Don't warn zero LMA adjustment.
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 {
826 BFD_ASSERT (strcmp (name,
827 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
828 return TRUE;
829 }
830
831 newsect = bfd_make_section_anyway (abfd, name);
832 if (newsect == NULL)
833 return FALSE;
834
835 hdr->bfd_section = newsect;
836 elf_section_data (newsect)->this_hdr = *hdr;
837 elf_section_data (newsect)->this_idx = shindex;
838
839 /* Always use the real type/flags. */
840 elf_section_type (newsect) = hdr->sh_type;
841 elf_section_flags (newsect) = hdr->sh_flags;
842
843 newsect->filepos = hdr->sh_offset;
844
845 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
846 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
847 || ! bfd_set_section_alignment (abfd, newsect,
848 bfd_log2 (hdr->sh_addralign)))
849 return FALSE;
850
851 flags = SEC_NO_FLAGS;
852 if (hdr->sh_type != SHT_NOBITS)
853 flags |= SEC_HAS_CONTENTS;
854 if (hdr->sh_type == SHT_GROUP)
855 flags |= SEC_GROUP | SEC_EXCLUDE;
856 if ((hdr->sh_flags & SHF_ALLOC) != 0)
857 {
858 flags |= SEC_ALLOC;
859 if (hdr->sh_type != SHT_NOBITS)
860 flags |= SEC_LOAD;
861 }
862 if ((hdr->sh_flags & SHF_WRITE) == 0)
863 flags |= SEC_READONLY;
864 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
865 flags |= SEC_CODE;
866 else if ((flags & SEC_LOAD) != 0)
867 flags |= SEC_DATA;
868 if ((hdr->sh_flags & SHF_MERGE) != 0)
869 {
870 flags |= SEC_MERGE;
871 newsect->entsize = hdr->sh_entsize;
872 if ((hdr->sh_flags & SHF_STRINGS) != 0)
873 flags |= SEC_STRINGS;
874 }
875 if (hdr->sh_flags & SHF_GROUP)
876 if (!setup_group (abfd, hdr, newsect))
877 return FALSE;
878 if ((hdr->sh_flags & SHF_TLS) != 0)
879 flags |= SEC_THREAD_LOCAL;
880 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
881 flags |= SEC_EXCLUDE;
882
883 if ((flags & SEC_ALLOC) == 0)
884 {
885 /* The debugging sections appear to be recognized only by name,
886 not any sort of flag. Their SEC_ALLOC bits are cleared. */
887 static const struct
888 {
889 const char *name;
890 int len;
891 } debug_sections [] =
892 {
893 { STRING_COMMA_LEN ("debug") }, /* 'd' */
894 { NULL, 0 }, /* 'e' */
895 { NULL, 0 }, /* 'f' */
896 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
897 { NULL, 0 }, /* 'h' */
898 { NULL, 0 }, /* 'i' */
899 { NULL, 0 }, /* 'j' */
900 { NULL, 0 }, /* 'k' */
901 { STRING_COMMA_LEN ("line") }, /* 'l' */
902 { NULL, 0 }, /* 'm' */
903 { NULL, 0 }, /* 'n' */
904 { NULL, 0 }, /* 'o' */
905 { NULL, 0 }, /* 'p' */
906 { NULL, 0 }, /* 'q' */
907 { NULL, 0 }, /* 'r' */
908 { STRING_COMMA_LEN ("stab") }, /* 's' */
909 { NULL, 0 }, /* 't' */
910 { NULL, 0 }, /* 'u' */
911 { NULL, 0 }, /* 'v' */
912 { NULL, 0 }, /* 'w' */
913 { NULL, 0 }, /* 'x' */
914 { NULL, 0 }, /* 'y' */
915 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
916 };
917
918 if (name [0] == '.')
919 {
920 int i = name [1] - 'd';
921 if (i >= 0
922 && i < (int) ARRAY_SIZE (debug_sections)
923 && debug_sections [i].name != NULL
924 && strncmp (&name [1], debug_sections [i].name,
925 debug_sections [i].len) == 0)
926 flags |= SEC_DEBUGGING;
927 }
928 }
929
930 /* As a GNU extension, if the name begins with .gnu.linkonce, we
931 only link a single copy of the section. This is used to support
932 g++. g++ will emit each template expansion in its own section.
933 The symbols will be defined as weak, so that multiple definitions
934 are permitted. The GNU linker extension is to actually discard
935 all but one of the sections. */
936 if (CONST_STRNEQ (name, ".gnu.linkonce")
937 && elf_next_in_group (newsect) == NULL)
938 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
939
940 bed = get_elf_backend_data (abfd);
941 if (bed->elf_backend_section_flags)
942 if (! bed->elf_backend_section_flags (&flags, hdr))
943 return FALSE;
944
945 if (! bfd_set_section_flags (abfd, newsect, flags))
946 return FALSE;
947
948 /* We do not parse the PT_NOTE segments as we are interested even in the
949 separate debug info files which may have the segments offsets corrupted.
950 PT_NOTEs from the core files are currently not parsed using BFD. */
951 if (hdr->sh_type == SHT_NOTE)
952 {
953 bfd_byte *contents;
954
955 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
956 return FALSE;
957
958 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
959 free (contents);
960 }
961
962 if ((flags & SEC_ALLOC) != 0)
963 {
964 Elf_Internal_Phdr *phdr;
965 unsigned int i, nload;
966
967 /* Some ELF linkers produce binaries with all the program header
968 p_paddr fields zero. If we have such a binary with more than
969 one PT_LOAD header, then leave the section lma equal to vma
970 so that we don't create sections with overlapping lma. */
971 phdr = elf_tdata (abfd)->phdr;
972 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
973 if (phdr->p_paddr != 0)
974 break;
975 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
976 ++nload;
977 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
978 return TRUE;
979
980 phdr = elf_tdata (abfd)->phdr;
981 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
982 {
983 if (phdr->p_type == PT_LOAD
984 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
985 {
986 if ((flags & SEC_LOAD) == 0)
987 newsect->lma = (phdr->p_paddr
988 + hdr->sh_addr - phdr->p_vaddr);
989 else
990 /* We used to use the same adjustment for SEC_LOAD
991 sections, but that doesn't work if the segment
992 is packed with code from multiple VMAs.
993 Instead we calculate the section LMA based on
994 the segment LMA. It is assumed that the
995 segment will contain sections with contiguous
996 LMAs, even if the VMAs are not. */
997 newsect->lma = (phdr->p_paddr
998 + hdr->sh_offset - phdr->p_offset);
999
1000 /* With contiguous segments, we can't tell from file
1001 offsets whether a section with zero size should
1002 be placed at the end of one segment or the
1003 beginning of the next. Decide based on vaddr. */
1004 if (hdr->sh_addr >= phdr->p_vaddr
1005 && (hdr->sh_addr + hdr->sh_size
1006 <= phdr->p_vaddr + phdr->p_memsz))
1007 break;
1008 }
1009 }
1010 }
1011
1012 return TRUE;
1013 }
1014
1015 const char *const bfd_elf_section_type_names[] = {
1016 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1017 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1018 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1019 };
1020
1021 /* ELF relocs are against symbols. If we are producing relocatable
1022 output, and the reloc is against an external symbol, and nothing
1023 has given us any additional addend, the resulting reloc will also
1024 be against the same symbol. In such a case, we don't want to
1025 change anything about the way the reloc is handled, since it will
1026 all be done at final link time. Rather than put special case code
1027 into bfd_perform_relocation, all the reloc types use this howto
1028 function. It just short circuits the reloc if producing
1029 relocatable output against an external symbol. */
1030
1031 bfd_reloc_status_type
1032 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1033 arelent *reloc_entry,
1034 asymbol *symbol,
1035 void *data ATTRIBUTE_UNUSED,
1036 asection *input_section,
1037 bfd *output_bfd,
1038 char **error_message ATTRIBUTE_UNUSED)
1039 {
1040 if (output_bfd != NULL
1041 && (symbol->flags & BSF_SECTION_SYM) == 0
1042 && (! reloc_entry->howto->partial_inplace
1043 || reloc_entry->addend == 0))
1044 {
1045 reloc_entry->address += input_section->output_offset;
1046 return bfd_reloc_ok;
1047 }
1048
1049 return bfd_reloc_continue;
1050 }
1051 \f
1052 /* Copy the program header and other data from one object module to
1053 another. */
1054
1055 bfd_boolean
1056 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1057 {
1058 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1059 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1060 return TRUE;
1061
1062 BFD_ASSERT (!elf_flags_init (obfd)
1063 || (elf_elfheader (obfd)->e_flags
1064 == elf_elfheader (ibfd)->e_flags));
1065
1066 elf_gp (obfd) = elf_gp (ibfd);
1067 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1068 elf_flags_init (obfd) = TRUE;
1069
1070 /* Copy object attributes. */
1071 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1072 return TRUE;
1073 }
1074
1075 static const char *
1076 get_segment_type (unsigned int p_type)
1077 {
1078 const char *pt;
1079 switch (p_type)
1080 {
1081 case PT_NULL: pt = "NULL"; break;
1082 case PT_LOAD: pt = "LOAD"; break;
1083 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1084 case PT_INTERP: pt = "INTERP"; break;
1085 case PT_NOTE: pt = "NOTE"; break;
1086 case PT_SHLIB: pt = "SHLIB"; break;
1087 case PT_PHDR: pt = "PHDR"; break;
1088 case PT_TLS: pt = "TLS"; break;
1089 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1090 case PT_GNU_STACK: pt = "STACK"; break;
1091 case PT_GNU_RELRO: pt = "RELRO"; break;
1092 default: pt = NULL; break;
1093 }
1094 return pt;
1095 }
1096
1097 /* Print out the program headers. */
1098
1099 bfd_boolean
1100 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1101 {
1102 FILE *f = (FILE *) farg;
1103 Elf_Internal_Phdr *p;
1104 asection *s;
1105 bfd_byte *dynbuf = NULL;
1106
1107 p = elf_tdata (abfd)->phdr;
1108 if (p != NULL)
1109 {
1110 unsigned int i, c;
1111
1112 fprintf (f, _("\nProgram Header:\n"));
1113 c = elf_elfheader (abfd)->e_phnum;
1114 for (i = 0; i < c; i++, p++)
1115 {
1116 const char *pt = get_segment_type (p->p_type);
1117 char buf[20];
1118
1119 if (pt == NULL)
1120 {
1121 sprintf (buf, "0x%lx", p->p_type);
1122 pt = buf;
1123 }
1124 fprintf (f, "%8s off 0x", pt);
1125 bfd_fprintf_vma (abfd, f, p->p_offset);
1126 fprintf (f, " vaddr 0x");
1127 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1128 fprintf (f, " paddr 0x");
1129 bfd_fprintf_vma (abfd, f, p->p_paddr);
1130 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1131 fprintf (f, " filesz 0x");
1132 bfd_fprintf_vma (abfd, f, p->p_filesz);
1133 fprintf (f, " memsz 0x");
1134 bfd_fprintf_vma (abfd, f, p->p_memsz);
1135 fprintf (f, " flags %c%c%c",
1136 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1137 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1138 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1139 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1140 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1141 fprintf (f, "\n");
1142 }
1143 }
1144
1145 s = bfd_get_section_by_name (abfd, ".dynamic");
1146 if (s != NULL)
1147 {
1148 unsigned int elfsec;
1149 unsigned long shlink;
1150 bfd_byte *extdyn, *extdynend;
1151 size_t extdynsize;
1152 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1153
1154 fprintf (f, _("\nDynamic Section:\n"));
1155
1156 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1157 goto error_return;
1158
1159 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1160 if (elfsec == SHN_BAD)
1161 goto error_return;
1162 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1163
1164 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1165 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1166
1167 extdyn = dynbuf;
1168 extdynend = extdyn + s->size;
1169 for (; extdyn < extdynend; extdyn += extdynsize)
1170 {
1171 Elf_Internal_Dyn dyn;
1172 const char *name = "";
1173 char ab[20];
1174 bfd_boolean stringp;
1175 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1176
1177 (*swap_dyn_in) (abfd, extdyn, &dyn);
1178
1179 if (dyn.d_tag == DT_NULL)
1180 break;
1181
1182 stringp = FALSE;
1183 switch (dyn.d_tag)
1184 {
1185 default:
1186 if (bed->elf_backend_get_target_dtag)
1187 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1188
1189 if (!strcmp (name, ""))
1190 {
1191 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1192 name = ab;
1193 }
1194 break;
1195
1196 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1197 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1198 case DT_PLTGOT: name = "PLTGOT"; break;
1199 case DT_HASH: name = "HASH"; break;
1200 case DT_STRTAB: name = "STRTAB"; break;
1201 case DT_SYMTAB: name = "SYMTAB"; break;
1202 case DT_RELA: name = "RELA"; break;
1203 case DT_RELASZ: name = "RELASZ"; break;
1204 case DT_RELAENT: name = "RELAENT"; break;
1205 case DT_STRSZ: name = "STRSZ"; break;
1206 case DT_SYMENT: name = "SYMENT"; break;
1207 case DT_INIT: name = "INIT"; break;
1208 case DT_FINI: name = "FINI"; break;
1209 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1210 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1211 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1212 case DT_REL: name = "REL"; break;
1213 case DT_RELSZ: name = "RELSZ"; break;
1214 case DT_RELENT: name = "RELENT"; break;
1215 case DT_PLTREL: name = "PLTREL"; break;
1216 case DT_DEBUG: name = "DEBUG"; break;
1217 case DT_TEXTREL: name = "TEXTREL"; break;
1218 case DT_JMPREL: name = "JMPREL"; break;
1219 case DT_BIND_NOW: name = "BIND_NOW"; break;
1220 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1221 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1222 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1223 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1224 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1225 case DT_FLAGS: name = "FLAGS"; break;
1226 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1227 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1228 case DT_CHECKSUM: name = "CHECKSUM"; break;
1229 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1230 case DT_MOVEENT: name = "MOVEENT"; break;
1231 case DT_MOVESZ: name = "MOVESZ"; break;
1232 case DT_FEATURE: name = "FEATURE"; break;
1233 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1234 case DT_SYMINSZ: name = "SYMINSZ"; break;
1235 case DT_SYMINENT: name = "SYMINENT"; break;
1236 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1237 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1238 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1239 case DT_PLTPAD: name = "PLTPAD"; break;
1240 case DT_MOVETAB: name = "MOVETAB"; break;
1241 case DT_SYMINFO: name = "SYMINFO"; break;
1242 case DT_RELACOUNT: name = "RELACOUNT"; break;
1243 case DT_RELCOUNT: name = "RELCOUNT"; break;
1244 case DT_FLAGS_1: name = "FLAGS_1"; break;
1245 case DT_VERSYM: name = "VERSYM"; break;
1246 case DT_VERDEF: name = "VERDEF"; break;
1247 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1248 case DT_VERNEED: name = "VERNEED"; break;
1249 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1250 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1251 case DT_USED: name = "USED"; break;
1252 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1253 case DT_GNU_HASH: name = "GNU_HASH"; break;
1254 }
1255
1256 fprintf (f, " %-20s ", name);
1257 if (! stringp)
1258 {
1259 fprintf (f, "0x");
1260 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1261 }
1262 else
1263 {
1264 const char *string;
1265 unsigned int tagv = dyn.d_un.d_val;
1266
1267 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1268 if (string == NULL)
1269 goto error_return;
1270 fprintf (f, "%s", string);
1271 }
1272 fprintf (f, "\n");
1273 }
1274
1275 free (dynbuf);
1276 dynbuf = NULL;
1277 }
1278
1279 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1280 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1281 {
1282 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1283 return FALSE;
1284 }
1285
1286 if (elf_dynverdef (abfd) != 0)
1287 {
1288 Elf_Internal_Verdef *t;
1289
1290 fprintf (f, _("\nVersion definitions:\n"));
1291 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1292 {
1293 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1294 t->vd_flags, t->vd_hash,
1295 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1296 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1297 {
1298 Elf_Internal_Verdaux *a;
1299
1300 fprintf (f, "\t");
1301 for (a = t->vd_auxptr->vda_nextptr;
1302 a != NULL;
1303 a = a->vda_nextptr)
1304 fprintf (f, "%s ",
1305 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1306 fprintf (f, "\n");
1307 }
1308 }
1309 }
1310
1311 if (elf_dynverref (abfd) != 0)
1312 {
1313 Elf_Internal_Verneed *t;
1314
1315 fprintf (f, _("\nVersion References:\n"));
1316 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1317 {
1318 Elf_Internal_Vernaux *a;
1319
1320 fprintf (f, _(" required from %s:\n"),
1321 t->vn_filename ? t->vn_filename : "<corrupt>");
1322 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1323 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1324 a->vna_flags, a->vna_other,
1325 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1326 }
1327 }
1328
1329 return TRUE;
1330
1331 error_return:
1332 if (dynbuf != NULL)
1333 free (dynbuf);
1334 return FALSE;
1335 }
1336
1337 /* Display ELF-specific fields of a symbol. */
1338
1339 void
1340 bfd_elf_print_symbol (bfd *abfd,
1341 void *filep,
1342 asymbol *symbol,
1343 bfd_print_symbol_type how)
1344 {
1345 FILE *file = (FILE *) filep;
1346 switch (how)
1347 {
1348 case bfd_print_symbol_name:
1349 fprintf (file, "%s", symbol->name);
1350 break;
1351 case bfd_print_symbol_more:
1352 fprintf (file, "elf ");
1353 bfd_fprintf_vma (abfd, file, symbol->value);
1354 fprintf (file, " %lx", (unsigned long) symbol->flags);
1355 break;
1356 case bfd_print_symbol_all:
1357 {
1358 const char *section_name;
1359 const char *name = NULL;
1360 const struct elf_backend_data *bed;
1361 unsigned char st_other;
1362 bfd_vma val;
1363
1364 section_name = symbol->section ? symbol->section->name : "(*none*)";
1365
1366 bed = get_elf_backend_data (abfd);
1367 if (bed->elf_backend_print_symbol_all)
1368 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1369
1370 if (name == NULL)
1371 {
1372 name = symbol->name;
1373 bfd_print_symbol_vandf (abfd, file, symbol);
1374 }
1375
1376 fprintf (file, " %s\t", section_name);
1377 /* Print the "other" value for a symbol. For common symbols,
1378 we've already printed the size; now print the alignment.
1379 For other symbols, we have no specified alignment, and
1380 we've printed the address; now print the size. */
1381 if (symbol->section && bfd_is_com_section (symbol->section))
1382 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1383 else
1384 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1385 bfd_fprintf_vma (abfd, file, val);
1386
1387 /* If we have version information, print it. */
1388 if (elf_tdata (abfd)->dynversym_section != 0
1389 && (elf_tdata (abfd)->dynverdef_section != 0
1390 || elf_tdata (abfd)->dynverref_section != 0))
1391 {
1392 unsigned int vernum;
1393 const char *version_string;
1394
1395 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1396
1397 if (vernum == 0)
1398 version_string = "";
1399 else if (vernum == 1)
1400 version_string = "Base";
1401 else if (vernum <= elf_tdata (abfd)->cverdefs)
1402 version_string =
1403 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1404 else
1405 {
1406 Elf_Internal_Verneed *t;
1407
1408 version_string = "";
1409 for (t = elf_tdata (abfd)->verref;
1410 t != NULL;
1411 t = t->vn_nextref)
1412 {
1413 Elf_Internal_Vernaux *a;
1414
1415 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1416 {
1417 if (a->vna_other == vernum)
1418 {
1419 version_string = a->vna_nodename;
1420 break;
1421 }
1422 }
1423 }
1424 }
1425
1426 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1427 fprintf (file, " %-11s", version_string);
1428 else
1429 {
1430 int i;
1431
1432 fprintf (file, " (%s)", version_string);
1433 for (i = 10 - strlen (version_string); i > 0; --i)
1434 putc (' ', file);
1435 }
1436 }
1437
1438 /* If the st_other field is not zero, print it. */
1439 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1440
1441 switch (st_other)
1442 {
1443 case 0: break;
1444 case STV_INTERNAL: fprintf (file, " .internal"); break;
1445 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1446 case STV_PROTECTED: fprintf (file, " .protected"); break;
1447 default:
1448 /* Some other non-defined flags are also present, so print
1449 everything hex. */
1450 fprintf (file, " 0x%02x", (unsigned int) st_other);
1451 }
1452
1453 fprintf (file, " %s", name);
1454 }
1455 break;
1456 }
1457 }
1458
1459 /* Allocate an ELF string table--force the first byte to be zero. */
1460
1461 struct bfd_strtab_hash *
1462 _bfd_elf_stringtab_init (void)
1463 {
1464 struct bfd_strtab_hash *ret;
1465
1466 ret = _bfd_stringtab_init ();
1467 if (ret != NULL)
1468 {
1469 bfd_size_type loc;
1470
1471 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1472 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1473 if (loc == (bfd_size_type) -1)
1474 {
1475 _bfd_stringtab_free (ret);
1476 ret = NULL;
1477 }
1478 }
1479 return ret;
1480 }
1481 \f
1482 /* ELF .o/exec file reading */
1483
1484 /* Create a new bfd section from an ELF section header. */
1485
1486 bfd_boolean
1487 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1488 {
1489 Elf_Internal_Shdr *hdr;
1490 Elf_Internal_Ehdr *ehdr;
1491 const struct elf_backend_data *bed;
1492 const char *name;
1493
1494 if (shindex >= elf_numsections (abfd))
1495 return FALSE;
1496
1497 hdr = elf_elfsections (abfd)[shindex];
1498 ehdr = elf_elfheader (abfd);
1499 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1500 hdr->sh_name);
1501 if (name == NULL)
1502 return FALSE;
1503
1504 bed = get_elf_backend_data (abfd);
1505 switch (hdr->sh_type)
1506 {
1507 case SHT_NULL:
1508 /* Inactive section. Throw it away. */
1509 return TRUE;
1510
1511 case SHT_PROGBITS: /* Normal section with contents. */
1512 case SHT_NOBITS: /* .bss section. */
1513 case SHT_HASH: /* .hash section. */
1514 case SHT_NOTE: /* .note section. */
1515 case SHT_INIT_ARRAY: /* .init_array section. */
1516 case SHT_FINI_ARRAY: /* .fini_array section. */
1517 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1518 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1519 case SHT_GNU_HASH: /* .gnu.hash section. */
1520 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1521
1522 case SHT_DYNAMIC: /* Dynamic linking information. */
1523 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1524 return FALSE;
1525 if (hdr->sh_link > elf_numsections (abfd))
1526 {
1527 /* PR 10478: Accept Solaris binaries with a sh_link
1528 field set to SHN_BEFORE or SHN_AFTER. */
1529 switch (bfd_get_arch (abfd))
1530 {
1531 case bfd_arch_i386:
1532 case bfd_arch_sparc:
1533 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1534 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1535 break;
1536 /* Otherwise fall through. */
1537 default:
1538 return FALSE;
1539 }
1540 }
1541 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1542 return FALSE;
1543 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1544 {
1545 Elf_Internal_Shdr *dynsymhdr;
1546
1547 /* The shared libraries distributed with hpux11 have a bogus
1548 sh_link field for the ".dynamic" section. Find the
1549 string table for the ".dynsym" section instead. */
1550 if (elf_dynsymtab (abfd) != 0)
1551 {
1552 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1553 hdr->sh_link = dynsymhdr->sh_link;
1554 }
1555 else
1556 {
1557 unsigned int i, num_sec;
1558
1559 num_sec = elf_numsections (abfd);
1560 for (i = 1; i < num_sec; i++)
1561 {
1562 dynsymhdr = elf_elfsections (abfd)[i];
1563 if (dynsymhdr->sh_type == SHT_DYNSYM)
1564 {
1565 hdr->sh_link = dynsymhdr->sh_link;
1566 break;
1567 }
1568 }
1569 }
1570 }
1571 break;
1572
1573 case SHT_SYMTAB: /* A symbol table */
1574 if (elf_onesymtab (abfd) == shindex)
1575 return TRUE;
1576
1577 if (hdr->sh_entsize != bed->s->sizeof_sym)
1578 return FALSE;
1579 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1580 return FALSE;
1581 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1582 elf_onesymtab (abfd) = shindex;
1583 elf_tdata (abfd)->symtab_hdr = *hdr;
1584 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1585 abfd->flags |= HAS_SYMS;
1586
1587 /* Sometimes a shared object will map in the symbol table. If
1588 SHF_ALLOC is set, and this is a shared object, then we also
1589 treat this section as a BFD section. We can not base the
1590 decision purely on SHF_ALLOC, because that flag is sometimes
1591 set in a relocatable object file, which would confuse the
1592 linker. */
1593 if ((hdr->sh_flags & SHF_ALLOC) != 0
1594 && (abfd->flags & DYNAMIC) != 0
1595 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1596 shindex))
1597 return FALSE;
1598
1599 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1600 can't read symbols without that section loaded as well. It
1601 is most likely specified by the next section header. */
1602 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1603 {
1604 unsigned int i, num_sec;
1605
1606 num_sec = elf_numsections (abfd);
1607 for (i = shindex + 1; i < num_sec; i++)
1608 {
1609 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1610 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1611 && hdr2->sh_link == shindex)
1612 break;
1613 }
1614 if (i == num_sec)
1615 for (i = 1; i < shindex; i++)
1616 {
1617 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1618 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1619 && hdr2->sh_link == shindex)
1620 break;
1621 }
1622 if (i != shindex)
1623 return bfd_section_from_shdr (abfd, i);
1624 }
1625 return TRUE;
1626
1627 case SHT_DYNSYM: /* A dynamic symbol table */
1628 if (elf_dynsymtab (abfd) == shindex)
1629 return TRUE;
1630
1631 if (hdr->sh_entsize != bed->s->sizeof_sym)
1632 return FALSE;
1633 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1634 elf_dynsymtab (abfd) = shindex;
1635 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1636 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1637 abfd->flags |= HAS_SYMS;
1638
1639 /* Besides being a symbol table, we also treat this as a regular
1640 section, so that objcopy can handle it. */
1641 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1642
1643 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1644 if (elf_symtab_shndx (abfd) == shindex)
1645 return TRUE;
1646
1647 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1648 elf_symtab_shndx (abfd) = shindex;
1649 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1650 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1651 return TRUE;
1652
1653 case SHT_STRTAB: /* A string table */
1654 if (hdr->bfd_section != NULL)
1655 return TRUE;
1656 if (ehdr->e_shstrndx == shindex)
1657 {
1658 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1659 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1660 return TRUE;
1661 }
1662 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1663 {
1664 symtab_strtab:
1665 elf_tdata (abfd)->strtab_hdr = *hdr;
1666 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1667 return TRUE;
1668 }
1669 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1670 {
1671 dynsymtab_strtab:
1672 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1673 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1674 elf_elfsections (abfd)[shindex] = hdr;
1675 /* We also treat this as a regular section, so that objcopy
1676 can handle it. */
1677 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1678 shindex);
1679 }
1680
1681 /* If the string table isn't one of the above, then treat it as a
1682 regular section. We need to scan all the headers to be sure,
1683 just in case this strtab section appeared before the above. */
1684 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1685 {
1686 unsigned int i, num_sec;
1687
1688 num_sec = elf_numsections (abfd);
1689 for (i = 1; i < num_sec; i++)
1690 {
1691 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1692 if (hdr2->sh_link == shindex)
1693 {
1694 /* Prevent endless recursion on broken objects. */
1695 if (i == shindex)
1696 return FALSE;
1697 if (! bfd_section_from_shdr (abfd, i))
1698 return FALSE;
1699 if (elf_onesymtab (abfd) == i)
1700 goto symtab_strtab;
1701 if (elf_dynsymtab (abfd) == i)
1702 goto dynsymtab_strtab;
1703 }
1704 }
1705 }
1706 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1707
1708 case SHT_REL:
1709 case SHT_RELA:
1710 /* *These* do a lot of work -- but build no sections! */
1711 {
1712 asection *target_sect;
1713 Elf_Internal_Shdr *hdr2;
1714 unsigned int num_sec = elf_numsections (abfd);
1715
1716 if (hdr->sh_entsize
1717 != (bfd_size_type) (hdr->sh_type == SHT_REL
1718 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1719 return FALSE;
1720
1721 /* Check for a bogus link to avoid crashing. */
1722 if (hdr->sh_link >= num_sec)
1723 {
1724 ((*_bfd_error_handler)
1725 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1726 abfd, hdr->sh_link, name, shindex));
1727 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1728 shindex);
1729 }
1730
1731 /* For some incomprehensible reason Oracle distributes
1732 libraries for Solaris in which some of the objects have
1733 bogus sh_link fields. It would be nice if we could just
1734 reject them, but, unfortunately, some people need to use
1735 them. We scan through the section headers; if we find only
1736 one suitable symbol table, we clobber the sh_link to point
1737 to it. I hope this doesn't break anything.
1738
1739 Don't do it on executable nor shared library. */
1740 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1741 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1742 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1743 {
1744 unsigned int scan;
1745 int found;
1746
1747 found = 0;
1748 for (scan = 1; scan < num_sec; scan++)
1749 {
1750 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1751 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1752 {
1753 if (found != 0)
1754 {
1755 found = 0;
1756 break;
1757 }
1758 found = scan;
1759 }
1760 }
1761 if (found != 0)
1762 hdr->sh_link = found;
1763 }
1764
1765 /* Get the symbol table. */
1766 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1767 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1768 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1769 return FALSE;
1770
1771 /* If this reloc section does not use the main symbol table we
1772 don't treat it as a reloc section. BFD can't adequately
1773 represent such a section, so at least for now, we don't
1774 try. We just present it as a normal section. We also
1775 can't use it as a reloc section if it points to the null
1776 section, an invalid section, another reloc section, or its
1777 sh_link points to the null section. */
1778 if (hdr->sh_link != elf_onesymtab (abfd)
1779 || hdr->sh_link == SHN_UNDEF
1780 || hdr->sh_info == SHN_UNDEF
1781 || hdr->sh_info >= num_sec
1782 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1783 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1784 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1785 shindex);
1786
1787 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1788 return FALSE;
1789 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1790 if (target_sect == NULL)
1791 return FALSE;
1792
1793 if ((target_sect->flags & SEC_RELOC) == 0
1794 || target_sect->reloc_count == 0)
1795 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1796 else
1797 {
1798 bfd_size_type amt;
1799 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1800 amt = sizeof (*hdr2);
1801 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1802 if (hdr2 == NULL)
1803 return FALSE;
1804 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1805 }
1806 *hdr2 = *hdr;
1807 elf_elfsections (abfd)[shindex] = hdr2;
1808 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1809 target_sect->flags |= SEC_RELOC;
1810 target_sect->relocation = NULL;
1811 target_sect->rel_filepos = hdr->sh_offset;
1812 /* In the section to which the relocations apply, mark whether
1813 its relocations are of the REL or RELA variety. */
1814 if (hdr->sh_size != 0)
1815 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1816 abfd->flags |= HAS_RELOC;
1817 return TRUE;
1818 }
1819
1820 case SHT_GNU_verdef:
1821 elf_dynverdef (abfd) = shindex;
1822 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1823 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1824
1825 case SHT_GNU_versym:
1826 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1827 return FALSE;
1828 elf_dynversym (abfd) = shindex;
1829 elf_tdata (abfd)->dynversym_hdr = *hdr;
1830 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1831
1832 case SHT_GNU_verneed:
1833 elf_dynverref (abfd) = shindex;
1834 elf_tdata (abfd)->dynverref_hdr = *hdr;
1835 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1836
1837 case SHT_SHLIB:
1838 return TRUE;
1839
1840 case SHT_GROUP:
1841 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1842 return FALSE;
1843 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1844 return FALSE;
1845 if (hdr->contents != NULL)
1846 {
1847 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1848 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1849 asection *s;
1850
1851 if (idx->flags & GRP_COMDAT)
1852 hdr->bfd_section->flags
1853 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1854
1855 /* We try to keep the same section order as it comes in. */
1856 idx += n_elt;
1857 while (--n_elt != 0)
1858 {
1859 --idx;
1860
1861 if (idx->shdr != NULL
1862 && (s = idx->shdr->bfd_section) != NULL
1863 && elf_next_in_group (s) != NULL)
1864 {
1865 elf_next_in_group (hdr->bfd_section) = s;
1866 break;
1867 }
1868 }
1869 }
1870 break;
1871
1872 default:
1873 /* Possibly an attributes section. */
1874 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1875 || hdr->sh_type == bed->obj_attrs_section_type)
1876 {
1877 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1878 return FALSE;
1879 _bfd_elf_parse_attributes (abfd, hdr);
1880 return TRUE;
1881 }
1882
1883 /* Check for any processor-specific section types. */
1884 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1885 return TRUE;
1886
1887 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1888 {
1889 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1890 /* FIXME: How to properly handle allocated section reserved
1891 for applications? */
1892 (*_bfd_error_handler)
1893 (_("%B: don't know how to handle allocated, application "
1894 "specific section `%s' [0x%8x]"),
1895 abfd, name, hdr->sh_type);
1896 else
1897 /* Allow sections reserved for applications. */
1898 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1899 shindex);
1900 }
1901 else if (hdr->sh_type >= SHT_LOPROC
1902 && hdr->sh_type <= SHT_HIPROC)
1903 /* FIXME: We should handle this section. */
1904 (*_bfd_error_handler)
1905 (_("%B: don't know how to handle processor specific section "
1906 "`%s' [0x%8x]"),
1907 abfd, name, hdr->sh_type);
1908 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1909 {
1910 /* Unrecognised OS-specific sections. */
1911 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1912 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1913 required to correctly process the section and the file should
1914 be rejected with an error message. */
1915 (*_bfd_error_handler)
1916 (_("%B: don't know how to handle OS specific section "
1917 "`%s' [0x%8x]"),
1918 abfd, name, hdr->sh_type);
1919 else
1920 /* Otherwise it should be processed. */
1921 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1922 }
1923 else
1924 /* FIXME: We should handle this section. */
1925 (*_bfd_error_handler)
1926 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1927 abfd, name, hdr->sh_type);
1928
1929 return FALSE;
1930 }
1931
1932 return TRUE;
1933 }
1934
1935 /* Return the local symbol specified by ABFD, R_SYMNDX. */
1936
1937 Elf_Internal_Sym *
1938 bfd_sym_from_r_symndx (struct sym_cache *cache,
1939 bfd *abfd,
1940 unsigned long r_symndx)
1941 {
1942 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1943
1944 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1945 {
1946 Elf_Internal_Shdr *symtab_hdr;
1947 unsigned char esym[sizeof (Elf64_External_Sym)];
1948 Elf_External_Sym_Shndx eshndx;
1949
1950 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1951 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1952 &cache->sym[ent], esym, &eshndx) == NULL)
1953 return NULL;
1954
1955 if (cache->abfd != abfd)
1956 {
1957 memset (cache->indx, -1, sizeof (cache->indx));
1958 cache->abfd = abfd;
1959 }
1960 cache->indx[ent] = r_symndx;
1961 }
1962
1963 return &cache->sym[ent];
1964 }
1965
1966 /* Given an ELF section number, retrieve the corresponding BFD
1967 section. */
1968
1969 asection *
1970 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
1971 {
1972 if (sec_index >= elf_numsections (abfd))
1973 return NULL;
1974 return elf_elfsections (abfd)[sec_index]->bfd_section;
1975 }
1976
1977 static const struct bfd_elf_special_section special_sections_b[] =
1978 {
1979 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1980 { NULL, 0, 0, 0, 0 }
1981 };
1982
1983 static const struct bfd_elf_special_section special_sections_c[] =
1984 {
1985 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1986 { NULL, 0, 0, 0, 0 }
1987 };
1988
1989 static const struct bfd_elf_special_section special_sections_d[] =
1990 {
1991 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1992 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1993 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1994 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1995 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1996 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1997 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1998 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1999 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2000 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2001 { NULL, 0, 0, 0, 0 }
2002 };
2003
2004 static const struct bfd_elf_special_section special_sections_f[] =
2005 {
2006 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2007 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2008 { NULL, 0, 0, 0, 0 }
2009 };
2010
2011 static const struct bfd_elf_special_section special_sections_g[] =
2012 {
2013 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2014 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2015 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2016 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2017 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2018 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2019 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2020 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2021 { NULL, 0, 0, 0, 0 }
2022 };
2023
2024 static const struct bfd_elf_special_section special_sections_h[] =
2025 {
2026 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2027 { NULL, 0, 0, 0, 0 }
2028 };
2029
2030 static const struct bfd_elf_special_section special_sections_i[] =
2031 {
2032 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2033 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2034 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2035 { NULL, 0, 0, 0, 0 }
2036 };
2037
2038 static const struct bfd_elf_special_section special_sections_l[] =
2039 {
2040 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2041 { NULL, 0, 0, 0, 0 }
2042 };
2043
2044 static const struct bfd_elf_special_section special_sections_n[] =
2045 {
2046 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2047 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2048 { NULL, 0, 0, 0, 0 }
2049 };
2050
2051 static const struct bfd_elf_special_section special_sections_p[] =
2052 {
2053 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2054 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2055 { NULL, 0, 0, 0, 0 }
2056 };
2057
2058 static const struct bfd_elf_special_section special_sections_r[] =
2059 {
2060 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2061 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2062 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2063 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2064 { NULL, 0, 0, 0, 0 }
2065 };
2066
2067 static const struct bfd_elf_special_section special_sections_s[] =
2068 {
2069 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2070 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2071 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2072 /* See struct bfd_elf_special_section declaration for the semantics of
2073 this special case where .prefix_length != strlen (.prefix). */
2074 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2075 { NULL, 0, 0, 0, 0 }
2076 };
2077
2078 static const struct bfd_elf_special_section special_sections_t[] =
2079 {
2080 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2081 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2082 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2083 { NULL, 0, 0, 0, 0 }
2084 };
2085
2086 static const struct bfd_elf_special_section special_sections_z[] =
2087 {
2088 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2089 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2090 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2091 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2092 { NULL, 0, 0, 0, 0 }
2093 };
2094
2095 static const struct bfd_elf_special_section *special_sections[] =
2096 {
2097 special_sections_b, /* 'b' */
2098 special_sections_c, /* 'c' */
2099 special_sections_d, /* 'd' */
2100 NULL, /* 'e' */
2101 special_sections_f, /* 'f' */
2102 special_sections_g, /* 'g' */
2103 special_sections_h, /* 'h' */
2104 special_sections_i, /* 'i' */
2105 NULL, /* 'j' */
2106 NULL, /* 'k' */
2107 special_sections_l, /* 'l' */
2108 NULL, /* 'm' */
2109 special_sections_n, /* 'n' */
2110 NULL, /* 'o' */
2111 special_sections_p, /* 'p' */
2112 NULL, /* 'q' */
2113 special_sections_r, /* 'r' */
2114 special_sections_s, /* 's' */
2115 special_sections_t, /* 't' */
2116 NULL, /* 'u' */
2117 NULL, /* 'v' */
2118 NULL, /* 'w' */
2119 NULL, /* 'x' */
2120 NULL, /* 'y' */
2121 special_sections_z /* 'z' */
2122 };
2123
2124 const struct bfd_elf_special_section *
2125 _bfd_elf_get_special_section (const char *name,
2126 const struct bfd_elf_special_section *spec,
2127 unsigned int rela)
2128 {
2129 int i;
2130 int len;
2131
2132 len = strlen (name);
2133
2134 for (i = 0; spec[i].prefix != NULL; i++)
2135 {
2136 int suffix_len;
2137 int prefix_len = spec[i].prefix_length;
2138
2139 if (len < prefix_len)
2140 continue;
2141 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2142 continue;
2143
2144 suffix_len = spec[i].suffix_length;
2145 if (suffix_len <= 0)
2146 {
2147 if (name[prefix_len] != 0)
2148 {
2149 if (suffix_len == 0)
2150 continue;
2151 if (name[prefix_len] != '.'
2152 && (suffix_len == -2
2153 || (rela && spec[i].type == SHT_REL)))
2154 continue;
2155 }
2156 }
2157 else
2158 {
2159 if (len < prefix_len + suffix_len)
2160 continue;
2161 if (memcmp (name + len - suffix_len,
2162 spec[i].prefix + prefix_len,
2163 suffix_len) != 0)
2164 continue;
2165 }
2166 return &spec[i];
2167 }
2168
2169 return NULL;
2170 }
2171
2172 const struct bfd_elf_special_section *
2173 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2174 {
2175 int i;
2176 const struct bfd_elf_special_section *spec;
2177 const struct elf_backend_data *bed;
2178
2179 /* See if this is one of the special sections. */
2180 if (sec->name == NULL)
2181 return NULL;
2182
2183 bed = get_elf_backend_data (abfd);
2184 spec = bed->special_sections;
2185 if (spec)
2186 {
2187 spec = _bfd_elf_get_special_section (sec->name,
2188 bed->special_sections,
2189 sec->use_rela_p);
2190 if (spec != NULL)
2191 return spec;
2192 }
2193
2194 if (sec->name[0] != '.')
2195 return NULL;
2196
2197 i = sec->name[1] - 'b';
2198 if (i < 0 || i > 'z' - 'b')
2199 return NULL;
2200
2201 spec = special_sections[i];
2202
2203 if (spec == NULL)
2204 return NULL;
2205
2206 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2207 }
2208
2209 bfd_boolean
2210 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2211 {
2212 struct bfd_elf_section_data *sdata;
2213 const struct elf_backend_data *bed;
2214 const struct bfd_elf_special_section *ssect;
2215
2216 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2217 if (sdata == NULL)
2218 {
2219 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2220 sizeof (*sdata));
2221 if (sdata == NULL)
2222 return FALSE;
2223 sec->used_by_bfd = sdata;
2224 }
2225
2226 /* Indicate whether or not this section should use RELA relocations. */
2227 bed = get_elf_backend_data (abfd);
2228 sec->use_rela_p = bed->default_use_rela_p;
2229
2230 /* When we read a file, we don't need to set ELF section type and
2231 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2232 anyway. We will set ELF section type and flags for all linker
2233 created sections. If user specifies BFD section flags, we will
2234 set ELF section type and flags based on BFD section flags in
2235 elf_fake_sections. */
2236 if ((!sec->flags && abfd->direction != read_direction)
2237 || (sec->flags & SEC_LINKER_CREATED) != 0)
2238 {
2239 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2240 if (ssect != NULL)
2241 {
2242 elf_section_type (sec) = ssect->type;
2243 elf_section_flags (sec) = ssect->attr;
2244 }
2245 }
2246
2247 return _bfd_generic_new_section_hook (abfd, sec);
2248 }
2249
2250 /* Create a new bfd section from an ELF program header.
2251
2252 Since program segments have no names, we generate a synthetic name
2253 of the form segment<NUM>, where NUM is generally the index in the
2254 program header table. For segments that are split (see below) we
2255 generate the names segment<NUM>a and segment<NUM>b.
2256
2257 Note that some program segments may have a file size that is different than
2258 (less than) the memory size. All this means is that at execution the
2259 system must allocate the amount of memory specified by the memory size,
2260 but only initialize it with the first "file size" bytes read from the
2261 file. This would occur for example, with program segments consisting
2262 of combined data+bss.
2263
2264 To handle the above situation, this routine generates TWO bfd sections
2265 for the single program segment. The first has the length specified by
2266 the file size of the segment, and the second has the length specified
2267 by the difference between the two sizes. In effect, the segment is split
2268 into its initialized and uninitialized parts.
2269
2270 */
2271
2272 bfd_boolean
2273 _bfd_elf_make_section_from_phdr (bfd *abfd,
2274 Elf_Internal_Phdr *hdr,
2275 int hdr_index,
2276 const char *type_name)
2277 {
2278 asection *newsect;
2279 char *name;
2280 char namebuf[64];
2281 size_t len;
2282 int split;
2283
2284 split = ((hdr->p_memsz > 0)
2285 && (hdr->p_filesz > 0)
2286 && (hdr->p_memsz > hdr->p_filesz));
2287
2288 if (hdr->p_filesz > 0)
2289 {
2290 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2291 len = strlen (namebuf) + 1;
2292 name = (char *) bfd_alloc (abfd, len);
2293 if (!name)
2294 return FALSE;
2295 memcpy (name, namebuf, len);
2296 newsect = bfd_make_section (abfd, name);
2297 if (newsect == NULL)
2298 return FALSE;
2299 newsect->vma = hdr->p_vaddr;
2300 newsect->lma = hdr->p_paddr;
2301 newsect->size = hdr->p_filesz;
2302 newsect->filepos = hdr->p_offset;
2303 newsect->flags |= SEC_HAS_CONTENTS;
2304 newsect->alignment_power = bfd_log2 (hdr->p_align);
2305 if (hdr->p_type == PT_LOAD)
2306 {
2307 newsect->flags |= SEC_ALLOC;
2308 newsect->flags |= SEC_LOAD;
2309 if (hdr->p_flags & PF_X)
2310 {
2311 /* FIXME: all we known is that it has execute PERMISSION,
2312 may be data. */
2313 newsect->flags |= SEC_CODE;
2314 }
2315 }
2316 if (!(hdr->p_flags & PF_W))
2317 {
2318 newsect->flags |= SEC_READONLY;
2319 }
2320 }
2321
2322 if (hdr->p_memsz > hdr->p_filesz)
2323 {
2324 bfd_vma align;
2325
2326 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2327 len = strlen (namebuf) + 1;
2328 name = (char *) bfd_alloc (abfd, len);
2329 if (!name)
2330 return FALSE;
2331 memcpy (name, namebuf, len);
2332 newsect = bfd_make_section (abfd, name);
2333 if (newsect == NULL)
2334 return FALSE;
2335 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2336 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2337 newsect->size = hdr->p_memsz - hdr->p_filesz;
2338 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2339 align = newsect->vma & -newsect->vma;
2340 if (align == 0 || align > hdr->p_align)
2341 align = hdr->p_align;
2342 newsect->alignment_power = bfd_log2 (align);
2343 if (hdr->p_type == PT_LOAD)
2344 {
2345 /* Hack for gdb. Segments that have not been modified do
2346 not have their contents written to a core file, on the
2347 assumption that a debugger can find the contents in the
2348 executable. We flag this case by setting the fake
2349 section size to zero. Note that "real" bss sections will
2350 always have their contents dumped to the core file. */
2351 if (bfd_get_format (abfd) == bfd_core)
2352 newsect->size = 0;
2353 newsect->flags |= SEC_ALLOC;
2354 if (hdr->p_flags & PF_X)
2355 newsect->flags |= SEC_CODE;
2356 }
2357 if (!(hdr->p_flags & PF_W))
2358 newsect->flags |= SEC_READONLY;
2359 }
2360
2361 return TRUE;
2362 }
2363
2364 bfd_boolean
2365 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2366 {
2367 const struct elf_backend_data *bed;
2368
2369 switch (hdr->p_type)
2370 {
2371 case PT_NULL:
2372 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2373
2374 case PT_LOAD:
2375 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2376
2377 case PT_DYNAMIC:
2378 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2379
2380 case PT_INTERP:
2381 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2382
2383 case PT_NOTE:
2384 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2385 return FALSE;
2386 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2387 return FALSE;
2388 return TRUE;
2389
2390 case PT_SHLIB:
2391 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2392
2393 case PT_PHDR:
2394 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2395
2396 case PT_GNU_EH_FRAME:
2397 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2398 "eh_frame_hdr");
2399
2400 case PT_GNU_STACK:
2401 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2402
2403 case PT_GNU_RELRO:
2404 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2405
2406 default:
2407 /* Check for any processor-specific program segment types. */
2408 bed = get_elf_backend_data (abfd);
2409 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2410 }
2411 }
2412
2413 /* Initialize REL_HDR, the section-header for new section, containing
2414 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2415 relocations; otherwise, we use REL relocations. */
2416
2417 bfd_boolean
2418 _bfd_elf_init_reloc_shdr (bfd *abfd,
2419 Elf_Internal_Shdr *rel_hdr,
2420 asection *asect,
2421 bfd_boolean use_rela_p)
2422 {
2423 char *name;
2424 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2425 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2426
2427 name = (char *) bfd_alloc (abfd, amt);
2428 if (name == NULL)
2429 return FALSE;
2430 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2431 rel_hdr->sh_name =
2432 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2433 FALSE);
2434 if (rel_hdr->sh_name == (unsigned int) -1)
2435 return FALSE;
2436 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2437 rel_hdr->sh_entsize = (use_rela_p
2438 ? bed->s->sizeof_rela
2439 : bed->s->sizeof_rel);
2440 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2441 rel_hdr->sh_flags = 0;
2442 rel_hdr->sh_addr = 0;
2443 rel_hdr->sh_size = 0;
2444 rel_hdr->sh_offset = 0;
2445
2446 return TRUE;
2447 }
2448
2449 /* Return the default section type based on the passed in section flags. */
2450
2451 int
2452 bfd_elf_get_default_section_type (flagword flags)
2453 {
2454 if ((flags & SEC_ALLOC) != 0
2455 && ((flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0
2456 || (flags & SEC_NEVER_LOAD) != 0))
2457 return SHT_NOBITS;
2458 return SHT_PROGBITS;
2459 }
2460
2461 /* Set up an ELF internal section header for a section. */
2462
2463 static void
2464 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2465 {
2466 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2467 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2468 Elf_Internal_Shdr *this_hdr;
2469 unsigned int sh_type;
2470
2471 if (*failedptr)
2472 {
2473 /* We already failed; just get out of the bfd_map_over_sections
2474 loop. */
2475 return;
2476 }
2477
2478 this_hdr = &elf_section_data (asect)->this_hdr;
2479
2480 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2481 asect->name, FALSE);
2482 if (this_hdr->sh_name == (unsigned int) -1)
2483 {
2484 *failedptr = TRUE;
2485 return;
2486 }
2487
2488 /* Don't clear sh_flags. Assembler may set additional bits. */
2489
2490 if ((asect->flags & SEC_ALLOC) != 0
2491 || asect->user_set_vma)
2492 this_hdr->sh_addr = asect->vma;
2493 else
2494 this_hdr->sh_addr = 0;
2495
2496 this_hdr->sh_offset = 0;
2497 this_hdr->sh_size = asect->size;
2498 this_hdr->sh_link = 0;
2499 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2500 /* The sh_entsize and sh_info fields may have been set already by
2501 copy_private_section_data. */
2502
2503 this_hdr->bfd_section = asect;
2504 this_hdr->contents = NULL;
2505
2506 /* If the section type is unspecified, we set it based on
2507 asect->flags. */
2508 if ((asect->flags & SEC_GROUP) != 0)
2509 sh_type = SHT_GROUP;
2510 else
2511 sh_type = bfd_elf_get_default_section_type (asect->flags);
2512
2513 if (this_hdr->sh_type == SHT_NULL)
2514 this_hdr->sh_type = sh_type;
2515 else if (this_hdr->sh_type == SHT_NOBITS
2516 && sh_type == SHT_PROGBITS
2517 && (asect->flags & SEC_ALLOC) != 0)
2518 {
2519 /* Warn if we are changing a NOBITS section to PROGBITS, but
2520 allow the link to proceed. This can happen when users link
2521 non-bss input sections to bss output sections, or emit data
2522 to a bss output section via a linker script. */
2523 (*_bfd_error_handler)
2524 (_("warning: section `%A' type changed to PROGBITS"), asect);
2525 this_hdr->sh_type = sh_type;
2526 }
2527
2528 switch (this_hdr->sh_type)
2529 {
2530 default:
2531 break;
2532
2533 case SHT_STRTAB:
2534 case SHT_INIT_ARRAY:
2535 case SHT_FINI_ARRAY:
2536 case SHT_PREINIT_ARRAY:
2537 case SHT_NOTE:
2538 case SHT_NOBITS:
2539 case SHT_PROGBITS:
2540 break;
2541
2542 case SHT_HASH:
2543 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2544 break;
2545
2546 case SHT_DYNSYM:
2547 this_hdr->sh_entsize = bed->s->sizeof_sym;
2548 break;
2549
2550 case SHT_DYNAMIC:
2551 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2552 break;
2553
2554 case SHT_RELA:
2555 if (get_elf_backend_data (abfd)->may_use_rela_p)
2556 this_hdr->sh_entsize = bed->s->sizeof_rela;
2557 break;
2558
2559 case SHT_REL:
2560 if (get_elf_backend_data (abfd)->may_use_rel_p)
2561 this_hdr->sh_entsize = bed->s->sizeof_rel;
2562 break;
2563
2564 case SHT_GNU_versym:
2565 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2566 break;
2567
2568 case SHT_GNU_verdef:
2569 this_hdr->sh_entsize = 0;
2570 /* objcopy or strip will copy over sh_info, but may not set
2571 cverdefs. The linker will set cverdefs, but sh_info will be
2572 zero. */
2573 if (this_hdr->sh_info == 0)
2574 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2575 else
2576 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2577 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2578 break;
2579
2580 case SHT_GNU_verneed:
2581 this_hdr->sh_entsize = 0;
2582 /* objcopy or strip will copy over sh_info, but may not set
2583 cverrefs. The linker will set cverrefs, but sh_info will be
2584 zero. */
2585 if (this_hdr->sh_info == 0)
2586 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2587 else
2588 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2589 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2590 break;
2591
2592 case SHT_GROUP:
2593 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2594 break;
2595
2596 case SHT_GNU_HASH:
2597 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2598 break;
2599 }
2600
2601 if ((asect->flags & SEC_ALLOC) != 0)
2602 this_hdr->sh_flags |= SHF_ALLOC;
2603 if ((asect->flags & SEC_READONLY) == 0)
2604 this_hdr->sh_flags |= SHF_WRITE;
2605 if ((asect->flags & SEC_CODE) != 0)
2606 this_hdr->sh_flags |= SHF_EXECINSTR;
2607 if ((asect->flags & SEC_MERGE) != 0)
2608 {
2609 this_hdr->sh_flags |= SHF_MERGE;
2610 this_hdr->sh_entsize = asect->entsize;
2611 if ((asect->flags & SEC_STRINGS) != 0)
2612 this_hdr->sh_flags |= SHF_STRINGS;
2613 }
2614 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2615 this_hdr->sh_flags |= SHF_GROUP;
2616 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2617 {
2618 this_hdr->sh_flags |= SHF_TLS;
2619 if (asect->size == 0
2620 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2621 {
2622 struct bfd_link_order *o = asect->map_tail.link_order;
2623
2624 this_hdr->sh_size = 0;
2625 if (o != NULL)
2626 {
2627 this_hdr->sh_size = o->offset + o->size;
2628 if (this_hdr->sh_size != 0)
2629 this_hdr->sh_type = SHT_NOBITS;
2630 }
2631 }
2632 }
2633 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2634 this_hdr->sh_flags |= SHF_EXCLUDE;
2635
2636 /* Check for processor-specific section types. */
2637 sh_type = this_hdr->sh_type;
2638 if (bed->elf_backend_fake_sections
2639 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2640 *failedptr = TRUE;
2641
2642 if (sh_type == SHT_NOBITS && asect->size != 0)
2643 {
2644 /* Don't change the header type from NOBITS if we are being
2645 called for objcopy --only-keep-debug. */
2646 this_hdr->sh_type = sh_type;
2647 }
2648
2649 /* If the section has relocs, set up a section header for the
2650 SHT_REL[A] section. If two relocation sections are required for
2651 this section, it is up to the processor-specific back-end to
2652 create the other. */
2653 if ((asect->flags & SEC_RELOC) != 0
2654 && !_bfd_elf_init_reloc_shdr (abfd,
2655 &elf_section_data (asect)->rel_hdr,
2656 asect,
2657 asect->use_rela_p))
2658 *failedptr = TRUE;
2659 }
2660
2661 /* Fill in the contents of a SHT_GROUP section. Called from
2662 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2663 when ELF targets use the generic linker, ld. Called for ld -r
2664 from bfd_elf_final_link. */
2665
2666 void
2667 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2668 {
2669 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2670 asection *elt, *first;
2671 unsigned char *loc;
2672 bfd_boolean gas;
2673
2674 /* Ignore linker created group section. See elfNN_ia64_object_p in
2675 elfxx-ia64.c. */
2676 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2677 || *failedptr)
2678 return;
2679
2680 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2681 {
2682 unsigned long symindx = 0;
2683
2684 /* elf_group_id will have been set up by objcopy and the
2685 generic linker. */
2686 if (elf_group_id (sec) != NULL)
2687 symindx = elf_group_id (sec)->udata.i;
2688
2689 if (symindx == 0)
2690 {
2691 /* If called from the assembler, swap_out_syms will have set up
2692 elf_section_syms. */
2693 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2694 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2695 }
2696 elf_section_data (sec)->this_hdr.sh_info = symindx;
2697 }
2698 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2699 {
2700 /* The ELF backend linker sets sh_info to -2 when the group
2701 signature symbol is global, and thus the index can't be
2702 set until all local symbols are output. */
2703 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2704 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2705 unsigned long symndx = sec_data->this_hdr.sh_info;
2706 unsigned long extsymoff = 0;
2707 struct elf_link_hash_entry *h;
2708
2709 if (!elf_bad_symtab (igroup->owner))
2710 {
2711 Elf_Internal_Shdr *symtab_hdr;
2712
2713 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2714 extsymoff = symtab_hdr->sh_info;
2715 }
2716 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2717 while (h->root.type == bfd_link_hash_indirect
2718 || h->root.type == bfd_link_hash_warning)
2719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2720
2721 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2722 }
2723
2724 /* The contents won't be allocated for "ld -r" or objcopy. */
2725 gas = TRUE;
2726 if (sec->contents == NULL)
2727 {
2728 gas = FALSE;
2729 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2730
2731 /* Arrange for the section to be written out. */
2732 elf_section_data (sec)->this_hdr.contents = sec->contents;
2733 if (sec->contents == NULL)
2734 {
2735 *failedptr = TRUE;
2736 return;
2737 }
2738 }
2739
2740 loc = sec->contents + sec->size;
2741
2742 /* Get the pointer to the first section in the group that gas
2743 squirreled away here. objcopy arranges for this to be set to the
2744 start of the input section group. */
2745 first = elt = elf_next_in_group (sec);
2746
2747 /* First element is a flag word. Rest of section is elf section
2748 indices for all the sections of the group. Write them backwards
2749 just to keep the group in the same order as given in .section
2750 directives, not that it matters. */
2751 while (elt != NULL)
2752 {
2753 asection *s;
2754
2755 s = elt;
2756 if (!gas)
2757 s = s->output_section;
2758 if (s != NULL
2759 && !bfd_is_abs_section (s))
2760 {
2761 unsigned int idx = elf_section_data (s)->this_idx;
2762
2763 loc -= 4;
2764 H_PUT_32 (abfd, idx, loc);
2765 }
2766 elt = elf_next_in_group (elt);
2767 if (elt == first)
2768 break;
2769 }
2770
2771 if ((loc -= 4) != sec->contents)
2772 abort ();
2773
2774 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2775 }
2776
2777 /* Assign all ELF section numbers. The dummy first section is handled here
2778 too. The link/info pointers for the standard section types are filled
2779 in here too, while we're at it. */
2780
2781 static bfd_boolean
2782 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2783 {
2784 struct elf_obj_tdata *t = elf_tdata (abfd);
2785 asection *sec;
2786 unsigned int section_number, secn;
2787 Elf_Internal_Shdr **i_shdrp;
2788 struct bfd_elf_section_data *d;
2789 bfd_boolean need_symtab;
2790
2791 section_number = 1;
2792
2793 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2794
2795 /* SHT_GROUP sections are in relocatable files only. */
2796 if (link_info == NULL || link_info->relocatable)
2797 {
2798 /* Put SHT_GROUP sections first. */
2799 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2800 {
2801 d = elf_section_data (sec);
2802
2803 if (d->this_hdr.sh_type == SHT_GROUP)
2804 {
2805 if (sec->flags & SEC_LINKER_CREATED)
2806 {
2807 /* Remove the linker created SHT_GROUP sections. */
2808 bfd_section_list_remove (abfd, sec);
2809 abfd->section_count--;
2810 }
2811 else
2812 d->this_idx = section_number++;
2813 }
2814 }
2815 }
2816
2817 for (sec = abfd->sections; sec; sec = sec->next)
2818 {
2819 d = elf_section_data (sec);
2820
2821 if (d->this_hdr.sh_type != SHT_GROUP)
2822 d->this_idx = section_number++;
2823 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2824 if ((sec->flags & SEC_RELOC) == 0)
2825 d->rel_idx = 0;
2826 else
2827 {
2828 d->rel_idx = section_number++;
2829 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2830 }
2831
2832 if (d->rel_hdr2)
2833 {
2834 d->rel_idx2 = section_number++;
2835 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2836 }
2837 else
2838 d->rel_idx2 = 0;
2839 }
2840
2841 t->shstrtab_section = section_number++;
2842 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2843 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2844
2845 need_symtab = (bfd_get_symcount (abfd) > 0
2846 || (link_info == NULL
2847 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2848 == HAS_RELOC)));
2849 if (need_symtab)
2850 {
2851 t->symtab_section = section_number++;
2852 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2853 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2854 {
2855 t->symtab_shndx_section = section_number++;
2856 t->symtab_shndx_hdr.sh_name
2857 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2858 ".symtab_shndx", FALSE);
2859 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2860 return FALSE;
2861 }
2862 t->strtab_section = section_number++;
2863 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2864 }
2865
2866 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2867 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2868
2869 elf_numsections (abfd) = section_number;
2870 elf_elfheader (abfd)->e_shnum = section_number;
2871
2872 /* Set up the list of section header pointers, in agreement with the
2873 indices. */
2874 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
2875 sizeof (Elf_Internal_Shdr *));
2876 if (i_shdrp == NULL)
2877 return FALSE;
2878
2879 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
2880 sizeof (Elf_Internal_Shdr));
2881 if (i_shdrp[0] == NULL)
2882 {
2883 bfd_release (abfd, i_shdrp);
2884 return FALSE;
2885 }
2886
2887 elf_elfsections (abfd) = i_shdrp;
2888
2889 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2890 if (need_symtab)
2891 {
2892 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2893 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2894 {
2895 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2896 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2897 }
2898 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2899 t->symtab_hdr.sh_link = t->strtab_section;
2900 }
2901
2902 for (sec = abfd->sections; sec; sec = sec->next)
2903 {
2904 asection *s;
2905 const char *name;
2906
2907 d = elf_section_data (sec);
2908
2909 i_shdrp[d->this_idx] = &d->this_hdr;
2910 if (d->rel_idx != 0)
2911 i_shdrp[d->rel_idx] = &d->rel_hdr;
2912 if (d->rel_idx2 != 0)
2913 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2914
2915 /* Fill in the sh_link and sh_info fields while we're at it. */
2916
2917 /* sh_link of a reloc section is the section index of the symbol
2918 table. sh_info is the section index of the section to which
2919 the relocation entries apply. */
2920 if (d->rel_idx != 0)
2921 {
2922 d->rel_hdr.sh_link = t->symtab_section;
2923 d->rel_hdr.sh_info = d->this_idx;
2924 }
2925 if (d->rel_idx2 != 0)
2926 {
2927 d->rel_hdr2->sh_link = t->symtab_section;
2928 d->rel_hdr2->sh_info = d->this_idx;
2929 }
2930
2931 /* We need to set up sh_link for SHF_LINK_ORDER. */
2932 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2933 {
2934 s = elf_linked_to_section (sec);
2935 if (s)
2936 {
2937 /* elf_linked_to_section points to the input section. */
2938 if (link_info != NULL)
2939 {
2940 /* Check discarded linkonce section. */
2941 if (elf_discarded_section (s))
2942 {
2943 asection *kept;
2944 (*_bfd_error_handler)
2945 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2946 abfd, d->this_hdr.bfd_section,
2947 s, s->owner);
2948 /* Point to the kept section if it has the same
2949 size as the discarded one. */
2950 kept = _bfd_elf_check_kept_section (s, link_info);
2951 if (kept == NULL)
2952 {
2953 bfd_set_error (bfd_error_bad_value);
2954 return FALSE;
2955 }
2956 s = kept;
2957 }
2958
2959 s = s->output_section;
2960 BFD_ASSERT (s != NULL);
2961 }
2962 else
2963 {
2964 /* Handle objcopy. */
2965 if (s->output_section == NULL)
2966 {
2967 (*_bfd_error_handler)
2968 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2969 abfd, d->this_hdr.bfd_section, s, s->owner);
2970 bfd_set_error (bfd_error_bad_value);
2971 return FALSE;
2972 }
2973 s = s->output_section;
2974 }
2975 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2976 }
2977 else
2978 {
2979 /* PR 290:
2980 The Intel C compiler generates SHT_IA_64_UNWIND with
2981 SHF_LINK_ORDER. But it doesn't set the sh_link or
2982 sh_info fields. Hence we could get the situation
2983 where s is NULL. */
2984 const struct elf_backend_data *bed
2985 = get_elf_backend_data (abfd);
2986 if (bed->link_order_error_handler)
2987 bed->link_order_error_handler
2988 (_("%B: warning: sh_link not set for section `%A'"),
2989 abfd, sec);
2990 }
2991 }
2992
2993 switch (d->this_hdr.sh_type)
2994 {
2995 case SHT_REL:
2996 case SHT_RELA:
2997 /* A reloc section which we are treating as a normal BFD
2998 section. sh_link is the section index of the symbol
2999 table. sh_info is the section index of the section to
3000 which the relocation entries apply. We assume that an
3001 allocated reloc section uses the dynamic symbol table.
3002 FIXME: How can we be sure? */
3003 s = bfd_get_section_by_name (abfd, ".dynsym");
3004 if (s != NULL)
3005 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3006
3007 /* We look up the section the relocs apply to by name. */
3008 name = sec->name;
3009 if (d->this_hdr.sh_type == SHT_REL)
3010 name += 4;
3011 else
3012 name += 5;
3013 s = bfd_get_section_by_name (abfd, name);
3014 if (s != NULL)
3015 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3016 break;
3017
3018 case SHT_STRTAB:
3019 /* We assume that a section named .stab*str is a stabs
3020 string section. We look for a section with the same name
3021 but without the trailing ``str'', and set its sh_link
3022 field to point to this section. */
3023 if (CONST_STRNEQ (sec->name, ".stab")
3024 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3025 {
3026 size_t len;
3027 char *alc;
3028
3029 len = strlen (sec->name);
3030 alc = (char *) bfd_malloc (len - 2);
3031 if (alc == NULL)
3032 return FALSE;
3033 memcpy (alc, sec->name, len - 3);
3034 alc[len - 3] = '\0';
3035 s = bfd_get_section_by_name (abfd, alc);
3036 free (alc);
3037 if (s != NULL)
3038 {
3039 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3040
3041 /* This is a .stab section. */
3042 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3043 elf_section_data (s)->this_hdr.sh_entsize
3044 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3045 }
3046 }
3047 break;
3048
3049 case SHT_DYNAMIC:
3050 case SHT_DYNSYM:
3051 case SHT_GNU_verneed:
3052 case SHT_GNU_verdef:
3053 /* sh_link is the section header index of the string table
3054 used for the dynamic entries, or the symbol table, or the
3055 version strings. */
3056 s = bfd_get_section_by_name (abfd, ".dynstr");
3057 if (s != NULL)
3058 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3059 break;
3060
3061 case SHT_GNU_LIBLIST:
3062 /* sh_link is the section header index of the prelink library
3063 list used for the dynamic entries, or the symbol table, or
3064 the version strings. */
3065 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3066 ? ".dynstr" : ".gnu.libstr");
3067 if (s != NULL)
3068 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3069 break;
3070
3071 case SHT_HASH:
3072 case SHT_GNU_HASH:
3073 case SHT_GNU_versym:
3074 /* sh_link is the section header index of the symbol table
3075 this hash table or version table is for. */
3076 s = bfd_get_section_by_name (abfd, ".dynsym");
3077 if (s != NULL)
3078 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3079 break;
3080
3081 case SHT_GROUP:
3082 d->this_hdr.sh_link = t->symtab_section;
3083 }
3084 }
3085
3086 for (secn = 1; secn < section_number; ++secn)
3087 if (i_shdrp[secn] == NULL)
3088 i_shdrp[secn] = i_shdrp[0];
3089 else
3090 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3091 i_shdrp[secn]->sh_name);
3092 return TRUE;
3093 }
3094
3095 /* Map symbol from it's internal number to the external number, moving
3096 all local symbols to be at the head of the list. */
3097
3098 static bfd_boolean
3099 sym_is_global (bfd *abfd, asymbol *sym)
3100 {
3101 /* If the backend has a special mapping, use it. */
3102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3103 if (bed->elf_backend_sym_is_global)
3104 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3105
3106 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3107 || bfd_is_und_section (bfd_get_section (sym))
3108 || bfd_is_com_section (bfd_get_section (sym)));
3109 }
3110
3111 /* Don't output section symbols for sections that are not going to be
3112 output. */
3113
3114 static bfd_boolean
3115 ignore_section_sym (bfd *abfd, asymbol *sym)
3116 {
3117 return ((sym->flags & BSF_SECTION_SYM) != 0
3118 && !(sym->section->owner == abfd
3119 || (sym->section->output_section->owner == abfd
3120 && sym->section->output_offset == 0)));
3121 }
3122
3123 static bfd_boolean
3124 elf_map_symbols (bfd *abfd)
3125 {
3126 unsigned int symcount = bfd_get_symcount (abfd);
3127 asymbol **syms = bfd_get_outsymbols (abfd);
3128 asymbol **sect_syms;
3129 unsigned int num_locals = 0;
3130 unsigned int num_globals = 0;
3131 unsigned int num_locals2 = 0;
3132 unsigned int num_globals2 = 0;
3133 int max_index = 0;
3134 unsigned int idx;
3135 asection *asect;
3136 asymbol **new_syms;
3137
3138 #ifdef DEBUG
3139 fprintf (stderr, "elf_map_symbols\n");
3140 fflush (stderr);
3141 #endif
3142
3143 for (asect = abfd->sections; asect; asect = asect->next)
3144 {
3145 if (max_index < asect->index)
3146 max_index = asect->index;
3147 }
3148
3149 max_index++;
3150 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3151 if (sect_syms == NULL)
3152 return FALSE;
3153 elf_section_syms (abfd) = sect_syms;
3154 elf_num_section_syms (abfd) = max_index;
3155
3156 /* Init sect_syms entries for any section symbols we have already
3157 decided to output. */
3158 for (idx = 0; idx < symcount; idx++)
3159 {
3160 asymbol *sym = syms[idx];
3161
3162 if ((sym->flags & BSF_SECTION_SYM) != 0
3163 && sym->value == 0
3164 && !ignore_section_sym (abfd, sym))
3165 {
3166 asection *sec = sym->section;
3167
3168 if (sec->owner != abfd)
3169 sec = sec->output_section;
3170
3171 sect_syms[sec->index] = syms[idx];
3172 }
3173 }
3174
3175 /* Classify all of the symbols. */
3176 for (idx = 0; idx < symcount; idx++)
3177 {
3178 if (ignore_section_sym (abfd, syms[idx]))
3179 continue;
3180 if (!sym_is_global (abfd, syms[idx]))
3181 num_locals++;
3182 else
3183 num_globals++;
3184 }
3185
3186 /* We will be adding a section symbol for each normal BFD section. Most
3187 sections will already have a section symbol in outsymbols, but
3188 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3189 at least in that case. */
3190 for (asect = abfd->sections; asect; asect = asect->next)
3191 {
3192 if (sect_syms[asect->index] == NULL)
3193 {
3194 if (!sym_is_global (abfd, asect->symbol))
3195 num_locals++;
3196 else
3197 num_globals++;
3198 }
3199 }
3200
3201 /* Now sort the symbols so the local symbols are first. */
3202 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3203 sizeof (asymbol *));
3204
3205 if (new_syms == NULL)
3206 return FALSE;
3207
3208 for (idx = 0; idx < symcount; idx++)
3209 {
3210 asymbol *sym = syms[idx];
3211 unsigned int i;
3212
3213 if (ignore_section_sym (abfd, sym))
3214 continue;
3215 if (!sym_is_global (abfd, sym))
3216 i = num_locals2++;
3217 else
3218 i = num_locals + num_globals2++;
3219 new_syms[i] = sym;
3220 sym->udata.i = i + 1;
3221 }
3222 for (asect = abfd->sections; asect; asect = asect->next)
3223 {
3224 if (sect_syms[asect->index] == NULL)
3225 {
3226 asymbol *sym = asect->symbol;
3227 unsigned int i;
3228
3229 sect_syms[asect->index] = sym;
3230 if (!sym_is_global (abfd, sym))
3231 i = num_locals2++;
3232 else
3233 i = num_locals + num_globals2++;
3234 new_syms[i] = sym;
3235 sym->udata.i = i + 1;
3236 }
3237 }
3238
3239 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3240
3241 elf_num_locals (abfd) = num_locals;
3242 elf_num_globals (abfd) = num_globals;
3243 return TRUE;
3244 }
3245
3246 /* Align to the maximum file alignment that could be required for any
3247 ELF data structure. */
3248
3249 static inline file_ptr
3250 align_file_position (file_ptr off, int align)
3251 {
3252 return (off + align - 1) & ~(align - 1);
3253 }
3254
3255 /* Assign a file position to a section, optionally aligning to the
3256 required section alignment. */
3257
3258 file_ptr
3259 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3260 file_ptr offset,
3261 bfd_boolean align)
3262 {
3263 if (align && i_shdrp->sh_addralign > 1)
3264 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3265 i_shdrp->sh_offset = offset;
3266 if (i_shdrp->bfd_section != NULL)
3267 i_shdrp->bfd_section->filepos = offset;
3268 if (i_shdrp->sh_type != SHT_NOBITS)
3269 offset += i_shdrp->sh_size;
3270 return offset;
3271 }
3272
3273 /* Compute the file positions we are going to put the sections at, and
3274 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3275 is not NULL, this is being called by the ELF backend linker. */
3276
3277 bfd_boolean
3278 _bfd_elf_compute_section_file_positions (bfd *abfd,
3279 struct bfd_link_info *link_info)
3280 {
3281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3282 bfd_boolean failed;
3283 struct bfd_strtab_hash *strtab = NULL;
3284 Elf_Internal_Shdr *shstrtab_hdr;
3285 bfd_boolean need_symtab;
3286
3287 if (abfd->output_has_begun)
3288 return TRUE;
3289
3290 /* Do any elf backend specific processing first. */
3291 if (bed->elf_backend_begin_write_processing)
3292 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3293
3294 if (! prep_headers (abfd))
3295 return FALSE;
3296
3297 /* Post process the headers if necessary. */
3298 if (bed->elf_backend_post_process_headers)
3299 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3300
3301 failed = FALSE;
3302 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3303 if (failed)
3304 return FALSE;
3305
3306 if (!assign_section_numbers (abfd, link_info))
3307 return FALSE;
3308
3309 /* The backend linker builds symbol table information itself. */
3310 need_symtab = (link_info == NULL
3311 && (bfd_get_symcount (abfd) > 0
3312 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3313 == HAS_RELOC)));
3314 if (need_symtab)
3315 {
3316 /* Non-zero if doing a relocatable link. */
3317 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3318
3319 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3320 return FALSE;
3321 }
3322
3323 if (link_info == NULL)
3324 {
3325 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3326 if (failed)
3327 return FALSE;
3328 }
3329
3330 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3331 /* sh_name was set in prep_headers. */
3332 shstrtab_hdr->sh_type = SHT_STRTAB;
3333 shstrtab_hdr->sh_flags = 0;
3334 shstrtab_hdr->sh_addr = 0;
3335 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3336 shstrtab_hdr->sh_entsize = 0;
3337 shstrtab_hdr->sh_link = 0;
3338 shstrtab_hdr->sh_info = 0;
3339 /* sh_offset is set in assign_file_positions_except_relocs. */
3340 shstrtab_hdr->sh_addralign = 1;
3341
3342 if (!assign_file_positions_except_relocs (abfd, link_info))
3343 return FALSE;
3344
3345 if (need_symtab)
3346 {
3347 file_ptr off;
3348 Elf_Internal_Shdr *hdr;
3349
3350 off = elf_tdata (abfd)->next_file_pos;
3351
3352 hdr = &elf_tdata (abfd)->symtab_hdr;
3353 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3354
3355 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3356 if (hdr->sh_size != 0)
3357 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3358
3359 hdr = &elf_tdata (abfd)->strtab_hdr;
3360 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3361
3362 elf_tdata (abfd)->next_file_pos = off;
3363
3364 /* Now that we know where the .strtab section goes, write it
3365 out. */
3366 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3367 || ! _bfd_stringtab_emit (abfd, strtab))
3368 return FALSE;
3369 _bfd_stringtab_free (strtab);
3370 }
3371
3372 abfd->output_has_begun = TRUE;
3373
3374 return TRUE;
3375 }
3376
3377 /* Make an initial estimate of the size of the program header. If we
3378 get the number wrong here, we'll redo section placement. */
3379
3380 static bfd_size_type
3381 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3382 {
3383 size_t segs;
3384 asection *s;
3385 const struct elf_backend_data *bed;
3386
3387 /* Assume we will need exactly two PT_LOAD segments: one for text
3388 and one for data. */
3389 segs = 2;
3390
3391 s = bfd_get_section_by_name (abfd, ".interp");
3392 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3393 {
3394 /* If we have a loadable interpreter section, we need a
3395 PT_INTERP segment. In this case, assume we also need a
3396 PT_PHDR segment, although that may not be true for all
3397 targets. */
3398 segs += 2;
3399 }
3400
3401 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3402 {
3403 /* We need a PT_DYNAMIC segment. */
3404 ++segs;
3405 }
3406
3407 if (info != NULL && info->relro)
3408 {
3409 /* We need a PT_GNU_RELRO segment. */
3410 ++segs;
3411 }
3412
3413 if (elf_tdata (abfd)->eh_frame_hdr)
3414 {
3415 /* We need a PT_GNU_EH_FRAME segment. */
3416 ++segs;
3417 }
3418
3419 if (elf_tdata (abfd)->stack_flags)
3420 {
3421 /* We need a PT_GNU_STACK segment. */
3422 ++segs;
3423 }
3424
3425 for (s = abfd->sections; s != NULL; s = s->next)
3426 {
3427 if ((s->flags & SEC_LOAD) != 0
3428 && CONST_STRNEQ (s->name, ".note"))
3429 {
3430 /* We need a PT_NOTE segment. */
3431 ++segs;
3432 /* Try to create just one PT_NOTE segment
3433 for all adjacent loadable .note* sections.
3434 gABI requires that within a PT_NOTE segment
3435 (and also inside of each SHT_NOTE section)
3436 each note is padded to a multiple of 4 size,
3437 so we check whether the sections are correctly
3438 aligned. */
3439 if (s->alignment_power == 2)
3440 while (s->next != NULL
3441 && s->next->alignment_power == 2
3442 && (s->next->flags & SEC_LOAD) != 0
3443 && CONST_STRNEQ (s->next->name, ".note"))
3444 s = s->next;
3445 }
3446 }
3447
3448 for (s = abfd->sections; s != NULL; s = s->next)
3449 {
3450 if (s->flags & SEC_THREAD_LOCAL)
3451 {
3452 /* We need a PT_TLS segment. */
3453 ++segs;
3454 break;
3455 }
3456 }
3457
3458 /* Let the backend count up any program headers it might need. */
3459 bed = get_elf_backend_data (abfd);
3460 if (bed->elf_backend_additional_program_headers)
3461 {
3462 int a;
3463
3464 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3465 if (a == -1)
3466 abort ();
3467 segs += a;
3468 }
3469
3470 return segs * bed->s->sizeof_phdr;
3471 }
3472
3473 /* Find the segment that contains the output_section of section. */
3474
3475 Elf_Internal_Phdr *
3476 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3477 {
3478 struct elf_segment_map *m;
3479 Elf_Internal_Phdr *p;
3480
3481 for (m = elf_tdata (abfd)->segment_map,
3482 p = elf_tdata (abfd)->phdr;
3483 m != NULL;
3484 m = m->next, p++)
3485 {
3486 int i;
3487
3488 for (i = m->count - 1; i >= 0; i--)
3489 if (m->sections[i] == section)
3490 return p;
3491 }
3492
3493 return NULL;
3494 }
3495
3496 /* Create a mapping from a set of sections to a program segment. */
3497
3498 static struct elf_segment_map *
3499 make_mapping (bfd *abfd,
3500 asection **sections,
3501 unsigned int from,
3502 unsigned int to,
3503 bfd_boolean phdr)
3504 {
3505 struct elf_segment_map *m;
3506 unsigned int i;
3507 asection **hdrpp;
3508 bfd_size_type amt;
3509
3510 amt = sizeof (struct elf_segment_map);
3511 amt += (to - from - 1) * sizeof (asection *);
3512 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3513 if (m == NULL)
3514 return NULL;
3515 m->next = NULL;
3516 m->p_type = PT_LOAD;
3517 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3518 m->sections[i - from] = *hdrpp;
3519 m->count = to - from;
3520
3521 if (from == 0 && phdr)
3522 {
3523 /* Include the headers in the first PT_LOAD segment. */
3524 m->includes_filehdr = 1;
3525 m->includes_phdrs = 1;
3526 }
3527
3528 return m;
3529 }
3530
3531 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3532 on failure. */
3533
3534 struct elf_segment_map *
3535 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3536 {
3537 struct elf_segment_map *m;
3538
3539 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3540 sizeof (struct elf_segment_map));
3541 if (m == NULL)
3542 return NULL;
3543 m->next = NULL;
3544 m->p_type = PT_DYNAMIC;
3545 m->count = 1;
3546 m->sections[0] = dynsec;
3547
3548 return m;
3549 }
3550
3551 /* Possibly add or remove segments from the segment map. */
3552
3553 static bfd_boolean
3554 elf_modify_segment_map (bfd *abfd,
3555 struct bfd_link_info *info,
3556 bfd_boolean remove_empty_load)
3557 {
3558 struct elf_segment_map **m;
3559 const struct elf_backend_data *bed;
3560
3561 /* The placement algorithm assumes that non allocated sections are
3562 not in PT_LOAD segments. We ensure this here by removing such
3563 sections from the segment map. We also remove excluded
3564 sections. Finally, any PT_LOAD segment without sections is
3565 removed. */
3566 m = &elf_tdata (abfd)->segment_map;
3567 while (*m)
3568 {
3569 unsigned int i, new_count;
3570
3571 for (new_count = 0, i = 0; i < (*m)->count; i++)
3572 {
3573 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3574 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3575 || (*m)->p_type != PT_LOAD))
3576 {
3577 (*m)->sections[new_count] = (*m)->sections[i];
3578 new_count++;
3579 }
3580 }
3581 (*m)->count = new_count;
3582
3583 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3584 *m = (*m)->next;
3585 else
3586 m = &(*m)->next;
3587 }
3588
3589 bed = get_elf_backend_data (abfd);
3590 if (bed->elf_backend_modify_segment_map != NULL)
3591 {
3592 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3593 return FALSE;
3594 }
3595
3596 return TRUE;
3597 }
3598
3599 /* Set up a mapping from BFD sections to program segments. */
3600
3601 bfd_boolean
3602 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3603 {
3604 unsigned int count;
3605 struct elf_segment_map *m;
3606 asection **sections = NULL;
3607 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3608 bfd_boolean no_user_phdrs;
3609
3610 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3611 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3612 {
3613 asection *s;
3614 unsigned int i;
3615 struct elf_segment_map *mfirst;
3616 struct elf_segment_map **pm;
3617 asection *last_hdr;
3618 bfd_vma last_size;
3619 unsigned int phdr_index;
3620 bfd_vma maxpagesize;
3621 asection **hdrpp;
3622 bfd_boolean phdr_in_segment = TRUE;
3623 bfd_boolean writable;
3624 int tls_count = 0;
3625 asection *first_tls = NULL;
3626 asection *dynsec, *eh_frame_hdr;
3627 bfd_size_type amt;
3628 bfd_vma addr_mask, wrap_to = 0;
3629
3630 /* Select the allocated sections, and sort them. */
3631
3632 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3633 sizeof (asection *));
3634 if (sections == NULL)
3635 goto error_return;
3636
3637 /* Calculate top address, avoiding undefined behaviour of shift
3638 left operator when shift count is equal to size of type
3639 being shifted. */
3640 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3641 addr_mask = (addr_mask << 1) + 1;
3642
3643 i = 0;
3644 for (s = abfd->sections; s != NULL; s = s->next)
3645 {
3646 if ((s->flags & SEC_ALLOC) != 0)
3647 {
3648 sections[i] = s;
3649 ++i;
3650 /* A wrapping section potentially clashes with header. */
3651 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3652 wrap_to = (s->lma + s->size) & addr_mask;
3653 }
3654 }
3655 BFD_ASSERT (i <= bfd_count_sections (abfd));
3656 count = i;
3657
3658 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3659
3660 /* Build the mapping. */
3661
3662 mfirst = NULL;
3663 pm = &mfirst;
3664
3665 /* If we have a .interp section, then create a PT_PHDR segment for
3666 the program headers and a PT_INTERP segment for the .interp
3667 section. */
3668 s = bfd_get_section_by_name (abfd, ".interp");
3669 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3670 {
3671 amt = sizeof (struct elf_segment_map);
3672 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3673 if (m == NULL)
3674 goto error_return;
3675 m->next = NULL;
3676 m->p_type = PT_PHDR;
3677 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3678 m->p_flags = PF_R | PF_X;
3679 m->p_flags_valid = 1;
3680 m->includes_phdrs = 1;
3681
3682 *pm = m;
3683 pm = &m->next;
3684
3685 amt = sizeof (struct elf_segment_map);
3686 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3687 if (m == NULL)
3688 goto error_return;
3689 m->next = NULL;
3690 m->p_type = PT_INTERP;
3691 m->count = 1;
3692 m->sections[0] = s;
3693
3694 *pm = m;
3695 pm = &m->next;
3696 }
3697
3698 /* Look through the sections. We put sections in the same program
3699 segment when the start of the second section can be placed within
3700 a few bytes of the end of the first section. */
3701 last_hdr = NULL;
3702 last_size = 0;
3703 phdr_index = 0;
3704 maxpagesize = bed->maxpagesize;
3705 writable = FALSE;
3706 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3707 if (dynsec != NULL
3708 && (dynsec->flags & SEC_LOAD) == 0)
3709 dynsec = NULL;
3710
3711 /* Deal with -Ttext or something similar such that the first section
3712 is not adjacent to the program headers. This is an
3713 approximation, since at this point we don't know exactly how many
3714 program headers we will need. */
3715 if (count > 0)
3716 {
3717 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3718
3719 if (phdr_size == (bfd_size_type) -1)
3720 phdr_size = get_program_header_size (abfd, info);
3721 if ((abfd->flags & D_PAGED) == 0
3722 || (sections[0]->lma & addr_mask) < phdr_size
3723 || ((sections[0]->lma & addr_mask) % maxpagesize
3724 < phdr_size % maxpagesize)
3725 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3726 phdr_in_segment = FALSE;
3727 }
3728
3729 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3730 {
3731 asection *hdr;
3732 bfd_boolean new_segment;
3733
3734 hdr = *hdrpp;
3735
3736 /* See if this section and the last one will fit in the same
3737 segment. */
3738
3739 if (last_hdr == NULL)
3740 {
3741 /* If we don't have a segment yet, then we don't need a new
3742 one (we build the last one after this loop). */
3743 new_segment = FALSE;
3744 }
3745 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3746 {
3747 /* If this section has a different relation between the
3748 virtual address and the load address, then we need a new
3749 segment. */
3750 new_segment = TRUE;
3751 }
3752 else if (hdr->lma < last_hdr->lma + last_size
3753 || last_hdr->lma + last_size < last_hdr->lma)
3754 {
3755 /* If this section has a load address that makes it overlap
3756 the previous section, then we need a new segment. */
3757 new_segment = TRUE;
3758 }
3759 /* In the next test we have to be careful when last_hdr->lma is close
3760 to the end of the address space. If the aligned address wraps
3761 around to the start of the address space, then there are no more
3762 pages left in memory and it is OK to assume that the current
3763 section can be included in the current segment. */
3764 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3765 > last_hdr->lma)
3766 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3767 <= hdr->lma))
3768 {
3769 /* If putting this section in this segment would force us to
3770 skip a page in the segment, then we need a new segment. */
3771 new_segment = TRUE;
3772 }
3773 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3774 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3775 {
3776 /* We don't want to put a loadable section after a
3777 nonloadable section in the same segment.
3778 Consider .tbss sections as loadable for this purpose. */
3779 new_segment = TRUE;
3780 }
3781 else if ((abfd->flags & D_PAGED) == 0)
3782 {
3783 /* If the file is not demand paged, which means that we
3784 don't require the sections to be correctly aligned in the
3785 file, then there is no other reason for a new segment. */
3786 new_segment = FALSE;
3787 }
3788 else if (! writable
3789 && (hdr->flags & SEC_READONLY) == 0
3790 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3791 != (hdr->lma & -maxpagesize)))
3792 {
3793 /* We don't want to put a writable section in a read only
3794 segment, unless they are on the same page in memory
3795 anyhow. We already know that the last section does not
3796 bring us past the current section on the page, so the
3797 only case in which the new section is not on the same
3798 page as the previous section is when the previous section
3799 ends precisely on a page boundary. */
3800 new_segment = TRUE;
3801 }
3802 else
3803 {
3804 /* Otherwise, we can use the same segment. */
3805 new_segment = FALSE;
3806 }
3807
3808 /* Allow interested parties a chance to override our decision. */
3809 if (last_hdr != NULL
3810 && info != NULL
3811 && info->callbacks->override_segment_assignment != NULL)
3812 new_segment
3813 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3814 last_hdr,
3815 new_segment);
3816
3817 if (! new_segment)
3818 {
3819 if ((hdr->flags & SEC_READONLY) == 0)
3820 writable = TRUE;
3821 last_hdr = hdr;
3822 /* .tbss sections effectively have zero size. */
3823 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3824 != SEC_THREAD_LOCAL)
3825 last_size = hdr->size;
3826 else
3827 last_size = 0;
3828 continue;
3829 }
3830
3831 /* We need a new program segment. We must create a new program
3832 header holding all the sections from phdr_index until hdr. */
3833
3834 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3835 if (m == NULL)
3836 goto error_return;
3837
3838 *pm = m;
3839 pm = &m->next;
3840
3841 if ((hdr->flags & SEC_READONLY) == 0)
3842 writable = TRUE;
3843 else
3844 writable = FALSE;
3845
3846 last_hdr = hdr;
3847 /* .tbss sections effectively have zero size. */
3848 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3849 last_size = hdr->size;
3850 else
3851 last_size = 0;
3852 phdr_index = i;
3853 phdr_in_segment = FALSE;
3854 }
3855
3856 /* Create a final PT_LOAD program segment. */
3857 if (last_hdr != NULL)
3858 {
3859 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3860 if (m == NULL)
3861 goto error_return;
3862
3863 *pm = m;
3864 pm = &m->next;
3865 }
3866
3867 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3868 if (dynsec != NULL)
3869 {
3870 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3871 if (m == NULL)
3872 goto error_return;
3873 *pm = m;
3874 pm = &m->next;
3875 }
3876
3877 /* For each batch of consecutive loadable .note sections,
3878 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3879 because if we link together nonloadable .note sections and
3880 loadable .note sections, we will generate two .note sections
3881 in the output file. FIXME: Using names for section types is
3882 bogus anyhow. */
3883 for (s = abfd->sections; s != NULL; s = s->next)
3884 {
3885 if ((s->flags & SEC_LOAD) != 0
3886 && CONST_STRNEQ (s->name, ".note"))
3887 {
3888 asection *s2;
3889
3890 count = 1;
3891 amt = sizeof (struct elf_segment_map);
3892 if (s->alignment_power == 2)
3893 for (s2 = s; s2->next != NULL; s2 = s2->next)
3894 {
3895 if (s2->next->alignment_power == 2
3896 && (s2->next->flags & SEC_LOAD) != 0
3897 && CONST_STRNEQ (s2->next->name, ".note")
3898 && align_power (s2->lma + s2->size, 2)
3899 == s2->next->lma)
3900 count++;
3901 else
3902 break;
3903 }
3904 amt += (count - 1) * sizeof (asection *);
3905 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3906 if (m == NULL)
3907 goto error_return;
3908 m->next = NULL;
3909 m->p_type = PT_NOTE;
3910 m->count = count;
3911 while (count > 1)
3912 {
3913 m->sections[m->count - count--] = s;
3914 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3915 s = s->next;
3916 }
3917 m->sections[m->count - 1] = s;
3918 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3919 *pm = m;
3920 pm = &m->next;
3921 }
3922 if (s->flags & SEC_THREAD_LOCAL)
3923 {
3924 if (! tls_count)
3925 first_tls = s;
3926 tls_count++;
3927 }
3928 }
3929
3930 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3931 if (tls_count > 0)
3932 {
3933 amt = sizeof (struct elf_segment_map);
3934 amt += (tls_count - 1) * sizeof (asection *);
3935 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3936 if (m == NULL)
3937 goto error_return;
3938 m->next = NULL;
3939 m->p_type = PT_TLS;
3940 m->count = tls_count;
3941 /* Mandated PF_R. */
3942 m->p_flags = PF_R;
3943 m->p_flags_valid = 1;
3944 for (i = 0; i < (unsigned int) tls_count; ++i)
3945 {
3946 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3947 m->sections[i] = first_tls;
3948 first_tls = first_tls->next;
3949 }
3950
3951 *pm = m;
3952 pm = &m->next;
3953 }
3954
3955 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3956 segment. */
3957 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3958 if (eh_frame_hdr != NULL
3959 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3960 {
3961 amt = sizeof (struct elf_segment_map);
3962 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3963 if (m == NULL)
3964 goto error_return;
3965 m->next = NULL;
3966 m->p_type = PT_GNU_EH_FRAME;
3967 m->count = 1;
3968 m->sections[0] = eh_frame_hdr->output_section;
3969
3970 *pm = m;
3971 pm = &m->next;
3972 }
3973
3974 if (elf_tdata (abfd)->stack_flags)
3975 {
3976 amt = sizeof (struct elf_segment_map);
3977 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3978 if (m == NULL)
3979 goto error_return;
3980 m->next = NULL;
3981 m->p_type = PT_GNU_STACK;
3982 m->p_flags = elf_tdata (abfd)->stack_flags;
3983 m->p_flags_valid = 1;
3984
3985 *pm = m;
3986 pm = &m->next;
3987 }
3988
3989 if (info != NULL && info->relro)
3990 {
3991 for (m = mfirst; m != NULL; m = m->next)
3992 {
3993 if (m->p_type == PT_LOAD)
3994 {
3995 asection *last = m->sections[m->count - 1];
3996 bfd_vma vaddr = m->sections[0]->vma;
3997 bfd_vma filesz = last->vma - vaddr + last->size;
3998
3999 if (vaddr < info->relro_end
4000 && vaddr >= info->relro_start
4001 && (vaddr + filesz) >= info->relro_end)
4002 break;
4003 }
4004 }
4005
4006 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4007 if (m != NULL)
4008 {
4009 amt = sizeof (struct elf_segment_map);
4010 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4011 if (m == NULL)
4012 goto error_return;
4013 m->next = NULL;
4014 m->p_type = PT_GNU_RELRO;
4015 m->p_flags = PF_R;
4016 m->p_flags_valid = 1;
4017
4018 *pm = m;
4019 pm = &m->next;
4020 }
4021 }
4022
4023 free (sections);
4024 elf_tdata (abfd)->segment_map = mfirst;
4025 }
4026
4027 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4028 return FALSE;
4029
4030 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4031 ++count;
4032 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4033
4034 return TRUE;
4035
4036 error_return:
4037 if (sections != NULL)
4038 free (sections);
4039 return FALSE;
4040 }
4041
4042 /* Sort sections by address. */
4043
4044 static int
4045 elf_sort_sections (const void *arg1, const void *arg2)
4046 {
4047 const asection *sec1 = *(const asection **) arg1;
4048 const asection *sec2 = *(const asection **) arg2;
4049 bfd_size_type size1, size2;
4050
4051 /* Sort by LMA first, since this is the address used to
4052 place the section into a segment. */
4053 if (sec1->lma < sec2->lma)
4054 return -1;
4055 else if (sec1->lma > sec2->lma)
4056 return 1;
4057
4058 /* Then sort by VMA. Normally the LMA and the VMA will be
4059 the same, and this will do nothing. */
4060 if (sec1->vma < sec2->vma)
4061 return -1;
4062 else if (sec1->vma > sec2->vma)
4063 return 1;
4064
4065 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4066
4067 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4068
4069 if (TOEND (sec1))
4070 {
4071 if (TOEND (sec2))
4072 {
4073 /* If the indicies are the same, do not return 0
4074 here, but continue to try the next comparison. */
4075 if (sec1->target_index - sec2->target_index != 0)
4076 return sec1->target_index - sec2->target_index;
4077 }
4078 else
4079 return 1;
4080 }
4081 else if (TOEND (sec2))
4082 return -1;
4083
4084 #undef TOEND
4085
4086 /* Sort by size, to put zero sized sections
4087 before others at the same address. */
4088
4089 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4090 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4091
4092 if (size1 < size2)
4093 return -1;
4094 if (size1 > size2)
4095 return 1;
4096
4097 return sec1->target_index - sec2->target_index;
4098 }
4099
4100 /* Ian Lance Taylor writes:
4101
4102 We shouldn't be using % with a negative signed number. That's just
4103 not good. We have to make sure either that the number is not
4104 negative, or that the number has an unsigned type. When the types
4105 are all the same size they wind up as unsigned. When file_ptr is a
4106 larger signed type, the arithmetic winds up as signed long long,
4107 which is wrong.
4108
4109 What we're trying to say here is something like ``increase OFF by
4110 the least amount that will cause it to be equal to the VMA modulo
4111 the page size.'' */
4112 /* In other words, something like:
4113
4114 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4115 off_offset = off % bed->maxpagesize;
4116 if (vma_offset < off_offset)
4117 adjustment = vma_offset + bed->maxpagesize - off_offset;
4118 else
4119 adjustment = vma_offset - off_offset;
4120
4121 which can can be collapsed into the expression below. */
4122
4123 static file_ptr
4124 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4125 {
4126 return ((vma - off) % maxpagesize);
4127 }
4128
4129 static void
4130 print_segment_map (const struct elf_segment_map *m)
4131 {
4132 unsigned int j;
4133 const char *pt = get_segment_type (m->p_type);
4134 char buf[32];
4135
4136 if (pt == NULL)
4137 {
4138 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4139 sprintf (buf, "LOPROC+%7.7x",
4140 (unsigned int) (m->p_type - PT_LOPROC));
4141 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4142 sprintf (buf, "LOOS+%7.7x",
4143 (unsigned int) (m->p_type - PT_LOOS));
4144 else
4145 snprintf (buf, sizeof (buf), "%8.8x",
4146 (unsigned int) m->p_type);
4147 pt = buf;
4148 }
4149 fprintf (stderr, "%s:", pt);
4150 for (j = 0; j < m->count; j++)
4151 fprintf (stderr, " %s", m->sections [j]->name);
4152 putc ('\n',stderr);
4153 }
4154
4155 static bfd_boolean
4156 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4157 {
4158 void *buf;
4159 bfd_boolean ret;
4160
4161 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4162 return FALSE;
4163 buf = bfd_zmalloc (len);
4164 if (buf == NULL)
4165 return FALSE;
4166 ret = bfd_bwrite (buf, len, abfd) == len;
4167 free (buf);
4168 return ret;
4169 }
4170
4171 /* Assign file positions to the sections based on the mapping from
4172 sections to segments. This function also sets up some fields in
4173 the file header. */
4174
4175 static bfd_boolean
4176 assign_file_positions_for_load_sections (bfd *abfd,
4177 struct bfd_link_info *link_info)
4178 {
4179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4180 struct elf_segment_map *m;
4181 Elf_Internal_Phdr *phdrs;
4182 Elf_Internal_Phdr *p;
4183 file_ptr off;
4184 bfd_size_type maxpagesize;
4185 unsigned int alloc;
4186 unsigned int i, j;
4187 bfd_vma header_pad = 0;
4188
4189 if (link_info == NULL
4190 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4191 return FALSE;
4192
4193 alloc = 0;
4194 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4195 {
4196 ++alloc;
4197 if (m->header_size)
4198 header_pad = m->header_size;
4199 }
4200
4201 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4202 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4203 elf_elfheader (abfd)->e_phnum = alloc;
4204
4205 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4206 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4207 else
4208 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4209 >= alloc * bed->s->sizeof_phdr);
4210
4211 if (alloc == 0)
4212 {
4213 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4214 return TRUE;
4215 }
4216
4217 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4218 see assign_file_positions_except_relocs, so make sure we have
4219 that amount allocated, with trailing space cleared.
4220 The variable alloc contains the computed need, while elf_tdata
4221 (abfd)->program_header_size contains the size used for the
4222 layout.
4223 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4224 where the layout is forced to according to a larger size in the
4225 last iterations for the testcase ld-elf/header. */
4226 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4227 == 0);
4228 phdrs = (Elf_Internal_Phdr *)
4229 bfd_zalloc2 (abfd,
4230 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4231 sizeof (Elf_Internal_Phdr));
4232 elf_tdata (abfd)->phdr = phdrs;
4233 if (phdrs == NULL)
4234 return FALSE;
4235
4236 maxpagesize = 1;
4237 if ((abfd->flags & D_PAGED) != 0)
4238 maxpagesize = bed->maxpagesize;
4239
4240 off = bed->s->sizeof_ehdr;
4241 off += alloc * bed->s->sizeof_phdr;
4242 if (header_pad < (bfd_vma) off)
4243 header_pad = 0;
4244 else
4245 header_pad -= off;
4246 off += header_pad;
4247
4248 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4249 m != NULL;
4250 m = m->next, p++, j++)
4251 {
4252 asection **secpp;
4253 bfd_vma off_adjust;
4254 bfd_boolean no_contents;
4255
4256 /* If elf_segment_map is not from map_sections_to_segments, the
4257 sections may not be correctly ordered. NOTE: sorting should
4258 not be done to the PT_NOTE section of a corefile, which may
4259 contain several pseudo-sections artificially created by bfd.
4260 Sorting these pseudo-sections breaks things badly. */
4261 if (m->count > 1
4262 && !(elf_elfheader (abfd)->e_type == ET_CORE
4263 && m->p_type == PT_NOTE))
4264 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4265 elf_sort_sections);
4266
4267 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4268 number of sections with contents contributing to both p_filesz
4269 and p_memsz, followed by a number of sections with no contents
4270 that just contribute to p_memsz. In this loop, OFF tracks next
4271 available file offset for PT_LOAD and PT_NOTE segments. */
4272 p->p_type = m->p_type;
4273 p->p_flags = m->p_flags;
4274
4275 if (m->count == 0)
4276 p->p_vaddr = 0;
4277 else
4278 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4279
4280 if (m->p_paddr_valid)
4281 p->p_paddr = m->p_paddr;
4282 else if (m->count == 0)
4283 p->p_paddr = 0;
4284 else
4285 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4286
4287 if (p->p_type == PT_LOAD
4288 && (abfd->flags & D_PAGED) != 0)
4289 {
4290 /* p_align in demand paged PT_LOAD segments effectively stores
4291 the maximum page size. When copying an executable with
4292 objcopy, we set m->p_align from the input file. Use this
4293 value for maxpagesize rather than bed->maxpagesize, which
4294 may be different. Note that we use maxpagesize for PT_TLS
4295 segment alignment later in this function, so we are relying
4296 on at least one PT_LOAD segment appearing before a PT_TLS
4297 segment. */
4298 if (m->p_align_valid)
4299 maxpagesize = m->p_align;
4300
4301 p->p_align = maxpagesize;
4302 }
4303 else if (m->p_align_valid)
4304 p->p_align = m->p_align;
4305 else if (m->count == 0)
4306 p->p_align = 1 << bed->s->log_file_align;
4307 else
4308 p->p_align = 0;
4309
4310 no_contents = FALSE;
4311 off_adjust = 0;
4312 if (p->p_type == PT_LOAD
4313 && m->count > 0)
4314 {
4315 bfd_size_type align;
4316 unsigned int align_power = 0;
4317
4318 if (m->p_align_valid)
4319 align = p->p_align;
4320 else
4321 {
4322 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4323 {
4324 unsigned int secalign;
4325
4326 secalign = bfd_get_section_alignment (abfd, *secpp);
4327 if (secalign > align_power)
4328 align_power = secalign;
4329 }
4330 align = (bfd_size_type) 1 << align_power;
4331 if (align < maxpagesize)
4332 align = maxpagesize;
4333 }
4334
4335 for (i = 0; i < m->count; i++)
4336 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4337 /* If we aren't making room for this section, then
4338 it must be SHT_NOBITS regardless of what we've
4339 set via struct bfd_elf_special_section. */
4340 elf_section_type (m->sections[i]) = SHT_NOBITS;
4341
4342 /* Find out whether this segment contains any loadable
4343 sections. */
4344 no_contents = TRUE;
4345 for (i = 0; i < m->count; i++)
4346 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4347 {
4348 no_contents = FALSE;
4349 break;
4350 }
4351
4352 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4353 off += off_adjust;
4354 if (no_contents)
4355 {
4356 /* We shouldn't need to align the segment on disk since
4357 the segment doesn't need file space, but the gABI
4358 arguably requires the alignment and glibc ld.so
4359 checks it. So to comply with the alignment
4360 requirement but not waste file space, we adjust
4361 p_offset for just this segment. (OFF_ADJUST is
4362 subtracted from OFF later.) This may put p_offset
4363 past the end of file, but that shouldn't matter. */
4364 }
4365 else
4366 off_adjust = 0;
4367 }
4368 /* Make sure the .dynamic section is the first section in the
4369 PT_DYNAMIC segment. */
4370 else if (p->p_type == PT_DYNAMIC
4371 && m->count > 1
4372 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4373 {
4374 _bfd_error_handler
4375 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4376 abfd);
4377 bfd_set_error (bfd_error_bad_value);
4378 return FALSE;
4379 }
4380 /* Set the note section type to SHT_NOTE. */
4381 else if (p->p_type == PT_NOTE)
4382 for (i = 0; i < m->count; i++)
4383 elf_section_type (m->sections[i]) = SHT_NOTE;
4384
4385 p->p_offset = 0;
4386 p->p_filesz = 0;
4387 p->p_memsz = 0;
4388
4389 if (m->includes_filehdr)
4390 {
4391 if (!m->p_flags_valid)
4392 p->p_flags |= PF_R;
4393 p->p_filesz = bed->s->sizeof_ehdr;
4394 p->p_memsz = bed->s->sizeof_ehdr;
4395 if (m->count > 0)
4396 {
4397 BFD_ASSERT (p->p_type == PT_LOAD);
4398
4399 if (p->p_vaddr < (bfd_vma) off)
4400 {
4401 (*_bfd_error_handler)
4402 (_("%B: Not enough room for program headers, try linking with -N"),
4403 abfd);
4404 bfd_set_error (bfd_error_bad_value);
4405 return FALSE;
4406 }
4407
4408 p->p_vaddr -= off;
4409 if (!m->p_paddr_valid)
4410 p->p_paddr -= off;
4411 }
4412 }
4413
4414 if (m->includes_phdrs)
4415 {
4416 if (!m->p_flags_valid)
4417 p->p_flags |= PF_R;
4418
4419 if (!m->includes_filehdr)
4420 {
4421 p->p_offset = bed->s->sizeof_ehdr;
4422
4423 if (m->count > 0)
4424 {
4425 BFD_ASSERT (p->p_type == PT_LOAD);
4426 p->p_vaddr -= off - p->p_offset;
4427 if (!m->p_paddr_valid)
4428 p->p_paddr -= off - p->p_offset;
4429 }
4430 }
4431
4432 p->p_filesz += alloc * bed->s->sizeof_phdr;
4433 p->p_memsz += alloc * bed->s->sizeof_phdr;
4434 if (m->count)
4435 {
4436 p->p_filesz += header_pad;
4437 p->p_memsz += header_pad;
4438 }
4439 }
4440
4441 if (p->p_type == PT_LOAD
4442 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4443 {
4444 if (!m->includes_filehdr && !m->includes_phdrs)
4445 p->p_offset = off;
4446 else
4447 {
4448 file_ptr adjust;
4449
4450 adjust = off - (p->p_offset + p->p_filesz);
4451 if (!no_contents)
4452 p->p_filesz += adjust;
4453 p->p_memsz += adjust;
4454 }
4455 }
4456
4457 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4458 maps. Set filepos for sections in PT_LOAD segments, and in
4459 core files, for sections in PT_NOTE segments.
4460 assign_file_positions_for_non_load_sections will set filepos
4461 for other sections and update p_filesz for other segments. */
4462 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4463 {
4464 asection *sec;
4465 bfd_size_type align;
4466 Elf_Internal_Shdr *this_hdr;
4467
4468 sec = *secpp;
4469 this_hdr = &elf_section_data (sec)->this_hdr;
4470 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4471
4472 if ((p->p_type == PT_LOAD
4473 || p->p_type == PT_TLS)
4474 && (this_hdr->sh_type != SHT_NOBITS
4475 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4476 && ((this_hdr->sh_flags & SHF_TLS) == 0
4477 || p->p_type == PT_TLS))))
4478 {
4479 bfd_vma p_start = p->p_paddr;
4480 bfd_vma p_end = p_start + p->p_memsz;
4481 bfd_vma s_start = sec->lma;
4482 bfd_vma adjust = s_start - p_end;
4483
4484 if (adjust != 0
4485 && (s_start < p_end
4486 || p_end < p_start))
4487 {
4488 (*_bfd_error_handler)
4489 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4490 (unsigned long) s_start, (unsigned long) p_end);
4491 adjust = 0;
4492 sec->lma = p_end;
4493 }
4494 p->p_memsz += adjust;
4495
4496 if (this_hdr->sh_type != SHT_NOBITS)
4497 {
4498 if (p->p_filesz + adjust < p->p_memsz)
4499 {
4500 /* We have a PROGBITS section following NOBITS ones.
4501 Allocate file space for the NOBITS section(s) and
4502 zero it. */
4503 adjust = p->p_memsz - p->p_filesz;
4504 if (!write_zeros (abfd, off, adjust))
4505 return FALSE;
4506 }
4507 off += adjust;
4508 p->p_filesz += adjust;
4509 }
4510 }
4511
4512 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4513 {
4514 /* The section at i == 0 is the one that actually contains
4515 everything. */
4516 if (i == 0)
4517 {
4518 this_hdr->sh_offset = sec->filepos = off;
4519 off += this_hdr->sh_size;
4520 p->p_filesz = this_hdr->sh_size;
4521 p->p_memsz = 0;
4522 p->p_align = 1;
4523 }
4524 else
4525 {
4526 /* The rest are fake sections that shouldn't be written. */
4527 sec->filepos = 0;
4528 sec->size = 0;
4529 sec->flags = 0;
4530 continue;
4531 }
4532 }
4533 else
4534 {
4535 if (p->p_type == PT_LOAD)
4536 {
4537 this_hdr->sh_offset = sec->filepos = off;
4538 if (this_hdr->sh_type != SHT_NOBITS)
4539 off += this_hdr->sh_size;
4540 }
4541
4542 if (this_hdr->sh_type != SHT_NOBITS)
4543 {
4544 p->p_filesz += this_hdr->sh_size;
4545 /* A load section without SHF_ALLOC is something like
4546 a note section in a PT_NOTE segment. These take
4547 file space but are not loaded into memory. */
4548 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4549 p->p_memsz += this_hdr->sh_size;
4550 }
4551 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4552 {
4553 if (p->p_type == PT_TLS)
4554 p->p_memsz += this_hdr->sh_size;
4555
4556 /* .tbss is special. It doesn't contribute to p_memsz of
4557 normal segments. */
4558 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4559 p->p_memsz += this_hdr->sh_size;
4560 }
4561
4562 if (align > p->p_align
4563 && !m->p_align_valid
4564 && (p->p_type != PT_LOAD
4565 || (abfd->flags & D_PAGED) == 0))
4566 p->p_align = align;
4567 }
4568
4569 if (!m->p_flags_valid)
4570 {
4571 p->p_flags |= PF_R;
4572 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4573 p->p_flags |= PF_X;
4574 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4575 p->p_flags |= PF_W;
4576 }
4577 }
4578 off -= off_adjust;
4579
4580 /* Check that all sections are in a PT_LOAD segment.
4581 Don't check funky gdb generated core files. */
4582 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4583 {
4584 bfd_boolean check_vma = TRUE;
4585
4586 for (i = 1; i < m->count; i++)
4587 if (m->sections[i]->vma == m->sections[i - 1]->vma
4588 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4589 ->this_hdr), p) != 0
4590 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4591 ->this_hdr), p) != 0)
4592 {
4593 /* Looks like we have overlays packed into the segment. */
4594 check_vma = FALSE;
4595 break;
4596 }
4597
4598 for (i = 0; i < m->count; i++)
4599 {
4600 Elf_Internal_Shdr *this_hdr;
4601 asection *sec;
4602
4603 sec = m->sections[i];
4604 this_hdr = &(elf_section_data(sec)->this_hdr);
4605 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0))
4606 {
4607 (*_bfd_error_handler)
4608 (_("%B: section `%A' can't be allocated in segment %d"),
4609 abfd, sec, j);
4610 print_segment_map (m);
4611 }
4612 }
4613 }
4614 }
4615
4616 elf_tdata (abfd)->next_file_pos = off;
4617 return TRUE;
4618 }
4619
4620 /* Assign file positions for the other sections. */
4621
4622 static bfd_boolean
4623 assign_file_positions_for_non_load_sections (bfd *abfd,
4624 struct bfd_link_info *link_info)
4625 {
4626 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4627 Elf_Internal_Shdr **i_shdrpp;
4628 Elf_Internal_Shdr **hdrpp;
4629 Elf_Internal_Phdr *phdrs;
4630 Elf_Internal_Phdr *p;
4631 struct elf_segment_map *m;
4632 bfd_vma filehdr_vaddr, filehdr_paddr;
4633 bfd_vma phdrs_vaddr, phdrs_paddr;
4634 file_ptr off;
4635 unsigned int num_sec;
4636 unsigned int i;
4637 unsigned int count;
4638
4639 i_shdrpp = elf_elfsections (abfd);
4640 num_sec = elf_numsections (abfd);
4641 off = elf_tdata (abfd)->next_file_pos;
4642 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4643 {
4644 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4645 Elf_Internal_Shdr *hdr;
4646
4647 hdr = *hdrpp;
4648 if (hdr->bfd_section != NULL
4649 && (hdr->bfd_section->filepos != 0
4650 || (hdr->sh_type == SHT_NOBITS
4651 && hdr->contents == NULL)))
4652 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4653 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4654 {
4655 (*_bfd_error_handler)
4656 (_("%B: warning: allocated section `%s' not in segment"),
4657 abfd,
4658 (hdr->bfd_section == NULL
4659 ? "*unknown*"
4660 : hdr->bfd_section->name));
4661 /* We don't need to page align empty sections. */
4662 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4663 off += vma_page_aligned_bias (hdr->sh_addr, off,
4664 bed->maxpagesize);
4665 else
4666 off += vma_page_aligned_bias (hdr->sh_addr, off,
4667 hdr->sh_addralign);
4668 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4669 FALSE);
4670 }
4671 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4672 && hdr->bfd_section == NULL)
4673 || hdr == i_shdrpp[tdata->symtab_section]
4674 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4675 || hdr == i_shdrpp[tdata->strtab_section])
4676 hdr->sh_offset = -1;
4677 else
4678 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4679 }
4680
4681 /* Now that we have set the section file positions, we can set up
4682 the file positions for the non PT_LOAD segments. */
4683 count = 0;
4684 filehdr_vaddr = 0;
4685 filehdr_paddr = 0;
4686 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4687 phdrs_paddr = 0;
4688 phdrs = elf_tdata (abfd)->phdr;
4689 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4690 m != NULL;
4691 m = m->next, p++)
4692 {
4693 ++count;
4694 if (p->p_type != PT_LOAD)
4695 continue;
4696
4697 if (m->includes_filehdr)
4698 {
4699 filehdr_vaddr = p->p_vaddr;
4700 filehdr_paddr = p->p_paddr;
4701 }
4702 if (m->includes_phdrs)
4703 {
4704 phdrs_vaddr = p->p_vaddr;
4705 phdrs_paddr = p->p_paddr;
4706 if (m->includes_filehdr)
4707 {
4708 phdrs_vaddr += bed->s->sizeof_ehdr;
4709 phdrs_paddr += bed->s->sizeof_ehdr;
4710 }
4711 }
4712 }
4713
4714 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4715 m != NULL;
4716 m = m->next, p++)
4717 {
4718 if (p->p_type == PT_GNU_RELRO)
4719 {
4720 const Elf_Internal_Phdr *lp;
4721
4722 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4723
4724 if (link_info != NULL)
4725 {
4726 /* During linking the range of the RELRO segment is passed
4727 in link_info. */
4728 for (lp = phdrs; lp < phdrs + count; ++lp)
4729 {
4730 if (lp->p_type == PT_LOAD
4731 && lp->p_vaddr >= link_info->relro_start
4732 && lp->p_vaddr < link_info->relro_end
4733 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4734 break;
4735 }
4736 }
4737 else
4738 {
4739 /* Otherwise we are copying an executable or shared
4740 library, but we need to use the same linker logic. */
4741 for (lp = phdrs; lp < phdrs + count; ++lp)
4742 {
4743 if (lp->p_type == PT_LOAD
4744 && lp->p_paddr == p->p_paddr)
4745 break;
4746 }
4747 }
4748
4749 if (lp < phdrs + count)
4750 {
4751 p->p_vaddr = lp->p_vaddr;
4752 p->p_paddr = lp->p_paddr;
4753 p->p_offset = lp->p_offset;
4754 if (link_info != NULL)
4755 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4756 else if (m->p_size_valid)
4757 p->p_filesz = m->p_size;
4758 else
4759 abort ();
4760 p->p_memsz = p->p_filesz;
4761 p->p_align = 1;
4762 p->p_flags = (lp->p_flags & ~PF_W);
4763 }
4764 else
4765 {
4766 memset (p, 0, sizeof *p);
4767 p->p_type = PT_NULL;
4768 }
4769 }
4770 else if (m->count != 0)
4771 {
4772 if (p->p_type != PT_LOAD
4773 && (p->p_type != PT_NOTE
4774 || bfd_get_format (abfd) != bfd_core))
4775 {
4776 Elf_Internal_Shdr *hdr;
4777 asection *sect;
4778
4779 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4780
4781 sect = m->sections[m->count - 1];
4782 hdr = &elf_section_data (sect)->this_hdr;
4783 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4784 if (hdr->sh_type != SHT_NOBITS)
4785 p->p_filesz += hdr->sh_size;
4786 p->p_offset = m->sections[0]->filepos;
4787 }
4788 }
4789 else if (m->includes_filehdr)
4790 {
4791 p->p_vaddr = filehdr_vaddr;
4792 if (! m->p_paddr_valid)
4793 p->p_paddr = filehdr_paddr;
4794 }
4795 else if (m->includes_phdrs)
4796 {
4797 p->p_vaddr = phdrs_vaddr;
4798 if (! m->p_paddr_valid)
4799 p->p_paddr = phdrs_paddr;
4800 }
4801 }
4802
4803 elf_tdata (abfd)->next_file_pos = off;
4804
4805 return TRUE;
4806 }
4807
4808 /* Work out the file positions of all the sections. This is called by
4809 _bfd_elf_compute_section_file_positions. All the section sizes and
4810 VMAs must be known before this is called.
4811
4812 Reloc sections come in two flavours: Those processed specially as
4813 "side-channel" data attached to a section to which they apply, and
4814 those that bfd doesn't process as relocations. The latter sort are
4815 stored in a normal bfd section by bfd_section_from_shdr. We don't
4816 consider the former sort here, unless they form part of the loadable
4817 image. Reloc sections not assigned here will be handled later by
4818 assign_file_positions_for_relocs.
4819
4820 We also don't set the positions of the .symtab and .strtab here. */
4821
4822 static bfd_boolean
4823 assign_file_positions_except_relocs (bfd *abfd,
4824 struct bfd_link_info *link_info)
4825 {
4826 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4827 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4828 file_ptr off;
4829 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4830
4831 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4832 && bfd_get_format (abfd) != bfd_core)
4833 {
4834 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4835 unsigned int num_sec = elf_numsections (abfd);
4836 Elf_Internal_Shdr **hdrpp;
4837 unsigned int i;
4838
4839 /* Start after the ELF header. */
4840 off = i_ehdrp->e_ehsize;
4841
4842 /* We are not creating an executable, which means that we are
4843 not creating a program header, and that the actual order of
4844 the sections in the file is unimportant. */
4845 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4846 {
4847 Elf_Internal_Shdr *hdr;
4848
4849 hdr = *hdrpp;
4850 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4851 && hdr->bfd_section == NULL)
4852 || i == tdata->symtab_section
4853 || i == tdata->symtab_shndx_section
4854 || i == tdata->strtab_section)
4855 {
4856 hdr->sh_offset = -1;
4857 }
4858 else
4859 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4860 }
4861 }
4862 else
4863 {
4864 unsigned int alloc;
4865
4866 /* Assign file positions for the loaded sections based on the
4867 assignment of sections to segments. */
4868 if (!assign_file_positions_for_load_sections (abfd, link_info))
4869 return FALSE;
4870
4871 /* And for non-load sections. */
4872 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4873 return FALSE;
4874
4875 if (bed->elf_backend_modify_program_headers != NULL)
4876 {
4877 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4878 return FALSE;
4879 }
4880
4881 /* Write out the program headers. */
4882 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4883 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4884 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4885 return FALSE;
4886
4887 off = tdata->next_file_pos;
4888 }
4889
4890 /* Place the section headers. */
4891 off = align_file_position (off, 1 << bed->s->log_file_align);
4892 i_ehdrp->e_shoff = off;
4893 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4894
4895 tdata->next_file_pos = off;
4896
4897 return TRUE;
4898 }
4899
4900 static bfd_boolean
4901 prep_headers (bfd *abfd)
4902 {
4903 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
4904 struct elf_strtab_hash *shstrtab;
4905 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4906
4907 i_ehdrp = elf_elfheader (abfd);
4908
4909 shstrtab = _bfd_elf_strtab_init ();
4910 if (shstrtab == NULL)
4911 return FALSE;
4912
4913 elf_shstrtab (abfd) = shstrtab;
4914
4915 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4916 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4917 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4918 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4919
4920 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4921 i_ehdrp->e_ident[EI_DATA] =
4922 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4923 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4924
4925 if ((abfd->flags & DYNAMIC) != 0)
4926 i_ehdrp->e_type = ET_DYN;
4927 else if ((abfd->flags & EXEC_P) != 0)
4928 i_ehdrp->e_type = ET_EXEC;
4929 else if (bfd_get_format (abfd) == bfd_core)
4930 i_ehdrp->e_type = ET_CORE;
4931 else
4932 i_ehdrp->e_type = ET_REL;
4933
4934 switch (bfd_get_arch (abfd))
4935 {
4936 case bfd_arch_unknown:
4937 i_ehdrp->e_machine = EM_NONE;
4938 break;
4939
4940 /* There used to be a long list of cases here, each one setting
4941 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4942 in the corresponding bfd definition. To avoid duplication,
4943 the switch was removed. Machines that need special handling
4944 can generally do it in elf_backend_final_write_processing(),
4945 unless they need the information earlier than the final write.
4946 Such need can generally be supplied by replacing the tests for
4947 e_machine with the conditions used to determine it. */
4948 default:
4949 i_ehdrp->e_machine = bed->elf_machine_code;
4950 }
4951
4952 i_ehdrp->e_version = bed->s->ev_current;
4953 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4954
4955 /* No program header, for now. */
4956 i_ehdrp->e_phoff = 0;
4957 i_ehdrp->e_phentsize = 0;
4958 i_ehdrp->e_phnum = 0;
4959
4960 /* Each bfd section is section header entry. */
4961 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4962 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4963
4964 /* If we're building an executable, we'll need a program header table. */
4965 if (abfd->flags & EXEC_P)
4966 /* It all happens later. */
4967 ;
4968 else
4969 {
4970 i_ehdrp->e_phentsize = 0;
4971 i_ehdrp->e_phoff = 0;
4972 }
4973
4974 elf_tdata (abfd)->symtab_hdr.sh_name =
4975 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4976 elf_tdata (abfd)->strtab_hdr.sh_name =
4977 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4978 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4979 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4980 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4981 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4982 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4983 return FALSE;
4984
4985 return TRUE;
4986 }
4987
4988 /* Assign file positions for all the reloc sections which are not part
4989 of the loadable file image. */
4990
4991 void
4992 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4993 {
4994 file_ptr off;
4995 unsigned int i, num_sec;
4996 Elf_Internal_Shdr **shdrpp;
4997
4998 off = elf_tdata (abfd)->next_file_pos;
4999
5000 num_sec = elf_numsections (abfd);
5001 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5002 {
5003 Elf_Internal_Shdr *shdrp;
5004
5005 shdrp = *shdrpp;
5006 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5007 && shdrp->sh_offset == -1)
5008 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5009 }
5010
5011 elf_tdata (abfd)->next_file_pos = off;
5012 }
5013
5014 bfd_boolean
5015 _bfd_elf_write_object_contents (bfd *abfd)
5016 {
5017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5018 Elf_Internal_Shdr **i_shdrp;
5019 bfd_boolean failed;
5020 unsigned int count, num_sec;
5021
5022 if (! abfd->output_has_begun
5023 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5024 return FALSE;
5025
5026 i_shdrp = elf_elfsections (abfd);
5027
5028 failed = FALSE;
5029 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5030 if (failed)
5031 return FALSE;
5032
5033 _bfd_elf_assign_file_positions_for_relocs (abfd);
5034
5035 /* After writing the headers, we need to write the sections too... */
5036 num_sec = elf_numsections (abfd);
5037 for (count = 1; count < num_sec; count++)
5038 {
5039 if (bed->elf_backend_section_processing)
5040 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5041 if (i_shdrp[count]->contents)
5042 {
5043 bfd_size_type amt = i_shdrp[count]->sh_size;
5044
5045 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5046 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5047 return FALSE;
5048 }
5049 }
5050
5051 /* Write out the section header names. */
5052 if (elf_shstrtab (abfd) != NULL
5053 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5054 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5055 return FALSE;
5056
5057 if (bed->elf_backend_final_write_processing)
5058 (*bed->elf_backend_final_write_processing) (abfd,
5059 elf_tdata (abfd)->linker);
5060
5061 if (!bed->s->write_shdrs_and_ehdr (abfd))
5062 return FALSE;
5063
5064 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5065 if (elf_tdata (abfd)->after_write_object_contents)
5066 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5067
5068 return TRUE;
5069 }
5070
5071 bfd_boolean
5072 _bfd_elf_write_corefile_contents (bfd *abfd)
5073 {
5074 /* Hopefully this can be done just like an object file. */
5075 return _bfd_elf_write_object_contents (abfd);
5076 }
5077
5078 /* Given a section, search the header to find them. */
5079
5080 unsigned int
5081 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5082 {
5083 const struct elf_backend_data *bed;
5084 unsigned int sec_index;
5085
5086 if (elf_section_data (asect) != NULL
5087 && elf_section_data (asect)->this_idx != 0)
5088 return elf_section_data (asect)->this_idx;
5089
5090 if (bfd_is_abs_section (asect))
5091 sec_index = SHN_ABS;
5092 else if (bfd_is_com_section (asect))
5093 sec_index = SHN_COMMON;
5094 else if (bfd_is_und_section (asect))
5095 sec_index = SHN_UNDEF;
5096 else
5097 sec_index = SHN_BAD;
5098
5099 bed = get_elf_backend_data (abfd);
5100 if (bed->elf_backend_section_from_bfd_section)
5101 {
5102 int retval = sec_index;
5103
5104 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5105 return retval;
5106 }
5107
5108 if (sec_index == SHN_BAD)
5109 bfd_set_error (bfd_error_nonrepresentable_section);
5110
5111 return sec_index;
5112 }
5113
5114 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5115 on error. */
5116
5117 int
5118 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5119 {
5120 asymbol *asym_ptr = *asym_ptr_ptr;
5121 int idx;
5122 flagword flags = asym_ptr->flags;
5123
5124 /* When gas creates relocations against local labels, it creates its
5125 own symbol for the section, but does put the symbol into the
5126 symbol chain, so udata is 0. When the linker is generating
5127 relocatable output, this section symbol may be for one of the
5128 input sections rather than the output section. */
5129 if (asym_ptr->udata.i == 0
5130 && (flags & BSF_SECTION_SYM)
5131 && asym_ptr->section)
5132 {
5133 asection *sec;
5134 int indx;
5135
5136 sec = asym_ptr->section;
5137 if (sec->owner != abfd && sec->output_section != NULL)
5138 sec = sec->output_section;
5139 if (sec->owner == abfd
5140 && (indx = sec->index) < elf_num_section_syms (abfd)
5141 && elf_section_syms (abfd)[indx] != NULL)
5142 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5143 }
5144
5145 idx = asym_ptr->udata.i;
5146
5147 if (idx == 0)
5148 {
5149 /* This case can occur when using --strip-symbol on a symbol
5150 which is used in a relocation entry. */
5151 (*_bfd_error_handler)
5152 (_("%B: symbol `%s' required but not present"),
5153 abfd, bfd_asymbol_name (asym_ptr));
5154 bfd_set_error (bfd_error_no_symbols);
5155 return -1;
5156 }
5157
5158 #if DEBUG & 4
5159 {
5160 fprintf (stderr,
5161 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5162 (long) asym_ptr, asym_ptr->name, idx, flags,
5163 elf_symbol_flags (flags));
5164 fflush (stderr);
5165 }
5166 #endif
5167
5168 return idx;
5169 }
5170
5171 /* Rewrite program header information. */
5172
5173 static bfd_boolean
5174 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5175 {
5176 Elf_Internal_Ehdr *iehdr;
5177 struct elf_segment_map *map;
5178 struct elf_segment_map *map_first;
5179 struct elf_segment_map **pointer_to_map;
5180 Elf_Internal_Phdr *segment;
5181 asection *section;
5182 unsigned int i;
5183 unsigned int num_segments;
5184 bfd_boolean phdr_included = FALSE;
5185 bfd_boolean p_paddr_valid;
5186 bfd_vma maxpagesize;
5187 struct elf_segment_map *phdr_adjust_seg = NULL;
5188 unsigned int phdr_adjust_num = 0;
5189 const struct elf_backend_data *bed;
5190
5191 bed = get_elf_backend_data (ibfd);
5192 iehdr = elf_elfheader (ibfd);
5193
5194 map_first = NULL;
5195 pointer_to_map = &map_first;
5196
5197 num_segments = elf_elfheader (ibfd)->e_phnum;
5198 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5199
5200 /* Returns the end address of the segment + 1. */
5201 #define SEGMENT_END(segment, start) \
5202 (start + (segment->p_memsz > segment->p_filesz \
5203 ? segment->p_memsz : segment->p_filesz))
5204
5205 #define SECTION_SIZE(section, segment) \
5206 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5207 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5208 ? section->size : 0)
5209
5210 /* Returns TRUE if the given section is contained within
5211 the given segment. VMA addresses are compared. */
5212 #define IS_CONTAINED_BY_VMA(section, segment) \
5213 (section->vma >= segment->p_vaddr \
5214 && (section->vma + SECTION_SIZE (section, segment) \
5215 <= (SEGMENT_END (segment, segment->p_vaddr))))
5216
5217 /* Returns TRUE if the given section is contained within
5218 the given segment. LMA addresses are compared. */
5219 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5220 (section->lma >= base \
5221 && (section->lma + SECTION_SIZE (section, segment) \
5222 <= SEGMENT_END (segment, base)))
5223
5224 /* Handle PT_NOTE segment. */
5225 #define IS_NOTE(p, s) \
5226 (p->p_type == PT_NOTE \
5227 && elf_section_type (s) == SHT_NOTE \
5228 && (bfd_vma) s->filepos >= p->p_offset \
5229 && ((bfd_vma) s->filepos + s->size \
5230 <= p->p_offset + p->p_filesz))
5231
5232 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5233 etc. */
5234 #define IS_COREFILE_NOTE(p, s) \
5235 (IS_NOTE (p, s) \
5236 && bfd_get_format (ibfd) == bfd_core \
5237 && s->vma == 0 \
5238 && s->lma == 0)
5239
5240 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5241 linker, which generates a PT_INTERP section with p_vaddr and
5242 p_memsz set to 0. */
5243 #define IS_SOLARIS_PT_INTERP(p, s) \
5244 (p->p_vaddr == 0 \
5245 && p->p_paddr == 0 \
5246 && p->p_memsz == 0 \
5247 && p->p_filesz > 0 \
5248 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5249 && s->size > 0 \
5250 && (bfd_vma) s->filepos >= p->p_offset \
5251 && ((bfd_vma) s->filepos + s->size \
5252 <= p->p_offset + p->p_filesz))
5253
5254 /* Decide if the given section should be included in the given segment.
5255 A section will be included if:
5256 1. It is within the address space of the segment -- we use the LMA
5257 if that is set for the segment and the VMA otherwise,
5258 2. It is an allocated section or a NOTE section in a PT_NOTE
5259 segment.
5260 3. There is an output section associated with it,
5261 4. The section has not already been allocated to a previous segment.
5262 5. PT_GNU_STACK segments do not include any sections.
5263 6. PT_TLS segment includes only SHF_TLS sections.
5264 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5265 8. PT_DYNAMIC should not contain empty sections at the beginning
5266 (with the possible exception of .dynamic). */
5267 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5268 ((((segment->p_paddr \
5269 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5270 : IS_CONTAINED_BY_VMA (section, segment)) \
5271 && (section->flags & SEC_ALLOC) != 0) \
5272 || IS_NOTE (segment, section)) \
5273 && segment->p_type != PT_GNU_STACK \
5274 && (segment->p_type != PT_TLS \
5275 || (section->flags & SEC_THREAD_LOCAL)) \
5276 && (segment->p_type == PT_LOAD \
5277 || segment->p_type == PT_TLS \
5278 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5279 && (segment->p_type != PT_DYNAMIC \
5280 || SECTION_SIZE (section, segment) > 0 \
5281 || (segment->p_paddr \
5282 ? segment->p_paddr != section->lma \
5283 : segment->p_vaddr != section->vma) \
5284 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5285 == 0)) \
5286 && !section->segment_mark)
5287
5288 /* If the output section of a section in the input segment is NULL,
5289 it is removed from the corresponding output segment. */
5290 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5291 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5292 && section->output_section != NULL)
5293
5294 /* Returns TRUE iff seg1 starts after the end of seg2. */
5295 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5296 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5297
5298 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5299 their VMA address ranges and their LMA address ranges overlap.
5300 It is possible to have overlapping VMA ranges without overlapping LMA
5301 ranges. RedBoot images for example can have both .data and .bss mapped
5302 to the same VMA range, but with the .data section mapped to a different
5303 LMA. */
5304 #define SEGMENT_OVERLAPS(seg1, seg2) \
5305 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5306 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5307 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5308 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5309
5310 /* Initialise the segment mark field. */
5311 for (section = ibfd->sections; section != NULL; section = section->next)
5312 section->segment_mark = FALSE;
5313
5314 /* The Solaris linker creates program headers in which all the
5315 p_paddr fields are zero. When we try to objcopy or strip such a
5316 file, we get confused. Check for this case, and if we find it
5317 don't set the p_paddr_valid fields. */
5318 p_paddr_valid = FALSE;
5319 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5320 i < num_segments;
5321 i++, segment++)
5322 if (segment->p_paddr != 0)
5323 {
5324 p_paddr_valid = TRUE;
5325 break;
5326 }
5327
5328 /* Scan through the segments specified in the program header
5329 of the input BFD. For this first scan we look for overlaps
5330 in the loadable segments. These can be created by weird
5331 parameters to objcopy. Also, fix some solaris weirdness. */
5332 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5333 i < num_segments;
5334 i++, segment++)
5335 {
5336 unsigned int j;
5337 Elf_Internal_Phdr *segment2;
5338
5339 if (segment->p_type == PT_INTERP)
5340 for (section = ibfd->sections; section; section = section->next)
5341 if (IS_SOLARIS_PT_INTERP (segment, section))
5342 {
5343 /* Mininal change so that the normal section to segment
5344 assignment code will work. */
5345 segment->p_vaddr = section->vma;
5346 break;
5347 }
5348
5349 if (segment->p_type != PT_LOAD)
5350 {
5351 /* Remove PT_GNU_RELRO segment. */
5352 if (segment->p_type == PT_GNU_RELRO)
5353 segment->p_type = PT_NULL;
5354 continue;
5355 }
5356
5357 /* Determine if this segment overlaps any previous segments. */
5358 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5359 {
5360 bfd_signed_vma extra_length;
5361
5362 if (segment2->p_type != PT_LOAD
5363 || !SEGMENT_OVERLAPS (segment, segment2))
5364 continue;
5365
5366 /* Merge the two segments together. */
5367 if (segment2->p_vaddr < segment->p_vaddr)
5368 {
5369 /* Extend SEGMENT2 to include SEGMENT and then delete
5370 SEGMENT. */
5371 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5372 - SEGMENT_END (segment2, segment2->p_vaddr));
5373
5374 if (extra_length > 0)
5375 {
5376 segment2->p_memsz += extra_length;
5377 segment2->p_filesz += extra_length;
5378 }
5379
5380 segment->p_type = PT_NULL;
5381
5382 /* Since we have deleted P we must restart the outer loop. */
5383 i = 0;
5384 segment = elf_tdata (ibfd)->phdr;
5385 break;
5386 }
5387 else
5388 {
5389 /* Extend SEGMENT to include SEGMENT2 and then delete
5390 SEGMENT2. */
5391 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5392 - SEGMENT_END (segment, segment->p_vaddr));
5393
5394 if (extra_length > 0)
5395 {
5396 segment->p_memsz += extra_length;
5397 segment->p_filesz += extra_length;
5398 }
5399
5400 segment2->p_type = PT_NULL;
5401 }
5402 }
5403 }
5404
5405 /* The second scan attempts to assign sections to segments. */
5406 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5407 i < num_segments;
5408 i++, segment++)
5409 {
5410 unsigned int section_count;
5411 asection **sections;
5412 asection *output_section;
5413 unsigned int isec;
5414 bfd_vma matching_lma;
5415 bfd_vma suggested_lma;
5416 unsigned int j;
5417 bfd_size_type amt;
5418 asection *first_section;
5419 bfd_boolean first_matching_lma;
5420 bfd_boolean first_suggested_lma;
5421
5422 if (segment->p_type == PT_NULL)
5423 continue;
5424
5425 first_section = NULL;
5426 /* Compute how many sections might be placed into this segment. */
5427 for (section = ibfd->sections, section_count = 0;
5428 section != NULL;
5429 section = section->next)
5430 {
5431 /* Find the first section in the input segment, which may be
5432 removed from the corresponding output segment. */
5433 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5434 {
5435 if (first_section == NULL)
5436 first_section = section;
5437 if (section->output_section != NULL)
5438 ++section_count;
5439 }
5440 }
5441
5442 /* Allocate a segment map big enough to contain
5443 all of the sections we have selected. */
5444 amt = sizeof (struct elf_segment_map);
5445 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5446 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5447 if (map == NULL)
5448 return FALSE;
5449
5450 /* Initialise the fields of the segment map. Default to
5451 using the physical address of the segment in the input BFD. */
5452 map->next = NULL;
5453 map->p_type = segment->p_type;
5454 map->p_flags = segment->p_flags;
5455 map->p_flags_valid = 1;
5456
5457 /* If the first section in the input segment is removed, there is
5458 no need to preserve segment physical address in the corresponding
5459 output segment. */
5460 if (!first_section || first_section->output_section != NULL)
5461 {
5462 map->p_paddr = segment->p_paddr;
5463 map->p_paddr_valid = p_paddr_valid;
5464 }
5465
5466 /* Determine if this segment contains the ELF file header
5467 and if it contains the program headers themselves. */
5468 map->includes_filehdr = (segment->p_offset == 0
5469 && segment->p_filesz >= iehdr->e_ehsize);
5470 map->includes_phdrs = 0;
5471
5472 if (!phdr_included || segment->p_type != PT_LOAD)
5473 {
5474 map->includes_phdrs =
5475 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5476 && (segment->p_offset + segment->p_filesz
5477 >= ((bfd_vma) iehdr->e_phoff
5478 + iehdr->e_phnum * iehdr->e_phentsize)));
5479
5480 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5481 phdr_included = TRUE;
5482 }
5483
5484 if (section_count == 0)
5485 {
5486 /* Special segments, such as the PT_PHDR segment, may contain
5487 no sections, but ordinary, loadable segments should contain
5488 something. They are allowed by the ELF spec however, so only
5489 a warning is produced. */
5490 if (segment->p_type == PT_LOAD)
5491 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5492 " detected, is this intentional ?\n"),
5493 ibfd);
5494
5495 map->count = 0;
5496 *pointer_to_map = map;
5497 pointer_to_map = &map->next;
5498
5499 continue;
5500 }
5501
5502 /* Now scan the sections in the input BFD again and attempt
5503 to add their corresponding output sections to the segment map.
5504 The problem here is how to handle an output section which has
5505 been moved (ie had its LMA changed). There are four possibilities:
5506
5507 1. None of the sections have been moved.
5508 In this case we can continue to use the segment LMA from the
5509 input BFD.
5510
5511 2. All of the sections have been moved by the same amount.
5512 In this case we can change the segment's LMA to match the LMA
5513 of the first section.
5514
5515 3. Some of the sections have been moved, others have not.
5516 In this case those sections which have not been moved can be
5517 placed in the current segment which will have to have its size,
5518 and possibly its LMA changed, and a new segment or segments will
5519 have to be created to contain the other sections.
5520
5521 4. The sections have been moved, but not by the same amount.
5522 In this case we can change the segment's LMA to match the LMA
5523 of the first section and we will have to create a new segment
5524 or segments to contain the other sections.
5525
5526 In order to save time, we allocate an array to hold the section
5527 pointers that we are interested in. As these sections get assigned
5528 to a segment, they are removed from this array. */
5529
5530 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5531 if (sections == NULL)
5532 return FALSE;
5533
5534 /* Step One: Scan for segment vs section LMA conflicts.
5535 Also add the sections to the section array allocated above.
5536 Also add the sections to the current segment. In the common
5537 case, where the sections have not been moved, this means that
5538 we have completely filled the segment, and there is nothing
5539 more to do. */
5540 isec = 0;
5541 matching_lma = 0;
5542 suggested_lma = 0;
5543 first_matching_lma = TRUE;
5544 first_suggested_lma = TRUE;
5545
5546 for (section = ibfd->sections;
5547 section != NULL;
5548 section = section->next)
5549 if (section == first_section)
5550 break;
5551
5552 for (j = 0; section != NULL; section = section->next)
5553 {
5554 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5555 {
5556 output_section = section->output_section;
5557
5558 sections[j++] = section;
5559
5560 /* The Solaris native linker always sets p_paddr to 0.
5561 We try to catch that case here, and set it to the
5562 correct value. Note - some backends require that
5563 p_paddr be left as zero. */
5564 if (!p_paddr_valid
5565 && segment->p_vaddr != 0
5566 && !bed->want_p_paddr_set_to_zero
5567 && isec == 0
5568 && output_section->lma != 0
5569 && output_section->vma == (segment->p_vaddr
5570 + (map->includes_filehdr
5571 ? iehdr->e_ehsize
5572 : 0)
5573 + (map->includes_phdrs
5574 ? (iehdr->e_phnum
5575 * iehdr->e_phentsize)
5576 : 0)))
5577 map->p_paddr = segment->p_vaddr;
5578
5579 /* Match up the physical address of the segment with the
5580 LMA address of the output section. */
5581 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5582 || IS_COREFILE_NOTE (segment, section)
5583 || (bed->want_p_paddr_set_to_zero
5584 && IS_CONTAINED_BY_VMA (output_section, segment)))
5585 {
5586 if (first_matching_lma || output_section->lma < matching_lma)
5587 {
5588 matching_lma = output_section->lma;
5589 first_matching_lma = FALSE;
5590 }
5591
5592 /* We assume that if the section fits within the segment
5593 then it does not overlap any other section within that
5594 segment. */
5595 map->sections[isec++] = output_section;
5596 }
5597 else if (first_suggested_lma)
5598 {
5599 suggested_lma = output_section->lma;
5600 first_suggested_lma = FALSE;
5601 }
5602
5603 if (j == section_count)
5604 break;
5605 }
5606 }
5607
5608 BFD_ASSERT (j == section_count);
5609
5610 /* Step Two: Adjust the physical address of the current segment,
5611 if necessary. */
5612 if (isec == section_count)
5613 {
5614 /* All of the sections fitted within the segment as currently
5615 specified. This is the default case. Add the segment to
5616 the list of built segments and carry on to process the next
5617 program header in the input BFD. */
5618 map->count = section_count;
5619 *pointer_to_map = map;
5620 pointer_to_map = &map->next;
5621
5622 if (p_paddr_valid
5623 && !bed->want_p_paddr_set_to_zero
5624 && matching_lma != map->p_paddr
5625 && !map->includes_filehdr
5626 && !map->includes_phdrs)
5627 /* There is some padding before the first section in the
5628 segment. So, we must account for that in the output
5629 segment's vma. */
5630 map->p_vaddr_offset = matching_lma - map->p_paddr;
5631
5632 free (sections);
5633 continue;
5634 }
5635 else
5636 {
5637 if (!first_matching_lma)
5638 {
5639 /* At least one section fits inside the current segment.
5640 Keep it, but modify its physical address to match the
5641 LMA of the first section that fitted. */
5642 map->p_paddr = matching_lma;
5643 }
5644 else
5645 {
5646 /* None of the sections fitted inside the current segment.
5647 Change the current segment's physical address to match
5648 the LMA of the first section. */
5649 map->p_paddr = suggested_lma;
5650 }
5651
5652 /* Offset the segment physical address from the lma
5653 to allow for space taken up by elf headers. */
5654 if (map->includes_filehdr)
5655 {
5656 if (map->p_paddr >= iehdr->e_ehsize)
5657 map->p_paddr -= iehdr->e_ehsize;
5658 else
5659 {
5660 map->includes_filehdr = FALSE;
5661 map->includes_phdrs = FALSE;
5662 }
5663 }
5664
5665 if (map->includes_phdrs)
5666 {
5667 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5668 {
5669 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5670
5671 /* iehdr->e_phnum is just an estimate of the number
5672 of program headers that we will need. Make a note
5673 here of the number we used and the segment we chose
5674 to hold these headers, so that we can adjust the
5675 offset when we know the correct value. */
5676 phdr_adjust_num = iehdr->e_phnum;
5677 phdr_adjust_seg = map;
5678 }
5679 else
5680 map->includes_phdrs = FALSE;
5681 }
5682 }
5683
5684 /* Step Three: Loop over the sections again, this time assigning
5685 those that fit to the current segment and removing them from the
5686 sections array; but making sure not to leave large gaps. Once all
5687 possible sections have been assigned to the current segment it is
5688 added to the list of built segments and if sections still remain
5689 to be assigned, a new segment is constructed before repeating
5690 the loop. */
5691 isec = 0;
5692 do
5693 {
5694 map->count = 0;
5695 suggested_lma = 0;
5696 first_suggested_lma = TRUE;
5697
5698 /* Fill the current segment with sections that fit. */
5699 for (j = 0; j < section_count; j++)
5700 {
5701 section = sections[j];
5702
5703 if (section == NULL)
5704 continue;
5705
5706 output_section = section->output_section;
5707
5708 BFD_ASSERT (output_section != NULL);
5709
5710 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5711 || IS_COREFILE_NOTE (segment, section))
5712 {
5713 if (map->count == 0)
5714 {
5715 /* If the first section in a segment does not start at
5716 the beginning of the segment, then something is
5717 wrong. */
5718 if (output_section->lma
5719 != (map->p_paddr
5720 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5721 + (map->includes_phdrs
5722 ? iehdr->e_phnum * iehdr->e_phentsize
5723 : 0)))
5724 abort ();
5725 }
5726 else
5727 {
5728 asection *prev_sec;
5729
5730 prev_sec = map->sections[map->count - 1];
5731
5732 /* If the gap between the end of the previous section
5733 and the start of this section is more than
5734 maxpagesize then we need to start a new segment. */
5735 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5736 maxpagesize)
5737 < BFD_ALIGN (output_section->lma, maxpagesize))
5738 || (prev_sec->lma + prev_sec->size
5739 > output_section->lma))
5740 {
5741 if (first_suggested_lma)
5742 {
5743 suggested_lma = output_section->lma;
5744 first_suggested_lma = FALSE;
5745 }
5746
5747 continue;
5748 }
5749 }
5750
5751 map->sections[map->count++] = output_section;
5752 ++isec;
5753 sections[j] = NULL;
5754 section->segment_mark = TRUE;
5755 }
5756 else if (first_suggested_lma)
5757 {
5758 suggested_lma = output_section->lma;
5759 first_suggested_lma = FALSE;
5760 }
5761 }
5762
5763 BFD_ASSERT (map->count > 0);
5764
5765 /* Add the current segment to the list of built segments. */
5766 *pointer_to_map = map;
5767 pointer_to_map = &map->next;
5768
5769 if (isec < section_count)
5770 {
5771 /* We still have not allocated all of the sections to
5772 segments. Create a new segment here, initialise it
5773 and carry on looping. */
5774 amt = sizeof (struct elf_segment_map);
5775 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5776 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5777 if (map == NULL)
5778 {
5779 free (sections);
5780 return FALSE;
5781 }
5782
5783 /* Initialise the fields of the segment map. Set the physical
5784 physical address to the LMA of the first section that has
5785 not yet been assigned. */
5786 map->next = NULL;
5787 map->p_type = segment->p_type;
5788 map->p_flags = segment->p_flags;
5789 map->p_flags_valid = 1;
5790 map->p_paddr = suggested_lma;
5791 map->p_paddr_valid = p_paddr_valid;
5792 map->includes_filehdr = 0;
5793 map->includes_phdrs = 0;
5794 }
5795 }
5796 while (isec < section_count);
5797
5798 free (sections);
5799 }
5800
5801 elf_tdata (obfd)->segment_map = map_first;
5802
5803 /* If we had to estimate the number of program headers that were
5804 going to be needed, then check our estimate now and adjust
5805 the offset if necessary. */
5806 if (phdr_adjust_seg != NULL)
5807 {
5808 unsigned int count;
5809
5810 for (count = 0, map = map_first; map != NULL; map = map->next)
5811 count++;
5812
5813 if (count > phdr_adjust_num)
5814 phdr_adjust_seg->p_paddr
5815 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5816 }
5817
5818 #undef SEGMENT_END
5819 #undef SECTION_SIZE
5820 #undef IS_CONTAINED_BY_VMA
5821 #undef IS_CONTAINED_BY_LMA
5822 #undef IS_NOTE
5823 #undef IS_COREFILE_NOTE
5824 #undef IS_SOLARIS_PT_INTERP
5825 #undef IS_SECTION_IN_INPUT_SEGMENT
5826 #undef INCLUDE_SECTION_IN_SEGMENT
5827 #undef SEGMENT_AFTER_SEGMENT
5828 #undef SEGMENT_OVERLAPS
5829 return TRUE;
5830 }
5831
5832 /* Copy ELF program header information. */
5833
5834 static bfd_boolean
5835 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5836 {
5837 Elf_Internal_Ehdr *iehdr;
5838 struct elf_segment_map *map;
5839 struct elf_segment_map *map_first;
5840 struct elf_segment_map **pointer_to_map;
5841 Elf_Internal_Phdr *segment;
5842 unsigned int i;
5843 unsigned int num_segments;
5844 bfd_boolean phdr_included = FALSE;
5845 bfd_boolean p_paddr_valid;
5846
5847 iehdr = elf_elfheader (ibfd);
5848
5849 map_first = NULL;
5850 pointer_to_map = &map_first;
5851
5852 /* If all the segment p_paddr fields are zero, don't set
5853 map->p_paddr_valid. */
5854 p_paddr_valid = FALSE;
5855 num_segments = elf_elfheader (ibfd)->e_phnum;
5856 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5857 i < num_segments;
5858 i++, segment++)
5859 if (segment->p_paddr != 0)
5860 {
5861 p_paddr_valid = TRUE;
5862 break;
5863 }
5864
5865 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5866 i < num_segments;
5867 i++, segment++)
5868 {
5869 asection *section;
5870 unsigned int section_count;
5871 bfd_size_type amt;
5872 Elf_Internal_Shdr *this_hdr;
5873 asection *first_section = NULL;
5874 asection *lowest_section;
5875
5876 /* Compute how many sections are in this segment. */
5877 for (section = ibfd->sections, section_count = 0;
5878 section != NULL;
5879 section = section->next)
5880 {
5881 this_hdr = &(elf_section_data(section)->this_hdr);
5882 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
5883 {
5884 if (first_section == NULL)
5885 first_section = section;
5886 section_count++;
5887 }
5888 }
5889
5890 /* Allocate a segment map big enough to contain
5891 all of the sections we have selected. */
5892 amt = sizeof (struct elf_segment_map);
5893 if (section_count != 0)
5894 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5895 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5896 if (map == NULL)
5897 return FALSE;
5898
5899 /* Initialize the fields of the output segment map with the
5900 input segment. */
5901 map->next = NULL;
5902 map->p_type = segment->p_type;
5903 map->p_flags = segment->p_flags;
5904 map->p_flags_valid = 1;
5905 map->p_paddr = segment->p_paddr;
5906 map->p_paddr_valid = p_paddr_valid;
5907 map->p_align = segment->p_align;
5908 map->p_align_valid = 1;
5909 map->p_vaddr_offset = 0;
5910
5911 if (map->p_type == PT_GNU_RELRO)
5912 {
5913 /* The PT_GNU_RELRO segment may contain the first a few
5914 bytes in the .got.plt section even if the whole .got.plt
5915 section isn't in the PT_GNU_RELRO segment. We won't
5916 change the size of the PT_GNU_RELRO segment. */
5917 map->p_size = segment->p_memsz;
5918 map->p_size_valid = 1;
5919 }
5920
5921 /* Determine if this segment contains the ELF file header
5922 and if it contains the program headers themselves. */
5923 map->includes_filehdr = (segment->p_offset == 0
5924 && segment->p_filesz >= iehdr->e_ehsize);
5925
5926 map->includes_phdrs = 0;
5927 if (! phdr_included || segment->p_type != PT_LOAD)
5928 {
5929 map->includes_phdrs =
5930 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5931 && (segment->p_offset + segment->p_filesz
5932 >= ((bfd_vma) iehdr->e_phoff
5933 + iehdr->e_phnum * iehdr->e_phentsize)));
5934
5935 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5936 phdr_included = TRUE;
5937 }
5938
5939 lowest_section = first_section;
5940 if (section_count != 0)
5941 {
5942 unsigned int isec = 0;
5943
5944 for (section = first_section;
5945 section != NULL;
5946 section = section->next)
5947 {
5948 this_hdr = &(elf_section_data(section)->this_hdr);
5949 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
5950 {
5951 map->sections[isec++] = section->output_section;
5952 if (section->lma < lowest_section->lma)
5953 lowest_section = section;
5954 if ((section->flags & SEC_ALLOC) != 0)
5955 {
5956 bfd_vma seg_off;
5957
5958 /* Section lmas are set up from PT_LOAD header
5959 p_paddr in _bfd_elf_make_section_from_shdr.
5960 If this header has a p_paddr that disagrees
5961 with the section lma, flag the p_paddr as
5962 invalid. */
5963 if ((section->flags & SEC_LOAD) != 0)
5964 seg_off = this_hdr->sh_offset - segment->p_offset;
5965 else
5966 seg_off = this_hdr->sh_addr - segment->p_vaddr;
5967 if (section->lma - segment->p_paddr != seg_off)
5968 map->p_paddr_valid = FALSE;
5969 }
5970 if (isec == section_count)
5971 break;
5972 }
5973 }
5974 }
5975
5976 if (map->includes_filehdr && lowest_section != NULL)
5977 /* We need to keep the space used by the headers fixed. */
5978 map->header_size = lowest_section->vma - segment->p_vaddr;
5979
5980 if (!map->includes_phdrs
5981 && !map->includes_filehdr
5982 && map->p_paddr_valid)
5983 /* There is some other padding before the first section. */
5984 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5985 - segment->p_paddr);
5986
5987 map->count = section_count;
5988 *pointer_to_map = map;
5989 pointer_to_map = &map->next;
5990 }
5991
5992 elf_tdata (obfd)->segment_map = map_first;
5993 return TRUE;
5994 }
5995
5996 /* Copy private BFD data. This copies or rewrites ELF program header
5997 information. */
5998
5999 static bfd_boolean
6000 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6001 {
6002 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6003 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6004 return TRUE;
6005
6006 if (elf_tdata (ibfd)->phdr == NULL)
6007 return TRUE;
6008
6009 if (ibfd->xvec == obfd->xvec)
6010 {
6011 /* Check to see if any sections in the input BFD
6012 covered by ELF program header have changed. */
6013 Elf_Internal_Phdr *segment;
6014 asection *section, *osec;
6015 unsigned int i, num_segments;
6016 Elf_Internal_Shdr *this_hdr;
6017 const struct elf_backend_data *bed;
6018
6019 bed = get_elf_backend_data (ibfd);
6020
6021 /* Regenerate the segment map if p_paddr is set to 0. */
6022 if (bed->want_p_paddr_set_to_zero)
6023 goto rewrite;
6024
6025 /* Initialize the segment mark field. */
6026 for (section = obfd->sections; section != NULL;
6027 section = section->next)
6028 section->segment_mark = FALSE;
6029
6030 num_segments = elf_elfheader (ibfd)->e_phnum;
6031 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6032 i < num_segments;
6033 i++, segment++)
6034 {
6035 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6036 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6037 which severly confuses things, so always regenerate the segment
6038 map in this case. */
6039 if (segment->p_paddr == 0
6040 && segment->p_memsz == 0
6041 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6042 goto rewrite;
6043
6044 for (section = ibfd->sections;
6045 section != NULL; section = section->next)
6046 {
6047 /* We mark the output section so that we know it comes
6048 from the input BFD. */
6049 osec = section->output_section;
6050 if (osec)
6051 osec->segment_mark = TRUE;
6052
6053 /* Check if this section is covered by the segment. */
6054 this_hdr = &(elf_section_data(section)->this_hdr);
6055 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6056 {
6057 /* FIXME: Check if its output section is changed or
6058 removed. What else do we need to check? */
6059 if (osec == NULL
6060 || section->flags != osec->flags
6061 || section->lma != osec->lma
6062 || section->vma != osec->vma
6063 || section->size != osec->size
6064 || section->rawsize != osec->rawsize
6065 || section->alignment_power != osec->alignment_power)
6066 goto rewrite;
6067 }
6068 }
6069 }
6070
6071 /* Check to see if any output section do not come from the
6072 input BFD. */
6073 for (section = obfd->sections; section != NULL;
6074 section = section->next)
6075 {
6076 if (section->segment_mark == FALSE)
6077 goto rewrite;
6078 else
6079 section->segment_mark = FALSE;
6080 }
6081
6082 return copy_elf_program_header (ibfd, obfd);
6083 }
6084
6085 rewrite:
6086 return rewrite_elf_program_header (ibfd, obfd);
6087 }
6088
6089 /* Initialize private output section information from input section. */
6090
6091 bfd_boolean
6092 _bfd_elf_init_private_section_data (bfd *ibfd,
6093 asection *isec,
6094 bfd *obfd,
6095 asection *osec,
6096 struct bfd_link_info *link_info)
6097
6098 {
6099 Elf_Internal_Shdr *ihdr, *ohdr;
6100 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6101
6102 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6103 || obfd->xvec->flavour != bfd_target_elf_flavour)
6104 return TRUE;
6105
6106 /* For objcopy and relocatable link, don't copy the output ELF
6107 section type from input if the output BFD section flags have been
6108 set to something different. For a final link allow some flags
6109 that the linker clears to differ. */
6110 if (elf_section_type (osec) == SHT_NULL
6111 && (osec->flags == isec->flags
6112 || (final_link
6113 && ((osec->flags ^ isec->flags)
6114 & ~ (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)) == 0)))
6115 elf_section_type (osec) = elf_section_type (isec);
6116
6117 /* FIXME: Is this correct for all OS/PROC specific flags? */
6118 elf_section_flags (osec) |= (elf_section_flags (isec)
6119 & (SHF_MASKOS | SHF_MASKPROC));
6120
6121 /* Set things up for objcopy and relocatable link. The output
6122 SHT_GROUP section will have its elf_next_in_group pointing back
6123 to the input group members. Ignore linker created group section.
6124 See elfNN_ia64_object_p in elfxx-ia64.c. */
6125 if (!final_link)
6126 {
6127 if (elf_sec_group (isec) == NULL
6128 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6129 {
6130 if (elf_section_flags (isec) & SHF_GROUP)
6131 elf_section_flags (osec) |= SHF_GROUP;
6132 elf_next_in_group (osec) = elf_next_in_group (isec);
6133 elf_section_data (osec)->group = elf_section_data (isec)->group;
6134 }
6135 }
6136
6137 ihdr = &elf_section_data (isec)->this_hdr;
6138
6139 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6140 don't use the output section of the linked-to section since it
6141 may be NULL at this point. */
6142 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6143 {
6144 ohdr = &elf_section_data (osec)->this_hdr;
6145 ohdr->sh_flags |= SHF_LINK_ORDER;
6146 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6147 }
6148
6149 osec->use_rela_p = isec->use_rela_p;
6150
6151 return TRUE;
6152 }
6153
6154 /* Copy private section information. This copies over the entsize
6155 field, and sometimes the info field. */
6156
6157 bfd_boolean
6158 _bfd_elf_copy_private_section_data (bfd *ibfd,
6159 asection *isec,
6160 bfd *obfd,
6161 asection *osec)
6162 {
6163 Elf_Internal_Shdr *ihdr, *ohdr;
6164
6165 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6166 || obfd->xvec->flavour != bfd_target_elf_flavour)
6167 return TRUE;
6168
6169 ihdr = &elf_section_data (isec)->this_hdr;
6170 ohdr = &elf_section_data (osec)->this_hdr;
6171
6172 ohdr->sh_entsize = ihdr->sh_entsize;
6173
6174 if (ihdr->sh_type == SHT_SYMTAB
6175 || ihdr->sh_type == SHT_DYNSYM
6176 || ihdr->sh_type == SHT_GNU_verneed
6177 || ihdr->sh_type == SHT_GNU_verdef)
6178 ohdr->sh_info = ihdr->sh_info;
6179
6180 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6181 NULL);
6182 }
6183
6184 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6185 necessary if we are removing either the SHT_GROUP section or any of
6186 the group member sections. DISCARDED is the value that a section's
6187 output_section has if the section will be discarded, NULL when this
6188 function is called from objcopy, bfd_abs_section_ptr when called
6189 from the linker. */
6190
6191 bfd_boolean
6192 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6193 {
6194 asection *isec;
6195
6196 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6197 if (elf_section_type (isec) == SHT_GROUP)
6198 {
6199 asection *first = elf_next_in_group (isec);
6200 asection *s = first;
6201 bfd_size_type removed = 0;
6202
6203 while (s != NULL)
6204 {
6205 /* If this member section is being output but the
6206 SHT_GROUP section is not, then clear the group info
6207 set up by _bfd_elf_copy_private_section_data. */
6208 if (s->output_section != discarded
6209 && isec->output_section == discarded)
6210 {
6211 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6212 elf_group_name (s->output_section) = NULL;
6213 }
6214 /* Conversely, if the member section is not being output
6215 but the SHT_GROUP section is, then adjust its size. */
6216 else if (s->output_section == discarded
6217 && isec->output_section != discarded)
6218 removed += 4;
6219 s = elf_next_in_group (s);
6220 if (s == first)
6221 break;
6222 }
6223 if (removed != 0)
6224 {
6225 if (discarded != NULL)
6226 {
6227 /* If we've been called for ld -r, then we need to
6228 adjust the input section size. This function may
6229 be called multiple times, so save the original
6230 size. */
6231 if (isec->rawsize == 0)
6232 isec->rawsize = isec->size;
6233 isec->size = isec->rawsize - removed;
6234 }
6235 else
6236 {
6237 /* Adjust the output section size when called from
6238 objcopy. */
6239 isec->output_section->size -= removed;
6240 }
6241 }
6242 }
6243
6244 return TRUE;
6245 }
6246
6247 /* Copy private header information. */
6248
6249 bfd_boolean
6250 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6251 {
6252 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6253 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6254 return TRUE;
6255
6256 /* Copy over private BFD data if it has not already been copied.
6257 This must be done here, rather than in the copy_private_bfd_data
6258 entry point, because the latter is called after the section
6259 contents have been set, which means that the program headers have
6260 already been worked out. */
6261 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6262 {
6263 if (! copy_private_bfd_data (ibfd, obfd))
6264 return FALSE;
6265 }
6266
6267 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6268 }
6269
6270 /* Copy private symbol information. If this symbol is in a section
6271 which we did not map into a BFD section, try to map the section
6272 index correctly. We use special macro definitions for the mapped
6273 section indices; these definitions are interpreted by the
6274 swap_out_syms function. */
6275
6276 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6277 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6278 #define MAP_STRTAB (SHN_HIOS + 3)
6279 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6280 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6281
6282 bfd_boolean
6283 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6284 asymbol *isymarg,
6285 bfd *obfd,
6286 asymbol *osymarg)
6287 {
6288 elf_symbol_type *isym, *osym;
6289
6290 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6291 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6292 return TRUE;
6293
6294 isym = elf_symbol_from (ibfd, isymarg);
6295 osym = elf_symbol_from (obfd, osymarg);
6296
6297 if (isym != NULL
6298 && isym->internal_elf_sym.st_shndx != 0
6299 && osym != NULL
6300 && bfd_is_abs_section (isym->symbol.section))
6301 {
6302 unsigned int shndx;
6303
6304 shndx = isym->internal_elf_sym.st_shndx;
6305 if (shndx == elf_onesymtab (ibfd))
6306 shndx = MAP_ONESYMTAB;
6307 else if (shndx == elf_dynsymtab (ibfd))
6308 shndx = MAP_DYNSYMTAB;
6309 else if (shndx == elf_tdata (ibfd)->strtab_section)
6310 shndx = MAP_STRTAB;
6311 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6312 shndx = MAP_SHSTRTAB;
6313 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6314 shndx = MAP_SYM_SHNDX;
6315 osym->internal_elf_sym.st_shndx = shndx;
6316 }
6317
6318 return TRUE;
6319 }
6320
6321 /* Swap out the symbols. */
6322
6323 static bfd_boolean
6324 swap_out_syms (bfd *abfd,
6325 struct bfd_strtab_hash **sttp,
6326 int relocatable_p)
6327 {
6328 const struct elf_backend_data *bed;
6329 int symcount;
6330 asymbol **syms;
6331 struct bfd_strtab_hash *stt;
6332 Elf_Internal_Shdr *symtab_hdr;
6333 Elf_Internal_Shdr *symtab_shndx_hdr;
6334 Elf_Internal_Shdr *symstrtab_hdr;
6335 bfd_byte *outbound_syms;
6336 bfd_byte *outbound_shndx;
6337 int idx;
6338 bfd_size_type amt;
6339 bfd_boolean name_local_sections;
6340
6341 if (!elf_map_symbols (abfd))
6342 return FALSE;
6343
6344 /* Dump out the symtabs. */
6345 stt = _bfd_elf_stringtab_init ();
6346 if (stt == NULL)
6347 return FALSE;
6348
6349 bed = get_elf_backend_data (abfd);
6350 symcount = bfd_get_symcount (abfd);
6351 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6352 symtab_hdr->sh_type = SHT_SYMTAB;
6353 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6354 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6355 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6356 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6357
6358 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6359 symstrtab_hdr->sh_type = SHT_STRTAB;
6360
6361 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6362 bed->s->sizeof_sym);
6363 if (outbound_syms == NULL)
6364 {
6365 _bfd_stringtab_free (stt);
6366 return FALSE;
6367 }
6368 symtab_hdr->contents = outbound_syms;
6369
6370 outbound_shndx = NULL;
6371 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6372 if (symtab_shndx_hdr->sh_name != 0)
6373 {
6374 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6375 outbound_shndx = (bfd_byte *)
6376 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6377 if (outbound_shndx == NULL)
6378 {
6379 _bfd_stringtab_free (stt);
6380 return FALSE;
6381 }
6382
6383 symtab_shndx_hdr->contents = outbound_shndx;
6384 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6385 symtab_shndx_hdr->sh_size = amt;
6386 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6387 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6388 }
6389
6390 /* Now generate the data (for "contents"). */
6391 {
6392 /* Fill in zeroth symbol and swap it out. */
6393 Elf_Internal_Sym sym;
6394 sym.st_name = 0;
6395 sym.st_value = 0;
6396 sym.st_size = 0;
6397 sym.st_info = 0;
6398 sym.st_other = 0;
6399 sym.st_shndx = SHN_UNDEF;
6400 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6401 outbound_syms += bed->s->sizeof_sym;
6402 if (outbound_shndx != NULL)
6403 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6404 }
6405
6406 name_local_sections
6407 = (bed->elf_backend_name_local_section_symbols
6408 && bed->elf_backend_name_local_section_symbols (abfd));
6409
6410 syms = bfd_get_outsymbols (abfd);
6411 for (idx = 0; idx < symcount; idx++)
6412 {
6413 Elf_Internal_Sym sym;
6414 bfd_vma value = syms[idx]->value;
6415 elf_symbol_type *type_ptr;
6416 flagword flags = syms[idx]->flags;
6417 int type;
6418
6419 if (!name_local_sections
6420 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6421 {
6422 /* Local section symbols have no name. */
6423 sym.st_name = 0;
6424 }
6425 else
6426 {
6427 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6428 syms[idx]->name,
6429 TRUE, FALSE);
6430 if (sym.st_name == (unsigned long) -1)
6431 {
6432 _bfd_stringtab_free (stt);
6433 return FALSE;
6434 }
6435 }
6436
6437 type_ptr = elf_symbol_from (abfd, syms[idx]);
6438
6439 if ((flags & BSF_SECTION_SYM) == 0
6440 && bfd_is_com_section (syms[idx]->section))
6441 {
6442 /* ELF common symbols put the alignment into the `value' field,
6443 and the size into the `size' field. This is backwards from
6444 how BFD handles it, so reverse it here. */
6445 sym.st_size = value;
6446 if (type_ptr == NULL
6447 || type_ptr->internal_elf_sym.st_value == 0)
6448 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6449 else
6450 sym.st_value = type_ptr->internal_elf_sym.st_value;
6451 sym.st_shndx = _bfd_elf_section_from_bfd_section
6452 (abfd, syms[idx]->section);
6453 }
6454 else
6455 {
6456 asection *sec = syms[idx]->section;
6457 unsigned int shndx;
6458
6459 if (sec->output_section)
6460 {
6461 value += sec->output_offset;
6462 sec = sec->output_section;
6463 }
6464
6465 /* Don't add in the section vma for relocatable output. */
6466 if (! relocatable_p)
6467 value += sec->vma;
6468 sym.st_value = value;
6469 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6470
6471 if (bfd_is_abs_section (sec)
6472 && type_ptr != NULL
6473 && type_ptr->internal_elf_sym.st_shndx != 0)
6474 {
6475 /* This symbol is in a real ELF section which we did
6476 not create as a BFD section. Undo the mapping done
6477 by copy_private_symbol_data. */
6478 shndx = type_ptr->internal_elf_sym.st_shndx;
6479 switch (shndx)
6480 {
6481 case MAP_ONESYMTAB:
6482 shndx = elf_onesymtab (abfd);
6483 break;
6484 case MAP_DYNSYMTAB:
6485 shndx = elf_dynsymtab (abfd);
6486 break;
6487 case MAP_STRTAB:
6488 shndx = elf_tdata (abfd)->strtab_section;
6489 break;
6490 case MAP_SHSTRTAB:
6491 shndx = elf_tdata (abfd)->shstrtab_section;
6492 break;
6493 case MAP_SYM_SHNDX:
6494 shndx = elf_tdata (abfd)->symtab_shndx_section;
6495 break;
6496 default:
6497 break;
6498 }
6499 }
6500 else
6501 {
6502 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6503
6504 if (shndx == SHN_BAD)
6505 {
6506 asection *sec2;
6507
6508 /* Writing this would be a hell of a lot easier if
6509 we had some decent documentation on bfd, and
6510 knew what to expect of the library, and what to
6511 demand of applications. For example, it
6512 appears that `objcopy' might not set the
6513 section of a symbol to be a section that is
6514 actually in the output file. */
6515 sec2 = bfd_get_section_by_name (abfd, sec->name);
6516 if (sec2 == NULL)
6517 {
6518 _bfd_error_handler (_("\
6519 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6520 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6521 sec->name);
6522 bfd_set_error (bfd_error_invalid_operation);
6523 _bfd_stringtab_free (stt);
6524 return FALSE;
6525 }
6526
6527 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6528 BFD_ASSERT (shndx != SHN_BAD);
6529 }
6530 }
6531
6532 sym.st_shndx = shndx;
6533 }
6534
6535 if ((flags & BSF_THREAD_LOCAL) != 0)
6536 type = STT_TLS;
6537 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6538 type = STT_GNU_IFUNC;
6539 else if ((flags & BSF_FUNCTION) != 0)
6540 type = STT_FUNC;
6541 else if ((flags & BSF_OBJECT) != 0)
6542 type = STT_OBJECT;
6543 else if ((flags & BSF_RELC) != 0)
6544 type = STT_RELC;
6545 else if ((flags & BSF_SRELC) != 0)
6546 type = STT_SRELC;
6547 else
6548 type = STT_NOTYPE;
6549
6550 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6551 type = STT_TLS;
6552
6553 /* Processor-specific types. */
6554 if (type_ptr != NULL
6555 && bed->elf_backend_get_symbol_type)
6556 type = ((*bed->elf_backend_get_symbol_type)
6557 (&type_ptr->internal_elf_sym, type));
6558
6559 if (flags & BSF_SECTION_SYM)
6560 {
6561 if (flags & BSF_GLOBAL)
6562 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6563 else
6564 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6565 }
6566 else if (bfd_is_com_section (syms[idx]->section))
6567 {
6568 #ifdef USE_STT_COMMON
6569 if (type == STT_OBJECT)
6570 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6571 else
6572 #endif
6573 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6574 }
6575 else if (bfd_is_und_section (syms[idx]->section))
6576 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6577 ? STB_WEAK
6578 : STB_GLOBAL),
6579 type);
6580 else if (flags & BSF_FILE)
6581 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6582 else
6583 {
6584 int bind = STB_LOCAL;
6585
6586 if (flags & BSF_LOCAL)
6587 bind = STB_LOCAL;
6588 else if (flags & BSF_GNU_UNIQUE)
6589 bind = STB_GNU_UNIQUE;
6590 else if (flags & BSF_WEAK)
6591 bind = STB_WEAK;
6592 else if (flags & BSF_GLOBAL)
6593 bind = STB_GLOBAL;
6594
6595 sym.st_info = ELF_ST_INFO (bind, type);
6596 }
6597
6598 if (type_ptr != NULL)
6599 sym.st_other = type_ptr->internal_elf_sym.st_other;
6600 else
6601 sym.st_other = 0;
6602
6603 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6604 outbound_syms += bed->s->sizeof_sym;
6605 if (outbound_shndx != NULL)
6606 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6607 }
6608
6609 *sttp = stt;
6610 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6611 symstrtab_hdr->sh_type = SHT_STRTAB;
6612
6613 symstrtab_hdr->sh_flags = 0;
6614 symstrtab_hdr->sh_addr = 0;
6615 symstrtab_hdr->sh_entsize = 0;
6616 symstrtab_hdr->sh_link = 0;
6617 symstrtab_hdr->sh_info = 0;
6618 symstrtab_hdr->sh_addralign = 1;
6619
6620 return TRUE;
6621 }
6622
6623 /* Return the number of bytes required to hold the symtab vector.
6624
6625 Note that we base it on the count plus 1, since we will null terminate
6626 the vector allocated based on this size. However, the ELF symbol table
6627 always has a dummy entry as symbol #0, so it ends up even. */
6628
6629 long
6630 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6631 {
6632 long symcount;
6633 long symtab_size;
6634 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6635
6636 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6637 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6638 if (symcount > 0)
6639 symtab_size -= sizeof (asymbol *);
6640
6641 return symtab_size;
6642 }
6643
6644 long
6645 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6646 {
6647 long symcount;
6648 long symtab_size;
6649 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6650
6651 if (elf_dynsymtab (abfd) == 0)
6652 {
6653 bfd_set_error (bfd_error_invalid_operation);
6654 return -1;
6655 }
6656
6657 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6658 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6659 if (symcount > 0)
6660 symtab_size -= sizeof (asymbol *);
6661
6662 return symtab_size;
6663 }
6664
6665 long
6666 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6667 sec_ptr asect)
6668 {
6669 return (asect->reloc_count + 1) * sizeof (arelent *);
6670 }
6671
6672 /* Canonicalize the relocs. */
6673
6674 long
6675 _bfd_elf_canonicalize_reloc (bfd *abfd,
6676 sec_ptr section,
6677 arelent **relptr,
6678 asymbol **symbols)
6679 {
6680 arelent *tblptr;
6681 unsigned int i;
6682 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6683
6684 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6685 return -1;
6686
6687 tblptr = section->relocation;
6688 for (i = 0; i < section->reloc_count; i++)
6689 *relptr++ = tblptr++;
6690
6691 *relptr = NULL;
6692
6693 return section->reloc_count;
6694 }
6695
6696 long
6697 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6698 {
6699 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6700 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6701
6702 if (symcount >= 0)
6703 bfd_get_symcount (abfd) = symcount;
6704 return symcount;
6705 }
6706
6707 long
6708 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6709 asymbol **allocation)
6710 {
6711 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6712 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6713
6714 if (symcount >= 0)
6715 bfd_get_dynamic_symcount (abfd) = symcount;
6716 return symcount;
6717 }
6718
6719 /* Return the size required for the dynamic reloc entries. Any loadable
6720 section that was actually installed in the BFD, and has type SHT_REL
6721 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6722 dynamic reloc section. */
6723
6724 long
6725 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6726 {
6727 long ret;
6728 asection *s;
6729
6730 if (elf_dynsymtab (abfd) == 0)
6731 {
6732 bfd_set_error (bfd_error_invalid_operation);
6733 return -1;
6734 }
6735
6736 ret = sizeof (arelent *);
6737 for (s = abfd->sections; s != NULL; s = s->next)
6738 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6739 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6740 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6741 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6742 * sizeof (arelent *));
6743
6744 return ret;
6745 }
6746
6747 /* Canonicalize the dynamic relocation entries. Note that we return the
6748 dynamic relocations as a single block, although they are actually
6749 associated with particular sections; the interface, which was
6750 designed for SunOS style shared libraries, expects that there is only
6751 one set of dynamic relocs. Any loadable section that was actually
6752 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6753 dynamic symbol table, is considered to be a dynamic reloc section. */
6754
6755 long
6756 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6757 arelent **storage,
6758 asymbol **syms)
6759 {
6760 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6761 asection *s;
6762 long ret;
6763
6764 if (elf_dynsymtab (abfd) == 0)
6765 {
6766 bfd_set_error (bfd_error_invalid_operation);
6767 return -1;
6768 }
6769
6770 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6771 ret = 0;
6772 for (s = abfd->sections; s != NULL; s = s->next)
6773 {
6774 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6775 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6776 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6777 {
6778 arelent *p;
6779 long count, i;
6780
6781 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6782 return -1;
6783 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6784 p = s->relocation;
6785 for (i = 0; i < count; i++)
6786 *storage++ = p++;
6787 ret += count;
6788 }
6789 }
6790
6791 *storage = NULL;
6792
6793 return ret;
6794 }
6795 \f
6796 /* Read in the version information. */
6797
6798 bfd_boolean
6799 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6800 {
6801 bfd_byte *contents = NULL;
6802 unsigned int freeidx = 0;
6803
6804 if (elf_dynverref (abfd) != 0)
6805 {
6806 Elf_Internal_Shdr *hdr;
6807 Elf_External_Verneed *everneed;
6808 Elf_Internal_Verneed *iverneed;
6809 unsigned int i;
6810 bfd_byte *contents_end;
6811
6812 hdr = &elf_tdata (abfd)->dynverref_hdr;
6813
6814 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
6815 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
6816 if (elf_tdata (abfd)->verref == NULL)
6817 goto error_return;
6818
6819 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6820
6821 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6822 if (contents == NULL)
6823 {
6824 error_return_verref:
6825 elf_tdata (abfd)->verref = NULL;
6826 elf_tdata (abfd)->cverrefs = 0;
6827 goto error_return;
6828 }
6829 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6830 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6831 goto error_return_verref;
6832
6833 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6834 goto error_return_verref;
6835
6836 BFD_ASSERT (sizeof (Elf_External_Verneed)
6837 == sizeof (Elf_External_Vernaux));
6838 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6839 everneed = (Elf_External_Verneed *) contents;
6840 iverneed = elf_tdata (abfd)->verref;
6841 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6842 {
6843 Elf_External_Vernaux *evernaux;
6844 Elf_Internal_Vernaux *ivernaux;
6845 unsigned int j;
6846
6847 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6848
6849 iverneed->vn_bfd = abfd;
6850
6851 iverneed->vn_filename =
6852 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6853 iverneed->vn_file);
6854 if (iverneed->vn_filename == NULL)
6855 goto error_return_verref;
6856
6857 if (iverneed->vn_cnt == 0)
6858 iverneed->vn_auxptr = NULL;
6859 else
6860 {
6861 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
6862 bfd_alloc2 (abfd, iverneed->vn_cnt,
6863 sizeof (Elf_Internal_Vernaux));
6864 if (iverneed->vn_auxptr == NULL)
6865 goto error_return_verref;
6866 }
6867
6868 if (iverneed->vn_aux
6869 > (size_t) (contents_end - (bfd_byte *) everneed))
6870 goto error_return_verref;
6871
6872 evernaux = ((Elf_External_Vernaux *)
6873 ((bfd_byte *) everneed + iverneed->vn_aux));
6874 ivernaux = iverneed->vn_auxptr;
6875 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6876 {
6877 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6878
6879 ivernaux->vna_nodename =
6880 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6881 ivernaux->vna_name);
6882 if (ivernaux->vna_nodename == NULL)
6883 goto error_return_verref;
6884
6885 if (j + 1 < iverneed->vn_cnt)
6886 ivernaux->vna_nextptr = ivernaux + 1;
6887 else
6888 ivernaux->vna_nextptr = NULL;
6889
6890 if (ivernaux->vna_next
6891 > (size_t) (contents_end - (bfd_byte *) evernaux))
6892 goto error_return_verref;
6893
6894 evernaux = ((Elf_External_Vernaux *)
6895 ((bfd_byte *) evernaux + ivernaux->vna_next));
6896
6897 if (ivernaux->vna_other > freeidx)
6898 freeidx = ivernaux->vna_other;
6899 }
6900
6901 if (i + 1 < hdr->sh_info)
6902 iverneed->vn_nextref = iverneed + 1;
6903 else
6904 iverneed->vn_nextref = NULL;
6905
6906 if (iverneed->vn_next
6907 > (size_t) (contents_end - (bfd_byte *) everneed))
6908 goto error_return_verref;
6909
6910 everneed = ((Elf_External_Verneed *)
6911 ((bfd_byte *) everneed + iverneed->vn_next));
6912 }
6913
6914 free (contents);
6915 contents = NULL;
6916 }
6917
6918 if (elf_dynverdef (abfd) != 0)
6919 {
6920 Elf_Internal_Shdr *hdr;
6921 Elf_External_Verdef *everdef;
6922 Elf_Internal_Verdef *iverdef;
6923 Elf_Internal_Verdef *iverdefarr;
6924 Elf_Internal_Verdef iverdefmem;
6925 unsigned int i;
6926 unsigned int maxidx;
6927 bfd_byte *contents_end_def, *contents_end_aux;
6928
6929 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6930
6931 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6932 if (contents == NULL)
6933 goto error_return;
6934 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6935 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6936 goto error_return;
6937
6938 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6939 goto error_return;
6940
6941 BFD_ASSERT (sizeof (Elf_External_Verdef)
6942 >= sizeof (Elf_External_Verdaux));
6943 contents_end_def = contents + hdr->sh_size
6944 - sizeof (Elf_External_Verdef);
6945 contents_end_aux = contents + hdr->sh_size
6946 - sizeof (Elf_External_Verdaux);
6947
6948 /* We know the number of entries in the section but not the maximum
6949 index. Therefore we have to run through all entries and find
6950 the maximum. */
6951 everdef = (Elf_External_Verdef *) contents;
6952 maxidx = 0;
6953 for (i = 0; i < hdr->sh_info; ++i)
6954 {
6955 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6956
6957 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6958 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6959
6960 if (iverdefmem.vd_next
6961 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6962 goto error_return;
6963
6964 everdef = ((Elf_External_Verdef *)
6965 ((bfd_byte *) everdef + iverdefmem.vd_next));
6966 }
6967
6968 if (default_imported_symver)
6969 {
6970 if (freeidx > maxidx)
6971 maxidx = ++freeidx;
6972 else
6973 freeidx = ++maxidx;
6974 }
6975 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
6976 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
6977 if (elf_tdata (abfd)->verdef == NULL)
6978 goto error_return;
6979
6980 elf_tdata (abfd)->cverdefs = maxidx;
6981
6982 everdef = (Elf_External_Verdef *) contents;
6983 iverdefarr = elf_tdata (abfd)->verdef;
6984 for (i = 0; i < hdr->sh_info; i++)
6985 {
6986 Elf_External_Verdaux *everdaux;
6987 Elf_Internal_Verdaux *iverdaux;
6988 unsigned int j;
6989
6990 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6991
6992 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6993 {
6994 error_return_verdef:
6995 elf_tdata (abfd)->verdef = NULL;
6996 elf_tdata (abfd)->cverdefs = 0;
6997 goto error_return;
6998 }
6999
7000 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7001 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7002
7003 iverdef->vd_bfd = abfd;
7004
7005 if (iverdef->vd_cnt == 0)
7006 iverdef->vd_auxptr = NULL;
7007 else
7008 {
7009 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7010 bfd_alloc2 (abfd, iverdef->vd_cnt,
7011 sizeof (Elf_Internal_Verdaux));
7012 if (iverdef->vd_auxptr == NULL)
7013 goto error_return_verdef;
7014 }
7015
7016 if (iverdef->vd_aux
7017 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7018 goto error_return_verdef;
7019
7020 everdaux = ((Elf_External_Verdaux *)
7021 ((bfd_byte *) everdef + iverdef->vd_aux));
7022 iverdaux = iverdef->vd_auxptr;
7023 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7024 {
7025 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7026
7027 iverdaux->vda_nodename =
7028 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7029 iverdaux->vda_name);
7030 if (iverdaux->vda_nodename == NULL)
7031 goto error_return_verdef;
7032
7033 if (j + 1 < iverdef->vd_cnt)
7034 iverdaux->vda_nextptr = iverdaux + 1;
7035 else
7036 iverdaux->vda_nextptr = NULL;
7037
7038 if (iverdaux->vda_next
7039 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7040 goto error_return_verdef;
7041
7042 everdaux = ((Elf_External_Verdaux *)
7043 ((bfd_byte *) everdaux + iverdaux->vda_next));
7044 }
7045
7046 if (iverdef->vd_cnt)
7047 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7048
7049 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7050 iverdef->vd_nextdef = iverdef + 1;
7051 else
7052 iverdef->vd_nextdef = NULL;
7053
7054 everdef = ((Elf_External_Verdef *)
7055 ((bfd_byte *) everdef + iverdef->vd_next));
7056 }
7057
7058 free (contents);
7059 contents = NULL;
7060 }
7061 else if (default_imported_symver)
7062 {
7063 if (freeidx < 3)
7064 freeidx = 3;
7065 else
7066 freeidx++;
7067
7068 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7069 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7070 if (elf_tdata (abfd)->verdef == NULL)
7071 goto error_return;
7072
7073 elf_tdata (abfd)->cverdefs = freeidx;
7074 }
7075
7076 /* Create a default version based on the soname. */
7077 if (default_imported_symver)
7078 {
7079 Elf_Internal_Verdef *iverdef;
7080 Elf_Internal_Verdaux *iverdaux;
7081
7082 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7083
7084 iverdef->vd_version = VER_DEF_CURRENT;
7085 iverdef->vd_flags = 0;
7086 iverdef->vd_ndx = freeidx;
7087 iverdef->vd_cnt = 1;
7088
7089 iverdef->vd_bfd = abfd;
7090
7091 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7092 if (iverdef->vd_nodename == NULL)
7093 goto error_return_verdef;
7094 iverdef->vd_nextdef = NULL;
7095 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7096 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7097 if (iverdef->vd_auxptr == NULL)
7098 goto error_return_verdef;
7099
7100 iverdaux = iverdef->vd_auxptr;
7101 iverdaux->vda_nodename = iverdef->vd_nodename;
7102 iverdaux->vda_nextptr = NULL;
7103 }
7104
7105 return TRUE;
7106
7107 error_return:
7108 if (contents != NULL)
7109 free (contents);
7110 return FALSE;
7111 }
7112 \f
7113 asymbol *
7114 _bfd_elf_make_empty_symbol (bfd *abfd)
7115 {
7116 elf_symbol_type *newsym;
7117 bfd_size_type amt = sizeof (elf_symbol_type);
7118
7119 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7120 if (!newsym)
7121 return NULL;
7122 else
7123 {
7124 newsym->symbol.the_bfd = abfd;
7125 return &newsym->symbol;
7126 }
7127 }
7128
7129 void
7130 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7131 asymbol *symbol,
7132 symbol_info *ret)
7133 {
7134 bfd_symbol_info (symbol, ret);
7135 }
7136
7137 /* Return whether a symbol name implies a local symbol. Most targets
7138 use this function for the is_local_label_name entry point, but some
7139 override it. */
7140
7141 bfd_boolean
7142 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7143 const char *name)
7144 {
7145 /* Normal local symbols start with ``.L''. */
7146 if (name[0] == '.' && name[1] == 'L')
7147 return TRUE;
7148
7149 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7150 DWARF debugging symbols starting with ``..''. */
7151 if (name[0] == '.' && name[1] == '.')
7152 return TRUE;
7153
7154 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7155 emitting DWARF debugging output. I suspect this is actually a
7156 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7157 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7158 underscore to be emitted on some ELF targets). For ease of use,
7159 we treat such symbols as local. */
7160 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7161 return TRUE;
7162
7163 return FALSE;
7164 }
7165
7166 alent *
7167 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7168 asymbol *symbol ATTRIBUTE_UNUSED)
7169 {
7170 abort ();
7171 return NULL;
7172 }
7173
7174 bfd_boolean
7175 _bfd_elf_set_arch_mach (bfd *abfd,
7176 enum bfd_architecture arch,
7177 unsigned long machine)
7178 {
7179 /* If this isn't the right architecture for this backend, and this
7180 isn't the generic backend, fail. */
7181 if (arch != get_elf_backend_data (abfd)->arch
7182 && arch != bfd_arch_unknown
7183 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7184 return FALSE;
7185
7186 return bfd_default_set_arch_mach (abfd, arch, machine);
7187 }
7188
7189 /* Find the function to a particular section and offset,
7190 for error reporting. */
7191
7192 static bfd_boolean
7193 elf_find_function (bfd *abfd,
7194 asection *section,
7195 asymbol **symbols,
7196 bfd_vma offset,
7197 const char **filename_ptr,
7198 const char **functionname_ptr)
7199 {
7200 const char *filename;
7201 asymbol *func, *file;
7202 bfd_vma low_func;
7203 asymbol **p;
7204 /* ??? Given multiple file symbols, it is impossible to reliably
7205 choose the right file name for global symbols. File symbols are
7206 local symbols, and thus all file symbols must sort before any
7207 global symbols. The ELF spec may be interpreted to say that a
7208 file symbol must sort before other local symbols, but currently
7209 ld -r doesn't do this. So, for ld -r output, it is possible to
7210 make a better choice of file name for local symbols by ignoring
7211 file symbols appearing after a given local symbol. */
7212 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7213 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7214
7215 filename = NULL;
7216 func = NULL;
7217 file = NULL;
7218 low_func = 0;
7219 state = nothing_seen;
7220
7221 for (p = symbols; *p != NULL; p++)
7222 {
7223 elf_symbol_type *q;
7224 unsigned int type;
7225
7226 q = (elf_symbol_type *) *p;
7227
7228 type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
7229 switch (type)
7230 {
7231 case STT_FILE:
7232 file = &q->symbol;
7233 if (state == symbol_seen)
7234 state = file_after_symbol_seen;
7235 continue;
7236 default:
7237 if (!bed->is_function_type (type))
7238 break;
7239 case STT_NOTYPE:
7240 if (bfd_get_section (&q->symbol) == section
7241 && q->symbol.value >= low_func
7242 && q->symbol.value <= offset)
7243 {
7244 func = (asymbol *) q;
7245 low_func = q->symbol.value;
7246 filename = NULL;
7247 if (file != NULL
7248 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7249 || state != file_after_symbol_seen))
7250 filename = bfd_asymbol_name (file);
7251 }
7252 break;
7253 }
7254 if (state == nothing_seen)
7255 state = symbol_seen;
7256 }
7257
7258 if (func == NULL)
7259 return FALSE;
7260
7261 if (filename_ptr)
7262 *filename_ptr = filename;
7263 if (functionname_ptr)
7264 *functionname_ptr = bfd_asymbol_name (func);
7265
7266 return TRUE;
7267 }
7268
7269 /* Find the nearest line to a particular section and offset,
7270 for error reporting. */
7271
7272 bfd_boolean
7273 _bfd_elf_find_nearest_line (bfd *abfd,
7274 asection *section,
7275 asymbol **symbols,
7276 bfd_vma offset,
7277 const char **filename_ptr,
7278 const char **functionname_ptr,
7279 unsigned int *line_ptr)
7280 {
7281 bfd_boolean found;
7282
7283 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7284 filename_ptr, functionname_ptr,
7285 line_ptr))
7286 {
7287 if (!*functionname_ptr)
7288 elf_find_function (abfd, section, symbols, offset,
7289 *filename_ptr ? NULL : filename_ptr,
7290 functionname_ptr);
7291
7292 return TRUE;
7293 }
7294
7295 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7296 filename_ptr, functionname_ptr,
7297 line_ptr, 0,
7298 &elf_tdata (abfd)->dwarf2_find_line_info))
7299 {
7300 if (!*functionname_ptr)
7301 elf_find_function (abfd, section, symbols, offset,
7302 *filename_ptr ? NULL : filename_ptr,
7303 functionname_ptr);
7304
7305 return TRUE;
7306 }
7307
7308 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7309 &found, filename_ptr,
7310 functionname_ptr, line_ptr,
7311 &elf_tdata (abfd)->line_info))
7312 return FALSE;
7313 if (found && (*functionname_ptr || *line_ptr))
7314 return TRUE;
7315
7316 if (symbols == NULL)
7317 return FALSE;
7318
7319 if (! elf_find_function (abfd, section, symbols, offset,
7320 filename_ptr, functionname_ptr))
7321 return FALSE;
7322
7323 *line_ptr = 0;
7324 return TRUE;
7325 }
7326
7327 /* Find the line for a symbol. */
7328
7329 bfd_boolean
7330 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7331 const char **filename_ptr, unsigned int *line_ptr)
7332 {
7333 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7334 filename_ptr, line_ptr, 0,
7335 &elf_tdata (abfd)->dwarf2_find_line_info);
7336 }
7337
7338 /* After a call to bfd_find_nearest_line, successive calls to
7339 bfd_find_inliner_info can be used to get source information about
7340 each level of function inlining that terminated at the address
7341 passed to bfd_find_nearest_line. Currently this is only supported
7342 for DWARF2 with appropriate DWARF3 extensions. */
7343
7344 bfd_boolean
7345 _bfd_elf_find_inliner_info (bfd *abfd,
7346 const char **filename_ptr,
7347 const char **functionname_ptr,
7348 unsigned int *line_ptr)
7349 {
7350 bfd_boolean found;
7351 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7352 functionname_ptr, line_ptr,
7353 & elf_tdata (abfd)->dwarf2_find_line_info);
7354 return found;
7355 }
7356
7357 int
7358 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7359 {
7360 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7361 int ret = bed->s->sizeof_ehdr;
7362
7363 if (!info->relocatable)
7364 {
7365 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7366
7367 if (phdr_size == (bfd_size_type) -1)
7368 {
7369 struct elf_segment_map *m;
7370
7371 phdr_size = 0;
7372 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7373 phdr_size += bed->s->sizeof_phdr;
7374
7375 if (phdr_size == 0)
7376 phdr_size = get_program_header_size (abfd, info);
7377 }
7378
7379 elf_tdata (abfd)->program_header_size = phdr_size;
7380 ret += phdr_size;
7381 }
7382
7383 return ret;
7384 }
7385
7386 bfd_boolean
7387 _bfd_elf_set_section_contents (bfd *abfd,
7388 sec_ptr section,
7389 const void *location,
7390 file_ptr offset,
7391 bfd_size_type count)
7392 {
7393 Elf_Internal_Shdr *hdr;
7394 bfd_signed_vma pos;
7395
7396 if (! abfd->output_has_begun
7397 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7398 return FALSE;
7399
7400 hdr = &elf_section_data (section)->this_hdr;
7401 pos = hdr->sh_offset + offset;
7402 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7403 || bfd_bwrite (location, count, abfd) != count)
7404 return FALSE;
7405
7406 return TRUE;
7407 }
7408
7409 void
7410 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7411 arelent *cache_ptr ATTRIBUTE_UNUSED,
7412 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7413 {
7414 abort ();
7415 }
7416
7417 /* Try to convert a non-ELF reloc into an ELF one. */
7418
7419 bfd_boolean
7420 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7421 {
7422 /* Check whether we really have an ELF howto. */
7423
7424 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7425 {
7426 bfd_reloc_code_real_type code;
7427 reloc_howto_type *howto;
7428
7429 /* Alien reloc: Try to determine its type to replace it with an
7430 equivalent ELF reloc. */
7431
7432 if (areloc->howto->pc_relative)
7433 {
7434 switch (areloc->howto->bitsize)
7435 {
7436 case 8:
7437 code = BFD_RELOC_8_PCREL;
7438 break;
7439 case 12:
7440 code = BFD_RELOC_12_PCREL;
7441 break;
7442 case 16:
7443 code = BFD_RELOC_16_PCREL;
7444 break;
7445 case 24:
7446 code = BFD_RELOC_24_PCREL;
7447 break;
7448 case 32:
7449 code = BFD_RELOC_32_PCREL;
7450 break;
7451 case 64:
7452 code = BFD_RELOC_64_PCREL;
7453 break;
7454 default:
7455 goto fail;
7456 }
7457
7458 howto = bfd_reloc_type_lookup (abfd, code);
7459
7460 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7461 {
7462 if (howto->pcrel_offset)
7463 areloc->addend += areloc->address;
7464 else
7465 areloc->addend -= areloc->address; /* addend is unsigned!! */
7466 }
7467 }
7468 else
7469 {
7470 switch (areloc->howto->bitsize)
7471 {
7472 case 8:
7473 code = BFD_RELOC_8;
7474 break;
7475 case 14:
7476 code = BFD_RELOC_14;
7477 break;
7478 case 16:
7479 code = BFD_RELOC_16;
7480 break;
7481 case 26:
7482 code = BFD_RELOC_26;
7483 break;
7484 case 32:
7485 code = BFD_RELOC_32;
7486 break;
7487 case 64:
7488 code = BFD_RELOC_64;
7489 break;
7490 default:
7491 goto fail;
7492 }
7493
7494 howto = bfd_reloc_type_lookup (abfd, code);
7495 }
7496
7497 if (howto)
7498 areloc->howto = howto;
7499 else
7500 goto fail;
7501 }
7502
7503 return TRUE;
7504
7505 fail:
7506 (*_bfd_error_handler)
7507 (_("%B: unsupported relocation type %s"),
7508 abfd, areloc->howto->name);
7509 bfd_set_error (bfd_error_bad_value);
7510 return FALSE;
7511 }
7512
7513 bfd_boolean
7514 _bfd_elf_close_and_cleanup (bfd *abfd)
7515 {
7516 if (bfd_get_format (abfd) == bfd_object)
7517 {
7518 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7519 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7520 _bfd_dwarf2_cleanup_debug_info (abfd);
7521 }
7522
7523 return _bfd_generic_close_and_cleanup (abfd);
7524 }
7525
7526 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7527 in the relocation's offset. Thus we cannot allow any sort of sanity
7528 range-checking to interfere. There is nothing else to do in processing
7529 this reloc. */
7530
7531 bfd_reloc_status_type
7532 _bfd_elf_rel_vtable_reloc_fn
7533 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7534 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7535 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7536 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7537 {
7538 return bfd_reloc_ok;
7539 }
7540 \f
7541 /* Elf core file support. Much of this only works on native
7542 toolchains, since we rely on knowing the
7543 machine-dependent procfs structure in order to pick
7544 out details about the corefile. */
7545
7546 #ifdef HAVE_SYS_PROCFS_H
7547 /* Needed for new procfs interface on sparc-solaris. */
7548 # define _STRUCTURED_PROC 1
7549 # include <sys/procfs.h>
7550 #endif
7551
7552 /* Return a PID that identifies a "thread" for threaded cores, or the
7553 PID of the main process for non-threaded cores. */
7554
7555 static int
7556 elfcore_make_pid (bfd *abfd)
7557 {
7558 int pid;
7559
7560 pid = elf_tdata (abfd)->core_lwpid;
7561 if (pid == 0)
7562 pid = elf_tdata (abfd)->core_pid;
7563
7564 return pid;
7565 }
7566
7567 /* If there isn't a section called NAME, make one, using
7568 data from SECT. Note, this function will generate a
7569 reference to NAME, so you shouldn't deallocate or
7570 overwrite it. */
7571
7572 static bfd_boolean
7573 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7574 {
7575 asection *sect2;
7576
7577 if (bfd_get_section_by_name (abfd, name) != NULL)
7578 return TRUE;
7579
7580 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7581 if (sect2 == NULL)
7582 return FALSE;
7583
7584 sect2->size = sect->size;
7585 sect2->filepos = sect->filepos;
7586 sect2->alignment_power = sect->alignment_power;
7587 return TRUE;
7588 }
7589
7590 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7591 actually creates up to two pseudosections:
7592 - For the single-threaded case, a section named NAME, unless
7593 such a section already exists.
7594 - For the multi-threaded case, a section named "NAME/PID", where
7595 PID is elfcore_make_pid (abfd).
7596 Both pseudosections have identical contents. */
7597 bfd_boolean
7598 _bfd_elfcore_make_pseudosection (bfd *abfd,
7599 char *name,
7600 size_t size,
7601 ufile_ptr filepos)
7602 {
7603 char buf[100];
7604 char *threaded_name;
7605 size_t len;
7606 asection *sect;
7607
7608 /* Build the section name. */
7609
7610 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7611 len = strlen (buf) + 1;
7612 threaded_name = (char *) bfd_alloc (abfd, len);
7613 if (threaded_name == NULL)
7614 return FALSE;
7615 memcpy (threaded_name, buf, len);
7616
7617 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7618 SEC_HAS_CONTENTS);
7619 if (sect == NULL)
7620 return FALSE;
7621 sect->size = size;
7622 sect->filepos = filepos;
7623 sect->alignment_power = 2;
7624
7625 return elfcore_maybe_make_sect (abfd, name, sect);
7626 }
7627
7628 /* prstatus_t exists on:
7629 solaris 2.5+
7630 linux 2.[01] + glibc
7631 unixware 4.2
7632 */
7633
7634 #if defined (HAVE_PRSTATUS_T)
7635
7636 static bfd_boolean
7637 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7638 {
7639 size_t size;
7640 int offset;
7641
7642 if (note->descsz == sizeof (prstatus_t))
7643 {
7644 prstatus_t prstat;
7645
7646 size = sizeof (prstat.pr_reg);
7647 offset = offsetof (prstatus_t, pr_reg);
7648 memcpy (&prstat, note->descdata, sizeof (prstat));
7649
7650 /* Do not overwrite the core signal if it
7651 has already been set by another thread. */
7652 if (elf_tdata (abfd)->core_signal == 0)
7653 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7654 if (elf_tdata (abfd)->core_pid == 0)
7655 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7656
7657 /* pr_who exists on:
7658 solaris 2.5+
7659 unixware 4.2
7660 pr_who doesn't exist on:
7661 linux 2.[01]
7662 */
7663 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7664 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7665 #else
7666 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7667 #endif
7668 }
7669 #if defined (HAVE_PRSTATUS32_T)
7670 else if (note->descsz == sizeof (prstatus32_t))
7671 {
7672 /* 64-bit host, 32-bit corefile */
7673 prstatus32_t prstat;
7674
7675 size = sizeof (prstat.pr_reg);
7676 offset = offsetof (prstatus32_t, pr_reg);
7677 memcpy (&prstat, note->descdata, sizeof (prstat));
7678
7679 /* Do not overwrite the core signal if it
7680 has already been set by another thread. */
7681 if (elf_tdata (abfd)->core_signal == 0)
7682 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7683 if (elf_tdata (abfd)->core_pid == 0)
7684 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7685
7686 /* pr_who exists on:
7687 solaris 2.5+
7688 unixware 4.2
7689 pr_who doesn't exist on:
7690 linux 2.[01]
7691 */
7692 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7693 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7694 #else
7695 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7696 #endif
7697 }
7698 #endif /* HAVE_PRSTATUS32_T */
7699 else
7700 {
7701 /* Fail - we don't know how to handle any other
7702 note size (ie. data object type). */
7703 return TRUE;
7704 }
7705
7706 /* Make a ".reg/999" section and a ".reg" section. */
7707 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7708 size, note->descpos + offset);
7709 }
7710 #endif /* defined (HAVE_PRSTATUS_T) */
7711
7712 /* Create a pseudosection containing the exact contents of NOTE. */
7713 static bfd_boolean
7714 elfcore_make_note_pseudosection (bfd *abfd,
7715 char *name,
7716 Elf_Internal_Note *note)
7717 {
7718 return _bfd_elfcore_make_pseudosection (abfd, name,
7719 note->descsz, note->descpos);
7720 }
7721
7722 /* There isn't a consistent prfpregset_t across platforms,
7723 but it doesn't matter, because we don't have to pick this
7724 data structure apart. */
7725
7726 static bfd_boolean
7727 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7728 {
7729 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7730 }
7731
7732 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7733 type of NT_PRXFPREG. Just include the whole note's contents
7734 literally. */
7735
7736 static bfd_boolean
7737 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7738 {
7739 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7740 }
7741
7742 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7743 with a note type of NT_X86_XSTATE. Just include the whole note's
7744 contents literally. */
7745
7746 static bfd_boolean
7747 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7748 {
7749 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7750 }
7751
7752 static bfd_boolean
7753 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7754 {
7755 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7756 }
7757
7758 static bfd_boolean
7759 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7760 {
7761 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7762 }
7763
7764 static bfd_boolean
7765 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7766 {
7767 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7768 }
7769
7770 static bfd_boolean
7771 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7772 {
7773 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7774 }
7775
7776 static bfd_boolean
7777 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7778 {
7779 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7780 }
7781
7782 static bfd_boolean
7783 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7784 {
7785 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7786 }
7787
7788 static bfd_boolean
7789 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7790 {
7791 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
7792 }
7793
7794 static bfd_boolean
7795 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
7796 {
7797 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
7798 }
7799
7800 #if defined (HAVE_PRPSINFO_T)
7801 typedef prpsinfo_t elfcore_psinfo_t;
7802 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7803 typedef prpsinfo32_t elfcore_psinfo32_t;
7804 #endif
7805 #endif
7806
7807 #if defined (HAVE_PSINFO_T)
7808 typedef psinfo_t elfcore_psinfo_t;
7809 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7810 typedef psinfo32_t elfcore_psinfo32_t;
7811 #endif
7812 #endif
7813
7814 /* return a malloc'ed copy of a string at START which is at
7815 most MAX bytes long, possibly without a terminating '\0'.
7816 the copy will always have a terminating '\0'. */
7817
7818 char *
7819 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7820 {
7821 char *dups;
7822 char *end = (char *) memchr (start, '\0', max);
7823 size_t len;
7824
7825 if (end == NULL)
7826 len = max;
7827 else
7828 len = end - start;
7829
7830 dups = (char *) bfd_alloc (abfd, len + 1);
7831 if (dups == NULL)
7832 return NULL;
7833
7834 memcpy (dups, start, len);
7835 dups[len] = '\0';
7836
7837 return dups;
7838 }
7839
7840 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7841 static bfd_boolean
7842 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7843 {
7844 if (note->descsz == sizeof (elfcore_psinfo_t))
7845 {
7846 elfcore_psinfo_t psinfo;
7847
7848 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7849
7850 elf_tdata (abfd)->core_program
7851 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7852 sizeof (psinfo.pr_fname));
7853
7854 elf_tdata (abfd)->core_command
7855 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7856 sizeof (psinfo.pr_psargs));
7857 }
7858 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7859 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7860 {
7861 /* 64-bit host, 32-bit corefile */
7862 elfcore_psinfo32_t psinfo;
7863
7864 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7865
7866 elf_tdata (abfd)->core_program
7867 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7868 sizeof (psinfo.pr_fname));
7869
7870 elf_tdata (abfd)->core_command
7871 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7872 sizeof (psinfo.pr_psargs));
7873 }
7874 #endif
7875
7876 else
7877 {
7878 /* Fail - we don't know how to handle any other
7879 note size (ie. data object type). */
7880 return TRUE;
7881 }
7882
7883 /* Note that for some reason, a spurious space is tacked
7884 onto the end of the args in some (at least one anyway)
7885 implementations, so strip it off if it exists. */
7886
7887 {
7888 char *command = elf_tdata (abfd)->core_command;
7889 int n = strlen (command);
7890
7891 if (0 < n && command[n - 1] == ' ')
7892 command[n - 1] = '\0';
7893 }
7894
7895 return TRUE;
7896 }
7897 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7898
7899 #if defined (HAVE_PSTATUS_T)
7900 static bfd_boolean
7901 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7902 {
7903 if (note->descsz == sizeof (pstatus_t)
7904 #if defined (HAVE_PXSTATUS_T)
7905 || note->descsz == sizeof (pxstatus_t)
7906 #endif
7907 )
7908 {
7909 pstatus_t pstat;
7910
7911 memcpy (&pstat, note->descdata, sizeof (pstat));
7912
7913 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7914 }
7915 #if defined (HAVE_PSTATUS32_T)
7916 else if (note->descsz == sizeof (pstatus32_t))
7917 {
7918 /* 64-bit host, 32-bit corefile */
7919 pstatus32_t pstat;
7920
7921 memcpy (&pstat, note->descdata, sizeof (pstat));
7922
7923 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7924 }
7925 #endif
7926 /* Could grab some more details from the "representative"
7927 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7928 NT_LWPSTATUS note, presumably. */
7929
7930 return TRUE;
7931 }
7932 #endif /* defined (HAVE_PSTATUS_T) */
7933
7934 #if defined (HAVE_LWPSTATUS_T)
7935 static bfd_boolean
7936 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7937 {
7938 lwpstatus_t lwpstat;
7939 char buf[100];
7940 char *name;
7941 size_t len;
7942 asection *sect;
7943
7944 if (note->descsz != sizeof (lwpstat)
7945 #if defined (HAVE_LWPXSTATUS_T)
7946 && note->descsz != sizeof (lwpxstatus_t)
7947 #endif
7948 )
7949 return TRUE;
7950
7951 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7952
7953 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7954 /* Do not overwrite the core signal if it has already been set by
7955 another thread. */
7956 if (elf_tdata (abfd)->core_signal == 0)
7957 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7958
7959 /* Make a ".reg/999" section. */
7960
7961 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7962 len = strlen (buf) + 1;
7963 name = bfd_alloc (abfd, len);
7964 if (name == NULL)
7965 return FALSE;
7966 memcpy (name, buf, len);
7967
7968 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7969 if (sect == NULL)
7970 return FALSE;
7971
7972 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7973 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7974 sect->filepos = note->descpos
7975 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7976 #endif
7977
7978 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7979 sect->size = sizeof (lwpstat.pr_reg);
7980 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7981 #endif
7982
7983 sect->alignment_power = 2;
7984
7985 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7986 return FALSE;
7987
7988 /* Make a ".reg2/999" section */
7989
7990 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7991 len = strlen (buf) + 1;
7992 name = bfd_alloc (abfd, len);
7993 if (name == NULL)
7994 return FALSE;
7995 memcpy (name, buf, len);
7996
7997 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7998 if (sect == NULL)
7999 return FALSE;
8000
8001 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8002 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8003 sect->filepos = note->descpos
8004 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8005 #endif
8006
8007 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8008 sect->size = sizeof (lwpstat.pr_fpreg);
8009 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8010 #endif
8011
8012 sect->alignment_power = 2;
8013
8014 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8015 }
8016 #endif /* defined (HAVE_LWPSTATUS_T) */
8017
8018 static bfd_boolean
8019 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8020 {
8021 char buf[30];
8022 char *name;
8023 size_t len;
8024 asection *sect;
8025 int type;
8026 int is_active_thread;
8027 bfd_vma base_addr;
8028
8029 if (note->descsz < 728)
8030 return TRUE;
8031
8032 if (! CONST_STRNEQ (note->namedata, "win32"))
8033 return TRUE;
8034
8035 type = bfd_get_32 (abfd, note->descdata);
8036
8037 switch (type)
8038 {
8039 case 1 /* NOTE_INFO_PROCESS */:
8040 /* FIXME: need to add ->core_command. */
8041 /* process_info.pid */
8042 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8043 /* process_info.signal */
8044 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8045 break;
8046
8047 case 2 /* NOTE_INFO_THREAD */:
8048 /* Make a ".reg/999" section. */
8049 /* thread_info.tid */
8050 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8051
8052 len = strlen (buf) + 1;
8053 name = (char *) bfd_alloc (abfd, len);
8054 if (name == NULL)
8055 return FALSE;
8056
8057 memcpy (name, buf, len);
8058
8059 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8060 if (sect == NULL)
8061 return FALSE;
8062
8063 /* sizeof (thread_info.thread_context) */
8064 sect->size = 716;
8065 /* offsetof (thread_info.thread_context) */
8066 sect->filepos = note->descpos + 12;
8067 sect->alignment_power = 2;
8068
8069 /* thread_info.is_active_thread */
8070 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8071
8072 if (is_active_thread)
8073 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8074 return FALSE;
8075 break;
8076
8077 case 3 /* NOTE_INFO_MODULE */:
8078 /* Make a ".module/xxxxxxxx" section. */
8079 /* module_info.base_address */
8080 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8081 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8082
8083 len = strlen (buf) + 1;
8084 name = (char *) bfd_alloc (abfd, len);
8085 if (name == NULL)
8086 return FALSE;
8087
8088 memcpy (name, buf, len);
8089
8090 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8091
8092 if (sect == NULL)
8093 return FALSE;
8094
8095 sect->size = note->descsz;
8096 sect->filepos = note->descpos;
8097 sect->alignment_power = 2;
8098 break;
8099
8100 default:
8101 return TRUE;
8102 }
8103
8104 return TRUE;
8105 }
8106
8107 static bfd_boolean
8108 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8109 {
8110 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8111
8112 switch (note->type)
8113 {
8114 default:
8115 return TRUE;
8116
8117 case NT_PRSTATUS:
8118 if (bed->elf_backend_grok_prstatus)
8119 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8120 return TRUE;
8121 #if defined (HAVE_PRSTATUS_T)
8122 return elfcore_grok_prstatus (abfd, note);
8123 #else
8124 return TRUE;
8125 #endif
8126
8127 #if defined (HAVE_PSTATUS_T)
8128 case NT_PSTATUS:
8129 return elfcore_grok_pstatus (abfd, note);
8130 #endif
8131
8132 #if defined (HAVE_LWPSTATUS_T)
8133 case NT_LWPSTATUS:
8134 return elfcore_grok_lwpstatus (abfd, note);
8135 #endif
8136
8137 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8138 return elfcore_grok_prfpreg (abfd, note);
8139
8140 case NT_WIN32PSTATUS:
8141 return elfcore_grok_win32pstatus (abfd, note);
8142
8143 case NT_PRXFPREG: /* Linux SSE extension */
8144 if (note->namesz == 6
8145 && strcmp (note->namedata, "LINUX") == 0)
8146 return elfcore_grok_prxfpreg (abfd, note);
8147 else
8148 return TRUE;
8149
8150 case NT_X86_XSTATE: /* Linux XSAVE extension */
8151 if (note->namesz == 6
8152 && strcmp (note->namedata, "LINUX") == 0)
8153 return elfcore_grok_xstatereg (abfd, note);
8154 else
8155 return TRUE;
8156
8157 case NT_PPC_VMX:
8158 if (note->namesz == 6
8159 && strcmp (note->namedata, "LINUX") == 0)
8160 return elfcore_grok_ppc_vmx (abfd, note);
8161 else
8162 return TRUE;
8163
8164 case NT_PPC_VSX:
8165 if (note->namesz == 6
8166 && strcmp (note->namedata, "LINUX") == 0)
8167 return elfcore_grok_ppc_vsx (abfd, note);
8168 else
8169 return TRUE;
8170
8171 case NT_S390_HIGH_GPRS:
8172 if (note->namesz == 6
8173 && strcmp (note->namedata, "LINUX") == 0)
8174 return elfcore_grok_s390_high_gprs (abfd, note);
8175 else
8176 return TRUE;
8177
8178 case NT_S390_TIMER:
8179 if (note->namesz == 6
8180 && strcmp (note->namedata, "LINUX") == 0)
8181 return elfcore_grok_s390_timer (abfd, note);
8182 else
8183 return TRUE;
8184
8185 case NT_S390_TODCMP:
8186 if (note->namesz == 6
8187 && strcmp (note->namedata, "LINUX") == 0)
8188 return elfcore_grok_s390_todcmp (abfd, note);
8189 else
8190 return TRUE;
8191
8192 case NT_S390_TODPREG:
8193 if (note->namesz == 6
8194 && strcmp (note->namedata, "LINUX") == 0)
8195 return elfcore_grok_s390_todpreg (abfd, note);
8196 else
8197 return TRUE;
8198
8199 case NT_S390_CTRS:
8200 if (note->namesz == 6
8201 && strcmp (note->namedata, "LINUX") == 0)
8202 return elfcore_grok_s390_ctrs (abfd, note);
8203 else
8204 return TRUE;
8205
8206 case NT_S390_PREFIX:
8207 if (note->namesz == 6
8208 && strcmp (note->namedata, "LINUX") == 0)
8209 return elfcore_grok_s390_prefix (abfd, note);
8210 else
8211 return TRUE;
8212
8213 case NT_PRPSINFO:
8214 case NT_PSINFO:
8215 if (bed->elf_backend_grok_psinfo)
8216 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8217 return TRUE;
8218 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8219 return elfcore_grok_psinfo (abfd, note);
8220 #else
8221 return TRUE;
8222 #endif
8223
8224 case NT_AUXV:
8225 {
8226 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8227 SEC_HAS_CONTENTS);
8228
8229 if (sect == NULL)
8230 return FALSE;
8231 sect->size = note->descsz;
8232 sect->filepos = note->descpos;
8233 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8234
8235 return TRUE;
8236 }
8237 }
8238 }
8239
8240 static bfd_boolean
8241 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8242 {
8243 elf_tdata (abfd)->build_id_size = note->descsz;
8244 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8245 if (elf_tdata (abfd)->build_id == NULL)
8246 return FALSE;
8247
8248 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8249
8250 return TRUE;
8251 }
8252
8253 static bfd_boolean
8254 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8255 {
8256 switch (note->type)
8257 {
8258 default:
8259 return TRUE;
8260
8261 case NT_GNU_BUILD_ID:
8262 return elfobj_grok_gnu_build_id (abfd, note);
8263 }
8264 }
8265
8266 static bfd_boolean
8267 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8268 {
8269 char *cp;
8270
8271 cp = strchr (note->namedata, '@');
8272 if (cp != NULL)
8273 {
8274 *lwpidp = atoi(cp + 1);
8275 return TRUE;
8276 }
8277 return FALSE;
8278 }
8279
8280 static bfd_boolean
8281 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8282 {
8283 /* Signal number at offset 0x08. */
8284 elf_tdata (abfd)->core_signal
8285 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8286
8287 /* Process ID at offset 0x50. */
8288 elf_tdata (abfd)->core_pid
8289 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8290
8291 /* Command name at 0x7c (max 32 bytes, including nul). */
8292 elf_tdata (abfd)->core_command
8293 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8294
8295 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8296 note);
8297 }
8298
8299 static bfd_boolean
8300 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8301 {
8302 int lwp;
8303
8304 if (elfcore_netbsd_get_lwpid (note, &lwp))
8305 elf_tdata (abfd)->core_lwpid = lwp;
8306
8307 if (note->type == NT_NETBSDCORE_PROCINFO)
8308 {
8309 /* NetBSD-specific core "procinfo". Note that we expect to
8310 find this note before any of the others, which is fine,
8311 since the kernel writes this note out first when it
8312 creates a core file. */
8313
8314 return elfcore_grok_netbsd_procinfo (abfd, note);
8315 }
8316
8317 /* As of Jan 2002 there are no other machine-independent notes
8318 defined for NetBSD core files. If the note type is less
8319 than the start of the machine-dependent note types, we don't
8320 understand it. */
8321
8322 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8323 return TRUE;
8324
8325
8326 switch (bfd_get_arch (abfd))
8327 {
8328 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8329 PT_GETFPREGS == mach+2. */
8330
8331 case bfd_arch_alpha:
8332 case bfd_arch_sparc:
8333 switch (note->type)
8334 {
8335 case NT_NETBSDCORE_FIRSTMACH+0:
8336 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8337
8338 case NT_NETBSDCORE_FIRSTMACH+2:
8339 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8340
8341 default:
8342 return TRUE;
8343 }
8344
8345 /* On all other arch's, PT_GETREGS == mach+1 and
8346 PT_GETFPREGS == mach+3. */
8347
8348 default:
8349 switch (note->type)
8350 {
8351 case NT_NETBSDCORE_FIRSTMACH+1:
8352 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8353
8354 case NT_NETBSDCORE_FIRSTMACH+3:
8355 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8356
8357 default:
8358 return TRUE;
8359 }
8360 }
8361 /* NOTREACHED */
8362 }
8363
8364 static bfd_boolean
8365 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8366 {
8367 /* Signal number at offset 0x08. */
8368 elf_tdata (abfd)->core_signal
8369 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8370
8371 /* Process ID at offset 0x20. */
8372 elf_tdata (abfd)->core_pid
8373 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8374
8375 /* Command name at 0x48 (max 32 bytes, including nul). */
8376 elf_tdata (abfd)->core_command
8377 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8378
8379 return TRUE;
8380 }
8381
8382 static bfd_boolean
8383 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8384 {
8385 if (note->type == NT_OPENBSD_PROCINFO)
8386 return elfcore_grok_openbsd_procinfo (abfd, note);
8387
8388 if (note->type == NT_OPENBSD_REGS)
8389 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8390
8391 if (note->type == NT_OPENBSD_FPREGS)
8392 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8393
8394 if (note->type == NT_OPENBSD_XFPREGS)
8395 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8396
8397 if (note->type == NT_OPENBSD_AUXV)
8398 {
8399 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8400 SEC_HAS_CONTENTS);
8401
8402 if (sect == NULL)
8403 return FALSE;
8404 sect->size = note->descsz;
8405 sect->filepos = note->descpos;
8406 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8407
8408 return TRUE;
8409 }
8410
8411 if (note->type == NT_OPENBSD_WCOOKIE)
8412 {
8413 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8414 SEC_HAS_CONTENTS);
8415
8416 if (sect == NULL)
8417 return FALSE;
8418 sect->size = note->descsz;
8419 sect->filepos = note->descpos;
8420 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8421
8422 return TRUE;
8423 }
8424
8425 return TRUE;
8426 }
8427
8428 static bfd_boolean
8429 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8430 {
8431 void *ddata = note->descdata;
8432 char buf[100];
8433 char *name;
8434 asection *sect;
8435 short sig;
8436 unsigned flags;
8437
8438 /* nto_procfs_status 'pid' field is at offset 0. */
8439 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8440
8441 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8442 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8443
8444 /* nto_procfs_status 'flags' field is at offset 8. */
8445 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8446
8447 /* nto_procfs_status 'what' field is at offset 14. */
8448 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8449 {
8450 elf_tdata (abfd)->core_signal = sig;
8451 elf_tdata (abfd)->core_lwpid = *tid;
8452 }
8453
8454 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8455 do not come from signals so we make sure we set the current
8456 thread just in case. */
8457 if (flags & 0x00000080)
8458 elf_tdata (abfd)->core_lwpid = *tid;
8459
8460 /* Make a ".qnx_core_status/%d" section. */
8461 sprintf (buf, ".qnx_core_status/%ld", *tid);
8462
8463 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8464 if (name == NULL)
8465 return FALSE;
8466 strcpy (name, buf);
8467
8468 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8469 if (sect == NULL)
8470 return FALSE;
8471
8472 sect->size = note->descsz;
8473 sect->filepos = note->descpos;
8474 sect->alignment_power = 2;
8475
8476 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8477 }
8478
8479 static bfd_boolean
8480 elfcore_grok_nto_regs (bfd *abfd,
8481 Elf_Internal_Note *note,
8482 long tid,
8483 char *base)
8484 {
8485 char buf[100];
8486 char *name;
8487 asection *sect;
8488
8489 /* Make a "(base)/%d" section. */
8490 sprintf (buf, "%s/%ld", base, tid);
8491
8492 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8493 if (name == NULL)
8494 return FALSE;
8495 strcpy (name, buf);
8496
8497 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8498 if (sect == NULL)
8499 return FALSE;
8500
8501 sect->size = note->descsz;
8502 sect->filepos = note->descpos;
8503 sect->alignment_power = 2;
8504
8505 /* This is the current thread. */
8506 if (elf_tdata (abfd)->core_lwpid == tid)
8507 return elfcore_maybe_make_sect (abfd, base, sect);
8508
8509 return TRUE;
8510 }
8511
8512 #define BFD_QNT_CORE_INFO 7
8513 #define BFD_QNT_CORE_STATUS 8
8514 #define BFD_QNT_CORE_GREG 9
8515 #define BFD_QNT_CORE_FPREG 10
8516
8517 static bfd_boolean
8518 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8519 {
8520 /* Every GREG section has a STATUS section before it. Store the
8521 tid from the previous call to pass down to the next gregs
8522 function. */
8523 static long tid = 1;
8524
8525 switch (note->type)
8526 {
8527 case BFD_QNT_CORE_INFO:
8528 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8529 case BFD_QNT_CORE_STATUS:
8530 return elfcore_grok_nto_status (abfd, note, &tid);
8531 case BFD_QNT_CORE_GREG:
8532 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8533 case BFD_QNT_CORE_FPREG:
8534 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8535 default:
8536 return TRUE;
8537 }
8538 }
8539
8540 static bfd_boolean
8541 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8542 {
8543 char *name;
8544 asection *sect;
8545 size_t len;
8546
8547 /* Use note name as section name. */
8548 len = note->namesz;
8549 name = (char *) bfd_alloc (abfd, len);
8550 if (name == NULL)
8551 return FALSE;
8552 memcpy (name, note->namedata, len);
8553 name[len - 1] = '\0';
8554
8555 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8556 if (sect == NULL)
8557 return FALSE;
8558
8559 sect->size = note->descsz;
8560 sect->filepos = note->descpos;
8561 sect->alignment_power = 1;
8562
8563 return TRUE;
8564 }
8565
8566 /* Function: elfcore_write_note
8567
8568 Inputs:
8569 buffer to hold note, and current size of buffer
8570 name of note
8571 type of note
8572 data for note
8573 size of data for note
8574
8575 Writes note to end of buffer. ELF64 notes are written exactly as
8576 for ELF32, despite the current (as of 2006) ELF gabi specifying
8577 that they ought to have 8-byte namesz and descsz field, and have
8578 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8579
8580 Return:
8581 Pointer to realloc'd buffer, *BUFSIZ updated. */
8582
8583 char *
8584 elfcore_write_note (bfd *abfd,
8585 char *buf,
8586 int *bufsiz,
8587 const char *name,
8588 int type,
8589 const void *input,
8590 int size)
8591 {
8592 Elf_External_Note *xnp;
8593 size_t namesz;
8594 size_t newspace;
8595 char *dest;
8596
8597 namesz = 0;
8598 if (name != NULL)
8599 namesz = strlen (name) + 1;
8600
8601 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8602
8603 buf = (char *) realloc (buf, *bufsiz + newspace);
8604 if (buf == NULL)
8605 return buf;
8606 dest = buf + *bufsiz;
8607 *bufsiz += newspace;
8608 xnp = (Elf_External_Note *) dest;
8609 H_PUT_32 (abfd, namesz, xnp->namesz);
8610 H_PUT_32 (abfd, size, xnp->descsz);
8611 H_PUT_32 (abfd, type, xnp->type);
8612 dest = xnp->name;
8613 if (name != NULL)
8614 {
8615 memcpy (dest, name, namesz);
8616 dest += namesz;
8617 while (namesz & 3)
8618 {
8619 *dest++ = '\0';
8620 ++namesz;
8621 }
8622 }
8623 memcpy (dest, input, size);
8624 dest += size;
8625 while (size & 3)
8626 {
8627 *dest++ = '\0';
8628 ++size;
8629 }
8630 return buf;
8631 }
8632
8633 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8634 char *
8635 elfcore_write_prpsinfo (bfd *abfd,
8636 char *buf,
8637 int *bufsiz,
8638 const char *fname,
8639 const char *psargs)
8640 {
8641 const char *note_name = "CORE";
8642 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8643
8644 if (bed->elf_backend_write_core_note != NULL)
8645 {
8646 char *ret;
8647 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8648 NT_PRPSINFO, fname, psargs);
8649 if (ret != NULL)
8650 return ret;
8651 }
8652
8653 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8654 if (bed->s->elfclass == ELFCLASS32)
8655 {
8656 #if defined (HAVE_PSINFO32_T)
8657 psinfo32_t data;
8658 int note_type = NT_PSINFO;
8659 #else
8660 prpsinfo32_t data;
8661 int note_type = NT_PRPSINFO;
8662 #endif
8663
8664 memset (&data, 0, sizeof (data));
8665 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8666 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8667 return elfcore_write_note (abfd, buf, bufsiz,
8668 note_name, note_type, &data, sizeof (data));
8669 }
8670 else
8671 #endif
8672 {
8673 #if defined (HAVE_PSINFO_T)
8674 psinfo_t data;
8675 int note_type = NT_PSINFO;
8676 #else
8677 prpsinfo_t data;
8678 int note_type = NT_PRPSINFO;
8679 #endif
8680
8681 memset (&data, 0, sizeof (data));
8682 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8683 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8684 return elfcore_write_note (abfd, buf, bufsiz,
8685 note_name, note_type, &data, sizeof (data));
8686 }
8687 }
8688 #endif /* PSINFO_T or PRPSINFO_T */
8689
8690 #if defined (HAVE_PRSTATUS_T)
8691 char *
8692 elfcore_write_prstatus (bfd *abfd,
8693 char *buf,
8694 int *bufsiz,
8695 long pid,
8696 int cursig,
8697 const void *gregs)
8698 {
8699 const char *note_name = "CORE";
8700 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8701
8702 if (bed->elf_backend_write_core_note != NULL)
8703 {
8704 char *ret;
8705 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8706 NT_PRSTATUS,
8707 pid, cursig, gregs);
8708 if (ret != NULL)
8709 return ret;
8710 }
8711
8712 #if defined (HAVE_PRSTATUS32_T)
8713 if (bed->s->elfclass == ELFCLASS32)
8714 {
8715 prstatus32_t prstat;
8716
8717 memset (&prstat, 0, sizeof (prstat));
8718 prstat.pr_pid = pid;
8719 prstat.pr_cursig = cursig;
8720 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8721 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8722 NT_PRSTATUS, &prstat, sizeof (prstat));
8723 }
8724 else
8725 #endif
8726 {
8727 prstatus_t prstat;
8728
8729 memset (&prstat, 0, sizeof (prstat));
8730 prstat.pr_pid = pid;
8731 prstat.pr_cursig = cursig;
8732 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8733 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8734 NT_PRSTATUS, &prstat, sizeof (prstat));
8735 }
8736 }
8737 #endif /* HAVE_PRSTATUS_T */
8738
8739 #if defined (HAVE_LWPSTATUS_T)
8740 char *
8741 elfcore_write_lwpstatus (bfd *abfd,
8742 char *buf,
8743 int *bufsiz,
8744 long pid,
8745 int cursig,
8746 const void *gregs)
8747 {
8748 lwpstatus_t lwpstat;
8749 const char *note_name = "CORE";
8750
8751 memset (&lwpstat, 0, sizeof (lwpstat));
8752 lwpstat.pr_lwpid = pid >> 16;
8753 lwpstat.pr_cursig = cursig;
8754 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8755 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8756 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8757 #if !defined(gregs)
8758 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8759 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8760 #else
8761 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8762 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8763 #endif
8764 #endif
8765 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8766 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8767 }
8768 #endif /* HAVE_LWPSTATUS_T */
8769
8770 #if defined (HAVE_PSTATUS_T)
8771 char *
8772 elfcore_write_pstatus (bfd *abfd,
8773 char *buf,
8774 int *bufsiz,
8775 long pid,
8776 int cursig ATTRIBUTE_UNUSED,
8777 const void *gregs ATTRIBUTE_UNUSED)
8778 {
8779 const char *note_name = "CORE";
8780 #if defined (HAVE_PSTATUS32_T)
8781 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8782
8783 if (bed->s->elfclass == ELFCLASS32)
8784 {
8785 pstatus32_t pstat;
8786
8787 memset (&pstat, 0, sizeof (pstat));
8788 pstat.pr_pid = pid & 0xffff;
8789 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8790 NT_PSTATUS, &pstat, sizeof (pstat));
8791 return buf;
8792 }
8793 else
8794 #endif
8795 {
8796 pstatus_t pstat;
8797
8798 memset (&pstat, 0, sizeof (pstat));
8799 pstat.pr_pid = pid & 0xffff;
8800 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8801 NT_PSTATUS, &pstat, sizeof (pstat));
8802 return buf;
8803 }
8804 }
8805 #endif /* HAVE_PSTATUS_T */
8806
8807 char *
8808 elfcore_write_prfpreg (bfd *abfd,
8809 char *buf,
8810 int *bufsiz,
8811 const void *fpregs,
8812 int size)
8813 {
8814 const char *note_name = "CORE";
8815 return elfcore_write_note (abfd, buf, bufsiz,
8816 note_name, NT_FPREGSET, fpregs, size);
8817 }
8818
8819 char *
8820 elfcore_write_prxfpreg (bfd *abfd,
8821 char *buf,
8822 int *bufsiz,
8823 const void *xfpregs,
8824 int size)
8825 {
8826 char *note_name = "LINUX";
8827 return elfcore_write_note (abfd, buf, bufsiz,
8828 note_name, NT_PRXFPREG, xfpregs, size);
8829 }
8830
8831 char *
8832 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
8833 const void *xfpregs, int size)
8834 {
8835 char *note_name = "LINUX";
8836 return elfcore_write_note (abfd, buf, bufsiz,
8837 note_name, NT_X86_XSTATE, xfpregs, size);
8838 }
8839
8840 char *
8841 elfcore_write_ppc_vmx (bfd *abfd,
8842 char *buf,
8843 int *bufsiz,
8844 const void *ppc_vmx,
8845 int size)
8846 {
8847 char *note_name = "LINUX";
8848 return elfcore_write_note (abfd, buf, bufsiz,
8849 note_name, NT_PPC_VMX, ppc_vmx, size);
8850 }
8851
8852 char *
8853 elfcore_write_ppc_vsx (bfd *abfd,
8854 char *buf,
8855 int *bufsiz,
8856 const void *ppc_vsx,
8857 int size)
8858 {
8859 char *note_name = "LINUX";
8860 return elfcore_write_note (abfd, buf, bufsiz,
8861 note_name, NT_PPC_VSX, ppc_vsx, size);
8862 }
8863
8864 static char *
8865 elfcore_write_s390_high_gprs (bfd *abfd,
8866 char *buf,
8867 int *bufsiz,
8868 const void *s390_high_gprs,
8869 int size)
8870 {
8871 char *note_name = "LINUX";
8872 return elfcore_write_note (abfd, buf, bufsiz,
8873 note_name, NT_S390_HIGH_GPRS,
8874 s390_high_gprs, size);
8875 }
8876
8877 char *
8878 elfcore_write_s390_timer (bfd *abfd,
8879 char *buf,
8880 int *bufsiz,
8881 const void *s390_timer,
8882 int size)
8883 {
8884 char *note_name = "LINUX";
8885 return elfcore_write_note (abfd, buf, bufsiz,
8886 note_name, NT_S390_TIMER, s390_timer, size);
8887 }
8888
8889 char *
8890 elfcore_write_s390_todcmp (bfd *abfd,
8891 char *buf,
8892 int *bufsiz,
8893 const void *s390_todcmp,
8894 int size)
8895 {
8896 char *note_name = "LINUX";
8897 return elfcore_write_note (abfd, buf, bufsiz,
8898 note_name, NT_S390_TODCMP, s390_todcmp, size);
8899 }
8900
8901 char *
8902 elfcore_write_s390_todpreg (bfd *abfd,
8903 char *buf,
8904 int *bufsiz,
8905 const void *s390_todpreg,
8906 int size)
8907 {
8908 char *note_name = "LINUX";
8909 return elfcore_write_note (abfd, buf, bufsiz,
8910 note_name, NT_S390_TODPREG, s390_todpreg, size);
8911 }
8912
8913 char *
8914 elfcore_write_s390_ctrs (bfd *abfd,
8915 char *buf,
8916 int *bufsiz,
8917 const void *s390_ctrs,
8918 int size)
8919 {
8920 char *note_name = "LINUX";
8921 return elfcore_write_note (abfd, buf, bufsiz,
8922 note_name, NT_S390_CTRS, s390_ctrs, size);
8923 }
8924
8925 char *
8926 elfcore_write_s390_prefix (bfd *abfd,
8927 char *buf,
8928 int *bufsiz,
8929 const void *s390_prefix,
8930 int size)
8931 {
8932 char *note_name = "LINUX";
8933 return elfcore_write_note (abfd, buf, bufsiz,
8934 note_name, NT_S390_PREFIX, s390_prefix, size);
8935 }
8936
8937 char *
8938 elfcore_write_register_note (bfd *abfd,
8939 char *buf,
8940 int *bufsiz,
8941 const char *section,
8942 const void *data,
8943 int size)
8944 {
8945 if (strcmp (section, ".reg2") == 0)
8946 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8947 if (strcmp (section, ".reg-xfp") == 0)
8948 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8949 if (strcmp (section, ".reg-xstate") == 0)
8950 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
8951 if (strcmp (section, ".reg-ppc-vmx") == 0)
8952 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8953 if (strcmp (section, ".reg-ppc-vsx") == 0)
8954 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
8955 if (strcmp (section, ".reg-s390-high-gprs") == 0)
8956 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
8957 if (strcmp (section, ".reg-s390-timer") == 0)
8958 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
8959 if (strcmp (section, ".reg-s390-todcmp") == 0)
8960 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
8961 if (strcmp (section, ".reg-s390-todpreg") == 0)
8962 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
8963 if (strcmp (section, ".reg-s390-ctrs") == 0)
8964 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
8965 if (strcmp (section, ".reg-s390-prefix") == 0)
8966 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
8967 return NULL;
8968 }
8969
8970 static bfd_boolean
8971 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8972 {
8973 char *p;
8974
8975 p = buf;
8976 while (p < buf + size)
8977 {
8978 /* FIXME: bad alignment assumption. */
8979 Elf_External_Note *xnp = (Elf_External_Note *) p;
8980 Elf_Internal_Note in;
8981
8982 if (offsetof (Elf_External_Note, name) > buf - p + size)
8983 return FALSE;
8984
8985 in.type = H_GET_32 (abfd, xnp->type);
8986
8987 in.namesz = H_GET_32 (abfd, xnp->namesz);
8988 in.namedata = xnp->name;
8989 if (in.namesz > buf - in.namedata + size)
8990 return FALSE;
8991
8992 in.descsz = H_GET_32 (abfd, xnp->descsz);
8993 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8994 in.descpos = offset + (in.descdata - buf);
8995 if (in.descsz != 0
8996 && (in.descdata >= buf + size
8997 || in.descsz > buf - in.descdata + size))
8998 return FALSE;
8999
9000 switch (bfd_get_format (abfd))
9001 {
9002 default:
9003 return TRUE;
9004
9005 case bfd_core:
9006 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9007 {
9008 if (! elfcore_grok_netbsd_note (abfd, &in))
9009 return FALSE;
9010 }
9011 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9012 {
9013 if (! elfcore_grok_openbsd_note (abfd, &in))
9014 return FALSE;
9015 }
9016 else if (CONST_STRNEQ (in.namedata, "QNX"))
9017 {
9018 if (! elfcore_grok_nto_note (abfd, &in))
9019 return FALSE;
9020 }
9021 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9022 {
9023 if (! elfcore_grok_spu_note (abfd, &in))
9024 return FALSE;
9025 }
9026 else
9027 {
9028 if (! elfcore_grok_note (abfd, &in))
9029 return FALSE;
9030 }
9031 break;
9032
9033 case bfd_object:
9034 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9035 {
9036 if (! elfobj_grok_gnu_note (abfd, &in))
9037 return FALSE;
9038 }
9039 break;
9040 }
9041
9042 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9043 }
9044
9045 return TRUE;
9046 }
9047
9048 static bfd_boolean
9049 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9050 {
9051 char *buf;
9052
9053 if (size <= 0)
9054 return TRUE;
9055
9056 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9057 return FALSE;
9058
9059 buf = (char *) bfd_malloc (size);
9060 if (buf == NULL)
9061 return FALSE;
9062
9063 if (bfd_bread (buf, size, abfd) != size
9064 || !elf_parse_notes (abfd, buf, size, offset))
9065 {
9066 free (buf);
9067 return FALSE;
9068 }
9069
9070 free (buf);
9071 return TRUE;
9072 }
9073 \f
9074 /* Providing external access to the ELF program header table. */
9075
9076 /* Return an upper bound on the number of bytes required to store a
9077 copy of ABFD's program header table entries. Return -1 if an error
9078 occurs; bfd_get_error will return an appropriate code. */
9079
9080 long
9081 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9082 {
9083 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9084 {
9085 bfd_set_error (bfd_error_wrong_format);
9086 return -1;
9087 }
9088
9089 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9090 }
9091
9092 /* Copy ABFD's program header table entries to *PHDRS. The entries
9093 will be stored as an array of Elf_Internal_Phdr structures, as
9094 defined in include/elf/internal.h. To find out how large the
9095 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9096
9097 Return the number of program header table entries read, or -1 if an
9098 error occurs; bfd_get_error will return an appropriate code. */
9099
9100 int
9101 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9102 {
9103 int num_phdrs;
9104
9105 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9106 {
9107 bfd_set_error (bfd_error_wrong_format);
9108 return -1;
9109 }
9110
9111 num_phdrs = elf_elfheader (abfd)->e_phnum;
9112 memcpy (phdrs, elf_tdata (abfd)->phdr,
9113 num_phdrs * sizeof (Elf_Internal_Phdr));
9114
9115 return num_phdrs;
9116 }
9117
9118 enum elf_reloc_type_class
9119 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9120 {
9121 return reloc_class_normal;
9122 }
9123
9124 /* For RELA architectures, return the relocation value for a
9125 relocation against a local symbol. */
9126
9127 bfd_vma
9128 _bfd_elf_rela_local_sym (bfd *abfd,
9129 Elf_Internal_Sym *sym,
9130 asection **psec,
9131 Elf_Internal_Rela *rel)
9132 {
9133 asection *sec = *psec;
9134 bfd_vma relocation;
9135
9136 relocation = (sec->output_section->vma
9137 + sec->output_offset
9138 + sym->st_value);
9139 if ((sec->flags & SEC_MERGE)
9140 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9141 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
9142 {
9143 rel->r_addend =
9144 _bfd_merged_section_offset (abfd, psec,
9145 elf_section_data (sec)->sec_info,
9146 sym->st_value + rel->r_addend);
9147 if (sec != *psec)
9148 {
9149 /* If we have changed the section, and our original section is
9150 marked with SEC_EXCLUDE, it means that the original
9151 SEC_MERGE section has been completely subsumed in some
9152 other SEC_MERGE section. In this case, we need to leave
9153 some info around for --emit-relocs. */
9154 if ((sec->flags & SEC_EXCLUDE) != 0)
9155 sec->kept_section = *psec;
9156 sec = *psec;
9157 }
9158 rel->r_addend -= relocation;
9159 rel->r_addend += sec->output_section->vma + sec->output_offset;
9160 }
9161 return relocation;
9162 }
9163
9164 bfd_vma
9165 _bfd_elf_rel_local_sym (bfd *abfd,
9166 Elf_Internal_Sym *sym,
9167 asection **psec,
9168 bfd_vma addend)
9169 {
9170 asection *sec = *psec;
9171
9172 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
9173 return sym->st_value + addend;
9174
9175 return _bfd_merged_section_offset (abfd, psec,
9176 elf_section_data (sec)->sec_info,
9177 sym->st_value + addend);
9178 }
9179
9180 bfd_vma
9181 _bfd_elf_section_offset (bfd *abfd,
9182 struct bfd_link_info *info,
9183 asection *sec,
9184 bfd_vma offset)
9185 {
9186 switch (sec->sec_info_type)
9187 {
9188 case ELF_INFO_TYPE_STABS:
9189 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9190 offset);
9191 case ELF_INFO_TYPE_EH_FRAME:
9192 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9193 default:
9194 return offset;
9195 }
9196 }
9197 \f
9198 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9199 reconstruct an ELF file by reading the segments out of remote memory
9200 based on the ELF file header at EHDR_VMA and the ELF program headers it
9201 points to. If not null, *LOADBASEP is filled in with the difference
9202 between the VMAs from which the segments were read, and the VMAs the
9203 file headers (and hence BFD's idea of each section's VMA) put them at.
9204
9205 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9206 remote memory at target address VMA into the local buffer at MYADDR; it
9207 should return zero on success or an `errno' code on failure. TEMPL must
9208 be a BFD for an ELF target with the word size and byte order found in
9209 the remote memory. */
9210
9211 bfd *
9212 bfd_elf_bfd_from_remote_memory
9213 (bfd *templ,
9214 bfd_vma ehdr_vma,
9215 bfd_vma *loadbasep,
9216 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9217 {
9218 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9219 (templ, ehdr_vma, loadbasep, target_read_memory);
9220 }
9221 \f
9222 long
9223 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9224 long symcount ATTRIBUTE_UNUSED,
9225 asymbol **syms ATTRIBUTE_UNUSED,
9226 long dynsymcount,
9227 asymbol **dynsyms,
9228 asymbol **ret)
9229 {
9230 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9231 asection *relplt;
9232 asymbol *s;
9233 const char *relplt_name;
9234 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9235 arelent *p;
9236 long count, i, n;
9237 size_t size;
9238 Elf_Internal_Shdr *hdr;
9239 char *names;
9240 asection *plt;
9241
9242 *ret = NULL;
9243
9244 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9245 return 0;
9246
9247 if (dynsymcount <= 0)
9248 return 0;
9249
9250 if (!bed->plt_sym_val)
9251 return 0;
9252
9253 relplt_name = bed->relplt_name;
9254 if (relplt_name == NULL)
9255 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9256 relplt = bfd_get_section_by_name (abfd, relplt_name);
9257 if (relplt == NULL)
9258 return 0;
9259
9260 hdr = &elf_section_data (relplt)->this_hdr;
9261 if (hdr->sh_link != elf_dynsymtab (abfd)
9262 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9263 return 0;
9264
9265 plt = bfd_get_section_by_name (abfd, ".plt");
9266 if (plt == NULL)
9267 return 0;
9268
9269 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9270 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9271 return -1;
9272
9273 count = relplt->size / hdr->sh_entsize;
9274 size = count * sizeof (asymbol);
9275 p = relplt->relocation;
9276 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9277 {
9278 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9279 if (p->addend != 0)
9280 {
9281 #ifdef BFD64
9282 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9283 #else
9284 size += sizeof ("+0x") - 1 + 8;
9285 #endif
9286 }
9287 }
9288
9289 s = *ret = (asymbol *) bfd_malloc (size);
9290 if (s == NULL)
9291 return -1;
9292
9293 names = (char *) (s + count);
9294 p = relplt->relocation;
9295 n = 0;
9296 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9297 {
9298 size_t len;
9299 bfd_vma addr;
9300
9301 addr = bed->plt_sym_val (i, plt, p);
9302 if (addr == (bfd_vma) -1)
9303 continue;
9304
9305 *s = **p->sym_ptr_ptr;
9306 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9307 we are defining a symbol, ensure one of them is set. */
9308 if ((s->flags & BSF_LOCAL) == 0)
9309 s->flags |= BSF_GLOBAL;
9310 s->flags |= BSF_SYNTHETIC;
9311 s->section = plt;
9312 s->value = addr - plt->vma;
9313 s->name = names;
9314 s->udata.p = NULL;
9315 len = strlen ((*p->sym_ptr_ptr)->name);
9316 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9317 names += len;
9318 if (p->addend != 0)
9319 {
9320 char buf[30], *a;
9321
9322 memcpy (names, "+0x", sizeof ("+0x") - 1);
9323 names += sizeof ("+0x") - 1;
9324 bfd_sprintf_vma (abfd, buf, p->addend);
9325 for (a = buf; *a == '0'; ++a)
9326 ;
9327 len = strlen (a);
9328 memcpy (names, a, len);
9329 names += len;
9330 }
9331 memcpy (names, "@plt", sizeof ("@plt"));
9332 names += sizeof ("@plt");
9333 ++s, ++n;
9334 }
9335
9336 return n;
9337 }
9338
9339 /* It is only used by x86-64 so far. */
9340 asection _bfd_elf_large_com_section
9341 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9342 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9343
9344 void
9345 _bfd_elf_set_osabi (bfd * abfd,
9346 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9347 {
9348 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9349
9350 i_ehdrp = elf_elfheader (abfd);
9351
9352 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9353
9354 /* To make things simpler for the loader on Linux systems we set the
9355 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9356 the STT_GNU_IFUNC type. */
9357 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9358 && elf_tdata (abfd)->has_ifunc_symbols)
9359 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
9360 }
9361
9362
9363 /* Return TRUE for ELF symbol types that represent functions.
9364 This is the default version of this function, which is sufficient for
9365 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9366
9367 bfd_boolean
9368 _bfd_elf_is_function_type (unsigned int type)
9369 {
9370 return (type == STT_FUNC
9371 || type == STT_GNU_IFUNC);
9372 }
This page took 0.327014 seconds and 5 git commands to generate.