daily update
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation. */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* Unallocated. */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781
1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1785
1786 return NULL;
1787 }
1788
1789 static reloc_howto_type *
1790 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806 }
1807
1808 /* Support for core dump NOTE sections. */
1809
1810 static bfd_boolean
1811 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1812 {
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
1821 case 148: /* Linux/ARM 32-bit. */
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838 }
1839
1840 static bfd_boolean
1841 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 {
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1873
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
1877 typedef unsigned long int insn32;
1878 typedef unsigned short int insn16;
1879
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1903
1904 /* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
1908 #ifdef FOUR_WORD_PLT
1909
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1913 linker first. */
1914 static const bfd_vma elf32_arm_plt0_entry [] =
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922 /* Subsequent entries in a procedure linkage table look like
1923 this. */
1924 static const bfd_vma elf32_arm_plt_entry [] =
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932 #else
1933
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
1938 static const bfd_vma elf32_arm_plt0_entry [] =
1939 {
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1945 };
1946
1947 /* Subsequent entries in a procedure linkage table look like
1948 this. */
1949 static const bfd_vma elf32_arm_plt_entry [] =
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956 #endif
1957
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
1998 /* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
2000 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2001 {
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
2013 enum stub_insn_type
2014 {
2015 THUMB16_TYPE = 1,
2016 THUMB32_TYPE,
2017 ARM_TYPE,
2018 DATA_TYPE
2019 };
2020
2021 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2022 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2023 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2024 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2025 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2026
2027 typedef struct
2028 {
2029 bfd_vma data;
2030 enum stub_insn_type type;
2031 unsigned int r_type;
2032 int reloc_addend;
2033 } insn_sequence;
2034
2035 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2036 to reach the stub if necessary. */
2037 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2038 {
2039 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2040 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2041 };
2042
2043 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2044 available. */
2045 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2046 {
2047 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2048 ARM_INSN(0xe12fff1c), /* bx ip */
2049 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2050 };
2051
2052 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2053 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2054 {
2055 THUMB16_INSN(0xb401), /* push {r0} */
2056 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2057 THUMB16_INSN(0x4684), /* mov ip, r0 */
2058 THUMB16_INSN(0xbc01), /* pop {r0} */
2059 THUMB16_INSN(0x4760), /* bx ip */
2060 THUMB16_INSN(0xbf00), /* nop */
2061 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2062 };
2063
2064 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2065 allowed. */
2066 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2067 {
2068 THUMB16_INSN(0x4778), /* bx pc */
2069 THUMB16_INSN(0x46c0), /* nop */
2070 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2071 ARM_INSN(0xe12fff1c), /* bx ip */
2072 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2073 };
2074
2075 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2076 available. */
2077 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2078 {
2079 THUMB16_INSN(0x4778), /* bx pc */
2080 THUMB16_INSN(0x46c0), /* nop */
2081 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2082 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2083 };
2084
2085 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2086 one, when the destination is close enough. */
2087 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2088 {
2089 THUMB16_INSN(0x4778), /* bx pc */
2090 THUMB16_INSN(0x46c0), /* nop */
2091 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2092 };
2093
2094 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2095 blx to reach the stub if necessary. */
2096 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2097 {
2098 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2099 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2100 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2101 };
2102
2103 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2104 blx to reach the stub if necessary. We can not add into pc;
2105 it is not guaranteed to mode switch (different in ARMv6 and
2106 ARMv7). */
2107 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2108 {
2109 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2110 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2111 ARM_INSN(0xe12fff1c), /* bx ip */
2112 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2113 };
2114
2115 /* V4T ARM -> ARM long branch stub, PIC. */
2116 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2117 {
2118 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2119 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2120 ARM_INSN(0xe12fff1c), /* bx ip */
2121 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2122 };
2123
2124 /* V4T Thumb -> ARM long branch stub, PIC. */
2125 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2126 {
2127 THUMB16_INSN(0x4778), /* bx pc */
2128 THUMB16_INSN(0x46c0), /* nop */
2129 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2130 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2131 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2132 };
2133
2134 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2135 architectures. */
2136 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2137 {
2138 THUMB16_INSN(0xb401), /* push {r0} */
2139 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2140 THUMB16_INSN(0x46fc), /* mov ip, pc */
2141 THUMB16_INSN(0x4484), /* add ip, r0 */
2142 THUMB16_INSN(0xbc01), /* pop {r0} */
2143 THUMB16_INSN(0x4760), /* bx ip */
2144 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2145 };
2146
2147 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2148 allowed. */
2149 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2150 {
2151 THUMB16_INSN(0x4778), /* bx pc */
2152 THUMB16_INSN(0x46c0), /* nop */
2153 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2154 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2155 ARM_INSN(0xe12fff1c), /* bx ip */
2156 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2157 };
2158
2159 /* Section name for stubs is the associated section name plus this
2160 string. */
2161 #define STUB_SUFFIX ".stub"
2162
2163 enum elf32_arm_stub_type
2164 {
2165 arm_stub_none,
2166 arm_stub_long_branch_any_any,
2167 arm_stub_long_branch_v4t_arm_thumb,
2168 arm_stub_long_branch_thumb_only,
2169 arm_stub_long_branch_v4t_thumb_thumb,
2170 arm_stub_long_branch_v4t_thumb_arm,
2171 arm_stub_short_branch_v4t_thumb_arm,
2172 arm_stub_long_branch_any_arm_pic,
2173 arm_stub_long_branch_any_thumb_pic,
2174 arm_stub_long_branch_v4t_arm_thumb_pic,
2175 arm_stub_long_branch_v4t_thumb_arm_pic,
2176 arm_stub_long_branch_thumb_only_pic,
2177 arm_stub_long_branch_v4t_thumb_thumb_pic,
2178 };
2179
2180 struct elf32_arm_stub_hash_entry
2181 {
2182 /* Base hash table entry structure. */
2183 struct bfd_hash_entry root;
2184
2185 /* The stub section. */
2186 asection *stub_sec;
2187
2188 /* Offset within stub_sec of the beginning of this stub. */
2189 bfd_vma stub_offset;
2190
2191 /* Given the symbol's value and its section we can determine its final
2192 value when building the stubs (so the stub knows where to jump). */
2193 bfd_vma target_value;
2194 asection *target_section;
2195
2196 /* The stub type. */
2197 enum elf32_arm_stub_type stub_type;
2198 /* Its encoding size in bytes. */
2199 int stub_size;
2200 /* Its template. */
2201 const insn_sequence *stub_template;
2202 /* The size of the template (number of entries). */
2203 int stub_template_size;
2204
2205 /* The symbol table entry, if any, that this was derived from. */
2206 struct elf32_arm_link_hash_entry *h;
2207
2208 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2209 unsigned char st_type;
2210
2211 /* Where this stub is being called from, or, in the case of combined
2212 stub sections, the first input section in the group. */
2213 asection *id_sec;
2214
2215 /* The name for the local symbol at the start of this stub. The
2216 stub name in the hash table has to be unique; this does not, so
2217 it can be friendlier. */
2218 char *output_name;
2219 };
2220
2221 /* Used to build a map of a section. This is required for mixed-endian
2222 code/data. */
2223
2224 typedef struct elf32_elf_section_map
2225 {
2226 bfd_vma vma;
2227 char type;
2228 }
2229 elf32_arm_section_map;
2230
2231 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2232
2233 typedef enum
2234 {
2235 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2236 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2237 VFP11_ERRATUM_ARM_VENEER,
2238 VFP11_ERRATUM_THUMB_VENEER
2239 }
2240 elf32_vfp11_erratum_type;
2241
2242 typedef struct elf32_vfp11_erratum_list
2243 {
2244 struct elf32_vfp11_erratum_list *next;
2245 bfd_vma vma;
2246 union
2247 {
2248 struct
2249 {
2250 struct elf32_vfp11_erratum_list *veneer;
2251 unsigned int vfp_insn;
2252 } b;
2253 struct
2254 {
2255 struct elf32_vfp11_erratum_list *branch;
2256 unsigned int id;
2257 } v;
2258 } u;
2259 elf32_vfp11_erratum_type type;
2260 }
2261 elf32_vfp11_erratum_list;
2262
2263 typedef struct _arm_elf_section_data
2264 {
2265 struct bfd_elf_section_data elf;
2266 unsigned int mapcount;
2267 unsigned int mapsize;
2268 elf32_arm_section_map *map;
2269 unsigned int erratumcount;
2270 elf32_vfp11_erratum_list *erratumlist;
2271 }
2272 _arm_elf_section_data;
2273
2274 #define elf32_arm_section_data(sec) \
2275 ((_arm_elf_section_data *) elf_section_data (sec))
2276
2277 /* The size of the thread control block. */
2278 #define TCB_SIZE 8
2279
2280 struct elf_arm_obj_tdata
2281 {
2282 struct elf_obj_tdata root;
2283
2284 /* tls_type for each local got entry. */
2285 char *local_got_tls_type;
2286
2287 /* Zero to warn when linking objects with incompatible enum sizes. */
2288 int no_enum_size_warning;
2289
2290 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2291 int no_wchar_size_warning;
2292 };
2293
2294 #define elf_arm_tdata(bfd) \
2295 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2296
2297 #define elf32_arm_local_got_tls_type(bfd) \
2298 (elf_arm_tdata (bfd)->local_got_tls_type)
2299
2300 #define is_arm_elf(bfd) \
2301 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2302 && elf_tdata (bfd) != NULL \
2303 && elf_object_id (bfd) == ARM_ELF_TDATA)
2304
2305 static bfd_boolean
2306 elf32_arm_mkobject (bfd *abfd)
2307 {
2308 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2309 ARM_ELF_TDATA);
2310 }
2311
2312 /* The ARM linker needs to keep track of the number of relocs that it
2313 decides to copy in check_relocs for each symbol. This is so that
2314 it can discard PC relative relocs if it doesn't need them when
2315 linking with -Bsymbolic. We store the information in a field
2316 extending the regular ELF linker hash table. */
2317
2318 /* This structure keeps track of the number of relocs we have copied
2319 for a given symbol. */
2320 struct elf32_arm_relocs_copied
2321 {
2322 /* Next section. */
2323 struct elf32_arm_relocs_copied * next;
2324 /* A section in dynobj. */
2325 asection * section;
2326 /* Number of relocs copied in this section. */
2327 bfd_size_type count;
2328 /* Number of PC-relative relocs copied in this section. */
2329 bfd_size_type pc_count;
2330 };
2331
2332 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2333
2334 /* Arm ELF linker hash entry. */
2335 struct elf32_arm_link_hash_entry
2336 {
2337 struct elf_link_hash_entry root;
2338
2339 /* Number of PC relative relocs copied for this symbol. */
2340 struct elf32_arm_relocs_copied * relocs_copied;
2341
2342 /* We reference count Thumb references to a PLT entry separately,
2343 so that we can emit the Thumb trampoline only if needed. */
2344 bfd_signed_vma plt_thumb_refcount;
2345
2346 /* Some references from Thumb code may be eliminated by BL->BLX
2347 conversion, so record them separately. */
2348 bfd_signed_vma plt_maybe_thumb_refcount;
2349
2350 /* Since PLT entries have variable size if the Thumb prologue is
2351 used, we need to record the index into .got.plt instead of
2352 recomputing it from the PLT offset. */
2353 bfd_signed_vma plt_got_offset;
2354
2355 #define GOT_UNKNOWN 0
2356 #define GOT_NORMAL 1
2357 #define GOT_TLS_GD 2
2358 #define GOT_TLS_IE 4
2359 unsigned char tls_type;
2360
2361 /* The symbol marking the real symbol location for exported thumb
2362 symbols with Arm stubs. */
2363 struct elf_link_hash_entry *export_glue;
2364
2365 /* A pointer to the most recently used stub hash entry against this
2366 symbol. */
2367 struct elf32_arm_stub_hash_entry *stub_cache;
2368 };
2369
2370 /* Traverse an arm ELF linker hash table. */
2371 #define elf32_arm_link_hash_traverse(table, func, info) \
2372 (elf_link_hash_traverse \
2373 (&(table)->root, \
2374 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2375 (info)))
2376
2377 /* Get the ARM elf linker hash table from a link_info structure. */
2378 #define elf32_arm_hash_table(info) \
2379 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2380
2381 #define arm_stub_hash_lookup(table, string, create, copy) \
2382 ((struct elf32_arm_stub_hash_entry *) \
2383 bfd_hash_lookup ((table), (string), (create), (copy)))
2384
2385 /* ARM ELF linker hash table. */
2386 struct elf32_arm_link_hash_table
2387 {
2388 /* The main hash table. */
2389 struct elf_link_hash_table root;
2390
2391 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2392 bfd_size_type thumb_glue_size;
2393
2394 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2395 bfd_size_type arm_glue_size;
2396
2397 /* The size in bytes of section containing the ARMv4 BX veneers. */
2398 bfd_size_type bx_glue_size;
2399
2400 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2401 veneer has been populated. */
2402 bfd_vma bx_glue_offset[15];
2403
2404 /* The size in bytes of the section containing glue for VFP11 erratum
2405 veneers. */
2406 bfd_size_type vfp11_erratum_glue_size;
2407
2408 /* An arbitrary input BFD chosen to hold the glue sections. */
2409 bfd * bfd_of_glue_owner;
2410
2411 /* Nonzero to output a BE8 image. */
2412 int byteswap_code;
2413
2414 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2415 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2416 int target1_is_rel;
2417
2418 /* The relocation to use for R_ARM_TARGET2 relocations. */
2419 int target2_reloc;
2420
2421 /* 0 = Ignore R_ARM_V4BX.
2422 1 = Convert BX to MOV PC.
2423 2 = Generate v4 interworing stubs. */
2424 int fix_v4bx;
2425
2426 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2427 int use_blx;
2428
2429 /* What sort of code sequences we should look for which may trigger the
2430 VFP11 denorm erratum. */
2431 bfd_arm_vfp11_fix vfp11_fix;
2432
2433 /* Global counter for the number of fixes we have emitted. */
2434 int num_vfp11_fixes;
2435
2436 /* Nonzero to force PIC branch veneers. */
2437 int pic_veneer;
2438
2439 /* The number of bytes in the initial entry in the PLT. */
2440 bfd_size_type plt_header_size;
2441
2442 /* The number of bytes in the subsequent PLT etries. */
2443 bfd_size_type plt_entry_size;
2444
2445 /* True if the target system is VxWorks. */
2446 int vxworks_p;
2447
2448 /* True if the target system is Symbian OS. */
2449 int symbian_p;
2450
2451 /* True if the target uses REL relocations. */
2452 int use_rel;
2453
2454 /* Short-cuts to get to dynamic linker sections. */
2455 asection *sgot;
2456 asection *sgotplt;
2457 asection *srelgot;
2458 asection *splt;
2459 asection *srelplt;
2460 asection *sdynbss;
2461 asection *srelbss;
2462
2463 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2464 asection *srelplt2;
2465
2466 /* Data for R_ARM_TLS_LDM32 relocations. */
2467 union
2468 {
2469 bfd_signed_vma refcount;
2470 bfd_vma offset;
2471 } tls_ldm_got;
2472
2473 /* Small local sym to section mapping cache. */
2474 struct sym_sec_cache sym_sec;
2475
2476 /* For convenience in allocate_dynrelocs. */
2477 bfd * obfd;
2478
2479 /* The stub hash table. */
2480 struct bfd_hash_table stub_hash_table;
2481
2482 /* Linker stub bfd. */
2483 bfd *stub_bfd;
2484
2485 /* Linker call-backs. */
2486 asection * (*add_stub_section) (const char *, asection *);
2487 void (*layout_sections_again) (void);
2488
2489 /* Array to keep track of which stub sections have been created, and
2490 information on stub grouping. */
2491 struct map_stub
2492 {
2493 /* This is the section to which stubs in the group will be
2494 attached. */
2495 asection *link_sec;
2496 /* The stub section. */
2497 asection *stub_sec;
2498 } *stub_group;
2499
2500 /* Assorted information used by elf32_arm_size_stubs. */
2501 unsigned int bfd_count;
2502 int top_index;
2503 asection **input_list;
2504 };
2505
2506 /* Create an entry in an ARM ELF linker hash table. */
2507
2508 static struct bfd_hash_entry *
2509 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2510 struct bfd_hash_table * table,
2511 const char * string)
2512 {
2513 struct elf32_arm_link_hash_entry * ret =
2514 (struct elf32_arm_link_hash_entry *) entry;
2515
2516 /* Allocate the structure if it has not already been allocated by a
2517 subclass. */
2518 if (ret == NULL)
2519 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2520 if (ret == NULL)
2521 return (struct bfd_hash_entry *) ret;
2522
2523 /* Call the allocation method of the superclass. */
2524 ret = ((struct elf32_arm_link_hash_entry *)
2525 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2526 table, string));
2527 if (ret != NULL)
2528 {
2529 ret->relocs_copied = NULL;
2530 ret->tls_type = GOT_UNKNOWN;
2531 ret->plt_thumb_refcount = 0;
2532 ret->plt_maybe_thumb_refcount = 0;
2533 ret->plt_got_offset = -1;
2534 ret->export_glue = NULL;
2535
2536 ret->stub_cache = NULL;
2537 }
2538
2539 return (struct bfd_hash_entry *) ret;
2540 }
2541
2542 /* Initialize an entry in the stub hash table. */
2543
2544 static struct bfd_hash_entry *
2545 stub_hash_newfunc (struct bfd_hash_entry *entry,
2546 struct bfd_hash_table *table,
2547 const char *string)
2548 {
2549 /* Allocate the structure if it has not already been allocated by a
2550 subclass. */
2551 if (entry == NULL)
2552 {
2553 entry = bfd_hash_allocate (table,
2554 sizeof (struct elf32_arm_stub_hash_entry));
2555 if (entry == NULL)
2556 return entry;
2557 }
2558
2559 /* Call the allocation method of the superclass. */
2560 entry = bfd_hash_newfunc (entry, table, string);
2561 if (entry != NULL)
2562 {
2563 struct elf32_arm_stub_hash_entry *eh;
2564
2565 /* Initialize the local fields. */
2566 eh = (struct elf32_arm_stub_hash_entry *) entry;
2567 eh->stub_sec = NULL;
2568 eh->stub_offset = 0;
2569 eh->target_value = 0;
2570 eh->target_section = NULL;
2571 eh->stub_type = arm_stub_none;
2572 eh->stub_size = 0;
2573 eh->stub_template = NULL;
2574 eh->stub_template_size = 0;
2575 eh->h = NULL;
2576 eh->id_sec = NULL;
2577 }
2578
2579 return entry;
2580 }
2581
2582 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2583 shortcuts to them in our hash table. */
2584
2585 static bfd_boolean
2586 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2587 {
2588 struct elf32_arm_link_hash_table *htab;
2589
2590 htab = elf32_arm_hash_table (info);
2591 /* BPABI objects never have a GOT, or associated sections. */
2592 if (htab->symbian_p)
2593 return TRUE;
2594
2595 if (! _bfd_elf_create_got_section (dynobj, info))
2596 return FALSE;
2597
2598 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2599 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2600 if (!htab->sgot || !htab->sgotplt)
2601 abort ();
2602
2603 htab->srelgot = bfd_make_section_with_flags (dynobj,
2604 RELOC_SECTION (htab, ".got"),
2605 (SEC_ALLOC | SEC_LOAD
2606 | SEC_HAS_CONTENTS
2607 | SEC_IN_MEMORY
2608 | SEC_LINKER_CREATED
2609 | SEC_READONLY));
2610 if (htab->srelgot == NULL
2611 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2612 return FALSE;
2613 return TRUE;
2614 }
2615
2616 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2617 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2618 hash table. */
2619
2620 static bfd_boolean
2621 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2622 {
2623 struct elf32_arm_link_hash_table *htab;
2624
2625 htab = elf32_arm_hash_table (info);
2626 if (!htab->sgot && !create_got_section (dynobj, info))
2627 return FALSE;
2628
2629 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2630 return FALSE;
2631
2632 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2633 htab->srelplt = bfd_get_section_by_name (dynobj,
2634 RELOC_SECTION (htab, ".plt"));
2635 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2636 if (!info->shared)
2637 htab->srelbss = bfd_get_section_by_name (dynobj,
2638 RELOC_SECTION (htab, ".bss"));
2639
2640 if (htab->vxworks_p)
2641 {
2642 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2643 return FALSE;
2644
2645 if (info->shared)
2646 {
2647 htab->plt_header_size = 0;
2648 htab->plt_entry_size
2649 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2650 }
2651 else
2652 {
2653 htab->plt_header_size
2654 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2655 htab->plt_entry_size
2656 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2657 }
2658 }
2659
2660 if (!htab->splt
2661 || !htab->srelplt
2662 || !htab->sdynbss
2663 || (!info->shared && !htab->srelbss))
2664 abort ();
2665
2666 return TRUE;
2667 }
2668
2669 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2670
2671 static void
2672 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2673 struct elf_link_hash_entry *dir,
2674 struct elf_link_hash_entry *ind)
2675 {
2676 struct elf32_arm_link_hash_entry *edir, *eind;
2677
2678 edir = (struct elf32_arm_link_hash_entry *) dir;
2679 eind = (struct elf32_arm_link_hash_entry *) ind;
2680
2681 if (eind->relocs_copied != NULL)
2682 {
2683 if (edir->relocs_copied != NULL)
2684 {
2685 struct elf32_arm_relocs_copied **pp;
2686 struct elf32_arm_relocs_copied *p;
2687
2688 /* Add reloc counts against the indirect sym to the direct sym
2689 list. Merge any entries against the same section. */
2690 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2691 {
2692 struct elf32_arm_relocs_copied *q;
2693
2694 for (q = edir->relocs_copied; q != NULL; q = q->next)
2695 if (q->section == p->section)
2696 {
2697 q->pc_count += p->pc_count;
2698 q->count += p->count;
2699 *pp = p->next;
2700 break;
2701 }
2702 if (q == NULL)
2703 pp = &p->next;
2704 }
2705 *pp = edir->relocs_copied;
2706 }
2707
2708 edir->relocs_copied = eind->relocs_copied;
2709 eind->relocs_copied = NULL;
2710 }
2711
2712 if (ind->root.type == bfd_link_hash_indirect)
2713 {
2714 /* Copy over PLT info. */
2715 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2716 eind->plt_thumb_refcount = 0;
2717 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2718 eind->plt_maybe_thumb_refcount = 0;
2719
2720 if (dir->got.refcount <= 0)
2721 {
2722 edir->tls_type = eind->tls_type;
2723 eind->tls_type = GOT_UNKNOWN;
2724 }
2725 }
2726
2727 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2728 }
2729
2730 /* Create an ARM elf linker hash table. */
2731
2732 static struct bfd_link_hash_table *
2733 elf32_arm_link_hash_table_create (bfd *abfd)
2734 {
2735 struct elf32_arm_link_hash_table *ret;
2736 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2737
2738 ret = bfd_malloc (amt);
2739 if (ret == NULL)
2740 return NULL;
2741
2742 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2743 elf32_arm_link_hash_newfunc,
2744 sizeof (struct elf32_arm_link_hash_entry)))
2745 {
2746 free (ret);
2747 return NULL;
2748 }
2749
2750 ret->sgot = NULL;
2751 ret->sgotplt = NULL;
2752 ret->srelgot = NULL;
2753 ret->splt = NULL;
2754 ret->srelplt = NULL;
2755 ret->sdynbss = NULL;
2756 ret->srelbss = NULL;
2757 ret->srelplt2 = NULL;
2758 ret->thumb_glue_size = 0;
2759 ret->arm_glue_size = 0;
2760 ret->bx_glue_size = 0;
2761 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2762 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2763 ret->vfp11_erratum_glue_size = 0;
2764 ret->num_vfp11_fixes = 0;
2765 ret->bfd_of_glue_owner = NULL;
2766 ret->byteswap_code = 0;
2767 ret->target1_is_rel = 0;
2768 ret->target2_reloc = R_ARM_NONE;
2769 #ifdef FOUR_WORD_PLT
2770 ret->plt_header_size = 16;
2771 ret->plt_entry_size = 16;
2772 #else
2773 ret->plt_header_size = 20;
2774 ret->plt_entry_size = 12;
2775 #endif
2776 ret->fix_v4bx = 0;
2777 ret->use_blx = 0;
2778 ret->vxworks_p = 0;
2779 ret->symbian_p = 0;
2780 ret->use_rel = 1;
2781 ret->sym_sec.abfd = NULL;
2782 ret->obfd = abfd;
2783 ret->tls_ldm_got.refcount = 0;
2784 ret->stub_bfd = NULL;
2785 ret->add_stub_section = NULL;
2786 ret->layout_sections_again = NULL;
2787 ret->stub_group = NULL;
2788 ret->bfd_count = 0;
2789 ret->top_index = 0;
2790 ret->input_list = NULL;
2791
2792 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2793 sizeof (struct elf32_arm_stub_hash_entry)))
2794 {
2795 free (ret);
2796 return NULL;
2797 }
2798
2799 return &ret->root.root;
2800 }
2801
2802 /* Free the derived linker hash table. */
2803
2804 static void
2805 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2806 {
2807 struct elf32_arm_link_hash_table *ret
2808 = (struct elf32_arm_link_hash_table *) hash;
2809
2810 bfd_hash_table_free (&ret->stub_hash_table);
2811 _bfd_generic_link_hash_table_free (hash);
2812 }
2813
2814 /* Determine if we're dealing with a Thumb only architecture. */
2815
2816 static bfd_boolean
2817 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2818 {
2819 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2820 Tag_CPU_arch);
2821 int profile;
2822
2823 if (arch != TAG_CPU_ARCH_V7)
2824 return FALSE;
2825
2826 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2827 Tag_CPU_arch_profile);
2828
2829 return profile == 'M';
2830 }
2831
2832 /* Determine if we're dealing with a Thumb-2 object. */
2833
2834 static bfd_boolean
2835 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2836 {
2837 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2838 Tag_CPU_arch);
2839 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2840 }
2841
2842 static bfd_boolean
2843 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2844 {
2845 switch (stub_type)
2846 {
2847 case arm_stub_long_branch_thumb_only:
2848 case arm_stub_long_branch_v4t_thumb_arm:
2849 case arm_stub_short_branch_v4t_thumb_arm:
2850 case arm_stub_long_branch_v4t_thumb_arm_pic:
2851 case arm_stub_long_branch_thumb_only_pic:
2852 return TRUE;
2853 case arm_stub_none:
2854 BFD_FAIL ();
2855 return FALSE;
2856 break;
2857 default:
2858 return FALSE;
2859 }
2860 }
2861
2862 /* Determine the type of stub needed, if any, for a call. */
2863
2864 static enum elf32_arm_stub_type
2865 arm_type_of_stub (struct bfd_link_info *info,
2866 asection *input_sec,
2867 const Elf_Internal_Rela *rel,
2868 unsigned char st_type,
2869 struct elf32_arm_link_hash_entry *hash,
2870 bfd_vma destination,
2871 asection *sym_sec,
2872 bfd *input_bfd,
2873 const char *name)
2874 {
2875 bfd_vma location;
2876 bfd_signed_vma branch_offset;
2877 unsigned int r_type;
2878 struct elf32_arm_link_hash_table * globals;
2879 int thumb2;
2880 int thumb_only;
2881 enum elf32_arm_stub_type stub_type = arm_stub_none;
2882 int use_plt = 0;
2883
2884 /* We don't know the actual type of destination in case it is of
2885 type STT_SECTION: give up. */
2886 if (st_type == STT_SECTION)
2887 return stub_type;
2888
2889 globals = elf32_arm_hash_table (info);
2890
2891 thumb_only = using_thumb_only (globals);
2892
2893 thumb2 = using_thumb2 (globals);
2894
2895 /* Determine where the call point is. */
2896 location = (input_sec->output_offset
2897 + input_sec->output_section->vma
2898 + rel->r_offset);
2899
2900 branch_offset = (bfd_signed_vma)(destination - location);
2901
2902 r_type = ELF32_R_TYPE (rel->r_info);
2903
2904 /* Keep a simpler condition, for the sake of clarity. */
2905 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2906 {
2907 use_plt = 1;
2908 /* Note when dealing with PLT entries: the main PLT stub is in
2909 ARM mode, so if the branch is in Thumb mode, another
2910 Thumb->ARM stub will be inserted later just before the ARM
2911 PLT stub. We don't take this extra distance into account
2912 here, because if a long branch stub is needed, we'll add a
2913 Thumb->Arm one and branch directly to the ARM PLT entry
2914 because it avoids spreading offset corrections in several
2915 places. */
2916 }
2917
2918 if (r_type == R_ARM_THM_CALL)
2919 {
2920 /* Handle cases where:
2921 - this call goes too far (different Thumb/Thumb2 max
2922 distance)
2923 - it's a Thumb->Arm call and blx is not available. A stub is
2924 needed in this case, but only if this call is not through a
2925 PLT entry. Indeed, PLT stubs handle mode switching already.
2926 */
2927 if ((!thumb2
2928 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2929 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2930 || (thumb2
2931 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2932 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2933 || ((st_type != STT_ARM_TFUNC)
2934 && ((r_type == R_ARM_THM_CALL) && !globals->use_blx)
2935 && !use_plt))
2936 {
2937 if (st_type == STT_ARM_TFUNC)
2938 {
2939 /* Thumb to thumb. */
2940 if (!thumb_only)
2941 {
2942 stub_type = (info->shared | globals->pic_veneer)
2943 /* PIC stubs. */
2944 ? ((globals->use_blx)
2945 /* V5T and above. */
2946 ? arm_stub_long_branch_any_thumb_pic
2947 /* On V4T, use Thumb code only. */
2948 : arm_stub_long_branch_v4t_thumb_thumb_pic)
2949
2950 /* non-PIC stubs. */
2951 : ((globals->use_blx)
2952 /* V5T and above. */
2953 ? arm_stub_long_branch_any_any
2954 /* V4T. */
2955 : arm_stub_long_branch_v4t_thumb_thumb);
2956 }
2957 else
2958 {
2959 stub_type = (info->shared | globals->pic_veneer)
2960 /* PIC stub. */
2961 ? arm_stub_long_branch_thumb_only_pic
2962 /* non-PIC stub. */
2963 : arm_stub_long_branch_thumb_only;
2964 }
2965 }
2966 else
2967 {
2968 /* Thumb to arm. */
2969 if (sym_sec != NULL
2970 && sym_sec->owner != NULL
2971 && !INTERWORK_FLAG (sym_sec->owner))
2972 {
2973 (*_bfd_error_handler)
2974 (_("%B(%s): warning: interworking not enabled.\n"
2975 " first occurrence: %B: Thumb call to ARM"),
2976 sym_sec->owner, input_bfd, name);
2977 }
2978
2979 stub_type = (info->shared | globals->pic_veneer)
2980 /* PIC stubs. */
2981 ? ((globals->use_blx)
2982 /* V5T and above. */
2983 ? arm_stub_long_branch_any_arm_pic
2984 /* V4T PIC stub. */
2985 : arm_stub_long_branch_v4t_thumb_arm_pic)
2986
2987 /* non-PIC stubs. */
2988 : ((globals->use_blx)
2989 /* V5T and above. */
2990 ? arm_stub_long_branch_any_any
2991 /* V4T. */
2992 : arm_stub_long_branch_v4t_thumb_arm);
2993
2994 /* Handle v4t short branches. */
2995 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
2996 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2997 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2998 stub_type = arm_stub_short_branch_v4t_thumb_arm;
2999 }
3000 }
3001 }
3002 else if (r_type == R_ARM_CALL)
3003 {
3004 if (st_type == STT_ARM_TFUNC)
3005 {
3006 /* Arm to thumb. */
3007
3008 if (sym_sec != NULL
3009 && sym_sec->owner != NULL
3010 && !INTERWORK_FLAG (sym_sec->owner))
3011 {
3012 (*_bfd_error_handler)
3013 (_("%B(%s): warning: interworking not enabled.\n"
3014 " first occurrence: %B: ARM call to Thumb"),
3015 sym_sec->owner, input_bfd, name);
3016 }
3017
3018 /* We have an extra 2-bytes reach because of
3019 the mode change (bit 24 (H) of BLX encoding). */
3020 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3021 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3022 || !globals->use_blx)
3023 {
3024 stub_type = (info->shared | globals->pic_veneer)
3025 /* PIC stubs. */
3026 ? ((globals->use_blx)
3027 /* V5T and above. */
3028 ? arm_stub_long_branch_any_thumb_pic
3029 /* V4T stub. */
3030 : arm_stub_long_branch_v4t_arm_thumb_pic)
3031
3032 /* non-PIC stubs. */
3033 : ((globals->use_blx)
3034 /* V5T and above. */
3035 ? arm_stub_long_branch_any_any
3036 /* V4T. */
3037 : arm_stub_long_branch_v4t_arm_thumb);
3038 }
3039 }
3040 else
3041 {
3042 /* Arm to arm. */
3043 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3044 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3045 {
3046 stub_type = (info->shared | globals->pic_veneer)
3047 /* PIC stubs. */
3048 ? arm_stub_long_branch_any_arm_pic
3049 /* non-PIC stubs. */
3050 : arm_stub_long_branch_any_any;
3051 }
3052 }
3053 }
3054
3055 return stub_type;
3056 }
3057
3058 /* Build a name for an entry in the stub hash table. */
3059
3060 static char *
3061 elf32_arm_stub_name (const asection *input_section,
3062 const asection *sym_sec,
3063 const struct elf32_arm_link_hash_entry *hash,
3064 const Elf_Internal_Rela *rel)
3065 {
3066 char *stub_name;
3067 bfd_size_type len;
3068
3069 if (hash)
3070 {
3071 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
3072 stub_name = bfd_malloc (len);
3073 if (stub_name != NULL)
3074 sprintf (stub_name, "%08x_%s+%x",
3075 input_section->id & 0xffffffff,
3076 hash->root.root.root.string,
3077 (int) rel->r_addend & 0xffffffff);
3078 }
3079 else
3080 {
3081 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3082 stub_name = bfd_malloc (len);
3083 if (stub_name != NULL)
3084 sprintf (stub_name, "%08x_%x:%x+%x",
3085 input_section->id & 0xffffffff,
3086 sym_sec->id & 0xffffffff,
3087 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3088 (int) rel->r_addend & 0xffffffff);
3089 }
3090
3091 return stub_name;
3092 }
3093
3094 /* Look up an entry in the stub hash. Stub entries are cached because
3095 creating the stub name takes a bit of time. */
3096
3097 static struct elf32_arm_stub_hash_entry *
3098 elf32_arm_get_stub_entry (const asection *input_section,
3099 const asection *sym_sec,
3100 struct elf_link_hash_entry *hash,
3101 const Elf_Internal_Rela *rel,
3102 struct elf32_arm_link_hash_table *htab)
3103 {
3104 struct elf32_arm_stub_hash_entry *stub_entry;
3105 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3106 const asection *id_sec;
3107
3108 if ((input_section->flags & SEC_CODE) == 0)
3109 return NULL;
3110
3111 /* If this input section is part of a group of sections sharing one
3112 stub section, then use the id of the first section in the group.
3113 Stub names need to include a section id, as there may well be
3114 more than one stub used to reach say, printf, and we need to
3115 distinguish between them. */
3116 id_sec = htab->stub_group[input_section->id].link_sec;
3117
3118 if (h != NULL && h->stub_cache != NULL
3119 && h->stub_cache->h == h
3120 && h->stub_cache->id_sec == id_sec)
3121 {
3122 stub_entry = h->stub_cache;
3123 }
3124 else
3125 {
3126 char *stub_name;
3127
3128 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3129 if (stub_name == NULL)
3130 return NULL;
3131
3132 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3133 stub_name, FALSE, FALSE);
3134 if (h != NULL)
3135 h->stub_cache = stub_entry;
3136
3137 free (stub_name);
3138 }
3139
3140 return stub_entry;
3141 }
3142
3143 /* Add a new stub entry to the stub hash. Not all fields of the new
3144 stub entry are initialised. */
3145
3146 static struct elf32_arm_stub_hash_entry *
3147 elf32_arm_add_stub (const char *stub_name,
3148 asection *section,
3149 struct elf32_arm_link_hash_table *htab)
3150 {
3151 asection *link_sec;
3152 asection *stub_sec;
3153 struct elf32_arm_stub_hash_entry *stub_entry;
3154
3155 link_sec = htab->stub_group[section->id].link_sec;
3156 stub_sec = htab->stub_group[section->id].stub_sec;
3157 if (stub_sec == NULL)
3158 {
3159 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3160 if (stub_sec == NULL)
3161 {
3162 size_t namelen;
3163 bfd_size_type len;
3164 char *s_name;
3165
3166 namelen = strlen (link_sec->name);
3167 len = namelen + sizeof (STUB_SUFFIX);
3168 s_name = bfd_alloc (htab->stub_bfd, len);
3169 if (s_name == NULL)
3170 return NULL;
3171
3172 memcpy (s_name, link_sec->name, namelen);
3173 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3174 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3175 if (stub_sec == NULL)
3176 return NULL;
3177 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3178 }
3179 htab->stub_group[section->id].stub_sec = stub_sec;
3180 }
3181
3182 /* Enter this entry into the linker stub hash table. */
3183 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3184 TRUE, FALSE);
3185 if (stub_entry == NULL)
3186 {
3187 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3188 section->owner,
3189 stub_name);
3190 return NULL;
3191 }
3192
3193 stub_entry->stub_sec = stub_sec;
3194 stub_entry->stub_offset = 0;
3195 stub_entry->id_sec = link_sec;
3196
3197 return stub_entry;
3198 }
3199
3200 /* Store an Arm insn into an output section not processed by
3201 elf32_arm_write_section. */
3202
3203 static void
3204 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3205 bfd * output_bfd, bfd_vma val, void * ptr)
3206 {
3207 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3208 bfd_putl32 (val, ptr);
3209 else
3210 bfd_putb32 (val, ptr);
3211 }
3212
3213 /* Store a 16-bit Thumb insn into an output section not processed by
3214 elf32_arm_write_section. */
3215
3216 static void
3217 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3218 bfd * output_bfd, bfd_vma val, void * ptr)
3219 {
3220 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3221 bfd_putl16 (val, ptr);
3222 else
3223 bfd_putb16 (val, ptr);
3224 }
3225
3226 static bfd_boolean
3227 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3228 void * in_arg)
3229 {
3230 struct elf32_arm_stub_hash_entry *stub_entry;
3231 struct bfd_link_info *info;
3232 struct elf32_arm_link_hash_table *htab;
3233 asection *stub_sec;
3234 bfd *stub_bfd;
3235 bfd_vma stub_addr;
3236 bfd_byte *loc;
3237 bfd_vma sym_value;
3238 int template_size;
3239 int size;
3240 const insn_sequence *template;
3241 int i;
3242 struct elf32_arm_link_hash_table * globals;
3243 int stub_reloc_idx = -1;
3244 int stub_reloc_offset = 0;
3245
3246 /* Massage our args to the form they really have. */
3247 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3248 info = (struct bfd_link_info *) in_arg;
3249
3250 globals = elf32_arm_hash_table (info);
3251
3252 htab = elf32_arm_hash_table (info);
3253 stub_sec = stub_entry->stub_sec;
3254
3255 /* Make a note of the offset within the stubs for this entry. */
3256 stub_entry->stub_offset = stub_sec->size;
3257 loc = stub_sec->contents + stub_entry->stub_offset;
3258
3259 stub_bfd = stub_sec->owner;
3260
3261 /* This is the address of the start of the stub. */
3262 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3263 + stub_entry->stub_offset;
3264
3265 /* This is the address of the stub destination. */
3266 sym_value = (stub_entry->target_value
3267 + stub_entry->target_section->output_offset
3268 + stub_entry->target_section->output_section->vma);
3269
3270 template = stub_entry->stub_template;
3271 template_size = stub_entry->stub_template_size;
3272
3273 size = 0;
3274 for (i = 0; i < template_size; i++)
3275 {
3276 switch (template[i].type)
3277 {
3278 case THUMB16_TYPE:
3279 put_thumb_insn (globals, stub_bfd, template[i].data, loc + size);
3280 size += 2;
3281 break;
3282
3283 case ARM_TYPE:
3284 put_arm_insn (globals, stub_bfd, template[i].data, loc + size);
3285 /* Handle cases where the target is encoded within the
3286 instruction. */
3287 if (template[i].r_type == R_ARM_JUMP24)
3288 {
3289 stub_reloc_idx = i;
3290 stub_reloc_offset = size;
3291 }
3292 size += 4;
3293 break;
3294
3295 case DATA_TYPE:
3296 bfd_put_32 (stub_bfd, template[i].data, loc + size);
3297 stub_reloc_idx = i;
3298 stub_reloc_offset = size;
3299 size += 4;
3300 break;
3301
3302 default:
3303 BFD_FAIL ();
3304 return FALSE;
3305 }
3306 }
3307
3308 stub_sec->size += size;
3309
3310 /* Stub size has already been computed in arm_size_one_stub. Check
3311 consistency. */
3312 BFD_ASSERT (size == stub_entry->stub_size);
3313
3314 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3315 if (stub_entry->st_type == STT_ARM_TFUNC)
3316 sym_value |= 1;
3317
3318 /* Assume there is one and only one entry to relocate in each stub. */
3319 BFD_ASSERT (stub_reloc_idx != -1);
3320
3321 _bfd_final_link_relocate (elf32_arm_howto_from_type (template[stub_reloc_idx].r_type),
3322 stub_bfd, stub_sec, stub_sec->contents,
3323 stub_entry->stub_offset + stub_reloc_offset,
3324 sym_value, template[stub_reloc_idx].reloc_addend);
3325
3326 return TRUE;
3327 }
3328
3329 /* As above, but don't actually build the stub. Just bump offset so
3330 we know stub section sizes. */
3331
3332 static bfd_boolean
3333 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3334 void * in_arg)
3335 {
3336 struct elf32_arm_stub_hash_entry *stub_entry;
3337 struct elf32_arm_link_hash_table *htab;
3338 const insn_sequence *template;
3339 int template_size;
3340 int size;
3341 int i;
3342
3343 /* Massage our args to the form they really have. */
3344 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3345 htab = (struct elf32_arm_link_hash_table *) in_arg;
3346
3347 switch (stub_entry->stub_type)
3348 {
3349 case arm_stub_long_branch_any_any:
3350 template = elf32_arm_stub_long_branch_any_any;
3351 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_any);
3352 break;
3353 case arm_stub_long_branch_v4t_arm_thumb:
3354 template = elf32_arm_stub_long_branch_v4t_arm_thumb;
3355 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_arm_thumb);
3356 break;
3357 case arm_stub_long_branch_thumb_only:
3358 template = elf32_arm_stub_long_branch_thumb_only;
3359 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_thumb_only);
3360 break;
3361 case arm_stub_long_branch_v4t_thumb_thumb:
3362 template = elf32_arm_stub_long_branch_v4t_thumb_thumb;
3363 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_thumb);
3364 break;
3365 case arm_stub_long_branch_v4t_thumb_arm:
3366 template = elf32_arm_stub_long_branch_v4t_thumb_arm;
3367 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_arm);
3368 break;
3369 case arm_stub_short_branch_v4t_thumb_arm:
3370 template = elf32_arm_stub_short_branch_v4t_thumb_arm;
3371 template_size = ARRAY_SIZE (elf32_arm_stub_short_branch_v4t_thumb_arm);
3372 break;
3373 case arm_stub_long_branch_any_arm_pic:
3374 template = elf32_arm_stub_long_branch_any_arm_pic;
3375 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_arm_pic);
3376 break;
3377 case arm_stub_long_branch_any_thumb_pic:
3378 template = elf32_arm_stub_long_branch_any_thumb_pic;
3379 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_thumb_pic);
3380 break;
3381 case arm_stub_long_branch_v4t_arm_thumb_pic:
3382 template = elf32_arm_stub_long_branch_v4t_arm_thumb_pic;
3383 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_arm_thumb_pic);
3384 break;
3385 case arm_stub_long_branch_v4t_thumb_arm_pic:
3386 template = elf32_arm_stub_long_branch_v4t_thumb_arm_pic;
3387 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_arm_pic);
3388 break;
3389 case arm_stub_long_branch_thumb_only_pic:
3390 template = elf32_arm_stub_long_branch_thumb_only_pic;
3391 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_thumb_only_pic);
3392 break;
3393 case arm_stub_long_branch_v4t_thumb_thumb_pic:
3394 template = elf32_arm_stub_long_branch_v4t_thumb_thumb_pic;
3395 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_thumb_pic);
3396 break;
3397 default:
3398 BFD_FAIL ();
3399 return FALSE;
3400 }
3401
3402 size = 0;
3403 for (i = 0; i < template_size; i++)
3404 {
3405 switch (template[i].type)
3406 {
3407 case THUMB16_TYPE:
3408 size += 2;
3409 break;
3410
3411 case ARM_TYPE:
3412 size += 4;
3413 break;
3414
3415 case DATA_TYPE:
3416 size += 4;
3417 break;
3418
3419 default:
3420 BFD_FAIL ();
3421 return FALSE;
3422 }
3423 }
3424
3425 stub_entry->stub_size = size;
3426 stub_entry->stub_template = template;
3427 stub_entry->stub_template_size = template_size;
3428
3429 size = (size + 7) & ~7;
3430 stub_entry->stub_sec->size += size;
3431
3432 return TRUE;
3433 }
3434
3435 /* External entry points for sizing and building linker stubs. */
3436
3437 /* Set up various things so that we can make a list of input sections
3438 for each output section included in the link. Returns -1 on error,
3439 0 when no stubs will be needed, and 1 on success. */
3440
3441 int
3442 elf32_arm_setup_section_lists (bfd *output_bfd,
3443 struct bfd_link_info *info)
3444 {
3445 bfd *input_bfd;
3446 unsigned int bfd_count;
3447 int top_id, top_index;
3448 asection *section;
3449 asection **input_list, **list;
3450 bfd_size_type amt;
3451 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3452
3453 if (! is_elf_hash_table (htab))
3454 return 0;
3455
3456 /* Count the number of input BFDs and find the top input section id. */
3457 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3458 input_bfd != NULL;
3459 input_bfd = input_bfd->link_next)
3460 {
3461 bfd_count += 1;
3462 for (section = input_bfd->sections;
3463 section != NULL;
3464 section = section->next)
3465 {
3466 if (top_id < section->id)
3467 top_id = section->id;
3468 }
3469 }
3470 htab->bfd_count = bfd_count;
3471
3472 amt = sizeof (struct map_stub) * (top_id + 1);
3473 htab->stub_group = bfd_zmalloc (amt);
3474 if (htab->stub_group == NULL)
3475 return -1;
3476
3477 /* We can't use output_bfd->section_count here to find the top output
3478 section index as some sections may have been removed, and
3479 _bfd_strip_section_from_output doesn't renumber the indices. */
3480 for (section = output_bfd->sections, top_index = 0;
3481 section != NULL;
3482 section = section->next)
3483 {
3484 if (top_index < section->index)
3485 top_index = section->index;
3486 }
3487
3488 htab->top_index = top_index;
3489 amt = sizeof (asection *) * (top_index + 1);
3490 input_list = bfd_malloc (amt);
3491 htab->input_list = input_list;
3492 if (input_list == NULL)
3493 return -1;
3494
3495 /* For sections we aren't interested in, mark their entries with a
3496 value we can check later. */
3497 list = input_list + top_index;
3498 do
3499 *list = bfd_abs_section_ptr;
3500 while (list-- != input_list);
3501
3502 for (section = output_bfd->sections;
3503 section != NULL;
3504 section = section->next)
3505 {
3506 if ((section->flags & SEC_CODE) != 0)
3507 input_list[section->index] = NULL;
3508 }
3509
3510 return 1;
3511 }
3512
3513 /* The linker repeatedly calls this function for each input section,
3514 in the order that input sections are linked into output sections.
3515 Build lists of input sections to determine groupings between which
3516 we may insert linker stubs. */
3517
3518 void
3519 elf32_arm_next_input_section (struct bfd_link_info *info,
3520 asection *isec)
3521 {
3522 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3523
3524 if (isec->output_section->index <= htab->top_index)
3525 {
3526 asection **list = htab->input_list + isec->output_section->index;
3527
3528 if (*list != bfd_abs_section_ptr)
3529 {
3530 /* Steal the link_sec pointer for our list. */
3531 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3532 /* This happens to make the list in reverse order,
3533 which we reverse later. */
3534 PREV_SEC (isec) = *list;
3535 *list = isec;
3536 }
3537 }
3538 }
3539
3540 /* See whether we can group stub sections together. Grouping stub
3541 sections may result in fewer stubs. More importantly, we need to
3542 put all .init* and .fini* stubs at the end of the .init or
3543 .fini output sections respectively, because glibc splits the
3544 _init and _fini functions into multiple parts. Putting a stub in
3545 the middle of a function is not a good idea. */
3546
3547 static void
3548 group_sections (struct elf32_arm_link_hash_table *htab,
3549 bfd_size_type stub_group_size,
3550 bfd_boolean stubs_always_after_branch)
3551 {
3552 asection **list = htab->input_list;
3553
3554 do
3555 {
3556 asection *tail = *list;
3557 asection *head;
3558
3559 if (tail == bfd_abs_section_ptr)
3560 continue;
3561
3562 /* Reverse the list: we must avoid placing stubs at the
3563 beginning of the section because the beginning of the text
3564 section may be required for an interrupt vector in bare metal
3565 code. */
3566 #define NEXT_SEC PREV_SEC
3567 head = NULL;
3568 while (tail != NULL)
3569 {
3570 /* Pop from tail. */
3571 asection *item = tail;
3572 tail = PREV_SEC (item);
3573
3574 /* Push on head. */
3575 NEXT_SEC (item) = head;
3576 head = item;
3577 }
3578
3579 while (head != NULL)
3580 {
3581 asection *curr;
3582 asection *next;
3583 bfd_vma stub_group_start = head->output_offset;
3584 bfd_vma end_of_next;
3585
3586 curr = head;
3587 while (NEXT_SEC (curr) != NULL)
3588 {
3589 next = NEXT_SEC (curr);
3590 end_of_next = next->output_offset + next->size;
3591 if (end_of_next - stub_group_start >= stub_group_size)
3592 /* End of NEXT is too far from start, so stop. */
3593 break;
3594 /* Add NEXT to the group. */
3595 curr = next;
3596 }
3597
3598 /* OK, the size from the start to the start of CURR is less
3599 than stub_group_size and thus can be handled by one stub
3600 section. (Or the head section is itself larger than
3601 stub_group_size, in which case we may be toast.)
3602 We should really be keeping track of the total size of
3603 stubs added here, as stubs contribute to the final output
3604 section size. */
3605 do
3606 {
3607 next = NEXT_SEC (head);
3608 /* Set up this stub group. */
3609 htab->stub_group[head->id].link_sec = curr;
3610 }
3611 while (head != curr && (head = next) != NULL);
3612
3613 /* But wait, there's more! Input sections up to stub_group_size
3614 bytes after the stub section can be handled by it too. */
3615 if (!stubs_always_after_branch)
3616 {
3617 stub_group_start = curr->output_offset + curr->size;
3618
3619 while (next != NULL)
3620 {
3621 end_of_next = next->output_offset + next->size;
3622 if (end_of_next - stub_group_start >= stub_group_size)
3623 /* End of NEXT is too far from stubs, so stop. */
3624 break;
3625 /* Add NEXT to the stub group. */
3626 head = next;
3627 next = NEXT_SEC (head);
3628 htab->stub_group[head->id].link_sec = curr;
3629 }
3630 }
3631 head = next;
3632 }
3633 }
3634 while (list++ != htab->input_list + htab->top_index);
3635
3636 free (htab->input_list);
3637 #undef PREV_SEC
3638 #undef NEXT_SEC
3639 }
3640
3641 /* Determine and set the size of the stub section for a final link.
3642
3643 The basic idea here is to examine all the relocations looking for
3644 PC-relative calls to a target that is unreachable with a "bl"
3645 instruction. */
3646
3647 bfd_boolean
3648 elf32_arm_size_stubs (bfd *output_bfd,
3649 bfd *stub_bfd,
3650 struct bfd_link_info *info,
3651 bfd_signed_vma group_size,
3652 asection * (*add_stub_section) (const char *, asection *),
3653 void (*layout_sections_again) (void))
3654 {
3655 bfd_size_type stub_group_size;
3656 bfd_boolean stubs_always_after_branch;
3657 bfd_boolean stub_changed = 0;
3658 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3659
3660 /* Propagate mach to stub bfd, because it may not have been
3661 finalized when we created stub_bfd. */
3662 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3663 bfd_get_mach (output_bfd));
3664
3665 /* Stash our params away. */
3666 htab->stub_bfd = stub_bfd;
3667 htab->add_stub_section = add_stub_section;
3668 htab->layout_sections_again = layout_sections_again;
3669 stubs_always_after_branch = group_size < 0;
3670 if (group_size < 0)
3671 stub_group_size = -group_size;
3672 else
3673 stub_group_size = group_size;
3674
3675 if (stub_group_size == 1)
3676 {
3677 /* Default values. */
3678 /* Thumb branch range is +-4MB has to be used as the default
3679 maximum size (a given section can contain both ARM and Thumb
3680 code, so the worst case has to be taken into account).
3681
3682 This value is 24K less than that, which allows for 2025
3683 12-byte stubs. If we exceed that, then we will fail to link.
3684 The user will have to relink with an explicit group size
3685 option. */
3686 stub_group_size = 4170000;
3687 }
3688
3689 group_sections (htab, stub_group_size, stubs_always_after_branch);
3690
3691 while (1)
3692 {
3693 bfd *input_bfd;
3694 unsigned int bfd_indx;
3695 asection *stub_sec;
3696
3697 for (input_bfd = info->input_bfds, bfd_indx = 0;
3698 input_bfd != NULL;
3699 input_bfd = input_bfd->link_next, bfd_indx++)
3700 {
3701 Elf_Internal_Shdr *symtab_hdr;
3702 asection *section;
3703 Elf_Internal_Sym *local_syms = NULL;
3704
3705 /* We'll need the symbol table in a second. */
3706 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3707 if (symtab_hdr->sh_info == 0)
3708 continue;
3709
3710 /* Walk over each section attached to the input bfd. */
3711 for (section = input_bfd->sections;
3712 section != NULL;
3713 section = section->next)
3714 {
3715 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3716
3717 /* If there aren't any relocs, then there's nothing more
3718 to do. */
3719 if ((section->flags & SEC_RELOC) == 0
3720 || section->reloc_count == 0
3721 || (section->flags & SEC_CODE) == 0)
3722 continue;
3723
3724 /* If this section is a link-once section that will be
3725 discarded, then don't create any stubs. */
3726 if (section->output_section == NULL
3727 || section->output_section->owner != output_bfd)
3728 continue;
3729
3730 /* Get the relocs. */
3731 internal_relocs
3732 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3733 NULL, info->keep_memory);
3734 if (internal_relocs == NULL)
3735 goto error_ret_free_local;
3736
3737 /* Now examine each relocation. */
3738 irela = internal_relocs;
3739 irelaend = irela + section->reloc_count;
3740 for (; irela < irelaend; irela++)
3741 {
3742 unsigned int r_type, r_indx;
3743 enum elf32_arm_stub_type stub_type;
3744 struct elf32_arm_stub_hash_entry *stub_entry;
3745 asection *sym_sec;
3746 bfd_vma sym_value;
3747 bfd_vma destination;
3748 struct elf32_arm_link_hash_entry *hash;
3749 const char *sym_name;
3750 char *stub_name;
3751 const asection *id_sec;
3752 unsigned char st_type;
3753
3754 r_type = ELF32_R_TYPE (irela->r_info);
3755 r_indx = ELF32_R_SYM (irela->r_info);
3756
3757 if (r_type >= (unsigned int) R_ARM_max)
3758 {
3759 bfd_set_error (bfd_error_bad_value);
3760 error_ret_free_internal:
3761 if (elf_section_data (section)->relocs == NULL)
3762 free (internal_relocs);
3763 goto error_ret_free_local;
3764 }
3765
3766 /* Only look for stubs on call instructions. */
3767 if ((r_type != (unsigned int) R_ARM_CALL)
3768 && (r_type != (unsigned int) R_ARM_THM_CALL))
3769 continue;
3770
3771 /* Now determine the call target, its name, value,
3772 section. */
3773 sym_sec = NULL;
3774 sym_value = 0;
3775 destination = 0;
3776 hash = NULL;
3777 sym_name = NULL;
3778 if (r_indx < symtab_hdr->sh_info)
3779 {
3780 /* It's a local symbol. */
3781 Elf_Internal_Sym *sym;
3782 Elf_Internal_Shdr *hdr;
3783
3784 if (local_syms == NULL)
3785 {
3786 local_syms
3787 = (Elf_Internal_Sym *) symtab_hdr->contents;
3788 if (local_syms == NULL)
3789 local_syms
3790 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3791 symtab_hdr->sh_info, 0,
3792 NULL, NULL, NULL);
3793 if (local_syms == NULL)
3794 goto error_ret_free_internal;
3795 }
3796
3797 sym = local_syms + r_indx;
3798 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3799 sym_sec = hdr->bfd_section;
3800 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3801 sym_value = sym->st_value;
3802 destination = (sym_value + irela->r_addend
3803 + sym_sec->output_offset
3804 + sym_sec->output_section->vma);
3805 st_type = ELF_ST_TYPE (sym->st_info);
3806 sym_name
3807 = bfd_elf_string_from_elf_section (input_bfd,
3808 symtab_hdr->sh_link,
3809 sym->st_name);
3810 }
3811 else
3812 {
3813 /* It's an external symbol. */
3814 int e_indx;
3815
3816 e_indx = r_indx - symtab_hdr->sh_info;
3817 hash = ((struct elf32_arm_link_hash_entry *)
3818 elf_sym_hashes (input_bfd)[e_indx]);
3819
3820 while (hash->root.root.type == bfd_link_hash_indirect
3821 || hash->root.root.type == bfd_link_hash_warning)
3822 hash = ((struct elf32_arm_link_hash_entry *)
3823 hash->root.root.u.i.link);
3824
3825 if (hash->root.root.type == bfd_link_hash_defined
3826 || hash->root.root.type == bfd_link_hash_defweak)
3827 {
3828 sym_sec = hash->root.root.u.def.section;
3829 sym_value = hash->root.root.u.def.value;
3830 if (sym_sec->output_section != NULL)
3831 destination = (sym_value + irela->r_addend
3832 + sym_sec->output_offset
3833 + sym_sec->output_section->vma);
3834 }
3835 else if ((hash->root.root.type == bfd_link_hash_undefined)
3836 || (hash->root.root.type == bfd_link_hash_undefweak))
3837 {
3838 /* For a shared library, use the PLT stub as
3839 target address to decide whether a long
3840 branch stub is needed.
3841 For absolute code, they cannot be handled. */
3842 struct elf32_arm_link_hash_table *globals =
3843 elf32_arm_hash_table (info);
3844
3845 if (globals->splt != NULL && hash != NULL
3846 && hash->root.plt.offset != (bfd_vma) -1)
3847 {
3848 sym_sec = globals->splt;
3849 sym_value = hash->root.plt.offset;
3850 if (sym_sec->output_section != NULL)
3851 destination = (sym_value
3852 + sym_sec->output_offset
3853 + sym_sec->output_section->vma);
3854 }
3855 else
3856 continue;
3857 }
3858 else
3859 {
3860 bfd_set_error (bfd_error_bad_value);
3861 goto error_ret_free_internal;
3862 }
3863 st_type = ELF_ST_TYPE (hash->root.type);
3864 sym_name = hash->root.root.root.string;
3865 }
3866
3867 /* Determine what (if any) linker stub is needed. */
3868 stub_type = arm_type_of_stub (info, section, irela, st_type,
3869 hash, destination, sym_sec,
3870 input_bfd, sym_name);
3871 if (stub_type == arm_stub_none)
3872 continue;
3873
3874 /* Support for grouping stub sections. */
3875 id_sec = htab->stub_group[section->id].link_sec;
3876
3877 /* Get the name of this stub. */
3878 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3879 if (!stub_name)
3880 goto error_ret_free_internal;
3881
3882 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3883 stub_name,
3884 FALSE, FALSE);
3885 if (stub_entry != NULL)
3886 {
3887 /* The proper stub has already been created. */
3888 free (stub_name);
3889 continue;
3890 }
3891
3892 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3893 if (stub_entry == NULL)
3894 {
3895 free (stub_name);
3896 goto error_ret_free_internal;
3897 }
3898
3899 stub_entry->target_value = sym_value;
3900 stub_entry->target_section = sym_sec;
3901 stub_entry->stub_type = stub_type;
3902 stub_entry->h = hash;
3903 stub_entry->st_type = st_type;
3904
3905 if (sym_name == NULL)
3906 sym_name = "unnamed";
3907 stub_entry->output_name
3908 = bfd_alloc (htab->stub_bfd,
3909 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3910 + strlen (sym_name));
3911 if (stub_entry->output_name == NULL)
3912 {
3913 free (stub_name);
3914 goto error_ret_free_internal;
3915 }
3916
3917 /* For historical reasons, use the existing names for
3918 ARM-to-Thumb and Thumb-to-ARM stubs. */
3919 if (r_type == (unsigned int) R_ARM_THM_CALL
3920 && st_type != STT_ARM_TFUNC)
3921 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3922 sym_name);
3923 else if (r_type == (unsigned int) R_ARM_CALL
3924 && st_type == STT_ARM_TFUNC)
3925 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3926 sym_name);
3927 else
3928 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3929 sym_name);
3930
3931 stub_changed = TRUE;
3932 }
3933
3934 /* We're done with the internal relocs, free them. */
3935 if (elf_section_data (section)->relocs == NULL)
3936 free (internal_relocs);
3937 }
3938 }
3939
3940 if (!stub_changed)
3941 break;
3942
3943 /* OK, we've added some stubs. Find out the new size of the
3944 stub sections. */
3945 for (stub_sec = htab->stub_bfd->sections;
3946 stub_sec != NULL;
3947 stub_sec = stub_sec->next)
3948 stub_sec->size = 0;
3949
3950 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3951
3952 /* Ask the linker to do its stuff. */
3953 (*htab->layout_sections_again) ();
3954 stub_changed = FALSE;
3955 }
3956
3957 return TRUE;
3958
3959 error_ret_free_local:
3960 return FALSE;
3961 }
3962
3963 /* Build all the stubs associated with the current output file. The
3964 stubs are kept in a hash table attached to the main linker hash
3965 table. We also set up the .plt entries for statically linked PIC
3966 functions here. This function is called via arm_elf_finish in the
3967 linker. */
3968
3969 bfd_boolean
3970 elf32_arm_build_stubs (struct bfd_link_info *info)
3971 {
3972 asection *stub_sec;
3973 struct bfd_hash_table *table;
3974 struct elf32_arm_link_hash_table *htab;
3975
3976 htab = elf32_arm_hash_table (info);
3977
3978 for (stub_sec = htab->stub_bfd->sections;
3979 stub_sec != NULL;
3980 stub_sec = stub_sec->next)
3981 {
3982 bfd_size_type size;
3983
3984 /* Ignore non-stub sections. */
3985 if (!strstr (stub_sec->name, STUB_SUFFIX))
3986 continue;
3987
3988 /* Allocate memory to hold the linker stubs. */
3989 size = stub_sec->size;
3990 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3991 if (stub_sec->contents == NULL && size != 0)
3992 return FALSE;
3993 stub_sec->size = 0;
3994 }
3995
3996 /* Build the stubs as directed by the stub hash table. */
3997 table = &htab->stub_hash_table;
3998 bfd_hash_traverse (table, arm_build_one_stub, info);
3999
4000 return TRUE;
4001 }
4002
4003 /* Locate the Thumb encoded calling stub for NAME. */
4004
4005 static struct elf_link_hash_entry *
4006 find_thumb_glue (struct bfd_link_info *link_info,
4007 const char *name,
4008 char **error_message)
4009 {
4010 char *tmp_name;
4011 struct elf_link_hash_entry *hash;
4012 struct elf32_arm_link_hash_table *hash_table;
4013
4014 /* We need a pointer to the armelf specific hash table. */
4015 hash_table = elf32_arm_hash_table (link_info);
4016
4017 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4018 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4019
4020 BFD_ASSERT (tmp_name);
4021
4022 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4023
4024 hash = elf_link_hash_lookup
4025 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4026
4027 if (hash == NULL
4028 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4029 tmp_name, name) == -1)
4030 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4031
4032 free (tmp_name);
4033
4034 return hash;
4035 }
4036
4037 /* Locate the ARM encoded calling stub for NAME. */
4038
4039 static struct elf_link_hash_entry *
4040 find_arm_glue (struct bfd_link_info *link_info,
4041 const char *name,
4042 char **error_message)
4043 {
4044 char *tmp_name;
4045 struct elf_link_hash_entry *myh;
4046 struct elf32_arm_link_hash_table *hash_table;
4047
4048 /* We need a pointer to the elfarm specific hash table. */
4049 hash_table = elf32_arm_hash_table (link_info);
4050
4051 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4052 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4053
4054 BFD_ASSERT (tmp_name);
4055
4056 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4057
4058 myh = elf_link_hash_lookup
4059 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4060
4061 if (myh == NULL
4062 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4063 tmp_name, name) == -1)
4064 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4065
4066 free (tmp_name);
4067
4068 return myh;
4069 }
4070
4071 /* ARM->Thumb glue (static images):
4072
4073 .arm
4074 __func_from_arm:
4075 ldr r12, __func_addr
4076 bx r12
4077 __func_addr:
4078 .word func @ behave as if you saw a ARM_32 reloc.
4079
4080 (v5t static images)
4081 .arm
4082 __func_from_arm:
4083 ldr pc, __func_addr
4084 __func_addr:
4085 .word func @ behave as if you saw a ARM_32 reloc.
4086
4087 (relocatable images)
4088 .arm
4089 __func_from_arm:
4090 ldr r12, __func_offset
4091 add r12, r12, pc
4092 bx r12
4093 __func_offset:
4094 .word func - . */
4095
4096 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4097 static const insn32 a2t1_ldr_insn = 0xe59fc000;
4098 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4099 static const insn32 a2t3_func_addr_insn = 0x00000001;
4100
4101 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4102 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4103 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4104
4105 #define ARM2THUMB_PIC_GLUE_SIZE 16
4106 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4107 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4108 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4109
4110 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4111
4112 .thumb .thumb
4113 .align 2 .align 2
4114 __func_from_thumb: __func_from_thumb:
4115 bx pc push {r6, lr}
4116 nop ldr r6, __func_addr
4117 .arm mov lr, pc
4118 b func bx r6
4119 .arm
4120 ;; back_to_thumb
4121 ldmia r13! {r6, lr}
4122 bx lr
4123 __func_addr:
4124 .word func */
4125
4126 #define THUMB2ARM_GLUE_SIZE 8
4127 static const insn16 t2a1_bx_pc_insn = 0x4778;
4128 static const insn16 t2a2_noop_insn = 0x46c0;
4129 static const insn32 t2a3_b_insn = 0xea000000;
4130
4131 #define VFP11_ERRATUM_VENEER_SIZE 8
4132
4133 #define ARM_BX_VENEER_SIZE 12
4134 static const insn32 armbx1_tst_insn = 0xe3100001;
4135 static const insn32 armbx2_moveq_insn = 0x01a0f000;
4136 static const insn32 armbx3_bx_insn = 0xe12fff10;
4137
4138 #ifndef ELFARM_NABI_C_INCLUDED
4139 static void
4140 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
4141 {
4142 asection * s;
4143 bfd_byte * contents;
4144
4145 if (size == 0)
4146 return;
4147
4148 BFD_ASSERT (abfd != NULL);
4149
4150 s = bfd_get_section_by_name (abfd, name);
4151 BFD_ASSERT (s != NULL);
4152
4153 contents = bfd_alloc (abfd, size);
4154
4155 BFD_ASSERT (s->size == size);
4156 s->contents = contents;
4157 }
4158
4159 bfd_boolean
4160 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4161 {
4162 struct elf32_arm_link_hash_table * globals;
4163
4164 globals = elf32_arm_hash_table (info);
4165 BFD_ASSERT (globals != NULL);
4166
4167 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4168 globals->arm_glue_size,
4169 ARM2THUMB_GLUE_SECTION_NAME);
4170
4171 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4172 globals->thumb_glue_size,
4173 THUMB2ARM_GLUE_SECTION_NAME);
4174
4175 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4176 globals->vfp11_erratum_glue_size,
4177 VFP11_ERRATUM_VENEER_SECTION_NAME);
4178
4179 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4180 globals->bx_glue_size,
4181 ARM_BX_GLUE_SECTION_NAME);
4182
4183 return TRUE;
4184 }
4185
4186 /* Allocate space and symbols for calling a Thumb function from Arm mode.
4187 returns the symbol identifying the stub. */
4188
4189 static struct elf_link_hash_entry *
4190 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4191 struct elf_link_hash_entry * h)
4192 {
4193 const char * name = h->root.root.string;
4194 asection * s;
4195 char * tmp_name;
4196 struct elf_link_hash_entry * myh;
4197 struct bfd_link_hash_entry * bh;
4198 struct elf32_arm_link_hash_table * globals;
4199 bfd_vma val;
4200 bfd_size_type size;
4201
4202 globals = elf32_arm_hash_table (link_info);
4203
4204 BFD_ASSERT (globals != NULL);
4205 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4206
4207 s = bfd_get_section_by_name
4208 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4209
4210 BFD_ASSERT (s != NULL);
4211
4212 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4213
4214 BFD_ASSERT (tmp_name);
4215
4216 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4217
4218 myh = elf_link_hash_lookup
4219 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4220
4221 if (myh != NULL)
4222 {
4223 /* We've already seen this guy. */
4224 free (tmp_name);
4225 return myh;
4226 }
4227
4228 /* The only trick here is using hash_table->arm_glue_size as the value.
4229 Even though the section isn't allocated yet, this is where we will be
4230 putting it. The +1 on the value marks that the stub has not been
4231 output yet - not that it is a Thumb function. */
4232 bh = NULL;
4233 val = globals->arm_glue_size + 1;
4234 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4235 tmp_name, BSF_GLOBAL, s, val,
4236 NULL, TRUE, FALSE, &bh);
4237
4238 myh = (struct elf_link_hash_entry *) bh;
4239 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4240 myh->forced_local = 1;
4241
4242 free (tmp_name);
4243
4244 if (link_info->shared || globals->root.is_relocatable_executable
4245 || globals->pic_veneer)
4246 size = ARM2THUMB_PIC_GLUE_SIZE;
4247 else if (globals->use_blx)
4248 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4249 else
4250 size = ARM2THUMB_STATIC_GLUE_SIZE;
4251
4252 s->size += size;
4253 globals->arm_glue_size += size;
4254
4255 return myh;
4256 }
4257
4258 static void
4259 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4260 struct elf_link_hash_entry *h)
4261 {
4262 const char *name = h->root.root.string;
4263 asection *s;
4264 char *tmp_name;
4265 struct elf_link_hash_entry *myh;
4266 struct bfd_link_hash_entry *bh;
4267 struct elf32_arm_link_hash_table *hash_table;
4268 bfd_vma val;
4269
4270 hash_table = elf32_arm_hash_table (link_info);
4271
4272 BFD_ASSERT (hash_table != NULL);
4273 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4274
4275 s = bfd_get_section_by_name
4276 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4277
4278 BFD_ASSERT (s != NULL);
4279
4280 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4281 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4282
4283 BFD_ASSERT (tmp_name);
4284
4285 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4286
4287 myh = elf_link_hash_lookup
4288 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4289
4290 if (myh != NULL)
4291 {
4292 /* We've already seen this guy. */
4293 free (tmp_name);
4294 return;
4295 }
4296
4297 /* The only trick here is using hash_table->thumb_glue_size as the value.
4298 Even though the section isn't allocated yet, this is where we will be
4299 putting it. The +1 on the value marks that the stub has not been
4300 output yet - not that it is a Thumb function. */
4301 bh = NULL;
4302 val = hash_table->thumb_glue_size + 1;
4303 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4304 tmp_name, BSF_GLOBAL, s, val,
4305 NULL, TRUE, FALSE, &bh);
4306
4307 /* If we mark it 'Thumb', the disassembler will do a better job. */
4308 myh = (struct elf_link_hash_entry *) bh;
4309 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4310 myh->forced_local = 1;
4311
4312 free (tmp_name);
4313
4314 #define CHANGE_TO_ARM "__%s_change_to_arm"
4315 #define BACK_FROM_ARM "__%s_back_from_arm"
4316
4317 /* Allocate another symbol to mark where we switch to Arm mode. */
4318 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4319 + strlen (CHANGE_TO_ARM) + 1);
4320
4321 BFD_ASSERT (tmp_name);
4322
4323 sprintf (tmp_name, CHANGE_TO_ARM, name);
4324
4325 bh = NULL;
4326 val = hash_table->thumb_glue_size + 4,
4327 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4328 tmp_name, BSF_LOCAL, s, val,
4329 NULL, TRUE, FALSE, &bh);
4330
4331 free (tmp_name);
4332
4333 s->size += THUMB2ARM_GLUE_SIZE;
4334 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4335 }
4336
4337
4338 /* Allocate space for ARMv4 BX veneers. */
4339
4340 static void
4341 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4342 {
4343 asection * s;
4344 struct elf32_arm_link_hash_table *globals;
4345 char *tmp_name;
4346 struct elf_link_hash_entry *myh;
4347 struct bfd_link_hash_entry *bh;
4348 bfd_vma val;
4349
4350 /* BX PC does not need a veneer. */
4351 if (reg == 15)
4352 return;
4353
4354 globals = elf32_arm_hash_table (link_info);
4355
4356 BFD_ASSERT (globals != NULL);
4357 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4358
4359 /* Check if this veneer has already been allocated. */
4360 if (globals->bx_glue_offset[reg])
4361 return;
4362
4363 s = bfd_get_section_by_name
4364 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4365
4366 BFD_ASSERT (s != NULL);
4367
4368 /* Add symbol for veneer. */
4369 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4370
4371 BFD_ASSERT (tmp_name);
4372
4373 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4374
4375 myh = elf_link_hash_lookup
4376 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4377
4378 BFD_ASSERT (myh == NULL);
4379
4380 bh = NULL;
4381 val = globals->bx_glue_size;
4382 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4383 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4384 NULL, TRUE, FALSE, &bh);
4385
4386 myh = (struct elf_link_hash_entry *) bh;
4387 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4388 myh->forced_local = 1;
4389
4390 s->size += ARM_BX_VENEER_SIZE;
4391 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4392 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4393 }
4394
4395
4396 /* Add an entry to the code/data map for section SEC. */
4397
4398 static void
4399 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4400 {
4401 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4402 unsigned int newidx;
4403
4404 if (sec_data->map == NULL)
4405 {
4406 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4407 sec_data->mapcount = 0;
4408 sec_data->mapsize = 1;
4409 }
4410
4411 newidx = sec_data->mapcount++;
4412
4413 if (sec_data->mapcount > sec_data->mapsize)
4414 {
4415 sec_data->mapsize *= 2;
4416 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4417 * sizeof (elf32_arm_section_map));
4418 }
4419
4420 if (sec_data->map)
4421 {
4422 sec_data->map[newidx].vma = vma;
4423 sec_data->map[newidx].type = type;
4424 }
4425 }
4426
4427
4428 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4429 veneers are handled for now. */
4430
4431 static bfd_vma
4432 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4433 elf32_vfp11_erratum_list *branch,
4434 bfd *branch_bfd,
4435 asection *branch_sec,
4436 unsigned int offset)
4437 {
4438 asection *s;
4439 struct elf32_arm_link_hash_table *hash_table;
4440 char *tmp_name;
4441 struct elf_link_hash_entry *myh;
4442 struct bfd_link_hash_entry *bh;
4443 bfd_vma val;
4444 struct _arm_elf_section_data *sec_data;
4445 int errcount;
4446 elf32_vfp11_erratum_list *newerr;
4447
4448 hash_table = elf32_arm_hash_table (link_info);
4449
4450 BFD_ASSERT (hash_table != NULL);
4451 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4452
4453 s = bfd_get_section_by_name
4454 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4455
4456 sec_data = elf32_arm_section_data (s);
4457
4458 BFD_ASSERT (s != NULL);
4459
4460 tmp_name = bfd_malloc ((bfd_size_type) strlen
4461 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4462
4463 BFD_ASSERT (tmp_name);
4464
4465 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4466 hash_table->num_vfp11_fixes);
4467
4468 myh = elf_link_hash_lookup
4469 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4470
4471 BFD_ASSERT (myh == NULL);
4472
4473 bh = NULL;
4474 val = hash_table->vfp11_erratum_glue_size;
4475 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4476 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4477 NULL, TRUE, FALSE, &bh);
4478
4479 myh = (struct elf_link_hash_entry *) bh;
4480 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4481 myh->forced_local = 1;
4482
4483 /* Link veneer back to calling location. */
4484 errcount = ++(sec_data->erratumcount);
4485 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4486
4487 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4488 newerr->vma = -1;
4489 newerr->u.v.branch = branch;
4490 newerr->u.v.id = hash_table->num_vfp11_fixes;
4491 branch->u.b.veneer = newerr;
4492
4493 newerr->next = sec_data->erratumlist;
4494 sec_data->erratumlist = newerr;
4495
4496 /* A symbol for the return from the veneer. */
4497 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4498 hash_table->num_vfp11_fixes);
4499
4500 myh = elf_link_hash_lookup
4501 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4502
4503 if (myh != NULL)
4504 abort ();
4505
4506 bh = NULL;
4507 val = offset + 4;
4508 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4509 branch_sec, val, NULL, TRUE, FALSE, &bh);
4510
4511 myh = (struct elf_link_hash_entry *) bh;
4512 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4513 myh->forced_local = 1;
4514
4515 free (tmp_name);
4516
4517 /* Generate a mapping symbol for the veneer section, and explicitly add an
4518 entry for that symbol to the code/data map for the section. */
4519 if (hash_table->vfp11_erratum_glue_size == 0)
4520 {
4521 bh = NULL;
4522 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4523 ever requires this erratum fix. */
4524 _bfd_generic_link_add_one_symbol (link_info,
4525 hash_table->bfd_of_glue_owner, "$a",
4526 BSF_LOCAL, s, 0, NULL,
4527 TRUE, FALSE, &bh);
4528
4529 myh = (struct elf_link_hash_entry *) bh;
4530 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4531 myh->forced_local = 1;
4532
4533 /* The elf32_arm_init_maps function only cares about symbols from input
4534 BFDs. We must make a note of this generated mapping symbol
4535 ourselves so that code byteswapping works properly in
4536 elf32_arm_write_section. */
4537 elf32_arm_section_map_add (s, 'a', 0);
4538 }
4539
4540 s->size += VFP11_ERRATUM_VENEER_SIZE;
4541 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4542 hash_table->num_vfp11_fixes++;
4543
4544 /* The offset of the veneer. */
4545 return val;
4546 }
4547
4548 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4549 would prevent elf_link_input_bfd() from processing the contents
4550 of the section. */
4551 #define ARM_GLUE_SECTION_FLAGS \
4552 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4553
4554 /* Create a fake section for use by the ARM backend of the linker. */
4555
4556 static bfd_boolean
4557 arm_make_glue_section (bfd * abfd, const char * name)
4558 {
4559 asection * sec;
4560
4561 sec = bfd_get_section_by_name (abfd, name);
4562 if (sec != NULL)
4563 /* Already made. */
4564 return TRUE;
4565
4566 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4567
4568 if (sec == NULL
4569 || !bfd_set_section_alignment (abfd, sec, 2))
4570 return FALSE;
4571
4572 /* Set the gc mark to prevent the section from being removed by garbage
4573 collection, despite the fact that no relocs refer to this section. */
4574 sec->gc_mark = 1;
4575
4576 return TRUE;
4577 }
4578
4579 /* Add the glue sections to ABFD. This function is called from the
4580 linker scripts in ld/emultempl/{armelf}.em. */
4581
4582 bfd_boolean
4583 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4584 struct bfd_link_info *info)
4585 {
4586 /* If we are only performing a partial
4587 link do not bother adding the glue. */
4588 if (info->relocatable)
4589 return TRUE;
4590
4591 /* Linker stubs don't need glue. */
4592 if (!strcmp (abfd->filename, "linker stubs"))
4593 return TRUE;
4594
4595 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4596 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4597 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4598 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
4599 }
4600
4601 /* Select a BFD to be used to hold the sections used by the glue code.
4602 This function is called from the linker scripts in ld/emultempl/
4603 {armelf/pe}.em. */
4604
4605 bfd_boolean
4606 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4607 {
4608 struct elf32_arm_link_hash_table *globals;
4609
4610 /* If we are only performing a partial link
4611 do not bother getting a bfd to hold the glue. */
4612 if (info->relocatable)
4613 return TRUE;
4614
4615 /* Make sure we don't attach the glue sections to a dynamic object. */
4616 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4617
4618 globals = elf32_arm_hash_table (info);
4619
4620 BFD_ASSERT (globals != NULL);
4621
4622 if (globals->bfd_of_glue_owner != NULL)
4623 return TRUE;
4624
4625 /* Save the bfd for later use. */
4626 globals->bfd_of_glue_owner = abfd;
4627
4628 return TRUE;
4629 }
4630
4631 static void
4632 check_use_blx (struct elf32_arm_link_hash_table *globals)
4633 {
4634 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4635 Tag_CPU_arch) > 2)
4636 globals->use_blx = 1;
4637 }
4638
4639 bfd_boolean
4640 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4641 struct bfd_link_info *link_info)
4642 {
4643 Elf_Internal_Shdr *symtab_hdr;
4644 Elf_Internal_Rela *internal_relocs = NULL;
4645 Elf_Internal_Rela *irel, *irelend;
4646 bfd_byte *contents = NULL;
4647
4648 asection *sec;
4649 struct elf32_arm_link_hash_table *globals;
4650
4651 /* If we are only performing a partial link do not bother
4652 to construct any glue. */
4653 if (link_info->relocatable)
4654 return TRUE;
4655
4656 /* Here we have a bfd that is to be included on the link. We have a
4657 hook to do reloc rummaging, before section sizes are nailed down. */
4658 globals = elf32_arm_hash_table (link_info);
4659
4660 BFD_ASSERT (globals != NULL);
4661
4662 check_use_blx (globals);
4663
4664 if (globals->byteswap_code && !bfd_big_endian (abfd))
4665 {
4666 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4667 abfd);
4668 return FALSE;
4669 }
4670
4671 /* PR 5398: If we have not decided to include any loadable sections in
4672 the output then we will not have a glue owner bfd. This is OK, it
4673 just means that there is nothing else for us to do here. */
4674 if (globals->bfd_of_glue_owner == NULL)
4675 return TRUE;
4676
4677 /* Rummage around all the relocs and map the glue vectors. */
4678 sec = abfd->sections;
4679
4680 if (sec == NULL)
4681 return TRUE;
4682
4683 for (; sec != NULL; sec = sec->next)
4684 {
4685 if (sec->reloc_count == 0)
4686 continue;
4687
4688 if ((sec->flags & SEC_EXCLUDE) != 0)
4689 continue;
4690
4691 symtab_hdr = & elf_symtab_hdr (abfd);
4692
4693 /* Load the relocs. */
4694 internal_relocs
4695 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4696
4697 if (internal_relocs == NULL)
4698 goto error_return;
4699
4700 irelend = internal_relocs + sec->reloc_count;
4701 for (irel = internal_relocs; irel < irelend; irel++)
4702 {
4703 long r_type;
4704 unsigned long r_index;
4705
4706 struct elf_link_hash_entry *h;
4707
4708 r_type = ELF32_R_TYPE (irel->r_info);
4709 r_index = ELF32_R_SYM (irel->r_info);
4710
4711 /* These are the only relocation types we care about. */
4712 if ( r_type != R_ARM_PC24
4713 && r_type != R_ARM_PLT32
4714 && r_type != R_ARM_JUMP24
4715 && r_type != R_ARM_THM_JUMP24
4716 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4717 continue;
4718
4719 /* Get the section contents if we haven't done so already. */
4720 if (contents == NULL)
4721 {
4722 /* Get cached copy if it exists. */
4723 if (elf_section_data (sec)->this_hdr.contents != NULL)
4724 contents = elf_section_data (sec)->this_hdr.contents;
4725 else
4726 {
4727 /* Go get them off disk. */
4728 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4729 goto error_return;
4730 }
4731 }
4732
4733 if (r_type == R_ARM_V4BX)
4734 {
4735 int reg;
4736
4737 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4738 record_arm_bx_glue (link_info, reg);
4739 continue;
4740 }
4741
4742 /* If the relocation is not against a symbol it cannot concern us. */
4743 h = NULL;
4744
4745 /* We don't care about local symbols. */
4746 if (r_index < symtab_hdr->sh_info)
4747 continue;
4748
4749 /* This is an external symbol. */
4750 r_index -= symtab_hdr->sh_info;
4751 h = (struct elf_link_hash_entry *)
4752 elf_sym_hashes (abfd)[r_index];
4753
4754 /* If the relocation is against a static symbol it must be within
4755 the current section and so cannot be a cross ARM/Thumb relocation. */
4756 if (h == NULL)
4757 continue;
4758
4759 /* If the call will go through a PLT entry then we do not need
4760 glue. */
4761 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4762 continue;
4763
4764 switch (r_type)
4765 {
4766 case R_ARM_PC24:
4767 case R_ARM_PLT32:
4768 case R_ARM_JUMP24:
4769 /* This one is a call from arm code. We need to look up
4770 the target of the call. If it is a thumb target, we
4771 insert glue. */
4772 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
4773 record_arm_to_thumb_glue (link_info, h);
4774 break;
4775
4776 case R_ARM_THM_JUMP24:
4777 /* This one is a call from thumb code. We look
4778 up the target of the call. If it is not a thumb
4779 target, we insert glue. */
4780 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4781 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4782 && h->root.type != bfd_link_hash_undefweak)
4783 record_thumb_to_arm_glue (link_info, h);
4784 break;
4785
4786 default:
4787 abort ();
4788 }
4789 }
4790
4791 if (contents != NULL
4792 && elf_section_data (sec)->this_hdr.contents != contents)
4793 free (contents);
4794 contents = NULL;
4795
4796 if (internal_relocs != NULL
4797 && elf_section_data (sec)->relocs != internal_relocs)
4798 free (internal_relocs);
4799 internal_relocs = NULL;
4800 }
4801
4802 return TRUE;
4803
4804 error_return:
4805 if (contents != NULL
4806 && elf_section_data (sec)->this_hdr.contents != contents)
4807 free (contents);
4808 if (internal_relocs != NULL
4809 && elf_section_data (sec)->relocs != internal_relocs)
4810 free (internal_relocs);
4811
4812 return FALSE;
4813 }
4814 #endif
4815
4816
4817 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4818
4819 void
4820 bfd_elf32_arm_init_maps (bfd *abfd)
4821 {
4822 Elf_Internal_Sym *isymbuf;
4823 Elf_Internal_Shdr *hdr;
4824 unsigned int i, localsyms;
4825
4826 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
4827 if (! is_arm_elf (abfd))
4828 return;
4829
4830 if ((abfd->flags & DYNAMIC) != 0)
4831 return;
4832
4833 hdr = & elf_symtab_hdr (abfd);
4834 localsyms = hdr->sh_info;
4835
4836 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4837 should contain the number of local symbols, which should come before any
4838 global symbols. Mapping symbols are always local. */
4839 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4840 NULL);
4841
4842 /* No internal symbols read? Skip this BFD. */
4843 if (isymbuf == NULL)
4844 return;
4845
4846 for (i = 0; i < localsyms; i++)
4847 {
4848 Elf_Internal_Sym *isym = &isymbuf[i];
4849 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4850 const char *name;
4851
4852 if (sec != NULL
4853 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4854 {
4855 name = bfd_elf_string_from_elf_section (abfd,
4856 hdr->sh_link, isym->st_name);
4857
4858 if (bfd_is_arm_special_symbol_name (name,
4859 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4860 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4861 }
4862 }
4863 }
4864
4865
4866 void
4867 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4868 {
4869 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4870 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4871
4872 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4873 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4874 {
4875 switch (globals->vfp11_fix)
4876 {
4877 case BFD_ARM_VFP11_FIX_DEFAULT:
4878 case BFD_ARM_VFP11_FIX_NONE:
4879 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4880 break;
4881
4882 default:
4883 /* Give a warning, but do as the user requests anyway. */
4884 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4885 "workaround is not necessary for target architecture"), obfd);
4886 }
4887 }
4888 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4889 /* For earlier architectures, we might need the workaround, but do not
4890 enable it by default. If users is running with broken hardware, they
4891 must enable the erratum fix explicitly. */
4892 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4893 }
4894
4895
4896 enum bfd_arm_vfp11_pipe
4897 {
4898 VFP11_FMAC,
4899 VFP11_LS,
4900 VFP11_DS,
4901 VFP11_BAD
4902 };
4903
4904 /* Return a VFP register number. This is encoded as RX:X for single-precision
4905 registers, or X:RX for double-precision registers, where RX is the group of
4906 four bits in the instruction encoding and X is the single extension bit.
4907 RX and X fields are specified using their lowest (starting) bit. The return
4908 value is:
4909
4910 0...31: single-precision registers s0...s31
4911 32...63: double-precision registers d0...d31.
4912
4913 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4914 encounter VFP3 instructions, so we allow the full range for DP registers. */
4915
4916 static unsigned int
4917 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4918 unsigned int x)
4919 {
4920 if (is_double)
4921 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4922 else
4923 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4924 }
4925
4926 /* Set bits in *WMASK according to a register number REG as encoded by
4927 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4928
4929 static void
4930 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4931 {
4932 if (reg < 32)
4933 *wmask |= 1 << reg;
4934 else if (reg < 48)
4935 *wmask |= 3 << ((reg - 32) * 2);
4936 }
4937
4938 /* Return TRUE if WMASK overwrites anything in REGS. */
4939
4940 static bfd_boolean
4941 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4942 {
4943 int i;
4944
4945 for (i = 0; i < numregs; i++)
4946 {
4947 unsigned int reg = regs[i];
4948
4949 if (reg < 32 && (wmask & (1 << reg)) != 0)
4950 return TRUE;
4951
4952 reg -= 32;
4953
4954 if (reg >= 16)
4955 continue;
4956
4957 if ((wmask & (3 << (reg * 2))) != 0)
4958 return TRUE;
4959 }
4960
4961 return FALSE;
4962 }
4963
4964 /* In this function, we're interested in two things: finding input registers
4965 for VFP data-processing instructions, and finding the set of registers which
4966 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4967 hold the written set, so FLDM etc. are easy to deal with (we're only
4968 interested in 32 SP registers or 16 dp registers, due to the VFP version
4969 implemented by the chip in question). DP registers are marked by setting
4970 both SP registers in the write mask). */
4971
4972 static enum bfd_arm_vfp11_pipe
4973 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4974 int *numregs)
4975 {
4976 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4977 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4978
4979 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4980 {
4981 unsigned int pqrs;
4982 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4983 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4984
4985 pqrs = ((insn & 0x00800000) >> 20)
4986 | ((insn & 0x00300000) >> 19)
4987 | ((insn & 0x00000040) >> 6);
4988
4989 switch (pqrs)
4990 {
4991 case 0: /* fmac[sd]. */
4992 case 1: /* fnmac[sd]. */
4993 case 2: /* fmsc[sd]. */
4994 case 3: /* fnmsc[sd]. */
4995 pipe = VFP11_FMAC;
4996 bfd_arm_vfp11_write_mask (destmask, fd);
4997 regs[0] = fd;
4998 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4999 regs[2] = fm;
5000 *numregs = 3;
5001 break;
5002
5003 case 4: /* fmul[sd]. */
5004 case 5: /* fnmul[sd]. */
5005 case 6: /* fadd[sd]. */
5006 case 7: /* fsub[sd]. */
5007 pipe = VFP11_FMAC;
5008 goto vfp_binop;
5009
5010 case 8: /* fdiv[sd]. */
5011 pipe = VFP11_DS;
5012 vfp_binop:
5013 bfd_arm_vfp11_write_mask (destmask, fd);
5014 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5015 regs[1] = fm;
5016 *numregs = 2;
5017 break;
5018
5019 case 15: /* extended opcode. */
5020 {
5021 unsigned int extn = ((insn >> 15) & 0x1e)
5022 | ((insn >> 7) & 1);
5023
5024 switch (extn)
5025 {
5026 case 0: /* fcpy[sd]. */
5027 case 1: /* fabs[sd]. */
5028 case 2: /* fneg[sd]. */
5029 case 8: /* fcmp[sd]. */
5030 case 9: /* fcmpe[sd]. */
5031 case 10: /* fcmpz[sd]. */
5032 case 11: /* fcmpez[sd]. */
5033 case 16: /* fuito[sd]. */
5034 case 17: /* fsito[sd]. */
5035 case 24: /* ftoui[sd]. */
5036 case 25: /* ftouiz[sd]. */
5037 case 26: /* ftosi[sd]. */
5038 case 27: /* ftosiz[sd]. */
5039 /* These instructions will not bounce due to underflow. */
5040 *numregs = 0;
5041 pipe = VFP11_FMAC;
5042 break;
5043
5044 case 3: /* fsqrt[sd]. */
5045 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5046 registers to cause the erratum in previous instructions. */
5047 bfd_arm_vfp11_write_mask (destmask, fd);
5048 pipe = VFP11_DS;
5049 break;
5050
5051 case 15: /* fcvt{ds,sd}. */
5052 {
5053 int rnum = 0;
5054
5055 bfd_arm_vfp11_write_mask (destmask, fd);
5056
5057 /* Only FCVTSD can underflow. */
5058 if ((insn & 0x100) != 0)
5059 regs[rnum++] = fm;
5060
5061 *numregs = rnum;
5062
5063 pipe = VFP11_FMAC;
5064 }
5065 break;
5066
5067 default:
5068 return VFP11_BAD;
5069 }
5070 }
5071 break;
5072
5073 default:
5074 return VFP11_BAD;
5075 }
5076 }
5077 /* Two-register transfer. */
5078 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5079 {
5080 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5081
5082 if ((insn & 0x100000) == 0)
5083 {
5084 if (is_double)
5085 bfd_arm_vfp11_write_mask (destmask, fm);
5086 else
5087 {
5088 bfd_arm_vfp11_write_mask (destmask, fm);
5089 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5090 }
5091 }
5092
5093 pipe = VFP11_LS;
5094 }
5095 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5096 {
5097 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5098 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
5099
5100 switch (puw)
5101 {
5102 case 0: /* Two-reg transfer. We should catch these above. */
5103 abort ();
5104
5105 case 2: /* fldm[sdx]. */
5106 case 3:
5107 case 5:
5108 {
5109 unsigned int i, offset = insn & 0xff;
5110
5111 if (is_double)
5112 offset >>= 1;
5113
5114 for (i = fd; i < fd + offset; i++)
5115 bfd_arm_vfp11_write_mask (destmask, i);
5116 }
5117 break;
5118
5119 case 4: /* fld[sd]. */
5120 case 6:
5121 bfd_arm_vfp11_write_mask (destmask, fd);
5122 break;
5123
5124 default:
5125 return VFP11_BAD;
5126 }
5127
5128 pipe = VFP11_LS;
5129 }
5130 /* Single-register transfer. Note L==0. */
5131 else if ((insn & 0x0f100e10) == 0x0e000a10)
5132 {
5133 unsigned int opcode = (insn >> 21) & 7;
5134 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5135
5136 switch (opcode)
5137 {
5138 case 0: /* fmsr/fmdlr. */
5139 case 1: /* fmdhr. */
5140 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5141 destination register. I don't know if this is exactly right,
5142 but it is the conservative choice. */
5143 bfd_arm_vfp11_write_mask (destmask, fn);
5144 break;
5145
5146 case 7: /* fmxr. */
5147 break;
5148 }
5149
5150 pipe = VFP11_LS;
5151 }
5152
5153 return pipe;
5154 }
5155
5156
5157 static int elf32_arm_compare_mapping (const void * a, const void * b);
5158
5159
5160 /* Look for potentially-troublesome code sequences which might trigger the
5161 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5162 (available from ARM) for details of the erratum. A short version is
5163 described in ld.texinfo. */
5164
5165 bfd_boolean
5166 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5167 {
5168 asection *sec;
5169 bfd_byte *contents = NULL;
5170 int state = 0;
5171 int regs[3], numregs = 0;
5172 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5173 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
5174
5175 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5176 The states transition as follows:
5177
5178 0 -> 1 (vector) or 0 -> 2 (scalar)
5179 A VFP FMAC-pipeline instruction has been seen. Fill
5180 regs[0]..regs[numregs-1] with its input operands. Remember this
5181 instruction in 'first_fmac'.
5182
5183 1 -> 2
5184 Any instruction, except for a VFP instruction which overwrites
5185 regs[*].
5186
5187 1 -> 3 [ -> 0 ] or
5188 2 -> 3 [ -> 0 ]
5189 A VFP instruction has been seen which overwrites any of regs[*].
5190 We must make a veneer! Reset state to 0 before examining next
5191 instruction.
5192
5193 2 -> 0
5194 If we fail to match anything in state 2, reset to state 0 and reset
5195 the instruction pointer to the instruction after 'first_fmac'.
5196
5197 If the VFP11 vector mode is in use, there must be at least two unrelated
5198 instructions between anti-dependent VFP11 instructions to properly avoid
5199 triggering the erratum, hence the use of the extra state 1. */
5200
5201 /* If we are only performing a partial link do not bother
5202 to construct any glue. */
5203 if (link_info->relocatable)
5204 return TRUE;
5205
5206 /* Skip if this bfd does not correspond to an ELF image. */
5207 if (! is_arm_elf (abfd))
5208 return TRUE;
5209
5210 /* We should have chosen a fix type by the time we get here. */
5211 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5212
5213 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5214 return TRUE;
5215
5216 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5217 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5218 return TRUE;
5219
5220 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5221 {
5222 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5223 struct _arm_elf_section_data *sec_data;
5224
5225 /* If we don't have executable progbits, we're not interested in this
5226 section. Also skip if section is to be excluded. */
5227 if (elf_section_type (sec) != SHT_PROGBITS
5228 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5229 || (sec->flags & SEC_EXCLUDE) != 0
5230 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5231 || sec->output_section == bfd_abs_section_ptr
5232 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5233 continue;
5234
5235 sec_data = elf32_arm_section_data (sec);
5236
5237 if (sec_data->mapcount == 0)
5238 continue;
5239
5240 if (elf_section_data (sec)->this_hdr.contents != NULL)
5241 contents = elf_section_data (sec)->this_hdr.contents;
5242 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5243 goto error_return;
5244
5245 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5246 elf32_arm_compare_mapping);
5247
5248 for (span = 0; span < sec_data->mapcount; span++)
5249 {
5250 unsigned int span_start = sec_data->map[span].vma;
5251 unsigned int span_end = (span == sec_data->mapcount - 1)
5252 ? sec->size : sec_data->map[span + 1].vma;
5253 char span_type = sec_data->map[span].type;
5254
5255 /* FIXME: Only ARM mode is supported at present. We may need to
5256 support Thumb-2 mode also at some point. */
5257 if (span_type != 'a')
5258 continue;
5259
5260 for (i = span_start; i < span_end;)
5261 {
5262 unsigned int next_i = i + 4;
5263 unsigned int insn = bfd_big_endian (abfd)
5264 ? (contents[i] << 24)
5265 | (contents[i + 1] << 16)
5266 | (contents[i + 2] << 8)
5267 | contents[i + 3]
5268 : (contents[i + 3] << 24)
5269 | (contents[i + 2] << 16)
5270 | (contents[i + 1] << 8)
5271 | contents[i];
5272 unsigned int writemask = 0;
5273 enum bfd_arm_vfp11_pipe pipe;
5274
5275 switch (state)
5276 {
5277 case 0:
5278 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5279 &numregs);
5280 /* I'm assuming the VFP11 erratum can trigger with denorm
5281 operands on either the FMAC or the DS pipeline. This might
5282 lead to slightly overenthusiastic veneer insertion. */
5283 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5284 {
5285 state = use_vector ? 1 : 2;
5286 first_fmac = i;
5287 veneer_of_insn = insn;
5288 }
5289 break;
5290
5291 case 1:
5292 {
5293 int other_regs[3], other_numregs;
5294 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5295 other_regs,
5296 &other_numregs);
5297 if (pipe != VFP11_BAD
5298 && bfd_arm_vfp11_antidependency (writemask, regs,
5299 numregs))
5300 state = 3;
5301 else
5302 state = 2;
5303 }
5304 break;
5305
5306 case 2:
5307 {
5308 int other_regs[3], other_numregs;
5309 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5310 other_regs,
5311 &other_numregs);
5312 if (pipe != VFP11_BAD
5313 && bfd_arm_vfp11_antidependency (writemask, regs,
5314 numregs))
5315 state = 3;
5316 else
5317 {
5318 state = 0;
5319 next_i = first_fmac + 4;
5320 }
5321 }
5322 break;
5323
5324 case 3:
5325 abort (); /* Should be unreachable. */
5326 }
5327
5328 if (state == 3)
5329 {
5330 elf32_vfp11_erratum_list *newerr
5331 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5332 int errcount;
5333
5334 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5335
5336 newerr->u.b.vfp_insn = veneer_of_insn;
5337
5338 switch (span_type)
5339 {
5340 case 'a':
5341 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5342 break;
5343
5344 default:
5345 abort ();
5346 }
5347
5348 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5349 first_fmac);
5350
5351 newerr->vma = -1;
5352
5353 newerr->next = sec_data->erratumlist;
5354 sec_data->erratumlist = newerr;
5355
5356 state = 0;
5357 }
5358
5359 i = next_i;
5360 }
5361 }
5362
5363 if (contents != NULL
5364 && elf_section_data (sec)->this_hdr.contents != contents)
5365 free (contents);
5366 contents = NULL;
5367 }
5368
5369 return TRUE;
5370
5371 error_return:
5372 if (contents != NULL
5373 && elf_section_data (sec)->this_hdr.contents != contents)
5374 free (contents);
5375
5376 return FALSE;
5377 }
5378
5379 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5380 after sections have been laid out, using specially-named symbols. */
5381
5382 void
5383 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5384 struct bfd_link_info *link_info)
5385 {
5386 asection *sec;
5387 struct elf32_arm_link_hash_table *globals;
5388 char *tmp_name;
5389
5390 if (link_info->relocatable)
5391 return;
5392
5393 /* Skip if this bfd does not correspond to an ELF image. */
5394 if (! is_arm_elf (abfd))
5395 return;
5396
5397 globals = elf32_arm_hash_table (link_info);
5398
5399 tmp_name = bfd_malloc ((bfd_size_type) strlen
5400 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5401
5402 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5403 {
5404 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5405 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5406
5407 for (; errnode != NULL; errnode = errnode->next)
5408 {
5409 struct elf_link_hash_entry *myh;
5410 bfd_vma vma;
5411
5412 switch (errnode->type)
5413 {
5414 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5415 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5416 /* Find veneer symbol. */
5417 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5418 errnode->u.b.veneer->u.v.id);
5419
5420 myh = elf_link_hash_lookup
5421 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5422
5423 if (myh == NULL)
5424 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5425 "`%s'"), abfd, tmp_name);
5426
5427 vma = myh->root.u.def.section->output_section->vma
5428 + myh->root.u.def.section->output_offset
5429 + myh->root.u.def.value;
5430
5431 errnode->u.b.veneer->vma = vma;
5432 break;
5433
5434 case VFP11_ERRATUM_ARM_VENEER:
5435 case VFP11_ERRATUM_THUMB_VENEER:
5436 /* Find return location. */
5437 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5438 errnode->u.v.id);
5439
5440 myh = elf_link_hash_lookup
5441 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5442
5443 if (myh == NULL)
5444 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5445 "`%s'"), abfd, tmp_name);
5446
5447 vma = myh->root.u.def.section->output_section->vma
5448 + myh->root.u.def.section->output_offset
5449 + myh->root.u.def.value;
5450
5451 errnode->u.v.branch->vma = vma;
5452 break;
5453
5454 default:
5455 abort ();
5456 }
5457 }
5458 }
5459
5460 free (tmp_name);
5461 }
5462
5463
5464 /* Set target relocation values needed during linking. */
5465
5466 void
5467 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5468 struct bfd_link_info *link_info,
5469 int target1_is_rel,
5470 char * target2_type,
5471 int fix_v4bx,
5472 int use_blx,
5473 bfd_arm_vfp11_fix vfp11_fix,
5474 int no_enum_warn, int no_wchar_warn,
5475 int pic_veneer)
5476 {
5477 struct elf32_arm_link_hash_table *globals;
5478
5479 globals = elf32_arm_hash_table (link_info);
5480
5481 globals->target1_is_rel = target1_is_rel;
5482 if (strcmp (target2_type, "rel") == 0)
5483 globals->target2_reloc = R_ARM_REL32;
5484 else if (strcmp (target2_type, "abs") == 0)
5485 globals->target2_reloc = R_ARM_ABS32;
5486 else if (strcmp (target2_type, "got-rel") == 0)
5487 globals->target2_reloc = R_ARM_GOT_PREL;
5488 else
5489 {
5490 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5491 target2_type);
5492 }
5493 globals->fix_v4bx = fix_v4bx;
5494 globals->use_blx |= use_blx;
5495 globals->vfp11_fix = vfp11_fix;
5496 globals->pic_veneer = pic_veneer;
5497
5498 BFD_ASSERT (is_arm_elf (output_bfd));
5499 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5500 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
5501 }
5502
5503 /* Replace the target offset of a Thumb bl or b.w instruction. */
5504
5505 static void
5506 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5507 {
5508 bfd_vma upper;
5509 bfd_vma lower;
5510 int reloc_sign;
5511
5512 BFD_ASSERT ((offset & 1) == 0);
5513
5514 upper = bfd_get_16 (abfd, insn);
5515 lower = bfd_get_16 (abfd, insn + 2);
5516 reloc_sign = (offset < 0) ? 1 : 0;
5517 upper = (upper & ~(bfd_vma) 0x7ff)
5518 | ((offset >> 12) & 0x3ff)
5519 | (reloc_sign << 10);
5520 lower = (lower & ~(bfd_vma) 0x2fff)
5521 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5522 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5523 | ((offset >> 1) & 0x7ff);
5524 bfd_put_16 (abfd, upper, insn);
5525 bfd_put_16 (abfd, lower, insn + 2);
5526 }
5527
5528 /* Thumb code calling an ARM function. */
5529
5530 static int
5531 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5532 const char * name,
5533 bfd * input_bfd,
5534 bfd * output_bfd,
5535 asection * input_section,
5536 bfd_byte * hit_data,
5537 asection * sym_sec,
5538 bfd_vma offset,
5539 bfd_signed_vma addend,
5540 bfd_vma val,
5541 char **error_message)
5542 {
5543 asection * s = 0;
5544 bfd_vma my_offset;
5545 long int ret_offset;
5546 struct elf_link_hash_entry * myh;
5547 struct elf32_arm_link_hash_table * globals;
5548
5549 myh = find_thumb_glue (info, name, error_message);
5550 if (myh == NULL)
5551 return FALSE;
5552
5553 globals = elf32_arm_hash_table (info);
5554
5555 BFD_ASSERT (globals != NULL);
5556 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5557
5558 my_offset = myh->root.u.def.value;
5559
5560 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5561 THUMB2ARM_GLUE_SECTION_NAME);
5562
5563 BFD_ASSERT (s != NULL);
5564 BFD_ASSERT (s->contents != NULL);
5565 BFD_ASSERT (s->output_section != NULL);
5566
5567 if ((my_offset & 0x01) == 0x01)
5568 {
5569 if (sym_sec != NULL
5570 && sym_sec->owner != NULL
5571 && !INTERWORK_FLAG (sym_sec->owner))
5572 {
5573 (*_bfd_error_handler)
5574 (_("%B(%s): warning: interworking not enabled.\n"
5575 " first occurrence: %B: thumb call to arm"),
5576 sym_sec->owner, input_bfd, name);
5577
5578 return FALSE;
5579 }
5580
5581 --my_offset;
5582 myh->root.u.def.value = my_offset;
5583
5584 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5585 s->contents + my_offset);
5586
5587 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5588 s->contents + my_offset + 2);
5589
5590 ret_offset =
5591 /* Address of destination of the stub. */
5592 ((bfd_signed_vma) val)
5593 - ((bfd_signed_vma)
5594 /* Offset from the start of the current section
5595 to the start of the stubs. */
5596 (s->output_offset
5597 /* Offset of the start of this stub from the start of the stubs. */
5598 + my_offset
5599 /* Address of the start of the current section. */
5600 + s->output_section->vma)
5601 /* The branch instruction is 4 bytes into the stub. */
5602 + 4
5603 /* ARM branches work from the pc of the instruction + 8. */
5604 + 8);
5605
5606 put_arm_insn (globals, output_bfd,
5607 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5608 s->contents + my_offset + 4);
5609 }
5610
5611 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5612
5613 /* Now go back and fix up the original BL insn to point to here. */
5614 ret_offset =
5615 /* Address of where the stub is located. */
5616 (s->output_section->vma + s->output_offset + my_offset)
5617 /* Address of where the BL is located. */
5618 - (input_section->output_section->vma + input_section->output_offset
5619 + offset)
5620 /* Addend in the relocation. */
5621 - addend
5622 /* Biassing for PC-relative addressing. */
5623 - 8;
5624
5625 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5626
5627 return TRUE;
5628 }
5629
5630 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5631
5632 static struct elf_link_hash_entry *
5633 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5634 const char * name,
5635 bfd * input_bfd,
5636 bfd * output_bfd,
5637 asection * sym_sec,
5638 bfd_vma val,
5639 asection * s,
5640 char ** error_message)
5641 {
5642 bfd_vma my_offset;
5643 long int ret_offset;
5644 struct elf_link_hash_entry * myh;
5645 struct elf32_arm_link_hash_table * globals;
5646
5647 myh = find_arm_glue (info, name, error_message);
5648 if (myh == NULL)
5649 return NULL;
5650
5651 globals = elf32_arm_hash_table (info);
5652
5653 BFD_ASSERT (globals != NULL);
5654 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5655
5656 my_offset = myh->root.u.def.value;
5657
5658 if ((my_offset & 0x01) == 0x01)
5659 {
5660 if (sym_sec != NULL
5661 && sym_sec->owner != NULL
5662 && !INTERWORK_FLAG (sym_sec->owner))
5663 {
5664 (*_bfd_error_handler)
5665 (_("%B(%s): warning: interworking not enabled.\n"
5666 " first occurrence: %B: arm call to thumb"),
5667 sym_sec->owner, input_bfd, name);
5668 }
5669
5670 --my_offset;
5671 myh->root.u.def.value = my_offset;
5672
5673 if (info->shared || globals->root.is_relocatable_executable
5674 || globals->pic_veneer)
5675 {
5676 /* For relocatable objects we can't use absolute addresses,
5677 so construct the address from a relative offset. */
5678 /* TODO: If the offset is small it's probably worth
5679 constructing the address with adds. */
5680 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5681 s->contents + my_offset);
5682 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5683 s->contents + my_offset + 4);
5684 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5685 s->contents + my_offset + 8);
5686 /* Adjust the offset by 4 for the position of the add,
5687 and 8 for the pipeline offset. */
5688 ret_offset = (val - (s->output_offset
5689 + s->output_section->vma
5690 + my_offset + 12))
5691 | 1;
5692 bfd_put_32 (output_bfd, ret_offset,
5693 s->contents + my_offset + 12);
5694 }
5695 else if (globals->use_blx)
5696 {
5697 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5698 s->contents + my_offset);
5699
5700 /* It's a thumb address. Add the low order bit. */
5701 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5702 s->contents + my_offset + 4);
5703 }
5704 else
5705 {
5706 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5707 s->contents + my_offset);
5708
5709 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5710 s->contents + my_offset + 4);
5711
5712 /* It's a thumb address. Add the low order bit. */
5713 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5714 s->contents + my_offset + 8);
5715
5716 my_offset += 12;
5717 }
5718 }
5719
5720 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5721
5722 return myh;
5723 }
5724
5725 /* Arm code calling a Thumb function. */
5726
5727 static int
5728 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5729 const char * name,
5730 bfd * input_bfd,
5731 bfd * output_bfd,
5732 asection * input_section,
5733 bfd_byte * hit_data,
5734 asection * sym_sec,
5735 bfd_vma offset,
5736 bfd_signed_vma addend,
5737 bfd_vma val,
5738 char **error_message)
5739 {
5740 unsigned long int tmp;
5741 bfd_vma my_offset;
5742 asection * s;
5743 long int ret_offset;
5744 struct elf_link_hash_entry * myh;
5745 struct elf32_arm_link_hash_table * globals;
5746
5747 globals = elf32_arm_hash_table (info);
5748
5749 BFD_ASSERT (globals != NULL);
5750 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5751
5752 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5753 ARM2THUMB_GLUE_SECTION_NAME);
5754 BFD_ASSERT (s != NULL);
5755 BFD_ASSERT (s->contents != NULL);
5756 BFD_ASSERT (s->output_section != NULL);
5757
5758 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5759 sym_sec, val, s, error_message);
5760 if (!myh)
5761 return FALSE;
5762
5763 my_offset = myh->root.u.def.value;
5764 tmp = bfd_get_32 (input_bfd, hit_data);
5765 tmp = tmp & 0xFF000000;
5766
5767 /* Somehow these are both 4 too far, so subtract 8. */
5768 ret_offset = (s->output_offset
5769 + my_offset
5770 + s->output_section->vma
5771 - (input_section->output_offset
5772 + input_section->output_section->vma
5773 + offset + addend)
5774 - 8);
5775
5776 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5777
5778 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5779
5780 return TRUE;
5781 }
5782
5783 /* Populate Arm stub for an exported Thumb function. */
5784
5785 static bfd_boolean
5786 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5787 {
5788 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5789 asection * s;
5790 struct elf_link_hash_entry * myh;
5791 struct elf32_arm_link_hash_entry *eh;
5792 struct elf32_arm_link_hash_table * globals;
5793 asection *sec;
5794 bfd_vma val;
5795 char *error_message;
5796
5797 eh = elf32_arm_hash_entry (h);
5798 /* Allocate stubs for exported Thumb functions on v4t. */
5799 if (eh->export_glue == NULL)
5800 return TRUE;
5801
5802 globals = elf32_arm_hash_table (info);
5803
5804 BFD_ASSERT (globals != NULL);
5805 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5806
5807 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5808 ARM2THUMB_GLUE_SECTION_NAME);
5809 BFD_ASSERT (s != NULL);
5810 BFD_ASSERT (s->contents != NULL);
5811 BFD_ASSERT (s->output_section != NULL);
5812
5813 sec = eh->export_glue->root.u.def.section;
5814
5815 BFD_ASSERT (sec->output_section != NULL);
5816
5817 val = eh->export_glue->root.u.def.value + sec->output_offset
5818 + sec->output_section->vma;
5819
5820 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5821 h->root.u.def.section->owner,
5822 globals->obfd, sec, val, s,
5823 &error_message);
5824 BFD_ASSERT (myh);
5825 return TRUE;
5826 }
5827
5828 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5829
5830 static bfd_vma
5831 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5832 {
5833 bfd_byte *p;
5834 bfd_vma glue_addr;
5835 asection *s;
5836 struct elf32_arm_link_hash_table *globals;
5837
5838 globals = elf32_arm_hash_table (info);
5839
5840 BFD_ASSERT (globals != NULL);
5841 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5842
5843 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5844 ARM_BX_GLUE_SECTION_NAME);
5845 BFD_ASSERT (s != NULL);
5846 BFD_ASSERT (s->contents != NULL);
5847 BFD_ASSERT (s->output_section != NULL);
5848
5849 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5850
5851 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5852
5853 if ((globals->bx_glue_offset[reg] & 1) == 0)
5854 {
5855 p = s->contents + glue_addr;
5856 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5857 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5858 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5859 globals->bx_glue_offset[reg] |= 1;
5860 }
5861
5862 return glue_addr + s->output_section->vma + s->output_offset;
5863 }
5864
5865 /* Generate Arm stubs for exported Thumb symbols. */
5866 static void
5867 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5868 struct bfd_link_info *link_info)
5869 {
5870 struct elf32_arm_link_hash_table * globals;
5871
5872 if (link_info == NULL)
5873 /* Ignore this if we are not called by the ELF backend linker. */
5874 return;
5875
5876 globals = elf32_arm_hash_table (link_info);
5877 /* If blx is available then exported Thumb symbols are OK and there is
5878 nothing to do. */
5879 if (globals->use_blx)
5880 return;
5881
5882 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5883 link_info);
5884 }
5885
5886 /* Some relocations map to different relocations depending on the
5887 target. Return the real relocation. */
5888
5889 static int
5890 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5891 int r_type)
5892 {
5893 switch (r_type)
5894 {
5895 case R_ARM_TARGET1:
5896 if (globals->target1_is_rel)
5897 return R_ARM_REL32;
5898 else
5899 return R_ARM_ABS32;
5900
5901 case R_ARM_TARGET2:
5902 return globals->target2_reloc;
5903
5904 default:
5905 return r_type;
5906 }
5907 }
5908
5909 /* Return the base VMA address which should be subtracted from real addresses
5910 when resolving @dtpoff relocation.
5911 This is PT_TLS segment p_vaddr. */
5912
5913 static bfd_vma
5914 dtpoff_base (struct bfd_link_info *info)
5915 {
5916 /* If tls_sec is NULL, we should have signalled an error already. */
5917 if (elf_hash_table (info)->tls_sec == NULL)
5918 return 0;
5919 return elf_hash_table (info)->tls_sec->vma;
5920 }
5921
5922 /* Return the relocation value for @tpoff relocation
5923 if STT_TLS virtual address is ADDRESS. */
5924
5925 static bfd_vma
5926 tpoff (struct bfd_link_info *info, bfd_vma address)
5927 {
5928 struct elf_link_hash_table *htab = elf_hash_table (info);
5929 bfd_vma base;
5930
5931 /* If tls_sec is NULL, we should have signalled an error already. */
5932 if (htab->tls_sec == NULL)
5933 return 0;
5934 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5935 return address - htab->tls_sec->vma + base;
5936 }
5937
5938 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5939 VALUE is the relocation value. */
5940
5941 static bfd_reloc_status_type
5942 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5943 {
5944 if (value > 0xfff)
5945 return bfd_reloc_overflow;
5946
5947 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5948 bfd_put_32 (abfd, value, data);
5949 return bfd_reloc_ok;
5950 }
5951
5952 /* For a given value of n, calculate the value of G_n as required to
5953 deal with group relocations. We return it in the form of an
5954 encoded constant-and-rotation, together with the final residual. If n is
5955 specified as less than zero, then final_residual is filled with the
5956 input value and no further action is performed. */
5957
5958 static bfd_vma
5959 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5960 {
5961 int current_n;
5962 bfd_vma g_n;
5963 bfd_vma encoded_g_n = 0;
5964 bfd_vma residual = value; /* Also known as Y_n. */
5965
5966 for (current_n = 0; current_n <= n; current_n++)
5967 {
5968 int shift;
5969
5970 /* Calculate which part of the value to mask. */
5971 if (residual == 0)
5972 shift = 0;
5973 else
5974 {
5975 int msb;
5976
5977 /* Determine the most significant bit in the residual and
5978 align the resulting value to a 2-bit boundary. */
5979 for (msb = 30; msb >= 0; msb -= 2)
5980 if (residual & (3 << msb))
5981 break;
5982
5983 /* The desired shift is now (msb - 6), or zero, whichever
5984 is the greater. */
5985 shift = msb - 6;
5986 if (shift < 0)
5987 shift = 0;
5988 }
5989
5990 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5991 g_n = residual & (0xff << shift);
5992 encoded_g_n = (g_n >> shift)
5993 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5994
5995 /* Calculate the residual for the next time around. */
5996 residual &= ~g_n;
5997 }
5998
5999 *final_residual = residual;
6000
6001 return encoded_g_n;
6002 }
6003
6004 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
6005 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
6006
6007 static int
6008 identify_add_or_sub (bfd_vma insn)
6009 {
6010 int opcode = insn & 0x1e00000;
6011
6012 if (opcode == 1 << 23) /* ADD */
6013 return 1;
6014
6015 if (opcode == 1 << 22) /* SUB */
6016 return -1;
6017
6018 return 0;
6019 }
6020
6021 /* Perform a relocation as part of a final link. */
6022
6023 static bfd_reloc_status_type
6024 elf32_arm_final_link_relocate (reloc_howto_type * howto,
6025 bfd * input_bfd,
6026 bfd * output_bfd,
6027 asection * input_section,
6028 bfd_byte * contents,
6029 Elf_Internal_Rela * rel,
6030 bfd_vma value,
6031 struct bfd_link_info * info,
6032 asection * sym_sec,
6033 const char * sym_name,
6034 int sym_flags,
6035 struct elf_link_hash_entry * h,
6036 bfd_boolean * unresolved_reloc_p,
6037 char ** error_message)
6038 {
6039 unsigned long r_type = howto->type;
6040 unsigned long r_symndx;
6041 bfd_byte * hit_data = contents + rel->r_offset;
6042 bfd * dynobj = NULL;
6043 Elf_Internal_Shdr * symtab_hdr;
6044 struct elf_link_hash_entry ** sym_hashes;
6045 bfd_vma * local_got_offsets;
6046 asection * sgot = NULL;
6047 asection * splt = NULL;
6048 asection * sreloc = NULL;
6049 bfd_vma addend;
6050 bfd_signed_vma signed_addend;
6051 struct elf32_arm_link_hash_table * globals;
6052
6053 globals = elf32_arm_hash_table (info);
6054
6055 BFD_ASSERT (is_arm_elf (input_bfd));
6056
6057 /* Some relocation types map to different relocations depending on the
6058 target. We pick the right one here. */
6059 r_type = arm_real_reloc_type (globals, r_type);
6060 if (r_type != howto->type)
6061 howto = elf32_arm_howto_from_type (r_type);
6062
6063 /* If the start address has been set, then set the EF_ARM_HASENTRY
6064 flag. Setting this more than once is redundant, but the cost is
6065 not too high, and it keeps the code simple.
6066
6067 The test is done here, rather than somewhere else, because the
6068 start address is only set just before the final link commences.
6069
6070 Note - if the user deliberately sets a start address of 0, the
6071 flag will not be set. */
6072 if (bfd_get_start_address (output_bfd) != 0)
6073 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
6074
6075 dynobj = elf_hash_table (info)->dynobj;
6076 if (dynobj)
6077 {
6078 sgot = bfd_get_section_by_name (dynobj, ".got");
6079 splt = bfd_get_section_by_name (dynobj, ".plt");
6080 }
6081 symtab_hdr = & elf_symtab_hdr (input_bfd);
6082 sym_hashes = elf_sym_hashes (input_bfd);
6083 local_got_offsets = elf_local_got_offsets (input_bfd);
6084 r_symndx = ELF32_R_SYM (rel->r_info);
6085
6086 if (globals->use_rel)
6087 {
6088 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6089
6090 if (addend & ((howto->src_mask + 1) >> 1))
6091 {
6092 signed_addend = -1;
6093 signed_addend &= ~ howto->src_mask;
6094 signed_addend |= addend;
6095 }
6096 else
6097 signed_addend = addend;
6098 }
6099 else
6100 addend = signed_addend = rel->r_addend;
6101
6102 switch (r_type)
6103 {
6104 case R_ARM_NONE:
6105 /* We don't need to find a value for this symbol. It's just a
6106 marker. */
6107 *unresolved_reloc_p = FALSE;
6108 return bfd_reloc_ok;
6109
6110 case R_ARM_ABS12:
6111 if (!globals->vxworks_p)
6112 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6113
6114 case R_ARM_PC24:
6115 case R_ARM_ABS32:
6116 case R_ARM_ABS32_NOI:
6117 case R_ARM_REL32:
6118 case R_ARM_REL32_NOI:
6119 case R_ARM_CALL:
6120 case R_ARM_JUMP24:
6121 case R_ARM_XPC25:
6122 case R_ARM_PREL31:
6123 case R_ARM_PLT32:
6124 /* Handle relocations which should use the PLT entry. ABS32/REL32
6125 will use the symbol's value, which may point to a PLT entry, but we
6126 don't need to handle that here. If we created a PLT entry, all
6127 branches in this object should go to it, except if the PLT is too
6128 far away, in which case a long branch stub should be inserted. */
6129 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6130 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6131 && r_type != R_ARM_CALL)
6132 && h != NULL
6133 && splt != NULL
6134 && h->plt.offset != (bfd_vma) -1)
6135 {
6136 /* If we've created a .plt section, and assigned a PLT entry to
6137 this function, it should not be known to bind locally. If
6138 it were, we would have cleared the PLT entry. */
6139 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6140
6141 value = (splt->output_section->vma
6142 + splt->output_offset
6143 + h->plt.offset);
6144 *unresolved_reloc_p = FALSE;
6145 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6146 contents, rel->r_offset, value,
6147 rel->r_addend);
6148 }
6149
6150 /* When generating a shared object or relocatable executable, these
6151 relocations are copied into the output file to be resolved at
6152 run time. */
6153 if ((info->shared || globals->root.is_relocatable_executable)
6154 && (input_section->flags & SEC_ALLOC)
6155 && !(elf32_arm_hash_table (info)->vxworks_p
6156 && strcmp (input_section->output_section->name,
6157 ".tls_vars") == 0)
6158 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
6159 || !SYMBOL_CALLS_LOCAL (info, h))
6160 && (h == NULL
6161 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6162 || h->root.type != bfd_link_hash_undefweak)
6163 && r_type != R_ARM_PC24
6164 && r_type != R_ARM_CALL
6165 && r_type != R_ARM_JUMP24
6166 && r_type != R_ARM_PREL31
6167 && r_type != R_ARM_PLT32)
6168 {
6169 Elf_Internal_Rela outrel;
6170 bfd_byte *loc;
6171 bfd_boolean skip, relocate;
6172
6173 *unresolved_reloc_p = FALSE;
6174
6175 if (sreloc == NULL)
6176 {
6177 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6178 ! globals->use_rel);
6179
6180 if (sreloc == NULL)
6181 return bfd_reloc_notsupported;
6182 }
6183
6184 skip = FALSE;
6185 relocate = FALSE;
6186
6187 outrel.r_addend = addend;
6188 outrel.r_offset =
6189 _bfd_elf_section_offset (output_bfd, info, input_section,
6190 rel->r_offset);
6191 if (outrel.r_offset == (bfd_vma) -1)
6192 skip = TRUE;
6193 else if (outrel.r_offset == (bfd_vma) -2)
6194 skip = TRUE, relocate = TRUE;
6195 outrel.r_offset += (input_section->output_section->vma
6196 + input_section->output_offset);
6197
6198 if (skip)
6199 memset (&outrel, 0, sizeof outrel);
6200 else if (h != NULL
6201 && h->dynindx != -1
6202 && (!info->shared
6203 || !info->symbolic
6204 || !h->def_regular))
6205 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
6206 else
6207 {
6208 int symbol;
6209
6210 /* This symbol is local, or marked to become local. */
6211 if (sym_flags == STT_ARM_TFUNC)
6212 value |= 1;
6213 if (globals->symbian_p)
6214 {
6215 asection *osec;
6216
6217 /* On Symbian OS, the data segment and text segement
6218 can be relocated independently. Therefore, we
6219 must indicate the segment to which this
6220 relocation is relative. The BPABI allows us to
6221 use any symbol in the right segment; we just use
6222 the section symbol as it is convenient. (We
6223 cannot use the symbol given by "h" directly as it
6224 will not appear in the dynamic symbol table.)
6225
6226 Note that the dynamic linker ignores the section
6227 symbol value, so we don't subtract osec->vma
6228 from the emitted reloc addend. */
6229 if (sym_sec)
6230 osec = sym_sec->output_section;
6231 else
6232 osec = input_section->output_section;
6233 symbol = elf_section_data (osec)->dynindx;
6234 if (symbol == 0)
6235 {
6236 struct elf_link_hash_table *htab = elf_hash_table (info);
6237
6238 if ((osec->flags & SEC_READONLY) == 0
6239 && htab->data_index_section != NULL)
6240 osec = htab->data_index_section;
6241 else
6242 osec = htab->text_index_section;
6243 symbol = elf_section_data (osec)->dynindx;
6244 }
6245 BFD_ASSERT (symbol != 0);
6246 }
6247 else
6248 /* On SVR4-ish systems, the dynamic loader cannot
6249 relocate the text and data segments independently,
6250 so the symbol does not matter. */
6251 symbol = 0;
6252 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6253 if (globals->use_rel)
6254 relocate = TRUE;
6255 else
6256 outrel.r_addend += value;
6257 }
6258
6259 loc = sreloc->contents;
6260 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6261 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6262
6263 /* If this reloc is against an external symbol, we do not want to
6264 fiddle with the addend. Otherwise, we need to include the symbol
6265 value so that it becomes an addend for the dynamic reloc. */
6266 if (! relocate)
6267 return bfd_reloc_ok;
6268
6269 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6270 contents, rel->r_offset, value,
6271 (bfd_vma) 0);
6272 }
6273 else switch (r_type)
6274 {
6275 case R_ARM_ABS12:
6276 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6277
6278 case R_ARM_XPC25: /* Arm BLX instruction. */
6279 case R_ARM_CALL:
6280 case R_ARM_JUMP24:
6281 case R_ARM_PC24: /* Arm B/BL instruction. */
6282 case R_ARM_PLT32:
6283 {
6284 bfd_vma from;
6285 bfd_signed_vma branch_offset;
6286 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6287
6288 if (r_type == R_ARM_XPC25)
6289 {
6290 /* Check for Arm calling Arm function. */
6291 /* FIXME: Should we translate the instruction into a BL
6292 instruction instead ? */
6293 if (sym_flags != STT_ARM_TFUNC)
6294 (*_bfd_error_handler)
6295 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6296 input_bfd,
6297 h ? h->root.root.string : "(local)");
6298 }
6299 else if (r_type != R_ARM_CALL)
6300 {
6301 /* Check for Arm calling Thumb function. */
6302 if (sym_flags == STT_ARM_TFUNC)
6303 {
6304 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6305 output_bfd, input_section,
6306 hit_data, sym_sec, rel->r_offset,
6307 signed_addend, value,
6308 error_message))
6309 return bfd_reloc_ok;
6310 else
6311 return bfd_reloc_dangerous;
6312 }
6313 }
6314
6315 /* Check if a stub has to be inserted because the
6316 destination is too far or we are changing mode. */
6317 if (r_type == R_ARM_CALL)
6318 {
6319 /* If the call goes through a PLT entry, make sure to
6320 check distance to the right destination address. */
6321 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6322 {
6323 value = (splt->output_section->vma
6324 + splt->output_offset
6325 + h->plt.offset);
6326 *unresolved_reloc_p = FALSE;
6327 }
6328
6329 from = (input_section->output_section->vma
6330 + input_section->output_offset
6331 + rel->r_offset);
6332 branch_offset = (bfd_signed_vma)(value - from);
6333
6334 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6335 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6336 || sym_flags == STT_ARM_TFUNC)
6337 {
6338 /* The target is out of reach, so redirect the
6339 branch to the local stub for this function. */
6340
6341 stub_entry = elf32_arm_get_stub_entry (input_section,
6342 sym_sec, h,
6343 rel, globals);
6344 if (stub_entry != NULL)
6345 value = (stub_entry->stub_offset
6346 + stub_entry->stub_sec->output_offset
6347 + stub_entry->stub_sec->output_section->vma);
6348 }
6349 }
6350
6351 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6352 where:
6353 S is the address of the symbol in the relocation.
6354 P is address of the instruction being relocated.
6355 A is the addend (extracted from the instruction) in bytes.
6356
6357 S is held in 'value'.
6358 P is the base address of the section containing the
6359 instruction plus the offset of the reloc into that
6360 section, ie:
6361 (input_section->output_section->vma +
6362 input_section->output_offset +
6363 rel->r_offset).
6364 A is the addend, converted into bytes, ie:
6365 (signed_addend * 4)
6366
6367 Note: None of these operations have knowledge of the pipeline
6368 size of the processor, thus it is up to the assembler to
6369 encode this information into the addend. */
6370 value -= (input_section->output_section->vma
6371 + input_section->output_offset);
6372 value -= rel->r_offset;
6373 if (globals->use_rel)
6374 value += (signed_addend << howto->size);
6375 else
6376 /* RELA addends do not have to be adjusted by howto->size. */
6377 value += signed_addend;
6378
6379 signed_addend = value;
6380 signed_addend >>= howto->rightshift;
6381
6382 /* A branch to an undefined weak symbol is turned into a jump to
6383 the next instruction unless a PLT entry will be created. */
6384 if (h && h->root.type == bfd_link_hash_undefweak
6385 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
6386 {
6387 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6388 | 0x0affffff;
6389 }
6390 else
6391 {
6392 /* Perform a signed range check. */
6393 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6394 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6395 return bfd_reloc_overflow;
6396
6397 addend = (value & 2);
6398
6399 value = (signed_addend & howto->dst_mask)
6400 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6401
6402 /* Set the H bit in the BLX instruction. */
6403 if (sym_flags == STT_ARM_TFUNC)
6404 {
6405 if (addend)
6406 value |= (1 << 24);
6407 else
6408 value &= ~(bfd_vma)(1 << 24);
6409 }
6410 if (r_type == R_ARM_CALL)
6411 {
6412 /* Select the correct instruction (BL or BLX). */
6413 /* Only if we are not handling a BL to a stub. In this
6414 case, mode switching is performed by the stub. */
6415 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6416 value |= (1 << 28);
6417 else
6418 {
6419 value &= ~(bfd_vma)(1 << 28);
6420 value |= (1 << 24);
6421 }
6422 }
6423 }
6424 }
6425 break;
6426
6427 case R_ARM_ABS32:
6428 value += addend;
6429 if (sym_flags == STT_ARM_TFUNC)
6430 value |= 1;
6431 break;
6432
6433 case R_ARM_ABS32_NOI:
6434 value += addend;
6435 break;
6436
6437 case R_ARM_REL32:
6438 value += addend;
6439 if (sym_flags == STT_ARM_TFUNC)
6440 value |= 1;
6441 value -= (input_section->output_section->vma
6442 + input_section->output_offset + rel->r_offset);
6443 break;
6444
6445 case R_ARM_REL32_NOI:
6446 value += addend;
6447 value -= (input_section->output_section->vma
6448 + input_section->output_offset + rel->r_offset);
6449 break;
6450
6451 case R_ARM_PREL31:
6452 value -= (input_section->output_section->vma
6453 + input_section->output_offset + rel->r_offset);
6454 value += signed_addend;
6455 if (! h || h->root.type != bfd_link_hash_undefweak)
6456 {
6457 /* Check for overflow. */
6458 if ((value ^ (value >> 1)) & (1 << 30))
6459 return bfd_reloc_overflow;
6460 }
6461 value &= 0x7fffffff;
6462 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6463 if (sym_flags == STT_ARM_TFUNC)
6464 value |= 1;
6465 break;
6466 }
6467
6468 bfd_put_32 (input_bfd, value, hit_data);
6469 return bfd_reloc_ok;
6470
6471 case R_ARM_ABS8:
6472 value += addend;
6473 if ((long) value > 0x7f || (long) value < -0x80)
6474 return bfd_reloc_overflow;
6475
6476 bfd_put_8 (input_bfd, value, hit_data);
6477 return bfd_reloc_ok;
6478
6479 case R_ARM_ABS16:
6480 value += addend;
6481
6482 if ((long) value > 0x7fff || (long) value < -0x8000)
6483 return bfd_reloc_overflow;
6484
6485 bfd_put_16 (input_bfd, value, hit_data);
6486 return bfd_reloc_ok;
6487
6488 case R_ARM_THM_ABS5:
6489 /* Support ldr and str instructions for the thumb. */
6490 if (globals->use_rel)
6491 {
6492 /* Need to refetch addend. */
6493 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6494 /* ??? Need to determine shift amount from operand size. */
6495 addend >>= howto->rightshift;
6496 }
6497 value += addend;
6498
6499 /* ??? Isn't value unsigned? */
6500 if ((long) value > 0x1f || (long) value < -0x10)
6501 return bfd_reloc_overflow;
6502
6503 /* ??? Value needs to be properly shifted into place first. */
6504 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6505 bfd_put_16 (input_bfd, value, hit_data);
6506 return bfd_reloc_ok;
6507
6508 case R_ARM_THM_ALU_PREL_11_0:
6509 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6510 {
6511 bfd_vma insn;
6512 bfd_signed_vma relocation;
6513
6514 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6515 | bfd_get_16 (input_bfd, hit_data + 2);
6516
6517 if (globals->use_rel)
6518 {
6519 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6520 | ((insn & (1 << 26)) >> 15);
6521 if (insn & 0xf00000)
6522 signed_addend = -signed_addend;
6523 }
6524
6525 relocation = value + signed_addend;
6526 relocation -= (input_section->output_section->vma
6527 + input_section->output_offset
6528 + rel->r_offset);
6529
6530 value = abs (relocation);
6531
6532 if (value >= 0x1000)
6533 return bfd_reloc_overflow;
6534
6535 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6536 | ((value & 0x700) << 4)
6537 | ((value & 0x800) << 15);
6538 if (relocation < 0)
6539 insn |= 0xa00000;
6540
6541 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6542 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6543
6544 return bfd_reloc_ok;
6545 }
6546
6547 case R_ARM_THM_PC12:
6548 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6549 {
6550 bfd_vma insn;
6551 bfd_signed_vma relocation;
6552
6553 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6554 | bfd_get_16 (input_bfd, hit_data + 2);
6555
6556 if (globals->use_rel)
6557 {
6558 signed_addend = insn & 0xfff;
6559 if (!(insn & (1 << 23)))
6560 signed_addend = -signed_addend;
6561 }
6562
6563 relocation = value + signed_addend;
6564 relocation -= (input_section->output_section->vma
6565 + input_section->output_offset
6566 + rel->r_offset);
6567
6568 value = abs (relocation);
6569
6570 if (value >= 0x1000)
6571 return bfd_reloc_overflow;
6572
6573 insn = (insn & 0xff7ff000) | value;
6574 if (relocation >= 0)
6575 insn |= (1 << 23);
6576
6577 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6578 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6579
6580 return bfd_reloc_ok;
6581 }
6582
6583 case R_ARM_THM_XPC22:
6584 case R_ARM_THM_CALL:
6585 case R_ARM_THM_JUMP24:
6586 /* Thumb BL (branch long instruction). */
6587 {
6588 bfd_vma relocation;
6589 bfd_vma reloc_sign;
6590 bfd_boolean overflow = FALSE;
6591 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6592 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6593 bfd_signed_vma reloc_signed_max;
6594 bfd_signed_vma reloc_signed_min;
6595 bfd_vma check;
6596 bfd_signed_vma signed_check;
6597 int bitsize;
6598 int thumb2 = using_thumb2 (globals);
6599
6600 /* A branch to an undefined weak symbol is turned into a jump to
6601 the next instruction unless a PLT entry will be created. */
6602 if (h && h->root.type == bfd_link_hash_undefweak
6603 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
6604 {
6605 bfd_put_16 (input_bfd, 0xe000, hit_data);
6606 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6607 return bfd_reloc_ok;
6608 }
6609
6610 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6611 with Thumb-1) involving the J1 and J2 bits. */
6612 if (globals->use_rel)
6613 {
6614 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6615 bfd_vma upper = upper_insn & 0x3ff;
6616 bfd_vma lower = lower_insn & 0x7ff;
6617 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6618 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6619 bfd_vma i1 = j1 ^ s ? 0 : 1;
6620 bfd_vma i2 = j2 ^ s ? 0 : 1;
6621
6622 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6623 /* Sign extend. */
6624 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6625
6626 signed_addend = addend;
6627 }
6628
6629 if (r_type == R_ARM_THM_XPC22)
6630 {
6631 /* Check for Thumb to Thumb call. */
6632 /* FIXME: Should we translate the instruction into a BL
6633 instruction instead ? */
6634 if (sym_flags == STT_ARM_TFUNC)
6635 (*_bfd_error_handler)
6636 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6637 input_bfd,
6638 h ? h->root.root.string : "(local)");
6639 }
6640 else
6641 {
6642 /* If it is not a call to Thumb, assume call to Arm.
6643 If it is a call relative to a section name, then it is not a
6644 function call at all, but rather a long jump. Calls through
6645 the PLT do not require stubs. */
6646 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6647 && (h == NULL || splt == NULL
6648 || h->plt.offset == (bfd_vma) -1))
6649 {
6650 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6651 {
6652 /* Convert BL to BLX. */
6653 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6654 }
6655 else if (r_type != R_ARM_THM_CALL)
6656 {
6657 if (elf32_thumb_to_arm_stub
6658 (info, sym_name, input_bfd, output_bfd, input_section,
6659 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6660 error_message))
6661 return bfd_reloc_ok;
6662 else
6663 return bfd_reloc_dangerous;
6664 }
6665 }
6666 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6667 && r_type == R_ARM_THM_CALL)
6668 {
6669 /* Make sure this is a BL. */
6670 lower_insn |= 0x1800;
6671 }
6672 }
6673
6674 /* Handle calls via the PLT. */
6675 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6676 {
6677 value = (splt->output_section->vma
6678 + splt->output_offset
6679 + h->plt.offset);
6680 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6681 {
6682 /* If the Thumb BLX instruction is available, convert the
6683 BL to a BLX instruction to call the ARM-mode PLT entry. */
6684 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6685 }
6686 else
6687 /* Target the Thumb stub before the ARM PLT entry. */
6688 value -= PLT_THUMB_STUB_SIZE;
6689 *unresolved_reloc_p = FALSE;
6690 }
6691
6692 if (r_type == R_ARM_THM_CALL)
6693 {
6694 /* Check if a stub has to be inserted because the destination
6695 is too far. */
6696 bfd_vma from;
6697 bfd_signed_vma branch_offset;
6698 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6699
6700 from = (input_section->output_section->vma
6701 + input_section->output_offset
6702 + rel->r_offset);
6703 branch_offset = (bfd_signed_vma)(value - from);
6704
6705 if ((!thumb2
6706 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6707 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6708 ||
6709 (thumb2
6710 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6711 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6712 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6713 {
6714 /* The target is out of reach or we are changing modes, so
6715 redirect the branch to the local stub for this
6716 function. */
6717 stub_entry = elf32_arm_get_stub_entry (input_section,
6718 sym_sec, h,
6719 rel, globals);
6720 if (stub_entry != NULL)
6721 value = (stub_entry->stub_offset
6722 + stub_entry->stub_sec->output_offset
6723 + stub_entry->stub_sec->output_section->vma);
6724
6725 /* If this call becomes a call to Arm, force BLX. */
6726 if (globals->use_blx)
6727 {
6728 if ((stub_entry
6729 && !arm_stub_is_thumb (stub_entry->stub_type))
6730 || (sym_flags != STT_ARM_TFUNC))
6731 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6732 }
6733 }
6734 }
6735
6736 relocation = value + signed_addend;
6737
6738 relocation -= (input_section->output_section->vma
6739 + input_section->output_offset
6740 + rel->r_offset);
6741
6742 check = relocation >> howto->rightshift;
6743
6744 /* If this is a signed value, the rightshift just dropped
6745 leading 1 bits (assuming twos complement). */
6746 if ((bfd_signed_vma) relocation >= 0)
6747 signed_check = check;
6748 else
6749 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6750
6751 /* Calculate the permissable maximum and minimum values for
6752 this relocation according to whether we're relocating for
6753 Thumb-2 or not. */
6754 bitsize = howto->bitsize;
6755 if (!thumb2)
6756 bitsize -= 2;
6757 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6758 reloc_signed_min = ~reloc_signed_max;
6759
6760 /* Assumes two's complement. */
6761 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6762 overflow = TRUE;
6763
6764 if ((lower_insn & 0x5000) == 0x4000)
6765 /* For a BLX instruction, make sure that the relocation is rounded up
6766 to a word boundary. This follows the semantics of the instruction
6767 which specifies that bit 1 of the target address will come from bit
6768 1 of the base address. */
6769 relocation = (relocation + 2) & ~ 3;
6770
6771 /* Put RELOCATION back into the insn. Assumes two's complement.
6772 We use the Thumb-2 encoding, which is safe even if dealing with
6773 a Thumb-1 instruction by virtue of our overflow check above. */
6774 reloc_sign = (signed_check < 0) ? 1 : 0;
6775 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6776 | ((relocation >> 12) & 0x3ff)
6777 | (reloc_sign << 10);
6778 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6779 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6780 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6781 | ((relocation >> 1) & 0x7ff);
6782
6783 /* Put the relocated value back in the object file: */
6784 bfd_put_16 (input_bfd, upper_insn, hit_data);
6785 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6786
6787 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6788 }
6789 break;
6790
6791 case R_ARM_THM_JUMP19:
6792 /* Thumb32 conditional branch instruction. */
6793 {
6794 bfd_vma relocation;
6795 bfd_boolean overflow = FALSE;
6796 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6797 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6798 bfd_signed_vma reloc_signed_max = 0xffffe;
6799 bfd_signed_vma reloc_signed_min = -0x100000;
6800 bfd_signed_vma signed_check;
6801
6802 /* Need to refetch the addend, reconstruct the top three bits,
6803 and squish the two 11 bit pieces together. */
6804 if (globals->use_rel)
6805 {
6806 bfd_vma S = (upper_insn & 0x0400) >> 10;
6807 bfd_vma upper = (upper_insn & 0x003f);
6808 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6809 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6810 bfd_vma lower = (lower_insn & 0x07ff);
6811
6812 upper |= J1 << 6;
6813 upper |= J2 << 7;
6814 upper |= (!S) << 8;
6815 upper -= 0x0100; /* Sign extend. */
6816
6817 addend = (upper << 12) | (lower << 1);
6818 signed_addend = addend;
6819 }
6820
6821 /* Handle calls via the PLT. */
6822 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6823 {
6824 value = (splt->output_section->vma
6825 + splt->output_offset
6826 + h->plt.offset);
6827 /* Target the Thumb stub before the ARM PLT entry. */
6828 value -= PLT_THUMB_STUB_SIZE;
6829 *unresolved_reloc_p = FALSE;
6830 }
6831
6832 /* ??? Should handle interworking? GCC might someday try to
6833 use this for tail calls. */
6834
6835 relocation = value + signed_addend;
6836 relocation -= (input_section->output_section->vma
6837 + input_section->output_offset
6838 + rel->r_offset);
6839 signed_check = (bfd_signed_vma) relocation;
6840
6841 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6842 overflow = TRUE;
6843
6844 /* Put RELOCATION back into the insn. */
6845 {
6846 bfd_vma S = (relocation & 0x00100000) >> 20;
6847 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6848 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6849 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6850 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6851
6852 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6853 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6854 }
6855
6856 /* Put the relocated value back in the object file: */
6857 bfd_put_16 (input_bfd, upper_insn, hit_data);
6858 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6859
6860 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6861 }
6862
6863 case R_ARM_THM_JUMP11:
6864 case R_ARM_THM_JUMP8:
6865 case R_ARM_THM_JUMP6:
6866 /* Thumb B (branch) instruction). */
6867 {
6868 bfd_signed_vma relocation;
6869 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6870 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6871 bfd_signed_vma signed_check;
6872
6873 /* CZB cannot jump backward. */
6874 if (r_type == R_ARM_THM_JUMP6)
6875 reloc_signed_min = 0;
6876
6877 if (globals->use_rel)
6878 {
6879 /* Need to refetch addend. */
6880 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6881 if (addend & ((howto->src_mask + 1) >> 1))
6882 {
6883 signed_addend = -1;
6884 signed_addend &= ~ howto->src_mask;
6885 signed_addend |= addend;
6886 }
6887 else
6888 signed_addend = addend;
6889 /* The value in the insn has been right shifted. We need to
6890 undo this, so that we can perform the address calculation
6891 in terms of bytes. */
6892 signed_addend <<= howto->rightshift;
6893 }
6894 relocation = value + signed_addend;
6895
6896 relocation -= (input_section->output_section->vma
6897 + input_section->output_offset
6898 + rel->r_offset);
6899
6900 relocation >>= howto->rightshift;
6901 signed_check = relocation;
6902
6903 if (r_type == R_ARM_THM_JUMP6)
6904 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6905 else
6906 relocation &= howto->dst_mask;
6907 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6908
6909 bfd_put_16 (input_bfd, relocation, hit_data);
6910
6911 /* Assumes two's complement. */
6912 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6913 return bfd_reloc_overflow;
6914
6915 return bfd_reloc_ok;
6916 }
6917
6918 case R_ARM_ALU_PCREL7_0:
6919 case R_ARM_ALU_PCREL15_8:
6920 case R_ARM_ALU_PCREL23_15:
6921 {
6922 bfd_vma insn;
6923 bfd_vma relocation;
6924
6925 insn = bfd_get_32 (input_bfd, hit_data);
6926 if (globals->use_rel)
6927 {
6928 /* Extract the addend. */
6929 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6930 signed_addend = addend;
6931 }
6932 relocation = value + signed_addend;
6933
6934 relocation -= (input_section->output_section->vma
6935 + input_section->output_offset
6936 + rel->r_offset);
6937 insn = (insn & ~0xfff)
6938 | ((howto->bitpos << 7) & 0xf00)
6939 | ((relocation >> howto->bitpos) & 0xff);
6940 bfd_put_32 (input_bfd, value, hit_data);
6941 }
6942 return bfd_reloc_ok;
6943
6944 case R_ARM_GNU_VTINHERIT:
6945 case R_ARM_GNU_VTENTRY:
6946 return bfd_reloc_ok;
6947
6948 case R_ARM_GOTOFF32:
6949 /* Relocation is relative to the start of the
6950 global offset table. */
6951
6952 BFD_ASSERT (sgot != NULL);
6953 if (sgot == NULL)
6954 return bfd_reloc_notsupported;
6955
6956 /* If we are addressing a Thumb function, we need to adjust the
6957 address by one, so that attempts to call the function pointer will
6958 correctly interpret it as Thumb code. */
6959 if (sym_flags == STT_ARM_TFUNC)
6960 value += 1;
6961
6962 /* Note that sgot->output_offset is not involved in this
6963 calculation. We always want the start of .got. If we
6964 define _GLOBAL_OFFSET_TABLE in a different way, as is
6965 permitted by the ABI, we might have to change this
6966 calculation. */
6967 value -= sgot->output_section->vma;
6968 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6969 contents, rel->r_offset, value,
6970 rel->r_addend);
6971
6972 case R_ARM_GOTPC:
6973 /* Use global offset table as symbol value. */
6974 BFD_ASSERT (sgot != NULL);
6975
6976 if (sgot == NULL)
6977 return bfd_reloc_notsupported;
6978
6979 *unresolved_reloc_p = FALSE;
6980 value = sgot->output_section->vma;
6981 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6982 contents, rel->r_offset, value,
6983 rel->r_addend);
6984
6985 case R_ARM_GOT32:
6986 case R_ARM_GOT_PREL:
6987 /* Relocation is to the entry for this symbol in the
6988 global offset table. */
6989 if (sgot == NULL)
6990 return bfd_reloc_notsupported;
6991
6992 if (h != NULL)
6993 {
6994 bfd_vma off;
6995 bfd_boolean dyn;
6996
6997 off = h->got.offset;
6998 BFD_ASSERT (off != (bfd_vma) -1);
6999 dyn = globals->root.dynamic_sections_created;
7000
7001 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7002 || (info->shared
7003 && SYMBOL_REFERENCES_LOCAL (info, h))
7004 || (ELF_ST_VISIBILITY (h->other)
7005 && h->root.type == bfd_link_hash_undefweak))
7006 {
7007 /* This is actually a static link, or it is a -Bsymbolic link
7008 and the symbol is defined locally. We must initialize this
7009 entry in the global offset table. Since the offset must
7010 always be a multiple of 4, we use the least significant bit
7011 to record whether we have initialized it already.
7012
7013 When doing a dynamic link, we create a .rel(a).got relocation
7014 entry to initialize the value. This is done in the
7015 finish_dynamic_symbol routine. */
7016 if ((off & 1) != 0)
7017 off &= ~1;
7018 else
7019 {
7020 /* If we are addressing a Thumb function, we need to
7021 adjust the address by one, so that attempts to
7022 call the function pointer will correctly
7023 interpret it as Thumb code. */
7024 if (sym_flags == STT_ARM_TFUNC)
7025 value |= 1;
7026
7027 bfd_put_32 (output_bfd, value, sgot->contents + off);
7028 h->got.offset |= 1;
7029 }
7030 }
7031 else
7032 *unresolved_reloc_p = FALSE;
7033
7034 value = sgot->output_offset + off;
7035 }
7036 else
7037 {
7038 bfd_vma off;
7039
7040 BFD_ASSERT (local_got_offsets != NULL &&
7041 local_got_offsets[r_symndx] != (bfd_vma) -1);
7042
7043 off = local_got_offsets[r_symndx];
7044
7045 /* The offset must always be a multiple of 4. We use the
7046 least significant bit to record whether we have already
7047 generated the necessary reloc. */
7048 if ((off & 1) != 0)
7049 off &= ~1;
7050 else
7051 {
7052 /* If we are addressing a Thumb function, we need to
7053 adjust the address by one, so that attempts to
7054 call the function pointer will correctly
7055 interpret it as Thumb code. */
7056 if (sym_flags == STT_ARM_TFUNC)
7057 value |= 1;
7058
7059 if (globals->use_rel)
7060 bfd_put_32 (output_bfd, value, sgot->contents + off);
7061
7062 if (info->shared)
7063 {
7064 asection * srelgot;
7065 Elf_Internal_Rela outrel;
7066 bfd_byte *loc;
7067
7068 srelgot = (bfd_get_section_by_name
7069 (dynobj, RELOC_SECTION (globals, ".got")));
7070 BFD_ASSERT (srelgot != NULL);
7071
7072 outrel.r_addend = addend + value;
7073 outrel.r_offset = (sgot->output_section->vma
7074 + sgot->output_offset
7075 + off);
7076 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
7077 loc = srelgot->contents;
7078 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7079 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7080 }
7081
7082 local_got_offsets[r_symndx] |= 1;
7083 }
7084
7085 value = sgot->output_offset + off;
7086 }
7087 if (r_type != R_ARM_GOT32)
7088 value += sgot->output_section->vma;
7089
7090 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7091 contents, rel->r_offset, value,
7092 rel->r_addend);
7093
7094 case R_ARM_TLS_LDO32:
7095 value = value - dtpoff_base (info);
7096
7097 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7098 contents, rel->r_offset, value,
7099 rel->r_addend);
7100
7101 case R_ARM_TLS_LDM32:
7102 {
7103 bfd_vma off;
7104
7105 if (globals->sgot == NULL)
7106 abort ();
7107
7108 off = globals->tls_ldm_got.offset;
7109
7110 if ((off & 1) != 0)
7111 off &= ~1;
7112 else
7113 {
7114 /* If we don't know the module number, create a relocation
7115 for it. */
7116 if (info->shared)
7117 {
7118 Elf_Internal_Rela outrel;
7119 bfd_byte *loc;
7120
7121 if (globals->srelgot == NULL)
7122 abort ();
7123
7124 outrel.r_addend = 0;
7125 outrel.r_offset = (globals->sgot->output_section->vma
7126 + globals->sgot->output_offset + off);
7127 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7128
7129 if (globals->use_rel)
7130 bfd_put_32 (output_bfd, outrel.r_addend,
7131 globals->sgot->contents + off);
7132
7133 loc = globals->srelgot->contents;
7134 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7135 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7136 }
7137 else
7138 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7139
7140 globals->tls_ldm_got.offset |= 1;
7141 }
7142
7143 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7144 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7145
7146 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7147 contents, rel->r_offset, value,
7148 rel->r_addend);
7149 }
7150
7151 case R_ARM_TLS_GD32:
7152 case R_ARM_TLS_IE32:
7153 {
7154 bfd_vma off;
7155 int indx;
7156 char tls_type;
7157
7158 if (globals->sgot == NULL)
7159 abort ();
7160
7161 indx = 0;
7162 if (h != NULL)
7163 {
7164 bfd_boolean dyn;
7165 dyn = globals->root.dynamic_sections_created;
7166 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7167 && (!info->shared
7168 || !SYMBOL_REFERENCES_LOCAL (info, h)))
7169 {
7170 *unresolved_reloc_p = FALSE;
7171 indx = h->dynindx;
7172 }
7173 off = h->got.offset;
7174 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7175 }
7176 else
7177 {
7178 if (local_got_offsets == NULL)
7179 abort ();
7180 off = local_got_offsets[r_symndx];
7181 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7182 }
7183
7184 if (tls_type == GOT_UNKNOWN)
7185 abort ();
7186
7187 if ((off & 1) != 0)
7188 off &= ~1;
7189 else
7190 {
7191 bfd_boolean need_relocs = FALSE;
7192 Elf_Internal_Rela outrel;
7193 bfd_byte *loc = NULL;
7194 int cur_off = off;
7195
7196 /* The GOT entries have not been initialized yet. Do it
7197 now, and emit any relocations. If both an IE GOT and a
7198 GD GOT are necessary, we emit the GD first. */
7199
7200 if ((info->shared || indx != 0)
7201 && (h == NULL
7202 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7203 || h->root.type != bfd_link_hash_undefweak))
7204 {
7205 need_relocs = TRUE;
7206 if (globals->srelgot == NULL)
7207 abort ();
7208 loc = globals->srelgot->contents;
7209 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
7210 }
7211
7212 if (tls_type & GOT_TLS_GD)
7213 {
7214 if (need_relocs)
7215 {
7216 outrel.r_addend = 0;
7217 outrel.r_offset = (globals->sgot->output_section->vma
7218 + globals->sgot->output_offset
7219 + cur_off);
7220 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
7221
7222 if (globals->use_rel)
7223 bfd_put_32 (output_bfd, outrel.r_addend,
7224 globals->sgot->contents + cur_off);
7225
7226 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7227 globals->srelgot->reloc_count++;
7228 loc += RELOC_SIZE (globals);
7229
7230 if (indx == 0)
7231 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7232 globals->sgot->contents + cur_off + 4);
7233 else
7234 {
7235 outrel.r_addend = 0;
7236 outrel.r_info = ELF32_R_INFO (indx,
7237 R_ARM_TLS_DTPOFF32);
7238 outrel.r_offset += 4;
7239
7240 if (globals->use_rel)
7241 bfd_put_32 (output_bfd, outrel.r_addend,
7242 globals->sgot->contents + cur_off + 4);
7243
7244
7245 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7246 globals->srelgot->reloc_count++;
7247 loc += RELOC_SIZE (globals);
7248 }
7249 }
7250 else
7251 {
7252 /* If we are not emitting relocations for a
7253 general dynamic reference, then we must be in a
7254 static link or an executable link with the
7255 symbol binding locally. Mark it as belonging
7256 to module 1, the executable. */
7257 bfd_put_32 (output_bfd, 1,
7258 globals->sgot->contents + cur_off);
7259 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7260 globals->sgot->contents + cur_off + 4);
7261 }
7262
7263 cur_off += 8;
7264 }
7265
7266 if (tls_type & GOT_TLS_IE)
7267 {
7268 if (need_relocs)
7269 {
7270 if (indx == 0)
7271 outrel.r_addend = value - dtpoff_base (info);
7272 else
7273 outrel.r_addend = 0;
7274 outrel.r_offset = (globals->sgot->output_section->vma
7275 + globals->sgot->output_offset
7276 + cur_off);
7277 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7278
7279 if (globals->use_rel)
7280 bfd_put_32 (output_bfd, outrel.r_addend,
7281 globals->sgot->contents + cur_off);
7282
7283 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7284 globals->srelgot->reloc_count++;
7285 loc += RELOC_SIZE (globals);
7286 }
7287 else
7288 bfd_put_32 (output_bfd, tpoff (info, value),
7289 globals->sgot->contents + cur_off);
7290 cur_off += 4;
7291 }
7292
7293 if (h != NULL)
7294 h->got.offset |= 1;
7295 else
7296 local_got_offsets[r_symndx] |= 1;
7297 }
7298
7299 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7300 off += 8;
7301 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7302 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7303
7304 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7305 contents, rel->r_offset, value,
7306 rel->r_addend);
7307 }
7308
7309 case R_ARM_TLS_LE32:
7310 if (info->shared)
7311 {
7312 (*_bfd_error_handler)
7313 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7314 input_bfd, input_section,
7315 (long) rel->r_offset, howto->name);
7316 return FALSE;
7317 }
7318 else
7319 value = tpoff (info, value);
7320
7321 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7322 contents, rel->r_offset, value,
7323 rel->r_addend);
7324
7325 case R_ARM_V4BX:
7326 if (globals->fix_v4bx)
7327 {
7328 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7329
7330 /* Ensure that we have a BX instruction. */
7331 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7332
7333 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7334 {
7335 /* Branch to veneer. */
7336 bfd_vma glue_addr;
7337 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7338 glue_addr -= input_section->output_section->vma
7339 + input_section->output_offset
7340 + rel->r_offset + 8;
7341 insn = (insn & 0xf0000000) | 0x0a000000
7342 | ((glue_addr >> 2) & 0x00ffffff);
7343 }
7344 else
7345 {
7346 /* Preserve Rm (lowest four bits) and the condition code
7347 (highest four bits). Other bits encode MOV PC,Rm. */
7348 insn = (insn & 0xf000000f) | 0x01a0f000;
7349 }
7350
7351 bfd_put_32 (input_bfd, insn, hit_data);
7352 }
7353 return bfd_reloc_ok;
7354
7355 case R_ARM_MOVW_ABS_NC:
7356 case R_ARM_MOVT_ABS:
7357 case R_ARM_MOVW_PREL_NC:
7358 case R_ARM_MOVT_PREL:
7359 /* Until we properly support segment-base-relative addressing then
7360 we assume the segment base to be zero, as for the group relocations.
7361 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7362 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7363 case R_ARM_MOVW_BREL_NC:
7364 case R_ARM_MOVW_BREL:
7365 case R_ARM_MOVT_BREL:
7366 {
7367 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7368
7369 if (globals->use_rel)
7370 {
7371 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7372 signed_addend = (addend ^ 0x8000) - 0x8000;
7373 }
7374
7375 value += signed_addend;
7376
7377 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7378 value -= (input_section->output_section->vma
7379 + input_section->output_offset + rel->r_offset);
7380
7381 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7382 return bfd_reloc_overflow;
7383
7384 if (sym_flags == STT_ARM_TFUNC)
7385 value |= 1;
7386
7387 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7388 || r_type == R_ARM_MOVT_BREL)
7389 value >>= 16;
7390
7391 insn &= 0xfff0f000;
7392 insn |= value & 0xfff;
7393 insn |= (value & 0xf000) << 4;
7394 bfd_put_32 (input_bfd, insn, hit_data);
7395 }
7396 return bfd_reloc_ok;
7397
7398 case R_ARM_THM_MOVW_ABS_NC:
7399 case R_ARM_THM_MOVT_ABS:
7400 case R_ARM_THM_MOVW_PREL_NC:
7401 case R_ARM_THM_MOVT_PREL:
7402 /* Until we properly support segment-base-relative addressing then
7403 we assume the segment base to be zero, as for the above relocations.
7404 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7405 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7406 as R_ARM_THM_MOVT_ABS. */
7407 case R_ARM_THM_MOVW_BREL_NC:
7408 case R_ARM_THM_MOVW_BREL:
7409 case R_ARM_THM_MOVT_BREL:
7410 {
7411 bfd_vma insn;
7412
7413 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7414 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7415
7416 if (globals->use_rel)
7417 {
7418 addend = ((insn >> 4) & 0xf000)
7419 | ((insn >> 15) & 0x0800)
7420 | ((insn >> 4) & 0x0700)
7421 | (insn & 0x00ff);
7422 signed_addend = (addend ^ 0x8000) - 0x8000;
7423 }
7424
7425 value += signed_addend;
7426
7427 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7428 value -= (input_section->output_section->vma
7429 + input_section->output_offset + rel->r_offset);
7430
7431 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7432 return bfd_reloc_overflow;
7433
7434 if (sym_flags == STT_ARM_TFUNC)
7435 value |= 1;
7436
7437 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7438 || r_type == R_ARM_THM_MOVT_BREL)
7439 value >>= 16;
7440
7441 insn &= 0xfbf08f00;
7442 insn |= (value & 0xf000) << 4;
7443 insn |= (value & 0x0800) << 15;
7444 insn |= (value & 0x0700) << 4;
7445 insn |= (value & 0x00ff);
7446
7447 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7448 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7449 }
7450 return bfd_reloc_ok;
7451
7452 case R_ARM_ALU_PC_G0_NC:
7453 case R_ARM_ALU_PC_G1_NC:
7454 case R_ARM_ALU_PC_G0:
7455 case R_ARM_ALU_PC_G1:
7456 case R_ARM_ALU_PC_G2:
7457 case R_ARM_ALU_SB_G0_NC:
7458 case R_ARM_ALU_SB_G1_NC:
7459 case R_ARM_ALU_SB_G0:
7460 case R_ARM_ALU_SB_G1:
7461 case R_ARM_ALU_SB_G2:
7462 {
7463 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7464 bfd_vma pc = input_section->output_section->vma
7465 + input_section->output_offset + rel->r_offset;
7466 /* sb should be the origin of the *segment* containing the symbol.
7467 It is not clear how to obtain this OS-dependent value, so we
7468 make an arbitrary choice of zero. */
7469 bfd_vma sb = 0;
7470 bfd_vma residual;
7471 bfd_vma g_n;
7472 bfd_signed_vma signed_value;
7473 int group = 0;
7474
7475 /* Determine which group of bits to select. */
7476 switch (r_type)
7477 {
7478 case R_ARM_ALU_PC_G0_NC:
7479 case R_ARM_ALU_PC_G0:
7480 case R_ARM_ALU_SB_G0_NC:
7481 case R_ARM_ALU_SB_G0:
7482 group = 0;
7483 break;
7484
7485 case R_ARM_ALU_PC_G1_NC:
7486 case R_ARM_ALU_PC_G1:
7487 case R_ARM_ALU_SB_G1_NC:
7488 case R_ARM_ALU_SB_G1:
7489 group = 1;
7490 break;
7491
7492 case R_ARM_ALU_PC_G2:
7493 case R_ARM_ALU_SB_G2:
7494 group = 2;
7495 break;
7496
7497 default:
7498 abort ();
7499 }
7500
7501 /* If REL, extract the addend from the insn. If RELA, it will
7502 have already been fetched for us. */
7503 if (globals->use_rel)
7504 {
7505 int negative;
7506 bfd_vma constant = insn & 0xff;
7507 bfd_vma rotation = (insn & 0xf00) >> 8;
7508
7509 if (rotation == 0)
7510 signed_addend = constant;
7511 else
7512 {
7513 /* Compensate for the fact that in the instruction, the
7514 rotation is stored in multiples of 2 bits. */
7515 rotation *= 2;
7516
7517 /* Rotate "constant" right by "rotation" bits. */
7518 signed_addend = (constant >> rotation) |
7519 (constant << (8 * sizeof (bfd_vma) - rotation));
7520 }
7521
7522 /* Determine if the instruction is an ADD or a SUB.
7523 (For REL, this determines the sign of the addend.) */
7524 negative = identify_add_or_sub (insn);
7525 if (negative == 0)
7526 {
7527 (*_bfd_error_handler)
7528 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7529 input_bfd, input_section,
7530 (long) rel->r_offset, howto->name);
7531 return bfd_reloc_overflow;
7532 }
7533
7534 signed_addend *= negative;
7535 }
7536
7537 /* Compute the value (X) to go in the place. */
7538 if (r_type == R_ARM_ALU_PC_G0_NC
7539 || r_type == R_ARM_ALU_PC_G1_NC
7540 || r_type == R_ARM_ALU_PC_G0
7541 || r_type == R_ARM_ALU_PC_G1
7542 || r_type == R_ARM_ALU_PC_G2)
7543 /* PC relative. */
7544 signed_value = value - pc + signed_addend;
7545 else
7546 /* Section base relative. */
7547 signed_value = value - sb + signed_addend;
7548
7549 /* If the target symbol is a Thumb function, then set the
7550 Thumb bit in the address. */
7551 if (sym_flags == STT_ARM_TFUNC)
7552 signed_value |= 1;
7553
7554 /* Calculate the value of the relevant G_n, in encoded
7555 constant-with-rotation format. */
7556 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7557 &residual);
7558
7559 /* Check for overflow if required. */
7560 if ((r_type == R_ARM_ALU_PC_G0
7561 || r_type == R_ARM_ALU_PC_G1
7562 || r_type == R_ARM_ALU_PC_G2
7563 || r_type == R_ARM_ALU_SB_G0
7564 || r_type == R_ARM_ALU_SB_G1
7565 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7566 {
7567 (*_bfd_error_handler)
7568 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7569 input_bfd, input_section,
7570 (long) rel->r_offset, abs (signed_value), howto->name);
7571 return bfd_reloc_overflow;
7572 }
7573
7574 /* Mask out the value and the ADD/SUB part of the opcode; take care
7575 not to destroy the S bit. */
7576 insn &= 0xff1ff000;
7577
7578 /* Set the opcode according to whether the value to go in the
7579 place is negative. */
7580 if (signed_value < 0)
7581 insn |= 1 << 22;
7582 else
7583 insn |= 1 << 23;
7584
7585 /* Encode the offset. */
7586 insn |= g_n;
7587
7588 bfd_put_32 (input_bfd, insn, hit_data);
7589 }
7590 return bfd_reloc_ok;
7591
7592 case R_ARM_LDR_PC_G0:
7593 case R_ARM_LDR_PC_G1:
7594 case R_ARM_LDR_PC_G2:
7595 case R_ARM_LDR_SB_G0:
7596 case R_ARM_LDR_SB_G1:
7597 case R_ARM_LDR_SB_G2:
7598 {
7599 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7600 bfd_vma pc = input_section->output_section->vma
7601 + input_section->output_offset + rel->r_offset;
7602 bfd_vma sb = 0; /* See note above. */
7603 bfd_vma residual;
7604 bfd_signed_vma signed_value;
7605 int group = 0;
7606
7607 /* Determine which groups of bits to calculate. */
7608 switch (r_type)
7609 {
7610 case R_ARM_LDR_PC_G0:
7611 case R_ARM_LDR_SB_G0:
7612 group = 0;
7613 break;
7614
7615 case R_ARM_LDR_PC_G1:
7616 case R_ARM_LDR_SB_G1:
7617 group = 1;
7618 break;
7619
7620 case R_ARM_LDR_PC_G2:
7621 case R_ARM_LDR_SB_G2:
7622 group = 2;
7623 break;
7624
7625 default:
7626 abort ();
7627 }
7628
7629 /* If REL, extract the addend from the insn. If RELA, it will
7630 have already been fetched for us. */
7631 if (globals->use_rel)
7632 {
7633 int negative = (insn & (1 << 23)) ? 1 : -1;
7634 signed_addend = negative * (insn & 0xfff);
7635 }
7636
7637 /* Compute the value (X) to go in the place. */
7638 if (r_type == R_ARM_LDR_PC_G0
7639 || r_type == R_ARM_LDR_PC_G1
7640 || r_type == R_ARM_LDR_PC_G2)
7641 /* PC relative. */
7642 signed_value = value - pc + signed_addend;
7643 else
7644 /* Section base relative. */
7645 signed_value = value - sb + signed_addend;
7646
7647 /* Calculate the value of the relevant G_{n-1} to obtain
7648 the residual at that stage. */
7649 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7650
7651 /* Check for overflow. */
7652 if (residual >= 0x1000)
7653 {
7654 (*_bfd_error_handler)
7655 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7656 input_bfd, input_section,
7657 (long) rel->r_offset, abs (signed_value), howto->name);
7658 return bfd_reloc_overflow;
7659 }
7660
7661 /* Mask out the value and U bit. */
7662 insn &= 0xff7ff000;
7663
7664 /* Set the U bit if the value to go in the place is non-negative. */
7665 if (signed_value >= 0)
7666 insn |= 1 << 23;
7667
7668 /* Encode the offset. */
7669 insn |= residual;
7670
7671 bfd_put_32 (input_bfd, insn, hit_data);
7672 }
7673 return bfd_reloc_ok;
7674
7675 case R_ARM_LDRS_PC_G0:
7676 case R_ARM_LDRS_PC_G1:
7677 case R_ARM_LDRS_PC_G2:
7678 case R_ARM_LDRS_SB_G0:
7679 case R_ARM_LDRS_SB_G1:
7680 case R_ARM_LDRS_SB_G2:
7681 {
7682 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7683 bfd_vma pc = input_section->output_section->vma
7684 + input_section->output_offset + rel->r_offset;
7685 bfd_vma sb = 0; /* See note above. */
7686 bfd_vma residual;
7687 bfd_signed_vma signed_value;
7688 int group = 0;
7689
7690 /* Determine which groups of bits to calculate. */
7691 switch (r_type)
7692 {
7693 case R_ARM_LDRS_PC_G0:
7694 case R_ARM_LDRS_SB_G0:
7695 group = 0;
7696 break;
7697
7698 case R_ARM_LDRS_PC_G1:
7699 case R_ARM_LDRS_SB_G1:
7700 group = 1;
7701 break;
7702
7703 case R_ARM_LDRS_PC_G2:
7704 case R_ARM_LDRS_SB_G2:
7705 group = 2;
7706 break;
7707
7708 default:
7709 abort ();
7710 }
7711
7712 /* If REL, extract the addend from the insn. If RELA, it will
7713 have already been fetched for us. */
7714 if (globals->use_rel)
7715 {
7716 int negative = (insn & (1 << 23)) ? 1 : -1;
7717 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7718 }
7719
7720 /* Compute the value (X) to go in the place. */
7721 if (r_type == R_ARM_LDRS_PC_G0
7722 || r_type == R_ARM_LDRS_PC_G1
7723 || r_type == R_ARM_LDRS_PC_G2)
7724 /* PC relative. */
7725 signed_value = value - pc + signed_addend;
7726 else
7727 /* Section base relative. */
7728 signed_value = value - sb + signed_addend;
7729
7730 /* Calculate the value of the relevant G_{n-1} to obtain
7731 the residual at that stage. */
7732 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7733
7734 /* Check for overflow. */
7735 if (residual >= 0x100)
7736 {
7737 (*_bfd_error_handler)
7738 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7739 input_bfd, input_section,
7740 (long) rel->r_offset, abs (signed_value), howto->name);
7741 return bfd_reloc_overflow;
7742 }
7743
7744 /* Mask out the value and U bit. */
7745 insn &= 0xff7ff0f0;
7746
7747 /* Set the U bit if the value to go in the place is non-negative. */
7748 if (signed_value >= 0)
7749 insn |= 1 << 23;
7750
7751 /* Encode the offset. */
7752 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7753
7754 bfd_put_32 (input_bfd, insn, hit_data);
7755 }
7756 return bfd_reloc_ok;
7757
7758 case R_ARM_LDC_PC_G0:
7759 case R_ARM_LDC_PC_G1:
7760 case R_ARM_LDC_PC_G2:
7761 case R_ARM_LDC_SB_G0:
7762 case R_ARM_LDC_SB_G1:
7763 case R_ARM_LDC_SB_G2:
7764 {
7765 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7766 bfd_vma pc = input_section->output_section->vma
7767 + input_section->output_offset + rel->r_offset;
7768 bfd_vma sb = 0; /* See note above. */
7769 bfd_vma residual;
7770 bfd_signed_vma signed_value;
7771 int group = 0;
7772
7773 /* Determine which groups of bits to calculate. */
7774 switch (r_type)
7775 {
7776 case R_ARM_LDC_PC_G0:
7777 case R_ARM_LDC_SB_G0:
7778 group = 0;
7779 break;
7780
7781 case R_ARM_LDC_PC_G1:
7782 case R_ARM_LDC_SB_G1:
7783 group = 1;
7784 break;
7785
7786 case R_ARM_LDC_PC_G2:
7787 case R_ARM_LDC_SB_G2:
7788 group = 2;
7789 break;
7790
7791 default:
7792 abort ();
7793 }
7794
7795 /* If REL, extract the addend from the insn. If RELA, it will
7796 have already been fetched for us. */
7797 if (globals->use_rel)
7798 {
7799 int negative = (insn & (1 << 23)) ? 1 : -1;
7800 signed_addend = negative * ((insn & 0xff) << 2);
7801 }
7802
7803 /* Compute the value (X) to go in the place. */
7804 if (r_type == R_ARM_LDC_PC_G0
7805 || r_type == R_ARM_LDC_PC_G1
7806 || r_type == R_ARM_LDC_PC_G2)
7807 /* PC relative. */
7808 signed_value = value - pc + signed_addend;
7809 else
7810 /* Section base relative. */
7811 signed_value = value - sb + signed_addend;
7812
7813 /* Calculate the value of the relevant G_{n-1} to obtain
7814 the residual at that stage. */
7815 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7816
7817 /* Check for overflow. (The absolute value to go in the place must be
7818 divisible by four and, after having been divided by four, must
7819 fit in eight bits.) */
7820 if ((residual & 0x3) != 0 || residual >= 0x400)
7821 {
7822 (*_bfd_error_handler)
7823 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7824 input_bfd, input_section,
7825 (long) rel->r_offset, abs (signed_value), howto->name);
7826 return bfd_reloc_overflow;
7827 }
7828
7829 /* Mask out the value and U bit. */
7830 insn &= 0xff7fff00;
7831
7832 /* Set the U bit if the value to go in the place is non-negative. */
7833 if (signed_value >= 0)
7834 insn |= 1 << 23;
7835
7836 /* Encode the offset. */
7837 insn |= residual >> 2;
7838
7839 bfd_put_32 (input_bfd, insn, hit_data);
7840 }
7841 return bfd_reloc_ok;
7842
7843 default:
7844 return bfd_reloc_notsupported;
7845 }
7846 }
7847
7848 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7849 static void
7850 arm_add_to_rel (bfd * abfd,
7851 bfd_byte * address,
7852 reloc_howto_type * howto,
7853 bfd_signed_vma increment)
7854 {
7855 bfd_signed_vma addend;
7856
7857 if (howto->type == R_ARM_THM_CALL
7858 || howto->type == R_ARM_THM_JUMP24)
7859 {
7860 int upper_insn, lower_insn;
7861 int upper, lower;
7862
7863 upper_insn = bfd_get_16 (abfd, address);
7864 lower_insn = bfd_get_16 (abfd, address + 2);
7865 upper = upper_insn & 0x7ff;
7866 lower = lower_insn & 0x7ff;
7867
7868 addend = (upper << 12) | (lower << 1);
7869 addend += increment;
7870 addend >>= 1;
7871
7872 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7873 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7874
7875 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7876 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7877 }
7878 else
7879 {
7880 bfd_vma contents;
7881
7882 contents = bfd_get_32 (abfd, address);
7883
7884 /* Get the (signed) value from the instruction. */
7885 addend = contents & howto->src_mask;
7886 if (addend & ((howto->src_mask + 1) >> 1))
7887 {
7888 bfd_signed_vma mask;
7889
7890 mask = -1;
7891 mask &= ~ howto->src_mask;
7892 addend |= mask;
7893 }
7894
7895 /* Add in the increment, (which is a byte value). */
7896 switch (howto->type)
7897 {
7898 default:
7899 addend += increment;
7900 break;
7901
7902 case R_ARM_PC24:
7903 case R_ARM_PLT32:
7904 case R_ARM_CALL:
7905 case R_ARM_JUMP24:
7906 addend <<= howto->size;
7907 addend += increment;
7908
7909 /* Should we check for overflow here ? */
7910
7911 /* Drop any undesired bits. */
7912 addend >>= howto->rightshift;
7913 break;
7914 }
7915
7916 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7917
7918 bfd_put_32 (abfd, contents, address);
7919 }
7920 }
7921
7922 #define IS_ARM_TLS_RELOC(R_TYPE) \
7923 ((R_TYPE) == R_ARM_TLS_GD32 \
7924 || (R_TYPE) == R_ARM_TLS_LDO32 \
7925 || (R_TYPE) == R_ARM_TLS_LDM32 \
7926 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7927 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7928 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7929 || (R_TYPE) == R_ARM_TLS_LE32 \
7930 || (R_TYPE) == R_ARM_TLS_IE32)
7931
7932 /* Relocate an ARM ELF section. */
7933
7934 static bfd_boolean
7935 elf32_arm_relocate_section (bfd * output_bfd,
7936 struct bfd_link_info * info,
7937 bfd * input_bfd,
7938 asection * input_section,
7939 bfd_byte * contents,
7940 Elf_Internal_Rela * relocs,
7941 Elf_Internal_Sym * local_syms,
7942 asection ** local_sections)
7943 {
7944 Elf_Internal_Shdr *symtab_hdr;
7945 struct elf_link_hash_entry **sym_hashes;
7946 Elf_Internal_Rela *rel;
7947 Elf_Internal_Rela *relend;
7948 const char *name;
7949 struct elf32_arm_link_hash_table * globals;
7950
7951 globals = elf32_arm_hash_table (info);
7952
7953 symtab_hdr = & elf_symtab_hdr (input_bfd);
7954 sym_hashes = elf_sym_hashes (input_bfd);
7955
7956 rel = relocs;
7957 relend = relocs + input_section->reloc_count;
7958 for (; rel < relend; rel++)
7959 {
7960 int r_type;
7961 reloc_howto_type * howto;
7962 unsigned long r_symndx;
7963 Elf_Internal_Sym * sym;
7964 asection * sec;
7965 struct elf_link_hash_entry * h;
7966 bfd_vma relocation;
7967 bfd_reloc_status_type r;
7968 arelent bfd_reloc;
7969 char sym_type;
7970 bfd_boolean unresolved_reloc = FALSE;
7971 char *error_message = NULL;
7972
7973 r_symndx = ELF32_R_SYM (rel->r_info);
7974 r_type = ELF32_R_TYPE (rel->r_info);
7975 r_type = arm_real_reloc_type (globals, r_type);
7976
7977 if ( r_type == R_ARM_GNU_VTENTRY
7978 || r_type == R_ARM_GNU_VTINHERIT)
7979 continue;
7980
7981 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7982 howto = bfd_reloc.howto;
7983
7984 h = NULL;
7985 sym = NULL;
7986 sec = NULL;
7987
7988 if (r_symndx < symtab_hdr->sh_info)
7989 {
7990 sym = local_syms + r_symndx;
7991 sym_type = ELF32_ST_TYPE (sym->st_info);
7992 sec = local_sections[r_symndx];
7993 if (globals->use_rel)
7994 {
7995 relocation = (sec->output_section->vma
7996 + sec->output_offset
7997 + sym->st_value);
7998 if (!info->relocatable
7999 && (sec->flags & SEC_MERGE)
8000 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8001 {
8002 asection *msec;
8003 bfd_vma addend, value;
8004
8005 switch (r_type)
8006 {
8007 case R_ARM_MOVW_ABS_NC:
8008 case R_ARM_MOVT_ABS:
8009 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8010 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
8011 addend = (addend ^ 0x8000) - 0x8000;
8012 break;
8013
8014 case R_ARM_THM_MOVW_ABS_NC:
8015 case R_ARM_THM_MOVT_ABS:
8016 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8017 << 16;
8018 value |= bfd_get_16 (input_bfd,
8019 contents + rel->r_offset + 2);
8020 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8021 | ((value & 0x04000000) >> 15);
8022 addend = (addend ^ 0x8000) - 0x8000;
8023 break;
8024
8025 default:
8026 if (howto->rightshift
8027 || (howto->src_mask & (howto->src_mask + 1)))
8028 {
8029 (*_bfd_error_handler)
8030 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8031 input_bfd, input_section,
8032 (long) rel->r_offset, howto->name);
8033 return FALSE;
8034 }
8035
8036 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8037
8038 /* Get the (signed) value from the instruction. */
8039 addend = value & howto->src_mask;
8040 if (addend & ((howto->src_mask + 1) >> 1))
8041 {
8042 bfd_signed_vma mask;
8043
8044 mask = -1;
8045 mask &= ~ howto->src_mask;
8046 addend |= mask;
8047 }
8048 break;
8049 }
8050
8051 msec = sec;
8052 addend =
8053 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8054 - relocation;
8055 addend += msec->output_section->vma + msec->output_offset;
8056
8057 /* Cases here must match those in the preceeding
8058 switch statement. */
8059 switch (r_type)
8060 {
8061 case R_ARM_MOVW_ABS_NC:
8062 case R_ARM_MOVT_ABS:
8063 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8064 | (addend & 0xfff);
8065 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8066 break;
8067
8068 case R_ARM_THM_MOVW_ABS_NC:
8069 case R_ARM_THM_MOVT_ABS:
8070 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8071 | (addend & 0xff) | ((addend & 0x0800) << 15);
8072 bfd_put_16 (input_bfd, value >> 16,
8073 contents + rel->r_offset);
8074 bfd_put_16 (input_bfd, value,
8075 contents + rel->r_offset + 2);
8076 break;
8077
8078 default:
8079 value = (value & ~ howto->dst_mask)
8080 | (addend & howto->dst_mask);
8081 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8082 break;
8083 }
8084 }
8085 }
8086 else
8087 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8088 }
8089 else
8090 {
8091 bfd_boolean warned;
8092
8093 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8094 r_symndx, symtab_hdr, sym_hashes,
8095 h, sec, relocation,
8096 unresolved_reloc, warned);
8097
8098 sym_type = h->type;
8099 }
8100
8101 if (sec != NULL && elf_discarded_section (sec))
8102 {
8103 /* For relocs against symbols from removed linkonce sections,
8104 or sections discarded by a linker script, we just want the
8105 section contents zeroed. Avoid any special processing. */
8106 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8107 rel->r_info = 0;
8108 rel->r_addend = 0;
8109 continue;
8110 }
8111
8112 if (info->relocatable)
8113 {
8114 /* This is a relocatable link. We don't have to change
8115 anything, unless the reloc is against a section symbol,
8116 in which case we have to adjust according to where the
8117 section symbol winds up in the output section. */
8118 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8119 {
8120 if (globals->use_rel)
8121 arm_add_to_rel (input_bfd, contents + rel->r_offset,
8122 howto, (bfd_signed_vma) sec->output_offset);
8123 else
8124 rel->r_addend += sec->output_offset;
8125 }
8126 continue;
8127 }
8128
8129 if (h != NULL)
8130 name = h->root.root.string;
8131 else
8132 {
8133 name = (bfd_elf_string_from_elf_section
8134 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8135 if (name == NULL || *name == '\0')
8136 name = bfd_section_name (input_bfd, sec);
8137 }
8138
8139 if (r_symndx != 0
8140 && r_type != R_ARM_NONE
8141 && (h == NULL
8142 || h->root.type == bfd_link_hash_defined
8143 || h->root.type == bfd_link_hash_defweak)
8144 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8145 {
8146 (*_bfd_error_handler)
8147 ((sym_type == STT_TLS
8148 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8149 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8150 input_bfd,
8151 input_section,
8152 (long) rel->r_offset,
8153 howto->name,
8154 name);
8155 }
8156
8157 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8158 input_section, contents, rel,
8159 relocation, info, sec, name,
8160 (h ? ELF_ST_TYPE (h->type) :
8161 ELF_ST_TYPE (sym->st_info)), h,
8162 &unresolved_reloc, &error_message);
8163
8164 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8165 because such sections are not SEC_ALLOC and thus ld.so will
8166 not process them. */
8167 if (unresolved_reloc
8168 && !((input_section->flags & SEC_DEBUGGING) != 0
8169 && h->def_dynamic))
8170 {
8171 (*_bfd_error_handler)
8172 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8173 input_bfd,
8174 input_section,
8175 (long) rel->r_offset,
8176 howto->name,
8177 h->root.root.string);
8178 return FALSE;
8179 }
8180
8181 if (r != bfd_reloc_ok)
8182 {
8183 switch (r)
8184 {
8185 case bfd_reloc_overflow:
8186 /* If the overflowing reloc was to an undefined symbol,
8187 we have already printed one error message and there
8188 is no point complaining again. */
8189 if ((! h ||
8190 h->root.type != bfd_link_hash_undefined)
8191 && (!((*info->callbacks->reloc_overflow)
8192 (info, (h ? &h->root : NULL), name, howto->name,
8193 (bfd_vma) 0, input_bfd, input_section,
8194 rel->r_offset))))
8195 return FALSE;
8196 break;
8197
8198 case bfd_reloc_undefined:
8199 if (!((*info->callbacks->undefined_symbol)
8200 (info, name, input_bfd, input_section,
8201 rel->r_offset, TRUE)))
8202 return FALSE;
8203 break;
8204
8205 case bfd_reloc_outofrange:
8206 error_message = _("out of range");
8207 goto common_error;
8208
8209 case bfd_reloc_notsupported:
8210 error_message = _("unsupported relocation");
8211 goto common_error;
8212
8213 case bfd_reloc_dangerous:
8214 /* error_message should already be set. */
8215 goto common_error;
8216
8217 default:
8218 error_message = _("unknown error");
8219 /* Fall through. */
8220
8221 common_error:
8222 BFD_ASSERT (error_message != NULL);
8223 if (!((*info->callbacks->reloc_dangerous)
8224 (info, error_message, input_bfd, input_section,
8225 rel->r_offset)))
8226 return FALSE;
8227 break;
8228 }
8229 }
8230 }
8231
8232 return TRUE;
8233 }
8234
8235 /* Set the right machine number. */
8236
8237 static bfd_boolean
8238 elf32_arm_object_p (bfd *abfd)
8239 {
8240 unsigned int mach;
8241
8242 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8243
8244 if (mach != bfd_mach_arm_unknown)
8245 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8246
8247 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8248 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8249
8250 else
8251 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8252
8253 return TRUE;
8254 }
8255
8256 /* Function to keep ARM specific flags in the ELF header. */
8257
8258 static bfd_boolean
8259 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8260 {
8261 if (elf_flags_init (abfd)
8262 && elf_elfheader (abfd)->e_flags != flags)
8263 {
8264 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8265 {
8266 if (flags & EF_ARM_INTERWORK)
8267 (*_bfd_error_handler)
8268 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8269 abfd);
8270 else
8271 _bfd_error_handler
8272 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8273 abfd);
8274 }
8275 }
8276 else
8277 {
8278 elf_elfheader (abfd)->e_flags = flags;
8279 elf_flags_init (abfd) = TRUE;
8280 }
8281
8282 return TRUE;
8283 }
8284
8285 /* Copy backend specific data from one object module to another. */
8286
8287 static bfd_boolean
8288 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8289 {
8290 flagword in_flags;
8291 flagword out_flags;
8292
8293 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8294 return TRUE;
8295
8296 in_flags = elf_elfheader (ibfd)->e_flags;
8297 out_flags = elf_elfheader (obfd)->e_flags;
8298
8299 if (elf_flags_init (obfd)
8300 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8301 && in_flags != out_flags)
8302 {
8303 /* Cannot mix APCS26 and APCS32 code. */
8304 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8305 return FALSE;
8306
8307 /* Cannot mix float APCS and non-float APCS code. */
8308 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8309 return FALSE;
8310
8311 /* If the src and dest have different interworking flags
8312 then turn off the interworking bit. */
8313 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8314 {
8315 if (out_flags & EF_ARM_INTERWORK)
8316 _bfd_error_handler
8317 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8318 obfd, ibfd);
8319
8320 in_flags &= ~EF_ARM_INTERWORK;
8321 }
8322
8323 /* Likewise for PIC, though don't warn for this case. */
8324 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8325 in_flags &= ~EF_ARM_PIC;
8326 }
8327
8328 elf_elfheader (obfd)->e_flags = in_flags;
8329 elf_flags_init (obfd) = TRUE;
8330
8331 /* Also copy the EI_OSABI field. */
8332 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8333 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8334
8335 /* Copy object attributes. */
8336 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8337
8338 return TRUE;
8339 }
8340
8341 /* Values for Tag_ABI_PCS_R9_use. */
8342 enum
8343 {
8344 AEABI_R9_V6,
8345 AEABI_R9_SB,
8346 AEABI_R9_TLS,
8347 AEABI_R9_unused
8348 };
8349
8350 /* Values for Tag_ABI_PCS_RW_data. */
8351 enum
8352 {
8353 AEABI_PCS_RW_data_absolute,
8354 AEABI_PCS_RW_data_PCrel,
8355 AEABI_PCS_RW_data_SBrel,
8356 AEABI_PCS_RW_data_unused
8357 };
8358
8359 /* Values for Tag_ABI_enum_size. */
8360 enum
8361 {
8362 AEABI_enum_unused,
8363 AEABI_enum_short,
8364 AEABI_enum_wide,
8365 AEABI_enum_forced_wide
8366 };
8367
8368 /* Determine whether an object attribute tag takes an integer, a
8369 string or both. */
8370
8371 static int
8372 elf32_arm_obj_attrs_arg_type (int tag)
8373 {
8374 if (tag == Tag_compatibility)
8375 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
8376 else if (tag == Tag_nodefaults)
8377 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
8378 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
8379 return ATTR_TYPE_FLAG_STR_VAL;
8380 else if (tag < 32)
8381 return ATTR_TYPE_FLAG_INT_VAL;
8382 else
8383 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
8384 }
8385
8386 /* The ABI defines that Tag_conformance should be emitted first, and that
8387 Tag_nodefaults should be second (if either is defined). This sets those
8388 two positions, and bumps up the position of all the remaining tags to
8389 compensate. */
8390 static int
8391 elf32_arm_obj_attrs_order (int num)
8392 {
8393 if (num == 4)
8394 return Tag_conformance;
8395 if (num == 5)
8396 return Tag_nodefaults;
8397 if ((num - 2) < Tag_nodefaults)
8398 return num - 2;
8399 if ((num - 1) < Tag_conformance)
8400 return num - 1;
8401 return num;
8402 }
8403
8404 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
8405 Returns -1 if no architecture could be read. */
8406
8407 static int
8408 get_secondary_compatible_arch (bfd *abfd)
8409 {
8410 obj_attribute *attr =
8411 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8412
8413 /* Note: the tag and its argument below are uleb128 values, though
8414 currently-defined values fit in one byte for each. */
8415 if (attr->s
8416 && attr->s[0] == Tag_CPU_arch
8417 && (attr->s[1] & 128) != 128
8418 && attr->s[2] == 0)
8419 return attr->s[1];
8420
8421 /* This tag is "safely ignorable", so don't complain if it looks funny. */
8422 return -1;
8423 }
8424
8425 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
8426 The tag is removed if ARCH is -1. */
8427
8428 static void
8429 set_secondary_compatible_arch (bfd *abfd, int arch)
8430 {
8431 obj_attribute *attr =
8432 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8433
8434 if (arch == -1)
8435 {
8436 attr->s = NULL;
8437 return;
8438 }
8439
8440 /* Note: the tag and its argument below are uleb128 values, though
8441 currently-defined values fit in one byte for each. */
8442 if (!attr->s)
8443 attr->s = bfd_alloc (abfd, 3);
8444 attr->s[0] = Tag_CPU_arch;
8445 attr->s[1] = arch;
8446 attr->s[2] = '\0';
8447 }
8448
8449 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
8450 into account. */
8451
8452 static int
8453 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
8454 int newtag, int secondary_compat)
8455 {
8456 #define T(X) TAG_CPU_ARCH_##X
8457 int tagl, tagh, result;
8458 const int v6t2[] =
8459 {
8460 T(V6T2), /* PRE_V4. */
8461 T(V6T2), /* V4. */
8462 T(V6T2), /* V4T. */
8463 T(V6T2), /* V5T. */
8464 T(V6T2), /* V5TE. */
8465 T(V6T2), /* V5TEJ. */
8466 T(V6T2), /* V6. */
8467 T(V7), /* V6KZ. */
8468 T(V6T2) /* V6T2. */
8469 };
8470 const int v6k[] =
8471 {
8472 T(V6K), /* PRE_V4. */
8473 T(V6K), /* V4. */
8474 T(V6K), /* V4T. */
8475 T(V6K), /* V5T. */
8476 T(V6K), /* V5TE. */
8477 T(V6K), /* V5TEJ. */
8478 T(V6K), /* V6. */
8479 T(V6KZ), /* V6KZ. */
8480 T(V7), /* V6T2. */
8481 T(V6K) /* V6K. */
8482 };
8483 const int v7[] =
8484 {
8485 T(V7), /* PRE_V4. */
8486 T(V7), /* V4. */
8487 T(V7), /* V4T. */
8488 T(V7), /* V5T. */
8489 T(V7), /* V5TE. */
8490 T(V7), /* V5TEJ. */
8491 T(V7), /* V6. */
8492 T(V7), /* V6KZ. */
8493 T(V7), /* V6T2. */
8494 T(V7), /* V6K. */
8495 T(V7) /* V7. */
8496 };
8497 const int v6_m[] =
8498 {
8499 -1, /* PRE_V4. */
8500 -1, /* V4. */
8501 T(V6K), /* V4T. */
8502 T(V6K), /* V5T. */
8503 T(V6K), /* V5TE. */
8504 T(V6K), /* V5TEJ. */
8505 T(V6K), /* V6. */
8506 T(V6KZ), /* V6KZ. */
8507 T(V7), /* V6T2. */
8508 T(V6K), /* V6K. */
8509 T(V7), /* V7. */
8510 T(V6_M) /* V6_M. */
8511 };
8512 const int v6s_m[] =
8513 {
8514 -1, /* PRE_V4. */
8515 -1, /* V4. */
8516 T(V6K), /* V4T. */
8517 T(V6K), /* V5T. */
8518 T(V6K), /* V5TE. */
8519 T(V6K), /* V5TEJ. */
8520 T(V6K), /* V6. */
8521 T(V6KZ), /* V6KZ. */
8522 T(V7), /* V6T2. */
8523 T(V6K), /* V6K. */
8524 T(V7), /* V7. */
8525 T(V6S_M), /* V6_M. */
8526 T(V6S_M) /* V6S_M. */
8527 };
8528 const int v4t_plus_v6_m[] =
8529 {
8530 -1, /* PRE_V4. */
8531 -1, /* V4. */
8532 T(V4T), /* V4T. */
8533 T(V5T), /* V5T. */
8534 T(V5TE), /* V5TE. */
8535 T(V5TEJ), /* V5TEJ. */
8536 T(V6), /* V6. */
8537 T(V6KZ), /* V6KZ. */
8538 T(V6T2), /* V6T2. */
8539 T(V6K), /* V6K. */
8540 T(V7), /* V7. */
8541 T(V6_M), /* V6_M. */
8542 T(V6S_M), /* V6S_M. */
8543 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
8544 };
8545 const int *comb[] =
8546 {
8547 v6t2,
8548 v6k,
8549 v7,
8550 v6_m,
8551 v6s_m,
8552 /* Pseudo-architecture. */
8553 v4t_plus_v6_m
8554 };
8555
8556 /* Check we've not got a higher architecture than we know about. */
8557
8558 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
8559 {
8560 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
8561 return -1;
8562 }
8563
8564 /* Override old tag if we have a Tag_also_compatible_with on the output. */
8565
8566 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
8567 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
8568 oldtag = T(V4T_PLUS_V6_M);
8569
8570 /* And override the new tag if we have a Tag_also_compatible_with on the
8571 input. */
8572
8573 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
8574 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
8575 newtag = T(V4T_PLUS_V6_M);
8576
8577 tagl = (oldtag < newtag) ? oldtag : newtag;
8578 result = tagh = (oldtag > newtag) ? oldtag : newtag;
8579
8580 /* Architectures before V6KZ add features monotonically. */
8581 if (tagh <= TAG_CPU_ARCH_V6KZ)
8582 return result;
8583
8584 result = comb[tagh - T(V6T2)][tagl];
8585
8586 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
8587 as the canonical version. */
8588 if (result == T(V4T_PLUS_V6_M))
8589 {
8590 result = T(V4T);
8591 *secondary_compat_out = T(V6_M);
8592 }
8593 else
8594 *secondary_compat_out = -1;
8595
8596 if (result == -1)
8597 {
8598 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
8599 ibfd, oldtag, newtag);
8600 return -1;
8601 }
8602
8603 return result;
8604 #undef T
8605 }
8606
8607 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8608 are conflicting attributes. */
8609
8610 static bfd_boolean
8611 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8612 {
8613 obj_attribute *in_attr;
8614 obj_attribute *out_attr;
8615 obj_attribute_list *in_list;
8616 obj_attribute_list *out_list;
8617 obj_attribute_list **out_listp;
8618 /* Some tags have 0 = don't care, 1 = strong requirement,
8619 2 = weak requirement. */
8620 static const int order_021[3] = {0, 2, 1};
8621 /* For use with Tag_VFP_arch. */
8622 static const int order_01243[5] = {0, 1, 2, 4, 3};
8623 int i;
8624 bfd_boolean result = TRUE;
8625
8626 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8627 {
8628 /* This is the first object. Copy the attributes. */
8629 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8630
8631 /* Use the Tag_null value to indicate the attributes have been
8632 initialized. */
8633 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8634
8635 return TRUE;
8636 }
8637
8638 in_attr = elf_known_obj_attributes_proc (ibfd);
8639 out_attr = elf_known_obj_attributes_proc (obfd);
8640 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8641 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8642 {
8643 /* Ignore mismatches if the object doesn't use floating point. */
8644 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8645 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8646 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8647 {
8648 _bfd_error_handler
8649 (_("error: %B uses VFP register arguments, %B does not"),
8650 ibfd, obfd);
8651 result = FALSE;
8652 }
8653 }
8654
8655 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8656 {
8657 /* Merge this attribute with existing attributes. */
8658 switch (i)
8659 {
8660 case Tag_CPU_raw_name:
8661 case Tag_CPU_name:
8662 /* These are merged after Tag_CPU_arch. */
8663 break;
8664
8665 case Tag_ABI_optimization_goals:
8666 case Tag_ABI_FP_optimization_goals:
8667 /* Use the first value seen. */
8668 break;
8669
8670 case Tag_CPU_arch:
8671 {
8672 int secondary_compat = -1, secondary_compat_out = -1;
8673 unsigned int saved_out_attr = out_attr[i].i;
8674 static const char *name_table[] = {
8675 /* These aren't real CPU names, but we can't guess
8676 that from the architecture version alone. */
8677 "Pre v4",
8678 "ARM v4",
8679 "ARM v4T",
8680 "ARM v5T",
8681 "ARM v5TE",
8682 "ARM v5TEJ",
8683 "ARM v6",
8684 "ARM v6KZ",
8685 "ARM v6T2",
8686 "ARM v6K",
8687 "ARM v7",
8688 "ARM v6-M",
8689 "ARM v6S-M"
8690 };
8691
8692 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
8693 secondary_compat = get_secondary_compatible_arch (ibfd);
8694 secondary_compat_out = get_secondary_compatible_arch (obfd);
8695 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
8696 &secondary_compat_out,
8697 in_attr[i].i,
8698 secondary_compat);
8699 set_secondary_compatible_arch (obfd, secondary_compat_out);
8700
8701 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
8702 if (out_attr[i].i == saved_out_attr)
8703 ; /* Leave the names alone. */
8704 else if (out_attr[i].i == in_attr[i].i)
8705 {
8706 /* The output architecture has been changed to match the
8707 input architecture. Use the input names. */
8708 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
8709 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
8710 : NULL;
8711 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
8712 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
8713 : NULL;
8714 }
8715 else
8716 {
8717 out_attr[Tag_CPU_name].s = NULL;
8718 out_attr[Tag_CPU_raw_name].s = NULL;
8719 }
8720
8721 /* If we still don't have a value for Tag_CPU_name,
8722 make one up now. Tag_CPU_raw_name remains blank. */
8723 if (out_attr[Tag_CPU_name].s == NULL
8724 && out_attr[i].i < ARRAY_SIZE (name_table))
8725 out_attr[Tag_CPU_name].s =
8726 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
8727 }
8728 break;
8729
8730 case Tag_ARM_ISA_use:
8731 case Tag_THUMB_ISA_use:
8732 case Tag_WMMX_arch:
8733 case Tag_Advanced_SIMD_arch:
8734 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
8735 case Tag_ABI_FP_rounding:
8736 case Tag_ABI_FP_exceptions:
8737 case Tag_ABI_FP_user_exceptions:
8738 case Tag_ABI_FP_number_model:
8739 case Tag_VFP_HP_extension:
8740 case Tag_CPU_unaligned_access:
8741 case Tag_T2EE_use:
8742 case Tag_Virtualization_use:
8743 case Tag_MPextension_use:
8744 /* Use the largest value specified. */
8745 if (in_attr[i].i > out_attr[i].i)
8746 out_attr[i].i = in_attr[i].i;
8747 break;
8748
8749 case Tag_ABI_align8_preserved:
8750 case Tag_ABI_PCS_RO_data:
8751 /* Use the smallest value specified. */
8752 if (in_attr[i].i < out_attr[i].i)
8753 out_attr[i].i = in_attr[i].i;
8754 break;
8755
8756 case Tag_ABI_align8_needed:
8757 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
8758 && (in_attr[Tag_ABI_align8_preserved].i == 0
8759 || out_attr[Tag_ABI_align8_preserved].i == 0))
8760 {
8761 /* This error message should be enabled once all non-conformant
8762 binaries in the toolchain have had the attributes set
8763 properly.
8764 _bfd_error_handler
8765 (_("error: %B: 8-byte data alignment conflicts with %B"),
8766 obfd, ibfd);
8767 result = FALSE; */
8768 }
8769 /* Fall through. */
8770 case Tag_ABI_FP_denormal:
8771 case Tag_ABI_PCS_GOT_use:
8772 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
8773 value if greater than 2 (for future-proofing). */
8774 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
8775 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
8776 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
8777 out_attr[i].i = in_attr[i].i;
8778 break;
8779
8780
8781 case Tag_CPU_arch_profile:
8782 if (out_attr[i].i != in_attr[i].i)
8783 {
8784 /* 0 will merge with anything.
8785 'A' and 'S' merge to 'A'.
8786 'R' and 'S' merge to 'R'.
8787 'M' and 'A|R|S' is an error. */
8788 if (out_attr[i].i == 0
8789 || (out_attr[i].i == 'S'
8790 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
8791 out_attr[i].i = in_attr[i].i;
8792 else if (in_attr[i].i == 0
8793 || (in_attr[i].i == 'S'
8794 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
8795 ; /* Do nothing. */
8796 else
8797 {
8798 _bfd_error_handler
8799 (_("error: %B: Conflicting architecture profiles %c/%c"),
8800 ibfd,
8801 in_attr[i].i ? in_attr[i].i : '0',
8802 out_attr[i].i ? out_attr[i].i : '0');
8803 result = FALSE;
8804 }
8805 }
8806 break;
8807 case Tag_VFP_arch:
8808 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
8809 largest value if greater than 4 (for future-proofing). */
8810 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
8811 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
8812 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
8813 out_attr[i].i = in_attr[i].i;
8814 break;
8815 case Tag_PCS_config:
8816 if (out_attr[i].i == 0)
8817 out_attr[i].i = in_attr[i].i;
8818 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8819 {
8820 /* It's sometimes ok to mix different configs, so this is only
8821 a warning. */
8822 _bfd_error_handler
8823 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8824 }
8825 break;
8826 case Tag_ABI_PCS_R9_use:
8827 if (in_attr[i].i != out_attr[i].i
8828 && out_attr[i].i != AEABI_R9_unused
8829 && in_attr[i].i != AEABI_R9_unused)
8830 {
8831 _bfd_error_handler
8832 (_("error: %B: Conflicting use of R9"), ibfd);
8833 result = FALSE;
8834 }
8835 if (out_attr[i].i == AEABI_R9_unused)
8836 out_attr[i].i = in_attr[i].i;
8837 break;
8838 case Tag_ABI_PCS_RW_data:
8839 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8840 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8841 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8842 {
8843 _bfd_error_handler
8844 (_("error: %B: SB relative addressing conflicts with use of R9"),
8845 ibfd);
8846 result = FALSE;
8847 }
8848 /* Use the smallest value specified. */
8849 if (in_attr[i].i < out_attr[i].i)
8850 out_attr[i].i = in_attr[i].i;
8851 break;
8852 case Tag_ABI_PCS_wchar_t:
8853 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8854 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
8855 {
8856 _bfd_error_handler
8857 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8858 ibfd, in_attr[i].i, out_attr[i].i);
8859 }
8860 else if (in_attr[i].i && !out_attr[i].i)
8861 out_attr[i].i = in_attr[i].i;
8862 break;
8863 case Tag_ABI_enum_size:
8864 if (in_attr[i].i != AEABI_enum_unused)
8865 {
8866 if (out_attr[i].i == AEABI_enum_unused
8867 || out_attr[i].i == AEABI_enum_forced_wide)
8868 {
8869 /* The existing object is compatible with anything.
8870 Use whatever requirements the new object has. */
8871 out_attr[i].i = in_attr[i].i;
8872 }
8873 else if (in_attr[i].i != AEABI_enum_forced_wide
8874 && out_attr[i].i != in_attr[i].i
8875 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8876 {
8877 static const char *aeabi_enum_names[] =
8878 { "", "variable-size", "32-bit", "" };
8879 const char *in_name =
8880 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8881 ? aeabi_enum_names[in_attr[i].i]
8882 : "<unknown>";
8883 const char *out_name =
8884 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8885 ? aeabi_enum_names[out_attr[i].i]
8886 : "<unknown>";
8887 _bfd_error_handler
8888 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8889 ibfd, in_name, out_name);
8890 }
8891 }
8892 break;
8893 case Tag_ABI_VFP_args:
8894 /* Aready done. */
8895 break;
8896 case Tag_ABI_WMMX_args:
8897 if (in_attr[i].i != out_attr[i].i)
8898 {
8899 _bfd_error_handler
8900 (_("error: %B uses iWMMXt register arguments, %B does not"),
8901 ibfd, obfd);
8902 result = FALSE;
8903 }
8904 break;
8905 case Tag_compatibility:
8906 /* Merged in target-independent code. */
8907 break;
8908 case Tag_ABI_HardFP_use:
8909 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
8910 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
8911 || (in_attr[i].i == 2 && out_attr[i].i == 1))
8912 out_attr[i].i = 3;
8913 else if (in_attr[i].i > out_attr[i].i)
8914 out_attr[i].i = in_attr[i].i;
8915 break;
8916 case Tag_ABI_FP_16bit_format:
8917 if (in_attr[i].i != 0 && out_attr[i].i != 0)
8918 {
8919 if (in_attr[i].i != out_attr[i].i)
8920 {
8921 _bfd_error_handler
8922 (_("error: fp16 format mismatch between %B and %B"),
8923 ibfd, obfd);
8924 result = FALSE;
8925 }
8926 }
8927 if (in_attr[i].i != 0)
8928 out_attr[i].i = in_attr[i].i;
8929 break;
8930
8931 case Tag_nodefaults:
8932 /* This tag is set if it exists, but the value is unused (and is
8933 typically zero). We don't actually need to do anything here -
8934 the merge happens automatically when the type flags are merged
8935 below. */
8936 break;
8937 case Tag_also_compatible_with:
8938 /* Already done in Tag_CPU_arch. */
8939 break;
8940 case Tag_conformance:
8941 /* Keep the attribute if it matches. Throw it away otherwise.
8942 No attribute means no claim to conform. */
8943 if (!in_attr[i].s || !out_attr[i].s
8944 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
8945 out_attr[i].s = NULL;
8946 break;
8947
8948 default:
8949 {
8950 bfd *err_bfd = NULL;
8951
8952 /* The "known_obj_attributes" table does contain some undefined
8953 attributes. Ensure that there are unused. */
8954 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
8955 err_bfd = obfd;
8956 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
8957 err_bfd = ibfd;
8958
8959 if (err_bfd != NULL)
8960 {
8961 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8962 if ((i & 127) < 64)
8963 {
8964 _bfd_error_handler
8965 (_("%B: Unknown mandatory EABI object attribute %d"),
8966 err_bfd, i);
8967 bfd_set_error (bfd_error_bad_value);
8968 result = FALSE;
8969 }
8970 else
8971 {
8972 _bfd_error_handler
8973 (_("Warning: %B: Unknown EABI object attribute %d"),
8974 err_bfd, i);
8975 }
8976 }
8977
8978 /* Only pass on attributes that match in both inputs. */
8979 if (in_attr[i].i != out_attr[i].i
8980 || in_attr[i].s != out_attr[i].s
8981 || (in_attr[i].s != NULL && out_attr[i].s != NULL
8982 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
8983 {
8984 out_attr[i].i = 0;
8985 out_attr[i].s = NULL;
8986 }
8987 }
8988 }
8989
8990 /* If out_attr was copied from in_attr then it won't have a type yet. */
8991 if (in_attr[i].type && !out_attr[i].type)
8992 out_attr[i].type = in_attr[i].type;
8993 }
8994
8995 /* Merge Tag_compatibility attributes and any common GNU ones. */
8996 _bfd_elf_merge_object_attributes (ibfd, obfd);
8997
8998 /* Check for any attributes not known on ARM. */
8999 in_list = elf_other_obj_attributes_proc (ibfd);
9000 out_listp = &elf_other_obj_attributes_proc (obfd);
9001 out_list = *out_listp;
9002
9003 for (; in_list || out_list; )
9004 {
9005 bfd *err_bfd = NULL;
9006 int err_tag = 0;
9007
9008 /* The tags for each list are in numerical order. */
9009 /* If the tags are equal, then merge. */
9010 if (out_list && (!in_list || in_list->tag > out_list->tag))
9011 {
9012 /* This attribute only exists in obfd. We can't merge, and we don't
9013 know what the tag means, so delete it. */
9014 err_bfd = obfd;
9015 err_tag = out_list->tag;
9016 *out_listp = out_list->next;
9017 out_list = *out_listp;
9018 }
9019 else if (in_list && (!out_list || in_list->tag < out_list->tag))
9020 {
9021 /* This attribute only exists in ibfd. We can't merge, and we don't
9022 know what the tag means, so ignore it. */
9023 err_bfd = ibfd;
9024 err_tag = in_list->tag;
9025 in_list = in_list->next;
9026 }
9027 else /* The tags are equal. */
9028 {
9029 /* As present, all attributes in the list are unknown, and
9030 therefore can't be merged meaningfully. */
9031 err_bfd = obfd;
9032 err_tag = out_list->tag;
9033
9034 /* Only pass on attributes that match in both inputs. */
9035 if (in_list->attr.i != out_list->attr.i
9036 || in_list->attr.s != out_list->attr.s
9037 || (in_list->attr.s && out_list->attr.s
9038 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
9039 {
9040 /* No match. Delete the attribute. */
9041 *out_listp = out_list->next;
9042 out_list = *out_listp;
9043 }
9044 else
9045 {
9046 /* Matched. Keep the attribute and move to the next. */
9047 out_list = out_list->next;
9048 in_list = in_list->next;
9049 }
9050 }
9051
9052 if (err_bfd)
9053 {
9054 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
9055 if ((err_tag & 127) < 64)
9056 {
9057 _bfd_error_handler
9058 (_("%B: Unknown mandatory EABI object attribute %d"),
9059 err_bfd, err_tag);
9060 bfd_set_error (bfd_error_bad_value);
9061 result = FALSE;
9062 }
9063 else
9064 {
9065 _bfd_error_handler
9066 (_("Warning: %B: Unknown EABI object attribute %d"),
9067 err_bfd, err_tag);
9068 }
9069 }
9070 }
9071 return result;
9072 }
9073
9074
9075 /* Return TRUE if the two EABI versions are incompatible. */
9076
9077 static bfd_boolean
9078 elf32_arm_versions_compatible (unsigned iver, unsigned over)
9079 {
9080 /* v4 and v5 are the same spec before and after it was released,
9081 so allow mixing them. */
9082 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
9083 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
9084 return TRUE;
9085
9086 return (iver == over);
9087 }
9088
9089 /* Merge backend specific data from an object file to the output
9090 object file when linking. */
9091
9092 static bfd_boolean
9093 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
9094 {
9095 flagword out_flags;
9096 flagword in_flags;
9097 bfd_boolean flags_compatible = TRUE;
9098 asection *sec;
9099
9100 /* Check if we have the same endianess. */
9101 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9102 return FALSE;
9103
9104 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
9105 return TRUE;
9106
9107 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
9108 return FALSE;
9109
9110 /* The input BFD must have had its flags initialised. */
9111 /* The following seems bogus to me -- The flags are initialized in
9112 the assembler but I don't think an elf_flags_init field is
9113 written into the object. */
9114 /* BFD_ASSERT (elf_flags_init (ibfd)); */
9115
9116 in_flags = elf_elfheader (ibfd)->e_flags;
9117 out_flags = elf_elfheader (obfd)->e_flags;
9118
9119 /* In theory there is no reason why we couldn't handle this. However
9120 in practice it isn't even close to working and there is no real
9121 reason to want it. */
9122 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
9123 && !(ibfd->flags & DYNAMIC)
9124 && (in_flags & EF_ARM_BE8))
9125 {
9126 _bfd_error_handler (_("error: %B is already in final BE8 format"),
9127 ibfd);
9128 return FALSE;
9129 }
9130
9131 if (!elf_flags_init (obfd))
9132 {
9133 /* If the input is the default architecture and had the default
9134 flags then do not bother setting the flags for the output
9135 architecture, instead allow future merges to do this. If no
9136 future merges ever set these flags then they will retain their
9137 uninitialised values, which surprise surprise, correspond
9138 to the default values. */
9139 if (bfd_get_arch_info (ibfd)->the_default
9140 && elf_elfheader (ibfd)->e_flags == 0)
9141 return TRUE;
9142
9143 elf_flags_init (obfd) = TRUE;
9144 elf_elfheader (obfd)->e_flags = in_flags;
9145
9146 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9147 && bfd_get_arch_info (obfd)->the_default)
9148 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
9149
9150 return TRUE;
9151 }
9152
9153 /* Determine what should happen if the input ARM architecture
9154 does not match the output ARM architecture. */
9155 if (! bfd_arm_merge_machines (ibfd, obfd))
9156 return FALSE;
9157
9158 /* Identical flags must be compatible. */
9159 if (in_flags == out_flags)
9160 return TRUE;
9161
9162 /* Check to see if the input BFD actually contains any sections. If
9163 not, its flags may not have been initialised either, but it
9164 cannot actually cause any incompatiblity. Do not short-circuit
9165 dynamic objects; their section list may be emptied by
9166 elf_link_add_object_symbols.
9167
9168 Also check to see if there are no code sections in the input.
9169 In this case there is no need to check for code specific flags.
9170 XXX - do we need to worry about floating-point format compatability
9171 in data sections ? */
9172 if (!(ibfd->flags & DYNAMIC))
9173 {
9174 bfd_boolean null_input_bfd = TRUE;
9175 bfd_boolean only_data_sections = TRUE;
9176
9177 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9178 {
9179 /* Ignore synthetic glue sections. */
9180 if (strcmp (sec->name, ".glue_7")
9181 && strcmp (sec->name, ".glue_7t"))
9182 {
9183 if ((bfd_get_section_flags (ibfd, sec)
9184 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9185 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9186 only_data_sections = FALSE;
9187
9188 null_input_bfd = FALSE;
9189 break;
9190 }
9191 }
9192
9193 if (null_input_bfd || only_data_sections)
9194 return TRUE;
9195 }
9196
9197 /* Complain about various flag mismatches. */
9198 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
9199 EF_ARM_EABI_VERSION (out_flags)))
9200 {
9201 _bfd_error_handler
9202 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
9203 ibfd, obfd,
9204 (in_flags & EF_ARM_EABIMASK) >> 24,
9205 (out_flags & EF_ARM_EABIMASK) >> 24);
9206 return FALSE;
9207 }
9208
9209 /* Not sure what needs to be checked for EABI versions >= 1. */
9210 /* VxWorks libraries do not use these flags. */
9211 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
9212 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
9213 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
9214 {
9215 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9216 {
9217 _bfd_error_handler
9218 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
9219 ibfd, obfd,
9220 in_flags & EF_ARM_APCS_26 ? 26 : 32,
9221 out_flags & EF_ARM_APCS_26 ? 26 : 32);
9222 flags_compatible = FALSE;
9223 }
9224
9225 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9226 {
9227 if (in_flags & EF_ARM_APCS_FLOAT)
9228 _bfd_error_handler
9229 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
9230 ibfd, obfd);
9231 else
9232 _bfd_error_handler
9233 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
9234 ibfd, obfd);
9235
9236 flags_compatible = FALSE;
9237 }
9238
9239 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
9240 {
9241 if (in_flags & EF_ARM_VFP_FLOAT)
9242 _bfd_error_handler
9243 (_("error: %B uses VFP instructions, whereas %B does not"),
9244 ibfd, obfd);
9245 else
9246 _bfd_error_handler
9247 (_("error: %B uses FPA instructions, whereas %B does not"),
9248 ibfd, obfd);
9249
9250 flags_compatible = FALSE;
9251 }
9252
9253 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
9254 {
9255 if (in_flags & EF_ARM_MAVERICK_FLOAT)
9256 _bfd_error_handler
9257 (_("error: %B uses Maverick instructions, whereas %B does not"),
9258 ibfd, obfd);
9259 else
9260 _bfd_error_handler
9261 (_("error: %B does not use Maverick instructions, whereas %B does"),
9262 ibfd, obfd);
9263
9264 flags_compatible = FALSE;
9265 }
9266
9267 #ifdef EF_ARM_SOFT_FLOAT
9268 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
9269 {
9270 /* We can allow interworking between code that is VFP format
9271 layout, and uses either soft float or integer regs for
9272 passing floating point arguments and results. We already
9273 know that the APCS_FLOAT flags match; similarly for VFP
9274 flags. */
9275 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
9276 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
9277 {
9278 if (in_flags & EF_ARM_SOFT_FLOAT)
9279 _bfd_error_handler
9280 (_("error: %B uses software FP, whereas %B uses hardware FP"),
9281 ibfd, obfd);
9282 else
9283 _bfd_error_handler
9284 (_("error: %B uses hardware FP, whereas %B uses software FP"),
9285 ibfd, obfd);
9286
9287 flags_compatible = FALSE;
9288 }
9289 }
9290 #endif
9291
9292 /* Interworking mismatch is only a warning. */
9293 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9294 {
9295 if (in_flags & EF_ARM_INTERWORK)
9296 {
9297 _bfd_error_handler
9298 (_("Warning: %B supports interworking, whereas %B does not"),
9299 ibfd, obfd);
9300 }
9301 else
9302 {
9303 _bfd_error_handler
9304 (_("Warning: %B does not support interworking, whereas %B does"),
9305 ibfd, obfd);
9306 }
9307 }
9308 }
9309
9310 return flags_compatible;
9311 }
9312
9313 /* Display the flags field. */
9314
9315 static bfd_boolean
9316 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
9317 {
9318 FILE * file = (FILE *) ptr;
9319 unsigned long flags;
9320
9321 BFD_ASSERT (abfd != NULL && ptr != NULL);
9322
9323 /* Print normal ELF private data. */
9324 _bfd_elf_print_private_bfd_data (abfd, ptr);
9325
9326 flags = elf_elfheader (abfd)->e_flags;
9327 /* Ignore init flag - it may not be set, despite the flags field
9328 containing valid data. */
9329
9330 /* xgettext:c-format */
9331 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9332
9333 switch (EF_ARM_EABI_VERSION (flags))
9334 {
9335 case EF_ARM_EABI_UNKNOWN:
9336 /* The following flag bits are GNU extensions and not part of the
9337 official ARM ELF extended ABI. Hence they are only decoded if
9338 the EABI version is not set. */
9339 if (flags & EF_ARM_INTERWORK)
9340 fprintf (file, _(" [interworking enabled]"));
9341
9342 if (flags & EF_ARM_APCS_26)
9343 fprintf (file, " [APCS-26]");
9344 else
9345 fprintf (file, " [APCS-32]");
9346
9347 if (flags & EF_ARM_VFP_FLOAT)
9348 fprintf (file, _(" [VFP float format]"));
9349 else if (flags & EF_ARM_MAVERICK_FLOAT)
9350 fprintf (file, _(" [Maverick float format]"));
9351 else
9352 fprintf (file, _(" [FPA float format]"));
9353
9354 if (flags & EF_ARM_APCS_FLOAT)
9355 fprintf (file, _(" [floats passed in float registers]"));
9356
9357 if (flags & EF_ARM_PIC)
9358 fprintf (file, _(" [position independent]"));
9359
9360 if (flags & EF_ARM_NEW_ABI)
9361 fprintf (file, _(" [new ABI]"));
9362
9363 if (flags & EF_ARM_OLD_ABI)
9364 fprintf (file, _(" [old ABI]"));
9365
9366 if (flags & EF_ARM_SOFT_FLOAT)
9367 fprintf (file, _(" [software FP]"));
9368
9369 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
9370 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
9371 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
9372 | EF_ARM_MAVERICK_FLOAT);
9373 break;
9374
9375 case EF_ARM_EABI_VER1:
9376 fprintf (file, _(" [Version1 EABI]"));
9377
9378 if (flags & EF_ARM_SYMSARESORTED)
9379 fprintf (file, _(" [sorted symbol table]"));
9380 else
9381 fprintf (file, _(" [unsorted symbol table]"));
9382
9383 flags &= ~ EF_ARM_SYMSARESORTED;
9384 break;
9385
9386 case EF_ARM_EABI_VER2:
9387 fprintf (file, _(" [Version2 EABI]"));
9388
9389 if (flags & EF_ARM_SYMSARESORTED)
9390 fprintf (file, _(" [sorted symbol table]"));
9391 else
9392 fprintf (file, _(" [unsorted symbol table]"));
9393
9394 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
9395 fprintf (file, _(" [dynamic symbols use segment index]"));
9396
9397 if (flags & EF_ARM_MAPSYMSFIRST)
9398 fprintf (file, _(" [mapping symbols precede others]"));
9399
9400 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
9401 | EF_ARM_MAPSYMSFIRST);
9402 break;
9403
9404 case EF_ARM_EABI_VER3:
9405 fprintf (file, _(" [Version3 EABI]"));
9406 break;
9407
9408 case EF_ARM_EABI_VER4:
9409 fprintf (file, _(" [Version4 EABI]"));
9410 goto eabi;
9411
9412 case EF_ARM_EABI_VER5:
9413 fprintf (file, _(" [Version5 EABI]"));
9414 eabi:
9415 if (flags & EF_ARM_BE8)
9416 fprintf (file, _(" [BE8]"));
9417
9418 if (flags & EF_ARM_LE8)
9419 fprintf (file, _(" [LE8]"));
9420
9421 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
9422 break;
9423
9424 default:
9425 fprintf (file, _(" <EABI version unrecognised>"));
9426 break;
9427 }
9428
9429 flags &= ~ EF_ARM_EABIMASK;
9430
9431 if (flags & EF_ARM_RELEXEC)
9432 fprintf (file, _(" [relocatable executable]"));
9433
9434 if (flags & EF_ARM_HASENTRY)
9435 fprintf (file, _(" [has entry point]"));
9436
9437 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
9438
9439 if (flags)
9440 fprintf (file, _("<Unrecognised flag bits set>"));
9441
9442 fputc ('\n', file);
9443
9444 return TRUE;
9445 }
9446
9447 static int
9448 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
9449 {
9450 switch (ELF_ST_TYPE (elf_sym->st_info))
9451 {
9452 case STT_ARM_TFUNC:
9453 return ELF_ST_TYPE (elf_sym->st_info);
9454
9455 case STT_ARM_16BIT:
9456 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
9457 This allows us to distinguish between data used by Thumb instructions
9458 and non-data (which is probably code) inside Thumb regions of an
9459 executable. */
9460 if (type != STT_OBJECT && type != STT_TLS)
9461 return ELF_ST_TYPE (elf_sym->st_info);
9462 break;
9463
9464 default:
9465 break;
9466 }
9467
9468 return type;
9469 }
9470
9471 static asection *
9472 elf32_arm_gc_mark_hook (asection *sec,
9473 struct bfd_link_info *info,
9474 Elf_Internal_Rela *rel,
9475 struct elf_link_hash_entry *h,
9476 Elf_Internal_Sym *sym)
9477 {
9478 if (h != NULL)
9479 switch (ELF32_R_TYPE (rel->r_info))
9480 {
9481 case R_ARM_GNU_VTINHERIT:
9482 case R_ARM_GNU_VTENTRY:
9483 return NULL;
9484 }
9485
9486 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9487 }
9488
9489 /* Update the got entry reference counts for the section being removed. */
9490
9491 static bfd_boolean
9492 elf32_arm_gc_sweep_hook (bfd * abfd,
9493 struct bfd_link_info * info,
9494 asection * sec,
9495 const Elf_Internal_Rela * relocs)
9496 {
9497 Elf_Internal_Shdr *symtab_hdr;
9498 struct elf_link_hash_entry **sym_hashes;
9499 bfd_signed_vma *local_got_refcounts;
9500 const Elf_Internal_Rela *rel, *relend;
9501 struct elf32_arm_link_hash_table * globals;
9502
9503 if (info->relocatable)
9504 return TRUE;
9505
9506 globals = elf32_arm_hash_table (info);
9507
9508 elf_section_data (sec)->local_dynrel = NULL;
9509
9510 symtab_hdr = & elf_symtab_hdr (abfd);
9511 sym_hashes = elf_sym_hashes (abfd);
9512 local_got_refcounts = elf_local_got_refcounts (abfd);
9513
9514 check_use_blx (globals);
9515
9516 relend = relocs + sec->reloc_count;
9517 for (rel = relocs; rel < relend; rel++)
9518 {
9519 unsigned long r_symndx;
9520 struct elf_link_hash_entry *h = NULL;
9521 int r_type;
9522
9523 r_symndx = ELF32_R_SYM (rel->r_info);
9524 if (r_symndx >= symtab_hdr->sh_info)
9525 {
9526 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9527 while (h->root.type == bfd_link_hash_indirect
9528 || h->root.type == bfd_link_hash_warning)
9529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9530 }
9531
9532 r_type = ELF32_R_TYPE (rel->r_info);
9533 r_type = arm_real_reloc_type (globals, r_type);
9534 switch (r_type)
9535 {
9536 case R_ARM_GOT32:
9537 case R_ARM_GOT_PREL:
9538 case R_ARM_TLS_GD32:
9539 case R_ARM_TLS_IE32:
9540 if (h != NULL)
9541 {
9542 if (h->got.refcount > 0)
9543 h->got.refcount -= 1;
9544 }
9545 else if (local_got_refcounts != NULL)
9546 {
9547 if (local_got_refcounts[r_symndx] > 0)
9548 local_got_refcounts[r_symndx] -= 1;
9549 }
9550 break;
9551
9552 case R_ARM_TLS_LDM32:
9553 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
9554 break;
9555
9556 case R_ARM_ABS32:
9557 case R_ARM_ABS32_NOI:
9558 case R_ARM_REL32:
9559 case R_ARM_REL32_NOI:
9560 case R_ARM_PC24:
9561 case R_ARM_PLT32:
9562 case R_ARM_CALL:
9563 case R_ARM_JUMP24:
9564 case R_ARM_PREL31:
9565 case R_ARM_THM_CALL:
9566 case R_ARM_THM_JUMP24:
9567 case R_ARM_THM_JUMP19:
9568 case R_ARM_MOVW_ABS_NC:
9569 case R_ARM_MOVT_ABS:
9570 case R_ARM_MOVW_PREL_NC:
9571 case R_ARM_MOVT_PREL:
9572 case R_ARM_THM_MOVW_ABS_NC:
9573 case R_ARM_THM_MOVT_ABS:
9574 case R_ARM_THM_MOVW_PREL_NC:
9575 case R_ARM_THM_MOVT_PREL:
9576 /* Should the interworking branches be here also? */
9577
9578 if (h != NULL)
9579 {
9580 struct elf32_arm_link_hash_entry *eh;
9581 struct elf32_arm_relocs_copied **pp;
9582 struct elf32_arm_relocs_copied *p;
9583
9584 eh = (struct elf32_arm_link_hash_entry *) h;
9585
9586 if (h->plt.refcount > 0)
9587 {
9588 h->plt.refcount -= 1;
9589 if (r_type == R_ARM_THM_CALL)
9590 eh->plt_maybe_thumb_refcount--;
9591
9592 if (r_type == R_ARM_THM_JUMP24
9593 || r_type == R_ARM_THM_JUMP19)
9594 eh->plt_thumb_refcount--;
9595 }
9596
9597 if (r_type == R_ARM_ABS32
9598 || r_type == R_ARM_REL32
9599 || r_type == R_ARM_ABS32_NOI
9600 || r_type == R_ARM_REL32_NOI)
9601 {
9602 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
9603 pp = &p->next)
9604 if (p->section == sec)
9605 {
9606 p->count -= 1;
9607 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9608 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
9609 p->pc_count -= 1;
9610 if (p->count == 0)
9611 *pp = p->next;
9612 break;
9613 }
9614 }
9615 }
9616 break;
9617
9618 default:
9619 break;
9620 }
9621 }
9622
9623 return TRUE;
9624 }
9625
9626 /* Look through the relocs for a section during the first phase. */
9627
9628 static bfd_boolean
9629 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9630 asection *sec, const Elf_Internal_Rela *relocs)
9631 {
9632 Elf_Internal_Shdr *symtab_hdr;
9633 struct elf_link_hash_entry **sym_hashes;
9634 const Elf_Internal_Rela *rel;
9635 const Elf_Internal_Rela *rel_end;
9636 bfd *dynobj;
9637 asection *sreloc;
9638 bfd_vma *local_got_offsets;
9639 struct elf32_arm_link_hash_table *htab;
9640 bfd_boolean needs_plt;
9641 unsigned long nsyms;
9642
9643 if (info->relocatable)
9644 return TRUE;
9645
9646 BFD_ASSERT (is_arm_elf (abfd));
9647
9648 htab = elf32_arm_hash_table (info);
9649 sreloc = NULL;
9650
9651 /* Create dynamic sections for relocatable executables so that we can
9652 copy relocations. */
9653 if (htab->root.is_relocatable_executable
9654 && ! htab->root.dynamic_sections_created)
9655 {
9656 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9657 return FALSE;
9658 }
9659
9660 dynobj = elf_hash_table (info)->dynobj;
9661 local_got_offsets = elf_local_got_offsets (abfd);
9662
9663 symtab_hdr = & elf_symtab_hdr (abfd);
9664 sym_hashes = elf_sym_hashes (abfd);
9665 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
9666
9667 rel_end = relocs + sec->reloc_count;
9668 for (rel = relocs; rel < rel_end; rel++)
9669 {
9670 struct elf_link_hash_entry *h;
9671 struct elf32_arm_link_hash_entry *eh;
9672 unsigned long r_symndx;
9673 int r_type;
9674
9675 r_symndx = ELF32_R_SYM (rel->r_info);
9676 r_type = ELF32_R_TYPE (rel->r_info);
9677 r_type = arm_real_reloc_type (htab, r_type);
9678
9679 if (r_symndx >= nsyms
9680 /* PR 9934: It is possible to have relocations that do not
9681 refer to symbols, thus it is also possible to have an
9682 object file containing relocations but no symbol table. */
9683 && (r_symndx > 0 || nsyms > 0))
9684 {
9685 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9686 r_symndx);
9687 return FALSE;
9688 }
9689
9690 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
9691 h = NULL;
9692 else
9693 {
9694 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9695 while (h->root.type == bfd_link_hash_indirect
9696 || h->root.type == bfd_link_hash_warning)
9697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9698 }
9699
9700 eh = (struct elf32_arm_link_hash_entry *) h;
9701
9702 switch (r_type)
9703 {
9704 case R_ARM_GOT32:
9705 case R_ARM_GOT_PREL:
9706 case R_ARM_TLS_GD32:
9707 case R_ARM_TLS_IE32:
9708 /* This symbol requires a global offset table entry. */
9709 {
9710 int tls_type, old_tls_type;
9711
9712 switch (r_type)
9713 {
9714 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9715 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9716 default: tls_type = GOT_NORMAL; break;
9717 }
9718
9719 if (h != NULL)
9720 {
9721 h->got.refcount++;
9722 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9723 }
9724 else
9725 {
9726 bfd_signed_vma *local_got_refcounts;
9727
9728 /* This is a global offset table entry for a local symbol. */
9729 local_got_refcounts = elf_local_got_refcounts (abfd);
9730 if (local_got_refcounts == NULL)
9731 {
9732 bfd_size_type size;
9733
9734 size = symtab_hdr->sh_info;
9735 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9736 local_got_refcounts = bfd_zalloc (abfd, size);
9737 if (local_got_refcounts == NULL)
9738 return FALSE;
9739 elf_local_got_refcounts (abfd) = local_got_refcounts;
9740 elf32_arm_local_got_tls_type (abfd)
9741 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9742 }
9743 local_got_refcounts[r_symndx] += 1;
9744 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9745 }
9746
9747 /* We will already have issued an error message if there is a
9748 TLS / non-TLS mismatch, based on the symbol type. We don't
9749 support any linker relaxations. So just combine any TLS
9750 types needed. */
9751 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9752 && tls_type != GOT_NORMAL)
9753 tls_type |= old_tls_type;
9754
9755 if (old_tls_type != tls_type)
9756 {
9757 if (h != NULL)
9758 elf32_arm_hash_entry (h)->tls_type = tls_type;
9759 else
9760 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9761 }
9762 }
9763 /* Fall through. */
9764
9765 case R_ARM_TLS_LDM32:
9766 if (r_type == R_ARM_TLS_LDM32)
9767 htab->tls_ldm_got.refcount++;
9768 /* Fall through. */
9769
9770 case R_ARM_GOTOFF32:
9771 case R_ARM_GOTPC:
9772 if (htab->sgot == NULL)
9773 {
9774 if (htab->root.dynobj == NULL)
9775 htab->root.dynobj = abfd;
9776 if (!create_got_section (htab->root.dynobj, info))
9777 return FALSE;
9778 }
9779 break;
9780
9781 case R_ARM_ABS12:
9782 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9783 ldr __GOTT_INDEX__ offsets. */
9784 if (!htab->vxworks_p)
9785 break;
9786 /* Fall through. */
9787
9788 case R_ARM_PC24:
9789 case R_ARM_PLT32:
9790 case R_ARM_CALL:
9791 case R_ARM_JUMP24:
9792 case R_ARM_PREL31:
9793 case R_ARM_THM_CALL:
9794 case R_ARM_THM_JUMP24:
9795 case R_ARM_THM_JUMP19:
9796 needs_plt = 1;
9797 goto normal_reloc;
9798
9799 case R_ARM_ABS32:
9800 case R_ARM_ABS32_NOI:
9801 case R_ARM_REL32:
9802 case R_ARM_REL32_NOI:
9803 case R_ARM_MOVW_ABS_NC:
9804 case R_ARM_MOVT_ABS:
9805 case R_ARM_MOVW_PREL_NC:
9806 case R_ARM_MOVT_PREL:
9807 case R_ARM_THM_MOVW_ABS_NC:
9808 case R_ARM_THM_MOVT_ABS:
9809 case R_ARM_THM_MOVW_PREL_NC:
9810 case R_ARM_THM_MOVT_PREL:
9811 needs_plt = 0;
9812 normal_reloc:
9813
9814 /* Should the interworking branches be listed here? */
9815 if (h != NULL)
9816 {
9817 /* If this reloc is in a read-only section, we might
9818 need a copy reloc. We can't check reliably at this
9819 stage whether the section is read-only, as input
9820 sections have not yet been mapped to output sections.
9821 Tentatively set the flag for now, and correct in
9822 adjust_dynamic_symbol. */
9823 if (!info->shared)
9824 h->non_got_ref = 1;
9825
9826 /* We may need a .plt entry if the function this reloc
9827 refers to is in a different object. We can't tell for
9828 sure yet, because something later might force the
9829 symbol local. */
9830 if (needs_plt)
9831 h->needs_plt = 1;
9832
9833 /* If we create a PLT entry, this relocation will reference
9834 it, even if it's an ABS32 relocation. */
9835 h->plt.refcount += 1;
9836
9837 /* It's too early to use htab->use_blx here, so we have to
9838 record possible blx references separately from
9839 relocs that definitely need a thumb stub. */
9840
9841 if (r_type == R_ARM_THM_CALL)
9842 eh->plt_maybe_thumb_refcount += 1;
9843
9844 if (r_type == R_ARM_THM_JUMP24
9845 || r_type == R_ARM_THM_JUMP19)
9846 eh->plt_thumb_refcount += 1;
9847 }
9848
9849 /* If we are creating a shared library or relocatable executable,
9850 and this is a reloc against a global symbol, or a non PC
9851 relative reloc against a local symbol, then we need to copy
9852 the reloc into the shared library. However, if we are linking
9853 with -Bsymbolic, we do not need to copy a reloc against a
9854 global symbol which is defined in an object we are
9855 including in the link (i.e., DEF_REGULAR is set). At
9856 this point we have not seen all the input files, so it is
9857 possible that DEF_REGULAR is not set now but will be set
9858 later (it is never cleared). We account for that
9859 possibility below by storing information in the
9860 relocs_copied field of the hash table entry. */
9861 if ((info->shared || htab->root.is_relocatable_executable)
9862 && (sec->flags & SEC_ALLOC) != 0
9863 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9864 || (h != NULL && ! h->needs_plt
9865 && (! info->symbolic || ! h->def_regular))))
9866 {
9867 struct elf32_arm_relocs_copied *p, **head;
9868
9869 /* When creating a shared object, we must copy these
9870 reloc types into the output file. We create a reloc
9871 section in dynobj and make room for this reloc. */
9872 if (sreloc == NULL)
9873 {
9874 sreloc = _bfd_elf_make_dynamic_reloc_section
9875 (sec, dynobj, 2, abfd, ! htab->use_rel);
9876
9877 if (sreloc == NULL)
9878 return FALSE;
9879
9880 /* BPABI objects never have dynamic relocations mapped. */
9881 if (htab->symbian_p)
9882 {
9883 flagword flags;
9884
9885 flags = bfd_get_section_flags (dynobj, sreloc);
9886 flags &= ~(SEC_LOAD | SEC_ALLOC);
9887 bfd_set_section_flags (dynobj, sreloc, flags);
9888 }
9889 }
9890
9891 /* If this is a global symbol, we count the number of
9892 relocations we need for this symbol. */
9893 if (h != NULL)
9894 {
9895 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9896 }
9897 else
9898 {
9899 /* Track dynamic relocs needed for local syms too.
9900 We really need local syms available to do this
9901 easily. Oh well. */
9902
9903 asection *s;
9904 void *vpp;
9905
9906 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9907 sec, r_symndx);
9908 if (s == NULL)
9909 return FALSE;
9910
9911 vpp = &elf_section_data (s)->local_dynrel;
9912 head = (struct elf32_arm_relocs_copied **) vpp;
9913 }
9914
9915 p = *head;
9916 if (p == NULL || p->section != sec)
9917 {
9918 bfd_size_type amt = sizeof *p;
9919
9920 p = bfd_alloc (htab->root.dynobj, amt);
9921 if (p == NULL)
9922 return FALSE;
9923 p->next = *head;
9924 *head = p;
9925 p->section = sec;
9926 p->count = 0;
9927 p->pc_count = 0;
9928 }
9929
9930 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9931 p->pc_count += 1;
9932 p->count += 1;
9933 }
9934 break;
9935
9936 /* This relocation describes the C++ object vtable hierarchy.
9937 Reconstruct it for later use during GC. */
9938 case R_ARM_GNU_VTINHERIT:
9939 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9940 return FALSE;
9941 break;
9942
9943 /* This relocation describes which C++ vtable entries are actually
9944 used. Record for later use during GC. */
9945 case R_ARM_GNU_VTENTRY:
9946 BFD_ASSERT (h != NULL);
9947 if (h != NULL
9948 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9949 return FALSE;
9950 break;
9951 }
9952 }
9953
9954 return TRUE;
9955 }
9956
9957 /* Unwinding tables are not referenced directly. This pass marks them as
9958 required if the corresponding code section is marked. */
9959
9960 static bfd_boolean
9961 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9962 elf_gc_mark_hook_fn gc_mark_hook)
9963 {
9964 bfd *sub;
9965 Elf_Internal_Shdr **elf_shdrp;
9966 bfd_boolean again;
9967
9968 /* Marking EH data may cause additional code sections to be marked,
9969 requiring multiple passes. */
9970 again = TRUE;
9971 while (again)
9972 {
9973 again = FALSE;
9974 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9975 {
9976 asection *o;
9977
9978 if (! is_arm_elf (sub))
9979 continue;
9980
9981 elf_shdrp = elf_elfsections (sub);
9982 for (o = sub->sections; o != NULL; o = o->next)
9983 {
9984 Elf_Internal_Shdr *hdr;
9985
9986 hdr = &elf_section_data (o)->this_hdr;
9987 if (hdr->sh_type == SHT_ARM_EXIDX
9988 && hdr->sh_link
9989 && hdr->sh_link < elf_numsections (sub)
9990 && !o->gc_mark
9991 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9992 {
9993 again = TRUE;
9994 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9995 return FALSE;
9996 }
9997 }
9998 }
9999 }
10000
10001 return TRUE;
10002 }
10003
10004 /* Treat mapping symbols as special target symbols. */
10005
10006 static bfd_boolean
10007 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
10008 {
10009 return bfd_is_arm_special_symbol_name (sym->name,
10010 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
10011 }
10012
10013 /* This is a copy of elf_find_function() from elf.c except that
10014 ARM mapping symbols are ignored when looking for function names
10015 and STT_ARM_TFUNC is considered to a function type. */
10016
10017 static bfd_boolean
10018 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
10019 asection * section,
10020 asymbol ** symbols,
10021 bfd_vma offset,
10022 const char ** filename_ptr,
10023 const char ** functionname_ptr)
10024 {
10025 const char * filename = NULL;
10026 asymbol * func = NULL;
10027 bfd_vma low_func = 0;
10028 asymbol ** p;
10029
10030 for (p = symbols; *p != NULL; p++)
10031 {
10032 elf_symbol_type *q;
10033
10034 q = (elf_symbol_type *) *p;
10035
10036 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
10037 {
10038 default:
10039 break;
10040 case STT_FILE:
10041 filename = bfd_asymbol_name (&q->symbol);
10042 break;
10043 case STT_FUNC:
10044 case STT_ARM_TFUNC:
10045 case STT_NOTYPE:
10046 /* Skip mapping symbols. */
10047 if ((q->symbol.flags & BSF_LOCAL)
10048 && bfd_is_arm_special_symbol_name (q->symbol.name,
10049 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
10050 continue;
10051 /* Fall through. */
10052 if (bfd_get_section (&q->symbol) == section
10053 && q->symbol.value >= low_func
10054 && q->symbol.value <= offset)
10055 {
10056 func = (asymbol *) q;
10057 low_func = q->symbol.value;
10058 }
10059 break;
10060 }
10061 }
10062
10063 if (func == NULL)
10064 return FALSE;
10065
10066 if (filename_ptr)
10067 *filename_ptr = filename;
10068 if (functionname_ptr)
10069 *functionname_ptr = bfd_asymbol_name (func);
10070
10071 return TRUE;
10072 }
10073
10074
10075 /* Find the nearest line to a particular section and offset, for error
10076 reporting. This code is a duplicate of the code in elf.c, except
10077 that it uses arm_elf_find_function. */
10078
10079 static bfd_boolean
10080 elf32_arm_find_nearest_line (bfd * abfd,
10081 asection * section,
10082 asymbol ** symbols,
10083 bfd_vma offset,
10084 const char ** filename_ptr,
10085 const char ** functionname_ptr,
10086 unsigned int * line_ptr)
10087 {
10088 bfd_boolean found = FALSE;
10089
10090 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
10091
10092 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10093 filename_ptr, functionname_ptr,
10094 line_ptr, 0,
10095 & elf_tdata (abfd)->dwarf2_find_line_info))
10096 {
10097 if (!*functionname_ptr)
10098 arm_elf_find_function (abfd, section, symbols, offset,
10099 *filename_ptr ? NULL : filename_ptr,
10100 functionname_ptr);
10101
10102 return TRUE;
10103 }
10104
10105 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
10106 & found, filename_ptr,
10107 functionname_ptr, line_ptr,
10108 & elf_tdata (abfd)->line_info))
10109 return FALSE;
10110
10111 if (found && (*functionname_ptr || *line_ptr))
10112 return TRUE;
10113
10114 if (symbols == NULL)
10115 return FALSE;
10116
10117 if (! arm_elf_find_function (abfd, section, symbols, offset,
10118 filename_ptr, functionname_ptr))
10119 return FALSE;
10120
10121 *line_ptr = 0;
10122 return TRUE;
10123 }
10124
10125 static bfd_boolean
10126 elf32_arm_find_inliner_info (bfd * abfd,
10127 const char ** filename_ptr,
10128 const char ** functionname_ptr,
10129 unsigned int * line_ptr)
10130 {
10131 bfd_boolean found;
10132 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10133 functionname_ptr, line_ptr,
10134 & elf_tdata (abfd)->dwarf2_find_line_info);
10135 return found;
10136 }
10137
10138 /* Adjust a symbol defined by a dynamic object and referenced by a
10139 regular object. The current definition is in some section of the
10140 dynamic object, but we're not including those sections. We have to
10141 change the definition to something the rest of the link can
10142 understand. */
10143
10144 static bfd_boolean
10145 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
10146 struct elf_link_hash_entry * h)
10147 {
10148 bfd * dynobj;
10149 asection * s;
10150 struct elf32_arm_link_hash_entry * eh;
10151 struct elf32_arm_link_hash_table *globals;
10152
10153 globals = elf32_arm_hash_table (info);
10154 dynobj = elf_hash_table (info)->dynobj;
10155
10156 /* Make sure we know what is going on here. */
10157 BFD_ASSERT (dynobj != NULL
10158 && (h->needs_plt
10159 || h->u.weakdef != NULL
10160 || (h->def_dynamic
10161 && h->ref_regular
10162 && !h->def_regular)));
10163
10164 eh = (struct elf32_arm_link_hash_entry *) h;
10165
10166 /* If this is a function, put it in the procedure linkage table. We
10167 will fill in the contents of the procedure linkage table later,
10168 when we know the address of the .got section. */
10169 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
10170 || h->needs_plt)
10171 {
10172 if (h->plt.refcount <= 0
10173 || SYMBOL_CALLS_LOCAL (info, h)
10174 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
10175 && h->root.type == bfd_link_hash_undefweak))
10176 {
10177 /* This case can occur if we saw a PLT32 reloc in an input
10178 file, but the symbol was never referred to by a dynamic
10179 object, or if all references were garbage collected. In
10180 such a case, we don't actually need to build a procedure
10181 linkage table, and we can just do a PC24 reloc instead. */
10182 h->plt.offset = (bfd_vma) -1;
10183 eh->plt_thumb_refcount = 0;
10184 eh->plt_maybe_thumb_refcount = 0;
10185 h->needs_plt = 0;
10186 }
10187
10188 return TRUE;
10189 }
10190 else
10191 {
10192 /* It's possible that we incorrectly decided a .plt reloc was
10193 needed for an R_ARM_PC24 or similar reloc to a non-function sym
10194 in check_relocs. We can't decide accurately between function
10195 and non-function syms in check-relocs; Objects loaded later in
10196 the link may change h->type. So fix it now. */
10197 h->plt.offset = (bfd_vma) -1;
10198 eh->plt_thumb_refcount = 0;
10199 eh->plt_maybe_thumb_refcount = 0;
10200 }
10201
10202 /* If this is a weak symbol, and there is a real definition, the
10203 processor independent code will have arranged for us to see the
10204 real definition first, and we can just use the same value. */
10205 if (h->u.weakdef != NULL)
10206 {
10207 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
10208 || h->u.weakdef->root.type == bfd_link_hash_defweak);
10209 h->root.u.def.section = h->u.weakdef->root.u.def.section;
10210 h->root.u.def.value = h->u.weakdef->root.u.def.value;
10211 return TRUE;
10212 }
10213
10214 /* If there are no non-GOT references, we do not need a copy
10215 relocation. */
10216 if (!h->non_got_ref)
10217 return TRUE;
10218
10219 /* This is a reference to a symbol defined by a dynamic object which
10220 is not a function. */
10221
10222 /* If we are creating a shared library, we must presume that the
10223 only references to the symbol are via the global offset table.
10224 For such cases we need not do anything here; the relocations will
10225 be handled correctly by relocate_section. Relocatable executables
10226 can reference data in shared objects directly, so we don't need to
10227 do anything here. */
10228 if (info->shared || globals->root.is_relocatable_executable)
10229 return TRUE;
10230
10231 if (h->size == 0)
10232 {
10233 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
10234 h->root.root.string);
10235 return TRUE;
10236 }
10237
10238 /* We must allocate the symbol in our .dynbss section, which will
10239 become part of the .bss section of the executable. There will be
10240 an entry for this symbol in the .dynsym section. The dynamic
10241 object will contain position independent code, so all references
10242 from the dynamic object to this symbol will go through the global
10243 offset table. The dynamic linker will use the .dynsym entry to
10244 determine the address it must put in the global offset table, so
10245 both the dynamic object and the regular object will refer to the
10246 same memory location for the variable. */
10247 s = bfd_get_section_by_name (dynobj, ".dynbss");
10248 BFD_ASSERT (s != NULL);
10249
10250 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
10251 copy the initial value out of the dynamic object and into the
10252 runtime process image. We need to remember the offset into the
10253 .rel(a).bss section we are going to use. */
10254 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
10255 {
10256 asection *srel;
10257
10258 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
10259 BFD_ASSERT (srel != NULL);
10260 srel->size += RELOC_SIZE (globals);
10261 h->needs_copy = 1;
10262 }
10263
10264 return _bfd_elf_adjust_dynamic_copy (h, s);
10265 }
10266
10267 /* Allocate space in .plt, .got and associated reloc sections for
10268 dynamic relocs. */
10269
10270 static bfd_boolean
10271 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
10272 {
10273 struct bfd_link_info *info;
10274 struct elf32_arm_link_hash_table *htab;
10275 struct elf32_arm_link_hash_entry *eh;
10276 struct elf32_arm_relocs_copied *p;
10277 bfd_signed_vma thumb_refs;
10278
10279 eh = (struct elf32_arm_link_hash_entry *) h;
10280
10281 if (h->root.type == bfd_link_hash_indirect)
10282 return TRUE;
10283
10284 if (h->root.type == bfd_link_hash_warning)
10285 /* When warning symbols are created, they **replace** the "real"
10286 entry in the hash table, thus we never get to see the real
10287 symbol in a hash traversal. So look at it now. */
10288 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10289
10290 info = (struct bfd_link_info *) inf;
10291 htab = elf32_arm_hash_table (info);
10292
10293 if (htab->root.dynamic_sections_created
10294 && h->plt.refcount > 0)
10295 {
10296 /* Make sure this symbol is output as a dynamic symbol.
10297 Undefined weak syms won't yet be marked as dynamic. */
10298 if (h->dynindx == -1
10299 && !h->forced_local)
10300 {
10301 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10302 return FALSE;
10303 }
10304
10305 if (info->shared
10306 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
10307 {
10308 asection *s = htab->splt;
10309
10310 /* If this is the first .plt entry, make room for the special
10311 first entry. */
10312 if (s->size == 0)
10313 s->size += htab->plt_header_size;
10314
10315 h->plt.offset = s->size;
10316
10317 /* If we will insert a Thumb trampoline before this PLT, leave room
10318 for it. */
10319 thumb_refs = eh->plt_thumb_refcount;
10320 if (!htab->use_blx)
10321 thumb_refs += eh->plt_maybe_thumb_refcount;
10322
10323 if (thumb_refs > 0)
10324 {
10325 h->plt.offset += PLT_THUMB_STUB_SIZE;
10326 s->size += PLT_THUMB_STUB_SIZE;
10327 }
10328
10329 /* If this symbol is not defined in a regular file, and we are
10330 not generating a shared library, then set the symbol to this
10331 location in the .plt. This is required to make function
10332 pointers compare as equal between the normal executable and
10333 the shared library. */
10334 if (! info->shared
10335 && !h->def_regular)
10336 {
10337 h->root.u.def.section = s;
10338 h->root.u.def.value = h->plt.offset;
10339
10340 /* Make sure the function is not marked as Thumb, in case
10341 it is the target of an ABS32 relocation, which will
10342 point to the PLT entry. */
10343 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
10344 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10345 }
10346
10347 /* Make room for this entry. */
10348 s->size += htab->plt_entry_size;
10349
10350 if (!htab->symbian_p)
10351 {
10352 /* We also need to make an entry in the .got.plt section, which
10353 will be placed in the .got section by the linker script. */
10354 eh->plt_got_offset = htab->sgotplt->size;
10355 htab->sgotplt->size += 4;
10356 }
10357
10358 /* We also need to make an entry in the .rel(a).plt section. */
10359 htab->srelplt->size += RELOC_SIZE (htab);
10360
10361 /* VxWorks executables have a second set of relocations for
10362 each PLT entry. They go in a separate relocation section,
10363 which is processed by the kernel loader. */
10364 if (htab->vxworks_p && !info->shared)
10365 {
10366 /* There is a relocation for the initial PLT entry:
10367 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
10368 if (h->plt.offset == htab->plt_header_size)
10369 htab->srelplt2->size += RELOC_SIZE (htab);
10370
10371 /* There are two extra relocations for each subsequent
10372 PLT entry: an R_ARM_32 relocation for the GOT entry,
10373 and an R_ARM_32 relocation for the PLT entry. */
10374 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
10375 }
10376 }
10377 else
10378 {
10379 h->plt.offset = (bfd_vma) -1;
10380 h->needs_plt = 0;
10381 }
10382 }
10383 else
10384 {
10385 h->plt.offset = (bfd_vma) -1;
10386 h->needs_plt = 0;
10387 }
10388
10389 if (h->got.refcount > 0)
10390 {
10391 asection *s;
10392 bfd_boolean dyn;
10393 int tls_type = elf32_arm_hash_entry (h)->tls_type;
10394 int indx;
10395
10396 /* Make sure this symbol is output as a dynamic symbol.
10397 Undefined weak syms won't yet be marked as dynamic. */
10398 if (h->dynindx == -1
10399 && !h->forced_local)
10400 {
10401 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10402 return FALSE;
10403 }
10404
10405 if (!htab->symbian_p)
10406 {
10407 s = htab->sgot;
10408 h->got.offset = s->size;
10409
10410 if (tls_type == GOT_UNKNOWN)
10411 abort ();
10412
10413 if (tls_type == GOT_NORMAL)
10414 /* Non-TLS symbols need one GOT slot. */
10415 s->size += 4;
10416 else
10417 {
10418 if (tls_type & GOT_TLS_GD)
10419 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
10420 s->size += 8;
10421 if (tls_type & GOT_TLS_IE)
10422 /* R_ARM_TLS_IE32 needs one GOT slot. */
10423 s->size += 4;
10424 }
10425
10426 dyn = htab->root.dynamic_sections_created;
10427
10428 indx = 0;
10429 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
10430 && (!info->shared
10431 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10432 indx = h->dynindx;
10433
10434 if (tls_type != GOT_NORMAL
10435 && (info->shared || indx != 0)
10436 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10437 || h->root.type != bfd_link_hash_undefweak))
10438 {
10439 if (tls_type & GOT_TLS_IE)
10440 htab->srelgot->size += RELOC_SIZE (htab);
10441
10442 if (tls_type & GOT_TLS_GD)
10443 htab->srelgot->size += RELOC_SIZE (htab);
10444
10445 if ((tls_type & GOT_TLS_GD) && indx != 0)
10446 htab->srelgot->size += RELOC_SIZE (htab);
10447 }
10448 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10449 || h->root.type != bfd_link_hash_undefweak)
10450 && (info->shared
10451 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
10452 htab->srelgot->size += RELOC_SIZE (htab);
10453 }
10454 }
10455 else
10456 h->got.offset = (bfd_vma) -1;
10457
10458 /* Allocate stubs for exported Thumb functions on v4t. */
10459 if (!htab->use_blx && h->dynindx != -1
10460 && h->def_regular
10461 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
10462 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
10463 {
10464 struct elf_link_hash_entry * th;
10465 struct bfd_link_hash_entry * bh;
10466 struct elf_link_hash_entry * myh;
10467 char name[1024];
10468 asection *s;
10469 bh = NULL;
10470 /* Create a new symbol to regist the real location of the function. */
10471 s = h->root.u.def.section;
10472 sprintf (name, "__real_%s", h->root.root.string);
10473 _bfd_generic_link_add_one_symbol (info, s->owner,
10474 name, BSF_GLOBAL, s,
10475 h->root.u.def.value,
10476 NULL, TRUE, FALSE, &bh);
10477
10478 myh = (struct elf_link_hash_entry *) bh;
10479 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
10480 myh->forced_local = 1;
10481 eh->export_glue = myh;
10482 th = record_arm_to_thumb_glue (info, h);
10483 /* Point the symbol at the stub. */
10484 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10485 h->root.u.def.section = th->root.u.def.section;
10486 h->root.u.def.value = th->root.u.def.value & ~1;
10487 }
10488
10489 if (eh->relocs_copied == NULL)
10490 return TRUE;
10491
10492 /* In the shared -Bsymbolic case, discard space allocated for
10493 dynamic pc-relative relocs against symbols which turn out to be
10494 defined in regular objects. For the normal shared case, discard
10495 space for pc-relative relocs that have become local due to symbol
10496 visibility changes. */
10497
10498 if (info->shared || htab->root.is_relocatable_executable)
10499 {
10500 /* The only relocs that use pc_count are R_ARM_REL32 and
10501 R_ARM_REL32_NOI, which will appear on something like
10502 ".long foo - .". We want calls to protected symbols to resolve
10503 directly to the function rather than going via the plt. If people
10504 want function pointer comparisons to work as expected then they
10505 should avoid writing assembly like ".long foo - .". */
10506 if (SYMBOL_CALLS_LOCAL (info, h))
10507 {
10508 struct elf32_arm_relocs_copied **pp;
10509
10510 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10511 {
10512 p->count -= p->pc_count;
10513 p->pc_count = 0;
10514 if (p->count == 0)
10515 *pp = p->next;
10516 else
10517 pp = &p->next;
10518 }
10519 }
10520
10521 if (elf32_arm_hash_table (info)->vxworks_p)
10522 {
10523 struct elf32_arm_relocs_copied **pp;
10524
10525 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10526 {
10527 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
10528 *pp = p->next;
10529 else
10530 pp = &p->next;
10531 }
10532 }
10533
10534 /* Also discard relocs on undefined weak syms with non-default
10535 visibility. */
10536 if (eh->relocs_copied != NULL
10537 && h->root.type == bfd_link_hash_undefweak)
10538 {
10539 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
10540 eh->relocs_copied = NULL;
10541
10542 /* Make sure undefined weak symbols are output as a dynamic
10543 symbol in PIEs. */
10544 else if (h->dynindx == -1
10545 && !h->forced_local)
10546 {
10547 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10548 return FALSE;
10549 }
10550 }
10551
10552 else if (htab->root.is_relocatable_executable && h->dynindx == -1
10553 && h->root.type == bfd_link_hash_new)
10554 {
10555 /* Output absolute symbols so that we can create relocations
10556 against them. For normal symbols we output a relocation
10557 against the section that contains them. */
10558 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10559 return FALSE;
10560 }
10561
10562 }
10563 else
10564 {
10565 /* For the non-shared case, discard space for relocs against
10566 symbols which turn out to need copy relocs or are not
10567 dynamic. */
10568
10569 if (!h->non_got_ref
10570 && ((h->def_dynamic
10571 && !h->def_regular)
10572 || (htab->root.dynamic_sections_created
10573 && (h->root.type == bfd_link_hash_undefweak
10574 || h->root.type == bfd_link_hash_undefined))))
10575 {
10576 /* Make sure this symbol is output as a dynamic symbol.
10577 Undefined weak syms won't yet be marked as dynamic. */
10578 if (h->dynindx == -1
10579 && !h->forced_local)
10580 {
10581 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10582 return FALSE;
10583 }
10584
10585 /* If that succeeded, we know we'll be keeping all the
10586 relocs. */
10587 if (h->dynindx != -1)
10588 goto keep;
10589 }
10590
10591 eh->relocs_copied = NULL;
10592
10593 keep: ;
10594 }
10595
10596 /* Finally, allocate space. */
10597 for (p = eh->relocs_copied; p != NULL; p = p->next)
10598 {
10599 asection *sreloc = elf_section_data (p->section)->sreloc;
10600 sreloc->size += p->count * RELOC_SIZE (htab);
10601 }
10602
10603 return TRUE;
10604 }
10605
10606 /* Find any dynamic relocs that apply to read-only sections. */
10607
10608 static bfd_boolean
10609 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
10610 {
10611 struct elf32_arm_link_hash_entry * eh;
10612 struct elf32_arm_relocs_copied * p;
10613
10614 if (h->root.type == bfd_link_hash_warning)
10615 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10616
10617 eh = (struct elf32_arm_link_hash_entry *) h;
10618 for (p = eh->relocs_copied; p != NULL; p = p->next)
10619 {
10620 asection *s = p->section;
10621
10622 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10623 {
10624 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10625
10626 info->flags |= DF_TEXTREL;
10627
10628 /* Not an error, just cut short the traversal. */
10629 return FALSE;
10630 }
10631 }
10632 return TRUE;
10633 }
10634
10635 void
10636 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10637 int byteswap_code)
10638 {
10639 struct elf32_arm_link_hash_table *globals;
10640
10641 globals = elf32_arm_hash_table (info);
10642 globals->byteswap_code = byteswap_code;
10643 }
10644
10645 /* Set the sizes of the dynamic sections. */
10646
10647 static bfd_boolean
10648 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10649 struct bfd_link_info * info)
10650 {
10651 bfd * dynobj;
10652 asection * s;
10653 bfd_boolean plt;
10654 bfd_boolean relocs;
10655 bfd *ibfd;
10656 struct elf32_arm_link_hash_table *htab;
10657
10658 htab = elf32_arm_hash_table (info);
10659 dynobj = elf_hash_table (info)->dynobj;
10660 BFD_ASSERT (dynobj != NULL);
10661 check_use_blx (htab);
10662
10663 if (elf_hash_table (info)->dynamic_sections_created)
10664 {
10665 /* Set the contents of the .interp section to the interpreter. */
10666 if (info->executable)
10667 {
10668 s = bfd_get_section_by_name (dynobj, ".interp");
10669 BFD_ASSERT (s != NULL);
10670 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10671 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10672 }
10673 }
10674
10675 /* Set up .got offsets for local syms, and space for local dynamic
10676 relocs. */
10677 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10678 {
10679 bfd_signed_vma *local_got;
10680 bfd_signed_vma *end_local_got;
10681 char *local_tls_type;
10682 bfd_size_type locsymcount;
10683 Elf_Internal_Shdr *symtab_hdr;
10684 asection *srel;
10685 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10686
10687 if (! is_arm_elf (ibfd))
10688 continue;
10689
10690 for (s = ibfd->sections; s != NULL; s = s->next)
10691 {
10692 struct elf32_arm_relocs_copied *p;
10693
10694 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10695 {
10696 if (!bfd_is_abs_section (p->section)
10697 && bfd_is_abs_section (p->section->output_section))
10698 {
10699 /* Input section has been discarded, either because
10700 it is a copy of a linkonce section or due to
10701 linker script /DISCARD/, so we'll be discarding
10702 the relocs too. */
10703 }
10704 else if (is_vxworks
10705 && strcmp (p->section->output_section->name,
10706 ".tls_vars") == 0)
10707 {
10708 /* Relocations in vxworks .tls_vars sections are
10709 handled specially by the loader. */
10710 }
10711 else if (p->count != 0)
10712 {
10713 srel = elf_section_data (p->section)->sreloc;
10714 srel->size += p->count * RELOC_SIZE (htab);
10715 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10716 info->flags |= DF_TEXTREL;
10717 }
10718 }
10719 }
10720
10721 local_got = elf_local_got_refcounts (ibfd);
10722 if (!local_got)
10723 continue;
10724
10725 symtab_hdr = & elf_symtab_hdr (ibfd);
10726 locsymcount = symtab_hdr->sh_info;
10727 end_local_got = local_got + locsymcount;
10728 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10729 s = htab->sgot;
10730 srel = htab->srelgot;
10731 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10732 {
10733 if (*local_got > 0)
10734 {
10735 *local_got = s->size;
10736 if (*local_tls_type & GOT_TLS_GD)
10737 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10738 s->size += 8;
10739 if (*local_tls_type & GOT_TLS_IE)
10740 s->size += 4;
10741 if (*local_tls_type == GOT_NORMAL)
10742 s->size += 4;
10743
10744 if (info->shared || *local_tls_type == GOT_TLS_GD)
10745 srel->size += RELOC_SIZE (htab);
10746 }
10747 else
10748 *local_got = (bfd_vma) -1;
10749 }
10750 }
10751
10752 if (htab->tls_ldm_got.refcount > 0)
10753 {
10754 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10755 for R_ARM_TLS_LDM32 relocations. */
10756 htab->tls_ldm_got.offset = htab->sgot->size;
10757 htab->sgot->size += 8;
10758 if (info->shared)
10759 htab->srelgot->size += RELOC_SIZE (htab);
10760 }
10761 else
10762 htab->tls_ldm_got.offset = -1;
10763
10764 /* Allocate global sym .plt and .got entries, and space for global
10765 sym dynamic relocs. */
10766 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10767
10768 /* Here we rummage through the found bfds to collect glue information. */
10769 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10770 {
10771 if (! is_arm_elf (ibfd))
10772 continue;
10773
10774 /* Initialise mapping tables for code/data. */
10775 bfd_elf32_arm_init_maps (ibfd);
10776
10777 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10778 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10779 /* xgettext:c-format */
10780 _bfd_error_handler (_("Errors encountered processing file %s"),
10781 ibfd->filename);
10782 }
10783
10784 /* The check_relocs and adjust_dynamic_symbol entry points have
10785 determined the sizes of the various dynamic sections. Allocate
10786 memory for them. */
10787 plt = FALSE;
10788 relocs = FALSE;
10789 for (s = dynobj->sections; s != NULL; s = s->next)
10790 {
10791 const char * name;
10792
10793 if ((s->flags & SEC_LINKER_CREATED) == 0)
10794 continue;
10795
10796 /* It's OK to base decisions on the section name, because none
10797 of the dynobj section names depend upon the input files. */
10798 name = bfd_get_section_name (dynobj, s);
10799
10800 if (strcmp (name, ".plt") == 0)
10801 {
10802 /* Remember whether there is a PLT. */
10803 plt = s->size != 0;
10804 }
10805 else if (CONST_STRNEQ (name, ".rel"))
10806 {
10807 if (s->size != 0)
10808 {
10809 /* Remember whether there are any reloc sections other
10810 than .rel(a).plt and .rela.plt.unloaded. */
10811 if (s != htab->srelplt && s != htab->srelplt2)
10812 relocs = TRUE;
10813
10814 /* We use the reloc_count field as a counter if we need
10815 to copy relocs into the output file. */
10816 s->reloc_count = 0;
10817 }
10818 }
10819 else if (! CONST_STRNEQ (name, ".got")
10820 && strcmp (name, ".dynbss") != 0)
10821 {
10822 /* It's not one of our sections, so don't allocate space. */
10823 continue;
10824 }
10825
10826 if (s->size == 0)
10827 {
10828 /* If we don't need this section, strip it from the
10829 output file. This is mostly to handle .rel(a).bss and
10830 .rel(a).plt. We must create both sections in
10831 create_dynamic_sections, because they must be created
10832 before the linker maps input sections to output
10833 sections. The linker does that before
10834 adjust_dynamic_symbol is called, and it is that
10835 function which decides whether anything needs to go
10836 into these sections. */
10837 s->flags |= SEC_EXCLUDE;
10838 continue;
10839 }
10840
10841 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10842 continue;
10843
10844 /* Allocate memory for the section contents. */
10845 s->contents = bfd_zalloc (dynobj, s->size);
10846 if (s->contents == NULL)
10847 return FALSE;
10848 }
10849
10850 if (elf_hash_table (info)->dynamic_sections_created)
10851 {
10852 /* Add some entries to the .dynamic section. We fill in the
10853 values later, in elf32_arm_finish_dynamic_sections, but we
10854 must add the entries now so that we get the correct size for
10855 the .dynamic section. The DT_DEBUG entry is filled in by the
10856 dynamic linker and used by the debugger. */
10857 #define add_dynamic_entry(TAG, VAL) \
10858 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10859
10860 if (info->executable)
10861 {
10862 if (!add_dynamic_entry (DT_DEBUG, 0))
10863 return FALSE;
10864 }
10865
10866 if (plt)
10867 {
10868 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10869 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10870 || !add_dynamic_entry (DT_PLTREL,
10871 htab->use_rel ? DT_REL : DT_RELA)
10872 || !add_dynamic_entry (DT_JMPREL, 0))
10873 return FALSE;
10874 }
10875
10876 if (relocs)
10877 {
10878 if (htab->use_rel)
10879 {
10880 if (!add_dynamic_entry (DT_REL, 0)
10881 || !add_dynamic_entry (DT_RELSZ, 0)
10882 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10883 return FALSE;
10884 }
10885 else
10886 {
10887 if (!add_dynamic_entry (DT_RELA, 0)
10888 || !add_dynamic_entry (DT_RELASZ, 0)
10889 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10890 return FALSE;
10891 }
10892 }
10893
10894 /* If any dynamic relocs apply to a read-only section,
10895 then we need a DT_TEXTREL entry. */
10896 if ((info->flags & DF_TEXTREL) == 0)
10897 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10898 info);
10899
10900 if ((info->flags & DF_TEXTREL) != 0)
10901 {
10902 if (!add_dynamic_entry (DT_TEXTREL, 0))
10903 return FALSE;
10904 }
10905 if (htab->vxworks_p
10906 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10907 return FALSE;
10908 }
10909 #undef add_dynamic_entry
10910
10911 return TRUE;
10912 }
10913
10914 /* Finish up dynamic symbol handling. We set the contents of various
10915 dynamic sections here. */
10916
10917 static bfd_boolean
10918 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10919 struct bfd_link_info * info,
10920 struct elf_link_hash_entry * h,
10921 Elf_Internal_Sym * sym)
10922 {
10923 bfd * dynobj;
10924 struct elf32_arm_link_hash_table *htab;
10925 struct elf32_arm_link_hash_entry *eh;
10926
10927 dynobj = elf_hash_table (info)->dynobj;
10928 htab = elf32_arm_hash_table (info);
10929 eh = (struct elf32_arm_link_hash_entry *) h;
10930
10931 if (h->plt.offset != (bfd_vma) -1)
10932 {
10933 asection * splt;
10934 asection * srel;
10935 bfd_byte *loc;
10936 bfd_vma plt_index;
10937 Elf_Internal_Rela rel;
10938
10939 /* This symbol has an entry in the procedure linkage table. Set
10940 it up. */
10941
10942 BFD_ASSERT (h->dynindx != -1);
10943
10944 splt = bfd_get_section_by_name (dynobj, ".plt");
10945 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10946 BFD_ASSERT (splt != NULL && srel != NULL);
10947
10948 /* Fill in the entry in the procedure linkage table. */
10949 if (htab->symbian_p)
10950 {
10951 put_arm_insn (htab, output_bfd,
10952 elf32_arm_symbian_plt_entry[0],
10953 splt->contents + h->plt.offset);
10954 bfd_put_32 (output_bfd,
10955 elf32_arm_symbian_plt_entry[1],
10956 splt->contents + h->plt.offset + 4);
10957
10958 /* Fill in the entry in the .rel.plt section. */
10959 rel.r_offset = (splt->output_section->vma
10960 + splt->output_offset
10961 + h->plt.offset + 4);
10962 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10963
10964 /* Get the index in the procedure linkage table which
10965 corresponds to this symbol. This is the index of this symbol
10966 in all the symbols for which we are making plt entries. The
10967 first entry in the procedure linkage table is reserved. */
10968 plt_index = ((h->plt.offset - htab->plt_header_size)
10969 / htab->plt_entry_size);
10970 }
10971 else
10972 {
10973 bfd_vma got_offset, got_address, plt_address;
10974 bfd_vma got_displacement;
10975 asection * sgot;
10976 bfd_byte * ptr;
10977
10978 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10979 BFD_ASSERT (sgot != NULL);
10980
10981 /* Get the offset into the .got.plt table of the entry that
10982 corresponds to this function. */
10983 got_offset = eh->plt_got_offset;
10984
10985 /* Get the index in the procedure linkage table which
10986 corresponds to this symbol. This is the index of this symbol
10987 in all the symbols for which we are making plt entries. The
10988 first three entries in .got.plt are reserved; after that
10989 symbols appear in the same order as in .plt. */
10990 plt_index = (got_offset - 12) / 4;
10991
10992 /* Calculate the address of the GOT entry. */
10993 got_address = (sgot->output_section->vma
10994 + sgot->output_offset
10995 + got_offset);
10996
10997 /* ...and the address of the PLT entry. */
10998 plt_address = (splt->output_section->vma
10999 + splt->output_offset
11000 + h->plt.offset);
11001
11002 ptr = htab->splt->contents + h->plt.offset;
11003 if (htab->vxworks_p && info->shared)
11004 {
11005 unsigned int i;
11006 bfd_vma val;
11007
11008 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
11009 {
11010 val = elf32_arm_vxworks_shared_plt_entry[i];
11011 if (i == 2)
11012 val |= got_address - sgot->output_section->vma;
11013 if (i == 5)
11014 val |= plt_index * RELOC_SIZE (htab);
11015 if (i == 2 || i == 5)
11016 bfd_put_32 (output_bfd, val, ptr);
11017 else
11018 put_arm_insn (htab, output_bfd, val, ptr);
11019 }
11020 }
11021 else if (htab->vxworks_p)
11022 {
11023 unsigned int i;
11024 bfd_vma val;
11025
11026 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
11027 {
11028 val = elf32_arm_vxworks_exec_plt_entry[i];
11029 if (i == 2)
11030 val |= got_address;
11031 if (i == 4)
11032 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
11033 if (i == 5)
11034 val |= plt_index * RELOC_SIZE (htab);
11035 if (i == 2 || i == 5)
11036 bfd_put_32 (output_bfd, val, ptr);
11037 else
11038 put_arm_insn (htab, output_bfd, val, ptr);
11039 }
11040
11041 loc = (htab->srelplt2->contents
11042 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
11043
11044 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
11045 referencing the GOT for this PLT entry. */
11046 rel.r_offset = plt_address + 8;
11047 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11048 rel.r_addend = got_offset;
11049 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11050 loc += RELOC_SIZE (htab);
11051
11052 /* Create the R_ARM_ABS32 relocation referencing the
11053 beginning of the PLT for this GOT entry. */
11054 rel.r_offset = got_address;
11055 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11056 rel.r_addend = 0;
11057 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11058 }
11059 else
11060 {
11061 bfd_signed_vma thumb_refs;
11062 /* Calculate the displacement between the PLT slot and the
11063 entry in the GOT. The eight-byte offset accounts for the
11064 value produced by adding to pc in the first instruction
11065 of the PLT stub. */
11066 got_displacement = got_address - (plt_address + 8);
11067
11068 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
11069
11070 thumb_refs = eh->plt_thumb_refcount;
11071 if (!htab->use_blx)
11072 thumb_refs += eh->plt_maybe_thumb_refcount;
11073
11074 if (thumb_refs > 0)
11075 {
11076 put_thumb_insn (htab, output_bfd,
11077 elf32_arm_plt_thumb_stub[0], ptr - 4);
11078 put_thumb_insn (htab, output_bfd,
11079 elf32_arm_plt_thumb_stub[1], ptr - 2);
11080 }
11081
11082 put_arm_insn (htab, output_bfd,
11083 elf32_arm_plt_entry[0]
11084 | ((got_displacement & 0x0ff00000) >> 20),
11085 ptr + 0);
11086 put_arm_insn (htab, output_bfd,
11087 elf32_arm_plt_entry[1]
11088 | ((got_displacement & 0x000ff000) >> 12),
11089 ptr+ 4);
11090 put_arm_insn (htab, output_bfd,
11091 elf32_arm_plt_entry[2]
11092 | (got_displacement & 0x00000fff),
11093 ptr + 8);
11094 #ifdef FOUR_WORD_PLT
11095 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
11096 #endif
11097 }
11098
11099 /* Fill in the entry in the global offset table. */
11100 bfd_put_32 (output_bfd,
11101 (splt->output_section->vma
11102 + splt->output_offset),
11103 sgot->contents + got_offset);
11104
11105 /* Fill in the entry in the .rel(a).plt section. */
11106 rel.r_addend = 0;
11107 rel.r_offset = got_address;
11108 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
11109 }
11110
11111 loc = srel->contents + plt_index * RELOC_SIZE (htab);
11112 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11113
11114 if (!h->def_regular)
11115 {
11116 /* Mark the symbol as undefined, rather than as defined in
11117 the .plt section. Leave the value alone. */
11118 sym->st_shndx = SHN_UNDEF;
11119 /* If the symbol is weak, we do need to clear the value.
11120 Otherwise, the PLT entry would provide a definition for
11121 the symbol even if the symbol wasn't defined anywhere,
11122 and so the symbol would never be NULL. */
11123 if (!h->ref_regular_nonweak)
11124 sym->st_value = 0;
11125 }
11126 }
11127
11128 if (h->got.offset != (bfd_vma) -1
11129 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
11130 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
11131 {
11132 asection * sgot;
11133 asection * srel;
11134 Elf_Internal_Rela rel;
11135 bfd_byte *loc;
11136 bfd_vma offset;
11137
11138 /* This symbol has an entry in the global offset table. Set it
11139 up. */
11140 sgot = bfd_get_section_by_name (dynobj, ".got");
11141 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
11142 BFD_ASSERT (sgot != NULL && srel != NULL);
11143
11144 offset = (h->got.offset & ~(bfd_vma) 1);
11145 rel.r_addend = 0;
11146 rel.r_offset = (sgot->output_section->vma
11147 + sgot->output_offset
11148 + offset);
11149
11150 /* If this is a static link, or it is a -Bsymbolic link and the
11151 symbol is defined locally or was forced to be local because
11152 of a version file, we just want to emit a RELATIVE reloc.
11153 The entry in the global offset table will already have been
11154 initialized in the relocate_section function. */
11155 if (info->shared
11156 && SYMBOL_REFERENCES_LOCAL (info, h))
11157 {
11158 BFD_ASSERT ((h->got.offset & 1) != 0);
11159 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11160 if (!htab->use_rel)
11161 {
11162 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
11163 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11164 }
11165 }
11166 else
11167 {
11168 BFD_ASSERT ((h->got.offset & 1) == 0);
11169 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11170 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11171 }
11172
11173 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
11174 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11175 }
11176
11177 if (h->needs_copy)
11178 {
11179 asection * s;
11180 Elf_Internal_Rela rel;
11181 bfd_byte *loc;
11182
11183 /* This symbol needs a copy reloc. Set it up. */
11184 BFD_ASSERT (h->dynindx != -1
11185 && (h->root.type == bfd_link_hash_defined
11186 || h->root.type == bfd_link_hash_defweak));
11187
11188 s = bfd_get_section_by_name (h->root.u.def.section->owner,
11189 RELOC_SECTION (htab, ".bss"));
11190 BFD_ASSERT (s != NULL);
11191
11192 rel.r_addend = 0;
11193 rel.r_offset = (h->root.u.def.value
11194 + h->root.u.def.section->output_section->vma
11195 + h->root.u.def.section->output_offset);
11196 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
11197 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
11198 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11199 }
11200
11201 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
11202 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
11203 to the ".got" section. */
11204 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
11205 || (!htab->vxworks_p && h == htab->root.hgot))
11206 sym->st_shndx = SHN_ABS;
11207
11208 return TRUE;
11209 }
11210
11211 /* Finish up the dynamic sections. */
11212
11213 static bfd_boolean
11214 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
11215 {
11216 bfd * dynobj;
11217 asection * sgot;
11218 asection * sdyn;
11219
11220 dynobj = elf_hash_table (info)->dynobj;
11221
11222 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
11223 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
11224 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11225
11226 if (elf_hash_table (info)->dynamic_sections_created)
11227 {
11228 asection *splt;
11229 Elf32_External_Dyn *dyncon, *dynconend;
11230 struct elf32_arm_link_hash_table *htab;
11231
11232 htab = elf32_arm_hash_table (info);
11233 splt = bfd_get_section_by_name (dynobj, ".plt");
11234 BFD_ASSERT (splt != NULL && sdyn != NULL);
11235
11236 dyncon = (Elf32_External_Dyn *) sdyn->contents;
11237 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
11238
11239 for (; dyncon < dynconend; dyncon++)
11240 {
11241 Elf_Internal_Dyn dyn;
11242 const char * name;
11243 asection * s;
11244
11245 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
11246
11247 switch (dyn.d_tag)
11248 {
11249 unsigned int type;
11250
11251 default:
11252 if (htab->vxworks_p
11253 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11254 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11255 break;
11256
11257 case DT_HASH:
11258 name = ".hash";
11259 goto get_vma_if_bpabi;
11260 case DT_STRTAB:
11261 name = ".dynstr";
11262 goto get_vma_if_bpabi;
11263 case DT_SYMTAB:
11264 name = ".dynsym";
11265 goto get_vma_if_bpabi;
11266 case DT_VERSYM:
11267 name = ".gnu.version";
11268 goto get_vma_if_bpabi;
11269 case DT_VERDEF:
11270 name = ".gnu.version_d";
11271 goto get_vma_if_bpabi;
11272 case DT_VERNEED:
11273 name = ".gnu.version_r";
11274 goto get_vma_if_bpabi;
11275
11276 case DT_PLTGOT:
11277 name = ".got";
11278 goto get_vma;
11279 case DT_JMPREL:
11280 name = RELOC_SECTION (htab, ".plt");
11281 get_vma:
11282 s = bfd_get_section_by_name (output_bfd, name);
11283 BFD_ASSERT (s != NULL);
11284 if (!htab->symbian_p)
11285 dyn.d_un.d_ptr = s->vma;
11286 else
11287 /* In the BPABI, tags in the PT_DYNAMIC section point
11288 at the file offset, not the memory address, for the
11289 convenience of the post linker. */
11290 dyn.d_un.d_ptr = s->filepos;
11291 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11292 break;
11293
11294 get_vma_if_bpabi:
11295 if (htab->symbian_p)
11296 goto get_vma;
11297 break;
11298
11299 case DT_PLTRELSZ:
11300 s = bfd_get_section_by_name (output_bfd,
11301 RELOC_SECTION (htab, ".plt"));
11302 BFD_ASSERT (s != NULL);
11303 dyn.d_un.d_val = s->size;
11304 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11305 break;
11306
11307 case DT_RELSZ:
11308 case DT_RELASZ:
11309 if (!htab->symbian_p)
11310 {
11311 /* My reading of the SVR4 ABI indicates that the
11312 procedure linkage table relocs (DT_JMPREL) should be
11313 included in the overall relocs (DT_REL). This is
11314 what Solaris does. However, UnixWare can not handle
11315 that case. Therefore, we override the DT_RELSZ entry
11316 here to make it not include the JMPREL relocs. Since
11317 the linker script arranges for .rel(a).plt to follow all
11318 other relocation sections, we don't have to worry
11319 about changing the DT_REL entry. */
11320 s = bfd_get_section_by_name (output_bfd,
11321 RELOC_SECTION (htab, ".plt"));
11322 if (s != NULL)
11323 dyn.d_un.d_val -= s->size;
11324 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11325 break;
11326 }
11327 /* Fall through. */
11328
11329 case DT_REL:
11330 case DT_RELA:
11331 /* In the BPABI, the DT_REL tag must point at the file
11332 offset, not the VMA, of the first relocation
11333 section. So, we use code similar to that in
11334 elflink.c, but do not check for SHF_ALLOC on the
11335 relcoation section, since relocations sections are
11336 never allocated under the BPABI. The comments above
11337 about Unixware notwithstanding, we include all of the
11338 relocations here. */
11339 if (htab->symbian_p)
11340 {
11341 unsigned int i;
11342 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11343 ? SHT_REL : SHT_RELA);
11344 dyn.d_un.d_val = 0;
11345 for (i = 1; i < elf_numsections (output_bfd); i++)
11346 {
11347 Elf_Internal_Shdr *hdr
11348 = elf_elfsections (output_bfd)[i];
11349 if (hdr->sh_type == type)
11350 {
11351 if (dyn.d_tag == DT_RELSZ
11352 || dyn.d_tag == DT_RELASZ)
11353 dyn.d_un.d_val += hdr->sh_size;
11354 else if ((ufile_ptr) hdr->sh_offset
11355 <= dyn.d_un.d_val - 1)
11356 dyn.d_un.d_val = hdr->sh_offset;
11357 }
11358 }
11359 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11360 }
11361 break;
11362
11363 /* Set the bottom bit of DT_INIT/FINI if the
11364 corresponding function is Thumb. */
11365 case DT_INIT:
11366 name = info->init_function;
11367 goto get_sym;
11368 case DT_FINI:
11369 name = info->fini_function;
11370 get_sym:
11371 /* If it wasn't set by elf_bfd_final_link
11372 then there is nothing to adjust. */
11373 if (dyn.d_un.d_val != 0)
11374 {
11375 struct elf_link_hash_entry * eh;
11376
11377 eh = elf_link_hash_lookup (elf_hash_table (info), name,
11378 FALSE, FALSE, TRUE);
11379 if (eh != NULL
11380 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
11381 {
11382 dyn.d_un.d_val |= 1;
11383 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11384 }
11385 }
11386 break;
11387 }
11388 }
11389
11390 /* Fill in the first entry in the procedure linkage table. */
11391 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
11392 {
11393 const bfd_vma *plt0_entry;
11394 bfd_vma got_address, plt_address, got_displacement;
11395
11396 /* Calculate the addresses of the GOT and PLT. */
11397 got_address = sgot->output_section->vma + sgot->output_offset;
11398 plt_address = splt->output_section->vma + splt->output_offset;
11399
11400 if (htab->vxworks_p)
11401 {
11402 /* The VxWorks GOT is relocated by the dynamic linker.
11403 Therefore, we must emit relocations rather than simply
11404 computing the values now. */
11405 Elf_Internal_Rela rel;
11406
11407 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
11408 put_arm_insn (htab, output_bfd, plt0_entry[0],
11409 splt->contents + 0);
11410 put_arm_insn (htab, output_bfd, plt0_entry[1],
11411 splt->contents + 4);
11412 put_arm_insn (htab, output_bfd, plt0_entry[2],
11413 splt->contents + 8);
11414 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
11415
11416 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
11417 rel.r_offset = plt_address + 12;
11418 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11419 rel.r_addend = 0;
11420 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
11421 htab->srelplt2->contents);
11422 }
11423 else
11424 {
11425 got_displacement = got_address - (plt_address + 16);
11426
11427 plt0_entry = elf32_arm_plt0_entry;
11428 put_arm_insn (htab, output_bfd, plt0_entry[0],
11429 splt->contents + 0);
11430 put_arm_insn (htab, output_bfd, plt0_entry[1],
11431 splt->contents + 4);
11432 put_arm_insn (htab, output_bfd, plt0_entry[2],
11433 splt->contents + 8);
11434 put_arm_insn (htab, output_bfd, plt0_entry[3],
11435 splt->contents + 12);
11436
11437 #ifdef FOUR_WORD_PLT
11438 /* The displacement value goes in the otherwise-unused
11439 last word of the second entry. */
11440 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
11441 #else
11442 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
11443 #endif
11444 }
11445 }
11446
11447 /* UnixWare sets the entsize of .plt to 4, although that doesn't
11448 really seem like the right value. */
11449 if (splt->output_section->owner == output_bfd)
11450 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
11451
11452 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
11453 {
11454 /* Correct the .rel(a).plt.unloaded relocations. They will have
11455 incorrect symbol indexes. */
11456 int num_plts;
11457 unsigned char *p;
11458
11459 num_plts = ((htab->splt->size - htab->plt_header_size)
11460 / htab->plt_entry_size);
11461 p = htab->srelplt2->contents + RELOC_SIZE (htab);
11462
11463 for (; num_plts; num_plts--)
11464 {
11465 Elf_Internal_Rela rel;
11466
11467 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11468 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11469 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11470 p += RELOC_SIZE (htab);
11471
11472 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11473 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11474 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11475 p += RELOC_SIZE (htab);
11476 }
11477 }
11478 }
11479
11480 /* Fill in the first three entries in the global offset table. */
11481 if (sgot)
11482 {
11483 if (sgot->size > 0)
11484 {
11485 if (sdyn == NULL)
11486 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
11487 else
11488 bfd_put_32 (output_bfd,
11489 sdyn->output_section->vma + sdyn->output_offset,
11490 sgot->contents);
11491 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
11492 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
11493 }
11494
11495 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
11496 }
11497
11498 return TRUE;
11499 }
11500
11501 static void
11502 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11503 {
11504 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11505 struct elf32_arm_link_hash_table *globals;
11506
11507 i_ehdrp = elf_elfheader (abfd);
11508
11509 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
11510 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
11511 else
11512 i_ehdrp->e_ident[EI_OSABI] = 0;
11513 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
11514
11515 if (link_info)
11516 {
11517 globals = elf32_arm_hash_table (link_info);
11518 if (globals->byteswap_code)
11519 i_ehdrp->e_flags |= EF_ARM_BE8;
11520 }
11521 }
11522
11523 static enum elf_reloc_type_class
11524 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
11525 {
11526 switch ((int) ELF32_R_TYPE (rela->r_info))
11527 {
11528 case R_ARM_RELATIVE:
11529 return reloc_class_relative;
11530 case R_ARM_JUMP_SLOT:
11531 return reloc_class_plt;
11532 case R_ARM_COPY:
11533 return reloc_class_copy;
11534 default:
11535 return reloc_class_normal;
11536 }
11537 }
11538
11539 /* Set the right machine number for an Arm ELF file. */
11540
11541 static bfd_boolean
11542 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
11543 {
11544 if (hdr->sh_type == SHT_NOTE)
11545 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
11546
11547 return TRUE;
11548 }
11549
11550 static void
11551 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
11552 {
11553 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
11554 }
11555
11556 /* Return TRUE if this is an unwinding table entry. */
11557
11558 static bfd_boolean
11559 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
11560 {
11561 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
11562 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
11563 }
11564
11565
11566 /* Set the type and flags for an ARM section. We do this by
11567 the section name, which is a hack, but ought to work. */
11568
11569 static bfd_boolean
11570 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
11571 {
11572 const char * name;
11573
11574 name = bfd_get_section_name (abfd, sec);
11575
11576 if (is_arm_elf_unwind_section_name (abfd, name))
11577 {
11578 hdr->sh_type = SHT_ARM_EXIDX;
11579 hdr->sh_flags |= SHF_LINK_ORDER;
11580 }
11581 return TRUE;
11582 }
11583
11584 /* Handle an ARM specific section when reading an object file. This is
11585 called when bfd_section_from_shdr finds a section with an unknown
11586 type. */
11587
11588 static bfd_boolean
11589 elf32_arm_section_from_shdr (bfd *abfd,
11590 Elf_Internal_Shdr * hdr,
11591 const char *name,
11592 int shindex)
11593 {
11594 /* There ought to be a place to keep ELF backend specific flags, but
11595 at the moment there isn't one. We just keep track of the
11596 sections by their name, instead. Fortunately, the ABI gives
11597 names for all the ARM specific sections, so we will probably get
11598 away with this. */
11599 switch (hdr->sh_type)
11600 {
11601 case SHT_ARM_EXIDX:
11602 case SHT_ARM_PREEMPTMAP:
11603 case SHT_ARM_ATTRIBUTES:
11604 break;
11605
11606 default:
11607 return FALSE;
11608 }
11609
11610 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
11611 return FALSE;
11612
11613 return TRUE;
11614 }
11615
11616 /* A structure used to record a list of sections, independently
11617 of the next and prev fields in the asection structure. */
11618 typedef struct section_list
11619 {
11620 asection * sec;
11621 struct section_list * next;
11622 struct section_list * prev;
11623 }
11624 section_list;
11625
11626 /* Unfortunately we need to keep a list of sections for which
11627 an _arm_elf_section_data structure has been allocated. This
11628 is because it is possible for functions like elf32_arm_write_section
11629 to be called on a section which has had an elf_data_structure
11630 allocated for it (and so the used_by_bfd field is valid) but
11631 for which the ARM extended version of this structure - the
11632 _arm_elf_section_data structure - has not been allocated. */
11633 static section_list * sections_with_arm_elf_section_data = NULL;
11634
11635 static void
11636 record_section_with_arm_elf_section_data (asection * sec)
11637 {
11638 struct section_list * entry;
11639
11640 entry = bfd_malloc (sizeof (* entry));
11641 if (entry == NULL)
11642 return;
11643 entry->sec = sec;
11644 entry->next = sections_with_arm_elf_section_data;
11645 entry->prev = NULL;
11646 if (entry->next != NULL)
11647 entry->next->prev = entry;
11648 sections_with_arm_elf_section_data = entry;
11649 }
11650
11651 static struct section_list *
11652 find_arm_elf_section_entry (asection * sec)
11653 {
11654 struct section_list * entry;
11655 static struct section_list * last_entry = NULL;
11656
11657 /* This is a short cut for the typical case where the sections are added
11658 to the sections_with_arm_elf_section_data list in forward order and
11659 then looked up here in backwards order. This makes a real difference
11660 to the ld-srec/sec64k.exp linker test. */
11661 entry = sections_with_arm_elf_section_data;
11662 if (last_entry != NULL)
11663 {
11664 if (last_entry->sec == sec)
11665 entry = last_entry;
11666 else if (last_entry->next != NULL
11667 && last_entry->next->sec == sec)
11668 entry = last_entry->next;
11669 }
11670
11671 for (; entry; entry = entry->next)
11672 if (entry->sec == sec)
11673 break;
11674
11675 if (entry)
11676 /* Record the entry prior to this one - it is the entry we are most
11677 likely to want to locate next time. Also this way if we have been
11678 called from unrecord_section_with_arm_elf_section_data() we will not
11679 be caching a pointer that is about to be freed. */
11680 last_entry = entry->prev;
11681
11682 return entry;
11683 }
11684
11685 static _arm_elf_section_data *
11686 get_arm_elf_section_data (asection * sec)
11687 {
11688 struct section_list * entry;
11689
11690 entry = find_arm_elf_section_entry (sec);
11691
11692 if (entry)
11693 return elf32_arm_section_data (entry->sec);
11694 else
11695 return NULL;
11696 }
11697
11698 static void
11699 unrecord_section_with_arm_elf_section_data (asection * sec)
11700 {
11701 struct section_list * entry;
11702
11703 entry = find_arm_elf_section_entry (sec);
11704
11705 if (entry)
11706 {
11707 if (entry->prev != NULL)
11708 entry->prev->next = entry->next;
11709 if (entry->next != NULL)
11710 entry->next->prev = entry->prev;
11711 if (entry == sections_with_arm_elf_section_data)
11712 sections_with_arm_elf_section_data = entry->next;
11713 free (entry);
11714 }
11715 }
11716
11717
11718 typedef struct
11719 {
11720 void *finfo;
11721 struct bfd_link_info *info;
11722 asection *sec;
11723 int sec_shndx;
11724 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11725 asection *, struct elf_link_hash_entry *);
11726 } output_arch_syminfo;
11727
11728 enum map_symbol_type
11729 {
11730 ARM_MAP_ARM,
11731 ARM_MAP_THUMB,
11732 ARM_MAP_DATA
11733 };
11734
11735
11736 /* Output a single mapping symbol. */
11737
11738 static bfd_boolean
11739 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11740 enum map_symbol_type type,
11741 bfd_vma offset)
11742 {
11743 static const char *names[3] = {"$a", "$t", "$d"};
11744 struct elf32_arm_link_hash_table *htab;
11745 Elf_Internal_Sym sym;
11746
11747 htab = elf32_arm_hash_table (osi->info);
11748 sym.st_value = osi->sec->output_section->vma
11749 + osi->sec->output_offset
11750 + offset;
11751 sym.st_size = 0;
11752 sym.st_other = 0;
11753 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11754 sym.st_shndx = osi->sec_shndx;
11755 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11756 return FALSE;
11757 return TRUE;
11758 }
11759
11760
11761 /* Output mapping symbols for PLT entries associated with H. */
11762
11763 static bfd_boolean
11764 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11765 {
11766 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11767 struct elf32_arm_link_hash_table *htab;
11768 struct elf32_arm_link_hash_entry *eh;
11769 bfd_vma addr;
11770
11771 htab = elf32_arm_hash_table (osi->info);
11772
11773 if (h->root.type == bfd_link_hash_indirect)
11774 return TRUE;
11775
11776 if (h->root.type == bfd_link_hash_warning)
11777 /* When warning symbols are created, they **replace** the "real"
11778 entry in the hash table, thus we never get to see the real
11779 symbol in a hash traversal. So look at it now. */
11780 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11781
11782 if (h->plt.offset == (bfd_vma) -1)
11783 return TRUE;
11784
11785 eh = (struct elf32_arm_link_hash_entry *) h;
11786 addr = h->plt.offset;
11787 if (htab->symbian_p)
11788 {
11789 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11790 return FALSE;
11791 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11792 return FALSE;
11793 }
11794 else if (htab->vxworks_p)
11795 {
11796 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11797 return FALSE;
11798 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11799 return FALSE;
11800 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11801 return FALSE;
11802 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11803 return FALSE;
11804 }
11805 else
11806 {
11807 bfd_signed_vma thumb_refs;
11808
11809 thumb_refs = eh->plt_thumb_refcount;
11810 if (!htab->use_blx)
11811 thumb_refs += eh->plt_maybe_thumb_refcount;
11812
11813 if (thumb_refs > 0)
11814 {
11815 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11816 return FALSE;
11817 }
11818 #ifdef FOUR_WORD_PLT
11819 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11820 return FALSE;
11821 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11822 return FALSE;
11823 #else
11824 /* A three-word PLT with no Thumb thunk contains only Arm code,
11825 so only need to output a mapping symbol for the first PLT entry and
11826 entries with thumb thunks. */
11827 if (thumb_refs > 0 || addr == 20)
11828 {
11829 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11830 return FALSE;
11831 }
11832 #endif
11833 }
11834
11835 return TRUE;
11836 }
11837
11838 /* Output a single local symbol for a generated stub. */
11839
11840 static bfd_boolean
11841 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11842 bfd_vma offset, bfd_vma size)
11843 {
11844 struct elf32_arm_link_hash_table *htab;
11845 Elf_Internal_Sym sym;
11846
11847 htab = elf32_arm_hash_table (osi->info);
11848 sym.st_value = osi->sec->output_section->vma
11849 + osi->sec->output_offset
11850 + offset;
11851 sym.st_size = size;
11852 sym.st_other = 0;
11853 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11854 sym.st_shndx = osi->sec_shndx;
11855 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11856 return FALSE;
11857 return TRUE;
11858 }
11859
11860 static bfd_boolean
11861 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11862 void * in_arg)
11863 {
11864 struct elf32_arm_stub_hash_entry *stub_entry;
11865 struct bfd_link_info *info;
11866 struct elf32_arm_link_hash_table *htab;
11867 asection *stub_sec;
11868 bfd_vma addr;
11869 char *stub_name;
11870 output_arch_syminfo *osi;
11871 const insn_sequence *template;
11872 enum stub_insn_type prev_type;
11873 int size;
11874 int i;
11875 enum map_symbol_type sym_type;
11876
11877 /* Massage our args to the form they really have. */
11878 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11879 osi = (output_arch_syminfo *) in_arg;
11880
11881 info = osi->info;
11882
11883 htab = elf32_arm_hash_table (info);
11884 stub_sec = stub_entry->stub_sec;
11885
11886 /* Ensure this stub is attached to the current section being
11887 processed. */
11888 if (stub_sec != osi->sec)
11889 return TRUE;
11890
11891 addr = (bfd_vma) stub_entry->stub_offset;
11892 stub_name = stub_entry->output_name;
11893
11894 template = stub_entry->stub_template;
11895 switch (template[0].type)
11896 {
11897 case ARM_TYPE:
11898 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
11899 return FALSE;
11900 break;
11901 case THUMB16_TYPE:
11902 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
11903 stub_entry->stub_size))
11904 return FALSE;
11905 break;
11906 default:
11907 BFD_FAIL ();
11908 return FALSE;
11909 }
11910
11911 prev_type = DATA_TYPE;
11912 size = 0;
11913 for (i = 0; i < stub_entry->stub_template_size; i++)
11914 {
11915 switch (template[i].type)
11916 {
11917 case ARM_TYPE:
11918 sym_type = ARM_MAP_ARM;
11919 break;
11920
11921 case THUMB16_TYPE:
11922 sym_type = ARM_MAP_THUMB;
11923 break;
11924
11925 case DATA_TYPE:
11926 sym_type = ARM_MAP_DATA;
11927 break;
11928
11929 default:
11930 BFD_FAIL ();
11931 return FALSE;
11932 }
11933
11934 if (template[i].type != prev_type)
11935 {
11936 prev_type = template[i].type;
11937 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
11938 return FALSE;
11939 }
11940
11941 switch (template[i].type)
11942 {
11943 case ARM_TYPE:
11944 size += 4;
11945 break;
11946
11947 case THUMB16_TYPE:
11948 size += 2;
11949 break;
11950
11951 case DATA_TYPE:
11952 size += 4;
11953 break;
11954
11955 default:
11956 BFD_FAIL ();
11957 return FALSE;
11958 }
11959 }
11960
11961 return TRUE;
11962 }
11963
11964 /* Output mapping symbols for linker generated sections. */
11965
11966 static bfd_boolean
11967 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11968 struct bfd_link_info *info,
11969 void *finfo,
11970 bfd_boolean (*func) (void *, const char *,
11971 Elf_Internal_Sym *,
11972 asection *,
11973 struct elf_link_hash_entry *))
11974 {
11975 output_arch_syminfo osi;
11976 struct elf32_arm_link_hash_table *htab;
11977 bfd_vma offset;
11978 bfd_size_type size;
11979
11980 htab = elf32_arm_hash_table (info);
11981 check_use_blx (htab);
11982
11983 osi.finfo = finfo;
11984 osi.info = info;
11985 osi.func = func;
11986
11987 /* ARM->Thumb glue. */
11988 if (htab->arm_glue_size > 0)
11989 {
11990 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11991 ARM2THUMB_GLUE_SECTION_NAME);
11992
11993 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11994 (output_bfd, osi.sec->output_section);
11995 if (info->shared || htab->root.is_relocatable_executable
11996 || htab->pic_veneer)
11997 size = ARM2THUMB_PIC_GLUE_SIZE;
11998 else if (htab->use_blx)
11999 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
12000 else
12001 size = ARM2THUMB_STATIC_GLUE_SIZE;
12002
12003 for (offset = 0; offset < htab->arm_glue_size; offset += size)
12004 {
12005 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
12006 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
12007 }
12008 }
12009
12010 /* Thumb->ARM glue. */
12011 if (htab->thumb_glue_size > 0)
12012 {
12013 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12014 THUMB2ARM_GLUE_SECTION_NAME);
12015
12016 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12017 (output_bfd, osi.sec->output_section);
12018 size = THUMB2ARM_GLUE_SIZE;
12019
12020 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
12021 {
12022 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
12023 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
12024 }
12025 }
12026
12027 /* ARMv4 BX veneers. */
12028 if (htab->bx_glue_size > 0)
12029 {
12030 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12031 ARM_BX_GLUE_SECTION_NAME);
12032
12033 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12034 (output_bfd, osi.sec->output_section);
12035
12036 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
12037 }
12038
12039 /* Long calls stubs. */
12040 if (htab->stub_bfd && htab->stub_bfd->sections)
12041 {
12042 asection* stub_sec;
12043
12044 for (stub_sec = htab->stub_bfd->sections;
12045 stub_sec != NULL;
12046 stub_sec = stub_sec->next)
12047 {
12048 /* Ignore non-stub sections. */
12049 if (!strstr (stub_sec->name, STUB_SUFFIX))
12050 continue;
12051
12052 osi.sec = stub_sec;
12053
12054 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12055 (output_bfd, osi.sec->output_section);
12056
12057 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
12058 }
12059 }
12060
12061 /* Finally, output mapping symbols for the PLT. */
12062 if (!htab->splt || htab->splt->size == 0)
12063 return TRUE;
12064
12065 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
12066 htab->splt->output_section);
12067 osi.sec = htab->splt;
12068 /* Output mapping symbols for the plt header. SymbianOS does not have a
12069 plt header. */
12070 if (htab->vxworks_p)
12071 {
12072 /* VxWorks shared libraries have no PLT header. */
12073 if (!info->shared)
12074 {
12075 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
12076 return FALSE;
12077 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
12078 return FALSE;
12079 }
12080 }
12081 else if (!htab->symbian_p)
12082 {
12083 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
12084 return FALSE;
12085 #ifndef FOUR_WORD_PLT
12086 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
12087 return FALSE;
12088 #endif
12089 }
12090
12091 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
12092 return TRUE;
12093 }
12094
12095 /* Allocate target specific section data. */
12096
12097 static bfd_boolean
12098 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
12099 {
12100 if (!sec->used_by_bfd)
12101 {
12102 _arm_elf_section_data *sdata;
12103 bfd_size_type amt = sizeof (*sdata);
12104
12105 sdata = bfd_zalloc (abfd, amt);
12106 if (sdata == NULL)
12107 return FALSE;
12108 sec->used_by_bfd = sdata;
12109 }
12110
12111 record_section_with_arm_elf_section_data (sec);
12112
12113 return _bfd_elf_new_section_hook (abfd, sec);
12114 }
12115
12116
12117 /* Used to order a list of mapping symbols by address. */
12118
12119 static int
12120 elf32_arm_compare_mapping (const void * a, const void * b)
12121 {
12122 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
12123 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
12124
12125 if (amap->vma > bmap->vma)
12126 return 1;
12127 else if (amap->vma < bmap->vma)
12128 return -1;
12129 else if (amap->type > bmap->type)
12130 /* Ensure results do not depend on the host qsort for objects with
12131 multiple mapping symbols at the same address by sorting on type
12132 after vma. */
12133 return 1;
12134 else if (amap->type < bmap->type)
12135 return -1;
12136 else
12137 return 0;
12138 }
12139
12140
12141 /* Do code byteswapping. Return FALSE afterwards so that the section is
12142 written out as normal. */
12143
12144 static bfd_boolean
12145 elf32_arm_write_section (bfd *output_bfd,
12146 struct bfd_link_info *link_info,
12147 asection *sec,
12148 bfd_byte *contents)
12149 {
12150 int mapcount, errcount;
12151 _arm_elf_section_data *arm_data;
12152 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
12153 elf32_arm_section_map *map;
12154 elf32_vfp11_erratum_list *errnode;
12155 bfd_vma ptr;
12156 bfd_vma end;
12157 bfd_vma offset = sec->output_section->vma + sec->output_offset;
12158 bfd_byte tmp;
12159 int i;
12160
12161 /* If this section has not been allocated an _arm_elf_section_data
12162 structure then we cannot record anything. */
12163 arm_data = get_arm_elf_section_data (sec);
12164 if (arm_data == NULL)
12165 return FALSE;
12166
12167 mapcount = arm_data->mapcount;
12168 map = arm_data->map;
12169 errcount = arm_data->erratumcount;
12170
12171 if (errcount != 0)
12172 {
12173 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
12174
12175 for (errnode = arm_data->erratumlist; errnode != 0;
12176 errnode = errnode->next)
12177 {
12178 bfd_vma index = errnode->vma - offset;
12179
12180 switch (errnode->type)
12181 {
12182 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
12183 {
12184 bfd_vma branch_to_veneer;
12185 /* Original condition code of instruction, plus bit mask for
12186 ARM B instruction. */
12187 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
12188 | 0x0a000000;
12189
12190 /* The instruction is before the label. */
12191 index -= 4;
12192
12193 /* Above offset included in -4 below. */
12194 branch_to_veneer = errnode->u.b.veneer->vma
12195 - errnode->vma - 4;
12196
12197 if ((signed) branch_to_veneer < -(1 << 25)
12198 || (signed) branch_to_veneer >= (1 << 25))
12199 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12200 "range"), output_bfd);
12201
12202 insn |= (branch_to_veneer >> 2) & 0xffffff;
12203 contents[endianflip ^ index] = insn & 0xff;
12204 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12205 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12206 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12207 }
12208 break;
12209
12210 case VFP11_ERRATUM_ARM_VENEER:
12211 {
12212 bfd_vma branch_from_veneer;
12213 unsigned int insn;
12214
12215 /* Take size of veneer into account. */
12216 branch_from_veneer = errnode->u.v.branch->vma
12217 - errnode->vma - 12;
12218
12219 if ((signed) branch_from_veneer < -(1 << 25)
12220 || (signed) branch_from_veneer >= (1 << 25))
12221 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12222 "range"), output_bfd);
12223
12224 /* Original instruction. */
12225 insn = errnode->u.v.branch->u.b.vfp_insn;
12226 contents[endianflip ^ index] = insn & 0xff;
12227 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12228 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12229 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12230
12231 /* Branch back to insn after original insn. */
12232 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
12233 contents[endianflip ^ (index + 4)] = insn & 0xff;
12234 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
12235 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
12236 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
12237 }
12238 break;
12239
12240 default:
12241 abort ();
12242 }
12243 }
12244 }
12245
12246 if (mapcount == 0)
12247 return FALSE;
12248
12249 if (globals->byteswap_code)
12250 {
12251 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
12252
12253 ptr = map[0].vma;
12254 for (i = 0; i < mapcount; i++)
12255 {
12256 if (i == mapcount - 1)
12257 end = sec->size;
12258 else
12259 end = map[i + 1].vma;
12260
12261 switch (map[i].type)
12262 {
12263 case 'a':
12264 /* Byte swap code words. */
12265 while (ptr + 3 < end)
12266 {
12267 tmp = contents[ptr];
12268 contents[ptr] = contents[ptr + 3];
12269 contents[ptr + 3] = tmp;
12270 tmp = contents[ptr + 1];
12271 contents[ptr + 1] = contents[ptr + 2];
12272 contents[ptr + 2] = tmp;
12273 ptr += 4;
12274 }
12275 break;
12276
12277 case 't':
12278 /* Byte swap code halfwords. */
12279 while (ptr + 1 < end)
12280 {
12281 tmp = contents[ptr];
12282 contents[ptr] = contents[ptr + 1];
12283 contents[ptr + 1] = tmp;
12284 ptr += 2;
12285 }
12286 break;
12287
12288 case 'd':
12289 /* Leave data alone. */
12290 break;
12291 }
12292 ptr = end;
12293 }
12294 }
12295
12296 free (map);
12297 arm_data->mapcount = 0;
12298 arm_data->mapsize = 0;
12299 arm_data->map = NULL;
12300 unrecord_section_with_arm_elf_section_data (sec);
12301
12302 return FALSE;
12303 }
12304
12305 static void
12306 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
12307 asection * sec,
12308 void * ignore ATTRIBUTE_UNUSED)
12309 {
12310 unrecord_section_with_arm_elf_section_data (sec);
12311 }
12312
12313 static bfd_boolean
12314 elf32_arm_close_and_cleanup (bfd * abfd)
12315 {
12316 if (abfd->sections)
12317 bfd_map_over_sections (abfd,
12318 unrecord_section_via_map_over_sections,
12319 NULL);
12320
12321 return _bfd_elf_close_and_cleanup (abfd);
12322 }
12323
12324 static bfd_boolean
12325 elf32_arm_bfd_free_cached_info (bfd * abfd)
12326 {
12327 if (abfd->sections)
12328 bfd_map_over_sections (abfd,
12329 unrecord_section_via_map_over_sections,
12330 NULL);
12331
12332 return _bfd_free_cached_info (abfd);
12333 }
12334
12335 /* Display STT_ARM_TFUNC symbols as functions. */
12336
12337 static void
12338 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
12339 asymbol *asym)
12340 {
12341 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
12342
12343 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
12344 elfsym->symbol.flags |= BSF_FUNCTION;
12345 }
12346
12347
12348 /* Mangle thumb function symbols as we read them in. */
12349
12350 static bfd_boolean
12351 elf32_arm_swap_symbol_in (bfd * abfd,
12352 const void *psrc,
12353 const void *pshn,
12354 Elf_Internal_Sym *dst)
12355 {
12356 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
12357 return FALSE;
12358
12359 /* New EABI objects mark thumb function symbols by setting the low bit of
12360 the address. Turn these into STT_ARM_TFUNC. */
12361 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
12362 && (dst->st_value & 1))
12363 {
12364 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
12365 dst->st_value &= ~(bfd_vma) 1;
12366 }
12367 return TRUE;
12368 }
12369
12370
12371 /* Mangle thumb function symbols as we write them out. */
12372
12373 static void
12374 elf32_arm_swap_symbol_out (bfd *abfd,
12375 const Elf_Internal_Sym *src,
12376 void *cdst,
12377 void *shndx)
12378 {
12379 Elf_Internal_Sym newsym;
12380
12381 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
12382 of the address set, as per the new EABI. We do this unconditionally
12383 because objcopy does not set the elf header flags until after
12384 it writes out the symbol table. */
12385 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
12386 {
12387 newsym = *src;
12388 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
12389 if (newsym.st_shndx != SHN_UNDEF)
12390 {
12391 /* Do this only for defined symbols. At link type, the static
12392 linker will simulate the work of dynamic linker of resolving
12393 symbols and will carry over the thumbness of found symbols to
12394 the output symbol table. It's not clear how it happens, but
12395 the thumbness of undefined symbols can well be different at
12396 runtime, and writing '1' for them will be confusing for users
12397 and possibly for dynamic linker itself.
12398 */
12399 newsym.st_value |= 1;
12400 }
12401
12402 src = &newsym;
12403 }
12404 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
12405 }
12406
12407 /* Add the PT_ARM_EXIDX program header. */
12408
12409 static bfd_boolean
12410 elf32_arm_modify_segment_map (bfd *abfd,
12411 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12412 {
12413 struct elf_segment_map *m;
12414 asection *sec;
12415
12416 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12417 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12418 {
12419 /* If there is already a PT_ARM_EXIDX header, then we do not
12420 want to add another one. This situation arises when running
12421 "strip"; the input binary already has the header. */
12422 m = elf_tdata (abfd)->segment_map;
12423 while (m && m->p_type != PT_ARM_EXIDX)
12424 m = m->next;
12425 if (!m)
12426 {
12427 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
12428 if (m == NULL)
12429 return FALSE;
12430 m->p_type = PT_ARM_EXIDX;
12431 m->count = 1;
12432 m->sections[0] = sec;
12433
12434 m->next = elf_tdata (abfd)->segment_map;
12435 elf_tdata (abfd)->segment_map = m;
12436 }
12437 }
12438
12439 return TRUE;
12440 }
12441
12442 /* We may add a PT_ARM_EXIDX program header. */
12443
12444 static int
12445 elf32_arm_additional_program_headers (bfd *abfd,
12446 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12447 {
12448 asection *sec;
12449
12450 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12451 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12452 return 1;
12453 else
12454 return 0;
12455 }
12456
12457 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
12458
12459 static bfd_boolean
12460 elf32_arm_is_function_type (unsigned int type)
12461 {
12462 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
12463 }
12464
12465 /* We use this to override swap_symbol_in and swap_symbol_out. */
12466 const struct elf_size_info elf32_arm_size_info =
12467 {
12468 sizeof (Elf32_External_Ehdr),
12469 sizeof (Elf32_External_Phdr),
12470 sizeof (Elf32_External_Shdr),
12471 sizeof (Elf32_External_Rel),
12472 sizeof (Elf32_External_Rela),
12473 sizeof (Elf32_External_Sym),
12474 sizeof (Elf32_External_Dyn),
12475 sizeof (Elf_External_Note),
12476 4,
12477 1,
12478 32, 2,
12479 ELFCLASS32, EV_CURRENT,
12480 bfd_elf32_write_out_phdrs,
12481 bfd_elf32_write_shdrs_and_ehdr,
12482 bfd_elf32_checksum_contents,
12483 bfd_elf32_write_relocs,
12484 elf32_arm_swap_symbol_in,
12485 elf32_arm_swap_symbol_out,
12486 bfd_elf32_slurp_reloc_table,
12487 bfd_elf32_slurp_symbol_table,
12488 bfd_elf32_swap_dyn_in,
12489 bfd_elf32_swap_dyn_out,
12490 bfd_elf32_swap_reloc_in,
12491 bfd_elf32_swap_reloc_out,
12492 bfd_elf32_swap_reloca_in,
12493 bfd_elf32_swap_reloca_out
12494 };
12495
12496 #define ELF_ARCH bfd_arch_arm
12497 #define ELF_MACHINE_CODE EM_ARM
12498 #ifdef __QNXTARGET__
12499 #define ELF_MAXPAGESIZE 0x1000
12500 #else
12501 #define ELF_MAXPAGESIZE 0x8000
12502 #endif
12503 #define ELF_MINPAGESIZE 0x1000
12504 #define ELF_COMMONPAGESIZE 0x1000
12505
12506 #define bfd_elf32_mkobject elf32_arm_mkobject
12507
12508 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
12509 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
12510 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
12511 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
12512 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
12513 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
12514 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
12515 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
12516 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
12517 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
12518 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
12519 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
12520 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
12521 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
12522
12523 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
12524 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
12525 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
12526 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
12527 #define elf_backend_check_relocs elf32_arm_check_relocs
12528 #define elf_backend_relocate_section elf32_arm_relocate_section
12529 #define elf_backend_write_section elf32_arm_write_section
12530 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
12531 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
12532 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
12533 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
12534 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
12535 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
12536 #define elf_backend_post_process_headers elf32_arm_post_process_headers
12537 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
12538 #define elf_backend_object_p elf32_arm_object_p
12539 #define elf_backend_section_flags elf32_arm_section_flags
12540 #define elf_backend_fake_sections elf32_arm_fake_sections
12541 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
12542 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12543 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
12544 #define elf_backend_symbol_processing elf32_arm_symbol_processing
12545 #define elf_backend_size_info elf32_arm_size_info
12546 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
12547 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
12548 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
12549 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
12550 #define elf_backend_is_function_type elf32_arm_is_function_type
12551
12552 #define elf_backend_can_refcount 1
12553 #define elf_backend_can_gc_sections 1
12554 #define elf_backend_plt_readonly 1
12555 #define elf_backend_want_got_plt 1
12556 #define elf_backend_want_plt_sym 0
12557 #define elf_backend_may_use_rel_p 1
12558 #define elf_backend_may_use_rela_p 0
12559 #define elf_backend_default_use_rela_p 0
12560
12561 #define elf_backend_got_header_size 12
12562
12563 #undef elf_backend_obj_attrs_vendor
12564 #define elf_backend_obj_attrs_vendor "aeabi"
12565 #undef elf_backend_obj_attrs_section
12566 #define elf_backend_obj_attrs_section ".ARM.attributes"
12567 #undef elf_backend_obj_attrs_arg_type
12568 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
12569 #undef elf_backend_obj_attrs_section_type
12570 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
12571 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
12572
12573 #include "elf32-target.h"
12574
12575 /* VxWorks Targets. */
12576
12577 #undef TARGET_LITTLE_SYM
12578 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
12579 #undef TARGET_LITTLE_NAME
12580 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
12581 #undef TARGET_BIG_SYM
12582 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
12583 #undef TARGET_BIG_NAME
12584 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
12585
12586 /* Like elf32_arm_link_hash_table_create -- but overrides
12587 appropriately for VxWorks. */
12588
12589 static struct bfd_link_hash_table *
12590 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
12591 {
12592 struct bfd_link_hash_table *ret;
12593
12594 ret = elf32_arm_link_hash_table_create (abfd);
12595 if (ret)
12596 {
12597 struct elf32_arm_link_hash_table *htab
12598 = (struct elf32_arm_link_hash_table *) ret;
12599 htab->use_rel = 0;
12600 htab->vxworks_p = 1;
12601 }
12602 return ret;
12603 }
12604
12605 static void
12606 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
12607 {
12608 elf32_arm_final_write_processing (abfd, linker);
12609 elf_vxworks_final_write_processing (abfd, linker);
12610 }
12611
12612 #undef elf32_bed
12613 #define elf32_bed elf32_arm_vxworks_bed
12614
12615 #undef bfd_elf32_bfd_link_hash_table_create
12616 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
12617 #undef elf_backend_add_symbol_hook
12618 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
12619 #undef elf_backend_final_write_processing
12620 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
12621 #undef elf_backend_emit_relocs
12622 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
12623
12624 #undef elf_backend_may_use_rel_p
12625 #define elf_backend_may_use_rel_p 0
12626 #undef elf_backend_may_use_rela_p
12627 #define elf_backend_may_use_rela_p 1
12628 #undef elf_backend_default_use_rela_p
12629 #define elf_backend_default_use_rela_p 1
12630 #undef elf_backend_want_plt_sym
12631 #define elf_backend_want_plt_sym 1
12632 #undef ELF_MAXPAGESIZE
12633 #define ELF_MAXPAGESIZE 0x1000
12634
12635 #include "elf32-target.h"
12636
12637
12638 /* Symbian OS Targets. */
12639
12640 #undef TARGET_LITTLE_SYM
12641 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
12642 #undef TARGET_LITTLE_NAME
12643 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
12644 #undef TARGET_BIG_SYM
12645 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
12646 #undef TARGET_BIG_NAME
12647 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
12648
12649 /* Like elf32_arm_link_hash_table_create -- but overrides
12650 appropriately for Symbian OS. */
12651
12652 static struct bfd_link_hash_table *
12653 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
12654 {
12655 struct bfd_link_hash_table *ret;
12656
12657 ret = elf32_arm_link_hash_table_create (abfd);
12658 if (ret)
12659 {
12660 struct elf32_arm_link_hash_table *htab
12661 = (struct elf32_arm_link_hash_table *)ret;
12662 /* There is no PLT header for Symbian OS. */
12663 htab->plt_header_size = 0;
12664 /* The PLT entries are each one instruction and one word. */
12665 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
12666 htab->symbian_p = 1;
12667 /* Symbian uses armv5t or above, so use_blx is always true. */
12668 htab->use_blx = 1;
12669 htab->root.is_relocatable_executable = 1;
12670 }
12671 return ret;
12672 }
12673
12674 static const struct bfd_elf_special_section
12675 elf32_arm_symbian_special_sections[] =
12676 {
12677 /* In a BPABI executable, the dynamic linking sections do not go in
12678 the loadable read-only segment. The post-linker may wish to
12679 refer to these sections, but they are not part of the final
12680 program image. */
12681 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12682 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12683 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12684 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12685 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
12686 /* These sections do not need to be writable as the SymbianOS
12687 postlinker will arrange things so that no dynamic relocation is
12688 required. */
12689 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12690 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12691 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12692 { NULL, 0, 0, 0, 0 }
12693 };
12694
12695 static void
12696 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12697 struct bfd_link_info *link_info)
12698 {
12699 /* BPABI objects are never loaded directly by an OS kernel; they are
12700 processed by a postlinker first, into an OS-specific format. If
12701 the D_PAGED bit is set on the file, BFD will align segments on
12702 page boundaries, so that an OS can directly map the file. With
12703 BPABI objects, that just results in wasted space. In addition,
12704 because we clear the D_PAGED bit, map_sections_to_segments will
12705 recognize that the program headers should not be mapped into any
12706 loadable segment. */
12707 abfd->flags &= ~D_PAGED;
12708 elf32_arm_begin_write_processing (abfd, link_info);
12709 }
12710
12711 static bfd_boolean
12712 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12713 struct bfd_link_info *info)
12714 {
12715 struct elf_segment_map *m;
12716 asection *dynsec;
12717
12718 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12719 segment. However, because the .dynamic section is not marked
12720 with SEC_LOAD, the generic ELF code will not create such a
12721 segment. */
12722 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12723 if (dynsec)
12724 {
12725 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12726 if (m->p_type == PT_DYNAMIC)
12727 break;
12728
12729 if (m == NULL)
12730 {
12731 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12732 m->next = elf_tdata (abfd)->segment_map;
12733 elf_tdata (abfd)->segment_map = m;
12734 }
12735 }
12736
12737 /* Also call the generic arm routine. */
12738 return elf32_arm_modify_segment_map (abfd, info);
12739 }
12740
12741 /* Return address for Ith PLT stub in section PLT, for relocation REL
12742 or (bfd_vma) -1 if it should not be included. */
12743
12744 static bfd_vma
12745 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12746 const arelent *rel ATTRIBUTE_UNUSED)
12747 {
12748 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12749 }
12750
12751
12752 #undef elf32_bed
12753 #define elf32_bed elf32_arm_symbian_bed
12754
12755 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12756 will process them and then discard them. */
12757 #undef ELF_DYNAMIC_SEC_FLAGS
12758 #define ELF_DYNAMIC_SEC_FLAGS \
12759 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12760
12761 #undef elf_backend_add_symbol_hook
12762 #undef elf_backend_emit_relocs
12763
12764 #undef bfd_elf32_bfd_link_hash_table_create
12765 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12766 #undef elf_backend_special_sections
12767 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12768 #undef elf_backend_begin_write_processing
12769 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12770 #undef elf_backend_final_write_processing
12771 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12772
12773 #undef elf_backend_modify_segment_map
12774 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12775
12776 /* There is no .got section for BPABI objects, and hence no header. */
12777 #undef elf_backend_got_header_size
12778 #define elf_backend_got_header_size 0
12779
12780 /* Similarly, there is no .got.plt section. */
12781 #undef elf_backend_want_got_plt
12782 #define elf_backend_want_got_plt 0
12783
12784 #undef elf_backend_plt_sym_val
12785 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12786
12787 #undef elf_backend_may_use_rel_p
12788 #define elf_backend_may_use_rel_p 1
12789 #undef elf_backend_may_use_rela_p
12790 #define elf_backend_may_use_rela_p 0
12791 #undef elf_backend_default_use_rela_p
12792 #define elf_backend_default_use_rela_p 0
12793 #undef elf_backend_want_plt_sym
12794 #define elf_backend_want_plt_sym 0
12795 #undef ELF_MAXPAGESIZE
12796 #define ELF_MAXPAGESIZE 0x8000
12797
12798 #include "elf32-target.h"
This page took 0.298141 seconds and 4 git commands to generate.