_align = 1;
5293 }
5294 else
5295 {
5296 /* The rest are fake sections that shouldn't be written. */
5297 sec->filepos = 0;
5298 sec->size = 0;
5299 sec->flags = 0;
5300 continue;
5301 }
5302 }
5303 else
5304 {
5305 if (p->p_type == PT_LOAD)
5306 {
5307 this_hdr->sh_offset = sec->filepos = off;
5308 if (this_hdr->sh_type != SHT_NOBITS)
5309 off += this_hdr->sh_size;
5310 }
5311 else if (this_hdr->sh_type == SHT_NOBITS
5312 && (this_hdr->sh_flags & SHF_TLS) != 0
5313 && this_hdr->sh_offset == 0)
5314 {
5315 /* This is a .tbss section that didn't get a PT_LOAD.
5316 (See _bfd_elf_map_sections_to_segments "Create a
5317 final PT_LOAD".) Set sh_offset to the value it
5318 would have if we had created a zero p_filesz and
5319 p_memsz PT_LOAD header for the section. This
5320 also makes the PT_TLS header have the same
5321 p_offset value. */
5322 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5323 off, align);
5324 this_hdr->sh_offset = sec->filepos = off + adjust;
5325 }
5326
5327 if (this_hdr->sh_type != SHT_NOBITS)
5328 {
5329 p->p_filesz += this_hdr->sh_size;
5330 /* A load section without SHF_ALLOC is something like
5331 a note section in a PT_NOTE segment. These take
5332 file space but are not loaded into memory. */
5333 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5334 p->p_memsz += this_hdr->sh_size;
5335 }
5336 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5337 {
5338 if (p->p_type == PT_TLS)
5339 p->p_memsz += this_hdr->sh_size;
5340
5341 /* .tbss is special. It doesn't contribute to p_memsz of
5342 normal segments. */
5343 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5344 p->p_memsz += this_hdr->sh_size;
5345 }
5346
5347 if (align > p->p_align
5348 && !m->p_align_valid
5349 && (p->p_type != PT_LOAD
5350 || (abfd->flags & D_PAGED) == 0))
5351 p->p_align = align;
5352 }
5353
5354 if (!m->p_flags_valid)
5355 {
5356 p->p_flags |= PF_R;
5357 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5358 p->p_flags |= PF_X;
5359 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5360 p->p_flags |= PF_W;
5361 }
5362 }
5363
5364 off -= off_adjust;
5365
5366 /* Check that all sections are in a PT_LOAD segment.
5367 Don't check funky gdb generated core files. */
5368 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5369 {
5370 bfd_boolean check_vma = TRUE;
5371
5372 for (i = 1; i < m->count; i++)
5373 if (m->sections[i]->vma == m->sections[i - 1]->vma
5374 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5375 ->this_hdr), p) != 0
5376 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5377 ->this_hdr), p) != 0)
5378 {
5379 /* Looks like we have overlays packed into the segment. */
5380 check_vma = FALSE;
5381 break;
5382 }
5383
5384 for (i = 0; i < m->count; i++)
5385 {
5386 Elf_Internal_Shdr *this_hdr;
5387 asection *sec;
5388
5389 sec = m->sections[i];
5390 this_hdr = &(elf_section_data(sec)->this_hdr);
5391 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5392 && !ELF_TBSS_SPECIAL (this_hdr, p))
5393 {
5394 (*_bfd_error_handler)
5395 (_("%B: section `%A' can't be allocated in segment %d"),
5396 abfd, sec, j);
5397 print_segment_map (m);
5398 }
5399 }
5400 }
5401 }
5402
5403 elf_next_file_pos (abfd) = off;
5404 return TRUE;
5405 }
5406
5407 /* Assign file positions for the other sections. */
5408
5409 static bfd_boolean
5410 assign_file_positions_for_non_load_sections (bfd *abfd,
5411 struct bfd_link_info *link_info)
5412 {
5413 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5414 Elf_Internal_Shdr **i_shdrpp;
5415 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5416 Elf_Internal_Phdr *phdrs;
5417 Elf_Internal_Phdr *p;
5418 struct elf_segment_map *m;
5419 struct elf_segment_map *hdrs_segment;
5420 bfd_vma filehdr_vaddr, filehdr_paddr;
5421 bfd_vma phdrs_vaddr, phdrs_paddr;
5422 file_ptr off;
5423 unsigned int count;
5424
5425 i_shdrpp = elf_elfsections (abfd);
5426 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5427 off = elf_next_file_pos (abfd);
5428 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5429 {
5430 Elf_Internal_Shdr *hdr;
5431
5432 hdr = *hdrpp;
5433 if (hdr->bfd_section != NULL
5434 && (hdr->bfd_section->filepos != 0
5435 || (hdr->sh_type == SHT_NOBITS
5436 && hdr->contents == NULL)))
5437 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5438 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5439 {
5440 if (hdr->sh_size != 0)
5441 (*_bfd_error_handler)
5442 (_("%B: warning: allocated section `%s' not in segment"),
5443 abfd,
5444 (hdr->bfd_section == NULL
5445 ? "*unknown*"
5446 : hdr->bfd_section->name));
5447 /* We don't need to page align empty sections. */
5448 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5449 off += vma_page_aligned_bias (hdr->sh_addr, off,
5450 bed->maxpagesize);
5451 else
5452 off += vma_page_aligned_bias (hdr->sh_addr, off,
5453 hdr->sh_addralign);
5454 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5455 FALSE);
5456 }
5457 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5458 && hdr->bfd_section == NULL)
5459 || (hdr->bfd_section != NULL
5460 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5461 /* Compress DWARF debug sections. */
5462 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5463 || (elf_symtab_shndx_list (abfd) != NULL
5464 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5465 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5466 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5467 hdr->sh_offset = -1;
5468 else
5469 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5470 }
5471
5472 /* Now that we have set the section file positions, we can set up
5473 the file positions for the non PT_LOAD segments. */
5474 count = 0;
5475 filehdr_vaddr = 0;
5476 filehdr_paddr = 0;
5477 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5478 phdrs_paddr = 0;
5479 hdrs_segment = NULL;
5480 phdrs = elf_tdata (abfd)->phdr;
5481 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5482 {
5483 ++count;
5484 if (p->p_type != PT_LOAD)
5485 continue;
5486
5487 if (m->includes_filehdr)
5488 {
5489 filehdr_vaddr = p->p_vaddr;
5490 filehdr_paddr = p->p_paddr;
5491 }
5492 if (m->includes_phdrs)
5493 {
5494 phdrs_vaddr = p->p_vaddr;
5495 phdrs_paddr = p->p_paddr;
5496 if (m->includes_filehdr)
5497 {
5498 hdrs_segment = m;
5499 phdrs_vaddr += bed->s->sizeof_ehdr;
5500 phdrs_paddr += bed->s->sizeof_ehdr;
5501 }
5502 }
5503 }
5504
5505 if (hdrs_segment != NULL && link_info != NULL)
5506 {
5507 /* There is a segment that contains both the file headers and the
5508 program headers, so provide a symbol __ehdr_start pointing there.
5509 A program can use this to examine itself robustly. */
5510
5511 struct elf_link_hash_entry *hash
5512 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5513 FALSE, FALSE, TRUE);
5514 /* If the symbol was referenced and not defined, define it. */
5515 if (hash != NULL
5516 && (hash->root.type == bfd_link_hash_new
5517 || hash->root.type == bfd_link_hash_undefined
5518 || hash->root.type == bfd_link_hash_undefweak
5519 || hash->root.type == bfd_link_hash_common))
5520 {
5521 asection *s = NULL;
5522 if (hdrs_segment->count != 0)
5523 /* The segment contains sections, so use the first one. */
5524 s = hdrs_segment->sections[0];
5525 else
5526 /* Use the first (i.e. lowest-addressed) section in any segment. */
5527 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5528 if (m->count != 0)
5529 {
5530 s = m->sections[0];
5531 break;
5532 }
5533
5534 if (s != NULL)
5535 {
5536 hash->root.u.def.value = filehdr_vaddr - s->vma;
5537 hash->root.u.def.section = s;
5538 }
5539 else
5540 {
5541 hash->root.u.def.value = filehdr_vaddr;
5542 hash->root.u.def.section = bfd_abs_section_ptr;
5543 }
5544
5545 hash->root.type = bfd_link_hash_defined;
5546 hash->def_regular = 1;
5547 hash->non_elf = 0;
5548 }
5549 }
5550
5551 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5552 {
5553 if (p->p_type == PT_GNU_RELRO)
5554 {
5555 const Elf_Internal_Phdr *lp;
5556 struct elf_segment_map *lm;
5557
5558 if (link_info != NULL)
5559 {
5560 /* During linking the range of the RELRO segment is passed
5561 in link_info. */
5562 for (lm = elf_seg_map (abfd), lp = phdrs;
5563 lm != NULL;
5564 lm = lm->next, lp++)
5565 {
5566 if (lp->p_type == PT_LOAD
5567 && lp->p_vaddr < link_info->relro_end
5568 && lm->count != 0
5569 && lm->sections[0]->vma >= link_info->relro_start)
5570 break;
5571 }
5572
5573 BFD_ASSERT (lm != NULL);
5574 }
5575 else
5576 {
5577 /* Otherwise we are copying an executable or shared
5578 library, but we need to use the same linker logic. */
5579 for (lp = phdrs; lp < phdrs + count; ++lp)
5580 {
5581 if (lp->p_type == PT_LOAD
5582 && lp->p_paddr == p->p_paddr)
5583 break;
5584 }
5585 }
5586
5587 if (lp < phdrs + count)
5588 {
5589 p->p_vaddr = lp->p_vaddr;
5590 p->p_paddr = lp->p_paddr;
5591 p->p_offset = lp->p_offset;
5592 if (link_info != NULL)
5593 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5594 else if (m->p_size_valid)
5595 p->p_filesz = m->p_size;
5596 else
5597 abort ();
5598 p->p_memsz = p->p_filesz;
5599 /* Preserve the alignment and flags if they are valid. The
5600 gold linker generates RW/4 for the PT_GNU_RELRO section.
5601 It is better for objcopy/strip to honor these attributes
5602 otherwise gdb will choke when using separate debug files.
5603 */
5604 if (!m->p_align_valid)
5605 p->p_align = 1;
5606 if (!m->p_flags_valid)
5607 p->p_flags = PF_R;
5608 }
5609 else
5610 {
5611 memset (p, 0, sizeof *p);
5612 p->p_type = PT_NULL;
5613 }
5614 }
5615 else if (p->p_type == PT_GNU_STACK)
5616 {
5617 if (m->p_size_valid)
5618 p->p_memsz = m->p_size;
5619 }
5620 else if (m->count != 0)
5621 {
5622 unsigned int i;
5623 if (p->p_type != PT_LOAD
5624 && (p->p_type != PT_NOTE
5625 || bfd_get_format (abfd) != bfd_core))
5626 {
5627 if (m->includes_filehdr || m->includes_phdrs)
5628 {
5629 /* PR 17512: file: 2195325e. */
5630 (*_bfd_error_handler)
5631 (_("%B: warning: non-load segment includes file header and/or program header"),
5632 abfd);
5633 return FALSE;
5634 }
5635
5636 p->p_filesz = 0;
5637 p->p_offset = m->sections[0]->filepos;
5638 for (i = m->count; i-- != 0;)
5639 {
5640 asection *sect = m->sections[i];
5641 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5642 if (hdr->sh_type != SHT_NOBITS)
5643 {
5644 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5645 + hdr->sh_size);
5646 break;
5647 }
5648 }
5649 }
5650 }
5651 else if (m->includes_filehdr)
5652 {
5653 p->p_vaddr = filehdr_vaddr;
5654 if (! m->p_paddr_valid)
5655 p->p_paddr = filehdr_paddr;
5656 }
5657 else if (m->includes_phdrs)
5658 {
5659 p->p_vaddr = phdrs_vaddr;
5660 if (! m->p_paddr_valid)
5661 p->p_paddr = phdrs_paddr;
5662 }
5663 }
5664
5665 elf_next_file_pos (abfd) = off;
5666
5667 return TRUE;
5668 }
5669
5670 static elf_section_list *
5671 find_section_in_list (unsigned int i, elf_section_list * list)
5672 {
5673 for (;list != NULL; list = list->next)
5674 if (list->ndx == i)
5675 break;
5676 return list;
5677 }
5678
5679 /* Work out the file positions of all the sections. This is called by
5680 _bfd_elf_compute_section_file_positions. All the section sizes and
5681 VMAs must be known before this is called.
5682
5683 Reloc sections come in two flavours: Those processed specially as
5684 "side-channel" data attached to a section to which they apply, and
5685 those that bfd doesn't process as relocations. The latter sort are
5686 stored in a normal bfd section by bfd_section_from_shdr. We don't
5687 consider the former sort here, unless they form part of the loadable
5688 image. Reloc sections not assigned here will be handled later by
5689 assign_file_positions_for_relocs.
5690
5691 We also don't set the positions of the .symtab and .strtab here. */
5692
5693 static bfd_boolean
5694 assign_file_positions_except_relocs (bfd *abfd,
5695 struct bfd_link_info *link_info)
5696 {
5697 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5698 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5699 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5700
5701 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5702 && bfd_get_format (abfd) != bfd_core)
5703 {
5704 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5705 unsigned int num_sec = elf_numsections (abfd);
5706 Elf_Internal_Shdr **hdrpp;
5707 unsigned int i;
5708 file_ptr off;
5709
5710 /* Start after the ELF header. */
5711 off = i_ehdrp->e_ehsize;
5712
5713 /* We are not creating an executable, which means that we are
5714 not creating a program header, and that the actual order of
5715 the sections in the file is unimportant. */
5716 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5717 {
5718 Elf_Internal_Shdr *hdr;
5719
5720 hdr = *hdrpp;
5721 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5722 && hdr->bfd_section == NULL)
5723 || (hdr->bfd_section != NULL
5724 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5725 /* Compress DWARF debug sections. */
5726 || i == elf_onesymtab (abfd)
5727 || (elf_symtab_shndx_list (abfd) != NULL
5728 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5729 || i == elf_strtab_sec (abfd)
5730 || i == elf_shstrtab_sec (abfd))
5731 {
5732 hdr->sh_offset = -1;
5733 }
5734 else
5735 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5736 }
5737
5738 elf_next_file_pos (abfd) = off;
5739 }
5740 else
5741 {
5742 unsigned int alloc;
5743
5744 /* Assign file positions for the loaded sections based on the
5745 assignment of sections to segments. */
5746 if (!assign_file_positions_for_load_sections (abfd, link_info))
5747 return FALSE;
5748
5749 /* And for non-load sections. */
5750 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5751 return FALSE;
5752
5753 if (bed->elf_backend_modify_program_headers != NULL)
5754 {
5755 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5756 return FALSE;
5757 }
5758
5759 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5760 if (link_info != NULL && bfd_link_pie (link_info))
5761 {
5762 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5763 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5764 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5765
5766 /* Find the lowest p_vaddr in PT_LOAD segments. */
5767 bfd_vma p_vaddr = (bfd_vma) -1;
5768 for (; segment < end_segment; segment++)
5769 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5770 p_vaddr = segment->p_vaddr;
5771
5772 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5773 segments is non-zero. */
5774 if (p_vaddr)
5775 i_ehdrp->e_type = ET_EXEC;
5776 }
5777
5778 /* Write out the program headers. */
5779 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5780 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5781 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5782 return FALSE;
5783 }
5784
5785 return TRUE;
5786 }
5787
5788 static bfd_boolean
5789 prep_headers (bfd *abfd)
5790 {
5791 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5792 struct elf_strtab_hash *shstrtab;
5793 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5794
5795 i_ehdrp = elf_elfheader (abfd);
5796
5797 shstrtab = _bfd_elf_strtab_init ();
5798 if (shstrtab == NULL)
5799 return FALSE;
5800
5801 elf_shstrtab (abfd) = shstrtab;
5802
5803 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5804 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5805 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5806 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5807
5808 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5809 i_ehdrp->e_ident[EI_DATA] =
5810 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5811 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5812
5813 if ((abfd->flags & DYNAMIC) != 0)
5814 i_ehdrp->e_type = ET_DYN;
5815 else if ((abfd->flags & EXEC_P) != 0)
5816 i_ehdrp->e_type = ET_EXEC;
5817 else if (bfd_get_format (abfd) == bfd_core)
5818 i_ehdrp->e_type = ET_CORE;
5819 else
5820 i_ehdrp->e_type = ET_REL;
5821
5822 switch (bfd_get_arch (abfd))
5823 {
5824 case bfd_arch_unknown:
5825 i_ehdrp->e_machine = EM_NONE;
5826 break;
5827
5828 /* There used to be a long list of cases here, each one setting
5829 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5830 in the corresponding bfd definition. To avoid duplication,
5831 the switch was removed. Machines that need special handling
5832 can generally do it in elf_backend_final_write_processing(),
5833 unless they need the information earlier than the final write.
5834 Such need can generally be supplied by replacing the tests for
5835 e_machine with the conditions used to determine it. */
5836 default:
5837 i_ehdrp->e_machine = bed->elf_machine_code;
5838 }
5839
5840 i_ehdrp->e_version = bed->s->ev_current;
5841 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5842
5843 /* No program header, for now. */
5844 i_ehdrp->e_phoff = 0;
5845 i_ehdrp->e_phentsize = 0;
5846 i_ehdrp->e_phnum = 0;
5847
5848 /* Each bfd section is section header entry. */
5849 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5850 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5851
5852 /* If we're building an executable, we'll need a program header table. */
5853 if (abfd->flags & EXEC_P)
5854 /* It all happens later. */
5855 ;
5856 else
5857 {
5858 i_ehdrp->e_phentsize = 0;
5859 i_ehdrp->e_phoff = 0;
5860 }
5861
5862 elf_tdata (abfd)->symtab_hdr.sh_name =
5863 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5864 elf_tdata (abfd)->strtab_hdr.sh_name =
5865 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5866 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5867 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5868 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5869 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5870 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5871 return FALSE;
5872
5873 return TRUE;
5874 }
5875
5876 /* Assign file positions for all the reloc sections which are not part
5877 of the loadable file image, and the file position of section headers. */
5878
5879 static bfd_boolean
5880 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
5881 {
5882 file_ptr off;
5883 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
5884 Elf_Internal_Shdr *shdrp;
5885 Elf_Internal_Ehdr *i_ehdrp;
5886 const struct elf_backend_data *bed;
5887
5888 off = elf_next_file_pos (abfd);
5889
5890 shdrpp = elf_elfsections (abfd);
5891 end_shdrpp = shdrpp + elf_numsections (abfd);
5892 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
5893 {
5894 shdrp = *shdrpp;
5895 if (shdrp->sh_offset == -1)
5896 {
5897 asection *sec = shdrp->bfd_section;
5898 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
5899 || shdrp->sh_type == SHT_RELA);
5900 if (is_rel
5901 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
5902 {
5903 if (!is_rel)
5904 {
5905 const char *name = sec->name;
5906 struct bfd_elf_section_data *d;
5907
5908 /* Compress DWARF debug sections. */
5909 if (!bfd_compress_section (abfd, sec,
5910 shdrp->contents))
5911 return FALSE;
5912
5913 if (sec->compress_status == COMPRESS_SECTION_DONE
5914 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
5915 {
5916 /* If section is compressed with zlib-gnu, convert
5917 section name from .debug_* to .zdebug_*. */
5918 char *new_name
5919 = convert_debug_to_zdebug (abfd, name);
5920 if (new_name == NULL)
5921 return FALSE;
5922 name = new_name;
5923 }
5924 /* Add setion name to section name section. */
5925 if (shdrp->sh_name != (unsigned int) -1)
5926 abort ();
5927 shdrp->sh_name
5928 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
5929 name, FALSE);
5930 d = elf_section_data (sec);
5931
5932 /* Add reloc setion name to section name section. */
5933 if (d->rel.hdr
5934 && !_bfd_elf_set_reloc_sh_name (abfd,
5935 d->rel.hdr,
5936 name, FALSE))
5937 return FALSE;
5938 if (d->rela.hdr
5939 && !_bfd_elf_set_reloc_sh_name (abfd,
5940 d->rela.hdr,
5941 name, TRUE))
5942 return FALSE;
5943
5944 /* Update section size and contents. */
5945 shdrp->sh_size = sec->size;
5946 shdrp->contents = sec->contents;
5947 shdrp->bfd_section->contents = NULL;
5948 }
5949 off = _bfd_elf_assign_file_position_for_section (shdrp,
5950 off,
5951 TRUE);
5952 }
5953 }
5954 }
5955
5956 /* Place section name section after DWARF debug sections have been
5957 compressed. */
5958 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
5959 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
5960 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
5961 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5962
5963 /* Place the section headers. */
5964 i_ehdrp = elf_elfheader (abfd);
5965 bed = get_elf_backend_data (abfd);
5966 off = align_file_position (off, 1 << bed->s->log_file_align);
5967 i_ehdrp->e_shoff = off;
5968 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5969 elf_next_file_pos (abfd) = off;
5970
5971 return TRUE;
5972 }
5973
5974 bfd_boolean
5975 _bfd_elf_write_object_contents (bfd *abfd)
5976 {
5977 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5978 Elf_Internal_Shdr **i_shdrp;
5979 bfd_boolean failed;
5980 unsigned int count, num_sec;
5981 struct elf_obj_tdata *t;
5982
5983 if (! abfd->output_has_begun
5984 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5985 return FALSE;
5986
5987 i_shdrp = elf_elfsections (abfd);
5988
5989 failed = FALSE;
5990 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5991 if (failed)
5992 return FALSE;
5993
5994 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
5995 return FALSE;
5996
5997 /* After writing the headers, we need to write the sections too... */
5998 num_sec = elf_numsections (abfd);
5999 for (count = 1; count < num_sec; count++)
6000 {
6001 i_shdrp[count]->sh_name
6002 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6003 i_shdrp[count]->sh_name);
6004 if (bed->elf_backend_section_processing)
6005 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
6006 if (i_shdrp[count]->contents)
6007 {
6008 bfd_size_type amt = i_shdrp[count]->sh_size;
6009
6010 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6011 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6012 return FALSE;
6013 }
6014 }
6015
6016 /* Write out the section header names. */
6017 t = elf_tdata (abfd);
6018 if (elf_shstrtab (abfd) != NULL
6019 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6020 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6021 return FALSE;
6022
6023 if (bed->elf_backend_final_write_processing)
6024 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6025
6026 if (!bed->s->write_shdrs_and_ehdr (abfd))
6027 return FALSE;
6028
6029 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6030 if (t->o->build_id.after_write_object_contents != NULL)
6031 return (*t->o->build_id.after_write_object_contents) (abfd);
6032
6033 return TRUE;
6034 }
6035
6036 bfd_boolean
6037 _bfd_elf_write_corefile_contents (bfd *abfd)
6038 {
6039 /* Hopefully this can be done just like an object file. */
6040 return _bfd_elf_write_object_contents (abfd);
6041 }
6042
6043 /* Given a section, search the header to find them. */
6044
6045 unsigned int
6046 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6047 {
6048 const struct elf_backend_data *bed;
6049 unsigned int sec_index;
6050
6051 if (elf_section_data (asect) != NULL
6052 && elf_section_data (asect)->this_idx != 0)
6053 return elf_section_data (asect)->this_idx;
6054
6055 if (bfd_is_abs_section (asect))
6056 sec_index = SHN_ABS;
6057 else if (bfd_is_com_section (asect))
6058 sec_index = SHN_COMMON;
6059 else if (bfd_is_und_section (asect))
6060 sec_index = SHN_UNDEF;
6061 else
6062 sec_index = SHN_BAD;
6063
6064 bed = get_elf_backend_data (abfd);
6065 if (bed->elf_backend_section_from_bfd_section)
6066 {
6067 int retval = sec_index;
6068
6069 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6070 return retval;
6071 }
6072
6073 if (sec_index == SHN_BAD)
6074 bfd_set_error (bfd_error_nonrepresentable_section);
6075
6076 return sec_index;
6077 }
6078
6079 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6080 on error. */
6081
6082 int
6083 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6084 {
6085 asymbol *asym_ptr = *asym_ptr_ptr;
6086 int idx;
6087 flagword flags = asym_ptr->flags;
6088
6089 /* When gas creates relocations against local labels, it creates its
6090 own symbol for the section, but does put the symbol into the
6091 symbol chain, so udata is 0. When the linker is generating
6092 relocatable output, this section symbol may be for one of the
6093 input sections rather than the output section. */
6094 if (asym_ptr->udata.i == 0
6095 && (flags & BSF_SECTION_SYM)
6096 && asym_ptr->section)
6097 {
6098 asection *sec;
6099 int indx;
6100
6101 sec = asym_ptr->section;
6102 if (sec->owner != abfd && sec->output_section != NULL)
6103 sec = sec->output_section;
6104 if (sec->owner == abfd
6105 && (indx = sec->index) < elf_num_section_syms (abfd)
6106 && elf_section_syms (abfd)[indx] != NULL)
6107 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6108 }
6109
6110 idx = asym_ptr->udata.i;
6111
6112 if (idx == 0)
6113 {
6114 /* This case can occur when using --strip-symbol on a symbol
6115 which is used in a relocation entry. */
6116 (*_bfd_error_handler)
6117 (_("%B: symbol `%s' required but not present"),
6118 abfd, bfd_asymbol_name (asym_ptr));
6119 bfd_set_error (bfd_error_no_symbols);
6120 return -1;
6121 }
6122
6123 #if DEBUG & 4
6124 {
6125 fprintf (stderr,
6126 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
6127 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
6128 fflush (stderr);
6129 }
6130 #endif
6131
6132 return idx;
6133 }
6134
6135 /* Rewrite program header information. */
6136
6137 static bfd_boolean
6138 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6139 {
6140 Elf_Internal_Ehdr *iehdr;
6141 struct elf_segment_map *map;
6142 struct elf_segment_map *map_first;
6143 struct elf_segment_map **pointer_to_map;
6144 Elf_Internal_Phdr *segment;
6145 asection *section;
6146 unsigned int i;
6147 unsigned int num_segments;
6148 bfd_boolean phdr_included = FALSE;
6149 bfd_boolean p_paddr_valid;
6150 bfd_vma maxpagesize;
6151 struct elf_segment_map *phdr_adjust_seg = NULL;
6152 unsigned int phdr_adjust_num = 0;
6153 const struct elf_backend_data *bed;
6154
6155 bed = get_elf_backend_data (ibfd);
6156 iehdr = elf_elfheader (ibfd);
6157
6158 map_first = NULL;
6159 pointer_to_map = &map_first;
6160
6161 num_segments = elf_elfheader (ibfd)->e_phnum;
6162 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6163
6164 /* Returns the end address of the segment + 1. */
6165 #define SEGMENT_END(segment, start) \
6166 (start + (segment->p_memsz > segment->p_filesz \
6167 ? segment->p_memsz : segment->p_filesz))
6168
6169 #define SECTION_SIZE(section, segment) \
6170 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6171 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6172 ? section->size : 0)
6173
6174 /* Returns TRUE if the given section is contained within
6175 the given segment. VMA addresses are compared. */
6176 #define IS_CONTAINED_BY_VMA(section, segment) \
6177 (section->vma >= segment->p_vaddr \
6178 && (section->vma + SECTION_SIZE (section, segment) \
6179 <= (SEGMENT_END (segment, segment->p_vaddr))))
6180
6181 /* Returns TRUE if the given section is contained within
6182 the given segment. LMA addresses are compared. */
6183 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6184 (section->lma >= base \
6185 && (section->lma + SECTION_SIZE (section, segment) \
6186 <= SEGMENT_END (segment, base)))
6187
6188 /* Handle PT_NOTE segment. */
6189 #define IS_NOTE(p, s) \
6190 (p->p_type == PT_NOTE \
6191 && elf_section_type (s) == SHT_NOTE \
6192 && (bfd_vma) s->filepos >= p->p_offset \
6193 && ((bfd_vma) s->filepos + s->size \
6194 <= p->p_offset + p->p_filesz))
6195
6196 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6197 etc. */
6198 #define IS_COREFILE_NOTE(p, s) \
6199 (IS_NOTE (p, s) \
6200 && bfd_get_format (ibfd) == bfd_core \
6201 && s->vma == 0 \
6202 && s->lma == 0)
6203
6204 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6205 linker, which generates a PT_INTERP section with p_vaddr and
6206 p_memsz set to 0. */
6207 #define IS_SOLARIS_PT_INTERP(p, s) \
6208 (p->p_vaddr == 0 \
6209 && p->p_paddr == 0 \
6210 && p->p_memsz == 0 \
6211 && p->p_filesz > 0 \
6212 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6213 && s->size > 0 \
6214 && (bfd_vma) s->filepos >= p->p_offset \
6215 && ((bfd_vma) s->filepos + s->size \
6216 <= p->p_offset + p->p_filesz))
6217
6218 /* Decide if the given section should be included in the given segment.
6219 A section will be included if:
6220 1. It is within the address space of the segment -- we use the LMA
6221 if that is set for the segment and the VMA otherwise,
6222 2. It is an allocated section or a NOTE section in a PT_NOTE
6223 segment.
6224 3. There is an output section associated with it,
6225 4. The section has not already been allocated to a previous segment.
6226 5. PT_GNU_STACK segments do not include any sections.
6227 6. PT_TLS segment includes only SHF_TLS sections.
6228 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6229 8. PT_DYNAMIC should not contain empty sections at the beginning
6230 (with the possible exception of .dynamic). */
6231 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6232 ((((segment->p_paddr \
6233 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6234 : IS_CONTAINED_BY_VMA (section, segment)) \
6235 && (section->flags & SEC_ALLOC) != 0) \
6236 || IS_NOTE (segment, section)) \
6237 && segment->p_type != PT_GNU_STACK \
6238 && (segment->p_type != PT_TLS \
6239 || (section->flags & SEC_THREAD_LOCAL)) \
6240 && (segment->p_type == PT_LOAD \
6241 || segment->p_type == PT_TLS \
6242 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6243 && (segment->p_type != PT_DYNAMIC \
6244 || SECTION_SIZE (section, segment) > 0 \
6245 || (segment->p_paddr \
6246 ? segment->p_paddr != section->lma \
6247 : segment->p_vaddr != section->vma) \
6248 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6249 == 0)) \
6250 && !section->segment_mark)
6251
6252 /* If the output section of a section in the input segment is NULL,
6253 it is removed from the corresponding output segment. */
6254 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6255 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6256 && section->output_section != NULL)
6257
6258 /* Returns TRUE iff seg1 starts after the end of seg2. */
6259 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6260 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6261
6262 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6263 their VMA address ranges and their LMA address ranges overlap.
6264 It is possible to have overlapping VMA ranges without overlapping LMA
6265 ranges. RedBoot images for example can have both .data and .bss mapped
6266 to the same VMA range, but with the .data section mapped to a different
6267 LMA. */
6268 #define SEGMENT_OVERLAPS(seg1, seg2) \
6269 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6270 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6271 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6272 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6273
6274 /* Initialise the segment mark field. */
6275 for (section = ibfd->sections; section != NULL; section = section->next)
6276 section->segment_mark = FALSE;
6277
6278 /* The Solaris linker creates program headers in which all the
6279 p_paddr fields are zero. When we try to objcopy or strip such a
6280 file, we get confused. Check for this case, and if we find it
6281 don't set the p_paddr_valid fields. */
6282 p_paddr_valid = FALSE;
6283 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6284 i < num_segments;
6285 i++, segment++)
6286 if (segment->p_paddr != 0)
6287 {
6288 p_paddr_valid = TRUE;
6289 break;
6290 }
6291
6292 /* Scan through the segments specified in the program header
6293 of the input BFD. For this first scan we look for overlaps
6294 in the loadable segments. These can be created by weird
6295 parameters to objcopy. Also, fix some solaris weirdness. */
6296 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6297 i < num_segments;
6298 i++, segment++)
6299 {
6300 unsigned int j;
6301 Elf_Internal_Phdr *segment2;
6302
6303 if (segment->p_type == PT_INTERP)
6304 for (section = ibfd->sections; section; section = section->next)
6305 if (IS_SOLARIS_PT_INTERP (segment, section))
6306 {
6307 /* Mininal change so that the normal section to segment
6308 assignment code will work. */
6309 segment->p_vaddr = section->vma;
6310 break;
6311 }
6312
6313 if (segment->p_type != PT_LOAD)
6314 {
6315 /* Remove PT_GNU_RELRO segment. */
6316 if (segment->p_type == PT_GNU_RELRO)
6317 segment->p_type = PT_NULL;
6318 continue;
6319 }
6320
6321 /* Determine if this segment overlaps any previous segments. */
6322 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6323 {
6324 bfd_signed_vma extra_length;
6325
6326 if (segment2->p_type != PT_LOAD
6327 || !SEGMENT_OVERLAPS (segment, segment2))
6328 continue;
6329
6330 /* Merge the two segments together. */
6331 if (segment2->p_vaddr < segment->p_vaddr)
6332 {
6333 /* Extend SEGMENT2 to include SEGMENT and then delete
6334 SEGMENT. */
6335 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6336 - SEGMENT_END (segment2, segment2->p_vaddr));
6337
6338 if (extra_length > 0)
6339 {
6340 segment2->p_memsz += extra_length;
6341 segment2->p_filesz += extra_length;
6342 }
6343
6344 segment->p_type = PT_NULL;
6345
6346 /* Since we have deleted P we must restart the outer loop. */
6347 i = 0;
6348 segment = elf_tdata (ibfd)->phdr;
6349 break;
6350 }
6351 else
6352 {
6353 /* Extend SEGMENT to include SEGMENT2 and then delete
6354 SEGMENT2. */
6355 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6356 - SEGMENT_END (segment, segment->p_vaddr));
6357
6358 if (extra_length > 0)
6359 {
6360 segment->p_memsz += extra_length;
6361 segment->p_filesz += extra_length;
6362 }
6363
6364 segment2->p_type = PT_NULL;
6365 }
6366 }
6367 }
6368
6369 /* The second scan attempts to assign sections to segments. */
6370 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6371 i < num_segments;
6372 i++, segment++)
6373 {
6374 unsigned int section_count;
6375 asection **sections;
6376 asection *output_section;
6377 unsigned int isec;
6378 bfd_vma matching_lma;
6379 bfd_vma suggested_lma;
6380 unsigned int j;
6381 bfd_size_type amt;
6382 asection *first_section;
6383 bfd_boolean first_matching_lma;
6384 bfd_boolean first_suggested_lma;
6385
6386 if (segment->p_type == PT_NULL)
6387 continue;
6388
6389 first_section = NULL;
6390 /* Compute how many sections might be placed into this segment. */
6391 for (section = ibfd->sections, section_count = 0;
6392 section != NULL;
6393 section = section->next)
6394 {
6395 /* Find the first section in the input segment, which may be
6396 removed from the corresponding output segment. */
6397 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6398 {
6399 if (first_section == NULL)
6400 first_section = section;
6401 if (section->output_section != NULL)
6402 ++section_count;
6403 }
6404 }
6405
6406 /* Allocate a segment map big enough to contain
6407 all of the sections we have selected. */
6408 amt = sizeof (struct elf_segment_map);
6409 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6410 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6411 if (map == NULL)
6412 return FALSE;
6413
6414 /* Initialise the fields of the segment map. Default to
6415 using the physical address of the segment in the input BFD. */
6416 map->next = NULL;
6417 map->p_type = segment->p_type;
6418 map->p_flags = segment->p_flags;
6419 map->p_flags_valid = 1;
6420
6421 /* If the first section in the input segment is removed, there is
6422 no need to preserve segment physical address in the corresponding
6423 output segment. */
6424 if (!first_section || first_section->output_section != NULL)
6425 {
6426 map->p_paddr = segment->p_paddr;
6427 map->p_paddr_valid = p_paddr_valid;
6428 }
6429
6430 /* Determine if this segment contains the ELF file header
6431 and if it contains the program headers themselves. */
6432 map->includes_filehdr = (segment->p_offset == 0
6433 && segment->p_filesz >= iehdr->e_ehsize);
6434 map->includes_phdrs = 0;
6435
6436 if (!phdr_included || segment->p_type != PT_LOAD)
6437 {
6438 map->includes_phdrs =
6439 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6440 && (segment->p_offset + segment->p_filesz
6441 >= ((bfd_vma) iehdr->e_phoff
6442 + iehdr->e_phnum * iehdr->e_phentsize)));
6443
6444 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6445 phdr_included = TRUE;
6446 }
6447
6448 if (section_count == 0)
6449 {
6450 /* Special segments, such as the PT_PHDR segment, may contain
6451 no sections, but ordinary, loadable segments should contain
6452 something. They are allowed by the ELF spec however, so only
6453 a warning is produced. */
6454 if (segment->p_type == PT_LOAD)
6455 (*_bfd_error_handler) (_("\
6456 %B: warning: Empty loadable segment detected, is this intentional ?"),
6457 ibfd);
6458
6459 map->count = 0;
6460 *pointer_to_map = map;
6461 pointer_to_map = &map->next;
6462
6463 continue;
6464 }
6465
6466 /* Now scan the sections in the input BFD again and attempt
6467 to add their corresponding output sections to the segment map.
6468 The problem here is how to handle an output section which has
6469 been moved (ie had its LMA changed). There are four possibilities:
6470
6471 1. None of the sections have been moved.
6472 In this case we can continue to use the segment LMA from the
6473 input BFD.
6474
6475 2. All of the sections have been moved by the same amount.
6476 In this case we can change the segment's LMA to match the LMA
6477 of the first section.
6478
6479 3. Some of the sections have been moved, others have not.
6480 In this case those sections which have not been moved can be
6481 placed in the current segment which will have to have its size,
6482 and possibly its LMA changed, and a new segment or segments will
6483 have to be created to contain the other sections.
6484
6485 4. The sections have been moved, but not by the same amount.
6486 In this case we can change the segment's LMA to match the LMA
6487 of the first section and we will have to create a new segment
6488 or segments to contain the other sections.
6489
6490 In order to save time, we allocate an array to hold the section
6491 pointers that we are interested in. As these sections get assigned
6492 to a segment, they are removed from this array. */
6493
6494 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6495 if (sections == NULL)
6496 return FALSE;
6497
6498 /* Step One: Scan for segment vs section LMA conflicts.
6499 Also add the sections to the section array allocated above.
6500 Also add the sections to the current segment. In the common
6501 case, where the sections have not been moved, this means that
6502 we have completely filled the segment, and there is nothing
6503 more to do. */
6504 isec = 0;
6505 matching_lma = 0;
6506 suggested_lma = 0;
6507 first_matching_lma = TRUE;
6508 first_suggested_lma = TRUE;
6509
6510 for (section = first_section, j = 0;
6511 section != NULL;
6512 section = section->next)
6513 {
6514 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6515 {
6516 output_section = section->output_section;
6517
6518 sections[j++] = section;
6519
6520 /* The Solaris native linker always sets p_paddr to 0.
6521 We try to catch that case here, and set it to the
6522 correct value. Note - some backends require that
6523 p_paddr be left as zero. */
6524 if (!p_paddr_valid
6525 && segment->p_vaddr != 0
6526 && !bed->want_p_paddr_set_to_zero
6527 && isec == 0
6528 && output_section->lma != 0
6529 && output_section->vma == (segment->p_vaddr
6530 + (map->includes_filehdr
6531 ? iehdr->e_ehsize
6532 : 0)
6533 + (map->includes_phdrs
6534 ? (iehdr->e_phnum
6535 * iehdr->e_phentsize)
6536 : 0)))
6537 map->p_paddr = segment->p_vaddr;
6538
6539 /* Match up the physical address of the segment with the
6540 LMA address of the output section. */
6541 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6542 || IS_COREFILE_NOTE (segment, section)
6543 || (bed->want_p_paddr_set_to_zero
6544 && IS_CONTAINED_BY_VMA (output_section, segment)))
6545 {
6546 if (first_matching_lma || output_section->lma < matching_lma)
6547 {
6548 matching_lma = output_section->lma;
6549 first_matching_lma = FALSE;
6550 }
6551
6552 /* We assume that if the section fits within the segment
6553 then it does not overlap any other section within that
6554 segment. */
6555 map->sections[isec++] = output_section;
6556 }
6557 else if (first_suggested_lma)
6558 {
6559 suggested_lma = output_section->lma;
6560 first_suggested_lma = FALSE;
6561 }
6562
6563 if (j == section_count)
6564 break;
6565 }
6566 }
6567
6568 BFD_ASSERT (j == section_count);
6569
6570 /* Step Two: Adjust the physical address of the current segment,
6571 if necessary. */
6572 if (isec == section_count)
6573 {
6574 /* All of the sections fitted within the segment as currently
6575 specified. This is the default case. Add the segment to
6576 the list of built segments and carry on to process the next
6577 program header in the input BFD. */
6578 map->count = section_count;
6579 *pointer_to_map = map;
6580 pointer_to_map = &map->next;
6581
6582 if (p_paddr_valid
6583 && !bed->want_p_paddr_set_to_zero
6584 && matching_lma != map->p_paddr
6585 && !map->includes_filehdr
6586 && !map->includes_phdrs)
6587 /* There is some padding before the first section in the
6588 segment. So, we must account for that in the output
6589 segment's vma. */
6590 map->p_vaddr_offset = matching_lma - map->p_paddr;
6591
6592 free (sections);
6593 continue;
6594 }
6595 else
6596 {
6597 if (!first_matching_lma)
6598 {
6599 /* At least one section fits inside the current segment.
6600 Keep it, but modify its physical address to match the
6601 LMA of the first section that fitted. */
6602 map->p_paddr = matching_lma;
6603 }
6604 else
6605 {
6606 /* None of the sections fitted inside the current segment.
6607 Change the current segment's physical address to match
6608 the LMA of the first section. */
6609 map->p_paddr = suggested_lma;
6610 }
6611
6612 /* Offset the segment physical address from the lma
6613 to allow for space taken up by elf headers. */
6614 if (map->includes_filehdr)
6615 {
6616 if (map->p_paddr >= iehdr->e_ehsize)
6617 map->p_paddr -= iehdr->e_ehsize;
6618 else
6619 {
6620 map->includes_filehdr = FALSE;
6621 map->includes_phdrs = FALSE;
6622 }
6623 }
6624
6625 if (map->includes_phdrs)
6626 {
6627 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6628 {
6629 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6630
6631 /* iehdr->e_phnum is just an estimate of the number
6632 of program headers that we will need. Make a note
6633 here of the number we used and the segment we chose
6634 to hold these headers, so that we can adjust the
6635 offset when we know the correct value. */
6636 phdr_adjust_num = iehdr->e_phnum;
6637 phdr_adjust_seg = map;
6638 }
6639 else
6640 map->includes_phdrs = FALSE;
6641 }
6642 }
6643
6644 /* Step Three: Loop over the sections again, this time assigning
6645 those that fit to the current segment and removing them from the
6646 sections array; but making sure not to leave large gaps. Once all
6647 possible sections have been assigned to the current segment it is
6648 added to the list of built segments and if sections still remain
6649 to be assigned, a new segment is constructed before repeating
6650 the loop. */
6651 isec = 0;
6652 do
6653 {
6654 map->count = 0;
6655 suggested_lma = 0;
6656 first_suggested_lma = TRUE;
6657
6658 /* Fill the current segment with sections that fit. */
6659 for (j = 0; j < section_count; j++)
6660 {
6661 section = sections[j];
6662
6663 if (section == NULL)
6664 continue;
6665
6666 output_section = section->output_section;
6667
6668 BFD_ASSERT (output_section != NULL);
6669
6670 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6671 || IS_COREFILE_NOTE (segment, section))
6672 {
6673 if (map->count == 0)
6674 {
6675 /* If the first section in a segment does not start at
6676 the beginning of the segment, then something is
6677 wrong. */
6678 if (output_section->lma
6679 != (map->p_paddr
6680 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6681 + (map->includes_phdrs
6682 ? iehdr->e_phnum * iehdr->e_phentsize
6683 : 0)))
6684 abort ();
6685 }
6686 else
6687 {
6688 asection *prev_sec;
6689
6690 prev_sec = map->sections[map->count - 1];
6691
6692 /* If the gap between the end of the previous section
6693 and the start of this section is more than
6694 maxpagesize then we need to start a new segment. */
6695 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6696 maxpagesize)
6697 < BFD_ALIGN (output_section->lma, maxpagesize))
6698 || (prev_sec->lma + prev_sec->size
6699 > output_section->lma))
6700 {
6701 if (first_suggested_lma)
6702 {
6703 suggested_lma = output_section->lma;
6704 first_suggested_lma = FALSE;
6705 }
6706
6707 continue;
6708 }
6709 }
6710
6711 map->sections[map->count++] = output_section;
6712 ++isec;
6713 sections[j] = NULL;
6714 section->segment_mark = TRUE;
6715 }
6716 else if (first_suggested_lma)
6717 {
6718 suggested_lma = output_section->lma;
6719 first_suggested_lma = FALSE;
6720 }
6721 }
6722
6723 BFD_ASSERT (map->count > 0);
6724
6725 /* Add the current segment to the list of built segments. */
6726 *pointer_to_map = map;
6727 pointer_to_map = &map->next;
6728
6729 if (isec < section_count)
6730 {
6731 /* We still have not allocated all of the sections to
6732 segments. Create a new segment here, initialise it
6733 and carry on looping. */
6734 amt = sizeof (struct elf_segment_map);
6735 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6736 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6737 if (map == NULL)
6738 {
6739 free (sections);
6740 return FALSE;
6741 }
6742
6743 /* Initialise the fields of the segment map. Set the physical
6744 physical address to the LMA of the first section that has
6745 not yet been assigned. */
6746 map->next = NULL;
6747 map->p_type = segment->p_type;
6748 map->p_flags = segment->p_flags;
6749 map->p_flags_valid = 1;
6750 map->p_paddr = suggested_lma;
6751 map->p_paddr_valid = p_paddr_valid;
6752 map->includes_filehdr = 0;
6753 map->includes_phdrs = 0;
6754 }
6755 }
6756 while (isec < section_count);
6757
6758 free (sections);
6759 }
6760
6761 elf_seg_map (obfd) = map_first;
6762
6763 /* If we had to estimate the number of program headers that were
6764 going to be needed, then check our estimate now and adjust
6765 the offset if necessary. */
6766 if (phdr_adjust_seg != NULL)
6767 {
6768 unsigned int count;
6769
6770 for (count = 0, map = map_first; map != NULL; map = map->next)
6771 count++;
6772
6773 if (count > phdr_adjust_num)
6774 phdr_adjust_seg->p_paddr
6775 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6776 }
6777
6778 #undef SEGMENT_END
6779 #undef SECTION_SIZE
6780 #undef IS_CONTAINED_BY_VMA
6781 #undef IS_CONTAINED_BY_LMA
6782 #undef IS_NOTE
6783 #undef IS_COREFILE_NOTE
6784 #undef IS_SOLARIS_PT_INTERP
6785 #undef IS_SECTION_IN_INPUT_SEGMENT
6786 #undef INCLUDE_SECTION_IN_SEGMENT
6787 #undef SEGMENT_AFTER_SEGMENT
6788 #undef SEGMENT_OVERLAPS
6789 return TRUE;
6790 }
6791
6792 /* Copy ELF program header information. */
6793
6794 static bfd_boolean
6795 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6796 {
6797 Elf_Internal_Ehdr *iehdr;
6798 struct elf_segment_map *map;
6799 struct elf_segment_map *map_first;
6800 struct elf_segment_map **pointer_to_map;
6801 Elf_Internal_Phdr *segment;
6802 unsigned int i;
6803 unsigned int num_segments;
6804 bfd_boolean phdr_included = FALSE;
6805 bfd_boolean p_paddr_valid;
6806
6807 iehdr = elf_elfheader (ibfd);
6808
6809 map_first = NULL;
6810 pointer_to_map = &map_first;
6811
6812 /* If all the segment p_paddr fields are zero, don't set
6813 map->p_paddr_valid. */
6814 p_paddr_valid = FALSE;
6815 num_segments = elf_elfheader (ibfd)->e_phnum;
6816 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6817 i < num_segments;
6818 i++, segment++)
6819 if (segment->p_paddr != 0)
6820 {
6821 p_paddr_valid = TRUE;
6822 break;
6823 }
6824
6825 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6826 i < num_segments;
6827 i++, segment++)
6828 {
6829 asection *section;
6830 unsigned int section_count;
6831 bfd_size_type amt;
6832 Elf_Internal_Shdr *this_hdr;
6833 asection *first_section = NULL;
6834 asection *lowest_section;
6835
6836 /* Compute how many sections are in this segment. */
6837 for (section = ibfd->sections, section_count = 0;
6838 section != NULL;
6839 section = section->next)
6840 {
6841 this_hdr = &(elf_section_data(section)->this_hdr);
6842 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6843 {
6844 if (first_section == NULL)
6845 first_section = section;
6846 section_count++;
6847 }
6848 }
6849
6850 /* Allocate a segment map big enough to contain
6851 all of the sections we have selected. */
6852 amt = sizeof (struct elf_segment_map);
6853 if (section_count != 0)
6854 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6855 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6856 if (map == NULL)
6857 return FALSE;
6858
6859 /* Initialize the fields of the output segment map with the
6860 input segment. */
6861 map->next = NULL;
6862 map->p_type = segment->p_type;
6863 map->p_flags = segment->p_flags;
6864 map->p_flags_valid = 1;
6865 map->p_paddr = segment->p_paddr;
6866 map->p_paddr_valid = p_paddr_valid;
6867 map->p_align = segment->p_align;
6868 map->p_align_valid = 1;
6869 map->p_vaddr_offset = 0;
6870
6871 if (map->p_type == PT_GNU_RELRO
6872 || map->p_type == PT_GNU_STACK)
6873 {
6874 /* The PT_GNU_RELRO segment may contain the first a few
6875 bytes in the .got.plt section even if the whole .got.plt
6876 section isn't in the PT_GNU_RELRO segment. We won't
6877 change the size of the PT_GNU_RELRO segment.
6878 Similarly, PT_GNU_STACK size is significant on uclinux
6879 systems. */
6880 map->p_size = segment->p_memsz;
6881 map->p_size_valid = 1;
6882 }
6883
6884 /* Determine if this segment contains the ELF file header
6885 and if it contains the program headers themselves. */
6886 map->includes_filehdr = (segment->p_offset == 0
6887 && segment->p_filesz >= iehdr->e_ehsize);
6888
6889 map->includes_phdrs = 0;
6890 if (! phdr_included || segment->p_type != PT_LOAD)
6891 {
6892 map->includes_phdrs =
6893 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6894 && (segment->p_offset + segment->p_filesz
6895 >= ((bfd_vma) iehdr->e_phoff
6896 + iehdr->e_phnum * iehdr->e_phentsize)));
6897
6898 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6899 phdr_included = TRUE;
6900 }
6901
6902 lowest_section = NULL;
6903 if (section_count != 0)
6904 {
6905 unsigned int isec = 0;
6906
6907 for (section = first_section;
6908 section != NULL;
6909 section = section->next)
6910 {
6911 this_hdr = &(elf_section_data(section)->this_hdr);
6912 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6913 {
6914 map->sections[isec++] = section->output_section;
6915 if ((section->flags & SEC_ALLOC) != 0)
6916 {
6917 bfd_vma seg_off;
6918
6919 if (lowest_section == NULL
6920 || section->lma < lowest_section->lma)
6921 lowest_section = section;
6922
6923 /* Section lmas are set up from PT_LOAD header
6924 p_paddr in _bfd_elf_make_section_from_shdr.
6925 If this header has a p_paddr that disagrees
6926 with the section lma, flag the p_paddr as
6927 invalid. */
6928 if ((section->flags & SEC_LOAD) != 0)
6929 seg_off = this_hdr->sh_offset - segment->p_offset;
6930 else
6931 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6932 if (section->lma - segment->p_paddr != seg_off)
6933 map->p_paddr_valid = FALSE;
6934 }
6935 if (isec == section_count)
6936 break;
6937 }
6938 }
6939 }
6940
6941 if (map->includes_filehdr && lowest_section != NULL)
6942 /* We need to keep the space used by the headers fixed. */
6943 map->header_size = lowest_section->vma - segment->p_vaddr;
6944
6945 if (!map->includes_phdrs
6946 && !map->includes_filehdr
6947 && map->p_paddr_valid)
6948 /* There is some other padding before the first section. */
6949 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6950 - segment->p_paddr);
6951
6952 map->count = section_count;
6953 *pointer_to_map = map;
6954 pointer_to_map = &map->next;
6955 }
6956
6957 elf_seg_map (obfd) = map_first;
6958 return TRUE;
6959 }
6960
6961 /* Copy private BFD data. This copies or rewrites ELF program header
6962 information. */
6963
6964 static bfd_boolean
6965 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6966 {
6967 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6968 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6969 return TRUE;
6970
6971 if (elf_tdata (ibfd)->phdr == NULL)
6972 return TRUE;
6973
6974 if (ibfd->xvec == obfd->xvec)
6975 {
6976 /* Check to see if any sections in the input BFD
6977 covered by ELF program header have changed. */
6978 Elf_Internal_Phdr *segment;
6979 asection *section, *osec;
6980 unsigned int i, num_segments;
6981 Elf_Internal_Shdr *this_hdr;
6982 const struct elf_backend_data *bed;
6983
6984 bed = get_elf_backend_data (ibfd);
6985
6986 /* Regenerate the segment map if p_paddr is set to 0. */
6987 if (bed->want_p_paddr_set_to_zero)
6988 goto rewrite;
6989
6990 /* Initialize the segment mark field. */
6991 for (section = obfd->sections; section != NULL;
6992 section = section->next)
6993 section->segment_mark = FALSE;
6994
6995 num_segments = elf_elfheader (ibfd)->e_phnum;
6996 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6997 i < num_segments;
6998 i++, segment++)
6999 {
7000 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7001 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7002 which severly confuses things, so always regenerate the segment
7003 map in this case. */
7004 if (segment->p_paddr == 0
7005 && segment->p_memsz == 0
7006 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7007 goto rewrite;
7008
7009 for (section = ibfd->sections;
7010 section != NULL; section = section->next)
7011 {
7012 /* We mark the output section so that we know it comes
7013 from the input BFD. */
7014 osec = section->output_section;
7015 if (osec)
7016 osec->segment_mark = TRUE;
7017
7018 /* Check if this section is covered by the segment. */
7019 this_hdr = &(elf_section_data(section)->this_hdr);
7020 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7021 {
7022 /* FIXME: Check if its output section is changed or
7023 removed. What else do we need to check? */
7024 if (osec == NULL
7025 || section->flags != osec->flags
7026 || section->lma != osec->lma
7027 || section->vma != osec->vma
7028 || section->size != osec->size
7029 || section->rawsize != osec->rawsize
7030 || section->alignment_power != osec->alignment_power)
7031 goto rewrite;
7032 }
7033 }
7034 }
7035
7036 /* Check to see if any output section do not come from the
7037 input BFD. */
7038 for (section = obfd->sections; section != NULL;
7039 section = section->next)
7040 {
7041 if (section->segment_mark == FALSE)
7042 goto rewrite;
7043 else
7044 section->segment_mark = FALSE;
7045 }
7046
7047 return copy_elf_program_header (ibfd, obfd);
7048 }
7049
7050 rewrite:
7051 if (ibfd->xvec == obfd->xvec)
7052 {
7053 /* When rewriting program header, set the output maxpagesize to
7054 the maximum alignment of input PT_LOAD segments. */
7055 Elf_Internal_Phdr *segment;
7056 unsigned int i;
7057 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7058 bfd_vma maxpagesize = 0;
7059
7060 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7061 i < num_segments;
7062 i++, segment++)
7063 if (segment->p_type == PT_LOAD
7064 && maxpagesize < segment->p_align)
7065 {
7066 /* PR 17512: file: f17299af. */
7067 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7068 (*_bfd_error_handler) (_("\
7069 %B: warning: segment alignment of 0x%llx is too large"),
7070 ibfd, (long long) segment->p_align);
7071 else
7072 maxpagesize = segment->p_align;
7073 }
7074
7075 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7076 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7077 }
7078
7079 return rewrite_elf_program_header (ibfd, obfd);
7080 }
7081
7082 /* Initialize private output section information from input section. */
7083
7084 bfd_boolean
7085 _bfd_elf_init_private_section_data (bfd *ibfd,
7086 asection *isec,
7087 bfd *obfd,
7088 asection *osec,
7089 struct bfd_link_info *link_info)
7090
7091 {
7092 Elf_Internal_Shdr *ihdr, *ohdr;
7093 bfd_boolean final_link = (link_info != NULL
7094 && !bfd_link_relocatable (link_info));
7095
7096 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7097 || obfd->xvec->flavour != bfd_target_elf_flavour)
7098 return TRUE;
7099
7100 BFD_ASSERT (elf_section_data (osec) != NULL);
7101
7102 /* For objcopy and relocatable link, don't copy the output ELF
7103 section type from input if the output BFD section flags have been
7104 set to something different. For a final link allow some flags
7105 that the linker clears to differ. */
7106 if (elf_section_type (osec) == SHT_NULL
7107 && (osec->flags == isec->flags
7108 || (final_link
7109 && ((osec->flags ^ isec->flags)
7110 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7111 elf_section_type (osec) = elf_section_type (isec);
7112
7113 /* FIXME: Is this correct for all OS/PROC specific flags? */
7114 elf_section_flags (osec) |= (elf_section_flags (isec)
7115 & (SHF_MASKOS | SHF_MASKPROC));
7116
7117 /* Set things up for objcopy and relocatable link. The output
7118 SHT_GROUP section will have its elf_next_in_group pointing back
7119 to the input group members. Ignore linker created group section.
7120 See elfNN_ia64_object_p in elfxx-ia64.c. */
7121 if (!final_link)
7122 {
7123 if (elf_sec_group (isec) == NULL
7124 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
7125 {
7126 if (elf_section_flags (isec) & SHF_GROUP)
7127 elf_section_flags (osec) |= SHF_GROUP;
7128 elf_next_in_group (osec) = elf_next_in_group (isec);
7129 elf_section_data (osec)->group = elf_section_data (isec)->group;
7130 }
7131
7132 /* If not decompress, preserve SHF_COMPRESSED. */
7133 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
7134 elf_section_flags (osec) |= (elf_section_flags (isec)
7135 & SHF_COMPRESSED);
7136 }
7137
7138 ihdr = &elf_section_data (isec)->this_hdr;
7139
7140 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7141 don't use the output section of the linked-to section since it
7142 may be NULL at this point. */
7143 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7144 {
7145 ohdr = &elf_section_data (osec)->this_hdr;
7146 ohdr->sh_flags |= SHF_LINK_ORDER;
7147 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7148 }
7149
7150 osec->use_rela_p = isec->use_rela_p;
7151
7152 return TRUE;
7153 }
7154
7155 /* Copy private section information. This copies over the entsize
7156 field, and sometimes the info field. */
7157
7158 bfd_boolean
7159 _bfd_elf_copy_private_section_data (bfd *ibfd,
7160 asection *isec,
7161 bfd *obfd,
7162 asection *osec)
7163 {
7164 Elf_Internal_Shdr *ihdr, *ohdr;
7165
7166 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7167 || obfd->xvec->flavour != bfd_target_elf_flavour)
7168 return TRUE;
7169
7170 ihdr = &elf_section_data (isec)->this_hdr;
7171 ohdr = &elf_section_data (osec)->this_hdr;
7172
7173 ohdr->sh_entsize = ihdr->sh_entsize;
7174
7175 if (ihdr->sh_type == SHT_SYMTAB
7176 || ihdr->sh_type == SHT_DYNSYM
7177 || ihdr->sh_type == SHT_GNU_verneed
7178 || ihdr->sh_type == SHT_GNU_verdef)
7179 ohdr->sh_info = ihdr->sh_info;
7180
7181 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7182 NULL);
7183 }
7184
7185 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7186 necessary if we are removing either the SHT_GROUP section or any of
7187 the group member sections. DISCARDED is the value that a section's
7188 output_section has if the section will be discarded, NULL when this
7189 function is called from objcopy, bfd_abs_section_ptr when called
7190 from the linker. */
7191
7192 bfd_boolean
7193 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7194 {
7195 asection *isec;
7196
7197 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7198 if (elf_section_type (isec) == SHT_GROUP)
7199 {
7200 asection *first = elf_next_in_group (isec);
7201 asection *s = first;
7202 bfd_size_type removed = 0;
7203
7204 while (s != NULL)
7205 {
7206 /* If this member section is being output but the
7207 SHT_GROUP section is not, then clear the group info
7208 set up by _bfd_elf_copy_private_section_data. */
7209 if (s->output_section != discarded
7210 && isec->output_section == discarded)
7211 {
7212 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7213 elf_group_name (s->output_section) = NULL;
7214 }
7215 /* Conversely, if the member section is not being output
7216 but the SHT_GROUP section is, then adjust its size. */
7217 else if (s->output_section == discarded
7218 && isec->output_section != discarded)
7219 removed += 4;
7220 s = elf_next_in_group (s);
7221 if (s == first)
7222 break;
7223 }
7224 if (removed != 0)
7225 {
7226 if (discarded != NULL)
7227 {
7228 /* If we've been called for ld -r, then we need to
7229 adjust the input section size. This function may
7230 be called multiple times, so save the original
7231 size. */
7232 if (isec->rawsize == 0)
7233 isec->rawsize = isec->size;
7234 isec->size = isec->rawsize - removed;
7235 }
7236 else
7237 {
7238 /* Adjust the output section size when called from
7239 objcopy. */
7240 isec->output_section->size -= removed;
7241 }
7242 }
7243 }
7244
7245 return TRUE;
7246 }
7247
7248 /* Copy private header information. */
7249
7250 bfd_boolean
7251 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7252 {
7253 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7254 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7255 return TRUE;
7256
7257 /* Copy over private BFD data if it has not already been copied.
7258 This must be done here, rather than in the copy_private_bfd_data
7259 entry point, because the latter is called after the section
7260 contents have been set, which means that the program headers have
7261 already been worked out. */
7262 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7263 {
7264 if (! copy_private_bfd_data (ibfd, obfd))
7265 return FALSE;
7266 }
7267
7268 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7269 }
7270
7271 /* Copy private symbol information. If this symbol is in a section
7272 which we did not map into a BFD section, try to map the section
7273 index correctly. We use special macro definitions for the mapped
7274 section indices; these definitions are interpreted by the
7275 swap_out_syms function. */
7276
7277 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7278 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7279 #define MAP_STRTAB (SHN_HIOS + 3)
7280 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7281 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7282
7283 bfd_boolean
7284 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7285 asymbol *isymarg,
7286 bfd *obfd,
7287 asymbol *osymarg)
7288 {
7289 elf_symbol_type *isym, *osym;
7290
7291 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7292 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7293 return TRUE;
7294
7295 isym = elf_symbol_from (ibfd, isymarg);
7296 osym = elf_symbol_from (obfd, osymarg);
7297
7298 if (isym != NULL
7299 && isym->internal_elf_sym.st_shndx != 0
7300 && osym != NULL
7301 && bfd_is_abs_section (isym->symbol.section))
7302 {
7303 unsigned int shndx;
7304
7305 shndx = isym->internal_elf_sym.st_shndx;
7306 if (shndx == elf_onesymtab (ibfd))
7307 shndx = MAP_ONESYMTAB;
7308 else if (shndx == elf_dynsymtab (ibfd))
7309 shndx = MAP_DYNSYMTAB;
7310 else if (shndx == elf_strtab_sec (ibfd))
7311 shndx = MAP_STRTAB;
7312 else if (shndx == elf_shstrtab_sec (ibfd))
7313 shndx = MAP_SHSTRTAB;
7314 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7315 shndx = MAP_SYM_SHNDX;
7316 osym->internal_elf_sym.st_shndx = shndx;
7317 }
7318
7319 return TRUE;
7320 }
7321
7322 /* Swap out the symbols. */
7323
7324 static bfd_boolean
7325 swap_out_syms (bfd *abfd,
7326 struct elf_strtab_hash **sttp,
7327 int relocatable_p)
7328 {
7329 const struct elf_backend_data *bed;
7330 int symcount;
7331 asymbol **syms;
7332 struct elf_strtab_hash *stt;
7333 Elf_Internal_Shdr *symtab_hdr;
7334 Elf_Internal_Shdr *symtab_shndx_hdr;
7335 Elf_Internal_Shdr *symstrtab_hdr;
7336 struct elf_sym_strtab *symstrtab;
7337 bfd_byte *outbound_syms;
7338 bfd_byte *outbound_shndx;
7339 unsigned long outbound_syms_index;
7340 unsigned long outbound_shndx_index;
7341 int idx;
7342 unsigned int num_locals;
7343 bfd_size_type amt;
7344 bfd_boolean name_local_sections;
7345
7346 if (!elf_map_symbols (abfd, &num_locals))
7347 return FALSE;
7348
7349 /* Dump out the symtabs. */
7350 stt = _bfd_elf_strtab_init ();
7351 if (stt == NULL)
7352 return FALSE;
7353
7354 bed = get_elf_backend_data (abfd);
7355 symcount = bfd_get_symcount (abfd);
7356 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7357 symtab_hdr->sh_type = SHT_SYMTAB;
7358 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7359 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7360 symtab_hdr->sh_info = num_locals + 1;
7361 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7362
7363 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7364 symstrtab_hdr->sh_type = SHT_STRTAB;
7365
7366 /* Allocate buffer to swap out the .strtab section. */
7367 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7368 * sizeof (*symstrtab));
7369 if (symstrtab == NULL)
7370 {
7371 _bfd_elf_strtab_free (stt);
7372 return FALSE;
7373 }
7374
7375 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7376 bed->s->sizeof_sym);
7377 if (outbound_syms == NULL)
7378 {
7379 error_return:
7380 _bfd_elf_strtab_free (stt);
7381 free (symstrtab);
7382 return FALSE;
7383 }
7384 symtab_hdr->contents = outbound_syms;
7385 outbound_syms_index = 0;
7386
7387 outbound_shndx = NULL;
7388 outbound_shndx_index = 0;
7389
7390 if (elf_symtab_shndx_list (abfd))
7391 {
7392 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7393 if (symtab_shndx_hdr->sh_name != 0)
7394 {
7395 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7396 outbound_shndx = (bfd_byte *)
7397 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7398 if (outbound_shndx == NULL)
7399 goto error_return;
7400
7401 symtab_shndx_hdr->contents = outbound_shndx;
7402 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7403 symtab_shndx_hdr->sh_size = amt;
7404 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7405 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7406 }
7407 /* FIXME: What about any other headers in the list ? */
7408 }
7409
7410 /* Now generate the data (for "contents"). */
7411 {
7412 /* Fill in zeroth symbol and swap it out. */
7413 Elf_Internal_Sym sym;
7414 sym.st_name = 0;
7415 sym.st_value = 0;
7416 sym.st_size = 0;
7417 sym.st_info = 0;
7418 sym.st_other = 0;
7419 sym.st_shndx = SHN_UNDEF;
7420 sym.st_target_internal = 0;
7421 symstrtab[0].sym = sym;
7422 symstrtab[0].dest_index = outbound_syms_index;
7423 symstrtab[0].destshndx_index = outbound_shndx_index;
7424 outbound_syms_index++;
7425 if (outbound_shndx != NULL)
7426 outbound_shndx_index++;
7427 }
7428
7429 name_local_sections
7430 = (bed->elf_backend_name_local_section_symbols
7431 && bed->elf_backend_name_local_section_symbols (abfd));
7432
7433 syms = bfd_get_outsymbols (abfd);
7434 for (idx = 0; idx < symcount;)
7435 {
7436 Elf_Internal_Sym sym;
7437 bfd_vma value = syms[idx]->value;
7438 elf_symbol_type *type_ptr;
7439 flagword flags = syms[idx]->flags;
7440 int type;
7441
7442 if (!name_local_sections
7443 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7444 {
7445 /* Local section symbols have no name. */
7446 sym.st_name = (unsigned long) -1;
7447 }
7448 else
7449 {
7450 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7451 to get the final offset for st_name. */
7452 sym.st_name
7453 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7454 FALSE);
7455 if (sym.st_name == (unsigned long) -1)
7456 goto error_return;
7457 }
7458
7459 type_ptr = elf_symbol_from (abfd, syms[idx]);
7460
7461 if ((flags & BSF_SECTION_SYM) == 0
7462 && bfd_is_com_section (syms[idx]->section))
7463 {
7464 /* ELF common symbols put the alignment into the `value' field,
7465 and the size into the `size' field. This is backwards from
7466 how BFD handles it, so reverse it here. */
7467 sym.st_size = value;
7468 if (type_ptr == NULL
7469 || type_ptr->internal_elf_sym.st_value == 0)
7470 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7471 else
7472 sym.st_value = type_ptr->internal_elf_sym.st_value;
7473 sym.st_shndx = _bfd_elf_section_from_bfd_section
7474 (abfd, syms[idx]->section);
7475 }
7476 else
7477 {
7478 asection *sec = syms[idx]->section;
7479 unsigned int shndx;
7480
7481 if (sec->output_section)
7482 {
7483 value += sec->output_offset;
7484 sec = sec->output_section;
7485 }
7486
7487 /* Don't add in the section vma for relocatable output. */
7488 if (! relocatable_p)
7489 value += sec->vma;
7490 sym.st_value = value;
7491 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7492
7493 if (bfd_is_abs_section (sec)
7494 && type_ptr != NULL
7495 && type_ptr->internal_elf_sym.st_shndx != 0)
7496 {
7497 /* This symbol is in a real ELF section which we did
7498 not create as a BFD section. Undo the mapping done
7499 by copy_private_symbol_data. */
7500 shndx = type_ptr->internal_elf_sym.st_shndx;
7501 switch (shndx)
7502 {
7503 case MAP_ONESYMTAB:
7504 shndx = elf_onesymtab (abfd);
7505 break;
7506 case MAP_DYNSYMTAB:
7507 shndx = elf_dynsymtab (abfd);
7508 break;
7509 case MAP_STRTAB:
7510 shndx = elf_strtab_sec (abfd);
7511 break;
7512 case MAP_SHSTRTAB:
7513 shndx = elf_shstrtab_sec (abfd);
7514 break;
7515 case MAP_SYM_SHNDX:
7516 if (elf_symtab_shndx_list (abfd))
7517 shndx = elf_symtab_shndx_list (abfd)->ndx;
7518 break;
7519 default:
7520 shndx = SHN_ABS;
7521 break;
7522 }
7523 }
7524 else
7525 {
7526 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7527
7528 if (shndx == SHN_BAD)
7529 {
7530 asection *sec2;
7531
7532 /* Writing this would be a hell of a lot easier if
7533 we had some decent documentation on bfd, and
7534 knew what to expect of the library, and what to
7535 demand of applications. For example, it
7536 appears that `objcopy' might not set the
7537 section of a symbol to be a section that is
7538 actually in the output file. */
7539 sec2 = bfd_get_section_by_name (abfd, sec->name);
7540 if (sec2 == NULL)
7541 {
7542 _bfd_error_handler (_("\
7543 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7544 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7545 sec->name);
7546 bfd_set_error (bfd_error_invalid_operation);
7547 goto error_return;
7548 }
7549
7550 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7551 BFD_ASSERT (shndx != SHN_BAD);
7552 }
7553 }
7554
7555 sym.st_shndx = shndx;
7556 }
7557
7558 if ((flags & BSF_THREAD_LOCAL) != 0)
7559 type = STT_TLS;
7560 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7561 type = STT_GNU_IFUNC;
7562 else if ((flags & BSF_FUNCTION) != 0)
7563 type = STT_FUNC;
7564 else if ((flags & BSF_OBJECT) != 0)
7565 type = STT_OBJECT;
7566 else if ((flags & BSF_RELC) != 0)
7567 type = STT_RELC;
7568 else if ((flags & BSF_SRELC) != 0)
7569 type = STT_SRELC;
7570 else
7571 type = STT_NOTYPE;
7572
7573 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7574 type = STT_TLS;
7575
7576 /* Processor-specific types. */
7577 if (type_ptr != NULL
7578 && bed->elf_backend_get_symbol_type)
7579 type = ((*bed->elf_backend_get_symbol_type)
7580 (&type_ptr->internal_elf_sym, type));
7581
7582 if (flags & BSF_SECTION_SYM)
7583 {
7584 if (flags & BSF_GLOBAL)
7585 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7586 else
7587 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7588 }
7589 else if (bfd_is_com_section (syms[idx]->section))
7590 {
7591 if (type != STT_TLS)
7592 {
7593 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7594 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
7595 ? STT_COMMON : STT_OBJECT);
7596 else
7597 type = ((flags & BSF_ELF_COMMON) != 0
7598 ? STT_COMMON : STT_OBJECT);
7599 }
7600 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7601 }
7602 else if (bfd_is_und_section (syms[idx]->section))
7603 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7604 ? STB_WEAK
7605 : STB_GLOBAL),
7606 type);
7607 else if (flags & BSF_FILE)
7608 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7609 else
7610 {
7611 int bind = STB_LOCAL;
7612
7613 if (flags & BSF_LOCAL)
7614 bind = STB_LOCAL;
7615 else if (flags & BSF_GNU_UNIQUE)
7616 bind = STB_GNU_UNIQUE;
7617 else if (flags & BSF_WEAK)
7618 bind = STB_WEAK;
7619 else if (flags & BSF_GLOBAL)
7620 bind = STB_GLOBAL;
7621
7622 sym.st_info = ELF_ST_INFO (bind, type);
7623 }
7624
7625 if (type_ptr != NULL)
7626 {
7627 sym.st_other = type_ptr->internal_elf_sym.st_other;
7628 sym.st_target_internal
7629 = type_ptr->internal_elf_sym.st_target_internal;
7630 }
7631 else
7632 {
7633 sym.st_other = 0;
7634 sym.st_target_internal = 0;
7635 }
7636
7637 idx++;
7638 symstrtab[idx].sym = sym;
7639 symstrtab[idx].dest_index = outbound_syms_index;
7640 symstrtab[idx].destshndx_index = outbound_shndx_index;
7641
7642 outbound_syms_index++;
7643 if (outbound_shndx != NULL)
7644 outbound_shndx_index++;
7645 }
7646
7647 /* Finalize the .strtab section. */
7648 _bfd_elf_strtab_finalize (stt);
7649
7650 /* Swap out the .strtab section. */
7651 for (idx = 0; idx <= symcount; idx++)
7652 {
7653 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7654 if (elfsym->sym.st_name == (unsigned long) -1)
7655 elfsym->sym.st_name = 0;
7656 else
7657 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7658 elfsym->sym.st_name);
7659 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7660 (outbound_syms
7661 + (elfsym->dest_index
7662 * bed->s->sizeof_sym)),
7663 (outbound_shndx
7664 + (elfsym->destshndx_index
7665 * sizeof (Elf_External_Sym_Shndx))));
7666 }
7667 free (symstrtab);
7668
7669 *sttp = stt;
7670 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7671 symstrtab_hdr->sh_type = SHT_STRTAB;
7672 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
7673 symstrtab_hdr->sh_addr = 0;
7674 symstrtab_hdr->sh_entsize = 0;
7675 symstrtab_hdr->sh_link = 0;
7676 symstrtab_hdr->sh_info = 0;
7677 symstrtab_hdr->sh_addralign = 1;
7678
7679 return TRUE;
7680 }
7681
7682 /* Return the number of bytes required to hold the symtab vector.
7683
7684 Note that we base it on the count plus 1, since we will null terminate
7685 the vector allocated based on this size. However, the ELF symbol table
7686 always has a dummy entry as symbol #0, so it ends up even. */
7687
7688 long
7689 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7690 {
7691 long symcount;
7692 long symtab_size;
7693 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7694
7695 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7696 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7697 if (symcount > 0)
7698 symtab_size -= sizeof (asymbol *);
7699
7700 return symtab_size;
7701 }
7702
7703 long
7704 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7705 {
7706 long symcount;
7707 long symtab_size;
7708 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7709
7710 if (elf_dynsymtab (abfd) == 0)
7711 {
7712 bfd_set_error (bfd_error_invalid_operation);
7713 return -1;
7714 }
7715
7716 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7717 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7718 if (symcount > 0)
7719 symtab_size -= sizeof (asymbol *);
7720
7721 return symtab_size;
7722 }
7723
7724 long
7725 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7726 sec_ptr asect)
7727 {
7728 return (asect->reloc_count + 1) * sizeof (arelent *);
7729 }
7730
7731 /* Canonicalize the relocs. */
7732
7733 long
7734 _bfd_elf_canonicalize_reloc (bfd *abfd,
7735 sec_ptr section,
7736 arelent **relptr,
7737 asymbol **symbols)
7738 {
7739 arelent *tblptr;
7740 unsigned int i;
7741 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7742
7743 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7744 return -1;
7745
7746 tblptr = section->relocation;
7747 for (i = 0; i < section->reloc_count; i++)
7748 *relptr++ = tblptr++;
7749
7750 *relptr = NULL;
7751
7752 return section->reloc_count;
7753 }
7754
7755 long
7756 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7757 {
7758 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7759 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7760
7761 if (symcount >= 0)
7762 bfd_get_symcount (abfd) = symcount;
7763 return symcount;
7764 }
7765
7766 long
7767 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7768 asymbol **allocation)
7769 {
7770 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7771 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7772
7773 if (symcount >= 0)
7774 bfd_get_dynamic_symcount (abfd) = symcount;
7775 return symcount;
7776 }
7777
7778 /* Return the size required for the dynamic reloc entries. Any loadable
7779 section that was actually installed in the BFD, and has type SHT_REL
7780 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7781 dynamic reloc section. */
7782
7783 long
7784 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7785 {
7786 long ret;
7787 asection *s;
7788
7789 if (elf_dynsymtab (abfd) == 0)
7790 {
7791 bfd_set_error (bfd_error_invalid_operation);
7792 return -1;
7793 }
7794
7795 ret = sizeof (arelent *);
7796 for (s = abfd->sections; s != NULL; s = s->next)
7797 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7798 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7799 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7800 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7801 * sizeof (arelent *));
7802
7803 return ret;
7804 }
7805
7806 /* Canonicalize the dynamic relocation entries. Note that we return the
7807 dynamic relocations as a single block, although they are actually
7808 associated with particular sections; the interface, which was
7809 designed for SunOS style shared libraries, expects that there is only
7810 one set of dynamic relocs. Any loadable section that was actually
7811 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7812 dynamic symbol table, is considered to be a dynamic reloc section. */
7813
7814 long
7815 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7816 arelent **storage,
7817 asymbol **syms)
7818 {
7819 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7820 asection *s;
7821 long ret;
7822
7823 if (elf_dynsymtab (abfd) == 0)
7824 {
7825 bfd_set_error (bfd_error_invalid_operation);
7826 return -1;
7827 }
7828
7829 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7830 ret = 0;
7831 for (s = abfd->sections; s != NULL; s = s->next)
7832 {
7833 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7834 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7835 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7836 {
7837 arelent *p;
7838 long count, i;
7839
7840 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7841 return -1;
7842 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7843 p = s->relocation;
7844 for (i = 0; i < count; i++)
7845 *storage++ = p++;
7846 ret += count;
7847 }
7848 }
7849
7850 *storage = NULL;
7851
7852 return ret;
7853 }
7854 \f
7855 /* Read in the version information. */
7856
7857 bfd_boolean
7858 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7859 {
7860 bfd_byte *contents = NULL;
7861 unsigned int freeidx = 0;
7862
7863 if (elf_dynverref (abfd) != 0)
7864 {
7865 Elf_Internal_Shdr *hdr;
7866 Elf_External_Verneed *everneed;
7867 Elf_Internal_Verneed *iverneed;
7868 unsigned int i;
7869 bfd_byte *contents_end;
7870
7871 hdr = &elf_tdata (abfd)->dynverref_hdr;
7872
7873 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
7874 {
7875 error_return_bad_verref:
7876 (*_bfd_error_handler)
7877 (_("%B: .gnu.version_r invalid entry"), abfd);
7878 bfd_set_error (bfd_error_bad_value);
7879 error_return_verref:
7880 elf_tdata (abfd)->verref = NULL;
7881 elf_tdata (abfd)->cverrefs = 0;
7882 goto error_return;
7883 }
7884
7885 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7886 if (contents == NULL)
7887 goto error_return_verref;
7888
7889 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7890 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7891 goto error_return_verref;
7892
7893 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7894 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7895
7896 if (elf_tdata (abfd)->verref == NULL)
7897 goto error_return_verref;
7898
7899 BFD_ASSERT (sizeof (Elf_External_Verneed)
7900 == sizeof (Elf_External_Vernaux));
7901 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7902 everneed = (Elf_External_Verneed *) contents;
7903 iverneed = elf_tdata (abfd)->verref;
7904 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7905 {
7906 Elf_External_Vernaux *evernaux;
7907 Elf_Internal_Vernaux *ivernaux;
7908 unsigned int j;
7909
7910 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7911
7912 iverneed->vn_bfd = abfd;
7913
7914 iverneed->vn_filename =
7915 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7916 iverneed->vn_file);
7917 if (iverneed->vn_filename == NULL)
7918 goto error_return_bad_verref;
7919
7920 if (iverneed->vn_cnt == 0)
7921 iverneed->vn_auxptr = NULL;
7922 else
7923 {
7924 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7925 bfd_alloc2 (abfd, iverneed->vn_cnt,
7926 sizeof (Elf_Internal_Vernaux));
7927 if (iverneed->vn_auxptr == NULL)
7928 goto error_return_verref;
7929 }
7930
7931 if (iverneed->vn_aux
7932 > (size_t) (contents_end - (bfd_byte *) everneed))
7933 goto error_return_bad_verref;
7934
7935 evernaux = ((Elf_External_Vernaux *)
7936 ((bfd_byte *) everneed + iverneed->vn_aux));
7937 ivernaux = iverneed->vn_auxptr;
7938 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7939 {
7940 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7941
7942 ivernaux->vna_nodename =
7943 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7944 ivernaux->vna_name);
7945 if (ivernaux->vna_nodename == NULL)
7946 goto error_return_bad_verref;
7947
7948 if (ivernaux->vna_other > freeidx)
7949 freeidx = ivernaux->vna_other;
7950
7951 ivernaux->vna_nextptr = NULL;
7952 if (ivernaux->vna_next == 0)
7953 {
7954 iverneed->vn_cnt = j + 1;
7955 break;
7956 }
7957 if (j + 1 < iverneed->vn_cnt)
7958 ivernaux->vna_nextptr = ivernaux + 1;
7959
7960 if (ivernaux->vna_next
7961 > (size_t) (contents_end - (bfd_byte *) evernaux))
7962 goto error_return_bad_verref;
7963
7964 evernaux = ((Elf_External_Vernaux *)
7965 ((bfd_byte *) evernaux + ivernaux->vna_next));
7966 }
7967
7968 iverneed->vn_nextref = NULL;
7969 if (iverneed->vn_next == 0)
7970 break;
7971 if (i + 1 < hdr->sh_info)
7972 iverneed->vn_nextref = iverneed + 1;
7973
7974 if (iverneed->vn_next
7975 > (size_t) (contents_end - (bfd_byte *) everneed))
7976 goto error_return_bad_verref;
7977
7978 everneed = ((Elf_External_Verneed *)
7979 ((bfd_byte *) everneed + iverneed->vn_next));
7980 }
7981 elf_tdata (abfd)->cverrefs = i;
7982
7983 free (contents);
7984 contents = NULL;
7985 }
7986
7987 if (elf_dynverdef (abfd) != 0)
7988 {
7989 Elf_Internal_Shdr *hdr;
7990 Elf_External_Verdef *everdef;
7991 Elf_Internal_Verdef *iverdef;
7992 Elf_Internal_Verdef *iverdefarr;
7993 Elf_Internal_Verdef iverdefmem;
7994 unsigned int i;
7995 unsigned int maxidx;
7996 bfd_byte *contents_end_def, *contents_end_aux;
7997
7998 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7999
8000 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8001 {
8002 error_return_bad_verdef:
8003 (*_bfd_error_handler)
8004 (_("%B: .gnu.version_d invalid entry"), abfd);
8005 bfd_set_error (bfd_error_bad_value);
8006 error_return_verdef:
8007 elf_tdata (abfd)->verdef = NULL;
8008 elf_tdata (abfd)->cverdefs = 0;
8009 goto error_return;
8010 }
8011
8012 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8013 if (contents == NULL)
8014 goto error_return_verdef;
8015 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8016 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8017 goto error_return_verdef;
8018
8019 BFD_ASSERT (sizeof (Elf_External_Verdef)
8020 >= sizeof (Elf_External_Verdaux));
8021 contents_end_def = contents + hdr->sh_size
8022 - sizeof (Elf_External_Verdef);
8023 contents_end_aux = contents + hdr->sh_size
8024 - sizeof (Elf_External_Verdaux);
8025
8026 /* We know the number of entries in the section but not the maximum
8027 index. Therefore we have to run through all entries and find
8028 the maximum. */
8029 everdef = (Elf_External_Verdef *) contents;
8030 maxidx = 0;
8031 for (i = 0; i < hdr->sh_info; ++i)
8032 {
8033 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8034
8035 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8036 goto error_return_bad_verdef;
8037 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8038 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8039
8040 if (iverdefmem.vd_next == 0)
8041 break;
8042
8043 if (iverdefmem.vd_next
8044 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8045 goto error_return_bad_verdef;
8046
8047 everdef = ((Elf_External_Verdef *)
8048 ((bfd_byte *) everdef + iverdefmem.vd_next));
8049 }
8050
8051 if (default_imported_symver)
8052 {
8053 if (freeidx > maxidx)
8054 maxidx = ++freeidx;
8055 else
8056 freeidx = ++maxidx;
8057 }
8058
8059 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8060 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8061 if (elf_tdata (abfd)->verdef == NULL)
8062 goto error_return_verdef;
8063
8064 elf_tdata (abfd)->cverdefs = maxidx;
8065
8066 everdef = (Elf_External_Verdef *) contents;
8067 iverdefarr = elf_tdata (abfd)->verdef;
8068 for (i = 0; i < hdr->sh_info; i++)
8069 {
8070 Elf_External_Verdaux *everdaux;
8071 Elf_Internal_Verdaux *iverdaux;
8072 unsigned int j;
8073
8074 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8075
8076 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8077 goto error_return_bad_verdef;
8078
8079 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8080 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8081
8082 iverdef->vd_bfd = abfd;
8083
8084 if (iverdef->vd_cnt == 0)
8085 iverdef->vd_auxptr = NULL;
8086 else
8087 {
8088 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8089 bfd_alloc2 (abfd, iverdef->vd_cnt,
8090 sizeof (Elf_Internal_Verdaux));
8091 if (iverdef->vd_auxptr == NULL)
8092 goto error_return_verdef;
8093 }
8094
8095 if (iverdef->vd_aux
8096 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8097 goto error_return_bad_verdef;
8098
8099 everdaux = ((Elf_External_Verdaux *)
8100 ((bfd_byte *) everdef + iverdef->vd_aux));
8101 iverdaux = iverdef->vd_auxptr;
8102 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8103 {
8104 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8105
8106 iverdaux->vda_nodename =
8107 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8108 iverdaux->vda_name);
8109 if (iverdaux->vda_nodename == NULL)
8110 goto error_return_bad_verdef;
8111
8112 iverdaux->vda_nextptr = NULL;
8113 if (iverdaux->vda_next == 0)
8114 {
8115 iverdef->vd_cnt = j + 1;
8116 break;
8117 }
8118 if (j + 1 < iverdef->vd_cnt)
8119 iverdaux->vda_nextptr = iverdaux + 1;
8120
8121 if (iverdaux->vda_next
8122 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8123 goto error_return_bad_verdef;
8124
8125 everdaux = ((Elf_External_Verdaux *)
8126 ((bfd_byte *) everdaux + iverdaux->vda_next));
8127 }
8128
8129 iverdef->vd_nodename = NULL;
8130 if (iverdef->vd_cnt)
8131 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8132
8133 iverdef->vd_nextdef = NULL;
8134 if (iverdef->vd_next == 0)
8135 break;
8136 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8137 iverdef->vd_nextdef = iverdef + 1;
8138
8139 everdef = ((Elf_External_Verdef *)
8140 ((bfd_byte *) everdef + iverdef->vd_next));
8141 }
8142
8143 free (contents);
8144 contents = NULL;
8145 }
8146 else if (default_imported_symver)
8147 {
8148 if (freeidx < 3)
8149 freeidx = 3;
8150 else
8151 freeidx++;
8152
8153 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8154 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8155 if (elf_tdata (abfd)->verdef == NULL)
8156 goto error_return;
8157
8158 elf_tdata (abfd)->cverdefs = freeidx;
8159 }
8160
8161 /* Create a default version based on the soname. */
8162 if (default_imported_symver)
8163 {
8164 Elf_Internal_Verdef *iverdef;
8165 Elf_Internal_Verdaux *iverdaux;
8166
8167 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8168
8169 iverdef->vd_version = VER_DEF_CURRENT;
8170 iverdef->vd_flags = 0;
8171 iverdef->vd_ndx = freeidx;
8172 iverdef->vd_cnt = 1;
8173
8174 iverdef->vd_bfd = abfd;
8175
8176 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8177 if (iverdef->vd_nodename == NULL)
8178 goto error_return_verdef;
8179 iverdef->vd_nextdef = NULL;
8180 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8181 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8182 if (iverdef->vd_auxptr == NULL)
8183 goto error_return_verdef;
8184
8185 iverdaux = iverdef->vd_auxptr;
8186 iverdaux->vda_nodename = iverdef->vd_nodename;
8187 }
8188
8189 return TRUE;
8190
8191 error_return:
8192 if (contents != NULL)
8193 free (contents);
8194 return FALSE;
8195 }
8196 \f
8197 asymbol *
8198 _bfd_elf_make_empty_symbol (bfd *abfd)
8199 {
8200 elf_symbol_type *newsym;
8201
8202 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8203 if (!newsym)
8204 return NULL;
8205 newsym->symbol.the_bfd = abfd;
8206 return &newsym->symbol;
8207 }
8208
8209 void
8210 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8211 asymbol *symbol,
8212 symbol_info *ret)
8213 {
8214 bfd_symbol_info (symbol, ret);
8215 }
8216
8217 /* Return whether a symbol name implies a local symbol. Most targets
8218 use this function for the is_local_label_name entry point, but some
8219 override it. */
8220
8221 bfd_boolean
8222 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8223 const char *name)
8224 {
8225 /* Normal local symbols start with ``.L''. */
8226 if (name[0] == '.' && name[1] == 'L')
8227 return TRUE;
8228
8229 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8230 DWARF debugging symbols starting with ``..''. */
8231 if (name[0] == '.' && name[1] == '.')
8232 return TRUE;
8233
8234 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8235 emitting DWARF debugging output. I suspect this is actually a
8236 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8237 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8238 underscore to be emitted on some ELF targets). For ease of use,
8239 we treat such symbols as local. */
8240 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8241 return TRUE;
8242
8243 /* Treat assembler generated fake symbols, dollar local labels and
8244 forward-backward labels (aka local labels) as locals.
8245 These labels have the form:
8246
8247 L0^A.* (fake symbols)
8248
8249 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8250
8251 Versions which start with .L will have already been matched above,
8252 so we only need to match the rest. */
8253 if (name[0] == 'L' && ISDIGIT (name[1]))
8254 {
8255 bfd_boolean ret = FALSE;
8256 const char * p;
8257 char c;
8258
8259 for (p = name + 2; (c = *p); p++)
8260 {
8261 if (c == 1 || c == 2)
8262 {
8263 if (c == 1 && p == name + 2)
8264 /* A fake symbol. */
8265 return TRUE;
8266
8267 /* FIXME: We are being paranoid here and treating symbols like
8268 L0^Bfoo as if there were non-local, on the grounds that the
8269 assembler will never generate them. But can any symbol
8270 containing an ASCII value in the range 1-31 ever be anything
8271 other than some kind of local ? */
8272 ret = TRUE;
8273 }
8274
8275 if (! ISDIGIT (c))
8276 {
8277 ret = FALSE;
8278 break;
8279 }
8280 }
8281 return ret;
8282 }
8283
8284 return FALSE;
8285 }
8286
8287 alent *
8288 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8289 asymbol *symbol ATTRIBUTE_UNUSED)
8290 {
8291 abort ();
8292 return NULL;
8293 }
8294
8295 bfd_boolean
8296 _bfd_elf_set_arch_mach (bfd *abfd,
8297 enum bfd_architecture arch,
8298 unsigned long machine)
8299 {
8300 /* If this isn't the right architecture for this backend, and this
8301 isn't the generic backend, fail. */
8302 if (arch != get_elf_backend_data (abfd)->arch
8303 && arch != bfd_arch_unknown
8304 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8305 return FALSE;
8306
8307 return bfd_default_set_arch_mach (abfd, arch, machine);
8308 }
8309
8310 /* Find the nearest line to a particular section and offset,
8311 for error reporting. */
8312
8313 bfd_boolean
8314 _bfd_elf_find_nearest_line (bfd *abfd,
8315 asymbol **symbols,
8316 asection *section,
8317 bfd_vma offset,
8318 const char **filename_ptr,
8319 const char **functionname_ptr,
8320 unsigned int *line_ptr,
8321 unsigned int *discriminator_ptr)
8322 {
8323 bfd_boolean found;
8324
8325 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8326 filename_ptr, functionname_ptr,
8327 line_ptr, discriminator_ptr,
8328 dwarf_debug_sections, 0,
8329 &elf_tdata (abfd)->dwarf2_find_line_info)
8330 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8331 filename_ptr, functionname_ptr,
8332 line_ptr))
8333 {
8334 if (!*functionname_ptr)
8335 _bfd_elf_find_function (abfd, symbols, section, offset,
8336 *filename_ptr ? NULL : filename_ptr,
8337 functionname_ptr);
8338 return TRUE;
8339 }
8340
8341 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8342 &found, filename_ptr,
8343 functionname_ptr, line_ptr,
8344 &elf_tdata (abfd)->line_info))
8345 return FALSE;
8346 if (found && (*functionname_ptr || *line_ptr))
8347 return TRUE;
8348
8349 if (symbols == NULL)
8350 return FALSE;
8351
8352 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8353 filename_ptr, functionname_ptr))
8354 return FALSE;
8355
8356 *line_ptr = 0;
8357 return TRUE;
8358 }
8359
8360 /* Find the line for a symbol. */
8361
8362 bfd_boolean
8363 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8364 const char **filename_ptr, unsigned int *line_ptr)
8365 {
8366 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8367 filename_ptr, NULL, line_ptr, NULL,
8368 dwarf_debug_sections, 0,
8369 &elf_tdata (abfd)->dwarf2_find_line_info);
8370 }
8371
8372 /* After a call to bfd_find_nearest_line, successive calls to
8373 bfd_find_inliner_info can be used to get source information about
8374 each level of function inlining that terminated at the address
8375 passed to bfd_find_nearest_line. Currently this is only supported
8376 for DWARF2 with appropriate DWARF3 extensions. */
8377
8378 bfd_boolean
8379 _bfd_elf_find_inliner_info (bfd *abfd,
8380 const char **filename_ptr,
8381 const char **functionname_ptr,
8382 unsigned int *line_ptr)
8383 {
8384 bfd_boolean found;
8385 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8386 functionname_ptr, line_ptr,
8387 & elf_tdata (abfd)->dwarf2_find_line_info);
8388 return found;
8389 }
8390
8391 int
8392 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8393 {
8394 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8395 int ret = bed->s->sizeof_ehdr;
8396
8397 if (!bfd_link_relocatable (info))
8398 {
8399 bfd_size_type phdr_size = elf_program_header_size (abfd);
8400
8401 if (phdr_size == (bfd_size_type) -1)
8402 {
8403 struct elf_segment_map *m;
8404
8405 phdr_size = 0;
8406 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8407 phdr_size += bed->s->sizeof_phdr;
8408
8409 if (phdr_size == 0)
8410 phdr_size = get_program_header_size (abfd, info);
8411 }
8412
8413 elf_program_header_size (abfd) = phdr_size;
8414 ret += phdr_size;
8415 }
8416
8417 return ret;
8418 }
8419
8420 bfd_boolean
8421 _bfd_elf_set_section_contents (bfd *abfd,
8422 sec_ptr section,
8423 const void *location,
8424 file_ptr offset,
8425 bfd_size_type count)
8426 {
8427 Elf_Internal_Shdr *hdr;
8428 file_ptr pos;
8429
8430 if (! abfd->output_has_begun
8431 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8432 return FALSE;
8433
8434 if (!count)
8435 return TRUE;
8436
8437 hdr = &elf_section_data (section)->this_hdr;
8438 if (hdr->sh_offset == (file_ptr) -1)
8439 {
8440 /* We must compress this section. Write output to the buffer. */
8441 unsigned char *contents = hdr->contents;
8442 if ((offset + count) > hdr->sh_size
8443 || (section->flags & SEC_ELF_COMPRESS) == 0
8444 || contents == NULL)
8445 abort ();
8446 memcpy (contents + offset, location, count);
8447 return TRUE;
8448 }
8449 pos = hdr->sh_offset + offset;
8450 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8451 || bfd_bwrite (location, count, abfd) != count)
8452 return FALSE;
8453
8454 return TRUE;
8455 }
8456
8457 void
8458 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8459 arelent *cache_ptr ATTRIBUTE_UNUSED,
8460 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8461 {
8462 abort ();
8463 }
8464
8465 /* Try to convert a non-ELF reloc into an ELF one. */
8466
8467 bfd_boolean
8468 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8469 {
8470 /* Check whether we really have an ELF howto. */
8471
8472 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8473 {
8474 bfd_reloc_code_real_type code;
8475 reloc_howto_type *howto;
8476
8477 /* Alien reloc: Try to determine its type to replace it with an
8478 equivalent ELF reloc. */
8479
8480 if (areloc->howto->pc_relative)
8481 {
8482 switch (areloc->howto->bitsize)
8483 {
8484 case 8:
8485 code = BFD_RELOC_8_PCREL;
8486 break;
8487 case 12:
8488 code = BFD_RELOC_12_PCREL;
8489 break;
8490 case 16:
8491 code = BFD_RELOC_16_PCREL;
8492 break;
8493 case 24:
8494 code = BFD_RELOC_24_PCREL;
8495 break;
8496 case 32:
8497 code = BFD_RELOC_32_PCREL;
8498 break;
8499 case 64:
8500 code = BFD_RELOC_64_PCREL;
8501 break;
8502 default:
8503 goto fail;
8504 }
8505
8506 howto = bfd_reloc_type_lookup (abfd, code);
8507
8508 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8509 {
8510 if (howto->pcrel_offset)
8511 areloc->addend += areloc->address;
8512 else
8513 areloc->addend -= areloc->address; /* addend is unsigned!! */
8514 }
8515 }
8516 else
8517 {
8518 switch (areloc->howto->bitsize)
8519 {
8520 case 8:
8521 code = BFD_RELOC_8;
8522 break;
8523 case 14:
8524 code = BFD_RELOC_14;
8525 break;
8526 case 16:
8527 code = BFD_RELOC_16;
8528 break;
8529 case 26:
8530 code = BFD_RELOC_26;
8531 break;
8532 case 32:
8533 code = BFD_RELOC_32;
8534 break;
8535 case 64:
8536 code = BFD_RELOC_64;
8537 break;
8538 default:
8539 goto fail;
8540 }
8541
8542 howto = bfd_reloc_type_lookup (abfd, code);
8543 }
8544
8545 if (howto)
8546 areloc->howto = howto;
8547 else
8548 goto fail;
8549 }
8550
8551 return TRUE;
8552
8553 fail:
8554 (*_bfd_error_handler)
8555 (_("%B: unsupported relocation type %s"),
8556 abfd, areloc->howto->name);
8557 bfd_set_error (bfd_error_bad_value);
8558 return FALSE;
8559 }
8560
8561 bfd_boolean
8562 _bfd_elf_close_and_cleanup (bfd *abfd)
8563 {
8564 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8565 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8566 {
8567 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8568 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8569 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8570 }
8571
8572 return _bfd_generic_close_and_cleanup (abfd);
8573 }
8574
8575 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8576 in the relocation's offset. Thus we cannot allow any sort of sanity
8577 range-checking to interfere. There is nothing else to do in processing
8578 this reloc. */
8579
8580 bfd_reloc_status_type
8581 _bfd_elf_rel_vtable_reloc_fn
8582 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8583 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8584 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8585 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8586 {
8587 return bfd_reloc_ok;
8588 }
8589 \f
8590 /* Elf core file support. Much of this only works on native
8591 toolchains, since we rely on knowing the
8592 machine-dependent procfs structure in order to pick
8593 out details about the corefile. */
8594
8595 #ifdef HAVE_SYS_PROCFS_H
8596 /* Needed for new procfs interface on sparc-solaris. */
8597 # define _STRUCTURED_PROC 1
8598 # include <sys/procfs.h>
8599 #endif
8600
8601 /* Return a PID that identifies a "thread" for threaded cores, or the
8602 PID of the main process for non-threaded cores. */
8603
8604 static int
8605 elfcore_make_pid (bfd *abfd)
8606 {
8607 int pid;
8608
8609 pid = elf_tdata (abfd)->core->lwpid;
8610 if (pid == 0)
8611 pid = elf_tdata (abfd)->core->pid;
8612
8613 return pid;
8614 }
8615
8616 /* If there isn't a section called NAME, make one, using
8617 data from SECT. Note, this function will generate a
8618 reference to NAME, so you shouldn't deallocate or
8619 overwrite it. */
8620
8621 static bfd_boolean
8622 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8623 {
8624 asection *sect2;
8625
8626 if (bfd_get_section_by_name (abfd, name) != NULL)
8627 return TRUE;
8628
8629 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8630 if (sect2 == NULL)
8631 return FALSE;
8632
8633 sect2->size = sect->size;
8634 sect2->filepos = sect->filepos;
8635 sect2->alignment_power = sect->alignment_power;
8636 return TRUE;
8637 }
8638
8639 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8640 actually creates up to two pseudosections:
8641 - For the single-threaded case, a section named NAME, unless
8642 such a section already exists.
8643 - For the multi-threaded case, a section named "NAME/PID", where
8644 PID is elfcore_make_pid (abfd).
8645 Both pseudosections have identical contents. */
8646 bfd_boolean
8647 _bfd_elfcore_make_pseudosection (bfd *abfd,
8648 char *name,
8649 size_t size,
8650 ufile_ptr filepos)
8651 {
8652 char buf[100];
8653 char *threaded_name;
8654 size_t len;
8655 asection *sect;
8656
8657 /* Build the section name. */
8658
8659 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8660 len = strlen (buf) + 1;
8661 threaded_name = (char *) bfd_alloc (abfd, len);
8662 if (threaded_name == NULL)
8663 return FALSE;
8664 memcpy (threaded_name, buf, len);
8665
8666 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8667 SEC_HAS_CONTENTS);
8668 if (sect == NULL)
8669 return FALSE;
8670 sect->size = size;
8671 sect->filepos = filepos;
8672 sect->alignment_power = 2;
8673
8674 return elfcore_maybe_make_sect (abfd, name, sect);
8675 }
8676
8677 /* prstatus_t exists on:
8678 solaris 2.5+
8679 linux 2.[01] + glibc
8680 unixware 4.2
8681 */
8682
8683 #if defined (HAVE_PRSTATUS_T)
8684
8685 static bfd_boolean
8686 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8687 {
8688 size_t size;
8689 int offset;
8690
8691 if (note->descsz == sizeof (prstatus_t))
8692 {
8693 prstatus_t prstat;
8694
8695 size = sizeof (prstat.pr_reg);
8696 offset = offsetof (prstatus_t, pr_reg);
8697 memcpy (&prstat, note->descdata, sizeof (prstat));
8698
8699 /* Do not overwrite the core signal if it
8700 has already been set by another thread. */
8701 if (elf_tdata (abfd)->core->signal == 0)
8702 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8703 if (elf_tdata (abfd)->core->pid == 0)
8704 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8705
8706 /* pr_who exists on:
8707 solaris 2.5+
8708 unixware 4.2
8709 pr_who doesn't exist on:
8710 linux 2.[01]
8711 */
8712 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8713 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8714 #else
8715 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8716 #endif
8717 }
8718 #if defined (HAVE_PRSTATUS32_T)
8719 else if (note->descsz == sizeof (prstatus32_t))
8720 {
8721 /* 64-bit host, 32-bit corefile */
8722 prstatus32_t prstat;
8723
8724 size = sizeof (prstat.pr_reg);
8725 offset = offsetof (prstatus32_t, pr_reg);
8726 memcpy (&prstat, note->descdata, sizeof (prstat));
8727
8728 /* Do not overwrite the core signal if it
8729 has already been set by another thread. */
8730 if (elf_tdata (abfd)->core->signal == 0)
8731 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8732 if (elf_tdata (abfd)->core->pid == 0)
8733 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8734
8735 /* pr_who exists on:
8736 solaris 2.5+
8737 unixware 4.2
8738 pr_who doesn't exist on:
8739 linux 2.[01]
8740 */
8741 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8742 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8743 #else
8744 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8745 #endif
8746 }
8747 #endif /* HAVE_PRSTATUS32_T */
8748 else
8749 {
8750 /* Fail - we don't know how to handle any other
8751 note size (ie. data object type). */
8752 return TRUE;
8753 }
8754
8755 /* Make a ".reg/999" section and a ".reg" section. */
8756 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8757 size, note->descpos + offset);
8758 }
8759 #endif /* defined (HAVE_PRSTATUS_T) */
8760
8761 /* Create a pseudosection containing the exact contents of NOTE. */
8762 static bfd_boolean
8763 elfcore_make_note_pseudosection (bfd *abfd,
8764 char *name,
8765 Elf_Internal_Note *note)
8766 {
8767 return _bfd_elfcore_make_pseudosection (abfd, name,
8768 note->descsz, note->descpos);
8769 }
8770
8771 /* There isn't a consistent prfpregset_t across platforms,
8772 but it doesn't matter, because we don't have to pick this
8773 data structure apart. */
8774
8775 static bfd_boolean
8776 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8777 {
8778 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8779 }
8780
8781 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8782 type of NT_PRXFPREG. Just include the whole note's contents
8783 literally. */
8784
8785 static bfd_boolean
8786 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8787 {
8788 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8789 }
8790
8791 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8792 with a note type of NT_X86_XSTATE. Just include the whole note's
8793 contents literally. */
8794
8795 static bfd_boolean
8796 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8797 {
8798 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8799 }
8800
8801 static bfd_boolean
8802 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8803 {
8804 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8805 }
8806
8807 static bfd_boolean
8808 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8809 {
8810 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8811 }
8812
8813 static bfd_boolean
8814 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8815 {
8816 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8817 }
8818
8819 static bfd_boolean
8820 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8821 {
8822 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8823 }
8824
8825 static bfd_boolean
8826 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8827 {
8828 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8829 }
8830
8831 static bfd_boolean
8832 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8833 {
8834 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8835 }
8836
8837 static bfd_boolean
8838 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8839 {
8840 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8841 }
8842
8843 static bfd_boolean
8844 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8845 {
8846 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8847 }
8848
8849 static bfd_boolean
8850 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8851 {
8852 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8853 }
8854
8855 static bfd_boolean
8856 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8857 {
8858 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8859 }
8860
8861 static bfd_boolean
8862 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8863 {
8864 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8865 }
8866
8867 static bfd_boolean
8868 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
8869 {
8870 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
8871 }
8872
8873 static bfd_boolean
8874 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
8875 {
8876 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
8877 }
8878
8879 static bfd_boolean
8880 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8881 {
8882 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8883 }
8884
8885 static bfd_boolean
8886 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8887 {
8888 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8889 }
8890
8891 static bfd_boolean
8892 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8893 {
8894 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
8895 }
8896
8897 static bfd_boolean
8898 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
8899 {
8900 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
8901 }
8902
8903 #if defined (HAVE_PRPSINFO_T)
8904 typedef prpsinfo_t elfcore_psinfo_t;
8905 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8906 typedef prpsinfo32_t elfcore_psinfo32_t;
8907 #endif
8908 #endif
8909
8910 #if defined (HAVE_PSINFO_T)
8911 typedef psinfo_t elfcore_psinfo_t;
8912 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8913 typedef psinfo32_t elfcore_psinfo32_t;
8914 #endif
8915 #endif
8916
8917 /* return a malloc'ed copy of a string at START which is at
8918 most MAX bytes long, possibly without a terminating '\0'.
8919 the copy will always have a terminating '\0'. */
8920
8921 char *
8922 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8923 {
8924 char *dups;
8925 char *end = (char *) memchr (start, '\0', max);
8926 size_t len;
8927
8928 if (end == NULL)
8929 len = max;
8930 else
8931 len = end - start;
8932
8933 dups = (char *) bfd_alloc (abfd, len + 1);
8934 if (dups == NULL)
8935 return NULL;
8936
8937 memcpy (dups, start, len);
8938 dups[len] = '\0';
8939
8940 return dups;
8941 }
8942
8943 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8944 static bfd_boolean
8945 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8946 {
8947 if (note->descsz == sizeof (elfcore_psinfo_t))
8948 {
8949 elfcore_psinfo_t psinfo;
8950
8951 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8952
8953 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8954 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8955 #endif
8956 elf_tdata (abfd)->core->program
8957 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8958 sizeof (psinfo.pr_fname));
8959
8960 elf_tdata (abfd)->core->command
8961 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8962 sizeof (psinfo.pr_psargs));
8963 }
8964 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8965 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8966 {
8967 /* 64-bit host, 32-bit corefile */
8968 elfcore_psinfo32_t psinfo;
8969
8970 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8971
8972 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8973 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
8974 #endif
8975 elf_tdata (abfd)->core->program
8976 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8977 sizeof (psinfo.pr_fname));
8978
8979 elf_tdata (abfd)->core->command
8980 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8981 sizeof (psinfo.pr_psargs));
8982 }
8983 #endif
8984
8985 else
8986 {
8987 /* Fail - we don't know how to handle any other
8988 note size (ie. data object type). */
8989 return TRUE;
8990 }
8991
8992 /* Note that for some reason, a spurious space is tacked
8993 onto the end of the args in some (at least one anyway)
8994 implementations, so strip it off if it exists. */
8995
8996 {
8997 char *command = elf_tdata (abfd)->core->command;
8998 int n = strlen (command);
8999
9000 if (0 < n && command[n - 1] == ' ')
9001 command[n - 1] = '\0';
9002 }
9003
9004 return TRUE;
9005 }
9006 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9007
9008 #if defined (HAVE_PSTATUS_T)
9009 static bfd_boolean
9010 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9011 {
9012 if (note->descsz == sizeof (pstatus_t)
9013 #if defined (HAVE_PXSTATUS_T)
9014 || note->descsz == sizeof (pxstatus_t)
9015 #endif
9016 )
9017 {
9018 pstatus_t pstat;
9019
9020 memcpy (&pstat, note->descdata, sizeof (pstat));
9021
9022 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9023 }
9024 #if defined (HAVE_PSTATUS32_T)
9025 else if (note->descsz == sizeof (pstatus32_t))
9026 {
9027 /* 64-bit host, 32-bit corefile */
9028 pstatus32_t pstat;
9029
9030 memcpy (&pstat, note->descdata, sizeof (pstat));
9031
9032 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9033 }
9034 #endif
9035 /* Could grab some more details from the "representative"
9036 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9037 NT_LWPSTATUS note, presumably. */
9038
9039 return TRUE;
9040 }
9041 #endif /* defined (HAVE_PSTATUS_T) */
9042
9043 #if defined (HAVE_LWPSTATUS_T)
9044 static bfd_boolean
9045 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9046 {
9047 lwpstatus_t lwpstat;
9048 char buf[100];
9049 char *name;
9050 size_t len;
9051 asection *sect;
9052
9053 if (note->descsz != sizeof (lwpstat)
9054 #if defined (HAVE_LWPXSTATUS_T)
9055 && note->descsz != sizeof (lwpxstatus_t)
9056 #endif
9057 )
9058 return TRUE;
9059
9060 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9061
9062 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9063 /* Do not overwrite the core signal if it has already been set by
9064 another thread. */
9065 if (elf_tdata (abfd)->core->signal == 0)
9066 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9067
9068 /* Make a ".reg/999" section. */
9069
9070 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9071 len = strlen (buf) + 1;
9072 name = bfd_alloc (abfd, len);
9073 if (name == NULL)
9074 return FALSE;
9075 memcpy (name, buf, len);
9076
9077 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9078 if (sect == NULL)
9079 return FALSE;
9080
9081 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9082 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9083 sect->filepos = note->descpos
9084 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9085 #endif
9086
9087 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9088 sect->size = sizeof (lwpstat.pr_reg);
9089 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9090 #endif
9091
9092 sect->alignment_power = 2;
9093
9094 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9095 return FALSE;
9096
9097 /* Make a ".reg2/999" section */
9098
9099 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9100 len = strlen (buf) + 1;
9101 name = bfd_alloc (abfd, len);
9102 if (name == NULL)
9103 return FALSE;
9104 memcpy (name, buf, len);
9105
9106 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9107 if (sect == NULL)
9108 return FALSE;
9109
9110 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9111 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9112 sect->filepos = note->descpos
9113 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9114 #endif
9115
9116 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9117 sect->size = sizeof (lwpstat.pr_fpreg);
9118 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9119 #endif
9120
9121 sect->alignment_power = 2;
9122
9123 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9124 }
9125 #endif /* defined (HAVE_LWPSTATUS_T) */
9126
9127 static bfd_boolean
9128 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9129 {
9130 char buf[30];
9131 char *name;
9132 size_t len;
9133 asection *sect;
9134 int type;
9135 int is_active_thread;
9136 bfd_vma base_addr;
9137
9138 if (note->descsz < 728)
9139 return TRUE;
9140
9141 if (! CONST_STRNEQ (note->namedata, "win32"))
9142 return TRUE;
9143
9144 type = bfd_get_32 (abfd, note->descdata);
9145
9146 switch (type)
9147 {
9148 case 1 /* NOTE_INFO_PROCESS */:
9149 /* FIXME: need to add ->core->command. */
9150 /* process_info.pid */
9151 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9152 /* process_info.signal */
9153 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9154 break;
9155
9156 case 2 /* NOTE_INFO_THREAD */:
9157 /* Make a ".reg/999" section. */
9158 /* thread_info.tid */
9159 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9160
9161 len = strlen (buf) + 1;
9162 name = (char *) bfd_alloc (abfd, len);
9163 if (name == NULL)
9164 return FALSE;
9165
9166 memcpy (name, buf, len);
9167
9168 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9169 if (sect == NULL)
9170 return FALSE;
9171
9172 /* sizeof (thread_info.thread_context) */
9173 sect->size = 716;
9174 /* offsetof (thread_info.thread_context) */
9175 sect->filepos = note->descpos + 12;
9176 sect->alignment_power = 2;
9177
9178 /* thread_info.is_active_thread */
9179 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9180
9181 if (is_active_thread)
9182 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9183 return FALSE;
9184 break;
9185
9186 case 3 /* NOTE_INFO_MODULE */:
9187 /* Make a ".module/xxxxxxxx" section. */
9188 /* module_info.base_address */
9189 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9190 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9191
9192 len = strlen (buf) + 1;
9193 name = (char *) bfd_alloc (abfd, len);
9194 if (name == NULL)
9195 return FALSE;
9196
9197 memcpy (name, buf, len);
9198
9199 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9200
9201 if (sect == NULL)
9202 return FALSE;
9203
9204 sect->size = note->descsz;
9205 sect->filepos = note->descpos;
9206 sect->alignment_power = 2;
9207 break;
9208
9209 default:
9210 return TRUE;
9211 }
9212
9213 return TRUE;
9214 }
9215
9216 static bfd_boolean
9217 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9218 {
9219 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9220
9221 switch (note->type)
9222 {
9223 default:
9224 return TRUE;
9225
9226 case NT_PRSTATUS:
9227 if (bed->elf_backend_grok_prstatus)
9228 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9229 return TRUE;
9230 #if defined (HAVE_PRSTATUS_T)
9231 return elfcore_grok_prstatus (abfd, note);
9232 #else
9233 return TRUE;
9234 #endif
9235
9236 #if defined (HAVE_PSTATUS_T)
9237 case NT_PSTATUS:
9238 return elfcore_grok_pstatus (abfd, note);
9239 #endif
9240
9241 #if defined (HAVE_LWPSTATUS_T)
9242 case NT_LWPSTATUS:
9243 return elfcore_grok_lwpstatus (abfd, note);
9244 #endif
9245
9246 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9247 return elfcore_grok_prfpreg (abfd, note);
9248
9249 case NT_WIN32PSTATUS:
9250 return elfcore_grok_win32pstatus (abfd, note);
9251
9252 case NT_PRXFPREG: /* Linux SSE extension */
9253 if (note->namesz == 6
9254 && strcmp (note->namedata, "LINUX") == 0)
9255 return elfcore_grok_prxfpreg (abfd, note);
9256 else
9257 return TRUE;
9258
9259 case NT_X86_XSTATE: /* Linux XSAVE extension */
9260 if (note->namesz == 6
9261 && strcmp (note->namedata, "LINUX") == 0)
9262 return elfcore_grok_xstatereg (abfd, note);
9263 else if (note->namesz == 8
9264 && strcmp (note->namedata, "FreeBSD") == 0)
9265 return elfcore_grok_xstatereg (abfd, note);
9266 else
9267 return TRUE;
9268
9269 case NT_PPC_VMX:
9270 if (note->namesz == 6
9271 && strcmp (note->namedata, "LINUX") == 0)
9272 return elfcore_grok_ppc_vmx (abfd, note);
9273 else
9274 return TRUE;
9275
9276 case NT_PPC_VSX:
9277 if (note->namesz == 6
9278 && strcmp (note->namedata, "LINUX") == 0)
9279 return elfcore_grok_ppc_vsx (abfd, note);
9280 else
9281 return TRUE;
9282
9283 case NT_S390_HIGH_GPRS:
9284 if (note->namesz == 6
9285 && strcmp (note->namedata, "LINUX") == 0)
9286 return elfcore_grok_s390_high_gprs (abfd, note);
9287 else
9288 return TRUE;
9289
9290 case NT_S390_TIMER:
9291 if (note->namesz == 6
9292 && strcmp (note->namedata, "LINUX") == 0)
9293 return elfcore_grok_s390_timer (abfd, note);
9294 else
9295 return TRUE;
9296
9297 case NT_S390_TODCMP:
9298 if (note->namesz == 6
9299 && strcmp (note->namedata, "LINUX") == 0)
9300 return elfcore_grok_s390_todcmp (abfd, note);
9301 else
9302 return TRUE;
9303
9304 case NT_S390_TODPREG:
9305 if (note->namesz == 6
9306 && strcmp (note->namedata, "LINUX") == 0)
9307 return elfcore_grok_s390_todpreg (abfd, note);
9308 else
9309 return TRUE;
9310
9311 case NT_S390_CTRS:
9312 if (note->namesz == 6
9313 && strcmp (note->namedata, "LINUX") == 0)
9314 return elfcore_grok_s390_ctrs (abfd, note);
9315 else
9316 return TRUE;
9317
9318 case NT_S390_PREFIX:
9319 if (note->namesz == 6
9320 && strcmp (note->namedata, "LINUX") == 0)
9321 return elfcore_grok_s390_prefix (abfd, note);
9322 else
9323 return TRUE;
9324
9325 case NT_S390_LAST_BREAK:
9326 if (note->namesz == 6
9327 && strcmp (note->namedata, "LINUX") == 0)
9328 return elfcore_grok_s390_last_break (abfd, note);
9329 else
9330 return TRUE;
9331
9332 case NT_S390_SYSTEM_CALL:
9333 if (note->namesz == 6
9334 && strcmp (note->namedata, "LINUX") == 0)
9335 return elfcore_grok_s390_system_call (abfd, note);
9336 else
9337 return TRUE;
9338
9339 case NT_S390_TDB:
9340 if (note->namesz == 6
9341 && strcmp (note->namedata, "LINUX") == 0)
9342 return elfcore_grok_s390_tdb (abfd, note);
9343 else
9344 return TRUE;
9345
9346 case NT_S390_VXRS_LOW:
9347 if (note->namesz == 6
9348 && strcmp (note->namedata, "LINUX") == 0)
9349 return elfcore_grok_s390_vxrs_low (abfd, note);
9350 else
9351 return TRUE;
9352
9353 case NT_S390_VXRS_HIGH:
9354 if (note->namesz == 6
9355 && strcmp (note->namedata, "LINUX") == 0)
9356 return elfcore_grok_s390_vxrs_high (abfd, note);
9357 else
9358 return TRUE;
9359
9360 case NT_ARM_VFP:
9361 if (note->namesz == 6
9362 && strcmp (note->namedata, "LINUX") == 0)
9363 return elfcore_grok_arm_vfp (abfd, note);
9364 else
9365 return TRUE;
9366
9367 case NT_ARM_TLS:
9368 if (note->namesz == 6
9369 && strcmp (note->namedata, "LINUX") == 0)
9370 return elfcore_grok_aarch_tls (abfd, note);
9371 else
9372 return TRUE;
9373
9374 case NT_ARM_HW_BREAK:
9375 if (note->namesz == 6
9376 && strcmp (note->namedata, "LINUX") == 0)
9377 return elfcore_grok_aarch_hw_break (abfd, note);
9378 else
9379 return TRUE;
9380
9381 case NT_ARM_HW_WATCH:
9382 if (note->namesz == 6
9383 && strcmp (note->namedata, "LINUX") == 0)
9384 return elfcore_grok_aarch_hw_watch (abfd, note);
9385 else
9386 return TRUE;
9387
9388 case NT_PRPSINFO:
9389 case NT_PSINFO:
9390 if (bed->elf_backend_grok_psinfo)
9391 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9392 return TRUE;
9393 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9394 return elfcore_grok_psinfo (abfd, note);
9395 #else
9396 return TRUE;
9397 #endif
9398
9399 case NT_AUXV:
9400 {
9401 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9402 SEC_HAS_CONTENTS);
9403
9404 if (sect == NULL)
9405 return FALSE;
9406 sect->size = note->descsz;
9407 sect->filepos = note->descpos;
9408 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9409
9410 return TRUE;
9411 }
9412
9413 case NT_FILE:
9414 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9415 note);
9416
9417 case NT_SIGINFO:
9418 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9419 note);
9420
9421 case NT_FREEBSD_THRMISC:
9422 if (note->namesz == 8
9423 && strcmp (note->namedata, "FreeBSD") == 0)
9424 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
9425 else
9426 return TRUE;
9427 }
9428 }
9429
9430 static bfd_boolean
9431 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9432 {
9433 struct bfd_build_id* build_id;
9434
9435 if (note->descsz == 0)
9436 return FALSE;
9437
9438 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9439 if (build_id == NULL)
9440 return FALSE;
9441
9442 build_id->size = note->descsz;
9443 memcpy (build_id->data, note->descdata, note->descsz);
9444 abfd->build_id = build_id;
9445
9446 return TRUE;
9447 }
9448
9449 static bfd_boolean
9450 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9451 {
9452 switch (note->type)
9453 {
9454 default:
9455 return TRUE;
9456
9457 case NT_GNU_BUILD_ID:
9458 return elfobj_grok_gnu_build_id (abfd, note);
9459 }
9460 }
9461
9462 static bfd_boolean
9463 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9464 {
9465 struct sdt_note *cur =
9466 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9467 + note->descsz);
9468
9469 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9470 cur->size = (bfd_size_type) note->descsz;
9471 memcpy (cur->data, note->descdata, note->descsz);
9472
9473 elf_tdata (abfd)->sdt_note_head = cur;
9474
9475 return TRUE;
9476 }
9477
9478 static bfd_boolean
9479 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9480 {
9481 switch (note->type)
9482 {
9483 case NT_STAPSDT:
9484 return elfobj_grok_stapsdt_note_1 (abfd, note);
9485
9486 default:
9487 return TRUE;
9488 }
9489 }
9490
9491 static bfd_boolean
9492 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9493 {
9494 char *cp;
9495
9496 cp = strchr (note->namedata, '@');
9497 if (cp != NULL)
9498 {
9499 *lwpidp = atoi(cp + 1);
9500 return TRUE;
9501 }
9502 return FALSE;
9503 }
9504
9505 static bfd_boolean
9506 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9507 {
9508 /* Signal number at offset 0x08. */
9509 elf_tdata (abfd)->core->signal
9510 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9511
9512 /* Process ID at offset 0x50. */
9513 elf_tdata (abfd)->core->pid
9514 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9515
9516 /* Command name at 0x7c (max 32 bytes, including nul). */
9517 elf_tdata (abfd)->core->command
9518 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9519
9520 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9521 note);
9522 }
9523
9524 static bfd_boolean
9525 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9526 {
9527 int lwp;
9528
9529 if (elfcore_netbsd_get_lwpid (note, &lwp))
9530 elf_tdata (abfd)->core->lwpid = lwp;
9531
9532 if (note->type == NT_NETBSDCORE_PROCINFO)
9533 {
9534 /* NetBSD-specific core "procinfo". Note that we expect to
9535 find this note before any of the others, which is fine,
9536 since the kernel writes this note out first when it
9537 creates a core file. */
9538
9539 return elfcore_grok_netbsd_procinfo (abfd, note);
9540 }
9541
9542 /* As of Jan 2002 there are no other machine-independent notes
9543 defined for NetBSD core files. If the note type is less
9544 than the start of the machine-dependent note types, we don't
9545 understand it. */
9546
9547 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9548 return TRUE;
9549
9550
9551 switch (bfd_get_arch (abfd))
9552 {
9553 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9554 PT_GETFPREGS == mach+2. */
9555
9556 case bfd_arch_alpha:
9557 case bfd_arch_sparc:
9558 switch (note->type)
9559 {
9560 case NT_NETBSDCORE_FIRSTMACH+0:
9561 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9562
9563 case NT_NETBSDCORE_FIRSTMACH+2:
9564 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9565
9566 default:
9567 return TRUE;
9568 }
9569
9570 /* On all other arch's, PT_GETREGS == mach+1 and
9571 PT_GETFPREGS == mach+3. */
9572
9573 default:
9574 switch (note->type)
9575 {
9576 case NT_NETBSDCORE_FIRSTMACH+1:
9577 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9578
9579 case NT_NETBSDCORE_FIRSTMACH+3:
9580 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9581
9582 default:
9583 return TRUE;
9584 }
9585 }
9586 /* NOTREACHED */
9587 }
9588
9589 static bfd_boolean
9590 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9591 {
9592 /* Signal number at offset 0x08. */
9593 elf_tdata (abfd)->core->signal
9594 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9595
9596 /* Process ID at offset 0x20. */
9597 elf_tdata (abfd)->core->pid
9598 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
9599
9600 /* Command name at 0x48 (max 32 bytes, including nul). */
9601 elf_tdata (abfd)->core->command
9602 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9603
9604 return TRUE;
9605 }
9606
9607 static bfd_boolean
9608 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
9609 {
9610 if (note->type == NT_OPENBSD_PROCINFO)
9611 return elfcore_grok_openbsd_procinfo (abfd, note);
9612
9613 if (note->type == NT_OPENBSD_REGS)
9614 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9615
9616 if (note->type == NT_OPENBSD_FPREGS)
9617 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9618
9619 if (note->type == NT_OPENBSD_XFPREGS)
9620 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9621
9622 if (note->type == NT_OPENBSD_AUXV)
9623 {
9624 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9625 SEC_HAS_CONTENTS);
9626
9627 if (sect == NULL)
9628 return FALSE;
9629 sect->size = note->descsz;
9630 sect->filepos = note->descpos;
9631 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9632
9633 return TRUE;
9634 }
9635
9636 if (note->type == NT_OPENBSD_WCOOKIE)
9637 {
9638 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
9639 SEC_HAS_CONTENTS);
9640
9641 if (sect == NULL)
9642 return FALSE;
9643 sect->size = note->descsz;
9644 sect->filepos = note->descpos;
9645 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9646
9647 return TRUE;
9648 }
9649
9650 return TRUE;
9651 }
9652
9653 static bfd_boolean
9654 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
9655 {
9656 void *ddata = note->descdata;
9657 char buf[100];
9658 char *name;
9659 asection *sect;
9660 short sig;
9661 unsigned flags;
9662
9663 /* nto_procfs_status 'pid' field is at offset 0. */
9664 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9665
9666 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9667 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9668
9669 /* nto_procfs_status 'flags' field is at offset 8. */
9670 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9671
9672 /* nto_procfs_status 'what' field is at offset 14. */
9673 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9674 {
9675 elf_tdata (abfd)->core->signal = sig;
9676 elf_tdata (abfd)->core->lwpid = *tid;
9677 }
9678
9679 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9680 do not come from signals so we make sure we set the current
9681 thread just in case. */
9682 if (flags & 0x00000080)
9683 elf_tdata (abfd)->core->lwpid = *tid;
9684
9685 /* Make a ".qnx_core_status/%d" section. */
9686 sprintf (buf, ".qnx_core_status/%ld", *tid);
9687
9688 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9689 if (name == NULL)
9690 return FALSE;
9691 strcpy (name, buf);
9692
9693 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9694 if (sect == NULL)
9695 return FALSE;
9696
9697 sect->size = note->descsz;
9698 sect->filepos = note->descpos;
9699 sect->alignment_power = 2;
9700
9701 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9702 }
9703
9704 static bfd_boolean
9705 elfcore_grok_nto_regs (bfd *abfd,
9706 Elf_Internal_Note *note,
9707 long tid,
9708 char *base)
9709 {
9710 char buf[100];
9711 char *name;
9712 asection *sect;
9713
9714 /* Make a "(base)/%d" section. */
9715 sprintf (buf, "%s/%ld", base, tid);
9716
9717 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9718 if (name == NULL)
9719 return FALSE;
9720 strcpy (name, buf);
9721
9722 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9723 if (sect == NULL)
9724 return FALSE;
9725
9726 sect->size = note->descsz;
9727 sect->filepos = note->descpos;
9728 sect->alignment_power = 2;
9729
9730 /* This is the current thread. */
9731 if (elf_tdata (abfd)->core->lwpid == tid)
9732 return elfcore_maybe_make_sect (abfd, base, sect);
9733
9734 return TRUE;
9735 }
9736
9737 #define BFD_QNT_CORE_INFO 7
9738 #define BFD_QNT_CORE_STATUS 8
9739 #define BFD_QNT_CORE_GREG 9
9740 #define BFD_QNT_CORE_FPREG 10
9741
9742 static bfd_boolean
9743 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
9744 {
9745 /* Every GREG section has a STATUS section before it. Store the
9746 tid from the previous call to pass down to the next gregs
9747 function. */
9748 static long tid = 1;
9749
9750 switch (note->type)
9751 {
9752 case BFD_QNT_CORE_INFO:
9753 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
9754 case BFD_QNT_CORE_STATUS:
9755 return elfcore_grok_nto_status (abfd, note, &tid);
9756 case BFD_QNT_CORE_GREG:
9757 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
9758 case BFD_QNT_CORE_FPREG:
9759 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
9760 default:
9761 return TRUE;
9762 }
9763 }
9764
9765 static bfd_boolean
9766 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
9767 {
9768 char *name;
9769 asection *sect;
9770 size_t len;
9771
9772 /* Use note name as section name. */
9773 len = note->namesz;
9774 name = (char *) bfd_alloc (abfd, len);
9775 if (name == NULL)
9776 return FALSE;
9777 memcpy (name, note->namedata, len);
9778 name[len - 1] = '\0';
9779
9780 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9781 if (sect == NULL)
9782 return FALSE;
9783
9784 sect->size = note->descsz;
9785 sect->filepos = note->descpos;
9786 sect->alignment_power = 1;
9787
9788 return TRUE;
9789 }
9790
9791 /* Function: elfcore_write_note
9792
9793 Inputs:
9794 buffer to hold note, and current size of buffer
9795 name of note
9796 type of note
9797 data for note
9798 size of data for note
9799
9800 Writes note to end of buffer. ELF64 notes are written exactly as
9801 for ELF32, despite the current (as of 2006) ELF gabi specifying
9802 that they ought to have 8-byte namesz and descsz field, and have
9803 8-byte alignment. Other writers, eg. Linux kernel, do the same.
9804
9805 Return:
9806 Pointer to realloc'd buffer, *BUFSIZ updated. */
9807
9808 char *
9809 elfcore_write_note (bfd *abfd,
9810 char *buf,
9811 int *bufsiz,
9812 const char *name,
9813 int type,
9814 const void *input,
9815 int size)
9816 {
9817 Elf_External_Note *xnp;
9818 size_t namesz;
9819 size_t newspace;
9820 char *dest;
9821
9822 namesz = 0;
9823 if (name != NULL)
9824 namesz = strlen (name) + 1;
9825
9826 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9827
9828 buf = (char *) realloc (buf, *bufsiz + newspace);
9829 if (buf == NULL)
9830 return buf;
9831 dest = buf + *bufsiz;
9832 *bufsiz += newspace;
9833 xnp = (Elf_External_Note *) dest;
9834 H_PUT_32 (abfd, namesz, xnp->namesz);
9835 H_PUT_32 (abfd, size, xnp->descsz);
9836 H_PUT_32 (abfd, type, xnp->type);
9837 dest = xnp->name;
9838 if (name != NULL)
9839 {
9840 memcpy (dest, name, namesz);
9841 dest += namesz;
9842 while (namesz & 3)
9843 {
9844 *dest++ = '\0';
9845 ++namesz;
9846 }
9847 }
9848 memcpy (dest, input, size);
9849 dest += size;
9850 while (size & 3)
9851 {
9852 *dest++ = '\0';
9853 ++size;
9854 }
9855 return buf;
9856 }
9857
9858 char *
9859 elfcore_write_prpsinfo (bfd *abfd,
9860 char *buf,
9861 int *bufsiz,
9862 const char *fname,
9863 const char *psargs)
9864 {
9865 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9866
9867 if (bed->elf_backend_write_core_note != NULL)
9868 {
9869 char *ret;
9870 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9871 NT_PRPSINFO, fname, psargs);
9872 if (ret != NULL)
9873 return ret;
9874 }
9875
9876 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9877 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9878 if (bed->s->elfclass == ELFCLASS32)
9879 {
9880 #if defined (HAVE_PSINFO32_T)
9881 psinfo32_t data;
9882 int note_type = NT_PSINFO;
9883 #else
9884 prpsinfo32_t data;
9885 int note_type = NT_PRPSINFO;
9886 #endif
9887
9888 memset (&data, 0, sizeof (data));
9889 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9890 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9891 return elfcore_write_note (abfd, buf, bufsiz,
9892 "CORE", note_type, &data, sizeof (data));
9893 }
9894 else
9895 #endif
9896 {
9897 #if defined (HAVE_PSINFO_T)
9898 psinfo_t data;
9899 int note_type = NT_PSINFO;
9900 #else
9901 prpsinfo_t data;
9902 int note_type = NT_PRPSINFO;
9903 #endif
9904
9905 memset (&data, 0, sizeof (data));
9906 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9907 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9908 return elfcore_write_note (abfd, buf, bufsiz,
9909 "CORE", note_type, &data, sizeof (data));
9910 }
9911 #endif /* PSINFO_T or PRPSINFO_T */
9912
9913 free (buf);
9914 return NULL;
9915 }
9916
9917 char *
9918 elfcore_write_linux_prpsinfo32
9919 (bfd *abfd, char *buf, int *bufsiz,
9920 const struct elf_internal_linux_prpsinfo *prpsinfo)
9921 {
9922 struct elf_external_linux_prpsinfo32 data;
9923
9924 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data);
9925 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
9926 &data, sizeof (data));
9927 }
9928
9929 char *
9930 elfcore_write_linux_prpsinfo64
9931 (bfd *abfd, char *buf, int *bufsiz,
9932 const struct elf_internal_linux_prpsinfo *prpsinfo)
9933 {
9934 struct elf_external_linux_prpsinfo64 data;
9935
9936 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data);
9937 return elfcore_write_note (abfd, buf, bufsiz,
9938 "CORE", NT_PRPSINFO, &data, sizeof (data));
9939 }
9940
9941 char *
9942 elfcore_write_prstatus (bfd *abfd,
9943 char *buf,
9944 int *bufsiz,
9945 long pid,
9946 int cursig,
9947 const void *gregs)
9948 {
9949 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9950
9951 if (bed->elf_backend_write_core_note != NULL)
9952 {
9953 char *ret;
9954 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9955 NT_PRSTATUS,
9956 pid, cursig, gregs);
9957 if (ret != NULL)
9958 return ret;
9959 }
9960
9961 #if defined (HAVE_PRSTATUS_T)
9962 #if defined (HAVE_PRSTATUS32_T)
9963 if (bed->s->elfclass == ELFCLASS32)
9964 {
9965 prstatus32_t prstat;
9966
9967 memset (&prstat, 0, sizeof (prstat));
9968 prstat.pr_pid = pid;
9969 prstat.pr_cursig = cursig;
9970 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9971 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9972 NT_PRSTATUS, &prstat, sizeof (prstat));
9973 }
9974 else
9975 #endif
9976 {
9977 prstatus_t prstat;
9978
9979 memset (&prstat, 0, sizeof (prstat));
9980 prstat.pr_pid = pid;
9981 prstat.pr_cursig = cursig;
9982 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9983 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9984 NT_PRSTATUS, &prstat, sizeof (prstat));
9985 }
9986 #endif /* HAVE_PRSTATUS_T */
9987
9988 free (buf);
9989 return NULL;
9990 }
9991
9992 #if defined (HAVE_LWPSTATUS_T)
9993 char *
9994 elfcore_write_lwpstatus (bfd *abfd,
9995 char *buf,
9996 int *bufsiz,
9997 long pid,
9998 int cursig,
9999 const void *gregs)
10000 {
10001 lwpstatus_t lwpstat;
10002 const char *note_name = "CORE";
10003
10004 memset (&lwpstat, 0, sizeof (lwpstat));
10005 lwpstat.pr_lwpid = pid >> 16;
10006 lwpstat.pr_cursig = cursig;
10007 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10008 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10009 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10010 #if !defined(gregs)
10011 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10012 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10013 #else
10014 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10015 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10016 #endif
10017 #endif
10018 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10019 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10020 }
10021 #endif /* HAVE_LWPSTATUS_T */
10022
10023 #if defined (HAVE_PSTATUS_T)
10024 char *
10025 elfcore_write_pstatus (bfd *abfd,
10026 char *buf,
10027 int *bufsiz,
10028 long pid,
10029 int cursig ATTRIBUTE_UNUSED,
10030 const void *gregs ATTRIBUTE_UNUSED)
10031 {
10032 const char *note_name = "CORE";
10033 #if defined (HAVE_PSTATUS32_T)
10034 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10035
10036 if (bed->s->elfclass == ELFCLASS32)
10037 {
10038 pstatus32_t pstat;
10039
10040 memset (&pstat, 0, sizeof (pstat));
10041 pstat.pr_pid = pid & 0xffff;
10042 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10043 NT_PSTATUS, &pstat, sizeof (pstat));
10044 return buf;
10045 }
10046 else
10047 #endif
10048 {
10049 pstatus_t pstat;
10050
10051 memset (&pstat, 0, sizeof (pstat));
10052 pstat.pr_pid = pid & 0xffff;
10053 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10054 NT_PSTATUS, &pstat, sizeof (pstat));
10055 return buf;
10056 }
10057 }
10058 #endif /* HAVE_PSTATUS_T */
10059
10060 char *
10061 elfcore_write_prfpreg (bfd *abfd,
10062 char *buf,
10063 int *bufsiz,
10064 const void *fpregs,
10065 int size)
10066 {
10067 const char *note_name = "CORE";
10068 return elfcore_write_note (abfd, buf, bufsiz,
10069 note_name, NT_FPREGSET, fpregs, size);
10070 }
10071
10072 char *
10073 elfcore_write_prxfpreg (bfd *abfd,
10074 char *buf,
10075 int *bufsiz,
10076 const void *xfpregs,
10077 int size)
10078 {
10079 char *note_name = "LINUX";
10080 return elfcore_write_note (abfd, buf, bufsiz,
10081 note_name, NT_PRXFPREG, xfpregs, size);
10082 }
10083
10084 char *
10085 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10086 const void *xfpregs, int size)
10087 {
10088 char *note_name;
10089 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10090 note_name = "FreeBSD";
10091 else
10092 note_name = "LINUX";
10093 return elfcore_write_note (abfd, buf, bufsiz,
10094 note_name, NT_X86_XSTATE, xfpregs, size);
10095 }
10096
10097 char *
10098 elfcore_write_ppc_vmx (bfd *abfd,
10099 char *buf,
10100 int *bufsiz,
10101 const void *ppc_vmx,
10102 int size)
10103 {
10104 char *note_name = "LINUX";
10105 return elfcore_write_note (abfd, buf, bufsiz,
10106 note_name, NT_PPC_VMX, ppc_vmx, size);
10107 }
10108
10109 char *
10110 elfcore_write_ppc_vsx (bfd *abfd,
10111 char *buf,
10112 int *bufsiz,
10113 const void *ppc_vsx,
10114 int size)
10115 {
10116 char *note_name = "LINUX";
10117 return elfcore_write_note (abfd, buf, bufsiz,
10118 note_name, NT_PPC_VSX, ppc_vsx, size);
10119 }
10120
10121 static char *
10122 elfcore_write_s390_high_gprs (bfd *abfd,
10123 char *buf,
10124 int *bufsiz,
10125 const void *s390_high_gprs,
10126 int size)
10127 {
10128 char *note_name = "LINUX";
10129 return elfcore_write_note (abfd, buf, bufsiz,
10130 note_name, NT_S390_HIGH_GPRS,
10131 s390_high_gprs, size);
10132 }
10133
10134 char *
10135 elfcore_write_s390_timer (bfd *abfd,
10136 char *buf,
10137 int *bufsiz,
10138 const void *s390_timer,
10139 int size)
10140 {
10141 char *note_name = "LINUX";
10142 return elfcore_write_note (abfd, buf, bufsiz,
10143 note_name, NT_S390_TIMER, s390_timer, size);
10144 }
10145
10146 char *
10147 elfcore_write_s390_todcmp (bfd *abfd,
10148 char *buf,
10149 int *bufsiz,
10150 const void *s390_todcmp,
10151 int size)
10152 {
10153 char *note_name = "LINUX";
10154 return elfcore_write_note (abfd, buf, bufsiz,
10155 note_name, NT_S390_TODCMP, s390_todcmp, size);
10156 }
10157
10158 char *
10159 elfcore_write_s390_todpreg (bfd *abfd,
10160 char *buf,
10161 int *bufsiz,
10162 const void *s390_todpreg,
10163 int size)
10164 {
10165 char *note_name = "LINUX";
10166 return elfcore_write_note (abfd, buf, bufsiz,
10167 note_name, NT_S390_TODPREG, s390_todpreg, size);
10168 }
10169
10170 char *
10171 elfcore_write_s390_ctrs (bfd *abfd,
10172 char *buf,
10173 int *bufsiz,
10174 const void *s390_ctrs,
10175 int size)
10176 {
10177 char *note_name = "LINUX";
10178 return elfcore_write_note (abfd, buf, bufsiz,
10179 note_name, NT_S390_CTRS, s390_ctrs, size);
10180 }
10181
10182 char *
10183 elfcore_write_s390_prefix (bfd *abfd,
10184 char *buf,
10185 int *bufsiz,
10186 const void *s390_prefix,
10187 int size)
10188 {
10189 char *note_name = "LINUX";
10190 return elfcore_write_note (abfd, buf, bufsiz,
10191 note_name, NT_S390_PREFIX, s390_prefix, size);
10192 }
10193
10194 char *
10195 elfcore_write_s390_last_break (bfd *abfd,
10196 char *buf,
10197 int *bufsiz,
10198 const void *s390_last_break,
10199 int size)
10200 {
10201 char *note_name = "LINUX";
10202 return elfcore_write_note (abfd, buf, bufsiz,
10203 note_name, NT_S390_LAST_BREAK,
10204 s390_last_break, size);
10205 }
10206
10207 char *
10208 elfcore_write_s390_system_call (bfd *abfd,
10209 char *buf,
10210 int *bufsiz,
10211 const void *s390_system_call,
10212 int size)
10213 {
10214 char *note_name = "LINUX";
10215 return elfcore_write_note (abfd, buf, bufsiz,
10216 note_name, NT_S390_SYSTEM_CALL,
10217 s390_system_call, size);
10218 }
10219
10220 char *
10221 elfcore_write_s390_tdb (bfd *abfd,
10222 char *buf,
10223 int *bufsiz,
10224 const void *s390_tdb,
10225 int size)
10226 {
10227 char *note_name = "LINUX";
10228 return elfcore_write_note (abfd, buf, bufsiz,
10229 note_name, NT_S390_TDB, s390_tdb, size);
10230 }
10231
10232 char *
10233 elfcore_write_s390_vxrs_low (bfd *abfd,
10234 char *buf,
10235 int *bufsiz,
10236 const void *s390_vxrs_low,
10237 int size)
10238 {
10239 char *note_name = "LINUX";
10240 return elfcore_write_note (abfd, buf, bufsiz,
10241 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10242 }
10243
10244 char *
10245 elfcore_write_s390_vxrs_high (bfd *abfd,
10246 char *buf,
10247 int *bufsiz,
10248 const void *s390_vxrs_high,
10249 int size)
10250 {
10251 char *note_name = "LINUX";
10252 return elfcore_write_note (abfd, buf, bufsiz,
10253 note_name, NT_S390_VXRS_HIGH,
10254 s390_vxrs_high, size);
10255 }
10256
10257 char *
10258 elfcore_write_arm_vfp (bfd *abfd,
10259 char *buf,
10260 int *bufsiz,
10261 const void *arm_vfp,
10262 int size)
10263 {
10264 char *note_name = "LINUX";
10265 return elfcore_write_note (abfd, buf, bufsiz,
10266 note_name, NT_ARM_VFP, arm_vfp, size);
10267 }
10268
10269 char *
10270 elfcore_write_aarch_tls (bfd *abfd,
10271 char *buf,
10272 int *bufsiz,
10273 const void *aarch_tls,
10274 int size)
10275 {
10276 char *note_name = "LINUX";
10277 return elfcore_write_note (abfd, buf, bufsiz,
10278 note_name, NT_ARM_TLS, aarch_tls, size);
10279 }
10280
10281 char *
10282 elfcore_write_aarch_hw_break (bfd *abfd,
10283 char *buf,
10284 int *bufsiz,
10285 const void *aarch_hw_break,
10286 int size)
10287 {
10288 char *note_name = "LINUX";
10289 return elfcore_write_note (abfd, buf, bufsiz,
10290 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10291 }
10292
10293 char *
10294 elfcore_write_aarch_hw_watch (bfd *abfd,
10295 char *buf,
10296 int *bufsiz,
10297 const void *aarch_hw_watch,
10298 int size)
10299 {
10300 char *note_name = "LINUX";
10301 return elfcore_write_note (abfd, buf, bufsiz,
10302 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10303 }
10304
10305 char *
10306 elfcore_write_register_note (bfd *abfd,
10307 char *buf,
10308 int *bufsiz,
10309 const char *section,
10310 const void *data,
10311 int size)
10312 {
10313 if (strcmp (section, ".reg2") == 0)
10314 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10315 if (strcmp (section, ".reg-xfp") == 0)
10316 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10317 if (strcmp (section, ".reg-xstate") == 0)
10318 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10319 if (strcmp (section, ".reg-ppc-vmx") == 0)
10320 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10321 if (strcmp (section, ".reg-ppc-vsx") == 0)
10322 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10323 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10324 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10325 if (strcmp (section, ".reg-s390-timer") == 0)
10326 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10327 if (strcmp (section, ".reg-s390-todcmp") == 0)
10328 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10329 if (strcmp (section, ".reg-s390-todpreg") == 0)
10330 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10331 if (strcmp (section, ".reg-s390-ctrs") == 0)
10332 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10333 if (strcmp (section, ".reg-s390-prefix") == 0)
10334 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10335 if (strcmp (section, ".reg-s390-last-break") == 0)
10336 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10337 if (strcmp (section, ".reg-s390-system-call") == 0)
10338 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10339 if (strcmp (section, ".reg-s390-tdb") == 0)
10340 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10341 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10342 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10343 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10344 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10345 if (strcmp (section, ".reg-arm-vfp") == 0)
10346 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10347 if (strcmp (section, ".reg-aarch-tls") == 0)
10348 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10349 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10350 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10351 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10352 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10353 return NULL;
10354 }
10355
10356 static bfd_boolean
10357 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10358 {
10359 char *p;
10360
10361 p = buf;
10362 while (p < buf + size)
10363 {
10364 /* FIXME: bad alignment assumption. */
10365 Elf_External_Note *xnp = (Elf_External_Note *) p;
10366 Elf_Internal_Note in;
10367
10368 if (offsetof (Elf_External_Note, name) > buf - p + size)
10369 return FALSE;
10370
10371 in.type = H_GET_32 (abfd, xnp->type);
10372
10373 in.namesz = H_GET_32 (abfd, xnp->namesz);
10374 in.namedata = xnp->name;
10375 if (in.namesz > buf - in.namedata + size)
10376 return FALSE;
10377
10378 in.descsz = H_GET_32 (abfd, xnp->descsz);
10379 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10380 in.descpos = offset + (in.descdata - buf);
10381 if (in.descsz != 0
10382 && (in.descdata >= buf + size
10383 || in.descsz > buf - in.descdata + size))
10384 return FALSE;
10385
10386 switch (bfd_get_format (abfd))
10387 {
10388 default:
10389 return TRUE;
10390
10391 case bfd_core:
10392 {
10393 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10394 struct
10395 {
10396 const char * string;
10397 size_t len;
10398 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10399 }
10400 grokers[] =
10401 {
10402 GROKER_ELEMENT ("", elfcore_grok_note),
10403 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10404 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10405 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10406 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10407 };
10408 #undef GROKER_ELEMENT
10409 int i;
10410
10411 for (i = ARRAY_SIZE (grokers); i--;)
10412 {
10413 if (in.namesz >= grokers[i].len
10414 && strncmp (in.namedata, grokers[i].string,
10415 grokers[i].len) == 0)
10416 {
10417 if (! grokers[i].func (abfd, & in))
10418 return FALSE;
10419 break;
10420 }
10421 }
10422 break;
10423 }
10424
10425 case bfd_object:
10426 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10427 {
10428 if (! elfobj_grok_gnu_note (abfd, &in))
10429 return FALSE;
10430 }
10431 else if (in.namesz == sizeof "stapsdt"
10432 && strcmp (in.namedata, "stapsdt") == 0)
10433 {
10434 if (! elfobj_grok_stapsdt_note (abfd, &in))
10435 return FALSE;
10436 }
10437 break;
10438 }
10439
10440 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10441 }
10442
10443 return TRUE;
10444 }
10445
10446 static bfd_boolean
10447 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10448 {
10449 char *buf;
10450
10451 if (size <= 0)
10452 return TRUE;
10453
10454 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10455 return FALSE;
10456
10457 buf = (char *) bfd_malloc (size + 1);
10458 if (buf == NULL)
10459 return FALSE;
10460
10461 /* PR 17512: file: ec08f814
10462 0-termintate the buffer so that string searches will not overflow. */
10463 buf[size] = 0;
10464
10465 if (bfd_bread (buf, size, abfd) != size
10466 || !elf_parse_notes (abfd, buf, size, offset))
10467 {
10468 free (buf);
10469 return FALSE;
10470 }
10471
10472 free (buf);
10473 return TRUE;
10474 }
10475 \f
10476 /* Providing external access to the ELF program header table. */
10477
10478 /* Return an upper bound on the number of bytes required to store a
10479 copy of ABFD's program header table entries. Return -1 if an error
10480 occurs; bfd_get_error will return an appropriate code. */
10481
10482 long
10483 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10484 {
10485 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10486 {
10487 bfd_set_error (bfd_error_wrong_format);
10488 return -1;
10489 }
10490
10491 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10492 }
10493
10494 /* Copy ABFD's program header table entries to *PHDRS. The entries
10495 will be stored as an array of Elf_Internal_Phdr structures, as
10496 defined in include/elf/internal.h. To find out how large the
10497 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10498
10499 Return the number of program header table entries read, or -1 if an
10500 error occurs; bfd_get_error will return an appropriate code. */
10501
10502 int
10503 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10504 {
10505 int num_phdrs;
10506
10507 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10508 {
10509 bfd_set_error (bfd_error_wrong_format);
10510 return -1;
10511 }
10512
10513 num_phdrs = elf_elfheader (abfd)->e_phnum;
10514 memcpy (phdrs, elf_tdata (abfd)->phdr,
10515 num_phdrs * sizeof (Elf_Internal_Phdr));
10516
10517 return num_phdrs;
10518 }
10519
10520 enum elf_reloc_type_class
10521 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10522 const asection *rel_sec ATTRIBUTE_UNUSED,
10523 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10524 {
10525 return reloc_class_normal;
10526 }
10527
10528 /* For RELA architectures, return the relocation value for a
10529 relocation against a local symbol. */
10530
10531 bfd_vma
10532 _bfd_elf_rela_local_sym (bfd *abfd,
10533 Elf_Internal_Sym *sym,
10534 asection **psec,
10535 Elf_Internal_Rela *rel)
10536 {
10537 asection *sec = *psec;
10538 bfd_vma relocation;
10539
10540 relocation = (sec->output_section->vma
10541 + sec->output_offset
10542 + sym->st_value);
10543 if ((sec->flags & SEC_MERGE)
10544 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10545 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10546 {
10547 rel->r_addend =
10548 _bfd_merged_section_offset (abfd, psec,
10549 elf_section_data (sec)->sec_info,
10550 sym->st_value + rel->r_addend);
10551 if (sec != *psec)
10552 {
10553 /* If we have changed the section, and our original section is
10554 marked with SEC_EXCLUDE, it means that the original
10555 SEC_MERGE section has been completely subsumed in some
10556 other SEC_MERGE section. In this case, we need to leave
10557 some info around for --emit-relocs. */
10558 if ((sec->flags & SEC_EXCLUDE) != 0)
10559 sec->kept_section = *psec;
10560 sec = *psec;
10561 }
10562 rel->r_addend -= relocation;
10563 rel->r_addend += sec->output_section->vma + sec->output_offset;
10564 }
10565 return relocation;
10566 }
10567
10568 bfd_vma
10569 _bfd_elf_rel_local_sym (bfd *abfd,
10570 Elf_Internal_Sym *sym,
10571 asection **psec,
10572 bfd_vma addend)
10573 {
10574 asection *sec = *psec;
10575
10576 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10577 return sym->st_value + addend;
10578
10579 return _bfd_merged_section_offset (abfd, psec,
10580 elf_section_data (sec)->sec_info,
10581 sym->st_value + addend);
10582 }
10583
10584 /* Adjust an address within a section. Given OFFSET within SEC, return
10585 the new offset within the section, based upon changes made to the
10586 section. Returns -1 if the offset is now invalid.
10587 The offset (in abnd out) is in target sized bytes, however big a
10588 byte may be. */
10589
10590 bfd_vma
10591 _bfd_elf_section_offset (bfd *abfd,
10592 struct bfd_link_info *info,
10593 asection *sec,
10594 bfd_vma offset)
10595 {
10596 switch (sec->sec_info_type)
10597 {
10598 case SEC_INFO_TYPE_STABS:
10599 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
10600 offset);
10601 case SEC_INFO_TYPE_EH_FRAME:
10602 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
10603
10604 default:
10605 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
10606 {
10607 /* Reverse the offset. */
10608 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10609 bfd_size_type address_size = bed->s->arch_size / 8;
10610
10611 /* address_size and sec->size are in octets. Convert
10612 to bytes before subtracting the original offset. */
10613 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
10614 }
10615 return offset;
10616 }
10617 }
10618 \f
10619 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
10620 reconstruct an ELF file by reading the segments out of remote memory
10621 based on the ELF file header at EHDR_VMA and the ELF program headers it
10622 points to. If not null, *LOADBASEP is filled in with the difference
10623 between the VMAs from which the segments were read, and the VMAs the
10624 file headers (and hence BFD's idea of each section's VMA) put them at.
10625
10626 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
10627 remote memory at target address VMA into the local buffer at MYADDR; it
10628 should return zero on success or an `errno' code on failure. TEMPL must
10629 be a BFD for an ELF target with the word size and byte order found in
10630 the remote memory. */
10631
10632 bfd *
10633 bfd_elf_bfd_from_remote_memory
10634 (bfd *templ,
10635 bfd_vma ehdr_vma,
10636 bfd_size_type size,
10637 bfd_vma *loadbasep,
10638 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
10639 {
10640 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
10641 (templ, ehdr_vma, size, loadbasep, target_read_memory);
10642 }
10643 \f
10644 long
10645 _bfd_elf_get_synthetic_symtab (bfd *abfd,
10646 long symcount ATTRIBUTE_UNUSED,
10647 asymbol **syms ATTRIBUTE_UNUSED,
10648 long dynsymcount,
10649 asymbol **dynsyms,
10650 asymbol **ret)
10651 {
10652 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10653 asection *relplt;
10654 asymbol *s;
10655 const char *relplt_name;
10656 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
10657 arelent *p;
10658 long count, i, n;
10659 size_t size;
10660 Elf_Internal_Shdr *hdr;
10661 char *names;
10662 asection *plt;
10663
10664 *ret = NULL;
10665
10666 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
10667 return 0;
10668
10669 if (dynsymcount <= 0)
10670 return 0;
10671
10672 if (!bed->plt_sym_val)
10673 return 0;
10674
10675 relplt_name = bed->relplt_name;
10676 if (relplt_name == NULL)
10677 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
10678 relplt = bfd_get_section_by_name (abfd, relplt_name);
10679 if (relplt == NULL)
10680 return 0;
10681
10682 hdr = &elf_section_data (relplt)->this_hdr;
10683 if (hdr->sh_link != elf_dynsymtab (abfd)
10684 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
10685 return 0;
10686
10687 plt = bfd_get_section_by_name (abfd, ".plt");
10688 if (plt == NULL)
10689 return 0;
10690
10691 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
10692 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
10693 return -1;
10694
10695 count = relplt->size / hdr->sh_entsize;
10696 size = count * sizeof (asymbol);
10697 p = relplt->relocation;
10698 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10699 {
10700 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
10701 if (p->addend != 0)
10702 {
10703 #ifdef BFD64
10704 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
10705 #else
10706 size += sizeof ("+0x") - 1 + 8;
10707 #endif
10708 }
10709 }
10710
10711 s = *ret = (asymbol *) bfd_malloc (size);
10712 if (s == NULL)
10713 return -1;
10714
10715 names = (char *) (s + count);
10716 p = relplt->relocation;
10717 n = 0;
10718 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10719 {
10720 size_t len;
10721 bfd_vma addr;
10722
10723 addr = bed->plt_sym_val (i, plt, p);
10724 if (addr == (bfd_vma) -1)
10725 continue;
10726
10727 *s = **p->sym_ptr_ptr;
10728 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10729 we are defining a symbol, ensure one of them is set. */
10730 if ((s->flags & BSF_LOCAL) == 0)
10731 s->flags |= BSF_GLOBAL;
10732 s->flags |= BSF_SYNTHETIC;
10733 s->section = plt;
10734 s->value = addr - plt->vma;
10735 s->name = names;
10736 s->udata.p = NULL;
10737 len = strlen ((*p->sym_ptr_ptr)->name);
10738 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10739 names += len;
10740 if (p->addend != 0)
10741 {
10742 char buf[30], *a;
10743
10744 memcpy (names, "+0x", sizeof ("+0x") - 1);
10745 names += sizeof ("+0x") - 1;
10746 bfd_sprintf_vma (abfd, buf, p->addend);
10747 for (a = buf; *a == '0'; ++a)
10748 ;
10749 len = strlen (a);
10750 memcpy (names, a, len);
10751 names += len;
10752 }
10753 memcpy (names, "@plt", sizeof ("@plt"));
10754 names += sizeof ("@plt");
10755 ++s, ++n;
10756 }
10757
10758 return n;
10759 }
10760
10761 /* It is only used by x86-64 so far. */
10762 asection _bfd_elf_large_com_section
10763 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
10764 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
10765
10766 void
10767 _bfd_elf_post_process_headers (bfd * abfd,
10768 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10769 {
10770 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10771
10772 i_ehdrp = elf_elfheader (abfd);
10773
10774 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
10775
10776 /* To make things simpler for the loader on Linux systems we set the
10777 osabi field to ELFOSABI_GNU if the binary contains symbols of
10778 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
10779 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
10780 && elf_tdata (abfd)->has_gnu_symbols)
10781 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
10782 }
10783
10784
10785 /* Return TRUE for ELF symbol types that represent functions.
10786 This is the default version of this function, which is sufficient for
10787 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
10788
10789 bfd_boolean
10790 _bfd_elf_is_function_type (unsigned int type)
10791 {
10792 return (type == STT_FUNC
10793 || type == STT_GNU_IFUNC);
10794 }
10795
10796 /* If the ELF symbol SYM might be a function in SEC, return the
10797 function size and set *CODE_OFF to the function's entry point,
10798 otherwise return zero. */
10799
10800 bfd_size_type
10801 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
10802 bfd_vma *code_off)
10803 {
10804 bfd_size_type size;
10805
10806 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
10807 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
10808 || sym->section != sec)
10809 return 0;
10810
10811 *code_off = sym->value;
10812 size = 0;
10813 if (!(sym->flags & BSF_SYNTHETIC))
10814 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
10815 if (size == 0)
10816 size = 1;
10817 return size;
10818 }
This page took 0.241546 seconds and 5 git commands to generate.