Stop the BFD library from failing when encountering a second set of relocs for the...
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
57 size_t align) ;
58 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
59 file_ptr offset, size_t align);
60
61 /* Swap version information in and out. The version information is
62 currently size independent. If that ever changes, this code will
63 need to move into elfcode.h. */
64
65 /* Swap in a Verdef structure. */
66
67 void
68 _bfd_elf_swap_verdef_in (bfd *abfd,
69 const Elf_External_Verdef *src,
70 Elf_Internal_Verdef *dst)
71 {
72 dst->vd_version = H_GET_16 (abfd, src->vd_version);
73 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
74 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
75 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
76 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
77 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
78 dst->vd_next = H_GET_32 (abfd, src->vd_next);
79 }
80
81 /* Swap out a Verdef structure. */
82
83 void
84 _bfd_elf_swap_verdef_out (bfd *abfd,
85 const Elf_Internal_Verdef *src,
86 Elf_External_Verdef *dst)
87 {
88 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
89 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
90 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
91 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
92 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
93 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
94 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
95 }
96
97 /* Swap in a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_in (bfd *abfd,
101 const Elf_External_Verdaux *src,
102 Elf_Internal_Verdaux *dst)
103 {
104 dst->vda_name = H_GET_32 (abfd, src->vda_name);
105 dst->vda_next = H_GET_32 (abfd, src->vda_next);
106 }
107
108 /* Swap out a Verdaux structure. */
109
110 void
111 _bfd_elf_swap_verdaux_out (bfd *abfd,
112 const Elf_Internal_Verdaux *src,
113 Elf_External_Verdaux *dst)
114 {
115 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
116 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
117 }
118
119 /* Swap in a Verneed structure. */
120
121 void
122 _bfd_elf_swap_verneed_in (bfd *abfd,
123 const Elf_External_Verneed *src,
124 Elf_Internal_Verneed *dst)
125 {
126 dst->vn_version = H_GET_16 (abfd, src->vn_version);
127 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
128 dst->vn_file = H_GET_32 (abfd, src->vn_file);
129 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
130 dst->vn_next = H_GET_32 (abfd, src->vn_next);
131 }
132
133 /* Swap out a Verneed structure. */
134
135 void
136 _bfd_elf_swap_verneed_out (bfd *abfd,
137 const Elf_Internal_Verneed *src,
138 Elf_External_Verneed *dst)
139 {
140 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
141 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
142 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
143 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
144 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
145 }
146
147 /* Swap in a Vernaux structure. */
148
149 void
150 _bfd_elf_swap_vernaux_in (bfd *abfd,
151 const Elf_External_Vernaux *src,
152 Elf_Internal_Vernaux *dst)
153 {
154 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
155 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
156 dst->vna_other = H_GET_16 (abfd, src->vna_other);
157 dst->vna_name = H_GET_32 (abfd, src->vna_name);
158 dst->vna_next = H_GET_32 (abfd, src->vna_next);
159 }
160
161 /* Swap out a Vernaux structure. */
162
163 void
164 _bfd_elf_swap_vernaux_out (bfd *abfd,
165 const Elf_Internal_Vernaux *src,
166 Elf_External_Vernaux *dst)
167 {
168 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
169 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
170 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
171 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
172 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
173 }
174
175 /* Swap in a Versym structure. */
176
177 void
178 _bfd_elf_swap_versym_in (bfd *abfd,
179 const Elf_External_Versym *src,
180 Elf_Internal_Versym *dst)
181 {
182 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
183 }
184
185 /* Swap out a Versym structure. */
186
187 void
188 _bfd_elf_swap_versym_out (bfd *abfd,
189 const Elf_Internal_Versym *src,
190 Elf_External_Versym *dst)
191 {
192 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
193 }
194
195 /* Standard ELF hash function. Do not change this function; you will
196 cause invalid hash tables to be generated. */
197
198 unsigned long
199 bfd_elf_hash (const char *namearg)
200 {
201 const unsigned char *name = (const unsigned char *) namearg;
202 unsigned long h = 0;
203 unsigned long g;
204 int ch;
205
206 while ((ch = *name++) != '\0')
207 {
208 h = (h << 4) + ch;
209 if ((g = (h & 0xf0000000)) != 0)
210 {
211 h ^= g >> 24;
212 /* The ELF ABI says `h &= ~g', but this is equivalent in
213 this case and on some machines one insn instead of two. */
214 h ^= g;
215 }
216 }
217 return h & 0xffffffff;
218 }
219
220 /* DT_GNU_HASH hash function. Do not change this function; you will
221 cause invalid hash tables to be generated. */
222
223 unsigned long
224 bfd_elf_gnu_hash (const char *namearg)
225 {
226 const unsigned char *name = (const unsigned char *) namearg;
227 unsigned long h = 5381;
228 unsigned char ch;
229
230 while ((ch = *name++) != '\0')
231 h = (h << 5) + h + ch;
232 return h & 0xffffffff;
233 }
234
235 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
236 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_boolean
238 bfd_elf_allocate_object (bfd *abfd,
239 size_t object_size,
240 enum elf_target_id object_id)
241 {
242 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
243 abfd->tdata.any = bfd_zalloc (abfd, object_size);
244 if (abfd->tdata.any == NULL)
245 return FALSE;
246
247 elf_object_id (abfd) = object_id;
248 if (abfd->direction != read_direction)
249 {
250 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
251 if (o == NULL)
252 return FALSE;
253 elf_tdata (abfd)->o = o;
254 elf_program_header_size (abfd) = (bfd_size_type) -1;
255 }
256 return TRUE;
257 }
258
259
260 bfd_boolean
261 bfd_elf_make_object (bfd *abfd)
262 {
263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
264 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
265 bed->target_id);
266 }
267
268 bfd_boolean
269 bfd_elf_mkcorefile (bfd *abfd)
270 {
271 /* I think this can be done just like an object file. */
272 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
273 return FALSE;
274 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
275 return elf_tdata (abfd)->core != NULL;
276 }
277
278 static char *
279 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
280 {
281 Elf_Internal_Shdr **i_shdrp;
282 bfd_byte *shstrtab = NULL;
283 file_ptr offset;
284 bfd_size_type shstrtabsize;
285
286 i_shdrp = elf_elfsections (abfd);
287 if (i_shdrp == 0
288 || shindex >= elf_numsections (abfd)
289 || i_shdrp[shindex] == 0)
290 return NULL;
291
292 shstrtab = i_shdrp[shindex]->contents;
293 if (shstrtab == NULL)
294 {
295 /* No cached one, attempt to read, and cache what we read. */
296 offset = i_shdrp[shindex]->sh_offset;
297 shstrtabsize = i_shdrp[shindex]->sh_size;
298
299 /* Allocate and clear an extra byte at the end, to prevent crashes
300 in case the string table is not terminated. */
301 if (shstrtabsize + 1 <= 1
302 || shstrtabsize > bfd_get_file_size (abfd)
303 || bfd_seek (abfd, offset, SEEK_SET) != 0
304 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
305 shstrtab = NULL;
306 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
307 {
308 if (bfd_get_error () != bfd_error_system_call)
309 bfd_set_error (bfd_error_file_truncated);
310 bfd_release (abfd, shstrtab);
311 shstrtab = NULL;
312 /* Once we've failed to read it, make sure we don't keep
313 trying. Otherwise, we'll keep allocating space for
314 the string table over and over. */
315 i_shdrp[shindex]->sh_size = 0;
316 }
317 else
318 shstrtab[shstrtabsize] = '\0';
319 i_shdrp[shindex]->contents = shstrtab;
320 }
321 return (char *) shstrtab;
322 }
323
324 char *
325 bfd_elf_string_from_elf_section (bfd *abfd,
326 unsigned int shindex,
327 unsigned int strindex)
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
335 return NULL;
336
337 hdr = elf_elfsections (abfd)[shindex];
338
339 if (hdr->contents == NULL)
340 {
341 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
342 {
343 /* PR 17512: file: f057ec89. */
344 /* xgettext:c-format */
345 _bfd_error_handler (_("%pB: attempt to load strings from"
346 " a non-string section (number %d)"),
347 abfd, shindex);
348 return NULL;
349 }
350
351 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
352 return NULL;
353 }
354 else
355 {
356 /* PR 24273: The string section's contents may have already
357 been loaded elsewhere, eg because a corrupt file has the
358 string section index in the ELF header pointing at a group
359 section. So be paranoid, and test that the last byte of
360 the section is zero. */
361 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
362 return NULL;
363 }
364
365 if (strindex >= hdr->sh_size)
366 {
367 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
368 _bfd_error_handler
369 /* xgettext:c-format */
370 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
371 abfd, strindex, (uint64_t) hdr->sh_size,
372 (shindex == shstrndx && strindex == hdr->sh_name
373 ? ".shstrtab"
374 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
375 return NULL;
376 }
377
378 return ((char *) hdr->contents) + strindex;
379 }
380
381 /* Read and convert symbols to internal format.
382 SYMCOUNT specifies the number of symbols to read, starting from
383 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
384 are non-NULL, they are used to store the internal symbols, external
385 symbols, and symbol section index extensions, respectively.
386 Returns a pointer to the internal symbol buffer (malloced if necessary)
387 or NULL if there were no symbols or some kind of problem. */
388
389 Elf_Internal_Sym *
390 bfd_elf_get_elf_syms (bfd *ibfd,
391 Elf_Internal_Shdr *symtab_hdr,
392 size_t symcount,
393 size_t symoffset,
394 Elf_Internal_Sym *intsym_buf,
395 void *extsym_buf,
396 Elf_External_Sym_Shndx *extshndx_buf)
397 {
398 Elf_Internal_Shdr *shndx_hdr;
399 void *alloc_ext;
400 const bfd_byte *esym;
401 Elf_External_Sym_Shndx *alloc_extshndx;
402 Elf_External_Sym_Shndx *shndx;
403 Elf_Internal_Sym *alloc_intsym;
404 Elf_Internal_Sym *isym;
405 Elf_Internal_Sym *isymend;
406 const struct elf_backend_data *bed;
407 size_t extsym_size;
408 bfd_size_type amt;
409 file_ptr pos;
410
411 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
412 abort ();
413
414 if (symcount == 0)
415 return intsym_buf;
416
417 /* Normal syms might have section extension entries. */
418 shndx_hdr = NULL;
419 if (elf_symtab_shndx_list (ibfd) != NULL)
420 {
421 elf_section_list * entry;
422 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
423
424 /* Find an index section that is linked to this symtab section. */
425 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
426 {
427 /* PR 20063. */
428 if (entry->hdr.sh_link >= elf_numsections (ibfd))
429 continue;
430
431 if (sections[entry->hdr.sh_link] == symtab_hdr)
432 {
433 shndx_hdr = & entry->hdr;
434 break;
435 };
436 }
437
438 if (shndx_hdr == NULL)
439 {
440 if (symtab_hdr == & elf_symtab_hdr (ibfd))
441 /* Not really accurate, but this was how the old code used to work. */
442 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
443 /* Otherwise we do nothing. The assumption is that
444 the index table will not be needed. */
445 }
446 }
447
448 /* Read the symbols. */
449 alloc_ext = NULL;
450 alloc_extshndx = NULL;
451 alloc_intsym = NULL;
452 bed = get_elf_backend_data (ibfd);
453 extsym_size = bed->s->sizeof_sym;
454 amt = (bfd_size_type) symcount * extsym_size;
455 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
456 if (extsym_buf == NULL)
457 {
458 alloc_ext = bfd_malloc2 (symcount, extsym_size);
459 extsym_buf = alloc_ext;
460 }
461 if (extsym_buf == NULL
462 || bfd_seek (ibfd, pos, SEEK_SET) != 0
463 || bfd_bread (extsym_buf, amt, ibfd) != amt)
464 {
465 intsym_buf = NULL;
466 goto out;
467 }
468
469 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
470 extshndx_buf = NULL;
471 else
472 {
473 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
474 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
475 if (extshndx_buf == NULL)
476 {
477 alloc_extshndx = (Elf_External_Sym_Shndx *)
478 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 alloc_intsym = (Elf_Internal_Sym *)
493 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
494 intsym_buf = alloc_intsym;
495 if (intsym_buf == NULL)
496 goto out;
497 }
498
499 /* Convert the symbols to internal form. */
500 isymend = intsym_buf + symcount;
501 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
502 shndx = extshndx_buf;
503 isym < isymend;
504 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
505 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
506 {
507 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
508 /* xgettext:c-format */
509 _bfd_error_handler (_("%pB symbol number %lu references"
510 " nonexistent SHT_SYMTAB_SHNDX section"),
511 ibfd, (unsigned long) symoffset);
512 if (alloc_intsym != NULL)
513 free (alloc_intsym);
514 intsym_buf = NULL;
515 goto out;
516 }
517
518 out:
519 if (alloc_ext != NULL)
520 free (alloc_ext);
521 if (alloc_extshndx != NULL)
522 free (alloc_extshndx);
523
524 return intsym_buf;
525 }
526
527 /* Look up a symbol name. */
528 const char *
529 bfd_elf_sym_name (bfd *abfd,
530 Elf_Internal_Shdr *symtab_hdr,
531 Elf_Internal_Sym *isym,
532 asection *sym_sec)
533 {
534 const char *name;
535 unsigned int iname = isym->st_name;
536 unsigned int shindex = symtab_hdr->sh_link;
537
538 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
539 /* Check for a bogus st_shndx to avoid crashing. */
540 && isym->st_shndx < elf_numsections (abfd))
541 {
542 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
543 shindex = elf_elfheader (abfd)->e_shstrndx;
544 }
545
546 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
547 if (name == NULL)
548 name = "(null)";
549 else if (sym_sec && *name == '\0')
550 name = bfd_section_name (abfd, sym_sec);
551
552 return name;
553 }
554
555 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
556 sections. The first element is the flags, the rest are section
557 pointers. */
558
559 typedef union elf_internal_group {
560 Elf_Internal_Shdr *shdr;
561 unsigned int flags;
562 } Elf_Internal_Group;
563
564 /* Return the name of the group signature symbol. Why isn't the
565 signature just a string? */
566
567 static const char *
568 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
569 {
570 Elf_Internal_Shdr *hdr;
571 unsigned char esym[sizeof (Elf64_External_Sym)];
572 Elf_External_Sym_Shndx eshndx;
573 Elf_Internal_Sym isym;
574
575 /* First we need to ensure the symbol table is available. Make sure
576 that it is a symbol table section. */
577 if (ghdr->sh_link >= elf_numsections (abfd))
578 return NULL;
579 hdr = elf_elfsections (abfd) [ghdr->sh_link];
580 if (hdr->sh_type != SHT_SYMTAB
581 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
582 return NULL;
583
584 /* Go read the symbol. */
585 hdr = &elf_tdata (abfd)->symtab_hdr;
586 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
587 &isym, esym, &eshndx) == NULL)
588 return NULL;
589
590 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
591 }
592
593 /* Set next_in_group list pointer, and group name for NEWSECT. */
594
595 static bfd_boolean
596 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
597 {
598 unsigned int num_group = elf_tdata (abfd)->num_group;
599
600 /* If num_group is zero, read in all SHT_GROUP sections. The count
601 is set to -1 if there are no SHT_GROUP sections. */
602 if (num_group == 0)
603 {
604 unsigned int i, shnum;
605
606 /* First count the number of groups. If we have a SHT_GROUP
607 section with just a flag word (ie. sh_size is 4), ignore it. */
608 shnum = elf_numsections (abfd);
609 num_group = 0;
610
611 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
612 ( (shdr)->sh_type == SHT_GROUP \
613 && (shdr)->sh_size >= minsize \
614 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
615 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
616
617 for (i = 0; i < shnum; i++)
618 {
619 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
620
621 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
622 num_group += 1;
623 }
624
625 if (num_group == 0)
626 {
627 num_group = (unsigned) -1;
628 elf_tdata (abfd)->num_group = num_group;
629 elf_tdata (abfd)->group_sect_ptr = NULL;
630 }
631 else
632 {
633 /* We keep a list of elf section headers for group sections,
634 so we can find them quickly. */
635 bfd_size_type amt;
636
637 elf_tdata (abfd)->num_group = num_group;
638 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
639 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
640 if (elf_tdata (abfd)->group_sect_ptr == NULL)
641 return FALSE;
642 memset (elf_tdata (abfd)->group_sect_ptr, 0,
643 num_group * sizeof (Elf_Internal_Shdr *));
644 num_group = 0;
645
646 for (i = 0; i < shnum; i++)
647 {
648 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
649
650 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
651 {
652 unsigned char *src;
653 Elf_Internal_Group *dest;
654
655 /* Make sure the group section has a BFD section
656 attached to it. */
657 if (!bfd_section_from_shdr (abfd, i))
658 return FALSE;
659
660 /* Add to list of sections. */
661 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
662 num_group += 1;
663
664 /* Read the raw contents. */
665 BFD_ASSERT (sizeof (*dest) >= 4);
666 amt = shdr->sh_size * sizeof (*dest) / 4;
667 shdr->contents = (unsigned char *)
668 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
669 /* PR binutils/4110: Handle corrupt group headers. */
670 if (shdr->contents == NULL)
671 {
672 _bfd_error_handler
673 /* xgettext:c-format */
674 (_("%pB: corrupt size field in group section"
675 " header: %#" PRIx64),
676 abfd, (uint64_t) shdr->sh_size);
677 bfd_set_error (bfd_error_bad_value);
678 -- num_group;
679 continue;
680 }
681
682 memset (shdr->contents, 0, amt);
683
684 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
685 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
686 != shdr->sh_size))
687 {
688 _bfd_error_handler
689 /* xgettext:c-format */
690 (_("%pB: invalid size field in group section"
691 " header: %#" PRIx64 ""),
692 abfd, (uint64_t) shdr->sh_size);
693 bfd_set_error (bfd_error_bad_value);
694 -- num_group;
695 /* PR 17510: If the group contents are even
696 partially corrupt, do not allow any of the
697 contents to be used. */
698 memset (shdr->contents, 0, amt);
699 continue;
700 }
701
702 /* Translate raw contents, a flag word followed by an
703 array of elf section indices all in target byte order,
704 to the flag word followed by an array of elf section
705 pointers. */
706 src = shdr->contents + shdr->sh_size;
707 dest = (Elf_Internal_Group *) (shdr->contents + amt);
708
709 while (1)
710 {
711 unsigned int idx;
712
713 src -= 4;
714 --dest;
715 idx = H_GET_32 (abfd, src);
716 if (src == shdr->contents)
717 {
718 dest->flags = idx;
719 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
720 shdr->bfd_section->flags
721 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
722 break;
723 }
724 if (idx < shnum)
725 {
726 dest->shdr = elf_elfsections (abfd)[idx];
727 /* PR binutils/23199: All sections in a
728 section group should be marked with
729 SHF_GROUP. But some tools generate
730 broken objects without SHF_GROUP. Fix
731 them up here. */
732 dest->shdr->sh_flags |= SHF_GROUP;
733 }
734 if (idx >= shnum
735 || dest->shdr->sh_type == SHT_GROUP)
736 {
737 _bfd_error_handler
738 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
739 abfd, i);
740 dest->shdr = NULL;
741 }
742 }
743 }
744 }
745
746 /* PR 17510: Corrupt binaries might contain invalid groups. */
747 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
748 {
749 elf_tdata (abfd)->num_group = num_group;
750
751 /* If all groups are invalid then fail. */
752 if (num_group == 0)
753 {
754 elf_tdata (abfd)->group_sect_ptr = NULL;
755 elf_tdata (abfd)->num_group = num_group = -1;
756 _bfd_error_handler
757 (_("%pB: no valid group sections found"), abfd);
758 bfd_set_error (bfd_error_bad_value);
759 }
760 }
761 }
762 }
763
764 if (num_group != (unsigned) -1)
765 {
766 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
767 unsigned int j;
768
769 for (j = 0; j < num_group; j++)
770 {
771 /* Begin search from previous found group. */
772 unsigned i = (j + search_offset) % num_group;
773
774 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
775 Elf_Internal_Group *idx;
776 bfd_size_type n_elt;
777
778 if (shdr == NULL)
779 continue;
780
781 idx = (Elf_Internal_Group *) shdr->contents;
782 if (idx == NULL || shdr->sh_size < 4)
783 {
784 /* See PR 21957 for a reproducer. */
785 /* xgettext:c-format */
786 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
787 abfd, shdr->bfd_section);
788 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
789 bfd_set_error (bfd_error_bad_value);
790 return FALSE;
791 }
792 n_elt = shdr->sh_size / 4;
793
794 /* Look through this group's sections to see if current
795 section is a member. */
796 while (--n_elt != 0)
797 if ((++idx)->shdr == hdr)
798 {
799 asection *s = NULL;
800
801 /* We are a member of this group. Go looking through
802 other members to see if any others are linked via
803 next_in_group. */
804 idx = (Elf_Internal_Group *) shdr->contents;
805 n_elt = shdr->sh_size / 4;
806 while (--n_elt != 0)
807 if ((++idx)->shdr != NULL
808 && (s = idx->shdr->bfd_section) != NULL
809 && elf_next_in_group (s) != NULL)
810 break;
811 if (n_elt != 0)
812 {
813 /* Snarf the group name from other member, and
814 insert current section in circular list. */
815 elf_group_name (newsect) = elf_group_name (s);
816 elf_next_in_group (newsect) = elf_next_in_group (s);
817 elf_next_in_group (s) = newsect;
818 }
819 else
820 {
821 const char *gname;
822
823 gname = group_signature (abfd, shdr);
824 if (gname == NULL)
825 return FALSE;
826 elf_group_name (newsect) = gname;
827
828 /* Start a circular list with one element. */
829 elf_next_in_group (newsect) = newsect;
830 }
831
832 /* If the group section has been created, point to the
833 new member. */
834 if (shdr->bfd_section != NULL)
835 elf_next_in_group (shdr->bfd_section) = newsect;
836
837 elf_tdata (abfd)->group_search_offset = i;
838 j = num_group - 1;
839 break;
840 }
841 }
842 }
843
844 if (elf_group_name (newsect) == NULL)
845 {
846 /* xgettext:c-format */
847 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
848 abfd, newsect);
849 return FALSE;
850 }
851 return TRUE;
852 }
853
854 bfd_boolean
855 _bfd_elf_setup_sections (bfd *abfd)
856 {
857 unsigned int i;
858 unsigned int num_group = elf_tdata (abfd)->num_group;
859 bfd_boolean result = TRUE;
860 asection *s;
861
862 /* Process SHF_LINK_ORDER. */
863 for (s = abfd->sections; s != NULL; s = s->next)
864 {
865 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
866 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
867 {
868 unsigned int elfsec = this_hdr->sh_link;
869 /* FIXME: The old Intel compiler and old strip/objcopy may
870 not set the sh_link or sh_info fields. Hence we could
871 get the situation where elfsec is 0. */
872 if (elfsec == 0)
873 {
874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
875 if (bed->link_order_error_handler)
876 bed->link_order_error_handler
877 /* xgettext:c-format */
878 (_("%pB: warning: sh_link not set for section `%pA'"),
879 abfd, s);
880 }
881 else
882 {
883 asection *linksec = NULL;
884
885 if (elfsec < elf_numsections (abfd))
886 {
887 this_hdr = elf_elfsections (abfd)[elfsec];
888 linksec = this_hdr->bfd_section;
889 }
890
891 /* PR 1991, 2008:
892 Some strip/objcopy may leave an incorrect value in
893 sh_link. We don't want to proceed. */
894 if (linksec == NULL)
895 {
896 _bfd_error_handler
897 /* xgettext:c-format */
898 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
899 s->owner, elfsec, s);
900 result = FALSE;
901 }
902
903 elf_linked_to_section (s) = linksec;
904 }
905 }
906 else if (this_hdr->sh_type == SHT_GROUP
907 && elf_next_in_group (s) == NULL)
908 {
909 _bfd_error_handler
910 /* xgettext:c-format */
911 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
912 abfd, elf_section_data (s)->this_idx);
913 result = FALSE;
914 }
915 }
916
917 /* Process section groups. */
918 if (num_group == (unsigned) -1)
919 return result;
920
921 for (i = 0; i < num_group; i++)
922 {
923 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
924 Elf_Internal_Group *idx;
925 unsigned int n_elt;
926
927 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
928 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
929 {
930 _bfd_error_handler
931 /* xgettext:c-format */
932 (_("%pB: section group entry number %u is corrupt"),
933 abfd, i);
934 result = FALSE;
935 continue;
936 }
937
938 idx = (Elf_Internal_Group *) shdr->contents;
939 n_elt = shdr->sh_size / 4;
940
941 while (--n_elt != 0)
942 {
943 ++ idx;
944
945 if (idx->shdr == NULL)
946 continue;
947 else if (idx->shdr->bfd_section)
948 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
949 else if (idx->shdr->sh_type != SHT_RELA
950 && idx->shdr->sh_type != SHT_REL)
951 {
952 /* There are some unknown sections in the group. */
953 _bfd_error_handler
954 /* xgettext:c-format */
955 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
956 abfd,
957 idx->shdr->sh_type,
958 bfd_elf_string_from_elf_section (abfd,
959 (elf_elfheader (abfd)
960 ->e_shstrndx),
961 idx->shdr->sh_name),
962 shdr->bfd_section);
963 result = FALSE;
964 }
965 }
966 }
967
968 return result;
969 }
970
971 bfd_boolean
972 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
973 {
974 return elf_next_in_group (sec) != NULL;
975 }
976
977 static char *
978 convert_debug_to_zdebug (bfd *abfd, const char *name)
979 {
980 unsigned int len = strlen (name);
981 char *new_name = bfd_alloc (abfd, len + 2);
982 if (new_name == NULL)
983 return NULL;
984 new_name[0] = '.';
985 new_name[1] = 'z';
986 memcpy (new_name + 2, name + 1, len);
987 return new_name;
988 }
989
990 static char *
991 convert_zdebug_to_debug (bfd *abfd, const char *name)
992 {
993 unsigned int len = strlen (name);
994 char *new_name = bfd_alloc (abfd, len);
995 if (new_name == NULL)
996 return NULL;
997 new_name[0] = '.';
998 memcpy (new_name + 1, name + 2, len - 1);
999 return new_name;
1000 }
1001
1002 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
1003
1004 struct lto_section
1005 {
1006 int16_t major_version;
1007 int16_t minor_version;
1008 unsigned char slim_object;
1009
1010 /* Flags is a private field that is not defined publicly. */
1011 uint16_t flags;
1012 };
1013
1014 /* Make a BFD section from an ELF section. We store a pointer to the
1015 BFD section in the bfd_section field of the header. */
1016
1017 bfd_boolean
1018 _bfd_elf_make_section_from_shdr (bfd *abfd,
1019 Elf_Internal_Shdr *hdr,
1020 const char *name,
1021 int shindex)
1022 {
1023 asection *newsect;
1024 flagword flags;
1025 const struct elf_backend_data *bed;
1026
1027 if (hdr->bfd_section != NULL)
1028 return TRUE;
1029
1030 newsect = bfd_make_section_anyway (abfd, name);
1031 if (newsect == NULL)
1032 return FALSE;
1033
1034 hdr->bfd_section = newsect;
1035 elf_section_data (newsect)->this_hdr = *hdr;
1036 elf_section_data (newsect)->this_idx = shindex;
1037
1038 /* Always use the real type/flags. */
1039 elf_section_type (newsect) = hdr->sh_type;
1040 elf_section_flags (newsect) = hdr->sh_flags;
1041
1042 newsect->filepos = hdr->sh_offset;
1043
1044 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1045 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1046 || ! bfd_set_section_alignment (abfd, newsect,
1047 bfd_log2 (hdr->sh_addralign)))
1048 return FALSE;
1049
1050 flags = SEC_NO_FLAGS;
1051 if (hdr->sh_type != SHT_NOBITS)
1052 flags |= SEC_HAS_CONTENTS;
1053 if (hdr->sh_type == SHT_GROUP)
1054 flags |= SEC_GROUP;
1055 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1056 {
1057 flags |= SEC_ALLOC;
1058 if (hdr->sh_type != SHT_NOBITS)
1059 flags |= SEC_LOAD;
1060 }
1061 if ((hdr->sh_flags & SHF_WRITE) == 0)
1062 flags |= SEC_READONLY;
1063 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1064 flags |= SEC_CODE;
1065 else if ((flags & SEC_LOAD) != 0)
1066 flags |= SEC_DATA;
1067 if ((hdr->sh_flags & SHF_MERGE) != 0)
1068 {
1069 flags |= SEC_MERGE;
1070 newsect->entsize = hdr->sh_entsize;
1071 }
1072 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1073 flags |= SEC_STRINGS;
1074 if (hdr->sh_flags & SHF_GROUP)
1075 if (!setup_group (abfd, hdr, newsect))
1076 return FALSE;
1077 if ((hdr->sh_flags & SHF_TLS) != 0)
1078 flags |= SEC_THREAD_LOCAL;
1079 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1080 flags |= SEC_EXCLUDE;
1081
1082 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1083 {
1084 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1085 but binutils as of 2019-07-23 did not set the EI_OSABI header
1086 byte. */
1087 case ELFOSABI_NONE:
1088 case ELFOSABI_GNU:
1089 case ELFOSABI_FREEBSD:
1090 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1091 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1092 break;
1093 }
1094
1095 if ((flags & SEC_ALLOC) == 0)
1096 {
1097 /* The debugging sections appear to be recognized only by name,
1098 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1099 if (name [0] == '.')
1100 {
1101 const char *p;
1102 int n;
1103 if (name[1] == 'd')
1104 p = ".debug", n = 6;
1105 else if (name[1] == 'g' && name[2] == 'n')
1106 p = ".gnu.linkonce.wi.", n = 17;
1107 else if (name[1] == 'g' && name[2] == 'd')
1108 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1109 else if (name[1] == 'l')
1110 p = ".line", n = 5;
1111 else if (name[1] == 's')
1112 p = ".stab", n = 5;
1113 else if (name[1] == 'z')
1114 p = ".zdebug", n = 7;
1115 else
1116 p = NULL, n = 0;
1117 if (p != NULL && strncmp (name, p, n) == 0)
1118 flags |= SEC_DEBUGGING;
1119 }
1120 }
1121
1122 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1123 only link a single copy of the section. This is used to support
1124 g++. g++ will emit each template expansion in its own section.
1125 The symbols will be defined as weak, so that multiple definitions
1126 are permitted. The GNU linker extension is to actually discard
1127 all but one of the sections. */
1128 if (CONST_STRNEQ (name, ".gnu.linkonce")
1129 && elf_next_in_group (newsect) == NULL)
1130 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1131
1132 bed = get_elf_backend_data (abfd);
1133 if (bed->elf_backend_section_flags)
1134 if (! bed->elf_backend_section_flags (&flags, hdr))
1135 return FALSE;
1136
1137 if (! bfd_set_section_flags (abfd, newsect, flags))
1138 return FALSE;
1139
1140 /* We do not parse the PT_NOTE segments as we are interested even in the
1141 separate debug info files which may have the segments offsets corrupted.
1142 PT_NOTEs from the core files are currently not parsed using BFD. */
1143 if (hdr->sh_type == SHT_NOTE)
1144 {
1145 bfd_byte *contents;
1146
1147 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1148 return FALSE;
1149
1150 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1151 hdr->sh_offset, hdr->sh_addralign);
1152 free (contents);
1153 }
1154
1155 if ((flags & SEC_ALLOC) != 0)
1156 {
1157 Elf_Internal_Phdr *phdr;
1158 unsigned int i, nload;
1159
1160 /* Some ELF linkers produce binaries with all the program header
1161 p_paddr fields zero. If we have such a binary with more than
1162 one PT_LOAD header, then leave the section lma equal to vma
1163 so that we don't create sections with overlapping lma. */
1164 phdr = elf_tdata (abfd)->phdr;
1165 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1166 if (phdr->p_paddr != 0)
1167 break;
1168 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1169 ++nload;
1170 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1171 return TRUE;
1172
1173 phdr = elf_tdata (abfd)->phdr;
1174 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1175 {
1176 if (((phdr->p_type == PT_LOAD
1177 && (hdr->sh_flags & SHF_TLS) == 0)
1178 || phdr->p_type == PT_TLS)
1179 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1180 {
1181 if ((flags & SEC_LOAD) == 0)
1182 newsect->lma = (phdr->p_paddr
1183 + hdr->sh_addr - phdr->p_vaddr);
1184 else
1185 /* We used to use the same adjustment for SEC_LOAD
1186 sections, but that doesn't work if the segment
1187 is packed with code from multiple VMAs.
1188 Instead we calculate the section LMA based on
1189 the segment LMA. It is assumed that the
1190 segment will contain sections with contiguous
1191 LMAs, even if the VMAs are not. */
1192 newsect->lma = (phdr->p_paddr
1193 + hdr->sh_offset - phdr->p_offset);
1194
1195 /* With contiguous segments, we can't tell from file
1196 offsets whether a section with zero size should
1197 be placed at the end of one segment or the
1198 beginning of the next. Decide based on vaddr. */
1199 if (hdr->sh_addr >= phdr->p_vaddr
1200 && (hdr->sh_addr + hdr->sh_size
1201 <= phdr->p_vaddr + phdr->p_memsz))
1202 break;
1203 }
1204 }
1205 }
1206
1207 /* Compress/decompress DWARF debug sections with names: .debug_* and
1208 .zdebug_*, after the section flags is set. */
1209 if ((flags & SEC_DEBUGGING)
1210 && ((name[1] == 'd' && name[6] == '_')
1211 || (name[1] == 'z' && name[7] == '_')))
1212 {
1213 enum { nothing, compress, decompress } action = nothing;
1214 int compression_header_size;
1215 bfd_size_type uncompressed_size;
1216 unsigned int uncompressed_align_power;
1217 bfd_boolean compressed
1218 = bfd_is_section_compressed_with_header (abfd, newsect,
1219 &compression_header_size,
1220 &uncompressed_size,
1221 &uncompressed_align_power);
1222 if (compressed)
1223 {
1224 /* Compressed section. Check if we should decompress. */
1225 if ((abfd->flags & BFD_DECOMPRESS))
1226 action = decompress;
1227 }
1228
1229 /* Compress the uncompressed section or convert from/to .zdebug*
1230 section. Check if we should compress. */
1231 if (action == nothing)
1232 {
1233 if (newsect->size != 0
1234 && (abfd->flags & BFD_COMPRESS)
1235 && compression_header_size >= 0
1236 && uncompressed_size > 0
1237 && (!compressed
1238 || ((compression_header_size > 0)
1239 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1240 action = compress;
1241 else
1242 return TRUE;
1243 }
1244
1245 if (action == compress)
1246 {
1247 if (!bfd_init_section_compress_status (abfd, newsect))
1248 {
1249 _bfd_error_handler
1250 /* xgettext:c-format */
1251 (_("%pB: unable to initialize compress status for section %s"),
1252 abfd, name);
1253 return FALSE;
1254 }
1255 }
1256 else
1257 {
1258 if (!bfd_init_section_decompress_status (abfd, newsect))
1259 {
1260 _bfd_error_handler
1261 /* xgettext:c-format */
1262 (_("%pB: unable to initialize decompress status for section %s"),
1263 abfd, name);
1264 return FALSE;
1265 }
1266 }
1267
1268 if (abfd->is_linker_input)
1269 {
1270 if (name[1] == 'z'
1271 && (action == decompress
1272 || (action == compress
1273 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1274 {
1275 /* Convert section name from .zdebug_* to .debug_* so
1276 that linker will consider this section as a debug
1277 section. */
1278 char *new_name = convert_zdebug_to_debug (abfd, name);
1279 if (new_name == NULL)
1280 return FALSE;
1281 bfd_rename_section (abfd, newsect, new_name);
1282 }
1283 }
1284 else
1285 /* For objdump, don't rename the section. For objcopy, delay
1286 section rename to elf_fake_sections. */
1287 newsect->flags |= SEC_ELF_RENAME;
1288 }
1289
1290 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1291 section. */
1292 const char *lto_section_name = ".gnu.lto_.lto.";
1293 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1294 {
1295 struct lto_section lsection;
1296 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1297 sizeof (struct lto_section)))
1298 abfd->lto_slim_object = lsection.slim_object;
1299 }
1300
1301 return TRUE;
1302 }
1303
1304 const char *const bfd_elf_section_type_names[] =
1305 {
1306 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1307 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1308 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1309 };
1310
1311 /* ELF relocs are against symbols. If we are producing relocatable
1312 output, and the reloc is against an external symbol, and nothing
1313 has given us any additional addend, the resulting reloc will also
1314 be against the same symbol. In such a case, we don't want to
1315 change anything about the way the reloc is handled, since it will
1316 all be done at final link time. Rather than put special case code
1317 into bfd_perform_relocation, all the reloc types use this howto
1318 function. It just short circuits the reloc if producing
1319 relocatable output against an external symbol. */
1320
1321 bfd_reloc_status_type
1322 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1323 arelent *reloc_entry,
1324 asymbol *symbol,
1325 void *data ATTRIBUTE_UNUSED,
1326 asection *input_section,
1327 bfd *output_bfd,
1328 char **error_message ATTRIBUTE_UNUSED)
1329 {
1330 if (output_bfd != NULL
1331 && (symbol->flags & BSF_SECTION_SYM) == 0
1332 && (! reloc_entry->howto->partial_inplace
1333 || reloc_entry->addend == 0))
1334 {
1335 reloc_entry->address += input_section->output_offset;
1336 return bfd_reloc_ok;
1337 }
1338
1339 return bfd_reloc_continue;
1340 }
1341 \f
1342 /* Returns TRUE if section A matches section B.
1343 Names, addresses and links may be different, but everything else
1344 should be the same. */
1345
1346 static bfd_boolean
1347 section_match (const Elf_Internal_Shdr * a,
1348 const Elf_Internal_Shdr * b)
1349 {
1350 if (a->sh_type != b->sh_type
1351 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1352 || a->sh_addralign != b->sh_addralign
1353 || a->sh_entsize != b->sh_entsize)
1354 return FALSE;
1355 if (a->sh_type == SHT_SYMTAB
1356 || a->sh_type == SHT_STRTAB)
1357 return TRUE;
1358 return a->sh_size == b->sh_size;
1359 }
1360
1361 /* Find a section in OBFD that has the same characteristics
1362 as IHEADER. Return the index of this section or SHN_UNDEF if
1363 none can be found. Check's section HINT first, as this is likely
1364 to be the correct section. */
1365
1366 static unsigned int
1367 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1368 const unsigned int hint)
1369 {
1370 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1371 unsigned int i;
1372
1373 BFD_ASSERT (iheader != NULL);
1374
1375 /* See PR 20922 for a reproducer of the NULL test. */
1376 if (hint < elf_numsections (obfd)
1377 && oheaders[hint] != NULL
1378 && section_match (oheaders[hint], iheader))
1379 return hint;
1380
1381 for (i = 1; i < elf_numsections (obfd); i++)
1382 {
1383 Elf_Internal_Shdr * oheader = oheaders[i];
1384
1385 if (oheader == NULL)
1386 continue;
1387 if (section_match (oheader, iheader))
1388 /* FIXME: Do we care if there is a potential for
1389 multiple matches ? */
1390 return i;
1391 }
1392
1393 return SHN_UNDEF;
1394 }
1395
1396 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1397 Processor specific section, based upon a matching input section.
1398 Returns TRUE upon success, FALSE otherwise. */
1399
1400 static bfd_boolean
1401 copy_special_section_fields (const bfd *ibfd,
1402 bfd *obfd,
1403 const Elf_Internal_Shdr *iheader,
1404 Elf_Internal_Shdr *oheader,
1405 const unsigned int secnum)
1406 {
1407 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1408 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1409 bfd_boolean changed = FALSE;
1410 unsigned int sh_link;
1411
1412 if (oheader->sh_type == SHT_NOBITS)
1413 {
1414 /* This is a feature for objcopy --only-keep-debug:
1415 When a section's type is changed to NOBITS, we preserve
1416 the sh_link and sh_info fields so that they can be
1417 matched up with the original.
1418
1419 Note: Strictly speaking these assignments are wrong.
1420 The sh_link and sh_info fields should point to the
1421 relevent sections in the output BFD, which may not be in
1422 the same location as they were in the input BFD. But
1423 the whole point of this action is to preserve the
1424 original values of the sh_link and sh_info fields, so
1425 that they can be matched up with the section headers in
1426 the original file. So strictly speaking we may be
1427 creating an invalid ELF file, but it is only for a file
1428 that just contains debug info and only for sections
1429 without any contents. */
1430 if (oheader->sh_link == 0)
1431 oheader->sh_link = iheader->sh_link;
1432 if (oheader->sh_info == 0)
1433 oheader->sh_info = iheader->sh_info;
1434 return TRUE;
1435 }
1436
1437 /* Allow the target a chance to decide how these fields should be set. */
1438 if (bed->elf_backend_copy_special_section_fields != NULL
1439 && bed->elf_backend_copy_special_section_fields
1440 (ibfd, obfd, iheader, oheader))
1441 return TRUE;
1442
1443 /* We have an iheader which might match oheader, and which has non-zero
1444 sh_info and/or sh_link fields. Attempt to follow those links and find
1445 the section in the output bfd which corresponds to the linked section
1446 in the input bfd. */
1447 if (iheader->sh_link != SHN_UNDEF)
1448 {
1449 /* See PR 20931 for a reproducer. */
1450 if (iheader->sh_link >= elf_numsections (ibfd))
1451 {
1452 _bfd_error_handler
1453 /* xgettext:c-format */
1454 (_("%pB: invalid sh_link field (%d) in section number %d"),
1455 ibfd, iheader->sh_link, secnum);
1456 return FALSE;
1457 }
1458
1459 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1460 if (sh_link != SHN_UNDEF)
1461 {
1462 oheader->sh_link = sh_link;
1463 changed = TRUE;
1464 }
1465 else
1466 /* FIXME: Should we install iheader->sh_link
1467 if we could not find a match ? */
1468 _bfd_error_handler
1469 /* xgettext:c-format */
1470 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1471 }
1472
1473 if (iheader->sh_info)
1474 {
1475 /* The sh_info field can hold arbitrary information, but if the
1476 SHF_LINK_INFO flag is set then it should be interpreted as a
1477 section index. */
1478 if (iheader->sh_flags & SHF_INFO_LINK)
1479 {
1480 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1481 iheader->sh_info);
1482 if (sh_link != SHN_UNDEF)
1483 oheader->sh_flags |= SHF_INFO_LINK;
1484 }
1485 else
1486 /* No idea what it means - just copy it. */
1487 sh_link = iheader->sh_info;
1488
1489 if (sh_link != SHN_UNDEF)
1490 {
1491 oheader->sh_info = sh_link;
1492 changed = TRUE;
1493 }
1494 else
1495 _bfd_error_handler
1496 /* xgettext:c-format */
1497 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1498 }
1499
1500 return changed;
1501 }
1502
1503 /* Copy the program header and other data from one object module to
1504 another. */
1505
1506 bfd_boolean
1507 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1508 {
1509 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1510 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1511 const struct elf_backend_data *bed;
1512 unsigned int i;
1513
1514 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1515 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1516 return TRUE;
1517
1518 if (!elf_flags_init (obfd))
1519 {
1520 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1521 elf_flags_init (obfd) = TRUE;
1522 }
1523
1524 elf_gp (obfd) = elf_gp (ibfd);
1525
1526 /* Also copy the EI_OSABI field. */
1527 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1528 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1529
1530 /* If set, copy the EI_ABIVERSION field. */
1531 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1532 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1533 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1534
1535 /* Copy object attributes. */
1536 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1537
1538 if (iheaders == NULL || oheaders == NULL)
1539 return TRUE;
1540
1541 bed = get_elf_backend_data (obfd);
1542
1543 /* Possibly copy other fields in the section header. */
1544 for (i = 1; i < elf_numsections (obfd); i++)
1545 {
1546 unsigned int j;
1547 Elf_Internal_Shdr * oheader = oheaders[i];
1548
1549 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1550 because of a special case need for generating separate debug info
1551 files. See below for more details. */
1552 if (oheader == NULL
1553 || (oheader->sh_type != SHT_NOBITS
1554 && oheader->sh_type < SHT_LOOS))
1555 continue;
1556
1557 /* Ignore empty sections, and sections whose
1558 fields have already been initialised. */
1559 if (oheader->sh_size == 0
1560 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1561 continue;
1562
1563 /* Scan for the matching section in the input bfd.
1564 First we try for a direct mapping between the input and output sections. */
1565 for (j = 1; j < elf_numsections (ibfd); j++)
1566 {
1567 const Elf_Internal_Shdr * iheader = iheaders[j];
1568
1569 if (iheader == NULL)
1570 continue;
1571
1572 if (oheader->bfd_section != NULL
1573 && iheader->bfd_section != NULL
1574 && iheader->bfd_section->output_section != NULL
1575 && iheader->bfd_section->output_section == oheader->bfd_section)
1576 {
1577 /* We have found a connection from the input section to the
1578 output section. Attempt to copy the header fields. If
1579 this fails then do not try any further sections - there
1580 should only be a one-to-one mapping between input and output. */
1581 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1582 j = elf_numsections (ibfd);
1583 break;
1584 }
1585 }
1586
1587 if (j < elf_numsections (ibfd))
1588 continue;
1589
1590 /* That failed. So try to deduce the corresponding input section.
1591 Unfortunately we cannot compare names as the output string table
1592 is empty, so instead we check size, address and type. */
1593 for (j = 1; j < elf_numsections (ibfd); j++)
1594 {
1595 const Elf_Internal_Shdr * iheader = iheaders[j];
1596
1597 if (iheader == NULL)
1598 continue;
1599
1600 /* Try matching fields in the input section's header.
1601 Since --only-keep-debug turns all non-debug sections into
1602 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1603 input type. */
1604 if ((oheader->sh_type == SHT_NOBITS
1605 || iheader->sh_type == oheader->sh_type)
1606 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1607 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1608 && iheader->sh_addralign == oheader->sh_addralign
1609 && iheader->sh_entsize == oheader->sh_entsize
1610 && iheader->sh_size == oheader->sh_size
1611 && iheader->sh_addr == oheader->sh_addr
1612 && (iheader->sh_info != oheader->sh_info
1613 || iheader->sh_link != oheader->sh_link))
1614 {
1615 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1616 break;
1617 }
1618 }
1619
1620 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1621 {
1622 /* Final attempt. Call the backend copy function
1623 with a NULL input section. */
1624 if (bed->elf_backend_copy_special_section_fields != NULL)
1625 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1626 }
1627 }
1628
1629 return TRUE;
1630 }
1631
1632 static const char *
1633 get_segment_type (unsigned int p_type)
1634 {
1635 const char *pt;
1636 switch (p_type)
1637 {
1638 case PT_NULL: pt = "NULL"; break;
1639 case PT_LOAD: pt = "LOAD"; break;
1640 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1641 case PT_INTERP: pt = "INTERP"; break;
1642 case PT_NOTE: pt = "NOTE"; break;
1643 case PT_SHLIB: pt = "SHLIB"; break;
1644 case PT_PHDR: pt = "PHDR"; break;
1645 case PT_TLS: pt = "TLS"; break;
1646 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1647 case PT_GNU_STACK: pt = "STACK"; break;
1648 case PT_GNU_RELRO: pt = "RELRO"; break;
1649 default: pt = NULL; break;
1650 }
1651 return pt;
1652 }
1653
1654 /* Print out the program headers. */
1655
1656 bfd_boolean
1657 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1658 {
1659 FILE *f = (FILE *) farg;
1660 Elf_Internal_Phdr *p;
1661 asection *s;
1662 bfd_byte *dynbuf = NULL;
1663
1664 p = elf_tdata (abfd)->phdr;
1665 if (p != NULL)
1666 {
1667 unsigned int i, c;
1668
1669 fprintf (f, _("\nProgram Header:\n"));
1670 c = elf_elfheader (abfd)->e_phnum;
1671 for (i = 0; i < c; i++, p++)
1672 {
1673 const char *pt = get_segment_type (p->p_type);
1674 char buf[20];
1675
1676 if (pt == NULL)
1677 {
1678 sprintf (buf, "0x%lx", p->p_type);
1679 pt = buf;
1680 }
1681 fprintf (f, "%8s off 0x", pt);
1682 bfd_fprintf_vma (abfd, f, p->p_offset);
1683 fprintf (f, " vaddr 0x");
1684 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1685 fprintf (f, " paddr 0x");
1686 bfd_fprintf_vma (abfd, f, p->p_paddr);
1687 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1688 fprintf (f, " filesz 0x");
1689 bfd_fprintf_vma (abfd, f, p->p_filesz);
1690 fprintf (f, " memsz 0x");
1691 bfd_fprintf_vma (abfd, f, p->p_memsz);
1692 fprintf (f, " flags %c%c%c",
1693 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1694 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1695 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1696 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1697 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1698 fprintf (f, "\n");
1699 }
1700 }
1701
1702 s = bfd_get_section_by_name (abfd, ".dynamic");
1703 if (s != NULL)
1704 {
1705 unsigned int elfsec;
1706 unsigned long shlink;
1707 bfd_byte *extdyn, *extdynend;
1708 size_t extdynsize;
1709 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1710
1711 fprintf (f, _("\nDynamic Section:\n"));
1712
1713 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1714 goto error_return;
1715
1716 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1717 if (elfsec == SHN_BAD)
1718 goto error_return;
1719 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1720
1721 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1722 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1723
1724 extdyn = dynbuf;
1725 /* PR 17512: file: 6f427532. */
1726 if (s->size < extdynsize)
1727 goto error_return;
1728 extdynend = extdyn + s->size;
1729 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1730 Fix range check. */
1731 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1732 {
1733 Elf_Internal_Dyn dyn;
1734 const char *name = "";
1735 char ab[20];
1736 bfd_boolean stringp;
1737 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1738
1739 (*swap_dyn_in) (abfd, extdyn, &dyn);
1740
1741 if (dyn.d_tag == DT_NULL)
1742 break;
1743
1744 stringp = FALSE;
1745 switch (dyn.d_tag)
1746 {
1747 default:
1748 if (bed->elf_backend_get_target_dtag)
1749 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1750
1751 if (!strcmp (name, ""))
1752 {
1753 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1754 name = ab;
1755 }
1756 break;
1757
1758 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1759 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1760 case DT_PLTGOT: name = "PLTGOT"; break;
1761 case DT_HASH: name = "HASH"; break;
1762 case DT_STRTAB: name = "STRTAB"; break;
1763 case DT_SYMTAB: name = "SYMTAB"; break;
1764 case DT_RELA: name = "RELA"; break;
1765 case DT_RELASZ: name = "RELASZ"; break;
1766 case DT_RELAENT: name = "RELAENT"; break;
1767 case DT_STRSZ: name = "STRSZ"; break;
1768 case DT_SYMENT: name = "SYMENT"; break;
1769 case DT_INIT: name = "INIT"; break;
1770 case DT_FINI: name = "FINI"; break;
1771 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1772 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1773 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1774 case DT_REL: name = "REL"; break;
1775 case DT_RELSZ: name = "RELSZ"; break;
1776 case DT_RELENT: name = "RELENT"; break;
1777 case DT_PLTREL: name = "PLTREL"; break;
1778 case DT_DEBUG: name = "DEBUG"; break;
1779 case DT_TEXTREL: name = "TEXTREL"; break;
1780 case DT_JMPREL: name = "JMPREL"; break;
1781 case DT_BIND_NOW: name = "BIND_NOW"; break;
1782 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1783 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1784 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1785 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1786 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1787 case DT_FLAGS: name = "FLAGS"; break;
1788 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1789 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1790 case DT_CHECKSUM: name = "CHECKSUM"; break;
1791 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1792 case DT_MOVEENT: name = "MOVEENT"; break;
1793 case DT_MOVESZ: name = "MOVESZ"; break;
1794 case DT_FEATURE: name = "FEATURE"; break;
1795 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1796 case DT_SYMINSZ: name = "SYMINSZ"; break;
1797 case DT_SYMINENT: name = "SYMINENT"; break;
1798 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1799 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1800 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1801 case DT_PLTPAD: name = "PLTPAD"; break;
1802 case DT_MOVETAB: name = "MOVETAB"; break;
1803 case DT_SYMINFO: name = "SYMINFO"; break;
1804 case DT_RELACOUNT: name = "RELACOUNT"; break;
1805 case DT_RELCOUNT: name = "RELCOUNT"; break;
1806 case DT_FLAGS_1: name = "FLAGS_1"; break;
1807 case DT_VERSYM: name = "VERSYM"; break;
1808 case DT_VERDEF: name = "VERDEF"; break;
1809 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1810 case DT_VERNEED: name = "VERNEED"; break;
1811 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1812 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1813 case DT_USED: name = "USED"; break;
1814 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1815 case DT_GNU_HASH: name = "GNU_HASH"; break;
1816 }
1817
1818 fprintf (f, " %-20s ", name);
1819 if (! stringp)
1820 {
1821 fprintf (f, "0x");
1822 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1823 }
1824 else
1825 {
1826 const char *string;
1827 unsigned int tagv = dyn.d_un.d_val;
1828
1829 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1830 if (string == NULL)
1831 goto error_return;
1832 fprintf (f, "%s", string);
1833 }
1834 fprintf (f, "\n");
1835 }
1836
1837 free (dynbuf);
1838 dynbuf = NULL;
1839 }
1840
1841 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1842 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1843 {
1844 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1845 return FALSE;
1846 }
1847
1848 if (elf_dynverdef (abfd) != 0)
1849 {
1850 Elf_Internal_Verdef *t;
1851
1852 fprintf (f, _("\nVersion definitions:\n"));
1853 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1854 {
1855 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1856 t->vd_flags, t->vd_hash,
1857 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1858 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1859 {
1860 Elf_Internal_Verdaux *a;
1861
1862 fprintf (f, "\t");
1863 for (a = t->vd_auxptr->vda_nextptr;
1864 a != NULL;
1865 a = a->vda_nextptr)
1866 fprintf (f, "%s ",
1867 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1868 fprintf (f, "\n");
1869 }
1870 }
1871 }
1872
1873 if (elf_dynverref (abfd) != 0)
1874 {
1875 Elf_Internal_Verneed *t;
1876
1877 fprintf (f, _("\nVersion References:\n"));
1878 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1879 {
1880 Elf_Internal_Vernaux *a;
1881
1882 fprintf (f, _(" required from %s:\n"),
1883 t->vn_filename ? t->vn_filename : "<corrupt>");
1884 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1885 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1886 a->vna_flags, a->vna_other,
1887 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1888 }
1889 }
1890
1891 return TRUE;
1892
1893 error_return:
1894 if (dynbuf != NULL)
1895 free (dynbuf);
1896 return FALSE;
1897 }
1898
1899 /* Get version string. */
1900
1901 const char *
1902 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1903 bfd_boolean *hidden)
1904 {
1905 const char *version_string = NULL;
1906 if (elf_dynversym (abfd) != 0
1907 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1908 {
1909 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1910
1911 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1912 vernum &= VERSYM_VERSION;
1913
1914 if (vernum == 0)
1915 version_string = "";
1916 else if (vernum == 1
1917 && (vernum > elf_tdata (abfd)->cverdefs
1918 || (elf_tdata (abfd)->verdef[0].vd_flags
1919 == VER_FLG_BASE)))
1920 version_string = "Base";
1921 else if (vernum <= elf_tdata (abfd)->cverdefs)
1922 version_string =
1923 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1924 else
1925 {
1926 Elf_Internal_Verneed *t;
1927
1928 version_string = _("<corrupt>");
1929 for (t = elf_tdata (abfd)->verref;
1930 t != NULL;
1931 t = t->vn_nextref)
1932 {
1933 Elf_Internal_Vernaux *a;
1934
1935 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1936 {
1937 if (a->vna_other == vernum)
1938 {
1939 version_string = a->vna_nodename;
1940 break;
1941 }
1942 }
1943 }
1944 }
1945 }
1946 return version_string;
1947 }
1948
1949 /* Display ELF-specific fields of a symbol. */
1950
1951 void
1952 bfd_elf_print_symbol (bfd *abfd,
1953 void *filep,
1954 asymbol *symbol,
1955 bfd_print_symbol_type how)
1956 {
1957 FILE *file = (FILE *) filep;
1958 switch (how)
1959 {
1960 case bfd_print_symbol_name:
1961 fprintf (file, "%s", symbol->name);
1962 break;
1963 case bfd_print_symbol_more:
1964 fprintf (file, "elf ");
1965 bfd_fprintf_vma (abfd, file, symbol->value);
1966 fprintf (file, " %x", symbol->flags);
1967 break;
1968 case bfd_print_symbol_all:
1969 {
1970 const char *section_name;
1971 const char *name = NULL;
1972 const struct elf_backend_data *bed;
1973 unsigned char st_other;
1974 bfd_vma val;
1975 const char *version_string;
1976 bfd_boolean hidden;
1977
1978 section_name = symbol->section ? symbol->section->name : "(*none*)";
1979
1980 bed = get_elf_backend_data (abfd);
1981 if (bed->elf_backend_print_symbol_all)
1982 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1983
1984 if (name == NULL)
1985 {
1986 name = symbol->name;
1987 bfd_print_symbol_vandf (abfd, file, symbol);
1988 }
1989
1990 fprintf (file, " %s\t", section_name);
1991 /* Print the "other" value for a symbol. For common symbols,
1992 we've already printed the size; now print the alignment.
1993 For other symbols, we have no specified alignment, and
1994 we've printed the address; now print the size. */
1995 if (symbol->section && bfd_is_com_section (symbol->section))
1996 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1997 else
1998 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1999 bfd_fprintf_vma (abfd, file, val);
2000
2001 /* If we have version information, print it. */
2002 version_string = _bfd_elf_get_symbol_version_string (abfd,
2003 symbol,
2004 &hidden);
2005 if (version_string)
2006 {
2007 if (!hidden)
2008 fprintf (file, " %-11s", version_string);
2009 else
2010 {
2011 int i;
2012
2013 fprintf (file, " (%s)", version_string);
2014 for (i = 10 - strlen (version_string); i > 0; --i)
2015 putc (' ', file);
2016 }
2017 }
2018
2019 /* If the st_other field is not zero, print it. */
2020 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2021
2022 switch (st_other)
2023 {
2024 case 0: break;
2025 case STV_INTERNAL: fprintf (file, " .internal"); break;
2026 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2027 case STV_PROTECTED: fprintf (file, " .protected"); break;
2028 default:
2029 /* Some other non-defined flags are also present, so print
2030 everything hex. */
2031 fprintf (file, " 0x%02x", (unsigned int) st_other);
2032 }
2033
2034 fprintf (file, " %s", name);
2035 }
2036 break;
2037 }
2038 }
2039 \f
2040 /* ELF .o/exec file reading */
2041
2042 /* Create a new bfd section from an ELF section header. */
2043
2044 bfd_boolean
2045 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2046 {
2047 Elf_Internal_Shdr *hdr;
2048 Elf_Internal_Ehdr *ehdr;
2049 const struct elf_backend_data *bed;
2050 const char *name;
2051 bfd_boolean ret = TRUE;
2052 static bfd_boolean * sections_being_created = NULL;
2053 static bfd * sections_being_created_abfd = NULL;
2054 static unsigned int nesting = 0;
2055
2056 if (shindex >= elf_numsections (abfd))
2057 return FALSE;
2058
2059 if (++ nesting > 3)
2060 {
2061 /* PR17512: A corrupt ELF binary might contain a recursive group of
2062 sections, with each the string indices pointing to the next in the
2063 loop. Detect this here, by refusing to load a section that we are
2064 already in the process of loading. We only trigger this test if
2065 we have nested at least three sections deep as normal ELF binaries
2066 can expect to recurse at least once.
2067
2068 FIXME: It would be better if this array was attached to the bfd,
2069 rather than being held in a static pointer. */
2070
2071 if (sections_being_created_abfd != abfd)
2072 sections_being_created = NULL;
2073 if (sections_being_created == NULL)
2074 {
2075 sections_being_created = (bfd_boolean *)
2076 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2077 sections_being_created_abfd = abfd;
2078 }
2079 if (sections_being_created [shindex])
2080 {
2081 _bfd_error_handler
2082 (_("%pB: warning: loop in section dependencies detected"), abfd);
2083 return FALSE;
2084 }
2085 sections_being_created [shindex] = TRUE;
2086 }
2087
2088 hdr = elf_elfsections (abfd)[shindex];
2089 ehdr = elf_elfheader (abfd);
2090 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2091 hdr->sh_name);
2092 if (name == NULL)
2093 goto fail;
2094
2095 bed = get_elf_backend_data (abfd);
2096 switch (hdr->sh_type)
2097 {
2098 case SHT_NULL:
2099 /* Inactive section. Throw it away. */
2100 goto success;
2101
2102 case SHT_PROGBITS: /* Normal section with contents. */
2103 case SHT_NOBITS: /* .bss section. */
2104 case SHT_HASH: /* .hash section. */
2105 case SHT_NOTE: /* .note section. */
2106 case SHT_INIT_ARRAY: /* .init_array section. */
2107 case SHT_FINI_ARRAY: /* .fini_array section. */
2108 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2109 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2110 case SHT_GNU_HASH: /* .gnu.hash section. */
2111 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2112 goto success;
2113
2114 case SHT_DYNAMIC: /* Dynamic linking information. */
2115 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2116 goto fail;
2117
2118 if (hdr->sh_link > elf_numsections (abfd))
2119 {
2120 /* PR 10478: Accept Solaris binaries with a sh_link
2121 field set to SHN_BEFORE or SHN_AFTER. */
2122 switch (bfd_get_arch (abfd))
2123 {
2124 case bfd_arch_i386:
2125 case bfd_arch_sparc:
2126 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2127 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2128 break;
2129 /* Otherwise fall through. */
2130 default:
2131 goto fail;
2132 }
2133 }
2134 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2135 goto fail;
2136 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2137 {
2138 Elf_Internal_Shdr *dynsymhdr;
2139
2140 /* The shared libraries distributed with hpux11 have a bogus
2141 sh_link field for the ".dynamic" section. Find the
2142 string table for the ".dynsym" section instead. */
2143 if (elf_dynsymtab (abfd) != 0)
2144 {
2145 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2146 hdr->sh_link = dynsymhdr->sh_link;
2147 }
2148 else
2149 {
2150 unsigned int i, num_sec;
2151
2152 num_sec = elf_numsections (abfd);
2153 for (i = 1; i < num_sec; i++)
2154 {
2155 dynsymhdr = elf_elfsections (abfd)[i];
2156 if (dynsymhdr->sh_type == SHT_DYNSYM)
2157 {
2158 hdr->sh_link = dynsymhdr->sh_link;
2159 break;
2160 }
2161 }
2162 }
2163 }
2164 goto success;
2165
2166 case SHT_SYMTAB: /* A symbol table. */
2167 if (elf_onesymtab (abfd) == shindex)
2168 goto success;
2169
2170 if (hdr->sh_entsize != bed->s->sizeof_sym)
2171 goto fail;
2172
2173 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2174 {
2175 if (hdr->sh_size != 0)
2176 goto fail;
2177 /* Some assemblers erroneously set sh_info to one with a
2178 zero sh_size. ld sees this as a global symbol count
2179 of (unsigned) -1. Fix it here. */
2180 hdr->sh_info = 0;
2181 goto success;
2182 }
2183
2184 /* PR 18854: A binary might contain more than one symbol table.
2185 Unusual, but possible. Warn, but continue. */
2186 if (elf_onesymtab (abfd) != 0)
2187 {
2188 _bfd_error_handler
2189 /* xgettext:c-format */
2190 (_("%pB: warning: multiple symbol tables detected"
2191 " - ignoring the table in section %u"),
2192 abfd, shindex);
2193 goto success;
2194 }
2195 elf_onesymtab (abfd) = shindex;
2196 elf_symtab_hdr (abfd) = *hdr;
2197 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2198 abfd->flags |= HAS_SYMS;
2199
2200 /* Sometimes a shared object will map in the symbol table. If
2201 SHF_ALLOC is set, and this is a shared object, then we also
2202 treat this section as a BFD section. We can not base the
2203 decision purely on SHF_ALLOC, because that flag is sometimes
2204 set in a relocatable object file, which would confuse the
2205 linker. */
2206 if ((hdr->sh_flags & SHF_ALLOC) != 0
2207 && (abfd->flags & DYNAMIC) != 0
2208 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2209 shindex))
2210 goto fail;
2211
2212 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2213 can't read symbols without that section loaded as well. It
2214 is most likely specified by the next section header. */
2215 {
2216 elf_section_list * entry;
2217 unsigned int i, num_sec;
2218
2219 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2220 if (entry->hdr.sh_link == shindex)
2221 goto success;
2222
2223 num_sec = elf_numsections (abfd);
2224 for (i = shindex + 1; i < num_sec; i++)
2225 {
2226 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2227
2228 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2229 && hdr2->sh_link == shindex)
2230 break;
2231 }
2232
2233 if (i == num_sec)
2234 for (i = 1; i < shindex; i++)
2235 {
2236 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2237
2238 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2239 && hdr2->sh_link == shindex)
2240 break;
2241 }
2242
2243 if (i != shindex)
2244 ret = bfd_section_from_shdr (abfd, i);
2245 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2246 goto success;
2247 }
2248
2249 case SHT_DYNSYM: /* A dynamic symbol table. */
2250 if (elf_dynsymtab (abfd) == shindex)
2251 goto success;
2252
2253 if (hdr->sh_entsize != bed->s->sizeof_sym)
2254 goto fail;
2255
2256 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2257 {
2258 if (hdr->sh_size != 0)
2259 goto fail;
2260
2261 /* Some linkers erroneously set sh_info to one with a
2262 zero sh_size. ld sees this as a global symbol count
2263 of (unsigned) -1. Fix it here. */
2264 hdr->sh_info = 0;
2265 goto success;
2266 }
2267
2268 /* PR 18854: A binary might contain more than one dynamic symbol table.
2269 Unusual, but possible. Warn, but continue. */
2270 if (elf_dynsymtab (abfd) != 0)
2271 {
2272 _bfd_error_handler
2273 /* xgettext:c-format */
2274 (_("%pB: warning: multiple dynamic symbol tables detected"
2275 " - ignoring the table in section %u"),
2276 abfd, shindex);
2277 goto success;
2278 }
2279 elf_dynsymtab (abfd) = shindex;
2280 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2281 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2282 abfd->flags |= HAS_SYMS;
2283
2284 /* Besides being a symbol table, we also treat this as a regular
2285 section, so that objcopy can handle it. */
2286 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2287 goto success;
2288
2289 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2290 {
2291 elf_section_list * entry;
2292
2293 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2294 if (entry->ndx == shindex)
2295 goto success;
2296
2297 entry = bfd_alloc (abfd, sizeof (*entry));
2298 if (entry == NULL)
2299 goto fail;
2300 entry->ndx = shindex;
2301 entry->hdr = * hdr;
2302 entry->next = elf_symtab_shndx_list (abfd);
2303 elf_symtab_shndx_list (abfd) = entry;
2304 elf_elfsections (abfd)[shindex] = & entry->hdr;
2305 goto success;
2306 }
2307
2308 case SHT_STRTAB: /* A string table. */
2309 if (hdr->bfd_section != NULL)
2310 goto success;
2311
2312 if (ehdr->e_shstrndx == shindex)
2313 {
2314 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2315 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2316 goto success;
2317 }
2318
2319 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2320 {
2321 symtab_strtab:
2322 elf_tdata (abfd)->strtab_hdr = *hdr;
2323 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2324 goto success;
2325 }
2326
2327 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2328 {
2329 dynsymtab_strtab:
2330 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2331 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2332 elf_elfsections (abfd)[shindex] = hdr;
2333 /* We also treat this as a regular section, so that objcopy
2334 can handle it. */
2335 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2336 shindex);
2337 goto success;
2338 }
2339
2340 /* If the string table isn't one of the above, then treat it as a
2341 regular section. We need to scan all the headers to be sure,
2342 just in case this strtab section appeared before the above. */
2343 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2344 {
2345 unsigned int i, num_sec;
2346
2347 num_sec = elf_numsections (abfd);
2348 for (i = 1; i < num_sec; i++)
2349 {
2350 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2351 if (hdr2->sh_link == shindex)
2352 {
2353 /* Prevent endless recursion on broken objects. */
2354 if (i == shindex)
2355 goto fail;
2356 if (! bfd_section_from_shdr (abfd, i))
2357 goto fail;
2358 if (elf_onesymtab (abfd) == i)
2359 goto symtab_strtab;
2360 if (elf_dynsymtab (abfd) == i)
2361 goto dynsymtab_strtab;
2362 }
2363 }
2364 }
2365 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2366 goto success;
2367
2368 case SHT_REL:
2369 case SHT_RELA:
2370 /* *These* do a lot of work -- but build no sections! */
2371 {
2372 asection *target_sect;
2373 Elf_Internal_Shdr *hdr2, **p_hdr;
2374 unsigned int num_sec = elf_numsections (abfd);
2375 struct bfd_elf_section_data *esdt;
2376
2377 if (hdr->sh_entsize
2378 != (bfd_size_type) (hdr->sh_type == SHT_REL
2379 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2380 goto fail;
2381
2382 /* Check for a bogus link to avoid crashing. */
2383 if (hdr->sh_link >= num_sec)
2384 {
2385 _bfd_error_handler
2386 /* xgettext:c-format */
2387 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2388 abfd, hdr->sh_link, name, shindex);
2389 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2390 shindex);
2391 goto success;
2392 }
2393
2394 /* For some incomprehensible reason Oracle distributes
2395 libraries for Solaris in which some of the objects have
2396 bogus sh_link fields. It would be nice if we could just
2397 reject them, but, unfortunately, some people need to use
2398 them. We scan through the section headers; if we find only
2399 one suitable symbol table, we clobber the sh_link to point
2400 to it. I hope this doesn't break anything.
2401
2402 Don't do it on executable nor shared library. */
2403 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2404 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2405 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2406 {
2407 unsigned int scan;
2408 int found;
2409
2410 found = 0;
2411 for (scan = 1; scan < num_sec; scan++)
2412 {
2413 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2414 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2415 {
2416 if (found != 0)
2417 {
2418 found = 0;
2419 break;
2420 }
2421 found = scan;
2422 }
2423 }
2424 if (found != 0)
2425 hdr->sh_link = found;
2426 }
2427
2428 /* Get the symbol table. */
2429 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2430 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2431 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2432 goto fail;
2433
2434 /* If this is an alloc section in an executable or shared
2435 library, or the reloc section does not use the main symbol
2436 table we don't treat it as a reloc section. BFD can't
2437 adequately represent such a section, so at least for now,
2438 we don't try. We just present it as a normal section. We
2439 also can't use it as a reloc section if it points to the
2440 null section, an invalid section, another reloc section, or
2441 its sh_link points to the null section. */
2442 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2443 && (hdr->sh_flags & SHF_ALLOC) != 0)
2444 || hdr->sh_link == SHN_UNDEF
2445 || hdr->sh_link != elf_onesymtab (abfd)
2446 || hdr->sh_info == SHN_UNDEF
2447 || hdr->sh_info >= num_sec
2448 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2449 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2450 {
2451 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2452 shindex);
2453 goto success;
2454 }
2455
2456 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2457 goto fail;
2458
2459 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2460 if (target_sect == NULL)
2461 goto fail;
2462
2463 esdt = elf_section_data (target_sect);
2464 if (hdr->sh_type == SHT_RELA)
2465 p_hdr = &esdt->rela.hdr;
2466 else
2467 p_hdr = &esdt->rel.hdr;
2468
2469 /* PR 17512: file: 0b4f81b7.
2470 Also see PR 24456, for a file which deliberately has two reloc
2471 sections. */
2472 if (*p_hdr != NULL)
2473 {
2474 _bfd_error_handler
2475 /* xgettext:c-format */
2476 (_("%pB: warning: multiple relocation sections for section %pA \
2477 found - ignoring all but the first"),
2478 abfd, target_sect);
2479 goto success;
2480 }
2481 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2482 if (hdr2 == NULL)
2483 goto fail;
2484 *hdr2 = *hdr;
2485 *p_hdr = hdr2;
2486 elf_elfsections (abfd)[shindex] = hdr2;
2487 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2488 * bed->s->int_rels_per_ext_rel);
2489 target_sect->flags |= SEC_RELOC;
2490 target_sect->relocation = NULL;
2491 target_sect->rel_filepos = hdr->sh_offset;
2492 /* In the section to which the relocations apply, mark whether
2493 its relocations are of the REL or RELA variety. */
2494 if (hdr->sh_size != 0)
2495 {
2496 if (hdr->sh_type == SHT_RELA)
2497 target_sect->use_rela_p = 1;
2498 }
2499 abfd->flags |= HAS_RELOC;
2500 goto success;
2501 }
2502
2503 case SHT_GNU_verdef:
2504 elf_dynverdef (abfd) = shindex;
2505 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2506 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2507 goto success;
2508
2509 case SHT_GNU_versym:
2510 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2511 goto fail;
2512
2513 elf_dynversym (abfd) = shindex;
2514 elf_tdata (abfd)->dynversym_hdr = *hdr;
2515 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2516 goto success;
2517
2518 case SHT_GNU_verneed:
2519 elf_dynverref (abfd) = shindex;
2520 elf_tdata (abfd)->dynverref_hdr = *hdr;
2521 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2522 goto success;
2523
2524 case SHT_SHLIB:
2525 goto success;
2526
2527 case SHT_GROUP:
2528 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2529 goto fail;
2530
2531 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2532 goto fail;
2533
2534 goto success;
2535
2536 default:
2537 /* Possibly an attributes section. */
2538 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2539 || hdr->sh_type == bed->obj_attrs_section_type)
2540 {
2541 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2542 goto fail;
2543 _bfd_elf_parse_attributes (abfd, hdr);
2544 goto success;
2545 }
2546
2547 /* Check for any processor-specific section types. */
2548 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2549 goto success;
2550
2551 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2552 {
2553 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2554 /* FIXME: How to properly handle allocated section reserved
2555 for applications? */
2556 _bfd_error_handler
2557 /* xgettext:c-format */
2558 (_("%pB: unknown type [%#x] section `%s'"),
2559 abfd, hdr->sh_type, name);
2560 else
2561 {
2562 /* Allow sections reserved for applications. */
2563 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2564 shindex);
2565 goto success;
2566 }
2567 }
2568 else if (hdr->sh_type >= SHT_LOPROC
2569 && hdr->sh_type <= SHT_HIPROC)
2570 /* FIXME: We should handle this section. */
2571 _bfd_error_handler
2572 /* xgettext:c-format */
2573 (_("%pB: unknown type [%#x] section `%s'"),
2574 abfd, hdr->sh_type, name);
2575 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2576 {
2577 /* Unrecognised OS-specific sections. */
2578 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2579 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2580 required to correctly process the section and the file should
2581 be rejected with an error message. */
2582 _bfd_error_handler
2583 /* xgettext:c-format */
2584 (_("%pB: unknown type [%#x] section `%s'"),
2585 abfd, hdr->sh_type, name);
2586 else
2587 {
2588 /* Otherwise it should be processed. */
2589 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2590 goto success;
2591 }
2592 }
2593 else
2594 /* FIXME: We should handle this section. */
2595 _bfd_error_handler
2596 /* xgettext:c-format */
2597 (_("%pB: unknown type [%#x] section `%s'"),
2598 abfd, hdr->sh_type, name);
2599
2600 goto fail;
2601 }
2602
2603 fail:
2604 ret = FALSE;
2605 success:
2606 if (sections_being_created && sections_being_created_abfd == abfd)
2607 sections_being_created [shindex] = FALSE;
2608 if (-- nesting == 0)
2609 {
2610 sections_being_created = NULL;
2611 sections_being_created_abfd = abfd;
2612 }
2613 return ret;
2614 }
2615
2616 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2617
2618 Elf_Internal_Sym *
2619 bfd_sym_from_r_symndx (struct sym_cache *cache,
2620 bfd *abfd,
2621 unsigned long r_symndx)
2622 {
2623 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2624
2625 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2626 {
2627 Elf_Internal_Shdr *symtab_hdr;
2628 unsigned char esym[sizeof (Elf64_External_Sym)];
2629 Elf_External_Sym_Shndx eshndx;
2630
2631 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2632 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2633 &cache->sym[ent], esym, &eshndx) == NULL)
2634 return NULL;
2635
2636 if (cache->abfd != abfd)
2637 {
2638 memset (cache->indx, -1, sizeof (cache->indx));
2639 cache->abfd = abfd;
2640 }
2641 cache->indx[ent] = r_symndx;
2642 }
2643
2644 return &cache->sym[ent];
2645 }
2646
2647 /* Given an ELF section number, retrieve the corresponding BFD
2648 section. */
2649
2650 asection *
2651 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2652 {
2653 if (sec_index >= elf_numsections (abfd))
2654 return NULL;
2655 return elf_elfsections (abfd)[sec_index]->bfd_section;
2656 }
2657
2658 static const struct bfd_elf_special_section special_sections_b[] =
2659 {
2660 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2661 { NULL, 0, 0, 0, 0 }
2662 };
2663
2664 static const struct bfd_elf_special_section special_sections_c[] =
2665 {
2666 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2667 { NULL, 0, 0, 0, 0 }
2668 };
2669
2670 static const struct bfd_elf_special_section special_sections_d[] =
2671 {
2672 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2673 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2674 /* There are more DWARF sections than these, but they needn't be added here
2675 unless you have to cope with broken compilers that don't emit section
2676 attributes or you want to help the user writing assembler. */
2677 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2678 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2679 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2680 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2681 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2682 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2683 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2684 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2685 { NULL, 0, 0, 0, 0 }
2686 };
2687
2688 static const struct bfd_elf_special_section special_sections_f[] =
2689 {
2690 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2691 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2692 { NULL, 0 , 0, 0, 0 }
2693 };
2694
2695 static const struct bfd_elf_special_section special_sections_g[] =
2696 {
2697 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2698 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2699 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2700 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2701 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2702 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2703 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2704 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2705 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2706 { NULL, 0, 0, 0, 0 }
2707 };
2708
2709 static const struct bfd_elf_special_section special_sections_h[] =
2710 {
2711 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2712 { NULL, 0, 0, 0, 0 }
2713 };
2714
2715 static const struct bfd_elf_special_section special_sections_i[] =
2716 {
2717 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2718 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2719 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2720 { NULL, 0, 0, 0, 0 }
2721 };
2722
2723 static const struct bfd_elf_special_section special_sections_l[] =
2724 {
2725 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2726 { NULL, 0, 0, 0, 0 }
2727 };
2728
2729 static const struct bfd_elf_special_section special_sections_n[] =
2730 {
2731 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2732 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2733 { NULL, 0, 0, 0, 0 }
2734 };
2735
2736 static const struct bfd_elf_special_section special_sections_p[] =
2737 {
2738 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2739 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2740 { NULL, 0, 0, 0, 0 }
2741 };
2742
2743 static const struct bfd_elf_special_section special_sections_r[] =
2744 {
2745 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2746 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2747 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2748 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2749 { NULL, 0, 0, 0, 0 }
2750 };
2751
2752 static const struct bfd_elf_special_section special_sections_s[] =
2753 {
2754 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2755 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2756 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2757 /* See struct bfd_elf_special_section declaration for the semantics of
2758 this special case where .prefix_length != strlen (.prefix). */
2759 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2760 { NULL, 0, 0, 0, 0 }
2761 };
2762
2763 static const struct bfd_elf_special_section special_sections_t[] =
2764 {
2765 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2766 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2767 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2768 { NULL, 0, 0, 0, 0 }
2769 };
2770
2771 static const struct bfd_elf_special_section special_sections_z[] =
2772 {
2773 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2774 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2775 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2776 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2777 { NULL, 0, 0, 0, 0 }
2778 };
2779
2780 static const struct bfd_elf_special_section * const special_sections[] =
2781 {
2782 special_sections_b, /* 'b' */
2783 special_sections_c, /* 'c' */
2784 special_sections_d, /* 'd' */
2785 NULL, /* 'e' */
2786 special_sections_f, /* 'f' */
2787 special_sections_g, /* 'g' */
2788 special_sections_h, /* 'h' */
2789 special_sections_i, /* 'i' */
2790 NULL, /* 'j' */
2791 NULL, /* 'k' */
2792 special_sections_l, /* 'l' */
2793 NULL, /* 'm' */
2794 special_sections_n, /* 'n' */
2795 NULL, /* 'o' */
2796 special_sections_p, /* 'p' */
2797 NULL, /* 'q' */
2798 special_sections_r, /* 'r' */
2799 special_sections_s, /* 's' */
2800 special_sections_t, /* 't' */
2801 NULL, /* 'u' */
2802 NULL, /* 'v' */
2803 NULL, /* 'w' */
2804 NULL, /* 'x' */
2805 NULL, /* 'y' */
2806 special_sections_z /* 'z' */
2807 };
2808
2809 const struct bfd_elf_special_section *
2810 _bfd_elf_get_special_section (const char *name,
2811 const struct bfd_elf_special_section *spec,
2812 unsigned int rela)
2813 {
2814 int i;
2815 int len;
2816
2817 len = strlen (name);
2818
2819 for (i = 0; spec[i].prefix != NULL; i++)
2820 {
2821 int suffix_len;
2822 int prefix_len = spec[i].prefix_length;
2823
2824 if (len < prefix_len)
2825 continue;
2826 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2827 continue;
2828
2829 suffix_len = spec[i].suffix_length;
2830 if (suffix_len <= 0)
2831 {
2832 if (name[prefix_len] != 0)
2833 {
2834 if (suffix_len == 0)
2835 continue;
2836 if (name[prefix_len] != '.'
2837 && (suffix_len == -2
2838 || (rela && spec[i].type == SHT_REL)))
2839 continue;
2840 }
2841 }
2842 else
2843 {
2844 if (len < prefix_len + suffix_len)
2845 continue;
2846 if (memcmp (name + len - suffix_len,
2847 spec[i].prefix + prefix_len,
2848 suffix_len) != 0)
2849 continue;
2850 }
2851 return &spec[i];
2852 }
2853
2854 return NULL;
2855 }
2856
2857 const struct bfd_elf_special_section *
2858 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2859 {
2860 int i;
2861 const struct bfd_elf_special_section *spec;
2862 const struct elf_backend_data *bed;
2863
2864 /* See if this is one of the special sections. */
2865 if (sec->name == NULL)
2866 return NULL;
2867
2868 bed = get_elf_backend_data (abfd);
2869 spec = bed->special_sections;
2870 if (spec)
2871 {
2872 spec = _bfd_elf_get_special_section (sec->name,
2873 bed->special_sections,
2874 sec->use_rela_p);
2875 if (spec != NULL)
2876 return spec;
2877 }
2878
2879 if (sec->name[0] != '.')
2880 return NULL;
2881
2882 i = sec->name[1] - 'b';
2883 if (i < 0 || i > 'z' - 'b')
2884 return NULL;
2885
2886 spec = special_sections[i];
2887
2888 if (spec == NULL)
2889 return NULL;
2890
2891 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2892 }
2893
2894 bfd_boolean
2895 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2896 {
2897 struct bfd_elf_section_data *sdata;
2898 const struct elf_backend_data *bed;
2899 const struct bfd_elf_special_section *ssect;
2900
2901 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2902 if (sdata == NULL)
2903 {
2904 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2905 sizeof (*sdata));
2906 if (sdata == NULL)
2907 return FALSE;
2908 sec->used_by_bfd = sdata;
2909 }
2910
2911 /* Indicate whether or not this section should use RELA relocations. */
2912 bed = get_elf_backend_data (abfd);
2913 sec->use_rela_p = bed->default_use_rela_p;
2914
2915 /* When we read a file, we don't need to set ELF section type and
2916 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2917 anyway. We will set ELF section type and flags for all linker
2918 created sections. If user specifies BFD section flags, we will
2919 set ELF section type and flags based on BFD section flags in
2920 elf_fake_sections. Special handling for .init_array/.fini_array
2921 output sections since they may contain .ctors/.dtors input
2922 sections. We don't want _bfd_elf_init_private_section_data to
2923 copy ELF section type from .ctors/.dtors input sections. */
2924 if (abfd->direction != read_direction
2925 || (sec->flags & SEC_LINKER_CREATED) != 0)
2926 {
2927 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2928 if (ssect != NULL
2929 && (!sec->flags
2930 || (sec->flags & SEC_LINKER_CREATED) != 0
2931 || ssect->type == SHT_INIT_ARRAY
2932 || ssect->type == SHT_FINI_ARRAY))
2933 {
2934 elf_section_type (sec) = ssect->type;
2935 elf_section_flags (sec) = ssect->attr;
2936 }
2937 }
2938
2939 return _bfd_generic_new_section_hook (abfd, sec);
2940 }
2941
2942 /* Create a new bfd section from an ELF program header.
2943
2944 Since program segments have no names, we generate a synthetic name
2945 of the form segment<NUM>, where NUM is generally the index in the
2946 program header table. For segments that are split (see below) we
2947 generate the names segment<NUM>a and segment<NUM>b.
2948
2949 Note that some program segments may have a file size that is different than
2950 (less than) the memory size. All this means is that at execution the
2951 system must allocate the amount of memory specified by the memory size,
2952 but only initialize it with the first "file size" bytes read from the
2953 file. This would occur for example, with program segments consisting
2954 of combined data+bss.
2955
2956 To handle the above situation, this routine generates TWO bfd sections
2957 for the single program segment. The first has the length specified by
2958 the file size of the segment, and the second has the length specified
2959 by the difference between the two sizes. In effect, the segment is split
2960 into its initialized and uninitialized parts.
2961
2962 */
2963
2964 bfd_boolean
2965 _bfd_elf_make_section_from_phdr (bfd *abfd,
2966 Elf_Internal_Phdr *hdr,
2967 int hdr_index,
2968 const char *type_name)
2969 {
2970 asection *newsect;
2971 char *name;
2972 char namebuf[64];
2973 size_t len;
2974 int split;
2975
2976 split = ((hdr->p_memsz > 0)
2977 && (hdr->p_filesz > 0)
2978 && (hdr->p_memsz > hdr->p_filesz));
2979
2980 if (hdr->p_filesz > 0)
2981 {
2982 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2983 len = strlen (namebuf) + 1;
2984 name = (char *) bfd_alloc (abfd, len);
2985 if (!name)
2986 return FALSE;
2987 memcpy (name, namebuf, len);
2988 newsect = bfd_make_section (abfd, name);
2989 if (newsect == NULL)
2990 return FALSE;
2991 newsect->vma = hdr->p_vaddr;
2992 newsect->lma = hdr->p_paddr;
2993 newsect->size = hdr->p_filesz;
2994 newsect->filepos = hdr->p_offset;
2995 newsect->flags |= SEC_HAS_CONTENTS;
2996 newsect->alignment_power = bfd_log2 (hdr->p_align);
2997 if (hdr->p_type == PT_LOAD)
2998 {
2999 newsect->flags |= SEC_ALLOC;
3000 newsect->flags |= SEC_LOAD;
3001 if (hdr->p_flags & PF_X)
3002 {
3003 /* FIXME: all we known is that it has execute PERMISSION,
3004 may be data. */
3005 newsect->flags |= SEC_CODE;
3006 }
3007 }
3008 if (!(hdr->p_flags & PF_W))
3009 {
3010 newsect->flags |= SEC_READONLY;
3011 }
3012 }
3013
3014 if (hdr->p_memsz > hdr->p_filesz)
3015 {
3016 bfd_vma align;
3017
3018 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3019 len = strlen (namebuf) + 1;
3020 name = (char *) bfd_alloc (abfd, len);
3021 if (!name)
3022 return FALSE;
3023 memcpy (name, namebuf, len);
3024 newsect = bfd_make_section (abfd, name);
3025 if (newsect == NULL)
3026 return FALSE;
3027 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3028 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3029 newsect->size = hdr->p_memsz - hdr->p_filesz;
3030 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3031 align = newsect->vma & -newsect->vma;
3032 if (align == 0 || align > hdr->p_align)
3033 align = hdr->p_align;
3034 newsect->alignment_power = bfd_log2 (align);
3035 if (hdr->p_type == PT_LOAD)
3036 {
3037 /* Hack for gdb. Segments that have not been modified do
3038 not have their contents written to a core file, on the
3039 assumption that a debugger can find the contents in the
3040 executable. We flag this case by setting the fake
3041 section size to zero. Note that "real" bss sections will
3042 always have their contents dumped to the core file. */
3043 if (bfd_get_format (abfd) == bfd_core)
3044 newsect->size = 0;
3045 newsect->flags |= SEC_ALLOC;
3046 if (hdr->p_flags & PF_X)
3047 newsect->flags |= SEC_CODE;
3048 }
3049 if (!(hdr->p_flags & PF_W))
3050 newsect->flags |= SEC_READONLY;
3051 }
3052
3053 return TRUE;
3054 }
3055
3056 bfd_boolean
3057 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3058 {
3059 const struct elf_backend_data *bed;
3060
3061 switch (hdr->p_type)
3062 {
3063 case PT_NULL:
3064 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3065
3066 case PT_LOAD:
3067 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
3068
3069 case PT_DYNAMIC:
3070 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3071
3072 case PT_INTERP:
3073 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3074
3075 case PT_NOTE:
3076 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3077 return FALSE;
3078 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3079 hdr->p_align))
3080 return FALSE;
3081 return TRUE;
3082
3083 case PT_SHLIB:
3084 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3085
3086 case PT_PHDR:
3087 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3088
3089 case PT_GNU_EH_FRAME:
3090 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3091 "eh_frame_hdr");
3092
3093 case PT_GNU_STACK:
3094 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3095
3096 case PT_GNU_RELRO:
3097 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3098
3099 default:
3100 /* Check for any processor-specific program segment types. */
3101 bed = get_elf_backend_data (abfd);
3102 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3103 }
3104 }
3105
3106 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3107 REL or RELA. */
3108
3109 Elf_Internal_Shdr *
3110 _bfd_elf_single_rel_hdr (asection *sec)
3111 {
3112 if (elf_section_data (sec)->rel.hdr)
3113 {
3114 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3115 return elf_section_data (sec)->rel.hdr;
3116 }
3117 else
3118 return elf_section_data (sec)->rela.hdr;
3119 }
3120
3121 static bfd_boolean
3122 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3123 Elf_Internal_Shdr *rel_hdr,
3124 const char *sec_name,
3125 bfd_boolean use_rela_p)
3126 {
3127 char *name = (char *) bfd_alloc (abfd,
3128 sizeof ".rela" + strlen (sec_name));
3129 if (name == NULL)
3130 return FALSE;
3131
3132 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3133 rel_hdr->sh_name =
3134 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3135 FALSE);
3136 if (rel_hdr->sh_name == (unsigned int) -1)
3137 return FALSE;
3138
3139 return TRUE;
3140 }
3141
3142 /* Allocate and initialize a section-header for a new reloc section,
3143 containing relocations against ASECT. It is stored in RELDATA. If
3144 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3145 relocations. */
3146
3147 static bfd_boolean
3148 _bfd_elf_init_reloc_shdr (bfd *abfd,
3149 struct bfd_elf_section_reloc_data *reldata,
3150 const char *sec_name,
3151 bfd_boolean use_rela_p,
3152 bfd_boolean delay_st_name_p)
3153 {
3154 Elf_Internal_Shdr *rel_hdr;
3155 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3156
3157 BFD_ASSERT (reldata->hdr == NULL);
3158 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3159 reldata->hdr = rel_hdr;
3160
3161 if (delay_st_name_p)
3162 rel_hdr->sh_name = (unsigned int) -1;
3163 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3164 use_rela_p))
3165 return FALSE;
3166 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3167 rel_hdr->sh_entsize = (use_rela_p
3168 ? bed->s->sizeof_rela
3169 : bed->s->sizeof_rel);
3170 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3171 rel_hdr->sh_flags = 0;
3172 rel_hdr->sh_addr = 0;
3173 rel_hdr->sh_size = 0;
3174 rel_hdr->sh_offset = 0;
3175
3176 return TRUE;
3177 }
3178
3179 /* Return the default section type based on the passed in section flags. */
3180
3181 int
3182 bfd_elf_get_default_section_type (flagword flags)
3183 {
3184 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3185 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3186 return SHT_NOBITS;
3187 return SHT_PROGBITS;
3188 }
3189
3190 struct fake_section_arg
3191 {
3192 struct bfd_link_info *link_info;
3193 bfd_boolean failed;
3194 };
3195
3196 /* Set up an ELF internal section header for a section. */
3197
3198 static void
3199 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3200 {
3201 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3202 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3203 struct bfd_elf_section_data *esd = elf_section_data (asect);
3204 Elf_Internal_Shdr *this_hdr;
3205 unsigned int sh_type;
3206 const char *name = asect->name;
3207 bfd_boolean delay_st_name_p = FALSE;
3208
3209 if (arg->failed)
3210 {
3211 /* We already failed; just get out of the bfd_map_over_sections
3212 loop. */
3213 return;
3214 }
3215
3216 this_hdr = &esd->this_hdr;
3217
3218 if (arg->link_info)
3219 {
3220 /* ld: compress DWARF debug sections with names: .debug_*. */
3221 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3222 && (asect->flags & SEC_DEBUGGING)
3223 && name[1] == 'd'
3224 && name[6] == '_')
3225 {
3226 /* Set SEC_ELF_COMPRESS to indicate this section should be
3227 compressed. */
3228 asect->flags |= SEC_ELF_COMPRESS;
3229
3230 /* If this section will be compressed, delay adding section
3231 name to section name section after it is compressed in
3232 _bfd_elf_assign_file_positions_for_non_load. */
3233 delay_st_name_p = TRUE;
3234 }
3235 }
3236 else if ((asect->flags & SEC_ELF_RENAME))
3237 {
3238 /* objcopy: rename output DWARF debug section. */
3239 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3240 {
3241 /* When we decompress or compress with SHF_COMPRESSED,
3242 convert section name from .zdebug_* to .debug_* if
3243 needed. */
3244 if (name[1] == 'z')
3245 {
3246 char *new_name = convert_zdebug_to_debug (abfd, name);
3247 if (new_name == NULL)
3248 {
3249 arg->failed = TRUE;
3250 return;
3251 }
3252 name = new_name;
3253 }
3254 }
3255 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3256 {
3257 /* PR binutils/18087: Compression does not always make a
3258 section smaller. So only rename the section when
3259 compression has actually taken place. If input section
3260 name is .zdebug_*, we should never compress it again. */
3261 char *new_name = convert_debug_to_zdebug (abfd, name);
3262 if (new_name == NULL)
3263 {
3264 arg->failed = TRUE;
3265 return;
3266 }
3267 BFD_ASSERT (name[1] != 'z');
3268 name = new_name;
3269 }
3270 }
3271
3272 if (delay_st_name_p)
3273 this_hdr->sh_name = (unsigned int) -1;
3274 else
3275 {
3276 this_hdr->sh_name
3277 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3278 name, FALSE);
3279 if (this_hdr->sh_name == (unsigned int) -1)
3280 {
3281 arg->failed = TRUE;
3282 return;
3283 }
3284 }
3285
3286 /* Don't clear sh_flags. Assembler may set additional bits. */
3287
3288 if ((asect->flags & SEC_ALLOC) != 0
3289 || asect->user_set_vma)
3290 this_hdr->sh_addr = asect->vma;
3291 else
3292 this_hdr->sh_addr = 0;
3293
3294 this_hdr->sh_offset = 0;
3295 this_hdr->sh_size = asect->size;
3296 this_hdr->sh_link = 0;
3297 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3298 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3299 {
3300 _bfd_error_handler
3301 /* xgettext:c-format */
3302 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3303 abfd, asect->alignment_power, asect);
3304 arg->failed = TRUE;
3305 return;
3306 }
3307 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3308 /* The sh_entsize and sh_info fields may have been set already by
3309 copy_private_section_data. */
3310
3311 this_hdr->bfd_section = asect;
3312 this_hdr->contents = NULL;
3313
3314 /* If the section type is unspecified, we set it based on
3315 asect->flags. */
3316 if ((asect->flags & SEC_GROUP) != 0)
3317 sh_type = SHT_GROUP;
3318 else
3319 sh_type = bfd_elf_get_default_section_type (asect->flags);
3320
3321 if (this_hdr->sh_type == SHT_NULL)
3322 this_hdr->sh_type = sh_type;
3323 else if (this_hdr->sh_type == SHT_NOBITS
3324 && sh_type == SHT_PROGBITS
3325 && (asect->flags & SEC_ALLOC) != 0)
3326 {
3327 /* Warn if we are changing a NOBITS section to PROGBITS, but
3328 allow the link to proceed. This can happen when users link
3329 non-bss input sections to bss output sections, or emit data
3330 to a bss output section via a linker script. */
3331 _bfd_error_handler
3332 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3333 this_hdr->sh_type = sh_type;
3334 }
3335
3336 switch (this_hdr->sh_type)
3337 {
3338 default:
3339 break;
3340
3341 case SHT_STRTAB:
3342 case SHT_NOTE:
3343 case SHT_NOBITS:
3344 case SHT_PROGBITS:
3345 break;
3346
3347 case SHT_INIT_ARRAY:
3348 case SHT_FINI_ARRAY:
3349 case SHT_PREINIT_ARRAY:
3350 this_hdr->sh_entsize = bed->s->arch_size / 8;
3351 break;
3352
3353 case SHT_HASH:
3354 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3355 break;
3356
3357 case SHT_DYNSYM:
3358 this_hdr->sh_entsize = bed->s->sizeof_sym;
3359 break;
3360
3361 case SHT_DYNAMIC:
3362 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3363 break;
3364
3365 case SHT_RELA:
3366 if (get_elf_backend_data (abfd)->may_use_rela_p)
3367 this_hdr->sh_entsize = bed->s->sizeof_rela;
3368 break;
3369
3370 case SHT_REL:
3371 if (get_elf_backend_data (abfd)->may_use_rel_p)
3372 this_hdr->sh_entsize = bed->s->sizeof_rel;
3373 break;
3374
3375 case SHT_GNU_versym:
3376 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3377 break;
3378
3379 case SHT_GNU_verdef:
3380 this_hdr->sh_entsize = 0;
3381 /* objcopy or strip will copy over sh_info, but may not set
3382 cverdefs. The linker will set cverdefs, but sh_info will be
3383 zero. */
3384 if (this_hdr->sh_info == 0)
3385 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3386 else
3387 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3388 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3389 break;
3390
3391 case SHT_GNU_verneed:
3392 this_hdr->sh_entsize = 0;
3393 /* objcopy or strip will copy over sh_info, but may not set
3394 cverrefs. The linker will set cverrefs, but sh_info will be
3395 zero. */
3396 if (this_hdr->sh_info == 0)
3397 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3398 else
3399 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3400 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3401 break;
3402
3403 case SHT_GROUP:
3404 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3405 break;
3406
3407 case SHT_GNU_HASH:
3408 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3409 break;
3410 }
3411
3412 if ((asect->flags & SEC_ALLOC) != 0)
3413 this_hdr->sh_flags |= SHF_ALLOC;
3414 if ((asect->flags & SEC_READONLY) == 0)
3415 this_hdr->sh_flags |= SHF_WRITE;
3416 if ((asect->flags & SEC_CODE) != 0)
3417 this_hdr->sh_flags |= SHF_EXECINSTR;
3418 if ((asect->flags & SEC_MERGE) != 0)
3419 {
3420 this_hdr->sh_flags |= SHF_MERGE;
3421 this_hdr->sh_entsize = asect->entsize;
3422 }
3423 if ((asect->flags & SEC_STRINGS) != 0)
3424 this_hdr->sh_flags |= SHF_STRINGS;
3425 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3426 this_hdr->sh_flags |= SHF_GROUP;
3427 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3428 {
3429 this_hdr->sh_flags |= SHF_TLS;
3430 if (asect->size == 0
3431 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3432 {
3433 struct bfd_link_order *o = asect->map_tail.link_order;
3434
3435 this_hdr->sh_size = 0;
3436 if (o != NULL)
3437 {
3438 this_hdr->sh_size = o->offset + o->size;
3439 if (this_hdr->sh_size != 0)
3440 this_hdr->sh_type = SHT_NOBITS;
3441 }
3442 }
3443 }
3444 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3445 this_hdr->sh_flags |= SHF_EXCLUDE;
3446
3447 /* If the section has relocs, set up a section header for the
3448 SHT_REL[A] section. If two relocation sections are required for
3449 this section, it is up to the processor-specific back-end to
3450 create the other. */
3451 if ((asect->flags & SEC_RELOC) != 0)
3452 {
3453 /* When doing a relocatable link, create both REL and RELA sections if
3454 needed. */
3455 if (arg->link_info
3456 /* Do the normal setup if we wouldn't create any sections here. */
3457 && esd->rel.count + esd->rela.count > 0
3458 && (bfd_link_relocatable (arg->link_info)
3459 || arg->link_info->emitrelocations))
3460 {
3461 if (esd->rel.count && esd->rel.hdr == NULL
3462 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3463 FALSE, delay_st_name_p))
3464 {
3465 arg->failed = TRUE;
3466 return;
3467 }
3468 if (esd->rela.count && esd->rela.hdr == NULL
3469 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3470 TRUE, delay_st_name_p))
3471 {
3472 arg->failed = TRUE;
3473 return;
3474 }
3475 }
3476 else if (!_bfd_elf_init_reloc_shdr (abfd,
3477 (asect->use_rela_p
3478 ? &esd->rela : &esd->rel),
3479 name,
3480 asect->use_rela_p,
3481 delay_st_name_p))
3482 {
3483 arg->failed = TRUE;
3484 return;
3485 }
3486 }
3487
3488 /* Check for processor-specific section types. */
3489 sh_type = this_hdr->sh_type;
3490 if (bed->elf_backend_fake_sections
3491 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3492 {
3493 arg->failed = TRUE;
3494 return;
3495 }
3496
3497 if (sh_type == SHT_NOBITS && asect->size != 0)
3498 {
3499 /* Don't change the header type from NOBITS if we are being
3500 called for objcopy --only-keep-debug. */
3501 this_hdr->sh_type = sh_type;
3502 }
3503 }
3504
3505 /* Fill in the contents of a SHT_GROUP section. Called from
3506 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3507 when ELF targets use the generic linker, ld. Called for ld -r
3508 from bfd_elf_final_link. */
3509
3510 void
3511 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3512 {
3513 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3514 asection *elt, *first;
3515 unsigned char *loc;
3516 bfd_boolean gas;
3517
3518 /* Ignore linker created group section. See elfNN_ia64_object_p in
3519 elfxx-ia64.c. */
3520 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3521 || sec->size == 0
3522 || *failedptr)
3523 return;
3524
3525 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3526 {
3527 unsigned long symindx = 0;
3528
3529 /* elf_group_id will have been set up by objcopy and the
3530 generic linker. */
3531 if (elf_group_id (sec) != NULL)
3532 symindx = elf_group_id (sec)->udata.i;
3533
3534 if (symindx == 0)
3535 {
3536 /* If called from the assembler, swap_out_syms will have set up
3537 elf_section_syms. */
3538 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3539 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3540 }
3541 elf_section_data (sec)->this_hdr.sh_info = symindx;
3542 }
3543 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3544 {
3545 /* The ELF backend linker sets sh_info to -2 when the group
3546 signature symbol is global, and thus the index can't be
3547 set until all local symbols are output. */
3548 asection *igroup;
3549 struct bfd_elf_section_data *sec_data;
3550 unsigned long symndx;
3551 unsigned long extsymoff;
3552 struct elf_link_hash_entry *h;
3553
3554 /* The point of this little dance to the first SHF_GROUP section
3555 then back to the SHT_GROUP section is that this gets us to
3556 the SHT_GROUP in the input object. */
3557 igroup = elf_sec_group (elf_next_in_group (sec));
3558 sec_data = elf_section_data (igroup);
3559 symndx = sec_data->this_hdr.sh_info;
3560 extsymoff = 0;
3561 if (!elf_bad_symtab (igroup->owner))
3562 {
3563 Elf_Internal_Shdr *symtab_hdr;
3564
3565 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3566 extsymoff = symtab_hdr->sh_info;
3567 }
3568 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3569 while (h->root.type == bfd_link_hash_indirect
3570 || h->root.type == bfd_link_hash_warning)
3571 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3572
3573 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3574 }
3575
3576 /* The contents won't be allocated for "ld -r" or objcopy. */
3577 gas = TRUE;
3578 if (sec->contents == NULL)
3579 {
3580 gas = FALSE;
3581 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3582
3583 /* Arrange for the section to be written out. */
3584 elf_section_data (sec)->this_hdr.contents = sec->contents;
3585 if (sec->contents == NULL)
3586 {
3587 *failedptr = TRUE;
3588 return;
3589 }
3590 }
3591
3592 loc = sec->contents + sec->size;
3593
3594 /* Get the pointer to the first section in the group that gas
3595 squirreled away here. objcopy arranges for this to be set to the
3596 start of the input section group. */
3597 first = elt = elf_next_in_group (sec);
3598
3599 /* First element is a flag word. Rest of section is elf section
3600 indices for all the sections of the group. Write them backwards
3601 just to keep the group in the same order as given in .section
3602 directives, not that it matters. */
3603 while (elt != NULL)
3604 {
3605 asection *s;
3606
3607 s = elt;
3608 if (!gas)
3609 s = s->output_section;
3610 if (s != NULL
3611 && !bfd_is_abs_section (s))
3612 {
3613 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3614 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3615
3616 if (elf_sec->rel.hdr != NULL
3617 && (gas
3618 || (input_elf_sec->rel.hdr != NULL
3619 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3620 {
3621 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3622 loc -= 4;
3623 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3624 }
3625 if (elf_sec->rela.hdr != NULL
3626 && (gas
3627 || (input_elf_sec->rela.hdr != NULL
3628 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3629 {
3630 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3631 loc -= 4;
3632 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3633 }
3634 loc -= 4;
3635 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3636 }
3637 elt = elf_next_in_group (elt);
3638 if (elt == first)
3639 break;
3640 }
3641
3642 loc -= 4;
3643 BFD_ASSERT (loc == sec->contents);
3644
3645 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3646 }
3647
3648 /* Given NAME, the name of a relocation section stripped of its
3649 .rel/.rela prefix, return the section in ABFD to which the
3650 relocations apply. */
3651
3652 asection *
3653 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3654 {
3655 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3656 section likely apply to .got.plt or .got section. */
3657 if (get_elf_backend_data (abfd)->want_got_plt
3658 && strcmp (name, ".plt") == 0)
3659 {
3660 asection *sec;
3661
3662 name = ".got.plt";
3663 sec = bfd_get_section_by_name (abfd, name);
3664 if (sec != NULL)
3665 return sec;
3666 name = ".got";
3667 }
3668
3669 return bfd_get_section_by_name (abfd, name);
3670 }
3671
3672 /* Return the section to which RELOC_SEC applies. */
3673
3674 static asection *
3675 elf_get_reloc_section (asection *reloc_sec)
3676 {
3677 const char *name;
3678 unsigned int type;
3679 bfd *abfd;
3680 const struct elf_backend_data *bed;
3681
3682 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3683 if (type != SHT_REL && type != SHT_RELA)
3684 return NULL;
3685
3686 /* We look up the section the relocs apply to by name. */
3687 name = reloc_sec->name;
3688 if (strncmp (name, ".rel", 4) != 0)
3689 return NULL;
3690 name += 4;
3691 if (type == SHT_RELA && *name++ != 'a')
3692 return NULL;
3693
3694 abfd = reloc_sec->owner;
3695 bed = get_elf_backend_data (abfd);
3696 return bed->get_reloc_section (abfd, name);
3697 }
3698
3699 /* Assign all ELF section numbers. The dummy first section is handled here
3700 too. The link/info pointers for the standard section types are filled
3701 in here too, while we're at it. */
3702
3703 static bfd_boolean
3704 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3705 {
3706 struct elf_obj_tdata *t = elf_tdata (abfd);
3707 asection *sec;
3708 unsigned int section_number;
3709 Elf_Internal_Shdr **i_shdrp;
3710 struct bfd_elf_section_data *d;
3711 bfd_boolean need_symtab;
3712
3713 section_number = 1;
3714
3715 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3716
3717 /* SHT_GROUP sections are in relocatable files only. */
3718 if (link_info == NULL || !link_info->resolve_section_groups)
3719 {
3720 size_t reloc_count = 0;
3721
3722 /* Put SHT_GROUP sections first. */
3723 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3724 {
3725 d = elf_section_data (sec);
3726
3727 if (d->this_hdr.sh_type == SHT_GROUP)
3728 {
3729 if (sec->flags & SEC_LINKER_CREATED)
3730 {
3731 /* Remove the linker created SHT_GROUP sections. */
3732 bfd_section_list_remove (abfd, sec);
3733 abfd->section_count--;
3734 }
3735 else
3736 d->this_idx = section_number++;
3737 }
3738
3739 /* Count relocations. */
3740 reloc_count += sec->reloc_count;
3741 }
3742
3743 /* Clear HAS_RELOC if there are no relocations. */
3744 if (reloc_count == 0)
3745 abfd->flags &= ~HAS_RELOC;
3746 }
3747
3748 for (sec = abfd->sections; sec; sec = sec->next)
3749 {
3750 d = elf_section_data (sec);
3751
3752 if (d->this_hdr.sh_type != SHT_GROUP)
3753 d->this_idx = section_number++;
3754 if (d->this_hdr.sh_name != (unsigned int) -1)
3755 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3756 if (d->rel.hdr)
3757 {
3758 d->rel.idx = section_number++;
3759 if (d->rel.hdr->sh_name != (unsigned int) -1)
3760 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3761 }
3762 else
3763 d->rel.idx = 0;
3764
3765 if (d->rela.hdr)
3766 {
3767 d->rela.idx = section_number++;
3768 if (d->rela.hdr->sh_name != (unsigned int) -1)
3769 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3770 }
3771 else
3772 d->rela.idx = 0;
3773 }
3774
3775 need_symtab = (bfd_get_symcount (abfd) > 0
3776 || (link_info == NULL
3777 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3778 == HAS_RELOC)));
3779 if (need_symtab)
3780 {
3781 elf_onesymtab (abfd) = section_number++;
3782 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3783 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3784 {
3785 elf_section_list *entry;
3786
3787 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3788
3789 entry = bfd_zalloc (abfd, sizeof (*entry));
3790 entry->ndx = section_number++;
3791 elf_symtab_shndx_list (abfd) = entry;
3792 entry->hdr.sh_name
3793 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3794 ".symtab_shndx", FALSE);
3795 if (entry->hdr.sh_name == (unsigned int) -1)
3796 return FALSE;
3797 }
3798 elf_strtab_sec (abfd) = section_number++;
3799 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3800 }
3801
3802 elf_shstrtab_sec (abfd) = section_number++;
3803 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3804 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3805
3806 if (section_number >= SHN_LORESERVE)
3807 {
3808 /* xgettext:c-format */
3809 _bfd_error_handler (_("%pB: too many sections: %u"),
3810 abfd, section_number);
3811 return FALSE;
3812 }
3813
3814 elf_numsections (abfd) = section_number;
3815 elf_elfheader (abfd)->e_shnum = section_number;
3816
3817 /* Set up the list of section header pointers, in agreement with the
3818 indices. */
3819 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3820 sizeof (Elf_Internal_Shdr *));
3821 if (i_shdrp == NULL)
3822 return FALSE;
3823
3824 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3825 sizeof (Elf_Internal_Shdr));
3826 if (i_shdrp[0] == NULL)
3827 {
3828 bfd_release (abfd, i_shdrp);
3829 return FALSE;
3830 }
3831
3832 elf_elfsections (abfd) = i_shdrp;
3833
3834 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3835 if (need_symtab)
3836 {
3837 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3838 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3839 {
3840 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3841 BFD_ASSERT (entry != NULL);
3842 i_shdrp[entry->ndx] = & entry->hdr;
3843 entry->hdr.sh_link = elf_onesymtab (abfd);
3844 }
3845 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3846 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3847 }
3848
3849 for (sec = abfd->sections; sec; sec = sec->next)
3850 {
3851 asection *s;
3852
3853 d = elf_section_data (sec);
3854
3855 i_shdrp[d->this_idx] = &d->this_hdr;
3856 if (d->rel.idx != 0)
3857 i_shdrp[d->rel.idx] = d->rel.hdr;
3858 if (d->rela.idx != 0)
3859 i_shdrp[d->rela.idx] = d->rela.hdr;
3860
3861 /* Fill in the sh_link and sh_info fields while we're at it. */
3862
3863 /* sh_link of a reloc section is the section index of the symbol
3864 table. sh_info is the section index of the section to which
3865 the relocation entries apply. */
3866 if (d->rel.idx != 0)
3867 {
3868 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3869 d->rel.hdr->sh_info = d->this_idx;
3870 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3871 }
3872 if (d->rela.idx != 0)
3873 {
3874 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3875 d->rela.hdr->sh_info = d->this_idx;
3876 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3877 }
3878
3879 /* We need to set up sh_link for SHF_LINK_ORDER. */
3880 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3881 {
3882 s = elf_linked_to_section (sec);
3883 if (s)
3884 {
3885 /* elf_linked_to_section points to the input section. */
3886 if (link_info != NULL)
3887 {
3888 /* Check discarded linkonce section. */
3889 if (discarded_section (s))
3890 {
3891 asection *kept;
3892 _bfd_error_handler
3893 /* xgettext:c-format */
3894 (_("%pB: sh_link of section `%pA' points to"
3895 " discarded section `%pA' of `%pB'"),
3896 abfd, d->this_hdr.bfd_section,
3897 s, s->owner);
3898 /* Point to the kept section if it has the same
3899 size as the discarded one. */
3900 kept = _bfd_elf_check_kept_section (s, link_info);
3901 if (kept == NULL)
3902 {
3903 bfd_set_error (bfd_error_bad_value);
3904 return FALSE;
3905 }
3906 s = kept;
3907 }
3908
3909 s = s->output_section;
3910 BFD_ASSERT (s != NULL);
3911 }
3912 else
3913 {
3914 /* Handle objcopy. */
3915 if (s->output_section == NULL)
3916 {
3917 _bfd_error_handler
3918 /* xgettext:c-format */
3919 (_("%pB: sh_link of section `%pA' points to"
3920 " removed section `%pA' of `%pB'"),
3921 abfd, d->this_hdr.bfd_section, s, s->owner);
3922 bfd_set_error (bfd_error_bad_value);
3923 return FALSE;
3924 }
3925 s = s->output_section;
3926 }
3927 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3928 }
3929 else
3930 {
3931 /* PR 290:
3932 The Intel C compiler generates SHT_IA_64_UNWIND with
3933 SHF_LINK_ORDER. But it doesn't set the sh_link or
3934 sh_info fields. Hence we could get the situation
3935 where s is NULL. */
3936 const struct elf_backend_data *bed
3937 = get_elf_backend_data (abfd);
3938 if (bed->link_order_error_handler)
3939 bed->link_order_error_handler
3940 /* xgettext:c-format */
3941 (_("%pB: warning: sh_link not set for section `%pA'"),
3942 abfd, sec);
3943 }
3944 }
3945
3946 switch (d->this_hdr.sh_type)
3947 {
3948 case SHT_REL:
3949 case SHT_RELA:
3950 /* A reloc section which we are treating as a normal BFD
3951 section. sh_link is the section index of the symbol
3952 table. sh_info is the section index of the section to
3953 which the relocation entries apply. We assume that an
3954 allocated reloc section uses the dynamic symbol table.
3955 FIXME: How can we be sure? */
3956 s = bfd_get_section_by_name (abfd, ".dynsym");
3957 if (s != NULL)
3958 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3959
3960 s = elf_get_reloc_section (sec);
3961 if (s != NULL)
3962 {
3963 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3964 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3965 }
3966 break;
3967
3968 case SHT_STRTAB:
3969 /* We assume that a section named .stab*str is a stabs
3970 string section. We look for a section with the same name
3971 but without the trailing ``str'', and set its sh_link
3972 field to point to this section. */
3973 if (CONST_STRNEQ (sec->name, ".stab")
3974 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3975 {
3976 size_t len;
3977 char *alc;
3978
3979 len = strlen (sec->name);
3980 alc = (char *) bfd_malloc (len - 2);
3981 if (alc == NULL)
3982 return FALSE;
3983 memcpy (alc, sec->name, len - 3);
3984 alc[len - 3] = '\0';
3985 s = bfd_get_section_by_name (abfd, alc);
3986 free (alc);
3987 if (s != NULL)
3988 {
3989 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3990
3991 /* This is a .stab section. */
3992 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3993 elf_section_data (s)->this_hdr.sh_entsize
3994 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3995 }
3996 }
3997 break;
3998
3999 case SHT_DYNAMIC:
4000 case SHT_DYNSYM:
4001 case SHT_GNU_verneed:
4002 case SHT_GNU_verdef:
4003 /* sh_link is the section header index of the string table
4004 used for the dynamic entries, or the symbol table, or the
4005 version strings. */
4006 s = bfd_get_section_by_name (abfd, ".dynstr");
4007 if (s != NULL)
4008 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4009 break;
4010
4011 case SHT_GNU_LIBLIST:
4012 /* sh_link is the section header index of the prelink library
4013 list used for the dynamic entries, or the symbol table, or
4014 the version strings. */
4015 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4016 ? ".dynstr" : ".gnu.libstr");
4017 if (s != NULL)
4018 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4019 break;
4020
4021 case SHT_HASH:
4022 case SHT_GNU_HASH:
4023 case SHT_GNU_versym:
4024 /* sh_link is the section header index of the symbol table
4025 this hash table or version table is for. */
4026 s = bfd_get_section_by_name (abfd, ".dynsym");
4027 if (s != NULL)
4028 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4029 break;
4030
4031 case SHT_GROUP:
4032 d->this_hdr.sh_link = elf_onesymtab (abfd);
4033 }
4034 }
4035
4036 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4037 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4038 debug section name from .debug_* to .zdebug_* if needed. */
4039
4040 return TRUE;
4041 }
4042
4043 static bfd_boolean
4044 sym_is_global (bfd *abfd, asymbol *sym)
4045 {
4046 /* If the backend has a special mapping, use it. */
4047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4048 if (bed->elf_backend_sym_is_global)
4049 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4050
4051 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4052 || bfd_is_und_section (bfd_get_section (sym))
4053 || bfd_is_com_section (bfd_get_section (sym)));
4054 }
4055
4056 /* Filter global symbols of ABFD to include in the import library. All
4057 SYMCOUNT symbols of ABFD can be examined from their pointers in
4058 SYMS. Pointers of symbols to keep should be stored contiguously at
4059 the beginning of that array.
4060
4061 Returns the number of symbols to keep. */
4062
4063 unsigned int
4064 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4065 asymbol **syms, long symcount)
4066 {
4067 long src_count, dst_count = 0;
4068
4069 for (src_count = 0; src_count < symcount; src_count++)
4070 {
4071 asymbol *sym = syms[src_count];
4072 char *name = (char *) bfd_asymbol_name (sym);
4073 struct bfd_link_hash_entry *h;
4074
4075 if (!sym_is_global (abfd, sym))
4076 continue;
4077
4078 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4079 if (h == NULL)
4080 continue;
4081 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4082 continue;
4083 if (h->linker_def || h->ldscript_def)
4084 continue;
4085
4086 syms[dst_count++] = sym;
4087 }
4088
4089 syms[dst_count] = NULL;
4090
4091 return dst_count;
4092 }
4093
4094 /* Don't output section symbols for sections that are not going to be
4095 output, that are duplicates or there is no BFD section. */
4096
4097 static bfd_boolean
4098 ignore_section_sym (bfd *abfd, asymbol *sym)
4099 {
4100 elf_symbol_type *type_ptr;
4101
4102 if (sym == NULL)
4103 return FALSE;
4104
4105 if ((sym->flags & BSF_SECTION_SYM) == 0)
4106 return FALSE;
4107
4108 if (sym->section == NULL)
4109 return TRUE;
4110
4111 type_ptr = elf_symbol_from (abfd, sym);
4112 return ((type_ptr != NULL
4113 && type_ptr->internal_elf_sym.st_shndx != 0
4114 && bfd_is_abs_section (sym->section))
4115 || !(sym->section->owner == abfd
4116 || (sym->section->output_section != NULL
4117 && sym->section->output_section->owner == abfd
4118 && sym->section->output_offset == 0)
4119 || bfd_is_abs_section (sym->section)));
4120 }
4121
4122 /* Map symbol from it's internal number to the external number, moving
4123 all local symbols to be at the head of the list. */
4124
4125 static bfd_boolean
4126 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4127 {
4128 unsigned int symcount = bfd_get_symcount (abfd);
4129 asymbol **syms = bfd_get_outsymbols (abfd);
4130 asymbol **sect_syms;
4131 unsigned int num_locals = 0;
4132 unsigned int num_globals = 0;
4133 unsigned int num_locals2 = 0;
4134 unsigned int num_globals2 = 0;
4135 unsigned int max_index = 0;
4136 unsigned int idx;
4137 asection *asect;
4138 asymbol **new_syms;
4139
4140 #ifdef DEBUG
4141 fprintf (stderr, "elf_map_symbols\n");
4142 fflush (stderr);
4143 #endif
4144
4145 for (asect = abfd->sections; asect; asect = asect->next)
4146 {
4147 if (max_index < asect->index)
4148 max_index = asect->index;
4149 }
4150
4151 max_index++;
4152 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4153 if (sect_syms == NULL)
4154 return FALSE;
4155 elf_section_syms (abfd) = sect_syms;
4156 elf_num_section_syms (abfd) = max_index;
4157
4158 /* Init sect_syms entries for any section symbols we have already
4159 decided to output. */
4160 for (idx = 0; idx < symcount; idx++)
4161 {
4162 asymbol *sym = syms[idx];
4163
4164 if ((sym->flags & BSF_SECTION_SYM) != 0
4165 && sym->value == 0
4166 && !ignore_section_sym (abfd, sym)
4167 && !bfd_is_abs_section (sym->section))
4168 {
4169 asection *sec = sym->section;
4170
4171 if (sec->owner != abfd)
4172 sec = sec->output_section;
4173
4174 sect_syms[sec->index] = syms[idx];
4175 }
4176 }
4177
4178 /* Classify all of the symbols. */
4179 for (idx = 0; idx < symcount; idx++)
4180 {
4181 if (sym_is_global (abfd, syms[idx]))
4182 num_globals++;
4183 else if (!ignore_section_sym (abfd, syms[idx]))
4184 num_locals++;
4185 }
4186
4187 /* We will be adding a section symbol for each normal BFD section. Most
4188 sections will already have a section symbol in outsymbols, but
4189 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4190 at least in that case. */
4191 for (asect = abfd->sections; asect; asect = asect->next)
4192 {
4193 if (sect_syms[asect->index] == NULL)
4194 {
4195 if (!sym_is_global (abfd, asect->symbol))
4196 num_locals++;
4197 else
4198 num_globals++;
4199 }
4200 }
4201
4202 /* Now sort the symbols so the local symbols are first. */
4203 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4204 sizeof (asymbol *));
4205
4206 if (new_syms == NULL)
4207 return FALSE;
4208
4209 for (idx = 0; idx < symcount; idx++)
4210 {
4211 asymbol *sym = syms[idx];
4212 unsigned int i;
4213
4214 if (sym_is_global (abfd, sym))
4215 i = num_locals + num_globals2++;
4216 else if (!ignore_section_sym (abfd, sym))
4217 i = num_locals2++;
4218 else
4219 continue;
4220 new_syms[i] = sym;
4221 sym->udata.i = i + 1;
4222 }
4223 for (asect = abfd->sections; asect; asect = asect->next)
4224 {
4225 if (sect_syms[asect->index] == NULL)
4226 {
4227 asymbol *sym = asect->symbol;
4228 unsigned int i;
4229
4230 sect_syms[asect->index] = sym;
4231 if (!sym_is_global (abfd, sym))
4232 i = num_locals2++;
4233 else
4234 i = num_locals + num_globals2++;
4235 new_syms[i] = sym;
4236 sym->udata.i = i + 1;
4237 }
4238 }
4239
4240 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4241
4242 *pnum_locals = num_locals;
4243 return TRUE;
4244 }
4245
4246 /* Align to the maximum file alignment that could be required for any
4247 ELF data structure. */
4248
4249 static inline file_ptr
4250 align_file_position (file_ptr off, int align)
4251 {
4252 return (off + align - 1) & ~(align - 1);
4253 }
4254
4255 /* Assign a file position to a section, optionally aligning to the
4256 required section alignment. */
4257
4258 file_ptr
4259 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4260 file_ptr offset,
4261 bfd_boolean align)
4262 {
4263 if (align && i_shdrp->sh_addralign > 1)
4264 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4265 i_shdrp->sh_offset = offset;
4266 if (i_shdrp->bfd_section != NULL)
4267 i_shdrp->bfd_section->filepos = offset;
4268 if (i_shdrp->sh_type != SHT_NOBITS)
4269 offset += i_shdrp->sh_size;
4270 return offset;
4271 }
4272
4273 /* Compute the file positions we are going to put the sections at, and
4274 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4275 is not NULL, this is being called by the ELF backend linker. */
4276
4277 bfd_boolean
4278 _bfd_elf_compute_section_file_positions (bfd *abfd,
4279 struct bfd_link_info *link_info)
4280 {
4281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4282 struct fake_section_arg fsargs;
4283 bfd_boolean failed;
4284 struct elf_strtab_hash *strtab = NULL;
4285 Elf_Internal_Shdr *shstrtab_hdr;
4286 bfd_boolean need_symtab;
4287
4288 if (abfd->output_has_begun)
4289 return TRUE;
4290
4291 /* Do any elf backend specific processing first. */
4292 if (bed->elf_backend_begin_write_processing)
4293 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4294
4295 if (! prep_headers (abfd))
4296 return FALSE;
4297
4298 /* Post process the headers if necessary. */
4299 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4300
4301 fsargs.failed = FALSE;
4302 fsargs.link_info = link_info;
4303 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4304 if (fsargs.failed)
4305 return FALSE;
4306
4307 if (!assign_section_numbers (abfd, link_info))
4308 return FALSE;
4309
4310 /* The backend linker builds symbol table information itself. */
4311 need_symtab = (link_info == NULL
4312 && (bfd_get_symcount (abfd) > 0
4313 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4314 == HAS_RELOC)));
4315 if (need_symtab)
4316 {
4317 /* Non-zero if doing a relocatable link. */
4318 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4319
4320 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4321 return FALSE;
4322 }
4323
4324 failed = FALSE;
4325 if (link_info == NULL)
4326 {
4327 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4328 if (failed)
4329 return FALSE;
4330 }
4331
4332 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4333 /* sh_name was set in prep_headers. */
4334 shstrtab_hdr->sh_type = SHT_STRTAB;
4335 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4336 shstrtab_hdr->sh_addr = 0;
4337 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4338 shstrtab_hdr->sh_entsize = 0;
4339 shstrtab_hdr->sh_link = 0;
4340 shstrtab_hdr->sh_info = 0;
4341 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4342 shstrtab_hdr->sh_addralign = 1;
4343
4344 if (!assign_file_positions_except_relocs (abfd, link_info))
4345 return FALSE;
4346
4347 if (need_symtab)
4348 {
4349 file_ptr off;
4350 Elf_Internal_Shdr *hdr;
4351
4352 off = elf_next_file_pos (abfd);
4353
4354 hdr = & elf_symtab_hdr (abfd);
4355 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4356
4357 if (elf_symtab_shndx_list (abfd) != NULL)
4358 {
4359 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4360 if (hdr->sh_size != 0)
4361 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4362 /* FIXME: What about other symtab_shndx sections in the list ? */
4363 }
4364
4365 hdr = &elf_tdata (abfd)->strtab_hdr;
4366 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4367
4368 elf_next_file_pos (abfd) = off;
4369
4370 /* Now that we know where the .strtab section goes, write it
4371 out. */
4372 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4373 || ! _bfd_elf_strtab_emit (abfd, strtab))
4374 return FALSE;
4375 _bfd_elf_strtab_free (strtab);
4376 }
4377
4378 abfd->output_has_begun = TRUE;
4379
4380 return TRUE;
4381 }
4382
4383 /* Make an initial estimate of the size of the program header. If we
4384 get the number wrong here, we'll redo section placement. */
4385
4386 static bfd_size_type
4387 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4388 {
4389 size_t segs;
4390 asection *s;
4391 const struct elf_backend_data *bed;
4392
4393 /* Assume we will need exactly two PT_LOAD segments: one for text
4394 and one for data. */
4395 segs = 2;
4396
4397 s = bfd_get_section_by_name (abfd, ".interp");
4398 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4399 {
4400 /* If we have a loadable interpreter section, we need a
4401 PT_INTERP segment. In this case, assume we also need a
4402 PT_PHDR segment, although that may not be true for all
4403 targets. */
4404 segs += 2;
4405 }
4406
4407 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4408 {
4409 /* We need a PT_DYNAMIC segment. */
4410 ++segs;
4411 }
4412
4413 if (info != NULL && info->relro)
4414 {
4415 /* We need a PT_GNU_RELRO segment. */
4416 ++segs;
4417 }
4418
4419 if (elf_eh_frame_hdr (abfd))
4420 {
4421 /* We need a PT_GNU_EH_FRAME segment. */
4422 ++segs;
4423 }
4424
4425 if (elf_stack_flags (abfd))
4426 {
4427 /* We need a PT_GNU_STACK segment. */
4428 ++segs;
4429 }
4430
4431 s = bfd_get_section_by_name (abfd,
4432 NOTE_GNU_PROPERTY_SECTION_NAME);
4433 if (s != NULL && s->size != 0)
4434 {
4435 /* We need a PT_GNU_PROPERTY segment. */
4436 ++segs;
4437 }
4438
4439 for (s = abfd->sections; s != NULL; s = s->next)
4440 {
4441 if ((s->flags & SEC_LOAD) != 0
4442 && elf_section_type (s) == SHT_NOTE)
4443 {
4444 unsigned int alignment_power;
4445 /* We need a PT_NOTE segment. */
4446 ++segs;
4447 /* Try to create just one PT_NOTE segment for all adjacent
4448 loadable SHT_NOTE sections. gABI requires that within a
4449 PT_NOTE segment (and also inside of each SHT_NOTE section)
4450 each note should have the same alignment. So we check
4451 whether the sections are correctly aligned. */
4452 alignment_power = s->alignment_power;
4453 while (s->next != NULL
4454 && s->next->alignment_power == alignment_power
4455 && (s->next->flags & SEC_LOAD) != 0
4456 && elf_section_type (s->next) == SHT_NOTE)
4457 s = s->next;
4458 }
4459 }
4460
4461 for (s = abfd->sections; s != NULL; s = s->next)
4462 {
4463 if (s->flags & SEC_THREAD_LOCAL)
4464 {
4465 /* We need a PT_TLS segment. */
4466 ++segs;
4467 break;
4468 }
4469 }
4470
4471 bed = get_elf_backend_data (abfd);
4472
4473 if ((abfd->flags & D_PAGED) != 0
4474 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4475 {
4476 /* Add a PT_GNU_MBIND segment for each mbind section. */
4477 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4478 for (s = abfd->sections; s != NULL; s = s->next)
4479 if (elf_section_flags (s) & SHF_GNU_MBIND)
4480 {
4481 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4482 {
4483 _bfd_error_handler
4484 /* xgettext:c-format */
4485 (_("%pB: GNU_MBIND section `%pA' has invalid "
4486 "sh_info field: %d"),
4487 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4488 continue;
4489 }
4490 /* Align mbind section to page size. */
4491 if (s->alignment_power < page_align_power)
4492 s->alignment_power = page_align_power;
4493 segs ++;
4494 }
4495 }
4496
4497 /* Let the backend count up any program headers it might need. */
4498 if (bed->elf_backend_additional_program_headers)
4499 {
4500 int a;
4501
4502 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4503 if (a == -1)
4504 abort ();
4505 segs += a;
4506 }
4507
4508 return segs * bed->s->sizeof_phdr;
4509 }
4510
4511 /* Find the segment that contains the output_section of section. */
4512
4513 Elf_Internal_Phdr *
4514 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4515 {
4516 struct elf_segment_map *m;
4517 Elf_Internal_Phdr *p;
4518
4519 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4520 m != NULL;
4521 m = m->next, p++)
4522 {
4523 int i;
4524
4525 for (i = m->count - 1; i >= 0; i--)
4526 if (m->sections[i] == section)
4527 return p;
4528 }
4529
4530 return NULL;
4531 }
4532
4533 /* Create a mapping from a set of sections to a program segment. */
4534
4535 static struct elf_segment_map *
4536 make_mapping (bfd *abfd,
4537 asection **sections,
4538 unsigned int from,
4539 unsigned int to,
4540 bfd_boolean phdr)
4541 {
4542 struct elf_segment_map *m;
4543 unsigned int i;
4544 asection **hdrpp;
4545 bfd_size_type amt;
4546
4547 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4548 amt += (to - from) * sizeof (asection *);
4549 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4550 if (m == NULL)
4551 return NULL;
4552 m->next = NULL;
4553 m->p_type = PT_LOAD;
4554 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4555 m->sections[i - from] = *hdrpp;
4556 m->count = to - from;
4557
4558 if (from == 0 && phdr)
4559 {
4560 /* Include the headers in the first PT_LOAD segment. */
4561 m->includes_filehdr = 1;
4562 m->includes_phdrs = 1;
4563 }
4564
4565 return m;
4566 }
4567
4568 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4569 on failure. */
4570
4571 struct elf_segment_map *
4572 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4573 {
4574 struct elf_segment_map *m;
4575
4576 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4577 sizeof (struct elf_segment_map));
4578 if (m == NULL)
4579 return NULL;
4580 m->next = NULL;
4581 m->p_type = PT_DYNAMIC;
4582 m->count = 1;
4583 m->sections[0] = dynsec;
4584
4585 return m;
4586 }
4587
4588 /* Possibly add or remove segments from the segment map. */
4589
4590 static bfd_boolean
4591 elf_modify_segment_map (bfd *abfd,
4592 struct bfd_link_info *info,
4593 bfd_boolean remove_empty_load)
4594 {
4595 struct elf_segment_map **m;
4596 const struct elf_backend_data *bed;
4597
4598 /* The placement algorithm assumes that non allocated sections are
4599 not in PT_LOAD segments. We ensure this here by removing such
4600 sections from the segment map. We also remove excluded
4601 sections. Finally, any PT_LOAD segment without sections is
4602 removed. */
4603 m = &elf_seg_map (abfd);
4604 while (*m)
4605 {
4606 unsigned int i, new_count;
4607
4608 for (new_count = 0, i = 0; i < (*m)->count; i++)
4609 {
4610 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4611 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4612 || (*m)->p_type != PT_LOAD))
4613 {
4614 (*m)->sections[new_count] = (*m)->sections[i];
4615 new_count++;
4616 }
4617 }
4618 (*m)->count = new_count;
4619
4620 if (remove_empty_load
4621 && (*m)->p_type == PT_LOAD
4622 && (*m)->count == 0
4623 && !(*m)->includes_phdrs)
4624 *m = (*m)->next;
4625 else
4626 m = &(*m)->next;
4627 }
4628
4629 bed = get_elf_backend_data (abfd);
4630 if (bed->elf_backend_modify_segment_map != NULL)
4631 {
4632 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4633 return FALSE;
4634 }
4635
4636 return TRUE;
4637 }
4638
4639 #define IS_TBSS(s) \
4640 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4641
4642 /* Set up a mapping from BFD sections to program segments. */
4643
4644 bfd_boolean
4645 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4646 {
4647 unsigned int count;
4648 struct elf_segment_map *m;
4649 asection **sections = NULL;
4650 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4651 bfd_boolean no_user_phdrs;
4652
4653 no_user_phdrs = elf_seg_map (abfd) == NULL;
4654
4655 if (info != NULL)
4656 info->user_phdrs = !no_user_phdrs;
4657
4658 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4659 {
4660 asection *s;
4661 unsigned int i;
4662 struct elf_segment_map *mfirst;
4663 struct elf_segment_map **pm;
4664 asection *last_hdr;
4665 bfd_vma last_size;
4666 unsigned int hdr_index;
4667 bfd_vma maxpagesize;
4668 asection **hdrpp;
4669 bfd_boolean phdr_in_segment;
4670 bfd_boolean writable;
4671 bfd_boolean executable;
4672 int tls_count = 0;
4673 asection *first_tls = NULL;
4674 asection *first_mbind = NULL;
4675 asection *dynsec, *eh_frame_hdr;
4676 bfd_size_type amt;
4677 bfd_vma addr_mask, wrap_to = 0;
4678 bfd_size_type phdr_size;
4679
4680 /* Select the allocated sections, and sort them. */
4681
4682 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4683 sizeof (asection *));
4684 if (sections == NULL)
4685 goto error_return;
4686
4687 /* Calculate top address, avoiding undefined behaviour of shift
4688 left operator when shift count is equal to size of type
4689 being shifted. */
4690 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4691 addr_mask = (addr_mask << 1) + 1;
4692
4693 i = 0;
4694 for (s = abfd->sections; s != NULL; s = s->next)
4695 {
4696 if ((s->flags & SEC_ALLOC) != 0)
4697 {
4698 sections[i] = s;
4699 ++i;
4700 /* A wrapping section potentially clashes with header. */
4701 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4702 wrap_to = (s->lma + s->size) & addr_mask;
4703 }
4704 }
4705 BFD_ASSERT (i <= bfd_count_sections (abfd));
4706 count = i;
4707
4708 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4709
4710 phdr_size = elf_program_header_size (abfd);
4711 if (phdr_size == (bfd_size_type) -1)
4712 phdr_size = get_program_header_size (abfd, info);
4713 phdr_size += bed->s->sizeof_ehdr;
4714 maxpagesize = bed->maxpagesize;
4715 if (maxpagesize == 0)
4716 maxpagesize = 1;
4717 phdr_in_segment = info != NULL && info->load_phdrs;
4718 if (count != 0
4719 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4720 >= (phdr_size & (maxpagesize - 1))))
4721 /* For compatibility with old scripts that may not be using
4722 SIZEOF_HEADERS, add headers when it looks like space has
4723 been left for them. */
4724 phdr_in_segment = TRUE;
4725
4726 /* Build the mapping. */
4727 mfirst = NULL;
4728 pm = &mfirst;
4729
4730 /* If we have a .interp section, then create a PT_PHDR segment for
4731 the program headers and a PT_INTERP segment for the .interp
4732 section. */
4733 s = bfd_get_section_by_name (abfd, ".interp");
4734 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4735 {
4736 amt = sizeof (struct elf_segment_map);
4737 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4738 if (m == NULL)
4739 goto error_return;
4740 m->next = NULL;
4741 m->p_type = PT_PHDR;
4742 m->p_flags = PF_R;
4743 m->p_flags_valid = 1;
4744 m->includes_phdrs = 1;
4745 phdr_in_segment = TRUE;
4746 *pm = m;
4747 pm = &m->next;
4748
4749 amt = sizeof (struct elf_segment_map);
4750 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4751 if (m == NULL)
4752 goto error_return;
4753 m->next = NULL;
4754 m->p_type = PT_INTERP;
4755 m->count = 1;
4756 m->sections[0] = s;
4757
4758 *pm = m;
4759 pm = &m->next;
4760 }
4761
4762 /* Look through the sections. We put sections in the same program
4763 segment when the start of the second section can be placed within
4764 a few bytes of the end of the first section. */
4765 last_hdr = NULL;
4766 last_size = 0;
4767 hdr_index = 0;
4768 writable = FALSE;
4769 executable = FALSE;
4770 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4771 if (dynsec != NULL
4772 && (dynsec->flags & SEC_LOAD) == 0)
4773 dynsec = NULL;
4774
4775 if ((abfd->flags & D_PAGED) == 0)
4776 phdr_in_segment = FALSE;
4777
4778 /* Deal with -Ttext or something similar such that the first section
4779 is not adjacent to the program headers. This is an
4780 approximation, since at this point we don't know exactly how many
4781 program headers we will need. */
4782 if (phdr_in_segment && count > 0)
4783 {
4784 bfd_vma phdr_lma;
4785 bfd_boolean separate_phdr = FALSE;
4786
4787 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4788 if (info != NULL
4789 && info->separate_code
4790 && (sections[0]->flags & SEC_CODE) != 0)
4791 {
4792 /* If data sections should be separate from code and
4793 thus not executable, and the first section is
4794 executable then put the file and program headers in
4795 their own PT_LOAD. */
4796 separate_phdr = TRUE;
4797 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4798 == (sections[0]->lma & addr_mask & -maxpagesize)))
4799 {
4800 /* The file and program headers are currently on the
4801 same page as the first section. Put them on the
4802 previous page if we can. */
4803 if (phdr_lma >= maxpagesize)
4804 phdr_lma -= maxpagesize;
4805 else
4806 separate_phdr = FALSE;
4807 }
4808 }
4809 if ((sections[0]->lma & addr_mask) < phdr_lma
4810 || (sections[0]->lma & addr_mask) < phdr_size)
4811 /* If file and program headers would be placed at the end
4812 of memory then it's probably better to omit them. */
4813 phdr_in_segment = FALSE;
4814 else if (phdr_lma < wrap_to)
4815 /* If a section wraps around to where we'll be placing
4816 file and program headers, then the headers will be
4817 overwritten. */
4818 phdr_in_segment = FALSE;
4819 else if (separate_phdr)
4820 {
4821 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4822 if (m == NULL)
4823 goto error_return;
4824 m->p_paddr = phdr_lma;
4825 m->p_vaddr_offset
4826 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4827 m->p_paddr_valid = 1;
4828 *pm = m;
4829 pm = &m->next;
4830 phdr_in_segment = FALSE;
4831 }
4832 }
4833
4834 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4835 {
4836 asection *hdr;
4837 bfd_boolean new_segment;
4838
4839 hdr = *hdrpp;
4840
4841 /* See if this section and the last one will fit in the same
4842 segment. */
4843
4844 if (last_hdr == NULL)
4845 {
4846 /* If we don't have a segment yet, then we don't need a new
4847 one (we build the last one after this loop). */
4848 new_segment = FALSE;
4849 }
4850 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4851 {
4852 /* If this section has a different relation between the
4853 virtual address and the load address, then we need a new
4854 segment. */
4855 new_segment = TRUE;
4856 }
4857 else if (hdr->lma < last_hdr->lma + last_size
4858 || last_hdr->lma + last_size < last_hdr->lma)
4859 {
4860 /* If this section has a load address that makes it overlap
4861 the previous section, then we need a new segment. */
4862 new_segment = TRUE;
4863 }
4864 else if ((abfd->flags & D_PAGED) != 0
4865 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4866 == (hdr->lma & -maxpagesize)))
4867 {
4868 /* If we are demand paged then we can't map two disk
4869 pages onto the same memory page. */
4870 new_segment = FALSE;
4871 }
4872 /* In the next test we have to be careful when last_hdr->lma is close
4873 to the end of the address space. If the aligned address wraps
4874 around to the start of the address space, then there are no more
4875 pages left in memory and it is OK to assume that the current
4876 section can be included in the current segment. */
4877 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4878 + maxpagesize > last_hdr->lma)
4879 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4880 + maxpagesize <= hdr->lma))
4881 {
4882 /* If putting this section in this segment would force us to
4883 skip a page in the segment, then we need a new segment. */
4884 new_segment = TRUE;
4885 }
4886 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4887 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4888 {
4889 /* We don't want to put a loaded section after a
4890 nonloaded (ie. bss style) section in the same segment
4891 as that will force the non-loaded section to be loaded.
4892 Consider .tbss sections as loaded for this purpose. */
4893 new_segment = TRUE;
4894 }
4895 else if ((abfd->flags & D_PAGED) == 0)
4896 {
4897 /* If the file is not demand paged, which means that we
4898 don't require the sections to be correctly aligned in the
4899 file, then there is no other reason for a new segment. */
4900 new_segment = FALSE;
4901 }
4902 else if (info != NULL
4903 && info->separate_code
4904 && executable != ((hdr->flags & SEC_CODE) != 0))
4905 {
4906 new_segment = TRUE;
4907 }
4908 else if (! writable
4909 && (hdr->flags & SEC_READONLY) == 0)
4910 {
4911 /* We don't want to put a writable section in a read only
4912 segment. */
4913 new_segment = TRUE;
4914 }
4915 else
4916 {
4917 /* Otherwise, we can use the same segment. */
4918 new_segment = FALSE;
4919 }
4920
4921 /* Allow interested parties a chance to override our decision. */
4922 if (last_hdr != NULL
4923 && info != NULL
4924 && info->callbacks->override_segment_assignment != NULL)
4925 new_segment
4926 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4927 last_hdr,
4928 new_segment);
4929
4930 if (! new_segment)
4931 {
4932 if ((hdr->flags & SEC_READONLY) == 0)
4933 writable = TRUE;
4934 if ((hdr->flags & SEC_CODE) != 0)
4935 executable = TRUE;
4936 last_hdr = hdr;
4937 /* .tbss sections effectively have zero size. */
4938 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4939 continue;
4940 }
4941
4942 /* We need a new program segment. We must create a new program
4943 header holding all the sections from hdr_index until hdr. */
4944
4945 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4946 if (m == NULL)
4947 goto error_return;
4948
4949 *pm = m;
4950 pm = &m->next;
4951
4952 if ((hdr->flags & SEC_READONLY) == 0)
4953 writable = TRUE;
4954 else
4955 writable = FALSE;
4956
4957 if ((hdr->flags & SEC_CODE) == 0)
4958 executable = FALSE;
4959 else
4960 executable = TRUE;
4961
4962 last_hdr = hdr;
4963 /* .tbss sections effectively have zero size. */
4964 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4965 hdr_index = i;
4966 phdr_in_segment = FALSE;
4967 }
4968
4969 /* Create a final PT_LOAD program segment, but not if it's just
4970 for .tbss. */
4971 if (last_hdr != NULL
4972 && (i - hdr_index != 1
4973 || !IS_TBSS (last_hdr)))
4974 {
4975 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4976 if (m == NULL)
4977 goto error_return;
4978
4979 *pm = m;
4980 pm = &m->next;
4981 }
4982
4983 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4984 if (dynsec != NULL)
4985 {
4986 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4987 if (m == NULL)
4988 goto error_return;
4989 *pm = m;
4990 pm = &m->next;
4991 }
4992
4993 /* For each batch of consecutive loadable SHT_NOTE sections,
4994 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4995 because if we link together nonloadable .note sections and
4996 loadable .note sections, we will generate two .note sections
4997 in the output file. */
4998 for (s = abfd->sections; s != NULL; s = s->next)
4999 {
5000 if ((s->flags & SEC_LOAD) != 0
5001 && elf_section_type (s) == SHT_NOTE)
5002 {
5003 asection *s2;
5004 unsigned int alignment_power = s->alignment_power;
5005
5006 count = 1;
5007 for (s2 = s; s2->next != NULL; s2 = s2->next)
5008 {
5009 if (s2->next->alignment_power == alignment_power
5010 && (s2->next->flags & SEC_LOAD) != 0
5011 && elf_section_type (s2->next) == SHT_NOTE
5012 && align_power (s2->lma + s2->size,
5013 alignment_power)
5014 == s2->next->lma)
5015 count++;
5016 else
5017 break;
5018 }
5019 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5020 amt += count * sizeof (asection *);
5021 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5022 if (m == NULL)
5023 goto error_return;
5024 m->next = NULL;
5025 m->p_type = PT_NOTE;
5026 m->count = count;
5027 while (count > 1)
5028 {
5029 m->sections[m->count - count--] = s;
5030 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5031 s = s->next;
5032 }
5033 m->sections[m->count - 1] = s;
5034 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5035 *pm = m;
5036 pm = &m->next;
5037 }
5038 if (s->flags & SEC_THREAD_LOCAL)
5039 {
5040 if (! tls_count)
5041 first_tls = s;
5042 tls_count++;
5043 }
5044 if (first_mbind == NULL
5045 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5046 first_mbind = s;
5047 }
5048
5049 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5050 if (tls_count > 0)
5051 {
5052 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5053 amt += tls_count * sizeof (asection *);
5054 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5055 if (m == NULL)
5056 goto error_return;
5057 m->next = NULL;
5058 m->p_type = PT_TLS;
5059 m->count = tls_count;
5060 /* Mandated PF_R. */
5061 m->p_flags = PF_R;
5062 m->p_flags_valid = 1;
5063 s = first_tls;
5064 for (i = 0; i < (unsigned int) tls_count; ++i)
5065 {
5066 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5067 {
5068 _bfd_error_handler
5069 (_("%pB: TLS sections are not adjacent:"), abfd);
5070 s = first_tls;
5071 i = 0;
5072 while (i < (unsigned int) tls_count)
5073 {
5074 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5075 {
5076 _bfd_error_handler (_(" TLS: %pA"), s);
5077 i++;
5078 }
5079 else
5080 _bfd_error_handler (_(" non-TLS: %pA"), s);
5081 s = s->next;
5082 }
5083 bfd_set_error (bfd_error_bad_value);
5084 goto error_return;
5085 }
5086 m->sections[i] = s;
5087 s = s->next;
5088 }
5089
5090 *pm = m;
5091 pm = &m->next;
5092 }
5093
5094 if (first_mbind
5095 && (abfd->flags & D_PAGED) != 0
5096 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5097 for (s = first_mbind; s != NULL; s = s->next)
5098 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5099 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5100 {
5101 /* Mandated PF_R. */
5102 unsigned long p_flags = PF_R;
5103 if ((s->flags & SEC_READONLY) == 0)
5104 p_flags |= PF_W;
5105 if ((s->flags & SEC_CODE) != 0)
5106 p_flags |= PF_X;
5107
5108 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5109 m = bfd_zalloc (abfd, amt);
5110 if (m == NULL)
5111 goto error_return;
5112 m->next = NULL;
5113 m->p_type = (PT_GNU_MBIND_LO
5114 + elf_section_data (s)->this_hdr.sh_info);
5115 m->count = 1;
5116 m->p_flags_valid = 1;
5117 m->sections[0] = s;
5118 m->p_flags = p_flags;
5119
5120 *pm = m;
5121 pm = &m->next;
5122 }
5123
5124 s = bfd_get_section_by_name (abfd,
5125 NOTE_GNU_PROPERTY_SECTION_NAME);
5126 if (s != NULL && s->size != 0)
5127 {
5128 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5129 m = bfd_zalloc (abfd, amt);
5130 if (m == NULL)
5131 goto error_return;
5132 m->next = NULL;
5133 m->p_type = PT_GNU_PROPERTY;
5134 m->count = 1;
5135 m->p_flags_valid = 1;
5136 m->sections[0] = s;
5137 m->p_flags = PF_R;
5138 *pm = m;
5139 pm = &m->next;
5140 }
5141
5142 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5143 segment. */
5144 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5145 if (eh_frame_hdr != NULL
5146 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5147 {
5148 amt = sizeof (struct elf_segment_map);
5149 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5150 if (m == NULL)
5151 goto error_return;
5152 m->next = NULL;
5153 m->p_type = PT_GNU_EH_FRAME;
5154 m->count = 1;
5155 m->sections[0] = eh_frame_hdr->output_section;
5156
5157 *pm = m;
5158 pm = &m->next;
5159 }
5160
5161 if (elf_stack_flags (abfd))
5162 {
5163 amt = sizeof (struct elf_segment_map);
5164 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5165 if (m == NULL)
5166 goto error_return;
5167 m->next = NULL;
5168 m->p_type = PT_GNU_STACK;
5169 m->p_flags = elf_stack_flags (abfd);
5170 m->p_align = bed->stack_align;
5171 m->p_flags_valid = 1;
5172 m->p_align_valid = m->p_align != 0;
5173 if (info->stacksize > 0)
5174 {
5175 m->p_size = info->stacksize;
5176 m->p_size_valid = 1;
5177 }
5178
5179 *pm = m;
5180 pm = &m->next;
5181 }
5182
5183 if (info != NULL && info->relro)
5184 {
5185 for (m = mfirst; m != NULL; m = m->next)
5186 {
5187 if (m->p_type == PT_LOAD
5188 && m->count != 0
5189 && m->sections[0]->vma >= info->relro_start
5190 && m->sections[0]->vma < info->relro_end)
5191 {
5192 i = m->count;
5193 while (--i != (unsigned) -1)
5194 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5195 == (SEC_LOAD | SEC_HAS_CONTENTS))
5196 break;
5197
5198 if (i != (unsigned) -1)
5199 break;
5200 }
5201 }
5202
5203 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5204 if (m != NULL)
5205 {
5206 amt = sizeof (struct elf_segment_map);
5207 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5208 if (m == NULL)
5209 goto error_return;
5210 m->next = NULL;
5211 m->p_type = PT_GNU_RELRO;
5212 *pm = m;
5213 pm = &m->next;
5214 }
5215 }
5216
5217 free (sections);
5218 elf_seg_map (abfd) = mfirst;
5219 }
5220
5221 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5222 return FALSE;
5223
5224 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5225 ++count;
5226 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5227
5228 return TRUE;
5229
5230 error_return:
5231 if (sections != NULL)
5232 free (sections);
5233 return FALSE;
5234 }
5235
5236 /* Sort sections by address. */
5237
5238 static int
5239 elf_sort_sections (const void *arg1, const void *arg2)
5240 {
5241 const asection *sec1 = *(const asection **) arg1;
5242 const asection *sec2 = *(const asection **) arg2;
5243 bfd_size_type size1, size2;
5244
5245 /* Sort by LMA first, since this is the address used to
5246 place the section into a segment. */
5247 if (sec1->lma < sec2->lma)
5248 return -1;
5249 else if (sec1->lma > sec2->lma)
5250 return 1;
5251
5252 /* Then sort by VMA. Normally the LMA and the VMA will be
5253 the same, and this will do nothing. */
5254 if (sec1->vma < sec2->vma)
5255 return -1;
5256 else if (sec1->vma > sec2->vma)
5257 return 1;
5258
5259 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5260
5261 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5262
5263 if (TOEND (sec1))
5264 {
5265 if (TOEND (sec2))
5266 {
5267 /* If the indices are the same, do not return 0
5268 here, but continue to try the next comparison. */
5269 if (sec1->target_index - sec2->target_index != 0)
5270 return sec1->target_index - sec2->target_index;
5271 }
5272 else
5273 return 1;
5274 }
5275 else if (TOEND (sec2))
5276 return -1;
5277
5278 #undef TOEND
5279
5280 /* Sort by size, to put zero sized sections
5281 before others at the same address. */
5282
5283 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5284 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5285
5286 if (size1 < size2)
5287 return -1;
5288 if (size1 > size2)
5289 return 1;
5290
5291 return sec1->target_index - sec2->target_index;
5292 }
5293
5294 /* Ian Lance Taylor writes:
5295
5296 We shouldn't be using % with a negative signed number. That's just
5297 not good. We have to make sure either that the number is not
5298 negative, or that the number has an unsigned type. When the types
5299 are all the same size they wind up as unsigned. When file_ptr is a
5300 larger signed type, the arithmetic winds up as signed long long,
5301 which is wrong.
5302
5303 What we're trying to say here is something like ``increase OFF by
5304 the least amount that will cause it to be equal to the VMA modulo
5305 the page size.'' */
5306 /* In other words, something like:
5307
5308 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5309 off_offset = off % bed->maxpagesize;
5310 if (vma_offset < off_offset)
5311 adjustment = vma_offset + bed->maxpagesize - off_offset;
5312 else
5313 adjustment = vma_offset - off_offset;
5314
5315 which can be collapsed into the expression below. */
5316
5317 static file_ptr
5318 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5319 {
5320 /* PR binutils/16199: Handle an alignment of zero. */
5321 if (maxpagesize == 0)
5322 maxpagesize = 1;
5323 return ((vma - off) % maxpagesize);
5324 }
5325
5326 static void
5327 print_segment_map (const struct elf_segment_map *m)
5328 {
5329 unsigned int j;
5330 const char *pt = get_segment_type (m->p_type);
5331 char buf[32];
5332
5333 if (pt == NULL)
5334 {
5335 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5336 sprintf (buf, "LOPROC+%7.7x",
5337 (unsigned int) (m->p_type - PT_LOPROC));
5338 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5339 sprintf (buf, "LOOS+%7.7x",
5340 (unsigned int) (m->p_type - PT_LOOS));
5341 else
5342 snprintf (buf, sizeof (buf), "%8.8x",
5343 (unsigned int) m->p_type);
5344 pt = buf;
5345 }
5346 fflush (stdout);
5347 fprintf (stderr, "%s:", pt);
5348 for (j = 0; j < m->count; j++)
5349 fprintf (stderr, " %s", m->sections [j]->name);
5350 putc ('\n',stderr);
5351 fflush (stderr);
5352 }
5353
5354 static bfd_boolean
5355 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5356 {
5357 void *buf;
5358 bfd_boolean ret;
5359
5360 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5361 return FALSE;
5362 buf = bfd_zmalloc (len);
5363 if (buf == NULL)
5364 return FALSE;
5365 ret = bfd_bwrite (buf, len, abfd) == len;
5366 free (buf);
5367 return ret;
5368 }
5369
5370 /* Assign file positions to the sections based on the mapping from
5371 sections to segments. This function also sets up some fields in
5372 the file header. */
5373
5374 static bfd_boolean
5375 assign_file_positions_for_load_sections (bfd *abfd,
5376 struct bfd_link_info *link_info)
5377 {
5378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5379 struct elf_segment_map *m;
5380 Elf_Internal_Phdr *phdrs;
5381 Elf_Internal_Phdr *p;
5382 file_ptr off;
5383 bfd_size_type maxpagesize;
5384 unsigned int pt_load_count = 0;
5385 unsigned int alloc;
5386 unsigned int i, j;
5387 bfd_vma header_pad = 0;
5388
5389 if (link_info == NULL
5390 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5391 return FALSE;
5392
5393 alloc = 0;
5394 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5395 {
5396 ++alloc;
5397 if (m->header_size)
5398 header_pad = m->header_size;
5399 }
5400
5401 if (alloc)
5402 {
5403 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5404 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5405 }
5406 else
5407 {
5408 /* PR binutils/12467. */
5409 elf_elfheader (abfd)->e_phoff = 0;
5410 elf_elfheader (abfd)->e_phentsize = 0;
5411 }
5412
5413 elf_elfheader (abfd)->e_phnum = alloc;
5414
5415 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5416 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5417 else
5418 BFD_ASSERT (elf_program_header_size (abfd)
5419 >= alloc * bed->s->sizeof_phdr);
5420
5421 if (alloc == 0)
5422 {
5423 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5424 return TRUE;
5425 }
5426
5427 /* We're writing the size in elf_program_header_size (abfd),
5428 see assign_file_positions_except_relocs, so make sure we have
5429 that amount allocated, with trailing space cleared.
5430 The variable alloc contains the computed need, while
5431 elf_program_header_size (abfd) contains the size used for the
5432 layout.
5433 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5434 where the layout is forced to according to a larger size in the
5435 last iterations for the testcase ld-elf/header. */
5436 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5437 == 0);
5438 phdrs = (Elf_Internal_Phdr *)
5439 bfd_zalloc2 (abfd,
5440 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5441 sizeof (Elf_Internal_Phdr));
5442 elf_tdata (abfd)->phdr = phdrs;
5443 if (phdrs == NULL)
5444 return FALSE;
5445
5446 maxpagesize = 1;
5447 if ((abfd->flags & D_PAGED) != 0)
5448 maxpagesize = bed->maxpagesize;
5449
5450 off = bed->s->sizeof_ehdr;
5451 off += alloc * bed->s->sizeof_phdr;
5452 if (header_pad < (bfd_vma) off)
5453 header_pad = 0;
5454 else
5455 header_pad -= off;
5456 off += header_pad;
5457
5458 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5459 m != NULL;
5460 m = m->next, p++, j++)
5461 {
5462 asection **secpp;
5463 bfd_vma off_adjust;
5464 bfd_boolean no_contents;
5465
5466 /* If elf_segment_map is not from map_sections_to_segments, the
5467 sections may not be correctly ordered. NOTE: sorting should
5468 not be done to the PT_NOTE section of a corefile, which may
5469 contain several pseudo-sections artificially created by bfd.
5470 Sorting these pseudo-sections breaks things badly. */
5471 if (m->count > 1
5472 && !(elf_elfheader (abfd)->e_type == ET_CORE
5473 && m->p_type == PT_NOTE))
5474 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5475 elf_sort_sections);
5476
5477 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5478 number of sections with contents contributing to both p_filesz
5479 and p_memsz, followed by a number of sections with no contents
5480 that just contribute to p_memsz. In this loop, OFF tracks next
5481 available file offset for PT_LOAD and PT_NOTE segments. */
5482 p->p_type = m->p_type;
5483 p->p_flags = m->p_flags;
5484
5485 if (m->count == 0)
5486 p->p_vaddr = m->p_vaddr_offset;
5487 else
5488 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5489
5490 if (m->p_paddr_valid)
5491 p->p_paddr = m->p_paddr;
5492 else if (m->count == 0)
5493 p->p_paddr = 0;
5494 else
5495 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5496
5497 if (p->p_type == PT_LOAD
5498 && (abfd->flags & D_PAGED) != 0)
5499 {
5500 /* p_align in demand paged PT_LOAD segments effectively stores
5501 the maximum page size. When copying an executable with
5502 objcopy, we set m->p_align from the input file. Use this
5503 value for maxpagesize rather than bed->maxpagesize, which
5504 may be different. Note that we use maxpagesize for PT_TLS
5505 segment alignment later in this function, so we are relying
5506 on at least one PT_LOAD segment appearing before a PT_TLS
5507 segment. */
5508 if (m->p_align_valid)
5509 maxpagesize = m->p_align;
5510
5511 p->p_align = maxpagesize;
5512 pt_load_count += 1;
5513 }
5514 else if (m->p_align_valid)
5515 p->p_align = m->p_align;
5516 else if (m->count == 0)
5517 p->p_align = 1 << bed->s->log_file_align;
5518 else
5519 p->p_align = 0;
5520
5521 no_contents = FALSE;
5522 off_adjust = 0;
5523 if (p->p_type == PT_LOAD
5524 && m->count > 0)
5525 {
5526 bfd_size_type align;
5527 unsigned int align_power = 0;
5528
5529 if (m->p_align_valid)
5530 align = p->p_align;
5531 else
5532 {
5533 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5534 {
5535 unsigned int secalign;
5536
5537 secalign = bfd_get_section_alignment (abfd, *secpp);
5538 if (secalign > align_power)
5539 align_power = secalign;
5540 }
5541 align = (bfd_size_type) 1 << align_power;
5542 if (align < maxpagesize)
5543 align = maxpagesize;
5544 }
5545
5546 for (i = 0; i < m->count; i++)
5547 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5548 /* If we aren't making room for this section, then
5549 it must be SHT_NOBITS regardless of what we've
5550 set via struct bfd_elf_special_section. */
5551 elf_section_type (m->sections[i]) = SHT_NOBITS;
5552
5553 /* Find out whether this segment contains any loadable
5554 sections. */
5555 no_contents = TRUE;
5556 for (i = 0; i < m->count; i++)
5557 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5558 {
5559 no_contents = FALSE;
5560 break;
5561 }
5562
5563 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5564
5565 /* Broken hardware and/or kernel require that files do not
5566 map the same page with different permissions on some hppa
5567 processors. */
5568 if (pt_load_count > 1
5569 && bed->no_page_alias
5570 && (off & (maxpagesize - 1)) != 0
5571 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5572 off_adjust += maxpagesize;
5573 off += off_adjust;
5574 if (no_contents)
5575 {
5576 /* We shouldn't need to align the segment on disk since
5577 the segment doesn't need file space, but the gABI
5578 arguably requires the alignment and glibc ld.so
5579 checks it. So to comply with the alignment
5580 requirement but not waste file space, we adjust
5581 p_offset for just this segment. (OFF_ADJUST is
5582 subtracted from OFF later.) This may put p_offset
5583 past the end of file, but that shouldn't matter. */
5584 }
5585 else
5586 off_adjust = 0;
5587 }
5588 /* Make sure the .dynamic section is the first section in the
5589 PT_DYNAMIC segment. */
5590 else if (p->p_type == PT_DYNAMIC
5591 && m->count > 1
5592 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5593 {
5594 _bfd_error_handler
5595 (_("%pB: The first section in the PT_DYNAMIC segment"
5596 " is not the .dynamic section"),
5597 abfd);
5598 bfd_set_error (bfd_error_bad_value);
5599 return FALSE;
5600 }
5601 /* Set the note section type to SHT_NOTE. */
5602 else if (p->p_type == PT_NOTE)
5603 for (i = 0; i < m->count; i++)
5604 elf_section_type (m->sections[i]) = SHT_NOTE;
5605
5606 p->p_offset = 0;
5607 p->p_filesz = 0;
5608 p->p_memsz = 0;
5609
5610 if (m->includes_filehdr)
5611 {
5612 if (!m->p_flags_valid)
5613 p->p_flags |= PF_R;
5614 p->p_filesz = bed->s->sizeof_ehdr;
5615 p->p_memsz = bed->s->sizeof_ehdr;
5616 if (m->count > 0)
5617 {
5618 if (p->p_vaddr < (bfd_vma) off
5619 || (!m->p_paddr_valid
5620 && p->p_paddr < (bfd_vma) off))
5621 {
5622 _bfd_error_handler
5623 (_("%pB: not enough room for program headers,"
5624 " try linking with -N"),
5625 abfd);
5626 bfd_set_error (bfd_error_bad_value);
5627 return FALSE;
5628 }
5629
5630 p->p_vaddr -= off;
5631 if (!m->p_paddr_valid)
5632 p->p_paddr -= off;
5633 }
5634 }
5635
5636 if (m->includes_phdrs)
5637 {
5638 if (!m->p_flags_valid)
5639 p->p_flags |= PF_R;
5640
5641 if (!m->includes_filehdr)
5642 {
5643 p->p_offset = bed->s->sizeof_ehdr;
5644
5645 if (m->count > 0)
5646 {
5647 p->p_vaddr -= off - p->p_offset;
5648 if (!m->p_paddr_valid)
5649 p->p_paddr -= off - p->p_offset;
5650 }
5651 }
5652
5653 p->p_filesz += alloc * bed->s->sizeof_phdr;
5654 p->p_memsz += alloc * bed->s->sizeof_phdr;
5655 if (m->count)
5656 {
5657 p->p_filesz += header_pad;
5658 p->p_memsz += header_pad;
5659 }
5660 }
5661
5662 if (p->p_type == PT_LOAD
5663 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5664 {
5665 if (!m->includes_filehdr && !m->includes_phdrs)
5666 p->p_offset = off;
5667 else
5668 {
5669 file_ptr adjust;
5670
5671 adjust = off - (p->p_offset + p->p_filesz);
5672 if (!no_contents)
5673 p->p_filesz += adjust;
5674 p->p_memsz += adjust;
5675 }
5676 }
5677
5678 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5679 maps. Set filepos for sections in PT_LOAD segments, and in
5680 core files, for sections in PT_NOTE segments.
5681 assign_file_positions_for_non_load_sections will set filepos
5682 for other sections and update p_filesz for other segments. */
5683 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5684 {
5685 asection *sec;
5686 bfd_size_type align;
5687 Elf_Internal_Shdr *this_hdr;
5688
5689 sec = *secpp;
5690 this_hdr = &elf_section_data (sec)->this_hdr;
5691 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5692
5693 if ((p->p_type == PT_LOAD
5694 || p->p_type == PT_TLS)
5695 && (this_hdr->sh_type != SHT_NOBITS
5696 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5697 && ((this_hdr->sh_flags & SHF_TLS) == 0
5698 || p->p_type == PT_TLS))))
5699 {
5700 bfd_vma p_start = p->p_paddr;
5701 bfd_vma p_end = p_start + p->p_memsz;
5702 bfd_vma s_start = sec->lma;
5703 bfd_vma adjust = s_start - p_end;
5704
5705 if (adjust != 0
5706 && (s_start < p_end
5707 || p_end < p_start))
5708 {
5709 _bfd_error_handler
5710 /* xgettext:c-format */
5711 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5712 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5713 adjust = 0;
5714 sec->lma = p_end;
5715 }
5716 p->p_memsz += adjust;
5717
5718 if (this_hdr->sh_type != SHT_NOBITS)
5719 {
5720 if (p->p_filesz + adjust < p->p_memsz)
5721 {
5722 /* We have a PROGBITS section following NOBITS ones.
5723 Allocate file space for the NOBITS section(s) and
5724 zero it. */
5725 adjust = p->p_memsz - p->p_filesz;
5726 if (!write_zeros (abfd, off, adjust))
5727 return FALSE;
5728 }
5729 off += adjust;
5730 p->p_filesz += adjust;
5731 }
5732 }
5733
5734 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5735 {
5736 /* The section at i == 0 is the one that actually contains
5737 everything. */
5738 if (i == 0)
5739 {
5740 this_hdr->sh_offset = sec->filepos = off;
5741 off += this_hdr->sh_size;
5742 p->p_filesz = this_hdr->sh_size;
5743 p->p_memsz = 0;
5744 p->p_align = 1;
5745 }
5746 else
5747 {
5748 /* The rest are fake sections that shouldn't be written. */
5749 sec->filepos = 0;
5750 sec->size = 0;
5751 sec->flags = 0;
5752 continue;
5753 }
5754 }
5755 else
5756 {
5757 if (p->p_type == PT_LOAD)
5758 {
5759 this_hdr->sh_offset = sec->filepos = off;
5760 if (this_hdr->sh_type != SHT_NOBITS)
5761 off += this_hdr->sh_size;
5762 }
5763 else if (this_hdr->sh_type == SHT_NOBITS
5764 && (this_hdr->sh_flags & SHF_TLS) != 0
5765 && this_hdr->sh_offset == 0)
5766 {
5767 /* This is a .tbss section that didn't get a PT_LOAD.
5768 (See _bfd_elf_map_sections_to_segments "Create a
5769 final PT_LOAD".) Set sh_offset to the value it
5770 would have if we had created a zero p_filesz and
5771 p_memsz PT_LOAD header for the section. This
5772 also makes the PT_TLS header have the same
5773 p_offset value. */
5774 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5775 off, align);
5776 this_hdr->sh_offset = sec->filepos = off + adjust;
5777 }
5778
5779 if (this_hdr->sh_type != SHT_NOBITS)
5780 {
5781 p->p_filesz += this_hdr->sh_size;
5782 /* A load section without SHF_ALLOC is something like
5783 a note section in a PT_NOTE segment. These take
5784 file space but are not loaded into memory. */
5785 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5786 p->p_memsz += this_hdr->sh_size;
5787 }
5788 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5789 {
5790 if (p->p_type == PT_TLS)
5791 p->p_memsz += this_hdr->sh_size;
5792
5793 /* .tbss is special. It doesn't contribute to p_memsz of
5794 normal segments. */
5795 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5796 p->p_memsz += this_hdr->sh_size;
5797 }
5798
5799 if (align > p->p_align
5800 && !m->p_align_valid
5801 && (p->p_type != PT_LOAD
5802 || (abfd->flags & D_PAGED) == 0))
5803 p->p_align = align;
5804 }
5805
5806 if (!m->p_flags_valid)
5807 {
5808 p->p_flags |= PF_R;
5809 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5810 p->p_flags |= PF_X;
5811 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5812 p->p_flags |= PF_W;
5813 }
5814 }
5815
5816 off -= off_adjust;
5817
5818 /* Check that all sections are in a PT_LOAD segment.
5819 Don't check funky gdb generated core files. */
5820 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5821 {
5822 bfd_boolean check_vma = TRUE;
5823
5824 for (i = 1; i < m->count; i++)
5825 if (m->sections[i]->vma == m->sections[i - 1]->vma
5826 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5827 ->this_hdr), p) != 0
5828 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5829 ->this_hdr), p) != 0)
5830 {
5831 /* Looks like we have overlays packed into the segment. */
5832 check_vma = FALSE;
5833 break;
5834 }
5835
5836 for (i = 0; i < m->count; i++)
5837 {
5838 Elf_Internal_Shdr *this_hdr;
5839 asection *sec;
5840
5841 sec = m->sections[i];
5842 this_hdr = &(elf_section_data(sec)->this_hdr);
5843 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5844 && !ELF_TBSS_SPECIAL (this_hdr, p))
5845 {
5846 _bfd_error_handler
5847 /* xgettext:c-format */
5848 (_("%pB: section `%pA' can't be allocated in segment %d"),
5849 abfd, sec, j);
5850 print_segment_map (m);
5851 }
5852 }
5853 }
5854 }
5855
5856 elf_next_file_pos (abfd) = off;
5857 return TRUE;
5858 }
5859
5860 /* Determine if a bfd is a debuginfo file. Unfortunately there
5861 is no defined method for detecting such files, so we have to
5862 use heuristics instead. */
5863
5864 bfd_boolean
5865 is_debuginfo_file (bfd *abfd)
5866 {
5867 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5868 return FALSE;
5869
5870 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
5871 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
5872 Elf_Internal_Shdr **headerp;
5873
5874 for (headerp = start_headers; headerp < end_headers; headerp ++)
5875 {
5876 Elf_Internal_Shdr *header = * headerp;
5877
5878 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
5879 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
5880 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
5881 && header->sh_type != SHT_NOBITS
5882 && header->sh_type != SHT_NOTE)
5883 return FALSE;
5884 }
5885
5886 return TRUE;
5887 }
5888
5889 /* Assign file positions for the other sections. */
5890
5891 static bfd_boolean
5892 assign_file_positions_for_non_load_sections (bfd *abfd,
5893 struct bfd_link_info *link_info)
5894 {
5895 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5896 Elf_Internal_Shdr **i_shdrpp;
5897 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5898 Elf_Internal_Phdr *phdrs;
5899 Elf_Internal_Phdr *p;
5900 struct elf_segment_map *m;
5901 struct elf_segment_map *hdrs_segment;
5902 bfd_vma filehdr_vaddr, filehdr_paddr;
5903 bfd_vma phdrs_vaddr, phdrs_paddr;
5904 file_ptr off;
5905 unsigned int count;
5906
5907 i_shdrpp = elf_elfsections (abfd);
5908 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5909 off = elf_next_file_pos (abfd);
5910 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5911 {
5912 Elf_Internal_Shdr *hdr;
5913
5914 hdr = *hdrpp;
5915 if (hdr->bfd_section != NULL
5916 && (hdr->bfd_section->filepos != 0
5917 || (hdr->sh_type == SHT_NOBITS
5918 && hdr->contents == NULL)))
5919 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5920 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5921 {
5922 if (hdr->sh_size != 0
5923 /* PR 24717 - debuginfo files are known to be not strictly
5924 compliant with the ELF standard. In particular they often
5925 have .note.gnu.property sections that are outside of any
5926 loadable segment. This is not a problem for such files,
5927 so do not warn about them. */
5928 && ! is_debuginfo_file (abfd))
5929 _bfd_error_handler
5930 /* xgettext:c-format */
5931 (_("%pB: warning: allocated section `%s' not in segment"),
5932 abfd,
5933 (hdr->bfd_section == NULL
5934 ? "*unknown*"
5935 : hdr->bfd_section->name));
5936 /* We don't need to page align empty sections. */
5937 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5938 off += vma_page_aligned_bias (hdr->sh_addr, off,
5939 bed->maxpagesize);
5940 else
5941 off += vma_page_aligned_bias (hdr->sh_addr, off,
5942 hdr->sh_addralign);
5943 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5944 FALSE);
5945 }
5946 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5947 && hdr->bfd_section == NULL)
5948 || (hdr->bfd_section != NULL
5949 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5950 /* Compress DWARF debug sections. */
5951 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5952 || (elf_symtab_shndx_list (abfd) != NULL
5953 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5954 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5955 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5956 hdr->sh_offset = -1;
5957 else
5958 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5959 }
5960
5961 /* Now that we have set the section file positions, we can set up
5962 the file positions for the non PT_LOAD segments. */
5963 count = 0;
5964 filehdr_vaddr = 0;
5965 filehdr_paddr = 0;
5966 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5967 phdrs_paddr = 0;
5968 hdrs_segment = NULL;
5969 phdrs = elf_tdata (abfd)->phdr;
5970 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5971 {
5972 ++count;
5973 if (p->p_type != PT_LOAD)
5974 continue;
5975
5976 if (m->includes_filehdr)
5977 {
5978 filehdr_vaddr = p->p_vaddr;
5979 filehdr_paddr = p->p_paddr;
5980 }
5981 if (m->includes_phdrs)
5982 {
5983 phdrs_vaddr = p->p_vaddr;
5984 phdrs_paddr = p->p_paddr;
5985 if (m->includes_filehdr)
5986 {
5987 hdrs_segment = m;
5988 phdrs_vaddr += bed->s->sizeof_ehdr;
5989 phdrs_paddr += bed->s->sizeof_ehdr;
5990 }
5991 }
5992 }
5993
5994 if (hdrs_segment != NULL && link_info != NULL)
5995 {
5996 /* There is a segment that contains both the file headers and the
5997 program headers, so provide a symbol __ehdr_start pointing there.
5998 A program can use this to examine itself robustly. */
5999
6000 struct elf_link_hash_entry *hash
6001 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6002 FALSE, FALSE, TRUE);
6003 /* If the symbol was referenced and not defined, define it. */
6004 if (hash != NULL
6005 && (hash->root.type == bfd_link_hash_new
6006 || hash->root.type == bfd_link_hash_undefined
6007 || hash->root.type == bfd_link_hash_undefweak
6008 || hash->root.type == bfd_link_hash_common))
6009 {
6010 asection *s = NULL;
6011 if (hdrs_segment->count != 0)
6012 /* The segment contains sections, so use the first one. */
6013 s = hdrs_segment->sections[0];
6014 else
6015 /* Use the first (i.e. lowest-addressed) section in any segment. */
6016 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6017 if (m->count != 0)
6018 {
6019 s = m->sections[0];
6020 break;
6021 }
6022
6023 if (s != NULL)
6024 {
6025 hash->root.u.def.value = filehdr_vaddr - s->vma;
6026 hash->root.u.def.section = s;
6027 }
6028 else
6029 {
6030 hash->root.u.def.value = filehdr_vaddr;
6031 hash->root.u.def.section = bfd_abs_section_ptr;
6032 }
6033
6034 hash->root.type = bfd_link_hash_defined;
6035 hash->def_regular = 1;
6036 hash->non_elf = 0;
6037 }
6038 }
6039
6040 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6041 {
6042 if (p->p_type == PT_GNU_RELRO)
6043 {
6044 bfd_vma start, end;
6045 bfd_boolean ok;
6046
6047 if (link_info != NULL)
6048 {
6049 /* During linking the range of the RELRO segment is passed
6050 in link_info. Note that there may be padding between
6051 relro_start and the first RELRO section. */
6052 start = link_info->relro_start;
6053 end = link_info->relro_end;
6054 }
6055 else if (m->count != 0)
6056 {
6057 if (!m->p_size_valid)
6058 abort ();
6059 start = m->sections[0]->vma;
6060 end = start + m->p_size;
6061 }
6062 else
6063 {
6064 start = 0;
6065 end = 0;
6066 }
6067
6068 ok = FALSE;
6069 if (start < end)
6070 {
6071 struct elf_segment_map *lm;
6072 const Elf_Internal_Phdr *lp;
6073 unsigned int i;
6074
6075 /* Find a LOAD segment containing a section in the RELRO
6076 segment. */
6077 for (lm = elf_seg_map (abfd), lp = phdrs;
6078 lm != NULL;
6079 lm = lm->next, lp++)
6080 {
6081 if (lp->p_type == PT_LOAD
6082 && lm->count != 0
6083 && (lm->sections[lm->count - 1]->vma
6084 + (!IS_TBSS (lm->sections[lm->count - 1])
6085 ? lm->sections[lm->count - 1]->size
6086 : 0)) > start
6087 && lm->sections[0]->vma < end)
6088 break;
6089 }
6090
6091 if (lm != NULL)
6092 {
6093 /* Find the section starting the RELRO segment. */
6094 for (i = 0; i < lm->count; i++)
6095 {
6096 asection *s = lm->sections[i];
6097 if (s->vma >= start
6098 && s->vma < end
6099 && s->size != 0)
6100 break;
6101 }
6102
6103 if (i < lm->count)
6104 {
6105 p->p_vaddr = lm->sections[i]->vma;
6106 p->p_paddr = lm->sections[i]->lma;
6107 p->p_offset = lm->sections[i]->filepos;
6108 p->p_memsz = end - p->p_vaddr;
6109 p->p_filesz = p->p_memsz;
6110
6111 /* The RELRO segment typically ends a few bytes
6112 into .got.plt but other layouts are possible.
6113 In cases where the end does not match any
6114 loaded section (for instance is in file
6115 padding), trim p_filesz back to correspond to
6116 the end of loaded section contents. */
6117 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6118 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6119
6120 /* Preserve the alignment and flags if they are
6121 valid. The gold linker generates RW/4 for
6122 the PT_GNU_RELRO section. It is better for
6123 objcopy/strip to honor these attributes
6124 otherwise gdb will choke when using separate
6125 debug files. */
6126 if (!m->p_align_valid)
6127 p->p_align = 1;
6128 if (!m->p_flags_valid)
6129 p->p_flags = PF_R;
6130 ok = TRUE;
6131 }
6132 }
6133 }
6134 if (link_info != NULL)
6135 BFD_ASSERT (ok);
6136 if (!ok)
6137 memset (p, 0, sizeof *p);
6138 }
6139 else if (p->p_type == PT_GNU_STACK)
6140 {
6141 if (m->p_size_valid)
6142 p->p_memsz = m->p_size;
6143 }
6144 else if (m->count != 0)
6145 {
6146 unsigned int i;
6147
6148 if (p->p_type != PT_LOAD
6149 && (p->p_type != PT_NOTE
6150 || bfd_get_format (abfd) != bfd_core))
6151 {
6152 /* A user specified segment layout may include a PHDR
6153 segment that overlaps with a LOAD segment... */
6154 if (p->p_type == PT_PHDR)
6155 {
6156 m->count = 0;
6157 continue;
6158 }
6159
6160 if (m->includes_filehdr || m->includes_phdrs)
6161 {
6162 /* PR 17512: file: 2195325e. */
6163 _bfd_error_handler
6164 (_("%pB: error: non-load segment %d includes file header "
6165 "and/or program header"),
6166 abfd, (int) (p - phdrs));
6167 return FALSE;
6168 }
6169
6170 p->p_filesz = 0;
6171 p->p_offset = m->sections[0]->filepos;
6172 for (i = m->count; i-- != 0;)
6173 {
6174 asection *sect = m->sections[i];
6175 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6176 if (hdr->sh_type != SHT_NOBITS)
6177 {
6178 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6179 + hdr->sh_size);
6180 break;
6181 }
6182 }
6183 }
6184 }
6185 else if (m->includes_filehdr)
6186 {
6187 p->p_vaddr = filehdr_vaddr;
6188 if (! m->p_paddr_valid)
6189 p->p_paddr = filehdr_paddr;
6190 }
6191 else if (m->includes_phdrs)
6192 {
6193 p->p_vaddr = phdrs_vaddr;
6194 if (! m->p_paddr_valid)
6195 p->p_paddr = phdrs_paddr;
6196 }
6197 }
6198
6199 elf_next_file_pos (abfd) = off;
6200
6201 return TRUE;
6202 }
6203
6204 static elf_section_list *
6205 find_section_in_list (unsigned int i, elf_section_list * list)
6206 {
6207 for (;list != NULL; list = list->next)
6208 if (list->ndx == i)
6209 break;
6210 return list;
6211 }
6212
6213 /* Work out the file positions of all the sections. This is called by
6214 _bfd_elf_compute_section_file_positions. All the section sizes and
6215 VMAs must be known before this is called.
6216
6217 Reloc sections come in two flavours: Those processed specially as
6218 "side-channel" data attached to a section to which they apply, and
6219 those that bfd doesn't process as relocations. The latter sort are
6220 stored in a normal bfd section by bfd_section_from_shdr. We don't
6221 consider the former sort here, unless they form part of the loadable
6222 image. Reloc sections not assigned here will be handled later by
6223 assign_file_positions_for_relocs.
6224
6225 We also don't set the positions of the .symtab and .strtab here. */
6226
6227 static bfd_boolean
6228 assign_file_positions_except_relocs (bfd *abfd,
6229 struct bfd_link_info *link_info)
6230 {
6231 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6232 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6233 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6234
6235 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6236 && bfd_get_format (abfd) != bfd_core)
6237 {
6238 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6239 unsigned int num_sec = elf_numsections (abfd);
6240 Elf_Internal_Shdr **hdrpp;
6241 unsigned int i;
6242 file_ptr off;
6243
6244 /* Start after the ELF header. */
6245 off = i_ehdrp->e_ehsize;
6246
6247 /* We are not creating an executable, which means that we are
6248 not creating a program header, and that the actual order of
6249 the sections in the file is unimportant. */
6250 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6251 {
6252 Elf_Internal_Shdr *hdr;
6253
6254 hdr = *hdrpp;
6255 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6256 && hdr->bfd_section == NULL)
6257 || (hdr->bfd_section != NULL
6258 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6259 /* Compress DWARF debug sections. */
6260 || i == elf_onesymtab (abfd)
6261 || (elf_symtab_shndx_list (abfd) != NULL
6262 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6263 || i == elf_strtab_sec (abfd)
6264 || i == elf_shstrtab_sec (abfd))
6265 {
6266 hdr->sh_offset = -1;
6267 }
6268 else
6269 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6270 }
6271
6272 elf_next_file_pos (abfd) = off;
6273 }
6274 else
6275 {
6276 unsigned int alloc;
6277
6278 /* Assign file positions for the loaded sections based on the
6279 assignment of sections to segments. */
6280 if (!assign_file_positions_for_load_sections (abfd, link_info))
6281 return FALSE;
6282
6283 /* And for non-load sections. */
6284 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6285 return FALSE;
6286
6287 if (bed->elf_backend_modify_program_headers != NULL)
6288 {
6289 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6290 return FALSE;
6291 }
6292
6293 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6294 if (link_info != NULL && bfd_link_pie (link_info))
6295 {
6296 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6297 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6298 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6299
6300 /* Find the lowest p_vaddr in PT_LOAD segments. */
6301 bfd_vma p_vaddr = (bfd_vma) -1;
6302 for (; segment < end_segment; segment++)
6303 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6304 p_vaddr = segment->p_vaddr;
6305
6306 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6307 segments is non-zero. */
6308 if (p_vaddr)
6309 i_ehdrp->e_type = ET_EXEC;
6310 }
6311
6312 /* Write out the program headers. */
6313 alloc = elf_elfheader (abfd)->e_phnum;
6314 if (alloc == 0)
6315 return TRUE;
6316
6317 /* PR ld/20815 - Check that the program header segment, if present, will
6318 be loaded into memory. FIXME: The check below is not sufficient as
6319 really all PT_LOAD segments should be checked before issuing an error
6320 message. Plus the PHDR segment does not have to be the first segment
6321 in the program header table. But this version of the check should
6322 catch all real world use cases.
6323
6324 FIXME: We used to have code here to sort the PT_LOAD segments into
6325 ascending order, as per the ELF spec. But this breaks some programs,
6326 including the Linux kernel. But really either the spec should be
6327 changed or the programs updated. */
6328 if (alloc > 1
6329 && tdata->phdr[0].p_type == PT_PHDR
6330 && (bed->elf_backend_allow_non_load_phdr == NULL
6331 || !bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr,
6332 alloc))
6333 && tdata->phdr[1].p_type == PT_LOAD
6334 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6335 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz
6336 < tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6337 {
6338 /* The fix for this error is usually to edit the linker script being
6339 used and set up the program headers manually. Either that or
6340 leave room for the headers at the start of the SECTIONS. */
6341 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
6342 " by LOAD segment"),
6343 abfd);
6344 return FALSE;
6345 }
6346
6347 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6348 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6349 return FALSE;
6350 }
6351
6352 return TRUE;
6353 }
6354
6355 static bfd_boolean
6356 prep_headers (bfd *abfd)
6357 {
6358 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6359 struct elf_strtab_hash *shstrtab;
6360 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6361
6362 i_ehdrp = elf_elfheader (abfd);
6363
6364 shstrtab = _bfd_elf_strtab_init ();
6365 if (shstrtab == NULL)
6366 return FALSE;
6367
6368 elf_shstrtab (abfd) = shstrtab;
6369
6370 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6371 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6372 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6373 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6374
6375 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6376 i_ehdrp->e_ident[EI_DATA] =
6377 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6378 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6379
6380 if ((abfd->flags & DYNAMIC) != 0)
6381 i_ehdrp->e_type = ET_DYN;
6382 else if ((abfd->flags & EXEC_P) != 0)
6383 i_ehdrp->e_type = ET_EXEC;
6384 else if (bfd_get_format (abfd) == bfd_core)
6385 i_ehdrp->e_type = ET_CORE;
6386 else
6387 i_ehdrp->e_type = ET_REL;
6388
6389 switch (bfd_get_arch (abfd))
6390 {
6391 case bfd_arch_unknown:
6392 i_ehdrp->e_machine = EM_NONE;
6393 break;
6394
6395 /* There used to be a long list of cases here, each one setting
6396 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6397 in the corresponding bfd definition. To avoid duplication,
6398 the switch was removed. Machines that need special handling
6399 can generally do it in elf_backend_final_write_processing(),
6400 unless they need the information earlier than the final write.
6401 Such need can generally be supplied by replacing the tests for
6402 e_machine with the conditions used to determine it. */
6403 default:
6404 i_ehdrp->e_machine = bed->elf_machine_code;
6405 }
6406
6407 i_ehdrp->e_version = bed->s->ev_current;
6408 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6409
6410 /* No program header, for now. */
6411 i_ehdrp->e_phoff = 0;
6412 i_ehdrp->e_phentsize = 0;
6413 i_ehdrp->e_phnum = 0;
6414
6415 /* Each bfd section is section header entry. */
6416 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6417 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6418
6419 /* If we're building an executable, we'll need a program header table. */
6420 if (abfd->flags & EXEC_P)
6421 /* It all happens later. */
6422 ;
6423 else
6424 {
6425 i_ehdrp->e_phentsize = 0;
6426 i_ehdrp->e_phoff = 0;
6427 }
6428
6429 elf_tdata (abfd)->symtab_hdr.sh_name =
6430 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6431 elf_tdata (abfd)->strtab_hdr.sh_name =
6432 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6433 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6434 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6435 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6436 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6437 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6438 return FALSE;
6439
6440 return TRUE;
6441 }
6442
6443 /* Assign file positions for all the reloc sections which are not part
6444 of the loadable file image, and the file position of section headers. */
6445
6446 static bfd_boolean
6447 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6448 {
6449 file_ptr off;
6450 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6451 Elf_Internal_Shdr *shdrp;
6452 Elf_Internal_Ehdr *i_ehdrp;
6453 const struct elf_backend_data *bed;
6454
6455 off = elf_next_file_pos (abfd);
6456
6457 shdrpp = elf_elfsections (abfd);
6458 end_shdrpp = shdrpp + elf_numsections (abfd);
6459 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6460 {
6461 shdrp = *shdrpp;
6462 if (shdrp->sh_offset == -1)
6463 {
6464 asection *sec = shdrp->bfd_section;
6465 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6466 || shdrp->sh_type == SHT_RELA);
6467 if (is_rel
6468 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6469 {
6470 if (!is_rel)
6471 {
6472 const char *name = sec->name;
6473 struct bfd_elf_section_data *d;
6474
6475 /* Compress DWARF debug sections. */
6476 if (!bfd_compress_section (abfd, sec,
6477 shdrp->contents))
6478 return FALSE;
6479
6480 if (sec->compress_status == COMPRESS_SECTION_DONE
6481 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6482 {
6483 /* If section is compressed with zlib-gnu, convert
6484 section name from .debug_* to .zdebug_*. */
6485 char *new_name
6486 = convert_debug_to_zdebug (abfd, name);
6487 if (new_name == NULL)
6488 return FALSE;
6489 name = new_name;
6490 }
6491 /* Add section name to section name section. */
6492 if (shdrp->sh_name != (unsigned int) -1)
6493 abort ();
6494 shdrp->sh_name
6495 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6496 name, FALSE);
6497 d = elf_section_data (sec);
6498
6499 /* Add reloc section name to section name section. */
6500 if (d->rel.hdr
6501 && !_bfd_elf_set_reloc_sh_name (abfd,
6502 d->rel.hdr,
6503 name, FALSE))
6504 return FALSE;
6505 if (d->rela.hdr
6506 && !_bfd_elf_set_reloc_sh_name (abfd,
6507 d->rela.hdr,
6508 name, TRUE))
6509 return FALSE;
6510
6511 /* Update section size and contents. */
6512 shdrp->sh_size = sec->size;
6513 shdrp->contents = sec->contents;
6514 shdrp->bfd_section->contents = NULL;
6515 }
6516 off = _bfd_elf_assign_file_position_for_section (shdrp,
6517 off,
6518 TRUE);
6519 }
6520 }
6521 }
6522
6523 /* Place section name section after DWARF debug sections have been
6524 compressed. */
6525 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6526 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6527 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6528 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6529
6530 /* Place the section headers. */
6531 i_ehdrp = elf_elfheader (abfd);
6532 bed = get_elf_backend_data (abfd);
6533 off = align_file_position (off, 1 << bed->s->log_file_align);
6534 i_ehdrp->e_shoff = off;
6535 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6536 elf_next_file_pos (abfd) = off;
6537
6538 return TRUE;
6539 }
6540
6541 bfd_boolean
6542 _bfd_elf_write_object_contents (bfd *abfd)
6543 {
6544 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6545 Elf_Internal_Shdr **i_shdrp;
6546 bfd_boolean failed;
6547 unsigned int count, num_sec;
6548 struct elf_obj_tdata *t;
6549
6550 if (! abfd->output_has_begun
6551 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6552 return FALSE;
6553 /* Do not rewrite ELF data when the BFD has been opened for update.
6554 abfd->output_has_begun was set to TRUE on opening, so creation of new
6555 sections, and modification of existing section sizes was restricted.
6556 This means the ELF header, program headers and section headers can't have
6557 changed.
6558 If the contents of any sections has been modified, then those changes have
6559 already been written to the BFD. */
6560 else if (abfd->direction == both_direction)
6561 {
6562 BFD_ASSERT (abfd->output_has_begun);
6563 return TRUE;
6564 }
6565
6566 i_shdrp = elf_elfsections (abfd);
6567
6568 failed = FALSE;
6569 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6570 if (failed)
6571 return FALSE;
6572
6573 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6574 return FALSE;
6575
6576 /* After writing the headers, we need to write the sections too... */
6577 num_sec = elf_numsections (abfd);
6578 for (count = 1; count < num_sec; count++)
6579 {
6580 i_shdrp[count]->sh_name
6581 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6582 i_shdrp[count]->sh_name);
6583 if (bed->elf_backend_section_processing)
6584 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6585 return FALSE;
6586 if (i_shdrp[count]->contents)
6587 {
6588 bfd_size_type amt = i_shdrp[count]->sh_size;
6589
6590 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6591 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6592 return FALSE;
6593 }
6594 }
6595
6596 /* Write out the section header names. */
6597 t = elf_tdata (abfd);
6598 if (elf_shstrtab (abfd) != NULL
6599 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6600 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6601 return FALSE;
6602
6603 if (!(*bed->elf_backend_final_write_processing) (abfd))
6604 return FALSE;
6605
6606 if (!bed->s->write_shdrs_and_ehdr (abfd))
6607 return FALSE;
6608
6609 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6610 if (t->o->build_id.after_write_object_contents != NULL)
6611 return (*t->o->build_id.after_write_object_contents) (abfd);
6612
6613 return TRUE;
6614 }
6615
6616 bfd_boolean
6617 _bfd_elf_write_corefile_contents (bfd *abfd)
6618 {
6619 /* Hopefully this can be done just like an object file. */
6620 return _bfd_elf_write_object_contents (abfd);
6621 }
6622
6623 /* Given a section, search the header to find them. */
6624
6625 unsigned int
6626 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6627 {
6628 const struct elf_backend_data *bed;
6629 unsigned int sec_index;
6630
6631 if (elf_section_data (asect) != NULL
6632 && elf_section_data (asect)->this_idx != 0)
6633 return elf_section_data (asect)->this_idx;
6634
6635 if (bfd_is_abs_section (asect))
6636 sec_index = SHN_ABS;
6637 else if (bfd_is_com_section (asect))
6638 sec_index = SHN_COMMON;
6639 else if (bfd_is_und_section (asect))
6640 sec_index = SHN_UNDEF;
6641 else
6642 sec_index = SHN_BAD;
6643
6644 bed = get_elf_backend_data (abfd);
6645 if (bed->elf_backend_section_from_bfd_section)
6646 {
6647 int retval = sec_index;
6648
6649 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6650 return retval;
6651 }
6652
6653 if (sec_index == SHN_BAD)
6654 bfd_set_error (bfd_error_nonrepresentable_section);
6655
6656 return sec_index;
6657 }
6658
6659 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6660 on error. */
6661
6662 int
6663 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6664 {
6665 asymbol *asym_ptr = *asym_ptr_ptr;
6666 int idx;
6667 flagword flags = asym_ptr->flags;
6668
6669 /* When gas creates relocations against local labels, it creates its
6670 own symbol for the section, but does put the symbol into the
6671 symbol chain, so udata is 0. When the linker is generating
6672 relocatable output, this section symbol may be for one of the
6673 input sections rather than the output section. */
6674 if (asym_ptr->udata.i == 0
6675 && (flags & BSF_SECTION_SYM)
6676 && asym_ptr->section)
6677 {
6678 asection *sec;
6679 int indx;
6680
6681 sec = asym_ptr->section;
6682 if (sec->owner != abfd && sec->output_section != NULL)
6683 sec = sec->output_section;
6684 if (sec->owner == abfd
6685 && (indx = sec->index) < elf_num_section_syms (abfd)
6686 && elf_section_syms (abfd)[indx] != NULL)
6687 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6688 }
6689
6690 idx = asym_ptr->udata.i;
6691
6692 if (idx == 0)
6693 {
6694 /* This case can occur when using --strip-symbol on a symbol
6695 which is used in a relocation entry. */
6696 _bfd_error_handler
6697 /* xgettext:c-format */
6698 (_("%pB: symbol `%s' required but not present"),
6699 abfd, bfd_asymbol_name (asym_ptr));
6700 bfd_set_error (bfd_error_no_symbols);
6701 return -1;
6702 }
6703
6704 #if DEBUG & 4
6705 {
6706 fprintf (stderr,
6707 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6708 (long) asym_ptr, asym_ptr->name, idx, flags);
6709 fflush (stderr);
6710 }
6711 #endif
6712
6713 return idx;
6714 }
6715
6716 /* Rewrite program header information. */
6717
6718 static bfd_boolean
6719 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6720 {
6721 Elf_Internal_Ehdr *iehdr;
6722 struct elf_segment_map *map;
6723 struct elf_segment_map *map_first;
6724 struct elf_segment_map **pointer_to_map;
6725 Elf_Internal_Phdr *segment;
6726 asection *section;
6727 unsigned int i;
6728 unsigned int num_segments;
6729 bfd_boolean phdr_included = FALSE;
6730 bfd_boolean p_paddr_valid;
6731 bfd_vma maxpagesize;
6732 struct elf_segment_map *phdr_adjust_seg = NULL;
6733 unsigned int phdr_adjust_num = 0;
6734 const struct elf_backend_data *bed;
6735
6736 bed = get_elf_backend_data (ibfd);
6737 iehdr = elf_elfheader (ibfd);
6738
6739 map_first = NULL;
6740 pointer_to_map = &map_first;
6741
6742 num_segments = elf_elfheader (ibfd)->e_phnum;
6743 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6744
6745 /* Returns the end address of the segment + 1. */
6746 #define SEGMENT_END(segment, start) \
6747 (start + (segment->p_memsz > segment->p_filesz \
6748 ? segment->p_memsz : segment->p_filesz))
6749
6750 #define SECTION_SIZE(section, segment) \
6751 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6752 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6753 ? section->size : 0)
6754
6755 /* Returns TRUE if the given section is contained within
6756 the given segment. VMA addresses are compared. */
6757 #define IS_CONTAINED_BY_VMA(section, segment) \
6758 (section->vma >= segment->p_vaddr \
6759 && (section->vma + SECTION_SIZE (section, segment) \
6760 <= (SEGMENT_END (segment, segment->p_vaddr))))
6761
6762 /* Returns TRUE if the given section is contained within
6763 the given segment. LMA addresses are compared. */
6764 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6765 (section->lma >= base \
6766 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6767 && (section->lma + SECTION_SIZE (section, segment) \
6768 <= SEGMENT_END (segment, base)))
6769
6770 /* Handle PT_NOTE segment. */
6771 #define IS_NOTE(p, s) \
6772 (p->p_type == PT_NOTE \
6773 && elf_section_type (s) == SHT_NOTE \
6774 && (bfd_vma) s->filepos >= p->p_offset \
6775 && ((bfd_vma) s->filepos + s->size \
6776 <= p->p_offset + p->p_filesz))
6777
6778 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6779 etc. */
6780 #define IS_COREFILE_NOTE(p, s) \
6781 (IS_NOTE (p, s) \
6782 && bfd_get_format (ibfd) == bfd_core \
6783 && s->vma == 0 \
6784 && s->lma == 0)
6785
6786 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6787 linker, which generates a PT_INTERP section with p_vaddr and
6788 p_memsz set to 0. */
6789 #define IS_SOLARIS_PT_INTERP(p, s) \
6790 (p->p_vaddr == 0 \
6791 && p->p_paddr == 0 \
6792 && p->p_memsz == 0 \
6793 && p->p_filesz > 0 \
6794 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6795 && s->size > 0 \
6796 && (bfd_vma) s->filepos >= p->p_offset \
6797 && ((bfd_vma) s->filepos + s->size \
6798 <= p->p_offset + p->p_filesz))
6799
6800 /* Decide if the given section should be included in the given segment.
6801 A section will be included if:
6802 1. It is within the address space of the segment -- we use the LMA
6803 if that is set for the segment and the VMA otherwise,
6804 2. It is an allocated section or a NOTE section in a PT_NOTE
6805 segment.
6806 3. There is an output section associated with it,
6807 4. The section has not already been allocated to a previous segment.
6808 5. PT_GNU_STACK segments do not include any sections.
6809 6. PT_TLS segment includes only SHF_TLS sections.
6810 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6811 8. PT_DYNAMIC should not contain empty sections at the beginning
6812 (with the possible exception of .dynamic). */
6813 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6814 ((((segment->p_paddr \
6815 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6816 : IS_CONTAINED_BY_VMA (section, segment)) \
6817 && (section->flags & SEC_ALLOC) != 0) \
6818 || IS_NOTE (segment, section)) \
6819 && segment->p_type != PT_GNU_STACK \
6820 && (segment->p_type != PT_TLS \
6821 || (section->flags & SEC_THREAD_LOCAL)) \
6822 && (segment->p_type == PT_LOAD \
6823 || segment->p_type == PT_TLS \
6824 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6825 && (segment->p_type != PT_DYNAMIC \
6826 || SECTION_SIZE (section, segment) > 0 \
6827 || (segment->p_paddr \
6828 ? segment->p_paddr != section->lma \
6829 : segment->p_vaddr != section->vma) \
6830 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6831 == 0)) \
6832 && (segment->p_type != PT_LOAD || !section->segment_mark))
6833
6834 /* If the output section of a section in the input segment is NULL,
6835 it is removed from the corresponding output segment. */
6836 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6837 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6838 && section->output_section != NULL)
6839
6840 /* Returns TRUE iff seg1 starts after the end of seg2. */
6841 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6842 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6843
6844 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6845 their VMA address ranges and their LMA address ranges overlap.
6846 It is possible to have overlapping VMA ranges without overlapping LMA
6847 ranges. RedBoot images for example can have both .data and .bss mapped
6848 to the same VMA range, but with the .data section mapped to a different
6849 LMA. */
6850 #define SEGMENT_OVERLAPS(seg1, seg2) \
6851 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6852 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6853 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6854 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6855
6856 /* Initialise the segment mark field. */
6857 for (section = ibfd->sections; section != NULL; section = section->next)
6858 section->segment_mark = FALSE;
6859
6860 /* The Solaris linker creates program headers in which all the
6861 p_paddr fields are zero. When we try to objcopy or strip such a
6862 file, we get confused. Check for this case, and if we find it
6863 don't set the p_paddr_valid fields. */
6864 p_paddr_valid = FALSE;
6865 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6866 i < num_segments;
6867 i++, segment++)
6868 if (segment->p_paddr != 0)
6869 {
6870 p_paddr_valid = TRUE;
6871 break;
6872 }
6873
6874 /* Scan through the segments specified in the program header
6875 of the input BFD. For this first scan we look for overlaps
6876 in the loadable segments. These can be created by weird
6877 parameters to objcopy. Also, fix some solaris weirdness. */
6878 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6879 i < num_segments;
6880 i++, segment++)
6881 {
6882 unsigned int j;
6883 Elf_Internal_Phdr *segment2;
6884
6885 if (segment->p_type == PT_INTERP)
6886 for (section = ibfd->sections; section; section = section->next)
6887 if (IS_SOLARIS_PT_INTERP (segment, section))
6888 {
6889 /* Mininal change so that the normal section to segment
6890 assignment code will work. */
6891 segment->p_vaddr = section->vma;
6892 break;
6893 }
6894
6895 if (segment->p_type != PT_LOAD)
6896 {
6897 /* Remove PT_GNU_RELRO segment. */
6898 if (segment->p_type == PT_GNU_RELRO)
6899 segment->p_type = PT_NULL;
6900 continue;
6901 }
6902
6903 /* Determine if this segment overlaps any previous segments. */
6904 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6905 {
6906 bfd_signed_vma extra_length;
6907
6908 if (segment2->p_type != PT_LOAD
6909 || !SEGMENT_OVERLAPS (segment, segment2))
6910 continue;
6911
6912 /* Merge the two segments together. */
6913 if (segment2->p_vaddr < segment->p_vaddr)
6914 {
6915 /* Extend SEGMENT2 to include SEGMENT and then delete
6916 SEGMENT. */
6917 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6918 - SEGMENT_END (segment2, segment2->p_vaddr));
6919
6920 if (extra_length > 0)
6921 {
6922 segment2->p_memsz += extra_length;
6923 segment2->p_filesz += extra_length;
6924 }
6925
6926 segment->p_type = PT_NULL;
6927
6928 /* Since we have deleted P we must restart the outer loop. */
6929 i = 0;
6930 segment = elf_tdata (ibfd)->phdr;
6931 break;
6932 }
6933 else
6934 {
6935 /* Extend SEGMENT to include SEGMENT2 and then delete
6936 SEGMENT2. */
6937 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6938 - SEGMENT_END (segment, segment->p_vaddr));
6939
6940 if (extra_length > 0)
6941 {
6942 segment->p_memsz += extra_length;
6943 segment->p_filesz += extra_length;
6944 }
6945
6946 segment2->p_type = PT_NULL;
6947 }
6948 }
6949 }
6950
6951 /* The second scan attempts to assign sections to segments. */
6952 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6953 i < num_segments;
6954 i++, segment++)
6955 {
6956 unsigned int section_count;
6957 asection **sections;
6958 asection *output_section;
6959 unsigned int isec;
6960 asection *matching_lma;
6961 asection *suggested_lma;
6962 unsigned int j;
6963 bfd_size_type amt;
6964 asection *first_section;
6965
6966 if (segment->p_type == PT_NULL)
6967 continue;
6968
6969 first_section = NULL;
6970 /* Compute how many sections might be placed into this segment. */
6971 for (section = ibfd->sections, section_count = 0;
6972 section != NULL;
6973 section = section->next)
6974 {
6975 /* Find the first section in the input segment, which may be
6976 removed from the corresponding output segment. */
6977 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6978 {
6979 if (first_section == NULL)
6980 first_section = section;
6981 if (section->output_section != NULL)
6982 ++section_count;
6983 }
6984 }
6985
6986 /* Allocate a segment map big enough to contain
6987 all of the sections we have selected. */
6988 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
6989 amt += (bfd_size_type) section_count * sizeof (asection *);
6990 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6991 if (map == NULL)
6992 return FALSE;
6993
6994 /* Initialise the fields of the segment map. Default to
6995 using the physical address of the segment in the input BFD. */
6996 map->next = NULL;
6997 map->p_type = segment->p_type;
6998 map->p_flags = segment->p_flags;
6999 map->p_flags_valid = 1;
7000
7001 /* If the first section in the input segment is removed, there is
7002 no need to preserve segment physical address in the corresponding
7003 output segment. */
7004 if (!first_section || first_section->output_section != NULL)
7005 {
7006 map->p_paddr = segment->p_paddr;
7007 map->p_paddr_valid = p_paddr_valid;
7008 }
7009
7010 /* Determine if this segment contains the ELF file header
7011 and if it contains the program headers themselves. */
7012 map->includes_filehdr = (segment->p_offset == 0
7013 && segment->p_filesz >= iehdr->e_ehsize);
7014 map->includes_phdrs = 0;
7015
7016 if (!phdr_included || segment->p_type != PT_LOAD)
7017 {
7018 map->includes_phdrs =
7019 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7020 && (segment->p_offset + segment->p_filesz
7021 >= ((bfd_vma) iehdr->e_phoff
7022 + iehdr->e_phnum * iehdr->e_phentsize)));
7023
7024 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7025 phdr_included = TRUE;
7026 }
7027
7028 if (section_count == 0)
7029 {
7030 /* Special segments, such as the PT_PHDR segment, may contain
7031 no sections, but ordinary, loadable segments should contain
7032 something. They are allowed by the ELF spec however, so only
7033 a warning is produced.
7034 There is however the valid use case of embedded systems which
7035 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7036 flash memory with zeros. No warning is shown for that case. */
7037 if (segment->p_type == PT_LOAD
7038 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7039 /* xgettext:c-format */
7040 _bfd_error_handler
7041 (_("%pB: warning: empty loadable segment detected"
7042 " at vaddr=%#" PRIx64 ", is this intentional?"),
7043 ibfd, (uint64_t) segment->p_vaddr);
7044
7045 map->p_vaddr_offset = segment->p_vaddr;
7046 map->count = 0;
7047 *pointer_to_map = map;
7048 pointer_to_map = &map->next;
7049
7050 continue;
7051 }
7052
7053 /* Now scan the sections in the input BFD again and attempt
7054 to add their corresponding output sections to the segment map.
7055 The problem here is how to handle an output section which has
7056 been moved (ie had its LMA changed). There are four possibilities:
7057
7058 1. None of the sections have been moved.
7059 In this case we can continue to use the segment LMA from the
7060 input BFD.
7061
7062 2. All of the sections have been moved by the same amount.
7063 In this case we can change the segment's LMA to match the LMA
7064 of the first section.
7065
7066 3. Some of the sections have been moved, others have not.
7067 In this case those sections which have not been moved can be
7068 placed in the current segment which will have to have its size,
7069 and possibly its LMA changed, and a new segment or segments will
7070 have to be created to contain the other sections.
7071
7072 4. The sections have been moved, but not by the same amount.
7073 In this case we can change the segment's LMA to match the LMA
7074 of the first section and we will have to create a new segment
7075 or segments to contain the other sections.
7076
7077 In order to save time, we allocate an array to hold the section
7078 pointers that we are interested in. As these sections get assigned
7079 to a segment, they are removed from this array. */
7080
7081 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7082 if (sections == NULL)
7083 return FALSE;
7084
7085 /* Step One: Scan for segment vs section LMA conflicts.
7086 Also add the sections to the section array allocated above.
7087 Also add the sections to the current segment. In the common
7088 case, where the sections have not been moved, this means that
7089 we have completely filled the segment, and there is nothing
7090 more to do. */
7091 isec = 0;
7092 matching_lma = NULL;
7093 suggested_lma = NULL;
7094
7095 for (section = first_section, j = 0;
7096 section != NULL;
7097 section = section->next)
7098 {
7099 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7100 {
7101 output_section = section->output_section;
7102
7103 sections[j++] = section;
7104
7105 /* The Solaris native linker always sets p_paddr to 0.
7106 We try to catch that case here, and set it to the
7107 correct value. Note - some backends require that
7108 p_paddr be left as zero. */
7109 if (!p_paddr_valid
7110 && segment->p_vaddr != 0
7111 && !bed->want_p_paddr_set_to_zero
7112 && isec == 0
7113 && output_section->lma != 0
7114 && (align_power (segment->p_vaddr
7115 + (map->includes_filehdr
7116 ? iehdr->e_ehsize : 0)
7117 + (map->includes_phdrs
7118 ? iehdr->e_phnum * iehdr->e_phentsize
7119 : 0),
7120 output_section->alignment_power)
7121 == output_section->vma))
7122 map->p_paddr = segment->p_vaddr;
7123
7124 /* Match up the physical address of the segment with the
7125 LMA address of the output section. */
7126 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7127 || IS_COREFILE_NOTE (segment, section)
7128 || (bed->want_p_paddr_set_to_zero
7129 && IS_CONTAINED_BY_VMA (output_section, segment)))
7130 {
7131 if (matching_lma == NULL
7132 || output_section->lma < matching_lma->lma)
7133 matching_lma = output_section;
7134
7135 /* We assume that if the section fits within the segment
7136 then it does not overlap any other section within that
7137 segment. */
7138 map->sections[isec++] = output_section;
7139 }
7140 else if (suggested_lma == NULL)
7141 suggested_lma = output_section;
7142
7143 if (j == section_count)
7144 break;
7145 }
7146 }
7147
7148 BFD_ASSERT (j == section_count);
7149
7150 /* Step Two: Adjust the physical address of the current segment,
7151 if necessary. */
7152 if (isec == section_count)
7153 {
7154 /* All of the sections fitted within the segment as currently
7155 specified. This is the default case. Add the segment to
7156 the list of built segments and carry on to process the next
7157 program header in the input BFD. */
7158 map->count = section_count;
7159 *pointer_to_map = map;
7160 pointer_to_map = &map->next;
7161
7162 if (p_paddr_valid
7163 && !bed->want_p_paddr_set_to_zero
7164 && matching_lma->lma != map->p_paddr
7165 && !map->includes_filehdr
7166 && !map->includes_phdrs)
7167 /* There is some padding before the first section in the
7168 segment. So, we must account for that in the output
7169 segment's vma. */
7170 map->p_vaddr_offset = map->p_paddr - matching_lma->lma;
7171
7172 free (sections);
7173 continue;
7174 }
7175 else
7176 {
7177 /* Change the current segment's physical address to match
7178 the LMA of the first section that fitted, or if no
7179 section fitted, the first section. */
7180 if (matching_lma == NULL)
7181 matching_lma = suggested_lma;
7182
7183 map->p_paddr = matching_lma->lma;
7184
7185 /* Offset the segment physical address from the lma
7186 to allow for space taken up by elf headers. */
7187 if (map->includes_phdrs)
7188 {
7189 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7190
7191 /* iehdr->e_phnum is just an estimate of the number
7192 of program headers that we will need. Make a note
7193 here of the number we used and the segment we chose
7194 to hold these headers, so that we can adjust the
7195 offset when we know the correct value. */
7196 phdr_adjust_num = iehdr->e_phnum;
7197 phdr_adjust_seg = map;
7198 }
7199
7200 if (map->includes_filehdr)
7201 {
7202 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7203 map->p_paddr -= iehdr->e_ehsize;
7204 /* We've subtracted off the size of headers from the
7205 first section lma, but there may have been some
7206 alignment padding before that section too. Try to
7207 account for that by adjusting the segment lma down to
7208 the same alignment. */
7209 if (segment->p_align != 0 && segment->p_align < align)
7210 align = segment->p_align;
7211 map->p_paddr &= -align;
7212 }
7213 }
7214
7215 /* Step Three: Loop over the sections again, this time assigning
7216 those that fit to the current segment and removing them from the
7217 sections array; but making sure not to leave large gaps. Once all
7218 possible sections have been assigned to the current segment it is
7219 added to the list of built segments and if sections still remain
7220 to be assigned, a new segment is constructed before repeating
7221 the loop. */
7222 isec = 0;
7223 do
7224 {
7225 map->count = 0;
7226 suggested_lma = NULL;
7227
7228 /* Fill the current segment with sections that fit. */
7229 for (j = 0; j < section_count; j++)
7230 {
7231 section = sections[j];
7232
7233 if (section == NULL)
7234 continue;
7235
7236 output_section = section->output_section;
7237
7238 BFD_ASSERT (output_section != NULL);
7239
7240 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7241 || IS_COREFILE_NOTE (segment, section))
7242 {
7243 if (map->count == 0)
7244 {
7245 /* If the first section in a segment does not start at
7246 the beginning of the segment, then something is
7247 wrong. */
7248 if (align_power (map->p_paddr
7249 + (map->includes_filehdr
7250 ? iehdr->e_ehsize : 0)
7251 + (map->includes_phdrs
7252 ? iehdr->e_phnum * iehdr->e_phentsize
7253 : 0),
7254 output_section->alignment_power)
7255 != output_section->lma)
7256 abort ();
7257 }
7258 else
7259 {
7260 asection *prev_sec;
7261
7262 prev_sec = map->sections[map->count - 1];
7263
7264 /* If the gap between the end of the previous section
7265 and the start of this section is more than
7266 maxpagesize then we need to start a new segment. */
7267 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7268 maxpagesize)
7269 < BFD_ALIGN (output_section->lma, maxpagesize))
7270 || (prev_sec->lma + prev_sec->size
7271 > output_section->lma))
7272 {
7273 if (suggested_lma == NULL)
7274 suggested_lma = output_section;
7275
7276 continue;
7277 }
7278 }
7279
7280 map->sections[map->count++] = output_section;
7281 ++isec;
7282 sections[j] = NULL;
7283 if (segment->p_type == PT_LOAD)
7284 section->segment_mark = TRUE;
7285 }
7286 else if (suggested_lma == NULL)
7287 suggested_lma = output_section;
7288 }
7289
7290 /* PR 23932. A corrupt input file may contain sections that cannot
7291 be assigned to any segment - because for example they have a
7292 negative size - or segments that do not contain any sections. */
7293 if (map->count == 0)
7294 {
7295 bfd_set_error (bfd_error_bad_value);
7296 free (sections);
7297 return FALSE;
7298 }
7299
7300 /* Add the current segment to the list of built segments. */
7301 *pointer_to_map = map;
7302 pointer_to_map = &map->next;
7303
7304 if (isec < section_count)
7305 {
7306 /* We still have not allocated all of the sections to
7307 segments. Create a new segment here, initialise it
7308 and carry on looping. */
7309 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7310 amt += (bfd_size_type) section_count * sizeof (asection *);
7311 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7312 if (map == NULL)
7313 {
7314 free (sections);
7315 return FALSE;
7316 }
7317
7318 /* Initialise the fields of the segment map. Set the physical
7319 physical address to the LMA of the first section that has
7320 not yet been assigned. */
7321 map->next = NULL;
7322 map->p_type = segment->p_type;
7323 map->p_flags = segment->p_flags;
7324 map->p_flags_valid = 1;
7325 map->p_paddr = suggested_lma->lma;
7326 map->p_paddr_valid = p_paddr_valid;
7327 map->includes_filehdr = 0;
7328 map->includes_phdrs = 0;
7329 }
7330 }
7331 while (isec < section_count);
7332
7333 free (sections);
7334 }
7335
7336 elf_seg_map (obfd) = map_first;
7337
7338 /* If we had to estimate the number of program headers that were
7339 going to be needed, then check our estimate now and adjust
7340 the offset if necessary. */
7341 if (phdr_adjust_seg != NULL)
7342 {
7343 unsigned int count;
7344
7345 for (count = 0, map = map_first; map != NULL; map = map->next)
7346 count++;
7347
7348 if (count > phdr_adjust_num)
7349 phdr_adjust_seg->p_paddr
7350 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7351
7352 for (map = map_first; map != NULL; map = map->next)
7353 if (map->p_type == PT_PHDR)
7354 {
7355 bfd_vma adjust
7356 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7357 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7358 break;
7359 }
7360 }
7361
7362 #undef SEGMENT_END
7363 #undef SECTION_SIZE
7364 #undef IS_CONTAINED_BY_VMA
7365 #undef IS_CONTAINED_BY_LMA
7366 #undef IS_NOTE
7367 #undef IS_COREFILE_NOTE
7368 #undef IS_SOLARIS_PT_INTERP
7369 #undef IS_SECTION_IN_INPUT_SEGMENT
7370 #undef INCLUDE_SECTION_IN_SEGMENT
7371 #undef SEGMENT_AFTER_SEGMENT
7372 #undef SEGMENT_OVERLAPS
7373 return TRUE;
7374 }
7375
7376 /* Copy ELF program header information. */
7377
7378 static bfd_boolean
7379 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7380 {
7381 Elf_Internal_Ehdr *iehdr;
7382 struct elf_segment_map *map;
7383 struct elf_segment_map *map_first;
7384 struct elf_segment_map **pointer_to_map;
7385 Elf_Internal_Phdr *segment;
7386 unsigned int i;
7387 unsigned int num_segments;
7388 bfd_boolean phdr_included = FALSE;
7389 bfd_boolean p_paddr_valid;
7390
7391 iehdr = elf_elfheader (ibfd);
7392
7393 map_first = NULL;
7394 pointer_to_map = &map_first;
7395
7396 /* If all the segment p_paddr fields are zero, don't set
7397 map->p_paddr_valid. */
7398 p_paddr_valid = FALSE;
7399 num_segments = elf_elfheader (ibfd)->e_phnum;
7400 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7401 i < num_segments;
7402 i++, segment++)
7403 if (segment->p_paddr != 0)
7404 {
7405 p_paddr_valid = TRUE;
7406 break;
7407 }
7408
7409 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7410 i < num_segments;
7411 i++, segment++)
7412 {
7413 asection *section;
7414 unsigned int section_count;
7415 bfd_size_type amt;
7416 Elf_Internal_Shdr *this_hdr;
7417 asection *first_section = NULL;
7418 asection *lowest_section;
7419 bfd_boolean no_contents = TRUE;
7420
7421 /* Compute how many sections are in this segment. */
7422 for (section = ibfd->sections, section_count = 0;
7423 section != NULL;
7424 section = section->next)
7425 {
7426 this_hdr = &(elf_section_data(section)->this_hdr);
7427 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7428 {
7429 if (first_section == NULL)
7430 first_section = section;
7431 if (elf_section_type (section) != SHT_NOBITS)
7432 no_contents = FALSE;
7433 section_count++;
7434 }
7435 }
7436
7437 /* Allocate a segment map big enough to contain
7438 all of the sections we have selected. */
7439 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7440 amt += (bfd_size_type) section_count * sizeof (asection *);
7441 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7442 if (map == NULL)
7443 return FALSE;
7444
7445 /* Initialize the fields of the output segment map with the
7446 input segment. */
7447 map->next = NULL;
7448 map->p_type = segment->p_type;
7449 map->p_flags = segment->p_flags;
7450 map->p_flags_valid = 1;
7451 map->p_paddr = segment->p_paddr;
7452 map->p_paddr_valid = p_paddr_valid;
7453 map->p_align = segment->p_align;
7454 map->p_align_valid = 1;
7455 map->p_vaddr_offset = 0;
7456
7457 if (map->p_type == PT_GNU_RELRO
7458 || map->p_type == PT_GNU_STACK)
7459 {
7460 /* The PT_GNU_RELRO segment may contain the first a few
7461 bytes in the .got.plt section even if the whole .got.plt
7462 section isn't in the PT_GNU_RELRO segment. We won't
7463 change the size of the PT_GNU_RELRO segment.
7464 Similarly, PT_GNU_STACK size is significant on uclinux
7465 systems. */
7466 map->p_size = segment->p_memsz;
7467 map->p_size_valid = 1;
7468 }
7469
7470 /* Determine if this segment contains the ELF file header
7471 and if it contains the program headers themselves. */
7472 map->includes_filehdr = (segment->p_offset == 0
7473 && segment->p_filesz >= iehdr->e_ehsize);
7474
7475 map->includes_phdrs = 0;
7476 if (! phdr_included || segment->p_type != PT_LOAD)
7477 {
7478 map->includes_phdrs =
7479 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7480 && (segment->p_offset + segment->p_filesz
7481 >= ((bfd_vma) iehdr->e_phoff
7482 + iehdr->e_phnum * iehdr->e_phentsize)));
7483
7484 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7485 phdr_included = TRUE;
7486 }
7487
7488 lowest_section = NULL;
7489 if (section_count != 0)
7490 {
7491 unsigned int isec = 0;
7492
7493 for (section = first_section;
7494 section != NULL;
7495 section = section->next)
7496 {
7497 this_hdr = &(elf_section_data(section)->this_hdr);
7498 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7499 {
7500 map->sections[isec++] = section->output_section;
7501 if ((section->flags & SEC_ALLOC) != 0)
7502 {
7503 bfd_vma seg_off;
7504
7505 if (lowest_section == NULL
7506 || section->lma < lowest_section->lma)
7507 lowest_section = section;
7508
7509 /* Section lmas are set up from PT_LOAD header
7510 p_paddr in _bfd_elf_make_section_from_shdr.
7511 If this header has a p_paddr that disagrees
7512 with the section lma, flag the p_paddr as
7513 invalid. */
7514 if ((section->flags & SEC_LOAD) != 0)
7515 seg_off = this_hdr->sh_offset - segment->p_offset;
7516 else
7517 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7518 if (section->lma - segment->p_paddr != seg_off)
7519 map->p_paddr_valid = FALSE;
7520 }
7521 if (isec == section_count)
7522 break;
7523 }
7524 }
7525 }
7526
7527 if (map->includes_filehdr && lowest_section != NULL)
7528 {
7529 /* Try to keep the space used by the headers plus any
7530 padding fixed. If there are sections with file contents
7531 in this segment then the lowest sh_offset is the best
7532 guess. Otherwise the segment only has file contents for
7533 the headers, and p_filesz is the best guess. */
7534 if (no_contents)
7535 map->header_size = segment->p_filesz;
7536 else
7537 map->header_size = lowest_section->filepos;
7538 }
7539
7540 if (section_count == 0)
7541 map->p_vaddr_offset = segment->p_vaddr;
7542 else if (!map->includes_phdrs
7543 && !map->includes_filehdr
7544 && map->p_paddr_valid)
7545 /* Account for padding before the first section. */
7546 map->p_vaddr_offset = (segment->p_paddr
7547 - (lowest_section ? lowest_section->lma : 0));
7548
7549 map->count = section_count;
7550 *pointer_to_map = map;
7551 pointer_to_map = &map->next;
7552 }
7553
7554 elf_seg_map (obfd) = map_first;
7555 return TRUE;
7556 }
7557
7558 /* Copy private BFD data. This copies or rewrites ELF program header
7559 information. */
7560
7561 static bfd_boolean
7562 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7563 {
7564 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7565 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7566 return TRUE;
7567
7568 if (elf_tdata (ibfd)->phdr == NULL)
7569 return TRUE;
7570
7571 if (ibfd->xvec == obfd->xvec)
7572 {
7573 /* Check to see if any sections in the input BFD
7574 covered by ELF program header have changed. */
7575 Elf_Internal_Phdr *segment;
7576 asection *section, *osec;
7577 unsigned int i, num_segments;
7578 Elf_Internal_Shdr *this_hdr;
7579 const struct elf_backend_data *bed;
7580
7581 bed = get_elf_backend_data (ibfd);
7582
7583 /* Regenerate the segment map if p_paddr is set to 0. */
7584 if (bed->want_p_paddr_set_to_zero)
7585 goto rewrite;
7586
7587 /* Initialize the segment mark field. */
7588 for (section = obfd->sections; section != NULL;
7589 section = section->next)
7590 section->segment_mark = FALSE;
7591
7592 num_segments = elf_elfheader (ibfd)->e_phnum;
7593 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7594 i < num_segments;
7595 i++, segment++)
7596 {
7597 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7598 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7599 which severly confuses things, so always regenerate the segment
7600 map in this case. */
7601 if (segment->p_paddr == 0
7602 && segment->p_memsz == 0
7603 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7604 goto rewrite;
7605
7606 for (section = ibfd->sections;
7607 section != NULL; section = section->next)
7608 {
7609 /* We mark the output section so that we know it comes
7610 from the input BFD. */
7611 osec = section->output_section;
7612 if (osec)
7613 osec->segment_mark = TRUE;
7614
7615 /* Check if this section is covered by the segment. */
7616 this_hdr = &(elf_section_data(section)->this_hdr);
7617 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7618 {
7619 /* FIXME: Check if its output section is changed or
7620 removed. What else do we need to check? */
7621 if (osec == NULL
7622 || section->flags != osec->flags
7623 || section->lma != osec->lma
7624 || section->vma != osec->vma
7625 || section->size != osec->size
7626 || section->rawsize != osec->rawsize
7627 || section->alignment_power != osec->alignment_power)
7628 goto rewrite;
7629 }
7630 }
7631 }
7632
7633 /* Check to see if any output section do not come from the
7634 input BFD. */
7635 for (section = obfd->sections; section != NULL;
7636 section = section->next)
7637 {
7638 if (!section->segment_mark)
7639 goto rewrite;
7640 else
7641 section->segment_mark = FALSE;
7642 }
7643
7644 return copy_elf_program_header (ibfd, obfd);
7645 }
7646
7647 rewrite:
7648 if (ibfd->xvec == obfd->xvec)
7649 {
7650 /* When rewriting program header, set the output maxpagesize to
7651 the maximum alignment of input PT_LOAD segments. */
7652 Elf_Internal_Phdr *segment;
7653 unsigned int i;
7654 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7655 bfd_vma maxpagesize = 0;
7656
7657 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7658 i < num_segments;
7659 i++, segment++)
7660 if (segment->p_type == PT_LOAD
7661 && maxpagesize < segment->p_align)
7662 {
7663 /* PR 17512: file: f17299af. */
7664 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7665 /* xgettext:c-format */
7666 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7667 PRIx64 " is too large"),
7668 ibfd, (uint64_t) segment->p_align);
7669 else
7670 maxpagesize = segment->p_align;
7671 }
7672
7673 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7674 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7675 }
7676
7677 return rewrite_elf_program_header (ibfd, obfd);
7678 }
7679
7680 /* Initialize private output section information from input section. */
7681
7682 bfd_boolean
7683 _bfd_elf_init_private_section_data (bfd *ibfd,
7684 asection *isec,
7685 bfd *obfd,
7686 asection *osec,
7687 struct bfd_link_info *link_info)
7688
7689 {
7690 Elf_Internal_Shdr *ihdr, *ohdr;
7691 bfd_boolean final_link = (link_info != NULL
7692 && !bfd_link_relocatable (link_info));
7693
7694 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7695 || obfd->xvec->flavour != bfd_target_elf_flavour)
7696 return TRUE;
7697
7698 BFD_ASSERT (elf_section_data (osec) != NULL);
7699
7700 /* For objcopy and relocatable link, don't copy the output ELF
7701 section type from input if the output BFD section flags have been
7702 set to something different. For a final link allow some flags
7703 that the linker clears to differ. */
7704 if (elf_section_type (osec) == SHT_NULL
7705 && (osec->flags == isec->flags
7706 || (final_link
7707 && ((osec->flags ^ isec->flags)
7708 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7709 elf_section_type (osec) = elf_section_type (isec);
7710
7711 /* FIXME: Is this correct for all OS/PROC specific flags? */
7712 elf_section_flags (osec) |= (elf_section_flags (isec)
7713 & (SHF_MASKOS | SHF_MASKPROC));
7714
7715 /* Copy sh_info from input for mbind section. */
7716 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7717 && elf_section_flags (isec) & SHF_GNU_MBIND)
7718 elf_section_data (osec)->this_hdr.sh_info
7719 = elf_section_data (isec)->this_hdr.sh_info;
7720
7721 /* Set things up for objcopy and relocatable link. The output
7722 SHT_GROUP section will have its elf_next_in_group pointing back
7723 to the input group members. Ignore linker created group section.
7724 See elfNN_ia64_object_p in elfxx-ia64.c. */
7725 if ((link_info == NULL
7726 || !link_info->resolve_section_groups)
7727 && (elf_sec_group (isec) == NULL
7728 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7729 {
7730 if (elf_section_flags (isec) & SHF_GROUP)
7731 elf_section_flags (osec) |= SHF_GROUP;
7732 elf_next_in_group (osec) = elf_next_in_group (isec);
7733 elf_section_data (osec)->group = elf_section_data (isec)->group;
7734 }
7735
7736 /* If not decompress, preserve SHF_COMPRESSED. */
7737 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7738 elf_section_flags (osec) |= (elf_section_flags (isec)
7739 & SHF_COMPRESSED);
7740
7741 ihdr = &elf_section_data (isec)->this_hdr;
7742
7743 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7744 don't use the output section of the linked-to section since it
7745 may be NULL at this point. */
7746 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7747 {
7748 ohdr = &elf_section_data (osec)->this_hdr;
7749 ohdr->sh_flags |= SHF_LINK_ORDER;
7750 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7751 }
7752
7753 osec->use_rela_p = isec->use_rela_p;
7754
7755 return TRUE;
7756 }
7757
7758 /* Copy private section information. This copies over the entsize
7759 field, and sometimes the info field. */
7760
7761 bfd_boolean
7762 _bfd_elf_copy_private_section_data (bfd *ibfd,
7763 asection *isec,
7764 bfd *obfd,
7765 asection *osec)
7766 {
7767 Elf_Internal_Shdr *ihdr, *ohdr;
7768
7769 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7770 || obfd->xvec->flavour != bfd_target_elf_flavour)
7771 return TRUE;
7772
7773 ihdr = &elf_section_data (isec)->this_hdr;
7774 ohdr = &elf_section_data (osec)->this_hdr;
7775
7776 ohdr->sh_entsize = ihdr->sh_entsize;
7777
7778 if (ihdr->sh_type == SHT_SYMTAB
7779 || ihdr->sh_type == SHT_DYNSYM
7780 || ihdr->sh_type == SHT_GNU_verneed
7781 || ihdr->sh_type == SHT_GNU_verdef)
7782 ohdr->sh_info = ihdr->sh_info;
7783
7784 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7785 NULL);
7786 }
7787
7788 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7789 necessary if we are removing either the SHT_GROUP section or any of
7790 the group member sections. DISCARDED is the value that a section's
7791 output_section has if the section will be discarded, NULL when this
7792 function is called from objcopy, bfd_abs_section_ptr when called
7793 from the linker. */
7794
7795 bfd_boolean
7796 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7797 {
7798 asection *isec;
7799
7800 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7801 if (elf_section_type (isec) == SHT_GROUP)
7802 {
7803 asection *first = elf_next_in_group (isec);
7804 asection *s = first;
7805 bfd_size_type removed = 0;
7806
7807 while (s != NULL)
7808 {
7809 /* If this member section is being output but the
7810 SHT_GROUP section is not, then clear the group info
7811 set up by _bfd_elf_copy_private_section_data. */
7812 if (s->output_section != discarded
7813 && isec->output_section == discarded)
7814 {
7815 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7816 elf_group_name (s->output_section) = NULL;
7817 }
7818 /* Conversely, if the member section is not being output
7819 but the SHT_GROUP section is, then adjust its size. */
7820 else if (s->output_section == discarded
7821 && isec->output_section != discarded)
7822 {
7823 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7824 removed += 4;
7825 if (elf_sec->rel.hdr != NULL
7826 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7827 removed += 4;
7828 if (elf_sec->rela.hdr != NULL
7829 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7830 removed += 4;
7831 }
7832 s = elf_next_in_group (s);
7833 if (s == first)
7834 break;
7835 }
7836 if (removed != 0)
7837 {
7838 if (discarded != NULL)
7839 {
7840 /* If we've been called for ld -r, then we need to
7841 adjust the input section size. */
7842 if (isec->rawsize == 0)
7843 isec->rawsize = isec->size;
7844 isec->size = isec->rawsize - removed;
7845 if (isec->size <= 4)
7846 {
7847 isec->size = 0;
7848 isec->flags |= SEC_EXCLUDE;
7849 }
7850 }
7851 else
7852 {
7853 /* Adjust the output section size when called from
7854 objcopy. */
7855 isec->output_section->size -= removed;
7856 if (isec->output_section->size <= 4)
7857 {
7858 isec->output_section->size = 0;
7859 isec->output_section->flags |= SEC_EXCLUDE;
7860 }
7861 }
7862 }
7863 }
7864
7865 return TRUE;
7866 }
7867
7868 /* Copy private header information. */
7869
7870 bfd_boolean
7871 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7872 {
7873 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7874 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7875 return TRUE;
7876
7877 /* Copy over private BFD data if it has not already been copied.
7878 This must be done here, rather than in the copy_private_bfd_data
7879 entry point, because the latter is called after the section
7880 contents have been set, which means that the program headers have
7881 already been worked out. */
7882 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7883 {
7884 if (! copy_private_bfd_data (ibfd, obfd))
7885 return FALSE;
7886 }
7887
7888 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7889 }
7890
7891 /* Copy private symbol information. If this symbol is in a section
7892 which we did not map into a BFD section, try to map the section
7893 index correctly. We use special macro definitions for the mapped
7894 section indices; these definitions are interpreted by the
7895 swap_out_syms function. */
7896
7897 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7898 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7899 #define MAP_STRTAB (SHN_HIOS + 3)
7900 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7901 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7902
7903 bfd_boolean
7904 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7905 asymbol *isymarg,
7906 bfd *obfd,
7907 asymbol *osymarg)
7908 {
7909 elf_symbol_type *isym, *osym;
7910
7911 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7912 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7913 return TRUE;
7914
7915 isym = elf_symbol_from (ibfd, isymarg);
7916 osym = elf_symbol_from (obfd, osymarg);
7917
7918 if (isym != NULL
7919 && isym->internal_elf_sym.st_shndx != 0
7920 && osym != NULL
7921 && bfd_is_abs_section (isym->symbol.section))
7922 {
7923 unsigned int shndx;
7924
7925 shndx = isym->internal_elf_sym.st_shndx;
7926 if (shndx == elf_onesymtab (ibfd))
7927 shndx = MAP_ONESYMTAB;
7928 else if (shndx == elf_dynsymtab (ibfd))
7929 shndx = MAP_DYNSYMTAB;
7930 else if (shndx == elf_strtab_sec (ibfd))
7931 shndx = MAP_STRTAB;
7932 else if (shndx == elf_shstrtab_sec (ibfd))
7933 shndx = MAP_SHSTRTAB;
7934 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7935 shndx = MAP_SYM_SHNDX;
7936 osym->internal_elf_sym.st_shndx = shndx;
7937 }
7938
7939 return TRUE;
7940 }
7941
7942 /* Swap out the symbols. */
7943
7944 static bfd_boolean
7945 swap_out_syms (bfd *abfd,
7946 struct elf_strtab_hash **sttp,
7947 int relocatable_p)
7948 {
7949 const struct elf_backend_data *bed;
7950 int symcount;
7951 asymbol **syms;
7952 struct elf_strtab_hash *stt;
7953 Elf_Internal_Shdr *symtab_hdr;
7954 Elf_Internal_Shdr *symtab_shndx_hdr;
7955 Elf_Internal_Shdr *symstrtab_hdr;
7956 struct elf_sym_strtab *symstrtab;
7957 bfd_byte *outbound_syms;
7958 bfd_byte *outbound_shndx;
7959 unsigned long outbound_syms_index;
7960 unsigned long outbound_shndx_index;
7961 int idx;
7962 unsigned int num_locals;
7963 bfd_size_type amt;
7964 bfd_boolean name_local_sections;
7965
7966 if (!elf_map_symbols (abfd, &num_locals))
7967 return FALSE;
7968
7969 /* Dump out the symtabs. */
7970 stt = _bfd_elf_strtab_init ();
7971 if (stt == NULL)
7972 return FALSE;
7973
7974 bed = get_elf_backend_data (abfd);
7975 symcount = bfd_get_symcount (abfd);
7976 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7977 symtab_hdr->sh_type = SHT_SYMTAB;
7978 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7979 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7980 symtab_hdr->sh_info = num_locals + 1;
7981 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7982
7983 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7984 symstrtab_hdr->sh_type = SHT_STRTAB;
7985
7986 /* Allocate buffer to swap out the .strtab section. */
7987 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
7988 sizeof (*symstrtab));
7989 if (symstrtab == NULL)
7990 {
7991 _bfd_elf_strtab_free (stt);
7992 return FALSE;
7993 }
7994
7995 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7996 bed->s->sizeof_sym);
7997 if (outbound_syms == NULL)
7998 {
7999 error_return:
8000 _bfd_elf_strtab_free (stt);
8001 free (symstrtab);
8002 return FALSE;
8003 }
8004 symtab_hdr->contents = outbound_syms;
8005 outbound_syms_index = 0;
8006
8007 outbound_shndx = NULL;
8008 outbound_shndx_index = 0;
8009
8010 if (elf_symtab_shndx_list (abfd))
8011 {
8012 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8013 if (symtab_shndx_hdr->sh_name != 0)
8014 {
8015 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
8016 outbound_shndx = (bfd_byte *)
8017 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
8018 if (outbound_shndx == NULL)
8019 goto error_return;
8020
8021 symtab_shndx_hdr->contents = outbound_shndx;
8022 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8023 symtab_shndx_hdr->sh_size = amt;
8024 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8025 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8026 }
8027 /* FIXME: What about any other headers in the list ? */
8028 }
8029
8030 /* Now generate the data (for "contents"). */
8031 {
8032 /* Fill in zeroth symbol and swap it out. */
8033 Elf_Internal_Sym sym;
8034 sym.st_name = 0;
8035 sym.st_value = 0;
8036 sym.st_size = 0;
8037 sym.st_info = 0;
8038 sym.st_other = 0;
8039 sym.st_shndx = SHN_UNDEF;
8040 sym.st_target_internal = 0;
8041 symstrtab[0].sym = sym;
8042 symstrtab[0].dest_index = outbound_syms_index;
8043 symstrtab[0].destshndx_index = outbound_shndx_index;
8044 outbound_syms_index++;
8045 if (outbound_shndx != NULL)
8046 outbound_shndx_index++;
8047 }
8048
8049 name_local_sections
8050 = (bed->elf_backend_name_local_section_symbols
8051 && bed->elf_backend_name_local_section_symbols (abfd));
8052
8053 syms = bfd_get_outsymbols (abfd);
8054 for (idx = 0; idx < symcount;)
8055 {
8056 Elf_Internal_Sym sym;
8057 bfd_vma value = syms[idx]->value;
8058 elf_symbol_type *type_ptr;
8059 flagword flags = syms[idx]->flags;
8060 int type;
8061
8062 if (!name_local_sections
8063 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8064 {
8065 /* Local section symbols have no name. */
8066 sym.st_name = (unsigned long) -1;
8067 }
8068 else
8069 {
8070 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8071 to get the final offset for st_name. */
8072 sym.st_name
8073 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8074 FALSE);
8075 if (sym.st_name == (unsigned long) -1)
8076 goto error_return;
8077 }
8078
8079 type_ptr = elf_symbol_from (abfd, syms[idx]);
8080
8081 if ((flags & BSF_SECTION_SYM) == 0
8082 && bfd_is_com_section (syms[idx]->section))
8083 {
8084 /* ELF common symbols put the alignment into the `value' field,
8085 and the size into the `size' field. This is backwards from
8086 how BFD handles it, so reverse it here. */
8087 sym.st_size = value;
8088 if (type_ptr == NULL
8089 || type_ptr->internal_elf_sym.st_value == 0)
8090 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8091 else
8092 sym.st_value = type_ptr->internal_elf_sym.st_value;
8093 sym.st_shndx = _bfd_elf_section_from_bfd_section
8094 (abfd, syms[idx]->section);
8095 }
8096 else
8097 {
8098 asection *sec = syms[idx]->section;
8099 unsigned int shndx;
8100
8101 if (sec->output_section)
8102 {
8103 value += sec->output_offset;
8104 sec = sec->output_section;
8105 }
8106
8107 /* Don't add in the section vma for relocatable output. */
8108 if (! relocatable_p)
8109 value += sec->vma;
8110 sym.st_value = value;
8111 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8112
8113 if (bfd_is_abs_section (sec)
8114 && type_ptr != NULL
8115 && type_ptr->internal_elf_sym.st_shndx != 0)
8116 {
8117 /* This symbol is in a real ELF section which we did
8118 not create as a BFD section. Undo the mapping done
8119 by copy_private_symbol_data. */
8120 shndx = type_ptr->internal_elf_sym.st_shndx;
8121 switch (shndx)
8122 {
8123 case MAP_ONESYMTAB:
8124 shndx = elf_onesymtab (abfd);
8125 break;
8126 case MAP_DYNSYMTAB:
8127 shndx = elf_dynsymtab (abfd);
8128 break;
8129 case MAP_STRTAB:
8130 shndx = elf_strtab_sec (abfd);
8131 break;
8132 case MAP_SHSTRTAB:
8133 shndx = elf_shstrtab_sec (abfd);
8134 break;
8135 case MAP_SYM_SHNDX:
8136 if (elf_symtab_shndx_list (abfd))
8137 shndx = elf_symtab_shndx_list (abfd)->ndx;
8138 break;
8139 default:
8140 shndx = SHN_ABS;
8141 break;
8142 }
8143 }
8144 else
8145 {
8146 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8147
8148 if (shndx == SHN_BAD)
8149 {
8150 asection *sec2;
8151
8152 /* Writing this would be a hell of a lot easier if
8153 we had some decent documentation on bfd, and
8154 knew what to expect of the library, and what to
8155 demand of applications. For example, it
8156 appears that `objcopy' might not set the
8157 section of a symbol to be a section that is
8158 actually in the output file. */
8159 sec2 = bfd_get_section_by_name (abfd, sec->name);
8160 if (sec2 != NULL)
8161 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8162 if (shndx == SHN_BAD)
8163 {
8164 /* xgettext:c-format */
8165 _bfd_error_handler
8166 (_("unable to find equivalent output section"
8167 " for symbol '%s' from section '%s'"),
8168 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8169 sec->name);
8170 bfd_set_error (bfd_error_invalid_operation);
8171 goto error_return;
8172 }
8173 }
8174 }
8175
8176 sym.st_shndx = shndx;
8177 }
8178
8179 if ((flags & BSF_THREAD_LOCAL) != 0)
8180 type = STT_TLS;
8181 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8182 type = STT_GNU_IFUNC;
8183 else if ((flags & BSF_FUNCTION) != 0)
8184 type = STT_FUNC;
8185 else if ((flags & BSF_OBJECT) != 0)
8186 type = STT_OBJECT;
8187 else if ((flags & BSF_RELC) != 0)
8188 type = STT_RELC;
8189 else if ((flags & BSF_SRELC) != 0)
8190 type = STT_SRELC;
8191 else
8192 type = STT_NOTYPE;
8193
8194 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8195 type = STT_TLS;
8196
8197 /* Processor-specific types. */
8198 if (type_ptr != NULL
8199 && bed->elf_backend_get_symbol_type)
8200 type = ((*bed->elf_backend_get_symbol_type)
8201 (&type_ptr->internal_elf_sym, type));
8202
8203 if (flags & BSF_SECTION_SYM)
8204 {
8205 if (flags & BSF_GLOBAL)
8206 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8207 else
8208 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8209 }
8210 else if (bfd_is_com_section (syms[idx]->section))
8211 {
8212 if (type != STT_TLS)
8213 {
8214 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8215 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8216 ? STT_COMMON : STT_OBJECT);
8217 else
8218 type = ((flags & BSF_ELF_COMMON) != 0
8219 ? STT_COMMON : STT_OBJECT);
8220 }
8221 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8222 }
8223 else if (bfd_is_und_section (syms[idx]->section))
8224 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8225 ? STB_WEAK
8226 : STB_GLOBAL),
8227 type);
8228 else if (flags & BSF_FILE)
8229 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8230 else
8231 {
8232 int bind = STB_LOCAL;
8233
8234 if (flags & BSF_LOCAL)
8235 bind = STB_LOCAL;
8236 else if (flags & BSF_GNU_UNIQUE)
8237 bind = STB_GNU_UNIQUE;
8238 else if (flags & BSF_WEAK)
8239 bind = STB_WEAK;
8240 else if (flags & BSF_GLOBAL)
8241 bind = STB_GLOBAL;
8242
8243 sym.st_info = ELF_ST_INFO (bind, type);
8244 }
8245
8246 if (type_ptr != NULL)
8247 {
8248 sym.st_other = type_ptr->internal_elf_sym.st_other;
8249 sym.st_target_internal
8250 = type_ptr->internal_elf_sym.st_target_internal;
8251 }
8252 else
8253 {
8254 sym.st_other = 0;
8255 sym.st_target_internal = 0;
8256 }
8257
8258 idx++;
8259 symstrtab[idx].sym = sym;
8260 symstrtab[idx].dest_index = outbound_syms_index;
8261 symstrtab[idx].destshndx_index = outbound_shndx_index;
8262
8263 outbound_syms_index++;
8264 if (outbound_shndx != NULL)
8265 outbound_shndx_index++;
8266 }
8267
8268 /* Finalize the .strtab section. */
8269 _bfd_elf_strtab_finalize (stt);
8270
8271 /* Swap out the .strtab section. */
8272 for (idx = 0; idx <= symcount; idx++)
8273 {
8274 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8275 if (elfsym->sym.st_name == (unsigned long) -1)
8276 elfsym->sym.st_name = 0;
8277 else
8278 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8279 elfsym->sym.st_name);
8280 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8281 (outbound_syms
8282 + (elfsym->dest_index
8283 * bed->s->sizeof_sym)),
8284 (outbound_shndx
8285 + (elfsym->destshndx_index
8286 * sizeof (Elf_External_Sym_Shndx))));
8287 }
8288 free (symstrtab);
8289
8290 *sttp = stt;
8291 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8292 symstrtab_hdr->sh_type = SHT_STRTAB;
8293 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8294 symstrtab_hdr->sh_addr = 0;
8295 symstrtab_hdr->sh_entsize = 0;
8296 symstrtab_hdr->sh_link = 0;
8297 symstrtab_hdr->sh_info = 0;
8298 symstrtab_hdr->sh_addralign = 1;
8299
8300 return TRUE;
8301 }
8302
8303 /* Return the number of bytes required to hold the symtab vector.
8304
8305 Note that we base it on the count plus 1, since we will null terminate
8306 the vector allocated based on this size. However, the ELF symbol table
8307 always has a dummy entry as symbol #0, so it ends up even. */
8308
8309 long
8310 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8311 {
8312 bfd_size_type symcount;
8313 long symtab_size;
8314 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8315
8316 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8317 if (symcount >= LONG_MAX / sizeof (asymbol *))
8318 {
8319 bfd_set_error (bfd_error_file_too_big);
8320 return -1;
8321 }
8322 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8323 if (symcount > 0)
8324 symtab_size -= sizeof (asymbol *);
8325
8326 return symtab_size;
8327 }
8328
8329 long
8330 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8331 {
8332 bfd_size_type symcount;
8333 long symtab_size;
8334 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8335
8336 if (elf_dynsymtab (abfd) == 0)
8337 {
8338 bfd_set_error (bfd_error_invalid_operation);
8339 return -1;
8340 }
8341
8342 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8343 if (symcount >= LONG_MAX / sizeof (asymbol *))
8344 {
8345 bfd_set_error (bfd_error_file_too_big);
8346 return -1;
8347 }
8348 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8349 if (symcount > 0)
8350 symtab_size -= sizeof (asymbol *);
8351
8352 return symtab_size;
8353 }
8354
8355 long
8356 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8357 sec_ptr asect)
8358 {
8359 #if SIZEOF_LONG == SIZEOF_INT
8360 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8361 {
8362 bfd_set_error (bfd_error_file_too_big);
8363 return -1;
8364 }
8365 #endif
8366 return (asect->reloc_count + 1) * sizeof (arelent *);
8367 }
8368
8369 /* Canonicalize the relocs. */
8370
8371 long
8372 _bfd_elf_canonicalize_reloc (bfd *abfd,
8373 sec_ptr section,
8374 arelent **relptr,
8375 asymbol **symbols)
8376 {
8377 arelent *tblptr;
8378 unsigned int i;
8379 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8380
8381 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8382 return -1;
8383
8384 tblptr = section->relocation;
8385 for (i = 0; i < section->reloc_count; i++)
8386 *relptr++ = tblptr++;
8387
8388 *relptr = NULL;
8389
8390 return section->reloc_count;
8391 }
8392
8393 long
8394 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8395 {
8396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8397 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8398
8399 if (symcount >= 0)
8400 bfd_get_symcount (abfd) = symcount;
8401 return symcount;
8402 }
8403
8404 long
8405 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8406 asymbol **allocation)
8407 {
8408 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8409 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8410
8411 if (symcount >= 0)
8412 bfd_get_dynamic_symcount (abfd) = symcount;
8413 return symcount;
8414 }
8415
8416 /* Return the size required for the dynamic reloc entries. Any loadable
8417 section that was actually installed in the BFD, and has type SHT_REL
8418 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8419 dynamic reloc section. */
8420
8421 long
8422 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8423 {
8424 bfd_size_type count;
8425 asection *s;
8426
8427 if (elf_dynsymtab (abfd) == 0)
8428 {
8429 bfd_set_error (bfd_error_invalid_operation);
8430 return -1;
8431 }
8432
8433 count = 1;
8434 for (s = abfd->sections; s != NULL; s = s->next)
8435 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8436 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8437 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8438 {
8439 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8440 if (count > LONG_MAX / sizeof (arelent *))
8441 {
8442 bfd_set_error (bfd_error_file_too_big);
8443 return -1;
8444 }
8445 }
8446 return count * sizeof (arelent *);
8447 }
8448
8449 /* Canonicalize the dynamic relocation entries. Note that we return the
8450 dynamic relocations as a single block, although they are actually
8451 associated with particular sections; the interface, which was
8452 designed for SunOS style shared libraries, expects that there is only
8453 one set of dynamic relocs. Any loadable section that was actually
8454 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8455 dynamic symbol table, is considered to be a dynamic reloc section. */
8456
8457 long
8458 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8459 arelent **storage,
8460 asymbol **syms)
8461 {
8462 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8463 asection *s;
8464 long ret;
8465
8466 if (elf_dynsymtab (abfd) == 0)
8467 {
8468 bfd_set_error (bfd_error_invalid_operation);
8469 return -1;
8470 }
8471
8472 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8473 ret = 0;
8474 for (s = abfd->sections; s != NULL; s = s->next)
8475 {
8476 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8477 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8478 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8479 {
8480 arelent *p;
8481 long count, i;
8482
8483 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8484 return -1;
8485 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8486 p = s->relocation;
8487 for (i = 0; i < count; i++)
8488 *storage++ = p++;
8489 ret += count;
8490 }
8491 }
8492
8493 *storage = NULL;
8494
8495 return ret;
8496 }
8497 \f
8498 /* Read in the version information. */
8499
8500 bfd_boolean
8501 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8502 {
8503 bfd_byte *contents = NULL;
8504 unsigned int freeidx = 0;
8505
8506 if (elf_dynverref (abfd) != 0)
8507 {
8508 Elf_Internal_Shdr *hdr;
8509 Elf_External_Verneed *everneed;
8510 Elf_Internal_Verneed *iverneed;
8511 unsigned int i;
8512 bfd_byte *contents_end;
8513
8514 hdr = &elf_tdata (abfd)->dynverref_hdr;
8515
8516 if (hdr->sh_info == 0
8517 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8518 {
8519 error_return_bad_verref:
8520 _bfd_error_handler
8521 (_("%pB: .gnu.version_r invalid entry"), abfd);
8522 bfd_set_error (bfd_error_bad_value);
8523 error_return_verref:
8524 elf_tdata (abfd)->verref = NULL;
8525 elf_tdata (abfd)->cverrefs = 0;
8526 goto error_return;
8527 }
8528
8529 ufile_ptr filesize = bfd_get_file_size (abfd);
8530 if (filesize > 0 && filesize < hdr->sh_size)
8531 {
8532 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8533 of memory. */
8534 bfd_set_error (bfd_error_no_memory);
8535 _bfd_error_handler
8536 /* xgettext:c-format */
8537 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8538 abfd, (uint64_t) hdr->sh_size);
8539 goto error_return_verref;
8540 }
8541 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8542 if (contents == NULL)
8543 goto error_return_verref;
8544
8545 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8546 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8547 goto error_return_verref;
8548
8549 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8550 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8551
8552 if (elf_tdata (abfd)->verref == NULL)
8553 goto error_return_verref;
8554
8555 BFD_ASSERT (sizeof (Elf_External_Verneed)
8556 == sizeof (Elf_External_Vernaux));
8557 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8558 everneed = (Elf_External_Verneed *) contents;
8559 iverneed = elf_tdata (abfd)->verref;
8560 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8561 {
8562 Elf_External_Vernaux *evernaux;
8563 Elf_Internal_Vernaux *ivernaux;
8564 unsigned int j;
8565
8566 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8567
8568 iverneed->vn_bfd = abfd;
8569
8570 iverneed->vn_filename =
8571 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8572 iverneed->vn_file);
8573 if (iverneed->vn_filename == NULL)
8574 goto error_return_bad_verref;
8575
8576 if (iverneed->vn_cnt == 0)
8577 iverneed->vn_auxptr = NULL;
8578 else
8579 {
8580 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8581 bfd_alloc2 (abfd, iverneed->vn_cnt,
8582 sizeof (Elf_Internal_Vernaux));
8583 if (iverneed->vn_auxptr == NULL)
8584 goto error_return_verref;
8585 }
8586
8587 if (iverneed->vn_aux
8588 > (size_t) (contents_end - (bfd_byte *) everneed))
8589 goto error_return_bad_verref;
8590
8591 evernaux = ((Elf_External_Vernaux *)
8592 ((bfd_byte *) everneed + iverneed->vn_aux));
8593 ivernaux = iverneed->vn_auxptr;
8594 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8595 {
8596 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8597
8598 ivernaux->vna_nodename =
8599 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8600 ivernaux->vna_name);
8601 if (ivernaux->vna_nodename == NULL)
8602 goto error_return_bad_verref;
8603
8604 if (ivernaux->vna_other > freeidx)
8605 freeidx = ivernaux->vna_other;
8606
8607 ivernaux->vna_nextptr = NULL;
8608 if (ivernaux->vna_next == 0)
8609 {
8610 iverneed->vn_cnt = j + 1;
8611 break;
8612 }
8613 if (j + 1 < iverneed->vn_cnt)
8614 ivernaux->vna_nextptr = ivernaux + 1;
8615
8616 if (ivernaux->vna_next
8617 > (size_t) (contents_end - (bfd_byte *) evernaux))
8618 goto error_return_bad_verref;
8619
8620 evernaux = ((Elf_External_Vernaux *)
8621 ((bfd_byte *) evernaux + ivernaux->vna_next));
8622 }
8623
8624 iverneed->vn_nextref = NULL;
8625 if (iverneed->vn_next == 0)
8626 break;
8627 if (i + 1 < hdr->sh_info)
8628 iverneed->vn_nextref = iverneed + 1;
8629
8630 if (iverneed->vn_next
8631 > (size_t) (contents_end - (bfd_byte *) everneed))
8632 goto error_return_bad_verref;
8633
8634 everneed = ((Elf_External_Verneed *)
8635 ((bfd_byte *) everneed + iverneed->vn_next));
8636 }
8637 elf_tdata (abfd)->cverrefs = i;
8638
8639 free (contents);
8640 contents = NULL;
8641 }
8642
8643 if (elf_dynverdef (abfd) != 0)
8644 {
8645 Elf_Internal_Shdr *hdr;
8646 Elf_External_Verdef *everdef;
8647 Elf_Internal_Verdef *iverdef;
8648 Elf_Internal_Verdef *iverdefarr;
8649 Elf_Internal_Verdef iverdefmem;
8650 unsigned int i;
8651 unsigned int maxidx;
8652 bfd_byte *contents_end_def, *contents_end_aux;
8653
8654 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8655
8656 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8657 {
8658 error_return_bad_verdef:
8659 _bfd_error_handler
8660 (_("%pB: .gnu.version_d invalid entry"), abfd);
8661 bfd_set_error (bfd_error_bad_value);
8662 error_return_verdef:
8663 elf_tdata (abfd)->verdef = NULL;
8664 elf_tdata (abfd)->cverdefs = 0;
8665 goto error_return;
8666 }
8667
8668 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8669 if (contents == NULL)
8670 goto error_return_verdef;
8671 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8672 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8673 goto error_return_verdef;
8674
8675 BFD_ASSERT (sizeof (Elf_External_Verdef)
8676 >= sizeof (Elf_External_Verdaux));
8677 contents_end_def = contents + hdr->sh_size
8678 - sizeof (Elf_External_Verdef);
8679 contents_end_aux = contents + hdr->sh_size
8680 - sizeof (Elf_External_Verdaux);
8681
8682 /* We know the number of entries in the section but not the maximum
8683 index. Therefore we have to run through all entries and find
8684 the maximum. */
8685 everdef = (Elf_External_Verdef *) contents;
8686 maxidx = 0;
8687 for (i = 0; i < hdr->sh_info; ++i)
8688 {
8689 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8690
8691 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8692 goto error_return_bad_verdef;
8693 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8694 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8695
8696 if (iverdefmem.vd_next == 0)
8697 break;
8698
8699 if (iverdefmem.vd_next
8700 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8701 goto error_return_bad_verdef;
8702
8703 everdef = ((Elf_External_Verdef *)
8704 ((bfd_byte *) everdef + iverdefmem.vd_next));
8705 }
8706
8707 if (default_imported_symver)
8708 {
8709 if (freeidx > maxidx)
8710 maxidx = ++freeidx;
8711 else
8712 freeidx = ++maxidx;
8713 }
8714
8715 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8716 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8717 if (elf_tdata (abfd)->verdef == NULL)
8718 goto error_return_verdef;
8719
8720 elf_tdata (abfd)->cverdefs = maxidx;
8721
8722 everdef = (Elf_External_Verdef *) contents;
8723 iverdefarr = elf_tdata (abfd)->verdef;
8724 for (i = 0; i < hdr->sh_info; i++)
8725 {
8726 Elf_External_Verdaux *everdaux;
8727 Elf_Internal_Verdaux *iverdaux;
8728 unsigned int j;
8729
8730 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8731
8732 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8733 goto error_return_bad_verdef;
8734
8735 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8736 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8737
8738 iverdef->vd_bfd = abfd;
8739
8740 if (iverdef->vd_cnt == 0)
8741 iverdef->vd_auxptr = NULL;
8742 else
8743 {
8744 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8745 bfd_alloc2 (abfd, iverdef->vd_cnt,
8746 sizeof (Elf_Internal_Verdaux));
8747 if (iverdef->vd_auxptr == NULL)
8748 goto error_return_verdef;
8749 }
8750
8751 if (iverdef->vd_aux
8752 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8753 goto error_return_bad_verdef;
8754
8755 everdaux = ((Elf_External_Verdaux *)
8756 ((bfd_byte *) everdef + iverdef->vd_aux));
8757 iverdaux = iverdef->vd_auxptr;
8758 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8759 {
8760 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8761
8762 iverdaux->vda_nodename =
8763 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8764 iverdaux->vda_name);
8765 if (iverdaux->vda_nodename == NULL)
8766 goto error_return_bad_verdef;
8767
8768 iverdaux->vda_nextptr = NULL;
8769 if (iverdaux->vda_next == 0)
8770 {
8771 iverdef->vd_cnt = j + 1;
8772 break;
8773 }
8774 if (j + 1 < iverdef->vd_cnt)
8775 iverdaux->vda_nextptr = iverdaux + 1;
8776
8777 if (iverdaux->vda_next
8778 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8779 goto error_return_bad_verdef;
8780
8781 everdaux = ((Elf_External_Verdaux *)
8782 ((bfd_byte *) everdaux + iverdaux->vda_next));
8783 }
8784
8785 iverdef->vd_nodename = NULL;
8786 if (iverdef->vd_cnt)
8787 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8788
8789 iverdef->vd_nextdef = NULL;
8790 if (iverdef->vd_next == 0)
8791 break;
8792 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8793 iverdef->vd_nextdef = iverdef + 1;
8794
8795 everdef = ((Elf_External_Verdef *)
8796 ((bfd_byte *) everdef + iverdef->vd_next));
8797 }
8798
8799 free (contents);
8800 contents = NULL;
8801 }
8802 else if (default_imported_symver)
8803 {
8804 if (freeidx < 3)
8805 freeidx = 3;
8806 else
8807 freeidx++;
8808
8809 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8810 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8811 if (elf_tdata (abfd)->verdef == NULL)
8812 goto error_return;
8813
8814 elf_tdata (abfd)->cverdefs = freeidx;
8815 }
8816
8817 /* Create a default version based on the soname. */
8818 if (default_imported_symver)
8819 {
8820 Elf_Internal_Verdef *iverdef;
8821 Elf_Internal_Verdaux *iverdaux;
8822
8823 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8824
8825 iverdef->vd_version = VER_DEF_CURRENT;
8826 iverdef->vd_flags = 0;
8827 iverdef->vd_ndx = freeidx;
8828 iverdef->vd_cnt = 1;
8829
8830 iverdef->vd_bfd = abfd;
8831
8832 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8833 if (iverdef->vd_nodename == NULL)
8834 goto error_return_verdef;
8835 iverdef->vd_nextdef = NULL;
8836 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8837 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8838 if (iverdef->vd_auxptr == NULL)
8839 goto error_return_verdef;
8840
8841 iverdaux = iverdef->vd_auxptr;
8842 iverdaux->vda_nodename = iverdef->vd_nodename;
8843 }
8844
8845 return TRUE;
8846
8847 error_return:
8848 if (contents != NULL)
8849 free (contents);
8850 return FALSE;
8851 }
8852 \f
8853 asymbol *
8854 _bfd_elf_make_empty_symbol (bfd *abfd)
8855 {
8856 elf_symbol_type *newsym;
8857
8858 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8859 if (!newsym)
8860 return NULL;
8861 newsym->symbol.the_bfd = abfd;
8862 return &newsym->symbol;
8863 }
8864
8865 void
8866 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8867 asymbol *symbol,
8868 symbol_info *ret)
8869 {
8870 bfd_symbol_info (symbol, ret);
8871 }
8872
8873 /* Return whether a symbol name implies a local symbol. Most targets
8874 use this function for the is_local_label_name entry point, but some
8875 override it. */
8876
8877 bfd_boolean
8878 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8879 const char *name)
8880 {
8881 /* Normal local symbols start with ``.L''. */
8882 if (name[0] == '.' && name[1] == 'L')
8883 return TRUE;
8884
8885 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8886 DWARF debugging symbols starting with ``..''. */
8887 if (name[0] == '.' && name[1] == '.')
8888 return TRUE;
8889
8890 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8891 emitting DWARF debugging output. I suspect this is actually a
8892 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8893 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8894 underscore to be emitted on some ELF targets). For ease of use,
8895 we treat such symbols as local. */
8896 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8897 return TRUE;
8898
8899 /* Treat assembler generated fake symbols, dollar local labels and
8900 forward-backward labels (aka local labels) as locals.
8901 These labels have the form:
8902
8903 L0^A.* (fake symbols)
8904
8905 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8906
8907 Versions which start with .L will have already been matched above,
8908 so we only need to match the rest. */
8909 if (name[0] == 'L' && ISDIGIT (name[1]))
8910 {
8911 bfd_boolean ret = FALSE;
8912 const char * p;
8913 char c;
8914
8915 for (p = name + 2; (c = *p); p++)
8916 {
8917 if (c == 1 || c == 2)
8918 {
8919 if (c == 1 && p == name + 2)
8920 /* A fake symbol. */
8921 return TRUE;
8922
8923 /* FIXME: We are being paranoid here and treating symbols like
8924 L0^Bfoo as if there were non-local, on the grounds that the
8925 assembler will never generate them. But can any symbol
8926 containing an ASCII value in the range 1-31 ever be anything
8927 other than some kind of local ? */
8928 ret = TRUE;
8929 }
8930
8931 if (! ISDIGIT (c))
8932 {
8933 ret = FALSE;
8934 break;
8935 }
8936 }
8937 return ret;
8938 }
8939
8940 return FALSE;
8941 }
8942
8943 alent *
8944 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8945 asymbol *symbol ATTRIBUTE_UNUSED)
8946 {
8947 abort ();
8948 return NULL;
8949 }
8950
8951 bfd_boolean
8952 _bfd_elf_set_arch_mach (bfd *abfd,
8953 enum bfd_architecture arch,
8954 unsigned long machine)
8955 {
8956 /* If this isn't the right architecture for this backend, and this
8957 isn't the generic backend, fail. */
8958 if (arch != get_elf_backend_data (abfd)->arch
8959 && arch != bfd_arch_unknown
8960 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8961 return FALSE;
8962
8963 return bfd_default_set_arch_mach (abfd, arch, machine);
8964 }
8965
8966 /* Find the nearest line to a particular section and offset,
8967 for error reporting. */
8968
8969 bfd_boolean
8970 _bfd_elf_find_nearest_line (bfd *abfd,
8971 asymbol **symbols,
8972 asection *section,
8973 bfd_vma offset,
8974 const char **filename_ptr,
8975 const char **functionname_ptr,
8976 unsigned int *line_ptr,
8977 unsigned int *discriminator_ptr)
8978 {
8979 bfd_boolean found;
8980
8981 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8982 filename_ptr, functionname_ptr,
8983 line_ptr, discriminator_ptr,
8984 dwarf_debug_sections,
8985 &elf_tdata (abfd)->dwarf2_find_line_info)
8986 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8987 filename_ptr, functionname_ptr,
8988 line_ptr))
8989 {
8990 if (!*functionname_ptr)
8991 _bfd_elf_find_function (abfd, symbols, section, offset,
8992 *filename_ptr ? NULL : filename_ptr,
8993 functionname_ptr);
8994 return TRUE;
8995 }
8996
8997 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8998 &found, filename_ptr,
8999 functionname_ptr, line_ptr,
9000 &elf_tdata (abfd)->line_info))
9001 return FALSE;
9002 if (found && (*functionname_ptr || *line_ptr))
9003 return TRUE;
9004
9005 if (symbols == NULL)
9006 return FALSE;
9007
9008 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9009 filename_ptr, functionname_ptr))
9010 return FALSE;
9011
9012 *line_ptr = 0;
9013 return TRUE;
9014 }
9015
9016 /* Find the line for a symbol. */
9017
9018 bfd_boolean
9019 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9020 const char **filename_ptr, unsigned int *line_ptr)
9021 {
9022 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9023 filename_ptr, NULL, line_ptr, NULL,
9024 dwarf_debug_sections,
9025 &elf_tdata (abfd)->dwarf2_find_line_info);
9026 }
9027
9028 /* After a call to bfd_find_nearest_line, successive calls to
9029 bfd_find_inliner_info can be used to get source information about
9030 each level of function inlining that terminated at the address
9031 passed to bfd_find_nearest_line. Currently this is only supported
9032 for DWARF2 with appropriate DWARF3 extensions. */
9033
9034 bfd_boolean
9035 _bfd_elf_find_inliner_info (bfd *abfd,
9036 const char **filename_ptr,
9037 const char **functionname_ptr,
9038 unsigned int *line_ptr)
9039 {
9040 bfd_boolean found;
9041 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9042 functionname_ptr, line_ptr,
9043 & elf_tdata (abfd)->dwarf2_find_line_info);
9044 return found;
9045 }
9046
9047 int
9048 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9049 {
9050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9051 int ret = bed->s->sizeof_ehdr;
9052
9053 if (!bfd_link_relocatable (info))
9054 {
9055 bfd_size_type phdr_size = elf_program_header_size (abfd);
9056
9057 if (phdr_size == (bfd_size_type) -1)
9058 {
9059 struct elf_segment_map *m;
9060
9061 phdr_size = 0;
9062 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9063 phdr_size += bed->s->sizeof_phdr;
9064
9065 if (phdr_size == 0)
9066 phdr_size = get_program_header_size (abfd, info);
9067 }
9068
9069 elf_program_header_size (abfd) = phdr_size;
9070 ret += phdr_size;
9071 }
9072
9073 return ret;
9074 }
9075
9076 bfd_boolean
9077 _bfd_elf_set_section_contents (bfd *abfd,
9078 sec_ptr section,
9079 const void *location,
9080 file_ptr offset,
9081 bfd_size_type count)
9082 {
9083 Elf_Internal_Shdr *hdr;
9084 file_ptr pos;
9085
9086 if (! abfd->output_has_begun
9087 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9088 return FALSE;
9089
9090 if (!count)
9091 return TRUE;
9092
9093 hdr = &elf_section_data (section)->this_hdr;
9094 if (hdr->sh_offset == (file_ptr) -1)
9095 {
9096 /* We must compress this section. Write output to the buffer. */
9097 unsigned char *contents = hdr->contents;
9098 if ((offset + count) > hdr->sh_size
9099 || (section->flags & SEC_ELF_COMPRESS) == 0
9100 || contents == NULL)
9101 abort ();
9102 memcpy (contents + offset, location, count);
9103 return TRUE;
9104 }
9105 pos = hdr->sh_offset + offset;
9106 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9107 || bfd_bwrite (location, count, abfd) != count)
9108 return FALSE;
9109
9110 return TRUE;
9111 }
9112
9113 bfd_boolean
9114 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9115 arelent *cache_ptr ATTRIBUTE_UNUSED,
9116 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9117 {
9118 abort ();
9119 return FALSE;
9120 }
9121
9122 /* Try to convert a non-ELF reloc into an ELF one. */
9123
9124 bfd_boolean
9125 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9126 {
9127 /* Check whether we really have an ELF howto. */
9128
9129 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9130 {
9131 bfd_reloc_code_real_type code;
9132 reloc_howto_type *howto;
9133
9134 /* Alien reloc: Try to determine its type to replace it with an
9135 equivalent ELF reloc. */
9136
9137 if (areloc->howto->pc_relative)
9138 {
9139 switch (areloc->howto->bitsize)
9140 {
9141 case 8:
9142 code = BFD_RELOC_8_PCREL;
9143 break;
9144 case 12:
9145 code = BFD_RELOC_12_PCREL;
9146 break;
9147 case 16:
9148 code = BFD_RELOC_16_PCREL;
9149 break;
9150 case 24:
9151 code = BFD_RELOC_24_PCREL;
9152 break;
9153 case 32:
9154 code = BFD_RELOC_32_PCREL;
9155 break;
9156 case 64:
9157 code = BFD_RELOC_64_PCREL;
9158 break;
9159 default:
9160 goto fail;
9161 }
9162
9163 howto = bfd_reloc_type_lookup (abfd, code);
9164
9165 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9166 {
9167 if (howto->pcrel_offset)
9168 areloc->addend += areloc->address;
9169 else
9170 areloc->addend -= areloc->address; /* addend is unsigned!! */
9171 }
9172 }
9173 else
9174 {
9175 switch (areloc->howto->bitsize)
9176 {
9177 case 8:
9178 code = BFD_RELOC_8;
9179 break;
9180 case 14:
9181 code = BFD_RELOC_14;
9182 break;
9183 case 16:
9184 code = BFD_RELOC_16;
9185 break;
9186 case 26:
9187 code = BFD_RELOC_26;
9188 break;
9189 case 32:
9190 code = BFD_RELOC_32;
9191 break;
9192 case 64:
9193 code = BFD_RELOC_64;
9194 break;
9195 default:
9196 goto fail;
9197 }
9198
9199 howto = bfd_reloc_type_lookup (abfd, code);
9200 }
9201
9202 if (howto)
9203 areloc->howto = howto;
9204 else
9205 goto fail;
9206 }
9207
9208 return TRUE;
9209
9210 fail:
9211 /* xgettext:c-format */
9212 _bfd_error_handler (_("%pB: %s unsupported"),
9213 abfd, areloc->howto->name);
9214 bfd_set_error (bfd_error_bad_value);
9215 return FALSE;
9216 }
9217
9218 bfd_boolean
9219 _bfd_elf_close_and_cleanup (bfd *abfd)
9220 {
9221 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9222 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9223 {
9224 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9225 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9226 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9227 }
9228
9229 return _bfd_generic_close_and_cleanup (abfd);
9230 }
9231
9232 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9233 in the relocation's offset. Thus we cannot allow any sort of sanity
9234 range-checking to interfere. There is nothing else to do in processing
9235 this reloc. */
9236
9237 bfd_reloc_status_type
9238 _bfd_elf_rel_vtable_reloc_fn
9239 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9240 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9241 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9242 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9243 {
9244 return bfd_reloc_ok;
9245 }
9246 \f
9247 /* Elf core file support. Much of this only works on native
9248 toolchains, since we rely on knowing the
9249 machine-dependent procfs structure in order to pick
9250 out details about the corefile. */
9251
9252 #ifdef HAVE_SYS_PROCFS_H
9253 /* Needed for new procfs interface on sparc-solaris. */
9254 # define _STRUCTURED_PROC 1
9255 # include <sys/procfs.h>
9256 #endif
9257
9258 /* Return a PID that identifies a "thread" for threaded cores, or the
9259 PID of the main process for non-threaded cores. */
9260
9261 static int
9262 elfcore_make_pid (bfd *abfd)
9263 {
9264 int pid;
9265
9266 pid = elf_tdata (abfd)->core->lwpid;
9267 if (pid == 0)
9268 pid = elf_tdata (abfd)->core->pid;
9269
9270 return pid;
9271 }
9272
9273 /* If there isn't a section called NAME, make one, using
9274 data from SECT. Note, this function will generate a
9275 reference to NAME, so you shouldn't deallocate or
9276 overwrite it. */
9277
9278 static bfd_boolean
9279 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9280 {
9281 asection *sect2;
9282
9283 if (bfd_get_section_by_name (abfd, name) != NULL)
9284 return TRUE;
9285
9286 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9287 if (sect2 == NULL)
9288 return FALSE;
9289
9290 sect2->size = sect->size;
9291 sect2->filepos = sect->filepos;
9292 sect2->alignment_power = sect->alignment_power;
9293 return TRUE;
9294 }
9295
9296 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9297 actually creates up to two pseudosections:
9298 - For the single-threaded case, a section named NAME, unless
9299 such a section already exists.
9300 - For the multi-threaded case, a section named "NAME/PID", where
9301 PID is elfcore_make_pid (abfd).
9302 Both pseudosections have identical contents. */
9303 bfd_boolean
9304 _bfd_elfcore_make_pseudosection (bfd *abfd,
9305 char *name,
9306 size_t size,
9307 ufile_ptr filepos)
9308 {
9309 char buf[100];
9310 char *threaded_name;
9311 size_t len;
9312 asection *sect;
9313
9314 /* Build the section name. */
9315
9316 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9317 len = strlen (buf) + 1;
9318 threaded_name = (char *) bfd_alloc (abfd, len);
9319 if (threaded_name == NULL)
9320 return FALSE;
9321 memcpy (threaded_name, buf, len);
9322
9323 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9324 SEC_HAS_CONTENTS);
9325 if (sect == NULL)
9326 return FALSE;
9327 sect->size = size;
9328 sect->filepos = filepos;
9329 sect->alignment_power = 2;
9330
9331 return elfcore_maybe_make_sect (abfd, name, sect);
9332 }
9333
9334 static bfd_boolean
9335 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9336 size_t offs)
9337 {
9338 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9339 SEC_HAS_CONTENTS);
9340
9341 if (sect == NULL)
9342 return FALSE;
9343
9344 sect->size = note->descsz - offs;
9345 sect->filepos = note->descpos + offs;
9346 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9347
9348 return TRUE;
9349 }
9350
9351 /* prstatus_t exists on:
9352 solaris 2.5+
9353 linux 2.[01] + glibc
9354 unixware 4.2
9355 */
9356
9357 #if defined (HAVE_PRSTATUS_T)
9358
9359 static bfd_boolean
9360 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9361 {
9362 size_t size;
9363 int offset;
9364
9365 if (note->descsz == sizeof (prstatus_t))
9366 {
9367 prstatus_t prstat;
9368
9369 size = sizeof (prstat.pr_reg);
9370 offset = offsetof (prstatus_t, pr_reg);
9371 memcpy (&prstat, note->descdata, sizeof (prstat));
9372
9373 /* Do not overwrite the core signal if it
9374 has already been set by another thread. */
9375 if (elf_tdata (abfd)->core->signal == 0)
9376 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9377 if (elf_tdata (abfd)->core->pid == 0)
9378 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9379
9380 /* pr_who exists on:
9381 solaris 2.5+
9382 unixware 4.2
9383 pr_who doesn't exist on:
9384 linux 2.[01]
9385 */
9386 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9387 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9388 #else
9389 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9390 #endif
9391 }
9392 #if defined (HAVE_PRSTATUS32_T)
9393 else if (note->descsz == sizeof (prstatus32_t))
9394 {
9395 /* 64-bit host, 32-bit corefile */
9396 prstatus32_t prstat;
9397
9398 size = sizeof (prstat.pr_reg);
9399 offset = offsetof (prstatus32_t, pr_reg);
9400 memcpy (&prstat, note->descdata, sizeof (prstat));
9401
9402 /* Do not overwrite the core signal if it
9403 has already been set by another thread. */
9404 if (elf_tdata (abfd)->core->signal == 0)
9405 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9406 if (elf_tdata (abfd)->core->pid == 0)
9407 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9408
9409 /* pr_who exists on:
9410 solaris 2.5+
9411 unixware 4.2
9412 pr_who doesn't exist on:
9413 linux 2.[01]
9414 */
9415 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9416 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9417 #else
9418 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9419 #endif
9420 }
9421 #endif /* HAVE_PRSTATUS32_T */
9422 else
9423 {
9424 /* Fail - we don't know how to handle any other
9425 note size (ie. data object type). */
9426 return TRUE;
9427 }
9428
9429 /* Make a ".reg/999" section and a ".reg" section. */
9430 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9431 size, note->descpos + offset);
9432 }
9433 #endif /* defined (HAVE_PRSTATUS_T) */
9434
9435 /* Create a pseudosection containing the exact contents of NOTE. */
9436 static bfd_boolean
9437 elfcore_make_note_pseudosection (bfd *abfd,
9438 char *name,
9439 Elf_Internal_Note *note)
9440 {
9441 return _bfd_elfcore_make_pseudosection (abfd, name,
9442 note->descsz, note->descpos);
9443 }
9444
9445 /* There isn't a consistent prfpregset_t across platforms,
9446 but it doesn't matter, because we don't have to pick this
9447 data structure apart. */
9448
9449 static bfd_boolean
9450 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9451 {
9452 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9453 }
9454
9455 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9456 type of NT_PRXFPREG. Just include the whole note's contents
9457 literally. */
9458
9459 static bfd_boolean
9460 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9461 {
9462 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9463 }
9464
9465 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9466 with a note type of NT_X86_XSTATE. Just include the whole note's
9467 contents literally. */
9468
9469 static bfd_boolean
9470 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9471 {
9472 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9473 }
9474
9475 static bfd_boolean
9476 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9477 {
9478 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9479 }
9480
9481 static bfd_boolean
9482 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9483 {
9484 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9485 }
9486
9487 static bfd_boolean
9488 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9489 {
9490 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9491 }
9492
9493 static bfd_boolean
9494 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9495 {
9496 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9497 }
9498
9499 static bfd_boolean
9500 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9501 {
9502 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9503 }
9504
9505 static bfd_boolean
9506 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9507 {
9508 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9509 }
9510
9511 static bfd_boolean
9512 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9513 {
9514 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9515 }
9516
9517 static bfd_boolean
9518 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9519 {
9520 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9521 }
9522
9523 static bfd_boolean
9524 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9525 {
9526 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9527 }
9528
9529 static bfd_boolean
9530 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9531 {
9532 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9533 }
9534
9535 static bfd_boolean
9536 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9537 {
9538 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9539 }
9540
9541 static bfd_boolean
9542 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9543 {
9544 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9545 }
9546
9547 static bfd_boolean
9548 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9549 {
9550 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9551 }
9552
9553 static bfd_boolean
9554 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9555 {
9556 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9557 }
9558
9559 static bfd_boolean
9560 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9561 {
9562 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9563 }
9564
9565 static bfd_boolean
9566 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9567 {
9568 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9569 }
9570
9571 static bfd_boolean
9572 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9573 {
9574 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9575 }
9576
9577 static bfd_boolean
9578 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9579 {
9580 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9581 }
9582
9583 static bfd_boolean
9584 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9585 {
9586 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9587 }
9588
9589 static bfd_boolean
9590 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9591 {
9592 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9593 }
9594
9595 static bfd_boolean
9596 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9597 {
9598 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9599 }
9600
9601 static bfd_boolean
9602 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9603 {
9604 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9605 }
9606
9607 static bfd_boolean
9608 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9609 {
9610 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9611 }
9612
9613 static bfd_boolean
9614 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9615 {
9616 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9617 }
9618
9619 static bfd_boolean
9620 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9621 {
9622 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9623 }
9624
9625 static bfd_boolean
9626 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9627 {
9628 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9629 }
9630
9631 static bfd_boolean
9632 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9633 {
9634 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9635 }
9636
9637 static bfd_boolean
9638 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9639 {
9640 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9641 }
9642
9643 static bfd_boolean
9644 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9645 {
9646 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9647 }
9648
9649 static bfd_boolean
9650 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9651 {
9652 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9653 }
9654
9655 static bfd_boolean
9656 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9657 {
9658 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9659 }
9660
9661 static bfd_boolean
9662 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9663 {
9664 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9665 }
9666
9667 static bfd_boolean
9668 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9669 {
9670 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9671 }
9672
9673 static bfd_boolean
9674 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9675 {
9676 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9677 }
9678
9679 #if defined (HAVE_PRPSINFO_T)
9680 typedef prpsinfo_t elfcore_psinfo_t;
9681 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9682 typedef prpsinfo32_t elfcore_psinfo32_t;
9683 #endif
9684 #endif
9685
9686 #if defined (HAVE_PSINFO_T)
9687 typedef psinfo_t elfcore_psinfo_t;
9688 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9689 typedef psinfo32_t elfcore_psinfo32_t;
9690 #endif
9691 #endif
9692
9693 /* return a malloc'ed copy of a string at START which is at
9694 most MAX bytes long, possibly without a terminating '\0'.
9695 the copy will always have a terminating '\0'. */
9696
9697 char *
9698 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9699 {
9700 char *dups;
9701 char *end = (char *) memchr (start, '\0', max);
9702 size_t len;
9703
9704 if (end == NULL)
9705 len = max;
9706 else
9707 len = end - start;
9708
9709 dups = (char *) bfd_alloc (abfd, len + 1);
9710 if (dups == NULL)
9711 return NULL;
9712
9713 memcpy (dups, start, len);
9714 dups[len] = '\0';
9715
9716 return dups;
9717 }
9718
9719 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9720 static bfd_boolean
9721 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9722 {
9723 if (note->descsz == sizeof (elfcore_psinfo_t))
9724 {
9725 elfcore_psinfo_t psinfo;
9726
9727 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9728
9729 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9730 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9731 #endif
9732 elf_tdata (abfd)->core->program
9733 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9734 sizeof (psinfo.pr_fname));
9735
9736 elf_tdata (abfd)->core->command
9737 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9738 sizeof (psinfo.pr_psargs));
9739 }
9740 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9741 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9742 {
9743 /* 64-bit host, 32-bit corefile */
9744 elfcore_psinfo32_t psinfo;
9745
9746 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9747
9748 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9749 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9750 #endif
9751 elf_tdata (abfd)->core->program
9752 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9753 sizeof (psinfo.pr_fname));
9754
9755 elf_tdata (abfd)->core->command
9756 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9757 sizeof (psinfo.pr_psargs));
9758 }
9759 #endif
9760
9761 else
9762 {
9763 /* Fail - we don't know how to handle any other
9764 note size (ie. data object type). */
9765 return TRUE;
9766 }
9767
9768 /* Note that for some reason, a spurious space is tacked
9769 onto the end of the args in some (at least one anyway)
9770 implementations, so strip it off if it exists. */
9771
9772 {
9773 char *command = elf_tdata (abfd)->core->command;
9774 int n = strlen (command);
9775
9776 if (0 < n && command[n - 1] == ' ')
9777 command[n - 1] = '\0';
9778 }
9779
9780 return TRUE;
9781 }
9782 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9783
9784 #if defined (HAVE_PSTATUS_T)
9785 static bfd_boolean
9786 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9787 {
9788 if (note->descsz == sizeof (pstatus_t)
9789 #if defined (HAVE_PXSTATUS_T)
9790 || note->descsz == sizeof (pxstatus_t)
9791 #endif
9792 )
9793 {
9794 pstatus_t pstat;
9795
9796 memcpy (&pstat, note->descdata, sizeof (pstat));
9797
9798 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9799 }
9800 #if defined (HAVE_PSTATUS32_T)
9801 else if (note->descsz == sizeof (pstatus32_t))
9802 {
9803 /* 64-bit host, 32-bit corefile */
9804 pstatus32_t pstat;
9805
9806 memcpy (&pstat, note->descdata, sizeof (pstat));
9807
9808 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9809 }
9810 #endif
9811 /* Could grab some more details from the "representative"
9812 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9813 NT_LWPSTATUS note, presumably. */
9814
9815 return TRUE;
9816 }
9817 #endif /* defined (HAVE_PSTATUS_T) */
9818
9819 #if defined (HAVE_LWPSTATUS_T)
9820 static bfd_boolean
9821 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9822 {
9823 lwpstatus_t lwpstat;
9824 char buf[100];
9825 char *name;
9826 size_t len;
9827 asection *sect;
9828
9829 if (note->descsz != sizeof (lwpstat)
9830 #if defined (HAVE_LWPXSTATUS_T)
9831 && note->descsz != sizeof (lwpxstatus_t)
9832 #endif
9833 )
9834 return TRUE;
9835
9836 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9837
9838 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9839 /* Do not overwrite the core signal if it has already been set by
9840 another thread. */
9841 if (elf_tdata (abfd)->core->signal == 0)
9842 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9843
9844 /* Make a ".reg/999" section. */
9845
9846 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9847 len = strlen (buf) + 1;
9848 name = bfd_alloc (abfd, len);
9849 if (name == NULL)
9850 return FALSE;
9851 memcpy (name, buf, len);
9852
9853 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9854 if (sect == NULL)
9855 return FALSE;
9856
9857 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9858 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9859 sect->filepos = note->descpos
9860 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9861 #endif
9862
9863 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9864 sect->size = sizeof (lwpstat.pr_reg);
9865 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9866 #endif
9867
9868 sect->alignment_power = 2;
9869
9870 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9871 return FALSE;
9872
9873 /* Make a ".reg2/999" section */
9874
9875 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9876 len = strlen (buf) + 1;
9877 name = bfd_alloc (abfd, len);
9878 if (name == NULL)
9879 return FALSE;
9880 memcpy (name, buf, len);
9881
9882 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9883 if (sect == NULL)
9884 return FALSE;
9885
9886 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9887 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9888 sect->filepos = note->descpos
9889 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9890 #endif
9891
9892 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9893 sect->size = sizeof (lwpstat.pr_fpreg);
9894 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9895 #endif
9896
9897 sect->alignment_power = 2;
9898
9899 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9900 }
9901 #endif /* defined (HAVE_LWPSTATUS_T) */
9902
9903 static bfd_boolean
9904 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9905 {
9906 char buf[30];
9907 char *name;
9908 size_t len;
9909 asection *sect;
9910 int type;
9911 int is_active_thread;
9912 bfd_vma base_addr;
9913
9914 if (note->descsz < 728)
9915 return TRUE;
9916
9917 if (! CONST_STRNEQ (note->namedata, "win32"))
9918 return TRUE;
9919
9920 type = bfd_get_32 (abfd, note->descdata);
9921
9922 switch (type)
9923 {
9924 case 1 /* NOTE_INFO_PROCESS */:
9925 /* FIXME: need to add ->core->command. */
9926 /* process_info.pid */
9927 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9928 /* process_info.signal */
9929 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9930 break;
9931
9932 case 2 /* NOTE_INFO_THREAD */:
9933 /* Make a ".reg/999" section. */
9934 /* thread_info.tid */
9935 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9936
9937 len = strlen (buf) + 1;
9938 name = (char *) bfd_alloc (abfd, len);
9939 if (name == NULL)
9940 return FALSE;
9941
9942 memcpy (name, buf, len);
9943
9944 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9945 if (sect == NULL)
9946 return FALSE;
9947
9948 /* sizeof (thread_info.thread_context) */
9949 sect->size = 716;
9950 /* offsetof (thread_info.thread_context) */
9951 sect->filepos = note->descpos + 12;
9952 sect->alignment_power = 2;
9953
9954 /* thread_info.is_active_thread */
9955 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9956
9957 if (is_active_thread)
9958 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9959 return FALSE;
9960 break;
9961
9962 case 3 /* NOTE_INFO_MODULE */:
9963 /* Make a ".module/xxxxxxxx" section. */
9964 /* module_info.base_address */
9965 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9966 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9967
9968 len = strlen (buf) + 1;
9969 name = (char *) bfd_alloc (abfd, len);
9970 if (name == NULL)
9971 return FALSE;
9972
9973 memcpy (name, buf, len);
9974
9975 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9976
9977 if (sect == NULL)
9978 return FALSE;
9979
9980 sect->size = note->descsz;
9981 sect->filepos = note->descpos;
9982 sect->alignment_power = 2;
9983 break;
9984
9985 default:
9986 return TRUE;
9987 }
9988
9989 return TRUE;
9990 }
9991
9992 static bfd_boolean
9993 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9994 {
9995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9996
9997 switch (note->type)
9998 {
9999 default:
10000 return TRUE;
10001
10002 case NT_PRSTATUS:
10003 if (bed->elf_backend_grok_prstatus)
10004 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10005 return TRUE;
10006 #if defined (HAVE_PRSTATUS_T)
10007 return elfcore_grok_prstatus (abfd, note);
10008 #else
10009 return TRUE;
10010 #endif
10011
10012 #if defined (HAVE_PSTATUS_T)
10013 case NT_PSTATUS:
10014 return elfcore_grok_pstatus (abfd, note);
10015 #endif
10016
10017 #if defined (HAVE_LWPSTATUS_T)
10018 case NT_LWPSTATUS:
10019 return elfcore_grok_lwpstatus (abfd, note);
10020 #endif
10021
10022 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10023 return elfcore_grok_prfpreg (abfd, note);
10024
10025 case NT_WIN32PSTATUS:
10026 return elfcore_grok_win32pstatus (abfd, note);
10027
10028 case NT_PRXFPREG: /* Linux SSE extension */
10029 if (note->namesz == 6
10030 && strcmp (note->namedata, "LINUX") == 0)
10031 return elfcore_grok_prxfpreg (abfd, note);
10032 else
10033 return TRUE;
10034
10035 case NT_X86_XSTATE: /* Linux XSAVE extension */
10036 if (note->namesz == 6
10037 && strcmp (note->namedata, "LINUX") == 0)
10038 return elfcore_grok_xstatereg (abfd, note);
10039 else
10040 return TRUE;
10041
10042 case NT_PPC_VMX:
10043 if (note->namesz == 6
10044 && strcmp (note->namedata, "LINUX") == 0)
10045 return elfcore_grok_ppc_vmx (abfd, note);
10046 else
10047 return TRUE;
10048
10049 case NT_PPC_VSX:
10050 if (note->namesz == 6
10051 && strcmp (note->namedata, "LINUX") == 0)
10052 return elfcore_grok_ppc_vsx (abfd, note);
10053 else
10054 return TRUE;
10055
10056 case NT_PPC_TAR:
10057 if (note->namesz == 6
10058 && strcmp (note->namedata, "LINUX") == 0)
10059 return elfcore_grok_ppc_tar (abfd, note);
10060 else
10061 return TRUE;
10062
10063 case NT_PPC_PPR:
10064 if (note->namesz == 6
10065 && strcmp (note->namedata, "LINUX") == 0)
10066 return elfcore_grok_ppc_ppr (abfd, note);
10067 else
10068 return TRUE;
10069
10070 case NT_PPC_DSCR:
10071 if (note->namesz == 6
10072 && strcmp (note->namedata, "LINUX") == 0)
10073 return elfcore_grok_ppc_dscr (abfd, note);
10074 else
10075 return TRUE;
10076
10077 case NT_PPC_EBB:
10078 if (note->namesz == 6
10079 && strcmp (note->namedata, "LINUX") == 0)
10080 return elfcore_grok_ppc_ebb (abfd, note);
10081 else
10082 return TRUE;
10083
10084 case NT_PPC_PMU:
10085 if (note->namesz == 6
10086 && strcmp (note->namedata, "LINUX") == 0)
10087 return elfcore_grok_ppc_pmu (abfd, note);
10088 else
10089 return TRUE;
10090
10091 case NT_PPC_TM_CGPR:
10092 if (note->namesz == 6
10093 && strcmp (note->namedata, "LINUX") == 0)
10094 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10095 else
10096 return TRUE;
10097
10098 case NT_PPC_TM_CFPR:
10099 if (note->namesz == 6
10100 && strcmp (note->namedata, "LINUX") == 0)
10101 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10102 else
10103 return TRUE;
10104
10105 case NT_PPC_TM_CVMX:
10106 if (note->namesz == 6
10107 && strcmp (note->namedata, "LINUX") == 0)
10108 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10109 else
10110 return TRUE;
10111
10112 case NT_PPC_TM_CVSX:
10113 if (note->namesz == 6
10114 && strcmp (note->namedata, "LINUX") == 0)
10115 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10116 else
10117 return TRUE;
10118
10119 case NT_PPC_TM_SPR:
10120 if (note->namesz == 6
10121 && strcmp (note->namedata, "LINUX") == 0)
10122 return elfcore_grok_ppc_tm_spr (abfd, note);
10123 else
10124 return TRUE;
10125
10126 case NT_PPC_TM_CTAR:
10127 if (note->namesz == 6
10128 && strcmp (note->namedata, "LINUX") == 0)
10129 return elfcore_grok_ppc_tm_ctar (abfd, note);
10130 else
10131 return TRUE;
10132
10133 case NT_PPC_TM_CPPR:
10134 if (note->namesz == 6
10135 && strcmp (note->namedata, "LINUX") == 0)
10136 return elfcore_grok_ppc_tm_cppr (abfd, note);
10137 else
10138 return TRUE;
10139
10140 case NT_PPC_TM_CDSCR:
10141 if (note->namesz == 6
10142 && strcmp (note->namedata, "LINUX") == 0)
10143 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10144 else
10145 return TRUE;
10146
10147 case NT_S390_HIGH_GPRS:
10148 if (note->namesz == 6
10149 && strcmp (note->namedata, "LINUX") == 0)
10150 return elfcore_grok_s390_high_gprs (abfd, note);
10151 else
10152 return TRUE;
10153
10154 case NT_S390_TIMER:
10155 if (note->namesz == 6
10156 && strcmp (note->namedata, "LINUX") == 0)
10157 return elfcore_grok_s390_timer (abfd, note);
10158 else
10159 return TRUE;
10160
10161 case NT_S390_TODCMP:
10162 if (note->namesz == 6
10163 && strcmp (note->namedata, "LINUX") == 0)
10164 return elfcore_grok_s390_todcmp (abfd, note);
10165 else
10166 return TRUE;
10167
10168 case NT_S390_TODPREG:
10169 if (note->namesz == 6
10170 && strcmp (note->namedata, "LINUX") == 0)
10171 return elfcore_grok_s390_todpreg (abfd, note);
10172 else
10173 return TRUE;
10174
10175 case NT_S390_CTRS:
10176 if (note->namesz == 6
10177 && strcmp (note->namedata, "LINUX") == 0)
10178 return elfcore_grok_s390_ctrs (abfd, note);
10179 else
10180 return TRUE;
10181
10182 case NT_S390_PREFIX:
10183 if (note->namesz == 6
10184 && strcmp (note->namedata, "LINUX") == 0)
10185 return elfcore_grok_s390_prefix (abfd, note);
10186 else
10187 return TRUE;
10188
10189 case NT_S390_LAST_BREAK:
10190 if (note->namesz == 6
10191 && strcmp (note->namedata, "LINUX") == 0)
10192 return elfcore_grok_s390_last_break (abfd, note);
10193 else
10194 return TRUE;
10195
10196 case NT_S390_SYSTEM_CALL:
10197 if (note->namesz == 6
10198 && strcmp (note->namedata, "LINUX") == 0)
10199 return elfcore_grok_s390_system_call (abfd, note);
10200 else
10201 return TRUE;
10202
10203 case NT_S390_TDB:
10204 if (note->namesz == 6
10205 && strcmp (note->namedata, "LINUX") == 0)
10206 return elfcore_grok_s390_tdb (abfd, note);
10207 else
10208 return TRUE;
10209
10210 case NT_S390_VXRS_LOW:
10211 if (note->namesz == 6
10212 && strcmp (note->namedata, "LINUX") == 0)
10213 return elfcore_grok_s390_vxrs_low (abfd, note);
10214 else
10215 return TRUE;
10216
10217 case NT_S390_VXRS_HIGH:
10218 if (note->namesz == 6
10219 && strcmp (note->namedata, "LINUX") == 0)
10220 return elfcore_grok_s390_vxrs_high (abfd, note);
10221 else
10222 return TRUE;
10223
10224 case NT_S390_GS_CB:
10225 if (note->namesz == 6
10226 && strcmp (note->namedata, "LINUX") == 0)
10227 return elfcore_grok_s390_gs_cb (abfd, note);
10228 else
10229 return TRUE;
10230
10231 case NT_S390_GS_BC:
10232 if (note->namesz == 6
10233 && strcmp (note->namedata, "LINUX") == 0)
10234 return elfcore_grok_s390_gs_bc (abfd, note);
10235 else
10236 return TRUE;
10237
10238 case NT_ARM_VFP:
10239 if (note->namesz == 6
10240 && strcmp (note->namedata, "LINUX") == 0)
10241 return elfcore_grok_arm_vfp (abfd, note);
10242 else
10243 return TRUE;
10244
10245 case NT_ARM_TLS:
10246 if (note->namesz == 6
10247 && strcmp (note->namedata, "LINUX") == 0)
10248 return elfcore_grok_aarch_tls (abfd, note);
10249 else
10250 return TRUE;
10251
10252 case NT_ARM_HW_BREAK:
10253 if (note->namesz == 6
10254 && strcmp (note->namedata, "LINUX") == 0)
10255 return elfcore_grok_aarch_hw_break (abfd, note);
10256 else
10257 return TRUE;
10258
10259 case NT_ARM_HW_WATCH:
10260 if (note->namesz == 6
10261 && strcmp (note->namedata, "LINUX") == 0)
10262 return elfcore_grok_aarch_hw_watch (abfd, note);
10263 else
10264 return TRUE;
10265
10266 case NT_ARM_SVE:
10267 if (note->namesz == 6
10268 && strcmp (note->namedata, "LINUX") == 0)
10269 return elfcore_grok_aarch_sve (abfd, note);
10270 else
10271 return TRUE;
10272
10273 case NT_ARM_PAC_MASK:
10274 if (note->namesz == 6
10275 && strcmp (note->namedata, "LINUX") == 0)
10276 return elfcore_grok_aarch_pauth (abfd, note);
10277 else
10278 return TRUE;
10279
10280 case NT_PRPSINFO:
10281 case NT_PSINFO:
10282 if (bed->elf_backend_grok_psinfo)
10283 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10284 return TRUE;
10285 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10286 return elfcore_grok_psinfo (abfd, note);
10287 #else
10288 return TRUE;
10289 #endif
10290
10291 case NT_AUXV:
10292 return elfcore_make_auxv_note_section (abfd, note, 0);
10293
10294 case NT_FILE:
10295 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10296 note);
10297
10298 case NT_SIGINFO:
10299 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10300 note);
10301
10302 }
10303 }
10304
10305 static bfd_boolean
10306 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10307 {
10308 struct bfd_build_id* build_id;
10309
10310 if (note->descsz == 0)
10311 return FALSE;
10312
10313 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10314 if (build_id == NULL)
10315 return FALSE;
10316
10317 build_id->size = note->descsz;
10318 memcpy (build_id->data, note->descdata, note->descsz);
10319 abfd->build_id = build_id;
10320
10321 return TRUE;
10322 }
10323
10324 static bfd_boolean
10325 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10326 {
10327 switch (note->type)
10328 {
10329 default:
10330 return TRUE;
10331
10332 case NT_GNU_PROPERTY_TYPE_0:
10333 return _bfd_elf_parse_gnu_properties (abfd, note);
10334
10335 case NT_GNU_BUILD_ID:
10336 return elfobj_grok_gnu_build_id (abfd, note);
10337 }
10338 }
10339
10340 static bfd_boolean
10341 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10342 {
10343 struct sdt_note *cur =
10344 (struct sdt_note *) bfd_alloc (abfd,
10345 sizeof (struct sdt_note) + note->descsz);
10346
10347 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10348 cur->size = (bfd_size_type) note->descsz;
10349 memcpy (cur->data, note->descdata, note->descsz);
10350
10351 elf_tdata (abfd)->sdt_note_head = cur;
10352
10353 return TRUE;
10354 }
10355
10356 static bfd_boolean
10357 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10358 {
10359 switch (note->type)
10360 {
10361 case NT_STAPSDT:
10362 return elfobj_grok_stapsdt_note_1 (abfd, note);
10363
10364 default:
10365 return TRUE;
10366 }
10367 }
10368
10369 static bfd_boolean
10370 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10371 {
10372 size_t offset;
10373
10374 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10375 {
10376 case ELFCLASS32:
10377 if (note->descsz < 108)
10378 return FALSE;
10379 break;
10380
10381 case ELFCLASS64:
10382 if (note->descsz < 120)
10383 return FALSE;
10384 break;
10385
10386 default:
10387 return FALSE;
10388 }
10389
10390 /* Check for version 1 in pr_version. */
10391 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10392 return FALSE;
10393
10394 offset = 4;
10395
10396 /* Skip over pr_psinfosz. */
10397 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10398 offset += 4;
10399 else
10400 {
10401 offset += 4; /* Padding before pr_psinfosz. */
10402 offset += 8;
10403 }
10404
10405 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10406 elf_tdata (abfd)->core->program
10407 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10408 offset += 17;
10409
10410 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10411 elf_tdata (abfd)->core->command
10412 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10413 offset += 81;
10414
10415 /* Padding before pr_pid. */
10416 offset += 2;
10417
10418 /* The pr_pid field was added in version "1a". */
10419 if (note->descsz < offset + 4)
10420 return TRUE;
10421
10422 elf_tdata (abfd)->core->pid
10423 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10424
10425 return TRUE;
10426 }
10427
10428 static bfd_boolean
10429 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10430 {
10431 size_t offset;
10432 size_t size;
10433 size_t min_size;
10434
10435 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10436 Also compute minimum size of this note. */
10437 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10438 {
10439 case ELFCLASS32:
10440 offset = 4 + 4;
10441 min_size = offset + (4 * 2) + 4 + 4 + 4;
10442 break;
10443
10444 case ELFCLASS64:
10445 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10446 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10447 break;
10448
10449 default:
10450 return FALSE;
10451 }
10452
10453 if (note->descsz < min_size)
10454 return FALSE;
10455
10456 /* Check for version 1 in pr_version. */
10457 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10458 return FALSE;
10459
10460 /* Extract size of pr_reg from pr_gregsetsz. */
10461 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10462 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10463 {
10464 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10465 offset += 4 * 2;
10466 }
10467 else
10468 {
10469 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10470 offset += 8 * 2;
10471 }
10472
10473 /* Skip over pr_osreldate. */
10474 offset += 4;
10475
10476 /* Read signal from pr_cursig. */
10477 if (elf_tdata (abfd)->core->signal == 0)
10478 elf_tdata (abfd)->core->signal
10479 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10480 offset += 4;
10481
10482 /* Read TID from pr_pid. */
10483 elf_tdata (abfd)->core->lwpid
10484 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10485 offset += 4;
10486
10487 /* Padding before pr_reg. */
10488 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10489 offset += 4;
10490
10491 /* Make sure that there is enough data remaining in the note. */
10492 if ((note->descsz - offset) < size)
10493 return FALSE;
10494
10495 /* Make a ".reg/999" section and a ".reg" section. */
10496 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10497 size, note->descpos + offset);
10498 }
10499
10500 static bfd_boolean
10501 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10502 {
10503 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10504
10505 switch (note->type)
10506 {
10507 case NT_PRSTATUS:
10508 if (bed->elf_backend_grok_freebsd_prstatus)
10509 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10510 return TRUE;
10511 return elfcore_grok_freebsd_prstatus (abfd, note);
10512
10513 case NT_FPREGSET:
10514 return elfcore_grok_prfpreg (abfd, note);
10515
10516 case NT_PRPSINFO:
10517 return elfcore_grok_freebsd_psinfo (abfd, note);
10518
10519 case NT_FREEBSD_THRMISC:
10520 if (note->namesz == 8)
10521 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10522 else
10523 return TRUE;
10524
10525 case NT_FREEBSD_PROCSTAT_PROC:
10526 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10527 note);
10528
10529 case NT_FREEBSD_PROCSTAT_FILES:
10530 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10531 note);
10532
10533 case NT_FREEBSD_PROCSTAT_VMMAP:
10534 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10535 note);
10536
10537 case NT_FREEBSD_PROCSTAT_AUXV:
10538 return elfcore_make_auxv_note_section (abfd, note, 4);
10539
10540 case NT_X86_XSTATE:
10541 if (note->namesz == 8)
10542 return elfcore_grok_xstatereg (abfd, note);
10543 else
10544 return TRUE;
10545
10546 case NT_FREEBSD_PTLWPINFO:
10547 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10548 note);
10549
10550 case NT_ARM_VFP:
10551 return elfcore_grok_arm_vfp (abfd, note);
10552
10553 default:
10554 return TRUE;
10555 }
10556 }
10557
10558 static bfd_boolean
10559 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10560 {
10561 char *cp;
10562
10563 cp = strchr (note->namedata, '@');
10564 if (cp != NULL)
10565 {
10566 *lwpidp = atoi(cp + 1);
10567 return TRUE;
10568 }
10569 return FALSE;
10570 }
10571
10572 static bfd_boolean
10573 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10574 {
10575 if (note->descsz <= 0x7c + 31)
10576 return FALSE;
10577
10578 /* Signal number at offset 0x08. */
10579 elf_tdata (abfd)->core->signal
10580 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10581
10582 /* Process ID at offset 0x50. */
10583 elf_tdata (abfd)->core->pid
10584 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10585
10586 /* Command name at 0x7c (max 32 bytes, including nul). */
10587 elf_tdata (abfd)->core->command
10588 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10589
10590 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10591 note);
10592 }
10593
10594 static bfd_boolean
10595 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10596 {
10597 int lwp;
10598
10599 if (elfcore_netbsd_get_lwpid (note, &lwp))
10600 elf_tdata (abfd)->core->lwpid = lwp;
10601
10602 switch (note->type)
10603 {
10604 case NT_NETBSDCORE_PROCINFO:
10605 /* NetBSD-specific core "procinfo". Note that we expect to
10606 find this note before any of the others, which is fine,
10607 since the kernel writes this note out first when it
10608 creates a core file. */
10609 return elfcore_grok_netbsd_procinfo (abfd, note);
10610 #ifdef NT_NETBSDCORE_AUXV
10611 case NT_NETBSDCORE_AUXV:
10612 /* NetBSD-specific Elf Auxiliary Vector data. */
10613 return elfcore_make_auxv_note_section (abfd, note, 4);
10614 #endif
10615 default:
10616 break;
10617 }
10618
10619 /* As of March 2017 there are no other machine-independent notes
10620 defined for NetBSD core files. If the note type is less
10621 than the start of the machine-dependent note types, we don't
10622 understand it. */
10623
10624 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10625 return TRUE;
10626
10627
10628 switch (bfd_get_arch (abfd))
10629 {
10630 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10631 PT_GETFPREGS == mach+2. */
10632
10633 case bfd_arch_alpha:
10634 case bfd_arch_sparc:
10635 switch (note->type)
10636 {
10637 case NT_NETBSDCORE_FIRSTMACH+0:
10638 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10639
10640 case NT_NETBSDCORE_FIRSTMACH+2:
10641 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10642
10643 default:
10644 return TRUE;
10645 }
10646
10647 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10648 There's also old PT___GETREGS40 == mach + 1 for old reg
10649 structure which lacks GBR. */
10650
10651 case bfd_arch_sh:
10652 switch (note->type)
10653 {
10654 case NT_NETBSDCORE_FIRSTMACH+3:
10655 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10656
10657 case NT_NETBSDCORE_FIRSTMACH+5:
10658 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10659
10660 default:
10661 return TRUE;
10662 }
10663
10664 /* On all other arch's, PT_GETREGS == mach+1 and
10665 PT_GETFPREGS == mach+3. */
10666
10667 default:
10668 switch (note->type)
10669 {
10670 case NT_NETBSDCORE_FIRSTMACH+1:
10671 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10672
10673 case NT_NETBSDCORE_FIRSTMACH+3:
10674 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10675
10676 default:
10677 return TRUE;
10678 }
10679 }
10680 /* NOTREACHED */
10681 }
10682
10683 static bfd_boolean
10684 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10685 {
10686 if (note->descsz <= 0x48 + 31)
10687 return FALSE;
10688
10689 /* Signal number at offset 0x08. */
10690 elf_tdata (abfd)->core->signal
10691 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10692
10693 /* Process ID at offset 0x20. */
10694 elf_tdata (abfd)->core->pid
10695 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10696
10697 /* Command name at 0x48 (max 32 bytes, including nul). */
10698 elf_tdata (abfd)->core->command
10699 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10700
10701 return TRUE;
10702 }
10703
10704 static bfd_boolean
10705 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10706 {
10707 if (note->type == NT_OPENBSD_PROCINFO)
10708 return elfcore_grok_openbsd_procinfo (abfd, note);
10709
10710 if (note->type == NT_OPENBSD_REGS)
10711 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10712
10713 if (note->type == NT_OPENBSD_FPREGS)
10714 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10715
10716 if (note->type == NT_OPENBSD_XFPREGS)
10717 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10718
10719 if (note->type == NT_OPENBSD_AUXV)
10720 return elfcore_make_auxv_note_section (abfd, note, 0);
10721
10722 if (note->type == NT_OPENBSD_WCOOKIE)
10723 {
10724 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10725 SEC_HAS_CONTENTS);
10726
10727 if (sect == NULL)
10728 return FALSE;
10729 sect->size = note->descsz;
10730 sect->filepos = note->descpos;
10731 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10732
10733 return TRUE;
10734 }
10735
10736 return TRUE;
10737 }
10738
10739 static bfd_boolean
10740 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10741 {
10742 void *ddata = note->descdata;
10743 char buf[100];
10744 char *name;
10745 asection *sect;
10746 short sig;
10747 unsigned flags;
10748
10749 if (note->descsz < 16)
10750 return FALSE;
10751
10752 /* nto_procfs_status 'pid' field is at offset 0. */
10753 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10754
10755 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10756 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10757
10758 /* nto_procfs_status 'flags' field is at offset 8. */
10759 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10760
10761 /* nto_procfs_status 'what' field is at offset 14. */
10762 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10763 {
10764 elf_tdata (abfd)->core->signal = sig;
10765 elf_tdata (abfd)->core->lwpid = *tid;
10766 }
10767
10768 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10769 do not come from signals so we make sure we set the current
10770 thread just in case. */
10771 if (flags & 0x00000080)
10772 elf_tdata (abfd)->core->lwpid = *tid;
10773
10774 /* Make a ".qnx_core_status/%d" section. */
10775 sprintf (buf, ".qnx_core_status/%ld", *tid);
10776
10777 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10778 if (name == NULL)
10779 return FALSE;
10780 strcpy (name, buf);
10781
10782 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10783 if (sect == NULL)
10784 return FALSE;
10785
10786 sect->size = note->descsz;
10787 sect->filepos = note->descpos;
10788 sect->alignment_power = 2;
10789
10790 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10791 }
10792
10793 static bfd_boolean
10794 elfcore_grok_nto_regs (bfd *abfd,
10795 Elf_Internal_Note *note,
10796 long tid,
10797 char *base)
10798 {
10799 char buf[100];
10800 char *name;
10801 asection *sect;
10802
10803 /* Make a "(base)/%d" section. */
10804 sprintf (buf, "%s/%ld", base, tid);
10805
10806 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10807 if (name == NULL)
10808 return FALSE;
10809 strcpy (name, buf);
10810
10811 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10812 if (sect == NULL)
10813 return FALSE;
10814
10815 sect->size = note->descsz;
10816 sect->filepos = note->descpos;
10817 sect->alignment_power = 2;
10818
10819 /* This is the current thread. */
10820 if (elf_tdata (abfd)->core->lwpid == tid)
10821 return elfcore_maybe_make_sect (abfd, base, sect);
10822
10823 return TRUE;
10824 }
10825
10826 #define BFD_QNT_CORE_INFO 7
10827 #define BFD_QNT_CORE_STATUS 8
10828 #define BFD_QNT_CORE_GREG 9
10829 #define BFD_QNT_CORE_FPREG 10
10830
10831 static bfd_boolean
10832 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10833 {
10834 /* Every GREG section has a STATUS section before it. Store the
10835 tid from the previous call to pass down to the next gregs
10836 function. */
10837 static long tid = 1;
10838
10839 switch (note->type)
10840 {
10841 case BFD_QNT_CORE_INFO:
10842 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10843 case BFD_QNT_CORE_STATUS:
10844 return elfcore_grok_nto_status (abfd, note, &tid);
10845 case BFD_QNT_CORE_GREG:
10846 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10847 case BFD_QNT_CORE_FPREG:
10848 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10849 default:
10850 return TRUE;
10851 }
10852 }
10853
10854 static bfd_boolean
10855 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10856 {
10857 char *name;
10858 asection *sect;
10859 size_t len;
10860
10861 /* Use note name as section name. */
10862 len = note->namesz;
10863 name = (char *) bfd_alloc (abfd, len);
10864 if (name == NULL)
10865 return FALSE;
10866 memcpy (name, note->namedata, len);
10867 name[len - 1] = '\0';
10868
10869 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10870 if (sect == NULL)
10871 return FALSE;
10872
10873 sect->size = note->descsz;
10874 sect->filepos = note->descpos;
10875 sect->alignment_power = 1;
10876
10877 return TRUE;
10878 }
10879
10880 /* Function: elfcore_write_note
10881
10882 Inputs:
10883 buffer to hold note, and current size of buffer
10884 name of note
10885 type of note
10886 data for note
10887 size of data for note
10888
10889 Writes note to end of buffer. ELF64 notes are written exactly as
10890 for ELF32, despite the current (as of 2006) ELF gabi specifying
10891 that they ought to have 8-byte namesz and descsz field, and have
10892 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10893
10894 Return:
10895 Pointer to realloc'd buffer, *BUFSIZ updated. */
10896
10897 char *
10898 elfcore_write_note (bfd *abfd,
10899 char *buf,
10900 int *bufsiz,
10901 const char *name,
10902 int type,
10903 const void *input,
10904 int size)
10905 {
10906 Elf_External_Note *xnp;
10907 size_t namesz;
10908 size_t newspace;
10909 char *dest;
10910
10911 namesz = 0;
10912 if (name != NULL)
10913 namesz = strlen (name) + 1;
10914
10915 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10916
10917 buf = (char *) realloc (buf, *bufsiz + newspace);
10918 if (buf == NULL)
10919 return buf;
10920 dest = buf + *bufsiz;
10921 *bufsiz += newspace;
10922 xnp = (Elf_External_Note *) dest;
10923 H_PUT_32 (abfd, namesz, xnp->namesz);
10924 H_PUT_32 (abfd, size, xnp->descsz);
10925 H_PUT_32 (abfd, type, xnp->type);
10926 dest = xnp->name;
10927 if (name != NULL)
10928 {
10929 memcpy (dest, name, namesz);
10930 dest += namesz;
10931 while (namesz & 3)
10932 {
10933 *dest++ = '\0';
10934 ++namesz;
10935 }
10936 }
10937 memcpy (dest, input, size);
10938 dest += size;
10939 while (size & 3)
10940 {
10941 *dest++ = '\0';
10942 ++size;
10943 }
10944 return buf;
10945 }
10946
10947 /* gcc-8 warns (*) on all the strncpy calls in this function about
10948 possible string truncation. The "truncation" is not a bug. We
10949 have an external representation of structs with fields that are not
10950 necessarily NULL terminated and corresponding internal
10951 representation fields that are one larger so that they can always
10952 be NULL terminated.
10953 gcc versions between 4.2 and 4.6 do not allow pragma control of
10954 diagnostics inside functions, giving a hard error if you try to use
10955 the finer control available with later versions.
10956 gcc prior to 4.2 warns about diagnostic push and pop.
10957 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
10958 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
10959 (*) Depending on your system header files! */
10960 #if GCC_VERSION >= 8000
10961 # pragma GCC diagnostic push
10962 # pragma GCC diagnostic ignored "-Wstringop-truncation"
10963 #endif
10964 char *
10965 elfcore_write_prpsinfo (bfd *abfd,
10966 char *buf,
10967 int *bufsiz,
10968 const char *fname,
10969 const char *psargs)
10970 {
10971 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10972
10973 if (bed->elf_backend_write_core_note != NULL)
10974 {
10975 char *ret;
10976 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10977 NT_PRPSINFO, fname, psargs);
10978 if (ret != NULL)
10979 return ret;
10980 }
10981
10982 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10983 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10984 if (bed->s->elfclass == ELFCLASS32)
10985 {
10986 # if defined (HAVE_PSINFO32_T)
10987 psinfo32_t data;
10988 int note_type = NT_PSINFO;
10989 # else
10990 prpsinfo32_t data;
10991 int note_type = NT_PRPSINFO;
10992 # endif
10993
10994 memset (&data, 0, sizeof (data));
10995 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10996 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10997 return elfcore_write_note (abfd, buf, bufsiz,
10998 "CORE", note_type, &data, sizeof (data));
10999 }
11000 else
11001 # endif
11002 {
11003 # if defined (HAVE_PSINFO_T)
11004 psinfo_t data;
11005 int note_type = NT_PSINFO;
11006 # else
11007 prpsinfo_t data;
11008 int note_type = NT_PRPSINFO;
11009 # endif
11010
11011 memset (&data, 0, sizeof (data));
11012 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11013 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11014 return elfcore_write_note (abfd, buf, bufsiz,
11015 "CORE", note_type, &data, sizeof (data));
11016 }
11017 #endif /* PSINFO_T or PRPSINFO_T */
11018
11019 free (buf);
11020 return NULL;
11021 }
11022 #if GCC_VERSION >= 8000
11023 # pragma GCC diagnostic pop
11024 #endif
11025
11026 char *
11027 elfcore_write_linux_prpsinfo32
11028 (bfd *abfd, char *buf, int *bufsiz,
11029 const struct elf_internal_linux_prpsinfo *prpsinfo)
11030 {
11031 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11032 {
11033 struct elf_external_linux_prpsinfo32_ugid16 data;
11034
11035 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11036 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11037 &data, sizeof (data));
11038 }
11039 else
11040 {
11041 struct elf_external_linux_prpsinfo32_ugid32 data;
11042
11043 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11044 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11045 &data, sizeof (data));
11046 }
11047 }
11048
11049 char *
11050 elfcore_write_linux_prpsinfo64
11051 (bfd *abfd, char *buf, int *bufsiz,
11052 const struct elf_internal_linux_prpsinfo *prpsinfo)
11053 {
11054 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11055 {
11056 struct elf_external_linux_prpsinfo64_ugid16 data;
11057
11058 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11059 return elfcore_write_note (abfd, buf, bufsiz,
11060 "CORE", NT_PRPSINFO, &data, sizeof (data));
11061 }
11062 else
11063 {
11064 struct elf_external_linux_prpsinfo64_ugid32 data;
11065
11066 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11067 return elfcore_write_note (abfd, buf, bufsiz,
11068 "CORE", NT_PRPSINFO, &data, sizeof (data));
11069 }
11070 }
11071
11072 char *
11073 elfcore_write_prstatus (bfd *abfd,
11074 char *buf,
11075 int *bufsiz,
11076 long pid,
11077 int cursig,
11078 const void *gregs)
11079 {
11080 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11081
11082 if (bed->elf_backend_write_core_note != NULL)
11083 {
11084 char *ret;
11085 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11086 NT_PRSTATUS,
11087 pid, cursig, gregs);
11088 if (ret != NULL)
11089 return ret;
11090 }
11091
11092 #if defined (HAVE_PRSTATUS_T)
11093 #if defined (HAVE_PRSTATUS32_T)
11094 if (bed->s->elfclass == ELFCLASS32)
11095 {
11096 prstatus32_t prstat;
11097
11098 memset (&prstat, 0, sizeof (prstat));
11099 prstat.pr_pid = pid;
11100 prstat.pr_cursig = cursig;
11101 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11102 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11103 NT_PRSTATUS, &prstat, sizeof (prstat));
11104 }
11105 else
11106 #endif
11107 {
11108 prstatus_t prstat;
11109
11110 memset (&prstat, 0, sizeof (prstat));
11111 prstat.pr_pid = pid;
11112 prstat.pr_cursig = cursig;
11113 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11114 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11115 NT_PRSTATUS, &prstat, sizeof (prstat));
11116 }
11117 #endif /* HAVE_PRSTATUS_T */
11118
11119 free (buf);
11120 return NULL;
11121 }
11122
11123 #if defined (HAVE_LWPSTATUS_T)
11124 char *
11125 elfcore_write_lwpstatus (bfd *abfd,
11126 char *buf,
11127 int *bufsiz,
11128 long pid,
11129 int cursig,
11130 const void *gregs)
11131 {
11132 lwpstatus_t lwpstat;
11133 const char *note_name = "CORE";
11134
11135 memset (&lwpstat, 0, sizeof (lwpstat));
11136 lwpstat.pr_lwpid = pid >> 16;
11137 lwpstat.pr_cursig = cursig;
11138 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11139 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11140 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11141 #if !defined(gregs)
11142 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11143 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11144 #else
11145 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11146 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11147 #endif
11148 #endif
11149 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11150 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11151 }
11152 #endif /* HAVE_LWPSTATUS_T */
11153
11154 #if defined (HAVE_PSTATUS_T)
11155 char *
11156 elfcore_write_pstatus (bfd *abfd,
11157 char *buf,
11158 int *bufsiz,
11159 long pid,
11160 int cursig ATTRIBUTE_UNUSED,
11161 const void *gregs ATTRIBUTE_UNUSED)
11162 {
11163 const char *note_name = "CORE";
11164 #if defined (HAVE_PSTATUS32_T)
11165 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11166
11167 if (bed->s->elfclass == ELFCLASS32)
11168 {
11169 pstatus32_t pstat;
11170
11171 memset (&pstat, 0, sizeof (pstat));
11172 pstat.pr_pid = pid & 0xffff;
11173 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11174 NT_PSTATUS, &pstat, sizeof (pstat));
11175 return buf;
11176 }
11177 else
11178 #endif
11179 {
11180 pstatus_t pstat;
11181
11182 memset (&pstat, 0, sizeof (pstat));
11183 pstat.pr_pid = pid & 0xffff;
11184 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11185 NT_PSTATUS, &pstat, sizeof (pstat));
11186 return buf;
11187 }
11188 }
11189 #endif /* HAVE_PSTATUS_T */
11190
11191 char *
11192 elfcore_write_prfpreg (bfd *abfd,
11193 char *buf,
11194 int *bufsiz,
11195 const void *fpregs,
11196 int size)
11197 {
11198 const char *note_name = "CORE";
11199 return elfcore_write_note (abfd, buf, bufsiz,
11200 note_name, NT_FPREGSET, fpregs, size);
11201 }
11202
11203 char *
11204 elfcore_write_prxfpreg (bfd *abfd,
11205 char *buf,
11206 int *bufsiz,
11207 const void *xfpregs,
11208 int size)
11209 {
11210 char *note_name = "LINUX";
11211 return elfcore_write_note (abfd, buf, bufsiz,
11212 note_name, NT_PRXFPREG, xfpregs, size);
11213 }
11214
11215 char *
11216 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11217 const void *xfpregs, int size)
11218 {
11219 char *note_name;
11220 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11221 note_name = "FreeBSD";
11222 else
11223 note_name = "LINUX";
11224 return elfcore_write_note (abfd, buf, bufsiz,
11225 note_name, NT_X86_XSTATE, xfpregs, size);
11226 }
11227
11228 char *
11229 elfcore_write_ppc_vmx (bfd *abfd,
11230 char *buf,
11231 int *bufsiz,
11232 const void *ppc_vmx,
11233 int size)
11234 {
11235 char *note_name = "LINUX";
11236 return elfcore_write_note (abfd, buf, bufsiz,
11237 note_name, NT_PPC_VMX, ppc_vmx, size);
11238 }
11239
11240 char *
11241 elfcore_write_ppc_vsx (bfd *abfd,
11242 char *buf,
11243 int *bufsiz,
11244 const void *ppc_vsx,
11245 int size)
11246 {
11247 char *note_name = "LINUX";
11248 return elfcore_write_note (abfd, buf, bufsiz,
11249 note_name, NT_PPC_VSX, ppc_vsx, size);
11250 }
11251
11252 char *
11253 elfcore_write_ppc_tar (bfd *abfd,
11254 char *buf,
11255 int *bufsiz,
11256 const void *ppc_tar,
11257 int size)
11258 {
11259 char *note_name = "LINUX";
11260 return elfcore_write_note (abfd, buf, bufsiz,
11261 note_name, NT_PPC_TAR, ppc_tar, size);
11262 }
11263
11264 char *
11265 elfcore_write_ppc_ppr (bfd *abfd,
11266 char *buf,
11267 int *bufsiz,
11268 const void *ppc_ppr,
11269 int size)
11270 {
11271 char *note_name = "LINUX";
11272 return elfcore_write_note (abfd, buf, bufsiz,
11273 note_name, NT_PPC_PPR, ppc_ppr, size);
11274 }
11275
11276 char *
11277 elfcore_write_ppc_dscr (bfd *abfd,
11278 char *buf,
11279 int *bufsiz,
11280 const void *ppc_dscr,
11281 int size)
11282 {
11283 char *note_name = "LINUX";
11284 return elfcore_write_note (abfd, buf, bufsiz,
11285 note_name, NT_PPC_DSCR, ppc_dscr, size);
11286 }
11287
11288 char *
11289 elfcore_write_ppc_ebb (bfd *abfd,
11290 char *buf,
11291 int *bufsiz,
11292 const void *ppc_ebb,
11293 int size)
11294 {
11295 char *note_name = "LINUX";
11296 return elfcore_write_note (abfd, buf, bufsiz,
11297 note_name, NT_PPC_EBB, ppc_ebb, size);
11298 }
11299
11300 char *
11301 elfcore_write_ppc_pmu (bfd *abfd,
11302 char *buf,
11303 int *bufsiz,
11304 const void *ppc_pmu,
11305 int size)
11306 {
11307 char *note_name = "LINUX";
11308 return elfcore_write_note (abfd, buf, bufsiz,
11309 note_name, NT_PPC_PMU, ppc_pmu, size);
11310 }
11311
11312 char *
11313 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11314 char *buf,
11315 int *bufsiz,
11316 const void *ppc_tm_cgpr,
11317 int size)
11318 {
11319 char *note_name = "LINUX";
11320 return elfcore_write_note (abfd, buf, bufsiz,
11321 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11322 }
11323
11324 char *
11325 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11326 char *buf,
11327 int *bufsiz,
11328 const void *ppc_tm_cfpr,
11329 int size)
11330 {
11331 char *note_name = "LINUX";
11332 return elfcore_write_note (abfd, buf, bufsiz,
11333 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11334 }
11335
11336 char *
11337 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11338 char *buf,
11339 int *bufsiz,
11340 const void *ppc_tm_cvmx,
11341 int size)
11342 {
11343 char *note_name = "LINUX";
11344 return elfcore_write_note (abfd, buf, bufsiz,
11345 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11346 }
11347
11348 char *
11349 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11350 char *buf,
11351 int *bufsiz,
11352 const void *ppc_tm_cvsx,
11353 int size)
11354 {
11355 char *note_name = "LINUX";
11356 return elfcore_write_note (abfd, buf, bufsiz,
11357 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11358 }
11359
11360 char *
11361 elfcore_write_ppc_tm_spr (bfd *abfd,
11362 char *buf,
11363 int *bufsiz,
11364 const void *ppc_tm_spr,
11365 int size)
11366 {
11367 char *note_name = "LINUX";
11368 return elfcore_write_note (abfd, buf, bufsiz,
11369 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11370 }
11371
11372 char *
11373 elfcore_write_ppc_tm_ctar (bfd *abfd,
11374 char *buf,
11375 int *bufsiz,
11376 const void *ppc_tm_ctar,
11377 int size)
11378 {
11379 char *note_name = "LINUX";
11380 return elfcore_write_note (abfd, buf, bufsiz,
11381 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11382 }
11383
11384 char *
11385 elfcore_write_ppc_tm_cppr (bfd *abfd,
11386 char *buf,
11387 int *bufsiz,
11388 const void *ppc_tm_cppr,
11389 int size)
11390 {
11391 char *note_name = "LINUX";
11392 return elfcore_write_note (abfd, buf, bufsiz,
11393 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11394 }
11395
11396 char *
11397 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11398 char *buf,
11399 int *bufsiz,
11400 const void *ppc_tm_cdscr,
11401 int size)
11402 {
11403 char *note_name = "LINUX";
11404 return elfcore_write_note (abfd, buf, bufsiz,
11405 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11406 }
11407
11408 static char *
11409 elfcore_write_s390_high_gprs (bfd *abfd,
11410 char *buf,
11411 int *bufsiz,
11412 const void *s390_high_gprs,
11413 int size)
11414 {
11415 char *note_name = "LINUX";
11416 return elfcore_write_note (abfd, buf, bufsiz,
11417 note_name, NT_S390_HIGH_GPRS,
11418 s390_high_gprs, size);
11419 }
11420
11421 char *
11422 elfcore_write_s390_timer (bfd *abfd,
11423 char *buf,
11424 int *bufsiz,
11425 const void *s390_timer,
11426 int size)
11427 {
11428 char *note_name = "LINUX";
11429 return elfcore_write_note (abfd, buf, bufsiz,
11430 note_name, NT_S390_TIMER, s390_timer, size);
11431 }
11432
11433 char *
11434 elfcore_write_s390_todcmp (bfd *abfd,
11435 char *buf,
11436 int *bufsiz,
11437 const void *s390_todcmp,
11438 int size)
11439 {
11440 char *note_name = "LINUX";
11441 return elfcore_write_note (abfd, buf, bufsiz,
11442 note_name, NT_S390_TODCMP, s390_todcmp, size);
11443 }
11444
11445 char *
11446 elfcore_write_s390_todpreg (bfd *abfd,
11447 char *buf,
11448 int *bufsiz,
11449 const void *s390_todpreg,
11450 int size)
11451 {
11452 char *note_name = "LINUX";
11453 return elfcore_write_note (abfd, buf, bufsiz,
11454 note_name, NT_S390_TODPREG, s390_todpreg, size);
11455 }
11456
11457 char *
11458 elfcore_write_s390_ctrs (bfd *abfd,
11459 char *buf,
11460 int *bufsiz,
11461 const void *s390_ctrs,
11462 int size)
11463 {
11464 char *note_name = "LINUX";
11465 return elfcore_write_note (abfd, buf, bufsiz,
11466 note_name, NT_S390_CTRS, s390_ctrs, size);
11467 }
11468
11469 char *
11470 elfcore_write_s390_prefix (bfd *abfd,
11471 char *buf,
11472 int *bufsiz,
11473 const void *s390_prefix,
11474 int size)
11475 {
11476 char *note_name = "LINUX";
11477 return elfcore_write_note (abfd, buf, bufsiz,
11478 note_name, NT_S390_PREFIX, s390_prefix, size);
11479 }
11480
11481 char *
11482 elfcore_write_s390_last_break (bfd *abfd,
11483 char *buf,
11484 int *bufsiz,
11485 const void *s390_last_break,
11486 int size)
11487 {
11488 char *note_name = "LINUX";
11489 return elfcore_write_note (abfd, buf, bufsiz,
11490 note_name, NT_S390_LAST_BREAK,
11491 s390_last_break, size);
11492 }
11493
11494 char *
11495 elfcore_write_s390_system_call (bfd *abfd,
11496 char *buf,
11497 int *bufsiz,
11498 const void *s390_system_call,
11499 int size)
11500 {
11501 char *note_name = "LINUX";
11502 return elfcore_write_note (abfd, buf, bufsiz,
11503 note_name, NT_S390_SYSTEM_CALL,
11504 s390_system_call, size);
11505 }
11506
11507 char *
11508 elfcore_write_s390_tdb (bfd *abfd,
11509 char *buf,
11510 int *bufsiz,
11511 const void *s390_tdb,
11512 int size)
11513 {
11514 char *note_name = "LINUX";
11515 return elfcore_write_note (abfd, buf, bufsiz,
11516 note_name, NT_S390_TDB, s390_tdb, size);
11517 }
11518
11519 char *
11520 elfcore_write_s390_vxrs_low (bfd *abfd,
11521 char *buf,
11522 int *bufsiz,
11523 const void *s390_vxrs_low,
11524 int size)
11525 {
11526 char *note_name = "LINUX";
11527 return elfcore_write_note (abfd, buf, bufsiz,
11528 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11529 }
11530
11531 char *
11532 elfcore_write_s390_vxrs_high (bfd *abfd,
11533 char *buf,
11534 int *bufsiz,
11535 const void *s390_vxrs_high,
11536 int size)
11537 {
11538 char *note_name = "LINUX";
11539 return elfcore_write_note (abfd, buf, bufsiz,
11540 note_name, NT_S390_VXRS_HIGH,
11541 s390_vxrs_high, size);
11542 }
11543
11544 char *
11545 elfcore_write_s390_gs_cb (bfd *abfd,
11546 char *buf,
11547 int *bufsiz,
11548 const void *s390_gs_cb,
11549 int size)
11550 {
11551 char *note_name = "LINUX";
11552 return elfcore_write_note (abfd, buf, bufsiz,
11553 note_name, NT_S390_GS_CB,
11554 s390_gs_cb, size);
11555 }
11556
11557 char *
11558 elfcore_write_s390_gs_bc (bfd *abfd,
11559 char *buf,
11560 int *bufsiz,
11561 const void *s390_gs_bc,
11562 int size)
11563 {
11564 char *note_name = "LINUX";
11565 return elfcore_write_note (abfd, buf, bufsiz,
11566 note_name, NT_S390_GS_BC,
11567 s390_gs_bc, size);
11568 }
11569
11570 char *
11571 elfcore_write_arm_vfp (bfd *abfd,
11572 char *buf,
11573 int *bufsiz,
11574 const void *arm_vfp,
11575 int size)
11576 {
11577 char *note_name = "LINUX";
11578 return elfcore_write_note (abfd, buf, bufsiz,
11579 note_name, NT_ARM_VFP, arm_vfp, size);
11580 }
11581
11582 char *
11583 elfcore_write_aarch_tls (bfd *abfd,
11584 char *buf,
11585 int *bufsiz,
11586 const void *aarch_tls,
11587 int size)
11588 {
11589 char *note_name = "LINUX";
11590 return elfcore_write_note (abfd, buf, bufsiz,
11591 note_name, NT_ARM_TLS, aarch_tls, size);
11592 }
11593
11594 char *
11595 elfcore_write_aarch_hw_break (bfd *abfd,
11596 char *buf,
11597 int *bufsiz,
11598 const void *aarch_hw_break,
11599 int size)
11600 {
11601 char *note_name = "LINUX";
11602 return elfcore_write_note (abfd, buf, bufsiz,
11603 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11604 }
11605
11606 char *
11607 elfcore_write_aarch_hw_watch (bfd *abfd,
11608 char *buf,
11609 int *bufsiz,
11610 const void *aarch_hw_watch,
11611 int size)
11612 {
11613 char *note_name = "LINUX";
11614 return elfcore_write_note (abfd, buf, bufsiz,
11615 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11616 }
11617
11618 char *
11619 elfcore_write_aarch_sve (bfd *abfd,
11620 char *buf,
11621 int *bufsiz,
11622 const void *aarch_sve,
11623 int size)
11624 {
11625 char *note_name = "LINUX";
11626 return elfcore_write_note (abfd, buf, bufsiz,
11627 note_name, NT_ARM_SVE, aarch_sve, size);
11628 }
11629
11630 char *
11631 elfcore_write_aarch_pauth (bfd *abfd,
11632 char *buf,
11633 int *bufsiz,
11634 const void *aarch_pauth,
11635 int size)
11636 {
11637 char *note_name = "LINUX";
11638 return elfcore_write_note (abfd, buf, bufsiz,
11639 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11640 }
11641
11642 char *
11643 elfcore_write_register_note (bfd *abfd,
11644 char *buf,
11645 int *bufsiz,
11646 const char *section,
11647 const void *data,
11648 int size)
11649 {
11650 if (strcmp (section, ".reg2") == 0)
11651 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11652 if (strcmp (section, ".reg-xfp") == 0)
11653 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11654 if (strcmp (section, ".reg-xstate") == 0)
11655 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11656 if (strcmp (section, ".reg-ppc-vmx") == 0)
11657 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11658 if (strcmp (section, ".reg-ppc-vsx") == 0)
11659 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11660 if (strcmp (section, ".reg-ppc-tar") == 0)
11661 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11662 if (strcmp (section, ".reg-ppc-ppr") == 0)
11663 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11664 if (strcmp (section, ".reg-ppc-dscr") == 0)
11665 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11666 if (strcmp (section, ".reg-ppc-ebb") == 0)
11667 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11668 if (strcmp (section, ".reg-ppc-pmu") == 0)
11669 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11670 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11671 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11672 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11673 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11674 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11675 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11676 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11677 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11678 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11679 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11680 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11681 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11682 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11683 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11684 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11685 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11686 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11687 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11688 if (strcmp (section, ".reg-s390-timer") == 0)
11689 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11690 if (strcmp (section, ".reg-s390-todcmp") == 0)
11691 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11692 if (strcmp (section, ".reg-s390-todpreg") == 0)
11693 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11694 if (strcmp (section, ".reg-s390-ctrs") == 0)
11695 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11696 if (strcmp (section, ".reg-s390-prefix") == 0)
11697 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11698 if (strcmp (section, ".reg-s390-last-break") == 0)
11699 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11700 if (strcmp (section, ".reg-s390-system-call") == 0)
11701 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11702 if (strcmp (section, ".reg-s390-tdb") == 0)
11703 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11704 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11705 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11706 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11707 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11708 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11709 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11710 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11711 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11712 if (strcmp (section, ".reg-arm-vfp") == 0)
11713 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11714 if (strcmp (section, ".reg-aarch-tls") == 0)
11715 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11716 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11717 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11718 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11719 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11720 if (strcmp (section, ".reg-aarch-sve") == 0)
11721 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11722 if (strcmp (section, ".reg-aarch-pauth") == 0)
11723 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11724 return NULL;
11725 }
11726
11727 static bfd_boolean
11728 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11729 size_t align)
11730 {
11731 char *p;
11732
11733 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11734 gABI specifies that PT_NOTE alignment should be aligned to 4
11735 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11736 align is less than 4, we use 4 byte alignment. */
11737 if (align < 4)
11738 align = 4;
11739 if (align != 4 && align != 8)
11740 return FALSE;
11741
11742 p = buf;
11743 while (p < buf + size)
11744 {
11745 Elf_External_Note *xnp = (Elf_External_Note *) p;
11746 Elf_Internal_Note in;
11747
11748 if (offsetof (Elf_External_Note, name) > buf - p + size)
11749 return FALSE;
11750
11751 in.type = H_GET_32 (abfd, xnp->type);
11752
11753 in.namesz = H_GET_32 (abfd, xnp->namesz);
11754 in.namedata = xnp->name;
11755 if (in.namesz > buf - in.namedata + size)
11756 return FALSE;
11757
11758 in.descsz = H_GET_32 (abfd, xnp->descsz);
11759 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11760 in.descpos = offset + (in.descdata - buf);
11761 if (in.descsz != 0
11762 && (in.descdata >= buf + size
11763 || in.descsz > buf - in.descdata + size))
11764 return FALSE;
11765
11766 switch (bfd_get_format (abfd))
11767 {
11768 default:
11769 return TRUE;
11770
11771 case bfd_core:
11772 {
11773 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11774 struct
11775 {
11776 const char * string;
11777 size_t len;
11778 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11779 }
11780 grokers[] =
11781 {
11782 GROKER_ELEMENT ("", elfcore_grok_note),
11783 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11784 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11785 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11786 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11787 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11788 };
11789 #undef GROKER_ELEMENT
11790 int i;
11791
11792 for (i = ARRAY_SIZE (grokers); i--;)
11793 {
11794 if (in.namesz >= grokers[i].len
11795 && strncmp (in.namedata, grokers[i].string,
11796 grokers[i].len) == 0)
11797 {
11798 if (! grokers[i].func (abfd, & in))
11799 return FALSE;
11800 break;
11801 }
11802 }
11803 break;
11804 }
11805
11806 case bfd_object:
11807 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11808 {
11809 if (! elfobj_grok_gnu_note (abfd, &in))
11810 return FALSE;
11811 }
11812 else if (in.namesz == sizeof "stapsdt"
11813 && strcmp (in.namedata, "stapsdt") == 0)
11814 {
11815 if (! elfobj_grok_stapsdt_note (abfd, &in))
11816 return FALSE;
11817 }
11818 break;
11819 }
11820
11821 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11822 }
11823
11824 return TRUE;
11825 }
11826
11827 static bfd_boolean
11828 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11829 size_t align)
11830 {
11831 char *buf;
11832
11833 if (size == 0 || (size + 1) == 0)
11834 return TRUE;
11835
11836 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11837 return FALSE;
11838
11839 buf = (char *) bfd_malloc (size + 1);
11840 if (buf == NULL)
11841 return FALSE;
11842
11843 /* PR 17512: file: ec08f814
11844 0-termintate the buffer so that string searches will not overflow. */
11845 buf[size] = 0;
11846
11847 if (bfd_bread (buf, size, abfd) != size
11848 || !elf_parse_notes (abfd, buf, size, offset, align))
11849 {
11850 free (buf);
11851 return FALSE;
11852 }
11853
11854 free (buf);
11855 return TRUE;
11856 }
11857 \f
11858 /* Providing external access to the ELF program header table. */
11859
11860 /* Return an upper bound on the number of bytes required to store a
11861 copy of ABFD's program header table entries. Return -1 if an error
11862 occurs; bfd_get_error will return an appropriate code. */
11863
11864 long
11865 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11866 {
11867 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11868 {
11869 bfd_set_error (bfd_error_wrong_format);
11870 return -1;
11871 }
11872
11873 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11874 }
11875
11876 /* Copy ABFD's program header table entries to *PHDRS. The entries
11877 will be stored as an array of Elf_Internal_Phdr structures, as
11878 defined in include/elf/internal.h. To find out how large the
11879 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11880
11881 Return the number of program header table entries read, or -1 if an
11882 error occurs; bfd_get_error will return an appropriate code. */
11883
11884 int
11885 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11886 {
11887 int num_phdrs;
11888
11889 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11890 {
11891 bfd_set_error (bfd_error_wrong_format);
11892 return -1;
11893 }
11894
11895 num_phdrs = elf_elfheader (abfd)->e_phnum;
11896 if (num_phdrs != 0)
11897 memcpy (phdrs, elf_tdata (abfd)->phdr,
11898 num_phdrs * sizeof (Elf_Internal_Phdr));
11899
11900 return num_phdrs;
11901 }
11902
11903 enum elf_reloc_type_class
11904 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11905 const asection *rel_sec ATTRIBUTE_UNUSED,
11906 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11907 {
11908 return reloc_class_normal;
11909 }
11910
11911 /* For RELA architectures, return the relocation value for a
11912 relocation against a local symbol. */
11913
11914 bfd_vma
11915 _bfd_elf_rela_local_sym (bfd *abfd,
11916 Elf_Internal_Sym *sym,
11917 asection **psec,
11918 Elf_Internal_Rela *rel)
11919 {
11920 asection *sec = *psec;
11921 bfd_vma relocation;
11922
11923 relocation = (sec->output_section->vma
11924 + sec->output_offset
11925 + sym->st_value);
11926 if ((sec->flags & SEC_MERGE)
11927 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11928 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11929 {
11930 rel->r_addend =
11931 _bfd_merged_section_offset (abfd, psec,
11932 elf_section_data (sec)->sec_info,
11933 sym->st_value + rel->r_addend);
11934 if (sec != *psec)
11935 {
11936 /* If we have changed the section, and our original section is
11937 marked with SEC_EXCLUDE, it means that the original
11938 SEC_MERGE section has been completely subsumed in some
11939 other SEC_MERGE section. In this case, we need to leave
11940 some info around for --emit-relocs. */
11941 if ((sec->flags & SEC_EXCLUDE) != 0)
11942 sec->kept_section = *psec;
11943 sec = *psec;
11944 }
11945 rel->r_addend -= relocation;
11946 rel->r_addend += sec->output_section->vma + sec->output_offset;
11947 }
11948 return relocation;
11949 }
11950
11951 bfd_vma
11952 _bfd_elf_rel_local_sym (bfd *abfd,
11953 Elf_Internal_Sym *sym,
11954 asection **psec,
11955 bfd_vma addend)
11956 {
11957 asection *sec = *psec;
11958
11959 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11960 return sym->st_value + addend;
11961
11962 return _bfd_merged_section_offset (abfd, psec,
11963 elf_section_data (sec)->sec_info,
11964 sym->st_value + addend);
11965 }
11966
11967 /* Adjust an address within a section. Given OFFSET within SEC, return
11968 the new offset within the section, based upon changes made to the
11969 section. Returns -1 if the offset is now invalid.
11970 The offset (in abnd out) is in target sized bytes, however big a
11971 byte may be. */
11972
11973 bfd_vma
11974 _bfd_elf_section_offset (bfd *abfd,
11975 struct bfd_link_info *info,
11976 asection *sec,
11977 bfd_vma offset)
11978 {
11979 switch (sec->sec_info_type)
11980 {
11981 case SEC_INFO_TYPE_STABS:
11982 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11983 offset);
11984 case SEC_INFO_TYPE_EH_FRAME:
11985 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11986
11987 default:
11988 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11989 {
11990 /* Reverse the offset. */
11991 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11992 bfd_size_type address_size = bed->s->arch_size / 8;
11993
11994 /* address_size and sec->size are in octets. Convert
11995 to bytes before subtracting the original offset. */
11996 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11997 }
11998 return offset;
11999 }
12000 }
12001 \f
12002 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12003 reconstruct an ELF file by reading the segments out of remote memory
12004 based on the ELF file header at EHDR_VMA and the ELF program headers it
12005 points to. If not null, *LOADBASEP is filled in with the difference
12006 between the VMAs from which the segments were read, and the VMAs the
12007 file headers (and hence BFD's idea of each section's VMA) put them at.
12008
12009 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12010 remote memory at target address VMA into the local buffer at MYADDR; it
12011 should return zero on success or an `errno' code on failure. TEMPL must
12012 be a BFD for an ELF target with the word size and byte order found in
12013 the remote memory. */
12014
12015 bfd *
12016 bfd_elf_bfd_from_remote_memory
12017 (bfd *templ,
12018 bfd_vma ehdr_vma,
12019 bfd_size_type size,
12020 bfd_vma *loadbasep,
12021 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12022 {
12023 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12024 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12025 }
12026 \f
12027 long
12028 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12029 long symcount ATTRIBUTE_UNUSED,
12030 asymbol **syms ATTRIBUTE_UNUSED,
12031 long dynsymcount,
12032 asymbol **dynsyms,
12033 asymbol **ret)
12034 {
12035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12036 asection *relplt;
12037 asymbol *s;
12038 const char *relplt_name;
12039 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12040 arelent *p;
12041 long count, i, n;
12042 size_t size;
12043 Elf_Internal_Shdr *hdr;
12044 char *names;
12045 asection *plt;
12046
12047 *ret = NULL;
12048
12049 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12050 return 0;
12051
12052 if (dynsymcount <= 0)
12053 return 0;
12054
12055 if (!bed->plt_sym_val)
12056 return 0;
12057
12058 relplt_name = bed->relplt_name;
12059 if (relplt_name == NULL)
12060 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12061 relplt = bfd_get_section_by_name (abfd, relplt_name);
12062 if (relplt == NULL)
12063 return 0;
12064
12065 hdr = &elf_section_data (relplt)->this_hdr;
12066 if (hdr->sh_link != elf_dynsymtab (abfd)
12067 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12068 return 0;
12069
12070 plt = bfd_get_section_by_name (abfd, ".plt");
12071 if (plt == NULL)
12072 return 0;
12073
12074 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12075 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12076 return -1;
12077
12078 count = relplt->size / hdr->sh_entsize;
12079 size = count * sizeof (asymbol);
12080 p = relplt->relocation;
12081 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12082 {
12083 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12084 if (p->addend != 0)
12085 {
12086 #ifdef BFD64
12087 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12088 #else
12089 size += sizeof ("+0x") - 1 + 8;
12090 #endif
12091 }
12092 }
12093
12094 s = *ret = (asymbol *) bfd_malloc (size);
12095 if (s == NULL)
12096 return -1;
12097
12098 names = (char *) (s + count);
12099 p = relplt->relocation;
12100 n = 0;
12101 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12102 {
12103 size_t len;
12104 bfd_vma addr;
12105
12106 addr = bed->plt_sym_val (i, plt, p);
12107 if (addr == (bfd_vma) -1)
12108 continue;
12109
12110 *s = **p->sym_ptr_ptr;
12111 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12112 we are defining a symbol, ensure one of them is set. */
12113 if ((s->flags & BSF_LOCAL) == 0)
12114 s->flags |= BSF_GLOBAL;
12115 s->flags |= BSF_SYNTHETIC;
12116 s->section = plt;
12117 s->value = addr - plt->vma;
12118 s->name = names;
12119 s->udata.p = NULL;
12120 len = strlen ((*p->sym_ptr_ptr)->name);
12121 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12122 names += len;
12123 if (p->addend != 0)
12124 {
12125 char buf[30], *a;
12126
12127 memcpy (names, "+0x", sizeof ("+0x") - 1);
12128 names += sizeof ("+0x") - 1;
12129 bfd_sprintf_vma (abfd, buf, p->addend);
12130 for (a = buf; *a == '0'; ++a)
12131 ;
12132 len = strlen (a);
12133 memcpy (names, a, len);
12134 names += len;
12135 }
12136 memcpy (names, "@plt", sizeof ("@plt"));
12137 names += sizeof ("@plt");
12138 ++s, ++n;
12139 }
12140
12141 return n;
12142 }
12143
12144 /* It is only used by x86-64 so far.
12145 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12146 but current usage would allow all of _bfd_std_section to be zero. */
12147 static const asymbol lcomm_sym
12148 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12149 asection _bfd_elf_large_com_section
12150 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12151 "LARGE_COMMON", 0, SEC_IS_COMMON);
12152
12153 void
12154 _bfd_elf_post_process_headers (bfd *abfd ATTRIBUTE_UNUSED,
12155 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12156 {
12157 }
12158
12159 bfd_boolean
12160 _bfd_elf_final_write_processing (bfd *abfd)
12161 {
12162 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12163
12164 i_ehdrp = elf_elfheader (abfd);
12165
12166 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12167 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12168
12169 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12170 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12171 STB_GNU_UNIQUE binding. */
12172 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12173 {
12174 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12175 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12176 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12177 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12178 {
12179 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12180 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12181 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12182 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12183 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12184 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12185 bfd_set_error (bfd_error_bad_value);
12186 return FALSE;
12187 }
12188 }
12189 return TRUE;
12190 }
12191
12192
12193 /* Return TRUE for ELF symbol types that represent functions.
12194 This is the default version of this function, which is sufficient for
12195 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12196
12197 bfd_boolean
12198 _bfd_elf_is_function_type (unsigned int type)
12199 {
12200 return (type == STT_FUNC
12201 || type == STT_GNU_IFUNC);
12202 }
12203
12204 /* If the ELF symbol SYM might be a function in SEC, return the
12205 function size and set *CODE_OFF to the function's entry point,
12206 otherwise return zero. */
12207
12208 bfd_size_type
12209 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12210 bfd_vma *code_off)
12211 {
12212 bfd_size_type size;
12213
12214 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12215 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12216 || sym->section != sec)
12217 return 0;
12218
12219 *code_off = sym->value;
12220 size = 0;
12221 if (!(sym->flags & BSF_SYNTHETIC))
12222 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12223 if (size == 0)
12224 size = 1;
12225 return size;
12226 }
This page took 0.268845 seconds and 5 git commands to generate.