Ignore section symbols without a BFD section
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25 /*
26 SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37 /* For sparc64-cross-sparc32. */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249 }
250
251
252 bfd_boolean
253 bfd_elf_make_object (bfd *abfd)
254 {
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258 }
259
260 bfd_boolean
261 bfd_elf_mkcorefile (bfd *abfd)
262 {
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265 }
266
267 static char *
268 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269 {
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309 }
310
311 char *
312 bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315 {
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343 }
344
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353 Elf_Internal_Sym *
354 bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361 {
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462 }
463
464 /* Look up a symbol name. */
465 const char *
466 bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470 {
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490 }
491
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496 typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499 } Elf_Internal_Group;
500
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504 static const char *
505 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506 {
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528 }
529
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
531
532 static bfd_boolean
533 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534 {
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= minsize \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712 }
713
714 bfd_boolean
715 _bfd_elf_setup_sections (bfd *abfd)
716 {
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803 }
804
805 bfd_boolean
806 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807 {
808 return elf_next_in_group (sec) != NULL;
809 }
810
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814 bfd_boolean
815 _bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819 {
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS) && newsect->size != 0)
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize compress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decompress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082 }
1083
1084 const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088 };
1089
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108 {
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119 }
1120 \f
1121 /* Copy the program header and other data from one object module to
1122 another. */
1123
1124 bfd_boolean
1125 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126 {
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142 }
1143
1144 static const char *
1145 get_segment_type (unsigned int p_type)
1146 {
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164 }
1165
1166 /* Print out the program headers. */
1167
1168 bfd_boolean
1169 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170 {
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404 }
1405
1406 /* Display ELF-specific fields of a symbol. */
1407
1408 void
1409 bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413 {
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526 }
1527
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1529
1530 struct bfd_strtab_hash *
1531 _bfd_elf_stringtab_init (void)
1532 {
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549 }
1550 \f
1551 /* ELF .o/exec file reading */
1552
1553 /* Create a new bfd section from an ELF section header. */
1554
1555 bfd_boolean
1556 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557 {
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 {
1650 if (hdr->sh_size != 0)
1651 return FALSE;
1652 /* Some assemblers erroneously set sh_info to one with a
1653 zero sh_size. ld sees this as a global symbol count
1654 of (unsigned) -1. Fix it here. */
1655 hdr->sh_info = 0;
1656 return TRUE;
1657 }
1658 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1659 elf_onesymtab (abfd) = shindex;
1660 elf_tdata (abfd)->symtab_hdr = *hdr;
1661 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1662 abfd->flags |= HAS_SYMS;
1663
1664 /* Sometimes a shared object will map in the symbol table. If
1665 SHF_ALLOC is set, and this is a shared object, then we also
1666 treat this section as a BFD section. We can not base the
1667 decision purely on SHF_ALLOC, because that flag is sometimes
1668 set in a relocatable object file, which would confuse the
1669 linker. */
1670 if ((hdr->sh_flags & SHF_ALLOC) != 0
1671 && (abfd->flags & DYNAMIC) != 0
1672 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1673 shindex))
1674 return FALSE;
1675
1676 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1677 can't read symbols without that section loaded as well. It
1678 is most likely specified by the next section header. */
1679 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1680 {
1681 unsigned int i, num_sec;
1682
1683 num_sec = elf_numsections (abfd);
1684 for (i = shindex + 1; i < num_sec; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i == num_sec)
1692 for (i = 1; i < shindex; i++)
1693 {
1694 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1695 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1696 && hdr2->sh_link == shindex)
1697 break;
1698 }
1699 if (i != shindex)
1700 return bfd_section_from_shdr (abfd, i);
1701 }
1702 return TRUE;
1703
1704 case SHT_DYNSYM: /* A dynamic symbol table */
1705 if (elf_dynsymtab (abfd) == shindex)
1706 return TRUE;
1707
1708 if (hdr->sh_entsize != bed->s->sizeof_sym)
1709 return FALSE;
1710 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1711 {
1712 if (hdr->sh_size != 0)
1713 return FALSE;
1714 /* Some linkers erroneously set sh_info to one with a
1715 zero sh_size. ld sees this as a global symbol count
1716 of (unsigned) -1. Fix it here. */
1717 hdr->sh_info = 0;
1718 return TRUE;
1719 }
1720 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1721 elf_dynsymtab (abfd) = shindex;
1722 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1723 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1724 abfd->flags |= HAS_SYMS;
1725
1726 /* Besides being a symbol table, we also treat this as a regular
1727 section, so that objcopy can handle it. */
1728 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1729
1730 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1731 if (elf_symtab_shndx (abfd) == shindex)
1732 return TRUE;
1733
1734 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1735 elf_symtab_shndx (abfd) = shindex;
1736 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1737 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1738 return TRUE;
1739
1740 case SHT_STRTAB: /* A string table */
1741 if (hdr->bfd_section != NULL)
1742 return TRUE;
1743 if (ehdr->e_shstrndx == shindex)
1744 {
1745 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1750 {
1751 symtab_strtab:
1752 elf_tdata (abfd)->strtab_hdr = *hdr;
1753 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1754 return TRUE;
1755 }
1756 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1757 {
1758 dynsymtab_strtab:
1759 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1760 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1761 elf_elfsections (abfd)[shindex] = hdr;
1762 /* We also treat this as a regular section, so that objcopy
1763 can handle it. */
1764 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1765 shindex);
1766 }
1767
1768 /* If the string table isn't one of the above, then treat it as a
1769 regular section. We need to scan all the headers to be sure,
1770 just in case this strtab section appeared before the above. */
1771 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1772 {
1773 unsigned int i, num_sec;
1774
1775 num_sec = elf_numsections (abfd);
1776 for (i = 1; i < num_sec; i++)
1777 {
1778 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1779 if (hdr2->sh_link == shindex)
1780 {
1781 /* Prevent endless recursion on broken objects. */
1782 if (i == shindex)
1783 return FALSE;
1784 if (! bfd_section_from_shdr (abfd, i))
1785 return FALSE;
1786 if (elf_onesymtab (abfd) == i)
1787 goto symtab_strtab;
1788 if (elf_dynsymtab (abfd) == i)
1789 goto dynsymtab_strtab;
1790 }
1791 }
1792 }
1793 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1794
1795 case SHT_REL:
1796 case SHT_RELA:
1797 /* *These* do a lot of work -- but build no sections! */
1798 {
1799 asection *target_sect;
1800 Elf_Internal_Shdr *hdr2, **p_hdr;
1801 unsigned int num_sec = elf_numsections (abfd);
1802 struct bfd_elf_section_data *esdt;
1803 bfd_size_type amt;
1804
1805 if (hdr->sh_entsize
1806 != (bfd_size_type) (hdr->sh_type == SHT_REL
1807 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1808 return FALSE;
1809
1810 /* Check for a bogus link to avoid crashing. */
1811 if (hdr->sh_link >= num_sec)
1812 {
1813 ((*_bfd_error_handler)
1814 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1815 abfd, hdr->sh_link, name, shindex));
1816 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1817 shindex);
1818 }
1819
1820 /* For some incomprehensible reason Oracle distributes
1821 libraries for Solaris in which some of the objects have
1822 bogus sh_link fields. It would be nice if we could just
1823 reject them, but, unfortunately, some people need to use
1824 them. We scan through the section headers; if we find only
1825 one suitable symbol table, we clobber the sh_link to point
1826 to it. I hope this doesn't break anything.
1827
1828 Don't do it on executable nor shared library. */
1829 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1830 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1831 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1832 {
1833 unsigned int scan;
1834 int found;
1835
1836 found = 0;
1837 for (scan = 1; scan < num_sec; scan++)
1838 {
1839 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1840 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1841 {
1842 if (found != 0)
1843 {
1844 found = 0;
1845 break;
1846 }
1847 found = scan;
1848 }
1849 }
1850 if (found != 0)
1851 hdr->sh_link = found;
1852 }
1853
1854 /* Get the symbol table. */
1855 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1856 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1857 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1858 return FALSE;
1859
1860 /* If this reloc section does not use the main symbol table we
1861 don't treat it as a reloc section. BFD can't adequately
1862 represent such a section, so at least for now, we don't
1863 try. We just present it as a normal section. We also
1864 can't use it as a reloc section if it points to the null
1865 section, an invalid section, another reloc section, or its
1866 sh_link points to the null section. */
1867 if (hdr->sh_link != elf_onesymtab (abfd)
1868 || hdr->sh_link == SHN_UNDEF
1869 || hdr->sh_info == SHN_UNDEF
1870 || hdr->sh_info >= num_sec
1871 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1872 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1873 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1874 shindex);
1875
1876 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1877 return FALSE;
1878 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1879 if (target_sect == NULL)
1880 return FALSE;
1881
1882 esdt = elf_section_data (target_sect);
1883 if (hdr->sh_type == SHT_RELA)
1884 p_hdr = &esdt->rela.hdr;
1885 else
1886 p_hdr = &esdt->rel.hdr;
1887
1888 BFD_ASSERT (*p_hdr == NULL);
1889 amt = sizeof (*hdr2);
1890 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1891 if (hdr2 == NULL)
1892 return FALSE;
1893 *hdr2 = *hdr;
1894 *p_hdr = hdr2;
1895 elf_elfsections (abfd)[shindex] = hdr2;
1896 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1897 target_sect->flags |= SEC_RELOC;
1898 target_sect->relocation = NULL;
1899 target_sect->rel_filepos = hdr->sh_offset;
1900 /* In the section to which the relocations apply, mark whether
1901 its relocations are of the REL or RELA variety. */
1902 if (hdr->sh_size != 0)
1903 {
1904 if (hdr->sh_type == SHT_RELA)
1905 target_sect->use_rela_p = 1;
1906 }
1907 abfd->flags |= HAS_RELOC;
1908 return TRUE;
1909 }
1910
1911 case SHT_GNU_verdef:
1912 elf_dynverdef (abfd) = shindex;
1913 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_versym:
1917 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1918 return FALSE;
1919 elf_dynversym (abfd) = shindex;
1920 elf_tdata (abfd)->dynversym_hdr = *hdr;
1921 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1922
1923 case SHT_GNU_verneed:
1924 elf_dynverref (abfd) = shindex;
1925 elf_tdata (abfd)->dynverref_hdr = *hdr;
1926 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1927
1928 case SHT_SHLIB:
1929 return TRUE;
1930
1931 case SHT_GROUP:
1932 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
1933 return FALSE;
1934 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1935 return FALSE;
1936 if (hdr->contents != NULL)
1937 {
1938 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1939 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1940 asection *s;
1941
1942 if (idx->flags & GRP_COMDAT)
1943 hdr->bfd_section->flags
1944 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1945
1946 /* We try to keep the same section order as it comes in. */
1947 idx += n_elt;
1948 while (--n_elt != 0)
1949 {
1950 --idx;
1951
1952 if (idx->shdr != NULL
1953 && (s = idx->shdr->bfd_section) != NULL
1954 && elf_next_in_group (s) != NULL)
1955 {
1956 elf_next_in_group (hdr->bfd_section) = s;
1957 break;
1958 }
1959 }
1960 }
1961 break;
1962
1963 default:
1964 /* Possibly an attributes section. */
1965 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1966 || hdr->sh_type == bed->obj_attrs_section_type)
1967 {
1968 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1969 return FALSE;
1970 _bfd_elf_parse_attributes (abfd, hdr);
1971 return TRUE;
1972 }
1973
1974 /* Check for any processor-specific section types. */
1975 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1976 return TRUE;
1977
1978 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1979 {
1980 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1981 /* FIXME: How to properly handle allocated section reserved
1982 for applications? */
1983 (*_bfd_error_handler)
1984 (_("%B: don't know how to handle allocated, application "
1985 "specific section `%s' [0x%8x]"),
1986 abfd, name, hdr->sh_type);
1987 else
1988 /* Allow sections reserved for applications. */
1989 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1990 shindex);
1991 }
1992 else if (hdr->sh_type >= SHT_LOPROC
1993 && hdr->sh_type <= SHT_HIPROC)
1994 /* FIXME: We should handle this section. */
1995 (*_bfd_error_handler)
1996 (_("%B: don't know how to handle processor specific section "
1997 "`%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2000 {
2001 /* Unrecognised OS-specific sections. */
2002 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2003 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2004 required to correctly process the section and the file should
2005 be rejected with an error message. */
2006 (*_bfd_error_handler)
2007 (_("%B: don't know how to handle OS specific section "
2008 "`%s' [0x%8x]"),
2009 abfd, name, hdr->sh_type);
2010 else
2011 /* Otherwise it should be processed. */
2012 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2013 }
2014 else
2015 /* FIXME: We should handle this section. */
2016 (*_bfd_error_handler)
2017 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2018 abfd, name, hdr->sh_type);
2019
2020 return FALSE;
2021 }
2022
2023 return TRUE;
2024 }
2025
2026 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2027
2028 Elf_Internal_Sym *
2029 bfd_sym_from_r_symndx (struct sym_cache *cache,
2030 bfd *abfd,
2031 unsigned long r_symndx)
2032 {
2033 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2034
2035 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2036 {
2037 Elf_Internal_Shdr *symtab_hdr;
2038 unsigned char esym[sizeof (Elf64_External_Sym)];
2039 Elf_External_Sym_Shndx eshndx;
2040
2041 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2042 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2043 &cache->sym[ent], esym, &eshndx) == NULL)
2044 return NULL;
2045
2046 if (cache->abfd != abfd)
2047 {
2048 memset (cache->indx, -1, sizeof (cache->indx));
2049 cache->abfd = abfd;
2050 }
2051 cache->indx[ent] = r_symndx;
2052 }
2053
2054 return &cache->sym[ent];
2055 }
2056
2057 /* Given an ELF section number, retrieve the corresponding BFD
2058 section. */
2059
2060 asection *
2061 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2062 {
2063 if (sec_index >= elf_numsections (abfd))
2064 return NULL;
2065 return elf_elfsections (abfd)[sec_index]->bfd_section;
2066 }
2067
2068 static const struct bfd_elf_special_section special_sections_b[] =
2069 {
2070 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2071 { NULL, 0, 0, 0, 0 }
2072 };
2073
2074 static const struct bfd_elf_special_section special_sections_c[] =
2075 {
2076 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2077 { NULL, 0, 0, 0, 0 }
2078 };
2079
2080 static const struct bfd_elf_special_section special_sections_d[] =
2081 {
2082 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2083 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2084 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2086 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2087 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2088 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2089 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2090 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2091 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2092 { NULL, 0, 0, 0, 0 }
2093 };
2094
2095 static const struct bfd_elf_special_section special_sections_f[] =
2096 {
2097 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2098 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2099 { NULL, 0, 0, 0, 0 }
2100 };
2101
2102 static const struct bfd_elf_special_section special_sections_g[] =
2103 {
2104 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2105 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2106 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2107 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2108 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2109 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2110 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2111 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2112 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2113 { NULL, 0, 0, 0, 0 }
2114 };
2115
2116 static const struct bfd_elf_special_section special_sections_h[] =
2117 {
2118 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2119 { NULL, 0, 0, 0, 0 }
2120 };
2121
2122 static const struct bfd_elf_special_section special_sections_i[] =
2123 {
2124 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2125 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2127 { NULL, 0, 0, 0, 0 }
2128 };
2129
2130 static const struct bfd_elf_special_section special_sections_l[] =
2131 {
2132 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2133 { NULL, 0, 0, 0, 0 }
2134 };
2135
2136 static const struct bfd_elf_special_section special_sections_n[] =
2137 {
2138 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2139 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2140 { NULL, 0, 0, 0, 0 }
2141 };
2142
2143 static const struct bfd_elf_special_section special_sections_p[] =
2144 {
2145 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2146 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2147 { NULL, 0, 0, 0, 0 }
2148 };
2149
2150 static const struct bfd_elf_special_section special_sections_r[] =
2151 {
2152 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2153 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2154 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2155 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2156 { NULL, 0, 0, 0, 0 }
2157 };
2158
2159 static const struct bfd_elf_special_section special_sections_s[] =
2160 {
2161 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2162 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2163 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2164 /* See struct bfd_elf_special_section declaration for the semantics of
2165 this special case where .prefix_length != strlen (.prefix). */
2166 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168 };
2169
2170 static const struct bfd_elf_special_section special_sections_t[] =
2171 {
2172 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2173 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2174 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2175 { NULL, 0, 0, 0, 0 }
2176 };
2177
2178 static const struct bfd_elf_special_section special_sections_z[] =
2179 {
2180 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2181 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2182 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2183 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2184 { NULL, 0, 0, 0, 0 }
2185 };
2186
2187 static const struct bfd_elf_special_section * const special_sections[] =
2188 {
2189 special_sections_b, /* 'b' */
2190 special_sections_c, /* 'c' */
2191 special_sections_d, /* 'd' */
2192 NULL, /* 'e' */
2193 special_sections_f, /* 'f' */
2194 special_sections_g, /* 'g' */
2195 special_sections_h, /* 'h' */
2196 special_sections_i, /* 'i' */
2197 NULL, /* 'j' */
2198 NULL, /* 'k' */
2199 special_sections_l, /* 'l' */
2200 NULL, /* 'm' */
2201 special_sections_n, /* 'n' */
2202 NULL, /* 'o' */
2203 special_sections_p, /* 'p' */
2204 NULL, /* 'q' */
2205 special_sections_r, /* 'r' */
2206 special_sections_s, /* 's' */
2207 special_sections_t, /* 't' */
2208 NULL, /* 'u' */
2209 NULL, /* 'v' */
2210 NULL, /* 'w' */
2211 NULL, /* 'x' */
2212 NULL, /* 'y' */
2213 special_sections_z /* 'z' */
2214 };
2215
2216 const struct bfd_elf_special_section *
2217 _bfd_elf_get_special_section (const char *name,
2218 const struct bfd_elf_special_section *spec,
2219 unsigned int rela)
2220 {
2221 int i;
2222 int len;
2223
2224 len = strlen (name);
2225
2226 for (i = 0; spec[i].prefix != NULL; i++)
2227 {
2228 int suffix_len;
2229 int prefix_len = spec[i].prefix_length;
2230
2231 if (len < prefix_len)
2232 continue;
2233 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2234 continue;
2235
2236 suffix_len = spec[i].suffix_length;
2237 if (suffix_len <= 0)
2238 {
2239 if (name[prefix_len] != 0)
2240 {
2241 if (suffix_len == 0)
2242 continue;
2243 if (name[prefix_len] != '.'
2244 && (suffix_len == -2
2245 || (rela && spec[i].type == SHT_REL)))
2246 continue;
2247 }
2248 }
2249 else
2250 {
2251 if (len < prefix_len + suffix_len)
2252 continue;
2253 if (memcmp (name + len - suffix_len,
2254 spec[i].prefix + prefix_len,
2255 suffix_len) != 0)
2256 continue;
2257 }
2258 return &spec[i];
2259 }
2260
2261 return NULL;
2262 }
2263
2264 const struct bfd_elf_special_section *
2265 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2266 {
2267 int i;
2268 const struct bfd_elf_special_section *spec;
2269 const struct elf_backend_data *bed;
2270
2271 /* See if this is one of the special sections. */
2272 if (sec->name == NULL)
2273 return NULL;
2274
2275 bed = get_elf_backend_data (abfd);
2276 spec = bed->special_sections;
2277 if (spec)
2278 {
2279 spec = _bfd_elf_get_special_section (sec->name,
2280 bed->special_sections,
2281 sec->use_rela_p);
2282 if (spec != NULL)
2283 return spec;
2284 }
2285
2286 if (sec->name[0] != '.')
2287 return NULL;
2288
2289 i = sec->name[1] - 'b';
2290 if (i < 0 || i > 'z' - 'b')
2291 return NULL;
2292
2293 spec = special_sections[i];
2294
2295 if (spec == NULL)
2296 return NULL;
2297
2298 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2299 }
2300
2301 bfd_boolean
2302 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2303 {
2304 struct bfd_elf_section_data *sdata;
2305 const struct elf_backend_data *bed;
2306 const struct bfd_elf_special_section *ssect;
2307
2308 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2309 if (sdata == NULL)
2310 {
2311 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2312 sizeof (*sdata));
2313 if (sdata == NULL)
2314 return FALSE;
2315 sec->used_by_bfd = sdata;
2316 }
2317
2318 /* Indicate whether or not this section should use RELA relocations. */
2319 bed = get_elf_backend_data (abfd);
2320 sec->use_rela_p = bed->default_use_rela_p;
2321
2322 /* When we read a file, we don't need to set ELF section type and
2323 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2324 anyway. We will set ELF section type and flags for all linker
2325 created sections. If user specifies BFD section flags, we will
2326 set ELF section type and flags based on BFD section flags in
2327 elf_fake_sections. Special handling for .init_array/.fini_array
2328 output sections since they may contain .ctors/.dtors input
2329 sections. We don't want _bfd_elf_init_private_section_data to
2330 copy ELF section type from .ctors/.dtors input sections. */
2331 if (abfd->direction != read_direction
2332 || (sec->flags & SEC_LINKER_CREATED) != 0)
2333 {
2334 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2335 if (ssect != NULL
2336 && (!sec->flags
2337 || (sec->flags & SEC_LINKER_CREATED) != 0
2338 || ssect->type == SHT_INIT_ARRAY
2339 || ssect->type == SHT_FINI_ARRAY))
2340 {
2341 elf_section_type (sec) = ssect->type;
2342 elf_section_flags (sec) = ssect->attr;
2343 }
2344 }
2345
2346 return _bfd_generic_new_section_hook (abfd, sec);
2347 }
2348
2349 /* Create a new bfd section from an ELF program header.
2350
2351 Since program segments have no names, we generate a synthetic name
2352 of the form segment<NUM>, where NUM is generally the index in the
2353 program header table. For segments that are split (see below) we
2354 generate the names segment<NUM>a and segment<NUM>b.
2355
2356 Note that some program segments may have a file size that is different than
2357 (less than) the memory size. All this means is that at execution the
2358 system must allocate the amount of memory specified by the memory size,
2359 but only initialize it with the first "file size" bytes read from the
2360 file. This would occur for example, with program segments consisting
2361 of combined data+bss.
2362
2363 To handle the above situation, this routine generates TWO bfd sections
2364 for the single program segment. The first has the length specified by
2365 the file size of the segment, and the second has the length specified
2366 by the difference between the two sizes. In effect, the segment is split
2367 into its initialized and uninitialized parts.
2368
2369 */
2370
2371 bfd_boolean
2372 _bfd_elf_make_section_from_phdr (bfd *abfd,
2373 Elf_Internal_Phdr *hdr,
2374 int hdr_index,
2375 const char *type_name)
2376 {
2377 asection *newsect;
2378 char *name;
2379 char namebuf[64];
2380 size_t len;
2381 int split;
2382
2383 split = ((hdr->p_memsz > 0)
2384 && (hdr->p_filesz > 0)
2385 && (hdr->p_memsz > hdr->p_filesz));
2386
2387 if (hdr->p_filesz > 0)
2388 {
2389 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2390 len = strlen (namebuf) + 1;
2391 name = (char *) bfd_alloc (abfd, len);
2392 if (!name)
2393 return FALSE;
2394 memcpy (name, namebuf, len);
2395 newsect = bfd_make_section (abfd, name);
2396 if (newsect == NULL)
2397 return FALSE;
2398 newsect->vma = hdr->p_vaddr;
2399 newsect->lma = hdr->p_paddr;
2400 newsect->size = hdr->p_filesz;
2401 newsect->filepos = hdr->p_offset;
2402 newsect->flags |= SEC_HAS_CONTENTS;
2403 newsect->alignment_power = bfd_log2 (hdr->p_align);
2404 if (hdr->p_type == PT_LOAD)
2405 {
2406 newsect->flags |= SEC_ALLOC;
2407 newsect->flags |= SEC_LOAD;
2408 if (hdr->p_flags & PF_X)
2409 {
2410 /* FIXME: all we known is that it has execute PERMISSION,
2411 may be data. */
2412 newsect->flags |= SEC_CODE;
2413 }
2414 }
2415 if (!(hdr->p_flags & PF_W))
2416 {
2417 newsect->flags |= SEC_READONLY;
2418 }
2419 }
2420
2421 if (hdr->p_memsz > hdr->p_filesz)
2422 {
2423 bfd_vma align;
2424
2425 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2426 len = strlen (namebuf) + 1;
2427 name = (char *) bfd_alloc (abfd, len);
2428 if (!name)
2429 return FALSE;
2430 memcpy (name, namebuf, len);
2431 newsect = bfd_make_section (abfd, name);
2432 if (newsect == NULL)
2433 return FALSE;
2434 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2435 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2436 newsect->size = hdr->p_memsz - hdr->p_filesz;
2437 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2438 align = newsect->vma & -newsect->vma;
2439 if (align == 0 || align > hdr->p_align)
2440 align = hdr->p_align;
2441 newsect->alignment_power = bfd_log2 (align);
2442 if (hdr->p_type == PT_LOAD)
2443 {
2444 /* Hack for gdb. Segments that have not been modified do
2445 not have their contents written to a core file, on the
2446 assumption that a debugger can find the contents in the
2447 executable. We flag this case by setting the fake
2448 section size to zero. Note that "real" bss sections will
2449 always have their contents dumped to the core file. */
2450 if (bfd_get_format (abfd) == bfd_core)
2451 newsect->size = 0;
2452 newsect->flags |= SEC_ALLOC;
2453 if (hdr->p_flags & PF_X)
2454 newsect->flags |= SEC_CODE;
2455 }
2456 if (!(hdr->p_flags & PF_W))
2457 newsect->flags |= SEC_READONLY;
2458 }
2459
2460 return TRUE;
2461 }
2462
2463 bfd_boolean
2464 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2465 {
2466 const struct elf_backend_data *bed;
2467
2468 switch (hdr->p_type)
2469 {
2470 case PT_NULL:
2471 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2472
2473 case PT_LOAD:
2474 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2475
2476 case PT_DYNAMIC:
2477 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2478
2479 case PT_INTERP:
2480 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2481
2482 case PT_NOTE:
2483 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2484 return FALSE;
2485 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2486 return FALSE;
2487 return TRUE;
2488
2489 case PT_SHLIB:
2490 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2491
2492 case PT_PHDR:
2493 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2494
2495 case PT_GNU_EH_FRAME:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2497 "eh_frame_hdr");
2498
2499 case PT_GNU_STACK:
2500 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2501
2502 case PT_GNU_RELRO:
2503 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2504
2505 default:
2506 /* Check for any processor-specific program segment types. */
2507 bed = get_elf_backend_data (abfd);
2508 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2509 }
2510 }
2511
2512 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2513 REL or RELA. */
2514
2515 Elf_Internal_Shdr *
2516 _bfd_elf_single_rel_hdr (asection *sec)
2517 {
2518 if (elf_section_data (sec)->rel.hdr)
2519 {
2520 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2521 return elf_section_data (sec)->rel.hdr;
2522 }
2523 else
2524 return elf_section_data (sec)->rela.hdr;
2525 }
2526
2527 /* Allocate and initialize a section-header for a new reloc section,
2528 containing relocations against ASECT. It is stored in RELDATA. If
2529 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2530 relocations. */
2531
2532 bfd_boolean
2533 _bfd_elf_init_reloc_shdr (bfd *abfd,
2534 struct bfd_elf_section_reloc_data *reldata,
2535 asection *asect,
2536 bfd_boolean use_rela_p)
2537 {
2538 Elf_Internal_Shdr *rel_hdr;
2539 char *name;
2540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2541 bfd_size_type amt;
2542
2543 amt = sizeof (Elf_Internal_Shdr);
2544 BFD_ASSERT (reldata->hdr == NULL);
2545 rel_hdr = bfd_zalloc (abfd, amt);
2546 reldata->hdr = rel_hdr;
2547
2548 amt = sizeof ".rela" + strlen (asect->name);
2549 name = (char *) bfd_alloc (abfd, amt);
2550 if (name == NULL)
2551 return FALSE;
2552 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2553 rel_hdr->sh_name =
2554 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2555 FALSE);
2556 if (rel_hdr->sh_name == (unsigned int) -1)
2557 return FALSE;
2558 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2559 rel_hdr->sh_entsize = (use_rela_p
2560 ? bed->s->sizeof_rela
2561 : bed->s->sizeof_rel);
2562 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2563 rel_hdr->sh_flags = 0;
2564 rel_hdr->sh_addr = 0;
2565 rel_hdr->sh_size = 0;
2566 rel_hdr->sh_offset = 0;
2567
2568 return TRUE;
2569 }
2570
2571 /* Return the default section type based on the passed in section flags. */
2572
2573 int
2574 bfd_elf_get_default_section_type (flagword flags)
2575 {
2576 if ((flags & SEC_ALLOC) != 0
2577 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2578 return SHT_NOBITS;
2579 return SHT_PROGBITS;
2580 }
2581
2582 struct fake_section_arg
2583 {
2584 struct bfd_link_info *link_info;
2585 bfd_boolean failed;
2586 };
2587
2588 /* Set up an ELF internal section header for a section. */
2589
2590 static void
2591 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2592 {
2593 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2595 struct bfd_elf_section_data *esd = elf_section_data (asect);
2596 Elf_Internal_Shdr *this_hdr;
2597 unsigned int sh_type;
2598
2599 if (arg->failed)
2600 {
2601 /* We already failed; just get out of the bfd_map_over_sections
2602 loop. */
2603 return;
2604 }
2605
2606 this_hdr = &esd->this_hdr;
2607
2608 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2609 asect->name, FALSE);
2610 if (this_hdr->sh_name == (unsigned int) -1)
2611 {
2612 arg->failed = TRUE;
2613 return;
2614 }
2615
2616 /* Don't clear sh_flags. Assembler may set additional bits. */
2617
2618 if ((asect->flags & SEC_ALLOC) != 0
2619 || asect->user_set_vma)
2620 this_hdr->sh_addr = asect->vma;
2621 else
2622 this_hdr->sh_addr = 0;
2623
2624 this_hdr->sh_offset = 0;
2625 this_hdr->sh_size = asect->size;
2626 this_hdr->sh_link = 0;
2627 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2628 /* The sh_entsize and sh_info fields may have been set already by
2629 copy_private_section_data. */
2630
2631 this_hdr->bfd_section = asect;
2632 this_hdr->contents = NULL;
2633
2634 /* If the section type is unspecified, we set it based on
2635 asect->flags. */
2636 if ((asect->flags & SEC_GROUP) != 0)
2637 sh_type = SHT_GROUP;
2638 else
2639 sh_type = bfd_elf_get_default_section_type (asect->flags);
2640
2641 if (this_hdr->sh_type == SHT_NULL)
2642 this_hdr->sh_type = sh_type;
2643 else if (this_hdr->sh_type == SHT_NOBITS
2644 && sh_type == SHT_PROGBITS
2645 && (asect->flags & SEC_ALLOC) != 0)
2646 {
2647 /* Warn if we are changing a NOBITS section to PROGBITS, but
2648 allow the link to proceed. This can happen when users link
2649 non-bss input sections to bss output sections, or emit data
2650 to a bss output section via a linker script. */
2651 (*_bfd_error_handler)
2652 (_("warning: section `%A' type changed to PROGBITS"), asect);
2653 this_hdr->sh_type = sh_type;
2654 }
2655
2656 switch (this_hdr->sh_type)
2657 {
2658 default:
2659 break;
2660
2661 case SHT_STRTAB:
2662 case SHT_INIT_ARRAY:
2663 case SHT_FINI_ARRAY:
2664 case SHT_PREINIT_ARRAY:
2665 case SHT_NOTE:
2666 case SHT_NOBITS:
2667 case SHT_PROGBITS:
2668 break;
2669
2670 case SHT_HASH:
2671 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2672 break;
2673
2674 case SHT_DYNSYM:
2675 this_hdr->sh_entsize = bed->s->sizeof_sym;
2676 break;
2677
2678 case SHT_DYNAMIC:
2679 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2680 break;
2681
2682 case SHT_RELA:
2683 if (get_elf_backend_data (abfd)->may_use_rela_p)
2684 this_hdr->sh_entsize = bed->s->sizeof_rela;
2685 break;
2686
2687 case SHT_REL:
2688 if (get_elf_backend_data (abfd)->may_use_rel_p)
2689 this_hdr->sh_entsize = bed->s->sizeof_rel;
2690 break;
2691
2692 case SHT_GNU_versym:
2693 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2694 break;
2695
2696 case SHT_GNU_verdef:
2697 this_hdr->sh_entsize = 0;
2698 /* objcopy or strip will copy over sh_info, but may not set
2699 cverdefs. The linker will set cverdefs, but sh_info will be
2700 zero. */
2701 if (this_hdr->sh_info == 0)
2702 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2703 else
2704 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2705 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2706 break;
2707
2708 case SHT_GNU_verneed:
2709 this_hdr->sh_entsize = 0;
2710 /* objcopy or strip will copy over sh_info, but may not set
2711 cverrefs. The linker will set cverrefs, but sh_info will be
2712 zero. */
2713 if (this_hdr->sh_info == 0)
2714 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2715 else
2716 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2717 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2718 break;
2719
2720 case SHT_GROUP:
2721 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2722 break;
2723
2724 case SHT_GNU_HASH:
2725 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2726 break;
2727 }
2728
2729 if ((asect->flags & SEC_ALLOC) != 0)
2730 this_hdr->sh_flags |= SHF_ALLOC;
2731 if ((asect->flags & SEC_READONLY) == 0)
2732 this_hdr->sh_flags |= SHF_WRITE;
2733 if ((asect->flags & SEC_CODE) != 0)
2734 this_hdr->sh_flags |= SHF_EXECINSTR;
2735 if ((asect->flags & SEC_MERGE) != 0)
2736 {
2737 this_hdr->sh_flags |= SHF_MERGE;
2738 this_hdr->sh_entsize = asect->entsize;
2739 if ((asect->flags & SEC_STRINGS) != 0)
2740 this_hdr->sh_flags |= SHF_STRINGS;
2741 }
2742 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2743 this_hdr->sh_flags |= SHF_GROUP;
2744 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2745 {
2746 this_hdr->sh_flags |= SHF_TLS;
2747 if (asect->size == 0
2748 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2749 {
2750 struct bfd_link_order *o = asect->map_tail.link_order;
2751
2752 this_hdr->sh_size = 0;
2753 if (o != NULL)
2754 {
2755 this_hdr->sh_size = o->offset + o->size;
2756 if (this_hdr->sh_size != 0)
2757 this_hdr->sh_type = SHT_NOBITS;
2758 }
2759 }
2760 }
2761 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2762 this_hdr->sh_flags |= SHF_EXCLUDE;
2763
2764 /* If the section has relocs, set up a section header for the
2765 SHT_REL[A] section. If two relocation sections are required for
2766 this section, it is up to the processor-specific back-end to
2767 create the other. */
2768 if ((asect->flags & SEC_RELOC) != 0)
2769 {
2770 /* When doing a relocatable link, create both REL and RELA sections if
2771 needed. */
2772 if (arg->link_info
2773 /* Do the normal setup if we wouldn't create any sections here. */
2774 && esd->rel.count + esd->rela.count > 0
2775 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2776 {
2777 if (esd->rel.count && esd->rel.hdr == NULL
2778 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2779 {
2780 arg->failed = TRUE;
2781 return;
2782 }
2783 if (esd->rela.count && esd->rela.hdr == NULL
2784 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2785 {
2786 arg->failed = TRUE;
2787 return;
2788 }
2789 }
2790 else if (!_bfd_elf_init_reloc_shdr (abfd,
2791 (asect->use_rela_p
2792 ? &esd->rela : &esd->rel),
2793 asect,
2794 asect->use_rela_p))
2795 arg->failed = TRUE;
2796 }
2797
2798 /* Check for processor-specific section types. */
2799 sh_type = this_hdr->sh_type;
2800 if (bed->elf_backend_fake_sections
2801 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2802 arg->failed = TRUE;
2803
2804 if (sh_type == SHT_NOBITS && asect->size != 0)
2805 {
2806 /* Don't change the header type from NOBITS if we are being
2807 called for objcopy --only-keep-debug. */
2808 this_hdr->sh_type = sh_type;
2809 }
2810 }
2811
2812 /* Fill in the contents of a SHT_GROUP section. Called from
2813 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2814 when ELF targets use the generic linker, ld. Called for ld -r
2815 from bfd_elf_final_link. */
2816
2817 void
2818 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2819 {
2820 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2821 asection *elt, *first;
2822 unsigned char *loc;
2823 bfd_boolean gas;
2824
2825 /* Ignore linker created group section. See elfNN_ia64_object_p in
2826 elfxx-ia64.c. */
2827 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2828 || *failedptr)
2829 return;
2830
2831 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2832 {
2833 unsigned long symindx = 0;
2834
2835 /* elf_group_id will have been set up by objcopy and the
2836 generic linker. */
2837 if (elf_group_id (sec) != NULL)
2838 symindx = elf_group_id (sec)->udata.i;
2839
2840 if (symindx == 0)
2841 {
2842 /* If called from the assembler, swap_out_syms will have set up
2843 elf_section_syms. */
2844 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2845 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2846 }
2847 elf_section_data (sec)->this_hdr.sh_info = symindx;
2848 }
2849 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2850 {
2851 /* The ELF backend linker sets sh_info to -2 when the group
2852 signature symbol is global, and thus the index can't be
2853 set until all local symbols are output. */
2854 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2855 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2856 unsigned long symndx = sec_data->this_hdr.sh_info;
2857 unsigned long extsymoff = 0;
2858 struct elf_link_hash_entry *h;
2859
2860 if (!elf_bad_symtab (igroup->owner))
2861 {
2862 Elf_Internal_Shdr *symtab_hdr;
2863
2864 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2865 extsymoff = symtab_hdr->sh_info;
2866 }
2867 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2868 while (h->root.type == bfd_link_hash_indirect
2869 || h->root.type == bfd_link_hash_warning)
2870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2871
2872 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2873 }
2874
2875 /* The contents won't be allocated for "ld -r" or objcopy. */
2876 gas = TRUE;
2877 if (sec->contents == NULL)
2878 {
2879 gas = FALSE;
2880 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2881
2882 /* Arrange for the section to be written out. */
2883 elf_section_data (sec)->this_hdr.contents = sec->contents;
2884 if (sec->contents == NULL)
2885 {
2886 *failedptr = TRUE;
2887 return;
2888 }
2889 }
2890
2891 loc = sec->contents + sec->size;
2892
2893 /* Get the pointer to the first section in the group that gas
2894 squirreled away here. objcopy arranges for this to be set to the
2895 start of the input section group. */
2896 first = elt = elf_next_in_group (sec);
2897
2898 /* First element is a flag word. Rest of section is elf section
2899 indices for all the sections of the group. Write them backwards
2900 just to keep the group in the same order as given in .section
2901 directives, not that it matters. */
2902 while (elt != NULL)
2903 {
2904 asection *s;
2905
2906 s = elt;
2907 if (!gas)
2908 s = s->output_section;
2909 if (s != NULL
2910 && !bfd_is_abs_section (s))
2911 {
2912 unsigned int idx = elf_section_data (s)->this_idx;
2913
2914 loc -= 4;
2915 H_PUT_32 (abfd, idx, loc);
2916 }
2917 elt = elf_next_in_group (elt);
2918 if (elt == first)
2919 break;
2920 }
2921
2922 if ((loc -= 4) != sec->contents)
2923 abort ();
2924
2925 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2926 }
2927
2928 /* Assign all ELF section numbers. The dummy first section is handled here
2929 too. The link/info pointers for the standard section types are filled
2930 in here too, while we're at it. */
2931
2932 static bfd_boolean
2933 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2934 {
2935 struct elf_obj_tdata *t = elf_tdata (abfd);
2936 asection *sec;
2937 unsigned int section_number, secn;
2938 Elf_Internal_Shdr **i_shdrp;
2939 struct bfd_elf_section_data *d;
2940 bfd_boolean need_symtab;
2941
2942 section_number = 1;
2943
2944 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2945
2946 /* SHT_GROUP sections are in relocatable files only. */
2947 if (link_info == NULL || link_info->relocatable)
2948 {
2949 /* Put SHT_GROUP sections first. */
2950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type == SHT_GROUP)
2955 {
2956 if (sec->flags & SEC_LINKER_CREATED)
2957 {
2958 /* Remove the linker created SHT_GROUP sections. */
2959 bfd_section_list_remove (abfd, sec);
2960 abfd->section_count--;
2961 }
2962 else
2963 d->this_idx = section_number++;
2964 }
2965 }
2966 }
2967
2968 for (sec = abfd->sections; sec; sec = sec->next)
2969 {
2970 d = elf_section_data (sec);
2971
2972 if (d->this_hdr.sh_type != SHT_GROUP)
2973 d->this_idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2975 if (d->rel.hdr)
2976 {
2977 d->rel.idx = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2979 }
2980 else
2981 d->rel.idx = 0;
2982
2983 if (d->rela.hdr)
2984 {
2985 d->rela.idx = section_number++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2987 }
2988 else
2989 d->rela.idx = 0;
2990 }
2991
2992 t->shstrtab_section = section_number++;
2993 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2994 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2995
2996 need_symtab = (bfd_get_symcount (abfd) > 0
2997 || (link_info == NULL
2998 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2999 == HAS_RELOC)));
3000 if (need_symtab)
3001 {
3002 t->symtab_section = section_number++;
3003 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3004 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3005 {
3006 t->symtab_shndx_section = section_number++;
3007 t->symtab_shndx_hdr.sh_name
3008 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3009 ".symtab_shndx", FALSE);
3010 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3011 return FALSE;
3012 }
3013 t->strtab_section = section_number++;
3014 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3015 }
3016
3017 if (section_number >= SHN_LORESERVE)
3018 {
3019 _bfd_error_handler (_("%B: too many sections: %u"),
3020 abfd, section_number);
3021 return FALSE;
3022 }
3023
3024 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3025 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3026
3027 elf_numsections (abfd) = section_number;
3028 elf_elfheader (abfd)->e_shnum = section_number;
3029
3030 /* Set up the list of section header pointers, in agreement with the
3031 indices. */
3032 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3033 sizeof (Elf_Internal_Shdr *));
3034 if (i_shdrp == NULL)
3035 return FALSE;
3036
3037 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3038 sizeof (Elf_Internal_Shdr));
3039 if (i_shdrp[0] == NULL)
3040 {
3041 bfd_release (abfd, i_shdrp);
3042 return FALSE;
3043 }
3044
3045 elf_elfsections (abfd) = i_shdrp;
3046
3047 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3048 if (need_symtab)
3049 {
3050 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3051 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3052 {
3053 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3054 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3055 }
3056 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3057 t->symtab_hdr.sh_link = t->strtab_section;
3058 }
3059
3060 for (sec = abfd->sections; sec; sec = sec->next)
3061 {
3062 asection *s;
3063 const char *name;
3064
3065 d = elf_section_data (sec);
3066
3067 i_shdrp[d->this_idx] = &d->this_hdr;
3068 if (d->rel.idx != 0)
3069 i_shdrp[d->rel.idx] = d->rel.hdr;
3070 if (d->rela.idx != 0)
3071 i_shdrp[d->rela.idx] = d->rela.hdr;
3072
3073 /* Fill in the sh_link and sh_info fields while we're at it. */
3074
3075 /* sh_link of a reloc section is the section index of the symbol
3076 table. sh_info is the section index of the section to which
3077 the relocation entries apply. */
3078 if (d->rel.idx != 0)
3079 {
3080 d->rel.hdr->sh_link = t->symtab_section;
3081 d->rel.hdr->sh_info = d->this_idx;
3082 }
3083 if (d->rela.idx != 0)
3084 {
3085 d->rela.hdr->sh_link = t->symtab_section;
3086 d->rela.hdr->sh_info = d->this_idx;
3087 }
3088
3089 /* We need to set up sh_link for SHF_LINK_ORDER. */
3090 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3091 {
3092 s = elf_linked_to_section (sec);
3093 if (s)
3094 {
3095 /* elf_linked_to_section points to the input section. */
3096 if (link_info != NULL)
3097 {
3098 /* Check discarded linkonce section. */
3099 if (discarded_section (s))
3100 {
3101 asection *kept;
3102 (*_bfd_error_handler)
3103 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3104 abfd, d->this_hdr.bfd_section,
3105 s, s->owner);
3106 /* Point to the kept section if it has the same
3107 size as the discarded one. */
3108 kept = _bfd_elf_check_kept_section (s, link_info);
3109 if (kept == NULL)
3110 {
3111 bfd_set_error (bfd_error_bad_value);
3112 return FALSE;
3113 }
3114 s = kept;
3115 }
3116
3117 s = s->output_section;
3118 BFD_ASSERT (s != NULL);
3119 }
3120 else
3121 {
3122 /* Handle objcopy. */
3123 if (s->output_section == NULL)
3124 {
3125 (*_bfd_error_handler)
3126 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3127 abfd, d->this_hdr.bfd_section, s, s->owner);
3128 bfd_set_error (bfd_error_bad_value);
3129 return FALSE;
3130 }
3131 s = s->output_section;
3132 }
3133 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3134 }
3135 else
3136 {
3137 /* PR 290:
3138 The Intel C compiler generates SHT_IA_64_UNWIND with
3139 SHF_LINK_ORDER. But it doesn't set the sh_link or
3140 sh_info fields. Hence we could get the situation
3141 where s is NULL. */
3142 const struct elf_backend_data *bed
3143 = get_elf_backend_data (abfd);
3144 if (bed->link_order_error_handler)
3145 bed->link_order_error_handler
3146 (_("%B: warning: sh_link not set for section `%A'"),
3147 abfd, sec);
3148 }
3149 }
3150
3151 switch (d->this_hdr.sh_type)
3152 {
3153 case SHT_REL:
3154 case SHT_RELA:
3155 /* A reloc section which we are treating as a normal BFD
3156 section. sh_link is the section index of the symbol
3157 table. sh_info is the section index of the section to
3158 which the relocation entries apply. We assume that an
3159 allocated reloc section uses the dynamic symbol table.
3160 FIXME: How can we be sure? */
3161 s = bfd_get_section_by_name (abfd, ".dynsym");
3162 if (s != NULL)
3163 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3164
3165 /* We look up the section the relocs apply to by name. */
3166 name = sec->name;
3167 if (d->this_hdr.sh_type == SHT_REL)
3168 name += 4;
3169 else
3170 name += 5;
3171 s = bfd_get_section_by_name (abfd, name);
3172 if (s != NULL)
3173 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3174 break;
3175
3176 case SHT_STRTAB:
3177 /* We assume that a section named .stab*str is a stabs
3178 string section. We look for a section with the same name
3179 but without the trailing ``str'', and set its sh_link
3180 field to point to this section. */
3181 if (CONST_STRNEQ (sec->name, ".stab")
3182 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3183 {
3184 size_t len;
3185 char *alc;
3186
3187 len = strlen (sec->name);
3188 alc = (char *) bfd_malloc (len - 2);
3189 if (alc == NULL)
3190 return FALSE;
3191 memcpy (alc, sec->name, len - 3);
3192 alc[len - 3] = '\0';
3193 s = bfd_get_section_by_name (abfd, alc);
3194 free (alc);
3195 if (s != NULL)
3196 {
3197 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3198
3199 /* This is a .stab section. */
3200 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3201 elf_section_data (s)->this_hdr.sh_entsize
3202 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3203 }
3204 }
3205 break;
3206
3207 case SHT_DYNAMIC:
3208 case SHT_DYNSYM:
3209 case SHT_GNU_verneed:
3210 case SHT_GNU_verdef:
3211 /* sh_link is the section header index of the string table
3212 used for the dynamic entries, or the symbol table, or the
3213 version strings. */
3214 s = bfd_get_section_by_name (abfd, ".dynstr");
3215 if (s != NULL)
3216 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3217 break;
3218
3219 case SHT_GNU_LIBLIST:
3220 /* sh_link is the section header index of the prelink library
3221 list used for the dynamic entries, or the symbol table, or
3222 the version strings. */
3223 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3224 ? ".dynstr" : ".gnu.libstr");
3225 if (s != NULL)
3226 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3227 break;
3228
3229 case SHT_HASH:
3230 case SHT_GNU_HASH:
3231 case SHT_GNU_versym:
3232 /* sh_link is the section header index of the symbol table
3233 this hash table or version table is for. */
3234 s = bfd_get_section_by_name (abfd, ".dynsym");
3235 if (s != NULL)
3236 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3237 break;
3238
3239 case SHT_GROUP:
3240 d->this_hdr.sh_link = t->symtab_section;
3241 }
3242 }
3243
3244 for (secn = 1; secn < section_number; ++secn)
3245 if (i_shdrp[secn] == NULL)
3246 i_shdrp[secn] = i_shdrp[0];
3247 else
3248 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3249 i_shdrp[secn]->sh_name);
3250 return TRUE;
3251 }
3252
3253 static bfd_boolean
3254 sym_is_global (bfd *abfd, asymbol *sym)
3255 {
3256 /* If the backend has a special mapping, use it. */
3257 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3258 if (bed->elf_backend_sym_is_global)
3259 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3260
3261 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3262 || bfd_is_und_section (bfd_get_section (sym))
3263 || bfd_is_com_section (bfd_get_section (sym)));
3264 }
3265
3266 /* Don't output section symbols for sections that are not going to be
3267 output, that are duplicates or there is no BFD section. */
3268
3269 static bfd_boolean
3270 ignore_section_sym (bfd *abfd, asymbol *sym)
3271 {
3272 elf_symbol_type *type_ptr;
3273
3274 if ((sym->flags & BSF_SECTION_SYM) == 0)
3275 return FALSE;
3276
3277 type_ptr = elf_symbol_from (abfd, sym);
3278 return ((type_ptr != NULL
3279 && type_ptr->internal_elf_sym.st_shndx != 0
3280 && bfd_is_abs_section (sym->section))
3281 || !(sym->section->owner == abfd
3282 || (sym->section->output_section->owner == abfd
3283 && sym->section->output_offset == 0)
3284 || bfd_is_abs_section (sym->section)));
3285 }
3286
3287 /* Map symbol from it's internal number to the external number, moving
3288 all local symbols to be at the head of the list. */
3289
3290 static bfd_boolean
3291 elf_map_symbols (bfd *abfd)
3292 {
3293 unsigned int symcount = bfd_get_symcount (abfd);
3294 asymbol **syms = bfd_get_outsymbols (abfd);
3295 asymbol **sect_syms;
3296 unsigned int num_locals = 0;
3297 unsigned int num_globals = 0;
3298 unsigned int num_locals2 = 0;
3299 unsigned int num_globals2 = 0;
3300 int max_index = 0;
3301 unsigned int idx;
3302 asection *asect;
3303 asymbol **new_syms;
3304
3305 #ifdef DEBUG
3306 fprintf (stderr, "elf_map_symbols\n");
3307 fflush (stderr);
3308 #endif
3309
3310 for (asect = abfd->sections; asect; asect = asect->next)
3311 {
3312 if (max_index < asect->index)
3313 max_index = asect->index;
3314 }
3315
3316 max_index++;
3317 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3318 if (sect_syms == NULL)
3319 return FALSE;
3320 elf_section_syms (abfd) = sect_syms;
3321 elf_num_section_syms (abfd) = max_index;
3322
3323 /* Init sect_syms entries for any section symbols we have already
3324 decided to output. */
3325 for (idx = 0; idx < symcount; idx++)
3326 {
3327 asymbol *sym = syms[idx];
3328
3329 if ((sym->flags & BSF_SECTION_SYM) != 0
3330 && sym->value == 0
3331 && !ignore_section_sym (abfd, sym)
3332 && !bfd_is_abs_section (sym->section))
3333 {
3334 asection *sec = sym->section;
3335
3336 if (sec->owner != abfd)
3337 sec = sec->output_section;
3338
3339 sect_syms[sec->index] = syms[idx];
3340 }
3341 }
3342
3343 /* Classify all of the symbols. */
3344 for (idx = 0; idx < symcount; idx++)
3345 {
3346 if (sym_is_global (abfd, syms[idx]))
3347 num_globals++;
3348 else if (!ignore_section_sym (abfd, syms[idx]))
3349 num_locals++;
3350 }
3351
3352 /* We will be adding a section symbol for each normal BFD section. Most
3353 sections will already have a section symbol in outsymbols, but
3354 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3355 at least in that case. */
3356 for (asect = abfd->sections; asect; asect = asect->next)
3357 {
3358 if (sect_syms[asect->index] == NULL)
3359 {
3360 if (!sym_is_global (abfd, asect->symbol))
3361 num_locals++;
3362 else
3363 num_globals++;
3364 }
3365 }
3366
3367 /* Now sort the symbols so the local symbols are first. */
3368 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3369 sizeof (asymbol *));
3370
3371 if (new_syms == NULL)
3372 return FALSE;
3373
3374 for (idx = 0; idx < symcount; idx++)
3375 {
3376 asymbol *sym = syms[idx];
3377 unsigned int i;
3378
3379 if (sym_is_global (abfd, sym))
3380 i = num_locals + num_globals2++;
3381 else if (!ignore_section_sym (abfd, sym))
3382 i = num_locals2++;
3383 else
3384 continue;
3385 new_syms[i] = sym;
3386 sym->udata.i = i + 1;
3387 }
3388 for (asect = abfd->sections; asect; asect = asect->next)
3389 {
3390 if (sect_syms[asect->index] == NULL)
3391 {
3392 asymbol *sym = asect->symbol;
3393 unsigned int i;
3394
3395 sect_syms[asect->index] = sym;
3396 if (!sym_is_global (abfd, sym))
3397 i = num_locals2++;
3398 else
3399 i = num_locals + num_globals2++;
3400 new_syms[i] = sym;
3401 sym->udata.i = i + 1;
3402 }
3403 }
3404
3405 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3406
3407 elf_num_locals (abfd) = num_locals;
3408 elf_num_globals (abfd) = num_globals;
3409 return TRUE;
3410 }
3411
3412 /* Align to the maximum file alignment that could be required for any
3413 ELF data structure. */
3414
3415 static inline file_ptr
3416 align_file_position (file_ptr off, int align)
3417 {
3418 return (off + align - 1) & ~(align - 1);
3419 }
3420
3421 /* Assign a file position to a section, optionally aligning to the
3422 required section alignment. */
3423
3424 file_ptr
3425 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3426 file_ptr offset,
3427 bfd_boolean align)
3428 {
3429 if (align && i_shdrp->sh_addralign > 1)
3430 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3431 i_shdrp->sh_offset = offset;
3432 if (i_shdrp->bfd_section != NULL)
3433 i_shdrp->bfd_section->filepos = offset;
3434 if (i_shdrp->sh_type != SHT_NOBITS)
3435 offset += i_shdrp->sh_size;
3436 return offset;
3437 }
3438
3439 /* Compute the file positions we are going to put the sections at, and
3440 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3441 is not NULL, this is being called by the ELF backend linker. */
3442
3443 bfd_boolean
3444 _bfd_elf_compute_section_file_positions (bfd *abfd,
3445 struct bfd_link_info *link_info)
3446 {
3447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3448 struct fake_section_arg fsargs;
3449 bfd_boolean failed;
3450 struct bfd_strtab_hash *strtab = NULL;
3451 Elf_Internal_Shdr *shstrtab_hdr;
3452 bfd_boolean need_symtab;
3453
3454 if (abfd->output_has_begun)
3455 return TRUE;
3456
3457 /* Do any elf backend specific processing first. */
3458 if (bed->elf_backend_begin_write_processing)
3459 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3460
3461 if (! prep_headers (abfd))
3462 return FALSE;
3463
3464 /* Post process the headers if necessary. */
3465 if (bed->elf_backend_post_process_headers)
3466 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3467
3468 fsargs.failed = FALSE;
3469 fsargs.link_info = link_info;
3470 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3471 if (fsargs.failed)
3472 return FALSE;
3473
3474 if (!assign_section_numbers (abfd, link_info))
3475 return FALSE;
3476
3477 /* The backend linker builds symbol table information itself. */
3478 need_symtab = (link_info == NULL
3479 && (bfd_get_symcount (abfd) > 0
3480 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3481 == HAS_RELOC)));
3482 if (need_symtab)
3483 {
3484 /* Non-zero if doing a relocatable link. */
3485 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3486
3487 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3488 return FALSE;
3489 }
3490
3491 failed = FALSE;
3492 if (link_info == NULL)
3493 {
3494 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3495 if (failed)
3496 return FALSE;
3497 }
3498
3499 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3500 /* sh_name was set in prep_headers. */
3501 shstrtab_hdr->sh_type = SHT_STRTAB;
3502 shstrtab_hdr->sh_flags = 0;
3503 shstrtab_hdr->sh_addr = 0;
3504 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3505 shstrtab_hdr->sh_entsize = 0;
3506 shstrtab_hdr->sh_link = 0;
3507 shstrtab_hdr->sh_info = 0;
3508 /* sh_offset is set in assign_file_positions_except_relocs. */
3509 shstrtab_hdr->sh_addralign = 1;
3510
3511 if (!assign_file_positions_except_relocs (abfd, link_info))
3512 return FALSE;
3513
3514 if (need_symtab)
3515 {
3516 file_ptr off;
3517 Elf_Internal_Shdr *hdr;
3518
3519 off = elf_tdata (abfd)->next_file_pos;
3520
3521 hdr = &elf_tdata (abfd)->symtab_hdr;
3522 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3523
3524 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3525 if (hdr->sh_size != 0)
3526 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3527
3528 hdr = &elf_tdata (abfd)->strtab_hdr;
3529 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3530
3531 elf_tdata (abfd)->next_file_pos = off;
3532
3533 /* Now that we know where the .strtab section goes, write it
3534 out. */
3535 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3536 || ! _bfd_stringtab_emit (abfd, strtab))
3537 return FALSE;
3538 _bfd_stringtab_free (strtab);
3539 }
3540
3541 abfd->output_has_begun = TRUE;
3542
3543 return TRUE;
3544 }
3545
3546 /* Make an initial estimate of the size of the program header. If we
3547 get the number wrong here, we'll redo section placement. */
3548
3549 static bfd_size_type
3550 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3551 {
3552 size_t segs;
3553 asection *s;
3554 const struct elf_backend_data *bed;
3555
3556 /* Assume we will need exactly two PT_LOAD segments: one for text
3557 and one for data. */
3558 segs = 2;
3559
3560 s = bfd_get_section_by_name (abfd, ".interp");
3561 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3562 {
3563 /* If we have a loadable interpreter section, we need a
3564 PT_INTERP segment. In this case, assume we also need a
3565 PT_PHDR segment, although that may not be true for all
3566 targets. */
3567 segs += 2;
3568 }
3569
3570 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3571 {
3572 /* We need a PT_DYNAMIC segment. */
3573 ++segs;
3574 }
3575
3576 if (info != NULL && info->relro)
3577 {
3578 /* We need a PT_GNU_RELRO segment. */
3579 ++segs;
3580 }
3581
3582 if (elf_tdata (abfd)->eh_frame_hdr)
3583 {
3584 /* We need a PT_GNU_EH_FRAME segment. */
3585 ++segs;
3586 }
3587
3588 if (elf_tdata (abfd)->stack_flags)
3589 {
3590 /* We need a PT_GNU_STACK segment. */
3591 ++segs;
3592 }
3593
3594 for (s = abfd->sections; s != NULL; s = s->next)
3595 {
3596 if ((s->flags & SEC_LOAD) != 0
3597 && CONST_STRNEQ (s->name, ".note"))
3598 {
3599 /* We need a PT_NOTE segment. */
3600 ++segs;
3601 /* Try to create just one PT_NOTE segment
3602 for all adjacent loadable .note* sections.
3603 gABI requires that within a PT_NOTE segment
3604 (and also inside of each SHT_NOTE section)
3605 each note is padded to a multiple of 4 size,
3606 so we check whether the sections are correctly
3607 aligned. */
3608 if (s->alignment_power == 2)
3609 while (s->next != NULL
3610 && s->next->alignment_power == 2
3611 && (s->next->flags & SEC_LOAD) != 0
3612 && CONST_STRNEQ (s->next->name, ".note"))
3613 s = s->next;
3614 }
3615 }
3616
3617 for (s = abfd->sections; s != NULL; s = s->next)
3618 {
3619 if (s->flags & SEC_THREAD_LOCAL)
3620 {
3621 /* We need a PT_TLS segment. */
3622 ++segs;
3623 break;
3624 }
3625 }
3626
3627 /* Let the backend count up any program headers it might need. */
3628 bed = get_elf_backend_data (abfd);
3629 if (bed->elf_backend_additional_program_headers)
3630 {
3631 int a;
3632
3633 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3634 if (a == -1)
3635 abort ();
3636 segs += a;
3637 }
3638
3639 return segs * bed->s->sizeof_phdr;
3640 }
3641
3642 /* Find the segment that contains the output_section of section. */
3643
3644 Elf_Internal_Phdr *
3645 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3646 {
3647 struct elf_segment_map *m;
3648 Elf_Internal_Phdr *p;
3649
3650 for (m = elf_tdata (abfd)->segment_map,
3651 p = elf_tdata (abfd)->phdr;
3652 m != NULL;
3653 m = m->next, p++)
3654 {
3655 int i;
3656
3657 for (i = m->count - 1; i >= 0; i--)
3658 if (m->sections[i] == section)
3659 return p;
3660 }
3661
3662 return NULL;
3663 }
3664
3665 /* Create a mapping from a set of sections to a program segment. */
3666
3667 static struct elf_segment_map *
3668 make_mapping (bfd *abfd,
3669 asection **sections,
3670 unsigned int from,
3671 unsigned int to,
3672 bfd_boolean phdr)
3673 {
3674 struct elf_segment_map *m;
3675 unsigned int i;
3676 asection **hdrpp;
3677 bfd_size_type amt;
3678
3679 amt = sizeof (struct elf_segment_map);
3680 amt += (to - from - 1) * sizeof (asection *);
3681 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3682 if (m == NULL)
3683 return NULL;
3684 m->next = NULL;
3685 m->p_type = PT_LOAD;
3686 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3687 m->sections[i - from] = *hdrpp;
3688 m->count = to - from;
3689
3690 if (from == 0 && phdr)
3691 {
3692 /* Include the headers in the first PT_LOAD segment. */
3693 m->includes_filehdr = 1;
3694 m->includes_phdrs = 1;
3695 }
3696
3697 return m;
3698 }
3699
3700 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3701 on failure. */
3702
3703 struct elf_segment_map *
3704 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3705 {
3706 struct elf_segment_map *m;
3707
3708 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3709 sizeof (struct elf_segment_map));
3710 if (m == NULL)
3711 return NULL;
3712 m->next = NULL;
3713 m->p_type = PT_DYNAMIC;
3714 m->count = 1;
3715 m->sections[0] = dynsec;
3716
3717 return m;
3718 }
3719
3720 /* Possibly add or remove segments from the segment map. */
3721
3722 static bfd_boolean
3723 elf_modify_segment_map (bfd *abfd,
3724 struct bfd_link_info *info,
3725 bfd_boolean remove_empty_load)
3726 {
3727 struct elf_segment_map **m;
3728 const struct elf_backend_data *bed;
3729
3730 /* The placement algorithm assumes that non allocated sections are
3731 not in PT_LOAD segments. We ensure this here by removing such
3732 sections from the segment map. We also remove excluded
3733 sections. Finally, any PT_LOAD segment without sections is
3734 removed. */
3735 m = &elf_tdata (abfd)->segment_map;
3736 while (*m)
3737 {
3738 unsigned int i, new_count;
3739
3740 for (new_count = 0, i = 0; i < (*m)->count; i++)
3741 {
3742 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3743 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3744 || (*m)->p_type != PT_LOAD))
3745 {
3746 (*m)->sections[new_count] = (*m)->sections[i];
3747 new_count++;
3748 }
3749 }
3750 (*m)->count = new_count;
3751
3752 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3753 *m = (*m)->next;
3754 else
3755 m = &(*m)->next;
3756 }
3757
3758 bed = get_elf_backend_data (abfd);
3759 if (bed->elf_backend_modify_segment_map != NULL)
3760 {
3761 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3762 return FALSE;
3763 }
3764
3765 return TRUE;
3766 }
3767
3768 /* Set up a mapping from BFD sections to program segments. */
3769
3770 bfd_boolean
3771 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3772 {
3773 unsigned int count;
3774 struct elf_segment_map *m;
3775 asection **sections = NULL;
3776 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3777 bfd_boolean no_user_phdrs;
3778
3779 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3780
3781 if (info != NULL)
3782 info->user_phdrs = !no_user_phdrs;
3783
3784 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3785 {
3786 asection *s;
3787 unsigned int i;
3788 struct elf_segment_map *mfirst;
3789 struct elf_segment_map **pm;
3790 asection *last_hdr;
3791 bfd_vma last_size;
3792 unsigned int phdr_index;
3793 bfd_vma maxpagesize;
3794 asection **hdrpp;
3795 bfd_boolean phdr_in_segment = TRUE;
3796 bfd_boolean writable;
3797 int tls_count = 0;
3798 asection *first_tls = NULL;
3799 asection *dynsec, *eh_frame_hdr;
3800 bfd_size_type amt;
3801 bfd_vma addr_mask, wrap_to = 0;
3802
3803 /* Select the allocated sections, and sort them. */
3804
3805 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3806 sizeof (asection *));
3807 if (sections == NULL)
3808 goto error_return;
3809
3810 /* Calculate top address, avoiding undefined behaviour of shift
3811 left operator when shift count is equal to size of type
3812 being shifted. */
3813 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3814 addr_mask = (addr_mask << 1) + 1;
3815
3816 i = 0;
3817 for (s = abfd->sections; s != NULL; s = s->next)
3818 {
3819 if ((s->flags & SEC_ALLOC) != 0)
3820 {
3821 sections[i] = s;
3822 ++i;
3823 /* A wrapping section potentially clashes with header. */
3824 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3825 wrap_to = (s->lma + s->size) & addr_mask;
3826 }
3827 }
3828 BFD_ASSERT (i <= bfd_count_sections (abfd));
3829 count = i;
3830
3831 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3832
3833 /* Build the mapping. */
3834
3835 mfirst = NULL;
3836 pm = &mfirst;
3837
3838 /* If we have a .interp section, then create a PT_PHDR segment for
3839 the program headers and a PT_INTERP segment for the .interp
3840 section. */
3841 s = bfd_get_section_by_name (abfd, ".interp");
3842 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3843 {
3844 amt = sizeof (struct elf_segment_map);
3845 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3846 if (m == NULL)
3847 goto error_return;
3848 m->next = NULL;
3849 m->p_type = PT_PHDR;
3850 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3851 m->p_flags = PF_R | PF_X;
3852 m->p_flags_valid = 1;
3853 m->includes_phdrs = 1;
3854
3855 *pm = m;
3856 pm = &m->next;
3857
3858 amt = sizeof (struct elf_segment_map);
3859 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3860 if (m == NULL)
3861 goto error_return;
3862 m->next = NULL;
3863 m->p_type = PT_INTERP;
3864 m->count = 1;
3865 m->sections[0] = s;
3866
3867 *pm = m;
3868 pm = &m->next;
3869 }
3870
3871 /* Look through the sections. We put sections in the same program
3872 segment when the start of the second section can be placed within
3873 a few bytes of the end of the first section. */
3874 last_hdr = NULL;
3875 last_size = 0;
3876 phdr_index = 0;
3877 maxpagesize = bed->maxpagesize;
3878 writable = FALSE;
3879 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3880 if (dynsec != NULL
3881 && (dynsec->flags & SEC_LOAD) == 0)
3882 dynsec = NULL;
3883
3884 /* Deal with -Ttext or something similar such that the first section
3885 is not adjacent to the program headers. This is an
3886 approximation, since at this point we don't know exactly how many
3887 program headers we will need. */
3888 if (count > 0)
3889 {
3890 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3891
3892 if (phdr_size == (bfd_size_type) -1)
3893 phdr_size = get_program_header_size (abfd, info);
3894 if ((abfd->flags & D_PAGED) == 0
3895 || (sections[0]->lma & addr_mask) < phdr_size
3896 || ((sections[0]->lma & addr_mask) % maxpagesize
3897 < phdr_size % maxpagesize)
3898 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3899 phdr_in_segment = FALSE;
3900 }
3901
3902 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3903 {
3904 asection *hdr;
3905 bfd_boolean new_segment;
3906
3907 hdr = *hdrpp;
3908
3909 /* See if this section and the last one will fit in the same
3910 segment. */
3911
3912 if (last_hdr == NULL)
3913 {
3914 /* If we don't have a segment yet, then we don't need a new
3915 one (we build the last one after this loop). */
3916 new_segment = FALSE;
3917 }
3918 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3919 {
3920 /* If this section has a different relation between the
3921 virtual address and the load address, then we need a new
3922 segment. */
3923 new_segment = TRUE;
3924 }
3925 else if (hdr->lma < last_hdr->lma + last_size
3926 || last_hdr->lma + last_size < last_hdr->lma)
3927 {
3928 /* If this section has a load address that makes it overlap
3929 the previous section, then we need a new segment. */
3930 new_segment = TRUE;
3931 }
3932 /* In the next test we have to be careful when last_hdr->lma is close
3933 to the end of the address space. If the aligned address wraps
3934 around to the start of the address space, then there are no more
3935 pages left in memory and it is OK to assume that the current
3936 section can be included in the current segment. */
3937 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3938 > last_hdr->lma)
3939 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3940 <= hdr->lma))
3941 {
3942 /* If putting this section in this segment would force us to
3943 skip a page in the segment, then we need a new segment. */
3944 new_segment = TRUE;
3945 }
3946 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3947 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3948 {
3949 /* We don't want to put a loadable section after a
3950 nonloadable section in the same segment.
3951 Consider .tbss sections as loadable for this purpose. */
3952 new_segment = TRUE;
3953 }
3954 else if ((abfd->flags & D_PAGED) == 0)
3955 {
3956 /* If the file is not demand paged, which means that we
3957 don't require the sections to be correctly aligned in the
3958 file, then there is no other reason for a new segment. */
3959 new_segment = FALSE;
3960 }
3961 else if (! writable
3962 && (hdr->flags & SEC_READONLY) == 0
3963 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3964 != (hdr->lma & -maxpagesize)))
3965 {
3966 /* We don't want to put a writable section in a read only
3967 segment, unless they are on the same page in memory
3968 anyhow. We already know that the last section does not
3969 bring us past the current section on the page, so the
3970 only case in which the new section is not on the same
3971 page as the previous section is when the previous section
3972 ends precisely on a page boundary. */
3973 new_segment = TRUE;
3974 }
3975 else
3976 {
3977 /* Otherwise, we can use the same segment. */
3978 new_segment = FALSE;
3979 }
3980
3981 /* Allow interested parties a chance to override our decision. */
3982 if (last_hdr != NULL
3983 && info != NULL
3984 && info->callbacks->override_segment_assignment != NULL)
3985 new_segment
3986 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3987 last_hdr,
3988 new_segment);
3989
3990 if (! new_segment)
3991 {
3992 if ((hdr->flags & SEC_READONLY) == 0)
3993 writable = TRUE;
3994 last_hdr = hdr;
3995 /* .tbss sections effectively have zero size. */
3996 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3997 != SEC_THREAD_LOCAL)
3998 last_size = hdr->size;
3999 else
4000 last_size = 0;
4001 continue;
4002 }
4003
4004 /* We need a new program segment. We must create a new program
4005 header holding all the sections from phdr_index until hdr. */
4006
4007 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4008 if (m == NULL)
4009 goto error_return;
4010
4011 *pm = m;
4012 pm = &m->next;
4013
4014 if ((hdr->flags & SEC_READONLY) == 0)
4015 writable = TRUE;
4016 else
4017 writable = FALSE;
4018
4019 last_hdr = hdr;
4020 /* .tbss sections effectively have zero size. */
4021 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4022 last_size = hdr->size;
4023 else
4024 last_size = 0;
4025 phdr_index = i;
4026 phdr_in_segment = FALSE;
4027 }
4028
4029 /* Create a final PT_LOAD program segment, but not if it's just
4030 for .tbss. */
4031 if (last_hdr != NULL
4032 && (i - phdr_index != 1
4033 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4034 != SEC_THREAD_LOCAL)))
4035 {
4036 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4037 if (m == NULL)
4038 goto error_return;
4039
4040 *pm = m;
4041 pm = &m->next;
4042 }
4043
4044 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4045 if (dynsec != NULL)
4046 {
4047 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4048 if (m == NULL)
4049 goto error_return;
4050 *pm = m;
4051 pm = &m->next;
4052 }
4053
4054 /* For each batch of consecutive loadable .note sections,
4055 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4056 because if we link together nonloadable .note sections and
4057 loadable .note sections, we will generate two .note sections
4058 in the output file. FIXME: Using names for section types is
4059 bogus anyhow. */
4060 for (s = abfd->sections; s != NULL; s = s->next)
4061 {
4062 if ((s->flags & SEC_LOAD) != 0
4063 && CONST_STRNEQ (s->name, ".note"))
4064 {
4065 asection *s2;
4066
4067 count = 1;
4068 amt = sizeof (struct elf_segment_map);
4069 if (s->alignment_power == 2)
4070 for (s2 = s; s2->next != NULL; s2 = s2->next)
4071 {
4072 if (s2->next->alignment_power == 2
4073 && (s2->next->flags & SEC_LOAD) != 0
4074 && CONST_STRNEQ (s2->next->name, ".note")
4075 && align_power (s2->lma + s2->size, 2)
4076 == s2->next->lma)
4077 count++;
4078 else
4079 break;
4080 }
4081 amt += (count - 1) * sizeof (asection *);
4082 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4083 if (m == NULL)
4084 goto error_return;
4085 m->next = NULL;
4086 m->p_type = PT_NOTE;
4087 m->count = count;
4088 while (count > 1)
4089 {
4090 m->sections[m->count - count--] = s;
4091 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4092 s = s->next;
4093 }
4094 m->sections[m->count - 1] = s;
4095 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4096 *pm = m;
4097 pm = &m->next;
4098 }
4099 if (s->flags & SEC_THREAD_LOCAL)
4100 {
4101 if (! tls_count)
4102 first_tls = s;
4103 tls_count++;
4104 }
4105 }
4106
4107 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4108 if (tls_count > 0)
4109 {
4110 amt = sizeof (struct elf_segment_map);
4111 amt += (tls_count - 1) * sizeof (asection *);
4112 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4113 if (m == NULL)
4114 goto error_return;
4115 m->next = NULL;
4116 m->p_type = PT_TLS;
4117 m->count = tls_count;
4118 /* Mandated PF_R. */
4119 m->p_flags = PF_R;
4120 m->p_flags_valid = 1;
4121 for (i = 0; i < (unsigned int) tls_count; ++i)
4122 {
4123 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4124 m->sections[i] = first_tls;
4125 first_tls = first_tls->next;
4126 }
4127
4128 *pm = m;
4129 pm = &m->next;
4130 }
4131
4132 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4133 segment. */
4134 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4135 if (eh_frame_hdr != NULL
4136 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4137 {
4138 amt = sizeof (struct elf_segment_map);
4139 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4140 if (m == NULL)
4141 goto error_return;
4142 m->next = NULL;
4143 m->p_type = PT_GNU_EH_FRAME;
4144 m->count = 1;
4145 m->sections[0] = eh_frame_hdr->output_section;
4146
4147 *pm = m;
4148 pm = &m->next;
4149 }
4150
4151 if (elf_tdata (abfd)->stack_flags)
4152 {
4153 amt = sizeof (struct elf_segment_map);
4154 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4155 if (m == NULL)
4156 goto error_return;
4157 m->next = NULL;
4158 m->p_type = PT_GNU_STACK;
4159 m->p_flags = elf_tdata (abfd)->stack_flags;
4160 m->p_flags_valid = 1;
4161
4162 *pm = m;
4163 pm = &m->next;
4164 }
4165
4166 if (info != NULL && info->relro)
4167 {
4168 for (m = mfirst; m != NULL; m = m->next)
4169 {
4170 if (m->p_type == PT_LOAD
4171 && m->count != 0
4172 && m->sections[0]->vma >= info->relro_start
4173 && m->sections[0]->vma < info->relro_end)
4174 {
4175 i = m->count;
4176 while (--i != (unsigned) -1)
4177 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4178 == (SEC_LOAD | SEC_HAS_CONTENTS))
4179 break;
4180
4181 if (i == (unsigned) -1)
4182 continue;
4183
4184 if (m->sections[i]->vma + m->sections[i]->size
4185 >= info->relro_end)
4186 break;
4187 }
4188 }
4189
4190 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4191 if (m != NULL)
4192 {
4193 amt = sizeof (struct elf_segment_map);
4194 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4195 if (m == NULL)
4196 goto error_return;
4197 m->next = NULL;
4198 m->p_type = PT_GNU_RELRO;
4199 m->p_flags = PF_R;
4200 m->p_flags_valid = 1;
4201
4202 *pm = m;
4203 pm = &m->next;
4204 }
4205 }
4206
4207 free (sections);
4208 elf_tdata (abfd)->segment_map = mfirst;
4209 }
4210
4211 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4212 return FALSE;
4213
4214 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4215 ++count;
4216 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4217
4218 return TRUE;
4219
4220 error_return:
4221 if (sections != NULL)
4222 free (sections);
4223 return FALSE;
4224 }
4225
4226 /* Sort sections by address. */
4227
4228 static int
4229 elf_sort_sections (const void *arg1, const void *arg2)
4230 {
4231 const asection *sec1 = *(const asection **) arg1;
4232 const asection *sec2 = *(const asection **) arg2;
4233 bfd_size_type size1, size2;
4234
4235 /* Sort by LMA first, since this is the address used to
4236 place the section into a segment. */
4237 if (sec1->lma < sec2->lma)
4238 return -1;
4239 else if (sec1->lma > sec2->lma)
4240 return 1;
4241
4242 /* Then sort by VMA. Normally the LMA and the VMA will be
4243 the same, and this will do nothing. */
4244 if (sec1->vma < sec2->vma)
4245 return -1;
4246 else if (sec1->vma > sec2->vma)
4247 return 1;
4248
4249 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4250
4251 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4252
4253 if (TOEND (sec1))
4254 {
4255 if (TOEND (sec2))
4256 {
4257 /* If the indicies are the same, do not return 0
4258 here, but continue to try the next comparison. */
4259 if (sec1->target_index - sec2->target_index != 0)
4260 return sec1->target_index - sec2->target_index;
4261 }
4262 else
4263 return 1;
4264 }
4265 else if (TOEND (sec2))
4266 return -1;
4267
4268 #undef TOEND
4269
4270 /* Sort by size, to put zero sized sections
4271 before others at the same address. */
4272
4273 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4274 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4275
4276 if (size1 < size2)
4277 return -1;
4278 if (size1 > size2)
4279 return 1;
4280
4281 return sec1->target_index - sec2->target_index;
4282 }
4283
4284 /* Ian Lance Taylor writes:
4285
4286 We shouldn't be using % with a negative signed number. That's just
4287 not good. We have to make sure either that the number is not
4288 negative, or that the number has an unsigned type. When the types
4289 are all the same size they wind up as unsigned. When file_ptr is a
4290 larger signed type, the arithmetic winds up as signed long long,
4291 which is wrong.
4292
4293 What we're trying to say here is something like ``increase OFF by
4294 the least amount that will cause it to be equal to the VMA modulo
4295 the page size.'' */
4296 /* In other words, something like:
4297
4298 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4299 off_offset = off % bed->maxpagesize;
4300 if (vma_offset < off_offset)
4301 adjustment = vma_offset + bed->maxpagesize - off_offset;
4302 else
4303 adjustment = vma_offset - off_offset;
4304
4305 which can can be collapsed into the expression below. */
4306
4307 static file_ptr
4308 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4309 {
4310 return ((vma - off) % maxpagesize);
4311 }
4312
4313 static void
4314 print_segment_map (const struct elf_segment_map *m)
4315 {
4316 unsigned int j;
4317 const char *pt = get_segment_type (m->p_type);
4318 char buf[32];
4319
4320 if (pt == NULL)
4321 {
4322 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4323 sprintf (buf, "LOPROC+%7.7x",
4324 (unsigned int) (m->p_type - PT_LOPROC));
4325 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4326 sprintf (buf, "LOOS+%7.7x",
4327 (unsigned int) (m->p_type - PT_LOOS));
4328 else
4329 snprintf (buf, sizeof (buf), "%8.8x",
4330 (unsigned int) m->p_type);
4331 pt = buf;
4332 }
4333 fflush (stdout);
4334 fprintf (stderr, "%s:", pt);
4335 for (j = 0; j < m->count; j++)
4336 fprintf (stderr, " %s", m->sections [j]->name);
4337 putc ('\n',stderr);
4338 fflush (stderr);
4339 }
4340
4341 static bfd_boolean
4342 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4343 {
4344 void *buf;
4345 bfd_boolean ret;
4346
4347 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4348 return FALSE;
4349 buf = bfd_zmalloc (len);
4350 if (buf == NULL)
4351 return FALSE;
4352 ret = bfd_bwrite (buf, len, abfd) == len;
4353 free (buf);
4354 return ret;
4355 }
4356
4357 /* Assign file positions to the sections based on the mapping from
4358 sections to segments. This function also sets up some fields in
4359 the file header. */
4360
4361 static bfd_boolean
4362 assign_file_positions_for_load_sections (bfd *abfd,
4363 struct bfd_link_info *link_info)
4364 {
4365 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4366 struct elf_segment_map *m;
4367 Elf_Internal_Phdr *phdrs;
4368 Elf_Internal_Phdr *p;
4369 file_ptr off;
4370 bfd_size_type maxpagesize;
4371 unsigned int alloc;
4372 unsigned int i, j;
4373 bfd_vma header_pad = 0;
4374
4375 if (link_info == NULL
4376 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4377 return FALSE;
4378
4379 alloc = 0;
4380 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4381 {
4382 ++alloc;
4383 if (m->header_size)
4384 header_pad = m->header_size;
4385 }
4386
4387 if (alloc)
4388 {
4389 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4390 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4391 }
4392 else
4393 {
4394 /* PR binutils/12467. */
4395 elf_elfheader (abfd)->e_phoff = 0;
4396 elf_elfheader (abfd)->e_phentsize = 0;
4397 }
4398
4399 elf_elfheader (abfd)->e_phnum = alloc;
4400
4401 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4402 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4403 else
4404 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4405 >= alloc * bed->s->sizeof_phdr);
4406
4407 if (alloc == 0)
4408 {
4409 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4410 return TRUE;
4411 }
4412
4413 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4414 see assign_file_positions_except_relocs, so make sure we have
4415 that amount allocated, with trailing space cleared.
4416 The variable alloc contains the computed need, while elf_tdata
4417 (abfd)->program_header_size contains the size used for the
4418 layout.
4419 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4420 where the layout is forced to according to a larger size in the
4421 last iterations for the testcase ld-elf/header. */
4422 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4423 == 0);
4424 phdrs = (Elf_Internal_Phdr *)
4425 bfd_zalloc2 (abfd,
4426 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4427 sizeof (Elf_Internal_Phdr));
4428 elf_tdata (abfd)->phdr = phdrs;
4429 if (phdrs == NULL)
4430 return FALSE;
4431
4432 maxpagesize = 1;
4433 if ((abfd->flags & D_PAGED) != 0)
4434 maxpagesize = bed->maxpagesize;
4435
4436 off = bed->s->sizeof_ehdr;
4437 off += alloc * bed->s->sizeof_phdr;
4438 if (header_pad < (bfd_vma) off)
4439 header_pad = 0;
4440 else
4441 header_pad -= off;
4442 off += header_pad;
4443
4444 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4445 m != NULL;
4446 m = m->next, p++, j++)
4447 {
4448 asection **secpp;
4449 bfd_vma off_adjust;
4450 bfd_boolean no_contents;
4451
4452 /* If elf_segment_map is not from map_sections_to_segments, the
4453 sections may not be correctly ordered. NOTE: sorting should
4454 not be done to the PT_NOTE section of a corefile, which may
4455 contain several pseudo-sections artificially created by bfd.
4456 Sorting these pseudo-sections breaks things badly. */
4457 if (m->count > 1
4458 && !(elf_elfheader (abfd)->e_type == ET_CORE
4459 && m->p_type == PT_NOTE))
4460 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4461 elf_sort_sections);
4462
4463 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4464 number of sections with contents contributing to both p_filesz
4465 and p_memsz, followed by a number of sections with no contents
4466 that just contribute to p_memsz. In this loop, OFF tracks next
4467 available file offset for PT_LOAD and PT_NOTE segments. */
4468 p->p_type = m->p_type;
4469 p->p_flags = m->p_flags;
4470
4471 if (m->count == 0)
4472 p->p_vaddr = 0;
4473 else
4474 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4475
4476 if (m->p_paddr_valid)
4477 p->p_paddr = m->p_paddr;
4478 else if (m->count == 0)
4479 p->p_paddr = 0;
4480 else
4481 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4482
4483 if (p->p_type == PT_LOAD
4484 && (abfd->flags & D_PAGED) != 0)
4485 {
4486 /* p_align in demand paged PT_LOAD segments effectively stores
4487 the maximum page size. When copying an executable with
4488 objcopy, we set m->p_align from the input file. Use this
4489 value for maxpagesize rather than bed->maxpagesize, which
4490 may be different. Note that we use maxpagesize for PT_TLS
4491 segment alignment later in this function, so we are relying
4492 on at least one PT_LOAD segment appearing before a PT_TLS
4493 segment. */
4494 if (m->p_align_valid)
4495 maxpagesize = m->p_align;
4496
4497 p->p_align = maxpagesize;
4498 }
4499 else if (m->p_align_valid)
4500 p->p_align = m->p_align;
4501 else if (m->count == 0)
4502 p->p_align = 1 << bed->s->log_file_align;
4503 else
4504 p->p_align = 0;
4505
4506 no_contents = FALSE;
4507 off_adjust = 0;
4508 if (p->p_type == PT_LOAD
4509 && m->count > 0)
4510 {
4511 bfd_size_type align;
4512 unsigned int align_power = 0;
4513
4514 if (m->p_align_valid)
4515 align = p->p_align;
4516 else
4517 {
4518 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4519 {
4520 unsigned int secalign;
4521
4522 secalign = bfd_get_section_alignment (abfd, *secpp);
4523 if (secalign > align_power)
4524 align_power = secalign;
4525 }
4526 align = (bfd_size_type) 1 << align_power;
4527 if (align < maxpagesize)
4528 align = maxpagesize;
4529 }
4530
4531 for (i = 0; i < m->count; i++)
4532 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4533 /* If we aren't making room for this section, then
4534 it must be SHT_NOBITS regardless of what we've
4535 set via struct bfd_elf_special_section. */
4536 elf_section_type (m->sections[i]) = SHT_NOBITS;
4537
4538 /* Find out whether this segment contains any loadable
4539 sections. */
4540 no_contents = TRUE;
4541 for (i = 0; i < m->count; i++)
4542 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4543 {
4544 no_contents = FALSE;
4545 break;
4546 }
4547
4548 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4549 off += off_adjust;
4550 if (no_contents)
4551 {
4552 /* We shouldn't need to align the segment on disk since
4553 the segment doesn't need file space, but the gABI
4554 arguably requires the alignment and glibc ld.so
4555 checks it. So to comply with the alignment
4556 requirement but not waste file space, we adjust
4557 p_offset for just this segment. (OFF_ADJUST is
4558 subtracted from OFF later.) This may put p_offset
4559 past the end of file, but that shouldn't matter. */
4560 }
4561 else
4562 off_adjust = 0;
4563 }
4564 /* Make sure the .dynamic section is the first section in the
4565 PT_DYNAMIC segment. */
4566 else if (p->p_type == PT_DYNAMIC
4567 && m->count > 1
4568 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4569 {
4570 _bfd_error_handler
4571 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4572 abfd);
4573 bfd_set_error (bfd_error_bad_value);
4574 return FALSE;
4575 }
4576 /* Set the note section type to SHT_NOTE. */
4577 else if (p->p_type == PT_NOTE)
4578 for (i = 0; i < m->count; i++)
4579 elf_section_type (m->sections[i]) = SHT_NOTE;
4580
4581 p->p_offset = 0;
4582 p->p_filesz = 0;
4583 p->p_memsz = 0;
4584
4585 if (m->includes_filehdr)
4586 {
4587 if (!m->p_flags_valid)
4588 p->p_flags |= PF_R;
4589 p->p_filesz = bed->s->sizeof_ehdr;
4590 p->p_memsz = bed->s->sizeof_ehdr;
4591 if (m->count > 0)
4592 {
4593 if (p->p_vaddr < (bfd_vma) off)
4594 {
4595 (*_bfd_error_handler)
4596 (_("%B: Not enough room for program headers, try linking with -N"),
4597 abfd);
4598 bfd_set_error (bfd_error_bad_value);
4599 return FALSE;
4600 }
4601
4602 p->p_vaddr -= off;
4603 if (!m->p_paddr_valid)
4604 p->p_paddr -= off;
4605 }
4606 }
4607
4608 if (m->includes_phdrs)
4609 {
4610 if (!m->p_flags_valid)
4611 p->p_flags |= PF_R;
4612
4613 if (!m->includes_filehdr)
4614 {
4615 p->p_offset = bed->s->sizeof_ehdr;
4616
4617 if (m->count > 0)
4618 {
4619 p->p_vaddr -= off - p->p_offset;
4620 if (!m->p_paddr_valid)
4621 p->p_paddr -= off - p->p_offset;
4622 }
4623 }
4624
4625 p->p_filesz += alloc * bed->s->sizeof_phdr;
4626 p->p_memsz += alloc * bed->s->sizeof_phdr;
4627 if (m->count)
4628 {
4629 p->p_filesz += header_pad;
4630 p->p_memsz += header_pad;
4631 }
4632 }
4633
4634 if (p->p_type == PT_LOAD
4635 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4636 {
4637 if (!m->includes_filehdr && !m->includes_phdrs)
4638 p->p_offset = off;
4639 else
4640 {
4641 file_ptr adjust;
4642
4643 adjust = off - (p->p_offset + p->p_filesz);
4644 if (!no_contents)
4645 p->p_filesz += adjust;
4646 p->p_memsz += adjust;
4647 }
4648 }
4649
4650 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4651 maps. Set filepos for sections in PT_LOAD segments, and in
4652 core files, for sections in PT_NOTE segments.
4653 assign_file_positions_for_non_load_sections will set filepos
4654 for other sections and update p_filesz for other segments. */
4655 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4656 {
4657 asection *sec;
4658 bfd_size_type align;
4659 Elf_Internal_Shdr *this_hdr;
4660
4661 sec = *secpp;
4662 this_hdr = &elf_section_data (sec)->this_hdr;
4663 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4664
4665 if ((p->p_type == PT_LOAD
4666 || p->p_type == PT_TLS)
4667 && (this_hdr->sh_type != SHT_NOBITS
4668 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4669 && ((this_hdr->sh_flags & SHF_TLS) == 0
4670 || p->p_type == PT_TLS))))
4671 {
4672 bfd_vma p_start = p->p_paddr;
4673 bfd_vma p_end = p_start + p->p_memsz;
4674 bfd_vma s_start = sec->lma;
4675 bfd_vma adjust = s_start - p_end;
4676
4677 if (adjust != 0
4678 && (s_start < p_end
4679 || p_end < p_start))
4680 {
4681 (*_bfd_error_handler)
4682 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4683 (unsigned long) s_start, (unsigned long) p_end);
4684 adjust = 0;
4685 sec->lma = p_end;
4686 }
4687 p->p_memsz += adjust;
4688
4689 if (this_hdr->sh_type != SHT_NOBITS)
4690 {
4691 if (p->p_filesz + adjust < p->p_memsz)
4692 {
4693 /* We have a PROGBITS section following NOBITS ones.
4694 Allocate file space for the NOBITS section(s) and
4695 zero it. */
4696 adjust = p->p_memsz - p->p_filesz;
4697 if (!write_zeros (abfd, off, adjust))
4698 return FALSE;
4699 }
4700 off += adjust;
4701 p->p_filesz += adjust;
4702 }
4703 }
4704
4705 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4706 {
4707 /* The section at i == 0 is the one that actually contains
4708 everything. */
4709 if (i == 0)
4710 {
4711 this_hdr->sh_offset = sec->filepos = off;
4712 off += this_hdr->sh_size;
4713 p->p_filesz = this_hdr->sh_size;
4714 p->p_memsz = 0;
4715 p->p_align = 1;
4716 }
4717 else
4718 {
4719 /* The rest are fake sections that shouldn't be written. */
4720 sec->filepos = 0;
4721 sec->size = 0;
4722 sec->flags = 0;
4723 continue;
4724 }
4725 }
4726 else
4727 {
4728 if (p->p_type == PT_LOAD)
4729 {
4730 this_hdr->sh_offset = sec->filepos = off;
4731 if (this_hdr->sh_type != SHT_NOBITS)
4732 off += this_hdr->sh_size;
4733 }
4734 else if (this_hdr->sh_type == SHT_NOBITS
4735 && (this_hdr->sh_flags & SHF_TLS) != 0
4736 && this_hdr->sh_offset == 0)
4737 {
4738 /* This is a .tbss section that didn't get a PT_LOAD.
4739 (See _bfd_elf_map_sections_to_segments "Create a
4740 final PT_LOAD".) Set sh_offset to the value it
4741 would have if we had created a zero p_filesz and
4742 p_memsz PT_LOAD header for the section. This
4743 also makes the PT_TLS header have the same
4744 p_offset value. */
4745 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4746 off, align);
4747 this_hdr->sh_offset = sec->filepos = off + adjust;
4748 }
4749
4750 if (this_hdr->sh_type != SHT_NOBITS)
4751 {
4752 p->p_filesz += this_hdr->sh_size;
4753 /* A load section without SHF_ALLOC is something like
4754 a note section in a PT_NOTE segment. These take
4755 file space but are not loaded into memory. */
4756 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4757 p->p_memsz += this_hdr->sh_size;
4758 }
4759 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4760 {
4761 if (p->p_type == PT_TLS)
4762 p->p_memsz += this_hdr->sh_size;
4763
4764 /* .tbss is special. It doesn't contribute to p_memsz of
4765 normal segments. */
4766 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4767 p->p_memsz += this_hdr->sh_size;
4768 }
4769
4770 if (align > p->p_align
4771 && !m->p_align_valid
4772 && (p->p_type != PT_LOAD
4773 || (abfd->flags & D_PAGED) == 0))
4774 p->p_align = align;
4775 }
4776
4777 if (!m->p_flags_valid)
4778 {
4779 p->p_flags |= PF_R;
4780 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4781 p->p_flags |= PF_X;
4782 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4783 p->p_flags |= PF_W;
4784 }
4785 }
4786 off -= off_adjust;
4787
4788 /* Check that all sections are in a PT_LOAD segment.
4789 Don't check funky gdb generated core files. */
4790 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4791 {
4792 bfd_boolean check_vma = TRUE;
4793
4794 for (i = 1; i < m->count; i++)
4795 if (m->sections[i]->vma == m->sections[i - 1]->vma
4796 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4797 ->this_hdr), p) != 0
4798 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4799 ->this_hdr), p) != 0)
4800 {
4801 /* Looks like we have overlays packed into the segment. */
4802 check_vma = FALSE;
4803 break;
4804 }
4805
4806 for (i = 0; i < m->count; i++)
4807 {
4808 Elf_Internal_Shdr *this_hdr;
4809 asection *sec;
4810
4811 sec = m->sections[i];
4812 this_hdr = &(elf_section_data(sec)->this_hdr);
4813 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4814 && !ELF_TBSS_SPECIAL (this_hdr, p))
4815 {
4816 (*_bfd_error_handler)
4817 (_("%B: section `%A' can't be allocated in segment %d"),
4818 abfd, sec, j);
4819 print_segment_map (m);
4820 }
4821 }
4822 }
4823 }
4824
4825 elf_tdata (abfd)->next_file_pos = off;
4826 return TRUE;
4827 }
4828
4829 /* Assign file positions for the other sections. */
4830
4831 static bfd_boolean
4832 assign_file_positions_for_non_load_sections (bfd *abfd,
4833 struct bfd_link_info *link_info)
4834 {
4835 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4836 Elf_Internal_Shdr **i_shdrpp;
4837 Elf_Internal_Shdr **hdrpp;
4838 Elf_Internal_Phdr *phdrs;
4839 Elf_Internal_Phdr *p;
4840 struct elf_segment_map *m;
4841 struct elf_segment_map *hdrs_segment;
4842 bfd_vma filehdr_vaddr, filehdr_paddr;
4843 bfd_vma phdrs_vaddr, phdrs_paddr;
4844 file_ptr off;
4845 unsigned int num_sec;
4846 unsigned int i;
4847 unsigned int count;
4848
4849 i_shdrpp = elf_elfsections (abfd);
4850 num_sec = elf_numsections (abfd);
4851 off = elf_tdata (abfd)->next_file_pos;
4852 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4853 {
4854 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4855 Elf_Internal_Shdr *hdr;
4856
4857 hdr = *hdrpp;
4858 if (hdr->bfd_section != NULL
4859 && (hdr->bfd_section->filepos != 0
4860 || (hdr->sh_type == SHT_NOBITS
4861 && hdr->contents == NULL)))
4862 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4863 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4864 {
4865 if (hdr->sh_size != 0)
4866 (*_bfd_error_handler)
4867 (_("%B: warning: allocated section `%s' not in segment"),
4868 abfd,
4869 (hdr->bfd_section == NULL
4870 ? "*unknown*"
4871 : hdr->bfd_section->name));
4872 /* We don't need to page align empty sections. */
4873 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4874 off += vma_page_aligned_bias (hdr->sh_addr, off,
4875 bed->maxpagesize);
4876 else
4877 off += vma_page_aligned_bias (hdr->sh_addr, off,
4878 hdr->sh_addralign);
4879 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4880 FALSE);
4881 }
4882 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4883 && hdr->bfd_section == NULL)
4884 || hdr == i_shdrpp[tdata->symtab_section]
4885 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4886 || hdr == i_shdrpp[tdata->strtab_section])
4887 hdr->sh_offset = -1;
4888 else
4889 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4890 }
4891
4892 /* Now that we have set the section file positions, we can set up
4893 the file positions for the non PT_LOAD segments. */
4894 count = 0;
4895 filehdr_vaddr = 0;
4896 filehdr_paddr = 0;
4897 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4898 phdrs_paddr = 0;
4899 hdrs_segment = NULL;
4900 phdrs = elf_tdata (abfd)->phdr;
4901 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4902 m != NULL;
4903 m = m->next, p++)
4904 {
4905 ++count;
4906 if (p->p_type != PT_LOAD)
4907 continue;
4908
4909 if (m->includes_filehdr)
4910 {
4911 filehdr_vaddr = p->p_vaddr;
4912 filehdr_paddr = p->p_paddr;
4913 }
4914 if (m->includes_phdrs)
4915 {
4916 phdrs_vaddr = p->p_vaddr;
4917 phdrs_paddr = p->p_paddr;
4918 if (m->includes_filehdr)
4919 {
4920 hdrs_segment = m;
4921 phdrs_vaddr += bed->s->sizeof_ehdr;
4922 phdrs_paddr += bed->s->sizeof_ehdr;
4923 }
4924 }
4925 }
4926
4927 if (hdrs_segment != NULL && link_info != NULL)
4928 {
4929 /* There is a segment that contains both the file headers and the
4930 program headers, so provide a symbol __ehdr_start pointing there.
4931 A program can use this to examine itself robustly. */
4932
4933 struct elf_link_hash_entry *hash
4934 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4935 FALSE, FALSE, TRUE);
4936 /* If the symbol was referenced and not defined, define it. */
4937 if (hash != NULL
4938 && (hash->root.type == bfd_link_hash_new
4939 || hash->root.type == bfd_link_hash_undefined
4940 || hash->root.type == bfd_link_hash_undefweak
4941 || hash->root.type == bfd_link_hash_common))
4942 {
4943 asection *s = NULL;
4944 if (hdrs_segment->count != 0)
4945 /* The segment contains sections, so use the first one. */
4946 s = hdrs_segment->sections[0];
4947 else
4948 /* Use the first (i.e. lowest-addressed) section in any segment. */
4949 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4950 if (m->count != 0)
4951 {
4952 s = m->sections[0];
4953 break;
4954 }
4955
4956 if (s != NULL)
4957 {
4958 hash->root.u.def.value = filehdr_vaddr - s->vma;
4959 hash->root.u.def.section = s;
4960 }
4961 else
4962 {
4963 hash->root.u.def.value = filehdr_vaddr;
4964 hash->root.u.def.section = bfd_abs_section_ptr;
4965 }
4966
4967 hash->root.type = bfd_link_hash_defined;
4968 hash->def_regular = 1;
4969 hash->non_elf = 0;
4970 }
4971 }
4972
4973 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4974 m != NULL;
4975 m = m->next, p++)
4976 {
4977 if (p->p_type == PT_GNU_RELRO)
4978 {
4979 const Elf_Internal_Phdr *lp;
4980 struct elf_segment_map *lm;
4981
4982 if (link_info != NULL)
4983 {
4984 /* During linking the range of the RELRO segment is passed
4985 in link_info. */
4986 for (lm = elf_tdata (abfd)->segment_map, lp = phdrs;
4987 lm != NULL;
4988 lm = lm->next, lp++)
4989 {
4990 if (lp->p_type == PT_LOAD
4991 && lp->p_vaddr < link_info->relro_end
4992 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end
4993 && lm->count != 0
4994 && lm->sections[0]->vma >= link_info->relro_start)
4995 break;
4996 }
4997
4998 /* PR ld/14207. If the RELRO segment doesn't fit in the
4999 LOAD segment, it should be removed. */
5000 BFD_ASSERT (lm != NULL);
5001 }
5002 else
5003 {
5004 /* Otherwise we are copying an executable or shared
5005 library, but we need to use the same linker logic. */
5006 for (lp = phdrs; lp < phdrs + count; ++lp)
5007 {
5008 if (lp->p_type == PT_LOAD
5009 && lp->p_paddr == p->p_paddr)
5010 break;
5011 }
5012 }
5013
5014 if (lp < phdrs + count)
5015 {
5016 p->p_vaddr = lp->p_vaddr;
5017 p->p_paddr = lp->p_paddr;
5018 p->p_offset = lp->p_offset;
5019 if (link_info != NULL)
5020 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5021 else if (m->p_size_valid)
5022 p->p_filesz = m->p_size;
5023 else
5024 abort ();
5025 p->p_memsz = p->p_filesz;
5026 /* Preserve the alignment and flags if they are valid. The
5027 gold linker generates RW/4 for the PT_GNU_RELRO section.
5028 It is better for objcopy/strip to honor these attributes
5029 otherwise gdb will choke when using separate debug files.
5030 */
5031 if (!m->p_align_valid)
5032 p->p_align = 1;
5033 if (!m->p_flags_valid)
5034 p->p_flags = (lp->p_flags & ~PF_W);
5035 }
5036 else
5037 {
5038 memset (p, 0, sizeof *p);
5039 p->p_type = PT_NULL;
5040 }
5041 }
5042 else if (m->count != 0)
5043 {
5044 if (p->p_type != PT_LOAD
5045 && (p->p_type != PT_NOTE
5046 || bfd_get_format (abfd) != bfd_core))
5047 {
5048 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5049
5050 p->p_filesz = 0;
5051 p->p_offset = m->sections[0]->filepos;
5052 for (i = m->count; i-- != 0;)
5053 {
5054 asection *sect = m->sections[i];
5055 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5056 if (hdr->sh_type != SHT_NOBITS)
5057 {
5058 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5059 + hdr->sh_size);
5060 break;
5061 }
5062 }
5063 }
5064 }
5065 else if (m->includes_filehdr)
5066 {
5067 p->p_vaddr = filehdr_vaddr;
5068 if (! m->p_paddr_valid)
5069 p->p_paddr = filehdr_paddr;
5070 }
5071 else if (m->includes_phdrs)
5072 {
5073 p->p_vaddr = phdrs_vaddr;
5074 if (! m->p_paddr_valid)
5075 p->p_paddr = phdrs_paddr;
5076 }
5077 }
5078
5079 elf_tdata (abfd)->next_file_pos = off;
5080
5081 return TRUE;
5082 }
5083
5084 /* Work out the file positions of all the sections. This is called by
5085 _bfd_elf_compute_section_file_positions. All the section sizes and
5086 VMAs must be known before this is called.
5087
5088 Reloc sections come in two flavours: Those processed specially as
5089 "side-channel" data attached to a section to which they apply, and
5090 those that bfd doesn't process as relocations. The latter sort are
5091 stored in a normal bfd section by bfd_section_from_shdr. We don't
5092 consider the former sort here, unless they form part of the loadable
5093 image. Reloc sections not assigned here will be handled later by
5094 assign_file_positions_for_relocs.
5095
5096 We also don't set the positions of the .symtab and .strtab here. */
5097
5098 static bfd_boolean
5099 assign_file_positions_except_relocs (bfd *abfd,
5100 struct bfd_link_info *link_info)
5101 {
5102 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5103 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5104 file_ptr off;
5105 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5106
5107 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5108 && bfd_get_format (abfd) != bfd_core)
5109 {
5110 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5111 unsigned int num_sec = elf_numsections (abfd);
5112 Elf_Internal_Shdr **hdrpp;
5113 unsigned int i;
5114
5115 /* Start after the ELF header. */
5116 off = i_ehdrp->e_ehsize;
5117
5118 /* We are not creating an executable, which means that we are
5119 not creating a program header, and that the actual order of
5120 the sections in the file is unimportant. */
5121 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5122 {
5123 Elf_Internal_Shdr *hdr;
5124
5125 hdr = *hdrpp;
5126 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5127 && hdr->bfd_section == NULL)
5128 || i == tdata->symtab_section
5129 || i == tdata->symtab_shndx_section
5130 || i == tdata->strtab_section)
5131 {
5132 hdr->sh_offset = -1;
5133 }
5134 else
5135 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5136 }
5137 }
5138 else
5139 {
5140 unsigned int alloc;
5141
5142 /* Assign file positions for the loaded sections based on the
5143 assignment of sections to segments. */
5144 if (!assign_file_positions_for_load_sections (abfd, link_info))
5145 return FALSE;
5146
5147 /* And for non-load sections. */
5148 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5149 return FALSE;
5150
5151 if (bed->elf_backend_modify_program_headers != NULL)
5152 {
5153 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5154 return FALSE;
5155 }
5156
5157 /* Write out the program headers. */
5158 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5159 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5160 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5161 return FALSE;
5162
5163 off = tdata->next_file_pos;
5164 }
5165
5166 /* Place the section headers. */
5167 off = align_file_position (off, 1 << bed->s->log_file_align);
5168 i_ehdrp->e_shoff = off;
5169 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5170
5171 tdata->next_file_pos = off;
5172
5173 return TRUE;
5174 }
5175
5176 static bfd_boolean
5177 prep_headers (bfd *abfd)
5178 {
5179 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5180 struct elf_strtab_hash *shstrtab;
5181 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5182
5183 i_ehdrp = elf_elfheader (abfd);
5184
5185 shstrtab = _bfd_elf_strtab_init ();
5186 if (shstrtab == NULL)
5187 return FALSE;
5188
5189 elf_shstrtab (abfd) = shstrtab;
5190
5191 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5192 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5193 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5194 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5195
5196 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5197 i_ehdrp->e_ident[EI_DATA] =
5198 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5199 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5200
5201 if ((abfd->flags & DYNAMIC) != 0)
5202 i_ehdrp->e_type = ET_DYN;
5203 else if ((abfd->flags & EXEC_P) != 0)
5204 i_ehdrp->e_type = ET_EXEC;
5205 else if (bfd_get_format (abfd) == bfd_core)
5206 i_ehdrp->e_type = ET_CORE;
5207 else
5208 i_ehdrp->e_type = ET_REL;
5209
5210 switch (bfd_get_arch (abfd))
5211 {
5212 case bfd_arch_unknown:
5213 i_ehdrp->e_machine = EM_NONE;
5214 break;
5215
5216 /* There used to be a long list of cases here, each one setting
5217 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5218 in the corresponding bfd definition. To avoid duplication,
5219 the switch was removed. Machines that need special handling
5220 can generally do it in elf_backend_final_write_processing(),
5221 unless they need the information earlier than the final write.
5222 Such need can generally be supplied by replacing the tests for
5223 e_machine with the conditions used to determine it. */
5224 default:
5225 i_ehdrp->e_machine = bed->elf_machine_code;
5226 }
5227
5228 i_ehdrp->e_version = bed->s->ev_current;
5229 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5230
5231 /* No program header, for now. */
5232 i_ehdrp->e_phoff = 0;
5233 i_ehdrp->e_phentsize = 0;
5234 i_ehdrp->e_phnum = 0;
5235
5236 /* Each bfd section is section header entry. */
5237 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5238 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5239
5240 /* If we're building an executable, we'll need a program header table. */
5241 if (abfd->flags & EXEC_P)
5242 /* It all happens later. */
5243 ;
5244 else
5245 {
5246 i_ehdrp->e_phentsize = 0;
5247 i_ehdrp->e_phoff = 0;
5248 }
5249
5250 elf_tdata (abfd)->symtab_hdr.sh_name =
5251 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5252 elf_tdata (abfd)->strtab_hdr.sh_name =
5253 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5254 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5255 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5256 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5257 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5258 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5259 return FALSE;
5260
5261 return TRUE;
5262 }
5263
5264 /* Assign file positions for all the reloc sections which are not part
5265 of the loadable file image. */
5266
5267 void
5268 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5269 {
5270 file_ptr off;
5271 unsigned int i, num_sec;
5272 Elf_Internal_Shdr **shdrpp;
5273
5274 off = elf_tdata (abfd)->next_file_pos;
5275
5276 num_sec = elf_numsections (abfd);
5277 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5278 {
5279 Elf_Internal_Shdr *shdrp;
5280
5281 shdrp = *shdrpp;
5282 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5283 && shdrp->sh_offset == -1)
5284 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5285 }
5286
5287 elf_tdata (abfd)->next_file_pos = off;
5288 }
5289
5290 bfd_boolean
5291 _bfd_elf_write_object_contents (bfd *abfd)
5292 {
5293 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5294 Elf_Internal_Shdr **i_shdrp;
5295 bfd_boolean failed;
5296 unsigned int count, num_sec;
5297
5298 if (! abfd->output_has_begun
5299 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5300 return FALSE;
5301
5302 i_shdrp = elf_elfsections (abfd);
5303
5304 failed = FALSE;
5305 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5306 if (failed)
5307 return FALSE;
5308
5309 _bfd_elf_assign_file_positions_for_relocs (abfd);
5310
5311 /* After writing the headers, we need to write the sections too... */
5312 num_sec = elf_numsections (abfd);
5313 for (count = 1; count < num_sec; count++)
5314 {
5315 if (bed->elf_backend_section_processing)
5316 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5317 if (i_shdrp[count]->contents)
5318 {
5319 bfd_size_type amt = i_shdrp[count]->sh_size;
5320
5321 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5322 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5323 return FALSE;
5324 }
5325 }
5326
5327 /* Write out the section header names. */
5328 if (elf_shstrtab (abfd) != NULL
5329 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5330 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5331 return FALSE;
5332
5333 if (bed->elf_backend_final_write_processing)
5334 (*bed->elf_backend_final_write_processing) (abfd,
5335 elf_tdata (abfd)->linker);
5336
5337 if (!bed->s->write_shdrs_and_ehdr (abfd))
5338 return FALSE;
5339
5340 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5341 if (elf_tdata (abfd)->after_write_object_contents)
5342 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5343
5344 return TRUE;
5345 }
5346
5347 bfd_boolean
5348 _bfd_elf_write_corefile_contents (bfd *abfd)
5349 {
5350 /* Hopefully this can be done just like an object file. */
5351 return _bfd_elf_write_object_contents (abfd);
5352 }
5353
5354 /* Given a section, search the header to find them. */
5355
5356 unsigned int
5357 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5358 {
5359 const struct elf_backend_data *bed;
5360 unsigned int sec_index;
5361
5362 if (elf_section_data (asect) != NULL
5363 && elf_section_data (asect)->this_idx != 0)
5364 return elf_section_data (asect)->this_idx;
5365
5366 if (bfd_is_abs_section (asect))
5367 sec_index = SHN_ABS;
5368 else if (bfd_is_com_section (asect))
5369 sec_index = SHN_COMMON;
5370 else if (bfd_is_und_section (asect))
5371 sec_index = SHN_UNDEF;
5372 else
5373 sec_index = SHN_BAD;
5374
5375 bed = get_elf_backend_data (abfd);
5376 if (bed->elf_backend_section_from_bfd_section)
5377 {
5378 int retval = sec_index;
5379
5380 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5381 return retval;
5382 }
5383
5384 if (sec_index == SHN_BAD)
5385 bfd_set_error (bfd_error_nonrepresentable_section);
5386
5387 return sec_index;
5388 }
5389
5390 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5391 on error. */
5392
5393 int
5394 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5395 {
5396 asymbol *asym_ptr = *asym_ptr_ptr;
5397 int idx;
5398 flagword flags = asym_ptr->flags;
5399
5400 /* When gas creates relocations against local labels, it creates its
5401 own symbol for the section, but does put the symbol into the
5402 symbol chain, so udata is 0. When the linker is generating
5403 relocatable output, this section symbol may be for one of the
5404 input sections rather than the output section. */
5405 if (asym_ptr->udata.i == 0
5406 && (flags & BSF_SECTION_SYM)
5407 && asym_ptr->section)
5408 {
5409 asection *sec;
5410 int indx;
5411
5412 sec = asym_ptr->section;
5413 if (sec->owner != abfd && sec->output_section != NULL)
5414 sec = sec->output_section;
5415 if (sec->owner == abfd
5416 && (indx = sec->index) < elf_num_section_syms (abfd)
5417 && elf_section_syms (abfd)[indx] != NULL)
5418 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5419 }
5420
5421 idx = asym_ptr->udata.i;
5422
5423 if (idx == 0)
5424 {
5425 /* This case can occur when using --strip-symbol on a symbol
5426 which is used in a relocation entry. */
5427 (*_bfd_error_handler)
5428 (_("%B: symbol `%s' required but not present"),
5429 abfd, bfd_asymbol_name (asym_ptr));
5430 bfd_set_error (bfd_error_no_symbols);
5431 return -1;
5432 }
5433
5434 #if DEBUG & 4
5435 {
5436 fprintf (stderr,
5437 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5438 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5439 fflush (stderr);
5440 }
5441 #endif
5442
5443 return idx;
5444 }
5445
5446 /* Rewrite program header information. */
5447
5448 static bfd_boolean
5449 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5450 {
5451 Elf_Internal_Ehdr *iehdr;
5452 struct elf_segment_map *map;
5453 struct elf_segment_map *map_first;
5454 struct elf_segment_map **pointer_to_map;
5455 Elf_Internal_Phdr *segment;
5456 asection *section;
5457 unsigned int i;
5458 unsigned int num_segments;
5459 bfd_boolean phdr_included = FALSE;
5460 bfd_boolean p_paddr_valid;
5461 bfd_vma maxpagesize;
5462 struct elf_segment_map *phdr_adjust_seg = NULL;
5463 unsigned int phdr_adjust_num = 0;
5464 const struct elf_backend_data *bed;
5465
5466 bed = get_elf_backend_data (ibfd);
5467 iehdr = elf_elfheader (ibfd);
5468
5469 map_first = NULL;
5470 pointer_to_map = &map_first;
5471
5472 num_segments = elf_elfheader (ibfd)->e_phnum;
5473 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5474
5475 /* Returns the end address of the segment + 1. */
5476 #define SEGMENT_END(segment, start) \
5477 (start + (segment->p_memsz > segment->p_filesz \
5478 ? segment->p_memsz : segment->p_filesz))
5479
5480 #define SECTION_SIZE(section, segment) \
5481 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5482 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5483 ? section->size : 0)
5484
5485 /* Returns TRUE if the given section is contained within
5486 the given segment. VMA addresses are compared. */
5487 #define IS_CONTAINED_BY_VMA(section, segment) \
5488 (section->vma >= segment->p_vaddr \
5489 && (section->vma + SECTION_SIZE (section, segment) \
5490 <= (SEGMENT_END (segment, segment->p_vaddr))))
5491
5492 /* Returns TRUE if the given section is contained within
5493 the given segment. LMA addresses are compared. */
5494 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5495 (section->lma >= base \
5496 && (section->lma + SECTION_SIZE (section, segment) \
5497 <= SEGMENT_END (segment, base)))
5498
5499 /* Handle PT_NOTE segment. */
5500 #define IS_NOTE(p, s) \
5501 (p->p_type == PT_NOTE \
5502 && elf_section_type (s) == SHT_NOTE \
5503 && (bfd_vma) s->filepos >= p->p_offset \
5504 && ((bfd_vma) s->filepos + s->size \
5505 <= p->p_offset + p->p_filesz))
5506
5507 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5508 etc. */
5509 #define IS_COREFILE_NOTE(p, s) \
5510 (IS_NOTE (p, s) \
5511 && bfd_get_format (ibfd) == bfd_core \
5512 && s->vma == 0 \
5513 && s->lma == 0)
5514
5515 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5516 linker, which generates a PT_INTERP section with p_vaddr and
5517 p_memsz set to 0. */
5518 #define IS_SOLARIS_PT_INTERP(p, s) \
5519 (p->p_vaddr == 0 \
5520 && p->p_paddr == 0 \
5521 && p->p_memsz == 0 \
5522 && p->p_filesz > 0 \
5523 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5524 && s->size > 0 \
5525 && (bfd_vma) s->filepos >= p->p_offset \
5526 && ((bfd_vma) s->filepos + s->size \
5527 <= p->p_offset + p->p_filesz))
5528
5529 /* Decide if the given section should be included in the given segment.
5530 A section will be included if:
5531 1. It is within the address space of the segment -- we use the LMA
5532 if that is set for the segment and the VMA otherwise,
5533 2. It is an allocated section or a NOTE section in a PT_NOTE
5534 segment.
5535 3. There is an output section associated with it,
5536 4. The section has not already been allocated to a previous segment.
5537 5. PT_GNU_STACK segments do not include any sections.
5538 6. PT_TLS segment includes only SHF_TLS sections.
5539 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5540 8. PT_DYNAMIC should not contain empty sections at the beginning
5541 (with the possible exception of .dynamic). */
5542 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5543 ((((segment->p_paddr \
5544 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5545 : IS_CONTAINED_BY_VMA (section, segment)) \
5546 && (section->flags & SEC_ALLOC) != 0) \
5547 || IS_NOTE (segment, section)) \
5548 && segment->p_type != PT_GNU_STACK \
5549 && (segment->p_type != PT_TLS \
5550 || (section->flags & SEC_THREAD_LOCAL)) \
5551 && (segment->p_type == PT_LOAD \
5552 || segment->p_type == PT_TLS \
5553 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5554 && (segment->p_type != PT_DYNAMIC \
5555 || SECTION_SIZE (section, segment) > 0 \
5556 || (segment->p_paddr \
5557 ? segment->p_paddr != section->lma \
5558 : segment->p_vaddr != section->vma) \
5559 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5560 == 0)) \
5561 && !section->segment_mark)
5562
5563 /* If the output section of a section in the input segment is NULL,
5564 it is removed from the corresponding output segment. */
5565 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5566 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5567 && section->output_section != NULL)
5568
5569 /* Returns TRUE iff seg1 starts after the end of seg2. */
5570 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5571 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5572
5573 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5574 their VMA address ranges and their LMA address ranges overlap.
5575 It is possible to have overlapping VMA ranges without overlapping LMA
5576 ranges. RedBoot images for example can have both .data and .bss mapped
5577 to the same VMA range, but with the .data section mapped to a different
5578 LMA. */
5579 #define SEGMENT_OVERLAPS(seg1, seg2) \
5580 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5581 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5582 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5583 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5584
5585 /* Initialise the segment mark field. */
5586 for (section = ibfd->sections; section != NULL; section = section->next)
5587 section->segment_mark = FALSE;
5588
5589 /* The Solaris linker creates program headers in which all the
5590 p_paddr fields are zero. When we try to objcopy or strip such a
5591 file, we get confused. Check for this case, and if we find it
5592 don't set the p_paddr_valid fields. */
5593 p_paddr_valid = FALSE;
5594 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5595 i < num_segments;
5596 i++, segment++)
5597 if (segment->p_paddr != 0)
5598 {
5599 p_paddr_valid = TRUE;
5600 break;
5601 }
5602
5603 /* Scan through the segments specified in the program header
5604 of the input BFD. For this first scan we look for overlaps
5605 in the loadable segments. These can be created by weird
5606 parameters to objcopy. Also, fix some solaris weirdness. */
5607 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5608 i < num_segments;
5609 i++, segment++)
5610 {
5611 unsigned int j;
5612 Elf_Internal_Phdr *segment2;
5613
5614 if (segment->p_type == PT_INTERP)
5615 for (section = ibfd->sections; section; section = section->next)
5616 if (IS_SOLARIS_PT_INTERP (segment, section))
5617 {
5618 /* Mininal change so that the normal section to segment
5619 assignment code will work. */
5620 segment->p_vaddr = section->vma;
5621 break;
5622 }
5623
5624 if (segment->p_type != PT_LOAD)
5625 {
5626 /* Remove PT_GNU_RELRO segment. */
5627 if (segment->p_type == PT_GNU_RELRO)
5628 segment->p_type = PT_NULL;
5629 continue;
5630 }
5631
5632 /* Determine if this segment overlaps any previous segments. */
5633 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5634 {
5635 bfd_signed_vma extra_length;
5636
5637 if (segment2->p_type != PT_LOAD
5638 || !SEGMENT_OVERLAPS (segment, segment2))
5639 continue;
5640
5641 /* Merge the two segments together. */
5642 if (segment2->p_vaddr < segment->p_vaddr)
5643 {
5644 /* Extend SEGMENT2 to include SEGMENT and then delete
5645 SEGMENT. */
5646 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5647 - SEGMENT_END (segment2, segment2->p_vaddr));
5648
5649 if (extra_length > 0)
5650 {
5651 segment2->p_memsz += extra_length;
5652 segment2->p_filesz += extra_length;
5653 }
5654
5655 segment->p_type = PT_NULL;
5656
5657 /* Since we have deleted P we must restart the outer loop. */
5658 i = 0;
5659 segment = elf_tdata (ibfd)->phdr;
5660 break;
5661 }
5662 else
5663 {
5664 /* Extend SEGMENT to include SEGMENT2 and then delete
5665 SEGMENT2. */
5666 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5667 - SEGMENT_END (segment, segment->p_vaddr));
5668
5669 if (extra_length > 0)
5670 {
5671 segment->p_memsz += extra_length;
5672 segment->p_filesz += extra_length;
5673 }
5674
5675 segment2->p_type = PT_NULL;
5676 }
5677 }
5678 }
5679
5680 /* The second scan attempts to assign sections to segments. */
5681 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5682 i < num_segments;
5683 i++, segment++)
5684 {
5685 unsigned int section_count;
5686 asection **sections;
5687 asection *output_section;
5688 unsigned int isec;
5689 bfd_vma matching_lma;
5690 bfd_vma suggested_lma;
5691 unsigned int j;
5692 bfd_size_type amt;
5693 asection *first_section;
5694 bfd_boolean first_matching_lma;
5695 bfd_boolean first_suggested_lma;
5696
5697 if (segment->p_type == PT_NULL)
5698 continue;
5699
5700 first_section = NULL;
5701 /* Compute how many sections might be placed into this segment. */
5702 for (section = ibfd->sections, section_count = 0;
5703 section != NULL;
5704 section = section->next)
5705 {
5706 /* Find the first section in the input segment, which may be
5707 removed from the corresponding output segment. */
5708 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5709 {
5710 if (first_section == NULL)
5711 first_section = section;
5712 if (section->output_section != NULL)
5713 ++section_count;
5714 }
5715 }
5716
5717 /* Allocate a segment map big enough to contain
5718 all of the sections we have selected. */
5719 amt = sizeof (struct elf_segment_map);
5720 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5721 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5722 if (map == NULL)
5723 return FALSE;
5724
5725 /* Initialise the fields of the segment map. Default to
5726 using the physical address of the segment in the input BFD. */
5727 map->next = NULL;
5728 map->p_type = segment->p_type;
5729 map->p_flags = segment->p_flags;
5730 map->p_flags_valid = 1;
5731
5732 /* If the first section in the input segment is removed, there is
5733 no need to preserve segment physical address in the corresponding
5734 output segment. */
5735 if (!first_section || first_section->output_section != NULL)
5736 {
5737 map->p_paddr = segment->p_paddr;
5738 map->p_paddr_valid = p_paddr_valid;
5739 }
5740
5741 /* Determine if this segment contains the ELF file header
5742 and if it contains the program headers themselves. */
5743 map->includes_filehdr = (segment->p_offset == 0
5744 && segment->p_filesz >= iehdr->e_ehsize);
5745 map->includes_phdrs = 0;
5746
5747 if (!phdr_included || segment->p_type != PT_LOAD)
5748 {
5749 map->includes_phdrs =
5750 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5751 && (segment->p_offset + segment->p_filesz
5752 >= ((bfd_vma) iehdr->e_phoff
5753 + iehdr->e_phnum * iehdr->e_phentsize)));
5754
5755 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5756 phdr_included = TRUE;
5757 }
5758
5759 if (section_count == 0)
5760 {
5761 /* Special segments, such as the PT_PHDR segment, may contain
5762 no sections, but ordinary, loadable segments should contain
5763 something. They are allowed by the ELF spec however, so only
5764 a warning is produced. */
5765 if (segment->p_type == PT_LOAD)
5766 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5767 " detected, is this intentional ?\n"),
5768 ibfd);
5769
5770 map->count = 0;
5771 *pointer_to_map = map;
5772 pointer_to_map = &map->next;
5773
5774 continue;
5775 }
5776
5777 /* Now scan the sections in the input BFD again and attempt
5778 to add their corresponding output sections to the segment map.
5779 The problem here is how to handle an output section which has
5780 been moved (ie had its LMA changed). There are four possibilities:
5781
5782 1. None of the sections have been moved.
5783 In this case we can continue to use the segment LMA from the
5784 input BFD.
5785
5786 2. All of the sections have been moved by the same amount.
5787 In this case we can change the segment's LMA to match the LMA
5788 of the first section.
5789
5790 3. Some of the sections have been moved, others have not.
5791 In this case those sections which have not been moved can be
5792 placed in the current segment which will have to have its size,
5793 and possibly its LMA changed, and a new segment or segments will
5794 have to be created to contain the other sections.
5795
5796 4. The sections have been moved, but not by the same amount.
5797 In this case we can change the segment's LMA to match the LMA
5798 of the first section and we will have to create a new segment
5799 or segments to contain the other sections.
5800
5801 In order to save time, we allocate an array to hold the section
5802 pointers that we are interested in. As these sections get assigned
5803 to a segment, they are removed from this array. */
5804
5805 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5806 if (sections == NULL)
5807 return FALSE;
5808
5809 /* Step One: Scan for segment vs section LMA conflicts.
5810 Also add the sections to the section array allocated above.
5811 Also add the sections to the current segment. In the common
5812 case, where the sections have not been moved, this means that
5813 we have completely filled the segment, and there is nothing
5814 more to do. */
5815 isec = 0;
5816 matching_lma = 0;
5817 suggested_lma = 0;
5818 first_matching_lma = TRUE;
5819 first_suggested_lma = TRUE;
5820
5821 for (section = ibfd->sections;
5822 section != NULL;
5823 section = section->next)
5824 if (section == first_section)
5825 break;
5826
5827 for (j = 0; section != NULL; section = section->next)
5828 {
5829 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5830 {
5831 output_section = section->output_section;
5832
5833 sections[j++] = section;
5834
5835 /* The Solaris native linker always sets p_paddr to 0.
5836 We try to catch that case here, and set it to the
5837 correct value. Note - some backends require that
5838 p_paddr be left as zero. */
5839 if (!p_paddr_valid
5840 && segment->p_vaddr != 0
5841 && !bed->want_p_paddr_set_to_zero
5842 && isec == 0
5843 && output_section->lma != 0
5844 && output_section->vma == (segment->p_vaddr
5845 + (map->includes_filehdr
5846 ? iehdr->e_ehsize
5847 : 0)
5848 + (map->includes_phdrs
5849 ? (iehdr->e_phnum
5850 * iehdr->e_phentsize)
5851 : 0)))
5852 map->p_paddr = segment->p_vaddr;
5853
5854 /* Match up the physical address of the segment with the
5855 LMA address of the output section. */
5856 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5857 || IS_COREFILE_NOTE (segment, section)
5858 || (bed->want_p_paddr_set_to_zero
5859 && IS_CONTAINED_BY_VMA (output_section, segment)))
5860 {
5861 if (first_matching_lma || output_section->lma < matching_lma)
5862 {
5863 matching_lma = output_section->lma;
5864 first_matching_lma = FALSE;
5865 }
5866
5867 /* We assume that if the section fits within the segment
5868 then it does not overlap any other section within that
5869 segment. */
5870 map->sections[isec++] = output_section;
5871 }
5872 else if (first_suggested_lma)
5873 {
5874 suggested_lma = output_section->lma;
5875 first_suggested_lma = FALSE;
5876 }
5877
5878 if (j == section_count)
5879 break;
5880 }
5881 }
5882
5883 BFD_ASSERT (j == section_count);
5884
5885 /* Step Two: Adjust the physical address of the current segment,
5886 if necessary. */
5887 if (isec == section_count)
5888 {
5889 /* All of the sections fitted within the segment as currently
5890 specified. This is the default case. Add the segment to
5891 the list of built segments and carry on to process the next
5892 program header in the input BFD. */
5893 map->count = section_count;
5894 *pointer_to_map = map;
5895 pointer_to_map = &map->next;
5896
5897 if (p_paddr_valid
5898 && !bed->want_p_paddr_set_to_zero
5899 && matching_lma != map->p_paddr
5900 && !map->includes_filehdr
5901 && !map->includes_phdrs)
5902 /* There is some padding before the first section in the
5903 segment. So, we must account for that in the output
5904 segment's vma. */
5905 map->p_vaddr_offset = matching_lma - map->p_paddr;
5906
5907 free (sections);
5908 continue;
5909 }
5910 else
5911 {
5912 if (!first_matching_lma)
5913 {
5914 /* At least one section fits inside the current segment.
5915 Keep it, but modify its physical address to match the
5916 LMA of the first section that fitted. */
5917 map->p_paddr = matching_lma;
5918 }
5919 else
5920 {
5921 /* None of the sections fitted inside the current segment.
5922 Change the current segment's physical address to match
5923 the LMA of the first section. */
5924 map->p_paddr = suggested_lma;
5925 }
5926
5927 /* Offset the segment physical address from the lma
5928 to allow for space taken up by elf headers. */
5929 if (map->includes_filehdr)
5930 {
5931 if (map->p_paddr >= iehdr->e_ehsize)
5932 map->p_paddr -= iehdr->e_ehsize;
5933 else
5934 {
5935 map->includes_filehdr = FALSE;
5936 map->includes_phdrs = FALSE;
5937 }
5938 }
5939
5940 if (map->includes_phdrs)
5941 {
5942 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5943 {
5944 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5945
5946 /* iehdr->e_phnum is just an estimate of the number
5947 of program headers that we will need. Make a note
5948 here of the number we used and the segment we chose
5949 to hold these headers, so that we can adjust the
5950 offset when we know the correct value. */
5951 phdr_adjust_num = iehdr->e_phnum;
5952 phdr_adjust_seg = map;
5953 }
5954 else
5955 map->includes_phdrs = FALSE;
5956 }
5957 }
5958
5959 /* Step Three: Loop over the sections again, this time assigning
5960 those that fit to the current segment and removing them from the
5961 sections array; but making sure not to leave large gaps. Once all
5962 possible sections have been assigned to the current segment it is
5963 added to the list of built segments and if sections still remain
5964 to be assigned, a new segment is constructed before repeating
5965 the loop. */
5966 isec = 0;
5967 do
5968 {
5969 map->count = 0;
5970 suggested_lma = 0;
5971 first_suggested_lma = TRUE;
5972
5973 /* Fill the current segment with sections that fit. */
5974 for (j = 0; j < section_count; j++)
5975 {
5976 section = sections[j];
5977
5978 if (section == NULL)
5979 continue;
5980
5981 output_section = section->output_section;
5982
5983 BFD_ASSERT (output_section != NULL);
5984
5985 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5986 || IS_COREFILE_NOTE (segment, section))
5987 {
5988 if (map->count == 0)
5989 {
5990 /* If the first section in a segment does not start at
5991 the beginning of the segment, then something is
5992 wrong. */
5993 if (output_section->lma
5994 != (map->p_paddr
5995 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5996 + (map->includes_phdrs
5997 ? iehdr->e_phnum * iehdr->e_phentsize
5998 : 0)))
5999 abort ();
6000 }
6001 else
6002 {
6003 asection *prev_sec;
6004
6005 prev_sec = map->sections[map->count - 1];
6006
6007 /* If the gap between the end of the previous section
6008 and the start of this section is more than
6009 maxpagesize then we need to start a new segment. */
6010 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6011 maxpagesize)
6012 < BFD_ALIGN (output_section->lma, maxpagesize))
6013 || (prev_sec->lma + prev_sec->size
6014 > output_section->lma))
6015 {
6016 if (first_suggested_lma)
6017 {
6018 suggested_lma = output_section->lma;
6019 first_suggested_lma = FALSE;
6020 }
6021
6022 continue;
6023 }
6024 }
6025
6026 map->sections[map->count++] = output_section;
6027 ++isec;
6028 sections[j] = NULL;
6029 section->segment_mark = TRUE;
6030 }
6031 else if (first_suggested_lma)
6032 {
6033 suggested_lma = output_section->lma;
6034 first_suggested_lma = FALSE;
6035 }
6036 }
6037
6038 BFD_ASSERT (map->count > 0);
6039
6040 /* Add the current segment to the list of built segments. */
6041 *pointer_to_map = map;
6042 pointer_to_map = &map->next;
6043
6044 if (isec < section_count)
6045 {
6046 /* We still have not allocated all of the sections to
6047 segments. Create a new segment here, initialise it
6048 and carry on looping. */
6049 amt = sizeof (struct elf_segment_map);
6050 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6051 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
6052 if (map == NULL)
6053 {
6054 free (sections);
6055 return FALSE;
6056 }
6057
6058 /* Initialise the fields of the segment map. Set the physical
6059 physical address to the LMA of the first section that has
6060 not yet been assigned. */
6061 map->next = NULL;
6062 map->p_type = segment->p_type;
6063 map->p_flags = segment->p_flags;
6064 map->p_flags_valid = 1;
6065 map->p_paddr = suggested_lma;
6066 map->p_paddr_valid = p_paddr_valid;
6067 map->includes_filehdr = 0;
6068 map->includes_phdrs = 0;
6069 }
6070 }
6071 while (isec < section_count);
6072
6073 free (sections);
6074 }
6075
6076 elf_tdata (obfd)->segment_map = map_first;
6077
6078 /* If we had to estimate the number of program headers that were
6079 going to be needed, then check our estimate now and adjust
6080 the offset if necessary. */
6081 if (phdr_adjust_seg != NULL)
6082 {
6083 unsigned int count;
6084
6085 for (count = 0, map = map_first; map != NULL; map = map->next)
6086 count++;
6087
6088 if (count > phdr_adjust_num)
6089 phdr_adjust_seg->p_paddr
6090 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6091 }
6092
6093 #undef SEGMENT_END
6094 #undef SECTION_SIZE
6095 #undef IS_CONTAINED_BY_VMA
6096 #undef IS_CONTAINED_BY_LMA
6097 #undef IS_NOTE
6098 #undef IS_COREFILE_NOTE
6099 #undef IS_SOLARIS_PT_INTERP
6100 #undef IS_SECTION_IN_INPUT_SEGMENT
6101 #undef INCLUDE_SECTION_IN_SEGMENT
6102 #undef SEGMENT_AFTER_SEGMENT
6103 #undef SEGMENT_OVERLAPS
6104 return TRUE;
6105 }
6106
6107 /* Copy ELF program header information. */
6108
6109 static bfd_boolean
6110 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6111 {
6112 Elf_Internal_Ehdr *iehdr;
6113 struct elf_segment_map *map;
6114 struct elf_segment_map *map_first;
6115 struct elf_segment_map **pointer_to_map;
6116 Elf_Internal_Phdr *segment;
6117 unsigned int i;
6118 unsigned int num_segments;
6119 bfd_boolean phdr_included = FALSE;
6120 bfd_boolean p_paddr_valid;
6121
6122 iehdr = elf_elfheader (ibfd);
6123
6124 map_first = NULL;
6125 pointer_to_map = &map_first;
6126
6127 /* If all the segment p_paddr fields are zero, don't set
6128 map->p_paddr_valid. */
6129 p_paddr_valid = FALSE;
6130 num_segments = elf_elfheader (ibfd)->e_phnum;
6131 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6132 i < num_segments;
6133 i++, segment++)
6134 if (segment->p_paddr != 0)
6135 {
6136 p_paddr_valid = TRUE;
6137 break;
6138 }
6139
6140 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6141 i < num_segments;
6142 i++, segment++)
6143 {
6144 asection *section;
6145 unsigned int section_count;
6146 bfd_size_type amt;
6147 Elf_Internal_Shdr *this_hdr;
6148 asection *first_section = NULL;
6149 asection *lowest_section;
6150
6151 /* Compute how many sections are in this segment. */
6152 for (section = ibfd->sections, section_count = 0;
6153 section != NULL;
6154 section = section->next)
6155 {
6156 this_hdr = &(elf_section_data(section)->this_hdr);
6157 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6158 {
6159 if (first_section == NULL)
6160 first_section = section;
6161 section_count++;
6162 }
6163 }
6164
6165 /* Allocate a segment map big enough to contain
6166 all of the sections we have selected. */
6167 amt = sizeof (struct elf_segment_map);
6168 if (section_count != 0)
6169 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6170 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6171 if (map == NULL)
6172 return FALSE;
6173
6174 /* Initialize the fields of the output segment map with the
6175 input segment. */
6176 map->next = NULL;
6177 map->p_type = segment->p_type;
6178 map->p_flags = segment->p_flags;
6179 map->p_flags_valid = 1;
6180 map->p_paddr = segment->p_paddr;
6181 map->p_paddr_valid = p_paddr_valid;
6182 map->p_align = segment->p_align;
6183 map->p_align_valid = 1;
6184 map->p_vaddr_offset = 0;
6185
6186 if (map->p_type == PT_GNU_RELRO)
6187 {
6188 /* The PT_GNU_RELRO segment may contain the first a few
6189 bytes in the .got.plt section even if the whole .got.plt
6190 section isn't in the PT_GNU_RELRO segment. We won't
6191 change the size of the PT_GNU_RELRO segment. */
6192 map->p_size = segment->p_memsz;
6193 map->p_size_valid = 1;
6194 }
6195
6196 /* Determine if this segment contains the ELF file header
6197 and if it contains the program headers themselves. */
6198 map->includes_filehdr = (segment->p_offset == 0
6199 && segment->p_filesz >= iehdr->e_ehsize);
6200
6201 map->includes_phdrs = 0;
6202 if (! phdr_included || segment->p_type != PT_LOAD)
6203 {
6204 map->includes_phdrs =
6205 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6206 && (segment->p_offset + segment->p_filesz
6207 >= ((bfd_vma) iehdr->e_phoff
6208 + iehdr->e_phnum * iehdr->e_phentsize)));
6209
6210 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6211 phdr_included = TRUE;
6212 }
6213
6214 lowest_section = first_section;
6215 if (section_count != 0)
6216 {
6217 unsigned int isec = 0;
6218
6219 for (section = first_section;
6220 section != NULL;
6221 section = section->next)
6222 {
6223 this_hdr = &(elf_section_data(section)->this_hdr);
6224 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6225 {
6226 map->sections[isec++] = section->output_section;
6227 if (section->lma < lowest_section->lma)
6228 lowest_section = section;
6229 if ((section->flags & SEC_ALLOC) != 0)
6230 {
6231 bfd_vma seg_off;
6232
6233 /* Section lmas are set up from PT_LOAD header
6234 p_paddr in _bfd_elf_make_section_from_shdr.
6235 If this header has a p_paddr that disagrees
6236 with the section lma, flag the p_paddr as
6237 invalid. */
6238 if ((section->flags & SEC_LOAD) != 0)
6239 seg_off = this_hdr->sh_offset - segment->p_offset;
6240 else
6241 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6242 if (section->lma - segment->p_paddr != seg_off)
6243 map->p_paddr_valid = FALSE;
6244 }
6245 if (isec == section_count)
6246 break;
6247 }
6248 }
6249 }
6250
6251 if (map->includes_filehdr && lowest_section != NULL)
6252 /* We need to keep the space used by the headers fixed. */
6253 map->header_size = lowest_section->vma - segment->p_vaddr;
6254
6255 if (!map->includes_phdrs
6256 && !map->includes_filehdr
6257 && map->p_paddr_valid)
6258 /* There is some other padding before the first section. */
6259 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6260 - segment->p_paddr);
6261
6262 map->count = section_count;
6263 *pointer_to_map = map;
6264 pointer_to_map = &map->next;
6265 }
6266
6267 elf_tdata (obfd)->segment_map = map_first;
6268 return TRUE;
6269 }
6270
6271 /* Copy private BFD data. This copies or rewrites ELF program header
6272 information. */
6273
6274 static bfd_boolean
6275 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6276 {
6277 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6278 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6279 return TRUE;
6280
6281 if (elf_tdata (ibfd)->phdr == NULL)
6282 return TRUE;
6283
6284 if (ibfd->xvec == obfd->xvec)
6285 {
6286 /* Check to see if any sections in the input BFD
6287 covered by ELF program header have changed. */
6288 Elf_Internal_Phdr *segment;
6289 asection *section, *osec;
6290 unsigned int i, num_segments;
6291 Elf_Internal_Shdr *this_hdr;
6292 const struct elf_backend_data *bed;
6293
6294 bed = get_elf_backend_data (ibfd);
6295
6296 /* Regenerate the segment map if p_paddr is set to 0. */
6297 if (bed->want_p_paddr_set_to_zero)
6298 goto rewrite;
6299
6300 /* Initialize the segment mark field. */
6301 for (section = obfd->sections; section != NULL;
6302 section = section->next)
6303 section->segment_mark = FALSE;
6304
6305 num_segments = elf_elfheader (ibfd)->e_phnum;
6306 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6307 i < num_segments;
6308 i++, segment++)
6309 {
6310 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6311 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6312 which severly confuses things, so always regenerate the segment
6313 map in this case. */
6314 if (segment->p_paddr == 0
6315 && segment->p_memsz == 0
6316 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6317 goto rewrite;
6318
6319 for (section = ibfd->sections;
6320 section != NULL; section = section->next)
6321 {
6322 /* We mark the output section so that we know it comes
6323 from the input BFD. */
6324 osec = section->output_section;
6325 if (osec)
6326 osec->segment_mark = TRUE;
6327
6328 /* Check if this section is covered by the segment. */
6329 this_hdr = &(elf_section_data(section)->this_hdr);
6330 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6331 {
6332 /* FIXME: Check if its output section is changed or
6333 removed. What else do we need to check? */
6334 if (osec == NULL
6335 || section->flags != osec->flags
6336 || section->lma != osec->lma
6337 || section->vma != osec->vma
6338 || section->size != osec->size
6339 || section->rawsize != osec->rawsize
6340 || section->alignment_power != osec->alignment_power)
6341 goto rewrite;
6342 }
6343 }
6344 }
6345
6346 /* Check to see if any output section do not come from the
6347 input BFD. */
6348 for (section = obfd->sections; section != NULL;
6349 section = section->next)
6350 {
6351 if (section->segment_mark == FALSE)
6352 goto rewrite;
6353 else
6354 section->segment_mark = FALSE;
6355 }
6356
6357 return copy_elf_program_header (ibfd, obfd);
6358 }
6359
6360 rewrite:
6361 return rewrite_elf_program_header (ibfd, obfd);
6362 }
6363
6364 /* Initialize private output section information from input section. */
6365
6366 bfd_boolean
6367 _bfd_elf_init_private_section_data (bfd *ibfd,
6368 asection *isec,
6369 bfd *obfd,
6370 asection *osec,
6371 struct bfd_link_info *link_info)
6372
6373 {
6374 Elf_Internal_Shdr *ihdr, *ohdr;
6375 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6376
6377 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6378 || obfd->xvec->flavour != bfd_target_elf_flavour)
6379 return TRUE;
6380
6381 BFD_ASSERT (elf_section_data (osec) != NULL);
6382
6383 /* For objcopy and relocatable link, don't copy the output ELF
6384 section type from input if the output BFD section flags have been
6385 set to something different. For a final link allow some flags
6386 that the linker clears to differ. */
6387 if (elf_section_type (osec) == SHT_NULL
6388 && (osec->flags == isec->flags
6389 || (final_link
6390 && ((osec->flags ^ isec->flags)
6391 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6392 elf_section_type (osec) = elf_section_type (isec);
6393
6394 /* FIXME: Is this correct for all OS/PROC specific flags? */
6395 elf_section_flags (osec) |= (elf_section_flags (isec)
6396 & (SHF_MASKOS | SHF_MASKPROC));
6397
6398 /* Set things up for objcopy and relocatable link. The output
6399 SHT_GROUP section will have its elf_next_in_group pointing back
6400 to the input group members. Ignore linker created group section.
6401 See elfNN_ia64_object_p in elfxx-ia64.c. */
6402 if (!final_link)
6403 {
6404 if (elf_sec_group (isec) == NULL
6405 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6406 {
6407 if (elf_section_flags (isec) & SHF_GROUP)
6408 elf_section_flags (osec) |= SHF_GROUP;
6409 elf_next_in_group (osec) = elf_next_in_group (isec);
6410 elf_section_data (osec)->group = elf_section_data (isec)->group;
6411 }
6412 }
6413
6414 ihdr = &elf_section_data (isec)->this_hdr;
6415
6416 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6417 don't use the output section of the linked-to section since it
6418 may be NULL at this point. */
6419 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6420 {
6421 ohdr = &elf_section_data (osec)->this_hdr;
6422 ohdr->sh_flags |= SHF_LINK_ORDER;
6423 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6424 }
6425
6426 osec->use_rela_p = isec->use_rela_p;
6427
6428 return TRUE;
6429 }
6430
6431 /* Copy private section information. This copies over the entsize
6432 field, and sometimes the info field. */
6433
6434 bfd_boolean
6435 _bfd_elf_copy_private_section_data (bfd *ibfd,
6436 asection *isec,
6437 bfd *obfd,
6438 asection *osec)
6439 {
6440 Elf_Internal_Shdr *ihdr, *ohdr;
6441
6442 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6443 || obfd->xvec->flavour != bfd_target_elf_flavour)
6444 return TRUE;
6445
6446 ihdr = &elf_section_data (isec)->this_hdr;
6447 ohdr = &elf_section_data (osec)->this_hdr;
6448
6449 ohdr->sh_entsize = ihdr->sh_entsize;
6450
6451 if (ihdr->sh_type == SHT_SYMTAB
6452 || ihdr->sh_type == SHT_DYNSYM
6453 || ihdr->sh_type == SHT_GNU_verneed
6454 || ihdr->sh_type == SHT_GNU_verdef)
6455 ohdr->sh_info = ihdr->sh_info;
6456
6457 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6458 NULL);
6459 }
6460
6461 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6462 necessary if we are removing either the SHT_GROUP section or any of
6463 the group member sections. DISCARDED is the value that a section's
6464 output_section has if the section will be discarded, NULL when this
6465 function is called from objcopy, bfd_abs_section_ptr when called
6466 from the linker. */
6467
6468 bfd_boolean
6469 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6470 {
6471 asection *isec;
6472
6473 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6474 if (elf_section_type (isec) == SHT_GROUP)
6475 {
6476 asection *first = elf_next_in_group (isec);
6477 asection *s = first;
6478 bfd_size_type removed = 0;
6479
6480 while (s != NULL)
6481 {
6482 /* If this member section is being output but the
6483 SHT_GROUP section is not, then clear the group info
6484 set up by _bfd_elf_copy_private_section_data. */
6485 if (s->output_section != discarded
6486 && isec->output_section == discarded)
6487 {
6488 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6489 elf_group_name (s->output_section) = NULL;
6490 }
6491 /* Conversely, if the member section is not being output
6492 but the SHT_GROUP section is, then adjust its size. */
6493 else if (s->output_section == discarded
6494 && isec->output_section != discarded)
6495 removed += 4;
6496 s = elf_next_in_group (s);
6497 if (s == first)
6498 break;
6499 }
6500 if (removed != 0)
6501 {
6502 if (discarded != NULL)
6503 {
6504 /* If we've been called for ld -r, then we need to
6505 adjust the input section size. This function may
6506 be called multiple times, so save the original
6507 size. */
6508 if (isec->rawsize == 0)
6509 isec->rawsize = isec->size;
6510 isec->size = isec->rawsize - removed;
6511 }
6512 else
6513 {
6514 /* Adjust the output section size when called from
6515 objcopy. */
6516 isec->output_section->size -= removed;
6517 }
6518 }
6519 }
6520
6521 return TRUE;
6522 }
6523
6524 /* Copy private header information. */
6525
6526 bfd_boolean
6527 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6528 {
6529 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6530 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6531 return TRUE;
6532
6533 /* Copy over private BFD data if it has not already been copied.
6534 This must be done here, rather than in the copy_private_bfd_data
6535 entry point, because the latter is called after the section
6536 contents have been set, which means that the program headers have
6537 already been worked out. */
6538 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6539 {
6540 if (! copy_private_bfd_data (ibfd, obfd))
6541 return FALSE;
6542 }
6543
6544 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6545 }
6546
6547 /* Copy private symbol information. If this symbol is in a section
6548 which we did not map into a BFD section, try to map the section
6549 index correctly. We use special macro definitions for the mapped
6550 section indices; these definitions are interpreted by the
6551 swap_out_syms function. */
6552
6553 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6554 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6555 #define MAP_STRTAB (SHN_HIOS + 3)
6556 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6557 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6558
6559 bfd_boolean
6560 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6561 asymbol *isymarg,
6562 bfd *obfd,
6563 asymbol *osymarg)
6564 {
6565 elf_symbol_type *isym, *osym;
6566
6567 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6568 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6569 return TRUE;
6570
6571 isym = elf_symbol_from (ibfd, isymarg);
6572 osym = elf_symbol_from (obfd, osymarg);
6573
6574 if (isym != NULL
6575 && isym->internal_elf_sym.st_shndx != 0
6576 && osym != NULL
6577 && bfd_is_abs_section (isym->symbol.section))
6578 {
6579 unsigned int shndx;
6580
6581 shndx = isym->internal_elf_sym.st_shndx;
6582 if (shndx == elf_onesymtab (ibfd))
6583 shndx = MAP_ONESYMTAB;
6584 else if (shndx == elf_dynsymtab (ibfd))
6585 shndx = MAP_DYNSYMTAB;
6586 else if (shndx == elf_tdata (ibfd)->strtab_section)
6587 shndx = MAP_STRTAB;
6588 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6589 shndx = MAP_SHSTRTAB;
6590 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6591 shndx = MAP_SYM_SHNDX;
6592 osym->internal_elf_sym.st_shndx = shndx;
6593 }
6594
6595 return TRUE;
6596 }
6597
6598 /* Swap out the symbols. */
6599
6600 static bfd_boolean
6601 swap_out_syms (bfd *abfd,
6602 struct bfd_strtab_hash **sttp,
6603 int relocatable_p)
6604 {
6605 const struct elf_backend_data *bed;
6606 int symcount;
6607 asymbol **syms;
6608 struct bfd_strtab_hash *stt;
6609 Elf_Internal_Shdr *symtab_hdr;
6610 Elf_Internal_Shdr *symtab_shndx_hdr;
6611 Elf_Internal_Shdr *symstrtab_hdr;
6612 bfd_byte *outbound_syms;
6613 bfd_byte *outbound_shndx;
6614 int idx;
6615 bfd_size_type amt;
6616 bfd_boolean name_local_sections;
6617
6618 if (!elf_map_symbols (abfd))
6619 return FALSE;
6620
6621 /* Dump out the symtabs. */
6622 stt = _bfd_elf_stringtab_init ();
6623 if (stt == NULL)
6624 return FALSE;
6625
6626 bed = get_elf_backend_data (abfd);
6627 symcount = bfd_get_symcount (abfd);
6628 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6629 symtab_hdr->sh_type = SHT_SYMTAB;
6630 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6631 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6632 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6633 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6634
6635 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6636 symstrtab_hdr->sh_type = SHT_STRTAB;
6637
6638 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6639 bed->s->sizeof_sym);
6640 if (outbound_syms == NULL)
6641 {
6642 _bfd_stringtab_free (stt);
6643 return FALSE;
6644 }
6645 symtab_hdr->contents = outbound_syms;
6646
6647 outbound_shndx = NULL;
6648 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6649 if (symtab_shndx_hdr->sh_name != 0)
6650 {
6651 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6652 outbound_shndx = (bfd_byte *)
6653 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6654 if (outbound_shndx == NULL)
6655 {
6656 _bfd_stringtab_free (stt);
6657 return FALSE;
6658 }
6659
6660 symtab_shndx_hdr->contents = outbound_shndx;
6661 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6662 symtab_shndx_hdr->sh_size = amt;
6663 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6664 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6665 }
6666
6667 /* Now generate the data (for "contents"). */
6668 {
6669 /* Fill in zeroth symbol and swap it out. */
6670 Elf_Internal_Sym sym;
6671 sym.st_name = 0;
6672 sym.st_value = 0;
6673 sym.st_size = 0;
6674 sym.st_info = 0;
6675 sym.st_other = 0;
6676 sym.st_shndx = SHN_UNDEF;
6677 sym.st_target_internal = 0;
6678 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6679 outbound_syms += bed->s->sizeof_sym;
6680 if (outbound_shndx != NULL)
6681 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6682 }
6683
6684 name_local_sections
6685 = (bed->elf_backend_name_local_section_symbols
6686 && bed->elf_backend_name_local_section_symbols (abfd));
6687
6688 syms = bfd_get_outsymbols (abfd);
6689 for (idx = 0; idx < symcount; idx++)
6690 {
6691 Elf_Internal_Sym sym;
6692 bfd_vma value = syms[idx]->value;
6693 elf_symbol_type *type_ptr;
6694 flagword flags = syms[idx]->flags;
6695 int type;
6696
6697 if (!name_local_sections
6698 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6699 {
6700 /* Local section symbols have no name. */
6701 sym.st_name = 0;
6702 }
6703 else
6704 {
6705 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6706 syms[idx]->name,
6707 TRUE, FALSE);
6708 if (sym.st_name == (unsigned long) -1)
6709 {
6710 _bfd_stringtab_free (stt);
6711 return FALSE;
6712 }
6713 }
6714
6715 type_ptr = elf_symbol_from (abfd, syms[idx]);
6716
6717 if ((flags & BSF_SECTION_SYM) == 0
6718 && bfd_is_com_section (syms[idx]->section))
6719 {
6720 /* ELF common symbols put the alignment into the `value' field,
6721 and the size into the `size' field. This is backwards from
6722 how BFD handles it, so reverse it here. */
6723 sym.st_size = value;
6724 if (type_ptr == NULL
6725 || type_ptr->internal_elf_sym.st_value == 0)
6726 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6727 else
6728 sym.st_value = type_ptr->internal_elf_sym.st_value;
6729 sym.st_shndx = _bfd_elf_section_from_bfd_section
6730 (abfd, syms[idx]->section);
6731 }
6732 else
6733 {
6734 asection *sec = syms[idx]->section;
6735 unsigned int shndx;
6736
6737 if (sec->output_section)
6738 {
6739 value += sec->output_offset;
6740 sec = sec->output_section;
6741 }
6742
6743 /* Don't add in the section vma for relocatable output. */
6744 if (! relocatable_p)
6745 value += sec->vma;
6746 sym.st_value = value;
6747 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6748
6749 if (bfd_is_abs_section (sec)
6750 && type_ptr != NULL
6751 && type_ptr->internal_elf_sym.st_shndx != 0)
6752 {
6753 /* This symbol is in a real ELF section which we did
6754 not create as a BFD section. Undo the mapping done
6755 by copy_private_symbol_data. */
6756 shndx = type_ptr->internal_elf_sym.st_shndx;
6757 switch (shndx)
6758 {
6759 case MAP_ONESYMTAB:
6760 shndx = elf_onesymtab (abfd);
6761 break;
6762 case MAP_DYNSYMTAB:
6763 shndx = elf_dynsymtab (abfd);
6764 break;
6765 case MAP_STRTAB:
6766 shndx = elf_tdata (abfd)->strtab_section;
6767 break;
6768 case MAP_SHSTRTAB:
6769 shndx = elf_tdata (abfd)->shstrtab_section;
6770 break;
6771 case MAP_SYM_SHNDX:
6772 shndx = elf_tdata (abfd)->symtab_shndx_section;
6773 break;
6774 default:
6775 break;
6776 }
6777 }
6778 else
6779 {
6780 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6781
6782 if (shndx == SHN_BAD)
6783 {
6784 asection *sec2;
6785
6786 /* Writing this would be a hell of a lot easier if
6787 we had some decent documentation on bfd, and
6788 knew what to expect of the library, and what to
6789 demand of applications. For example, it
6790 appears that `objcopy' might not set the
6791 section of a symbol to be a section that is
6792 actually in the output file. */
6793 sec2 = bfd_get_section_by_name (abfd, sec->name);
6794 if (sec2 == NULL)
6795 {
6796 _bfd_error_handler (_("\
6797 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6798 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6799 sec->name);
6800 bfd_set_error (bfd_error_invalid_operation);
6801 _bfd_stringtab_free (stt);
6802 return FALSE;
6803 }
6804
6805 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6806 BFD_ASSERT (shndx != SHN_BAD);
6807 }
6808 }
6809
6810 sym.st_shndx = shndx;
6811 }
6812
6813 if ((flags & BSF_THREAD_LOCAL) != 0)
6814 type = STT_TLS;
6815 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6816 type = STT_GNU_IFUNC;
6817 else if ((flags & BSF_FUNCTION) != 0)
6818 type = STT_FUNC;
6819 else if ((flags & BSF_OBJECT) != 0)
6820 type = STT_OBJECT;
6821 else if ((flags & BSF_RELC) != 0)
6822 type = STT_RELC;
6823 else if ((flags & BSF_SRELC) != 0)
6824 type = STT_SRELC;
6825 else
6826 type = STT_NOTYPE;
6827
6828 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6829 type = STT_TLS;
6830
6831 /* Processor-specific types. */
6832 if (type_ptr != NULL
6833 && bed->elf_backend_get_symbol_type)
6834 type = ((*bed->elf_backend_get_symbol_type)
6835 (&type_ptr->internal_elf_sym, type));
6836
6837 if (flags & BSF_SECTION_SYM)
6838 {
6839 if (flags & BSF_GLOBAL)
6840 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6841 else
6842 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6843 }
6844 else if (bfd_is_com_section (syms[idx]->section))
6845 {
6846 #ifdef USE_STT_COMMON
6847 if (type == STT_OBJECT)
6848 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6849 else
6850 #endif
6851 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6852 }
6853 else if (bfd_is_und_section (syms[idx]->section))
6854 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6855 ? STB_WEAK
6856 : STB_GLOBAL),
6857 type);
6858 else if (flags & BSF_FILE)
6859 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6860 else
6861 {
6862 int bind = STB_LOCAL;
6863
6864 if (flags & BSF_LOCAL)
6865 bind = STB_LOCAL;
6866 else if (flags & BSF_GNU_UNIQUE)
6867 bind = STB_GNU_UNIQUE;
6868 else if (flags & BSF_WEAK)
6869 bind = STB_WEAK;
6870 else if (flags & BSF_GLOBAL)
6871 bind = STB_GLOBAL;
6872
6873 sym.st_info = ELF_ST_INFO (bind, type);
6874 }
6875
6876 if (type_ptr != NULL)
6877 {
6878 sym.st_other = type_ptr->internal_elf_sym.st_other;
6879 sym.st_target_internal
6880 = type_ptr->internal_elf_sym.st_target_internal;
6881 }
6882 else
6883 {
6884 sym.st_other = 0;
6885 sym.st_target_internal = 0;
6886 }
6887
6888 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6889 outbound_syms += bed->s->sizeof_sym;
6890 if (outbound_shndx != NULL)
6891 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6892 }
6893
6894 *sttp = stt;
6895 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6896 symstrtab_hdr->sh_type = SHT_STRTAB;
6897
6898 symstrtab_hdr->sh_flags = 0;
6899 symstrtab_hdr->sh_addr = 0;
6900 symstrtab_hdr->sh_entsize = 0;
6901 symstrtab_hdr->sh_link = 0;
6902 symstrtab_hdr->sh_info = 0;
6903 symstrtab_hdr->sh_addralign = 1;
6904
6905 return TRUE;
6906 }
6907
6908 /* Return the number of bytes required to hold the symtab vector.
6909
6910 Note that we base it on the count plus 1, since we will null terminate
6911 the vector allocated based on this size. However, the ELF symbol table
6912 always has a dummy entry as symbol #0, so it ends up even. */
6913
6914 long
6915 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6916 {
6917 long symcount;
6918 long symtab_size;
6919 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6920
6921 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6922 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6923 if (symcount > 0)
6924 symtab_size -= sizeof (asymbol *);
6925
6926 return symtab_size;
6927 }
6928
6929 long
6930 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6931 {
6932 long symcount;
6933 long symtab_size;
6934 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6935
6936 if (elf_dynsymtab (abfd) == 0)
6937 {
6938 bfd_set_error (bfd_error_invalid_operation);
6939 return -1;
6940 }
6941
6942 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6943 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6944 if (symcount > 0)
6945 symtab_size -= sizeof (asymbol *);
6946
6947 return symtab_size;
6948 }
6949
6950 long
6951 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6952 sec_ptr asect)
6953 {
6954 return (asect->reloc_count + 1) * sizeof (arelent *);
6955 }
6956
6957 /* Canonicalize the relocs. */
6958
6959 long
6960 _bfd_elf_canonicalize_reloc (bfd *abfd,
6961 sec_ptr section,
6962 arelent **relptr,
6963 asymbol **symbols)
6964 {
6965 arelent *tblptr;
6966 unsigned int i;
6967 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6968
6969 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6970 return -1;
6971
6972 tblptr = section->relocation;
6973 for (i = 0; i < section->reloc_count; i++)
6974 *relptr++ = tblptr++;
6975
6976 *relptr = NULL;
6977
6978 return section->reloc_count;
6979 }
6980
6981 long
6982 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6983 {
6984 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6985 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6986
6987 if (symcount >= 0)
6988 bfd_get_symcount (abfd) = symcount;
6989 return symcount;
6990 }
6991
6992 long
6993 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6994 asymbol **allocation)
6995 {
6996 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6997 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6998
6999 if (symcount >= 0)
7000 bfd_get_dynamic_symcount (abfd) = symcount;
7001 return symcount;
7002 }
7003
7004 /* Return the size required for the dynamic reloc entries. Any loadable
7005 section that was actually installed in the BFD, and has type SHT_REL
7006 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7007 dynamic reloc section. */
7008
7009 long
7010 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7011 {
7012 long ret;
7013 asection *s;
7014
7015 if (elf_dynsymtab (abfd) == 0)
7016 {
7017 bfd_set_error (bfd_error_invalid_operation);
7018 return -1;
7019 }
7020
7021 ret = sizeof (arelent *);
7022 for (s = abfd->sections; s != NULL; s = s->next)
7023 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7024 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7025 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7026 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7027 * sizeof (arelent *));
7028
7029 return ret;
7030 }
7031
7032 /* Canonicalize the dynamic relocation entries. Note that we return the
7033 dynamic relocations as a single block, although they are actually
7034 associated with particular sections; the interface, which was
7035 designed for SunOS style shared libraries, expects that there is only
7036 one set of dynamic relocs. Any loadable section that was actually
7037 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7038 dynamic symbol table, is considered to be a dynamic reloc section. */
7039
7040 long
7041 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7042 arelent **storage,
7043 asymbol **syms)
7044 {
7045 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7046 asection *s;
7047 long ret;
7048
7049 if (elf_dynsymtab (abfd) == 0)
7050 {
7051 bfd_set_error (bfd_error_invalid_operation);
7052 return -1;
7053 }
7054
7055 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7056 ret = 0;
7057 for (s = abfd->sections; s != NULL; s = s->next)
7058 {
7059 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7060 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7061 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7062 {
7063 arelent *p;
7064 long count, i;
7065
7066 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7067 return -1;
7068 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7069 p = s->relocation;
7070 for (i = 0; i < count; i++)
7071 *storage++ = p++;
7072 ret += count;
7073 }
7074 }
7075
7076 *storage = NULL;
7077
7078 return ret;
7079 }
7080 \f
7081 /* Read in the version information. */
7082
7083 bfd_boolean
7084 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7085 {
7086 bfd_byte *contents = NULL;
7087 unsigned int freeidx = 0;
7088
7089 if (elf_dynverref (abfd) != 0)
7090 {
7091 Elf_Internal_Shdr *hdr;
7092 Elf_External_Verneed *everneed;
7093 Elf_Internal_Verneed *iverneed;
7094 unsigned int i;
7095 bfd_byte *contents_end;
7096
7097 hdr = &elf_tdata (abfd)->dynverref_hdr;
7098
7099 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7100 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7101 if (elf_tdata (abfd)->verref == NULL)
7102 goto error_return;
7103
7104 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7105
7106 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7107 if (contents == NULL)
7108 {
7109 error_return_verref:
7110 elf_tdata (abfd)->verref = NULL;
7111 elf_tdata (abfd)->cverrefs = 0;
7112 goto error_return;
7113 }
7114 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7115 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7116 goto error_return_verref;
7117
7118 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7119 goto error_return_verref;
7120
7121 BFD_ASSERT (sizeof (Elf_External_Verneed)
7122 == sizeof (Elf_External_Vernaux));
7123 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7124 everneed = (Elf_External_Verneed *) contents;
7125 iverneed = elf_tdata (abfd)->verref;
7126 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7127 {
7128 Elf_External_Vernaux *evernaux;
7129 Elf_Internal_Vernaux *ivernaux;
7130 unsigned int j;
7131
7132 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7133
7134 iverneed->vn_bfd = abfd;
7135
7136 iverneed->vn_filename =
7137 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7138 iverneed->vn_file);
7139 if (iverneed->vn_filename == NULL)
7140 goto error_return_verref;
7141
7142 if (iverneed->vn_cnt == 0)
7143 iverneed->vn_auxptr = NULL;
7144 else
7145 {
7146 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7147 bfd_alloc2 (abfd, iverneed->vn_cnt,
7148 sizeof (Elf_Internal_Vernaux));
7149 if (iverneed->vn_auxptr == NULL)
7150 goto error_return_verref;
7151 }
7152
7153 if (iverneed->vn_aux
7154 > (size_t) (contents_end - (bfd_byte *) everneed))
7155 goto error_return_verref;
7156
7157 evernaux = ((Elf_External_Vernaux *)
7158 ((bfd_byte *) everneed + iverneed->vn_aux));
7159 ivernaux = iverneed->vn_auxptr;
7160 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7161 {
7162 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7163
7164 ivernaux->vna_nodename =
7165 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7166 ivernaux->vna_name);
7167 if (ivernaux->vna_nodename == NULL)
7168 goto error_return_verref;
7169
7170 if (j + 1 < iverneed->vn_cnt)
7171 ivernaux->vna_nextptr = ivernaux + 1;
7172 else
7173 ivernaux->vna_nextptr = NULL;
7174
7175 if (ivernaux->vna_next
7176 > (size_t) (contents_end - (bfd_byte *) evernaux))
7177 goto error_return_verref;
7178
7179 evernaux = ((Elf_External_Vernaux *)
7180 ((bfd_byte *) evernaux + ivernaux->vna_next));
7181
7182 if (ivernaux->vna_other > freeidx)
7183 freeidx = ivernaux->vna_other;
7184 }
7185
7186 if (i + 1 < hdr->sh_info)
7187 iverneed->vn_nextref = iverneed + 1;
7188 else
7189 iverneed->vn_nextref = NULL;
7190
7191 if (iverneed->vn_next
7192 > (size_t) (contents_end - (bfd_byte *) everneed))
7193 goto error_return_verref;
7194
7195 everneed = ((Elf_External_Verneed *)
7196 ((bfd_byte *) everneed + iverneed->vn_next));
7197 }
7198
7199 free (contents);
7200 contents = NULL;
7201 }
7202
7203 if (elf_dynverdef (abfd) != 0)
7204 {
7205 Elf_Internal_Shdr *hdr;
7206 Elf_External_Verdef *everdef;
7207 Elf_Internal_Verdef *iverdef;
7208 Elf_Internal_Verdef *iverdefarr;
7209 Elf_Internal_Verdef iverdefmem;
7210 unsigned int i;
7211 unsigned int maxidx;
7212 bfd_byte *contents_end_def, *contents_end_aux;
7213
7214 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7215
7216 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7217 if (contents == NULL)
7218 goto error_return;
7219 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7220 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7221 goto error_return;
7222
7223 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7224 goto error_return;
7225
7226 BFD_ASSERT (sizeof (Elf_External_Verdef)
7227 >= sizeof (Elf_External_Verdaux));
7228 contents_end_def = contents + hdr->sh_size
7229 - sizeof (Elf_External_Verdef);
7230 contents_end_aux = contents + hdr->sh_size
7231 - sizeof (Elf_External_Verdaux);
7232
7233 /* We know the number of entries in the section but not the maximum
7234 index. Therefore we have to run through all entries and find
7235 the maximum. */
7236 everdef = (Elf_External_Verdef *) contents;
7237 maxidx = 0;
7238 for (i = 0; i < hdr->sh_info; ++i)
7239 {
7240 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7241
7242 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7243 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7244
7245 if (iverdefmem.vd_next
7246 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7247 goto error_return;
7248
7249 everdef = ((Elf_External_Verdef *)
7250 ((bfd_byte *) everdef + iverdefmem.vd_next));
7251 }
7252
7253 if (default_imported_symver)
7254 {
7255 if (freeidx > maxidx)
7256 maxidx = ++freeidx;
7257 else
7258 freeidx = ++maxidx;
7259 }
7260 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7261 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7262 if (elf_tdata (abfd)->verdef == NULL)
7263 goto error_return;
7264
7265 elf_tdata (abfd)->cverdefs = maxidx;
7266
7267 everdef = (Elf_External_Verdef *) contents;
7268 iverdefarr = elf_tdata (abfd)->verdef;
7269 for (i = 0; i < hdr->sh_info; i++)
7270 {
7271 Elf_External_Verdaux *everdaux;
7272 Elf_Internal_Verdaux *iverdaux;
7273 unsigned int j;
7274
7275 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7276
7277 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7278 {
7279 error_return_verdef:
7280 elf_tdata (abfd)->verdef = NULL;
7281 elf_tdata (abfd)->cverdefs = 0;
7282 goto error_return;
7283 }
7284
7285 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7286 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7287
7288 iverdef->vd_bfd = abfd;
7289
7290 if (iverdef->vd_cnt == 0)
7291 iverdef->vd_auxptr = NULL;
7292 else
7293 {
7294 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7295 bfd_alloc2 (abfd, iverdef->vd_cnt,
7296 sizeof (Elf_Internal_Verdaux));
7297 if (iverdef->vd_auxptr == NULL)
7298 goto error_return_verdef;
7299 }
7300
7301 if (iverdef->vd_aux
7302 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7303 goto error_return_verdef;
7304
7305 everdaux = ((Elf_External_Verdaux *)
7306 ((bfd_byte *) everdef + iverdef->vd_aux));
7307 iverdaux = iverdef->vd_auxptr;
7308 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7309 {
7310 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7311
7312 iverdaux->vda_nodename =
7313 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7314 iverdaux->vda_name);
7315 if (iverdaux->vda_nodename == NULL)
7316 goto error_return_verdef;
7317
7318 if (j + 1 < iverdef->vd_cnt)
7319 iverdaux->vda_nextptr = iverdaux + 1;
7320 else
7321 iverdaux->vda_nextptr = NULL;
7322
7323 if (iverdaux->vda_next
7324 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7325 goto error_return_verdef;
7326
7327 everdaux = ((Elf_External_Verdaux *)
7328 ((bfd_byte *) everdaux + iverdaux->vda_next));
7329 }
7330
7331 if (iverdef->vd_cnt)
7332 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7333
7334 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7335 iverdef->vd_nextdef = iverdef + 1;
7336 else
7337 iverdef->vd_nextdef = NULL;
7338
7339 everdef = ((Elf_External_Verdef *)
7340 ((bfd_byte *) everdef + iverdef->vd_next));
7341 }
7342
7343 free (contents);
7344 contents = NULL;
7345 }
7346 else if (default_imported_symver)
7347 {
7348 if (freeidx < 3)
7349 freeidx = 3;
7350 else
7351 freeidx++;
7352
7353 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7354 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7355 if (elf_tdata (abfd)->verdef == NULL)
7356 goto error_return;
7357
7358 elf_tdata (abfd)->cverdefs = freeidx;
7359 }
7360
7361 /* Create a default version based on the soname. */
7362 if (default_imported_symver)
7363 {
7364 Elf_Internal_Verdef *iverdef;
7365 Elf_Internal_Verdaux *iverdaux;
7366
7367 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7368
7369 iverdef->vd_version = VER_DEF_CURRENT;
7370 iverdef->vd_flags = 0;
7371 iverdef->vd_ndx = freeidx;
7372 iverdef->vd_cnt = 1;
7373
7374 iverdef->vd_bfd = abfd;
7375
7376 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7377 if (iverdef->vd_nodename == NULL)
7378 goto error_return_verdef;
7379 iverdef->vd_nextdef = NULL;
7380 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7381 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7382 if (iverdef->vd_auxptr == NULL)
7383 goto error_return_verdef;
7384
7385 iverdaux = iverdef->vd_auxptr;
7386 iverdaux->vda_nodename = iverdef->vd_nodename;
7387 iverdaux->vda_nextptr = NULL;
7388 }
7389
7390 return TRUE;
7391
7392 error_return:
7393 if (contents != NULL)
7394 free (contents);
7395 return FALSE;
7396 }
7397 \f
7398 asymbol *
7399 _bfd_elf_make_empty_symbol (bfd *abfd)
7400 {
7401 elf_symbol_type *newsym;
7402 bfd_size_type amt = sizeof (elf_symbol_type);
7403
7404 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7405 if (!newsym)
7406 return NULL;
7407 else
7408 {
7409 newsym->symbol.the_bfd = abfd;
7410 return &newsym->symbol;
7411 }
7412 }
7413
7414 void
7415 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7416 asymbol *symbol,
7417 symbol_info *ret)
7418 {
7419 bfd_symbol_info (symbol, ret);
7420 }
7421
7422 /* Return whether a symbol name implies a local symbol. Most targets
7423 use this function for the is_local_label_name entry point, but some
7424 override it. */
7425
7426 bfd_boolean
7427 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7428 const char *name)
7429 {
7430 /* Normal local symbols start with ``.L''. */
7431 if (name[0] == '.' && name[1] == 'L')
7432 return TRUE;
7433
7434 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7435 DWARF debugging symbols starting with ``..''. */
7436 if (name[0] == '.' && name[1] == '.')
7437 return TRUE;
7438
7439 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7440 emitting DWARF debugging output. I suspect this is actually a
7441 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7442 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7443 underscore to be emitted on some ELF targets). For ease of use,
7444 we treat such symbols as local. */
7445 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7446 return TRUE;
7447
7448 return FALSE;
7449 }
7450
7451 alent *
7452 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7453 asymbol *symbol ATTRIBUTE_UNUSED)
7454 {
7455 abort ();
7456 return NULL;
7457 }
7458
7459 bfd_boolean
7460 _bfd_elf_set_arch_mach (bfd *abfd,
7461 enum bfd_architecture arch,
7462 unsigned long machine)
7463 {
7464 /* If this isn't the right architecture for this backend, and this
7465 isn't the generic backend, fail. */
7466 if (arch != get_elf_backend_data (abfd)->arch
7467 && arch != bfd_arch_unknown
7468 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7469 return FALSE;
7470
7471 return bfd_default_set_arch_mach (abfd, arch, machine);
7472 }
7473
7474 /* Find the function to a particular section and offset,
7475 for error reporting. */
7476
7477 static bfd_boolean
7478 elf_find_function (bfd *abfd,
7479 asection *section,
7480 asymbol **symbols,
7481 bfd_vma offset,
7482 const char **filename_ptr,
7483 const char **functionname_ptr)
7484 {
7485 static asection *last_section;
7486 static asymbol *func;
7487 static const char *filename;
7488 static bfd_size_type func_size;
7489
7490 if (symbols == NULL)
7491 return FALSE;
7492
7493 if (last_section != section
7494 || func == NULL
7495 || offset < func->value
7496 || offset >= func->value + func_size)
7497 {
7498 asymbol *file;
7499 bfd_vma low_func;
7500 asymbol **p;
7501 /* ??? Given multiple file symbols, it is impossible to reliably
7502 choose the right file name for global symbols. File symbols are
7503 local symbols, and thus all file symbols must sort before any
7504 global symbols. The ELF spec may be interpreted to say that a
7505 file symbol must sort before other local symbols, but currently
7506 ld -r doesn't do this. So, for ld -r output, it is possible to
7507 make a better choice of file name for local symbols by ignoring
7508 file symbols appearing after a given local symbol. */
7509 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7510 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7511
7512 filename = NULL;
7513 func = NULL;
7514 file = NULL;
7515 low_func = 0;
7516 state = nothing_seen;
7517 func_size = 0;
7518 last_section = section;
7519
7520 for (p = symbols; *p != NULL; p++)
7521 {
7522 asymbol *sym = *p;
7523 bfd_vma code_off;
7524 bfd_size_type size;
7525
7526 if ((sym->flags & BSF_FILE) != 0)
7527 {
7528 file = sym;
7529 if (state == symbol_seen)
7530 state = file_after_symbol_seen;
7531 continue;
7532 }
7533
7534 size = bed->maybe_function_sym (sym, section, &code_off);
7535 if (size != 0
7536 && code_off <= offset
7537 && (code_off > low_func
7538 || (code_off == low_func
7539 && size > func_size)))
7540 {
7541 func = sym;
7542 func_size = size;
7543 low_func = code_off;
7544 filename = NULL;
7545 if (file != NULL
7546 && ((sym->flags & BSF_LOCAL) != 0
7547 || state != file_after_symbol_seen))
7548 filename = bfd_asymbol_name (file);
7549 }
7550 if (state == nothing_seen)
7551 state = symbol_seen;
7552 }
7553 }
7554
7555 if (func == NULL)
7556 return FALSE;
7557
7558 if (filename_ptr)
7559 *filename_ptr = filename;
7560 if (functionname_ptr)
7561 *functionname_ptr = bfd_asymbol_name (func);
7562
7563 return TRUE;
7564 }
7565
7566 /* Find the nearest line to a particular section and offset,
7567 for error reporting. */
7568
7569 bfd_boolean
7570 _bfd_elf_find_nearest_line (bfd *abfd,
7571 asection *section,
7572 asymbol **symbols,
7573 bfd_vma offset,
7574 const char **filename_ptr,
7575 const char **functionname_ptr,
7576 unsigned int *line_ptr)
7577 {
7578 return _bfd_elf_find_nearest_line_discriminator (abfd, section, symbols,
7579 offset, filename_ptr,
7580 functionname_ptr,
7581 line_ptr,
7582 NULL);
7583 }
7584
7585 bfd_boolean
7586 _bfd_elf_find_nearest_line_discriminator (bfd *abfd,
7587 asection *section,
7588 asymbol **symbols,
7589 bfd_vma offset,
7590 const char **filename_ptr,
7591 const char **functionname_ptr,
7592 unsigned int *line_ptr,
7593 unsigned int *discriminator_ptr)
7594 {
7595 bfd_boolean found;
7596
7597 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7598 filename_ptr, functionname_ptr,
7599 line_ptr))
7600 {
7601 if (!*functionname_ptr)
7602 elf_find_function (abfd, section, symbols, offset,
7603 *filename_ptr ? NULL : filename_ptr,
7604 functionname_ptr);
7605
7606 return TRUE;
7607 }
7608
7609 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7610 section, symbols, offset,
7611 filename_ptr, functionname_ptr,
7612 line_ptr, discriminator_ptr, 0,
7613 &elf_tdata (abfd)->dwarf2_find_line_info))
7614 {
7615 if (!*functionname_ptr)
7616 elf_find_function (abfd, section, symbols, offset,
7617 *filename_ptr ? NULL : filename_ptr,
7618 functionname_ptr);
7619
7620 return TRUE;
7621 }
7622
7623 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7624 &found, filename_ptr,
7625 functionname_ptr, line_ptr,
7626 &elf_tdata (abfd)->line_info))
7627 return FALSE;
7628 if (found && (*functionname_ptr || *line_ptr))
7629 return TRUE;
7630
7631 if (symbols == NULL)
7632 return FALSE;
7633
7634 if (! elf_find_function (abfd, section, symbols, offset,
7635 filename_ptr, functionname_ptr))
7636 return FALSE;
7637
7638 *line_ptr = 0;
7639 return TRUE;
7640 }
7641
7642 /* Find the line for a symbol. */
7643
7644 bfd_boolean
7645 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7646 const char **filename_ptr, unsigned int *line_ptr)
7647 {
7648 return _bfd_elf_find_line_discriminator (abfd, symbols, symbol,
7649 filename_ptr, line_ptr,
7650 NULL);
7651 }
7652
7653 bfd_boolean
7654 _bfd_elf_find_line_discriminator (bfd *abfd, asymbol **symbols, asymbol *symbol,
7655 const char **filename_ptr,
7656 unsigned int *line_ptr,
7657 unsigned int *discriminator_ptr)
7658 {
7659 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7660 filename_ptr, line_ptr, discriminator_ptr, 0,
7661 &elf_tdata (abfd)->dwarf2_find_line_info);
7662 }
7663
7664 /* After a call to bfd_find_nearest_line, successive calls to
7665 bfd_find_inliner_info can be used to get source information about
7666 each level of function inlining that terminated at the address
7667 passed to bfd_find_nearest_line. Currently this is only supported
7668 for DWARF2 with appropriate DWARF3 extensions. */
7669
7670 bfd_boolean
7671 _bfd_elf_find_inliner_info (bfd *abfd,
7672 const char **filename_ptr,
7673 const char **functionname_ptr,
7674 unsigned int *line_ptr)
7675 {
7676 bfd_boolean found;
7677 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7678 functionname_ptr, line_ptr,
7679 & elf_tdata (abfd)->dwarf2_find_line_info);
7680 return found;
7681 }
7682
7683 int
7684 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7685 {
7686 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7687 int ret = bed->s->sizeof_ehdr;
7688
7689 if (!info->relocatable)
7690 {
7691 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7692
7693 if (phdr_size == (bfd_size_type) -1)
7694 {
7695 struct elf_segment_map *m;
7696
7697 phdr_size = 0;
7698 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7699 phdr_size += bed->s->sizeof_phdr;
7700
7701 if (phdr_size == 0)
7702 phdr_size = get_program_header_size (abfd, info);
7703 }
7704
7705 elf_tdata (abfd)->program_header_size = phdr_size;
7706 ret += phdr_size;
7707 }
7708
7709 return ret;
7710 }
7711
7712 bfd_boolean
7713 _bfd_elf_set_section_contents (bfd *abfd,
7714 sec_ptr section,
7715 const void *location,
7716 file_ptr offset,
7717 bfd_size_type count)
7718 {
7719 Elf_Internal_Shdr *hdr;
7720 bfd_signed_vma pos;
7721
7722 if (! abfd->output_has_begun
7723 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7724 return FALSE;
7725
7726 hdr = &elf_section_data (section)->this_hdr;
7727 pos = hdr->sh_offset + offset;
7728 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7729 || bfd_bwrite (location, count, abfd) != count)
7730 return FALSE;
7731
7732 return TRUE;
7733 }
7734
7735 void
7736 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7737 arelent *cache_ptr ATTRIBUTE_UNUSED,
7738 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7739 {
7740 abort ();
7741 }
7742
7743 /* Try to convert a non-ELF reloc into an ELF one. */
7744
7745 bfd_boolean
7746 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7747 {
7748 /* Check whether we really have an ELF howto. */
7749
7750 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7751 {
7752 bfd_reloc_code_real_type code;
7753 reloc_howto_type *howto;
7754
7755 /* Alien reloc: Try to determine its type to replace it with an
7756 equivalent ELF reloc. */
7757
7758 if (areloc->howto->pc_relative)
7759 {
7760 switch (areloc->howto->bitsize)
7761 {
7762 case 8:
7763 code = BFD_RELOC_8_PCREL;
7764 break;
7765 case 12:
7766 code = BFD_RELOC_12_PCREL;
7767 break;
7768 case 16:
7769 code = BFD_RELOC_16_PCREL;
7770 break;
7771 case 24:
7772 code = BFD_RELOC_24_PCREL;
7773 break;
7774 case 32:
7775 code = BFD_RELOC_32_PCREL;
7776 break;
7777 case 64:
7778 code = BFD_RELOC_64_PCREL;
7779 break;
7780 default:
7781 goto fail;
7782 }
7783
7784 howto = bfd_reloc_type_lookup (abfd, code);
7785
7786 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7787 {
7788 if (howto->pcrel_offset)
7789 areloc->addend += areloc->address;
7790 else
7791 areloc->addend -= areloc->address; /* addend is unsigned!! */
7792 }
7793 }
7794 else
7795 {
7796 switch (areloc->howto->bitsize)
7797 {
7798 case 8:
7799 code = BFD_RELOC_8;
7800 break;
7801 case 14:
7802 code = BFD_RELOC_14;
7803 break;
7804 case 16:
7805 code = BFD_RELOC_16;
7806 break;
7807 case 26:
7808 code = BFD_RELOC_26;
7809 break;
7810 case 32:
7811 code = BFD_RELOC_32;
7812 break;
7813 case 64:
7814 code = BFD_RELOC_64;
7815 break;
7816 default:
7817 goto fail;
7818 }
7819
7820 howto = bfd_reloc_type_lookup (abfd, code);
7821 }
7822
7823 if (howto)
7824 areloc->howto = howto;
7825 else
7826 goto fail;
7827 }
7828
7829 return TRUE;
7830
7831 fail:
7832 (*_bfd_error_handler)
7833 (_("%B: unsupported relocation type %s"),
7834 abfd, areloc->howto->name);
7835 bfd_set_error (bfd_error_bad_value);
7836 return FALSE;
7837 }
7838
7839 bfd_boolean
7840 _bfd_elf_close_and_cleanup (bfd *abfd)
7841 {
7842 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7843 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7844 {
7845 if (elf_shstrtab (abfd) != NULL)
7846 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7847 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7848 }
7849
7850 return _bfd_generic_close_and_cleanup (abfd);
7851 }
7852
7853 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7854 in the relocation's offset. Thus we cannot allow any sort of sanity
7855 range-checking to interfere. There is nothing else to do in processing
7856 this reloc. */
7857
7858 bfd_reloc_status_type
7859 _bfd_elf_rel_vtable_reloc_fn
7860 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7861 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7862 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7863 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7864 {
7865 return bfd_reloc_ok;
7866 }
7867 \f
7868 /* Elf core file support. Much of this only works on native
7869 toolchains, since we rely on knowing the
7870 machine-dependent procfs structure in order to pick
7871 out details about the corefile. */
7872
7873 #ifdef HAVE_SYS_PROCFS_H
7874 /* Needed for new procfs interface on sparc-solaris. */
7875 # define _STRUCTURED_PROC 1
7876 # include <sys/procfs.h>
7877 #endif
7878
7879 /* Return a PID that identifies a "thread" for threaded cores, or the
7880 PID of the main process for non-threaded cores. */
7881
7882 static int
7883 elfcore_make_pid (bfd *abfd)
7884 {
7885 int pid;
7886
7887 pid = elf_tdata (abfd)->core_lwpid;
7888 if (pid == 0)
7889 pid = elf_tdata (abfd)->core_pid;
7890
7891 return pid;
7892 }
7893
7894 /* If there isn't a section called NAME, make one, using
7895 data from SECT. Note, this function will generate a
7896 reference to NAME, so you shouldn't deallocate or
7897 overwrite it. */
7898
7899 static bfd_boolean
7900 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7901 {
7902 asection *sect2;
7903
7904 if (bfd_get_section_by_name (abfd, name) != NULL)
7905 return TRUE;
7906
7907 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7908 if (sect2 == NULL)
7909 return FALSE;
7910
7911 sect2->size = sect->size;
7912 sect2->filepos = sect->filepos;
7913 sect2->alignment_power = sect->alignment_power;
7914 return TRUE;
7915 }
7916
7917 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7918 actually creates up to two pseudosections:
7919 - For the single-threaded case, a section named NAME, unless
7920 such a section already exists.
7921 - For the multi-threaded case, a section named "NAME/PID", where
7922 PID is elfcore_make_pid (abfd).
7923 Both pseudosections have identical contents. */
7924 bfd_boolean
7925 _bfd_elfcore_make_pseudosection (bfd *abfd,
7926 char *name,
7927 size_t size,
7928 ufile_ptr filepos)
7929 {
7930 char buf[100];
7931 char *threaded_name;
7932 size_t len;
7933 asection *sect;
7934
7935 /* Build the section name. */
7936
7937 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7938 len = strlen (buf) + 1;
7939 threaded_name = (char *) bfd_alloc (abfd, len);
7940 if (threaded_name == NULL)
7941 return FALSE;
7942 memcpy (threaded_name, buf, len);
7943
7944 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7945 SEC_HAS_CONTENTS);
7946 if (sect == NULL)
7947 return FALSE;
7948 sect->size = size;
7949 sect->filepos = filepos;
7950 sect->alignment_power = 2;
7951
7952 return elfcore_maybe_make_sect (abfd, name, sect);
7953 }
7954
7955 /* prstatus_t exists on:
7956 solaris 2.5+
7957 linux 2.[01] + glibc
7958 unixware 4.2
7959 */
7960
7961 #if defined (HAVE_PRSTATUS_T)
7962
7963 static bfd_boolean
7964 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7965 {
7966 size_t size;
7967 int offset;
7968
7969 if (note->descsz == sizeof (prstatus_t))
7970 {
7971 prstatus_t prstat;
7972
7973 size = sizeof (prstat.pr_reg);
7974 offset = offsetof (prstatus_t, pr_reg);
7975 memcpy (&prstat, note->descdata, sizeof (prstat));
7976
7977 /* Do not overwrite the core signal if it
7978 has already been set by another thread. */
7979 if (elf_tdata (abfd)->core_signal == 0)
7980 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7981 if (elf_tdata (abfd)->core_pid == 0)
7982 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7983
7984 /* pr_who exists on:
7985 solaris 2.5+
7986 unixware 4.2
7987 pr_who doesn't exist on:
7988 linux 2.[01]
7989 */
7990 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7991 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7992 #else
7993 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7994 #endif
7995 }
7996 #if defined (HAVE_PRSTATUS32_T)
7997 else if (note->descsz == sizeof (prstatus32_t))
7998 {
7999 /* 64-bit host, 32-bit corefile */
8000 prstatus32_t prstat;
8001
8002 size = sizeof (prstat.pr_reg);
8003 offset = offsetof (prstatus32_t, pr_reg);
8004 memcpy (&prstat, note->descdata, sizeof (prstat));
8005
8006 /* Do not overwrite the core signal if it
8007 has already been set by another thread. */
8008 if (elf_tdata (abfd)->core_signal == 0)
8009 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
8010 if (elf_tdata (abfd)->core_pid == 0)
8011 elf_tdata (abfd)->core_pid = prstat.pr_pid;
8012
8013 /* pr_who exists on:
8014 solaris 2.5+
8015 unixware 4.2
8016 pr_who doesn't exist on:
8017 linux 2.[01]
8018 */
8019 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8020 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
8021 #else
8022 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
8023 #endif
8024 }
8025 #endif /* HAVE_PRSTATUS32_T */
8026 else
8027 {
8028 /* Fail - we don't know how to handle any other
8029 note size (ie. data object type). */
8030 return TRUE;
8031 }
8032
8033 /* Make a ".reg/999" section and a ".reg" section. */
8034 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8035 size, note->descpos + offset);
8036 }
8037 #endif /* defined (HAVE_PRSTATUS_T) */
8038
8039 /* Create a pseudosection containing the exact contents of NOTE. */
8040 static bfd_boolean
8041 elfcore_make_note_pseudosection (bfd *abfd,
8042 char *name,
8043 Elf_Internal_Note *note)
8044 {
8045 return _bfd_elfcore_make_pseudosection (abfd, name,
8046 note->descsz, note->descpos);
8047 }
8048
8049 /* There isn't a consistent prfpregset_t across platforms,
8050 but it doesn't matter, because we don't have to pick this
8051 data structure apart. */
8052
8053 static bfd_boolean
8054 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8055 {
8056 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8057 }
8058
8059 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8060 type of NT_PRXFPREG. Just include the whole note's contents
8061 literally. */
8062
8063 static bfd_boolean
8064 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8065 {
8066 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8067 }
8068
8069 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8070 with a note type of NT_X86_XSTATE. Just include the whole note's
8071 contents literally. */
8072
8073 static bfd_boolean
8074 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8075 {
8076 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8077 }
8078
8079 static bfd_boolean
8080 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8081 {
8082 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8083 }
8084
8085 static bfd_boolean
8086 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8087 {
8088 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8089 }
8090
8091 static bfd_boolean
8092 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8093 {
8094 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8095 }
8096
8097 static bfd_boolean
8098 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8099 {
8100 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8101 }
8102
8103 static bfd_boolean
8104 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8105 {
8106 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8107 }
8108
8109 static bfd_boolean
8110 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8111 {
8112 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8113 }
8114
8115 static bfd_boolean
8116 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8117 {
8118 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8119 }
8120
8121 static bfd_boolean
8122 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8123 {
8124 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8125 }
8126
8127 static bfd_boolean
8128 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8129 {
8130 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8131 }
8132
8133 static bfd_boolean
8134 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8135 {
8136 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8137 }
8138
8139 static bfd_boolean
8140 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8141 {
8142 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8143 }
8144
8145 #if defined (HAVE_PRPSINFO_T)
8146 typedef prpsinfo_t elfcore_psinfo_t;
8147 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8148 typedef prpsinfo32_t elfcore_psinfo32_t;
8149 #endif
8150 #endif
8151
8152 #if defined (HAVE_PSINFO_T)
8153 typedef psinfo_t elfcore_psinfo_t;
8154 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8155 typedef psinfo32_t elfcore_psinfo32_t;
8156 #endif
8157 #endif
8158
8159 /* return a malloc'ed copy of a string at START which is at
8160 most MAX bytes long, possibly without a terminating '\0'.
8161 the copy will always have a terminating '\0'. */
8162
8163 char *
8164 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8165 {
8166 char *dups;
8167 char *end = (char *) memchr (start, '\0', max);
8168 size_t len;
8169
8170 if (end == NULL)
8171 len = max;
8172 else
8173 len = end - start;
8174
8175 dups = (char *) bfd_alloc (abfd, len + 1);
8176 if (dups == NULL)
8177 return NULL;
8178
8179 memcpy (dups, start, len);
8180 dups[len] = '\0';
8181
8182 return dups;
8183 }
8184
8185 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8186 static bfd_boolean
8187 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8188 {
8189 if (note->descsz == sizeof (elfcore_psinfo_t))
8190 {
8191 elfcore_psinfo_t psinfo;
8192
8193 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8194
8195 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8196 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8197 #endif
8198 elf_tdata (abfd)->core_program
8199 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8200 sizeof (psinfo.pr_fname));
8201
8202 elf_tdata (abfd)->core_command
8203 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8204 sizeof (psinfo.pr_psargs));
8205 }
8206 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8207 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8208 {
8209 /* 64-bit host, 32-bit corefile */
8210 elfcore_psinfo32_t psinfo;
8211
8212 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8213
8214 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8215 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8216 #endif
8217 elf_tdata (abfd)->core_program
8218 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8219 sizeof (psinfo.pr_fname));
8220
8221 elf_tdata (abfd)->core_command
8222 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8223 sizeof (psinfo.pr_psargs));
8224 }
8225 #endif
8226
8227 else
8228 {
8229 /* Fail - we don't know how to handle any other
8230 note size (ie. data object type). */
8231 return TRUE;
8232 }
8233
8234 /* Note that for some reason, a spurious space is tacked
8235 onto the end of the args in some (at least one anyway)
8236 implementations, so strip it off if it exists. */
8237
8238 {
8239 char *command = elf_tdata (abfd)->core_command;
8240 int n = strlen (command);
8241
8242 if (0 < n && command[n - 1] == ' ')
8243 command[n - 1] = '\0';
8244 }
8245
8246 return TRUE;
8247 }
8248 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8249
8250 #if defined (HAVE_PSTATUS_T)
8251 static bfd_boolean
8252 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8253 {
8254 if (note->descsz == sizeof (pstatus_t)
8255 #if defined (HAVE_PXSTATUS_T)
8256 || note->descsz == sizeof (pxstatus_t)
8257 #endif
8258 )
8259 {
8260 pstatus_t pstat;
8261
8262 memcpy (&pstat, note->descdata, sizeof (pstat));
8263
8264 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8265 }
8266 #if defined (HAVE_PSTATUS32_T)
8267 else if (note->descsz == sizeof (pstatus32_t))
8268 {
8269 /* 64-bit host, 32-bit corefile */
8270 pstatus32_t pstat;
8271
8272 memcpy (&pstat, note->descdata, sizeof (pstat));
8273
8274 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8275 }
8276 #endif
8277 /* Could grab some more details from the "representative"
8278 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8279 NT_LWPSTATUS note, presumably. */
8280
8281 return TRUE;
8282 }
8283 #endif /* defined (HAVE_PSTATUS_T) */
8284
8285 #if defined (HAVE_LWPSTATUS_T)
8286 static bfd_boolean
8287 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8288 {
8289 lwpstatus_t lwpstat;
8290 char buf[100];
8291 char *name;
8292 size_t len;
8293 asection *sect;
8294
8295 if (note->descsz != sizeof (lwpstat)
8296 #if defined (HAVE_LWPXSTATUS_T)
8297 && note->descsz != sizeof (lwpxstatus_t)
8298 #endif
8299 )
8300 return TRUE;
8301
8302 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8303
8304 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8305 /* Do not overwrite the core signal if it has already been set by
8306 another thread. */
8307 if (elf_tdata (abfd)->core_signal == 0)
8308 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8309
8310 /* Make a ".reg/999" section. */
8311
8312 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8313 len = strlen (buf) + 1;
8314 name = bfd_alloc (abfd, len);
8315 if (name == NULL)
8316 return FALSE;
8317 memcpy (name, buf, len);
8318
8319 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8320 if (sect == NULL)
8321 return FALSE;
8322
8323 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8324 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8325 sect->filepos = note->descpos
8326 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8327 #endif
8328
8329 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8330 sect->size = sizeof (lwpstat.pr_reg);
8331 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8332 #endif
8333
8334 sect->alignment_power = 2;
8335
8336 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8337 return FALSE;
8338
8339 /* Make a ".reg2/999" section */
8340
8341 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8342 len = strlen (buf) + 1;
8343 name = bfd_alloc (abfd, len);
8344 if (name == NULL)
8345 return FALSE;
8346 memcpy (name, buf, len);
8347
8348 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8349 if (sect == NULL)
8350 return FALSE;
8351
8352 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8353 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8354 sect->filepos = note->descpos
8355 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8356 #endif
8357
8358 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8359 sect->size = sizeof (lwpstat.pr_fpreg);
8360 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8361 #endif
8362
8363 sect->alignment_power = 2;
8364
8365 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8366 }
8367 #endif /* defined (HAVE_LWPSTATUS_T) */
8368
8369 static bfd_boolean
8370 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8371 {
8372 char buf[30];
8373 char *name;
8374 size_t len;
8375 asection *sect;
8376 int type;
8377 int is_active_thread;
8378 bfd_vma base_addr;
8379
8380 if (note->descsz < 728)
8381 return TRUE;
8382
8383 if (! CONST_STRNEQ (note->namedata, "win32"))
8384 return TRUE;
8385
8386 type = bfd_get_32 (abfd, note->descdata);
8387
8388 switch (type)
8389 {
8390 case 1 /* NOTE_INFO_PROCESS */:
8391 /* FIXME: need to add ->core_command. */
8392 /* process_info.pid */
8393 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8394 /* process_info.signal */
8395 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8396 break;
8397
8398 case 2 /* NOTE_INFO_THREAD */:
8399 /* Make a ".reg/999" section. */
8400 /* thread_info.tid */
8401 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8402
8403 len = strlen (buf) + 1;
8404 name = (char *) bfd_alloc (abfd, len);
8405 if (name == NULL)
8406 return FALSE;
8407
8408 memcpy (name, buf, len);
8409
8410 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8411 if (sect == NULL)
8412 return FALSE;
8413
8414 /* sizeof (thread_info.thread_context) */
8415 sect->size = 716;
8416 /* offsetof (thread_info.thread_context) */
8417 sect->filepos = note->descpos + 12;
8418 sect->alignment_power = 2;
8419
8420 /* thread_info.is_active_thread */
8421 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8422
8423 if (is_active_thread)
8424 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8425 return FALSE;
8426 break;
8427
8428 case 3 /* NOTE_INFO_MODULE */:
8429 /* Make a ".module/xxxxxxxx" section. */
8430 /* module_info.base_address */
8431 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8432 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8433
8434 len = strlen (buf) + 1;
8435 name = (char *) bfd_alloc (abfd, len);
8436 if (name == NULL)
8437 return FALSE;
8438
8439 memcpy (name, buf, len);
8440
8441 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8442
8443 if (sect == NULL)
8444 return FALSE;
8445
8446 sect->size = note->descsz;
8447 sect->filepos = note->descpos;
8448 sect->alignment_power = 2;
8449 break;
8450
8451 default:
8452 return TRUE;
8453 }
8454
8455 return TRUE;
8456 }
8457
8458 static bfd_boolean
8459 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8460 {
8461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8462
8463 switch (note->type)
8464 {
8465 default:
8466 return TRUE;
8467
8468 case NT_PRSTATUS:
8469 if (bed->elf_backend_grok_prstatus)
8470 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8471 return TRUE;
8472 #if defined (HAVE_PRSTATUS_T)
8473 return elfcore_grok_prstatus (abfd, note);
8474 #else
8475 return TRUE;
8476 #endif
8477
8478 #if defined (HAVE_PSTATUS_T)
8479 case NT_PSTATUS:
8480 return elfcore_grok_pstatus (abfd, note);
8481 #endif
8482
8483 #if defined (HAVE_LWPSTATUS_T)
8484 case NT_LWPSTATUS:
8485 return elfcore_grok_lwpstatus (abfd, note);
8486 #endif
8487
8488 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8489 return elfcore_grok_prfpreg (abfd, note);
8490
8491 case NT_WIN32PSTATUS:
8492 return elfcore_grok_win32pstatus (abfd, note);
8493
8494 case NT_PRXFPREG: /* Linux SSE extension */
8495 if (note->namesz == 6
8496 && strcmp (note->namedata, "LINUX") == 0)
8497 return elfcore_grok_prxfpreg (abfd, note);
8498 else
8499 return TRUE;
8500
8501 case NT_X86_XSTATE: /* Linux XSAVE extension */
8502 if (note->namesz == 6
8503 && strcmp (note->namedata, "LINUX") == 0)
8504 return elfcore_grok_xstatereg (abfd, note);
8505 else
8506 return TRUE;
8507
8508 case NT_PPC_VMX:
8509 if (note->namesz == 6
8510 && strcmp (note->namedata, "LINUX") == 0)
8511 return elfcore_grok_ppc_vmx (abfd, note);
8512 else
8513 return TRUE;
8514
8515 case NT_PPC_VSX:
8516 if (note->namesz == 6
8517 && strcmp (note->namedata, "LINUX") == 0)
8518 return elfcore_grok_ppc_vsx (abfd, note);
8519 else
8520 return TRUE;
8521
8522 case NT_S390_HIGH_GPRS:
8523 if (note->namesz == 6
8524 && strcmp (note->namedata, "LINUX") == 0)
8525 return elfcore_grok_s390_high_gprs (abfd, note);
8526 else
8527 return TRUE;
8528
8529 case NT_S390_TIMER:
8530 if (note->namesz == 6
8531 && strcmp (note->namedata, "LINUX") == 0)
8532 return elfcore_grok_s390_timer (abfd, note);
8533 else
8534 return TRUE;
8535
8536 case NT_S390_TODCMP:
8537 if (note->namesz == 6
8538 && strcmp (note->namedata, "LINUX") == 0)
8539 return elfcore_grok_s390_todcmp (abfd, note);
8540 else
8541 return TRUE;
8542
8543 case NT_S390_TODPREG:
8544 if (note->namesz == 6
8545 && strcmp (note->namedata, "LINUX") == 0)
8546 return elfcore_grok_s390_todpreg (abfd, note);
8547 else
8548 return TRUE;
8549
8550 case NT_S390_CTRS:
8551 if (note->namesz == 6
8552 && strcmp (note->namedata, "LINUX") == 0)
8553 return elfcore_grok_s390_ctrs (abfd, note);
8554 else
8555 return TRUE;
8556
8557 case NT_S390_PREFIX:
8558 if (note->namesz == 6
8559 && strcmp (note->namedata, "LINUX") == 0)
8560 return elfcore_grok_s390_prefix (abfd, note);
8561 else
8562 return TRUE;
8563
8564 case NT_S390_LAST_BREAK:
8565 if (note->namesz == 6
8566 && strcmp (note->namedata, "LINUX") == 0)
8567 return elfcore_grok_s390_last_break (abfd, note);
8568 else
8569 return TRUE;
8570
8571 case NT_S390_SYSTEM_CALL:
8572 if (note->namesz == 6
8573 && strcmp (note->namedata, "LINUX") == 0)
8574 return elfcore_grok_s390_system_call (abfd, note);
8575 else
8576 return TRUE;
8577
8578 case NT_ARM_VFP:
8579 if (note->namesz == 6
8580 && strcmp (note->namedata, "LINUX") == 0)
8581 return elfcore_grok_arm_vfp (abfd, note);
8582 else
8583 return TRUE;
8584
8585 case NT_PRPSINFO:
8586 case NT_PSINFO:
8587 if (bed->elf_backend_grok_psinfo)
8588 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8589 return TRUE;
8590 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8591 return elfcore_grok_psinfo (abfd, note);
8592 #else
8593 return TRUE;
8594 #endif
8595
8596 case NT_AUXV:
8597 {
8598 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8599 SEC_HAS_CONTENTS);
8600
8601 if (sect == NULL)
8602 return FALSE;
8603 sect->size = note->descsz;
8604 sect->filepos = note->descpos;
8605 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8606
8607 return TRUE;
8608 }
8609 }
8610 }
8611
8612 static bfd_boolean
8613 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8614 {
8615 elf_tdata (abfd)->build_id_size = note->descsz;
8616 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8617 if (elf_tdata (abfd)->build_id == NULL)
8618 return FALSE;
8619
8620 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8621
8622 return TRUE;
8623 }
8624
8625 static bfd_boolean
8626 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8627 {
8628 switch (note->type)
8629 {
8630 default:
8631 return TRUE;
8632
8633 case NT_GNU_BUILD_ID:
8634 return elfobj_grok_gnu_build_id (abfd, note);
8635 }
8636 }
8637
8638 static bfd_boolean
8639 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8640 {
8641 struct sdt_note *cur =
8642 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8643 + note->descsz);
8644
8645 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8646 cur->size = (bfd_size_type) note->descsz;
8647 memcpy (cur->data, note->descdata, note->descsz);
8648
8649 elf_tdata (abfd)->sdt_note_head = cur;
8650
8651 return TRUE;
8652 }
8653
8654 static bfd_boolean
8655 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8656 {
8657 switch (note->type)
8658 {
8659 case NT_STAPSDT:
8660 return elfobj_grok_stapsdt_note_1 (abfd, note);
8661
8662 default:
8663 return TRUE;
8664 }
8665 }
8666
8667 static bfd_boolean
8668 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8669 {
8670 char *cp;
8671
8672 cp = strchr (note->namedata, '@');
8673 if (cp != NULL)
8674 {
8675 *lwpidp = atoi(cp + 1);
8676 return TRUE;
8677 }
8678 return FALSE;
8679 }
8680
8681 static bfd_boolean
8682 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8683 {
8684 /* Signal number at offset 0x08. */
8685 elf_tdata (abfd)->core_signal
8686 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8687
8688 /* Process ID at offset 0x50. */
8689 elf_tdata (abfd)->core_pid
8690 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8691
8692 /* Command name at 0x7c (max 32 bytes, including nul). */
8693 elf_tdata (abfd)->core_command
8694 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8695
8696 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8697 note);
8698 }
8699
8700 static bfd_boolean
8701 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8702 {
8703 int lwp;
8704
8705 if (elfcore_netbsd_get_lwpid (note, &lwp))
8706 elf_tdata (abfd)->core_lwpid = lwp;
8707
8708 if (note->type == NT_NETBSDCORE_PROCINFO)
8709 {
8710 /* NetBSD-specific core "procinfo". Note that we expect to
8711 find this note before any of the others, which is fine,
8712 since the kernel writes this note out first when it
8713 creates a core file. */
8714
8715 return elfcore_grok_netbsd_procinfo (abfd, note);
8716 }
8717
8718 /* As of Jan 2002 there are no other machine-independent notes
8719 defined for NetBSD core files. If the note type is less
8720 than the start of the machine-dependent note types, we don't
8721 understand it. */
8722
8723 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8724 return TRUE;
8725
8726
8727 switch (bfd_get_arch (abfd))
8728 {
8729 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8730 PT_GETFPREGS == mach+2. */
8731
8732 case bfd_arch_alpha:
8733 case bfd_arch_sparc:
8734 switch (note->type)
8735 {
8736 case NT_NETBSDCORE_FIRSTMACH+0:
8737 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8738
8739 case NT_NETBSDCORE_FIRSTMACH+2:
8740 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8741
8742 default:
8743 return TRUE;
8744 }
8745
8746 /* On all other arch's, PT_GETREGS == mach+1 and
8747 PT_GETFPREGS == mach+3. */
8748
8749 default:
8750 switch (note->type)
8751 {
8752 case NT_NETBSDCORE_FIRSTMACH+1:
8753 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8754
8755 case NT_NETBSDCORE_FIRSTMACH+3:
8756 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8757
8758 default:
8759 return TRUE;
8760 }
8761 }
8762 /* NOTREACHED */
8763 }
8764
8765 static bfd_boolean
8766 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8767 {
8768 /* Signal number at offset 0x08. */
8769 elf_tdata (abfd)->core_signal
8770 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8771
8772 /* Process ID at offset 0x20. */
8773 elf_tdata (abfd)->core_pid
8774 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8775
8776 /* Command name at 0x48 (max 32 bytes, including nul). */
8777 elf_tdata (abfd)->core_command
8778 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8779
8780 return TRUE;
8781 }
8782
8783 static bfd_boolean
8784 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8785 {
8786 if (note->type == NT_OPENBSD_PROCINFO)
8787 return elfcore_grok_openbsd_procinfo (abfd, note);
8788
8789 if (note->type == NT_OPENBSD_REGS)
8790 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8791
8792 if (note->type == NT_OPENBSD_FPREGS)
8793 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8794
8795 if (note->type == NT_OPENBSD_XFPREGS)
8796 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8797
8798 if (note->type == NT_OPENBSD_AUXV)
8799 {
8800 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8801 SEC_HAS_CONTENTS);
8802
8803 if (sect == NULL)
8804 return FALSE;
8805 sect->size = note->descsz;
8806 sect->filepos = note->descpos;
8807 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8808
8809 return TRUE;
8810 }
8811
8812 if (note->type == NT_OPENBSD_WCOOKIE)
8813 {
8814 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8815 SEC_HAS_CONTENTS);
8816
8817 if (sect == NULL)
8818 return FALSE;
8819 sect->size = note->descsz;
8820 sect->filepos = note->descpos;
8821 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8822
8823 return TRUE;
8824 }
8825
8826 return TRUE;
8827 }
8828
8829 static bfd_boolean
8830 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8831 {
8832 void *ddata = note->descdata;
8833 char buf[100];
8834 char *name;
8835 asection *sect;
8836 short sig;
8837 unsigned flags;
8838
8839 /* nto_procfs_status 'pid' field is at offset 0. */
8840 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8841
8842 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8843 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8844
8845 /* nto_procfs_status 'flags' field is at offset 8. */
8846 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8847
8848 /* nto_procfs_status 'what' field is at offset 14. */
8849 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8850 {
8851 elf_tdata (abfd)->core_signal = sig;
8852 elf_tdata (abfd)->core_lwpid = *tid;
8853 }
8854
8855 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8856 do not come from signals so we make sure we set the current
8857 thread just in case. */
8858 if (flags & 0x00000080)
8859 elf_tdata (abfd)->core_lwpid = *tid;
8860
8861 /* Make a ".qnx_core_status/%d" section. */
8862 sprintf (buf, ".qnx_core_status/%ld", *tid);
8863
8864 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8865 if (name == NULL)
8866 return FALSE;
8867 strcpy (name, buf);
8868
8869 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8870 if (sect == NULL)
8871 return FALSE;
8872
8873 sect->size = note->descsz;
8874 sect->filepos = note->descpos;
8875 sect->alignment_power = 2;
8876
8877 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8878 }
8879
8880 static bfd_boolean
8881 elfcore_grok_nto_regs (bfd *abfd,
8882 Elf_Internal_Note *note,
8883 long tid,
8884 char *base)
8885 {
8886 char buf[100];
8887 char *name;
8888 asection *sect;
8889
8890 /* Make a "(base)/%d" section. */
8891 sprintf (buf, "%s/%ld", base, tid);
8892
8893 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8894 if (name == NULL)
8895 return FALSE;
8896 strcpy (name, buf);
8897
8898 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8899 if (sect == NULL)
8900 return FALSE;
8901
8902 sect->size = note->descsz;
8903 sect->filepos = note->descpos;
8904 sect->alignment_power = 2;
8905
8906 /* This is the current thread. */
8907 if (elf_tdata (abfd)->core_lwpid == tid)
8908 return elfcore_maybe_make_sect (abfd, base, sect);
8909
8910 return TRUE;
8911 }
8912
8913 #define BFD_QNT_CORE_INFO 7
8914 #define BFD_QNT_CORE_STATUS 8
8915 #define BFD_QNT_CORE_GREG 9
8916 #define BFD_QNT_CORE_FPREG 10
8917
8918 static bfd_boolean
8919 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8920 {
8921 /* Every GREG section has a STATUS section before it. Store the
8922 tid from the previous call to pass down to the next gregs
8923 function. */
8924 static long tid = 1;
8925
8926 switch (note->type)
8927 {
8928 case BFD_QNT_CORE_INFO:
8929 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8930 case BFD_QNT_CORE_STATUS:
8931 return elfcore_grok_nto_status (abfd, note, &tid);
8932 case BFD_QNT_CORE_GREG:
8933 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8934 case BFD_QNT_CORE_FPREG:
8935 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8936 default:
8937 return TRUE;
8938 }
8939 }
8940
8941 static bfd_boolean
8942 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8943 {
8944 char *name;
8945 asection *sect;
8946 size_t len;
8947
8948 /* Use note name as section name. */
8949 len = note->namesz;
8950 name = (char *) bfd_alloc (abfd, len);
8951 if (name == NULL)
8952 return FALSE;
8953 memcpy (name, note->namedata, len);
8954 name[len - 1] = '\0';
8955
8956 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8957 if (sect == NULL)
8958 return FALSE;
8959
8960 sect->size = note->descsz;
8961 sect->filepos = note->descpos;
8962 sect->alignment_power = 1;
8963
8964 return TRUE;
8965 }
8966
8967 /* Function: elfcore_write_note
8968
8969 Inputs:
8970 buffer to hold note, and current size of buffer
8971 name of note
8972 type of note
8973 data for note
8974 size of data for note
8975
8976 Writes note to end of buffer. ELF64 notes are written exactly as
8977 for ELF32, despite the current (as of 2006) ELF gabi specifying
8978 that they ought to have 8-byte namesz and descsz field, and have
8979 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8980
8981 Return:
8982 Pointer to realloc'd buffer, *BUFSIZ updated. */
8983
8984 char *
8985 elfcore_write_note (bfd *abfd,
8986 char *buf,
8987 int *bufsiz,
8988 const char *name,
8989 int type,
8990 const void *input,
8991 int size)
8992 {
8993 Elf_External_Note *xnp;
8994 size_t namesz;
8995 size_t newspace;
8996 char *dest;
8997
8998 namesz = 0;
8999 if (name != NULL)
9000 namesz = strlen (name) + 1;
9001
9002 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
9003
9004 buf = (char *) realloc (buf, *bufsiz + newspace);
9005 if (buf == NULL)
9006 return buf;
9007 dest = buf + *bufsiz;
9008 *bufsiz += newspace;
9009 xnp = (Elf_External_Note *) dest;
9010 H_PUT_32 (abfd, namesz, xnp->namesz);
9011 H_PUT_32 (abfd, size, xnp->descsz);
9012 H_PUT_32 (abfd, type, xnp->type);
9013 dest = xnp->name;
9014 if (name != NULL)
9015 {
9016 memcpy (dest, name, namesz);
9017 dest += namesz;
9018 while (namesz & 3)
9019 {
9020 *dest++ = '\0';
9021 ++namesz;
9022 }
9023 }
9024 memcpy (dest, input, size);
9025 dest += size;
9026 while (size & 3)
9027 {
9028 *dest++ = '\0';
9029 ++size;
9030 }
9031 return buf;
9032 }
9033
9034 char *
9035 elfcore_write_prpsinfo (bfd *abfd,
9036 char *buf,
9037 int *bufsiz,
9038 const char *fname,
9039 const char *psargs)
9040 {
9041 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9042
9043 if (bed->elf_backend_write_core_note != NULL)
9044 {
9045 char *ret;
9046 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9047 NT_PRPSINFO, fname, psargs);
9048 if (ret != NULL)
9049 return ret;
9050 }
9051
9052 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9053 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9054 if (bed->s->elfclass == ELFCLASS32)
9055 {
9056 #if defined (HAVE_PSINFO32_T)
9057 psinfo32_t data;
9058 int note_type = NT_PSINFO;
9059 #else
9060 prpsinfo32_t data;
9061 int note_type = NT_PRPSINFO;
9062 #endif
9063
9064 memset (&data, 0, sizeof (data));
9065 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9066 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9067 return elfcore_write_note (abfd, buf, bufsiz,
9068 "CORE", note_type, &data, sizeof (data));
9069 }
9070 else
9071 #endif
9072 {
9073 #if defined (HAVE_PSINFO_T)
9074 psinfo_t data;
9075 int note_type = NT_PSINFO;
9076 #else
9077 prpsinfo_t data;
9078 int note_type = NT_PRPSINFO;
9079 #endif
9080
9081 memset (&data, 0, sizeof (data));
9082 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9083 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9084 return elfcore_write_note (abfd, buf, bufsiz,
9085 "CORE", note_type, &data, sizeof (data));
9086 }
9087 #endif /* PSINFO_T or PRPSINFO_T */
9088
9089 free (buf);
9090 return NULL;
9091 }
9092
9093 char *
9094 elfcore_write_prstatus (bfd *abfd,
9095 char *buf,
9096 int *bufsiz,
9097 long pid,
9098 int cursig,
9099 const void *gregs)
9100 {
9101 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9102
9103 if (bed->elf_backend_write_core_note != NULL)
9104 {
9105 char *ret;
9106 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9107 NT_PRSTATUS,
9108 pid, cursig, gregs);
9109 if (ret != NULL)
9110 return ret;
9111 }
9112
9113 #if defined (HAVE_PRSTATUS_T)
9114 #if defined (HAVE_PRSTATUS32_T)
9115 if (bed->s->elfclass == ELFCLASS32)
9116 {
9117 prstatus32_t prstat;
9118
9119 memset (&prstat, 0, sizeof (prstat));
9120 prstat.pr_pid = pid;
9121 prstat.pr_cursig = cursig;
9122 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9123 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9124 NT_PRSTATUS, &prstat, sizeof (prstat));
9125 }
9126 else
9127 #endif
9128 {
9129 prstatus_t prstat;
9130
9131 memset (&prstat, 0, sizeof (prstat));
9132 prstat.pr_pid = pid;
9133 prstat.pr_cursig = cursig;
9134 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9135 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9136 NT_PRSTATUS, &prstat, sizeof (prstat));
9137 }
9138 #endif /* HAVE_PRSTATUS_T */
9139
9140 free (buf);
9141 return NULL;
9142 }
9143
9144 #if defined (HAVE_LWPSTATUS_T)
9145 char *
9146 elfcore_write_lwpstatus (bfd *abfd,
9147 char *buf,
9148 int *bufsiz,
9149 long pid,
9150 int cursig,
9151 const void *gregs)
9152 {
9153 lwpstatus_t lwpstat;
9154 const char *note_name = "CORE";
9155
9156 memset (&lwpstat, 0, sizeof (lwpstat));
9157 lwpstat.pr_lwpid = pid >> 16;
9158 lwpstat.pr_cursig = cursig;
9159 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9160 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9161 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9162 #if !defined(gregs)
9163 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9164 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9165 #else
9166 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9167 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9168 #endif
9169 #endif
9170 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9171 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9172 }
9173 #endif /* HAVE_LWPSTATUS_T */
9174
9175 #if defined (HAVE_PSTATUS_T)
9176 char *
9177 elfcore_write_pstatus (bfd *abfd,
9178 char *buf,
9179 int *bufsiz,
9180 long pid,
9181 int cursig ATTRIBUTE_UNUSED,
9182 const void *gregs ATTRIBUTE_UNUSED)
9183 {
9184 const char *note_name = "CORE";
9185 #if defined (HAVE_PSTATUS32_T)
9186 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9187
9188 if (bed->s->elfclass == ELFCLASS32)
9189 {
9190 pstatus32_t pstat;
9191
9192 memset (&pstat, 0, sizeof (pstat));
9193 pstat.pr_pid = pid & 0xffff;
9194 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9195 NT_PSTATUS, &pstat, sizeof (pstat));
9196 return buf;
9197 }
9198 else
9199 #endif
9200 {
9201 pstatus_t pstat;
9202
9203 memset (&pstat, 0, sizeof (pstat));
9204 pstat.pr_pid = pid & 0xffff;
9205 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9206 NT_PSTATUS, &pstat, sizeof (pstat));
9207 return buf;
9208 }
9209 }
9210 #endif /* HAVE_PSTATUS_T */
9211
9212 char *
9213 elfcore_write_prfpreg (bfd *abfd,
9214 char *buf,
9215 int *bufsiz,
9216 const void *fpregs,
9217 int size)
9218 {
9219 const char *note_name = "CORE";
9220 return elfcore_write_note (abfd, buf, bufsiz,
9221 note_name, NT_FPREGSET, fpregs, size);
9222 }
9223
9224 char *
9225 elfcore_write_prxfpreg (bfd *abfd,
9226 char *buf,
9227 int *bufsiz,
9228 const void *xfpregs,
9229 int size)
9230 {
9231 char *note_name = "LINUX";
9232 return elfcore_write_note (abfd, buf, bufsiz,
9233 note_name, NT_PRXFPREG, xfpregs, size);
9234 }
9235
9236 char *
9237 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9238 const void *xfpregs, int size)
9239 {
9240 char *note_name = "LINUX";
9241 return elfcore_write_note (abfd, buf, bufsiz,
9242 note_name, NT_X86_XSTATE, xfpregs, size);
9243 }
9244
9245 char *
9246 elfcore_write_ppc_vmx (bfd *abfd,
9247 char *buf,
9248 int *bufsiz,
9249 const void *ppc_vmx,
9250 int size)
9251 {
9252 char *note_name = "LINUX";
9253 return elfcore_write_note (abfd, buf, bufsiz,
9254 note_name, NT_PPC_VMX, ppc_vmx, size);
9255 }
9256
9257 char *
9258 elfcore_write_ppc_vsx (bfd *abfd,
9259 char *buf,
9260 int *bufsiz,
9261 const void *ppc_vsx,
9262 int size)
9263 {
9264 char *note_name = "LINUX";
9265 return elfcore_write_note (abfd, buf, bufsiz,
9266 note_name, NT_PPC_VSX, ppc_vsx, size);
9267 }
9268
9269 static char *
9270 elfcore_write_s390_high_gprs (bfd *abfd,
9271 char *buf,
9272 int *bufsiz,
9273 const void *s390_high_gprs,
9274 int size)
9275 {
9276 char *note_name = "LINUX";
9277 return elfcore_write_note (abfd, buf, bufsiz,
9278 note_name, NT_S390_HIGH_GPRS,
9279 s390_high_gprs, size);
9280 }
9281
9282 char *
9283 elfcore_write_s390_timer (bfd *abfd,
9284 char *buf,
9285 int *bufsiz,
9286 const void *s390_timer,
9287 int size)
9288 {
9289 char *note_name = "LINUX";
9290 return elfcore_write_note (abfd, buf, bufsiz,
9291 note_name, NT_S390_TIMER, s390_timer, size);
9292 }
9293
9294 char *
9295 elfcore_write_s390_todcmp (bfd *abfd,
9296 char *buf,
9297 int *bufsiz,
9298 const void *s390_todcmp,
9299 int size)
9300 {
9301 char *note_name = "LINUX";
9302 return elfcore_write_note (abfd, buf, bufsiz,
9303 note_name, NT_S390_TODCMP, s390_todcmp, size);
9304 }
9305
9306 char *
9307 elfcore_write_s390_todpreg (bfd *abfd,
9308 char *buf,
9309 int *bufsiz,
9310 const void *s390_todpreg,
9311 int size)
9312 {
9313 char *note_name = "LINUX";
9314 return elfcore_write_note (abfd, buf, bufsiz,
9315 note_name, NT_S390_TODPREG, s390_todpreg, size);
9316 }
9317
9318 char *
9319 elfcore_write_s390_ctrs (bfd *abfd,
9320 char *buf,
9321 int *bufsiz,
9322 const void *s390_ctrs,
9323 int size)
9324 {
9325 char *note_name = "LINUX";
9326 return elfcore_write_note (abfd, buf, bufsiz,
9327 note_name, NT_S390_CTRS, s390_ctrs, size);
9328 }
9329
9330 char *
9331 elfcore_write_s390_prefix (bfd *abfd,
9332 char *buf,
9333 int *bufsiz,
9334 const void *s390_prefix,
9335 int size)
9336 {
9337 char *note_name = "LINUX";
9338 return elfcore_write_note (abfd, buf, bufsiz,
9339 note_name, NT_S390_PREFIX, s390_prefix, size);
9340 }
9341
9342 char *
9343 elfcore_write_s390_last_break (bfd *abfd,
9344 char *buf,
9345 int *bufsiz,
9346 const void *s390_last_break,
9347 int size)
9348 {
9349 char *note_name = "LINUX";
9350 return elfcore_write_note (abfd, buf, bufsiz,
9351 note_name, NT_S390_LAST_BREAK,
9352 s390_last_break, size);
9353 }
9354
9355 char *
9356 elfcore_write_s390_system_call (bfd *abfd,
9357 char *buf,
9358 int *bufsiz,
9359 const void *s390_system_call,
9360 int size)
9361 {
9362 char *note_name = "LINUX";
9363 return elfcore_write_note (abfd, buf, bufsiz,
9364 note_name, NT_S390_SYSTEM_CALL,
9365 s390_system_call, size);
9366 }
9367
9368 char *
9369 elfcore_write_arm_vfp (bfd *abfd,
9370 char *buf,
9371 int *bufsiz,
9372 const void *arm_vfp,
9373 int size)
9374 {
9375 char *note_name = "LINUX";
9376 return elfcore_write_note (abfd, buf, bufsiz,
9377 note_name, NT_ARM_VFP, arm_vfp, size);
9378 }
9379
9380 char *
9381 elfcore_write_register_note (bfd *abfd,
9382 char *buf,
9383 int *bufsiz,
9384 const char *section,
9385 const void *data,
9386 int size)
9387 {
9388 if (strcmp (section, ".reg2") == 0)
9389 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9390 if (strcmp (section, ".reg-xfp") == 0)
9391 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9392 if (strcmp (section, ".reg-xstate") == 0)
9393 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9394 if (strcmp (section, ".reg-ppc-vmx") == 0)
9395 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9396 if (strcmp (section, ".reg-ppc-vsx") == 0)
9397 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9398 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9399 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9400 if (strcmp (section, ".reg-s390-timer") == 0)
9401 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9402 if (strcmp (section, ".reg-s390-todcmp") == 0)
9403 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9404 if (strcmp (section, ".reg-s390-todpreg") == 0)
9405 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9406 if (strcmp (section, ".reg-s390-ctrs") == 0)
9407 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9408 if (strcmp (section, ".reg-s390-prefix") == 0)
9409 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9410 if (strcmp (section, ".reg-s390-last-break") == 0)
9411 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9412 if (strcmp (section, ".reg-s390-system-call") == 0)
9413 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9414 if (strcmp (section, ".reg-arm-vfp") == 0)
9415 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9416 return NULL;
9417 }
9418
9419 static bfd_boolean
9420 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9421 {
9422 char *p;
9423
9424 p = buf;
9425 while (p < buf + size)
9426 {
9427 /* FIXME: bad alignment assumption. */
9428 Elf_External_Note *xnp = (Elf_External_Note *) p;
9429 Elf_Internal_Note in;
9430
9431 if (offsetof (Elf_External_Note, name) > buf - p + size)
9432 return FALSE;
9433
9434 in.type = H_GET_32 (abfd, xnp->type);
9435
9436 in.namesz = H_GET_32 (abfd, xnp->namesz);
9437 in.namedata = xnp->name;
9438 if (in.namesz > buf - in.namedata + size)
9439 return FALSE;
9440
9441 in.descsz = H_GET_32 (abfd, xnp->descsz);
9442 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9443 in.descpos = offset + (in.descdata - buf);
9444 if (in.descsz != 0
9445 && (in.descdata >= buf + size
9446 || in.descsz > buf - in.descdata + size))
9447 return FALSE;
9448
9449 switch (bfd_get_format (abfd))
9450 {
9451 default:
9452 return TRUE;
9453
9454 case bfd_core:
9455 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9456 {
9457 if (! elfcore_grok_netbsd_note (abfd, &in))
9458 return FALSE;
9459 }
9460 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9461 {
9462 if (! elfcore_grok_openbsd_note (abfd, &in))
9463 return FALSE;
9464 }
9465 else if (CONST_STRNEQ (in.namedata, "QNX"))
9466 {
9467 if (! elfcore_grok_nto_note (abfd, &in))
9468 return FALSE;
9469 }
9470 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9471 {
9472 if (! elfcore_grok_spu_note (abfd, &in))
9473 return FALSE;
9474 }
9475 else
9476 {
9477 if (! elfcore_grok_note (abfd, &in))
9478 return FALSE;
9479 }
9480 break;
9481
9482 case bfd_object:
9483 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9484 {
9485 if (! elfobj_grok_gnu_note (abfd, &in))
9486 return FALSE;
9487 }
9488 else if (in.namesz == sizeof "stapsdt"
9489 && strcmp (in.namedata, "stapsdt") == 0)
9490 {
9491 if (! elfobj_grok_stapsdt_note (abfd, &in))
9492 return FALSE;
9493 }
9494 break;
9495 }
9496
9497 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9498 }
9499
9500 return TRUE;
9501 }
9502
9503 static bfd_boolean
9504 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9505 {
9506 char *buf;
9507
9508 if (size <= 0)
9509 return TRUE;
9510
9511 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9512 return FALSE;
9513
9514 buf = (char *) bfd_malloc (size);
9515 if (buf == NULL)
9516 return FALSE;
9517
9518 if (bfd_bread (buf, size, abfd) != size
9519 || !elf_parse_notes (abfd, buf, size, offset))
9520 {
9521 free (buf);
9522 return FALSE;
9523 }
9524
9525 free (buf);
9526 return TRUE;
9527 }
9528 \f
9529 /* Providing external access to the ELF program header table. */
9530
9531 /* Return an upper bound on the number of bytes required to store a
9532 copy of ABFD's program header table entries. Return -1 if an error
9533 occurs; bfd_get_error will return an appropriate code. */
9534
9535 long
9536 bfd_get_elf_phdr_upper_bound (bfd *abfd)
9537 {
9538 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9539 {
9540 bfd_set_error (bfd_error_wrong_format);
9541 return -1;
9542 }
9543
9544 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9545 }
9546
9547 /* Copy ABFD's program header table entries to *PHDRS. The entries
9548 will be stored as an array of Elf_Internal_Phdr structures, as
9549 defined in include/elf/internal.h. To find out how large the
9550 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9551
9552 Return the number of program header table entries read, or -1 if an
9553 error occurs; bfd_get_error will return an appropriate code. */
9554
9555 int
9556 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9557 {
9558 int num_phdrs;
9559
9560 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9561 {
9562 bfd_set_error (bfd_error_wrong_format);
9563 return -1;
9564 }
9565
9566 num_phdrs = elf_elfheader (abfd)->e_phnum;
9567 memcpy (phdrs, elf_tdata (abfd)->phdr,
9568 num_phdrs * sizeof (Elf_Internal_Phdr));
9569
9570 return num_phdrs;
9571 }
9572
9573 enum elf_reloc_type_class
9574 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9575 {
9576 return reloc_class_normal;
9577 }
9578
9579 /* For RELA architectures, return the relocation value for a
9580 relocation against a local symbol. */
9581
9582 bfd_vma
9583 _bfd_elf_rela_local_sym (bfd *abfd,
9584 Elf_Internal_Sym *sym,
9585 asection **psec,
9586 Elf_Internal_Rela *rel)
9587 {
9588 asection *sec = *psec;
9589 bfd_vma relocation;
9590
9591 relocation = (sec->output_section->vma
9592 + sec->output_offset
9593 + sym->st_value);
9594 if ((sec->flags & SEC_MERGE)
9595 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9596 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9597 {
9598 rel->r_addend =
9599 _bfd_merged_section_offset (abfd, psec,
9600 elf_section_data (sec)->sec_info,
9601 sym->st_value + rel->r_addend);
9602 if (sec != *psec)
9603 {
9604 /* If we have changed the section, and our original section is
9605 marked with SEC_EXCLUDE, it means that the original
9606 SEC_MERGE section has been completely subsumed in some
9607 other SEC_MERGE section. In this case, we need to leave
9608 some info around for --emit-relocs. */
9609 if ((sec->flags & SEC_EXCLUDE) != 0)
9610 sec->kept_section = *psec;
9611 sec = *psec;
9612 }
9613 rel->r_addend -= relocation;
9614 rel->r_addend += sec->output_section->vma + sec->output_offset;
9615 }
9616 return relocation;
9617 }
9618
9619 bfd_vma
9620 _bfd_elf_rel_local_sym (bfd *abfd,
9621 Elf_Internal_Sym *sym,
9622 asection **psec,
9623 bfd_vma addend)
9624 {
9625 asection *sec = *psec;
9626
9627 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9628 return sym->st_value + addend;
9629
9630 return _bfd_merged_section_offset (abfd, psec,
9631 elf_section_data (sec)->sec_info,
9632 sym->st_value + addend);
9633 }
9634
9635 bfd_vma
9636 _bfd_elf_section_offset (bfd *abfd,
9637 struct bfd_link_info *info,
9638 asection *sec,
9639 bfd_vma offset)
9640 {
9641 switch (sec->sec_info_type)
9642 {
9643 case SEC_INFO_TYPE_STABS:
9644 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9645 offset);
9646 case SEC_INFO_TYPE_EH_FRAME:
9647 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9648 default:
9649 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9650 {
9651 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9652 bfd_size_type address_size = bed->s->arch_size / 8;
9653 offset = sec->size - offset - address_size;
9654 }
9655 return offset;
9656 }
9657 }
9658 \f
9659 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9660 reconstruct an ELF file by reading the segments out of remote memory
9661 based on the ELF file header at EHDR_VMA and the ELF program headers it
9662 points to. If not null, *LOADBASEP is filled in with the difference
9663 between the VMAs from which the segments were read, and the VMAs the
9664 file headers (and hence BFD's idea of each section's VMA) put them at.
9665
9666 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9667 remote memory at target address VMA into the local buffer at MYADDR; it
9668 should return zero on success or an `errno' code on failure. TEMPL must
9669 be a BFD for an ELF target with the word size and byte order found in
9670 the remote memory. */
9671
9672 bfd *
9673 bfd_elf_bfd_from_remote_memory
9674 (bfd *templ,
9675 bfd_vma ehdr_vma,
9676 bfd_vma *loadbasep,
9677 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9678 {
9679 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9680 (templ, ehdr_vma, loadbasep, target_read_memory);
9681 }
9682 \f
9683 long
9684 _bfd_elf_get_synthetic_symtab (bfd *abfd,
9685 long symcount ATTRIBUTE_UNUSED,
9686 asymbol **syms ATTRIBUTE_UNUSED,
9687 long dynsymcount,
9688 asymbol **dynsyms,
9689 asymbol **ret)
9690 {
9691 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9692 asection *relplt;
9693 asymbol *s;
9694 const char *relplt_name;
9695 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9696 arelent *p;
9697 long count, i, n;
9698 size_t size;
9699 Elf_Internal_Shdr *hdr;
9700 char *names;
9701 asection *plt;
9702
9703 *ret = NULL;
9704
9705 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9706 return 0;
9707
9708 if (dynsymcount <= 0)
9709 return 0;
9710
9711 if (!bed->plt_sym_val)
9712 return 0;
9713
9714 relplt_name = bed->relplt_name;
9715 if (relplt_name == NULL)
9716 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9717 relplt = bfd_get_section_by_name (abfd, relplt_name);
9718 if (relplt == NULL)
9719 return 0;
9720
9721 hdr = &elf_section_data (relplt)->this_hdr;
9722 if (hdr->sh_link != elf_dynsymtab (abfd)
9723 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9724 return 0;
9725
9726 plt = bfd_get_section_by_name (abfd, ".plt");
9727 if (plt == NULL)
9728 return 0;
9729
9730 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9731 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9732 return -1;
9733
9734 count = relplt->size / hdr->sh_entsize;
9735 size = count * sizeof (asymbol);
9736 p = relplt->relocation;
9737 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9738 {
9739 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9740 if (p->addend != 0)
9741 {
9742 #ifdef BFD64
9743 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9744 #else
9745 size += sizeof ("+0x") - 1 + 8;
9746 #endif
9747 }
9748 }
9749
9750 s = *ret = (asymbol *) bfd_malloc (size);
9751 if (s == NULL)
9752 return -1;
9753
9754 names = (char *) (s + count);
9755 p = relplt->relocation;
9756 n = 0;
9757 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9758 {
9759 size_t len;
9760 bfd_vma addr;
9761
9762 addr = bed->plt_sym_val (i, plt, p);
9763 if (addr == (bfd_vma) -1)
9764 continue;
9765
9766 *s = **p->sym_ptr_ptr;
9767 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9768 we are defining a symbol, ensure one of them is set. */
9769 if ((s->flags & BSF_LOCAL) == 0)
9770 s->flags |= BSF_GLOBAL;
9771 s->flags |= BSF_SYNTHETIC;
9772 s->section = plt;
9773 s->value = addr - plt->vma;
9774 s->name = names;
9775 s->udata.p = NULL;
9776 len = strlen ((*p->sym_ptr_ptr)->name);
9777 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9778 names += len;
9779 if (p->addend != 0)
9780 {
9781 char buf[30], *a;
9782
9783 memcpy (names, "+0x", sizeof ("+0x") - 1);
9784 names += sizeof ("+0x") - 1;
9785 bfd_sprintf_vma (abfd, buf, p->addend);
9786 for (a = buf; *a == '0'; ++a)
9787 ;
9788 len = strlen (a);
9789 memcpy (names, a, len);
9790 names += len;
9791 }
9792 memcpy (names, "@plt", sizeof ("@plt"));
9793 names += sizeof ("@plt");
9794 ++s, ++n;
9795 }
9796
9797 return n;
9798 }
9799
9800 /* It is only used by x86-64 so far. */
9801 asection _bfd_elf_large_com_section
9802 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9803 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9804
9805 void
9806 _bfd_elf_set_osabi (bfd * abfd,
9807 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9808 {
9809 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9810
9811 i_ehdrp = elf_elfheader (abfd);
9812
9813 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9814
9815 /* To make things simpler for the loader on Linux systems we set the
9816 osabi field to ELFOSABI_GNU if the binary contains symbols of
9817 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9818 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9819 && elf_tdata (abfd)->has_gnu_symbols)
9820 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9821 }
9822
9823
9824 /* Return TRUE for ELF symbol types that represent functions.
9825 This is the default version of this function, which is sufficient for
9826 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9827
9828 bfd_boolean
9829 _bfd_elf_is_function_type (unsigned int type)
9830 {
9831 return (type == STT_FUNC
9832 || type == STT_GNU_IFUNC);
9833 }
9834
9835 /* If the ELF symbol SYM might be a function in SEC, return the
9836 function size and set *CODE_OFF to the function's entry point,
9837 otherwise return zero. */
9838
9839 bfd_size_type
9840 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9841 bfd_vma *code_off)
9842 {
9843 bfd_size_type size;
9844
9845 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9846 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9847 || sym->section != sec)
9848 return 0;
9849
9850 *code_off = sym->value;
9851 size = 0;
9852 if (!(sym->flags & BSF_SYNTHETIC))
9853 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9854 if (size == 0)
9855 size = 1;
9856 return size;
9857 }
This page took 0.236485 seconds and 5 git commands to generate.