2008-06-03 Christophe Lyon <christophe.lyon@st.com>
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* unallocated */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1782 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1783 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1784
1785 return NULL;
1786 }
1787
1788 static reloc_howto_type *
1789 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1790 const char *r_name)
1791 {
1792 unsigned int i;
1793
1794 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1795 if (elf32_arm_howto_table_1[i].name != NULL
1796 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1797 return &elf32_arm_howto_table_1[i];
1798
1799 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1800 if (elf32_arm_howto_table_2[i].name != NULL
1801 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1802 return &elf32_arm_howto_table_2[i];
1803
1804 return NULL;
1805 }
1806
1807 /* Support for core dump NOTE sections. */
1808
1809 static bfd_boolean
1810 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1811 {
1812 int offset;
1813 size_t size;
1814
1815 switch (note->descsz)
1816 {
1817 default:
1818 return FALSE;
1819
1820 case 148: /* Linux/ARM 32-bit*/
1821 /* pr_cursig */
1822 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1823
1824 /* pr_pid */
1825 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1826
1827 /* pr_reg */
1828 offset = 72;
1829 size = 72;
1830
1831 break;
1832 }
1833
1834 /* Make a ".reg/999" section. */
1835 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1836 size, note->descpos + offset);
1837 }
1838
1839 static bfd_boolean
1840 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1841 {
1842 switch (note->descsz)
1843 {
1844 default:
1845 return FALSE;
1846
1847 case 124: /* Linux/ARM elf_prpsinfo */
1848 elf_tdata (abfd)->core_program
1849 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1850 elf_tdata (abfd)->core_command
1851 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1852 }
1853
1854 /* Note that for some reason, a spurious space is tacked
1855 onto the end of the args in some (at least one anyway)
1856 implementations, so strip it off if it exists. */
1857 {
1858 char *command = elf_tdata (abfd)->core_command;
1859 int n = strlen (command);
1860
1861 if (0 < n && command[n - 1] == ' ')
1862 command[n - 1] = '\0';
1863 }
1864
1865 return TRUE;
1866 }
1867
1868 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1869 #define TARGET_LITTLE_NAME "elf32-littlearm"
1870 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1871 #define TARGET_BIG_NAME "elf32-bigarm"
1872
1873 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1874 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1875
1876 typedef unsigned long int insn32;
1877 typedef unsigned short int insn16;
1878
1879 /* In lieu of proper flags, assume all EABIv4 or later objects are
1880 interworkable. */
1881 #define INTERWORK_FLAG(abfd) \
1882 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1883 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1884
1885 /* The linker script knows the section names for placement.
1886 The entry_names are used to do simple name mangling on the stubs.
1887 Given a function name, and its type, the stub can be found. The
1888 name can be changed. The only requirement is the %s be present. */
1889 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1890 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1891
1892 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1893 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1894
1895 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1896 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1897
1898 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1899 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1900
1901 /* The name of the dynamic interpreter. This is put in the .interp
1902 section. */
1903 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1904
1905 #ifdef FOUR_WORD_PLT
1906
1907 /* The first entry in a procedure linkage table looks like
1908 this. It is set up so that any shared library function that is
1909 called before the relocation has been set up calls the dynamic
1910 linker first. */
1911 static const bfd_vma elf32_arm_plt0_entry [] =
1912 {
1913 0xe52de004, /* str lr, [sp, #-4]! */
1914 0xe59fe010, /* ldr lr, [pc, #16] */
1915 0xe08fe00e, /* add lr, pc, lr */
1916 0xe5bef008, /* ldr pc, [lr, #8]! */
1917 };
1918
1919 /* Subsequent entries in a procedure linkage table look like
1920 this. */
1921 static const bfd_vma elf32_arm_plt_entry [] =
1922 {
1923 0xe28fc600, /* add ip, pc, #NN */
1924 0xe28cca00, /* add ip, ip, #NN */
1925 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1926 0x00000000, /* unused */
1927 };
1928
1929 #else
1930
1931 /* The first entry in a procedure linkage table looks like
1932 this. It is set up so that any shared library function that is
1933 called before the relocation has been set up calls the dynamic
1934 linker first. */
1935 static const bfd_vma elf32_arm_plt0_entry [] =
1936 {
1937 0xe52de004, /* str lr, [sp, #-4]! */
1938 0xe59fe004, /* ldr lr, [pc, #4] */
1939 0xe08fe00e, /* add lr, pc, lr */
1940 0xe5bef008, /* ldr pc, [lr, #8]! */
1941 0x00000000, /* &GOT[0] - . */
1942 };
1943
1944 /* Subsequent entries in a procedure linkage table look like
1945 this. */
1946 static const bfd_vma elf32_arm_plt_entry [] =
1947 {
1948 0xe28fc600, /* add ip, pc, #0xNN00000 */
1949 0xe28cca00, /* add ip, ip, #0xNN000 */
1950 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1951 };
1952
1953 #endif
1954
1955 /* The format of the first entry in the procedure linkage table
1956 for a VxWorks executable. */
1957 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1958 {
1959 0xe52dc008, /* str ip,[sp,#-8]! */
1960 0xe59fc000, /* ldr ip,[pc] */
1961 0xe59cf008, /* ldr pc,[ip,#8] */
1962 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1963 };
1964
1965 /* The format of subsequent entries in a VxWorks executable. */
1966 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1967 {
1968 0xe59fc000, /* ldr ip,[pc] */
1969 0xe59cf000, /* ldr pc,[ip] */
1970 0x00000000, /* .long @got */
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xea000000, /* b _PLT */
1973 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1974 };
1975
1976 /* The format of entries in a VxWorks shared library. */
1977 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1978 {
1979 0xe59fc000, /* ldr ip,[pc] */
1980 0xe79cf009, /* ldr pc,[ip,r9] */
1981 0x00000000, /* .long @got */
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe599f008, /* ldr pc,[r9,#8] */
1984 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1985 };
1986
1987 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1988 #define PLT_THUMB_STUB_SIZE 4
1989 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1990 {
1991 0x4778, /* bx pc */
1992 0x46c0 /* nop */
1993 };
1994
1995 /* The entries in a PLT when using a DLL-based target with multiple
1996 address spaces. */
1997 static const bfd_vma elf32_arm_symbian_plt_entry [] =
1998 {
1999 0xe51ff004, /* ldr pc, [pc, #-4] */
2000 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2001 };
2002
2003 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2004 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2005 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2006 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2007 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2008 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2009
2010 static const bfd_vma arm_long_branch_stub[] =
2011 {
2012 0xe51ff004, /* ldr pc, [pc, #-4] */
2013 0x00000000, /* dcd R_ARM_ABS32(X) */
2014 };
2015
2016 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2017 {
2018 0xe59fc000, /* ldr ip, [pc, #0] */
2019 0xe12fff1c, /* bx ip */
2020 0x00000000, /* dcd R_ARM_ABS32(X) */
2021 };
2022
2023 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2024 {
2025 0x4e02b540, /* push {r6, lr} */
2026 /* ldr r6, [pc, #8] */
2027 0xe7fe46fe, /* mov lr, pc */
2028 /* b.n r6 */
2029 0xbf00bd40, /* pop {r6, pc} */
2030 /* nop */
2031 0x00000000, /* dcd R_ARM_ABS32(X) */
2032 };
2033
2034 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2035 {
2036 0x4e03b540, /* push {r6, lr} */
2037 /* ldr r6, [pc, #12] */
2038 0x473046fe, /* mov lr, pc */
2039 /* bx r6 */
2040 0xe8bd4040, /* pop {r6, pc} */
2041 0xe12fff1e, /* bx lr */
2042 0x00000000, /* dcd R_ARM_ABS32(X) */
2043 };
2044
2045 static const bfd_vma arm_pic_long_branch_stub[] =
2046 {
2047 0xe59fc000, /* ldr r12, [pc] */
2048 0xe08ff00c, /* add pc, pc, ip */
2049 0x00000000, /* dcd R_ARM_ABS32(X) */
2050 };
2051
2052 /* Section name for stubs is the associated section name plus this
2053 string. */
2054 #define STUB_SUFFIX ".stub"
2055
2056 enum elf32_arm_stub_type
2057 {
2058 arm_stub_none,
2059 arm_stub_long_branch,
2060 arm_thumb_v4t_stub_long_branch,
2061 arm_thumb_thumb_stub_long_branch,
2062 arm_thumb_arm_v4t_stub_long_branch,
2063 arm_stub_pic_long_branch,
2064 };
2065
2066 struct elf32_arm_stub_hash_entry
2067 {
2068 /* Base hash table entry structure. */
2069 struct bfd_hash_entry root;
2070
2071 /* The stub section. */
2072 asection *stub_sec;
2073
2074 /* Offset within stub_sec of the beginning of this stub. */
2075 bfd_vma stub_offset;
2076
2077 /* Given the symbol's value and its section we can determine its final
2078 value when building the stubs (so the stub knows where to jump). */
2079 bfd_vma target_value;
2080 asection *target_section;
2081
2082 enum elf32_arm_stub_type stub_type;
2083
2084 /* The symbol table entry, if any, that this was derived from. */
2085 struct elf32_arm_link_hash_entry *h;
2086
2087 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2088 unsigned char st_type;
2089
2090 /* Where this stub is being called from, or, in the case of combined
2091 stub sections, the first input section in the group. */
2092 asection *id_sec;
2093 };
2094
2095 /* Used to build a map of a section. This is required for mixed-endian
2096 code/data. */
2097
2098 typedef struct elf32_elf_section_map
2099 {
2100 bfd_vma vma;
2101 char type;
2102 }
2103 elf32_arm_section_map;
2104
2105 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2106
2107 typedef enum
2108 {
2109 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2110 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2111 VFP11_ERRATUM_ARM_VENEER,
2112 VFP11_ERRATUM_THUMB_VENEER
2113 }
2114 elf32_vfp11_erratum_type;
2115
2116 typedef struct elf32_vfp11_erratum_list
2117 {
2118 struct elf32_vfp11_erratum_list *next;
2119 bfd_vma vma;
2120 union
2121 {
2122 struct
2123 {
2124 struct elf32_vfp11_erratum_list *veneer;
2125 unsigned int vfp_insn;
2126 } b;
2127 struct
2128 {
2129 struct elf32_vfp11_erratum_list *branch;
2130 unsigned int id;
2131 } v;
2132 } u;
2133 elf32_vfp11_erratum_type type;
2134 }
2135 elf32_vfp11_erratum_list;
2136
2137 typedef struct _arm_elf_section_data
2138 {
2139 struct bfd_elf_section_data elf;
2140 unsigned int mapcount;
2141 unsigned int mapsize;
2142 elf32_arm_section_map *map;
2143 unsigned int erratumcount;
2144 elf32_vfp11_erratum_list *erratumlist;
2145 }
2146 _arm_elf_section_data;
2147
2148 #define elf32_arm_section_data(sec) \
2149 ((_arm_elf_section_data *) elf_section_data (sec))
2150
2151 /* The size of the thread control block. */
2152 #define TCB_SIZE 8
2153
2154 struct elf_arm_obj_tdata
2155 {
2156 struct elf_obj_tdata root;
2157
2158 /* tls_type for each local got entry. */
2159 char *local_got_tls_type;
2160
2161 /* Zero to warn when linking objects with incompatible enum sizes. */
2162 int no_enum_size_warning;
2163 };
2164
2165 #define elf_arm_tdata(bfd) \
2166 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2167
2168 #define elf32_arm_local_got_tls_type(bfd) \
2169 (elf_arm_tdata (bfd)->local_got_tls_type)
2170
2171 #define is_arm_elf(bfd) \
2172 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2173 && elf_tdata (bfd) != NULL \
2174 && elf_object_id (bfd) == ARM_ELF_TDATA)
2175
2176 static bfd_boolean
2177 elf32_arm_mkobject (bfd *abfd)
2178 {
2179 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2180 ARM_ELF_TDATA);
2181 }
2182
2183 /* The ARM linker needs to keep track of the number of relocs that it
2184 decides to copy in check_relocs for each symbol. This is so that
2185 it can discard PC relative relocs if it doesn't need them when
2186 linking with -Bsymbolic. We store the information in a field
2187 extending the regular ELF linker hash table. */
2188
2189 /* This structure keeps track of the number of relocs we have copied
2190 for a given symbol. */
2191 struct elf32_arm_relocs_copied
2192 {
2193 /* Next section. */
2194 struct elf32_arm_relocs_copied * next;
2195 /* A section in dynobj. */
2196 asection * section;
2197 /* Number of relocs copied in this section. */
2198 bfd_size_type count;
2199 /* Number of PC-relative relocs copied in this section. */
2200 bfd_size_type pc_count;
2201 };
2202
2203 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2204
2205 /* Arm ELF linker hash entry. */
2206 struct elf32_arm_link_hash_entry
2207 {
2208 struct elf_link_hash_entry root;
2209
2210 /* Number of PC relative relocs copied for this symbol. */
2211 struct elf32_arm_relocs_copied * relocs_copied;
2212
2213 /* We reference count Thumb references to a PLT entry separately,
2214 so that we can emit the Thumb trampoline only if needed. */
2215 bfd_signed_vma plt_thumb_refcount;
2216
2217 /* Some references from Thumb code may be eliminated by BL->BLX
2218 conversion, so record them separately. */
2219 bfd_signed_vma plt_maybe_thumb_refcount;
2220
2221 /* Since PLT entries have variable size if the Thumb prologue is
2222 used, we need to record the index into .got.plt instead of
2223 recomputing it from the PLT offset. */
2224 bfd_signed_vma plt_got_offset;
2225
2226 #define GOT_UNKNOWN 0
2227 #define GOT_NORMAL 1
2228 #define GOT_TLS_GD 2
2229 #define GOT_TLS_IE 4
2230 unsigned char tls_type;
2231
2232 /* The symbol marking the real symbol location for exported thumb
2233 symbols with Arm stubs. */
2234 struct elf_link_hash_entry *export_glue;
2235
2236 /* A pointer to the most recently used stub hash entry against this
2237 symbol. */
2238 struct elf32_arm_stub_hash_entry *stub_cache;
2239 };
2240
2241 /* Traverse an arm ELF linker hash table. */
2242 #define elf32_arm_link_hash_traverse(table, func, info) \
2243 (elf_link_hash_traverse \
2244 (&(table)->root, \
2245 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2246 (info)))
2247
2248 /* Get the ARM elf linker hash table from a link_info structure. */
2249 #define elf32_arm_hash_table(info) \
2250 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2251
2252 #define arm_stub_hash_lookup(table, string, create, copy) \
2253 ((struct elf32_arm_stub_hash_entry *) \
2254 bfd_hash_lookup ((table), (string), (create), (copy)))
2255
2256 /* ARM ELF linker hash table. */
2257 struct elf32_arm_link_hash_table
2258 {
2259 /* The main hash table. */
2260 struct elf_link_hash_table root;
2261
2262 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2263 bfd_size_type thumb_glue_size;
2264
2265 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2266 bfd_size_type arm_glue_size;
2267
2268 /* The size in bytes of section containing the ARMv4 BX veneers. */
2269 bfd_size_type bx_glue_size;
2270
2271 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2272 veneer has been populated. */
2273 bfd_vma bx_glue_offset[15];
2274
2275 /* The size in bytes of the section containing glue for VFP11 erratum
2276 veneers. */
2277 bfd_size_type vfp11_erratum_glue_size;
2278
2279 /* An arbitrary input BFD chosen to hold the glue sections. */
2280 bfd * bfd_of_glue_owner;
2281
2282 /* Nonzero to output a BE8 image. */
2283 int byteswap_code;
2284
2285 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2286 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2287 int target1_is_rel;
2288
2289 /* The relocation to use for R_ARM_TARGET2 relocations. */
2290 int target2_reloc;
2291
2292 /* 0 = Ignore R_ARM_V4BX.
2293 1 = Convert BX to MOV PC.
2294 2 = Generate v4 interworing stubs. */
2295 int fix_v4bx;
2296
2297 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2298 int use_blx;
2299
2300 /* What sort of code sequences we should look for which may trigger the
2301 VFP11 denorm erratum. */
2302 bfd_arm_vfp11_fix vfp11_fix;
2303
2304 /* Global counter for the number of fixes we have emitted. */
2305 int num_vfp11_fixes;
2306
2307 /* Nonzero to force PIC branch veneers. */
2308 int pic_veneer;
2309
2310 /* The number of bytes in the initial entry in the PLT. */
2311 bfd_size_type plt_header_size;
2312
2313 /* The number of bytes in the subsequent PLT etries. */
2314 bfd_size_type plt_entry_size;
2315
2316 /* True if the target system is VxWorks. */
2317 int vxworks_p;
2318
2319 /* True if the target system is Symbian OS. */
2320 int symbian_p;
2321
2322 /* True if the target uses REL relocations. */
2323 int use_rel;
2324
2325 /* Short-cuts to get to dynamic linker sections. */
2326 asection *sgot;
2327 asection *sgotplt;
2328 asection *srelgot;
2329 asection *splt;
2330 asection *srelplt;
2331 asection *sdynbss;
2332 asection *srelbss;
2333
2334 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2335 asection *srelplt2;
2336
2337 /* Data for R_ARM_TLS_LDM32 relocations. */
2338 union
2339 {
2340 bfd_signed_vma refcount;
2341 bfd_vma offset;
2342 } tls_ldm_got;
2343
2344 /* Small local sym to section mapping cache. */
2345 struct sym_sec_cache sym_sec;
2346
2347 /* For convenience in allocate_dynrelocs. */
2348 bfd * obfd;
2349
2350 /* The stub hash table. */
2351 struct bfd_hash_table stub_hash_table;
2352
2353 /* Linker stub bfd. */
2354 bfd *stub_bfd;
2355
2356 /* Linker call-backs. */
2357 asection * (*add_stub_section) (const char *, asection *);
2358 void (*layout_sections_again) (void);
2359
2360 /* Array to keep track of which stub sections have been created, and
2361 information on stub grouping. */
2362 struct map_stub
2363 {
2364 /* This is the section to which stubs in the group will be
2365 attached. */
2366 asection *link_sec;
2367 /* The stub section. */
2368 asection *stub_sec;
2369 } *stub_group;
2370
2371 /* Assorted information used by elf32_arm_size_stubs. */
2372 unsigned int bfd_count;
2373 int top_index;
2374 asection **input_list;
2375 };
2376
2377 /* Create an entry in an ARM ELF linker hash table. */
2378
2379 static struct bfd_hash_entry *
2380 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2381 struct bfd_hash_table * table,
2382 const char * string)
2383 {
2384 struct elf32_arm_link_hash_entry * ret =
2385 (struct elf32_arm_link_hash_entry *) entry;
2386
2387 /* Allocate the structure if it has not already been allocated by a
2388 subclass. */
2389 if (ret == NULL)
2390 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2391 if (ret == NULL)
2392 return (struct bfd_hash_entry *) ret;
2393
2394 /* Call the allocation method of the superclass. */
2395 ret = ((struct elf32_arm_link_hash_entry *)
2396 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2397 table, string));
2398 if (ret != NULL)
2399 {
2400 ret->relocs_copied = NULL;
2401 ret->tls_type = GOT_UNKNOWN;
2402 ret->plt_thumb_refcount = 0;
2403 ret->plt_maybe_thumb_refcount = 0;
2404 ret->plt_got_offset = -1;
2405 ret->export_glue = NULL;
2406
2407 ret->stub_cache = NULL;
2408 }
2409
2410 return (struct bfd_hash_entry *) ret;
2411 }
2412
2413 /* Initialize an entry in the stub hash table. */
2414
2415 static struct bfd_hash_entry *
2416 stub_hash_newfunc (struct bfd_hash_entry *entry,
2417 struct bfd_hash_table *table,
2418 const char *string)
2419 {
2420 /* Allocate the structure if it has not already been allocated by a
2421 subclass. */
2422 if (entry == NULL)
2423 {
2424 entry = bfd_hash_allocate (table,
2425 sizeof (struct elf32_arm_stub_hash_entry));
2426 if (entry == NULL)
2427 return entry;
2428 }
2429
2430 /* Call the allocation method of the superclass. */
2431 entry = bfd_hash_newfunc (entry, table, string);
2432 if (entry != NULL)
2433 {
2434 struct elf32_arm_stub_hash_entry *eh;
2435
2436 /* Initialize the local fields. */
2437 eh = (struct elf32_arm_stub_hash_entry *) entry;
2438 eh->stub_sec = NULL;
2439 eh->stub_offset = 0;
2440 eh->target_value = 0;
2441 eh->target_section = NULL;
2442 eh->stub_type = arm_stub_none;
2443 eh->h = NULL;
2444 eh->id_sec = NULL;
2445 }
2446
2447 return entry;
2448 }
2449
2450 /* Return true if NAME is the name of the relocation section associated
2451 with S. */
2452
2453 static bfd_boolean
2454 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2455 const char *name, asection *s)
2456 {
2457 if (htab->use_rel)
2458 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2459 else
2460 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2461 }
2462
2463 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2464 shortcuts to them in our hash table. */
2465
2466 static bfd_boolean
2467 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2468 {
2469 struct elf32_arm_link_hash_table *htab;
2470
2471 htab = elf32_arm_hash_table (info);
2472 /* BPABI objects never have a GOT, or associated sections. */
2473 if (htab->symbian_p)
2474 return TRUE;
2475
2476 if (! _bfd_elf_create_got_section (dynobj, info))
2477 return FALSE;
2478
2479 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2480 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2481 if (!htab->sgot || !htab->sgotplt)
2482 abort ();
2483
2484 htab->srelgot = bfd_make_section_with_flags (dynobj,
2485 RELOC_SECTION (htab, ".got"),
2486 (SEC_ALLOC | SEC_LOAD
2487 | SEC_HAS_CONTENTS
2488 | SEC_IN_MEMORY
2489 | SEC_LINKER_CREATED
2490 | SEC_READONLY));
2491 if (htab->srelgot == NULL
2492 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2493 return FALSE;
2494 return TRUE;
2495 }
2496
2497 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2498 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2499 hash table. */
2500
2501 static bfd_boolean
2502 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2503 {
2504 struct elf32_arm_link_hash_table *htab;
2505
2506 htab = elf32_arm_hash_table (info);
2507 if (!htab->sgot && !create_got_section (dynobj, info))
2508 return FALSE;
2509
2510 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2511 return FALSE;
2512
2513 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2514 htab->srelplt = bfd_get_section_by_name (dynobj,
2515 RELOC_SECTION (htab, ".plt"));
2516 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2517 if (!info->shared)
2518 htab->srelbss = bfd_get_section_by_name (dynobj,
2519 RELOC_SECTION (htab, ".bss"));
2520
2521 if (htab->vxworks_p)
2522 {
2523 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2524 return FALSE;
2525
2526 if (info->shared)
2527 {
2528 htab->plt_header_size = 0;
2529 htab->plt_entry_size
2530 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2531 }
2532 else
2533 {
2534 htab->plt_header_size
2535 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2536 htab->plt_entry_size
2537 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2538 }
2539 }
2540
2541 if (!htab->splt
2542 || !htab->srelplt
2543 || !htab->sdynbss
2544 || (!info->shared && !htab->srelbss))
2545 abort ();
2546
2547 return TRUE;
2548 }
2549
2550 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2551
2552 static void
2553 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2554 struct elf_link_hash_entry *dir,
2555 struct elf_link_hash_entry *ind)
2556 {
2557 struct elf32_arm_link_hash_entry *edir, *eind;
2558
2559 edir = (struct elf32_arm_link_hash_entry *) dir;
2560 eind = (struct elf32_arm_link_hash_entry *) ind;
2561
2562 if (eind->relocs_copied != NULL)
2563 {
2564 if (edir->relocs_copied != NULL)
2565 {
2566 struct elf32_arm_relocs_copied **pp;
2567 struct elf32_arm_relocs_copied *p;
2568
2569 /* Add reloc counts against the indirect sym to the direct sym
2570 list. Merge any entries against the same section. */
2571 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2572 {
2573 struct elf32_arm_relocs_copied *q;
2574
2575 for (q = edir->relocs_copied; q != NULL; q = q->next)
2576 if (q->section == p->section)
2577 {
2578 q->pc_count += p->pc_count;
2579 q->count += p->count;
2580 *pp = p->next;
2581 break;
2582 }
2583 if (q == NULL)
2584 pp = &p->next;
2585 }
2586 *pp = edir->relocs_copied;
2587 }
2588
2589 edir->relocs_copied = eind->relocs_copied;
2590 eind->relocs_copied = NULL;
2591 }
2592
2593 if (ind->root.type == bfd_link_hash_indirect)
2594 {
2595 /* Copy over PLT info. */
2596 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2597 eind->plt_thumb_refcount = 0;
2598 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2599 eind->plt_maybe_thumb_refcount = 0;
2600
2601 if (dir->got.refcount <= 0)
2602 {
2603 edir->tls_type = eind->tls_type;
2604 eind->tls_type = GOT_UNKNOWN;
2605 }
2606 }
2607
2608 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2609 }
2610
2611 /* Create an ARM elf linker hash table. */
2612
2613 static struct bfd_link_hash_table *
2614 elf32_arm_link_hash_table_create (bfd *abfd)
2615 {
2616 struct elf32_arm_link_hash_table *ret;
2617 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2618
2619 ret = bfd_malloc (amt);
2620 if (ret == NULL)
2621 return NULL;
2622
2623 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2624 elf32_arm_link_hash_newfunc,
2625 sizeof (struct elf32_arm_link_hash_entry)))
2626 {
2627 free (ret);
2628 return NULL;
2629 }
2630
2631 ret->sgot = NULL;
2632 ret->sgotplt = NULL;
2633 ret->srelgot = NULL;
2634 ret->splt = NULL;
2635 ret->srelplt = NULL;
2636 ret->sdynbss = NULL;
2637 ret->srelbss = NULL;
2638 ret->srelplt2 = NULL;
2639 ret->thumb_glue_size = 0;
2640 ret->arm_glue_size = 0;
2641 ret->bx_glue_size = 0;
2642 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2643 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2644 ret->vfp11_erratum_glue_size = 0;
2645 ret->num_vfp11_fixes = 0;
2646 ret->bfd_of_glue_owner = NULL;
2647 ret->byteswap_code = 0;
2648 ret->target1_is_rel = 0;
2649 ret->target2_reloc = R_ARM_NONE;
2650 #ifdef FOUR_WORD_PLT
2651 ret->plt_header_size = 16;
2652 ret->plt_entry_size = 16;
2653 #else
2654 ret->plt_header_size = 20;
2655 ret->plt_entry_size = 12;
2656 #endif
2657 ret->fix_v4bx = 0;
2658 ret->use_blx = 0;
2659 ret->vxworks_p = 0;
2660 ret->symbian_p = 0;
2661 ret->use_rel = 1;
2662 ret->sym_sec.abfd = NULL;
2663 ret->obfd = abfd;
2664 ret->tls_ldm_got.refcount = 0;
2665
2666 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2667 sizeof (struct elf32_arm_stub_hash_entry)))
2668 {
2669 free (ret);
2670 return NULL;
2671 }
2672
2673 return &ret->root.root;
2674 }
2675
2676 /* Free the derived linker hash table. */
2677
2678 static void
2679 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2680 {
2681 struct elf32_arm_link_hash_table *ret
2682 = (struct elf32_arm_link_hash_table *) hash;
2683
2684 bfd_hash_table_free (&ret->stub_hash_table);
2685 _bfd_generic_link_hash_table_free (hash);
2686 }
2687
2688 /* Determine if we're dealing with a Thumb only architecture. */
2689
2690 static bfd_boolean
2691 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2692 {
2693 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2694 Tag_CPU_arch);
2695 int profile;
2696
2697 if (arch != TAG_CPU_ARCH_V7)
2698 return FALSE;
2699
2700 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2701 Tag_CPU_arch_profile);
2702
2703 return profile == 'M';
2704 }
2705
2706 /* Determine if we're dealing with a Thumb-2 object. */
2707
2708 static bfd_boolean
2709 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2710 {
2711 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2712 Tag_CPU_arch);
2713 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2714 }
2715
2716 static bfd_boolean
2717 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2718 {
2719 switch (stub_type)
2720 {
2721 case arm_thumb_thumb_stub_long_branch:
2722 case arm_thumb_arm_v4t_stub_long_branch:
2723 return TRUE;
2724 case arm_stub_none:
2725 BFD_FAIL ();
2726 return FALSE;
2727 break;
2728 default:
2729 return FALSE;
2730 }
2731 }
2732
2733 /* Determine the type of stub needed, if any, for a call. */
2734
2735 static enum elf32_arm_stub_type
2736 arm_type_of_stub (struct bfd_link_info *info,
2737 asection *input_sec,
2738 const Elf_Internal_Rela *rel,
2739 unsigned char st_type,
2740 struct elf32_arm_link_hash_entry *hash,
2741 bfd_vma destination)
2742 {
2743 bfd_vma location;
2744 bfd_signed_vma branch_offset;
2745 unsigned int r_type;
2746 struct elf32_arm_link_hash_table * globals;
2747 int thumb2;
2748 int thumb_only;
2749 enum elf32_arm_stub_type stub_type = arm_stub_none;
2750
2751 /* We don't know the actual type of destination in case it is of
2752 type STT_SECTION: give up */
2753 if (st_type == STT_SECTION)
2754 return stub_type;
2755
2756 globals = elf32_arm_hash_table (info);
2757
2758 thumb_only = using_thumb_only (globals);
2759
2760 thumb2 = using_thumb2 (globals);
2761
2762 /* Determine where the call point is. */
2763 location = (input_sec->output_offset
2764 + input_sec->output_section->vma
2765 + rel->r_offset);
2766
2767 branch_offset = (bfd_signed_vma)(destination - location);
2768
2769 r_type = ELF32_R_TYPE (rel->r_info);
2770
2771 /* If the call will go through a PLT entry then we do not need
2772 glue. */
2773 if (globals->splt != NULL && hash->root.plt.offset != (bfd_vma) -1)
2774 return stub_type;
2775
2776 if (r_type == R_ARM_THM_CALL)
2777 {
2778 if ((!thumb2
2779 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2780 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2781 || (thumb2
2782 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2783 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2784 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2785 {
2786 if (st_type == STT_ARM_TFUNC)
2787 {
2788 /* Thumb to thumb. */
2789 if (!thumb_only)
2790 {
2791 stub_type = (info->shared | globals->pic_veneer)
2792 ? ((globals->use_blx)
2793 ? arm_stub_pic_long_branch
2794 : arm_stub_none)
2795 : (globals->use_blx)
2796 ? arm_stub_long_branch
2797 : arm_stub_none;
2798 }
2799 else
2800 {
2801 stub_type = (info->shared | globals->pic_veneer)
2802 ? arm_stub_none
2803 : (globals->use_blx)
2804 ? arm_thumb_thumb_stub_long_branch
2805 : arm_stub_none;
2806 }
2807 }
2808 else
2809 {
2810 /* Thumb to arm. */
2811 stub_type = (info->shared | globals->pic_veneer)
2812 ? ((globals->use_blx)
2813 ? arm_stub_pic_long_branch
2814 : arm_stub_none)
2815 : (globals->use_blx)
2816 ? arm_stub_long_branch
2817 : arm_thumb_arm_v4t_stub_long_branch;
2818 }
2819 }
2820 }
2821 else if (r_type == R_ARM_CALL)
2822 {
2823 if (st_type == STT_ARM_TFUNC)
2824 {
2825 /* Arm to thumb. */
2826 /* We have an extra 2-bytes reach because of the mode change
2827 (bit 24 (H) of BLX encoding). */
2828 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2829 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2830 || !globals->use_blx)
2831 {
2832 stub_type = (info->shared | globals->pic_veneer)
2833 ? arm_stub_pic_long_branch
2834 : (globals->use_blx)
2835 ? arm_stub_long_branch
2836 : arm_thumb_v4t_stub_long_branch;
2837 }
2838 }
2839 else
2840 {
2841 /* Arm to arm. */
2842 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2843 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2844 {
2845 stub_type = (info->shared | globals->pic_veneer)
2846 ? arm_stub_pic_long_branch
2847 : arm_stub_long_branch;
2848 }
2849 }
2850 }
2851
2852 return stub_type;
2853 }
2854
2855 /* Build a name for an entry in the stub hash table. */
2856
2857 static char *
2858 elf32_arm_stub_name (const asection *input_section,
2859 const asection *sym_sec,
2860 const struct elf32_arm_link_hash_entry *hash,
2861 const Elf_Internal_Rela *rel)
2862 {
2863 char *stub_name;
2864 bfd_size_type len;
2865
2866 if (hash)
2867 {
2868 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2869 stub_name = bfd_malloc (len);
2870 if (stub_name != NULL)
2871 sprintf (stub_name, "%08x_%s+%x",
2872 input_section->id & 0xffffffff,
2873 hash->root.root.root.string,
2874 (int) rel->r_addend & 0xffffffff);
2875 }
2876 else
2877 {
2878 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2879 stub_name = bfd_malloc (len);
2880 if (stub_name != NULL)
2881 sprintf (stub_name, "%08x_%x:%x+%x",
2882 input_section->id & 0xffffffff,
2883 sym_sec->id & 0xffffffff,
2884 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2885 (int) rel->r_addend & 0xffffffff);
2886 }
2887
2888 return stub_name;
2889 }
2890
2891 /* Look up an entry in the stub hash. Stub entries are cached because
2892 creating the stub name takes a bit of time. */
2893
2894 static struct elf32_arm_stub_hash_entry *
2895 elf32_arm_get_stub_entry (const asection *input_section,
2896 const asection *sym_sec,
2897 struct elf_link_hash_entry *hash,
2898 const Elf_Internal_Rela *rel,
2899 struct elf32_arm_link_hash_table *htab)
2900 {
2901 struct elf32_arm_stub_hash_entry *stub_entry;
2902 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2903 const asection *id_sec;
2904
2905 if ((input_section->flags & SEC_CODE) == 0)
2906 return NULL;
2907
2908 /* If this input section is part of a group of sections sharing one
2909 stub section, then use the id of the first section in the group.
2910 Stub names need to include a section id, as there may well be
2911 more than one stub used to reach say, printf, and we need to
2912 distinguish between them. */
2913 id_sec = htab->stub_group[input_section->id].link_sec;
2914
2915 if (h != NULL && h->stub_cache != NULL
2916 && h->stub_cache->h == h
2917 && h->stub_cache->id_sec == id_sec)
2918 {
2919 stub_entry = h->stub_cache;
2920 }
2921 else
2922 {
2923 char *stub_name;
2924
2925 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2926 if (stub_name == NULL)
2927 return NULL;
2928
2929 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2930 stub_name, FALSE, FALSE);
2931 if (h != NULL)
2932 h->stub_cache = stub_entry;
2933
2934 free (stub_name);
2935 }
2936
2937 return stub_entry;
2938 }
2939
2940 /* Add a new stub entry to the stub hash. Not all fields of the new
2941 stub entry are initialised. */
2942
2943 static struct elf32_arm_stub_hash_entry *
2944 elf32_arm_add_stub (const char *stub_name,
2945 asection *section,
2946 struct elf32_arm_link_hash_table *htab)
2947 {
2948 asection *link_sec;
2949 asection *stub_sec;
2950 struct elf32_arm_stub_hash_entry *stub_entry;
2951
2952 link_sec = htab->stub_group[section->id].link_sec;
2953 stub_sec = htab->stub_group[section->id].stub_sec;
2954 if (stub_sec == NULL)
2955 {
2956 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2957 if (stub_sec == NULL)
2958 {
2959 size_t namelen;
2960 bfd_size_type len;
2961 char *s_name;
2962
2963 namelen = strlen (link_sec->name);
2964 len = namelen + sizeof (STUB_SUFFIX);
2965 s_name = bfd_alloc (htab->stub_bfd, len);
2966 if (s_name == NULL)
2967 return NULL;
2968
2969 memcpy (s_name, link_sec->name, namelen);
2970 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2971 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2972 if (stub_sec == NULL)
2973 return NULL;
2974 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2975 }
2976 htab->stub_group[section->id].stub_sec = stub_sec;
2977 }
2978
2979 /* Enter this entry into the linker stub hash table. */
2980 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2981 TRUE, FALSE);
2982 if (stub_entry == NULL)
2983 {
2984 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2985 section->owner,
2986 stub_name);
2987 return NULL;
2988 }
2989
2990 stub_entry->stub_sec = stub_sec;
2991 stub_entry->stub_offset = 0;
2992 stub_entry->id_sec = link_sec;
2993
2994 return stub_entry;
2995 }
2996
2997 /* Store an Arm insn into an output section not processed by
2998 elf32_arm_write_section. */
2999
3000 static void
3001 put_arm_insn (struct elf32_arm_link_hash_table *htab,
3002 bfd * output_bfd, bfd_vma val, void * ptr)
3003 {
3004 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3005 bfd_putl32 (val, ptr);
3006 else
3007 bfd_putb32 (val, ptr);
3008 }
3009
3010 /* Store a 16-bit Thumb insn into an output section not processed by
3011 elf32_arm_write_section. */
3012
3013 static void
3014 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
3015 bfd * output_bfd, bfd_vma val, void * ptr)
3016 {
3017 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3018 bfd_putl16 (val, ptr);
3019 else
3020 bfd_putb16 (val, ptr);
3021 }
3022
3023 static bfd_boolean
3024 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3025 void * in_arg)
3026 {
3027 struct elf32_arm_stub_hash_entry *stub_entry;
3028 struct bfd_link_info *info;
3029 struct elf32_arm_link_hash_table *htab;
3030 asection *stub_sec;
3031 bfd *stub_bfd;
3032 bfd_vma stub_addr;
3033 bfd_byte *loc;
3034 bfd_vma sym_value;
3035 int template_size;
3036 int size;
3037 const bfd_vma *template;
3038 int i;
3039 struct elf32_arm_link_hash_table * globals;
3040
3041 /* Massage our args to the form they really have. */
3042 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3043 info = (struct bfd_link_info *) in_arg;
3044
3045 globals = elf32_arm_hash_table (info);
3046
3047 htab = elf32_arm_hash_table (info);
3048 stub_sec = stub_entry->stub_sec;
3049
3050 /* Make a note of the offset within the stubs for this entry. */
3051 stub_entry->stub_offset = stub_sec->size;
3052 loc = stub_sec->contents + stub_entry->stub_offset;
3053
3054 stub_bfd = stub_sec->owner;
3055
3056 /* This is the address of the start of the stub. */
3057 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3058 + stub_entry->stub_offset;
3059
3060 /* This is the address of the stub destination. */
3061 sym_value = (stub_entry->target_value
3062 + stub_entry->target_section->output_offset
3063 + stub_entry->target_section->output_section->vma);
3064
3065 switch (stub_entry->stub_type)
3066 {
3067 case arm_stub_long_branch:
3068 template = arm_long_branch_stub;
3069 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3070 break;
3071 case arm_thumb_v4t_stub_long_branch:
3072 template = arm_thumb_v4t_long_branch_stub;
3073 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3074 break;
3075 case arm_thumb_thumb_stub_long_branch:
3076 template = arm_thumb_thumb_long_branch_stub;
3077 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3078 break;
3079 case arm_thumb_arm_v4t_stub_long_branch:
3080 template = arm_thumb_arm_v4t_long_branch_stub;
3081 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3082 break;
3083 case arm_stub_pic_long_branch:
3084 template = arm_pic_long_branch_stub;
3085 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3086 break;
3087 default:
3088 BFD_FAIL ();
3089 return FALSE;
3090 }
3091
3092 size = 0;
3093 for (i = 0; i < (template_size / 4); i++)
3094 {
3095 /* A 0 pattern is a placeholder, every other pattern is an
3096 instruction. */
3097 if (template[i] != 0)
3098 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3099 else
3100 bfd_put_32 (stub_bfd, template[i], loc + size);
3101
3102 size += 4;
3103 }
3104 stub_sec->size += size;
3105
3106 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3107 if (stub_entry->st_type == STT_ARM_TFUNC)
3108 sym_value |= 1;
3109
3110 switch (stub_entry->stub_type)
3111 {
3112 case arm_stub_long_branch:
3113 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3114 stub_bfd, stub_sec, stub_sec->contents + 4,
3115 stub_entry->stub_offset, sym_value, 0);
3116 break;
3117 case arm_thumb_v4t_stub_long_branch:
3118 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3119 stub_bfd, stub_sec, stub_sec->contents + 8,
3120 stub_entry->stub_offset, sym_value, 0);
3121 break;
3122 case arm_thumb_thumb_stub_long_branch:
3123 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3124 stub_bfd, stub_sec, stub_sec->contents + 12,
3125 stub_entry->stub_offset, sym_value, 0);
3126 break;
3127 case arm_thumb_arm_v4t_stub_long_branch:
3128 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3129 stub_bfd, stub_sec, stub_sec->contents + 20,
3130 stub_entry->stub_offset, sym_value, 0);
3131 break;
3132 case arm_stub_pic_long_branch:
3133 /* We want the value relative to the address 8 bytes from the
3134 start of the stub. */
3135 sym_value -= stub_addr + 8;
3136
3137 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3138 stub_bfd, stub_sec, stub_sec->contents + 8,
3139 stub_entry->stub_offset, sym_value, 0);
3140 break;
3141 default:
3142 break;
3143 }
3144
3145 return TRUE;
3146 }
3147
3148 /* As above, but don't actually build the stub. Just bump offset so
3149 we know stub section sizes. */
3150
3151 static bfd_boolean
3152 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3153 void * in_arg)
3154 {
3155 struct elf32_arm_stub_hash_entry *stub_entry;
3156 struct elf32_arm_link_hash_table *htab;
3157 const bfd_vma *template;
3158 int template_size;
3159 int size;
3160 int i;
3161
3162 /* Massage our args to the form they really have. */
3163 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3164 htab = (struct elf32_arm_link_hash_table *) in_arg;
3165
3166 switch (stub_entry->stub_type)
3167 {
3168 case arm_stub_long_branch:
3169 template = arm_long_branch_stub;
3170 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3171 break;
3172 case arm_thumb_v4t_stub_long_branch:
3173 template = arm_thumb_v4t_long_branch_stub;
3174 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3175 break;
3176 case arm_thumb_thumb_stub_long_branch:
3177 template = arm_thumb_thumb_long_branch_stub;
3178 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3179 break;
3180 case arm_thumb_arm_v4t_stub_long_branch:
3181 template = arm_thumb_arm_v4t_long_branch_stub;
3182 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3183 break;
3184 case arm_stub_pic_long_branch:
3185 template = arm_pic_long_branch_stub;
3186 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3187 break;
3188 default:
3189 BFD_FAIL ();
3190 return FALSE;
3191 break;
3192 }
3193
3194 size = 0;
3195 for (i = 0; i < (template_size / 4); i++)
3196 size += 4;
3197 size = (size + 7) & ~7;
3198 stub_entry->stub_sec->size += size;
3199 return TRUE;
3200 }
3201
3202 /* External entry points for sizing and building linker stubs. */
3203
3204 /* Set up various things so that we can make a list of input sections
3205 for each output section included in the link. Returns -1 on error,
3206 0 when no stubs will be needed, and 1 on success. */
3207
3208 int
3209 elf32_arm_setup_section_lists (bfd *output_bfd,
3210 struct bfd_link_info *info)
3211 {
3212 bfd *input_bfd;
3213 unsigned int bfd_count;
3214 int top_id, top_index;
3215 asection *section;
3216 asection **input_list, **list;
3217 bfd_size_type amt;
3218 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3219
3220 if (! is_elf_hash_table (htab))
3221 return 0;
3222
3223 /* Count the number of input BFDs and find the top input section id. */
3224 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3225 input_bfd != NULL;
3226 input_bfd = input_bfd->link_next)
3227 {
3228 bfd_count += 1;
3229 for (section = input_bfd->sections;
3230 section != NULL;
3231 section = section->next)
3232 {
3233 if (top_id < section->id)
3234 top_id = section->id;
3235 }
3236 }
3237 htab->bfd_count = bfd_count;
3238
3239 amt = sizeof (struct map_stub) * (top_id + 1);
3240 htab->stub_group = bfd_zmalloc (amt);
3241 if (htab->stub_group == NULL)
3242 return -1;
3243
3244 /* We can't use output_bfd->section_count here to find the top output
3245 section index as some sections may have been removed, and
3246 _bfd_strip_section_from_output doesn't renumber the indices. */
3247 for (section = output_bfd->sections, top_index = 0;
3248 section != NULL;
3249 section = section->next)
3250 {
3251 if (top_index < section->index)
3252 top_index = section->index;
3253 }
3254
3255 htab->top_index = top_index;
3256 amt = sizeof (asection *) * (top_index + 1);
3257 input_list = bfd_malloc (amt);
3258 htab->input_list = input_list;
3259 if (input_list == NULL)
3260 return -1;
3261
3262 /* For sections we aren't interested in, mark their entries with a
3263 value we can check later. */
3264 list = input_list + top_index;
3265 do
3266 *list = bfd_abs_section_ptr;
3267 while (list-- != input_list);
3268
3269 for (section = output_bfd->sections;
3270 section != NULL;
3271 section = section->next)
3272 {
3273 if ((section->flags & SEC_CODE) != 0)
3274 input_list[section->index] = NULL;
3275 }
3276
3277 return 1;
3278 }
3279
3280 /* The linker repeatedly calls this function for each input section,
3281 in the order that input sections are linked into output sections.
3282 Build lists of input sections to determine groupings between which
3283 we may insert linker stubs. */
3284
3285 void
3286 elf32_arm_next_input_section (struct bfd_link_info *info,
3287 asection *isec)
3288 {
3289 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3290
3291 if (isec->output_section->index <= htab->top_index)
3292 {
3293 asection **list = htab->input_list + isec->output_section->index;
3294
3295 if (*list != bfd_abs_section_ptr)
3296 {
3297 /* Steal the link_sec pointer for our list. */
3298 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3299 /* This happens to make the list in reverse order,
3300 which is what we want. */
3301 PREV_SEC (isec) = *list;
3302 *list = isec;
3303 }
3304 }
3305 }
3306
3307 /* See whether we can group stub sections together. Grouping stub
3308 sections may result in fewer stubs. More importantly, we need to
3309 put all .init* and .fini* stubs at the beginning of the .init or
3310 .fini output sections respectively, because glibc splits the
3311 _init and _fini functions into multiple parts. Putting a stub in
3312 the middle of a function is not a good idea. */
3313
3314 static void
3315 group_sections (struct elf32_arm_link_hash_table *htab,
3316 bfd_size_type stub_group_size,
3317 bfd_boolean stubs_always_before_branch)
3318 {
3319 asection **list = htab->input_list + htab->top_index;
3320
3321 do
3322 {
3323 asection *tail = *list;
3324
3325 if (tail == bfd_abs_section_ptr)
3326 continue;
3327
3328 while (tail != NULL)
3329 {
3330 asection *curr;
3331 asection *prev;
3332 bfd_size_type total;
3333
3334 curr = tail;
3335 total = tail->size;
3336 while ((prev = PREV_SEC (curr)) != NULL
3337 && ((total += curr->output_offset - prev->output_offset)
3338 < stub_group_size))
3339 curr = prev;
3340
3341 /* OK, the size from the start of CURR to the end is less
3342 than stub_group_size and thus can be handled by one stub
3343 section. (Or the tail section is itself larger than
3344 stub_group_size, in which case we may be toast.)
3345 We should really be keeping track of the total size of
3346 stubs added here, as stubs contribute to the final output
3347 section size. */
3348 do
3349 {
3350 prev = PREV_SEC (tail);
3351 /* Set up this stub group. */
3352 htab->stub_group[tail->id].link_sec = curr;
3353 }
3354 while (tail != curr && (tail = prev) != NULL);
3355
3356 /* But wait, there's more! Input sections up to stub_group_size
3357 bytes before the stub section can be handled by it too. */
3358 if (!stubs_always_before_branch)
3359 {
3360 total = 0;
3361 while (prev != NULL
3362 && ((total += tail->output_offset - prev->output_offset)
3363 < stub_group_size))
3364 {
3365 tail = prev;
3366 prev = PREV_SEC (tail);
3367 htab->stub_group[tail->id].link_sec = curr;
3368 }
3369 }
3370 tail = prev;
3371 }
3372 }
3373 while (list-- != htab->input_list);
3374
3375 free (htab->input_list);
3376 #undef PREV_SEC
3377 }
3378
3379 /* Determine and set the size of the stub section for a final link.
3380
3381 The basic idea here is to examine all the relocations looking for
3382 PC-relative calls to a target that is unreachable with a "bl"
3383 instruction. */
3384
3385 bfd_boolean
3386 elf32_arm_size_stubs (bfd *output_bfd,
3387 bfd *stub_bfd,
3388 struct bfd_link_info *info,
3389 bfd_signed_vma group_size,
3390 asection * (*add_stub_section) (const char *, asection *),
3391 void (*layout_sections_again) (void))
3392 {
3393 bfd_size_type stub_group_size;
3394 bfd_boolean stubs_always_before_branch;
3395 bfd_boolean stub_changed = 0;
3396 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3397
3398 /* Propagate mach to stub bfd, because it may not have been
3399 finalized when we created stub_bfd. */
3400 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3401 bfd_get_mach (output_bfd));
3402
3403 /* Stash our params away. */
3404 htab->stub_bfd = stub_bfd;
3405 htab->add_stub_section = add_stub_section;
3406 htab->layout_sections_again = layout_sections_again;
3407 stubs_always_before_branch = group_size < 0;
3408 if (group_size < 0)
3409 stub_group_size = -group_size;
3410 else
3411 stub_group_size = group_size;
3412
3413 if (stub_group_size == 1)
3414 {
3415 /* Default values. */
3416 /* Thumb branch range is +-4MB has to be used as the default
3417 maximum size (a given section can contain both ARM and Thumb
3418 code, so the worst case has to be taken into account).
3419
3420 This value is 24K less than that, which allows for 2025
3421 12-byte stubs. If we exceed that, then we will fail to link.
3422 The user will have to relink with an explicit group size
3423 option. */
3424 stub_group_size = 4170000;
3425 }
3426
3427 group_sections (htab, stub_group_size, stubs_always_before_branch);
3428
3429 while (1)
3430 {
3431 bfd *input_bfd;
3432 unsigned int bfd_indx;
3433 asection *stub_sec;
3434
3435 for (input_bfd = info->input_bfds, bfd_indx = 0;
3436 input_bfd != NULL;
3437 input_bfd = input_bfd->link_next, bfd_indx++)
3438 {
3439 Elf_Internal_Shdr *symtab_hdr;
3440 asection *section;
3441 Elf_Internal_Sym *local_syms = NULL;
3442
3443 /* We'll need the symbol table in a second. */
3444 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3445 if (symtab_hdr->sh_info == 0)
3446 continue;
3447
3448 /* Walk over each section attached to the input bfd. */
3449 for (section = input_bfd->sections;
3450 section != NULL;
3451 section = section->next)
3452 {
3453 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3454
3455 /* If there aren't any relocs, then there's nothing more
3456 to do. */
3457 if ((section->flags & SEC_RELOC) == 0
3458 || section->reloc_count == 0
3459 || (section->flags & SEC_CODE) == 0)
3460 continue;
3461
3462 /* If this section is a link-once section that will be
3463 discarded, then don't create any stubs. */
3464 if (section->output_section == NULL
3465 || section->output_section->owner != output_bfd)
3466 continue;
3467
3468 /* Get the relocs. */
3469 internal_relocs
3470 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3471 NULL, info->keep_memory);
3472 if (internal_relocs == NULL)
3473 goto error_ret_free_local;
3474
3475 /* Now examine each relocation. */
3476 irela = internal_relocs;
3477 irelaend = irela + section->reloc_count;
3478 for (; irela < irelaend; irela++)
3479 {
3480 unsigned int r_type, r_indx;
3481 enum elf32_arm_stub_type stub_type;
3482 struct elf32_arm_stub_hash_entry *stub_entry;
3483 asection *sym_sec;
3484 bfd_vma sym_value;
3485 bfd_vma destination;
3486 struct elf32_arm_link_hash_entry *hash;
3487 char *stub_name;
3488 const asection *id_sec;
3489 unsigned char st_type;
3490
3491 r_type = ELF32_R_TYPE (irela->r_info);
3492 r_indx = ELF32_R_SYM (irela->r_info);
3493
3494 if (r_type >= (unsigned int) R_ARM_max)
3495 {
3496 bfd_set_error (bfd_error_bad_value);
3497 error_ret_free_internal:
3498 if (elf_section_data (section)->relocs == NULL)
3499 free (internal_relocs);
3500 goto error_ret_free_local;
3501 }
3502
3503 /* Only look for stubs on call instructions. */
3504 if ((r_type != (unsigned int) R_ARM_CALL)
3505 && (r_type != (unsigned int) R_ARM_THM_CALL))
3506 continue;
3507
3508 /* Now determine the call target, its name, value,
3509 section. */
3510 sym_sec = NULL;
3511 sym_value = 0;
3512 destination = 0;
3513 hash = NULL;
3514 if (r_indx < symtab_hdr->sh_info)
3515 {
3516 /* It's a local symbol. */
3517 Elf_Internal_Sym *sym;
3518 Elf_Internal_Shdr *hdr;
3519
3520 if (local_syms == NULL)
3521 {
3522 local_syms
3523 = (Elf_Internal_Sym *) symtab_hdr->contents;
3524 if (local_syms == NULL)
3525 local_syms
3526 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3527 symtab_hdr->sh_info, 0,
3528 NULL, NULL, NULL);
3529 if (local_syms == NULL)
3530 goto error_ret_free_internal;
3531 }
3532
3533 sym = local_syms + r_indx;
3534 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3535 sym_sec = hdr->bfd_section;
3536 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3537 sym_value = sym->st_value;
3538 destination = (sym_value + irela->r_addend
3539 + sym_sec->output_offset
3540 + sym_sec->output_section->vma);
3541 st_type = ELF_ST_TYPE (sym->st_info);
3542 }
3543 else
3544 {
3545 /* It's an external symbol. */
3546 int e_indx;
3547
3548 e_indx = r_indx - symtab_hdr->sh_info;
3549 hash = ((struct elf32_arm_link_hash_entry *)
3550 elf_sym_hashes (input_bfd)[e_indx]);
3551
3552 while (hash->root.root.type == bfd_link_hash_indirect
3553 || hash->root.root.type == bfd_link_hash_warning)
3554 hash = ((struct elf32_arm_link_hash_entry *)
3555 hash->root.root.u.i.link);
3556
3557 if (hash->root.root.type == bfd_link_hash_defined
3558 || hash->root.root.type == bfd_link_hash_defweak)
3559 {
3560 sym_sec = hash->root.root.u.def.section;
3561 sym_value = hash->root.root.u.def.value;
3562 if (sym_sec->output_section != NULL)
3563 destination = (sym_value + irela->r_addend
3564 + sym_sec->output_offset
3565 + sym_sec->output_section->vma);
3566 }
3567 else if (hash->root.root.type == bfd_link_hash_undefweak
3568 || hash->root.root.type == bfd_link_hash_undefined)
3569 /* For a shared library, these will need a PLT stub,
3570 which is treated separately.
3571 For absolute code, they cannot be handled. */
3572 continue;
3573 else
3574 {
3575 bfd_set_error (bfd_error_bad_value);
3576 goto error_ret_free_internal;
3577 }
3578 st_type = ELF_ST_TYPE (hash->root.type);
3579 }
3580
3581 /* Determine what (if any) linker stub is needed. */
3582 stub_type = arm_type_of_stub (info, section, irela, st_type,
3583 hash, destination);
3584 if (stub_type == arm_stub_none)
3585 continue;
3586
3587 /* Support for grouping stub sections. */
3588 id_sec = htab->stub_group[section->id].link_sec;
3589
3590 /* Get the name of this stub. */
3591 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3592 if (!stub_name)
3593 goto error_ret_free_internal;
3594
3595 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3596 stub_name,
3597 FALSE, FALSE);
3598 if (stub_entry != NULL)
3599 {
3600 /* The proper stub has already been created. */
3601 free (stub_name);
3602 continue;
3603 }
3604
3605 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3606 if (stub_entry == NULL)
3607 {
3608 free (stub_name);
3609 goto error_ret_free_internal;
3610 }
3611
3612 stub_entry->target_value = sym_value;
3613 stub_entry->target_section = sym_sec;
3614 stub_entry->stub_type = stub_type;
3615 stub_entry->h = hash;
3616 stub_entry->st_type = st_type;
3617 stub_changed = TRUE;
3618 }
3619
3620 /* We're done with the internal relocs, free them. */
3621 if (elf_section_data (section)->relocs == NULL)
3622 free (internal_relocs);
3623 }
3624 }
3625
3626 if (!stub_changed)
3627 break;
3628
3629 /* OK, we've added some stubs. Find out the new size of the
3630 stub sections. */
3631 for (stub_sec = htab->stub_bfd->sections;
3632 stub_sec != NULL;
3633 stub_sec = stub_sec->next)
3634 stub_sec->size = 0;
3635
3636 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3637
3638 /* Ask the linker to do its stuff. */
3639 (*htab->layout_sections_again) ();
3640 stub_changed = FALSE;
3641 }
3642
3643 return TRUE;
3644
3645 error_ret_free_local:
3646 return FALSE;
3647 }
3648
3649 /* Build all the stubs associated with the current output file. The
3650 stubs are kept in a hash table attached to the main linker hash
3651 table. We also set up the .plt entries for statically linked PIC
3652 functions here. This function is called via arm_elf_finish in the
3653 linker. */
3654
3655 bfd_boolean
3656 elf32_arm_build_stubs (struct bfd_link_info *info)
3657 {
3658 asection *stub_sec;
3659 struct bfd_hash_table *table;
3660 struct elf32_arm_link_hash_table *htab;
3661
3662 htab = elf32_arm_hash_table (info);
3663
3664 for (stub_sec = htab->stub_bfd->sections;
3665 stub_sec != NULL;
3666 stub_sec = stub_sec->next)
3667 {
3668 bfd_size_type size;
3669
3670 /* Ignore non-stub sections */
3671 if (!strstr (stub_sec->name, STUB_SUFFIX))
3672 continue;
3673
3674 /* Allocate memory to hold the linker stubs. */
3675 size = stub_sec->size;
3676 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3677 if (stub_sec->contents == NULL && size != 0)
3678 return FALSE;
3679 stub_sec->size = 0;
3680 }
3681
3682 /* Build the stubs as directed by the stub hash table. */
3683 table = &htab->stub_hash_table;
3684 bfd_hash_traverse (table, arm_build_one_stub, info);
3685
3686 return TRUE;
3687 }
3688
3689 /* Locate the Thumb encoded calling stub for NAME. */
3690
3691 static struct elf_link_hash_entry *
3692 find_thumb_glue (struct bfd_link_info *link_info,
3693 const char *name,
3694 char **error_message)
3695 {
3696 char *tmp_name;
3697 struct elf_link_hash_entry *hash;
3698 struct elf32_arm_link_hash_table *hash_table;
3699
3700 /* We need a pointer to the armelf specific hash table. */
3701 hash_table = elf32_arm_hash_table (link_info);
3702
3703 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3704 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3705
3706 BFD_ASSERT (tmp_name);
3707
3708 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3709
3710 hash = elf_link_hash_lookup
3711 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3712
3713 if (hash == NULL
3714 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3715 tmp_name, name) == -1)
3716 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3717
3718 free (tmp_name);
3719
3720 return hash;
3721 }
3722
3723 /* Locate the ARM encoded calling stub for NAME. */
3724
3725 static struct elf_link_hash_entry *
3726 find_arm_glue (struct bfd_link_info *link_info,
3727 const char *name,
3728 char **error_message)
3729 {
3730 char *tmp_name;
3731 struct elf_link_hash_entry *myh;
3732 struct elf32_arm_link_hash_table *hash_table;
3733
3734 /* We need a pointer to the elfarm specific hash table. */
3735 hash_table = elf32_arm_hash_table (link_info);
3736
3737 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3738 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3739
3740 BFD_ASSERT (tmp_name);
3741
3742 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3743
3744 myh = elf_link_hash_lookup
3745 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3746
3747 if (myh == NULL
3748 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3749 tmp_name, name) == -1)
3750 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3751
3752 free (tmp_name);
3753
3754 return myh;
3755 }
3756
3757 /* ARM->Thumb glue (static images):
3758
3759 .arm
3760 __func_from_arm:
3761 ldr r12, __func_addr
3762 bx r12
3763 __func_addr:
3764 .word func @ behave as if you saw a ARM_32 reloc.
3765
3766 (v5t static images)
3767 .arm
3768 __func_from_arm:
3769 ldr pc, __func_addr
3770 __func_addr:
3771 .word func @ behave as if you saw a ARM_32 reloc.
3772
3773 (relocatable images)
3774 .arm
3775 __func_from_arm:
3776 ldr r12, __func_offset
3777 add r12, r12, pc
3778 bx r12
3779 __func_offset:
3780 .word func - .
3781 */
3782
3783 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3784 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3785 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3786 static const insn32 a2t3_func_addr_insn = 0x00000001;
3787
3788 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3789 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3790 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3791
3792 #define ARM2THUMB_PIC_GLUE_SIZE 16
3793 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3794 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3795 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3796
3797 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3798
3799 .thumb .thumb
3800 .align 2 .align 2
3801 __func_from_thumb: __func_from_thumb:
3802 bx pc push {r6, lr}
3803 nop ldr r6, __func_addr
3804 .arm mov lr, pc
3805 __func_change_to_arm: bx r6
3806 b func .arm
3807 __func_back_to_thumb:
3808 ldmia r13! {r6, lr}
3809 bx lr
3810 __func_addr:
3811 .word func */
3812
3813 #define THUMB2ARM_GLUE_SIZE 8
3814 static const insn16 t2a1_bx_pc_insn = 0x4778;
3815 static const insn16 t2a2_noop_insn = 0x46c0;
3816 static const insn32 t2a3_b_insn = 0xea000000;
3817
3818 #define VFP11_ERRATUM_VENEER_SIZE 8
3819
3820 #define ARM_BX_VENEER_SIZE 12
3821 static const insn32 armbx1_tst_insn = 0xe3100001;
3822 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3823 static const insn32 armbx3_bx_insn = 0xe12fff10;
3824
3825 #ifndef ELFARM_NABI_C_INCLUDED
3826 bfd_boolean
3827 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3828 {
3829 asection * s;
3830 bfd_byte * foo;
3831 struct elf32_arm_link_hash_table * globals;
3832
3833 globals = elf32_arm_hash_table (info);
3834
3835 BFD_ASSERT (globals != NULL);
3836
3837 if (globals->arm_glue_size != 0)
3838 {
3839 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3840
3841 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3842 ARM2THUMB_GLUE_SECTION_NAME);
3843
3844 BFD_ASSERT (s != NULL);
3845
3846 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
3847
3848 BFD_ASSERT (s->size == globals->arm_glue_size);
3849 s->contents = foo;
3850 }
3851
3852 if (globals->thumb_glue_size != 0)
3853 {
3854 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3855
3856 s = bfd_get_section_by_name
3857 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
3858
3859 BFD_ASSERT (s != NULL);
3860
3861 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
3862
3863 BFD_ASSERT (s->size == globals->thumb_glue_size);
3864 s->contents = foo;
3865 }
3866
3867 if (globals->vfp11_erratum_glue_size != 0)
3868 {
3869 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3870
3871 s = bfd_get_section_by_name
3872 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
3873
3874 BFD_ASSERT (s != NULL);
3875
3876 foo = bfd_alloc (globals->bfd_of_glue_owner,
3877 globals->vfp11_erratum_glue_size);
3878
3879 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
3880 s->contents = foo;
3881 }
3882
3883 if (globals->bx_glue_size != 0)
3884 {
3885 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3886
3887 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3888 ARM_BX_GLUE_SECTION_NAME);
3889
3890 BFD_ASSERT (s != NULL);
3891
3892 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->bx_glue_size);
3893
3894 BFD_ASSERT (s->size == globals->bx_glue_size);
3895 s->contents = foo;
3896 }
3897
3898 return TRUE;
3899 }
3900
3901 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3902 returns the symbol identifying the stub. */
3903
3904 static struct elf_link_hash_entry *
3905 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3906 struct elf_link_hash_entry * h)
3907 {
3908 const char * name = h->root.root.string;
3909 asection * s;
3910 char * tmp_name;
3911 struct elf_link_hash_entry * myh;
3912 struct bfd_link_hash_entry * bh;
3913 struct elf32_arm_link_hash_table * globals;
3914 bfd_vma val;
3915 bfd_size_type size;
3916
3917 globals = elf32_arm_hash_table (link_info);
3918
3919 BFD_ASSERT (globals != NULL);
3920 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3921
3922 s = bfd_get_section_by_name
3923 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
3924
3925 BFD_ASSERT (s != NULL);
3926
3927 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3928
3929 BFD_ASSERT (tmp_name);
3930
3931 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3932
3933 myh = elf_link_hash_lookup
3934 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3935
3936 if (myh != NULL)
3937 {
3938 /* We've already seen this guy. */
3939 free (tmp_name);
3940 return myh;
3941 }
3942
3943 /* The only trick here is using hash_table->arm_glue_size as the value.
3944 Even though the section isn't allocated yet, this is where we will be
3945 putting it. */
3946 bh = NULL;
3947 val = globals->arm_glue_size + 1;
3948 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
3949 tmp_name, BSF_GLOBAL, s, val,
3950 NULL, TRUE, FALSE, &bh);
3951
3952 myh = (struct elf_link_hash_entry *) bh;
3953 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3954 myh->forced_local = 1;
3955
3956 free (tmp_name);
3957
3958 if (link_info->shared || globals->root.is_relocatable_executable
3959 || globals->pic_veneer)
3960 size = ARM2THUMB_PIC_GLUE_SIZE;
3961 else if (globals->use_blx)
3962 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
3963 else
3964 size = ARM2THUMB_STATIC_GLUE_SIZE;
3965
3966 s->size += size;
3967 globals->arm_glue_size += size;
3968
3969 return myh;
3970 }
3971
3972 static void
3973 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
3974 struct elf_link_hash_entry *h)
3975 {
3976 const char *name = h->root.root.string;
3977 asection *s;
3978 char *tmp_name;
3979 struct elf_link_hash_entry *myh;
3980 struct bfd_link_hash_entry *bh;
3981 struct elf32_arm_link_hash_table *hash_table;
3982 bfd_vma val;
3983
3984 hash_table = elf32_arm_hash_table (link_info);
3985
3986 BFD_ASSERT (hash_table != NULL);
3987 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
3988
3989 s = bfd_get_section_by_name
3990 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
3991
3992 BFD_ASSERT (s != NULL);
3993
3994 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3995 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3996
3997 BFD_ASSERT (tmp_name);
3998
3999 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4000
4001 myh = elf_link_hash_lookup
4002 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4003
4004 if (myh != NULL)
4005 {
4006 /* We've already seen this guy. */
4007 free (tmp_name);
4008 return;
4009 }
4010
4011 bh = NULL;
4012 val = hash_table->thumb_glue_size + 1;
4013 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4014 tmp_name, BSF_GLOBAL, s, val,
4015 NULL, TRUE, FALSE, &bh);
4016
4017 /* If we mark it 'Thumb', the disassembler will do a better job. */
4018 myh = (struct elf_link_hash_entry *) bh;
4019 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4020 myh->forced_local = 1;
4021
4022 free (tmp_name);
4023
4024 #define CHANGE_TO_ARM "__%s_change_to_arm"
4025 #define BACK_FROM_ARM "__%s_back_from_arm"
4026
4027 /* Allocate another symbol to mark where we switch to Arm mode. */
4028 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4029 + strlen (CHANGE_TO_ARM) + 1);
4030
4031 BFD_ASSERT (tmp_name);
4032
4033 sprintf (tmp_name, CHANGE_TO_ARM, name);
4034
4035 bh = NULL;
4036 val = hash_table->thumb_glue_size + 4,
4037 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4038 tmp_name, BSF_LOCAL, s, val,
4039 NULL, TRUE, FALSE, &bh);
4040
4041 free (tmp_name);
4042
4043 s->size += THUMB2ARM_GLUE_SIZE;
4044 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4045
4046 return;
4047 }
4048
4049
4050 /* Allocate space for ARMv4 BX veneers. */
4051
4052 static void
4053 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4054 {
4055 asection * s;
4056 struct elf32_arm_link_hash_table *globals;
4057 char *tmp_name;
4058 struct elf_link_hash_entry *myh;
4059 struct bfd_link_hash_entry *bh;
4060 bfd_vma val;
4061
4062 /* BX PC does not need a veneer. */
4063 if (reg == 15)
4064 return;
4065
4066 globals = elf32_arm_hash_table (link_info);
4067
4068 BFD_ASSERT (globals != NULL);
4069 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4070
4071 /* Check if this veneer has already been allocated. */
4072 if (globals->bx_glue_offset[reg])
4073 return;
4074
4075 s = bfd_get_section_by_name
4076 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4077
4078 BFD_ASSERT (s != NULL);
4079
4080 /* Add symbol for veneer. */
4081 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4082
4083 BFD_ASSERT (tmp_name);
4084
4085 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4086
4087 myh = elf_link_hash_lookup
4088 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4089
4090 BFD_ASSERT (myh == NULL);
4091
4092 bh = NULL;
4093 val = globals->bx_glue_size;
4094 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4095 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4096 NULL, TRUE, FALSE, &bh);
4097
4098 myh = (struct elf_link_hash_entry *) bh;
4099 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4100 myh->forced_local = 1;
4101
4102 s->size += ARM_BX_VENEER_SIZE;
4103 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4104 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4105 }
4106
4107
4108 /* Add an entry to the code/data map for section SEC. */
4109
4110 static void
4111 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4112 {
4113 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4114 unsigned int newidx;
4115
4116 if (sec_data->map == NULL)
4117 {
4118 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4119 sec_data->mapcount = 0;
4120 sec_data->mapsize = 1;
4121 }
4122
4123 newidx = sec_data->mapcount++;
4124
4125 if (sec_data->mapcount > sec_data->mapsize)
4126 {
4127 sec_data->mapsize *= 2;
4128 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4129 * sizeof (elf32_arm_section_map));
4130 }
4131
4132 if (sec_data->map)
4133 {
4134 sec_data->map[newidx].vma = vma;
4135 sec_data->map[newidx].type = type;
4136 }
4137 }
4138
4139
4140 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4141 veneers are handled for now. */
4142
4143 static bfd_vma
4144 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4145 elf32_vfp11_erratum_list *branch,
4146 bfd *branch_bfd,
4147 asection *branch_sec,
4148 unsigned int offset)
4149 {
4150 asection *s;
4151 struct elf32_arm_link_hash_table *hash_table;
4152 char *tmp_name;
4153 struct elf_link_hash_entry *myh;
4154 struct bfd_link_hash_entry *bh;
4155 bfd_vma val;
4156 struct _arm_elf_section_data *sec_data;
4157 int errcount;
4158 elf32_vfp11_erratum_list *newerr;
4159
4160 hash_table = elf32_arm_hash_table (link_info);
4161
4162 BFD_ASSERT (hash_table != NULL);
4163 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4164
4165 s = bfd_get_section_by_name
4166 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4167
4168 sec_data = elf32_arm_section_data (s);
4169
4170 BFD_ASSERT (s != NULL);
4171
4172 tmp_name = bfd_malloc ((bfd_size_type) strlen
4173 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4174
4175 BFD_ASSERT (tmp_name);
4176
4177 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4178 hash_table->num_vfp11_fixes);
4179
4180 myh = elf_link_hash_lookup
4181 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4182
4183 BFD_ASSERT (myh == NULL);
4184
4185 bh = NULL;
4186 val = hash_table->vfp11_erratum_glue_size;
4187 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4188 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4189 NULL, TRUE, FALSE, &bh);
4190
4191 myh = (struct elf_link_hash_entry *) bh;
4192 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4193 myh->forced_local = 1;
4194
4195 /* Link veneer back to calling location. */
4196 errcount = ++(sec_data->erratumcount);
4197 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4198
4199 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4200 newerr->vma = -1;
4201 newerr->u.v.branch = branch;
4202 newerr->u.v.id = hash_table->num_vfp11_fixes;
4203 branch->u.b.veneer = newerr;
4204
4205 newerr->next = sec_data->erratumlist;
4206 sec_data->erratumlist = newerr;
4207
4208 /* A symbol for the return from the veneer. */
4209 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4210 hash_table->num_vfp11_fixes);
4211
4212 myh = elf_link_hash_lookup
4213 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4214
4215 if (myh != NULL)
4216 abort ();
4217
4218 bh = NULL;
4219 val = offset + 4;
4220 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4221 branch_sec, val, NULL, TRUE, FALSE, &bh);
4222
4223 myh = (struct elf_link_hash_entry *) bh;
4224 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4225 myh->forced_local = 1;
4226
4227 free (tmp_name);
4228
4229 /* Generate a mapping symbol for the veneer section, and explicitly add an
4230 entry for that symbol to the code/data map for the section. */
4231 if (hash_table->vfp11_erratum_glue_size == 0)
4232 {
4233 bh = NULL;
4234 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4235 ever requires this erratum fix. */
4236 _bfd_generic_link_add_one_symbol (link_info,
4237 hash_table->bfd_of_glue_owner, "$a",
4238 BSF_LOCAL, s, 0, NULL,
4239 TRUE, FALSE, &bh);
4240
4241 myh = (struct elf_link_hash_entry *) bh;
4242 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4243 myh->forced_local = 1;
4244
4245 /* The elf32_arm_init_maps function only cares about symbols from input
4246 BFDs. We must make a note of this generated mapping symbol
4247 ourselves so that code byteswapping works properly in
4248 elf32_arm_write_section. */
4249 elf32_arm_section_map_add (s, 'a', 0);
4250 }
4251
4252 s->size += VFP11_ERRATUM_VENEER_SIZE;
4253 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4254 hash_table->num_vfp11_fixes++;
4255
4256 /* The offset of the veneer. */
4257 return val;
4258 }
4259
4260 /* Add the glue sections to ABFD. This function is called from the
4261 linker scripts in ld/emultempl/{armelf}.em. */
4262
4263 bfd_boolean
4264 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4265 struct bfd_link_info *info)
4266 {
4267 flagword flags;
4268 asection *sec;
4269
4270 /* If we are only performing a partial
4271 link do not bother adding the glue. */
4272 if (info->relocatable)
4273 return TRUE;
4274
4275 /* linker stubs don't need glue */
4276 if (!strcmp (abfd->filename, "linker stubs"))
4277 return TRUE;
4278
4279 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
4280
4281 if (sec == NULL)
4282 {
4283 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
4284 will prevent elf_link_input_bfd() from processing the contents
4285 of this section. */
4286 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4287 | SEC_CODE | SEC_READONLY);
4288
4289 sec = bfd_make_section_with_flags (abfd,
4290 ARM2THUMB_GLUE_SECTION_NAME,
4291 flags);
4292
4293 if (sec == NULL
4294 || !bfd_set_section_alignment (abfd, sec, 2))
4295 return FALSE;
4296
4297 /* Set the gc mark to prevent the section from being removed by garbage
4298 collection, despite the fact that no relocs refer to this section. */
4299 sec->gc_mark = 1;
4300 }
4301
4302 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
4303
4304 if (sec == NULL)
4305 {
4306 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4307 | SEC_CODE | SEC_READONLY);
4308
4309 sec = bfd_make_section_with_flags (abfd,
4310 THUMB2ARM_GLUE_SECTION_NAME,
4311 flags);
4312
4313 if (sec == NULL
4314 || !bfd_set_section_alignment (abfd, sec, 2))
4315 return FALSE;
4316
4317 sec->gc_mark = 1;
4318 }
4319
4320 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
4321
4322 if (sec == NULL)
4323 {
4324 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4325 | SEC_CODE | SEC_READONLY);
4326
4327 sec = bfd_make_section_with_flags (abfd,
4328 VFP11_ERRATUM_VENEER_SECTION_NAME,
4329 flags);
4330
4331 if (sec == NULL
4332 || !bfd_set_section_alignment (abfd, sec, 2))
4333 return FALSE;
4334
4335 sec->gc_mark = 1;
4336 }
4337
4338 sec = bfd_get_section_by_name (abfd, ARM_BX_GLUE_SECTION_NAME);
4339
4340 if (sec == NULL)
4341 {
4342 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4343 | SEC_CODE | SEC_READONLY);
4344
4345 sec = bfd_make_section_with_flags (abfd,
4346 ARM_BX_GLUE_SECTION_NAME,
4347 flags);
4348
4349 if (sec == NULL
4350 || !bfd_set_section_alignment (abfd, sec, 2))
4351 return FALSE;
4352
4353 sec->gc_mark = 1;
4354 }
4355
4356 return TRUE;
4357 }
4358
4359 /* Select a BFD to be used to hold the sections used by the glue code.
4360 This function is called from the linker scripts in ld/emultempl/
4361 {armelf/pe}.em */
4362
4363 bfd_boolean
4364 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4365 {
4366 struct elf32_arm_link_hash_table *globals;
4367
4368 /* If we are only performing a partial link
4369 do not bother getting a bfd to hold the glue. */
4370 if (info->relocatable)
4371 return TRUE;
4372
4373 /* Make sure we don't attach the glue sections to a dynamic object. */
4374 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4375
4376 globals = elf32_arm_hash_table (info);
4377
4378 BFD_ASSERT (globals != NULL);
4379
4380 if (globals->bfd_of_glue_owner != NULL)
4381 return TRUE;
4382
4383 /* Save the bfd for later use. */
4384 globals->bfd_of_glue_owner = abfd;
4385
4386 return TRUE;
4387 }
4388
4389 static void
4390 check_use_blx (struct elf32_arm_link_hash_table *globals)
4391 {
4392 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4393 Tag_CPU_arch) > 2)
4394 globals->use_blx = 1;
4395 }
4396
4397 bfd_boolean
4398 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4399 struct bfd_link_info *link_info)
4400 {
4401 Elf_Internal_Shdr *symtab_hdr;
4402 Elf_Internal_Rela *internal_relocs = NULL;
4403 Elf_Internal_Rela *irel, *irelend;
4404 bfd_byte *contents = NULL;
4405
4406 asection *sec;
4407 struct elf32_arm_link_hash_table *globals;
4408
4409 /* If we are only performing a partial link do not bother
4410 to construct any glue. */
4411 if (link_info->relocatable)
4412 return TRUE;
4413
4414 /* Here we have a bfd that is to be included on the link. We have a
4415 hook to do reloc rummaging, before section sizes are nailed down. */
4416 globals = elf32_arm_hash_table (link_info);
4417
4418 BFD_ASSERT (globals != NULL);
4419
4420 check_use_blx (globals);
4421
4422 if (globals->byteswap_code && !bfd_big_endian (abfd))
4423 {
4424 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4425 abfd);
4426 return FALSE;
4427 }
4428
4429 /* PR 5398: If we have not decided to include any loadable sections in
4430 the output then we will not have a glue owner bfd. This is OK, it
4431 just means that there is nothing else for us to do here. */
4432 if (globals->bfd_of_glue_owner == NULL)
4433 return TRUE;
4434
4435 /* Rummage around all the relocs and map the glue vectors. */
4436 sec = abfd->sections;
4437
4438 if (sec == NULL)
4439 return TRUE;
4440
4441 for (; sec != NULL; sec = sec->next)
4442 {
4443 if (sec->reloc_count == 0)
4444 continue;
4445
4446 if ((sec->flags & SEC_EXCLUDE) != 0)
4447 continue;
4448
4449 symtab_hdr = & elf_symtab_hdr (abfd);
4450
4451 /* Load the relocs. */
4452 internal_relocs
4453 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4454
4455 if (internal_relocs == NULL)
4456 goto error_return;
4457
4458 irelend = internal_relocs + sec->reloc_count;
4459 for (irel = internal_relocs; irel < irelend; irel++)
4460 {
4461 long r_type;
4462 unsigned long r_index;
4463
4464 struct elf_link_hash_entry *h;
4465
4466 r_type = ELF32_R_TYPE (irel->r_info);
4467 r_index = ELF32_R_SYM (irel->r_info);
4468
4469 /* These are the only relocation types we care about. */
4470 if ( r_type != R_ARM_PC24
4471 && r_type != R_ARM_PLT32
4472 && r_type != R_ARM_JUMP24
4473 && r_type != R_ARM_THM_JUMP24
4474 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4475 continue;
4476
4477 /* Get the section contents if we haven't done so already. */
4478 if (contents == NULL)
4479 {
4480 /* Get cached copy if it exists. */
4481 if (elf_section_data (sec)->this_hdr.contents != NULL)
4482 contents = elf_section_data (sec)->this_hdr.contents;
4483 else
4484 {
4485 /* Go get them off disk. */
4486 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4487 goto error_return;
4488 }
4489 }
4490
4491 if (r_type == R_ARM_V4BX)
4492 {
4493 int reg;
4494
4495 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4496 record_arm_bx_glue (link_info, reg);
4497 continue;
4498 }
4499
4500 /* If the relocation is not against a symbol it cannot concern us. */
4501 h = NULL;
4502
4503 /* We don't care about local symbols. */
4504 if (r_index < symtab_hdr->sh_info)
4505 continue;
4506
4507 /* This is an external symbol. */
4508 r_index -= symtab_hdr->sh_info;
4509 h = (struct elf_link_hash_entry *)
4510 elf_sym_hashes (abfd)[r_index];
4511
4512 /* If the relocation is against a static symbol it must be within
4513 the current section and so cannot be a cross ARM/Thumb relocation. */
4514 if (h == NULL)
4515 continue;
4516
4517 /* If the call will go through a PLT entry then we do not need
4518 glue. */
4519 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4520 continue;
4521
4522 switch (r_type)
4523 {
4524 case R_ARM_PC24:
4525 case R_ARM_PLT32:
4526 case R_ARM_JUMP24:
4527 /* This one is a call from arm code. We need to look up
4528 the target of the call. If it is a thumb target, we
4529 insert glue. */
4530 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4531 && !(r_type == R_ARM_CALL && globals->use_blx))
4532 record_arm_to_thumb_glue (link_info, h);
4533 break;
4534
4535 case R_ARM_THM_JUMP24:
4536 /* This one is a call from thumb code. We look
4537 up the target of the call. If it is not a thumb
4538 target, we insert glue. */
4539 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4540 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4541 && h->root.type != bfd_link_hash_undefweak)
4542 record_thumb_to_arm_glue (link_info, h);
4543 break;
4544
4545 default:
4546 abort ();
4547 }
4548 }
4549
4550 if (contents != NULL
4551 && elf_section_data (sec)->this_hdr.contents != contents)
4552 free (contents);
4553 contents = NULL;
4554
4555 if (internal_relocs != NULL
4556 && elf_section_data (sec)->relocs != internal_relocs)
4557 free (internal_relocs);
4558 internal_relocs = NULL;
4559 }
4560
4561 return TRUE;
4562
4563 error_return:
4564 if (contents != NULL
4565 && elf_section_data (sec)->this_hdr.contents != contents)
4566 free (contents);
4567 if (internal_relocs != NULL
4568 && elf_section_data (sec)->relocs != internal_relocs)
4569 free (internal_relocs);
4570
4571 return FALSE;
4572 }
4573 #endif
4574
4575
4576 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4577
4578 void
4579 bfd_elf32_arm_init_maps (bfd *abfd)
4580 {
4581 Elf_Internal_Sym *isymbuf;
4582 Elf_Internal_Shdr *hdr;
4583 unsigned int i, localsyms;
4584
4585 if ((abfd->flags & DYNAMIC) != 0)
4586 return;
4587
4588 hdr = & elf_symtab_hdr (abfd);
4589 localsyms = hdr->sh_info;
4590
4591 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4592 should contain the number of local symbols, which should come before any
4593 global symbols. Mapping symbols are always local. */
4594 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4595 NULL);
4596
4597 /* No internal symbols read? Skip this BFD. */
4598 if (isymbuf == NULL)
4599 return;
4600
4601 for (i = 0; i < localsyms; i++)
4602 {
4603 Elf_Internal_Sym *isym = &isymbuf[i];
4604 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4605 const char *name;
4606
4607 if (sec != NULL
4608 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4609 {
4610 name = bfd_elf_string_from_elf_section (abfd,
4611 hdr->sh_link, isym->st_name);
4612
4613 if (bfd_is_arm_special_symbol_name (name,
4614 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4615 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4616 }
4617 }
4618 }
4619
4620
4621 void
4622 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4623 {
4624 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4625 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4626
4627 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4628 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4629 {
4630 switch (globals->vfp11_fix)
4631 {
4632 case BFD_ARM_VFP11_FIX_DEFAULT:
4633 case BFD_ARM_VFP11_FIX_NONE:
4634 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4635 break;
4636
4637 default:
4638 /* Give a warning, but do as the user requests anyway. */
4639 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4640 "workaround is not necessary for target architecture"), obfd);
4641 }
4642 }
4643 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4644 /* For earlier architectures, we might need the workaround, but do not
4645 enable it by default. If users is running with broken hardware, they
4646 must enable the erratum fix explicitly. */
4647 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4648 }
4649
4650
4651 enum bfd_arm_vfp11_pipe
4652 {
4653 VFP11_FMAC,
4654 VFP11_LS,
4655 VFP11_DS,
4656 VFP11_BAD
4657 };
4658
4659 /* Return a VFP register number. This is encoded as RX:X for single-precision
4660 registers, or X:RX for double-precision registers, where RX is the group of
4661 four bits in the instruction encoding and X is the single extension bit.
4662 RX and X fields are specified using their lowest (starting) bit. The return
4663 value is:
4664
4665 0...31: single-precision registers s0...s31
4666 32...63: double-precision registers d0...d31.
4667
4668 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4669 encounter VFP3 instructions, so we allow the full range for DP registers. */
4670
4671 static unsigned int
4672 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4673 unsigned int x)
4674 {
4675 if (is_double)
4676 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4677 else
4678 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4679 }
4680
4681 /* Set bits in *WMASK according to a register number REG as encoded by
4682 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4683
4684 static void
4685 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4686 {
4687 if (reg < 32)
4688 *wmask |= 1 << reg;
4689 else if (reg < 48)
4690 *wmask |= 3 << ((reg - 32) * 2);
4691 }
4692
4693 /* Return TRUE if WMASK overwrites anything in REGS. */
4694
4695 static bfd_boolean
4696 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4697 {
4698 int i;
4699
4700 for (i = 0; i < numregs; i++)
4701 {
4702 unsigned int reg = regs[i];
4703
4704 if (reg < 32 && (wmask & (1 << reg)) != 0)
4705 return TRUE;
4706
4707 reg -= 32;
4708
4709 if (reg >= 16)
4710 continue;
4711
4712 if ((wmask & (3 << (reg * 2))) != 0)
4713 return TRUE;
4714 }
4715
4716 return FALSE;
4717 }
4718
4719 /* In this function, we're interested in two things: finding input registers
4720 for VFP data-processing instructions, and finding the set of registers which
4721 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4722 hold the written set, so FLDM etc. are easy to deal with (we're only
4723 interested in 32 SP registers or 16 dp registers, due to the VFP version
4724 implemented by the chip in question). DP registers are marked by setting
4725 both SP registers in the write mask). */
4726
4727 static enum bfd_arm_vfp11_pipe
4728 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4729 int *numregs)
4730 {
4731 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4732 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4733
4734 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4735 {
4736 unsigned int pqrs;
4737 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4738 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4739
4740 pqrs = ((insn & 0x00800000) >> 20)
4741 | ((insn & 0x00300000) >> 19)
4742 | ((insn & 0x00000040) >> 6);
4743
4744 switch (pqrs)
4745 {
4746 case 0: /* fmac[sd]. */
4747 case 1: /* fnmac[sd]. */
4748 case 2: /* fmsc[sd]. */
4749 case 3: /* fnmsc[sd]. */
4750 pipe = VFP11_FMAC;
4751 bfd_arm_vfp11_write_mask (destmask, fd);
4752 regs[0] = fd;
4753 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4754 regs[2] = fm;
4755 *numregs = 3;
4756 break;
4757
4758 case 4: /* fmul[sd]. */
4759 case 5: /* fnmul[sd]. */
4760 case 6: /* fadd[sd]. */
4761 case 7: /* fsub[sd]. */
4762 pipe = VFP11_FMAC;
4763 goto vfp_binop;
4764
4765 case 8: /* fdiv[sd]. */
4766 pipe = VFP11_DS;
4767 vfp_binop:
4768 bfd_arm_vfp11_write_mask (destmask, fd);
4769 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4770 regs[1] = fm;
4771 *numregs = 2;
4772 break;
4773
4774 case 15: /* extended opcode. */
4775 {
4776 unsigned int extn = ((insn >> 15) & 0x1e)
4777 | ((insn >> 7) & 1);
4778
4779 switch (extn)
4780 {
4781 case 0: /* fcpy[sd]. */
4782 case 1: /* fabs[sd]. */
4783 case 2: /* fneg[sd]. */
4784 case 8: /* fcmp[sd]. */
4785 case 9: /* fcmpe[sd]. */
4786 case 10: /* fcmpz[sd]. */
4787 case 11: /* fcmpez[sd]. */
4788 case 16: /* fuito[sd]. */
4789 case 17: /* fsito[sd]. */
4790 case 24: /* ftoui[sd]. */
4791 case 25: /* ftouiz[sd]. */
4792 case 26: /* ftosi[sd]. */
4793 case 27: /* ftosiz[sd]. */
4794 /* These instructions will not bounce due to underflow. */
4795 *numregs = 0;
4796 pipe = VFP11_FMAC;
4797 break;
4798
4799 case 3: /* fsqrt[sd]. */
4800 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4801 registers to cause the erratum in previous instructions. */
4802 bfd_arm_vfp11_write_mask (destmask, fd);
4803 pipe = VFP11_DS;
4804 break;
4805
4806 case 15: /* fcvt{ds,sd}. */
4807 {
4808 int rnum = 0;
4809
4810 bfd_arm_vfp11_write_mask (destmask, fd);
4811
4812 /* Only FCVTSD can underflow. */
4813 if ((insn & 0x100) != 0)
4814 regs[rnum++] = fm;
4815
4816 *numregs = rnum;
4817
4818 pipe = VFP11_FMAC;
4819 }
4820 break;
4821
4822 default:
4823 return VFP11_BAD;
4824 }
4825 }
4826 break;
4827
4828 default:
4829 return VFP11_BAD;
4830 }
4831 }
4832 /* Two-register transfer. */
4833 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4834 {
4835 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4836
4837 if ((insn & 0x100000) == 0)
4838 {
4839 if (is_double)
4840 bfd_arm_vfp11_write_mask (destmask, fm);
4841 else
4842 {
4843 bfd_arm_vfp11_write_mask (destmask, fm);
4844 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4845 }
4846 }
4847
4848 pipe = VFP11_LS;
4849 }
4850 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4851 {
4852 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4853 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4854
4855 switch (puw)
4856 {
4857 case 0: /* Two-reg transfer. We should catch these above. */
4858 abort ();
4859
4860 case 2: /* fldm[sdx]. */
4861 case 3:
4862 case 5:
4863 {
4864 unsigned int i, offset = insn & 0xff;
4865
4866 if (is_double)
4867 offset >>= 1;
4868
4869 for (i = fd; i < fd + offset; i++)
4870 bfd_arm_vfp11_write_mask (destmask, i);
4871 }
4872 break;
4873
4874 case 4: /* fld[sd]. */
4875 case 6:
4876 bfd_arm_vfp11_write_mask (destmask, fd);
4877 break;
4878
4879 default:
4880 return VFP11_BAD;
4881 }
4882
4883 pipe = VFP11_LS;
4884 }
4885 /* Single-register transfer. Note L==0. */
4886 else if ((insn & 0x0f100e10) == 0x0e000a10)
4887 {
4888 unsigned int opcode = (insn >> 21) & 7;
4889 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4890
4891 switch (opcode)
4892 {
4893 case 0: /* fmsr/fmdlr. */
4894 case 1: /* fmdhr. */
4895 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4896 destination register. I don't know if this is exactly right,
4897 but it is the conservative choice. */
4898 bfd_arm_vfp11_write_mask (destmask, fn);
4899 break;
4900
4901 case 7: /* fmxr. */
4902 break;
4903 }
4904
4905 pipe = VFP11_LS;
4906 }
4907
4908 return pipe;
4909 }
4910
4911
4912 static int elf32_arm_compare_mapping (const void * a, const void * b);
4913
4914
4915 /* Look for potentially-troublesome code sequences which might trigger the
4916 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4917 (available from ARM) for details of the erratum. A short version is
4918 described in ld.texinfo. */
4919
4920 bfd_boolean
4921 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4922 {
4923 asection *sec;
4924 bfd_byte *contents = NULL;
4925 int state = 0;
4926 int regs[3], numregs = 0;
4927 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4928 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4929
4930 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4931 The states transition as follows:
4932
4933 0 -> 1 (vector) or 0 -> 2 (scalar)
4934 A VFP FMAC-pipeline instruction has been seen. Fill
4935 regs[0]..regs[numregs-1] with its input operands. Remember this
4936 instruction in 'first_fmac'.
4937
4938 1 -> 2
4939 Any instruction, except for a VFP instruction which overwrites
4940 regs[*].
4941
4942 1 -> 3 [ -> 0 ] or
4943 2 -> 3 [ -> 0 ]
4944 A VFP instruction has been seen which overwrites any of regs[*].
4945 We must make a veneer! Reset state to 0 before examining next
4946 instruction.
4947
4948 2 -> 0
4949 If we fail to match anything in state 2, reset to state 0 and reset
4950 the instruction pointer to the instruction after 'first_fmac'.
4951
4952 If the VFP11 vector mode is in use, there must be at least two unrelated
4953 instructions between anti-dependent VFP11 instructions to properly avoid
4954 triggering the erratum, hence the use of the extra state 1. */
4955
4956 /* If we are only performing a partial link do not bother
4957 to construct any glue. */
4958 if (link_info->relocatable)
4959 return TRUE;
4960
4961 /* Skip if this bfd does not correspond to an ELF image. */
4962 if (! is_arm_elf (abfd))
4963 return TRUE;
4964
4965 /* We should have chosen a fix type by the time we get here. */
4966 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
4967
4968 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
4969 return TRUE;
4970
4971 for (sec = abfd->sections; sec != NULL; sec = sec->next)
4972 {
4973 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
4974 struct _arm_elf_section_data *sec_data;
4975
4976 /* If we don't have executable progbits, we're not interested in this
4977 section. Also skip if section is to be excluded. */
4978 if (elf_section_type (sec) != SHT_PROGBITS
4979 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
4980 || (sec->flags & SEC_EXCLUDE) != 0
4981 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
4982 continue;
4983
4984 sec_data = elf32_arm_section_data (sec);
4985
4986 if (sec_data->mapcount == 0)
4987 continue;
4988
4989 if (elf_section_data (sec)->this_hdr.contents != NULL)
4990 contents = elf_section_data (sec)->this_hdr.contents;
4991 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4992 goto error_return;
4993
4994 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
4995 elf32_arm_compare_mapping);
4996
4997 for (span = 0; span < sec_data->mapcount; span++)
4998 {
4999 unsigned int span_start = sec_data->map[span].vma;
5000 unsigned int span_end = (span == sec_data->mapcount - 1)
5001 ? sec->size : sec_data->map[span + 1].vma;
5002 char span_type = sec_data->map[span].type;
5003
5004 /* FIXME: Only ARM mode is supported at present. We may need to
5005 support Thumb-2 mode also at some point. */
5006 if (span_type != 'a')
5007 continue;
5008
5009 for (i = span_start; i < span_end;)
5010 {
5011 unsigned int next_i = i + 4;
5012 unsigned int insn = bfd_big_endian (abfd)
5013 ? (contents[i] << 24)
5014 | (contents[i + 1] << 16)
5015 | (contents[i + 2] << 8)
5016 | contents[i + 3]
5017 : (contents[i + 3] << 24)
5018 | (contents[i + 2] << 16)
5019 | (contents[i + 1] << 8)
5020 | contents[i];
5021 unsigned int writemask = 0;
5022 enum bfd_arm_vfp11_pipe pipe;
5023
5024 switch (state)
5025 {
5026 case 0:
5027 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5028 &numregs);
5029 /* I'm assuming the VFP11 erratum can trigger with denorm
5030 operands on either the FMAC or the DS pipeline. This might
5031 lead to slightly overenthusiastic veneer insertion. */
5032 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5033 {
5034 state = use_vector ? 1 : 2;
5035 first_fmac = i;
5036 veneer_of_insn = insn;
5037 }
5038 break;
5039
5040 case 1:
5041 {
5042 int other_regs[3], other_numregs;
5043 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5044 other_regs,
5045 &other_numregs);
5046 if (pipe != VFP11_BAD
5047 && bfd_arm_vfp11_antidependency (writemask, regs,
5048 numregs))
5049 state = 3;
5050 else
5051 state = 2;
5052 }
5053 break;
5054
5055 case 2:
5056 {
5057 int other_regs[3], other_numregs;
5058 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5059 other_regs,
5060 &other_numregs);
5061 if (pipe != VFP11_BAD
5062 && bfd_arm_vfp11_antidependency (writemask, regs,
5063 numregs))
5064 state = 3;
5065 else
5066 {
5067 state = 0;
5068 next_i = first_fmac + 4;
5069 }
5070 }
5071 break;
5072
5073 case 3:
5074 abort (); /* Should be unreachable. */
5075 }
5076
5077 if (state == 3)
5078 {
5079 elf32_vfp11_erratum_list *newerr
5080 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5081 int errcount;
5082
5083 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5084
5085 newerr->u.b.vfp_insn = veneer_of_insn;
5086
5087 switch (span_type)
5088 {
5089 case 'a':
5090 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5091 break;
5092
5093 default:
5094 abort ();
5095 }
5096
5097 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5098 first_fmac);
5099
5100 newerr->vma = -1;
5101
5102 newerr->next = sec_data->erratumlist;
5103 sec_data->erratumlist = newerr;
5104
5105 state = 0;
5106 }
5107
5108 i = next_i;
5109 }
5110 }
5111
5112 if (contents != NULL
5113 && elf_section_data (sec)->this_hdr.contents != contents)
5114 free (contents);
5115 contents = NULL;
5116 }
5117
5118 return TRUE;
5119
5120 error_return:
5121 if (contents != NULL
5122 && elf_section_data (sec)->this_hdr.contents != contents)
5123 free (contents);
5124
5125 return FALSE;
5126 }
5127
5128 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5129 after sections have been laid out, using specially-named symbols. */
5130
5131 void
5132 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5133 struct bfd_link_info *link_info)
5134 {
5135 asection *sec;
5136 struct elf32_arm_link_hash_table *globals;
5137 char *tmp_name;
5138
5139 if (link_info->relocatable)
5140 return;
5141
5142 /* Skip if this bfd does not correspond to an ELF image. */
5143 if (! is_arm_elf (abfd))
5144 return;
5145
5146 globals = elf32_arm_hash_table (link_info);
5147
5148 tmp_name = bfd_malloc ((bfd_size_type) strlen
5149 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5150
5151 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5152 {
5153 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5154 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5155
5156 for (; errnode != NULL; errnode = errnode->next)
5157 {
5158 struct elf_link_hash_entry *myh;
5159 bfd_vma vma;
5160
5161 switch (errnode->type)
5162 {
5163 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5164 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5165 /* Find veneer symbol. */
5166 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5167 errnode->u.b.veneer->u.v.id);
5168
5169 myh = elf_link_hash_lookup
5170 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5171
5172 if (myh == NULL)
5173 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5174 "`%s'"), abfd, tmp_name);
5175
5176 vma = myh->root.u.def.section->output_section->vma
5177 + myh->root.u.def.section->output_offset
5178 + myh->root.u.def.value;
5179
5180 errnode->u.b.veneer->vma = vma;
5181 break;
5182
5183 case VFP11_ERRATUM_ARM_VENEER:
5184 case VFP11_ERRATUM_THUMB_VENEER:
5185 /* Find return location. */
5186 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5187 errnode->u.v.id);
5188
5189 myh = elf_link_hash_lookup
5190 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5191
5192 if (myh == NULL)
5193 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5194 "`%s'"), abfd, tmp_name);
5195
5196 vma = myh->root.u.def.section->output_section->vma
5197 + myh->root.u.def.section->output_offset
5198 + myh->root.u.def.value;
5199
5200 errnode->u.v.branch->vma = vma;
5201 break;
5202
5203 default:
5204 abort ();
5205 }
5206 }
5207 }
5208
5209 free (tmp_name);
5210 }
5211
5212
5213 /* Set target relocation values needed during linking. */
5214
5215 void
5216 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5217 struct bfd_link_info *link_info,
5218 int target1_is_rel,
5219 char * target2_type,
5220 int fix_v4bx,
5221 int use_blx,
5222 bfd_arm_vfp11_fix vfp11_fix,
5223 int no_enum_warn, int pic_veneer)
5224 {
5225 struct elf32_arm_link_hash_table *globals;
5226
5227 globals = elf32_arm_hash_table (link_info);
5228
5229 globals->target1_is_rel = target1_is_rel;
5230 if (strcmp (target2_type, "rel") == 0)
5231 globals->target2_reloc = R_ARM_REL32;
5232 else if (strcmp (target2_type, "abs") == 0)
5233 globals->target2_reloc = R_ARM_ABS32;
5234 else if (strcmp (target2_type, "got-rel") == 0)
5235 globals->target2_reloc = R_ARM_GOT_PREL;
5236 else
5237 {
5238 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5239 target2_type);
5240 }
5241 globals->fix_v4bx = fix_v4bx;
5242 globals->use_blx |= use_blx;
5243 globals->vfp11_fix = vfp11_fix;
5244 globals->pic_veneer = pic_veneer;
5245
5246 BFD_ASSERT (is_arm_elf (output_bfd));
5247 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5248 }
5249
5250 /* Replace the target offset of a Thumb bl or b.w instruction. */
5251
5252 static void
5253 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5254 {
5255 bfd_vma upper;
5256 bfd_vma lower;
5257 int reloc_sign;
5258
5259 BFD_ASSERT ((offset & 1) == 0);
5260
5261 upper = bfd_get_16 (abfd, insn);
5262 lower = bfd_get_16 (abfd, insn + 2);
5263 reloc_sign = (offset < 0) ? 1 : 0;
5264 upper = (upper & ~(bfd_vma) 0x7ff)
5265 | ((offset >> 12) & 0x3ff)
5266 | (reloc_sign << 10);
5267 lower = (lower & ~(bfd_vma) 0x2fff)
5268 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5269 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5270 | ((offset >> 1) & 0x7ff);
5271 bfd_put_16 (abfd, upper, insn);
5272 bfd_put_16 (abfd, lower, insn + 2);
5273 }
5274
5275 /* Thumb code calling an ARM function. */
5276
5277 static int
5278 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5279 const char * name,
5280 bfd * input_bfd,
5281 bfd * output_bfd,
5282 asection * input_section,
5283 bfd_byte * hit_data,
5284 asection * sym_sec,
5285 bfd_vma offset,
5286 bfd_signed_vma addend,
5287 bfd_vma val,
5288 char **error_message)
5289 {
5290 asection * s = 0;
5291 bfd_vma my_offset;
5292 long int ret_offset;
5293 struct elf_link_hash_entry * myh;
5294 struct elf32_arm_link_hash_table * globals;
5295
5296 myh = find_thumb_glue (info, name, error_message);
5297 if (myh == NULL)
5298 return FALSE;
5299
5300 globals = elf32_arm_hash_table (info);
5301
5302 BFD_ASSERT (globals != NULL);
5303 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5304
5305 my_offset = myh->root.u.def.value;
5306
5307 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5308 THUMB2ARM_GLUE_SECTION_NAME);
5309
5310 BFD_ASSERT (s != NULL);
5311 BFD_ASSERT (s->contents != NULL);
5312 BFD_ASSERT (s->output_section != NULL);
5313
5314 if ((my_offset & 0x01) == 0x01)
5315 {
5316 if (sym_sec != NULL
5317 && sym_sec->owner != NULL
5318 && !INTERWORK_FLAG (sym_sec->owner))
5319 {
5320 (*_bfd_error_handler)
5321 (_("%B(%s): warning: interworking not enabled.\n"
5322 " first occurrence: %B: thumb call to arm"),
5323 sym_sec->owner, input_bfd, name);
5324
5325 return FALSE;
5326 }
5327
5328 --my_offset;
5329 myh->root.u.def.value = my_offset;
5330
5331 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5332 s->contents + my_offset);
5333
5334 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5335 s->contents + my_offset + 2);
5336
5337 ret_offset =
5338 /* Address of destination of the stub. */
5339 ((bfd_signed_vma) val)
5340 - ((bfd_signed_vma)
5341 /* Offset from the start of the current section
5342 to the start of the stubs. */
5343 (s->output_offset
5344 /* Offset of the start of this stub from the start of the stubs. */
5345 + my_offset
5346 /* Address of the start of the current section. */
5347 + s->output_section->vma)
5348 /* The branch instruction is 4 bytes into the stub. */
5349 + 4
5350 /* ARM branches work from the pc of the instruction + 8. */
5351 + 8);
5352
5353 put_arm_insn (globals, output_bfd,
5354 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5355 s->contents + my_offset + 4);
5356 }
5357
5358 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5359
5360 /* Now go back and fix up the original BL insn to point to here. */
5361 ret_offset =
5362 /* Address of where the stub is located. */
5363 (s->output_section->vma + s->output_offset + my_offset)
5364 /* Address of where the BL is located. */
5365 - (input_section->output_section->vma + input_section->output_offset
5366 + offset)
5367 /* Addend in the relocation. */
5368 - addend
5369 /* Biassing for PC-relative addressing. */
5370 - 8;
5371
5372 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5373
5374 return TRUE;
5375 }
5376
5377 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5378
5379 static struct elf_link_hash_entry *
5380 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5381 const char * name,
5382 bfd * input_bfd,
5383 bfd * output_bfd,
5384 asection * sym_sec,
5385 bfd_vma val,
5386 asection *s,
5387 char **error_message)
5388 {
5389 bfd_vma my_offset;
5390 long int ret_offset;
5391 struct elf_link_hash_entry * myh;
5392 struct elf32_arm_link_hash_table * globals;
5393
5394 myh = find_arm_glue (info, name, error_message);
5395 if (myh == NULL)
5396 return NULL;
5397
5398 globals = elf32_arm_hash_table (info);
5399
5400 BFD_ASSERT (globals != NULL);
5401 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5402
5403 my_offset = myh->root.u.def.value;
5404
5405 if ((my_offset & 0x01) == 0x01)
5406 {
5407 if (sym_sec != NULL
5408 && sym_sec->owner != NULL
5409 && !INTERWORK_FLAG (sym_sec->owner))
5410 {
5411 (*_bfd_error_handler)
5412 (_("%B(%s): warning: interworking not enabled.\n"
5413 " first occurrence: %B: arm call to thumb"),
5414 sym_sec->owner, input_bfd, name);
5415 }
5416
5417 --my_offset;
5418 myh->root.u.def.value = my_offset;
5419
5420 if (info->shared || globals->root.is_relocatable_executable
5421 || globals->pic_veneer)
5422 {
5423 /* For relocatable objects we can't use absolute addresses,
5424 so construct the address from a relative offset. */
5425 /* TODO: If the offset is small it's probably worth
5426 constructing the address with adds. */
5427 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5428 s->contents + my_offset);
5429 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5430 s->contents + my_offset + 4);
5431 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5432 s->contents + my_offset + 8);
5433 /* Adjust the offset by 4 for the position of the add,
5434 and 8 for the pipeline offset. */
5435 ret_offset = (val - (s->output_offset
5436 + s->output_section->vma
5437 + my_offset + 12))
5438 | 1;
5439 bfd_put_32 (output_bfd, ret_offset,
5440 s->contents + my_offset + 12);
5441 }
5442 else if (globals->use_blx)
5443 {
5444 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5445 s->contents + my_offset);
5446
5447 /* It's a thumb address. Add the low order bit. */
5448 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5449 s->contents + my_offset + 4);
5450 }
5451 else
5452 {
5453 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5454 s->contents + my_offset);
5455
5456 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5457 s->contents + my_offset + 4);
5458
5459 /* It's a thumb address. Add the low order bit. */
5460 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5461 s->contents + my_offset + 8);
5462 }
5463 }
5464
5465 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5466
5467 return myh;
5468 }
5469
5470 /* Arm code calling a Thumb function. */
5471
5472 static int
5473 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5474 const char * name,
5475 bfd * input_bfd,
5476 bfd * output_bfd,
5477 asection * input_section,
5478 bfd_byte * hit_data,
5479 asection * sym_sec,
5480 bfd_vma offset,
5481 bfd_signed_vma addend,
5482 bfd_vma val,
5483 char **error_message)
5484 {
5485 unsigned long int tmp;
5486 bfd_vma my_offset;
5487 asection * s;
5488 long int ret_offset;
5489 struct elf_link_hash_entry * myh;
5490 struct elf32_arm_link_hash_table * globals;
5491
5492 globals = elf32_arm_hash_table (info);
5493
5494 BFD_ASSERT (globals != NULL);
5495 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5496
5497 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5498 ARM2THUMB_GLUE_SECTION_NAME);
5499 BFD_ASSERT (s != NULL);
5500 BFD_ASSERT (s->contents != NULL);
5501 BFD_ASSERT (s->output_section != NULL);
5502
5503 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5504 sym_sec, val, s, error_message);
5505 if (!myh)
5506 return FALSE;
5507
5508 my_offset = myh->root.u.def.value;
5509 tmp = bfd_get_32 (input_bfd, hit_data);
5510 tmp = tmp & 0xFF000000;
5511
5512 /* Somehow these are both 4 too far, so subtract 8. */
5513 ret_offset = (s->output_offset
5514 + my_offset
5515 + s->output_section->vma
5516 - (input_section->output_offset
5517 + input_section->output_section->vma
5518 + offset + addend)
5519 - 8);
5520
5521 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5522
5523 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5524
5525 return TRUE;
5526 }
5527
5528 /* Populate Arm stub for an exported Thumb function. */
5529
5530 static bfd_boolean
5531 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5532 {
5533 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5534 asection * s;
5535 struct elf_link_hash_entry * myh;
5536 struct elf32_arm_link_hash_entry *eh;
5537 struct elf32_arm_link_hash_table * globals;
5538 asection *sec;
5539 bfd_vma val;
5540 char *error_message;
5541
5542 eh = elf32_arm_hash_entry (h);
5543 /* Allocate stubs for exported Thumb functions on v4t. */
5544 if (eh->export_glue == NULL)
5545 return TRUE;
5546
5547 globals = elf32_arm_hash_table (info);
5548
5549 BFD_ASSERT (globals != NULL);
5550 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5551
5552 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5553 ARM2THUMB_GLUE_SECTION_NAME);
5554 BFD_ASSERT (s != NULL);
5555 BFD_ASSERT (s->contents != NULL);
5556 BFD_ASSERT (s->output_section != NULL);
5557
5558 sec = eh->export_glue->root.u.def.section;
5559
5560 BFD_ASSERT (sec->output_section != NULL);
5561
5562 val = eh->export_glue->root.u.def.value + sec->output_offset
5563 + sec->output_section->vma;
5564 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5565 h->root.u.def.section->owner,
5566 globals->obfd, sec, val, s,
5567 &error_message);
5568 BFD_ASSERT (myh);
5569 return TRUE;
5570 }
5571
5572 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5573
5574 static bfd_vma
5575 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5576 {
5577 bfd_byte *p;
5578 bfd_vma glue_addr;
5579 asection *s;
5580 struct elf32_arm_link_hash_table *globals;
5581
5582 globals = elf32_arm_hash_table (info);
5583
5584 BFD_ASSERT (globals != NULL);
5585 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5586
5587 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5588 ARM_BX_GLUE_SECTION_NAME);
5589 BFD_ASSERT (s != NULL);
5590 BFD_ASSERT (s->contents != NULL);
5591 BFD_ASSERT (s->output_section != NULL);
5592
5593 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5594
5595 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5596
5597 if ((globals->bx_glue_offset[reg] & 1) == 0)
5598 {
5599 p = s->contents + glue_addr;
5600 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5601 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5602 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5603 globals->bx_glue_offset[reg] |= 1;
5604 }
5605
5606 return glue_addr + s->output_section->vma + s->output_offset;
5607 }
5608
5609 /* Generate Arm stubs for exported Thumb symbols. */
5610 static void
5611 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5612 struct bfd_link_info *link_info)
5613 {
5614 struct elf32_arm_link_hash_table * globals;
5615
5616 if (!link_info)
5617 return;
5618
5619 globals = elf32_arm_hash_table (link_info);
5620 /* If blx is available then exported Thumb symbols are OK and there is
5621 nothing to do. */
5622 if (globals->use_blx)
5623 return;
5624
5625 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5626 link_info);
5627 }
5628
5629 /* Some relocations map to different relocations depending on the
5630 target. Return the real relocation. */
5631 static int
5632 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5633 int r_type)
5634 {
5635 switch (r_type)
5636 {
5637 case R_ARM_TARGET1:
5638 if (globals->target1_is_rel)
5639 return R_ARM_REL32;
5640 else
5641 return R_ARM_ABS32;
5642
5643 case R_ARM_TARGET2:
5644 return globals->target2_reloc;
5645
5646 default:
5647 return r_type;
5648 }
5649 }
5650
5651 /* Return the base VMA address which should be subtracted from real addresses
5652 when resolving @dtpoff relocation.
5653 This is PT_TLS segment p_vaddr. */
5654
5655 static bfd_vma
5656 dtpoff_base (struct bfd_link_info *info)
5657 {
5658 /* If tls_sec is NULL, we should have signalled an error already. */
5659 if (elf_hash_table (info)->tls_sec == NULL)
5660 return 0;
5661 return elf_hash_table (info)->tls_sec->vma;
5662 }
5663
5664 /* Return the relocation value for @tpoff relocation
5665 if STT_TLS virtual address is ADDRESS. */
5666
5667 static bfd_vma
5668 tpoff (struct bfd_link_info *info, bfd_vma address)
5669 {
5670 struct elf_link_hash_table *htab = elf_hash_table (info);
5671 bfd_vma base;
5672
5673 /* If tls_sec is NULL, we should have signalled an error already. */
5674 if (htab->tls_sec == NULL)
5675 return 0;
5676 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5677 return address - htab->tls_sec->vma + base;
5678 }
5679
5680 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5681 VALUE is the relocation value. */
5682
5683 static bfd_reloc_status_type
5684 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5685 {
5686 if (value > 0xfff)
5687 return bfd_reloc_overflow;
5688
5689 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5690 bfd_put_32 (abfd, value, data);
5691 return bfd_reloc_ok;
5692 }
5693
5694 /* For a given value of n, calculate the value of G_n as required to
5695 deal with group relocations. We return it in the form of an
5696 encoded constant-and-rotation, together with the final residual. If n is
5697 specified as less than zero, then final_residual is filled with the
5698 input value and no further action is performed. */
5699
5700 static bfd_vma
5701 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5702 {
5703 int current_n;
5704 bfd_vma g_n;
5705 bfd_vma encoded_g_n = 0;
5706 bfd_vma residual = value; /* Also known as Y_n. */
5707
5708 for (current_n = 0; current_n <= n; current_n++)
5709 {
5710 int shift;
5711
5712 /* Calculate which part of the value to mask. */
5713 if (residual == 0)
5714 shift = 0;
5715 else
5716 {
5717 int msb;
5718
5719 /* Determine the most significant bit in the residual and
5720 align the resulting value to a 2-bit boundary. */
5721 for (msb = 30; msb >= 0; msb -= 2)
5722 if (residual & (3 << msb))
5723 break;
5724
5725 /* The desired shift is now (msb - 6), or zero, whichever
5726 is the greater. */
5727 shift = msb - 6;
5728 if (shift < 0)
5729 shift = 0;
5730 }
5731
5732 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5733 g_n = residual & (0xff << shift);
5734 encoded_g_n = (g_n >> shift)
5735 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5736
5737 /* Calculate the residual for the next time around. */
5738 residual &= ~g_n;
5739 }
5740
5741 *final_residual = residual;
5742
5743 return encoded_g_n;
5744 }
5745
5746 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5747 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5748
5749 static int
5750 identify_add_or_sub (bfd_vma insn)
5751 {
5752 int opcode = insn & 0x1e00000;
5753
5754 if (opcode == 1 << 23) /* ADD */
5755 return 1;
5756
5757 if (opcode == 1 << 22) /* SUB */
5758 return -1;
5759
5760 return 0;
5761 }
5762
5763 /* Perform a relocation as part of a final link. */
5764
5765 static bfd_reloc_status_type
5766 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5767 bfd * input_bfd,
5768 bfd * output_bfd,
5769 asection * input_section,
5770 bfd_byte * contents,
5771 Elf_Internal_Rela * rel,
5772 bfd_vma value,
5773 struct bfd_link_info * info,
5774 asection * sym_sec,
5775 const char * sym_name,
5776 int sym_flags,
5777 struct elf_link_hash_entry * h,
5778 bfd_boolean * unresolved_reloc_p,
5779 char **error_message)
5780 {
5781 unsigned long r_type = howto->type;
5782 unsigned long r_symndx;
5783 bfd_byte * hit_data = contents + rel->r_offset;
5784 bfd * dynobj = NULL;
5785 Elf_Internal_Shdr * symtab_hdr;
5786 struct elf_link_hash_entry ** sym_hashes;
5787 bfd_vma * local_got_offsets;
5788 asection * sgot = NULL;
5789 asection * splt = NULL;
5790 asection * sreloc = NULL;
5791 bfd_vma addend;
5792 bfd_signed_vma signed_addend;
5793 struct elf32_arm_link_hash_table * globals;
5794
5795 globals = elf32_arm_hash_table (info);
5796
5797 BFD_ASSERT (is_arm_elf (input_bfd));
5798
5799 /* Some relocation types map to different relocations depending on the
5800 target. We pick the right one here. */
5801 r_type = arm_real_reloc_type (globals, r_type);
5802 if (r_type != howto->type)
5803 howto = elf32_arm_howto_from_type (r_type);
5804
5805 /* If the start address has been set, then set the EF_ARM_HASENTRY
5806 flag. Setting this more than once is redundant, but the cost is
5807 not too high, and it keeps the code simple.
5808
5809 The test is done here, rather than somewhere else, because the
5810 start address is only set just before the final link commences.
5811
5812 Note - if the user deliberately sets a start address of 0, the
5813 flag will not be set. */
5814 if (bfd_get_start_address (output_bfd) != 0)
5815 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5816
5817 dynobj = elf_hash_table (info)->dynobj;
5818 if (dynobj)
5819 {
5820 sgot = bfd_get_section_by_name (dynobj, ".got");
5821 splt = bfd_get_section_by_name (dynobj, ".plt");
5822 }
5823 symtab_hdr = & elf_symtab_hdr (input_bfd);
5824 sym_hashes = elf_sym_hashes (input_bfd);
5825 local_got_offsets = elf_local_got_offsets (input_bfd);
5826 r_symndx = ELF32_R_SYM (rel->r_info);
5827
5828 if (globals->use_rel)
5829 {
5830 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5831
5832 if (addend & ((howto->src_mask + 1) >> 1))
5833 {
5834 signed_addend = -1;
5835 signed_addend &= ~ howto->src_mask;
5836 signed_addend |= addend;
5837 }
5838 else
5839 signed_addend = addend;
5840 }
5841 else
5842 addend = signed_addend = rel->r_addend;
5843
5844 switch (r_type)
5845 {
5846 case R_ARM_NONE:
5847 /* We don't need to find a value for this symbol. It's just a
5848 marker. */
5849 *unresolved_reloc_p = FALSE;
5850 return bfd_reloc_ok;
5851
5852 case R_ARM_ABS12:
5853 if (!globals->vxworks_p)
5854 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5855
5856 case R_ARM_PC24:
5857 case R_ARM_ABS32:
5858 case R_ARM_ABS32_NOI:
5859 case R_ARM_REL32:
5860 case R_ARM_REL32_NOI:
5861 case R_ARM_CALL:
5862 case R_ARM_JUMP24:
5863 case R_ARM_XPC25:
5864 case R_ARM_PREL31:
5865 case R_ARM_PLT32:
5866 /* Handle relocations which should use the PLT entry. ABS32/REL32
5867 will use the symbol's value, which may point to a PLT entry, but we
5868 don't need to handle that here. If we created a PLT entry, all
5869 branches in this object should go to it. */
5870 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5871 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5872 && h != NULL
5873 && splt != NULL
5874 && h->plt.offset != (bfd_vma) -1)
5875 {
5876 /* If we've created a .plt section, and assigned a PLT entry to
5877 this function, it should not be known to bind locally. If
5878 it were, we would have cleared the PLT entry. */
5879 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5880
5881 value = (splt->output_section->vma
5882 + splt->output_offset
5883 + h->plt.offset);
5884 *unresolved_reloc_p = FALSE;
5885 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5886 contents, rel->r_offset, value,
5887 rel->r_addend);
5888 }
5889
5890 /* When generating a shared object or relocatable executable, these
5891 relocations are copied into the output file to be resolved at
5892 run time. */
5893 if ((info->shared || globals->root.is_relocatable_executable)
5894 && (input_section->flags & SEC_ALLOC)
5895 && !(elf32_arm_hash_table (info)->vxworks_p
5896 && strcmp (input_section->output_section->name,
5897 ".tls_vars") == 0)
5898 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5899 || !SYMBOL_CALLS_LOCAL (info, h))
5900 && (h == NULL
5901 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5902 || h->root.type != bfd_link_hash_undefweak)
5903 && r_type != R_ARM_PC24
5904 && r_type != R_ARM_CALL
5905 && r_type != R_ARM_JUMP24
5906 && r_type != R_ARM_PREL31
5907 && r_type != R_ARM_PLT32)
5908 {
5909 Elf_Internal_Rela outrel;
5910 bfd_byte *loc;
5911 bfd_boolean skip, relocate;
5912
5913 *unresolved_reloc_p = FALSE;
5914
5915 if (sreloc == NULL)
5916 {
5917 const char * name;
5918
5919 name = (bfd_elf_string_from_elf_section
5920 (input_bfd,
5921 elf_elfheader (input_bfd)->e_shstrndx,
5922 elf_section_data (input_section)->rel_hdr.sh_name));
5923 if (name == NULL)
5924 return bfd_reloc_notsupported;
5925
5926 BFD_ASSERT (reloc_section_p (globals, name, input_section));
5927
5928 sreloc = bfd_get_section_by_name (dynobj, name);
5929 BFD_ASSERT (sreloc != NULL);
5930 }
5931
5932 skip = FALSE;
5933 relocate = FALSE;
5934
5935 outrel.r_addend = addend;
5936 outrel.r_offset =
5937 _bfd_elf_section_offset (output_bfd, info, input_section,
5938 rel->r_offset);
5939 if (outrel.r_offset == (bfd_vma) -1)
5940 skip = TRUE;
5941 else if (outrel.r_offset == (bfd_vma) -2)
5942 skip = TRUE, relocate = TRUE;
5943 outrel.r_offset += (input_section->output_section->vma
5944 + input_section->output_offset);
5945
5946 if (skip)
5947 memset (&outrel, 0, sizeof outrel);
5948 else if (h != NULL
5949 && h->dynindx != -1
5950 && (!info->shared
5951 || !info->symbolic
5952 || !h->def_regular))
5953 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
5954 else
5955 {
5956 int symbol;
5957
5958 /* This symbol is local, or marked to become local. */
5959 if (sym_flags == STT_ARM_TFUNC)
5960 value |= 1;
5961 if (globals->symbian_p)
5962 {
5963 asection *osec;
5964
5965 /* On Symbian OS, the data segment and text segement
5966 can be relocated independently. Therefore, we
5967 must indicate the segment to which this
5968 relocation is relative. The BPABI allows us to
5969 use any symbol in the right segment; we just use
5970 the section symbol as it is convenient. (We
5971 cannot use the symbol given by "h" directly as it
5972 will not appear in the dynamic symbol table.)
5973
5974 Note that the dynamic linker ignores the section
5975 symbol value, so we don't subtract osec->vma
5976 from the emitted reloc addend. */
5977 if (sym_sec)
5978 osec = sym_sec->output_section;
5979 else
5980 osec = input_section->output_section;
5981 symbol = elf_section_data (osec)->dynindx;
5982 if (symbol == 0)
5983 {
5984 struct elf_link_hash_table *htab = elf_hash_table (info);
5985
5986 if ((osec->flags & SEC_READONLY) == 0
5987 && htab->data_index_section != NULL)
5988 osec = htab->data_index_section;
5989 else
5990 osec = htab->text_index_section;
5991 symbol = elf_section_data (osec)->dynindx;
5992 }
5993 BFD_ASSERT (symbol != 0);
5994 }
5995 else
5996 /* On SVR4-ish systems, the dynamic loader cannot
5997 relocate the text and data segments independently,
5998 so the symbol does not matter. */
5999 symbol = 0;
6000 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6001 if (globals->use_rel)
6002 relocate = TRUE;
6003 else
6004 outrel.r_addend += value;
6005 }
6006
6007 loc = sreloc->contents;
6008 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6009 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6010
6011 /* If this reloc is against an external symbol, we do not want to
6012 fiddle with the addend. Otherwise, we need to include the symbol
6013 value so that it becomes an addend for the dynamic reloc. */
6014 if (! relocate)
6015 return bfd_reloc_ok;
6016
6017 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6018 contents, rel->r_offset, value,
6019 (bfd_vma) 0);
6020 }
6021 else switch (r_type)
6022 {
6023 case R_ARM_ABS12:
6024 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6025
6026 case R_ARM_XPC25: /* Arm BLX instruction. */
6027 case R_ARM_CALL:
6028 case R_ARM_JUMP24:
6029 case R_ARM_PC24: /* Arm B/BL instruction */
6030 case R_ARM_PLT32:
6031 {
6032 bfd_vma from;
6033 bfd_signed_vma branch_offset;
6034 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6035
6036 from = (input_section->output_section->vma
6037 + input_section->output_offset
6038 + rel->r_offset);
6039 branch_offset = (bfd_signed_vma)(value - from);
6040
6041 if (r_type == R_ARM_XPC25)
6042 {
6043 /* Check for Arm calling Arm function. */
6044 /* FIXME: Should we translate the instruction into a BL
6045 instruction instead ? */
6046 if (sym_flags != STT_ARM_TFUNC)
6047 (*_bfd_error_handler)
6048 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6049 input_bfd,
6050 h ? h->root.root.string : "(local)");
6051 }
6052 else if (r_type != R_ARM_CALL)
6053 {
6054 /* Check for Arm calling Thumb function. */
6055 if (sym_flags == STT_ARM_TFUNC)
6056 {
6057 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6058 output_bfd, input_section,
6059 hit_data, sym_sec, rel->r_offset,
6060 signed_addend, value,
6061 error_message))
6062 return bfd_reloc_ok;
6063 else
6064 return bfd_reloc_dangerous;
6065 }
6066 }
6067
6068 /* Check if a stub has to be inserted because the
6069 destination is too far or we are changing mode */
6070 if (r_type == R_ARM_CALL)
6071 {
6072 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6073 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6074 || sym_flags == STT_ARM_TFUNC)
6075 {
6076 /* The target is out of reach, so redirect the
6077 branch to the local stub for this function. */
6078
6079 stub_entry = elf32_arm_get_stub_entry (input_section,
6080 sym_sec, h,
6081 rel, globals);
6082 if (stub_entry != NULL)
6083 value = (stub_entry->stub_offset
6084 + stub_entry->stub_sec->output_offset
6085 + stub_entry->stub_sec->output_section->vma);
6086 }
6087 }
6088
6089 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6090 where:
6091 S is the address of the symbol in the relocation.
6092 P is address of the instruction being relocated.
6093 A is the addend (extracted from the instruction) in bytes.
6094
6095 S is held in 'value'.
6096 P is the base address of the section containing the
6097 instruction plus the offset of the reloc into that
6098 section, ie:
6099 (input_section->output_section->vma +
6100 input_section->output_offset +
6101 rel->r_offset).
6102 A is the addend, converted into bytes, ie:
6103 (signed_addend * 4)
6104
6105 Note: None of these operations have knowledge of the pipeline
6106 size of the processor, thus it is up to the assembler to
6107 encode this information into the addend. */
6108 value -= (input_section->output_section->vma
6109 + input_section->output_offset);
6110 value -= rel->r_offset;
6111 if (globals->use_rel)
6112 value += (signed_addend << howto->size);
6113 else
6114 /* RELA addends do not have to be adjusted by howto->size. */
6115 value += signed_addend;
6116
6117 signed_addend = value;
6118 signed_addend >>= howto->rightshift;
6119
6120 /* A branch to an undefined weak symbol is turned into a jump to
6121 the next instruction. */
6122 if (h && h->root.type == bfd_link_hash_undefweak)
6123 {
6124 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6125 | 0x0affffff;
6126 }
6127 else
6128 {
6129 /* Perform a signed range check. */
6130 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6131 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6132 return bfd_reloc_overflow;
6133
6134 addend = (value & 2);
6135
6136 value = (signed_addend & howto->dst_mask)
6137 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6138
6139 /* Set the H bit in the BLX instruction. */
6140 if (sym_flags == STT_ARM_TFUNC)
6141 {
6142 if (addend)
6143 value |= (1 << 24);
6144 else
6145 value &= ~(bfd_vma)(1 << 24);
6146 }
6147 if (r_type == R_ARM_CALL)
6148 {
6149 /* Select the correct instruction (BL or BLX). */
6150 /* Only if we are not handling a BL to a stub. In this
6151 case, mode switching is performed by the stub. */
6152 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6153 value |= (1 << 28);
6154 else
6155 {
6156 value &= ~(bfd_vma)(1 << 28);
6157 value |= (1 << 24);
6158 }
6159 }
6160 }
6161 }
6162 break;
6163
6164 case R_ARM_ABS32:
6165 value += addend;
6166 if (sym_flags == STT_ARM_TFUNC)
6167 value |= 1;
6168 break;
6169
6170 case R_ARM_ABS32_NOI:
6171 value += addend;
6172 break;
6173
6174 case R_ARM_REL32:
6175 value += addend;
6176 if (sym_flags == STT_ARM_TFUNC)
6177 value |= 1;
6178 value -= (input_section->output_section->vma
6179 + input_section->output_offset + rel->r_offset);
6180 break;
6181
6182 case R_ARM_REL32_NOI:
6183 value += addend;
6184 value -= (input_section->output_section->vma
6185 + input_section->output_offset + rel->r_offset);
6186 break;
6187
6188 case R_ARM_PREL31:
6189 value -= (input_section->output_section->vma
6190 + input_section->output_offset + rel->r_offset);
6191 value += signed_addend;
6192 if (! h || h->root.type != bfd_link_hash_undefweak)
6193 {
6194 /* Check for overflow */
6195 if ((value ^ (value >> 1)) & (1 << 30))
6196 return bfd_reloc_overflow;
6197 }
6198 value &= 0x7fffffff;
6199 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6200 if (sym_flags == STT_ARM_TFUNC)
6201 value |= 1;
6202 break;
6203 }
6204
6205 bfd_put_32 (input_bfd, value, hit_data);
6206 return bfd_reloc_ok;
6207
6208 case R_ARM_ABS8:
6209 value += addend;
6210 if ((long) value > 0x7f || (long) value < -0x80)
6211 return bfd_reloc_overflow;
6212
6213 bfd_put_8 (input_bfd, value, hit_data);
6214 return bfd_reloc_ok;
6215
6216 case R_ARM_ABS16:
6217 value += addend;
6218
6219 if ((long) value > 0x7fff || (long) value < -0x8000)
6220 return bfd_reloc_overflow;
6221
6222 bfd_put_16 (input_bfd, value, hit_data);
6223 return bfd_reloc_ok;
6224
6225 case R_ARM_THM_ABS5:
6226 /* Support ldr and str instructions for the thumb. */
6227 if (globals->use_rel)
6228 {
6229 /* Need to refetch addend. */
6230 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6231 /* ??? Need to determine shift amount from operand size. */
6232 addend >>= howto->rightshift;
6233 }
6234 value += addend;
6235
6236 /* ??? Isn't value unsigned? */
6237 if ((long) value > 0x1f || (long) value < -0x10)
6238 return bfd_reloc_overflow;
6239
6240 /* ??? Value needs to be properly shifted into place first. */
6241 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6242 bfd_put_16 (input_bfd, value, hit_data);
6243 return bfd_reloc_ok;
6244
6245 case R_ARM_THM_ALU_PREL_11_0:
6246 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6247 {
6248 bfd_vma insn;
6249 bfd_signed_vma relocation;
6250
6251 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6252 | bfd_get_16 (input_bfd, hit_data + 2);
6253
6254 if (globals->use_rel)
6255 {
6256 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6257 | ((insn & (1 << 26)) >> 15);
6258 if (insn & 0xf00000)
6259 signed_addend = -signed_addend;
6260 }
6261
6262 relocation = value + signed_addend;
6263 relocation -= (input_section->output_section->vma
6264 + input_section->output_offset
6265 + rel->r_offset);
6266
6267 value = abs (relocation);
6268
6269 if (value >= 0x1000)
6270 return bfd_reloc_overflow;
6271
6272 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6273 | ((value & 0x700) << 4)
6274 | ((value & 0x800) << 15);
6275 if (relocation < 0)
6276 insn |= 0xa00000;
6277
6278 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6279 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6280
6281 return bfd_reloc_ok;
6282 }
6283
6284 case R_ARM_THM_PC12:
6285 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6286 {
6287 bfd_vma insn;
6288 bfd_signed_vma relocation;
6289
6290 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6291 | bfd_get_16 (input_bfd, hit_data + 2);
6292
6293 if (globals->use_rel)
6294 {
6295 signed_addend = insn & 0xfff;
6296 if (!(insn & (1 << 23)))
6297 signed_addend = -signed_addend;
6298 }
6299
6300 relocation = value + signed_addend;
6301 relocation -= (input_section->output_section->vma
6302 + input_section->output_offset
6303 + rel->r_offset);
6304
6305 value = abs (relocation);
6306
6307 if (value >= 0x1000)
6308 return bfd_reloc_overflow;
6309
6310 insn = (insn & 0xff7ff000) | value;
6311 if (relocation >= 0)
6312 insn |= (1 << 23);
6313
6314 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6315 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6316
6317 return bfd_reloc_ok;
6318 }
6319
6320 case R_ARM_THM_XPC22:
6321 case R_ARM_THM_CALL:
6322 case R_ARM_THM_JUMP24:
6323 /* Thumb BL (branch long instruction). */
6324 {
6325 bfd_vma relocation;
6326 bfd_vma reloc_sign;
6327 bfd_boolean overflow = FALSE;
6328 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6329 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6330 bfd_signed_vma reloc_signed_max;
6331 bfd_signed_vma reloc_signed_min;
6332 bfd_vma check;
6333 bfd_signed_vma signed_check;
6334 int bitsize;
6335 int thumb2 = using_thumb2 (globals);
6336
6337 /* A branch to an undefined weak symbol is turned into a jump to
6338 the next instruction. */
6339 if (h && h->root.type == bfd_link_hash_undefweak)
6340 {
6341 bfd_put_16 (input_bfd, 0xe000, hit_data);
6342 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6343 return bfd_reloc_ok;
6344 }
6345
6346 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6347 with Thumb-1) involving the J1 and J2 bits. */
6348 if (globals->use_rel)
6349 {
6350 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6351 bfd_vma upper = upper_insn & 0x3ff;
6352 bfd_vma lower = lower_insn & 0x7ff;
6353 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6354 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6355 bfd_vma i1 = j1 ^ s ? 0 : 1;
6356 bfd_vma i2 = j2 ^ s ? 0 : 1;
6357
6358 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6359 /* Sign extend. */
6360 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6361
6362 signed_addend = addend;
6363 }
6364
6365 if (r_type == R_ARM_THM_XPC22)
6366 {
6367 /* Check for Thumb to Thumb call. */
6368 /* FIXME: Should we translate the instruction into a BL
6369 instruction instead ? */
6370 if (sym_flags == STT_ARM_TFUNC)
6371 (*_bfd_error_handler)
6372 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6373 input_bfd,
6374 h ? h->root.root.string : "(local)");
6375 }
6376 else
6377 {
6378 /* If it is not a call to Thumb, assume call to Arm.
6379 If it is a call relative to a section name, then it is not a
6380 function call at all, but rather a long jump. Calls through
6381 the PLT do not require stubs. */
6382 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6383 && (h == NULL || splt == NULL
6384 || h->plt.offset == (bfd_vma) -1))
6385 {
6386 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6387 {
6388 /* Convert BL to BLX. */
6389 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6390 }
6391 else if (r_type != R_ARM_THM_CALL) {
6392 if (elf32_thumb_to_arm_stub
6393 (info, sym_name, input_bfd, output_bfd, input_section,
6394 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6395 error_message))
6396 return bfd_reloc_ok;
6397 else
6398 return bfd_reloc_dangerous;
6399 }
6400 }
6401 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6402 && r_type == R_ARM_THM_CALL)
6403 {
6404 /* Make sure this is a BL. */
6405 lower_insn |= 0x1800;
6406 }
6407 }
6408
6409 /* Handle calls via the PLT. */
6410 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6411 {
6412 value = (splt->output_section->vma
6413 + splt->output_offset
6414 + h->plt.offset);
6415 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6416 {
6417 /* If the Thumb BLX instruction is available, convert the
6418 BL to a BLX instruction to call the ARM-mode PLT entry. */
6419 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6420 }
6421 else
6422 /* Target the Thumb stub before the ARM PLT entry. */
6423 value -= PLT_THUMB_STUB_SIZE;
6424 *unresolved_reloc_p = FALSE;
6425 }
6426
6427 if (r_type == R_ARM_THM_CALL)
6428 {
6429 /* Check if a stub has to be inserted because the destination
6430 is too far. */
6431 bfd_vma from;
6432 bfd_signed_vma branch_offset;
6433 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6434
6435 from = (input_section->output_section->vma
6436 + input_section->output_offset
6437 + rel->r_offset);
6438 branch_offset = (bfd_signed_vma)(value - from);
6439
6440 if ((!thumb2
6441 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6442 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6443 ||
6444 (thumb2
6445 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6446 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6447 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6448 {
6449 /* The target is out of reach or we are changing modes, so
6450 redirect the branch to the local stub for this
6451 function. */
6452 stub_entry = elf32_arm_get_stub_entry (input_section,
6453 sym_sec, h,
6454 rel, globals);
6455 if (stub_entry != NULL)
6456 value = (stub_entry->stub_offset
6457 + stub_entry->stub_sec->output_offset
6458 + stub_entry->stub_sec->output_section->vma);
6459
6460 /* If this call becomes a call to Arm, force BLX. */
6461 if (globals->use_blx)
6462 {
6463 if ((stub_entry
6464 && !arm_stub_is_thumb (stub_entry->stub_type))
6465 || (sym_flags != STT_ARM_TFUNC))
6466 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6467 }
6468 }
6469 }
6470
6471 relocation = value + signed_addend;
6472
6473 relocation -= (input_section->output_section->vma
6474 + input_section->output_offset
6475 + rel->r_offset);
6476
6477 check = relocation >> howto->rightshift;
6478
6479 /* If this is a signed value, the rightshift just dropped
6480 leading 1 bits (assuming twos complement). */
6481 if ((bfd_signed_vma) relocation >= 0)
6482 signed_check = check;
6483 else
6484 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6485
6486 /* Calculate the permissable maximum and minimum values for
6487 this relocation according to whether we're relocating for
6488 Thumb-2 or not. */
6489 bitsize = howto->bitsize;
6490 if (!thumb2)
6491 bitsize -= 2;
6492 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6493 reloc_signed_min = ~reloc_signed_max;
6494
6495 /* Assumes two's complement. */
6496 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6497 overflow = TRUE;
6498
6499 if ((lower_insn & 0x5000) == 0x4000)
6500 /* For a BLX instruction, make sure that the relocation is rounded up
6501 to a word boundary. This follows the semantics of the instruction
6502 which specifies that bit 1 of the target address will come from bit
6503 1 of the base address. */
6504 relocation = (relocation + 2) & ~ 3;
6505
6506 /* Put RELOCATION back into the insn. Assumes two's complement.
6507 We use the Thumb-2 encoding, which is safe even if dealing with
6508 a Thumb-1 instruction by virtue of our overflow check above. */
6509 reloc_sign = (signed_check < 0) ? 1 : 0;
6510 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6511 | ((relocation >> 12) & 0x3ff)
6512 | (reloc_sign << 10);
6513 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6514 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6515 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6516 | ((relocation >> 1) & 0x7ff);
6517
6518 /* Put the relocated value back in the object file: */
6519 bfd_put_16 (input_bfd, upper_insn, hit_data);
6520 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6521
6522 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6523 }
6524 break;
6525
6526 case R_ARM_THM_JUMP19:
6527 /* Thumb32 conditional branch instruction. */
6528 {
6529 bfd_vma relocation;
6530 bfd_boolean overflow = FALSE;
6531 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6532 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6533 bfd_signed_vma reloc_signed_max = 0xffffe;
6534 bfd_signed_vma reloc_signed_min = -0x100000;
6535 bfd_signed_vma signed_check;
6536
6537 /* Need to refetch the addend, reconstruct the top three bits,
6538 and squish the two 11 bit pieces together. */
6539 if (globals->use_rel)
6540 {
6541 bfd_vma S = (upper_insn & 0x0400) >> 10;
6542 bfd_vma upper = (upper_insn & 0x003f);
6543 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6544 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6545 bfd_vma lower = (lower_insn & 0x07ff);
6546
6547 upper |= J1 << 6;
6548 upper |= J2 << 7;
6549 upper |= (!S) << 8;
6550 upper -= 0x0100; /* Sign extend. */
6551
6552 addend = (upper << 12) | (lower << 1);
6553 signed_addend = addend;
6554 }
6555
6556 /* Handle calls via the PLT. */
6557 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6558 {
6559 value = (splt->output_section->vma
6560 + splt->output_offset
6561 + h->plt.offset);
6562 /* Target the Thumb stub before the ARM PLT entry. */
6563 value -= PLT_THUMB_STUB_SIZE;
6564 *unresolved_reloc_p = FALSE;
6565 }
6566
6567 /* ??? Should handle interworking? GCC might someday try to
6568 use this for tail calls. */
6569
6570 relocation = value + signed_addend;
6571 relocation -= (input_section->output_section->vma
6572 + input_section->output_offset
6573 + rel->r_offset);
6574 signed_check = (bfd_signed_vma) relocation;
6575
6576 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6577 overflow = TRUE;
6578
6579 /* Put RELOCATION back into the insn. */
6580 {
6581 bfd_vma S = (relocation & 0x00100000) >> 20;
6582 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6583 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6584 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6585 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6586
6587 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6588 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6589 }
6590
6591 /* Put the relocated value back in the object file: */
6592 bfd_put_16 (input_bfd, upper_insn, hit_data);
6593 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6594
6595 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6596 }
6597
6598 case R_ARM_THM_JUMP11:
6599 case R_ARM_THM_JUMP8:
6600 case R_ARM_THM_JUMP6:
6601 /* Thumb B (branch) instruction). */
6602 {
6603 bfd_signed_vma relocation;
6604 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6605 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6606 bfd_signed_vma signed_check;
6607
6608 /* CZB cannot jump backward. */
6609 if (r_type == R_ARM_THM_JUMP6)
6610 reloc_signed_min = 0;
6611
6612 if (globals->use_rel)
6613 {
6614 /* Need to refetch addend. */
6615 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6616 if (addend & ((howto->src_mask + 1) >> 1))
6617 {
6618 signed_addend = -1;
6619 signed_addend &= ~ howto->src_mask;
6620 signed_addend |= addend;
6621 }
6622 else
6623 signed_addend = addend;
6624 /* The value in the insn has been right shifted. We need to
6625 undo this, so that we can perform the address calculation
6626 in terms of bytes. */
6627 signed_addend <<= howto->rightshift;
6628 }
6629 relocation = value + signed_addend;
6630
6631 relocation -= (input_section->output_section->vma
6632 + input_section->output_offset
6633 + rel->r_offset);
6634
6635 relocation >>= howto->rightshift;
6636 signed_check = relocation;
6637
6638 if (r_type == R_ARM_THM_JUMP6)
6639 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6640 else
6641 relocation &= howto->dst_mask;
6642 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6643
6644 bfd_put_16 (input_bfd, relocation, hit_data);
6645
6646 /* Assumes two's complement. */
6647 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6648 return bfd_reloc_overflow;
6649
6650 return bfd_reloc_ok;
6651 }
6652
6653 case R_ARM_ALU_PCREL7_0:
6654 case R_ARM_ALU_PCREL15_8:
6655 case R_ARM_ALU_PCREL23_15:
6656 {
6657 bfd_vma insn;
6658 bfd_vma relocation;
6659
6660 insn = bfd_get_32 (input_bfd, hit_data);
6661 if (globals->use_rel)
6662 {
6663 /* Extract the addend. */
6664 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6665 signed_addend = addend;
6666 }
6667 relocation = value + signed_addend;
6668
6669 relocation -= (input_section->output_section->vma
6670 + input_section->output_offset
6671 + rel->r_offset);
6672 insn = (insn & ~0xfff)
6673 | ((howto->bitpos << 7) & 0xf00)
6674 | ((relocation >> howto->bitpos) & 0xff);
6675 bfd_put_32 (input_bfd, value, hit_data);
6676 }
6677 return bfd_reloc_ok;
6678
6679 case R_ARM_GNU_VTINHERIT:
6680 case R_ARM_GNU_VTENTRY:
6681 return bfd_reloc_ok;
6682
6683 case R_ARM_GOTOFF32:
6684 /* Relocation is relative to the start of the
6685 global offset table. */
6686
6687 BFD_ASSERT (sgot != NULL);
6688 if (sgot == NULL)
6689 return bfd_reloc_notsupported;
6690
6691 /* If we are addressing a Thumb function, we need to adjust the
6692 address by one, so that attempts to call the function pointer will
6693 correctly interpret it as Thumb code. */
6694 if (sym_flags == STT_ARM_TFUNC)
6695 value += 1;
6696
6697 /* Note that sgot->output_offset is not involved in this
6698 calculation. We always want the start of .got. If we
6699 define _GLOBAL_OFFSET_TABLE in a different way, as is
6700 permitted by the ABI, we might have to change this
6701 calculation. */
6702 value -= sgot->output_section->vma;
6703 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6704 contents, rel->r_offset, value,
6705 rel->r_addend);
6706
6707 case R_ARM_GOTPC:
6708 /* Use global offset table as symbol value. */
6709 BFD_ASSERT (sgot != NULL);
6710
6711 if (sgot == NULL)
6712 return bfd_reloc_notsupported;
6713
6714 *unresolved_reloc_p = FALSE;
6715 value = sgot->output_section->vma;
6716 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6717 contents, rel->r_offset, value,
6718 rel->r_addend);
6719
6720 case R_ARM_GOT32:
6721 case R_ARM_GOT_PREL:
6722 /* Relocation is to the entry for this symbol in the
6723 global offset table. */
6724 if (sgot == NULL)
6725 return bfd_reloc_notsupported;
6726
6727 if (h != NULL)
6728 {
6729 bfd_vma off;
6730 bfd_boolean dyn;
6731
6732 off = h->got.offset;
6733 BFD_ASSERT (off != (bfd_vma) -1);
6734 dyn = globals->root.dynamic_sections_created;
6735
6736 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6737 || (info->shared
6738 && SYMBOL_REFERENCES_LOCAL (info, h))
6739 || (ELF_ST_VISIBILITY (h->other)
6740 && h->root.type == bfd_link_hash_undefweak))
6741 {
6742 /* This is actually a static link, or it is a -Bsymbolic link
6743 and the symbol is defined locally. We must initialize this
6744 entry in the global offset table. Since the offset must
6745 always be a multiple of 4, we use the least significant bit
6746 to record whether we have initialized it already.
6747
6748 When doing a dynamic link, we create a .rel(a).got relocation
6749 entry to initialize the value. This is done in the
6750 finish_dynamic_symbol routine. */
6751 if ((off & 1) != 0)
6752 off &= ~1;
6753 else
6754 {
6755 /* If we are addressing a Thumb function, we need to
6756 adjust the address by one, so that attempts to
6757 call the function pointer will correctly
6758 interpret it as Thumb code. */
6759 if (sym_flags == STT_ARM_TFUNC)
6760 value |= 1;
6761
6762 bfd_put_32 (output_bfd, value, sgot->contents + off);
6763 h->got.offset |= 1;
6764 }
6765 }
6766 else
6767 *unresolved_reloc_p = FALSE;
6768
6769 value = sgot->output_offset + off;
6770 }
6771 else
6772 {
6773 bfd_vma off;
6774
6775 BFD_ASSERT (local_got_offsets != NULL &&
6776 local_got_offsets[r_symndx] != (bfd_vma) -1);
6777
6778 off = local_got_offsets[r_symndx];
6779
6780 /* The offset must always be a multiple of 4. We use the
6781 least significant bit to record whether we have already
6782 generated the necessary reloc. */
6783 if ((off & 1) != 0)
6784 off &= ~1;
6785 else
6786 {
6787 /* If we are addressing a Thumb function, we need to
6788 adjust the address by one, so that attempts to
6789 call the function pointer will correctly
6790 interpret it as Thumb code. */
6791 if (sym_flags == STT_ARM_TFUNC)
6792 value |= 1;
6793
6794 if (globals->use_rel)
6795 bfd_put_32 (output_bfd, value, sgot->contents + off);
6796
6797 if (info->shared)
6798 {
6799 asection * srelgot;
6800 Elf_Internal_Rela outrel;
6801 bfd_byte *loc;
6802
6803 srelgot = (bfd_get_section_by_name
6804 (dynobj, RELOC_SECTION (globals, ".got")));
6805 BFD_ASSERT (srelgot != NULL);
6806
6807 outrel.r_addend = addend + value;
6808 outrel.r_offset = (sgot->output_section->vma
6809 + sgot->output_offset
6810 + off);
6811 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6812 loc = srelgot->contents;
6813 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6814 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6815 }
6816
6817 local_got_offsets[r_symndx] |= 1;
6818 }
6819
6820 value = sgot->output_offset + off;
6821 }
6822 if (r_type != R_ARM_GOT32)
6823 value += sgot->output_section->vma;
6824
6825 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6826 contents, rel->r_offset, value,
6827 rel->r_addend);
6828
6829 case R_ARM_TLS_LDO32:
6830 value = value - dtpoff_base (info);
6831
6832 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6833 contents, rel->r_offset, value,
6834 rel->r_addend);
6835
6836 case R_ARM_TLS_LDM32:
6837 {
6838 bfd_vma off;
6839
6840 if (globals->sgot == NULL)
6841 abort ();
6842
6843 off = globals->tls_ldm_got.offset;
6844
6845 if ((off & 1) != 0)
6846 off &= ~1;
6847 else
6848 {
6849 /* If we don't know the module number, create a relocation
6850 for it. */
6851 if (info->shared)
6852 {
6853 Elf_Internal_Rela outrel;
6854 bfd_byte *loc;
6855
6856 if (globals->srelgot == NULL)
6857 abort ();
6858
6859 outrel.r_addend = 0;
6860 outrel.r_offset = (globals->sgot->output_section->vma
6861 + globals->sgot->output_offset + off);
6862 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6863
6864 if (globals->use_rel)
6865 bfd_put_32 (output_bfd, outrel.r_addend,
6866 globals->sgot->contents + off);
6867
6868 loc = globals->srelgot->contents;
6869 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6870 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6871 }
6872 else
6873 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6874
6875 globals->tls_ldm_got.offset |= 1;
6876 }
6877
6878 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6879 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6880
6881 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6882 contents, rel->r_offset, value,
6883 rel->r_addend);
6884 }
6885
6886 case R_ARM_TLS_GD32:
6887 case R_ARM_TLS_IE32:
6888 {
6889 bfd_vma off;
6890 int indx;
6891 char tls_type;
6892
6893 if (globals->sgot == NULL)
6894 abort ();
6895
6896 indx = 0;
6897 if (h != NULL)
6898 {
6899 bfd_boolean dyn;
6900 dyn = globals->root.dynamic_sections_created;
6901 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6902 && (!info->shared
6903 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6904 {
6905 *unresolved_reloc_p = FALSE;
6906 indx = h->dynindx;
6907 }
6908 off = h->got.offset;
6909 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6910 }
6911 else
6912 {
6913 if (local_got_offsets == NULL)
6914 abort ();
6915 off = local_got_offsets[r_symndx];
6916 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6917 }
6918
6919 if (tls_type == GOT_UNKNOWN)
6920 abort ();
6921
6922 if ((off & 1) != 0)
6923 off &= ~1;
6924 else
6925 {
6926 bfd_boolean need_relocs = FALSE;
6927 Elf_Internal_Rela outrel;
6928 bfd_byte *loc = NULL;
6929 int cur_off = off;
6930
6931 /* The GOT entries have not been initialized yet. Do it
6932 now, and emit any relocations. If both an IE GOT and a
6933 GD GOT are necessary, we emit the GD first. */
6934
6935 if ((info->shared || indx != 0)
6936 && (h == NULL
6937 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6938 || h->root.type != bfd_link_hash_undefweak))
6939 {
6940 need_relocs = TRUE;
6941 if (globals->srelgot == NULL)
6942 abort ();
6943 loc = globals->srelgot->contents;
6944 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6945 }
6946
6947 if (tls_type & GOT_TLS_GD)
6948 {
6949 if (need_relocs)
6950 {
6951 outrel.r_addend = 0;
6952 outrel.r_offset = (globals->sgot->output_section->vma
6953 + globals->sgot->output_offset
6954 + cur_off);
6955 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
6956
6957 if (globals->use_rel)
6958 bfd_put_32 (output_bfd, outrel.r_addend,
6959 globals->sgot->contents + cur_off);
6960
6961 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6962 globals->srelgot->reloc_count++;
6963 loc += RELOC_SIZE (globals);
6964
6965 if (indx == 0)
6966 bfd_put_32 (output_bfd, value - dtpoff_base (info),
6967 globals->sgot->contents + cur_off + 4);
6968 else
6969 {
6970 outrel.r_addend = 0;
6971 outrel.r_info = ELF32_R_INFO (indx,
6972 R_ARM_TLS_DTPOFF32);
6973 outrel.r_offset += 4;
6974
6975 if (globals->use_rel)
6976 bfd_put_32 (output_bfd, outrel.r_addend,
6977 globals->sgot->contents + cur_off + 4);
6978
6979
6980 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6981 globals->srelgot->reloc_count++;
6982 loc += RELOC_SIZE (globals);
6983 }
6984 }
6985 else
6986 {
6987 /* If we are not emitting relocations for a
6988 general dynamic reference, then we must be in a
6989 static link or an executable link with the
6990 symbol binding locally. Mark it as belonging
6991 to module 1, the executable. */
6992 bfd_put_32 (output_bfd, 1,
6993 globals->sgot->contents + cur_off);
6994 bfd_put_32 (output_bfd, value - dtpoff_base (info),
6995 globals->sgot->contents + cur_off + 4);
6996 }
6997
6998 cur_off += 8;
6999 }
7000
7001 if (tls_type & GOT_TLS_IE)
7002 {
7003 if (need_relocs)
7004 {
7005 if (indx == 0)
7006 outrel.r_addend = value - dtpoff_base (info);
7007 else
7008 outrel.r_addend = 0;
7009 outrel.r_offset = (globals->sgot->output_section->vma
7010 + globals->sgot->output_offset
7011 + cur_off);
7012 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7013
7014 if (globals->use_rel)
7015 bfd_put_32 (output_bfd, outrel.r_addend,
7016 globals->sgot->contents + cur_off);
7017
7018 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7019 globals->srelgot->reloc_count++;
7020 loc += RELOC_SIZE (globals);
7021 }
7022 else
7023 bfd_put_32 (output_bfd, tpoff (info, value),
7024 globals->sgot->contents + cur_off);
7025 cur_off += 4;
7026 }
7027
7028 if (h != NULL)
7029 h->got.offset |= 1;
7030 else
7031 local_got_offsets[r_symndx] |= 1;
7032 }
7033
7034 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7035 off += 8;
7036 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7037 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7038
7039 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7040 contents, rel->r_offset, value,
7041 rel->r_addend);
7042 }
7043
7044 case R_ARM_TLS_LE32:
7045 if (info->shared)
7046 {
7047 (*_bfd_error_handler)
7048 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7049 input_bfd, input_section,
7050 (long) rel->r_offset, howto->name);
7051 return FALSE;
7052 }
7053 else
7054 value = tpoff (info, value);
7055
7056 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7057 contents, rel->r_offset, value,
7058 rel->r_addend);
7059
7060 case R_ARM_V4BX:
7061 if (globals->fix_v4bx)
7062 {
7063 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7064
7065 /* Ensure that we have a BX instruction. */
7066 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7067
7068 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7069 {
7070 /* Branch to veneer. */
7071 bfd_vma glue_addr;
7072 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7073 glue_addr -= input_section->output_section->vma
7074 + input_section->output_offset
7075 + rel->r_offset + 8;
7076 insn = (insn & 0xf0000000) | 0x0a000000
7077 | ((glue_addr >> 2) & 0x00ffffff);
7078 }
7079 else
7080 {
7081 /* Preserve Rm (lowest four bits) and the condition code
7082 (highest four bits). Other bits encode MOV PC,Rm. */
7083 insn = (insn & 0xf000000f) | 0x01a0f000;
7084 }
7085
7086 bfd_put_32 (input_bfd, insn, hit_data);
7087 }
7088 return bfd_reloc_ok;
7089
7090 case R_ARM_MOVW_ABS_NC:
7091 case R_ARM_MOVT_ABS:
7092 case R_ARM_MOVW_PREL_NC:
7093 case R_ARM_MOVT_PREL:
7094 /* Until we properly support segment-base-relative addressing then
7095 we assume the segment base to be zero, as for the group relocations.
7096 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7097 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7098 case R_ARM_MOVW_BREL_NC:
7099 case R_ARM_MOVW_BREL:
7100 case R_ARM_MOVT_BREL:
7101 {
7102 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7103
7104 if (globals->use_rel)
7105 {
7106 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7107 signed_addend = (addend ^ 0x8000) - 0x8000;
7108 }
7109
7110 value += signed_addend;
7111
7112 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7113 value -= (input_section->output_section->vma
7114 + input_section->output_offset + rel->r_offset);
7115
7116 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7117 return bfd_reloc_overflow;
7118
7119 if (sym_flags == STT_ARM_TFUNC)
7120 value |= 1;
7121
7122 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7123 || r_type == R_ARM_MOVT_BREL)
7124 value >>= 16;
7125
7126 insn &= 0xfff0f000;
7127 insn |= value & 0xfff;
7128 insn |= (value & 0xf000) << 4;
7129 bfd_put_32 (input_bfd, insn, hit_data);
7130 }
7131 return bfd_reloc_ok;
7132
7133 case R_ARM_THM_MOVW_ABS_NC:
7134 case R_ARM_THM_MOVT_ABS:
7135 case R_ARM_THM_MOVW_PREL_NC:
7136 case R_ARM_THM_MOVT_PREL:
7137 /* Until we properly support segment-base-relative addressing then
7138 we assume the segment base to be zero, as for the above relocations.
7139 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7140 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7141 as R_ARM_THM_MOVT_ABS. */
7142 case R_ARM_THM_MOVW_BREL_NC:
7143 case R_ARM_THM_MOVW_BREL:
7144 case R_ARM_THM_MOVT_BREL:
7145 {
7146 bfd_vma insn;
7147
7148 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7149 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7150
7151 if (globals->use_rel)
7152 {
7153 addend = ((insn >> 4) & 0xf000)
7154 | ((insn >> 15) & 0x0800)
7155 | ((insn >> 4) & 0x0700)
7156 | (insn & 0x00ff);
7157 signed_addend = (addend ^ 0x8000) - 0x8000;
7158 }
7159
7160 value += signed_addend;
7161
7162 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7163 value -= (input_section->output_section->vma
7164 + input_section->output_offset + rel->r_offset);
7165
7166 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7167 return bfd_reloc_overflow;
7168
7169 if (sym_flags == STT_ARM_TFUNC)
7170 value |= 1;
7171
7172 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7173 || r_type == R_ARM_THM_MOVT_BREL)
7174 value >>= 16;
7175
7176 insn &= 0xfbf08f00;
7177 insn |= (value & 0xf000) << 4;
7178 insn |= (value & 0x0800) << 15;
7179 insn |= (value & 0x0700) << 4;
7180 insn |= (value & 0x00ff);
7181
7182 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7183 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7184 }
7185 return bfd_reloc_ok;
7186
7187 case R_ARM_ALU_PC_G0_NC:
7188 case R_ARM_ALU_PC_G1_NC:
7189 case R_ARM_ALU_PC_G0:
7190 case R_ARM_ALU_PC_G1:
7191 case R_ARM_ALU_PC_G2:
7192 case R_ARM_ALU_SB_G0_NC:
7193 case R_ARM_ALU_SB_G1_NC:
7194 case R_ARM_ALU_SB_G0:
7195 case R_ARM_ALU_SB_G1:
7196 case R_ARM_ALU_SB_G2:
7197 {
7198 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7199 bfd_vma pc = input_section->output_section->vma
7200 + input_section->output_offset + rel->r_offset;
7201 /* sb should be the origin of the *segment* containing the symbol.
7202 It is not clear how to obtain this OS-dependent value, so we
7203 make an arbitrary choice of zero. */
7204 bfd_vma sb = 0;
7205 bfd_vma residual;
7206 bfd_vma g_n;
7207 bfd_signed_vma signed_value;
7208 int group = 0;
7209
7210 /* Determine which group of bits to select. */
7211 switch (r_type)
7212 {
7213 case R_ARM_ALU_PC_G0_NC:
7214 case R_ARM_ALU_PC_G0:
7215 case R_ARM_ALU_SB_G0_NC:
7216 case R_ARM_ALU_SB_G0:
7217 group = 0;
7218 break;
7219
7220 case R_ARM_ALU_PC_G1_NC:
7221 case R_ARM_ALU_PC_G1:
7222 case R_ARM_ALU_SB_G1_NC:
7223 case R_ARM_ALU_SB_G1:
7224 group = 1;
7225 break;
7226
7227 case R_ARM_ALU_PC_G2:
7228 case R_ARM_ALU_SB_G2:
7229 group = 2;
7230 break;
7231
7232 default:
7233 abort ();
7234 }
7235
7236 /* If REL, extract the addend from the insn. If RELA, it will
7237 have already been fetched for us. */
7238 if (globals->use_rel)
7239 {
7240 int negative;
7241 bfd_vma constant = insn & 0xff;
7242 bfd_vma rotation = (insn & 0xf00) >> 8;
7243
7244 if (rotation == 0)
7245 signed_addend = constant;
7246 else
7247 {
7248 /* Compensate for the fact that in the instruction, the
7249 rotation is stored in multiples of 2 bits. */
7250 rotation *= 2;
7251
7252 /* Rotate "constant" right by "rotation" bits. */
7253 signed_addend = (constant >> rotation) |
7254 (constant << (8 * sizeof (bfd_vma) - rotation));
7255 }
7256
7257 /* Determine if the instruction is an ADD or a SUB.
7258 (For REL, this determines the sign of the addend.) */
7259 negative = identify_add_or_sub (insn);
7260 if (negative == 0)
7261 {
7262 (*_bfd_error_handler)
7263 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7264 input_bfd, input_section,
7265 (long) rel->r_offset, howto->name);
7266 return bfd_reloc_overflow;
7267 }
7268
7269 signed_addend *= negative;
7270 }
7271
7272 /* Compute the value (X) to go in the place. */
7273 if (r_type == R_ARM_ALU_PC_G0_NC
7274 || r_type == R_ARM_ALU_PC_G1_NC
7275 || r_type == R_ARM_ALU_PC_G0
7276 || r_type == R_ARM_ALU_PC_G1
7277 || r_type == R_ARM_ALU_PC_G2)
7278 /* PC relative. */
7279 signed_value = value - pc + signed_addend;
7280 else
7281 /* Section base relative. */
7282 signed_value = value - sb + signed_addend;
7283
7284 /* If the target symbol is a Thumb function, then set the
7285 Thumb bit in the address. */
7286 if (sym_flags == STT_ARM_TFUNC)
7287 signed_value |= 1;
7288
7289 /* Calculate the value of the relevant G_n, in encoded
7290 constant-with-rotation format. */
7291 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7292 &residual);
7293
7294 /* Check for overflow if required. */
7295 if ((r_type == R_ARM_ALU_PC_G0
7296 || r_type == R_ARM_ALU_PC_G1
7297 || r_type == R_ARM_ALU_PC_G2
7298 || r_type == R_ARM_ALU_SB_G0
7299 || r_type == R_ARM_ALU_SB_G1
7300 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7301 {
7302 (*_bfd_error_handler)
7303 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7304 input_bfd, input_section,
7305 (long) rel->r_offset, abs (signed_value), howto->name);
7306 return bfd_reloc_overflow;
7307 }
7308
7309 /* Mask out the value and the ADD/SUB part of the opcode; take care
7310 not to destroy the S bit. */
7311 insn &= 0xff1ff000;
7312
7313 /* Set the opcode according to whether the value to go in the
7314 place is negative. */
7315 if (signed_value < 0)
7316 insn |= 1 << 22;
7317 else
7318 insn |= 1 << 23;
7319
7320 /* Encode the offset. */
7321 insn |= g_n;
7322
7323 bfd_put_32 (input_bfd, insn, hit_data);
7324 }
7325 return bfd_reloc_ok;
7326
7327 case R_ARM_LDR_PC_G0:
7328 case R_ARM_LDR_PC_G1:
7329 case R_ARM_LDR_PC_G2:
7330 case R_ARM_LDR_SB_G0:
7331 case R_ARM_LDR_SB_G1:
7332 case R_ARM_LDR_SB_G2:
7333 {
7334 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7335 bfd_vma pc = input_section->output_section->vma
7336 + input_section->output_offset + rel->r_offset;
7337 bfd_vma sb = 0; /* See note above. */
7338 bfd_vma residual;
7339 bfd_signed_vma signed_value;
7340 int group = 0;
7341
7342 /* Determine which groups of bits to calculate. */
7343 switch (r_type)
7344 {
7345 case R_ARM_LDR_PC_G0:
7346 case R_ARM_LDR_SB_G0:
7347 group = 0;
7348 break;
7349
7350 case R_ARM_LDR_PC_G1:
7351 case R_ARM_LDR_SB_G1:
7352 group = 1;
7353 break;
7354
7355 case R_ARM_LDR_PC_G2:
7356 case R_ARM_LDR_SB_G2:
7357 group = 2;
7358 break;
7359
7360 default:
7361 abort ();
7362 }
7363
7364 /* If REL, extract the addend from the insn. If RELA, it will
7365 have already been fetched for us. */
7366 if (globals->use_rel)
7367 {
7368 int negative = (insn & (1 << 23)) ? 1 : -1;
7369 signed_addend = negative * (insn & 0xfff);
7370 }
7371
7372 /* Compute the value (X) to go in the place. */
7373 if (r_type == R_ARM_LDR_PC_G0
7374 || r_type == R_ARM_LDR_PC_G1
7375 || r_type == R_ARM_LDR_PC_G2)
7376 /* PC relative. */
7377 signed_value = value - pc + signed_addend;
7378 else
7379 /* Section base relative. */
7380 signed_value = value - sb + signed_addend;
7381
7382 /* Calculate the value of the relevant G_{n-1} to obtain
7383 the residual at that stage. */
7384 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7385
7386 /* Check for overflow. */
7387 if (residual >= 0x1000)
7388 {
7389 (*_bfd_error_handler)
7390 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7391 input_bfd, input_section,
7392 (long) rel->r_offset, abs (signed_value), howto->name);
7393 return bfd_reloc_overflow;
7394 }
7395
7396 /* Mask out the value and U bit. */
7397 insn &= 0xff7ff000;
7398
7399 /* Set the U bit if the value to go in the place is non-negative. */
7400 if (signed_value >= 0)
7401 insn |= 1 << 23;
7402
7403 /* Encode the offset. */
7404 insn |= residual;
7405
7406 bfd_put_32 (input_bfd, insn, hit_data);
7407 }
7408 return bfd_reloc_ok;
7409
7410 case R_ARM_LDRS_PC_G0:
7411 case R_ARM_LDRS_PC_G1:
7412 case R_ARM_LDRS_PC_G2:
7413 case R_ARM_LDRS_SB_G0:
7414 case R_ARM_LDRS_SB_G1:
7415 case R_ARM_LDRS_SB_G2:
7416 {
7417 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7418 bfd_vma pc = input_section->output_section->vma
7419 + input_section->output_offset + rel->r_offset;
7420 bfd_vma sb = 0; /* See note above. */
7421 bfd_vma residual;
7422 bfd_signed_vma signed_value;
7423 int group = 0;
7424
7425 /* Determine which groups of bits to calculate. */
7426 switch (r_type)
7427 {
7428 case R_ARM_LDRS_PC_G0:
7429 case R_ARM_LDRS_SB_G0:
7430 group = 0;
7431 break;
7432
7433 case R_ARM_LDRS_PC_G1:
7434 case R_ARM_LDRS_SB_G1:
7435 group = 1;
7436 break;
7437
7438 case R_ARM_LDRS_PC_G2:
7439 case R_ARM_LDRS_SB_G2:
7440 group = 2;
7441 break;
7442
7443 default:
7444 abort ();
7445 }
7446
7447 /* If REL, extract the addend from the insn. If RELA, it will
7448 have already been fetched for us. */
7449 if (globals->use_rel)
7450 {
7451 int negative = (insn & (1 << 23)) ? 1 : -1;
7452 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7453 }
7454
7455 /* Compute the value (X) to go in the place. */
7456 if (r_type == R_ARM_LDRS_PC_G0
7457 || r_type == R_ARM_LDRS_PC_G1
7458 || r_type == R_ARM_LDRS_PC_G2)
7459 /* PC relative. */
7460 signed_value = value - pc + signed_addend;
7461 else
7462 /* Section base relative. */
7463 signed_value = value - sb + signed_addend;
7464
7465 /* Calculate the value of the relevant G_{n-1} to obtain
7466 the residual at that stage. */
7467 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7468
7469 /* Check for overflow. */
7470 if (residual >= 0x100)
7471 {
7472 (*_bfd_error_handler)
7473 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7474 input_bfd, input_section,
7475 (long) rel->r_offset, abs (signed_value), howto->name);
7476 return bfd_reloc_overflow;
7477 }
7478
7479 /* Mask out the value and U bit. */
7480 insn &= 0xff7ff0f0;
7481
7482 /* Set the U bit if the value to go in the place is non-negative. */
7483 if (signed_value >= 0)
7484 insn |= 1 << 23;
7485
7486 /* Encode the offset. */
7487 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7488
7489 bfd_put_32 (input_bfd, insn, hit_data);
7490 }
7491 return bfd_reloc_ok;
7492
7493 case R_ARM_LDC_PC_G0:
7494 case R_ARM_LDC_PC_G1:
7495 case R_ARM_LDC_PC_G2:
7496 case R_ARM_LDC_SB_G0:
7497 case R_ARM_LDC_SB_G1:
7498 case R_ARM_LDC_SB_G2:
7499 {
7500 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7501 bfd_vma pc = input_section->output_section->vma
7502 + input_section->output_offset + rel->r_offset;
7503 bfd_vma sb = 0; /* See note above. */
7504 bfd_vma residual;
7505 bfd_signed_vma signed_value;
7506 int group = 0;
7507
7508 /* Determine which groups of bits to calculate. */
7509 switch (r_type)
7510 {
7511 case R_ARM_LDC_PC_G0:
7512 case R_ARM_LDC_SB_G0:
7513 group = 0;
7514 break;
7515
7516 case R_ARM_LDC_PC_G1:
7517 case R_ARM_LDC_SB_G1:
7518 group = 1;
7519 break;
7520
7521 case R_ARM_LDC_PC_G2:
7522 case R_ARM_LDC_SB_G2:
7523 group = 2;
7524 break;
7525
7526 default:
7527 abort ();
7528 }
7529
7530 /* If REL, extract the addend from the insn. If RELA, it will
7531 have already been fetched for us. */
7532 if (globals->use_rel)
7533 {
7534 int negative = (insn & (1 << 23)) ? 1 : -1;
7535 signed_addend = negative * ((insn & 0xff) << 2);
7536 }
7537
7538 /* Compute the value (X) to go in the place. */
7539 if (r_type == R_ARM_LDC_PC_G0
7540 || r_type == R_ARM_LDC_PC_G1
7541 || r_type == R_ARM_LDC_PC_G2)
7542 /* PC relative. */
7543 signed_value = value - pc + signed_addend;
7544 else
7545 /* Section base relative. */
7546 signed_value = value - sb + signed_addend;
7547
7548 /* Calculate the value of the relevant G_{n-1} to obtain
7549 the residual at that stage. */
7550 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7551
7552 /* Check for overflow. (The absolute value to go in the place must be
7553 divisible by four and, after having been divided by four, must
7554 fit in eight bits.) */
7555 if ((residual & 0x3) != 0 || residual >= 0x400)
7556 {
7557 (*_bfd_error_handler)
7558 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7559 input_bfd, input_section,
7560 (long) rel->r_offset, abs (signed_value), howto->name);
7561 return bfd_reloc_overflow;
7562 }
7563
7564 /* Mask out the value and U bit. */
7565 insn &= 0xff7fff00;
7566
7567 /* Set the U bit if the value to go in the place is non-negative. */
7568 if (signed_value >= 0)
7569 insn |= 1 << 23;
7570
7571 /* Encode the offset. */
7572 insn |= residual >> 2;
7573
7574 bfd_put_32 (input_bfd, insn, hit_data);
7575 }
7576 return bfd_reloc_ok;
7577
7578 default:
7579 return bfd_reloc_notsupported;
7580 }
7581 }
7582
7583 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7584 static void
7585 arm_add_to_rel (bfd * abfd,
7586 bfd_byte * address,
7587 reloc_howto_type * howto,
7588 bfd_signed_vma increment)
7589 {
7590 bfd_signed_vma addend;
7591
7592 if (howto->type == R_ARM_THM_CALL
7593 || howto->type == R_ARM_THM_JUMP24)
7594 {
7595 int upper_insn, lower_insn;
7596 int upper, lower;
7597
7598 upper_insn = bfd_get_16 (abfd, address);
7599 lower_insn = bfd_get_16 (abfd, address + 2);
7600 upper = upper_insn & 0x7ff;
7601 lower = lower_insn & 0x7ff;
7602
7603 addend = (upper << 12) | (lower << 1);
7604 addend += increment;
7605 addend >>= 1;
7606
7607 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7608 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7609
7610 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7611 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7612 }
7613 else
7614 {
7615 bfd_vma contents;
7616
7617 contents = bfd_get_32 (abfd, address);
7618
7619 /* Get the (signed) value from the instruction. */
7620 addend = contents & howto->src_mask;
7621 if (addend & ((howto->src_mask + 1) >> 1))
7622 {
7623 bfd_signed_vma mask;
7624
7625 mask = -1;
7626 mask &= ~ howto->src_mask;
7627 addend |= mask;
7628 }
7629
7630 /* Add in the increment, (which is a byte value). */
7631 switch (howto->type)
7632 {
7633 default:
7634 addend += increment;
7635 break;
7636
7637 case R_ARM_PC24:
7638 case R_ARM_PLT32:
7639 case R_ARM_CALL:
7640 case R_ARM_JUMP24:
7641 addend <<= howto->size;
7642 addend += increment;
7643
7644 /* Should we check for overflow here ? */
7645
7646 /* Drop any undesired bits. */
7647 addend >>= howto->rightshift;
7648 break;
7649 }
7650
7651 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7652
7653 bfd_put_32 (abfd, contents, address);
7654 }
7655 }
7656
7657 #define IS_ARM_TLS_RELOC(R_TYPE) \
7658 ((R_TYPE) == R_ARM_TLS_GD32 \
7659 || (R_TYPE) == R_ARM_TLS_LDO32 \
7660 || (R_TYPE) == R_ARM_TLS_LDM32 \
7661 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7662 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7663 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7664 || (R_TYPE) == R_ARM_TLS_LE32 \
7665 || (R_TYPE) == R_ARM_TLS_IE32)
7666
7667 /* Relocate an ARM ELF section. */
7668
7669 static bfd_boolean
7670 elf32_arm_relocate_section (bfd * output_bfd,
7671 struct bfd_link_info * info,
7672 bfd * input_bfd,
7673 asection * input_section,
7674 bfd_byte * contents,
7675 Elf_Internal_Rela * relocs,
7676 Elf_Internal_Sym * local_syms,
7677 asection ** local_sections)
7678 {
7679 Elf_Internal_Shdr *symtab_hdr;
7680 struct elf_link_hash_entry **sym_hashes;
7681 Elf_Internal_Rela *rel;
7682 Elf_Internal_Rela *relend;
7683 const char *name;
7684 struct elf32_arm_link_hash_table * globals;
7685
7686 globals = elf32_arm_hash_table (info);
7687
7688 symtab_hdr = & elf_symtab_hdr (input_bfd);
7689 sym_hashes = elf_sym_hashes (input_bfd);
7690
7691 rel = relocs;
7692 relend = relocs + input_section->reloc_count;
7693 for (; rel < relend; rel++)
7694 {
7695 int r_type;
7696 reloc_howto_type * howto;
7697 unsigned long r_symndx;
7698 Elf_Internal_Sym * sym;
7699 asection * sec;
7700 struct elf_link_hash_entry * h;
7701 bfd_vma relocation;
7702 bfd_reloc_status_type r;
7703 arelent bfd_reloc;
7704 char sym_type;
7705 bfd_boolean unresolved_reloc = FALSE;
7706 char *error_message = NULL;
7707
7708 r_symndx = ELF32_R_SYM (rel->r_info);
7709 r_type = ELF32_R_TYPE (rel->r_info);
7710 r_type = arm_real_reloc_type (globals, r_type);
7711
7712 if ( r_type == R_ARM_GNU_VTENTRY
7713 || r_type == R_ARM_GNU_VTINHERIT)
7714 continue;
7715
7716 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7717 howto = bfd_reloc.howto;
7718
7719 h = NULL;
7720 sym = NULL;
7721 sec = NULL;
7722
7723 if (r_symndx < symtab_hdr->sh_info)
7724 {
7725 sym = local_syms + r_symndx;
7726 sym_type = ELF32_ST_TYPE (sym->st_info);
7727 sec = local_sections[r_symndx];
7728 if (globals->use_rel)
7729 {
7730 relocation = (sec->output_section->vma
7731 + sec->output_offset
7732 + sym->st_value);
7733 if (!info->relocatable
7734 && (sec->flags & SEC_MERGE)
7735 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7736 {
7737 asection *msec;
7738 bfd_vma addend, value;
7739
7740 switch (r_type)
7741 {
7742 case R_ARM_MOVW_ABS_NC:
7743 case R_ARM_MOVT_ABS:
7744 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7745 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7746 addend = (addend ^ 0x8000) - 0x8000;
7747 break;
7748
7749 case R_ARM_THM_MOVW_ABS_NC:
7750 case R_ARM_THM_MOVT_ABS:
7751 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7752 << 16;
7753 value |= bfd_get_16 (input_bfd,
7754 contents + rel->r_offset + 2);
7755 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7756 | ((value & 0x04000000) >> 15);
7757 addend = (addend ^ 0x8000) - 0x8000;
7758 break;
7759
7760 default:
7761 if (howto->rightshift
7762 || (howto->src_mask & (howto->src_mask + 1)))
7763 {
7764 (*_bfd_error_handler)
7765 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7766 input_bfd, input_section,
7767 (long) rel->r_offset, howto->name);
7768 return FALSE;
7769 }
7770
7771 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7772
7773 /* Get the (signed) value from the instruction. */
7774 addend = value & howto->src_mask;
7775 if (addend & ((howto->src_mask + 1) >> 1))
7776 {
7777 bfd_signed_vma mask;
7778
7779 mask = -1;
7780 mask &= ~ howto->src_mask;
7781 addend |= mask;
7782 }
7783 break;
7784 }
7785
7786 msec = sec;
7787 addend =
7788 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7789 - relocation;
7790 addend += msec->output_section->vma + msec->output_offset;
7791
7792 /* Cases here must match those in the preceeding
7793 switch statement. */
7794 switch (r_type)
7795 {
7796 case R_ARM_MOVW_ABS_NC:
7797 case R_ARM_MOVT_ABS:
7798 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7799 | (addend & 0xfff);
7800 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7801 break;
7802
7803 case R_ARM_THM_MOVW_ABS_NC:
7804 case R_ARM_THM_MOVT_ABS:
7805 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7806 | (addend & 0xff) | ((addend & 0x0800) << 15);
7807 bfd_put_16 (input_bfd, value >> 16,
7808 contents + rel->r_offset);
7809 bfd_put_16 (input_bfd, value,
7810 contents + rel->r_offset + 2);
7811 break;
7812
7813 default:
7814 value = (value & ~ howto->dst_mask)
7815 | (addend & howto->dst_mask);
7816 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7817 break;
7818 }
7819 }
7820 }
7821 else
7822 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7823 }
7824 else
7825 {
7826 bfd_boolean warned;
7827
7828 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7829 r_symndx, symtab_hdr, sym_hashes,
7830 h, sec, relocation,
7831 unresolved_reloc, warned);
7832
7833 sym_type = h->type;
7834 }
7835
7836 if (sec != NULL && elf_discarded_section (sec))
7837 {
7838 /* For relocs against symbols from removed linkonce sections,
7839 or sections discarded by a linker script, we just want the
7840 section contents zeroed. Avoid any special processing. */
7841 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7842 rel->r_info = 0;
7843 rel->r_addend = 0;
7844 continue;
7845 }
7846
7847 if (info->relocatable)
7848 {
7849 /* This is a relocatable link. We don't have to change
7850 anything, unless the reloc is against a section symbol,
7851 in which case we have to adjust according to where the
7852 section symbol winds up in the output section. */
7853 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7854 {
7855 if (globals->use_rel)
7856 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7857 howto, (bfd_signed_vma) sec->output_offset);
7858 else
7859 rel->r_addend += sec->output_offset;
7860 }
7861 continue;
7862 }
7863
7864 if (h != NULL)
7865 name = h->root.root.string;
7866 else
7867 {
7868 name = (bfd_elf_string_from_elf_section
7869 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7870 if (name == NULL || *name == '\0')
7871 name = bfd_section_name (input_bfd, sec);
7872 }
7873
7874 if (r_symndx != 0
7875 && r_type != R_ARM_NONE
7876 && (h == NULL
7877 || h->root.type == bfd_link_hash_defined
7878 || h->root.type == bfd_link_hash_defweak)
7879 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7880 {
7881 (*_bfd_error_handler)
7882 ((sym_type == STT_TLS
7883 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7884 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7885 input_bfd,
7886 input_section,
7887 (long) rel->r_offset,
7888 howto->name,
7889 name);
7890 }
7891
7892 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7893 input_section, contents, rel,
7894 relocation, info, sec, name,
7895 (h ? ELF_ST_TYPE (h->type) :
7896 ELF_ST_TYPE (sym->st_info)), h,
7897 &unresolved_reloc, &error_message);
7898
7899 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7900 because such sections are not SEC_ALLOC and thus ld.so will
7901 not process them. */
7902 if (unresolved_reloc
7903 && !((input_section->flags & SEC_DEBUGGING) != 0
7904 && h->def_dynamic))
7905 {
7906 (*_bfd_error_handler)
7907 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7908 input_bfd,
7909 input_section,
7910 (long) rel->r_offset,
7911 howto->name,
7912 h->root.root.string);
7913 return FALSE;
7914 }
7915
7916 if (r != bfd_reloc_ok)
7917 {
7918 switch (r)
7919 {
7920 case bfd_reloc_overflow:
7921 /* If the overflowing reloc was to an undefined symbol,
7922 we have already printed one error message and there
7923 is no point complaining again. */
7924 if ((! h ||
7925 h->root.type != bfd_link_hash_undefined)
7926 && (!((*info->callbacks->reloc_overflow)
7927 (info, (h ? &h->root : NULL), name, howto->name,
7928 (bfd_vma) 0, input_bfd, input_section,
7929 rel->r_offset))))
7930 return FALSE;
7931 break;
7932
7933 case bfd_reloc_undefined:
7934 if (!((*info->callbacks->undefined_symbol)
7935 (info, name, input_bfd, input_section,
7936 rel->r_offset, TRUE)))
7937 return FALSE;
7938 break;
7939
7940 case bfd_reloc_outofrange:
7941 error_message = _("out of range");
7942 goto common_error;
7943
7944 case bfd_reloc_notsupported:
7945 error_message = _("unsupported relocation");
7946 goto common_error;
7947
7948 case bfd_reloc_dangerous:
7949 /* error_message should already be set. */
7950 goto common_error;
7951
7952 default:
7953 error_message = _("unknown error");
7954 /* fall through */
7955
7956 common_error:
7957 BFD_ASSERT (error_message != NULL);
7958 if (!((*info->callbacks->reloc_dangerous)
7959 (info, error_message, input_bfd, input_section,
7960 rel->r_offset)))
7961 return FALSE;
7962 break;
7963 }
7964 }
7965 }
7966
7967 return TRUE;
7968 }
7969
7970 /* Set the right machine number. */
7971
7972 static bfd_boolean
7973 elf32_arm_object_p (bfd *abfd)
7974 {
7975 unsigned int mach;
7976
7977 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
7978
7979 if (mach != bfd_mach_arm_unknown)
7980 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
7981
7982 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
7983 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
7984
7985 else
7986 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
7987
7988 return TRUE;
7989 }
7990
7991 /* Function to keep ARM specific flags in the ELF header. */
7992
7993 static bfd_boolean
7994 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
7995 {
7996 if (elf_flags_init (abfd)
7997 && elf_elfheader (abfd)->e_flags != flags)
7998 {
7999 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8000 {
8001 if (flags & EF_ARM_INTERWORK)
8002 (*_bfd_error_handler)
8003 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8004 abfd);
8005 else
8006 _bfd_error_handler
8007 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8008 abfd);
8009 }
8010 }
8011 else
8012 {
8013 elf_elfheader (abfd)->e_flags = flags;
8014 elf_flags_init (abfd) = TRUE;
8015 }
8016
8017 return TRUE;
8018 }
8019
8020 /* Copy backend specific data from one object module to another. */
8021
8022 static bfd_boolean
8023 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8024 {
8025 flagword in_flags;
8026 flagword out_flags;
8027
8028 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8029 return TRUE;
8030
8031 in_flags = elf_elfheader (ibfd)->e_flags;
8032 out_flags = elf_elfheader (obfd)->e_flags;
8033
8034 if (elf_flags_init (obfd)
8035 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8036 && in_flags != out_flags)
8037 {
8038 /* Cannot mix APCS26 and APCS32 code. */
8039 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8040 return FALSE;
8041
8042 /* Cannot mix float APCS and non-float APCS code. */
8043 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8044 return FALSE;
8045
8046 /* If the src and dest have different interworking flags
8047 then turn off the interworking bit. */
8048 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8049 {
8050 if (out_flags & EF_ARM_INTERWORK)
8051 _bfd_error_handler
8052 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8053 obfd, ibfd);
8054
8055 in_flags &= ~EF_ARM_INTERWORK;
8056 }
8057
8058 /* Likewise for PIC, though don't warn for this case. */
8059 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8060 in_flags &= ~EF_ARM_PIC;
8061 }
8062
8063 elf_elfheader (obfd)->e_flags = in_flags;
8064 elf_flags_init (obfd) = TRUE;
8065
8066 /* Also copy the EI_OSABI field. */
8067 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8068 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8069
8070 /* Copy object attributes. */
8071 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8072
8073 return TRUE;
8074 }
8075
8076 /* Values for Tag_ABI_PCS_R9_use. */
8077 enum
8078 {
8079 AEABI_R9_V6,
8080 AEABI_R9_SB,
8081 AEABI_R9_TLS,
8082 AEABI_R9_unused
8083 };
8084
8085 /* Values for Tag_ABI_PCS_RW_data. */
8086 enum
8087 {
8088 AEABI_PCS_RW_data_absolute,
8089 AEABI_PCS_RW_data_PCrel,
8090 AEABI_PCS_RW_data_SBrel,
8091 AEABI_PCS_RW_data_unused
8092 };
8093
8094 /* Values for Tag_ABI_enum_size. */
8095 enum
8096 {
8097 AEABI_enum_unused,
8098 AEABI_enum_short,
8099 AEABI_enum_wide,
8100 AEABI_enum_forced_wide
8101 };
8102
8103 /* Determine whether an object attribute tag takes an integer, a
8104 string or both. */
8105
8106 static int
8107 elf32_arm_obj_attrs_arg_type (int tag)
8108 {
8109 if (tag == Tag_compatibility)
8110 return 3;
8111 else if (tag == 4 || tag == 5)
8112 return 2;
8113 else if (tag < 32)
8114 return 1;
8115 else
8116 return (tag & 1) != 0 ? 2 : 1;
8117 }
8118
8119 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8120 are conflicting attributes. */
8121
8122 static bfd_boolean
8123 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8124 {
8125 obj_attribute *in_attr;
8126 obj_attribute *out_attr;
8127 obj_attribute_list *in_list;
8128 /* Some tags have 0 = don't care, 1 = strong requirement,
8129 2 = weak requirement. */
8130 static const int order_312[3] = {3, 1, 2};
8131 /* For use with Tag_VFP_arch. */
8132 static const int order_01243[5] = {0, 1, 2, 4, 3};
8133 int i;
8134
8135 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8136 {
8137 /* This is the first object. Copy the attributes. */
8138 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8139
8140 /* Use the Tag_null value to indicate the attributes have been
8141 initialized. */
8142 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8143
8144 return TRUE;
8145 }
8146
8147 in_attr = elf_known_obj_attributes_proc (ibfd);
8148 out_attr = elf_known_obj_attributes_proc (obfd);
8149 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8150 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8151 {
8152 /* Ignore mismatches if teh object doesn't use floating point. */
8153 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8154 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8155 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8156 {
8157 _bfd_error_handler
8158 (_("ERROR: %B uses VFP register arguments, %B does not"),
8159 ibfd, obfd);
8160 return FALSE;
8161 }
8162 }
8163
8164 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8165 {
8166 /* Merge this attribute with existing attributes. */
8167 switch (i)
8168 {
8169 case Tag_CPU_raw_name:
8170 case Tag_CPU_name:
8171 /* Use whichever has the greatest architecture requirements. We
8172 won't necessarily have both the above tags, so make sure input
8173 name is non-NULL. */
8174 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
8175 && in_attr[i].s)
8176 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
8177 break;
8178
8179 case Tag_ABI_optimization_goals:
8180 case Tag_ABI_FP_optimization_goals:
8181 /* Use the first value seen. */
8182 break;
8183
8184 case Tag_CPU_arch:
8185 case Tag_ARM_ISA_use:
8186 case Tag_THUMB_ISA_use:
8187 case Tag_WMMX_arch:
8188 case Tag_NEON_arch:
8189 /* ??? Do NEON and WMMX conflict? */
8190 case Tag_ABI_FP_rounding:
8191 case Tag_ABI_FP_denormal:
8192 case Tag_ABI_FP_exceptions:
8193 case Tag_ABI_FP_user_exceptions:
8194 case Tag_ABI_FP_number_model:
8195 case Tag_ABI_align8_preserved:
8196 case Tag_ABI_HardFP_use:
8197 /* Use the largest value specified. */
8198 if (in_attr[i].i > out_attr[i].i)
8199 out_attr[i].i = in_attr[i].i;
8200 break;
8201
8202 case Tag_CPU_arch_profile:
8203 /* Warn if conflicting architecture profiles used. */
8204 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
8205 {
8206 _bfd_error_handler
8207 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8208 ibfd, in_attr[i].i, out_attr[i].i);
8209 return FALSE;
8210 }
8211 if (in_attr[i].i)
8212 out_attr[i].i = in_attr[i].i;
8213 break;
8214 case Tag_VFP_arch:
8215 if (in_attr[i].i > 4 || out_attr[i].i > 4
8216 || order_01243[in_attr[i].i] > order_01243[out_attr[i].i])
8217 out_attr[i].i = in_attr[i].i;
8218 break;
8219 case Tag_PCS_config:
8220 if (out_attr[i].i == 0)
8221 out_attr[i].i = in_attr[i].i;
8222 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8223 {
8224 /* It's sometimes ok to mix different configs, so this is only
8225 a warning. */
8226 _bfd_error_handler
8227 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8228 }
8229 break;
8230 case Tag_ABI_PCS_R9_use:
8231 if (in_attr[i].i != out_attr[i].i
8232 && out_attr[i].i != AEABI_R9_unused
8233 && in_attr[i].i != AEABI_R9_unused)
8234 {
8235 _bfd_error_handler
8236 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8237 return FALSE;
8238 }
8239 if (out_attr[i].i == AEABI_R9_unused)
8240 out_attr[i].i = in_attr[i].i;
8241 break;
8242 case Tag_ABI_PCS_RW_data:
8243 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8244 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8245 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8246 {
8247 _bfd_error_handler
8248 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8249 ibfd);
8250 return FALSE;
8251 }
8252 /* Use the smallest value specified. */
8253 if (in_attr[i].i < out_attr[i].i)
8254 out_attr[i].i = in_attr[i].i;
8255 break;
8256 case Tag_ABI_PCS_RO_data:
8257 /* Use the smallest value specified. */
8258 if (in_attr[i].i < out_attr[i].i)
8259 out_attr[i].i = in_attr[i].i;
8260 break;
8261 case Tag_ABI_PCS_GOT_use:
8262 if (in_attr[i].i > 2 || out_attr[i].i > 2
8263 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8264 out_attr[i].i = in_attr[i].i;
8265 break;
8266 case Tag_ABI_PCS_wchar_t:
8267 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
8268 {
8269 _bfd_error_handler
8270 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
8271 return FALSE;
8272 }
8273 if (in_attr[i].i)
8274 out_attr[i].i = in_attr[i].i;
8275 break;
8276 case Tag_ABI_align8_needed:
8277 /* ??? Check against Tag_ABI_align8_preserved. */
8278 if (in_attr[i].i > 2 || out_attr[i].i > 2
8279 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8280 out_attr[i].i = in_attr[i].i;
8281 break;
8282 case Tag_ABI_enum_size:
8283 if (in_attr[i].i != AEABI_enum_unused)
8284 {
8285 if (out_attr[i].i == AEABI_enum_unused
8286 || out_attr[i].i == AEABI_enum_forced_wide)
8287 {
8288 /* The existing object is compatible with anything.
8289 Use whatever requirements the new object has. */
8290 out_attr[i].i = in_attr[i].i;
8291 }
8292 else if (in_attr[i].i != AEABI_enum_forced_wide
8293 && out_attr[i].i != in_attr[i].i
8294 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8295 {
8296 const char *aeabi_enum_names[] =
8297 { "", "variable-size", "32-bit", "" };
8298 _bfd_error_handler
8299 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8300 ibfd, aeabi_enum_names[in_attr[i].i],
8301 aeabi_enum_names[out_attr[i].i]);
8302 }
8303 }
8304 break;
8305 case Tag_ABI_VFP_args:
8306 /* Aready done. */
8307 break;
8308 case Tag_ABI_WMMX_args:
8309 if (in_attr[i].i != out_attr[i].i)
8310 {
8311 _bfd_error_handler
8312 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8313 ibfd, obfd);
8314 return FALSE;
8315 }
8316 break;
8317 default: /* All known attributes should be explicitly covered. */
8318 abort ();
8319 }
8320
8321 if (in_attr[i].type && !out_attr[i].type)
8322 switch (in_attr[i].type)
8323 {
8324 case 1:
8325 if (out_attr[i].i)
8326 out_attr[i].type = 1;
8327 break;
8328
8329 case 2:
8330 if (out_attr[i].s)
8331 out_attr[i].type = 2;
8332 break;
8333
8334 default:
8335 abort ();
8336 }
8337 }
8338
8339 /* Merge Tag_compatibility attributes and any common GNU ones. */
8340 _bfd_elf_merge_object_attributes (ibfd, obfd);
8341
8342 /* Check for any attributes not known on ARM. */
8343 in_list = elf_other_obj_attributes_proc (ibfd);
8344 while (in_list && in_list->tag == Tag_compatibility)
8345 in_list = in_list->next;
8346
8347 for (; in_list; in_list = in_list->next)
8348 {
8349 if ((in_list->tag & 128) < 64)
8350 {
8351 _bfd_error_handler
8352 (_("Warning: %B: Unknown EABI object attribute %d"),
8353 ibfd, in_list->tag);
8354 break;
8355 }
8356 }
8357 return TRUE;
8358 }
8359
8360
8361 /* Return TRUE if the two EABI versions are incompatible. */
8362
8363 static bfd_boolean
8364 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8365 {
8366 /* v4 and v5 are the same spec before and after it was released,
8367 so allow mixing them. */
8368 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8369 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8370 return TRUE;
8371
8372 return (iver == over);
8373 }
8374
8375 /* Merge backend specific data from an object file to the output
8376 object file when linking. */
8377
8378 static bfd_boolean
8379 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8380 {
8381 flagword out_flags;
8382 flagword in_flags;
8383 bfd_boolean flags_compatible = TRUE;
8384 asection *sec;
8385
8386 /* Check if we have the same endianess. */
8387 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8388 return FALSE;
8389
8390 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8391 return TRUE;
8392
8393 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8394 return FALSE;
8395
8396 /* The input BFD must have had its flags initialised. */
8397 /* The following seems bogus to me -- The flags are initialized in
8398 the assembler but I don't think an elf_flags_init field is
8399 written into the object. */
8400 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8401
8402 in_flags = elf_elfheader (ibfd)->e_flags;
8403 out_flags = elf_elfheader (obfd)->e_flags;
8404
8405 /* In theory there is no reason why we couldn't handle this. However
8406 in practice it isn't even close to working and there is no real
8407 reason to want it. */
8408 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
8409 && (in_flags & EF_ARM_BE8))
8410 {
8411 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8412 ibfd);
8413 return FALSE;
8414 }
8415
8416 if (!elf_flags_init (obfd))
8417 {
8418 /* If the input is the default architecture and had the default
8419 flags then do not bother setting the flags for the output
8420 architecture, instead allow future merges to do this. If no
8421 future merges ever set these flags then they will retain their
8422 uninitialised values, which surprise surprise, correspond
8423 to the default values. */
8424 if (bfd_get_arch_info (ibfd)->the_default
8425 && elf_elfheader (ibfd)->e_flags == 0)
8426 return TRUE;
8427
8428 elf_flags_init (obfd) = TRUE;
8429 elf_elfheader (obfd)->e_flags = in_flags;
8430
8431 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8432 && bfd_get_arch_info (obfd)->the_default)
8433 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8434
8435 return TRUE;
8436 }
8437
8438 /* Determine what should happen if the input ARM architecture
8439 does not match the output ARM architecture. */
8440 if (! bfd_arm_merge_machines (ibfd, obfd))
8441 return FALSE;
8442
8443 /* Identical flags must be compatible. */
8444 if (in_flags == out_flags)
8445 return TRUE;
8446
8447 /* Check to see if the input BFD actually contains any sections. If
8448 not, its flags may not have been initialised either, but it
8449 cannot actually cause any incompatiblity. Do not short-circuit
8450 dynamic objects; their section list may be emptied by
8451 elf_link_add_object_symbols.
8452
8453 Also check to see if there are no code sections in the input.
8454 In this case there is no need to check for code specific flags.
8455 XXX - do we need to worry about floating-point format compatability
8456 in data sections ? */
8457 if (!(ibfd->flags & DYNAMIC))
8458 {
8459 bfd_boolean null_input_bfd = TRUE;
8460 bfd_boolean only_data_sections = TRUE;
8461
8462 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8463 {
8464 /* Ignore synthetic glue sections. */
8465 if (strcmp (sec->name, ".glue_7")
8466 && strcmp (sec->name, ".glue_7t"))
8467 {
8468 if ((bfd_get_section_flags (ibfd, sec)
8469 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8470 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8471 only_data_sections = FALSE;
8472
8473 null_input_bfd = FALSE;
8474 break;
8475 }
8476 }
8477
8478 if (null_input_bfd || only_data_sections)
8479 return TRUE;
8480 }
8481
8482 /* Complain about various flag mismatches. */
8483 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8484 EF_ARM_EABI_VERSION (out_flags)))
8485 {
8486 _bfd_error_handler
8487 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8488 ibfd, obfd,
8489 (in_flags & EF_ARM_EABIMASK) >> 24,
8490 (out_flags & EF_ARM_EABIMASK) >> 24);
8491 return FALSE;
8492 }
8493
8494 /* Not sure what needs to be checked for EABI versions >= 1. */
8495 /* VxWorks libraries do not use these flags. */
8496 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8497 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8498 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8499 {
8500 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8501 {
8502 _bfd_error_handler
8503 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8504 ibfd, obfd,
8505 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8506 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8507 flags_compatible = FALSE;
8508 }
8509
8510 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8511 {
8512 if (in_flags & EF_ARM_APCS_FLOAT)
8513 _bfd_error_handler
8514 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8515 ibfd, obfd);
8516 else
8517 _bfd_error_handler
8518 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8519 ibfd, obfd);
8520
8521 flags_compatible = FALSE;
8522 }
8523
8524 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
8525 {
8526 if (in_flags & EF_ARM_VFP_FLOAT)
8527 _bfd_error_handler
8528 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8529 ibfd, obfd);
8530 else
8531 _bfd_error_handler
8532 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8533 ibfd, obfd);
8534
8535 flags_compatible = FALSE;
8536 }
8537
8538 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
8539 {
8540 if (in_flags & EF_ARM_MAVERICK_FLOAT)
8541 _bfd_error_handler
8542 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8543 ibfd, obfd);
8544 else
8545 _bfd_error_handler
8546 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8547 ibfd, obfd);
8548
8549 flags_compatible = FALSE;
8550 }
8551
8552 #ifdef EF_ARM_SOFT_FLOAT
8553 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
8554 {
8555 /* We can allow interworking between code that is VFP format
8556 layout, and uses either soft float or integer regs for
8557 passing floating point arguments and results. We already
8558 know that the APCS_FLOAT flags match; similarly for VFP
8559 flags. */
8560 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
8561 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
8562 {
8563 if (in_flags & EF_ARM_SOFT_FLOAT)
8564 _bfd_error_handler
8565 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8566 ibfd, obfd);
8567 else
8568 _bfd_error_handler
8569 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8570 ibfd, obfd);
8571
8572 flags_compatible = FALSE;
8573 }
8574 }
8575 #endif
8576
8577 /* Interworking mismatch is only a warning. */
8578 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8579 {
8580 if (in_flags & EF_ARM_INTERWORK)
8581 {
8582 _bfd_error_handler
8583 (_("Warning: %B supports interworking, whereas %B does not"),
8584 ibfd, obfd);
8585 }
8586 else
8587 {
8588 _bfd_error_handler
8589 (_("Warning: %B does not support interworking, whereas %B does"),
8590 ibfd, obfd);
8591 }
8592 }
8593 }
8594
8595 return flags_compatible;
8596 }
8597
8598 /* Display the flags field. */
8599
8600 static bfd_boolean
8601 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
8602 {
8603 FILE * file = (FILE *) ptr;
8604 unsigned long flags;
8605
8606 BFD_ASSERT (abfd != NULL && ptr != NULL);
8607
8608 /* Print normal ELF private data. */
8609 _bfd_elf_print_private_bfd_data (abfd, ptr);
8610
8611 flags = elf_elfheader (abfd)->e_flags;
8612 /* Ignore init flag - it may not be set, despite the flags field
8613 containing valid data. */
8614
8615 /* xgettext:c-format */
8616 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
8617
8618 switch (EF_ARM_EABI_VERSION (flags))
8619 {
8620 case EF_ARM_EABI_UNKNOWN:
8621 /* The following flag bits are GNU extensions and not part of the
8622 official ARM ELF extended ABI. Hence they are only decoded if
8623 the EABI version is not set. */
8624 if (flags & EF_ARM_INTERWORK)
8625 fprintf (file, _(" [interworking enabled]"));
8626
8627 if (flags & EF_ARM_APCS_26)
8628 fprintf (file, " [APCS-26]");
8629 else
8630 fprintf (file, " [APCS-32]");
8631
8632 if (flags & EF_ARM_VFP_FLOAT)
8633 fprintf (file, _(" [VFP float format]"));
8634 else if (flags & EF_ARM_MAVERICK_FLOAT)
8635 fprintf (file, _(" [Maverick float format]"));
8636 else
8637 fprintf (file, _(" [FPA float format]"));
8638
8639 if (flags & EF_ARM_APCS_FLOAT)
8640 fprintf (file, _(" [floats passed in float registers]"));
8641
8642 if (flags & EF_ARM_PIC)
8643 fprintf (file, _(" [position independent]"));
8644
8645 if (flags & EF_ARM_NEW_ABI)
8646 fprintf (file, _(" [new ABI]"));
8647
8648 if (flags & EF_ARM_OLD_ABI)
8649 fprintf (file, _(" [old ABI]"));
8650
8651 if (flags & EF_ARM_SOFT_FLOAT)
8652 fprintf (file, _(" [software FP]"));
8653
8654 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
8655 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
8656 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
8657 | EF_ARM_MAVERICK_FLOAT);
8658 break;
8659
8660 case EF_ARM_EABI_VER1:
8661 fprintf (file, _(" [Version1 EABI]"));
8662
8663 if (flags & EF_ARM_SYMSARESORTED)
8664 fprintf (file, _(" [sorted symbol table]"));
8665 else
8666 fprintf (file, _(" [unsorted symbol table]"));
8667
8668 flags &= ~ EF_ARM_SYMSARESORTED;
8669 break;
8670
8671 case EF_ARM_EABI_VER2:
8672 fprintf (file, _(" [Version2 EABI]"));
8673
8674 if (flags & EF_ARM_SYMSARESORTED)
8675 fprintf (file, _(" [sorted symbol table]"));
8676 else
8677 fprintf (file, _(" [unsorted symbol table]"));
8678
8679 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
8680 fprintf (file, _(" [dynamic symbols use segment index]"));
8681
8682 if (flags & EF_ARM_MAPSYMSFIRST)
8683 fprintf (file, _(" [mapping symbols precede others]"));
8684
8685 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
8686 | EF_ARM_MAPSYMSFIRST);
8687 break;
8688
8689 case EF_ARM_EABI_VER3:
8690 fprintf (file, _(" [Version3 EABI]"));
8691 break;
8692
8693 case EF_ARM_EABI_VER4:
8694 fprintf (file, _(" [Version4 EABI]"));
8695 goto eabi;
8696
8697 case EF_ARM_EABI_VER5:
8698 fprintf (file, _(" [Version5 EABI]"));
8699 eabi:
8700 if (flags & EF_ARM_BE8)
8701 fprintf (file, _(" [BE8]"));
8702
8703 if (flags & EF_ARM_LE8)
8704 fprintf (file, _(" [LE8]"));
8705
8706 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
8707 break;
8708
8709 default:
8710 fprintf (file, _(" <EABI version unrecognised>"));
8711 break;
8712 }
8713
8714 flags &= ~ EF_ARM_EABIMASK;
8715
8716 if (flags & EF_ARM_RELEXEC)
8717 fprintf (file, _(" [relocatable executable]"));
8718
8719 if (flags & EF_ARM_HASENTRY)
8720 fprintf (file, _(" [has entry point]"));
8721
8722 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
8723
8724 if (flags)
8725 fprintf (file, _("<Unrecognised flag bits set>"));
8726
8727 fputc ('\n', file);
8728
8729 return TRUE;
8730 }
8731
8732 static int
8733 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
8734 {
8735 switch (ELF_ST_TYPE (elf_sym->st_info))
8736 {
8737 case STT_ARM_TFUNC:
8738 return ELF_ST_TYPE (elf_sym->st_info);
8739
8740 case STT_ARM_16BIT:
8741 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8742 This allows us to distinguish between data used by Thumb instructions
8743 and non-data (which is probably code) inside Thumb regions of an
8744 executable. */
8745 if (type != STT_OBJECT && type != STT_TLS)
8746 return ELF_ST_TYPE (elf_sym->st_info);
8747 break;
8748
8749 default:
8750 break;
8751 }
8752
8753 return type;
8754 }
8755
8756 static asection *
8757 elf32_arm_gc_mark_hook (asection *sec,
8758 struct bfd_link_info *info,
8759 Elf_Internal_Rela *rel,
8760 struct elf_link_hash_entry *h,
8761 Elf_Internal_Sym *sym)
8762 {
8763 if (h != NULL)
8764 switch (ELF32_R_TYPE (rel->r_info))
8765 {
8766 case R_ARM_GNU_VTINHERIT:
8767 case R_ARM_GNU_VTENTRY:
8768 return NULL;
8769 }
8770
8771 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
8772 }
8773
8774 /* Update the got entry reference counts for the section being removed. */
8775
8776 static bfd_boolean
8777 elf32_arm_gc_sweep_hook (bfd * abfd,
8778 struct bfd_link_info * info,
8779 asection * sec,
8780 const Elf_Internal_Rela * relocs)
8781 {
8782 Elf_Internal_Shdr *symtab_hdr;
8783 struct elf_link_hash_entry **sym_hashes;
8784 bfd_signed_vma *local_got_refcounts;
8785 const Elf_Internal_Rela *rel, *relend;
8786 struct elf32_arm_link_hash_table * globals;
8787
8788 if (info->relocatable)
8789 return TRUE;
8790
8791 globals = elf32_arm_hash_table (info);
8792
8793 elf_section_data (sec)->local_dynrel = NULL;
8794
8795 symtab_hdr = & elf_symtab_hdr (abfd);
8796 sym_hashes = elf_sym_hashes (abfd);
8797 local_got_refcounts = elf_local_got_refcounts (abfd);
8798
8799 check_use_blx (globals);
8800
8801 relend = relocs + sec->reloc_count;
8802 for (rel = relocs; rel < relend; rel++)
8803 {
8804 unsigned long r_symndx;
8805 struct elf_link_hash_entry *h = NULL;
8806 int r_type;
8807
8808 r_symndx = ELF32_R_SYM (rel->r_info);
8809 if (r_symndx >= symtab_hdr->sh_info)
8810 {
8811 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8812 while (h->root.type == bfd_link_hash_indirect
8813 || h->root.type == bfd_link_hash_warning)
8814 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8815 }
8816
8817 r_type = ELF32_R_TYPE (rel->r_info);
8818 r_type = arm_real_reloc_type (globals, r_type);
8819 switch (r_type)
8820 {
8821 case R_ARM_GOT32:
8822 case R_ARM_GOT_PREL:
8823 case R_ARM_TLS_GD32:
8824 case R_ARM_TLS_IE32:
8825 if (h != NULL)
8826 {
8827 if (h->got.refcount > 0)
8828 h->got.refcount -= 1;
8829 }
8830 else if (local_got_refcounts != NULL)
8831 {
8832 if (local_got_refcounts[r_symndx] > 0)
8833 local_got_refcounts[r_symndx] -= 1;
8834 }
8835 break;
8836
8837 case R_ARM_TLS_LDM32:
8838 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
8839 break;
8840
8841 case R_ARM_ABS32:
8842 case R_ARM_ABS32_NOI:
8843 case R_ARM_REL32:
8844 case R_ARM_REL32_NOI:
8845 case R_ARM_PC24:
8846 case R_ARM_PLT32:
8847 case R_ARM_CALL:
8848 case R_ARM_JUMP24:
8849 case R_ARM_PREL31:
8850 case R_ARM_THM_CALL:
8851 case R_ARM_THM_JUMP24:
8852 case R_ARM_THM_JUMP19:
8853 case R_ARM_MOVW_ABS_NC:
8854 case R_ARM_MOVT_ABS:
8855 case R_ARM_MOVW_PREL_NC:
8856 case R_ARM_MOVT_PREL:
8857 case R_ARM_THM_MOVW_ABS_NC:
8858 case R_ARM_THM_MOVT_ABS:
8859 case R_ARM_THM_MOVW_PREL_NC:
8860 case R_ARM_THM_MOVT_PREL:
8861 /* Should the interworking branches be here also? */
8862
8863 if (h != NULL)
8864 {
8865 struct elf32_arm_link_hash_entry *eh;
8866 struct elf32_arm_relocs_copied **pp;
8867 struct elf32_arm_relocs_copied *p;
8868
8869 eh = (struct elf32_arm_link_hash_entry *) h;
8870
8871 if (h->plt.refcount > 0)
8872 {
8873 h->plt.refcount -= 1;
8874 if (r_type == R_ARM_THM_CALL)
8875 eh->plt_maybe_thumb_refcount--;
8876
8877 if (r_type == R_ARM_THM_JUMP24
8878 || r_type == R_ARM_THM_JUMP19)
8879 eh->plt_thumb_refcount--;
8880 }
8881
8882 if (r_type == R_ARM_ABS32
8883 || r_type == R_ARM_REL32
8884 || r_type == R_ARM_ABS32_NOI
8885 || r_type == R_ARM_REL32_NOI)
8886 {
8887 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
8888 pp = &p->next)
8889 if (p->section == sec)
8890 {
8891 p->count -= 1;
8892 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
8893 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
8894 p->pc_count -= 1;
8895 if (p->count == 0)
8896 *pp = p->next;
8897 break;
8898 }
8899 }
8900 }
8901 break;
8902
8903 default:
8904 break;
8905 }
8906 }
8907
8908 return TRUE;
8909 }
8910
8911 /* Look through the relocs for a section during the first phase. */
8912
8913 static bfd_boolean
8914 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
8915 asection *sec, const Elf_Internal_Rela *relocs)
8916 {
8917 Elf_Internal_Shdr *symtab_hdr;
8918 struct elf_link_hash_entry **sym_hashes;
8919 const Elf_Internal_Rela *rel;
8920 const Elf_Internal_Rela *rel_end;
8921 bfd *dynobj;
8922 asection *sreloc;
8923 bfd_vma *local_got_offsets;
8924 struct elf32_arm_link_hash_table *htab;
8925 bfd_boolean needs_plt;
8926
8927 if (info->relocatable)
8928 return TRUE;
8929
8930 BFD_ASSERT (is_arm_elf (abfd));
8931
8932 htab = elf32_arm_hash_table (info);
8933 sreloc = NULL;
8934
8935 /* Create dynamic sections for relocatable executables so that we can
8936 copy relocations. */
8937 if (htab->root.is_relocatable_executable
8938 && ! htab->root.dynamic_sections_created)
8939 {
8940 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
8941 return FALSE;
8942 }
8943
8944 dynobj = elf_hash_table (info)->dynobj;
8945 local_got_offsets = elf_local_got_offsets (abfd);
8946
8947 symtab_hdr = & elf_symtab_hdr (abfd);
8948 sym_hashes = elf_sym_hashes (abfd);
8949
8950 rel_end = relocs + sec->reloc_count;
8951 for (rel = relocs; rel < rel_end; rel++)
8952 {
8953 struct elf_link_hash_entry *h;
8954 struct elf32_arm_link_hash_entry *eh;
8955 unsigned long r_symndx;
8956 int r_type;
8957
8958 r_symndx = ELF32_R_SYM (rel->r_info);
8959 r_type = ELF32_R_TYPE (rel->r_info);
8960 r_type = arm_real_reloc_type (htab, r_type);
8961
8962 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
8963 {
8964 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
8965 r_symndx);
8966 return FALSE;
8967 }
8968
8969 if (r_symndx < symtab_hdr->sh_info)
8970 h = NULL;
8971 else
8972 {
8973 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8974 while (h->root.type == bfd_link_hash_indirect
8975 || h->root.type == bfd_link_hash_warning)
8976 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8977 }
8978
8979 eh = (struct elf32_arm_link_hash_entry *) h;
8980
8981 switch (r_type)
8982 {
8983 case R_ARM_GOT32:
8984 case R_ARM_GOT_PREL:
8985 case R_ARM_TLS_GD32:
8986 case R_ARM_TLS_IE32:
8987 /* This symbol requires a global offset table entry. */
8988 {
8989 int tls_type, old_tls_type;
8990
8991 switch (r_type)
8992 {
8993 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
8994 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
8995 default: tls_type = GOT_NORMAL; break;
8996 }
8997
8998 if (h != NULL)
8999 {
9000 h->got.refcount++;
9001 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9002 }
9003 else
9004 {
9005 bfd_signed_vma *local_got_refcounts;
9006
9007 /* This is a global offset table entry for a local symbol. */
9008 local_got_refcounts = elf_local_got_refcounts (abfd);
9009 if (local_got_refcounts == NULL)
9010 {
9011 bfd_size_type size;
9012
9013 size = symtab_hdr->sh_info;
9014 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9015 local_got_refcounts = bfd_zalloc (abfd, size);
9016 if (local_got_refcounts == NULL)
9017 return FALSE;
9018 elf_local_got_refcounts (abfd) = local_got_refcounts;
9019 elf32_arm_local_got_tls_type (abfd)
9020 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9021 }
9022 local_got_refcounts[r_symndx] += 1;
9023 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9024 }
9025
9026 /* We will already have issued an error message if there is a
9027 TLS / non-TLS mismatch, based on the symbol type. We don't
9028 support any linker relaxations. So just combine any TLS
9029 types needed. */
9030 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9031 && tls_type != GOT_NORMAL)
9032 tls_type |= old_tls_type;
9033
9034 if (old_tls_type != tls_type)
9035 {
9036 if (h != NULL)
9037 elf32_arm_hash_entry (h)->tls_type = tls_type;
9038 else
9039 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9040 }
9041 }
9042 /* Fall through */
9043
9044 case R_ARM_TLS_LDM32:
9045 if (r_type == R_ARM_TLS_LDM32)
9046 htab->tls_ldm_got.refcount++;
9047 /* Fall through */
9048
9049 case R_ARM_GOTOFF32:
9050 case R_ARM_GOTPC:
9051 if (htab->sgot == NULL)
9052 {
9053 if (htab->root.dynobj == NULL)
9054 htab->root.dynobj = abfd;
9055 if (!create_got_section (htab->root.dynobj, info))
9056 return FALSE;
9057 }
9058 break;
9059
9060 case R_ARM_ABS12:
9061 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9062 ldr __GOTT_INDEX__ offsets. */
9063 if (!htab->vxworks_p)
9064 break;
9065 /* Fall through */
9066
9067 case R_ARM_PC24:
9068 case R_ARM_PLT32:
9069 case R_ARM_CALL:
9070 case R_ARM_JUMP24:
9071 case R_ARM_PREL31:
9072 case R_ARM_THM_CALL:
9073 case R_ARM_THM_JUMP24:
9074 case R_ARM_THM_JUMP19:
9075 needs_plt = 1;
9076 goto normal_reloc;
9077
9078 case R_ARM_ABS32:
9079 case R_ARM_ABS32_NOI:
9080 case R_ARM_REL32:
9081 case R_ARM_REL32_NOI:
9082 case R_ARM_MOVW_ABS_NC:
9083 case R_ARM_MOVT_ABS:
9084 case R_ARM_MOVW_PREL_NC:
9085 case R_ARM_MOVT_PREL:
9086 case R_ARM_THM_MOVW_ABS_NC:
9087 case R_ARM_THM_MOVT_ABS:
9088 case R_ARM_THM_MOVW_PREL_NC:
9089 case R_ARM_THM_MOVT_PREL:
9090 needs_plt = 0;
9091 normal_reloc:
9092
9093 /* Should the interworking branches be listed here? */
9094 if (h != NULL)
9095 {
9096 /* If this reloc is in a read-only section, we might
9097 need a copy reloc. We can't check reliably at this
9098 stage whether the section is read-only, as input
9099 sections have not yet been mapped to output sections.
9100 Tentatively set the flag for now, and correct in
9101 adjust_dynamic_symbol. */
9102 if (!info->shared)
9103 h->non_got_ref = 1;
9104
9105 /* We may need a .plt entry if the function this reloc
9106 refers to is in a different object. We can't tell for
9107 sure yet, because something later might force the
9108 symbol local. */
9109 if (needs_plt)
9110 h->needs_plt = 1;
9111
9112 /* If we create a PLT entry, this relocation will reference
9113 it, even if it's an ABS32 relocation. */
9114 h->plt.refcount += 1;
9115
9116 /* It's too early to use htab->use_blx here, so we have to
9117 record possible blx references separately from
9118 relocs that definitely need a thumb stub. */
9119
9120 if (r_type == R_ARM_THM_CALL)
9121 eh->plt_maybe_thumb_refcount += 1;
9122
9123 if (r_type == R_ARM_THM_JUMP24
9124 || r_type == R_ARM_THM_JUMP19)
9125 eh->plt_thumb_refcount += 1;
9126 }
9127
9128 /* If we are creating a shared library or relocatable executable,
9129 and this is a reloc against a global symbol, or a non PC
9130 relative reloc against a local symbol, then we need to copy
9131 the reloc into the shared library. However, if we are linking
9132 with -Bsymbolic, we do not need to copy a reloc against a
9133 global symbol which is defined in an object we are
9134 including in the link (i.e., DEF_REGULAR is set). At
9135 this point we have not seen all the input files, so it is
9136 possible that DEF_REGULAR is not set now but will be set
9137 later (it is never cleared). We account for that
9138 possibility below by storing information in the
9139 relocs_copied field of the hash table entry. */
9140 if ((info->shared || htab->root.is_relocatable_executable)
9141 && (sec->flags & SEC_ALLOC) != 0
9142 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9143 || (h != NULL && ! h->needs_plt
9144 && (! info->symbolic || ! h->def_regular))))
9145 {
9146 struct elf32_arm_relocs_copied *p, **head;
9147
9148 /* When creating a shared object, we must copy these
9149 reloc types into the output file. We create a reloc
9150 section in dynobj and make room for this reloc. */
9151 if (sreloc == NULL)
9152 {
9153 const char * name;
9154
9155 name = (bfd_elf_string_from_elf_section
9156 (abfd,
9157 elf_elfheader (abfd)->e_shstrndx,
9158 elf_section_data (sec)->rel_hdr.sh_name));
9159 if (name == NULL)
9160 return FALSE;
9161
9162 BFD_ASSERT (reloc_section_p (htab, name, sec));
9163
9164 sreloc = bfd_get_section_by_name (dynobj, name);
9165 if (sreloc == NULL)
9166 {
9167 flagword flags;
9168
9169 flags = (SEC_HAS_CONTENTS | SEC_READONLY
9170 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
9171 if ((sec->flags & SEC_ALLOC) != 0
9172 /* BPABI objects never have dynamic
9173 relocations mapped. */
9174 && !htab->symbian_p)
9175 flags |= SEC_ALLOC | SEC_LOAD;
9176 sreloc = bfd_make_section_with_flags (dynobj,
9177 name,
9178 flags);
9179 if (sreloc == NULL
9180 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
9181 return FALSE;
9182 }
9183
9184 elf_section_data (sec)->sreloc = sreloc;
9185 }
9186
9187 /* If this is a global symbol, we count the number of
9188 relocations we need for this symbol. */
9189 if (h != NULL)
9190 {
9191 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9192 }
9193 else
9194 {
9195 /* Track dynamic relocs needed for local syms too.
9196 We really need local syms available to do this
9197 easily. Oh well. */
9198
9199 asection *s;
9200 void *vpp;
9201
9202 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9203 sec, r_symndx);
9204 if (s == NULL)
9205 return FALSE;
9206
9207 vpp = &elf_section_data (s)->local_dynrel;
9208 head = (struct elf32_arm_relocs_copied **) vpp;
9209 }
9210
9211 p = *head;
9212 if (p == NULL || p->section != sec)
9213 {
9214 bfd_size_type amt = sizeof *p;
9215
9216 p = bfd_alloc (htab->root.dynobj, amt);
9217 if (p == NULL)
9218 return FALSE;
9219 p->next = *head;
9220 *head = p;
9221 p->section = sec;
9222 p->count = 0;
9223 p->pc_count = 0;
9224 }
9225
9226 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9227 p->pc_count += 1;
9228 p->count += 1;
9229 }
9230 break;
9231
9232 /* This relocation describes the C++ object vtable hierarchy.
9233 Reconstruct it for later use during GC. */
9234 case R_ARM_GNU_VTINHERIT:
9235 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9236 return FALSE;
9237 break;
9238
9239 /* This relocation describes which C++ vtable entries are actually
9240 used. Record for later use during GC. */
9241 case R_ARM_GNU_VTENTRY:
9242 BFD_ASSERT (h != NULL);
9243 if (h != NULL
9244 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9245 return FALSE;
9246 break;
9247 }
9248 }
9249
9250 return TRUE;
9251 }
9252
9253 /* Unwinding tables are not referenced directly. This pass marks them as
9254 required if the corresponding code section is marked. */
9255
9256 static bfd_boolean
9257 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9258 elf_gc_mark_hook_fn gc_mark_hook)
9259 {
9260 bfd *sub;
9261 Elf_Internal_Shdr **elf_shdrp;
9262 bfd_boolean again;
9263
9264 /* Marking EH data may cause additional code sections to be marked,
9265 requiring multiple passes. */
9266 again = TRUE;
9267 while (again)
9268 {
9269 again = FALSE;
9270 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9271 {
9272 asection *o;
9273
9274 if (! is_arm_elf (sub))
9275 continue;
9276
9277 elf_shdrp = elf_elfsections (sub);
9278 for (o = sub->sections; o != NULL; o = o->next)
9279 {
9280 Elf_Internal_Shdr *hdr;
9281
9282 hdr = &elf_section_data (o)->this_hdr;
9283 if (hdr->sh_type == SHT_ARM_EXIDX
9284 && hdr->sh_link
9285 && hdr->sh_link < elf_numsections (sub)
9286 && !o->gc_mark
9287 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9288 {
9289 again = TRUE;
9290 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9291 return FALSE;
9292 }
9293 }
9294 }
9295 }
9296
9297 return TRUE;
9298 }
9299
9300 /* Treat mapping symbols as special target symbols. */
9301
9302 static bfd_boolean
9303 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9304 {
9305 return bfd_is_arm_special_symbol_name (sym->name,
9306 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9307 }
9308
9309 /* This is a copy of elf_find_function() from elf.c except that
9310 ARM mapping symbols are ignored when looking for function names
9311 and STT_ARM_TFUNC is considered to a function type. */
9312
9313 static bfd_boolean
9314 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9315 asection * section,
9316 asymbol ** symbols,
9317 bfd_vma offset,
9318 const char ** filename_ptr,
9319 const char ** functionname_ptr)
9320 {
9321 const char * filename = NULL;
9322 asymbol * func = NULL;
9323 bfd_vma low_func = 0;
9324 asymbol ** p;
9325
9326 for (p = symbols; *p != NULL; p++)
9327 {
9328 elf_symbol_type *q;
9329
9330 q = (elf_symbol_type *) *p;
9331
9332 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9333 {
9334 default:
9335 break;
9336 case STT_FILE:
9337 filename = bfd_asymbol_name (&q->symbol);
9338 break;
9339 case STT_FUNC:
9340 case STT_ARM_TFUNC:
9341 case STT_NOTYPE:
9342 /* Skip mapping symbols. */
9343 if ((q->symbol.flags & BSF_LOCAL)
9344 && bfd_is_arm_special_symbol_name (q->symbol.name,
9345 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9346 continue;
9347 /* Fall through. */
9348 if (bfd_get_section (&q->symbol) == section
9349 && q->symbol.value >= low_func
9350 && q->symbol.value <= offset)
9351 {
9352 func = (asymbol *) q;
9353 low_func = q->symbol.value;
9354 }
9355 break;
9356 }
9357 }
9358
9359 if (func == NULL)
9360 return FALSE;
9361
9362 if (filename_ptr)
9363 *filename_ptr = filename;
9364 if (functionname_ptr)
9365 *functionname_ptr = bfd_asymbol_name (func);
9366
9367 return TRUE;
9368 }
9369
9370
9371 /* Find the nearest line to a particular section and offset, for error
9372 reporting. This code is a duplicate of the code in elf.c, except
9373 that it uses arm_elf_find_function. */
9374
9375 static bfd_boolean
9376 elf32_arm_find_nearest_line (bfd * abfd,
9377 asection * section,
9378 asymbol ** symbols,
9379 bfd_vma offset,
9380 const char ** filename_ptr,
9381 const char ** functionname_ptr,
9382 unsigned int * line_ptr)
9383 {
9384 bfd_boolean found = FALSE;
9385
9386 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9387
9388 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9389 filename_ptr, functionname_ptr,
9390 line_ptr, 0,
9391 & elf_tdata (abfd)->dwarf2_find_line_info))
9392 {
9393 if (!*functionname_ptr)
9394 arm_elf_find_function (abfd, section, symbols, offset,
9395 *filename_ptr ? NULL : filename_ptr,
9396 functionname_ptr);
9397
9398 return TRUE;
9399 }
9400
9401 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9402 & found, filename_ptr,
9403 functionname_ptr, line_ptr,
9404 & elf_tdata (abfd)->line_info))
9405 return FALSE;
9406
9407 if (found && (*functionname_ptr || *line_ptr))
9408 return TRUE;
9409
9410 if (symbols == NULL)
9411 return FALSE;
9412
9413 if (! arm_elf_find_function (abfd, section, symbols, offset,
9414 filename_ptr, functionname_ptr))
9415 return FALSE;
9416
9417 *line_ptr = 0;
9418 return TRUE;
9419 }
9420
9421 static bfd_boolean
9422 elf32_arm_find_inliner_info (bfd * abfd,
9423 const char ** filename_ptr,
9424 const char ** functionname_ptr,
9425 unsigned int * line_ptr)
9426 {
9427 bfd_boolean found;
9428 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9429 functionname_ptr, line_ptr,
9430 & elf_tdata (abfd)->dwarf2_find_line_info);
9431 return found;
9432 }
9433
9434 /* Adjust a symbol defined by a dynamic object and referenced by a
9435 regular object. The current definition is in some section of the
9436 dynamic object, but we're not including those sections. We have to
9437 change the definition to something the rest of the link can
9438 understand. */
9439
9440 static bfd_boolean
9441 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9442 struct elf_link_hash_entry * h)
9443 {
9444 bfd * dynobj;
9445 asection * s;
9446 struct elf32_arm_link_hash_entry * eh;
9447 struct elf32_arm_link_hash_table *globals;
9448
9449 globals = elf32_arm_hash_table (info);
9450 dynobj = elf_hash_table (info)->dynobj;
9451
9452 /* Make sure we know what is going on here. */
9453 BFD_ASSERT (dynobj != NULL
9454 && (h->needs_plt
9455 || h->u.weakdef != NULL
9456 || (h->def_dynamic
9457 && h->ref_regular
9458 && !h->def_regular)));
9459
9460 eh = (struct elf32_arm_link_hash_entry *) h;
9461
9462 /* If this is a function, put it in the procedure linkage table. We
9463 will fill in the contents of the procedure linkage table later,
9464 when we know the address of the .got section. */
9465 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
9466 || h->needs_plt)
9467 {
9468 if (h->plt.refcount <= 0
9469 || SYMBOL_CALLS_LOCAL (info, h)
9470 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9471 && h->root.type == bfd_link_hash_undefweak))
9472 {
9473 /* This case can occur if we saw a PLT32 reloc in an input
9474 file, but the symbol was never referred to by a dynamic
9475 object, or if all references were garbage collected. In
9476 such a case, we don't actually need to build a procedure
9477 linkage table, and we can just do a PC24 reloc instead. */
9478 h->plt.offset = (bfd_vma) -1;
9479 eh->plt_thumb_refcount = 0;
9480 eh->plt_maybe_thumb_refcount = 0;
9481 h->needs_plt = 0;
9482 }
9483
9484 return TRUE;
9485 }
9486 else
9487 {
9488 /* It's possible that we incorrectly decided a .plt reloc was
9489 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9490 in check_relocs. We can't decide accurately between function
9491 and non-function syms in check-relocs; Objects loaded later in
9492 the link may change h->type. So fix it now. */
9493 h->plt.offset = (bfd_vma) -1;
9494 eh->plt_thumb_refcount = 0;
9495 eh->plt_maybe_thumb_refcount = 0;
9496 }
9497
9498 /* If this is a weak symbol, and there is a real definition, the
9499 processor independent code will have arranged for us to see the
9500 real definition first, and we can just use the same value. */
9501 if (h->u.weakdef != NULL)
9502 {
9503 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9504 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9505 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9506 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9507 return TRUE;
9508 }
9509
9510 /* If there are no non-GOT references, we do not need a copy
9511 relocation. */
9512 if (!h->non_got_ref)
9513 return TRUE;
9514
9515 /* This is a reference to a symbol defined by a dynamic object which
9516 is not a function. */
9517
9518 /* If we are creating a shared library, we must presume that the
9519 only references to the symbol are via the global offset table.
9520 For such cases we need not do anything here; the relocations will
9521 be handled correctly by relocate_section. Relocatable executables
9522 can reference data in shared objects directly, so we don't need to
9523 do anything here. */
9524 if (info->shared || globals->root.is_relocatable_executable)
9525 return TRUE;
9526
9527 if (h->size == 0)
9528 {
9529 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
9530 h->root.root.string);
9531 return TRUE;
9532 }
9533
9534 /* We must allocate the symbol in our .dynbss section, which will
9535 become part of the .bss section of the executable. There will be
9536 an entry for this symbol in the .dynsym section. The dynamic
9537 object will contain position independent code, so all references
9538 from the dynamic object to this symbol will go through the global
9539 offset table. The dynamic linker will use the .dynsym entry to
9540 determine the address it must put in the global offset table, so
9541 both the dynamic object and the regular object will refer to the
9542 same memory location for the variable. */
9543 s = bfd_get_section_by_name (dynobj, ".dynbss");
9544 BFD_ASSERT (s != NULL);
9545
9546 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9547 copy the initial value out of the dynamic object and into the
9548 runtime process image. We need to remember the offset into the
9549 .rel(a).bss section we are going to use. */
9550 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9551 {
9552 asection *srel;
9553
9554 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
9555 BFD_ASSERT (srel != NULL);
9556 srel->size += RELOC_SIZE (globals);
9557 h->needs_copy = 1;
9558 }
9559
9560 return _bfd_elf_adjust_dynamic_copy (h, s);
9561 }
9562
9563 /* Allocate space in .plt, .got and associated reloc sections for
9564 dynamic relocs. */
9565
9566 static bfd_boolean
9567 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
9568 {
9569 struct bfd_link_info *info;
9570 struct elf32_arm_link_hash_table *htab;
9571 struct elf32_arm_link_hash_entry *eh;
9572 struct elf32_arm_relocs_copied *p;
9573 bfd_signed_vma thumb_refs;
9574
9575 eh = (struct elf32_arm_link_hash_entry *) h;
9576
9577 if (h->root.type == bfd_link_hash_indirect)
9578 return TRUE;
9579
9580 if (h->root.type == bfd_link_hash_warning)
9581 /* When warning symbols are created, they **replace** the "real"
9582 entry in the hash table, thus we never get to see the real
9583 symbol in a hash traversal. So look at it now. */
9584 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9585
9586 info = (struct bfd_link_info *) inf;
9587 htab = elf32_arm_hash_table (info);
9588
9589 if (htab->root.dynamic_sections_created
9590 && h->plt.refcount > 0)
9591 {
9592 /* Make sure this symbol is output as a dynamic symbol.
9593 Undefined weak syms won't yet be marked as dynamic. */
9594 if (h->dynindx == -1
9595 && !h->forced_local)
9596 {
9597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9598 return FALSE;
9599 }
9600
9601 if (info->shared
9602 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
9603 {
9604 asection *s = htab->splt;
9605
9606 /* If this is the first .plt entry, make room for the special
9607 first entry. */
9608 if (s->size == 0)
9609 s->size += htab->plt_header_size;
9610
9611 h->plt.offset = s->size;
9612
9613 /* If we will insert a Thumb trampoline before this PLT, leave room
9614 for it. */
9615 thumb_refs = eh->plt_thumb_refcount;
9616 if (!htab->use_blx)
9617 thumb_refs += eh->plt_maybe_thumb_refcount;
9618
9619 if (thumb_refs > 0)
9620 {
9621 h->plt.offset += PLT_THUMB_STUB_SIZE;
9622 s->size += PLT_THUMB_STUB_SIZE;
9623 }
9624
9625 /* If this symbol is not defined in a regular file, and we are
9626 not generating a shared library, then set the symbol to this
9627 location in the .plt. This is required to make function
9628 pointers compare as equal between the normal executable and
9629 the shared library. */
9630 if (! info->shared
9631 && !h->def_regular)
9632 {
9633 h->root.u.def.section = s;
9634 h->root.u.def.value = h->plt.offset;
9635
9636 /* Make sure the function is not marked as Thumb, in case
9637 it is the target of an ABS32 relocation, which will
9638 point to the PLT entry. */
9639 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
9640 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9641 }
9642
9643 /* Make room for this entry. */
9644 s->size += htab->plt_entry_size;
9645
9646 if (!htab->symbian_p)
9647 {
9648 /* We also need to make an entry in the .got.plt section, which
9649 will be placed in the .got section by the linker script. */
9650 eh->plt_got_offset = htab->sgotplt->size;
9651 htab->sgotplt->size += 4;
9652 }
9653
9654 /* We also need to make an entry in the .rel(a).plt section. */
9655 htab->srelplt->size += RELOC_SIZE (htab);
9656
9657 /* VxWorks executables have a second set of relocations for
9658 each PLT entry. They go in a separate relocation section,
9659 which is processed by the kernel loader. */
9660 if (htab->vxworks_p && !info->shared)
9661 {
9662 /* There is a relocation for the initial PLT entry:
9663 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9664 if (h->plt.offset == htab->plt_header_size)
9665 htab->srelplt2->size += RELOC_SIZE (htab);
9666
9667 /* There are two extra relocations for each subsequent
9668 PLT entry: an R_ARM_32 relocation for the GOT entry,
9669 and an R_ARM_32 relocation for the PLT entry. */
9670 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
9671 }
9672 }
9673 else
9674 {
9675 h->plt.offset = (bfd_vma) -1;
9676 h->needs_plt = 0;
9677 }
9678 }
9679 else
9680 {
9681 h->plt.offset = (bfd_vma) -1;
9682 h->needs_plt = 0;
9683 }
9684
9685 if (h->got.refcount > 0)
9686 {
9687 asection *s;
9688 bfd_boolean dyn;
9689 int tls_type = elf32_arm_hash_entry (h)->tls_type;
9690 int indx;
9691
9692 /* Make sure this symbol is output as a dynamic symbol.
9693 Undefined weak syms won't yet be marked as dynamic. */
9694 if (h->dynindx == -1
9695 && !h->forced_local)
9696 {
9697 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9698 return FALSE;
9699 }
9700
9701 if (!htab->symbian_p)
9702 {
9703 s = htab->sgot;
9704 h->got.offset = s->size;
9705
9706 if (tls_type == GOT_UNKNOWN)
9707 abort ();
9708
9709 if (tls_type == GOT_NORMAL)
9710 /* Non-TLS symbols need one GOT slot. */
9711 s->size += 4;
9712 else
9713 {
9714 if (tls_type & GOT_TLS_GD)
9715 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9716 s->size += 8;
9717 if (tls_type & GOT_TLS_IE)
9718 /* R_ARM_TLS_IE32 needs one GOT slot. */
9719 s->size += 4;
9720 }
9721
9722 dyn = htab->root.dynamic_sections_created;
9723
9724 indx = 0;
9725 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9726 && (!info->shared
9727 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9728 indx = h->dynindx;
9729
9730 if (tls_type != GOT_NORMAL
9731 && (info->shared || indx != 0)
9732 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9733 || h->root.type != bfd_link_hash_undefweak))
9734 {
9735 if (tls_type & GOT_TLS_IE)
9736 htab->srelgot->size += RELOC_SIZE (htab);
9737
9738 if (tls_type & GOT_TLS_GD)
9739 htab->srelgot->size += RELOC_SIZE (htab);
9740
9741 if ((tls_type & GOT_TLS_GD) && indx != 0)
9742 htab->srelgot->size += RELOC_SIZE (htab);
9743 }
9744 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9745 || h->root.type != bfd_link_hash_undefweak)
9746 && (info->shared
9747 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
9748 htab->srelgot->size += RELOC_SIZE (htab);
9749 }
9750 }
9751 else
9752 h->got.offset = (bfd_vma) -1;
9753
9754 /* Allocate stubs for exported Thumb functions on v4t. */
9755 if (!htab->use_blx && h->dynindx != -1
9756 && h->def_regular
9757 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
9758 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9759 {
9760 struct elf_link_hash_entry * th;
9761 struct bfd_link_hash_entry * bh;
9762 struct elf_link_hash_entry * myh;
9763 char name[1024];
9764 asection *s;
9765 bh = NULL;
9766 /* Create a new symbol to regist the real location of the function. */
9767 s = h->root.u.def.section;
9768 sprintf (name, "__real_%s", h->root.root.string);
9769 _bfd_generic_link_add_one_symbol (info, s->owner,
9770 name, BSF_GLOBAL, s,
9771 h->root.u.def.value,
9772 NULL, TRUE, FALSE, &bh);
9773
9774 myh = (struct elf_link_hash_entry *) bh;
9775 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
9776 myh->forced_local = 1;
9777 eh->export_glue = myh;
9778 th = record_arm_to_thumb_glue (info, h);
9779 /* Point the symbol at the stub. */
9780 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9781 h->root.u.def.section = th->root.u.def.section;
9782 h->root.u.def.value = th->root.u.def.value & ~1;
9783 }
9784
9785 if (eh->relocs_copied == NULL)
9786 return TRUE;
9787
9788 /* In the shared -Bsymbolic case, discard space allocated for
9789 dynamic pc-relative relocs against symbols which turn out to be
9790 defined in regular objects. For the normal shared case, discard
9791 space for pc-relative relocs that have become local due to symbol
9792 visibility changes. */
9793
9794 if (info->shared || htab->root.is_relocatable_executable)
9795 {
9796 /* The only relocs that use pc_count are R_ARM_REL32 and
9797 R_ARM_REL32_NOI, which will appear on something like
9798 ".long foo - .". We want calls to protected symbols to resolve
9799 directly to the function rather than going via the plt. If people
9800 want function pointer comparisons to work as expected then they
9801 should avoid writing assembly like ".long foo - .". */
9802 if (SYMBOL_CALLS_LOCAL (info, h))
9803 {
9804 struct elf32_arm_relocs_copied **pp;
9805
9806 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9807 {
9808 p->count -= p->pc_count;
9809 p->pc_count = 0;
9810 if (p->count == 0)
9811 *pp = p->next;
9812 else
9813 pp = &p->next;
9814 }
9815 }
9816
9817 if (elf32_arm_hash_table (info)->vxworks_p)
9818 {
9819 struct elf32_arm_relocs_copied **pp;
9820
9821 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9822 {
9823 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
9824 *pp = p->next;
9825 else
9826 pp = &p->next;
9827 }
9828 }
9829
9830 /* Also discard relocs on undefined weak syms with non-default
9831 visibility. */
9832 if (eh->relocs_copied != NULL
9833 && h->root.type == bfd_link_hash_undefweak)
9834 {
9835 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9836 eh->relocs_copied = NULL;
9837
9838 /* Make sure undefined weak symbols are output as a dynamic
9839 symbol in PIEs. */
9840 else if (h->dynindx == -1
9841 && !h->forced_local)
9842 {
9843 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9844 return FALSE;
9845 }
9846 }
9847
9848 else if (htab->root.is_relocatable_executable && h->dynindx == -1
9849 && h->root.type == bfd_link_hash_new)
9850 {
9851 /* Output absolute symbols so that we can create relocations
9852 against them. For normal symbols we output a relocation
9853 against the section that contains them. */
9854 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9855 return FALSE;
9856 }
9857
9858 }
9859 else
9860 {
9861 /* For the non-shared case, discard space for relocs against
9862 symbols which turn out to need copy relocs or are not
9863 dynamic. */
9864
9865 if (!h->non_got_ref
9866 && ((h->def_dynamic
9867 && !h->def_regular)
9868 || (htab->root.dynamic_sections_created
9869 && (h->root.type == bfd_link_hash_undefweak
9870 || h->root.type == bfd_link_hash_undefined))))
9871 {
9872 /* Make sure this symbol is output as a dynamic symbol.
9873 Undefined weak syms won't yet be marked as dynamic. */
9874 if (h->dynindx == -1
9875 && !h->forced_local)
9876 {
9877 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9878 return FALSE;
9879 }
9880
9881 /* If that succeeded, we know we'll be keeping all the
9882 relocs. */
9883 if (h->dynindx != -1)
9884 goto keep;
9885 }
9886
9887 eh->relocs_copied = NULL;
9888
9889 keep: ;
9890 }
9891
9892 /* Finally, allocate space. */
9893 for (p = eh->relocs_copied; p != NULL; p = p->next)
9894 {
9895 asection *sreloc = elf_section_data (p->section)->sreloc;
9896 sreloc->size += p->count * RELOC_SIZE (htab);
9897 }
9898
9899 return TRUE;
9900 }
9901
9902 /* Find any dynamic relocs that apply to read-only sections. */
9903
9904 static bfd_boolean
9905 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
9906 {
9907 struct elf32_arm_link_hash_entry *eh;
9908 struct elf32_arm_relocs_copied *p;
9909
9910 if (h->root.type == bfd_link_hash_warning)
9911 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9912
9913 eh = (struct elf32_arm_link_hash_entry *) h;
9914 for (p = eh->relocs_copied; p != NULL; p = p->next)
9915 {
9916 asection *s = p->section;
9917
9918 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9919 {
9920 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9921
9922 info->flags |= DF_TEXTREL;
9923
9924 /* Not an error, just cut short the traversal. */
9925 return FALSE;
9926 }
9927 }
9928 return TRUE;
9929 }
9930
9931 void
9932 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
9933 int byteswap_code)
9934 {
9935 struct elf32_arm_link_hash_table *globals;
9936
9937 globals = elf32_arm_hash_table (info);
9938 globals->byteswap_code = byteswap_code;
9939 }
9940
9941 /* Set the sizes of the dynamic sections. */
9942
9943 static bfd_boolean
9944 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
9945 struct bfd_link_info * info)
9946 {
9947 bfd * dynobj;
9948 asection * s;
9949 bfd_boolean plt;
9950 bfd_boolean relocs;
9951 bfd *ibfd;
9952 struct elf32_arm_link_hash_table *htab;
9953
9954 htab = elf32_arm_hash_table (info);
9955 dynobj = elf_hash_table (info)->dynobj;
9956 BFD_ASSERT (dynobj != NULL);
9957 check_use_blx (htab);
9958
9959 if (elf_hash_table (info)->dynamic_sections_created)
9960 {
9961 /* Set the contents of the .interp section to the interpreter. */
9962 if (info->executable)
9963 {
9964 s = bfd_get_section_by_name (dynobj, ".interp");
9965 BFD_ASSERT (s != NULL);
9966 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9967 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9968 }
9969 }
9970
9971 /* Set up .got offsets for local syms, and space for local dynamic
9972 relocs. */
9973 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9974 {
9975 bfd_signed_vma *local_got;
9976 bfd_signed_vma *end_local_got;
9977 char *local_tls_type;
9978 bfd_size_type locsymcount;
9979 Elf_Internal_Shdr *symtab_hdr;
9980 asection *srel;
9981 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
9982
9983 if (! is_arm_elf (ibfd))
9984 continue;
9985
9986 for (s = ibfd->sections; s != NULL; s = s->next)
9987 {
9988 struct elf32_arm_relocs_copied *p;
9989
9990 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9991 {
9992 if (!bfd_is_abs_section (p->section)
9993 && bfd_is_abs_section (p->section->output_section))
9994 {
9995 /* Input section has been discarded, either because
9996 it is a copy of a linkonce section or due to
9997 linker script /DISCARD/, so we'll be discarding
9998 the relocs too. */
9999 }
10000 else if (is_vxworks
10001 && strcmp (p->section->output_section->name,
10002 ".tls_vars") == 0)
10003 {
10004 /* Relocations in vxworks .tls_vars sections are
10005 handled specially by the loader. */
10006 }
10007 else if (p->count != 0)
10008 {
10009 srel = elf_section_data (p->section)->sreloc;
10010 srel->size += p->count * RELOC_SIZE (htab);
10011 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10012 info->flags |= DF_TEXTREL;
10013 }
10014 }
10015 }
10016
10017 local_got = elf_local_got_refcounts (ibfd);
10018 if (!local_got)
10019 continue;
10020
10021 symtab_hdr = & elf_symtab_hdr (ibfd);
10022 locsymcount = symtab_hdr->sh_info;
10023 end_local_got = local_got + locsymcount;
10024 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10025 s = htab->sgot;
10026 srel = htab->srelgot;
10027 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10028 {
10029 if (*local_got > 0)
10030 {
10031 *local_got = s->size;
10032 if (*local_tls_type & GOT_TLS_GD)
10033 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10034 s->size += 8;
10035 if (*local_tls_type & GOT_TLS_IE)
10036 s->size += 4;
10037 if (*local_tls_type == GOT_NORMAL)
10038 s->size += 4;
10039
10040 if (info->shared || *local_tls_type == GOT_TLS_GD)
10041 srel->size += RELOC_SIZE (htab);
10042 }
10043 else
10044 *local_got = (bfd_vma) -1;
10045 }
10046 }
10047
10048 if (htab->tls_ldm_got.refcount > 0)
10049 {
10050 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10051 for R_ARM_TLS_LDM32 relocations. */
10052 htab->tls_ldm_got.offset = htab->sgot->size;
10053 htab->sgot->size += 8;
10054 if (info->shared)
10055 htab->srelgot->size += RELOC_SIZE (htab);
10056 }
10057 else
10058 htab->tls_ldm_got.offset = -1;
10059
10060 /* Allocate global sym .plt and .got entries, and space for global
10061 sym dynamic relocs. */
10062 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10063
10064 /* Here we rummage through the found bfds to collect glue information. */
10065 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10066 {
10067 if (! is_arm_elf (ibfd))
10068 continue;
10069
10070 /* Initialise mapping tables for code/data. */
10071 bfd_elf32_arm_init_maps (ibfd);
10072
10073 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10074 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10075 /* xgettext:c-format */
10076 _bfd_error_handler (_("Errors encountered processing file %s"),
10077 ibfd->filename);
10078 }
10079
10080 /* The check_relocs and adjust_dynamic_symbol entry points have
10081 determined the sizes of the various dynamic sections. Allocate
10082 memory for them. */
10083 plt = FALSE;
10084 relocs = FALSE;
10085 for (s = dynobj->sections; s != NULL; s = s->next)
10086 {
10087 const char * name;
10088
10089 if ((s->flags & SEC_LINKER_CREATED) == 0)
10090 continue;
10091
10092 /* It's OK to base decisions on the section name, because none
10093 of the dynobj section names depend upon the input files. */
10094 name = bfd_get_section_name (dynobj, s);
10095
10096 if (strcmp (name, ".plt") == 0)
10097 {
10098 /* Remember whether there is a PLT. */
10099 plt = s->size != 0;
10100 }
10101 else if (CONST_STRNEQ (name, ".rel"))
10102 {
10103 if (s->size != 0)
10104 {
10105 /* Remember whether there are any reloc sections other
10106 than .rel(a).plt and .rela.plt.unloaded. */
10107 if (s != htab->srelplt && s != htab->srelplt2)
10108 relocs = TRUE;
10109
10110 /* We use the reloc_count field as a counter if we need
10111 to copy relocs into the output file. */
10112 s->reloc_count = 0;
10113 }
10114 }
10115 else if (! CONST_STRNEQ (name, ".got")
10116 && strcmp (name, ".dynbss") != 0)
10117 {
10118 /* It's not one of our sections, so don't allocate space. */
10119 continue;
10120 }
10121
10122 if (s->size == 0)
10123 {
10124 /* If we don't need this section, strip it from the
10125 output file. This is mostly to handle .rel(a).bss and
10126 .rel(a).plt. We must create both sections in
10127 create_dynamic_sections, because they must be created
10128 before the linker maps input sections to output
10129 sections. The linker does that before
10130 adjust_dynamic_symbol is called, and it is that
10131 function which decides whether anything needs to go
10132 into these sections. */
10133 s->flags |= SEC_EXCLUDE;
10134 continue;
10135 }
10136
10137 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10138 continue;
10139
10140 /* Allocate memory for the section contents. */
10141 s->contents = bfd_zalloc (dynobj, s->size);
10142 if (s->contents == NULL)
10143 return FALSE;
10144 }
10145
10146 if (elf_hash_table (info)->dynamic_sections_created)
10147 {
10148 /* Add some entries to the .dynamic section. We fill in the
10149 values later, in elf32_arm_finish_dynamic_sections, but we
10150 must add the entries now so that we get the correct size for
10151 the .dynamic section. The DT_DEBUG entry is filled in by the
10152 dynamic linker and used by the debugger. */
10153 #define add_dynamic_entry(TAG, VAL) \
10154 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10155
10156 if (info->executable)
10157 {
10158 if (!add_dynamic_entry (DT_DEBUG, 0))
10159 return FALSE;
10160 }
10161
10162 if (plt)
10163 {
10164 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10165 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10166 || !add_dynamic_entry (DT_PLTREL,
10167 htab->use_rel ? DT_REL : DT_RELA)
10168 || !add_dynamic_entry (DT_JMPREL, 0))
10169 return FALSE;
10170 }
10171
10172 if (relocs)
10173 {
10174 if (htab->use_rel)
10175 {
10176 if (!add_dynamic_entry (DT_REL, 0)
10177 || !add_dynamic_entry (DT_RELSZ, 0)
10178 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10179 return FALSE;
10180 }
10181 else
10182 {
10183 if (!add_dynamic_entry (DT_RELA, 0)
10184 || !add_dynamic_entry (DT_RELASZ, 0)
10185 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10186 return FALSE;
10187 }
10188 }
10189
10190 /* If any dynamic relocs apply to a read-only section,
10191 then we need a DT_TEXTREL entry. */
10192 if ((info->flags & DF_TEXTREL) == 0)
10193 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
10194 (PTR) info);
10195
10196 if ((info->flags & DF_TEXTREL) != 0)
10197 {
10198 if (!add_dynamic_entry (DT_TEXTREL, 0))
10199 return FALSE;
10200 }
10201 if (htab->vxworks_p
10202 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10203 return FALSE;
10204 }
10205 #undef add_dynamic_entry
10206
10207 return TRUE;
10208 }
10209
10210 /* Finish up dynamic symbol handling. We set the contents of various
10211 dynamic sections here. */
10212
10213 static bfd_boolean
10214 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10215 struct bfd_link_info * info,
10216 struct elf_link_hash_entry * h,
10217 Elf_Internal_Sym * sym)
10218 {
10219 bfd * dynobj;
10220 struct elf32_arm_link_hash_table *htab;
10221 struct elf32_arm_link_hash_entry *eh;
10222
10223 dynobj = elf_hash_table (info)->dynobj;
10224 htab = elf32_arm_hash_table (info);
10225 eh = (struct elf32_arm_link_hash_entry *) h;
10226
10227 if (h->plt.offset != (bfd_vma) -1)
10228 {
10229 asection * splt;
10230 asection * srel;
10231 bfd_byte *loc;
10232 bfd_vma plt_index;
10233 Elf_Internal_Rela rel;
10234
10235 /* This symbol has an entry in the procedure linkage table. Set
10236 it up. */
10237
10238 BFD_ASSERT (h->dynindx != -1);
10239
10240 splt = bfd_get_section_by_name (dynobj, ".plt");
10241 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10242 BFD_ASSERT (splt != NULL && srel != NULL);
10243
10244 /* Fill in the entry in the procedure linkage table. */
10245 if (htab->symbian_p)
10246 {
10247 put_arm_insn (htab, output_bfd,
10248 elf32_arm_symbian_plt_entry[0],
10249 splt->contents + h->plt.offset);
10250 bfd_put_32 (output_bfd,
10251 elf32_arm_symbian_plt_entry[1],
10252 splt->contents + h->plt.offset + 4);
10253
10254 /* Fill in the entry in the .rel.plt section. */
10255 rel.r_offset = (splt->output_section->vma
10256 + splt->output_offset
10257 + h->plt.offset + 4);
10258 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10259
10260 /* Get the index in the procedure linkage table which
10261 corresponds to this symbol. This is the index of this symbol
10262 in all the symbols for which we are making plt entries. The
10263 first entry in the procedure linkage table is reserved. */
10264 plt_index = ((h->plt.offset - htab->plt_header_size)
10265 / htab->plt_entry_size);
10266 }
10267 else
10268 {
10269 bfd_vma got_offset, got_address, plt_address;
10270 bfd_vma got_displacement;
10271 asection * sgot;
10272 bfd_byte * ptr;
10273
10274 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10275 BFD_ASSERT (sgot != NULL);
10276
10277 /* Get the offset into the .got.plt table of the entry that
10278 corresponds to this function. */
10279 got_offset = eh->plt_got_offset;
10280
10281 /* Get the index in the procedure linkage table which
10282 corresponds to this symbol. This is the index of this symbol
10283 in all the symbols for which we are making plt entries. The
10284 first three entries in .got.plt are reserved; after that
10285 symbols appear in the same order as in .plt. */
10286 plt_index = (got_offset - 12) / 4;
10287
10288 /* Calculate the address of the GOT entry. */
10289 got_address = (sgot->output_section->vma
10290 + sgot->output_offset
10291 + got_offset);
10292
10293 /* ...and the address of the PLT entry. */
10294 plt_address = (splt->output_section->vma
10295 + splt->output_offset
10296 + h->plt.offset);
10297
10298 ptr = htab->splt->contents + h->plt.offset;
10299 if (htab->vxworks_p && info->shared)
10300 {
10301 unsigned int i;
10302 bfd_vma val;
10303
10304 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10305 {
10306 val = elf32_arm_vxworks_shared_plt_entry[i];
10307 if (i == 2)
10308 val |= got_address - sgot->output_section->vma;
10309 if (i == 5)
10310 val |= plt_index * RELOC_SIZE (htab);
10311 if (i == 2 || i == 5)
10312 bfd_put_32 (output_bfd, val, ptr);
10313 else
10314 put_arm_insn (htab, output_bfd, val, ptr);
10315 }
10316 }
10317 else if (htab->vxworks_p)
10318 {
10319 unsigned int i;
10320 bfd_vma val;
10321
10322 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10323 {
10324 val = elf32_arm_vxworks_exec_plt_entry[i];
10325 if (i == 2)
10326 val |= got_address;
10327 if (i == 4)
10328 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10329 if (i == 5)
10330 val |= plt_index * RELOC_SIZE (htab);
10331 if (i == 2 || i == 5)
10332 bfd_put_32 (output_bfd, val, ptr);
10333 else
10334 put_arm_insn (htab, output_bfd, val, ptr);
10335 }
10336
10337 loc = (htab->srelplt2->contents
10338 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10339
10340 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10341 referencing the GOT for this PLT entry. */
10342 rel.r_offset = plt_address + 8;
10343 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10344 rel.r_addend = got_offset;
10345 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10346 loc += RELOC_SIZE (htab);
10347
10348 /* Create the R_ARM_ABS32 relocation referencing the
10349 beginning of the PLT for this GOT entry. */
10350 rel.r_offset = got_address;
10351 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10352 rel.r_addend = 0;
10353 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10354 }
10355 else
10356 {
10357 bfd_signed_vma thumb_refs;
10358 /* Calculate the displacement between the PLT slot and the
10359 entry in the GOT. The eight-byte offset accounts for the
10360 value produced by adding to pc in the first instruction
10361 of the PLT stub. */
10362 got_displacement = got_address - (plt_address + 8);
10363
10364 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10365
10366 thumb_refs = eh->plt_thumb_refcount;
10367 if (!htab->use_blx)
10368 thumb_refs += eh->plt_maybe_thumb_refcount;
10369
10370 if (thumb_refs > 0)
10371 {
10372 put_thumb_insn (htab, output_bfd,
10373 elf32_arm_plt_thumb_stub[0], ptr - 4);
10374 put_thumb_insn (htab, output_bfd,
10375 elf32_arm_plt_thumb_stub[1], ptr - 2);
10376 }
10377
10378 put_arm_insn (htab, output_bfd,
10379 elf32_arm_plt_entry[0]
10380 | ((got_displacement & 0x0ff00000) >> 20),
10381 ptr + 0);
10382 put_arm_insn (htab, output_bfd,
10383 elf32_arm_plt_entry[1]
10384 | ((got_displacement & 0x000ff000) >> 12),
10385 ptr+ 4);
10386 put_arm_insn (htab, output_bfd,
10387 elf32_arm_plt_entry[2]
10388 | (got_displacement & 0x00000fff),
10389 ptr + 8);
10390 #ifdef FOUR_WORD_PLT
10391 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10392 #endif
10393 }
10394
10395 /* Fill in the entry in the global offset table. */
10396 bfd_put_32 (output_bfd,
10397 (splt->output_section->vma
10398 + splt->output_offset),
10399 sgot->contents + got_offset);
10400
10401 /* Fill in the entry in the .rel(a).plt section. */
10402 rel.r_addend = 0;
10403 rel.r_offset = got_address;
10404 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10405 }
10406
10407 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10408 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10409
10410 if (!h->def_regular)
10411 {
10412 /* Mark the symbol as undefined, rather than as defined in
10413 the .plt section. Leave the value alone. */
10414 sym->st_shndx = SHN_UNDEF;
10415 /* If the symbol is weak, we do need to clear the value.
10416 Otherwise, the PLT entry would provide a definition for
10417 the symbol even if the symbol wasn't defined anywhere,
10418 and so the symbol would never be NULL. */
10419 if (!h->ref_regular_nonweak)
10420 sym->st_value = 0;
10421 }
10422 }
10423
10424 if (h->got.offset != (bfd_vma) -1
10425 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10426 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10427 {
10428 asection * sgot;
10429 asection * srel;
10430 Elf_Internal_Rela rel;
10431 bfd_byte *loc;
10432 bfd_vma offset;
10433
10434 /* This symbol has an entry in the global offset table. Set it
10435 up. */
10436 sgot = bfd_get_section_by_name (dynobj, ".got");
10437 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10438 BFD_ASSERT (sgot != NULL && srel != NULL);
10439
10440 offset = (h->got.offset & ~(bfd_vma) 1);
10441 rel.r_addend = 0;
10442 rel.r_offset = (sgot->output_section->vma
10443 + sgot->output_offset
10444 + offset);
10445
10446 /* If this is a static link, or it is a -Bsymbolic link and the
10447 symbol is defined locally or was forced to be local because
10448 of a version file, we just want to emit a RELATIVE reloc.
10449 The entry in the global offset table will already have been
10450 initialized in the relocate_section function. */
10451 if (info->shared
10452 && SYMBOL_REFERENCES_LOCAL (info, h))
10453 {
10454 BFD_ASSERT ((h->got.offset & 1) != 0);
10455 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10456 if (!htab->use_rel)
10457 {
10458 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10459 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10460 }
10461 }
10462 else
10463 {
10464 BFD_ASSERT ((h->got.offset & 1) == 0);
10465 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10466 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10467 }
10468
10469 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10470 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10471 }
10472
10473 if (h->needs_copy)
10474 {
10475 asection * s;
10476 Elf_Internal_Rela rel;
10477 bfd_byte *loc;
10478
10479 /* This symbol needs a copy reloc. Set it up. */
10480 BFD_ASSERT (h->dynindx != -1
10481 && (h->root.type == bfd_link_hash_defined
10482 || h->root.type == bfd_link_hash_defweak));
10483
10484 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10485 RELOC_SECTION (htab, ".bss"));
10486 BFD_ASSERT (s != NULL);
10487
10488 rel.r_addend = 0;
10489 rel.r_offset = (h->root.u.def.value
10490 + h->root.u.def.section->output_section->vma
10491 + h->root.u.def.section->output_offset);
10492 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10493 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10494 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10495 }
10496
10497 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10498 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10499 to the ".got" section. */
10500 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10501 || (!htab->vxworks_p && h == htab->root.hgot))
10502 sym->st_shndx = SHN_ABS;
10503
10504 return TRUE;
10505 }
10506
10507 /* Finish up the dynamic sections. */
10508
10509 static bfd_boolean
10510 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10511 {
10512 bfd * dynobj;
10513 asection * sgot;
10514 asection * sdyn;
10515
10516 dynobj = elf_hash_table (info)->dynobj;
10517
10518 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10519 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10520 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10521
10522 if (elf_hash_table (info)->dynamic_sections_created)
10523 {
10524 asection *splt;
10525 Elf32_External_Dyn *dyncon, *dynconend;
10526 struct elf32_arm_link_hash_table *htab;
10527
10528 htab = elf32_arm_hash_table (info);
10529 splt = bfd_get_section_by_name (dynobj, ".plt");
10530 BFD_ASSERT (splt != NULL && sdyn != NULL);
10531
10532 dyncon = (Elf32_External_Dyn *) sdyn->contents;
10533 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
10534
10535 for (; dyncon < dynconend; dyncon++)
10536 {
10537 Elf_Internal_Dyn dyn;
10538 const char * name;
10539 asection * s;
10540
10541 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
10542
10543 switch (dyn.d_tag)
10544 {
10545 unsigned int type;
10546
10547 default:
10548 if (htab->vxworks_p
10549 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10550 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10551 break;
10552
10553 case DT_HASH:
10554 name = ".hash";
10555 goto get_vma_if_bpabi;
10556 case DT_STRTAB:
10557 name = ".dynstr";
10558 goto get_vma_if_bpabi;
10559 case DT_SYMTAB:
10560 name = ".dynsym";
10561 goto get_vma_if_bpabi;
10562 case DT_VERSYM:
10563 name = ".gnu.version";
10564 goto get_vma_if_bpabi;
10565 case DT_VERDEF:
10566 name = ".gnu.version_d";
10567 goto get_vma_if_bpabi;
10568 case DT_VERNEED:
10569 name = ".gnu.version_r";
10570 goto get_vma_if_bpabi;
10571
10572 case DT_PLTGOT:
10573 name = ".got";
10574 goto get_vma;
10575 case DT_JMPREL:
10576 name = RELOC_SECTION (htab, ".plt");
10577 get_vma:
10578 s = bfd_get_section_by_name (output_bfd, name);
10579 BFD_ASSERT (s != NULL);
10580 if (!htab->symbian_p)
10581 dyn.d_un.d_ptr = s->vma;
10582 else
10583 /* In the BPABI, tags in the PT_DYNAMIC section point
10584 at the file offset, not the memory address, for the
10585 convenience of the post linker. */
10586 dyn.d_un.d_ptr = s->filepos;
10587 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10588 break;
10589
10590 get_vma_if_bpabi:
10591 if (htab->symbian_p)
10592 goto get_vma;
10593 break;
10594
10595 case DT_PLTRELSZ:
10596 s = bfd_get_section_by_name (output_bfd,
10597 RELOC_SECTION (htab, ".plt"));
10598 BFD_ASSERT (s != NULL);
10599 dyn.d_un.d_val = s->size;
10600 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10601 break;
10602
10603 case DT_RELSZ:
10604 case DT_RELASZ:
10605 if (!htab->symbian_p)
10606 {
10607 /* My reading of the SVR4 ABI indicates that the
10608 procedure linkage table relocs (DT_JMPREL) should be
10609 included in the overall relocs (DT_REL). This is
10610 what Solaris does. However, UnixWare can not handle
10611 that case. Therefore, we override the DT_RELSZ entry
10612 here to make it not include the JMPREL relocs. Since
10613 the linker script arranges for .rel(a).plt to follow all
10614 other relocation sections, we don't have to worry
10615 about changing the DT_REL entry. */
10616 s = bfd_get_section_by_name (output_bfd,
10617 RELOC_SECTION (htab, ".plt"));
10618 if (s != NULL)
10619 dyn.d_un.d_val -= s->size;
10620 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10621 break;
10622 }
10623 /* Fall through */
10624
10625 case DT_REL:
10626 case DT_RELA:
10627 /* In the BPABI, the DT_REL tag must point at the file
10628 offset, not the VMA, of the first relocation
10629 section. So, we use code similar to that in
10630 elflink.c, but do not check for SHF_ALLOC on the
10631 relcoation section, since relocations sections are
10632 never allocated under the BPABI. The comments above
10633 about Unixware notwithstanding, we include all of the
10634 relocations here. */
10635 if (htab->symbian_p)
10636 {
10637 unsigned int i;
10638 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10639 ? SHT_REL : SHT_RELA);
10640 dyn.d_un.d_val = 0;
10641 for (i = 1; i < elf_numsections (output_bfd); i++)
10642 {
10643 Elf_Internal_Shdr *hdr
10644 = elf_elfsections (output_bfd)[i];
10645 if (hdr->sh_type == type)
10646 {
10647 if (dyn.d_tag == DT_RELSZ
10648 || dyn.d_tag == DT_RELASZ)
10649 dyn.d_un.d_val += hdr->sh_size;
10650 else if ((ufile_ptr) hdr->sh_offset
10651 <= dyn.d_un.d_val - 1)
10652 dyn.d_un.d_val = hdr->sh_offset;
10653 }
10654 }
10655 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10656 }
10657 break;
10658
10659 /* Set the bottom bit of DT_INIT/FINI if the
10660 corresponding function is Thumb. */
10661 case DT_INIT:
10662 name = info->init_function;
10663 goto get_sym;
10664 case DT_FINI:
10665 name = info->fini_function;
10666 get_sym:
10667 /* If it wasn't set by elf_bfd_final_link
10668 then there is nothing to adjust. */
10669 if (dyn.d_un.d_val != 0)
10670 {
10671 struct elf_link_hash_entry * eh;
10672
10673 eh = elf_link_hash_lookup (elf_hash_table (info), name,
10674 FALSE, FALSE, TRUE);
10675 if (eh != NULL
10676 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
10677 {
10678 dyn.d_un.d_val |= 1;
10679 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10680 }
10681 }
10682 break;
10683 }
10684 }
10685
10686 /* Fill in the first entry in the procedure linkage table. */
10687 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
10688 {
10689 const bfd_vma *plt0_entry;
10690 bfd_vma got_address, plt_address, got_displacement;
10691
10692 /* Calculate the addresses of the GOT and PLT. */
10693 got_address = sgot->output_section->vma + sgot->output_offset;
10694 plt_address = splt->output_section->vma + splt->output_offset;
10695
10696 if (htab->vxworks_p)
10697 {
10698 /* The VxWorks GOT is relocated by the dynamic linker.
10699 Therefore, we must emit relocations rather than simply
10700 computing the values now. */
10701 Elf_Internal_Rela rel;
10702
10703 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
10704 put_arm_insn (htab, output_bfd, plt0_entry[0],
10705 splt->contents + 0);
10706 put_arm_insn (htab, output_bfd, plt0_entry[1],
10707 splt->contents + 4);
10708 put_arm_insn (htab, output_bfd, plt0_entry[2],
10709 splt->contents + 8);
10710 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
10711
10712 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10713 rel.r_offset = plt_address + 12;
10714 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10715 rel.r_addend = 0;
10716 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
10717 htab->srelplt2->contents);
10718 }
10719 else
10720 {
10721 got_displacement = got_address - (plt_address + 16);
10722
10723 plt0_entry = elf32_arm_plt0_entry;
10724 put_arm_insn (htab, output_bfd, plt0_entry[0],
10725 splt->contents + 0);
10726 put_arm_insn (htab, output_bfd, plt0_entry[1],
10727 splt->contents + 4);
10728 put_arm_insn (htab, output_bfd, plt0_entry[2],
10729 splt->contents + 8);
10730 put_arm_insn (htab, output_bfd, plt0_entry[3],
10731 splt->contents + 12);
10732
10733 #ifdef FOUR_WORD_PLT
10734 /* The displacement value goes in the otherwise-unused
10735 last word of the second entry. */
10736 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
10737 #else
10738 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
10739 #endif
10740 }
10741 }
10742
10743 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10744 really seem like the right value. */
10745 if (splt->output_section->owner == output_bfd)
10746 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
10747
10748 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
10749 {
10750 /* Correct the .rel(a).plt.unloaded relocations. They will have
10751 incorrect symbol indexes. */
10752 int num_plts;
10753 unsigned char *p;
10754
10755 num_plts = ((htab->splt->size - htab->plt_header_size)
10756 / htab->plt_entry_size);
10757 p = htab->srelplt2->contents + RELOC_SIZE (htab);
10758
10759 for (; num_plts; num_plts--)
10760 {
10761 Elf_Internal_Rela rel;
10762
10763 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10764 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10765 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10766 p += RELOC_SIZE (htab);
10767
10768 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10769 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10770 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10771 p += RELOC_SIZE (htab);
10772 }
10773 }
10774 }
10775
10776 /* Fill in the first three entries in the global offset table. */
10777 if (sgot)
10778 {
10779 if (sgot->size > 0)
10780 {
10781 if (sdyn == NULL)
10782 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
10783 else
10784 bfd_put_32 (output_bfd,
10785 sdyn->output_section->vma + sdyn->output_offset,
10786 sgot->contents);
10787 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
10788 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
10789 }
10790
10791 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
10792 }
10793
10794 return TRUE;
10795 }
10796
10797 static void
10798 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10799 {
10800 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10801 struct elf32_arm_link_hash_table *globals;
10802
10803 i_ehdrp = elf_elfheader (abfd);
10804
10805 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
10806 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
10807 else
10808 i_ehdrp->e_ident[EI_OSABI] = 0;
10809 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
10810
10811 if (link_info)
10812 {
10813 globals = elf32_arm_hash_table (link_info);
10814 if (globals->byteswap_code)
10815 i_ehdrp->e_flags |= EF_ARM_BE8;
10816 }
10817 }
10818
10819 static enum elf_reloc_type_class
10820 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
10821 {
10822 switch ((int) ELF32_R_TYPE (rela->r_info))
10823 {
10824 case R_ARM_RELATIVE:
10825 return reloc_class_relative;
10826 case R_ARM_JUMP_SLOT:
10827 return reloc_class_plt;
10828 case R_ARM_COPY:
10829 return reloc_class_copy;
10830 default:
10831 return reloc_class_normal;
10832 }
10833 }
10834
10835 /* Set the right machine number for an Arm ELF file. */
10836
10837 static bfd_boolean
10838 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
10839 {
10840 if (hdr->sh_type == SHT_NOTE)
10841 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
10842
10843 return TRUE;
10844 }
10845
10846 static void
10847 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
10848 {
10849 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
10850 }
10851
10852 /* Return TRUE if this is an unwinding table entry. */
10853
10854 static bfd_boolean
10855 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
10856 {
10857 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
10858 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
10859 }
10860
10861
10862 /* Set the type and flags for an ARM section. We do this by
10863 the section name, which is a hack, but ought to work. */
10864
10865 static bfd_boolean
10866 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
10867 {
10868 const char * name;
10869
10870 name = bfd_get_section_name (abfd, sec);
10871
10872 if (is_arm_elf_unwind_section_name (abfd, name))
10873 {
10874 hdr->sh_type = SHT_ARM_EXIDX;
10875 hdr->sh_flags |= SHF_LINK_ORDER;
10876 }
10877 return TRUE;
10878 }
10879
10880 /* Handle an ARM specific section when reading an object file. This is
10881 called when bfd_section_from_shdr finds a section with an unknown
10882 type. */
10883
10884 static bfd_boolean
10885 elf32_arm_section_from_shdr (bfd *abfd,
10886 Elf_Internal_Shdr * hdr,
10887 const char *name,
10888 int shindex)
10889 {
10890 /* There ought to be a place to keep ELF backend specific flags, but
10891 at the moment there isn't one. We just keep track of the
10892 sections by their name, instead. Fortunately, the ABI gives
10893 names for all the ARM specific sections, so we will probably get
10894 away with this. */
10895 switch (hdr->sh_type)
10896 {
10897 case SHT_ARM_EXIDX:
10898 case SHT_ARM_PREEMPTMAP:
10899 case SHT_ARM_ATTRIBUTES:
10900 break;
10901
10902 default:
10903 return FALSE;
10904 }
10905
10906 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
10907 return FALSE;
10908
10909 return TRUE;
10910 }
10911
10912 /* A structure used to record a list of sections, independently
10913 of the next and prev fields in the asection structure. */
10914 typedef struct section_list
10915 {
10916 asection * sec;
10917 struct section_list * next;
10918 struct section_list * prev;
10919 }
10920 section_list;
10921
10922 /* Unfortunately we need to keep a list of sections for which
10923 an _arm_elf_section_data structure has been allocated. This
10924 is because it is possible for functions like elf32_arm_write_section
10925 to be called on a section which has had an elf_data_structure
10926 allocated for it (and so the used_by_bfd field is valid) but
10927 for which the ARM extended version of this structure - the
10928 _arm_elf_section_data structure - has not been allocated. */
10929 static section_list * sections_with_arm_elf_section_data = NULL;
10930
10931 static void
10932 record_section_with_arm_elf_section_data (asection * sec)
10933 {
10934 struct section_list * entry;
10935
10936 entry = bfd_malloc (sizeof (* entry));
10937 if (entry == NULL)
10938 return;
10939 entry->sec = sec;
10940 entry->next = sections_with_arm_elf_section_data;
10941 entry->prev = NULL;
10942 if (entry->next != NULL)
10943 entry->next->prev = entry;
10944 sections_with_arm_elf_section_data = entry;
10945 }
10946
10947 static struct section_list *
10948 find_arm_elf_section_entry (asection * sec)
10949 {
10950 struct section_list * entry;
10951 static struct section_list * last_entry = NULL;
10952
10953 /* This is a short cut for the typical case where the sections are added
10954 to the sections_with_arm_elf_section_data list in forward order and
10955 then looked up here in backwards order. This makes a real difference
10956 to the ld-srec/sec64k.exp linker test. */
10957 entry = sections_with_arm_elf_section_data;
10958 if (last_entry != NULL)
10959 {
10960 if (last_entry->sec == sec)
10961 entry = last_entry;
10962 else if (last_entry->next != NULL
10963 && last_entry->next->sec == sec)
10964 entry = last_entry->next;
10965 }
10966
10967 for (; entry; entry = entry->next)
10968 if (entry->sec == sec)
10969 break;
10970
10971 if (entry)
10972 /* Record the entry prior to this one - it is the entry we are most
10973 likely to want to locate next time. Also this way if we have been
10974 called from unrecord_section_with_arm_elf_section_data() we will not
10975 be caching a pointer that is about to be freed. */
10976 last_entry = entry->prev;
10977
10978 return entry;
10979 }
10980
10981 static _arm_elf_section_data *
10982 get_arm_elf_section_data (asection * sec)
10983 {
10984 struct section_list * entry;
10985
10986 entry = find_arm_elf_section_entry (sec);
10987
10988 if (entry)
10989 return elf32_arm_section_data (entry->sec);
10990 else
10991 return NULL;
10992 }
10993
10994 static void
10995 unrecord_section_with_arm_elf_section_data (asection * sec)
10996 {
10997 struct section_list * entry;
10998
10999 entry = find_arm_elf_section_entry (sec);
11000
11001 if (entry)
11002 {
11003 if (entry->prev != NULL)
11004 entry->prev->next = entry->next;
11005 if (entry->next != NULL)
11006 entry->next->prev = entry->prev;
11007 if (entry == sections_with_arm_elf_section_data)
11008 sections_with_arm_elf_section_data = entry->next;
11009 free (entry);
11010 }
11011 }
11012
11013
11014 typedef struct
11015 {
11016 void *finfo;
11017 struct bfd_link_info *info;
11018 asection *sec;
11019 int sec_shndx;
11020 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11021 asection *, struct elf_link_hash_entry *);
11022 } output_arch_syminfo;
11023
11024 enum map_symbol_type
11025 {
11026 ARM_MAP_ARM,
11027 ARM_MAP_THUMB,
11028 ARM_MAP_DATA
11029 };
11030
11031
11032 /* Output a single PLT mapping symbol. */
11033
11034 static bfd_boolean
11035 elf32_arm_ouput_plt_map_sym (output_arch_syminfo *osi,
11036 enum map_symbol_type type,
11037 bfd_vma offset)
11038 {
11039 static const char *names[3] = {"$a", "$t", "$d"};
11040 struct elf32_arm_link_hash_table *htab;
11041 Elf_Internal_Sym sym;
11042
11043 htab = elf32_arm_hash_table (osi->info);
11044 sym.st_value = osi->sec->output_section->vma
11045 + osi->sec->output_offset
11046 + offset;
11047 sym.st_size = 0;
11048 sym.st_other = 0;
11049 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11050 sym.st_shndx = osi->sec_shndx;
11051 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11052 return FALSE;
11053 return TRUE;
11054 }
11055
11056
11057 /* Output mapping symbols for PLT entries associated with H. */
11058
11059 static bfd_boolean
11060 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11061 {
11062 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11063 struct elf32_arm_link_hash_table *htab;
11064 struct elf32_arm_link_hash_entry *eh;
11065 bfd_vma addr;
11066
11067 htab = elf32_arm_hash_table (osi->info);
11068
11069 if (h->root.type == bfd_link_hash_indirect)
11070 return TRUE;
11071
11072 if (h->root.type == bfd_link_hash_warning)
11073 /* When warning symbols are created, they **replace** the "real"
11074 entry in the hash table, thus we never get to see the real
11075 symbol in a hash traversal. So look at it now. */
11076 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11077
11078 if (h->plt.offset == (bfd_vma) -1)
11079 return TRUE;
11080
11081 eh = (struct elf32_arm_link_hash_entry *) h;
11082 addr = h->plt.offset;
11083 if (htab->symbian_p)
11084 {
11085 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11086 return FALSE;
11087 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
11088 return FALSE;
11089 }
11090 else if (htab->vxworks_p)
11091 {
11092 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11093 return FALSE;
11094 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
11095 return FALSE;
11096 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 12))
11097 return FALSE;
11098 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 20))
11099 return FALSE;
11100 }
11101 else
11102 {
11103 bfd_signed_vma thumb_refs;
11104
11105 thumb_refs = eh->plt_thumb_refcount;
11106 if (!htab->use_blx)
11107 thumb_refs += eh->plt_maybe_thumb_refcount;
11108
11109 if (thumb_refs > 0)
11110 {
11111 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11112 return FALSE;
11113 }
11114 #ifdef FOUR_WORD_PLT
11115 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11116 return FALSE;
11117 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
11118 return FALSE;
11119 #else
11120 /* A three-word PLT with no Thumb thunk contains only Arm code,
11121 so only need to output a mapping symbol for the first PLT entry and
11122 entries with thumb thunks. */
11123 if (thumb_refs > 0 || addr == 20)
11124 {
11125 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11126 return FALSE;
11127 }
11128 #endif
11129 }
11130
11131 return TRUE;
11132 }
11133
11134
11135 static bfd_boolean
11136 arm_map_one_stub (struct bfd_hash_entry *gen_entry,
11137 PTR in_arg)
11138 {
11139 struct elf32_arm_stub_hash_entry *stub_entry;
11140 struct bfd_link_info *info;
11141 struct elf32_arm_link_hash_table *htab;
11142 asection *stub_sec;
11143 bfd_vma addr;
11144
11145 /* Massage our args to the form they really have. */
11146 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11147
11148 output_arch_syminfo *osi = (output_arch_syminfo *) in_arg;
11149 info = osi->info;
11150
11151 htab = elf32_arm_hash_table (info);
11152 stub_sec = stub_entry->stub_sec;
11153
11154 /* Ensure this stub is attached to the current section being
11155 processed */
11156 if (stub_sec != osi->sec)
11157 return TRUE;
11158
11159 addr = (bfd_vma)stub_entry->stub_offset;
11160
11161 switch(stub_entry->stub_type) {
11162 case arm_stub_long_branch:
11163 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11164 return FALSE;
11165 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
11166 return FALSE;
11167 break;
11168 case arm_thumb_v4t_stub_long_branch:
11169 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11170 return FALSE;
11171 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
11172 return FALSE;
11173 break;
11174 case arm_thumb_thumb_stub_long_branch:
11175 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr))
11176 return FALSE;
11177 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
11178 return FALSE;
11179 break;
11180 case arm_thumb_arm_v4t_stub_long_branch:
11181 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr))
11182 return FALSE;
11183 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 8))
11184 return FALSE;
11185 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 16))
11186 return FALSE;
11187 break;
11188 case arm_stub_pic_long_branch:
11189 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11190 return FALSE;
11191 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
11192 return FALSE;
11193 break;
11194 default:
11195 BFD_FAIL ();
11196 }
11197
11198 return TRUE;
11199 }
11200
11201 /* Output mapping symbols for linker generated sections. */
11202
11203 static bfd_boolean
11204 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11205 struct bfd_link_info *info,
11206 void *finfo,
11207 bfd_boolean (*func) (void *, const char *,
11208 Elf_Internal_Sym *,
11209 asection *,
11210 struct elf_link_hash_entry *))
11211 {
11212 output_arch_syminfo osi;
11213 struct elf32_arm_link_hash_table *htab;
11214 bfd_vma offset;
11215 bfd_size_type size;
11216
11217 htab = elf32_arm_hash_table (info);
11218 check_use_blx (htab);
11219
11220 osi.finfo = finfo;
11221 osi.info = info;
11222 osi.func = func;
11223
11224 /* ARM->Thumb glue. */
11225 if (htab->arm_glue_size > 0)
11226 {
11227 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11228 ARM2THUMB_GLUE_SECTION_NAME);
11229
11230 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11231 (output_bfd, osi.sec->output_section);
11232 if (info->shared || htab->root.is_relocatable_executable
11233 || htab->pic_veneer)
11234 size = ARM2THUMB_PIC_GLUE_SIZE;
11235 else if (htab->use_blx)
11236 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11237 else
11238 size = ARM2THUMB_STATIC_GLUE_SIZE;
11239
11240 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11241 {
11242 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset);
11243 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11244 }
11245 }
11246
11247 /* Thumb->ARM glue. */
11248 if (htab->thumb_glue_size > 0)
11249 {
11250 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11251 THUMB2ARM_GLUE_SECTION_NAME);
11252
11253 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11254 (output_bfd, osi.sec->output_section);
11255 size = THUMB2ARM_GLUE_SIZE;
11256
11257 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11258 {
11259 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_THUMB, offset);
11260 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11261 }
11262 }
11263
11264 /* ARMv4 BX veneers. */
11265 if (htab->bx_glue_size > 0)
11266 {
11267 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11268 ARM_BX_GLUE_SECTION_NAME);
11269
11270 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11271 (output_bfd, osi.sec->output_section);
11272
11273 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0);
11274 }
11275
11276 /* Long calls stubs. */
11277 if (htab->stub_bfd && htab->stub_bfd->sections) {
11278 asection* stub_sec;
11279 for (stub_sec = htab->stub_bfd->sections;
11280 stub_sec != NULL;
11281 stub_sec = stub_sec->next) {
11282
11283 /* Ignore non-stub sections */
11284 if (!strstr(stub_sec->name, STUB_SUFFIX))
11285 continue;
11286
11287 osi.sec = stub_sec;
11288
11289 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11290 (output_bfd, osi.sec->output_section);
11291
11292 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
11293 }
11294 }
11295
11296 /* Finally, output mapping symbols for the PLT. */
11297 if (!htab->splt || htab->splt->size == 0)
11298 return TRUE;
11299
11300 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11301 htab->splt->output_section);
11302 osi.sec = htab->splt;
11303 /* Output mapping symbols for the plt header. SymbianOS does not have a
11304 plt header. */
11305 if (htab->vxworks_p)
11306 {
11307 /* VxWorks shared libraries have no PLT header. */
11308 if (!info->shared)
11309 {
11310 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
11311 return FALSE;
11312 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 12))
11313 return FALSE;
11314 }
11315 }
11316 else if (!htab->symbian_p)
11317 {
11318 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
11319 return FALSE;
11320 #ifndef FOUR_WORD_PLT
11321 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 16))
11322 return FALSE;
11323 #endif
11324 }
11325
11326 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11327 return TRUE;
11328 }
11329
11330 /* Allocate target specific section data. */
11331
11332 static bfd_boolean
11333 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11334 {
11335 if (!sec->used_by_bfd)
11336 {
11337 _arm_elf_section_data *sdata;
11338 bfd_size_type amt = sizeof (*sdata);
11339
11340 sdata = bfd_zalloc (abfd, amt);
11341 if (sdata == NULL)
11342 return FALSE;
11343 sec->used_by_bfd = sdata;
11344 }
11345
11346 record_section_with_arm_elf_section_data (sec);
11347
11348 return _bfd_elf_new_section_hook (abfd, sec);
11349 }
11350
11351
11352 /* Used to order a list of mapping symbols by address. */
11353
11354 static int
11355 elf32_arm_compare_mapping (const void * a, const void * b)
11356 {
11357 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11358 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11359
11360 if (amap->vma > bmap->vma)
11361 return 1;
11362 else if (amap->vma < bmap->vma)
11363 return -1;
11364 else if (amap->type > bmap->type)
11365 /* Ensure results do not depend on the host qsort for objects with
11366 multiple mapping symbols at the same address by sorting on type
11367 after vma. */
11368 return 1;
11369 else if (amap->type < bmap->type)
11370 return -1;
11371 else
11372 return 0;
11373 }
11374
11375
11376 /* Do code byteswapping. Return FALSE afterwards so that the section is
11377 written out as normal. */
11378
11379 static bfd_boolean
11380 elf32_arm_write_section (bfd *output_bfd,
11381 struct bfd_link_info *link_info, asection *sec,
11382 bfd_byte *contents)
11383 {
11384 int mapcount, errcount;
11385 _arm_elf_section_data *arm_data;
11386 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11387 elf32_arm_section_map *map;
11388 elf32_vfp11_erratum_list *errnode;
11389 bfd_vma ptr;
11390 bfd_vma end;
11391 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11392 bfd_byte tmp;
11393 int i;
11394
11395 /* If this section has not been allocated an _arm_elf_section_data
11396 structure then we cannot record anything. */
11397 arm_data = get_arm_elf_section_data (sec);
11398 if (arm_data == NULL)
11399 return FALSE;
11400
11401 mapcount = arm_data->mapcount;
11402 map = arm_data->map;
11403 errcount = arm_data->erratumcount;
11404
11405 if (errcount != 0)
11406 {
11407 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11408
11409 for (errnode = arm_data->erratumlist; errnode != 0;
11410 errnode = errnode->next)
11411 {
11412 bfd_vma index = errnode->vma - offset;
11413
11414 switch (errnode->type)
11415 {
11416 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11417 {
11418 bfd_vma branch_to_veneer;
11419 /* Original condition code of instruction, plus bit mask for
11420 ARM B instruction. */
11421 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11422 | 0x0a000000;
11423
11424 /* The instruction is before the label. */
11425 index -= 4;
11426
11427 /* Above offset included in -4 below. */
11428 branch_to_veneer = errnode->u.b.veneer->vma
11429 - errnode->vma - 4;
11430
11431 if ((signed) branch_to_veneer < -(1 << 25)
11432 || (signed) branch_to_veneer >= (1 << 25))
11433 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11434 "range"), output_bfd);
11435
11436 insn |= (branch_to_veneer >> 2) & 0xffffff;
11437 contents[endianflip ^ index] = insn & 0xff;
11438 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11439 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11440 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11441 }
11442 break;
11443
11444 case VFP11_ERRATUM_ARM_VENEER:
11445 {
11446 bfd_vma branch_from_veneer;
11447 unsigned int insn;
11448
11449 /* Take size of veneer into account. */
11450 branch_from_veneer = errnode->u.v.branch->vma
11451 - errnode->vma - 12;
11452
11453 if ((signed) branch_from_veneer < -(1 << 25)
11454 || (signed) branch_from_veneer >= (1 << 25))
11455 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11456 "range"), output_bfd);
11457
11458 /* Original instruction. */
11459 insn = errnode->u.v.branch->u.b.vfp_insn;
11460 contents[endianflip ^ index] = insn & 0xff;
11461 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11462 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11463 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11464
11465 /* Branch back to insn after original insn. */
11466 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11467 contents[endianflip ^ (index + 4)] = insn & 0xff;
11468 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11469 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11470 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11471 }
11472 break;
11473
11474 default:
11475 abort ();
11476 }
11477 }
11478 }
11479
11480 if (mapcount == 0)
11481 return FALSE;
11482
11483 if (globals->byteswap_code)
11484 {
11485 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
11486
11487 ptr = map[0].vma;
11488 for (i = 0; i < mapcount; i++)
11489 {
11490 if (i == mapcount - 1)
11491 end = sec->size;
11492 else
11493 end = map[i + 1].vma;
11494
11495 switch (map[i].type)
11496 {
11497 case 'a':
11498 /* Byte swap code words. */
11499 while (ptr + 3 < end)
11500 {
11501 tmp = contents[ptr];
11502 contents[ptr] = contents[ptr + 3];
11503 contents[ptr + 3] = tmp;
11504 tmp = contents[ptr + 1];
11505 contents[ptr + 1] = contents[ptr + 2];
11506 contents[ptr + 2] = tmp;
11507 ptr += 4;
11508 }
11509 break;
11510
11511 case 't':
11512 /* Byte swap code halfwords. */
11513 while (ptr + 1 < end)
11514 {
11515 tmp = contents[ptr];
11516 contents[ptr] = contents[ptr + 1];
11517 contents[ptr + 1] = tmp;
11518 ptr += 2;
11519 }
11520 break;
11521
11522 case 'd':
11523 /* Leave data alone. */
11524 break;
11525 }
11526 ptr = end;
11527 }
11528 }
11529
11530 free (map);
11531 arm_data->mapcount = 0;
11532 arm_data->mapsize = 0;
11533 arm_data->map = NULL;
11534 unrecord_section_with_arm_elf_section_data (sec);
11535
11536 return FALSE;
11537 }
11538
11539 static void
11540 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
11541 asection * sec,
11542 void * ignore ATTRIBUTE_UNUSED)
11543 {
11544 unrecord_section_with_arm_elf_section_data (sec);
11545 }
11546
11547 static bfd_boolean
11548 elf32_arm_close_and_cleanup (bfd * abfd)
11549 {
11550 if (abfd->sections)
11551 bfd_map_over_sections (abfd,
11552 unrecord_section_via_map_over_sections,
11553 NULL);
11554
11555 return _bfd_elf_close_and_cleanup (abfd);
11556 }
11557
11558 static bfd_boolean
11559 elf32_arm_bfd_free_cached_info (bfd * abfd)
11560 {
11561 if (abfd->sections)
11562 bfd_map_over_sections (abfd,
11563 unrecord_section_via_map_over_sections,
11564 NULL);
11565
11566 return _bfd_free_cached_info (abfd);
11567 }
11568
11569 /* Display STT_ARM_TFUNC symbols as functions. */
11570
11571 static void
11572 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
11573 asymbol *asym)
11574 {
11575 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
11576
11577 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
11578 elfsym->symbol.flags |= BSF_FUNCTION;
11579 }
11580
11581
11582 /* Mangle thumb function symbols as we read them in. */
11583
11584 static bfd_boolean
11585 elf32_arm_swap_symbol_in (bfd * abfd,
11586 const void *psrc,
11587 const void *pshn,
11588 Elf_Internal_Sym *dst)
11589 {
11590 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
11591 return FALSE;
11592
11593 /* New EABI objects mark thumb function symbols by setting the low bit of
11594 the address. Turn these into STT_ARM_TFUNC. */
11595 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
11596 && (dst->st_value & 1))
11597 {
11598 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
11599 dst->st_value &= ~(bfd_vma) 1;
11600 }
11601 return TRUE;
11602 }
11603
11604
11605 /* Mangle thumb function symbols as we write them out. */
11606
11607 static void
11608 elf32_arm_swap_symbol_out (bfd *abfd,
11609 const Elf_Internal_Sym *src,
11610 void *cdst,
11611 void *shndx)
11612 {
11613 Elf_Internal_Sym newsym;
11614
11615 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11616 of the address set, as per the new EABI. We do this unconditionally
11617 because objcopy does not set the elf header flags until after
11618 it writes out the symbol table. */
11619 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
11620 {
11621 newsym = *src;
11622 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
11623 if (newsym.st_shndx != SHN_UNDEF)
11624 {
11625 /* Do this only for defined symbols. At link type, the static
11626 linker will simulate the work of dynamic linker of resolving
11627 symbols and will carry over the thumbness of found symbols to
11628 the output symbol table. It's not clear how it happens, but
11629 the thumbness of undefined symbols can well be different at
11630 runtime, and writing '1' for them will be confusing for users
11631 and possibly for dynamic linker itself.
11632 */
11633 newsym.st_value |= 1;
11634 }
11635
11636 src = &newsym;
11637 }
11638 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
11639 }
11640
11641 /* Add the PT_ARM_EXIDX program header. */
11642
11643 static bfd_boolean
11644 elf32_arm_modify_segment_map (bfd *abfd,
11645 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11646 {
11647 struct elf_segment_map *m;
11648 asection *sec;
11649
11650 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11651 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11652 {
11653 /* If there is already a PT_ARM_EXIDX header, then we do not
11654 want to add another one. This situation arises when running
11655 "strip"; the input binary already has the header. */
11656 m = elf_tdata (abfd)->segment_map;
11657 while (m && m->p_type != PT_ARM_EXIDX)
11658 m = m->next;
11659 if (!m)
11660 {
11661 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
11662 if (m == NULL)
11663 return FALSE;
11664 m->p_type = PT_ARM_EXIDX;
11665 m->count = 1;
11666 m->sections[0] = sec;
11667
11668 m->next = elf_tdata (abfd)->segment_map;
11669 elf_tdata (abfd)->segment_map = m;
11670 }
11671 }
11672
11673 return TRUE;
11674 }
11675
11676 /* We may add a PT_ARM_EXIDX program header. */
11677
11678 static int
11679 elf32_arm_additional_program_headers (bfd *abfd,
11680 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11681 {
11682 asection *sec;
11683
11684 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11685 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11686 return 1;
11687 else
11688 return 0;
11689 }
11690
11691 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11692
11693 static bfd_boolean
11694 elf32_arm_is_function_type (unsigned int type)
11695 {
11696 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
11697 }
11698
11699 /* We use this to override swap_symbol_in and swap_symbol_out. */
11700 const struct elf_size_info elf32_arm_size_info =
11701 {
11702 sizeof (Elf32_External_Ehdr),
11703 sizeof (Elf32_External_Phdr),
11704 sizeof (Elf32_External_Shdr),
11705 sizeof (Elf32_External_Rel),
11706 sizeof (Elf32_External_Rela),
11707 sizeof (Elf32_External_Sym),
11708 sizeof (Elf32_External_Dyn),
11709 sizeof (Elf_External_Note),
11710 4,
11711 1,
11712 32, 2,
11713 ELFCLASS32, EV_CURRENT,
11714 bfd_elf32_write_out_phdrs,
11715 bfd_elf32_write_shdrs_and_ehdr,
11716 bfd_elf32_checksum_contents,
11717 bfd_elf32_write_relocs,
11718 elf32_arm_swap_symbol_in,
11719 elf32_arm_swap_symbol_out,
11720 bfd_elf32_slurp_reloc_table,
11721 bfd_elf32_slurp_symbol_table,
11722 bfd_elf32_swap_dyn_in,
11723 bfd_elf32_swap_dyn_out,
11724 bfd_elf32_swap_reloc_in,
11725 bfd_elf32_swap_reloc_out,
11726 bfd_elf32_swap_reloca_in,
11727 bfd_elf32_swap_reloca_out
11728 };
11729
11730 #define ELF_ARCH bfd_arch_arm
11731 #define ELF_MACHINE_CODE EM_ARM
11732 #ifdef __QNXTARGET__
11733 #define ELF_MAXPAGESIZE 0x1000
11734 #else
11735 #define ELF_MAXPAGESIZE 0x8000
11736 #endif
11737 #define ELF_MINPAGESIZE 0x1000
11738 #define ELF_COMMONPAGESIZE 0x1000
11739
11740 #define bfd_elf32_mkobject elf32_arm_mkobject
11741
11742 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11743 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11744 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11745 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11746 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11747 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11748 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11749 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11750 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11751 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11752 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11753 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11754 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11755 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11756
11757 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11758 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11759 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11760 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11761 #define elf_backend_check_relocs elf32_arm_check_relocs
11762 #define elf_backend_relocate_section elf32_arm_relocate_section
11763 #define elf_backend_write_section elf32_arm_write_section
11764 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11765 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11766 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11767 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11768 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11769 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11770 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11771 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11772 #define elf_backend_object_p elf32_arm_object_p
11773 #define elf_backend_section_flags elf32_arm_section_flags
11774 #define elf_backend_fake_sections elf32_arm_fake_sections
11775 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11776 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11777 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11778 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11779 #define elf_backend_size_info elf32_arm_size_info
11780 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11781 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11782 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11783 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11784 #define elf_backend_is_function_type elf32_arm_is_function_type
11785
11786 #define elf_backend_can_refcount 1
11787 #define elf_backend_can_gc_sections 1
11788 #define elf_backend_plt_readonly 1
11789 #define elf_backend_want_got_plt 1
11790 #define elf_backend_want_plt_sym 0
11791 #define elf_backend_may_use_rel_p 1
11792 #define elf_backend_may_use_rela_p 0
11793 #define elf_backend_default_use_rela_p 0
11794
11795 #define elf_backend_got_header_size 12
11796
11797 #undef elf_backend_obj_attrs_vendor
11798 #define elf_backend_obj_attrs_vendor "aeabi"
11799 #undef elf_backend_obj_attrs_section
11800 #define elf_backend_obj_attrs_section ".ARM.attributes"
11801 #undef elf_backend_obj_attrs_arg_type
11802 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11803 #undef elf_backend_obj_attrs_section_type
11804 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11805
11806 #include "elf32-target.h"
11807
11808 /* VxWorks Targets. */
11809
11810 #undef TARGET_LITTLE_SYM
11811 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11812 #undef TARGET_LITTLE_NAME
11813 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11814 #undef TARGET_BIG_SYM
11815 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11816 #undef TARGET_BIG_NAME
11817 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11818
11819 /* Like elf32_arm_link_hash_table_create -- but overrides
11820 appropriately for VxWorks. */
11821
11822 static struct bfd_link_hash_table *
11823 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
11824 {
11825 struct bfd_link_hash_table *ret;
11826
11827 ret = elf32_arm_link_hash_table_create (abfd);
11828 if (ret)
11829 {
11830 struct elf32_arm_link_hash_table *htab
11831 = (struct elf32_arm_link_hash_table *) ret;
11832 htab->use_rel = 0;
11833 htab->vxworks_p = 1;
11834 }
11835 return ret;
11836 }
11837
11838 static void
11839 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
11840 {
11841 elf32_arm_final_write_processing (abfd, linker);
11842 elf_vxworks_final_write_processing (abfd, linker);
11843 }
11844
11845 #undef elf32_bed
11846 #define elf32_bed elf32_arm_vxworks_bed
11847
11848 #undef bfd_elf32_bfd_link_hash_table_create
11849 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
11850 #undef elf_backend_add_symbol_hook
11851 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
11852 #undef elf_backend_final_write_processing
11853 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
11854 #undef elf_backend_emit_relocs
11855 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
11856
11857 #undef elf_backend_may_use_rel_p
11858 #define elf_backend_may_use_rel_p 0
11859 #undef elf_backend_may_use_rela_p
11860 #define elf_backend_may_use_rela_p 1
11861 #undef elf_backend_default_use_rela_p
11862 #define elf_backend_default_use_rela_p 1
11863 #undef elf_backend_want_plt_sym
11864 #define elf_backend_want_plt_sym 1
11865 #undef ELF_MAXPAGESIZE
11866 #define ELF_MAXPAGESIZE 0x1000
11867
11868 #include "elf32-target.h"
11869
11870
11871 /* Symbian OS Targets. */
11872
11873 #undef TARGET_LITTLE_SYM
11874 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
11875 #undef TARGET_LITTLE_NAME
11876 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
11877 #undef TARGET_BIG_SYM
11878 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
11879 #undef TARGET_BIG_NAME
11880 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
11881
11882 /* Like elf32_arm_link_hash_table_create -- but overrides
11883 appropriately for Symbian OS. */
11884
11885 static struct bfd_link_hash_table *
11886 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
11887 {
11888 struct bfd_link_hash_table *ret;
11889
11890 ret = elf32_arm_link_hash_table_create (abfd);
11891 if (ret)
11892 {
11893 struct elf32_arm_link_hash_table *htab
11894 = (struct elf32_arm_link_hash_table *)ret;
11895 /* There is no PLT header for Symbian OS. */
11896 htab->plt_header_size = 0;
11897 /* The PLT entries are each one instruction and one word. */
11898 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
11899 htab->symbian_p = 1;
11900 /* Symbian uses armv5t or above, so use_blx is always true. */
11901 htab->use_blx = 1;
11902 htab->root.is_relocatable_executable = 1;
11903 }
11904 return ret;
11905 }
11906
11907 static const struct bfd_elf_special_section
11908 elf32_arm_symbian_special_sections[] =
11909 {
11910 /* In a BPABI executable, the dynamic linking sections do not go in
11911 the loadable read-only segment. The post-linker may wish to
11912 refer to these sections, but they are not part of the final
11913 program image. */
11914 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
11915 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
11916 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
11917 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
11918 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
11919 /* These sections do not need to be writable as the SymbianOS
11920 postlinker will arrange things so that no dynamic relocation is
11921 required. */
11922 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
11923 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
11924 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
11925 { NULL, 0, 0, 0, 0 }
11926 };
11927
11928 static void
11929 elf32_arm_symbian_begin_write_processing (bfd *abfd,
11930 struct bfd_link_info *link_info)
11931 {
11932 /* BPABI objects are never loaded directly by an OS kernel; they are
11933 processed by a postlinker first, into an OS-specific format. If
11934 the D_PAGED bit is set on the file, BFD will align segments on
11935 page boundaries, so that an OS can directly map the file. With
11936 BPABI objects, that just results in wasted space. In addition,
11937 because we clear the D_PAGED bit, map_sections_to_segments will
11938 recognize that the program headers should not be mapped into any
11939 loadable segment. */
11940 abfd->flags &= ~D_PAGED;
11941 elf32_arm_begin_write_processing (abfd, link_info);
11942 }
11943
11944 static bfd_boolean
11945 elf32_arm_symbian_modify_segment_map (bfd *abfd,
11946 struct bfd_link_info *info)
11947 {
11948 struct elf_segment_map *m;
11949 asection *dynsec;
11950
11951 /* BPABI shared libraries and executables should have a PT_DYNAMIC
11952 segment. However, because the .dynamic section is not marked
11953 with SEC_LOAD, the generic ELF code will not create such a
11954 segment. */
11955 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
11956 if (dynsec)
11957 {
11958 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11959 if (m->p_type == PT_DYNAMIC)
11960 break;
11961
11962 if (m == NULL)
11963 {
11964 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
11965 m->next = elf_tdata (abfd)->segment_map;
11966 elf_tdata (abfd)->segment_map = m;
11967 }
11968 }
11969
11970 /* Also call the generic arm routine. */
11971 return elf32_arm_modify_segment_map (abfd, info);
11972 }
11973
11974 /* Return address for Ith PLT stub in section PLT, for relocation REL
11975 or (bfd_vma) -1 if it should not be included. */
11976
11977 static bfd_vma
11978 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
11979 const arelent *rel ATTRIBUTE_UNUSED)
11980 {
11981 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
11982 }
11983
11984
11985 #undef elf32_bed
11986 #define elf32_bed elf32_arm_symbian_bed
11987
11988 /* The dynamic sections are not allocated on SymbianOS; the postlinker
11989 will process them and then discard them. */
11990 #undef ELF_DYNAMIC_SEC_FLAGS
11991 #define ELF_DYNAMIC_SEC_FLAGS \
11992 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
11993
11994 #undef elf_backend_add_symbol_hook
11995 #undef elf_backend_emit_relocs
11996
11997 #undef bfd_elf32_bfd_link_hash_table_create
11998 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
11999 #undef elf_backend_special_sections
12000 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12001 #undef elf_backend_begin_write_processing
12002 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12003 #undef elf_backend_final_write_processing
12004 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12005
12006 #undef elf_backend_modify_segment_map
12007 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12008
12009 /* There is no .got section for BPABI objects, and hence no header. */
12010 #undef elf_backend_got_header_size
12011 #define elf_backend_got_header_size 0
12012
12013 /* Similarly, there is no .got.plt section. */
12014 #undef elf_backend_want_got_plt
12015 #define elf_backend_want_got_plt 0
12016
12017 #undef elf_backend_plt_sym_val
12018 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12019
12020 #undef elf_backend_may_use_rel_p
12021 #define elf_backend_may_use_rel_p 1
12022 #undef elf_backend_may_use_rela_p
12023 #define elf_backend_may_use_rela_p 0
12024 #undef elf_backend_default_use_rela_p
12025 #define elf_backend_default_use_rela_p 0
12026 #undef elf_backend_want_plt_sym
12027 #define elf_backend_want_plt_sym 0
12028 #undef ELF_MAXPAGESIZE
12029 #define ELF_MAXPAGESIZE 0x8000
12030
12031 #include "elf32-target.h"
This page took 0.280027 seconds and 4 git commands to generate.