include/
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* unallocated */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1782 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1783 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1784
1785 return NULL;
1786 }
1787
1788 static reloc_howto_type *
1789 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1790 const char *r_name)
1791 {
1792 unsigned int i;
1793
1794 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1795 if (elf32_arm_howto_table_1[i].name != NULL
1796 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1797 return &elf32_arm_howto_table_1[i];
1798
1799 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1800 if (elf32_arm_howto_table_2[i].name != NULL
1801 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1802 return &elf32_arm_howto_table_2[i];
1803
1804 return NULL;
1805 }
1806
1807 /* Support for core dump NOTE sections. */
1808
1809 static bfd_boolean
1810 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1811 {
1812 int offset;
1813 size_t size;
1814
1815 switch (note->descsz)
1816 {
1817 default:
1818 return FALSE;
1819
1820 case 148: /* Linux/ARM 32-bit*/
1821 /* pr_cursig */
1822 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1823
1824 /* pr_pid */
1825 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1826
1827 /* pr_reg */
1828 offset = 72;
1829 size = 72;
1830
1831 break;
1832 }
1833
1834 /* Make a ".reg/999" section. */
1835 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1836 size, note->descpos + offset);
1837 }
1838
1839 static bfd_boolean
1840 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1841 {
1842 switch (note->descsz)
1843 {
1844 default:
1845 return FALSE;
1846
1847 case 124: /* Linux/ARM elf_prpsinfo */
1848 elf_tdata (abfd)->core_program
1849 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1850 elf_tdata (abfd)->core_command
1851 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1852 }
1853
1854 /* Note that for some reason, a spurious space is tacked
1855 onto the end of the args in some (at least one anyway)
1856 implementations, so strip it off if it exists. */
1857 {
1858 char *command = elf_tdata (abfd)->core_command;
1859 int n = strlen (command);
1860
1861 if (0 < n && command[n - 1] == ' ')
1862 command[n - 1] = '\0';
1863 }
1864
1865 return TRUE;
1866 }
1867
1868 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1869 #define TARGET_LITTLE_NAME "elf32-littlearm"
1870 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1871 #define TARGET_BIG_NAME "elf32-bigarm"
1872
1873 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1874 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1875
1876 typedef unsigned long int insn32;
1877 typedef unsigned short int insn16;
1878
1879 /* In lieu of proper flags, assume all EABIv4 or later objects are
1880 interworkable. */
1881 #define INTERWORK_FLAG(abfd) \
1882 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1883 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1884
1885 /* The linker script knows the section names for placement.
1886 The entry_names are used to do simple name mangling on the stubs.
1887 Given a function name, and its type, the stub can be found. The
1888 name can be changed. The only requirement is the %s be present. */
1889 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1890 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1891
1892 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1893 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1894
1895 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1896 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1897
1898 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1899 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1900
1901 /* The name of the dynamic interpreter. This is put in the .interp
1902 section. */
1903 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1904
1905 #ifdef FOUR_WORD_PLT
1906
1907 /* The first entry in a procedure linkage table looks like
1908 this. It is set up so that any shared library function that is
1909 called before the relocation has been set up calls the dynamic
1910 linker first. */
1911 static const bfd_vma elf32_arm_plt0_entry [] =
1912 {
1913 0xe52de004, /* str lr, [sp, #-4]! */
1914 0xe59fe010, /* ldr lr, [pc, #16] */
1915 0xe08fe00e, /* add lr, pc, lr */
1916 0xe5bef008, /* ldr pc, [lr, #8]! */
1917 };
1918
1919 /* Subsequent entries in a procedure linkage table look like
1920 this. */
1921 static const bfd_vma elf32_arm_plt_entry [] =
1922 {
1923 0xe28fc600, /* add ip, pc, #NN */
1924 0xe28cca00, /* add ip, ip, #NN */
1925 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1926 0x00000000, /* unused */
1927 };
1928
1929 #else
1930
1931 /* The first entry in a procedure linkage table looks like
1932 this. It is set up so that any shared library function that is
1933 called before the relocation has been set up calls the dynamic
1934 linker first. */
1935 static const bfd_vma elf32_arm_plt0_entry [] =
1936 {
1937 0xe52de004, /* str lr, [sp, #-4]! */
1938 0xe59fe004, /* ldr lr, [pc, #4] */
1939 0xe08fe00e, /* add lr, pc, lr */
1940 0xe5bef008, /* ldr pc, [lr, #8]! */
1941 0x00000000, /* &GOT[0] - . */
1942 };
1943
1944 /* Subsequent entries in a procedure linkage table look like
1945 this. */
1946 static const bfd_vma elf32_arm_plt_entry [] =
1947 {
1948 0xe28fc600, /* add ip, pc, #0xNN00000 */
1949 0xe28cca00, /* add ip, ip, #0xNN000 */
1950 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1951 };
1952
1953 #endif
1954
1955 /* The format of the first entry in the procedure linkage table
1956 for a VxWorks executable. */
1957 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1958 {
1959 0xe52dc008, /* str ip,[sp,#-8]! */
1960 0xe59fc000, /* ldr ip,[pc] */
1961 0xe59cf008, /* ldr pc,[ip,#8] */
1962 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1963 };
1964
1965 /* The format of subsequent entries in a VxWorks executable. */
1966 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1967 {
1968 0xe59fc000, /* ldr ip,[pc] */
1969 0xe59cf000, /* ldr pc,[ip] */
1970 0x00000000, /* .long @got */
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xea000000, /* b _PLT */
1973 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1974 };
1975
1976 /* The format of entries in a VxWorks shared library. */
1977 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1978 {
1979 0xe59fc000, /* ldr ip,[pc] */
1980 0xe79cf009, /* ldr pc,[ip,r9] */
1981 0x00000000, /* .long @got */
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe599f008, /* ldr pc,[r9,#8] */
1984 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1985 };
1986
1987 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1988 #define PLT_THUMB_STUB_SIZE 4
1989 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1990 {
1991 0x4778, /* bx pc */
1992 0x46c0 /* nop */
1993 };
1994
1995 /* The entries in a PLT when using a DLL-based target with multiple
1996 address spaces. */
1997 static const bfd_vma elf32_arm_symbian_plt_entry [] =
1998 {
1999 0xe51ff004, /* ldr pc, [pc, #-4] */
2000 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2001 };
2002
2003 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2004 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2005 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2006 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2007 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2008 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2009
2010 static const bfd_vma arm_long_branch_stub[] =
2011 {
2012 0xe51ff004, /* ldr pc, [pc, #-4] */
2013 0x00000000, /* dcd R_ARM_ABS32(X) */
2014 };
2015
2016 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2017 {
2018 0xe59fc000, /* ldr ip, [pc, #0] */
2019 0xe12fff1c, /* bx ip */
2020 0x00000000, /* dcd R_ARM_ABS32(X) */
2021 };
2022
2023 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2024 {
2025 0x4e02b540, /* push {r6, lr} */
2026 /* ldr r6, [pc, #8] */
2027 0xe7fe46fe, /* mov lr, pc */
2028 /* b.n r6 */
2029 0xbf00bd40, /* pop {r6, pc} */
2030 /* nop */
2031 0x00000000, /* dcd R_ARM_ABS32(X) */
2032 };
2033
2034 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2035 {
2036 0x4e03b540, /* push {r6, lr} */
2037 /* ldr r6, [pc, #12] */
2038 0x473046fe, /* mov lr, pc */
2039 /* bx r6 */
2040 0xe8bd4040, /* pop {r6, pc} */
2041 0xe12fff1e, /* bx lr */
2042 0x00000000, /* dcd R_ARM_ABS32(X) */
2043 };
2044
2045 static const bfd_vma arm_pic_long_branch_stub[] =
2046 {
2047 0xe59fc000, /* ldr r12, [pc] */
2048 0xe08ff00c, /* add pc, pc, ip */
2049 0x00000000, /* dcd R_ARM_ABS32(X) */
2050 };
2051
2052 /* Section name for stubs is the associated section name plus this
2053 string. */
2054 #define STUB_SUFFIX ".stub"
2055
2056 enum elf32_arm_stub_type
2057 {
2058 arm_stub_none,
2059 arm_stub_long_branch,
2060 arm_thumb_v4t_stub_long_branch,
2061 arm_thumb_thumb_stub_long_branch,
2062 arm_thumb_arm_v4t_stub_long_branch,
2063 arm_stub_pic_long_branch,
2064 };
2065
2066 struct elf32_arm_stub_hash_entry
2067 {
2068 /* Base hash table entry structure. */
2069 struct bfd_hash_entry root;
2070
2071 /* The stub section. */
2072 asection *stub_sec;
2073
2074 /* Offset within stub_sec of the beginning of this stub. */
2075 bfd_vma stub_offset;
2076
2077 /* Given the symbol's value and its section we can determine its final
2078 value when building the stubs (so the stub knows where to jump). */
2079 bfd_vma target_value;
2080 asection *target_section;
2081
2082 enum elf32_arm_stub_type stub_type;
2083
2084 /* The symbol table entry, if any, that this was derived from. */
2085 struct elf32_arm_link_hash_entry *h;
2086
2087 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2088 unsigned char st_type;
2089
2090 /* Where this stub is being called from, or, in the case of combined
2091 stub sections, the first input section in the group. */
2092 asection *id_sec;
2093 };
2094
2095 /* Used to build a map of a section. This is required for mixed-endian
2096 code/data. */
2097
2098 typedef struct elf32_elf_section_map
2099 {
2100 bfd_vma vma;
2101 char type;
2102 }
2103 elf32_arm_section_map;
2104
2105 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2106
2107 typedef enum
2108 {
2109 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2110 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2111 VFP11_ERRATUM_ARM_VENEER,
2112 VFP11_ERRATUM_THUMB_VENEER
2113 }
2114 elf32_vfp11_erratum_type;
2115
2116 typedef struct elf32_vfp11_erratum_list
2117 {
2118 struct elf32_vfp11_erratum_list *next;
2119 bfd_vma vma;
2120 union
2121 {
2122 struct
2123 {
2124 struct elf32_vfp11_erratum_list *veneer;
2125 unsigned int vfp_insn;
2126 } b;
2127 struct
2128 {
2129 struct elf32_vfp11_erratum_list *branch;
2130 unsigned int id;
2131 } v;
2132 } u;
2133 elf32_vfp11_erratum_type type;
2134 }
2135 elf32_vfp11_erratum_list;
2136
2137 typedef struct _arm_elf_section_data
2138 {
2139 struct bfd_elf_section_data elf;
2140 unsigned int mapcount;
2141 unsigned int mapsize;
2142 elf32_arm_section_map *map;
2143 unsigned int erratumcount;
2144 elf32_vfp11_erratum_list *erratumlist;
2145 }
2146 _arm_elf_section_data;
2147
2148 #define elf32_arm_section_data(sec) \
2149 ((_arm_elf_section_data *) elf_section_data (sec))
2150
2151 /* The size of the thread control block. */
2152 #define TCB_SIZE 8
2153
2154 struct elf_arm_obj_tdata
2155 {
2156 struct elf_obj_tdata root;
2157
2158 /* tls_type for each local got entry. */
2159 char *local_got_tls_type;
2160
2161 /* Zero to warn when linking objects with incompatible enum sizes. */
2162 int no_enum_size_warning;
2163 };
2164
2165 #define elf_arm_tdata(bfd) \
2166 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2167
2168 #define elf32_arm_local_got_tls_type(bfd) \
2169 (elf_arm_tdata (bfd)->local_got_tls_type)
2170
2171 #define is_arm_elf(bfd) \
2172 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2173 && elf_tdata (bfd) != NULL \
2174 && elf_object_id (bfd) == ARM_ELF_TDATA)
2175
2176 static bfd_boolean
2177 elf32_arm_mkobject (bfd *abfd)
2178 {
2179 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2180 ARM_ELF_TDATA);
2181 }
2182
2183 /* The ARM linker needs to keep track of the number of relocs that it
2184 decides to copy in check_relocs for each symbol. This is so that
2185 it can discard PC relative relocs if it doesn't need them when
2186 linking with -Bsymbolic. We store the information in a field
2187 extending the regular ELF linker hash table. */
2188
2189 /* This structure keeps track of the number of relocs we have copied
2190 for a given symbol. */
2191 struct elf32_arm_relocs_copied
2192 {
2193 /* Next section. */
2194 struct elf32_arm_relocs_copied * next;
2195 /* A section in dynobj. */
2196 asection * section;
2197 /* Number of relocs copied in this section. */
2198 bfd_size_type count;
2199 /* Number of PC-relative relocs copied in this section. */
2200 bfd_size_type pc_count;
2201 };
2202
2203 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2204
2205 /* Arm ELF linker hash entry. */
2206 struct elf32_arm_link_hash_entry
2207 {
2208 struct elf_link_hash_entry root;
2209
2210 /* Number of PC relative relocs copied for this symbol. */
2211 struct elf32_arm_relocs_copied * relocs_copied;
2212
2213 /* We reference count Thumb references to a PLT entry separately,
2214 so that we can emit the Thumb trampoline only if needed. */
2215 bfd_signed_vma plt_thumb_refcount;
2216
2217 /* Some references from Thumb code may be eliminated by BL->BLX
2218 conversion, so record them separately. */
2219 bfd_signed_vma plt_maybe_thumb_refcount;
2220
2221 /* Since PLT entries have variable size if the Thumb prologue is
2222 used, we need to record the index into .got.plt instead of
2223 recomputing it from the PLT offset. */
2224 bfd_signed_vma plt_got_offset;
2225
2226 #define GOT_UNKNOWN 0
2227 #define GOT_NORMAL 1
2228 #define GOT_TLS_GD 2
2229 #define GOT_TLS_IE 4
2230 unsigned char tls_type;
2231
2232 /* The symbol marking the real symbol location for exported thumb
2233 symbols with Arm stubs. */
2234 struct elf_link_hash_entry *export_glue;
2235
2236 /* A pointer to the most recently used stub hash entry against this
2237 symbol. */
2238 struct elf32_arm_stub_hash_entry *stub_cache;
2239 };
2240
2241 /* Traverse an arm ELF linker hash table. */
2242 #define elf32_arm_link_hash_traverse(table, func, info) \
2243 (elf_link_hash_traverse \
2244 (&(table)->root, \
2245 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2246 (info)))
2247
2248 /* Get the ARM elf linker hash table from a link_info structure. */
2249 #define elf32_arm_hash_table(info) \
2250 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2251
2252 #define arm_stub_hash_lookup(table, string, create, copy) \
2253 ((struct elf32_arm_stub_hash_entry *) \
2254 bfd_hash_lookup ((table), (string), (create), (copy)))
2255
2256 /* ARM ELF linker hash table. */
2257 struct elf32_arm_link_hash_table
2258 {
2259 /* The main hash table. */
2260 struct elf_link_hash_table root;
2261
2262 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2263 bfd_size_type thumb_glue_size;
2264
2265 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2266 bfd_size_type arm_glue_size;
2267
2268 /* The size in bytes of section containing the ARMv4 BX veneers. */
2269 bfd_size_type bx_glue_size;
2270
2271 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2272 veneer has been populated. */
2273 bfd_vma bx_glue_offset[15];
2274
2275 /* The size in bytes of the section containing glue for VFP11 erratum
2276 veneers. */
2277 bfd_size_type vfp11_erratum_glue_size;
2278
2279 /* An arbitrary input BFD chosen to hold the glue sections. */
2280 bfd * bfd_of_glue_owner;
2281
2282 /* Nonzero to output a BE8 image. */
2283 int byteswap_code;
2284
2285 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2286 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2287 int target1_is_rel;
2288
2289 /* The relocation to use for R_ARM_TARGET2 relocations. */
2290 int target2_reloc;
2291
2292 /* 0 = Ignore R_ARM_V4BX.
2293 1 = Convert BX to MOV PC.
2294 2 = Generate v4 interworing stubs. */
2295 int fix_v4bx;
2296
2297 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2298 int use_blx;
2299
2300 /* What sort of code sequences we should look for which may trigger the
2301 VFP11 denorm erratum. */
2302 bfd_arm_vfp11_fix vfp11_fix;
2303
2304 /* Global counter for the number of fixes we have emitted. */
2305 int num_vfp11_fixes;
2306
2307 /* Nonzero to force PIC branch veneers. */
2308 int pic_veneer;
2309
2310 /* The number of bytes in the initial entry in the PLT. */
2311 bfd_size_type plt_header_size;
2312
2313 /* The number of bytes in the subsequent PLT etries. */
2314 bfd_size_type plt_entry_size;
2315
2316 /* True if the target system is VxWorks. */
2317 int vxworks_p;
2318
2319 /* True if the target system is Symbian OS. */
2320 int symbian_p;
2321
2322 /* True if the target uses REL relocations. */
2323 int use_rel;
2324
2325 /* Short-cuts to get to dynamic linker sections. */
2326 asection *sgot;
2327 asection *sgotplt;
2328 asection *srelgot;
2329 asection *splt;
2330 asection *srelplt;
2331 asection *sdynbss;
2332 asection *srelbss;
2333
2334 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2335 asection *srelplt2;
2336
2337 /* Data for R_ARM_TLS_LDM32 relocations. */
2338 union
2339 {
2340 bfd_signed_vma refcount;
2341 bfd_vma offset;
2342 } tls_ldm_got;
2343
2344 /* Small local sym to section mapping cache. */
2345 struct sym_sec_cache sym_sec;
2346
2347 /* For convenience in allocate_dynrelocs. */
2348 bfd * obfd;
2349
2350 /* The stub hash table. */
2351 struct bfd_hash_table stub_hash_table;
2352
2353 /* Linker stub bfd. */
2354 bfd *stub_bfd;
2355
2356 /* Linker call-backs. */
2357 asection * (*add_stub_section) (const char *, asection *);
2358 void (*layout_sections_again) (void);
2359
2360 /* Array to keep track of which stub sections have been created, and
2361 information on stub grouping. */
2362 struct map_stub
2363 {
2364 /* This is the section to which stubs in the group will be
2365 attached. */
2366 asection *link_sec;
2367 /* The stub section. */
2368 asection *stub_sec;
2369 } *stub_group;
2370
2371 /* Assorted information used by elf32_arm_size_stubs. */
2372 unsigned int bfd_count;
2373 int top_index;
2374 asection **input_list;
2375 };
2376
2377 /* Create an entry in an ARM ELF linker hash table. */
2378
2379 static struct bfd_hash_entry *
2380 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2381 struct bfd_hash_table * table,
2382 const char * string)
2383 {
2384 struct elf32_arm_link_hash_entry * ret =
2385 (struct elf32_arm_link_hash_entry *) entry;
2386
2387 /* Allocate the structure if it has not already been allocated by a
2388 subclass. */
2389 if (ret == NULL)
2390 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2391 if (ret == NULL)
2392 return (struct bfd_hash_entry *) ret;
2393
2394 /* Call the allocation method of the superclass. */
2395 ret = ((struct elf32_arm_link_hash_entry *)
2396 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2397 table, string));
2398 if (ret != NULL)
2399 {
2400 ret->relocs_copied = NULL;
2401 ret->tls_type = GOT_UNKNOWN;
2402 ret->plt_thumb_refcount = 0;
2403 ret->plt_maybe_thumb_refcount = 0;
2404 ret->plt_got_offset = -1;
2405 ret->export_glue = NULL;
2406
2407 ret->stub_cache = NULL;
2408 }
2409
2410 return (struct bfd_hash_entry *) ret;
2411 }
2412
2413 /* Initialize an entry in the stub hash table. */
2414
2415 static struct bfd_hash_entry *
2416 stub_hash_newfunc (struct bfd_hash_entry *entry,
2417 struct bfd_hash_table *table,
2418 const char *string)
2419 {
2420 /* Allocate the structure if it has not already been allocated by a
2421 subclass. */
2422 if (entry == NULL)
2423 {
2424 entry = bfd_hash_allocate (table,
2425 sizeof (struct elf32_arm_stub_hash_entry));
2426 if (entry == NULL)
2427 return entry;
2428 }
2429
2430 /* Call the allocation method of the superclass. */
2431 entry = bfd_hash_newfunc (entry, table, string);
2432 if (entry != NULL)
2433 {
2434 struct elf32_arm_stub_hash_entry *eh;
2435
2436 /* Initialize the local fields. */
2437 eh = (struct elf32_arm_stub_hash_entry *) entry;
2438 eh->stub_sec = NULL;
2439 eh->stub_offset = 0;
2440 eh->target_value = 0;
2441 eh->target_section = NULL;
2442 eh->stub_type = arm_stub_none;
2443 eh->h = NULL;
2444 eh->id_sec = NULL;
2445 }
2446
2447 return entry;
2448 }
2449
2450 /* Return true if NAME is the name of the relocation section associated
2451 with S. */
2452
2453 static bfd_boolean
2454 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2455 const char *name, asection *s)
2456 {
2457 if (htab->use_rel)
2458 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2459 else
2460 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2461 }
2462
2463 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2464 shortcuts to them in our hash table. */
2465
2466 static bfd_boolean
2467 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2468 {
2469 struct elf32_arm_link_hash_table *htab;
2470
2471 htab = elf32_arm_hash_table (info);
2472 /* BPABI objects never have a GOT, or associated sections. */
2473 if (htab->symbian_p)
2474 return TRUE;
2475
2476 if (! _bfd_elf_create_got_section (dynobj, info))
2477 return FALSE;
2478
2479 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2480 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2481 if (!htab->sgot || !htab->sgotplt)
2482 abort ();
2483
2484 htab->srelgot = bfd_make_section_with_flags (dynobj,
2485 RELOC_SECTION (htab, ".got"),
2486 (SEC_ALLOC | SEC_LOAD
2487 | SEC_HAS_CONTENTS
2488 | SEC_IN_MEMORY
2489 | SEC_LINKER_CREATED
2490 | SEC_READONLY));
2491 if (htab->srelgot == NULL
2492 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2493 return FALSE;
2494 return TRUE;
2495 }
2496
2497 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2498 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2499 hash table. */
2500
2501 static bfd_boolean
2502 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2503 {
2504 struct elf32_arm_link_hash_table *htab;
2505
2506 htab = elf32_arm_hash_table (info);
2507 if (!htab->sgot && !create_got_section (dynobj, info))
2508 return FALSE;
2509
2510 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2511 return FALSE;
2512
2513 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2514 htab->srelplt = bfd_get_section_by_name (dynobj,
2515 RELOC_SECTION (htab, ".plt"));
2516 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2517 if (!info->shared)
2518 htab->srelbss = bfd_get_section_by_name (dynobj,
2519 RELOC_SECTION (htab, ".bss"));
2520
2521 if (htab->vxworks_p)
2522 {
2523 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2524 return FALSE;
2525
2526 if (info->shared)
2527 {
2528 htab->plt_header_size = 0;
2529 htab->plt_entry_size
2530 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2531 }
2532 else
2533 {
2534 htab->plt_header_size
2535 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2536 htab->plt_entry_size
2537 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2538 }
2539 }
2540
2541 if (!htab->splt
2542 || !htab->srelplt
2543 || !htab->sdynbss
2544 || (!info->shared && !htab->srelbss))
2545 abort ();
2546
2547 return TRUE;
2548 }
2549
2550 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2551
2552 static void
2553 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2554 struct elf_link_hash_entry *dir,
2555 struct elf_link_hash_entry *ind)
2556 {
2557 struct elf32_arm_link_hash_entry *edir, *eind;
2558
2559 edir = (struct elf32_arm_link_hash_entry *) dir;
2560 eind = (struct elf32_arm_link_hash_entry *) ind;
2561
2562 if (eind->relocs_copied != NULL)
2563 {
2564 if (edir->relocs_copied != NULL)
2565 {
2566 struct elf32_arm_relocs_copied **pp;
2567 struct elf32_arm_relocs_copied *p;
2568
2569 /* Add reloc counts against the indirect sym to the direct sym
2570 list. Merge any entries against the same section. */
2571 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2572 {
2573 struct elf32_arm_relocs_copied *q;
2574
2575 for (q = edir->relocs_copied; q != NULL; q = q->next)
2576 if (q->section == p->section)
2577 {
2578 q->pc_count += p->pc_count;
2579 q->count += p->count;
2580 *pp = p->next;
2581 break;
2582 }
2583 if (q == NULL)
2584 pp = &p->next;
2585 }
2586 *pp = edir->relocs_copied;
2587 }
2588
2589 edir->relocs_copied = eind->relocs_copied;
2590 eind->relocs_copied = NULL;
2591 }
2592
2593 if (ind->root.type == bfd_link_hash_indirect)
2594 {
2595 /* Copy over PLT info. */
2596 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2597 eind->plt_thumb_refcount = 0;
2598 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2599 eind->plt_maybe_thumb_refcount = 0;
2600
2601 if (dir->got.refcount <= 0)
2602 {
2603 edir->tls_type = eind->tls_type;
2604 eind->tls_type = GOT_UNKNOWN;
2605 }
2606 }
2607
2608 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2609 }
2610
2611 /* Create an ARM elf linker hash table. */
2612
2613 static struct bfd_link_hash_table *
2614 elf32_arm_link_hash_table_create (bfd *abfd)
2615 {
2616 struct elf32_arm_link_hash_table *ret;
2617 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2618
2619 ret = bfd_malloc (amt);
2620 if (ret == NULL)
2621 return NULL;
2622
2623 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2624 elf32_arm_link_hash_newfunc,
2625 sizeof (struct elf32_arm_link_hash_entry)))
2626 {
2627 free (ret);
2628 return NULL;
2629 }
2630
2631 ret->sgot = NULL;
2632 ret->sgotplt = NULL;
2633 ret->srelgot = NULL;
2634 ret->splt = NULL;
2635 ret->srelplt = NULL;
2636 ret->sdynbss = NULL;
2637 ret->srelbss = NULL;
2638 ret->srelplt2 = NULL;
2639 ret->thumb_glue_size = 0;
2640 ret->arm_glue_size = 0;
2641 ret->bx_glue_size = 0;
2642 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2643 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2644 ret->vfp11_erratum_glue_size = 0;
2645 ret->num_vfp11_fixes = 0;
2646 ret->bfd_of_glue_owner = NULL;
2647 ret->byteswap_code = 0;
2648 ret->target1_is_rel = 0;
2649 ret->target2_reloc = R_ARM_NONE;
2650 #ifdef FOUR_WORD_PLT
2651 ret->plt_header_size = 16;
2652 ret->plt_entry_size = 16;
2653 #else
2654 ret->plt_header_size = 20;
2655 ret->plt_entry_size = 12;
2656 #endif
2657 ret->fix_v4bx = 0;
2658 ret->use_blx = 0;
2659 ret->vxworks_p = 0;
2660 ret->symbian_p = 0;
2661 ret->use_rel = 1;
2662 ret->sym_sec.abfd = NULL;
2663 ret->obfd = abfd;
2664 ret->tls_ldm_got.refcount = 0;
2665
2666 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2667 sizeof (struct elf32_arm_stub_hash_entry)))
2668 {
2669 free (ret);
2670 return NULL;
2671 }
2672
2673 return &ret->root.root;
2674 }
2675
2676 /* Free the derived linker hash table. */
2677
2678 static void
2679 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2680 {
2681 struct elf32_arm_link_hash_table *ret
2682 = (struct elf32_arm_link_hash_table *) hash;
2683
2684 bfd_hash_table_free (&ret->stub_hash_table);
2685 _bfd_generic_link_hash_table_free (hash);
2686 }
2687
2688 /* Determine if we're dealing with a Thumb only architecture. */
2689
2690 static bfd_boolean
2691 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2692 {
2693 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2694 Tag_CPU_arch);
2695 int profile;
2696
2697 if (arch != TAG_CPU_ARCH_V7)
2698 return FALSE;
2699
2700 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2701 Tag_CPU_arch_profile);
2702
2703 return profile == 'M';
2704 }
2705
2706 /* Determine if we're dealing with a Thumb-2 object. */
2707
2708 static bfd_boolean
2709 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2710 {
2711 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2712 Tag_CPU_arch);
2713 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2714 }
2715
2716 /* Determine the type of stub needed, if any, for a call. */
2717
2718 static enum elf32_arm_stub_type
2719 arm_type_of_stub (struct bfd_link_info *info,
2720 asection *input_sec,
2721 const Elf_Internal_Rela *rel,
2722 unsigned char st_type,
2723 struct elf32_arm_link_hash_entry *hash,
2724 bfd_vma destination)
2725 {
2726 bfd_vma location;
2727 bfd_signed_vma branch_offset;
2728 unsigned int r_type;
2729 struct elf32_arm_link_hash_table * globals;
2730 int thumb2;
2731 int thumb_only;
2732 enum elf32_arm_stub_type stub_type = arm_stub_none;
2733
2734 /* We don't know the actual type of destination in case it is of
2735 type STT_SECTION: give up */
2736 if (st_type == STT_SECTION)
2737 return stub_type;
2738
2739 globals = elf32_arm_hash_table (info);
2740
2741 thumb_only = using_thumb_only (globals);
2742
2743 thumb2 = using_thumb2 (globals);
2744
2745 /* Determine where the call point is. */
2746 location = (input_sec->output_offset
2747 + input_sec->output_section->vma
2748 + rel->r_offset);
2749
2750 branch_offset = (bfd_signed_vma)(destination - location);
2751
2752 r_type = ELF32_R_TYPE (rel->r_info);
2753
2754 /* If the call will go through a PLT entry then we do not need
2755 glue. */
2756 if (globals->splt != NULL && hash->root.plt.offset != (bfd_vma) -1)
2757 return stub_type;
2758
2759 if (r_type == R_ARM_THM_CALL)
2760 {
2761 if ((!thumb2
2762 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2763 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2764 || (thumb2
2765 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2766 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2767 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2768 {
2769 if (st_type == STT_ARM_TFUNC)
2770 {
2771 /* Thumb to thumb. */
2772 if (!thumb_only)
2773 {
2774 stub_type = (info->shared | globals->pic_veneer)
2775 ? ((globals->use_blx)
2776 ? arm_stub_pic_long_branch
2777 : arm_stub_none)
2778 : (globals->use_blx)
2779 ? arm_stub_long_branch
2780 : arm_stub_none;
2781 }
2782 else
2783 {
2784 stub_type = (info->shared | globals->pic_veneer)
2785 ? arm_stub_none
2786 : (globals->use_blx)
2787 ? arm_thumb_thumb_stub_long_branch
2788 : arm_stub_none;
2789 }
2790 }
2791 else
2792 {
2793 /* Thumb to arm. */
2794 stub_type = (info->shared | globals->pic_veneer)
2795 ? ((globals->use_blx)
2796 ? arm_stub_pic_long_branch
2797 : arm_stub_none)
2798 : (globals->use_blx)
2799 ? arm_stub_long_branch
2800 : arm_thumb_arm_v4t_stub_long_branch;
2801 }
2802 }
2803 }
2804 else if (r_type == R_ARM_CALL)
2805 {
2806 if (st_type == STT_ARM_TFUNC)
2807 {
2808 /* Arm to thumb. */
2809 /* We have an extra 2-bytes reach because of the mode change
2810 (bit 24 (H) of BLX encoding). */
2811 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2812 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2813 || !globals->use_blx)
2814 {
2815 stub_type = (info->shared | globals->pic_veneer)
2816 ? arm_stub_pic_long_branch
2817 : (globals->use_blx)
2818 ? arm_stub_long_branch
2819 : arm_thumb_v4t_stub_long_branch;
2820 }
2821 }
2822 else
2823 {
2824 /* Arm to arm. */
2825 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2826 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2827 {
2828 stub_type = (info->shared | globals->pic_veneer)
2829 ? arm_stub_pic_long_branch
2830 : arm_stub_long_branch;
2831 }
2832 }
2833 }
2834
2835 return stub_type;
2836 }
2837
2838 /* Build a name for an entry in the stub hash table. */
2839
2840 static char *
2841 elf32_arm_stub_name (const asection *input_section,
2842 const asection *sym_sec,
2843 const struct elf32_arm_link_hash_entry *hash,
2844 const Elf_Internal_Rela *rel)
2845 {
2846 char *stub_name;
2847 bfd_size_type len;
2848
2849 if (hash)
2850 {
2851 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2852 stub_name = bfd_malloc (len);
2853 if (stub_name != NULL)
2854 sprintf (stub_name, "%08x_%s+%x",
2855 input_section->id & 0xffffffff,
2856 hash->root.root.root.string,
2857 (int) rel->r_addend & 0xffffffff);
2858 }
2859 else
2860 {
2861 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2862 stub_name = bfd_malloc (len);
2863 if (stub_name != NULL)
2864 sprintf (stub_name, "%08x_%x:%x+%x",
2865 input_section->id & 0xffffffff,
2866 sym_sec->id & 0xffffffff,
2867 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2868 (int) rel->r_addend & 0xffffffff);
2869 }
2870
2871 return stub_name;
2872 }
2873
2874 /* Look up an entry in the stub hash. Stub entries are cached because
2875 creating the stub name takes a bit of time. */
2876
2877 static struct elf32_arm_stub_hash_entry *
2878 elf32_arm_get_stub_entry (const asection *input_section,
2879 const asection *sym_sec,
2880 struct elf_link_hash_entry *hash,
2881 const Elf_Internal_Rela *rel,
2882 struct elf32_arm_link_hash_table *htab)
2883 {
2884 struct elf32_arm_stub_hash_entry *stub_entry;
2885 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2886 const asection *id_sec;
2887
2888 if ((input_section->flags & SEC_CODE) == 0)
2889 return NULL;
2890
2891 /* If this input section is part of a group of sections sharing one
2892 stub section, then use the id of the first section in the group.
2893 Stub names need to include a section id, as there may well be
2894 more than one stub used to reach say, printf, and we need to
2895 distinguish between them. */
2896 id_sec = htab->stub_group[input_section->id].link_sec;
2897
2898 if (h != NULL && h->stub_cache != NULL
2899 && h->stub_cache->h == h
2900 && h->stub_cache->id_sec == id_sec)
2901 {
2902 stub_entry = h->stub_cache;
2903 }
2904 else
2905 {
2906 char *stub_name;
2907
2908 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2909 if (stub_name == NULL)
2910 return NULL;
2911
2912 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2913 stub_name, FALSE, FALSE);
2914 if (h != NULL)
2915 h->stub_cache = stub_entry;
2916
2917 free (stub_name);
2918 }
2919
2920 return stub_entry;
2921 }
2922
2923 /* Add a new stub entry to the stub hash. Not all fields of the new
2924 stub entry are initialised. */
2925
2926 static struct elf32_arm_stub_hash_entry *
2927 elf32_arm_add_stub (const char *stub_name,
2928 asection *section,
2929 struct elf32_arm_link_hash_table *htab)
2930 {
2931 asection *link_sec;
2932 asection *stub_sec;
2933 struct elf32_arm_stub_hash_entry *stub_entry;
2934
2935 link_sec = htab->stub_group[section->id].link_sec;
2936 stub_sec = htab->stub_group[section->id].stub_sec;
2937 if (stub_sec == NULL)
2938 {
2939 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2940 if (stub_sec == NULL)
2941 {
2942 size_t namelen;
2943 bfd_size_type len;
2944 char *s_name;
2945
2946 namelen = strlen (link_sec->name);
2947 len = namelen + sizeof (STUB_SUFFIX);
2948 s_name = bfd_alloc (htab->stub_bfd, len);
2949 if (s_name == NULL)
2950 return NULL;
2951
2952 memcpy (s_name, link_sec->name, namelen);
2953 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2954 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2955 if (stub_sec == NULL)
2956 return NULL;
2957 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2958 }
2959 htab->stub_group[section->id].stub_sec = stub_sec;
2960 }
2961
2962 /* Enter this entry into the linker stub hash table. */
2963 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2964 TRUE, FALSE);
2965 if (stub_entry == NULL)
2966 {
2967 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2968 section->owner,
2969 stub_name);
2970 return NULL;
2971 }
2972
2973 stub_entry->stub_sec = stub_sec;
2974 stub_entry->stub_offset = 0;
2975 stub_entry->id_sec = link_sec;
2976
2977 return stub_entry;
2978 }
2979
2980 /* Store an Arm insn into an output section not processed by
2981 elf32_arm_write_section. */
2982
2983 static void
2984 put_arm_insn (struct elf32_arm_link_hash_table *htab,
2985 bfd * output_bfd, bfd_vma val, void * ptr)
2986 {
2987 if (htab->byteswap_code != bfd_little_endian (output_bfd))
2988 bfd_putl32 (val, ptr);
2989 else
2990 bfd_putb32 (val, ptr);
2991 }
2992
2993 /* Store a 16-bit Thumb insn into an output section not processed by
2994 elf32_arm_write_section. */
2995
2996 static void
2997 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
2998 bfd * output_bfd, bfd_vma val, void * ptr)
2999 {
3000 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3001 bfd_putl16 (val, ptr);
3002 else
3003 bfd_putb16 (val, ptr);
3004 }
3005
3006 static bfd_boolean
3007 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3008 void * in_arg)
3009 {
3010 struct elf32_arm_stub_hash_entry *stub_entry;
3011 struct bfd_link_info *info;
3012 struct elf32_arm_link_hash_table *htab;
3013 asection *stub_sec;
3014 bfd *stub_bfd;
3015 bfd_vma stub_addr;
3016 bfd_byte *loc;
3017 bfd_vma sym_value;
3018 int template_size;
3019 int size;
3020 const bfd_vma *template;
3021 int i;
3022 struct elf32_arm_link_hash_table * globals;
3023
3024 /* Massage our args to the form they really have. */
3025 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3026 info = (struct bfd_link_info *) in_arg;
3027
3028 globals = elf32_arm_hash_table (info);
3029
3030 htab = elf32_arm_hash_table (info);
3031 stub_sec = stub_entry->stub_sec;
3032
3033 /* Make a note of the offset within the stubs for this entry. */
3034 stub_entry->stub_offset = stub_sec->size;
3035 loc = stub_sec->contents + stub_entry->stub_offset;
3036
3037 stub_bfd = stub_sec->owner;
3038
3039 /* This is the address of the start of the stub. */
3040 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3041 + stub_entry->stub_offset;
3042
3043 /* This is the address of the stub destination. */
3044 sym_value = (stub_entry->target_value
3045 + stub_entry->target_section->output_offset
3046 + stub_entry->target_section->output_section->vma);
3047
3048 switch (stub_entry->stub_type)
3049 {
3050 case arm_stub_long_branch:
3051 template = arm_long_branch_stub;
3052 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3053 break;
3054 case arm_thumb_v4t_stub_long_branch:
3055 template = arm_thumb_v4t_long_branch_stub;
3056 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3057 break;
3058 case arm_thumb_thumb_stub_long_branch:
3059 template = arm_thumb_thumb_long_branch_stub;
3060 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3061 break;
3062 case arm_thumb_arm_v4t_stub_long_branch:
3063 template = arm_thumb_arm_v4t_long_branch_stub;
3064 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3065 break;
3066 case arm_stub_pic_long_branch:
3067 template = arm_pic_long_branch_stub;
3068 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3069 break;
3070 default:
3071 BFD_FAIL ();
3072 return FALSE;
3073 }
3074
3075 size = 0;
3076 for (i = 0; i < (template_size / 4); i++)
3077 {
3078 /* A 0 pattern is a placeholder, every other pattern is an
3079 instruction. */
3080 if (template[i] != 0)
3081 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3082 else
3083 bfd_put_32 (stub_bfd, template[i], loc + size);
3084
3085 size += 4;
3086 }
3087 stub_sec->size += size;
3088
3089 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3090 if (stub_entry->st_type == STT_ARM_TFUNC)
3091 sym_value |= 1;
3092
3093 switch (stub_entry->stub_type)
3094 {
3095 case arm_stub_long_branch:
3096 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3097 stub_bfd, stub_sec, stub_sec->contents + 4,
3098 stub_entry->stub_offset, sym_value, 0);
3099 break;
3100 case arm_thumb_v4t_stub_long_branch:
3101 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3102 stub_bfd, stub_sec, stub_sec->contents + 8,
3103 stub_entry->stub_offset, sym_value, 0);
3104 break;
3105 case arm_thumb_thumb_stub_long_branch:
3106 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3107 stub_bfd, stub_sec, stub_sec->contents + 12,
3108 stub_entry->stub_offset, sym_value, 0);
3109 break;
3110 case arm_thumb_arm_v4t_stub_long_branch:
3111 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3112 stub_bfd, stub_sec, stub_sec->contents + 20,
3113 stub_entry->stub_offset, sym_value, 0);
3114 break;
3115 case arm_stub_pic_long_branch:
3116 /* We want the value relative to the address 8 bytes from the
3117 start of the stub. */
3118 sym_value -= stub_addr + 8;
3119
3120 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3121 stub_bfd, stub_sec, stub_sec->contents + 8,
3122 stub_entry->stub_offset, sym_value, 0);
3123 break;
3124 default:
3125 break;
3126 }
3127
3128 return TRUE;
3129 }
3130
3131 /* As above, but don't actually build the stub. Just bump offset so
3132 we know stub section sizes. */
3133
3134 static bfd_boolean
3135 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3136 void * in_arg)
3137 {
3138 struct elf32_arm_stub_hash_entry *stub_entry;
3139 struct elf32_arm_link_hash_table *htab;
3140 const bfd_vma *template;
3141 int template_size;
3142 int size;
3143 int i;
3144
3145 /* Massage our args to the form they really have. */
3146 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3147 htab = (struct elf32_arm_link_hash_table *) in_arg;
3148
3149 switch (stub_entry->stub_type)
3150 {
3151 case arm_stub_long_branch:
3152 template = arm_long_branch_stub;
3153 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3154 break;
3155 case arm_thumb_v4t_stub_long_branch:
3156 template = arm_thumb_v4t_long_branch_stub;
3157 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3158 break;
3159 case arm_thumb_thumb_stub_long_branch:
3160 template = arm_thumb_thumb_long_branch_stub;
3161 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3162 break;
3163 case arm_thumb_arm_v4t_stub_long_branch:
3164 template = arm_thumb_arm_v4t_long_branch_stub;
3165 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3166 break;
3167 case arm_stub_pic_long_branch:
3168 template = arm_pic_long_branch_stub;
3169 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3170 break;
3171 default:
3172 BFD_FAIL ();
3173 return FALSE;
3174 break;
3175 }
3176
3177 size = 0;
3178 for (i = 0; i < (template_size / 4); i++)
3179 size += 4;
3180 size = (size + 7) & ~7;
3181 stub_entry->stub_sec->size += size;
3182 return TRUE;
3183 }
3184
3185 /* External entry points for sizing and building linker stubs. */
3186
3187 /* Set up various things so that we can make a list of input sections
3188 for each output section included in the link. Returns -1 on error,
3189 0 when no stubs will be needed, and 1 on success. */
3190
3191 int
3192 elf32_arm_setup_section_lists (bfd *output_bfd,
3193 struct bfd_link_info *info)
3194 {
3195 bfd *input_bfd;
3196 unsigned int bfd_count;
3197 int top_id, top_index;
3198 asection *section;
3199 asection **input_list, **list;
3200 bfd_size_type amt;
3201 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3202
3203 if (! is_elf_hash_table (htab))
3204 return 0;
3205
3206 /* Count the number of input BFDs and find the top input section id. */
3207 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3208 input_bfd != NULL;
3209 input_bfd = input_bfd->link_next)
3210 {
3211 bfd_count += 1;
3212 for (section = input_bfd->sections;
3213 section != NULL;
3214 section = section->next)
3215 {
3216 if (top_id < section->id)
3217 top_id = section->id;
3218 }
3219 }
3220 htab->bfd_count = bfd_count;
3221
3222 amt = sizeof (struct map_stub) * (top_id + 1);
3223 htab->stub_group = bfd_zmalloc (amt);
3224 if (htab->stub_group == NULL)
3225 return -1;
3226
3227 /* We can't use output_bfd->section_count here to find the top output
3228 section index as some sections may have been removed, and
3229 _bfd_strip_section_from_output doesn't renumber the indices. */
3230 for (section = output_bfd->sections, top_index = 0;
3231 section != NULL;
3232 section = section->next)
3233 {
3234 if (top_index < section->index)
3235 top_index = section->index;
3236 }
3237
3238 htab->top_index = top_index;
3239 amt = sizeof (asection *) * (top_index + 1);
3240 input_list = bfd_malloc (amt);
3241 htab->input_list = input_list;
3242 if (input_list == NULL)
3243 return -1;
3244
3245 /* For sections we aren't interested in, mark their entries with a
3246 value we can check later. */
3247 list = input_list + top_index;
3248 do
3249 *list = bfd_abs_section_ptr;
3250 while (list-- != input_list);
3251
3252 for (section = output_bfd->sections;
3253 section != NULL;
3254 section = section->next)
3255 {
3256 if ((section->flags & SEC_CODE) != 0)
3257 input_list[section->index] = NULL;
3258 }
3259
3260 return 1;
3261 }
3262
3263 /* The linker repeatedly calls this function for each input section,
3264 in the order that input sections are linked into output sections.
3265 Build lists of input sections to determine groupings between which
3266 we may insert linker stubs. */
3267
3268 void
3269 elf32_arm_next_input_section (struct bfd_link_info *info,
3270 asection *isec)
3271 {
3272 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3273
3274 if (isec->output_section->index <= htab->top_index)
3275 {
3276 asection **list = htab->input_list + isec->output_section->index;
3277
3278 if (*list != bfd_abs_section_ptr)
3279 {
3280 /* Steal the link_sec pointer for our list. */
3281 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3282 /* This happens to make the list in reverse order,
3283 which is what we want. */
3284 PREV_SEC (isec) = *list;
3285 *list = isec;
3286 }
3287 }
3288 }
3289
3290 /* See whether we can group stub sections together. Grouping stub
3291 sections may result in fewer stubs. More importantly, we need to
3292 put all .init* and .fini* stubs at the beginning of the .init or
3293 .fini output sections respectively, because glibc splits the
3294 _init and _fini functions into multiple parts. Putting a stub in
3295 the middle of a function is not a good idea. */
3296
3297 static void
3298 group_sections (struct elf32_arm_link_hash_table *htab,
3299 bfd_size_type stub_group_size,
3300 bfd_boolean stubs_always_before_branch)
3301 {
3302 asection **list = htab->input_list + htab->top_index;
3303
3304 do
3305 {
3306 asection *tail = *list;
3307
3308 if (tail == bfd_abs_section_ptr)
3309 continue;
3310
3311 while (tail != NULL)
3312 {
3313 asection *curr;
3314 asection *prev;
3315 bfd_size_type total;
3316
3317 curr = tail;
3318 total = tail->size;
3319 while ((prev = PREV_SEC (curr)) != NULL
3320 && ((total += curr->output_offset - prev->output_offset)
3321 < stub_group_size))
3322 curr = prev;
3323
3324 /* OK, the size from the start of CURR to the end is less
3325 than stub_group_size and thus can be handled by one stub
3326 section. (Or the tail section is itself larger than
3327 stub_group_size, in which case we may be toast.)
3328 We should really be keeping track of the total size of
3329 stubs added here, as stubs contribute to the final output
3330 section size. */
3331 do
3332 {
3333 prev = PREV_SEC (tail);
3334 /* Set up this stub group. */
3335 htab->stub_group[tail->id].link_sec = curr;
3336 }
3337 while (tail != curr && (tail = prev) != NULL);
3338
3339 /* But wait, there's more! Input sections up to stub_group_size
3340 bytes before the stub section can be handled by it too. */
3341 if (!stubs_always_before_branch)
3342 {
3343 total = 0;
3344 while (prev != NULL
3345 && ((total += tail->output_offset - prev->output_offset)
3346 < stub_group_size))
3347 {
3348 tail = prev;
3349 prev = PREV_SEC (tail);
3350 htab->stub_group[tail->id].link_sec = curr;
3351 }
3352 }
3353 tail = prev;
3354 }
3355 }
3356 while (list-- != htab->input_list);
3357
3358 free (htab->input_list);
3359 #undef PREV_SEC
3360 }
3361
3362 /* Determine and set the size of the stub section for a final link.
3363
3364 The basic idea here is to examine all the relocations looking for
3365 PC-relative calls to a target that is unreachable with a "bl"
3366 instruction. */
3367
3368 bfd_boolean
3369 elf32_arm_size_stubs (bfd *output_bfd,
3370 bfd *stub_bfd,
3371 struct bfd_link_info *info,
3372 bfd_signed_vma group_size,
3373 asection * (*add_stub_section) (const char *, asection *),
3374 void (*layout_sections_again) (void))
3375 {
3376 bfd_size_type stub_group_size;
3377 bfd_boolean stubs_always_before_branch;
3378 bfd_boolean stub_changed = 0;
3379 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3380
3381 /* Propagate mach to stub bfd, because it may not have been
3382 finalized when we created stub_bfd. */
3383 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3384 bfd_get_mach (output_bfd));
3385
3386 /* Stash our params away. */
3387 htab->stub_bfd = stub_bfd;
3388 htab->add_stub_section = add_stub_section;
3389 htab->layout_sections_again = layout_sections_again;
3390 stubs_always_before_branch = group_size < 0;
3391 if (group_size < 0)
3392 stub_group_size = -group_size;
3393 else
3394 stub_group_size = group_size;
3395
3396 if (stub_group_size == 1)
3397 {
3398 /* Default values. */
3399 /* Thumb branch range is +-4MB has to be used as the default
3400 maximum size (a given section can contain both ARM and Thumb
3401 code, so the worst case has to be taken into account).
3402
3403 This value is 24K less than that, which allows for 2025
3404 12-byte stubs. If we exceed that, then we will fail to link.
3405 The user will have to relink with an explicit group size
3406 option. */
3407 stub_group_size = 4170000;
3408 }
3409
3410 group_sections (htab, stub_group_size, stubs_always_before_branch);
3411
3412 while (1)
3413 {
3414 bfd *input_bfd;
3415 unsigned int bfd_indx;
3416 asection *stub_sec;
3417
3418 for (input_bfd = info->input_bfds, bfd_indx = 0;
3419 input_bfd != NULL;
3420 input_bfd = input_bfd->link_next, bfd_indx++)
3421 {
3422 Elf_Internal_Shdr *symtab_hdr;
3423 asection *section;
3424 Elf_Internal_Sym *local_syms = NULL;
3425
3426 /* We'll need the symbol table in a second. */
3427 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3428 if (symtab_hdr->sh_info == 0)
3429 continue;
3430
3431 /* Walk over each section attached to the input bfd. */
3432 for (section = input_bfd->sections;
3433 section != NULL;
3434 section = section->next)
3435 {
3436 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3437
3438 /* If there aren't any relocs, then there's nothing more
3439 to do. */
3440 if ((section->flags & SEC_RELOC) == 0
3441 || section->reloc_count == 0
3442 || (section->flags & SEC_CODE) == 0)
3443 continue;
3444
3445 /* If this section is a link-once section that will be
3446 discarded, then don't create any stubs. */
3447 if (section->output_section == NULL
3448 || section->output_section->owner != output_bfd)
3449 continue;
3450
3451 /* Get the relocs. */
3452 internal_relocs
3453 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3454 NULL, info->keep_memory);
3455 if (internal_relocs == NULL)
3456 goto error_ret_free_local;
3457
3458 /* Now examine each relocation. */
3459 irela = internal_relocs;
3460 irelaend = irela + section->reloc_count;
3461 for (; irela < irelaend; irela++)
3462 {
3463 unsigned int r_type, r_indx;
3464 enum elf32_arm_stub_type stub_type;
3465 struct elf32_arm_stub_hash_entry *stub_entry;
3466 asection *sym_sec;
3467 bfd_vma sym_value;
3468 bfd_vma destination;
3469 struct elf32_arm_link_hash_entry *hash;
3470 char *stub_name;
3471 const asection *id_sec;
3472 unsigned char st_type;
3473
3474 r_type = ELF32_R_TYPE (irela->r_info);
3475 r_indx = ELF32_R_SYM (irela->r_info);
3476
3477 if (r_type >= (unsigned int) R_ARM_max)
3478 {
3479 bfd_set_error (bfd_error_bad_value);
3480 error_ret_free_internal:
3481 if (elf_section_data (section)->relocs == NULL)
3482 free (internal_relocs);
3483 goto error_ret_free_local;
3484 }
3485
3486 /* Only look for stubs on call instructions. */
3487 if ((r_type != (unsigned int) R_ARM_CALL)
3488 && (r_type != (unsigned int) R_ARM_THM_CALL))
3489 continue;
3490
3491 /* Now determine the call target, its name, value,
3492 section. */
3493 sym_sec = NULL;
3494 sym_value = 0;
3495 destination = 0;
3496 hash = NULL;
3497 if (r_indx < symtab_hdr->sh_info)
3498 {
3499 /* It's a local symbol. */
3500 Elf_Internal_Sym *sym;
3501 Elf_Internal_Shdr *hdr;
3502
3503 if (local_syms == NULL)
3504 {
3505 local_syms
3506 = (Elf_Internal_Sym *) symtab_hdr->contents;
3507 if (local_syms == NULL)
3508 local_syms
3509 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3510 symtab_hdr->sh_info, 0,
3511 NULL, NULL, NULL);
3512 if (local_syms == NULL)
3513 goto error_ret_free_internal;
3514 }
3515
3516 sym = local_syms + r_indx;
3517 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3518 sym_sec = hdr->bfd_section;
3519 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3520 sym_value = sym->st_value;
3521 destination = (sym_value + irela->r_addend
3522 + sym_sec->output_offset
3523 + sym_sec->output_section->vma);
3524 st_type = ELF_ST_TYPE (sym->st_info);
3525 }
3526 else
3527 {
3528 /* It's an external symbol. */
3529 int e_indx;
3530
3531 e_indx = r_indx - symtab_hdr->sh_info;
3532 hash = ((struct elf32_arm_link_hash_entry *)
3533 elf_sym_hashes (input_bfd)[e_indx]);
3534
3535 while (hash->root.root.type == bfd_link_hash_indirect
3536 || hash->root.root.type == bfd_link_hash_warning)
3537 hash = ((struct elf32_arm_link_hash_entry *)
3538 hash->root.root.u.i.link);
3539
3540 if (hash->root.root.type == bfd_link_hash_defined
3541 || hash->root.root.type == bfd_link_hash_defweak)
3542 {
3543 sym_sec = hash->root.root.u.def.section;
3544 sym_value = hash->root.root.u.def.value;
3545 if (sym_sec->output_section != NULL)
3546 destination = (sym_value + irela->r_addend
3547 + sym_sec->output_offset
3548 + sym_sec->output_section->vma);
3549 }
3550 else if (hash->root.root.type == bfd_link_hash_undefweak
3551 || hash->root.root.type == bfd_link_hash_undefined)
3552 /* For a shared library, these will need a PLT stub,
3553 which is treated separately.
3554 For absolute code, they cannot be handled. */
3555 continue;
3556 else
3557 {
3558 bfd_set_error (bfd_error_bad_value);
3559 goto error_ret_free_internal;
3560 }
3561 st_type = ELF_ST_TYPE (hash->root.type);
3562 }
3563
3564 /* Determine what (if any) linker stub is needed. */
3565 stub_type = arm_type_of_stub (info, section, irela, st_type,
3566 hash, destination);
3567 if (stub_type == arm_stub_none)
3568 continue;
3569
3570 /* Support for grouping stub sections. */
3571 id_sec = htab->stub_group[section->id].link_sec;
3572
3573 /* Get the name of this stub. */
3574 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3575 if (!stub_name)
3576 goto error_ret_free_internal;
3577
3578 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3579 stub_name,
3580 FALSE, FALSE);
3581 if (stub_entry != NULL)
3582 {
3583 /* The proper stub has already been created. */
3584 free (stub_name);
3585 continue;
3586 }
3587
3588 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3589 if (stub_entry == NULL)
3590 {
3591 free (stub_name);
3592 goto error_ret_free_internal;
3593 }
3594
3595 stub_entry->target_value = sym_value;
3596 stub_entry->target_section = sym_sec;
3597 stub_entry->stub_type = stub_type;
3598 stub_entry->h = hash;
3599 stub_entry->st_type = st_type;
3600 stub_changed = TRUE;
3601 }
3602
3603 /* We're done with the internal relocs, free them. */
3604 if (elf_section_data (section)->relocs == NULL)
3605 free (internal_relocs);
3606 }
3607 }
3608
3609 if (!stub_changed)
3610 break;
3611
3612 /* OK, we've added some stubs. Find out the new size of the
3613 stub sections. */
3614 for (stub_sec = htab->stub_bfd->sections;
3615 stub_sec != NULL;
3616 stub_sec = stub_sec->next)
3617 stub_sec->size = 0;
3618
3619 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3620
3621 /* Ask the linker to do its stuff. */
3622 (*htab->layout_sections_again) ();
3623 stub_changed = FALSE;
3624 }
3625
3626 return TRUE;
3627
3628 error_ret_free_local:
3629 return FALSE;
3630 }
3631
3632 /* Build all the stubs associated with the current output file. The
3633 stubs are kept in a hash table attached to the main linker hash
3634 table. We also set up the .plt entries for statically linked PIC
3635 functions here. This function is called via arm_elf_finish in the
3636 linker. */
3637
3638 bfd_boolean
3639 elf32_arm_build_stubs (struct bfd_link_info *info)
3640 {
3641 asection *stub_sec;
3642 struct bfd_hash_table *table;
3643 struct elf32_arm_link_hash_table *htab;
3644
3645 htab = elf32_arm_hash_table (info);
3646
3647 for (stub_sec = htab->stub_bfd->sections;
3648 stub_sec != NULL;
3649 stub_sec = stub_sec->next)
3650 {
3651 bfd_size_type size;
3652
3653 /* Ignore non-stub sections */
3654 if (!strstr (stub_sec->name, STUB_SUFFIX))
3655 continue;
3656
3657 /* Allocate memory to hold the linker stubs. */
3658 size = stub_sec->size;
3659 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3660 if (stub_sec->contents == NULL && size != 0)
3661 return FALSE;
3662 stub_sec->size = 0;
3663 }
3664
3665 /* Build the stubs as directed by the stub hash table. */
3666 table = &htab->stub_hash_table;
3667 bfd_hash_traverse (table, arm_build_one_stub, info);
3668
3669 return TRUE;
3670 }
3671
3672 /* Locate the Thumb encoded calling stub for NAME. */
3673
3674 static struct elf_link_hash_entry *
3675 find_thumb_glue (struct bfd_link_info *link_info,
3676 const char *name,
3677 char **error_message)
3678 {
3679 char *tmp_name;
3680 struct elf_link_hash_entry *hash;
3681 struct elf32_arm_link_hash_table *hash_table;
3682
3683 /* We need a pointer to the armelf specific hash table. */
3684 hash_table = elf32_arm_hash_table (link_info);
3685
3686 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3687 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3688
3689 BFD_ASSERT (tmp_name);
3690
3691 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3692
3693 hash = elf_link_hash_lookup
3694 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3695
3696 if (hash == NULL
3697 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3698 tmp_name, name) == -1)
3699 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3700
3701 free (tmp_name);
3702
3703 return hash;
3704 }
3705
3706 /* Locate the ARM encoded calling stub for NAME. */
3707
3708 static struct elf_link_hash_entry *
3709 find_arm_glue (struct bfd_link_info *link_info,
3710 const char *name,
3711 char **error_message)
3712 {
3713 char *tmp_name;
3714 struct elf_link_hash_entry *myh;
3715 struct elf32_arm_link_hash_table *hash_table;
3716
3717 /* We need a pointer to the elfarm specific hash table. */
3718 hash_table = elf32_arm_hash_table (link_info);
3719
3720 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3721 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3722
3723 BFD_ASSERT (tmp_name);
3724
3725 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3726
3727 myh = elf_link_hash_lookup
3728 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3729
3730 if (myh == NULL
3731 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3732 tmp_name, name) == -1)
3733 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3734
3735 free (tmp_name);
3736
3737 return myh;
3738 }
3739
3740 /* ARM->Thumb glue (static images):
3741
3742 .arm
3743 __func_from_arm:
3744 ldr r12, __func_addr
3745 bx r12
3746 __func_addr:
3747 .word func @ behave as if you saw a ARM_32 reloc.
3748
3749 (v5t static images)
3750 .arm
3751 __func_from_arm:
3752 ldr pc, __func_addr
3753 __func_addr:
3754 .word func @ behave as if you saw a ARM_32 reloc.
3755
3756 (relocatable images)
3757 .arm
3758 __func_from_arm:
3759 ldr r12, __func_offset
3760 add r12, r12, pc
3761 bx r12
3762 __func_offset:
3763 .word func - .
3764 */
3765
3766 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3767 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3768 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3769 static const insn32 a2t3_func_addr_insn = 0x00000001;
3770
3771 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3772 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3773 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3774
3775 #define ARM2THUMB_PIC_GLUE_SIZE 16
3776 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3777 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3778 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3779
3780 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3781
3782 .thumb .thumb
3783 .align 2 .align 2
3784 __func_from_thumb: __func_from_thumb:
3785 bx pc push {r6, lr}
3786 nop ldr r6, __func_addr
3787 .arm mov lr, pc
3788 __func_change_to_arm: bx r6
3789 b func .arm
3790 __func_back_to_thumb:
3791 ldmia r13! {r6, lr}
3792 bx lr
3793 __func_addr:
3794 .word func */
3795
3796 #define THUMB2ARM_GLUE_SIZE 8
3797 static const insn16 t2a1_bx_pc_insn = 0x4778;
3798 static const insn16 t2a2_noop_insn = 0x46c0;
3799 static const insn32 t2a3_b_insn = 0xea000000;
3800
3801 #define VFP11_ERRATUM_VENEER_SIZE 8
3802
3803 #define ARM_BX_VENEER_SIZE 12
3804 static const insn32 armbx1_tst_insn = 0xe3100001;
3805 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3806 static const insn32 armbx3_bx_insn = 0xe12fff10;
3807
3808 #ifndef ELFARM_NABI_C_INCLUDED
3809 bfd_boolean
3810 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3811 {
3812 asection * s;
3813 bfd_byte * foo;
3814 struct elf32_arm_link_hash_table * globals;
3815
3816 globals = elf32_arm_hash_table (info);
3817
3818 BFD_ASSERT (globals != NULL);
3819
3820 if (globals->arm_glue_size != 0)
3821 {
3822 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3823
3824 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3825 ARM2THUMB_GLUE_SECTION_NAME);
3826
3827 BFD_ASSERT (s != NULL);
3828
3829 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
3830
3831 BFD_ASSERT (s->size == globals->arm_glue_size);
3832 s->contents = foo;
3833 }
3834
3835 if (globals->thumb_glue_size != 0)
3836 {
3837 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3838
3839 s = bfd_get_section_by_name
3840 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
3841
3842 BFD_ASSERT (s != NULL);
3843
3844 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
3845
3846 BFD_ASSERT (s->size == globals->thumb_glue_size);
3847 s->contents = foo;
3848 }
3849
3850 if (globals->vfp11_erratum_glue_size != 0)
3851 {
3852 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3853
3854 s = bfd_get_section_by_name
3855 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
3856
3857 BFD_ASSERT (s != NULL);
3858
3859 foo = bfd_alloc (globals->bfd_of_glue_owner,
3860 globals->vfp11_erratum_glue_size);
3861
3862 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
3863 s->contents = foo;
3864 }
3865
3866 if (globals->bx_glue_size != 0)
3867 {
3868 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3869
3870 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3871 ARM_BX_GLUE_SECTION_NAME);
3872
3873 BFD_ASSERT (s != NULL);
3874
3875 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->bx_glue_size);
3876
3877 BFD_ASSERT (s->size == globals->bx_glue_size);
3878 s->contents = foo;
3879 }
3880
3881 return TRUE;
3882 }
3883
3884 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3885 returns the symbol identifying the stub. */
3886
3887 static struct elf_link_hash_entry *
3888 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3889 struct elf_link_hash_entry * h)
3890 {
3891 const char * name = h->root.root.string;
3892 asection * s;
3893 char * tmp_name;
3894 struct elf_link_hash_entry * myh;
3895 struct bfd_link_hash_entry * bh;
3896 struct elf32_arm_link_hash_table * globals;
3897 bfd_vma val;
3898 bfd_size_type size;
3899
3900 globals = elf32_arm_hash_table (link_info);
3901
3902 BFD_ASSERT (globals != NULL);
3903 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3904
3905 s = bfd_get_section_by_name
3906 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
3907
3908 BFD_ASSERT (s != NULL);
3909
3910 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3911
3912 BFD_ASSERT (tmp_name);
3913
3914 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3915
3916 myh = elf_link_hash_lookup
3917 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3918
3919 if (myh != NULL)
3920 {
3921 /* We've already seen this guy. */
3922 free (tmp_name);
3923 return myh;
3924 }
3925
3926 /* The only trick here is using hash_table->arm_glue_size as the value.
3927 Even though the section isn't allocated yet, this is where we will be
3928 putting it. */
3929 bh = NULL;
3930 val = globals->arm_glue_size + 1;
3931 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
3932 tmp_name, BSF_GLOBAL, s, val,
3933 NULL, TRUE, FALSE, &bh);
3934
3935 myh = (struct elf_link_hash_entry *) bh;
3936 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3937 myh->forced_local = 1;
3938
3939 free (tmp_name);
3940
3941 if (link_info->shared || globals->root.is_relocatable_executable
3942 || globals->pic_veneer)
3943 size = ARM2THUMB_PIC_GLUE_SIZE;
3944 else if (globals->use_blx)
3945 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
3946 else
3947 size = ARM2THUMB_STATIC_GLUE_SIZE;
3948
3949 s->size += size;
3950 globals->arm_glue_size += size;
3951
3952 return myh;
3953 }
3954
3955 static void
3956 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
3957 struct elf_link_hash_entry *h)
3958 {
3959 const char *name = h->root.root.string;
3960 asection *s;
3961 char *tmp_name;
3962 struct elf_link_hash_entry *myh;
3963 struct bfd_link_hash_entry *bh;
3964 struct elf32_arm_link_hash_table *hash_table;
3965 bfd_vma val;
3966
3967 hash_table = elf32_arm_hash_table (link_info);
3968
3969 BFD_ASSERT (hash_table != NULL);
3970 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
3971
3972 s = bfd_get_section_by_name
3973 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
3974
3975 BFD_ASSERT (s != NULL);
3976
3977 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3978 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3979
3980 BFD_ASSERT (tmp_name);
3981
3982 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3983
3984 myh = elf_link_hash_lookup
3985 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3986
3987 if (myh != NULL)
3988 {
3989 /* We've already seen this guy. */
3990 free (tmp_name);
3991 return;
3992 }
3993
3994 bh = NULL;
3995 val = hash_table->thumb_glue_size + 1;
3996 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
3997 tmp_name, BSF_GLOBAL, s, val,
3998 NULL, TRUE, FALSE, &bh);
3999
4000 /* If we mark it 'Thumb', the disassembler will do a better job. */
4001 myh = (struct elf_link_hash_entry *) bh;
4002 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4003 myh->forced_local = 1;
4004
4005 free (tmp_name);
4006
4007 #define CHANGE_TO_ARM "__%s_change_to_arm"
4008 #define BACK_FROM_ARM "__%s_back_from_arm"
4009
4010 /* Allocate another symbol to mark where we switch to Arm mode. */
4011 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4012 + strlen (CHANGE_TO_ARM) + 1);
4013
4014 BFD_ASSERT (tmp_name);
4015
4016 sprintf (tmp_name, CHANGE_TO_ARM, name);
4017
4018 bh = NULL;
4019 val = hash_table->thumb_glue_size + 4,
4020 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4021 tmp_name, BSF_LOCAL, s, val,
4022 NULL, TRUE, FALSE, &bh);
4023
4024 free (tmp_name);
4025
4026 s->size += THUMB2ARM_GLUE_SIZE;
4027 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4028
4029 return;
4030 }
4031
4032
4033 /* Allocate space for ARMv4 BX veneers. */
4034
4035 static void
4036 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4037 {
4038 asection * s;
4039 struct elf32_arm_link_hash_table *globals;
4040 char *tmp_name;
4041 struct elf_link_hash_entry *myh;
4042 struct bfd_link_hash_entry *bh;
4043 bfd_vma val;
4044
4045 /* BX PC does not need a veneer. */
4046 if (reg == 15)
4047 return;
4048
4049 globals = elf32_arm_hash_table (link_info);
4050
4051 BFD_ASSERT (globals != NULL);
4052 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4053
4054 /* Check if this veneer has already been allocated. */
4055 if (globals->bx_glue_offset[reg])
4056 return;
4057
4058 s = bfd_get_section_by_name
4059 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4060
4061 BFD_ASSERT (s != NULL);
4062
4063 /* Add symbol for veneer. */
4064 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4065
4066 BFD_ASSERT (tmp_name);
4067
4068 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4069
4070 myh = elf_link_hash_lookup
4071 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4072
4073 BFD_ASSERT (myh == NULL);
4074
4075 bh = NULL;
4076 val = globals->bx_glue_size;
4077 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4078 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4079 NULL, TRUE, FALSE, &bh);
4080
4081 myh = (struct elf_link_hash_entry *) bh;
4082 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4083 myh->forced_local = 1;
4084
4085 s->size += ARM_BX_VENEER_SIZE;
4086 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4087 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4088 }
4089
4090
4091 /* Add an entry to the code/data map for section SEC. */
4092
4093 static void
4094 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4095 {
4096 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4097 unsigned int newidx;
4098
4099 if (sec_data->map == NULL)
4100 {
4101 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4102 sec_data->mapcount = 0;
4103 sec_data->mapsize = 1;
4104 }
4105
4106 newidx = sec_data->mapcount++;
4107
4108 if (sec_data->mapcount > sec_data->mapsize)
4109 {
4110 sec_data->mapsize *= 2;
4111 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4112 * sizeof (elf32_arm_section_map));
4113 }
4114
4115 if (sec_data->map)
4116 {
4117 sec_data->map[newidx].vma = vma;
4118 sec_data->map[newidx].type = type;
4119 }
4120 }
4121
4122
4123 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4124 veneers are handled for now. */
4125
4126 static bfd_vma
4127 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4128 elf32_vfp11_erratum_list *branch,
4129 bfd *branch_bfd,
4130 asection *branch_sec,
4131 unsigned int offset)
4132 {
4133 asection *s;
4134 struct elf32_arm_link_hash_table *hash_table;
4135 char *tmp_name;
4136 struct elf_link_hash_entry *myh;
4137 struct bfd_link_hash_entry *bh;
4138 bfd_vma val;
4139 struct _arm_elf_section_data *sec_data;
4140 int errcount;
4141 elf32_vfp11_erratum_list *newerr;
4142
4143 hash_table = elf32_arm_hash_table (link_info);
4144
4145 BFD_ASSERT (hash_table != NULL);
4146 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4147
4148 s = bfd_get_section_by_name
4149 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4150
4151 sec_data = elf32_arm_section_data (s);
4152
4153 BFD_ASSERT (s != NULL);
4154
4155 tmp_name = bfd_malloc ((bfd_size_type) strlen
4156 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4157
4158 BFD_ASSERT (tmp_name);
4159
4160 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4161 hash_table->num_vfp11_fixes);
4162
4163 myh = elf_link_hash_lookup
4164 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4165
4166 BFD_ASSERT (myh == NULL);
4167
4168 bh = NULL;
4169 val = hash_table->vfp11_erratum_glue_size;
4170 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4171 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4172 NULL, TRUE, FALSE, &bh);
4173
4174 myh = (struct elf_link_hash_entry *) bh;
4175 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4176 myh->forced_local = 1;
4177
4178 /* Link veneer back to calling location. */
4179 errcount = ++(sec_data->erratumcount);
4180 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4181
4182 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4183 newerr->vma = -1;
4184 newerr->u.v.branch = branch;
4185 newerr->u.v.id = hash_table->num_vfp11_fixes;
4186 branch->u.b.veneer = newerr;
4187
4188 newerr->next = sec_data->erratumlist;
4189 sec_data->erratumlist = newerr;
4190
4191 /* A symbol for the return from the veneer. */
4192 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4193 hash_table->num_vfp11_fixes);
4194
4195 myh = elf_link_hash_lookup
4196 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4197
4198 if (myh != NULL)
4199 abort ();
4200
4201 bh = NULL;
4202 val = offset + 4;
4203 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4204 branch_sec, val, NULL, TRUE, FALSE, &bh);
4205
4206 myh = (struct elf_link_hash_entry *) bh;
4207 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4208 myh->forced_local = 1;
4209
4210 free (tmp_name);
4211
4212 /* Generate a mapping symbol for the veneer section, and explicitly add an
4213 entry for that symbol to the code/data map for the section. */
4214 if (hash_table->vfp11_erratum_glue_size == 0)
4215 {
4216 bh = NULL;
4217 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4218 ever requires this erratum fix. */
4219 _bfd_generic_link_add_one_symbol (link_info,
4220 hash_table->bfd_of_glue_owner, "$a",
4221 BSF_LOCAL, s, 0, NULL,
4222 TRUE, FALSE, &bh);
4223
4224 myh = (struct elf_link_hash_entry *) bh;
4225 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4226 myh->forced_local = 1;
4227
4228 /* The elf32_arm_init_maps function only cares about symbols from input
4229 BFDs. We must make a note of this generated mapping symbol
4230 ourselves so that code byteswapping works properly in
4231 elf32_arm_write_section. */
4232 elf32_arm_section_map_add (s, 'a', 0);
4233 }
4234
4235 s->size += VFP11_ERRATUM_VENEER_SIZE;
4236 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4237 hash_table->num_vfp11_fixes++;
4238
4239 /* The offset of the veneer. */
4240 return val;
4241 }
4242
4243 /* Add the glue sections to ABFD. This function is called from the
4244 linker scripts in ld/emultempl/{armelf}.em. */
4245
4246 bfd_boolean
4247 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4248 struct bfd_link_info *info)
4249 {
4250 flagword flags;
4251 asection *sec;
4252
4253 /* If we are only performing a partial
4254 link do not bother adding the glue. */
4255 if (info->relocatable)
4256 return TRUE;
4257
4258 /* linker stubs don't need glue */
4259 if (!strcmp (abfd->filename, "linker stubs"))
4260 return TRUE;
4261
4262 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
4263
4264 if (sec == NULL)
4265 {
4266 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
4267 will prevent elf_link_input_bfd() from processing the contents
4268 of this section. */
4269 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4270 | SEC_CODE | SEC_READONLY);
4271
4272 sec = bfd_make_section_with_flags (abfd,
4273 ARM2THUMB_GLUE_SECTION_NAME,
4274 flags);
4275
4276 if (sec == NULL
4277 || !bfd_set_section_alignment (abfd, sec, 2))
4278 return FALSE;
4279
4280 /* Set the gc mark to prevent the section from being removed by garbage
4281 collection, despite the fact that no relocs refer to this section. */
4282 sec->gc_mark = 1;
4283 }
4284
4285 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
4286
4287 if (sec == NULL)
4288 {
4289 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4290 | SEC_CODE | SEC_READONLY);
4291
4292 sec = bfd_make_section_with_flags (abfd,
4293 THUMB2ARM_GLUE_SECTION_NAME,
4294 flags);
4295
4296 if (sec == NULL
4297 || !bfd_set_section_alignment (abfd, sec, 2))
4298 return FALSE;
4299
4300 sec->gc_mark = 1;
4301 }
4302
4303 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
4304
4305 if (sec == NULL)
4306 {
4307 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4308 | SEC_CODE | SEC_READONLY);
4309
4310 sec = bfd_make_section_with_flags (abfd,
4311 VFP11_ERRATUM_VENEER_SECTION_NAME,
4312 flags);
4313
4314 if (sec == NULL
4315 || !bfd_set_section_alignment (abfd, sec, 2))
4316 return FALSE;
4317
4318 sec->gc_mark = 1;
4319 }
4320
4321 sec = bfd_get_section_by_name (abfd, ARM_BX_GLUE_SECTION_NAME);
4322
4323 if (sec == NULL)
4324 {
4325 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4326 | SEC_CODE | SEC_READONLY);
4327
4328 sec = bfd_make_section_with_flags (abfd,
4329 ARM_BX_GLUE_SECTION_NAME,
4330 flags);
4331
4332 if (sec == NULL
4333 || !bfd_set_section_alignment (abfd, sec, 2))
4334 return FALSE;
4335
4336 sec->gc_mark = 1;
4337 }
4338
4339 return TRUE;
4340 }
4341
4342 /* Select a BFD to be used to hold the sections used by the glue code.
4343 This function is called from the linker scripts in ld/emultempl/
4344 {armelf/pe}.em */
4345
4346 bfd_boolean
4347 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4348 {
4349 struct elf32_arm_link_hash_table *globals;
4350
4351 /* If we are only performing a partial link
4352 do not bother getting a bfd to hold the glue. */
4353 if (info->relocatable)
4354 return TRUE;
4355
4356 /* Make sure we don't attach the glue sections to a dynamic object. */
4357 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4358
4359 globals = elf32_arm_hash_table (info);
4360
4361 BFD_ASSERT (globals != NULL);
4362
4363 if (globals->bfd_of_glue_owner != NULL)
4364 return TRUE;
4365
4366 /* Save the bfd for later use. */
4367 globals->bfd_of_glue_owner = abfd;
4368
4369 return TRUE;
4370 }
4371
4372 static void
4373 check_use_blx (struct elf32_arm_link_hash_table *globals)
4374 {
4375 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4376 Tag_CPU_arch) > 2)
4377 globals->use_blx = 1;
4378 }
4379
4380 bfd_boolean
4381 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4382 struct bfd_link_info *link_info)
4383 {
4384 Elf_Internal_Shdr *symtab_hdr;
4385 Elf_Internal_Rela *internal_relocs = NULL;
4386 Elf_Internal_Rela *irel, *irelend;
4387 bfd_byte *contents = NULL;
4388
4389 asection *sec;
4390 struct elf32_arm_link_hash_table *globals;
4391
4392 /* If we are only performing a partial link do not bother
4393 to construct any glue. */
4394 if (link_info->relocatable)
4395 return TRUE;
4396
4397 /* Here we have a bfd that is to be included on the link. We have a
4398 hook to do reloc rummaging, before section sizes are nailed down. */
4399 globals = elf32_arm_hash_table (link_info);
4400
4401 BFD_ASSERT (globals != NULL);
4402
4403 check_use_blx (globals);
4404
4405 if (globals->byteswap_code && !bfd_big_endian (abfd))
4406 {
4407 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4408 abfd);
4409 return FALSE;
4410 }
4411
4412 /* PR 5398: If we have not decided to include any loadable sections in
4413 the output then we will not have a glue owner bfd. This is OK, it
4414 just means that there is nothing else for us to do here. */
4415 if (globals->bfd_of_glue_owner == NULL)
4416 return TRUE;
4417
4418 /* Rummage around all the relocs and map the glue vectors. */
4419 sec = abfd->sections;
4420
4421 if (sec == NULL)
4422 return TRUE;
4423
4424 for (; sec != NULL; sec = sec->next)
4425 {
4426 if (sec->reloc_count == 0)
4427 continue;
4428
4429 if ((sec->flags & SEC_EXCLUDE) != 0)
4430 continue;
4431
4432 symtab_hdr = & elf_symtab_hdr (abfd);
4433
4434 /* Load the relocs. */
4435 internal_relocs
4436 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4437
4438 if (internal_relocs == NULL)
4439 goto error_return;
4440
4441 irelend = internal_relocs + sec->reloc_count;
4442 for (irel = internal_relocs; irel < irelend; irel++)
4443 {
4444 long r_type;
4445 unsigned long r_index;
4446
4447 struct elf_link_hash_entry *h;
4448
4449 r_type = ELF32_R_TYPE (irel->r_info);
4450 r_index = ELF32_R_SYM (irel->r_info);
4451
4452 /* These are the only relocation types we care about. */
4453 if ( r_type != R_ARM_PC24
4454 && r_type != R_ARM_PLT32
4455 && r_type != R_ARM_JUMP24
4456 && r_type != R_ARM_THM_JUMP24
4457 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4458 continue;
4459
4460 /* Get the section contents if we haven't done so already. */
4461 if (contents == NULL)
4462 {
4463 /* Get cached copy if it exists. */
4464 if (elf_section_data (sec)->this_hdr.contents != NULL)
4465 contents = elf_section_data (sec)->this_hdr.contents;
4466 else
4467 {
4468 /* Go get them off disk. */
4469 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4470 goto error_return;
4471 }
4472 }
4473
4474 if (r_type == R_ARM_V4BX)
4475 {
4476 int reg;
4477
4478 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4479 record_arm_bx_glue (link_info, reg);
4480 continue;
4481 }
4482
4483 /* If the relocation is not against a symbol it cannot concern us. */
4484 h = NULL;
4485
4486 /* We don't care about local symbols. */
4487 if (r_index < symtab_hdr->sh_info)
4488 continue;
4489
4490 /* This is an external symbol. */
4491 r_index -= symtab_hdr->sh_info;
4492 h = (struct elf_link_hash_entry *)
4493 elf_sym_hashes (abfd)[r_index];
4494
4495 /* If the relocation is against a static symbol it must be within
4496 the current section and so cannot be a cross ARM/Thumb relocation. */
4497 if (h == NULL)
4498 continue;
4499
4500 /* If the call will go through a PLT entry then we do not need
4501 glue. */
4502 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4503 continue;
4504
4505 switch (r_type)
4506 {
4507 case R_ARM_PC24:
4508 case R_ARM_PLT32:
4509 case R_ARM_JUMP24:
4510 /* This one is a call from arm code. We need to look up
4511 the target of the call. If it is a thumb target, we
4512 insert glue. */
4513 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4514 && !(r_type == R_ARM_CALL && globals->use_blx))
4515 record_arm_to_thumb_glue (link_info, h);
4516 break;
4517
4518 case R_ARM_THM_JUMP24:
4519 /* This one is a call from thumb code. We look
4520 up the target of the call. If it is not a thumb
4521 target, we insert glue. */
4522 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4523 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4524 && h->root.type != bfd_link_hash_undefweak)
4525 record_thumb_to_arm_glue (link_info, h);
4526 break;
4527
4528 default:
4529 abort ();
4530 }
4531 }
4532
4533 if (contents != NULL
4534 && elf_section_data (sec)->this_hdr.contents != contents)
4535 free (contents);
4536 contents = NULL;
4537
4538 if (internal_relocs != NULL
4539 && elf_section_data (sec)->relocs != internal_relocs)
4540 free (internal_relocs);
4541 internal_relocs = NULL;
4542 }
4543
4544 return TRUE;
4545
4546 error_return:
4547 if (contents != NULL
4548 && elf_section_data (sec)->this_hdr.contents != contents)
4549 free (contents);
4550 if (internal_relocs != NULL
4551 && elf_section_data (sec)->relocs != internal_relocs)
4552 free (internal_relocs);
4553
4554 return FALSE;
4555 }
4556 #endif
4557
4558
4559 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4560
4561 void
4562 bfd_elf32_arm_init_maps (bfd *abfd)
4563 {
4564 Elf_Internal_Sym *isymbuf;
4565 Elf_Internal_Shdr *hdr;
4566 unsigned int i, localsyms;
4567
4568 if ((abfd->flags & DYNAMIC) != 0)
4569 return;
4570
4571 hdr = & elf_symtab_hdr (abfd);
4572 localsyms = hdr->sh_info;
4573
4574 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4575 should contain the number of local symbols, which should come before any
4576 global symbols. Mapping symbols are always local. */
4577 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4578 NULL);
4579
4580 /* No internal symbols read? Skip this BFD. */
4581 if (isymbuf == NULL)
4582 return;
4583
4584 for (i = 0; i < localsyms; i++)
4585 {
4586 Elf_Internal_Sym *isym = &isymbuf[i];
4587 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4588 const char *name;
4589
4590 if (sec != NULL
4591 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4592 {
4593 name = bfd_elf_string_from_elf_section (abfd,
4594 hdr->sh_link, isym->st_name);
4595
4596 if (bfd_is_arm_special_symbol_name (name,
4597 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4598 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4599 }
4600 }
4601 }
4602
4603
4604 void
4605 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4606 {
4607 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4608 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4609
4610 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4611 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4612 {
4613 switch (globals->vfp11_fix)
4614 {
4615 case BFD_ARM_VFP11_FIX_DEFAULT:
4616 case BFD_ARM_VFP11_FIX_NONE:
4617 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4618 break;
4619
4620 default:
4621 /* Give a warning, but do as the user requests anyway. */
4622 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4623 "workaround is not necessary for target architecture"), obfd);
4624 }
4625 }
4626 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4627 /* For earlier architectures, we might need the workaround, but do not
4628 enable it by default. If users is running with broken hardware, they
4629 must enable the erratum fix explicitly. */
4630 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4631 }
4632
4633
4634 enum bfd_arm_vfp11_pipe
4635 {
4636 VFP11_FMAC,
4637 VFP11_LS,
4638 VFP11_DS,
4639 VFP11_BAD
4640 };
4641
4642 /* Return a VFP register number. This is encoded as RX:X for single-precision
4643 registers, or X:RX for double-precision registers, where RX is the group of
4644 four bits in the instruction encoding and X is the single extension bit.
4645 RX and X fields are specified using their lowest (starting) bit. The return
4646 value is:
4647
4648 0...31: single-precision registers s0...s31
4649 32...63: double-precision registers d0...d31.
4650
4651 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4652 encounter VFP3 instructions, so we allow the full range for DP registers. */
4653
4654 static unsigned int
4655 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4656 unsigned int x)
4657 {
4658 if (is_double)
4659 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4660 else
4661 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4662 }
4663
4664 /* Set bits in *WMASK according to a register number REG as encoded by
4665 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4666
4667 static void
4668 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4669 {
4670 if (reg < 32)
4671 *wmask |= 1 << reg;
4672 else if (reg < 48)
4673 *wmask |= 3 << ((reg - 32) * 2);
4674 }
4675
4676 /* Return TRUE if WMASK overwrites anything in REGS. */
4677
4678 static bfd_boolean
4679 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4680 {
4681 int i;
4682
4683 for (i = 0; i < numregs; i++)
4684 {
4685 unsigned int reg = regs[i];
4686
4687 if (reg < 32 && (wmask & (1 << reg)) != 0)
4688 return TRUE;
4689
4690 reg -= 32;
4691
4692 if (reg >= 16)
4693 continue;
4694
4695 if ((wmask & (3 << (reg * 2))) != 0)
4696 return TRUE;
4697 }
4698
4699 return FALSE;
4700 }
4701
4702 /* In this function, we're interested in two things: finding input registers
4703 for VFP data-processing instructions, and finding the set of registers which
4704 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4705 hold the written set, so FLDM etc. are easy to deal with (we're only
4706 interested in 32 SP registers or 16 dp registers, due to the VFP version
4707 implemented by the chip in question). DP registers are marked by setting
4708 both SP registers in the write mask). */
4709
4710 static enum bfd_arm_vfp11_pipe
4711 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4712 int *numregs)
4713 {
4714 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4715 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4716
4717 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4718 {
4719 unsigned int pqrs;
4720 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4721 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4722
4723 pqrs = ((insn & 0x00800000) >> 20)
4724 | ((insn & 0x00300000) >> 19)
4725 | ((insn & 0x00000040) >> 6);
4726
4727 switch (pqrs)
4728 {
4729 case 0: /* fmac[sd]. */
4730 case 1: /* fnmac[sd]. */
4731 case 2: /* fmsc[sd]. */
4732 case 3: /* fnmsc[sd]. */
4733 pipe = VFP11_FMAC;
4734 bfd_arm_vfp11_write_mask (destmask, fd);
4735 regs[0] = fd;
4736 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4737 regs[2] = fm;
4738 *numregs = 3;
4739 break;
4740
4741 case 4: /* fmul[sd]. */
4742 case 5: /* fnmul[sd]. */
4743 case 6: /* fadd[sd]. */
4744 case 7: /* fsub[sd]. */
4745 pipe = VFP11_FMAC;
4746 goto vfp_binop;
4747
4748 case 8: /* fdiv[sd]. */
4749 pipe = VFP11_DS;
4750 vfp_binop:
4751 bfd_arm_vfp11_write_mask (destmask, fd);
4752 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4753 regs[1] = fm;
4754 *numregs = 2;
4755 break;
4756
4757 case 15: /* extended opcode. */
4758 {
4759 unsigned int extn = ((insn >> 15) & 0x1e)
4760 | ((insn >> 7) & 1);
4761
4762 switch (extn)
4763 {
4764 case 0: /* fcpy[sd]. */
4765 case 1: /* fabs[sd]. */
4766 case 2: /* fneg[sd]. */
4767 case 8: /* fcmp[sd]. */
4768 case 9: /* fcmpe[sd]. */
4769 case 10: /* fcmpz[sd]. */
4770 case 11: /* fcmpez[sd]. */
4771 case 16: /* fuito[sd]. */
4772 case 17: /* fsito[sd]. */
4773 case 24: /* ftoui[sd]. */
4774 case 25: /* ftouiz[sd]. */
4775 case 26: /* ftosi[sd]. */
4776 case 27: /* ftosiz[sd]. */
4777 /* These instructions will not bounce due to underflow. */
4778 *numregs = 0;
4779 pipe = VFP11_FMAC;
4780 break;
4781
4782 case 3: /* fsqrt[sd]. */
4783 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4784 registers to cause the erratum in previous instructions. */
4785 bfd_arm_vfp11_write_mask (destmask, fd);
4786 pipe = VFP11_DS;
4787 break;
4788
4789 case 15: /* fcvt{ds,sd}. */
4790 {
4791 int rnum = 0;
4792
4793 bfd_arm_vfp11_write_mask (destmask, fd);
4794
4795 /* Only FCVTSD can underflow. */
4796 if ((insn & 0x100) != 0)
4797 regs[rnum++] = fm;
4798
4799 *numregs = rnum;
4800
4801 pipe = VFP11_FMAC;
4802 }
4803 break;
4804
4805 default:
4806 return VFP11_BAD;
4807 }
4808 }
4809 break;
4810
4811 default:
4812 return VFP11_BAD;
4813 }
4814 }
4815 /* Two-register transfer. */
4816 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4817 {
4818 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4819
4820 if ((insn & 0x100000) == 0)
4821 {
4822 if (is_double)
4823 bfd_arm_vfp11_write_mask (destmask, fm);
4824 else
4825 {
4826 bfd_arm_vfp11_write_mask (destmask, fm);
4827 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4828 }
4829 }
4830
4831 pipe = VFP11_LS;
4832 }
4833 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4834 {
4835 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4836 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4837
4838 switch (puw)
4839 {
4840 case 0: /* Two-reg transfer. We should catch these above. */
4841 abort ();
4842
4843 case 2: /* fldm[sdx]. */
4844 case 3:
4845 case 5:
4846 {
4847 unsigned int i, offset = insn & 0xff;
4848
4849 if (is_double)
4850 offset >>= 1;
4851
4852 for (i = fd; i < fd + offset; i++)
4853 bfd_arm_vfp11_write_mask (destmask, i);
4854 }
4855 break;
4856
4857 case 4: /* fld[sd]. */
4858 case 6:
4859 bfd_arm_vfp11_write_mask (destmask, fd);
4860 break;
4861
4862 default:
4863 return VFP11_BAD;
4864 }
4865
4866 pipe = VFP11_LS;
4867 }
4868 /* Single-register transfer. Note L==0. */
4869 else if ((insn & 0x0f100e10) == 0x0e000a10)
4870 {
4871 unsigned int opcode = (insn >> 21) & 7;
4872 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4873
4874 switch (opcode)
4875 {
4876 case 0: /* fmsr/fmdlr. */
4877 case 1: /* fmdhr. */
4878 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4879 destination register. I don't know if this is exactly right,
4880 but it is the conservative choice. */
4881 bfd_arm_vfp11_write_mask (destmask, fn);
4882 break;
4883
4884 case 7: /* fmxr. */
4885 break;
4886 }
4887
4888 pipe = VFP11_LS;
4889 }
4890
4891 return pipe;
4892 }
4893
4894
4895 static int elf32_arm_compare_mapping (const void * a, const void * b);
4896
4897
4898 /* Look for potentially-troublesome code sequences which might trigger the
4899 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4900 (available from ARM) for details of the erratum. A short version is
4901 described in ld.texinfo. */
4902
4903 bfd_boolean
4904 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4905 {
4906 asection *sec;
4907 bfd_byte *contents = NULL;
4908 int state = 0;
4909 int regs[3], numregs = 0;
4910 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4911 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4912
4913 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4914 The states transition as follows:
4915
4916 0 -> 1 (vector) or 0 -> 2 (scalar)
4917 A VFP FMAC-pipeline instruction has been seen. Fill
4918 regs[0]..regs[numregs-1] with its input operands. Remember this
4919 instruction in 'first_fmac'.
4920
4921 1 -> 2
4922 Any instruction, except for a VFP instruction which overwrites
4923 regs[*].
4924
4925 1 -> 3 [ -> 0 ] or
4926 2 -> 3 [ -> 0 ]
4927 A VFP instruction has been seen which overwrites any of regs[*].
4928 We must make a veneer! Reset state to 0 before examining next
4929 instruction.
4930
4931 2 -> 0
4932 If we fail to match anything in state 2, reset to state 0 and reset
4933 the instruction pointer to the instruction after 'first_fmac'.
4934
4935 If the VFP11 vector mode is in use, there must be at least two unrelated
4936 instructions between anti-dependent VFP11 instructions to properly avoid
4937 triggering the erratum, hence the use of the extra state 1. */
4938
4939 /* If we are only performing a partial link do not bother
4940 to construct any glue. */
4941 if (link_info->relocatable)
4942 return TRUE;
4943
4944 /* Skip if this bfd does not correspond to an ELF image. */
4945 if (! is_arm_elf (abfd))
4946 return TRUE;
4947
4948 /* We should have chosen a fix type by the time we get here. */
4949 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
4950
4951 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
4952 return TRUE;
4953
4954 for (sec = abfd->sections; sec != NULL; sec = sec->next)
4955 {
4956 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
4957 struct _arm_elf_section_data *sec_data;
4958
4959 /* If we don't have executable progbits, we're not interested in this
4960 section. Also skip if section is to be excluded. */
4961 if (elf_section_type (sec) != SHT_PROGBITS
4962 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
4963 || (sec->flags & SEC_EXCLUDE) != 0
4964 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
4965 continue;
4966
4967 sec_data = elf32_arm_section_data (sec);
4968
4969 if (sec_data->mapcount == 0)
4970 continue;
4971
4972 if (elf_section_data (sec)->this_hdr.contents != NULL)
4973 contents = elf_section_data (sec)->this_hdr.contents;
4974 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4975 goto error_return;
4976
4977 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
4978 elf32_arm_compare_mapping);
4979
4980 for (span = 0; span < sec_data->mapcount; span++)
4981 {
4982 unsigned int span_start = sec_data->map[span].vma;
4983 unsigned int span_end = (span == sec_data->mapcount - 1)
4984 ? sec->size : sec_data->map[span + 1].vma;
4985 char span_type = sec_data->map[span].type;
4986
4987 /* FIXME: Only ARM mode is supported at present. We may need to
4988 support Thumb-2 mode also at some point. */
4989 if (span_type != 'a')
4990 continue;
4991
4992 for (i = span_start; i < span_end;)
4993 {
4994 unsigned int next_i = i + 4;
4995 unsigned int insn = bfd_big_endian (abfd)
4996 ? (contents[i] << 24)
4997 | (contents[i + 1] << 16)
4998 | (contents[i + 2] << 8)
4999 | contents[i + 3]
5000 : (contents[i + 3] << 24)
5001 | (contents[i + 2] << 16)
5002 | (contents[i + 1] << 8)
5003 | contents[i];
5004 unsigned int writemask = 0;
5005 enum bfd_arm_vfp11_pipe pipe;
5006
5007 switch (state)
5008 {
5009 case 0:
5010 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5011 &numregs);
5012 /* I'm assuming the VFP11 erratum can trigger with denorm
5013 operands on either the FMAC or the DS pipeline. This might
5014 lead to slightly overenthusiastic veneer insertion. */
5015 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5016 {
5017 state = use_vector ? 1 : 2;
5018 first_fmac = i;
5019 veneer_of_insn = insn;
5020 }
5021 break;
5022
5023 case 1:
5024 {
5025 int other_regs[3], other_numregs;
5026 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5027 other_regs,
5028 &other_numregs);
5029 if (pipe != VFP11_BAD
5030 && bfd_arm_vfp11_antidependency (writemask, regs,
5031 numregs))
5032 state = 3;
5033 else
5034 state = 2;
5035 }
5036 break;
5037
5038 case 2:
5039 {
5040 int other_regs[3], other_numregs;
5041 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5042 other_regs,
5043 &other_numregs);
5044 if (pipe != VFP11_BAD
5045 && bfd_arm_vfp11_antidependency (writemask, regs,
5046 numregs))
5047 state = 3;
5048 else
5049 {
5050 state = 0;
5051 next_i = first_fmac + 4;
5052 }
5053 }
5054 break;
5055
5056 case 3:
5057 abort (); /* Should be unreachable. */
5058 }
5059
5060 if (state == 3)
5061 {
5062 elf32_vfp11_erratum_list *newerr
5063 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5064 int errcount;
5065
5066 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5067
5068 newerr->u.b.vfp_insn = veneer_of_insn;
5069
5070 switch (span_type)
5071 {
5072 case 'a':
5073 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5074 break;
5075
5076 default:
5077 abort ();
5078 }
5079
5080 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5081 first_fmac);
5082
5083 newerr->vma = -1;
5084
5085 newerr->next = sec_data->erratumlist;
5086 sec_data->erratumlist = newerr;
5087
5088 state = 0;
5089 }
5090
5091 i = next_i;
5092 }
5093 }
5094
5095 if (contents != NULL
5096 && elf_section_data (sec)->this_hdr.contents != contents)
5097 free (contents);
5098 contents = NULL;
5099 }
5100
5101 return TRUE;
5102
5103 error_return:
5104 if (contents != NULL
5105 && elf_section_data (sec)->this_hdr.contents != contents)
5106 free (contents);
5107
5108 return FALSE;
5109 }
5110
5111 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5112 after sections have been laid out, using specially-named symbols. */
5113
5114 void
5115 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5116 struct bfd_link_info *link_info)
5117 {
5118 asection *sec;
5119 struct elf32_arm_link_hash_table *globals;
5120 char *tmp_name;
5121
5122 if (link_info->relocatable)
5123 return;
5124
5125 /* Skip if this bfd does not correspond to an ELF image. */
5126 if (! is_arm_elf (abfd))
5127 return;
5128
5129 globals = elf32_arm_hash_table (link_info);
5130
5131 tmp_name = bfd_malloc ((bfd_size_type) strlen
5132 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5133
5134 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5135 {
5136 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5137 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5138
5139 for (; errnode != NULL; errnode = errnode->next)
5140 {
5141 struct elf_link_hash_entry *myh;
5142 bfd_vma vma;
5143
5144 switch (errnode->type)
5145 {
5146 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5147 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5148 /* Find veneer symbol. */
5149 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5150 errnode->u.b.veneer->u.v.id);
5151
5152 myh = elf_link_hash_lookup
5153 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5154
5155 if (myh == NULL)
5156 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5157 "`%s'"), abfd, tmp_name);
5158
5159 vma = myh->root.u.def.section->output_section->vma
5160 + myh->root.u.def.section->output_offset
5161 + myh->root.u.def.value;
5162
5163 errnode->u.b.veneer->vma = vma;
5164 break;
5165
5166 case VFP11_ERRATUM_ARM_VENEER:
5167 case VFP11_ERRATUM_THUMB_VENEER:
5168 /* Find return location. */
5169 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5170 errnode->u.v.id);
5171
5172 myh = elf_link_hash_lookup
5173 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5174
5175 if (myh == NULL)
5176 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5177 "`%s'"), abfd, tmp_name);
5178
5179 vma = myh->root.u.def.section->output_section->vma
5180 + myh->root.u.def.section->output_offset
5181 + myh->root.u.def.value;
5182
5183 errnode->u.v.branch->vma = vma;
5184 break;
5185
5186 default:
5187 abort ();
5188 }
5189 }
5190 }
5191
5192 free (tmp_name);
5193 }
5194
5195
5196 /* Set target relocation values needed during linking. */
5197
5198 void
5199 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5200 struct bfd_link_info *link_info,
5201 int target1_is_rel,
5202 char * target2_type,
5203 int fix_v4bx,
5204 int use_blx,
5205 bfd_arm_vfp11_fix vfp11_fix,
5206 int no_enum_warn, int pic_veneer)
5207 {
5208 struct elf32_arm_link_hash_table *globals;
5209
5210 globals = elf32_arm_hash_table (link_info);
5211
5212 globals->target1_is_rel = target1_is_rel;
5213 if (strcmp (target2_type, "rel") == 0)
5214 globals->target2_reloc = R_ARM_REL32;
5215 else if (strcmp (target2_type, "abs") == 0)
5216 globals->target2_reloc = R_ARM_ABS32;
5217 else if (strcmp (target2_type, "got-rel") == 0)
5218 globals->target2_reloc = R_ARM_GOT_PREL;
5219 else
5220 {
5221 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5222 target2_type);
5223 }
5224 globals->fix_v4bx = fix_v4bx;
5225 globals->use_blx |= use_blx;
5226 globals->vfp11_fix = vfp11_fix;
5227 globals->pic_veneer = pic_veneer;
5228
5229 BFD_ASSERT (is_arm_elf (output_bfd));
5230 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5231 }
5232
5233 /* Replace the target offset of a Thumb bl or b.w instruction. */
5234
5235 static void
5236 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5237 {
5238 bfd_vma upper;
5239 bfd_vma lower;
5240 int reloc_sign;
5241
5242 BFD_ASSERT ((offset & 1) == 0);
5243
5244 upper = bfd_get_16 (abfd, insn);
5245 lower = bfd_get_16 (abfd, insn + 2);
5246 reloc_sign = (offset < 0) ? 1 : 0;
5247 upper = (upper & ~(bfd_vma) 0x7ff)
5248 | ((offset >> 12) & 0x3ff)
5249 | (reloc_sign << 10);
5250 lower = (lower & ~(bfd_vma) 0x2fff)
5251 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5252 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5253 | ((offset >> 1) & 0x7ff);
5254 bfd_put_16 (abfd, upper, insn);
5255 bfd_put_16 (abfd, lower, insn + 2);
5256 }
5257
5258 /* Thumb code calling an ARM function. */
5259
5260 static int
5261 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5262 const char * name,
5263 bfd * input_bfd,
5264 bfd * output_bfd,
5265 asection * input_section,
5266 bfd_byte * hit_data,
5267 asection * sym_sec,
5268 bfd_vma offset,
5269 bfd_signed_vma addend,
5270 bfd_vma val,
5271 char **error_message)
5272 {
5273 asection * s = 0;
5274 bfd_vma my_offset;
5275 long int ret_offset;
5276 struct elf_link_hash_entry * myh;
5277 struct elf32_arm_link_hash_table * globals;
5278
5279 myh = find_thumb_glue (info, name, error_message);
5280 if (myh == NULL)
5281 return FALSE;
5282
5283 globals = elf32_arm_hash_table (info);
5284
5285 BFD_ASSERT (globals != NULL);
5286 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5287
5288 my_offset = myh->root.u.def.value;
5289
5290 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5291 THUMB2ARM_GLUE_SECTION_NAME);
5292
5293 BFD_ASSERT (s != NULL);
5294 BFD_ASSERT (s->contents != NULL);
5295 BFD_ASSERT (s->output_section != NULL);
5296
5297 if ((my_offset & 0x01) == 0x01)
5298 {
5299 if (sym_sec != NULL
5300 && sym_sec->owner != NULL
5301 && !INTERWORK_FLAG (sym_sec->owner))
5302 {
5303 (*_bfd_error_handler)
5304 (_("%B(%s): warning: interworking not enabled.\n"
5305 " first occurrence: %B: thumb call to arm"),
5306 sym_sec->owner, input_bfd, name);
5307
5308 return FALSE;
5309 }
5310
5311 --my_offset;
5312 myh->root.u.def.value = my_offset;
5313
5314 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5315 s->contents + my_offset);
5316
5317 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5318 s->contents + my_offset + 2);
5319
5320 ret_offset =
5321 /* Address of destination of the stub. */
5322 ((bfd_signed_vma) val)
5323 - ((bfd_signed_vma)
5324 /* Offset from the start of the current section
5325 to the start of the stubs. */
5326 (s->output_offset
5327 /* Offset of the start of this stub from the start of the stubs. */
5328 + my_offset
5329 /* Address of the start of the current section. */
5330 + s->output_section->vma)
5331 /* The branch instruction is 4 bytes into the stub. */
5332 + 4
5333 /* ARM branches work from the pc of the instruction + 8. */
5334 + 8);
5335
5336 put_arm_insn (globals, output_bfd,
5337 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5338 s->contents + my_offset + 4);
5339 }
5340
5341 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5342
5343 /* Now go back and fix up the original BL insn to point to here. */
5344 ret_offset =
5345 /* Address of where the stub is located. */
5346 (s->output_section->vma + s->output_offset + my_offset)
5347 /* Address of where the BL is located. */
5348 - (input_section->output_section->vma + input_section->output_offset
5349 + offset)
5350 /* Addend in the relocation. */
5351 - addend
5352 /* Biassing for PC-relative addressing. */
5353 - 8;
5354
5355 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5356
5357 return TRUE;
5358 }
5359
5360 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5361
5362 static struct elf_link_hash_entry *
5363 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5364 const char * name,
5365 bfd * input_bfd,
5366 bfd * output_bfd,
5367 asection * sym_sec,
5368 bfd_vma val,
5369 asection *s,
5370 char **error_message)
5371 {
5372 bfd_vma my_offset;
5373 long int ret_offset;
5374 struct elf_link_hash_entry * myh;
5375 struct elf32_arm_link_hash_table * globals;
5376
5377 myh = find_arm_glue (info, name, error_message);
5378 if (myh == NULL)
5379 return NULL;
5380
5381 globals = elf32_arm_hash_table (info);
5382
5383 BFD_ASSERT (globals != NULL);
5384 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5385
5386 my_offset = myh->root.u.def.value;
5387
5388 if ((my_offset & 0x01) == 0x01)
5389 {
5390 if (sym_sec != NULL
5391 && sym_sec->owner != NULL
5392 && !INTERWORK_FLAG (sym_sec->owner))
5393 {
5394 (*_bfd_error_handler)
5395 (_("%B(%s): warning: interworking not enabled.\n"
5396 " first occurrence: %B: arm call to thumb"),
5397 sym_sec->owner, input_bfd, name);
5398 }
5399
5400 --my_offset;
5401 myh->root.u.def.value = my_offset;
5402
5403 if (info->shared || globals->root.is_relocatable_executable
5404 || globals->pic_veneer)
5405 {
5406 /* For relocatable objects we can't use absolute addresses,
5407 so construct the address from a relative offset. */
5408 /* TODO: If the offset is small it's probably worth
5409 constructing the address with adds. */
5410 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5411 s->contents + my_offset);
5412 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5413 s->contents + my_offset + 4);
5414 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5415 s->contents + my_offset + 8);
5416 /* Adjust the offset by 4 for the position of the add,
5417 and 8 for the pipeline offset. */
5418 ret_offset = (val - (s->output_offset
5419 + s->output_section->vma
5420 + my_offset + 12))
5421 | 1;
5422 bfd_put_32 (output_bfd, ret_offset,
5423 s->contents + my_offset + 12);
5424 }
5425 else if (globals->use_blx)
5426 {
5427 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5428 s->contents + my_offset);
5429
5430 /* It's a thumb address. Add the low order bit. */
5431 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5432 s->contents + my_offset + 4);
5433 }
5434 else
5435 {
5436 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5437 s->contents + my_offset);
5438
5439 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5440 s->contents + my_offset + 4);
5441
5442 /* It's a thumb address. Add the low order bit. */
5443 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5444 s->contents + my_offset + 8);
5445 }
5446 }
5447
5448 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5449
5450 return myh;
5451 }
5452
5453 /* Arm code calling a Thumb function. */
5454
5455 static int
5456 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5457 const char * name,
5458 bfd * input_bfd,
5459 bfd * output_bfd,
5460 asection * input_section,
5461 bfd_byte * hit_data,
5462 asection * sym_sec,
5463 bfd_vma offset,
5464 bfd_signed_vma addend,
5465 bfd_vma val,
5466 char **error_message)
5467 {
5468 unsigned long int tmp;
5469 bfd_vma my_offset;
5470 asection * s;
5471 long int ret_offset;
5472 struct elf_link_hash_entry * myh;
5473 struct elf32_arm_link_hash_table * globals;
5474
5475 globals = elf32_arm_hash_table (info);
5476
5477 BFD_ASSERT (globals != NULL);
5478 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5479
5480 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5481 ARM2THUMB_GLUE_SECTION_NAME);
5482 BFD_ASSERT (s != NULL);
5483 BFD_ASSERT (s->contents != NULL);
5484 BFD_ASSERT (s->output_section != NULL);
5485
5486 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5487 sym_sec, val, s, error_message);
5488 if (!myh)
5489 return FALSE;
5490
5491 my_offset = myh->root.u.def.value;
5492 tmp = bfd_get_32 (input_bfd, hit_data);
5493 tmp = tmp & 0xFF000000;
5494
5495 /* Somehow these are both 4 too far, so subtract 8. */
5496 ret_offset = (s->output_offset
5497 + my_offset
5498 + s->output_section->vma
5499 - (input_section->output_offset
5500 + input_section->output_section->vma
5501 + offset + addend)
5502 - 8);
5503
5504 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5505
5506 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5507
5508 return TRUE;
5509 }
5510
5511 /* Populate Arm stub for an exported Thumb function. */
5512
5513 static bfd_boolean
5514 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5515 {
5516 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5517 asection * s;
5518 struct elf_link_hash_entry * myh;
5519 struct elf32_arm_link_hash_entry *eh;
5520 struct elf32_arm_link_hash_table * globals;
5521 asection *sec;
5522 bfd_vma val;
5523 char *error_message;
5524
5525 eh = elf32_arm_hash_entry (h);
5526 /* Allocate stubs for exported Thumb functions on v4t. */
5527 if (eh->export_glue == NULL)
5528 return TRUE;
5529
5530 globals = elf32_arm_hash_table (info);
5531
5532 BFD_ASSERT (globals != NULL);
5533 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5534
5535 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5536 ARM2THUMB_GLUE_SECTION_NAME);
5537 BFD_ASSERT (s != NULL);
5538 BFD_ASSERT (s->contents != NULL);
5539 BFD_ASSERT (s->output_section != NULL);
5540
5541 sec = eh->export_glue->root.u.def.section;
5542
5543 BFD_ASSERT (sec->output_section != NULL);
5544
5545 val = eh->export_glue->root.u.def.value + sec->output_offset
5546 + sec->output_section->vma;
5547 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5548 h->root.u.def.section->owner,
5549 globals->obfd, sec, val, s,
5550 &error_message);
5551 BFD_ASSERT (myh);
5552 return TRUE;
5553 }
5554
5555 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5556
5557 static bfd_vma
5558 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5559 {
5560 bfd_byte *p;
5561 bfd_vma glue_addr;
5562 asection *s;
5563 struct elf32_arm_link_hash_table *globals;
5564
5565 globals = elf32_arm_hash_table (info);
5566
5567 BFD_ASSERT (globals != NULL);
5568 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5569
5570 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5571 ARM_BX_GLUE_SECTION_NAME);
5572 BFD_ASSERT (s != NULL);
5573 BFD_ASSERT (s->contents != NULL);
5574 BFD_ASSERT (s->output_section != NULL);
5575
5576 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5577
5578 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5579
5580 if ((globals->bx_glue_offset[reg] & 1) == 0)
5581 {
5582 p = s->contents + glue_addr;
5583 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5584 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5585 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5586 globals->bx_glue_offset[reg] |= 1;
5587 }
5588
5589 return glue_addr + s->output_section->vma + s->output_offset;
5590 }
5591
5592 /* Generate Arm stubs for exported Thumb symbols. */
5593 static void
5594 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5595 struct bfd_link_info *link_info)
5596 {
5597 struct elf32_arm_link_hash_table * globals;
5598
5599 if (!link_info)
5600 return;
5601
5602 globals = elf32_arm_hash_table (link_info);
5603 /* If blx is available then exported Thumb symbols are OK and there is
5604 nothing to do. */
5605 if (globals->use_blx)
5606 return;
5607
5608 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5609 link_info);
5610 }
5611
5612 /* Some relocations map to different relocations depending on the
5613 target. Return the real relocation. */
5614 static int
5615 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5616 int r_type)
5617 {
5618 switch (r_type)
5619 {
5620 case R_ARM_TARGET1:
5621 if (globals->target1_is_rel)
5622 return R_ARM_REL32;
5623 else
5624 return R_ARM_ABS32;
5625
5626 case R_ARM_TARGET2:
5627 return globals->target2_reloc;
5628
5629 default:
5630 return r_type;
5631 }
5632 }
5633
5634 /* Return the base VMA address which should be subtracted from real addresses
5635 when resolving @dtpoff relocation.
5636 This is PT_TLS segment p_vaddr. */
5637
5638 static bfd_vma
5639 dtpoff_base (struct bfd_link_info *info)
5640 {
5641 /* If tls_sec is NULL, we should have signalled an error already. */
5642 if (elf_hash_table (info)->tls_sec == NULL)
5643 return 0;
5644 return elf_hash_table (info)->tls_sec->vma;
5645 }
5646
5647 /* Return the relocation value for @tpoff relocation
5648 if STT_TLS virtual address is ADDRESS. */
5649
5650 static bfd_vma
5651 tpoff (struct bfd_link_info *info, bfd_vma address)
5652 {
5653 struct elf_link_hash_table *htab = elf_hash_table (info);
5654 bfd_vma base;
5655
5656 /* If tls_sec is NULL, we should have signalled an error already. */
5657 if (htab->tls_sec == NULL)
5658 return 0;
5659 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5660 return address - htab->tls_sec->vma + base;
5661 }
5662
5663 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5664 VALUE is the relocation value. */
5665
5666 static bfd_reloc_status_type
5667 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5668 {
5669 if (value > 0xfff)
5670 return bfd_reloc_overflow;
5671
5672 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5673 bfd_put_32 (abfd, value, data);
5674 return bfd_reloc_ok;
5675 }
5676
5677 /* For a given value of n, calculate the value of G_n as required to
5678 deal with group relocations. We return it in the form of an
5679 encoded constant-and-rotation, together with the final residual. If n is
5680 specified as less than zero, then final_residual is filled with the
5681 input value and no further action is performed. */
5682
5683 static bfd_vma
5684 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5685 {
5686 int current_n;
5687 bfd_vma g_n;
5688 bfd_vma encoded_g_n = 0;
5689 bfd_vma residual = value; /* Also known as Y_n. */
5690
5691 for (current_n = 0; current_n <= n; current_n++)
5692 {
5693 int shift;
5694
5695 /* Calculate which part of the value to mask. */
5696 if (residual == 0)
5697 shift = 0;
5698 else
5699 {
5700 int msb;
5701
5702 /* Determine the most significant bit in the residual and
5703 align the resulting value to a 2-bit boundary. */
5704 for (msb = 30; msb >= 0; msb -= 2)
5705 if (residual & (3 << msb))
5706 break;
5707
5708 /* The desired shift is now (msb - 6), or zero, whichever
5709 is the greater. */
5710 shift = msb - 6;
5711 if (shift < 0)
5712 shift = 0;
5713 }
5714
5715 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5716 g_n = residual & (0xff << shift);
5717 encoded_g_n = (g_n >> shift)
5718 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5719
5720 /* Calculate the residual for the next time around. */
5721 residual &= ~g_n;
5722 }
5723
5724 *final_residual = residual;
5725
5726 return encoded_g_n;
5727 }
5728
5729 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5730 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5731
5732 static int
5733 identify_add_or_sub (bfd_vma insn)
5734 {
5735 int opcode = insn & 0x1e00000;
5736
5737 if (opcode == 1 << 23) /* ADD */
5738 return 1;
5739
5740 if (opcode == 1 << 22) /* SUB */
5741 return -1;
5742
5743 return 0;
5744 }
5745
5746 /* Perform a relocation as part of a final link. */
5747
5748 static bfd_reloc_status_type
5749 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5750 bfd * input_bfd,
5751 bfd * output_bfd,
5752 asection * input_section,
5753 bfd_byte * contents,
5754 Elf_Internal_Rela * rel,
5755 bfd_vma value,
5756 struct bfd_link_info * info,
5757 asection * sym_sec,
5758 const char * sym_name,
5759 int sym_flags,
5760 struct elf_link_hash_entry * h,
5761 bfd_boolean * unresolved_reloc_p,
5762 char **error_message)
5763 {
5764 unsigned long r_type = howto->type;
5765 unsigned long r_symndx;
5766 bfd_byte * hit_data = contents + rel->r_offset;
5767 bfd * dynobj = NULL;
5768 Elf_Internal_Shdr * symtab_hdr;
5769 struct elf_link_hash_entry ** sym_hashes;
5770 bfd_vma * local_got_offsets;
5771 asection * sgot = NULL;
5772 asection * splt = NULL;
5773 asection * sreloc = NULL;
5774 bfd_vma addend;
5775 bfd_signed_vma signed_addend;
5776 struct elf32_arm_link_hash_table * globals;
5777
5778 globals = elf32_arm_hash_table (info);
5779
5780 BFD_ASSERT (is_arm_elf (input_bfd));
5781
5782 /* Some relocation types map to different relocations depending on the
5783 target. We pick the right one here. */
5784 r_type = arm_real_reloc_type (globals, r_type);
5785 if (r_type != howto->type)
5786 howto = elf32_arm_howto_from_type (r_type);
5787
5788 /* If the start address has been set, then set the EF_ARM_HASENTRY
5789 flag. Setting this more than once is redundant, but the cost is
5790 not too high, and it keeps the code simple.
5791
5792 The test is done here, rather than somewhere else, because the
5793 start address is only set just before the final link commences.
5794
5795 Note - if the user deliberately sets a start address of 0, the
5796 flag will not be set. */
5797 if (bfd_get_start_address (output_bfd) != 0)
5798 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5799
5800 dynobj = elf_hash_table (info)->dynobj;
5801 if (dynobj)
5802 {
5803 sgot = bfd_get_section_by_name (dynobj, ".got");
5804 splt = bfd_get_section_by_name (dynobj, ".plt");
5805 }
5806 symtab_hdr = & elf_symtab_hdr (input_bfd);
5807 sym_hashes = elf_sym_hashes (input_bfd);
5808 local_got_offsets = elf_local_got_offsets (input_bfd);
5809 r_symndx = ELF32_R_SYM (rel->r_info);
5810
5811 if (globals->use_rel)
5812 {
5813 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5814
5815 if (addend & ((howto->src_mask + 1) >> 1))
5816 {
5817 signed_addend = -1;
5818 signed_addend &= ~ howto->src_mask;
5819 signed_addend |= addend;
5820 }
5821 else
5822 signed_addend = addend;
5823 }
5824 else
5825 addend = signed_addend = rel->r_addend;
5826
5827 switch (r_type)
5828 {
5829 case R_ARM_NONE:
5830 /* We don't need to find a value for this symbol. It's just a
5831 marker. */
5832 *unresolved_reloc_p = FALSE;
5833 return bfd_reloc_ok;
5834
5835 case R_ARM_ABS12:
5836 if (!globals->vxworks_p)
5837 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5838
5839 case R_ARM_PC24:
5840 case R_ARM_ABS32:
5841 case R_ARM_ABS32_NOI:
5842 case R_ARM_REL32:
5843 case R_ARM_REL32_NOI:
5844 case R_ARM_CALL:
5845 case R_ARM_JUMP24:
5846 case R_ARM_XPC25:
5847 case R_ARM_PREL31:
5848 case R_ARM_PLT32:
5849 /* Handle relocations which should use the PLT entry. ABS32/REL32
5850 will use the symbol's value, which may point to a PLT entry, but we
5851 don't need to handle that here. If we created a PLT entry, all
5852 branches in this object should go to it. */
5853 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5854 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5855 && h != NULL
5856 && splt != NULL
5857 && h->plt.offset != (bfd_vma) -1)
5858 {
5859 /* If we've created a .plt section, and assigned a PLT entry to
5860 this function, it should not be known to bind locally. If
5861 it were, we would have cleared the PLT entry. */
5862 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5863
5864 value = (splt->output_section->vma
5865 + splt->output_offset
5866 + h->plt.offset);
5867 *unresolved_reloc_p = FALSE;
5868 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5869 contents, rel->r_offset, value,
5870 rel->r_addend);
5871 }
5872
5873 /* When generating a shared object or relocatable executable, these
5874 relocations are copied into the output file to be resolved at
5875 run time. */
5876 if ((info->shared || globals->root.is_relocatable_executable)
5877 && (input_section->flags & SEC_ALLOC)
5878 && !(elf32_arm_hash_table (info)->vxworks_p
5879 && strcmp (input_section->output_section->name,
5880 ".tls_vars") == 0)
5881 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5882 || !SYMBOL_CALLS_LOCAL (info, h))
5883 && (h == NULL
5884 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5885 || h->root.type != bfd_link_hash_undefweak)
5886 && r_type != R_ARM_PC24
5887 && r_type != R_ARM_CALL
5888 && r_type != R_ARM_JUMP24
5889 && r_type != R_ARM_PREL31
5890 && r_type != R_ARM_PLT32)
5891 {
5892 Elf_Internal_Rela outrel;
5893 bfd_byte *loc;
5894 bfd_boolean skip, relocate;
5895
5896 *unresolved_reloc_p = FALSE;
5897
5898 if (sreloc == NULL)
5899 {
5900 const char * name;
5901
5902 name = (bfd_elf_string_from_elf_section
5903 (input_bfd,
5904 elf_elfheader (input_bfd)->e_shstrndx,
5905 elf_section_data (input_section)->rel_hdr.sh_name));
5906 if (name == NULL)
5907 return bfd_reloc_notsupported;
5908
5909 BFD_ASSERT (reloc_section_p (globals, name, input_section));
5910
5911 sreloc = bfd_get_section_by_name (dynobj, name);
5912 BFD_ASSERT (sreloc != NULL);
5913 }
5914
5915 skip = FALSE;
5916 relocate = FALSE;
5917
5918 outrel.r_addend = addend;
5919 outrel.r_offset =
5920 _bfd_elf_section_offset (output_bfd, info, input_section,
5921 rel->r_offset);
5922 if (outrel.r_offset == (bfd_vma) -1)
5923 skip = TRUE;
5924 else if (outrel.r_offset == (bfd_vma) -2)
5925 skip = TRUE, relocate = TRUE;
5926 outrel.r_offset += (input_section->output_section->vma
5927 + input_section->output_offset);
5928
5929 if (skip)
5930 memset (&outrel, 0, sizeof outrel);
5931 else if (h != NULL
5932 && h->dynindx != -1
5933 && (!info->shared
5934 || !info->symbolic
5935 || !h->def_regular))
5936 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
5937 else
5938 {
5939 int symbol;
5940
5941 /* This symbol is local, or marked to become local. */
5942 if (sym_flags == STT_ARM_TFUNC)
5943 value |= 1;
5944 if (globals->symbian_p)
5945 {
5946 asection *osec;
5947
5948 /* On Symbian OS, the data segment and text segement
5949 can be relocated independently. Therefore, we
5950 must indicate the segment to which this
5951 relocation is relative. The BPABI allows us to
5952 use any symbol in the right segment; we just use
5953 the section symbol as it is convenient. (We
5954 cannot use the symbol given by "h" directly as it
5955 will not appear in the dynamic symbol table.)
5956
5957 Note that the dynamic linker ignores the section
5958 symbol value, so we don't subtract osec->vma
5959 from the emitted reloc addend. */
5960 if (sym_sec)
5961 osec = sym_sec->output_section;
5962 else
5963 osec = input_section->output_section;
5964 symbol = elf_section_data (osec)->dynindx;
5965 if (symbol == 0)
5966 {
5967 struct elf_link_hash_table *htab = elf_hash_table (info);
5968
5969 if ((osec->flags & SEC_READONLY) == 0
5970 && htab->data_index_section != NULL)
5971 osec = htab->data_index_section;
5972 else
5973 osec = htab->text_index_section;
5974 symbol = elf_section_data (osec)->dynindx;
5975 }
5976 BFD_ASSERT (symbol != 0);
5977 }
5978 else
5979 /* On SVR4-ish systems, the dynamic loader cannot
5980 relocate the text and data segments independently,
5981 so the symbol does not matter. */
5982 symbol = 0;
5983 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
5984 if (globals->use_rel)
5985 relocate = TRUE;
5986 else
5987 outrel.r_addend += value;
5988 }
5989
5990 loc = sreloc->contents;
5991 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
5992 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5993
5994 /* If this reloc is against an external symbol, we do not want to
5995 fiddle with the addend. Otherwise, we need to include the symbol
5996 value so that it becomes an addend for the dynamic reloc. */
5997 if (! relocate)
5998 return bfd_reloc_ok;
5999
6000 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6001 contents, rel->r_offset, value,
6002 (bfd_vma) 0);
6003 }
6004 else switch (r_type)
6005 {
6006 case R_ARM_ABS12:
6007 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6008
6009 case R_ARM_XPC25: /* Arm BLX instruction. */
6010 case R_ARM_CALL:
6011 case R_ARM_JUMP24:
6012 case R_ARM_PC24: /* Arm B/BL instruction */
6013 case R_ARM_PLT32:
6014 {
6015 bfd_vma from;
6016 bfd_signed_vma branch_offset;
6017 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6018
6019 from = (input_section->output_section->vma
6020 + input_section->output_offset
6021 + rel->r_offset);
6022 branch_offset = (bfd_signed_vma)(value - from);
6023
6024 if (r_type == R_ARM_XPC25)
6025 {
6026 /* Check for Arm calling Arm function. */
6027 /* FIXME: Should we translate the instruction into a BL
6028 instruction instead ? */
6029 if (sym_flags != STT_ARM_TFUNC)
6030 (*_bfd_error_handler)
6031 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6032 input_bfd,
6033 h ? h->root.root.string : "(local)");
6034 }
6035 else if (r_type != R_ARM_CALL)
6036 {
6037 /* Check for Arm calling Thumb function. */
6038 if (sym_flags == STT_ARM_TFUNC)
6039 {
6040 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6041 output_bfd, input_section,
6042 hit_data, sym_sec, rel->r_offset,
6043 signed_addend, value,
6044 error_message))
6045 return bfd_reloc_ok;
6046 else
6047 return bfd_reloc_dangerous;
6048 }
6049 }
6050
6051 /* Check if a stub has to be inserted because the
6052 destination is too far or we are changing mode */
6053 if (r_type == R_ARM_CALL)
6054 {
6055 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6056 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6057 || sym_flags == STT_ARM_TFUNC)
6058 {
6059 /* The target is out of reach, so redirect the
6060 branch to the local stub for this function. */
6061
6062 stub_entry = elf32_arm_get_stub_entry (input_section,
6063 sym_sec, h,
6064 rel, globals);
6065 if (stub_entry != NULL)
6066 value = (stub_entry->stub_offset
6067 + stub_entry->stub_sec->output_offset
6068 + stub_entry->stub_sec->output_section->vma);
6069 }
6070 }
6071
6072 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6073 where:
6074 S is the address of the symbol in the relocation.
6075 P is address of the instruction being relocated.
6076 A is the addend (extracted from the instruction) in bytes.
6077
6078 S is held in 'value'.
6079 P is the base address of the section containing the
6080 instruction plus the offset of the reloc into that
6081 section, ie:
6082 (input_section->output_section->vma +
6083 input_section->output_offset +
6084 rel->r_offset).
6085 A is the addend, converted into bytes, ie:
6086 (signed_addend * 4)
6087
6088 Note: None of these operations have knowledge of the pipeline
6089 size of the processor, thus it is up to the assembler to
6090 encode this information into the addend. */
6091 value -= (input_section->output_section->vma
6092 + input_section->output_offset);
6093 value -= rel->r_offset;
6094 if (globals->use_rel)
6095 value += (signed_addend << howto->size);
6096 else
6097 /* RELA addends do not have to be adjusted by howto->size. */
6098 value += signed_addend;
6099
6100 signed_addend = value;
6101 signed_addend >>= howto->rightshift;
6102
6103 /* A branch to an undefined weak symbol is turned into a jump to
6104 the next instruction. */
6105 if (h && h->root.type == bfd_link_hash_undefweak)
6106 {
6107 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6108 | 0x0affffff;
6109 }
6110 else
6111 {
6112 /* Perform a signed range check. */
6113 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6114 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6115 return bfd_reloc_overflow;
6116
6117 addend = (value & 2);
6118
6119 value = (signed_addend & howto->dst_mask)
6120 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6121
6122 /* Set the H bit in the BLX instruction. */
6123 if (sym_flags == STT_ARM_TFUNC)
6124 {
6125 if (addend)
6126 value |= (1 << 24);
6127 else
6128 value &= ~(bfd_vma)(1 << 24);
6129 }
6130 if (r_type == R_ARM_CALL)
6131 {
6132 /* Select the correct instruction (BL or BLX). */
6133 /* Only if we are not handling a BL to a stub. In this
6134 case, mode switching is performed by the stub. */
6135 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6136 value |= (1 << 28);
6137 else
6138 {
6139 value &= ~(bfd_vma)(1 << 28);
6140 value |= (1 << 24);
6141 }
6142 }
6143 }
6144 }
6145 break;
6146
6147 case R_ARM_ABS32:
6148 value += addend;
6149 if (sym_flags == STT_ARM_TFUNC)
6150 value |= 1;
6151 break;
6152
6153 case R_ARM_ABS32_NOI:
6154 value += addend;
6155 break;
6156
6157 case R_ARM_REL32:
6158 value += addend;
6159 if (sym_flags == STT_ARM_TFUNC)
6160 value |= 1;
6161 value -= (input_section->output_section->vma
6162 + input_section->output_offset + rel->r_offset);
6163 break;
6164
6165 case R_ARM_REL32_NOI:
6166 value += addend;
6167 value -= (input_section->output_section->vma
6168 + input_section->output_offset + rel->r_offset);
6169 break;
6170
6171 case R_ARM_PREL31:
6172 value -= (input_section->output_section->vma
6173 + input_section->output_offset + rel->r_offset);
6174 value += signed_addend;
6175 if (! h || h->root.type != bfd_link_hash_undefweak)
6176 {
6177 /* Check for overflow */
6178 if ((value ^ (value >> 1)) & (1 << 30))
6179 return bfd_reloc_overflow;
6180 }
6181 value &= 0x7fffffff;
6182 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6183 if (sym_flags == STT_ARM_TFUNC)
6184 value |= 1;
6185 break;
6186 }
6187
6188 bfd_put_32 (input_bfd, value, hit_data);
6189 return bfd_reloc_ok;
6190
6191 case R_ARM_ABS8:
6192 value += addend;
6193 if ((long) value > 0x7f || (long) value < -0x80)
6194 return bfd_reloc_overflow;
6195
6196 bfd_put_8 (input_bfd, value, hit_data);
6197 return bfd_reloc_ok;
6198
6199 case R_ARM_ABS16:
6200 value += addend;
6201
6202 if ((long) value > 0x7fff || (long) value < -0x8000)
6203 return bfd_reloc_overflow;
6204
6205 bfd_put_16 (input_bfd, value, hit_data);
6206 return bfd_reloc_ok;
6207
6208 case R_ARM_THM_ABS5:
6209 /* Support ldr and str instructions for the thumb. */
6210 if (globals->use_rel)
6211 {
6212 /* Need to refetch addend. */
6213 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6214 /* ??? Need to determine shift amount from operand size. */
6215 addend >>= howto->rightshift;
6216 }
6217 value += addend;
6218
6219 /* ??? Isn't value unsigned? */
6220 if ((long) value > 0x1f || (long) value < -0x10)
6221 return bfd_reloc_overflow;
6222
6223 /* ??? Value needs to be properly shifted into place first. */
6224 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6225 bfd_put_16 (input_bfd, value, hit_data);
6226 return bfd_reloc_ok;
6227
6228 case R_ARM_THM_ALU_PREL_11_0:
6229 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6230 {
6231 bfd_vma insn;
6232 bfd_signed_vma relocation;
6233
6234 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6235 | bfd_get_16 (input_bfd, hit_data + 2);
6236
6237 if (globals->use_rel)
6238 {
6239 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6240 | ((insn & (1 << 26)) >> 15);
6241 if (insn & 0xf00000)
6242 signed_addend = -signed_addend;
6243 }
6244
6245 relocation = value + signed_addend;
6246 relocation -= (input_section->output_section->vma
6247 + input_section->output_offset
6248 + rel->r_offset);
6249
6250 value = abs (relocation);
6251
6252 if (value >= 0x1000)
6253 return bfd_reloc_overflow;
6254
6255 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6256 | ((value & 0x700) << 4)
6257 | ((value & 0x800) << 15);
6258 if (relocation < 0)
6259 insn |= 0xa00000;
6260
6261 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6262 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6263
6264 return bfd_reloc_ok;
6265 }
6266
6267 case R_ARM_THM_PC12:
6268 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6269 {
6270 bfd_vma insn;
6271 bfd_signed_vma relocation;
6272
6273 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6274 | bfd_get_16 (input_bfd, hit_data + 2);
6275
6276 if (globals->use_rel)
6277 {
6278 signed_addend = insn & 0xfff;
6279 if (!(insn & (1 << 23)))
6280 signed_addend = -signed_addend;
6281 }
6282
6283 relocation = value + signed_addend;
6284 relocation -= (input_section->output_section->vma
6285 + input_section->output_offset
6286 + rel->r_offset);
6287
6288 value = abs (relocation);
6289
6290 if (value >= 0x1000)
6291 return bfd_reloc_overflow;
6292
6293 insn = (insn & 0xff7ff000) | value;
6294 if (relocation >= 0)
6295 insn |= (1 << 23);
6296
6297 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6298 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6299
6300 return bfd_reloc_ok;
6301 }
6302
6303 case R_ARM_THM_XPC22:
6304 case R_ARM_THM_CALL:
6305 case R_ARM_THM_JUMP24:
6306 /* Thumb BL (branch long instruction). */
6307 {
6308 bfd_vma relocation;
6309 bfd_vma reloc_sign;
6310 bfd_boolean overflow = FALSE;
6311 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6312 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6313 bfd_signed_vma reloc_signed_max;
6314 bfd_signed_vma reloc_signed_min;
6315 bfd_vma check;
6316 bfd_signed_vma signed_check;
6317 int bitsize;
6318 int thumb2 = using_thumb2 (globals);
6319
6320 /* A branch to an undefined weak symbol is turned into a jump to
6321 the next instruction. */
6322 if (h && h->root.type == bfd_link_hash_undefweak)
6323 {
6324 bfd_put_16 (input_bfd, 0xe000, hit_data);
6325 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6326 return bfd_reloc_ok;
6327 }
6328
6329 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6330 with Thumb-1) involving the J1 and J2 bits. */
6331 if (globals->use_rel)
6332 {
6333 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6334 bfd_vma upper = upper_insn & 0x3ff;
6335 bfd_vma lower = lower_insn & 0x7ff;
6336 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6337 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6338 bfd_vma i1 = j1 ^ s ? 0 : 1;
6339 bfd_vma i2 = j2 ^ s ? 0 : 1;
6340
6341 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6342 /* Sign extend. */
6343 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6344
6345 signed_addend = addend;
6346 }
6347
6348 if (r_type == R_ARM_THM_XPC22)
6349 {
6350 /* Check for Thumb to Thumb call. */
6351 /* FIXME: Should we translate the instruction into a BL
6352 instruction instead ? */
6353 if (sym_flags == STT_ARM_TFUNC)
6354 (*_bfd_error_handler)
6355 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6356 input_bfd,
6357 h ? h->root.root.string : "(local)");
6358 }
6359 else
6360 {
6361 /* If it is not a call to Thumb, assume call to Arm.
6362 If it is a call relative to a section name, then it is not a
6363 function call at all, but rather a long jump. Calls through
6364 the PLT do not require stubs. */
6365 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6366 && (h == NULL || splt == NULL
6367 || h->plt.offset == (bfd_vma) -1))
6368 {
6369 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6370 {
6371 /* Convert BL to BLX. */
6372 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6373 }
6374 else if (r_type != R_ARM_THM_CALL) {
6375 if (elf32_thumb_to_arm_stub
6376 (info, sym_name, input_bfd, output_bfd, input_section,
6377 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6378 error_message))
6379 return bfd_reloc_ok;
6380 else
6381 return bfd_reloc_dangerous;
6382 }
6383 }
6384 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6385 && r_type == R_ARM_THM_CALL)
6386 {
6387 /* Make sure this is a BL. */
6388 lower_insn |= 0x1800;
6389 }
6390 }
6391
6392 /* Handle calls via the PLT. */
6393 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6394 {
6395 value = (splt->output_section->vma
6396 + splt->output_offset
6397 + h->plt.offset);
6398 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6399 {
6400 /* If the Thumb BLX instruction is available, convert the
6401 BL to a BLX instruction to call the ARM-mode PLT entry. */
6402 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6403 }
6404 else
6405 /* Target the Thumb stub before the ARM PLT entry. */
6406 value -= PLT_THUMB_STUB_SIZE;
6407 *unresolved_reloc_p = FALSE;
6408 }
6409
6410 if (r_type == R_ARM_THM_CALL)
6411 {
6412 /* Check if a stub has to be inserted because the destination
6413 is too far. */
6414 bfd_vma from;
6415 bfd_signed_vma branch_offset;
6416 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6417
6418 from = (input_section->output_section->vma
6419 + input_section->output_offset
6420 + rel->r_offset);
6421 branch_offset = (bfd_signed_vma)(value - from);
6422
6423 if ((!thumb2
6424 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6425 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6426 ||
6427 (thumb2
6428 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6429 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET))))
6430 {
6431 /* The target is out of reach or we are changing modes, so
6432 redirect the branch to the local stub for this
6433 function. */
6434 stub_entry = elf32_arm_get_stub_entry (input_section,
6435 sym_sec, h,
6436 rel, globals);
6437 if (stub_entry != NULL)
6438 value = (stub_entry->stub_offset
6439 + stub_entry->stub_sec->output_offset
6440 + stub_entry->stub_sec->output_section->vma);
6441
6442 /* This call becomes a call to Arm for sure. Force BLX. */
6443 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6444 }
6445 }
6446
6447 relocation = value + signed_addend;
6448
6449 relocation -= (input_section->output_section->vma
6450 + input_section->output_offset
6451 + rel->r_offset);
6452
6453 check = relocation >> howto->rightshift;
6454
6455 /* If this is a signed value, the rightshift just dropped
6456 leading 1 bits (assuming twos complement). */
6457 if ((bfd_signed_vma) relocation >= 0)
6458 signed_check = check;
6459 else
6460 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6461
6462 /* Calculate the permissable maximum and minimum values for
6463 this relocation according to whether we're relocating for
6464 Thumb-2 or not. */
6465 bitsize = howto->bitsize;
6466 if (!thumb2)
6467 bitsize -= 2;
6468 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6469 reloc_signed_min = ~reloc_signed_max;
6470
6471 /* Assumes two's complement. */
6472 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6473 overflow = TRUE;
6474
6475 if ((lower_insn & 0x5000) == 0x4000)
6476 /* For a BLX instruction, make sure that the relocation is rounded up
6477 to a word boundary. This follows the semantics of the instruction
6478 which specifies that bit 1 of the target address will come from bit
6479 1 of the base address. */
6480 relocation = (relocation + 2) & ~ 3;
6481
6482 /* Put RELOCATION back into the insn. Assumes two's complement.
6483 We use the Thumb-2 encoding, which is safe even if dealing with
6484 a Thumb-1 instruction by virtue of our overflow check above. */
6485 reloc_sign = (signed_check < 0) ? 1 : 0;
6486 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6487 | ((relocation >> 12) & 0x3ff)
6488 | (reloc_sign << 10);
6489 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6490 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6491 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6492 | ((relocation >> 1) & 0x7ff);
6493
6494 /* Put the relocated value back in the object file: */
6495 bfd_put_16 (input_bfd, upper_insn, hit_data);
6496 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6497
6498 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6499 }
6500 break;
6501
6502 case R_ARM_THM_JUMP19:
6503 /* Thumb32 conditional branch instruction. */
6504 {
6505 bfd_vma relocation;
6506 bfd_boolean overflow = FALSE;
6507 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6508 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6509 bfd_signed_vma reloc_signed_max = 0xffffe;
6510 bfd_signed_vma reloc_signed_min = -0x100000;
6511 bfd_signed_vma signed_check;
6512
6513 /* Need to refetch the addend, reconstruct the top three bits,
6514 and squish the two 11 bit pieces together. */
6515 if (globals->use_rel)
6516 {
6517 bfd_vma S = (upper_insn & 0x0400) >> 10;
6518 bfd_vma upper = (upper_insn & 0x003f);
6519 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6520 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6521 bfd_vma lower = (lower_insn & 0x07ff);
6522
6523 upper |= J1 << 6;
6524 upper |= J2 << 7;
6525 upper |= (!S) << 8;
6526 upper -= 0x0100; /* Sign extend. */
6527
6528 addend = (upper << 12) | (lower << 1);
6529 signed_addend = addend;
6530 }
6531
6532 /* Handle calls via the PLT. */
6533 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6534 {
6535 value = (splt->output_section->vma
6536 + splt->output_offset
6537 + h->plt.offset);
6538 /* Target the Thumb stub before the ARM PLT entry. */
6539 value -= PLT_THUMB_STUB_SIZE;
6540 *unresolved_reloc_p = FALSE;
6541 }
6542
6543 /* ??? Should handle interworking? GCC might someday try to
6544 use this for tail calls. */
6545
6546 relocation = value + signed_addend;
6547 relocation -= (input_section->output_section->vma
6548 + input_section->output_offset
6549 + rel->r_offset);
6550 signed_check = (bfd_signed_vma) relocation;
6551
6552 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6553 overflow = TRUE;
6554
6555 /* Put RELOCATION back into the insn. */
6556 {
6557 bfd_vma S = (relocation & 0x00100000) >> 20;
6558 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6559 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6560 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6561 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6562
6563 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6564 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6565 }
6566
6567 /* Put the relocated value back in the object file: */
6568 bfd_put_16 (input_bfd, upper_insn, hit_data);
6569 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6570
6571 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6572 }
6573
6574 case R_ARM_THM_JUMP11:
6575 case R_ARM_THM_JUMP8:
6576 case R_ARM_THM_JUMP6:
6577 /* Thumb B (branch) instruction). */
6578 {
6579 bfd_signed_vma relocation;
6580 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6581 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6582 bfd_signed_vma signed_check;
6583
6584 /* CZB cannot jump backward. */
6585 if (r_type == R_ARM_THM_JUMP6)
6586 reloc_signed_min = 0;
6587
6588 if (globals->use_rel)
6589 {
6590 /* Need to refetch addend. */
6591 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6592 if (addend & ((howto->src_mask + 1) >> 1))
6593 {
6594 signed_addend = -1;
6595 signed_addend &= ~ howto->src_mask;
6596 signed_addend |= addend;
6597 }
6598 else
6599 signed_addend = addend;
6600 /* The value in the insn has been right shifted. We need to
6601 undo this, so that we can perform the address calculation
6602 in terms of bytes. */
6603 signed_addend <<= howto->rightshift;
6604 }
6605 relocation = value + signed_addend;
6606
6607 relocation -= (input_section->output_section->vma
6608 + input_section->output_offset
6609 + rel->r_offset);
6610
6611 relocation >>= howto->rightshift;
6612 signed_check = relocation;
6613
6614 if (r_type == R_ARM_THM_JUMP6)
6615 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6616 else
6617 relocation &= howto->dst_mask;
6618 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6619
6620 bfd_put_16 (input_bfd, relocation, hit_data);
6621
6622 /* Assumes two's complement. */
6623 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6624 return bfd_reloc_overflow;
6625
6626 return bfd_reloc_ok;
6627 }
6628
6629 case R_ARM_ALU_PCREL7_0:
6630 case R_ARM_ALU_PCREL15_8:
6631 case R_ARM_ALU_PCREL23_15:
6632 {
6633 bfd_vma insn;
6634 bfd_vma relocation;
6635
6636 insn = bfd_get_32 (input_bfd, hit_data);
6637 if (globals->use_rel)
6638 {
6639 /* Extract the addend. */
6640 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6641 signed_addend = addend;
6642 }
6643 relocation = value + signed_addend;
6644
6645 relocation -= (input_section->output_section->vma
6646 + input_section->output_offset
6647 + rel->r_offset);
6648 insn = (insn & ~0xfff)
6649 | ((howto->bitpos << 7) & 0xf00)
6650 | ((relocation >> howto->bitpos) & 0xff);
6651 bfd_put_32 (input_bfd, value, hit_data);
6652 }
6653 return bfd_reloc_ok;
6654
6655 case R_ARM_GNU_VTINHERIT:
6656 case R_ARM_GNU_VTENTRY:
6657 return bfd_reloc_ok;
6658
6659 case R_ARM_GOTOFF32:
6660 /* Relocation is relative to the start of the
6661 global offset table. */
6662
6663 BFD_ASSERT (sgot != NULL);
6664 if (sgot == NULL)
6665 return bfd_reloc_notsupported;
6666
6667 /* If we are addressing a Thumb function, we need to adjust the
6668 address by one, so that attempts to call the function pointer will
6669 correctly interpret it as Thumb code. */
6670 if (sym_flags == STT_ARM_TFUNC)
6671 value += 1;
6672
6673 /* Note that sgot->output_offset is not involved in this
6674 calculation. We always want the start of .got. If we
6675 define _GLOBAL_OFFSET_TABLE in a different way, as is
6676 permitted by the ABI, we might have to change this
6677 calculation. */
6678 value -= sgot->output_section->vma;
6679 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6680 contents, rel->r_offset, value,
6681 rel->r_addend);
6682
6683 case R_ARM_GOTPC:
6684 /* Use global offset table as symbol value. */
6685 BFD_ASSERT (sgot != NULL);
6686
6687 if (sgot == NULL)
6688 return bfd_reloc_notsupported;
6689
6690 *unresolved_reloc_p = FALSE;
6691 value = sgot->output_section->vma;
6692 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6693 contents, rel->r_offset, value,
6694 rel->r_addend);
6695
6696 case R_ARM_GOT32:
6697 case R_ARM_GOT_PREL:
6698 /* Relocation is to the entry for this symbol in the
6699 global offset table. */
6700 if (sgot == NULL)
6701 return bfd_reloc_notsupported;
6702
6703 if (h != NULL)
6704 {
6705 bfd_vma off;
6706 bfd_boolean dyn;
6707
6708 off = h->got.offset;
6709 BFD_ASSERT (off != (bfd_vma) -1);
6710 dyn = globals->root.dynamic_sections_created;
6711
6712 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6713 || (info->shared
6714 && SYMBOL_REFERENCES_LOCAL (info, h))
6715 || (ELF_ST_VISIBILITY (h->other)
6716 && h->root.type == bfd_link_hash_undefweak))
6717 {
6718 /* This is actually a static link, or it is a -Bsymbolic link
6719 and the symbol is defined locally. We must initialize this
6720 entry in the global offset table. Since the offset must
6721 always be a multiple of 4, we use the least significant bit
6722 to record whether we have initialized it already.
6723
6724 When doing a dynamic link, we create a .rel(a).got relocation
6725 entry to initialize the value. This is done in the
6726 finish_dynamic_symbol routine. */
6727 if ((off & 1) != 0)
6728 off &= ~1;
6729 else
6730 {
6731 /* If we are addressing a Thumb function, we need to
6732 adjust the address by one, so that attempts to
6733 call the function pointer will correctly
6734 interpret it as Thumb code. */
6735 if (sym_flags == STT_ARM_TFUNC)
6736 value |= 1;
6737
6738 bfd_put_32 (output_bfd, value, sgot->contents + off);
6739 h->got.offset |= 1;
6740 }
6741 }
6742 else
6743 *unresolved_reloc_p = FALSE;
6744
6745 value = sgot->output_offset + off;
6746 }
6747 else
6748 {
6749 bfd_vma off;
6750
6751 BFD_ASSERT (local_got_offsets != NULL &&
6752 local_got_offsets[r_symndx] != (bfd_vma) -1);
6753
6754 off = local_got_offsets[r_symndx];
6755
6756 /* The offset must always be a multiple of 4. We use the
6757 least significant bit to record whether we have already
6758 generated the necessary reloc. */
6759 if ((off & 1) != 0)
6760 off &= ~1;
6761 else
6762 {
6763 /* If we are addressing a Thumb function, we need to
6764 adjust the address by one, so that attempts to
6765 call the function pointer will correctly
6766 interpret it as Thumb code. */
6767 if (sym_flags == STT_ARM_TFUNC)
6768 value |= 1;
6769
6770 if (globals->use_rel)
6771 bfd_put_32 (output_bfd, value, sgot->contents + off);
6772
6773 if (info->shared)
6774 {
6775 asection * srelgot;
6776 Elf_Internal_Rela outrel;
6777 bfd_byte *loc;
6778
6779 srelgot = (bfd_get_section_by_name
6780 (dynobj, RELOC_SECTION (globals, ".got")));
6781 BFD_ASSERT (srelgot != NULL);
6782
6783 outrel.r_addend = addend + value;
6784 outrel.r_offset = (sgot->output_section->vma
6785 + sgot->output_offset
6786 + off);
6787 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6788 loc = srelgot->contents;
6789 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6790 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6791 }
6792
6793 local_got_offsets[r_symndx] |= 1;
6794 }
6795
6796 value = sgot->output_offset + off;
6797 }
6798 if (r_type != R_ARM_GOT32)
6799 value += sgot->output_section->vma;
6800
6801 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6802 contents, rel->r_offset, value,
6803 rel->r_addend);
6804
6805 case R_ARM_TLS_LDO32:
6806 value = value - dtpoff_base (info);
6807
6808 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6809 contents, rel->r_offset, value,
6810 rel->r_addend);
6811
6812 case R_ARM_TLS_LDM32:
6813 {
6814 bfd_vma off;
6815
6816 if (globals->sgot == NULL)
6817 abort ();
6818
6819 off = globals->tls_ldm_got.offset;
6820
6821 if ((off & 1) != 0)
6822 off &= ~1;
6823 else
6824 {
6825 /* If we don't know the module number, create a relocation
6826 for it. */
6827 if (info->shared)
6828 {
6829 Elf_Internal_Rela outrel;
6830 bfd_byte *loc;
6831
6832 if (globals->srelgot == NULL)
6833 abort ();
6834
6835 outrel.r_addend = 0;
6836 outrel.r_offset = (globals->sgot->output_section->vma
6837 + globals->sgot->output_offset + off);
6838 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6839
6840 if (globals->use_rel)
6841 bfd_put_32 (output_bfd, outrel.r_addend,
6842 globals->sgot->contents + off);
6843
6844 loc = globals->srelgot->contents;
6845 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6846 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6847 }
6848 else
6849 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6850
6851 globals->tls_ldm_got.offset |= 1;
6852 }
6853
6854 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6855 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6856
6857 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6858 contents, rel->r_offset, value,
6859 rel->r_addend);
6860 }
6861
6862 case R_ARM_TLS_GD32:
6863 case R_ARM_TLS_IE32:
6864 {
6865 bfd_vma off;
6866 int indx;
6867 char tls_type;
6868
6869 if (globals->sgot == NULL)
6870 abort ();
6871
6872 indx = 0;
6873 if (h != NULL)
6874 {
6875 bfd_boolean dyn;
6876 dyn = globals->root.dynamic_sections_created;
6877 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6878 && (!info->shared
6879 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6880 {
6881 *unresolved_reloc_p = FALSE;
6882 indx = h->dynindx;
6883 }
6884 off = h->got.offset;
6885 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6886 }
6887 else
6888 {
6889 if (local_got_offsets == NULL)
6890 abort ();
6891 off = local_got_offsets[r_symndx];
6892 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6893 }
6894
6895 if (tls_type == GOT_UNKNOWN)
6896 abort ();
6897
6898 if ((off & 1) != 0)
6899 off &= ~1;
6900 else
6901 {
6902 bfd_boolean need_relocs = FALSE;
6903 Elf_Internal_Rela outrel;
6904 bfd_byte *loc = NULL;
6905 int cur_off = off;
6906
6907 /* The GOT entries have not been initialized yet. Do it
6908 now, and emit any relocations. If both an IE GOT and a
6909 GD GOT are necessary, we emit the GD first. */
6910
6911 if ((info->shared || indx != 0)
6912 && (h == NULL
6913 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6914 || h->root.type != bfd_link_hash_undefweak))
6915 {
6916 need_relocs = TRUE;
6917 if (globals->srelgot == NULL)
6918 abort ();
6919 loc = globals->srelgot->contents;
6920 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6921 }
6922
6923 if (tls_type & GOT_TLS_GD)
6924 {
6925 if (need_relocs)
6926 {
6927 outrel.r_addend = 0;
6928 outrel.r_offset = (globals->sgot->output_section->vma
6929 + globals->sgot->output_offset
6930 + cur_off);
6931 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
6932
6933 if (globals->use_rel)
6934 bfd_put_32 (output_bfd, outrel.r_addend,
6935 globals->sgot->contents + cur_off);
6936
6937 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6938 globals->srelgot->reloc_count++;
6939 loc += RELOC_SIZE (globals);
6940
6941 if (indx == 0)
6942 bfd_put_32 (output_bfd, value - dtpoff_base (info),
6943 globals->sgot->contents + cur_off + 4);
6944 else
6945 {
6946 outrel.r_addend = 0;
6947 outrel.r_info = ELF32_R_INFO (indx,
6948 R_ARM_TLS_DTPOFF32);
6949 outrel.r_offset += 4;
6950
6951 if (globals->use_rel)
6952 bfd_put_32 (output_bfd, outrel.r_addend,
6953 globals->sgot->contents + cur_off + 4);
6954
6955
6956 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6957 globals->srelgot->reloc_count++;
6958 loc += RELOC_SIZE (globals);
6959 }
6960 }
6961 else
6962 {
6963 /* If we are not emitting relocations for a
6964 general dynamic reference, then we must be in a
6965 static link or an executable link with the
6966 symbol binding locally. Mark it as belonging
6967 to module 1, the executable. */
6968 bfd_put_32 (output_bfd, 1,
6969 globals->sgot->contents + cur_off);
6970 bfd_put_32 (output_bfd, value - dtpoff_base (info),
6971 globals->sgot->contents + cur_off + 4);
6972 }
6973
6974 cur_off += 8;
6975 }
6976
6977 if (tls_type & GOT_TLS_IE)
6978 {
6979 if (need_relocs)
6980 {
6981 if (indx == 0)
6982 outrel.r_addend = value - dtpoff_base (info);
6983 else
6984 outrel.r_addend = 0;
6985 outrel.r_offset = (globals->sgot->output_section->vma
6986 + globals->sgot->output_offset
6987 + cur_off);
6988 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
6989
6990 if (globals->use_rel)
6991 bfd_put_32 (output_bfd, outrel.r_addend,
6992 globals->sgot->contents + cur_off);
6993
6994 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6995 globals->srelgot->reloc_count++;
6996 loc += RELOC_SIZE (globals);
6997 }
6998 else
6999 bfd_put_32 (output_bfd, tpoff (info, value),
7000 globals->sgot->contents + cur_off);
7001 cur_off += 4;
7002 }
7003
7004 if (h != NULL)
7005 h->got.offset |= 1;
7006 else
7007 local_got_offsets[r_symndx] |= 1;
7008 }
7009
7010 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7011 off += 8;
7012 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7013 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7014
7015 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7016 contents, rel->r_offset, value,
7017 rel->r_addend);
7018 }
7019
7020 case R_ARM_TLS_LE32:
7021 if (info->shared)
7022 {
7023 (*_bfd_error_handler)
7024 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7025 input_bfd, input_section,
7026 (long) rel->r_offset, howto->name);
7027 return FALSE;
7028 }
7029 else
7030 value = tpoff (info, value);
7031
7032 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7033 contents, rel->r_offset, value,
7034 rel->r_addend);
7035
7036 case R_ARM_V4BX:
7037 if (globals->fix_v4bx)
7038 {
7039 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7040
7041 /* Ensure that we have a BX instruction. */
7042 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7043
7044 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7045 {
7046 /* Branch to veneer. */
7047 bfd_vma glue_addr;
7048 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7049 glue_addr -= input_section->output_section->vma
7050 + input_section->output_offset
7051 + rel->r_offset + 8;
7052 insn = (insn & 0xf0000000) | 0x0a000000
7053 | ((glue_addr >> 2) & 0x00ffffff);
7054 }
7055 else
7056 {
7057 /* Preserve Rm (lowest four bits) and the condition code
7058 (highest four bits). Other bits encode MOV PC,Rm. */
7059 insn = (insn & 0xf000000f) | 0x01a0f000;
7060 }
7061
7062 bfd_put_32 (input_bfd, insn, hit_data);
7063 }
7064 return bfd_reloc_ok;
7065
7066 case R_ARM_MOVW_ABS_NC:
7067 case R_ARM_MOVT_ABS:
7068 case R_ARM_MOVW_PREL_NC:
7069 case R_ARM_MOVT_PREL:
7070 /* Until we properly support segment-base-relative addressing then
7071 we assume the segment base to be zero, as for the group relocations.
7072 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7073 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7074 case R_ARM_MOVW_BREL_NC:
7075 case R_ARM_MOVW_BREL:
7076 case R_ARM_MOVT_BREL:
7077 {
7078 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7079
7080 if (globals->use_rel)
7081 {
7082 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7083 signed_addend = (addend ^ 0x8000) - 0x8000;
7084 }
7085
7086 value += signed_addend;
7087
7088 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7089 value -= (input_section->output_section->vma
7090 + input_section->output_offset + rel->r_offset);
7091
7092 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7093 return bfd_reloc_overflow;
7094
7095 if (sym_flags == STT_ARM_TFUNC)
7096 value |= 1;
7097
7098 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7099 || r_type == R_ARM_MOVT_BREL)
7100 value >>= 16;
7101
7102 insn &= 0xfff0f000;
7103 insn |= value & 0xfff;
7104 insn |= (value & 0xf000) << 4;
7105 bfd_put_32 (input_bfd, insn, hit_data);
7106 }
7107 return bfd_reloc_ok;
7108
7109 case R_ARM_THM_MOVW_ABS_NC:
7110 case R_ARM_THM_MOVT_ABS:
7111 case R_ARM_THM_MOVW_PREL_NC:
7112 case R_ARM_THM_MOVT_PREL:
7113 /* Until we properly support segment-base-relative addressing then
7114 we assume the segment base to be zero, as for the above relocations.
7115 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7116 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7117 as R_ARM_THM_MOVT_ABS. */
7118 case R_ARM_THM_MOVW_BREL_NC:
7119 case R_ARM_THM_MOVW_BREL:
7120 case R_ARM_THM_MOVT_BREL:
7121 {
7122 bfd_vma insn;
7123
7124 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7125 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7126
7127 if (globals->use_rel)
7128 {
7129 addend = ((insn >> 4) & 0xf000)
7130 | ((insn >> 15) & 0x0800)
7131 | ((insn >> 4) & 0x0700)
7132 | (insn & 0x00ff);
7133 signed_addend = (addend ^ 0x8000) - 0x8000;
7134 }
7135
7136 value += signed_addend;
7137
7138 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7139 value -= (input_section->output_section->vma
7140 + input_section->output_offset + rel->r_offset);
7141
7142 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7143 return bfd_reloc_overflow;
7144
7145 if (sym_flags == STT_ARM_TFUNC)
7146 value |= 1;
7147
7148 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7149 || r_type == R_ARM_THM_MOVT_BREL)
7150 value >>= 16;
7151
7152 insn &= 0xfbf08f00;
7153 insn |= (value & 0xf000) << 4;
7154 insn |= (value & 0x0800) << 15;
7155 insn |= (value & 0x0700) << 4;
7156 insn |= (value & 0x00ff);
7157
7158 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7159 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7160 }
7161 return bfd_reloc_ok;
7162
7163 case R_ARM_ALU_PC_G0_NC:
7164 case R_ARM_ALU_PC_G1_NC:
7165 case R_ARM_ALU_PC_G0:
7166 case R_ARM_ALU_PC_G1:
7167 case R_ARM_ALU_PC_G2:
7168 case R_ARM_ALU_SB_G0_NC:
7169 case R_ARM_ALU_SB_G1_NC:
7170 case R_ARM_ALU_SB_G0:
7171 case R_ARM_ALU_SB_G1:
7172 case R_ARM_ALU_SB_G2:
7173 {
7174 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7175 bfd_vma pc = input_section->output_section->vma
7176 + input_section->output_offset + rel->r_offset;
7177 /* sb should be the origin of the *segment* containing the symbol.
7178 It is not clear how to obtain this OS-dependent value, so we
7179 make an arbitrary choice of zero. */
7180 bfd_vma sb = 0;
7181 bfd_vma residual;
7182 bfd_vma g_n;
7183 bfd_signed_vma signed_value;
7184 int group = 0;
7185
7186 /* Determine which group of bits to select. */
7187 switch (r_type)
7188 {
7189 case R_ARM_ALU_PC_G0_NC:
7190 case R_ARM_ALU_PC_G0:
7191 case R_ARM_ALU_SB_G0_NC:
7192 case R_ARM_ALU_SB_G0:
7193 group = 0;
7194 break;
7195
7196 case R_ARM_ALU_PC_G1_NC:
7197 case R_ARM_ALU_PC_G1:
7198 case R_ARM_ALU_SB_G1_NC:
7199 case R_ARM_ALU_SB_G1:
7200 group = 1;
7201 break;
7202
7203 case R_ARM_ALU_PC_G2:
7204 case R_ARM_ALU_SB_G2:
7205 group = 2;
7206 break;
7207
7208 default:
7209 abort ();
7210 }
7211
7212 /* If REL, extract the addend from the insn. If RELA, it will
7213 have already been fetched for us. */
7214 if (globals->use_rel)
7215 {
7216 int negative;
7217 bfd_vma constant = insn & 0xff;
7218 bfd_vma rotation = (insn & 0xf00) >> 8;
7219
7220 if (rotation == 0)
7221 signed_addend = constant;
7222 else
7223 {
7224 /* Compensate for the fact that in the instruction, the
7225 rotation is stored in multiples of 2 bits. */
7226 rotation *= 2;
7227
7228 /* Rotate "constant" right by "rotation" bits. */
7229 signed_addend = (constant >> rotation) |
7230 (constant << (8 * sizeof (bfd_vma) - rotation));
7231 }
7232
7233 /* Determine if the instruction is an ADD or a SUB.
7234 (For REL, this determines the sign of the addend.) */
7235 negative = identify_add_or_sub (insn);
7236 if (negative == 0)
7237 {
7238 (*_bfd_error_handler)
7239 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7240 input_bfd, input_section,
7241 (long) rel->r_offset, howto->name);
7242 return bfd_reloc_overflow;
7243 }
7244
7245 signed_addend *= negative;
7246 }
7247
7248 /* Compute the value (X) to go in the place. */
7249 if (r_type == R_ARM_ALU_PC_G0_NC
7250 || r_type == R_ARM_ALU_PC_G1_NC
7251 || r_type == R_ARM_ALU_PC_G0
7252 || r_type == R_ARM_ALU_PC_G1
7253 || r_type == R_ARM_ALU_PC_G2)
7254 /* PC relative. */
7255 signed_value = value - pc + signed_addend;
7256 else
7257 /* Section base relative. */
7258 signed_value = value - sb + signed_addend;
7259
7260 /* If the target symbol is a Thumb function, then set the
7261 Thumb bit in the address. */
7262 if (sym_flags == STT_ARM_TFUNC)
7263 signed_value |= 1;
7264
7265 /* Calculate the value of the relevant G_n, in encoded
7266 constant-with-rotation format. */
7267 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7268 &residual);
7269
7270 /* Check for overflow if required. */
7271 if ((r_type == R_ARM_ALU_PC_G0
7272 || r_type == R_ARM_ALU_PC_G1
7273 || r_type == R_ARM_ALU_PC_G2
7274 || r_type == R_ARM_ALU_SB_G0
7275 || r_type == R_ARM_ALU_SB_G1
7276 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7277 {
7278 (*_bfd_error_handler)
7279 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7280 input_bfd, input_section,
7281 (long) rel->r_offset, abs (signed_value), howto->name);
7282 return bfd_reloc_overflow;
7283 }
7284
7285 /* Mask out the value and the ADD/SUB part of the opcode; take care
7286 not to destroy the S bit. */
7287 insn &= 0xff1ff000;
7288
7289 /* Set the opcode according to whether the value to go in the
7290 place is negative. */
7291 if (signed_value < 0)
7292 insn |= 1 << 22;
7293 else
7294 insn |= 1 << 23;
7295
7296 /* Encode the offset. */
7297 insn |= g_n;
7298
7299 bfd_put_32 (input_bfd, insn, hit_data);
7300 }
7301 return bfd_reloc_ok;
7302
7303 case R_ARM_LDR_PC_G0:
7304 case R_ARM_LDR_PC_G1:
7305 case R_ARM_LDR_PC_G2:
7306 case R_ARM_LDR_SB_G0:
7307 case R_ARM_LDR_SB_G1:
7308 case R_ARM_LDR_SB_G2:
7309 {
7310 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7311 bfd_vma pc = input_section->output_section->vma
7312 + input_section->output_offset + rel->r_offset;
7313 bfd_vma sb = 0; /* See note above. */
7314 bfd_vma residual;
7315 bfd_signed_vma signed_value;
7316 int group = 0;
7317
7318 /* Determine which groups of bits to calculate. */
7319 switch (r_type)
7320 {
7321 case R_ARM_LDR_PC_G0:
7322 case R_ARM_LDR_SB_G0:
7323 group = 0;
7324 break;
7325
7326 case R_ARM_LDR_PC_G1:
7327 case R_ARM_LDR_SB_G1:
7328 group = 1;
7329 break;
7330
7331 case R_ARM_LDR_PC_G2:
7332 case R_ARM_LDR_SB_G2:
7333 group = 2;
7334 break;
7335
7336 default:
7337 abort ();
7338 }
7339
7340 /* If REL, extract the addend from the insn. If RELA, it will
7341 have already been fetched for us. */
7342 if (globals->use_rel)
7343 {
7344 int negative = (insn & (1 << 23)) ? 1 : -1;
7345 signed_addend = negative * (insn & 0xfff);
7346 }
7347
7348 /* Compute the value (X) to go in the place. */
7349 if (r_type == R_ARM_LDR_PC_G0
7350 || r_type == R_ARM_LDR_PC_G1
7351 || r_type == R_ARM_LDR_PC_G2)
7352 /* PC relative. */
7353 signed_value = value - pc + signed_addend;
7354 else
7355 /* Section base relative. */
7356 signed_value = value - sb + signed_addend;
7357
7358 /* Calculate the value of the relevant G_{n-1} to obtain
7359 the residual at that stage. */
7360 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7361
7362 /* Check for overflow. */
7363 if (residual >= 0x1000)
7364 {
7365 (*_bfd_error_handler)
7366 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7367 input_bfd, input_section,
7368 (long) rel->r_offset, abs (signed_value), howto->name);
7369 return bfd_reloc_overflow;
7370 }
7371
7372 /* Mask out the value and U bit. */
7373 insn &= 0xff7ff000;
7374
7375 /* Set the U bit if the value to go in the place is non-negative. */
7376 if (signed_value >= 0)
7377 insn |= 1 << 23;
7378
7379 /* Encode the offset. */
7380 insn |= residual;
7381
7382 bfd_put_32 (input_bfd, insn, hit_data);
7383 }
7384 return bfd_reloc_ok;
7385
7386 case R_ARM_LDRS_PC_G0:
7387 case R_ARM_LDRS_PC_G1:
7388 case R_ARM_LDRS_PC_G2:
7389 case R_ARM_LDRS_SB_G0:
7390 case R_ARM_LDRS_SB_G1:
7391 case R_ARM_LDRS_SB_G2:
7392 {
7393 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7394 bfd_vma pc = input_section->output_section->vma
7395 + input_section->output_offset + rel->r_offset;
7396 bfd_vma sb = 0; /* See note above. */
7397 bfd_vma residual;
7398 bfd_signed_vma signed_value;
7399 int group = 0;
7400
7401 /* Determine which groups of bits to calculate. */
7402 switch (r_type)
7403 {
7404 case R_ARM_LDRS_PC_G0:
7405 case R_ARM_LDRS_SB_G0:
7406 group = 0;
7407 break;
7408
7409 case R_ARM_LDRS_PC_G1:
7410 case R_ARM_LDRS_SB_G1:
7411 group = 1;
7412 break;
7413
7414 case R_ARM_LDRS_PC_G2:
7415 case R_ARM_LDRS_SB_G2:
7416 group = 2;
7417 break;
7418
7419 default:
7420 abort ();
7421 }
7422
7423 /* If REL, extract the addend from the insn. If RELA, it will
7424 have already been fetched for us. */
7425 if (globals->use_rel)
7426 {
7427 int negative = (insn & (1 << 23)) ? 1 : -1;
7428 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7429 }
7430
7431 /* Compute the value (X) to go in the place. */
7432 if (r_type == R_ARM_LDRS_PC_G0
7433 || r_type == R_ARM_LDRS_PC_G1
7434 || r_type == R_ARM_LDRS_PC_G2)
7435 /* PC relative. */
7436 signed_value = value - pc + signed_addend;
7437 else
7438 /* Section base relative. */
7439 signed_value = value - sb + signed_addend;
7440
7441 /* Calculate the value of the relevant G_{n-1} to obtain
7442 the residual at that stage. */
7443 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7444
7445 /* Check for overflow. */
7446 if (residual >= 0x100)
7447 {
7448 (*_bfd_error_handler)
7449 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7450 input_bfd, input_section,
7451 (long) rel->r_offset, abs (signed_value), howto->name);
7452 return bfd_reloc_overflow;
7453 }
7454
7455 /* Mask out the value and U bit. */
7456 insn &= 0xff7ff0f0;
7457
7458 /* Set the U bit if the value to go in the place is non-negative. */
7459 if (signed_value >= 0)
7460 insn |= 1 << 23;
7461
7462 /* Encode the offset. */
7463 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7464
7465 bfd_put_32 (input_bfd, insn, hit_data);
7466 }
7467 return bfd_reloc_ok;
7468
7469 case R_ARM_LDC_PC_G0:
7470 case R_ARM_LDC_PC_G1:
7471 case R_ARM_LDC_PC_G2:
7472 case R_ARM_LDC_SB_G0:
7473 case R_ARM_LDC_SB_G1:
7474 case R_ARM_LDC_SB_G2:
7475 {
7476 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7477 bfd_vma pc = input_section->output_section->vma
7478 + input_section->output_offset + rel->r_offset;
7479 bfd_vma sb = 0; /* See note above. */
7480 bfd_vma residual;
7481 bfd_signed_vma signed_value;
7482 int group = 0;
7483
7484 /* Determine which groups of bits to calculate. */
7485 switch (r_type)
7486 {
7487 case R_ARM_LDC_PC_G0:
7488 case R_ARM_LDC_SB_G0:
7489 group = 0;
7490 break;
7491
7492 case R_ARM_LDC_PC_G1:
7493 case R_ARM_LDC_SB_G1:
7494 group = 1;
7495 break;
7496
7497 case R_ARM_LDC_PC_G2:
7498 case R_ARM_LDC_SB_G2:
7499 group = 2;
7500 break;
7501
7502 default:
7503 abort ();
7504 }
7505
7506 /* If REL, extract the addend from the insn. If RELA, it will
7507 have already been fetched for us. */
7508 if (globals->use_rel)
7509 {
7510 int negative = (insn & (1 << 23)) ? 1 : -1;
7511 signed_addend = negative * ((insn & 0xff) << 2);
7512 }
7513
7514 /* Compute the value (X) to go in the place. */
7515 if (r_type == R_ARM_LDC_PC_G0
7516 || r_type == R_ARM_LDC_PC_G1
7517 || r_type == R_ARM_LDC_PC_G2)
7518 /* PC relative. */
7519 signed_value = value - pc + signed_addend;
7520 else
7521 /* Section base relative. */
7522 signed_value = value - sb + signed_addend;
7523
7524 /* Calculate the value of the relevant G_{n-1} to obtain
7525 the residual at that stage. */
7526 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7527
7528 /* Check for overflow. (The absolute value to go in the place must be
7529 divisible by four and, after having been divided by four, must
7530 fit in eight bits.) */
7531 if ((residual & 0x3) != 0 || residual >= 0x400)
7532 {
7533 (*_bfd_error_handler)
7534 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7535 input_bfd, input_section,
7536 (long) rel->r_offset, abs (signed_value), howto->name);
7537 return bfd_reloc_overflow;
7538 }
7539
7540 /* Mask out the value and U bit. */
7541 insn &= 0xff7fff00;
7542
7543 /* Set the U bit if the value to go in the place is non-negative. */
7544 if (signed_value >= 0)
7545 insn |= 1 << 23;
7546
7547 /* Encode the offset. */
7548 insn |= residual >> 2;
7549
7550 bfd_put_32 (input_bfd, insn, hit_data);
7551 }
7552 return bfd_reloc_ok;
7553
7554 default:
7555 return bfd_reloc_notsupported;
7556 }
7557 }
7558
7559 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7560 static void
7561 arm_add_to_rel (bfd * abfd,
7562 bfd_byte * address,
7563 reloc_howto_type * howto,
7564 bfd_signed_vma increment)
7565 {
7566 bfd_signed_vma addend;
7567
7568 if (howto->type == R_ARM_THM_CALL
7569 || howto->type == R_ARM_THM_JUMP24)
7570 {
7571 int upper_insn, lower_insn;
7572 int upper, lower;
7573
7574 upper_insn = bfd_get_16 (abfd, address);
7575 lower_insn = bfd_get_16 (abfd, address + 2);
7576 upper = upper_insn & 0x7ff;
7577 lower = lower_insn & 0x7ff;
7578
7579 addend = (upper << 12) | (lower << 1);
7580 addend += increment;
7581 addend >>= 1;
7582
7583 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7584 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7585
7586 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7587 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7588 }
7589 else
7590 {
7591 bfd_vma contents;
7592
7593 contents = bfd_get_32 (abfd, address);
7594
7595 /* Get the (signed) value from the instruction. */
7596 addend = contents & howto->src_mask;
7597 if (addend & ((howto->src_mask + 1) >> 1))
7598 {
7599 bfd_signed_vma mask;
7600
7601 mask = -1;
7602 mask &= ~ howto->src_mask;
7603 addend |= mask;
7604 }
7605
7606 /* Add in the increment, (which is a byte value). */
7607 switch (howto->type)
7608 {
7609 default:
7610 addend += increment;
7611 break;
7612
7613 case R_ARM_PC24:
7614 case R_ARM_PLT32:
7615 case R_ARM_CALL:
7616 case R_ARM_JUMP24:
7617 addend <<= howto->size;
7618 addend += increment;
7619
7620 /* Should we check for overflow here ? */
7621
7622 /* Drop any undesired bits. */
7623 addend >>= howto->rightshift;
7624 break;
7625 }
7626
7627 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7628
7629 bfd_put_32 (abfd, contents, address);
7630 }
7631 }
7632
7633 #define IS_ARM_TLS_RELOC(R_TYPE) \
7634 ((R_TYPE) == R_ARM_TLS_GD32 \
7635 || (R_TYPE) == R_ARM_TLS_LDO32 \
7636 || (R_TYPE) == R_ARM_TLS_LDM32 \
7637 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7638 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7639 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7640 || (R_TYPE) == R_ARM_TLS_LE32 \
7641 || (R_TYPE) == R_ARM_TLS_IE32)
7642
7643 /* Relocate an ARM ELF section. */
7644
7645 static bfd_boolean
7646 elf32_arm_relocate_section (bfd * output_bfd,
7647 struct bfd_link_info * info,
7648 bfd * input_bfd,
7649 asection * input_section,
7650 bfd_byte * contents,
7651 Elf_Internal_Rela * relocs,
7652 Elf_Internal_Sym * local_syms,
7653 asection ** local_sections)
7654 {
7655 Elf_Internal_Shdr *symtab_hdr;
7656 struct elf_link_hash_entry **sym_hashes;
7657 Elf_Internal_Rela *rel;
7658 Elf_Internal_Rela *relend;
7659 const char *name;
7660 struct elf32_arm_link_hash_table * globals;
7661
7662 globals = elf32_arm_hash_table (info);
7663
7664 symtab_hdr = & elf_symtab_hdr (input_bfd);
7665 sym_hashes = elf_sym_hashes (input_bfd);
7666
7667 rel = relocs;
7668 relend = relocs + input_section->reloc_count;
7669 for (; rel < relend; rel++)
7670 {
7671 int r_type;
7672 reloc_howto_type * howto;
7673 unsigned long r_symndx;
7674 Elf_Internal_Sym * sym;
7675 asection * sec;
7676 struct elf_link_hash_entry * h;
7677 bfd_vma relocation;
7678 bfd_reloc_status_type r;
7679 arelent bfd_reloc;
7680 char sym_type;
7681 bfd_boolean unresolved_reloc = FALSE;
7682 char *error_message = NULL;
7683
7684 r_symndx = ELF32_R_SYM (rel->r_info);
7685 r_type = ELF32_R_TYPE (rel->r_info);
7686 r_type = arm_real_reloc_type (globals, r_type);
7687
7688 if ( r_type == R_ARM_GNU_VTENTRY
7689 || r_type == R_ARM_GNU_VTINHERIT)
7690 continue;
7691
7692 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7693 howto = bfd_reloc.howto;
7694
7695 h = NULL;
7696 sym = NULL;
7697 sec = NULL;
7698
7699 if (r_symndx < symtab_hdr->sh_info)
7700 {
7701 sym = local_syms + r_symndx;
7702 sym_type = ELF32_ST_TYPE (sym->st_info);
7703 sec = local_sections[r_symndx];
7704 if (globals->use_rel)
7705 {
7706 relocation = (sec->output_section->vma
7707 + sec->output_offset
7708 + sym->st_value);
7709 if (!info->relocatable
7710 && (sec->flags & SEC_MERGE)
7711 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7712 {
7713 asection *msec;
7714 bfd_vma addend, value;
7715
7716 switch (r_type)
7717 {
7718 case R_ARM_MOVW_ABS_NC:
7719 case R_ARM_MOVT_ABS:
7720 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7721 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7722 addend = (addend ^ 0x8000) - 0x8000;
7723 break;
7724
7725 case R_ARM_THM_MOVW_ABS_NC:
7726 case R_ARM_THM_MOVT_ABS:
7727 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7728 << 16;
7729 value |= bfd_get_16 (input_bfd,
7730 contents + rel->r_offset + 2);
7731 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7732 | ((value & 0x04000000) >> 15);
7733 addend = (addend ^ 0x8000) - 0x8000;
7734 break;
7735
7736 default:
7737 if (howto->rightshift
7738 || (howto->src_mask & (howto->src_mask + 1)))
7739 {
7740 (*_bfd_error_handler)
7741 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7742 input_bfd, input_section,
7743 (long) rel->r_offset, howto->name);
7744 return FALSE;
7745 }
7746
7747 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7748
7749 /* Get the (signed) value from the instruction. */
7750 addend = value & howto->src_mask;
7751 if (addend & ((howto->src_mask + 1) >> 1))
7752 {
7753 bfd_signed_vma mask;
7754
7755 mask = -1;
7756 mask &= ~ howto->src_mask;
7757 addend |= mask;
7758 }
7759 break;
7760 }
7761
7762 msec = sec;
7763 addend =
7764 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7765 - relocation;
7766 addend += msec->output_section->vma + msec->output_offset;
7767
7768 /* Cases here must match those in the preceeding
7769 switch statement. */
7770 switch (r_type)
7771 {
7772 case R_ARM_MOVW_ABS_NC:
7773 case R_ARM_MOVT_ABS:
7774 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7775 | (addend & 0xfff);
7776 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7777 break;
7778
7779 case R_ARM_THM_MOVW_ABS_NC:
7780 case R_ARM_THM_MOVT_ABS:
7781 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7782 | (addend & 0xff) | ((addend & 0x0800) << 15);
7783 bfd_put_16 (input_bfd, value >> 16,
7784 contents + rel->r_offset);
7785 bfd_put_16 (input_bfd, value,
7786 contents + rel->r_offset + 2);
7787 break;
7788
7789 default:
7790 value = (value & ~ howto->dst_mask)
7791 | (addend & howto->dst_mask);
7792 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7793 break;
7794 }
7795 }
7796 }
7797 else
7798 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7799 }
7800 else
7801 {
7802 bfd_boolean warned;
7803
7804 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7805 r_symndx, symtab_hdr, sym_hashes,
7806 h, sec, relocation,
7807 unresolved_reloc, warned);
7808
7809 sym_type = h->type;
7810 }
7811
7812 if (sec != NULL && elf_discarded_section (sec))
7813 {
7814 /* For relocs against symbols from removed linkonce sections,
7815 or sections discarded by a linker script, we just want the
7816 section contents zeroed. Avoid any special processing. */
7817 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7818 rel->r_info = 0;
7819 rel->r_addend = 0;
7820 continue;
7821 }
7822
7823 if (info->relocatable)
7824 {
7825 /* This is a relocatable link. We don't have to change
7826 anything, unless the reloc is against a section symbol,
7827 in which case we have to adjust according to where the
7828 section symbol winds up in the output section. */
7829 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7830 {
7831 if (globals->use_rel)
7832 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7833 howto, (bfd_signed_vma) sec->output_offset);
7834 else
7835 rel->r_addend += sec->output_offset;
7836 }
7837 continue;
7838 }
7839
7840 if (h != NULL)
7841 name = h->root.root.string;
7842 else
7843 {
7844 name = (bfd_elf_string_from_elf_section
7845 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7846 if (name == NULL || *name == '\0')
7847 name = bfd_section_name (input_bfd, sec);
7848 }
7849
7850 if (r_symndx != 0
7851 && r_type != R_ARM_NONE
7852 && (h == NULL
7853 || h->root.type == bfd_link_hash_defined
7854 || h->root.type == bfd_link_hash_defweak)
7855 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7856 {
7857 (*_bfd_error_handler)
7858 ((sym_type == STT_TLS
7859 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7860 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7861 input_bfd,
7862 input_section,
7863 (long) rel->r_offset,
7864 howto->name,
7865 name);
7866 }
7867
7868 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7869 input_section, contents, rel,
7870 relocation, info, sec, name,
7871 (h ? ELF_ST_TYPE (h->type) :
7872 ELF_ST_TYPE (sym->st_info)), h,
7873 &unresolved_reloc, &error_message);
7874
7875 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7876 because such sections are not SEC_ALLOC and thus ld.so will
7877 not process them. */
7878 if (unresolved_reloc
7879 && !((input_section->flags & SEC_DEBUGGING) != 0
7880 && h->def_dynamic))
7881 {
7882 (*_bfd_error_handler)
7883 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7884 input_bfd,
7885 input_section,
7886 (long) rel->r_offset,
7887 howto->name,
7888 h->root.root.string);
7889 return FALSE;
7890 }
7891
7892 if (r != bfd_reloc_ok)
7893 {
7894 switch (r)
7895 {
7896 case bfd_reloc_overflow:
7897 /* If the overflowing reloc was to an undefined symbol,
7898 we have already printed one error message and there
7899 is no point complaining again. */
7900 if ((! h ||
7901 h->root.type != bfd_link_hash_undefined)
7902 && (!((*info->callbacks->reloc_overflow)
7903 (info, (h ? &h->root : NULL), name, howto->name,
7904 (bfd_vma) 0, input_bfd, input_section,
7905 rel->r_offset))))
7906 return FALSE;
7907 break;
7908
7909 case bfd_reloc_undefined:
7910 if (!((*info->callbacks->undefined_symbol)
7911 (info, name, input_bfd, input_section,
7912 rel->r_offset, TRUE)))
7913 return FALSE;
7914 break;
7915
7916 case bfd_reloc_outofrange:
7917 error_message = _("out of range");
7918 goto common_error;
7919
7920 case bfd_reloc_notsupported:
7921 error_message = _("unsupported relocation");
7922 goto common_error;
7923
7924 case bfd_reloc_dangerous:
7925 /* error_message should already be set. */
7926 goto common_error;
7927
7928 default:
7929 error_message = _("unknown error");
7930 /* fall through */
7931
7932 common_error:
7933 BFD_ASSERT (error_message != NULL);
7934 if (!((*info->callbacks->reloc_dangerous)
7935 (info, error_message, input_bfd, input_section,
7936 rel->r_offset)))
7937 return FALSE;
7938 break;
7939 }
7940 }
7941 }
7942
7943 return TRUE;
7944 }
7945
7946 /* Set the right machine number. */
7947
7948 static bfd_boolean
7949 elf32_arm_object_p (bfd *abfd)
7950 {
7951 unsigned int mach;
7952
7953 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
7954
7955 if (mach != bfd_mach_arm_unknown)
7956 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
7957
7958 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
7959 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
7960
7961 else
7962 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
7963
7964 return TRUE;
7965 }
7966
7967 /* Function to keep ARM specific flags in the ELF header. */
7968
7969 static bfd_boolean
7970 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
7971 {
7972 if (elf_flags_init (abfd)
7973 && elf_elfheader (abfd)->e_flags != flags)
7974 {
7975 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
7976 {
7977 if (flags & EF_ARM_INTERWORK)
7978 (*_bfd_error_handler)
7979 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
7980 abfd);
7981 else
7982 _bfd_error_handler
7983 (_("Warning: Clearing the interworking flag of %B due to outside request"),
7984 abfd);
7985 }
7986 }
7987 else
7988 {
7989 elf_elfheader (abfd)->e_flags = flags;
7990 elf_flags_init (abfd) = TRUE;
7991 }
7992
7993 return TRUE;
7994 }
7995
7996 /* Copy backend specific data from one object module to another. */
7997
7998 static bfd_boolean
7999 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8000 {
8001 flagword in_flags;
8002 flagword out_flags;
8003
8004 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8005 return TRUE;
8006
8007 in_flags = elf_elfheader (ibfd)->e_flags;
8008 out_flags = elf_elfheader (obfd)->e_flags;
8009
8010 if (elf_flags_init (obfd)
8011 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8012 && in_flags != out_flags)
8013 {
8014 /* Cannot mix APCS26 and APCS32 code. */
8015 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8016 return FALSE;
8017
8018 /* Cannot mix float APCS and non-float APCS code. */
8019 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8020 return FALSE;
8021
8022 /* If the src and dest have different interworking flags
8023 then turn off the interworking bit. */
8024 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8025 {
8026 if (out_flags & EF_ARM_INTERWORK)
8027 _bfd_error_handler
8028 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8029 obfd, ibfd);
8030
8031 in_flags &= ~EF_ARM_INTERWORK;
8032 }
8033
8034 /* Likewise for PIC, though don't warn for this case. */
8035 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8036 in_flags &= ~EF_ARM_PIC;
8037 }
8038
8039 elf_elfheader (obfd)->e_flags = in_flags;
8040 elf_flags_init (obfd) = TRUE;
8041
8042 /* Also copy the EI_OSABI field. */
8043 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8044 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8045
8046 /* Copy object attributes. */
8047 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8048
8049 return TRUE;
8050 }
8051
8052 /* Values for Tag_ABI_PCS_R9_use. */
8053 enum
8054 {
8055 AEABI_R9_V6,
8056 AEABI_R9_SB,
8057 AEABI_R9_TLS,
8058 AEABI_R9_unused
8059 };
8060
8061 /* Values for Tag_ABI_PCS_RW_data. */
8062 enum
8063 {
8064 AEABI_PCS_RW_data_absolute,
8065 AEABI_PCS_RW_data_PCrel,
8066 AEABI_PCS_RW_data_SBrel,
8067 AEABI_PCS_RW_data_unused
8068 };
8069
8070 /* Values for Tag_ABI_enum_size. */
8071 enum
8072 {
8073 AEABI_enum_unused,
8074 AEABI_enum_short,
8075 AEABI_enum_wide,
8076 AEABI_enum_forced_wide
8077 };
8078
8079 /* Determine whether an object attribute tag takes an integer, a
8080 string or both. */
8081
8082 static int
8083 elf32_arm_obj_attrs_arg_type (int tag)
8084 {
8085 if (tag == Tag_compatibility)
8086 return 3;
8087 else if (tag == 4 || tag == 5)
8088 return 2;
8089 else if (tag < 32)
8090 return 1;
8091 else
8092 return (tag & 1) != 0 ? 2 : 1;
8093 }
8094
8095 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8096 are conflicting attributes. */
8097
8098 static bfd_boolean
8099 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8100 {
8101 obj_attribute *in_attr;
8102 obj_attribute *out_attr;
8103 obj_attribute_list *in_list;
8104 /* Some tags have 0 = don't care, 1 = strong requirement,
8105 2 = weak requirement. */
8106 static const int order_312[3] = {3, 1, 2};
8107 /* For use with Tag_VFP_arch. */
8108 static const int order_01243[5] = {0, 1, 2, 4, 3};
8109 int i;
8110
8111 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8112 {
8113 /* This is the first object. Copy the attributes. */
8114 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8115
8116 /* Use the Tag_null value to indicate the attributes have been
8117 initialized. */
8118 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8119
8120 return TRUE;
8121 }
8122
8123 in_attr = elf_known_obj_attributes_proc (ibfd);
8124 out_attr = elf_known_obj_attributes_proc (obfd);
8125 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8126 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8127 {
8128 /* Ignore mismatches if teh object doesn't use floating point. */
8129 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8130 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8131 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8132 {
8133 _bfd_error_handler
8134 (_("ERROR: %B uses VFP register arguments, %B does not"),
8135 ibfd, obfd);
8136 return FALSE;
8137 }
8138 }
8139
8140 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8141 {
8142 /* Merge this attribute with existing attributes. */
8143 switch (i)
8144 {
8145 case Tag_CPU_raw_name:
8146 case Tag_CPU_name:
8147 /* Use whichever has the greatest architecture requirements. We
8148 won't necessarily have both the above tags, so make sure input
8149 name is non-NULL. */
8150 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
8151 && in_attr[i].s)
8152 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
8153 break;
8154
8155 case Tag_ABI_optimization_goals:
8156 case Tag_ABI_FP_optimization_goals:
8157 /* Use the first value seen. */
8158 break;
8159
8160 case Tag_CPU_arch:
8161 case Tag_ARM_ISA_use:
8162 case Tag_THUMB_ISA_use:
8163 case Tag_WMMX_arch:
8164 case Tag_NEON_arch:
8165 /* ??? Do NEON and WMMX conflict? */
8166 case Tag_ABI_FP_rounding:
8167 case Tag_ABI_FP_denormal:
8168 case Tag_ABI_FP_exceptions:
8169 case Tag_ABI_FP_user_exceptions:
8170 case Tag_ABI_FP_number_model:
8171 case Tag_ABI_align8_preserved:
8172 case Tag_ABI_HardFP_use:
8173 /* Use the largest value specified. */
8174 if (in_attr[i].i > out_attr[i].i)
8175 out_attr[i].i = in_attr[i].i;
8176 break;
8177
8178 case Tag_CPU_arch_profile:
8179 /* Warn if conflicting architecture profiles used. */
8180 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
8181 {
8182 _bfd_error_handler
8183 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8184 ibfd, in_attr[i].i, out_attr[i].i);
8185 return FALSE;
8186 }
8187 if (in_attr[i].i)
8188 out_attr[i].i = in_attr[i].i;
8189 break;
8190 case Tag_VFP_arch:
8191 if (in_attr[i].i > 4 || out_attr[i].i > 4
8192 || order_01243[in_attr[i].i] > order_01243[out_attr[i].i])
8193 out_attr[i].i = in_attr[i].i;
8194 break;
8195 case Tag_PCS_config:
8196 if (out_attr[i].i == 0)
8197 out_attr[i].i = in_attr[i].i;
8198 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8199 {
8200 /* It's sometimes ok to mix different configs, so this is only
8201 a warning. */
8202 _bfd_error_handler
8203 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8204 }
8205 break;
8206 case Tag_ABI_PCS_R9_use:
8207 if (in_attr[i].i != out_attr[i].i
8208 && out_attr[i].i != AEABI_R9_unused
8209 && in_attr[i].i != AEABI_R9_unused)
8210 {
8211 _bfd_error_handler
8212 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8213 return FALSE;
8214 }
8215 if (out_attr[i].i == AEABI_R9_unused)
8216 out_attr[i].i = in_attr[i].i;
8217 break;
8218 case Tag_ABI_PCS_RW_data:
8219 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8220 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8221 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8222 {
8223 _bfd_error_handler
8224 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8225 ibfd);
8226 return FALSE;
8227 }
8228 /* Use the smallest value specified. */
8229 if (in_attr[i].i < out_attr[i].i)
8230 out_attr[i].i = in_attr[i].i;
8231 break;
8232 case Tag_ABI_PCS_RO_data:
8233 /* Use the smallest value specified. */
8234 if (in_attr[i].i < out_attr[i].i)
8235 out_attr[i].i = in_attr[i].i;
8236 break;
8237 case Tag_ABI_PCS_GOT_use:
8238 if (in_attr[i].i > 2 || out_attr[i].i > 2
8239 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8240 out_attr[i].i = in_attr[i].i;
8241 break;
8242 case Tag_ABI_PCS_wchar_t:
8243 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
8244 {
8245 _bfd_error_handler
8246 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
8247 return FALSE;
8248 }
8249 if (in_attr[i].i)
8250 out_attr[i].i = in_attr[i].i;
8251 break;
8252 case Tag_ABI_align8_needed:
8253 /* ??? Check against Tag_ABI_align8_preserved. */
8254 if (in_attr[i].i > 2 || out_attr[i].i > 2
8255 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8256 out_attr[i].i = in_attr[i].i;
8257 break;
8258 case Tag_ABI_enum_size:
8259 if (in_attr[i].i != AEABI_enum_unused)
8260 {
8261 if (out_attr[i].i == AEABI_enum_unused
8262 || out_attr[i].i == AEABI_enum_forced_wide)
8263 {
8264 /* The existing object is compatible with anything.
8265 Use whatever requirements the new object has. */
8266 out_attr[i].i = in_attr[i].i;
8267 }
8268 else if (in_attr[i].i != AEABI_enum_forced_wide
8269 && out_attr[i].i != in_attr[i].i
8270 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8271 {
8272 const char *aeabi_enum_names[] =
8273 { "", "variable-size", "32-bit", "" };
8274 _bfd_error_handler
8275 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8276 ibfd, aeabi_enum_names[in_attr[i].i],
8277 aeabi_enum_names[out_attr[i].i]);
8278 }
8279 }
8280 break;
8281 case Tag_ABI_VFP_args:
8282 /* Aready done. */
8283 break;
8284 case Tag_ABI_WMMX_args:
8285 if (in_attr[i].i != out_attr[i].i)
8286 {
8287 _bfd_error_handler
8288 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8289 ibfd, obfd);
8290 return FALSE;
8291 }
8292 break;
8293 default: /* All known attributes should be explicitly covered. */
8294 abort ();
8295 }
8296
8297 if (in_attr[i].type && !out_attr[i].type)
8298 switch (in_attr[i].type)
8299 {
8300 case 1:
8301 if (out_attr[i].i)
8302 out_attr[i].type = 1;
8303 break;
8304
8305 case 2:
8306 if (out_attr[i].s)
8307 out_attr[i].type = 2;
8308 break;
8309
8310 default:
8311 abort ();
8312 }
8313 }
8314
8315 /* Merge Tag_compatibility attributes and any common GNU ones. */
8316 _bfd_elf_merge_object_attributes (ibfd, obfd);
8317
8318 /* Check for any attributes not known on ARM. */
8319 in_list = elf_other_obj_attributes_proc (ibfd);
8320 while (in_list && in_list->tag == Tag_compatibility)
8321 in_list = in_list->next;
8322
8323 for (; in_list; in_list = in_list->next)
8324 {
8325 if ((in_list->tag & 128) < 64)
8326 {
8327 _bfd_error_handler
8328 (_("Warning: %B: Unknown EABI object attribute %d"),
8329 ibfd, in_list->tag);
8330 break;
8331 }
8332 }
8333 return TRUE;
8334 }
8335
8336
8337 /* Return TRUE if the two EABI versions are incompatible. */
8338
8339 static bfd_boolean
8340 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8341 {
8342 /* v4 and v5 are the same spec before and after it was released,
8343 so allow mixing them. */
8344 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8345 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8346 return TRUE;
8347
8348 return (iver == over);
8349 }
8350
8351 /* Merge backend specific data from an object file to the output
8352 object file when linking. */
8353
8354 static bfd_boolean
8355 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8356 {
8357 flagword out_flags;
8358 flagword in_flags;
8359 bfd_boolean flags_compatible = TRUE;
8360 asection *sec;
8361
8362 /* Check if we have the same endianess. */
8363 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8364 return FALSE;
8365
8366 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8367 return TRUE;
8368
8369 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8370 return FALSE;
8371
8372 /* The input BFD must have had its flags initialised. */
8373 /* The following seems bogus to me -- The flags are initialized in
8374 the assembler but I don't think an elf_flags_init field is
8375 written into the object. */
8376 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8377
8378 in_flags = elf_elfheader (ibfd)->e_flags;
8379 out_flags = elf_elfheader (obfd)->e_flags;
8380
8381 if (!elf_flags_init (obfd))
8382 {
8383 /* If the input is the default architecture and had the default
8384 flags then do not bother setting the flags for the output
8385 architecture, instead allow future merges to do this. If no
8386 future merges ever set these flags then they will retain their
8387 uninitialised values, which surprise surprise, correspond
8388 to the default values. */
8389 if (bfd_get_arch_info (ibfd)->the_default
8390 && elf_elfheader (ibfd)->e_flags == 0)
8391 return TRUE;
8392
8393 elf_flags_init (obfd) = TRUE;
8394 elf_elfheader (obfd)->e_flags = in_flags;
8395
8396 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8397 && bfd_get_arch_info (obfd)->the_default)
8398 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8399
8400 return TRUE;
8401 }
8402
8403 /* Determine what should happen if the input ARM architecture
8404 does not match the output ARM architecture. */
8405 if (! bfd_arm_merge_machines (ibfd, obfd))
8406 return FALSE;
8407
8408 /* Identical flags must be compatible. */
8409 if (in_flags == out_flags)
8410 return TRUE;
8411
8412 /* Check to see if the input BFD actually contains any sections. If
8413 not, its flags may not have been initialised either, but it
8414 cannot actually cause any incompatiblity. Do not short-circuit
8415 dynamic objects; their section list may be emptied by
8416 elf_link_add_object_symbols.
8417
8418 Also check to see if there are no code sections in the input.
8419 In this case there is no need to check for code specific flags.
8420 XXX - do we need to worry about floating-point format compatability
8421 in data sections ? */
8422 if (!(ibfd->flags & DYNAMIC))
8423 {
8424 bfd_boolean null_input_bfd = TRUE;
8425 bfd_boolean only_data_sections = TRUE;
8426
8427 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8428 {
8429 /* Ignore synthetic glue sections. */
8430 if (strcmp (sec->name, ".glue_7")
8431 && strcmp (sec->name, ".glue_7t"))
8432 {
8433 if ((bfd_get_section_flags (ibfd, sec)
8434 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8435 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8436 only_data_sections = FALSE;
8437
8438 null_input_bfd = FALSE;
8439 break;
8440 }
8441 }
8442
8443 if (null_input_bfd || only_data_sections)
8444 return TRUE;
8445 }
8446
8447 /* Complain about various flag mismatches. */
8448 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8449 EF_ARM_EABI_VERSION (out_flags)))
8450 {
8451 _bfd_error_handler
8452 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8453 ibfd, obfd,
8454 (in_flags & EF_ARM_EABIMASK) >> 24,
8455 (out_flags & EF_ARM_EABIMASK) >> 24);
8456 return FALSE;
8457 }
8458
8459 /* Not sure what needs to be checked for EABI versions >= 1. */
8460 /* VxWorks libraries do not use these flags. */
8461 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8462 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8463 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8464 {
8465 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8466 {
8467 _bfd_error_handler
8468 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8469 ibfd, obfd,
8470 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8471 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8472 flags_compatible = FALSE;
8473 }
8474
8475 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8476 {
8477 if (in_flags & EF_ARM_APCS_FLOAT)
8478 _bfd_error_handler
8479 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8480 ibfd, obfd);
8481 else
8482 _bfd_error_handler
8483 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8484 ibfd, obfd);
8485
8486 flags_compatible = FALSE;
8487 }
8488
8489 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
8490 {
8491 if (in_flags & EF_ARM_VFP_FLOAT)
8492 _bfd_error_handler
8493 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8494 ibfd, obfd);
8495 else
8496 _bfd_error_handler
8497 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8498 ibfd, obfd);
8499
8500 flags_compatible = FALSE;
8501 }
8502
8503 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
8504 {
8505 if (in_flags & EF_ARM_MAVERICK_FLOAT)
8506 _bfd_error_handler
8507 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8508 ibfd, obfd);
8509 else
8510 _bfd_error_handler
8511 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8512 ibfd, obfd);
8513
8514 flags_compatible = FALSE;
8515 }
8516
8517 #ifdef EF_ARM_SOFT_FLOAT
8518 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
8519 {
8520 /* We can allow interworking between code that is VFP format
8521 layout, and uses either soft float or integer regs for
8522 passing floating point arguments and results. We already
8523 know that the APCS_FLOAT flags match; similarly for VFP
8524 flags. */
8525 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
8526 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
8527 {
8528 if (in_flags & EF_ARM_SOFT_FLOAT)
8529 _bfd_error_handler
8530 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8531 ibfd, obfd);
8532 else
8533 _bfd_error_handler
8534 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8535 ibfd, obfd);
8536
8537 flags_compatible = FALSE;
8538 }
8539 }
8540 #endif
8541
8542 /* Interworking mismatch is only a warning. */
8543 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8544 {
8545 if (in_flags & EF_ARM_INTERWORK)
8546 {
8547 _bfd_error_handler
8548 (_("Warning: %B supports interworking, whereas %B does not"),
8549 ibfd, obfd);
8550 }
8551 else
8552 {
8553 _bfd_error_handler
8554 (_("Warning: %B does not support interworking, whereas %B does"),
8555 ibfd, obfd);
8556 }
8557 }
8558 }
8559
8560 return flags_compatible;
8561 }
8562
8563 /* Display the flags field. */
8564
8565 static bfd_boolean
8566 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
8567 {
8568 FILE * file = (FILE *) ptr;
8569 unsigned long flags;
8570
8571 BFD_ASSERT (abfd != NULL && ptr != NULL);
8572
8573 /* Print normal ELF private data. */
8574 _bfd_elf_print_private_bfd_data (abfd, ptr);
8575
8576 flags = elf_elfheader (abfd)->e_flags;
8577 /* Ignore init flag - it may not be set, despite the flags field
8578 containing valid data. */
8579
8580 /* xgettext:c-format */
8581 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
8582
8583 switch (EF_ARM_EABI_VERSION (flags))
8584 {
8585 case EF_ARM_EABI_UNKNOWN:
8586 /* The following flag bits are GNU extensions and not part of the
8587 official ARM ELF extended ABI. Hence they are only decoded if
8588 the EABI version is not set. */
8589 if (flags & EF_ARM_INTERWORK)
8590 fprintf (file, _(" [interworking enabled]"));
8591
8592 if (flags & EF_ARM_APCS_26)
8593 fprintf (file, " [APCS-26]");
8594 else
8595 fprintf (file, " [APCS-32]");
8596
8597 if (flags & EF_ARM_VFP_FLOAT)
8598 fprintf (file, _(" [VFP float format]"));
8599 else if (flags & EF_ARM_MAVERICK_FLOAT)
8600 fprintf (file, _(" [Maverick float format]"));
8601 else
8602 fprintf (file, _(" [FPA float format]"));
8603
8604 if (flags & EF_ARM_APCS_FLOAT)
8605 fprintf (file, _(" [floats passed in float registers]"));
8606
8607 if (flags & EF_ARM_PIC)
8608 fprintf (file, _(" [position independent]"));
8609
8610 if (flags & EF_ARM_NEW_ABI)
8611 fprintf (file, _(" [new ABI]"));
8612
8613 if (flags & EF_ARM_OLD_ABI)
8614 fprintf (file, _(" [old ABI]"));
8615
8616 if (flags & EF_ARM_SOFT_FLOAT)
8617 fprintf (file, _(" [software FP]"));
8618
8619 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
8620 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
8621 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
8622 | EF_ARM_MAVERICK_FLOAT);
8623 break;
8624
8625 case EF_ARM_EABI_VER1:
8626 fprintf (file, _(" [Version1 EABI]"));
8627
8628 if (flags & EF_ARM_SYMSARESORTED)
8629 fprintf (file, _(" [sorted symbol table]"));
8630 else
8631 fprintf (file, _(" [unsorted symbol table]"));
8632
8633 flags &= ~ EF_ARM_SYMSARESORTED;
8634 break;
8635
8636 case EF_ARM_EABI_VER2:
8637 fprintf (file, _(" [Version2 EABI]"));
8638
8639 if (flags & EF_ARM_SYMSARESORTED)
8640 fprintf (file, _(" [sorted symbol table]"));
8641 else
8642 fprintf (file, _(" [unsorted symbol table]"));
8643
8644 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
8645 fprintf (file, _(" [dynamic symbols use segment index]"));
8646
8647 if (flags & EF_ARM_MAPSYMSFIRST)
8648 fprintf (file, _(" [mapping symbols precede others]"));
8649
8650 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
8651 | EF_ARM_MAPSYMSFIRST);
8652 break;
8653
8654 case EF_ARM_EABI_VER3:
8655 fprintf (file, _(" [Version3 EABI]"));
8656 break;
8657
8658 case EF_ARM_EABI_VER4:
8659 fprintf (file, _(" [Version4 EABI]"));
8660 goto eabi;
8661
8662 case EF_ARM_EABI_VER5:
8663 fprintf (file, _(" [Version5 EABI]"));
8664 eabi:
8665 if (flags & EF_ARM_BE8)
8666 fprintf (file, _(" [BE8]"));
8667
8668 if (flags & EF_ARM_LE8)
8669 fprintf (file, _(" [LE8]"));
8670
8671 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
8672 break;
8673
8674 default:
8675 fprintf (file, _(" <EABI version unrecognised>"));
8676 break;
8677 }
8678
8679 flags &= ~ EF_ARM_EABIMASK;
8680
8681 if (flags & EF_ARM_RELEXEC)
8682 fprintf (file, _(" [relocatable executable]"));
8683
8684 if (flags & EF_ARM_HASENTRY)
8685 fprintf (file, _(" [has entry point]"));
8686
8687 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
8688
8689 if (flags)
8690 fprintf (file, _("<Unrecognised flag bits set>"));
8691
8692 fputc ('\n', file);
8693
8694 return TRUE;
8695 }
8696
8697 static int
8698 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
8699 {
8700 switch (ELF_ST_TYPE (elf_sym->st_info))
8701 {
8702 case STT_ARM_TFUNC:
8703 return ELF_ST_TYPE (elf_sym->st_info);
8704
8705 case STT_ARM_16BIT:
8706 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8707 This allows us to distinguish between data used by Thumb instructions
8708 and non-data (which is probably code) inside Thumb regions of an
8709 executable. */
8710 if (type != STT_OBJECT && type != STT_TLS)
8711 return ELF_ST_TYPE (elf_sym->st_info);
8712 break;
8713
8714 default:
8715 break;
8716 }
8717
8718 return type;
8719 }
8720
8721 static asection *
8722 elf32_arm_gc_mark_hook (asection *sec,
8723 struct bfd_link_info *info,
8724 Elf_Internal_Rela *rel,
8725 struct elf_link_hash_entry *h,
8726 Elf_Internal_Sym *sym)
8727 {
8728 if (h != NULL)
8729 switch (ELF32_R_TYPE (rel->r_info))
8730 {
8731 case R_ARM_GNU_VTINHERIT:
8732 case R_ARM_GNU_VTENTRY:
8733 return NULL;
8734 }
8735
8736 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
8737 }
8738
8739 /* Update the got entry reference counts for the section being removed. */
8740
8741 static bfd_boolean
8742 elf32_arm_gc_sweep_hook (bfd * abfd,
8743 struct bfd_link_info * info,
8744 asection * sec,
8745 const Elf_Internal_Rela * relocs)
8746 {
8747 Elf_Internal_Shdr *symtab_hdr;
8748 struct elf_link_hash_entry **sym_hashes;
8749 bfd_signed_vma *local_got_refcounts;
8750 const Elf_Internal_Rela *rel, *relend;
8751 struct elf32_arm_link_hash_table * globals;
8752
8753 if (info->relocatable)
8754 return TRUE;
8755
8756 globals = elf32_arm_hash_table (info);
8757
8758 elf_section_data (sec)->local_dynrel = NULL;
8759
8760 symtab_hdr = & elf_symtab_hdr (abfd);
8761 sym_hashes = elf_sym_hashes (abfd);
8762 local_got_refcounts = elf_local_got_refcounts (abfd);
8763
8764 check_use_blx (globals);
8765
8766 relend = relocs + sec->reloc_count;
8767 for (rel = relocs; rel < relend; rel++)
8768 {
8769 unsigned long r_symndx;
8770 struct elf_link_hash_entry *h = NULL;
8771 int r_type;
8772
8773 r_symndx = ELF32_R_SYM (rel->r_info);
8774 if (r_symndx >= symtab_hdr->sh_info)
8775 {
8776 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8777 while (h->root.type == bfd_link_hash_indirect
8778 || h->root.type == bfd_link_hash_warning)
8779 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8780 }
8781
8782 r_type = ELF32_R_TYPE (rel->r_info);
8783 r_type = arm_real_reloc_type (globals, r_type);
8784 switch (r_type)
8785 {
8786 case R_ARM_GOT32:
8787 case R_ARM_GOT_PREL:
8788 case R_ARM_TLS_GD32:
8789 case R_ARM_TLS_IE32:
8790 if (h != NULL)
8791 {
8792 if (h->got.refcount > 0)
8793 h->got.refcount -= 1;
8794 }
8795 else if (local_got_refcounts != NULL)
8796 {
8797 if (local_got_refcounts[r_symndx] > 0)
8798 local_got_refcounts[r_symndx] -= 1;
8799 }
8800 break;
8801
8802 case R_ARM_TLS_LDM32:
8803 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
8804 break;
8805
8806 case R_ARM_ABS32:
8807 case R_ARM_ABS32_NOI:
8808 case R_ARM_REL32:
8809 case R_ARM_REL32_NOI:
8810 case R_ARM_PC24:
8811 case R_ARM_PLT32:
8812 case R_ARM_CALL:
8813 case R_ARM_JUMP24:
8814 case R_ARM_PREL31:
8815 case R_ARM_THM_CALL:
8816 case R_ARM_THM_JUMP24:
8817 case R_ARM_THM_JUMP19:
8818 case R_ARM_MOVW_ABS_NC:
8819 case R_ARM_MOVT_ABS:
8820 case R_ARM_MOVW_PREL_NC:
8821 case R_ARM_MOVT_PREL:
8822 case R_ARM_THM_MOVW_ABS_NC:
8823 case R_ARM_THM_MOVT_ABS:
8824 case R_ARM_THM_MOVW_PREL_NC:
8825 case R_ARM_THM_MOVT_PREL:
8826 /* Should the interworking branches be here also? */
8827
8828 if (h != NULL)
8829 {
8830 struct elf32_arm_link_hash_entry *eh;
8831 struct elf32_arm_relocs_copied **pp;
8832 struct elf32_arm_relocs_copied *p;
8833
8834 eh = (struct elf32_arm_link_hash_entry *) h;
8835
8836 if (h->plt.refcount > 0)
8837 {
8838 h->plt.refcount -= 1;
8839 if (r_type == R_ARM_THM_CALL)
8840 eh->plt_maybe_thumb_refcount--;
8841
8842 if (r_type == R_ARM_THM_JUMP24
8843 || r_type == R_ARM_THM_JUMP19)
8844 eh->plt_thumb_refcount--;
8845 }
8846
8847 if (r_type == R_ARM_ABS32
8848 || r_type == R_ARM_REL32
8849 || r_type == R_ARM_ABS32_NOI
8850 || r_type == R_ARM_REL32_NOI)
8851 {
8852 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
8853 pp = &p->next)
8854 if (p->section == sec)
8855 {
8856 p->count -= 1;
8857 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
8858 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
8859 p->pc_count -= 1;
8860 if (p->count == 0)
8861 *pp = p->next;
8862 break;
8863 }
8864 }
8865 }
8866 break;
8867
8868 default:
8869 break;
8870 }
8871 }
8872
8873 return TRUE;
8874 }
8875
8876 /* Look through the relocs for a section during the first phase. */
8877
8878 static bfd_boolean
8879 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
8880 asection *sec, const Elf_Internal_Rela *relocs)
8881 {
8882 Elf_Internal_Shdr *symtab_hdr;
8883 struct elf_link_hash_entry **sym_hashes;
8884 const Elf_Internal_Rela *rel;
8885 const Elf_Internal_Rela *rel_end;
8886 bfd *dynobj;
8887 asection *sreloc;
8888 bfd_vma *local_got_offsets;
8889 struct elf32_arm_link_hash_table *htab;
8890 bfd_boolean needs_plt;
8891
8892 if (info->relocatable)
8893 return TRUE;
8894
8895 BFD_ASSERT (is_arm_elf (abfd));
8896
8897 htab = elf32_arm_hash_table (info);
8898 sreloc = NULL;
8899
8900 /* Create dynamic sections for relocatable executables so that we can
8901 copy relocations. */
8902 if (htab->root.is_relocatable_executable
8903 && ! htab->root.dynamic_sections_created)
8904 {
8905 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
8906 return FALSE;
8907 }
8908
8909 dynobj = elf_hash_table (info)->dynobj;
8910 local_got_offsets = elf_local_got_offsets (abfd);
8911
8912 symtab_hdr = & elf_symtab_hdr (abfd);
8913 sym_hashes = elf_sym_hashes (abfd);
8914
8915 rel_end = relocs + sec->reloc_count;
8916 for (rel = relocs; rel < rel_end; rel++)
8917 {
8918 struct elf_link_hash_entry *h;
8919 struct elf32_arm_link_hash_entry *eh;
8920 unsigned long r_symndx;
8921 int r_type;
8922
8923 r_symndx = ELF32_R_SYM (rel->r_info);
8924 r_type = ELF32_R_TYPE (rel->r_info);
8925 r_type = arm_real_reloc_type (htab, r_type);
8926
8927 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
8928 {
8929 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
8930 r_symndx);
8931 return FALSE;
8932 }
8933
8934 if (r_symndx < symtab_hdr->sh_info)
8935 h = NULL;
8936 else
8937 {
8938 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8939 while (h->root.type == bfd_link_hash_indirect
8940 || h->root.type == bfd_link_hash_warning)
8941 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8942 }
8943
8944 eh = (struct elf32_arm_link_hash_entry *) h;
8945
8946 switch (r_type)
8947 {
8948 case R_ARM_GOT32:
8949 case R_ARM_GOT_PREL:
8950 case R_ARM_TLS_GD32:
8951 case R_ARM_TLS_IE32:
8952 /* This symbol requires a global offset table entry. */
8953 {
8954 int tls_type, old_tls_type;
8955
8956 switch (r_type)
8957 {
8958 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
8959 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
8960 default: tls_type = GOT_NORMAL; break;
8961 }
8962
8963 if (h != NULL)
8964 {
8965 h->got.refcount++;
8966 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
8967 }
8968 else
8969 {
8970 bfd_signed_vma *local_got_refcounts;
8971
8972 /* This is a global offset table entry for a local symbol. */
8973 local_got_refcounts = elf_local_got_refcounts (abfd);
8974 if (local_got_refcounts == NULL)
8975 {
8976 bfd_size_type size;
8977
8978 size = symtab_hdr->sh_info;
8979 size *= (sizeof (bfd_signed_vma) + sizeof (char));
8980 local_got_refcounts = bfd_zalloc (abfd, size);
8981 if (local_got_refcounts == NULL)
8982 return FALSE;
8983 elf_local_got_refcounts (abfd) = local_got_refcounts;
8984 elf32_arm_local_got_tls_type (abfd)
8985 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
8986 }
8987 local_got_refcounts[r_symndx] += 1;
8988 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
8989 }
8990
8991 /* We will already have issued an error message if there is a
8992 TLS / non-TLS mismatch, based on the symbol type. We don't
8993 support any linker relaxations. So just combine any TLS
8994 types needed. */
8995 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
8996 && tls_type != GOT_NORMAL)
8997 tls_type |= old_tls_type;
8998
8999 if (old_tls_type != tls_type)
9000 {
9001 if (h != NULL)
9002 elf32_arm_hash_entry (h)->tls_type = tls_type;
9003 else
9004 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9005 }
9006 }
9007 /* Fall through */
9008
9009 case R_ARM_TLS_LDM32:
9010 if (r_type == R_ARM_TLS_LDM32)
9011 htab->tls_ldm_got.refcount++;
9012 /* Fall through */
9013
9014 case R_ARM_GOTOFF32:
9015 case R_ARM_GOTPC:
9016 if (htab->sgot == NULL)
9017 {
9018 if (htab->root.dynobj == NULL)
9019 htab->root.dynobj = abfd;
9020 if (!create_got_section (htab->root.dynobj, info))
9021 return FALSE;
9022 }
9023 break;
9024
9025 case R_ARM_ABS12:
9026 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9027 ldr __GOTT_INDEX__ offsets. */
9028 if (!htab->vxworks_p)
9029 break;
9030 /* Fall through */
9031
9032 case R_ARM_PC24:
9033 case R_ARM_PLT32:
9034 case R_ARM_CALL:
9035 case R_ARM_JUMP24:
9036 case R_ARM_PREL31:
9037 case R_ARM_THM_CALL:
9038 case R_ARM_THM_JUMP24:
9039 case R_ARM_THM_JUMP19:
9040 needs_plt = 1;
9041 goto normal_reloc;
9042
9043 case R_ARM_ABS32:
9044 case R_ARM_ABS32_NOI:
9045 case R_ARM_REL32:
9046 case R_ARM_REL32_NOI:
9047 case R_ARM_MOVW_ABS_NC:
9048 case R_ARM_MOVT_ABS:
9049 case R_ARM_MOVW_PREL_NC:
9050 case R_ARM_MOVT_PREL:
9051 case R_ARM_THM_MOVW_ABS_NC:
9052 case R_ARM_THM_MOVT_ABS:
9053 case R_ARM_THM_MOVW_PREL_NC:
9054 case R_ARM_THM_MOVT_PREL:
9055 needs_plt = 0;
9056 normal_reloc:
9057
9058 /* Should the interworking branches be listed here? */
9059 if (h != NULL)
9060 {
9061 /* If this reloc is in a read-only section, we might
9062 need a copy reloc. We can't check reliably at this
9063 stage whether the section is read-only, as input
9064 sections have not yet been mapped to output sections.
9065 Tentatively set the flag for now, and correct in
9066 adjust_dynamic_symbol. */
9067 if (!info->shared)
9068 h->non_got_ref = 1;
9069
9070 /* We may need a .plt entry if the function this reloc
9071 refers to is in a different object. We can't tell for
9072 sure yet, because something later might force the
9073 symbol local. */
9074 if (needs_plt)
9075 h->needs_plt = 1;
9076
9077 /* If we create a PLT entry, this relocation will reference
9078 it, even if it's an ABS32 relocation. */
9079 h->plt.refcount += 1;
9080
9081 /* It's too early to use htab->use_blx here, so we have to
9082 record possible blx references separately from
9083 relocs that definitely need a thumb stub. */
9084
9085 if (r_type == R_ARM_THM_CALL)
9086 eh->plt_maybe_thumb_refcount += 1;
9087
9088 if (r_type == R_ARM_THM_JUMP24
9089 || r_type == R_ARM_THM_JUMP19)
9090 eh->plt_thumb_refcount += 1;
9091 }
9092
9093 /* If we are creating a shared library or relocatable executable,
9094 and this is a reloc against a global symbol, or a non PC
9095 relative reloc against a local symbol, then we need to copy
9096 the reloc into the shared library. However, if we are linking
9097 with -Bsymbolic, we do not need to copy a reloc against a
9098 global symbol which is defined in an object we are
9099 including in the link (i.e., DEF_REGULAR is set). At
9100 this point we have not seen all the input files, so it is
9101 possible that DEF_REGULAR is not set now but will be set
9102 later (it is never cleared). We account for that
9103 possibility below by storing information in the
9104 relocs_copied field of the hash table entry. */
9105 if ((info->shared || htab->root.is_relocatable_executable)
9106 && (sec->flags & SEC_ALLOC) != 0
9107 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9108 || (h != NULL && ! h->needs_plt
9109 && (! info->symbolic || ! h->def_regular))))
9110 {
9111 struct elf32_arm_relocs_copied *p, **head;
9112
9113 /* When creating a shared object, we must copy these
9114 reloc types into the output file. We create a reloc
9115 section in dynobj and make room for this reloc. */
9116 if (sreloc == NULL)
9117 {
9118 const char * name;
9119
9120 name = (bfd_elf_string_from_elf_section
9121 (abfd,
9122 elf_elfheader (abfd)->e_shstrndx,
9123 elf_section_data (sec)->rel_hdr.sh_name));
9124 if (name == NULL)
9125 return FALSE;
9126
9127 BFD_ASSERT (reloc_section_p (htab, name, sec));
9128
9129 sreloc = bfd_get_section_by_name (dynobj, name);
9130 if (sreloc == NULL)
9131 {
9132 flagword flags;
9133
9134 flags = (SEC_HAS_CONTENTS | SEC_READONLY
9135 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
9136 if ((sec->flags & SEC_ALLOC) != 0
9137 /* BPABI objects never have dynamic
9138 relocations mapped. */
9139 && !htab->symbian_p)
9140 flags |= SEC_ALLOC | SEC_LOAD;
9141 sreloc = bfd_make_section_with_flags (dynobj,
9142 name,
9143 flags);
9144 if (sreloc == NULL
9145 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
9146 return FALSE;
9147 }
9148
9149 elf_section_data (sec)->sreloc = sreloc;
9150 }
9151
9152 /* If this is a global symbol, we count the number of
9153 relocations we need for this symbol. */
9154 if (h != NULL)
9155 {
9156 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9157 }
9158 else
9159 {
9160 /* Track dynamic relocs needed for local syms too.
9161 We really need local syms available to do this
9162 easily. Oh well. */
9163
9164 asection *s;
9165 void *vpp;
9166
9167 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9168 sec, r_symndx);
9169 if (s == NULL)
9170 return FALSE;
9171
9172 vpp = &elf_section_data (s)->local_dynrel;
9173 head = (struct elf32_arm_relocs_copied **) vpp;
9174 }
9175
9176 p = *head;
9177 if (p == NULL || p->section != sec)
9178 {
9179 bfd_size_type amt = sizeof *p;
9180
9181 p = bfd_alloc (htab->root.dynobj, amt);
9182 if (p == NULL)
9183 return FALSE;
9184 p->next = *head;
9185 *head = p;
9186 p->section = sec;
9187 p->count = 0;
9188 p->pc_count = 0;
9189 }
9190
9191 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9192 p->pc_count += 1;
9193 p->count += 1;
9194 }
9195 break;
9196
9197 /* This relocation describes the C++ object vtable hierarchy.
9198 Reconstruct it for later use during GC. */
9199 case R_ARM_GNU_VTINHERIT:
9200 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9201 return FALSE;
9202 break;
9203
9204 /* This relocation describes which C++ vtable entries are actually
9205 used. Record for later use during GC. */
9206 case R_ARM_GNU_VTENTRY:
9207 BFD_ASSERT (h != NULL);
9208 if (h != NULL
9209 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9210 return FALSE;
9211 break;
9212 }
9213 }
9214
9215 return TRUE;
9216 }
9217
9218 /* Unwinding tables are not referenced directly. This pass marks them as
9219 required if the corresponding code section is marked. */
9220
9221 static bfd_boolean
9222 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9223 elf_gc_mark_hook_fn gc_mark_hook)
9224 {
9225 bfd *sub;
9226 Elf_Internal_Shdr **elf_shdrp;
9227 bfd_boolean again;
9228
9229 /* Marking EH data may cause additional code sections to be marked,
9230 requiring multiple passes. */
9231 again = TRUE;
9232 while (again)
9233 {
9234 again = FALSE;
9235 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9236 {
9237 asection *o;
9238
9239 if (! is_arm_elf (sub))
9240 continue;
9241
9242 elf_shdrp = elf_elfsections (sub);
9243 for (o = sub->sections; o != NULL; o = o->next)
9244 {
9245 Elf_Internal_Shdr *hdr;
9246
9247 hdr = &elf_section_data (o)->this_hdr;
9248 if (hdr->sh_type == SHT_ARM_EXIDX
9249 && hdr->sh_link
9250 && hdr->sh_link < elf_numsections (sub)
9251 && !o->gc_mark
9252 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9253 {
9254 again = TRUE;
9255 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9256 return FALSE;
9257 }
9258 }
9259 }
9260 }
9261
9262 return TRUE;
9263 }
9264
9265 /* Treat mapping symbols as special target symbols. */
9266
9267 static bfd_boolean
9268 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9269 {
9270 return bfd_is_arm_special_symbol_name (sym->name,
9271 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9272 }
9273
9274 /* This is a copy of elf_find_function() from elf.c except that
9275 ARM mapping symbols are ignored when looking for function names
9276 and STT_ARM_TFUNC is considered to a function type. */
9277
9278 static bfd_boolean
9279 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9280 asection * section,
9281 asymbol ** symbols,
9282 bfd_vma offset,
9283 const char ** filename_ptr,
9284 const char ** functionname_ptr)
9285 {
9286 const char * filename = NULL;
9287 asymbol * func = NULL;
9288 bfd_vma low_func = 0;
9289 asymbol ** p;
9290
9291 for (p = symbols; *p != NULL; p++)
9292 {
9293 elf_symbol_type *q;
9294
9295 q = (elf_symbol_type *) *p;
9296
9297 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9298 {
9299 default:
9300 break;
9301 case STT_FILE:
9302 filename = bfd_asymbol_name (&q->symbol);
9303 break;
9304 case STT_FUNC:
9305 case STT_ARM_TFUNC:
9306 case STT_NOTYPE:
9307 /* Skip mapping symbols. */
9308 if ((q->symbol.flags & BSF_LOCAL)
9309 && bfd_is_arm_special_symbol_name (q->symbol.name,
9310 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9311 continue;
9312 /* Fall through. */
9313 if (bfd_get_section (&q->symbol) == section
9314 && q->symbol.value >= low_func
9315 && q->symbol.value <= offset)
9316 {
9317 func = (asymbol *) q;
9318 low_func = q->symbol.value;
9319 }
9320 break;
9321 }
9322 }
9323
9324 if (func == NULL)
9325 return FALSE;
9326
9327 if (filename_ptr)
9328 *filename_ptr = filename;
9329 if (functionname_ptr)
9330 *functionname_ptr = bfd_asymbol_name (func);
9331
9332 return TRUE;
9333 }
9334
9335
9336 /* Find the nearest line to a particular section and offset, for error
9337 reporting. This code is a duplicate of the code in elf.c, except
9338 that it uses arm_elf_find_function. */
9339
9340 static bfd_boolean
9341 elf32_arm_find_nearest_line (bfd * abfd,
9342 asection * section,
9343 asymbol ** symbols,
9344 bfd_vma offset,
9345 const char ** filename_ptr,
9346 const char ** functionname_ptr,
9347 unsigned int * line_ptr)
9348 {
9349 bfd_boolean found = FALSE;
9350
9351 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9352
9353 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9354 filename_ptr, functionname_ptr,
9355 line_ptr, 0,
9356 & elf_tdata (abfd)->dwarf2_find_line_info))
9357 {
9358 if (!*functionname_ptr)
9359 arm_elf_find_function (abfd, section, symbols, offset,
9360 *filename_ptr ? NULL : filename_ptr,
9361 functionname_ptr);
9362
9363 return TRUE;
9364 }
9365
9366 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9367 & found, filename_ptr,
9368 functionname_ptr, line_ptr,
9369 & elf_tdata (abfd)->line_info))
9370 return FALSE;
9371
9372 if (found && (*functionname_ptr || *line_ptr))
9373 return TRUE;
9374
9375 if (symbols == NULL)
9376 return FALSE;
9377
9378 if (! arm_elf_find_function (abfd, section, symbols, offset,
9379 filename_ptr, functionname_ptr))
9380 return FALSE;
9381
9382 *line_ptr = 0;
9383 return TRUE;
9384 }
9385
9386 static bfd_boolean
9387 elf32_arm_find_inliner_info (bfd * abfd,
9388 const char ** filename_ptr,
9389 const char ** functionname_ptr,
9390 unsigned int * line_ptr)
9391 {
9392 bfd_boolean found;
9393 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9394 functionname_ptr, line_ptr,
9395 & elf_tdata (abfd)->dwarf2_find_line_info);
9396 return found;
9397 }
9398
9399 /* Adjust a symbol defined by a dynamic object and referenced by a
9400 regular object. The current definition is in some section of the
9401 dynamic object, but we're not including those sections. We have to
9402 change the definition to something the rest of the link can
9403 understand. */
9404
9405 static bfd_boolean
9406 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9407 struct elf_link_hash_entry * h)
9408 {
9409 bfd * dynobj;
9410 asection * s;
9411 struct elf32_arm_link_hash_entry * eh;
9412 struct elf32_arm_link_hash_table *globals;
9413
9414 globals = elf32_arm_hash_table (info);
9415 dynobj = elf_hash_table (info)->dynobj;
9416
9417 /* Make sure we know what is going on here. */
9418 BFD_ASSERT (dynobj != NULL
9419 && (h->needs_plt
9420 || h->u.weakdef != NULL
9421 || (h->def_dynamic
9422 && h->ref_regular
9423 && !h->def_regular)));
9424
9425 eh = (struct elf32_arm_link_hash_entry *) h;
9426
9427 /* If this is a function, put it in the procedure linkage table. We
9428 will fill in the contents of the procedure linkage table later,
9429 when we know the address of the .got section. */
9430 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
9431 || h->needs_plt)
9432 {
9433 if (h->plt.refcount <= 0
9434 || SYMBOL_CALLS_LOCAL (info, h)
9435 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9436 && h->root.type == bfd_link_hash_undefweak))
9437 {
9438 /* This case can occur if we saw a PLT32 reloc in an input
9439 file, but the symbol was never referred to by a dynamic
9440 object, or if all references were garbage collected. In
9441 such a case, we don't actually need to build a procedure
9442 linkage table, and we can just do a PC24 reloc instead. */
9443 h->plt.offset = (bfd_vma) -1;
9444 eh->plt_thumb_refcount = 0;
9445 eh->plt_maybe_thumb_refcount = 0;
9446 h->needs_plt = 0;
9447 }
9448
9449 return TRUE;
9450 }
9451 else
9452 {
9453 /* It's possible that we incorrectly decided a .plt reloc was
9454 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9455 in check_relocs. We can't decide accurately between function
9456 and non-function syms in check-relocs; Objects loaded later in
9457 the link may change h->type. So fix it now. */
9458 h->plt.offset = (bfd_vma) -1;
9459 eh->plt_thumb_refcount = 0;
9460 eh->plt_maybe_thumb_refcount = 0;
9461 }
9462
9463 /* If this is a weak symbol, and there is a real definition, the
9464 processor independent code will have arranged for us to see the
9465 real definition first, and we can just use the same value. */
9466 if (h->u.weakdef != NULL)
9467 {
9468 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9469 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9470 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9471 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9472 return TRUE;
9473 }
9474
9475 /* If there are no non-GOT references, we do not need a copy
9476 relocation. */
9477 if (!h->non_got_ref)
9478 return TRUE;
9479
9480 /* This is a reference to a symbol defined by a dynamic object which
9481 is not a function. */
9482
9483 /* If we are creating a shared library, we must presume that the
9484 only references to the symbol are via the global offset table.
9485 For such cases we need not do anything here; the relocations will
9486 be handled correctly by relocate_section. Relocatable executables
9487 can reference data in shared objects directly, so we don't need to
9488 do anything here. */
9489 if (info->shared || globals->root.is_relocatable_executable)
9490 return TRUE;
9491
9492 if (h->size == 0)
9493 {
9494 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
9495 h->root.root.string);
9496 return TRUE;
9497 }
9498
9499 /* We must allocate the symbol in our .dynbss section, which will
9500 become part of the .bss section of the executable. There will be
9501 an entry for this symbol in the .dynsym section. The dynamic
9502 object will contain position independent code, so all references
9503 from the dynamic object to this symbol will go through the global
9504 offset table. The dynamic linker will use the .dynsym entry to
9505 determine the address it must put in the global offset table, so
9506 both the dynamic object and the regular object will refer to the
9507 same memory location for the variable. */
9508 s = bfd_get_section_by_name (dynobj, ".dynbss");
9509 BFD_ASSERT (s != NULL);
9510
9511 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9512 copy the initial value out of the dynamic object and into the
9513 runtime process image. We need to remember the offset into the
9514 .rel(a).bss section we are going to use. */
9515 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9516 {
9517 asection *srel;
9518
9519 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
9520 BFD_ASSERT (srel != NULL);
9521 srel->size += RELOC_SIZE (globals);
9522 h->needs_copy = 1;
9523 }
9524
9525 return _bfd_elf_adjust_dynamic_copy (h, s);
9526 }
9527
9528 /* Allocate space in .plt, .got and associated reloc sections for
9529 dynamic relocs. */
9530
9531 static bfd_boolean
9532 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
9533 {
9534 struct bfd_link_info *info;
9535 struct elf32_arm_link_hash_table *htab;
9536 struct elf32_arm_link_hash_entry *eh;
9537 struct elf32_arm_relocs_copied *p;
9538 bfd_signed_vma thumb_refs;
9539
9540 eh = (struct elf32_arm_link_hash_entry *) h;
9541
9542 if (h->root.type == bfd_link_hash_indirect)
9543 return TRUE;
9544
9545 if (h->root.type == bfd_link_hash_warning)
9546 /* When warning symbols are created, they **replace** the "real"
9547 entry in the hash table, thus we never get to see the real
9548 symbol in a hash traversal. So look at it now. */
9549 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9550
9551 info = (struct bfd_link_info *) inf;
9552 htab = elf32_arm_hash_table (info);
9553
9554 if (htab->root.dynamic_sections_created
9555 && h->plt.refcount > 0)
9556 {
9557 /* Make sure this symbol is output as a dynamic symbol.
9558 Undefined weak syms won't yet be marked as dynamic. */
9559 if (h->dynindx == -1
9560 && !h->forced_local)
9561 {
9562 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9563 return FALSE;
9564 }
9565
9566 if (info->shared
9567 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
9568 {
9569 asection *s = htab->splt;
9570
9571 /* If this is the first .plt entry, make room for the special
9572 first entry. */
9573 if (s->size == 0)
9574 s->size += htab->plt_header_size;
9575
9576 h->plt.offset = s->size;
9577
9578 /* If we will insert a Thumb trampoline before this PLT, leave room
9579 for it. */
9580 thumb_refs = eh->plt_thumb_refcount;
9581 if (!htab->use_blx)
9582 thumb_refs += eh->plt_maybe_thumb_refcount;
9583
9584 if (thumb_refs > 0)
9585 {
9586 h->plt.offset += PLT_THUMB_STUB_SIZE;
9587 s->size += PLT_THUMB_STUB_SIZE;
9588 }
9589
9590 /* If this symbol is not defined in a regular file, and we are
9591 not generating a shared library, then set the symbol to this
9592 location in the .plt. This is required to make function
9593 pointers compare as equal between the normal executable and
9594 the shared library. */
9595 if (! info->shared
9596 && !h->def_regular)
9597 {
9598 h->root.u.def.section = s;
9599 h->root.u.def.value = h->plt.offset;
9600
9601 /* Make sure the function is not marked as Thumb, in case
9602 it is the target of an ABS32 relocation, which will
9603 point to the PLT entry. */
9604 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
9605 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9606 }
9607
9608 /* Make room for this entry. */
9609 s->size += htab->plt_entry_size;
9610
9611 if (!htab->symbian_p)
9612 {
9613 /* We also need to make an entry in the .got.plt section, which
9614 will be placed in the .got section by the linker script. */
9615 eh->plt_got_offset = htab->sgotplt->size;
9616 htab->sgotplt->size += 4;
9617 }
9618
9619 /* We also need to make an entry in the .rel(a).plt section. */
9620 htab->srelplt->size += RELOC_SIZE (htab);
9621
9622 /* VxWorks executables have a second set of relocations for
9623 each PLT entry. They go in a separate relocation section,
9624 which is processed by the kernel loader. */
9625 if (htab->vxworks_p && !info->shared)
9626 {
9627 /* There is a relocation for the initial PLT entry:
9628 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9629 if (h->plt.offset == htab->plt_header_size)
9630 htab->srelplt2->size += RELOC_SIZE (htab);
9631
9632 /* There are two extra relocations for each subsequent
9633 PLT entry: an R_ARM_32 relocation for the GOT entry,
9634 and an R_ARM_32 relocation for the PLT entry. */
9635 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
9636 }
9637 }
9638 else
9639 {
9640 h->plt.offset = (bfd_vma) -1;
9641 h->needs_plt = 0;
9642 }
9643 }
9644 else
9645 {
9646 h->plt.offset = (bfd_vma) -1;
9647 h->needs_plt = 0;
9648 }
9649
9650 if (h->got.refcount > 0)
9651 {
9652 asection *s;
9653 bfd_boolean dyn;
9654 int tls_type = elf32_arm_hash_entry (h)->tls_type;
9655 int indx;
9656
9657 /* Make sure this symbol is output as a dynamic symbol.
9658 Undefined weak syms won't yet be marked as dynamic. */
9659 if (h->dynindx == -1
9660 && !h->forced_local)
9661 {
9662 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9663 return FALSE;
9664 }
9665
9666 if (!htab->symbian_p)
9667 {
9668 s = htab->sgot;
9669 h->got.offset = s->size;
9670
9671 if (tls_type == GOT_UNKNOWN)
9672 abort ();
9673
9674 if (tls_type == GOT_NORMAL)
9675 /* Non-TLS symbols need one GOT slot. */
9676 s->size += 4;
9677 else
9678 {
9679 if (tls_type & GOT_TLS_GD)
9680 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9681 s->size += 8;
9682 if (tls_type & GOT_TLS_IE)
9683 /* R_ARM_TLS_IE32 needs one GOT slot. */
9684 s->size += 4;
9685 }
9686
9687 dyn = htab->root.dynamic_sections_created;
9688
9689 indx = 0;
9690 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9691 && (!info->shared
9692 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9693 indx = h->dynindx;
9694
9695 if (tls_type != GOT_NORMAL
9696 && (info->shared || indx != 0)
9697 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9698 || h->root.type != bfd_link_hash_undefweak))
9699 {
9700 if (tls_type & GOT_TLS_IE)
9701 htab->srelgot->size += RELOC_SIZE (htab);
9702
9703 if (tls_type & GOT_TLS_GD)
9704 htab->srelgot->size += RELOC_SIZE (htab);
9705
9706 if ((tls_type & GOT_TLS_GD) && indx != 0)
9707 htab->srelgot->size += RELOC_SIZE (htab);
9708 }
9709 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9710 || h->root.type != bfd_link_hash_undefweak)
9711 && (info->shared
9712 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
9713 htab->srelgot->size += RELOC_SIZE (htab);
9714 }
9715 }
9716 else
9717 h->got.offset = (bfd_vma) -1;
9718
9719 /* Allocate stubs for exported Thumb functions on v4t. */
9720 if (!htab->use_blx && h->dynindx != -1
9721 && h->def_regular
9722 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
9723 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9724 {
9725 struct elf_link_hash_entry * th;
9726 struct bfd_link_hash_entry * bh;
9727 struct elf_link_hash_entry * myh;
9728 char name[1024];
9729 asection *s;
9730 bh = NULL;
9731 /* Create a new symbol to regist the real location of the function. */
9732 s = h->root.u.def.section;
9733 sprintf (name, "__real_%s", h->root.root.string);
9734 _bfd_generic_link_add_one_symbol (info, s->owner,
9735 name, BSF_GLOBAL, s,
9736 h->root.u.def.value,
9737 NULL, TRUE, FALSE, &bh);
9738
9739 myh = (struct elf_link_hash_entry *) bh;
9740 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
9741 myh->forced_local = 1;
9742 eh->export_glue = myh;
9743 th = record_arm_to_thumb_glue (info, h);
9744 /* Point the symbol at the stub. */
9745 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9746 h->root.u.def.section = th->root.u.def.section;
9747 h->root.u.def.value = th->root.u.def.value & ~1;
9748 }
9749
9750 if (eh->relocs_copied == NULL)
9751 return TRUE;
9752
9753 /* In the shared -Bsymbolic case, discard space allocated for
9754 dynamic pc-relative relocs against symbols which turn out to be
9755 defined in regular objects. For the normal shared case, discard
9756 space for pc-relative relocs that have become local due to symbol
9757 visibility changes. */
9758
9759 if (info->shared || htab->root.is_relocatable_executable)
9760 {
9761 /* The only relocs that use pc_count are R_ARM_REL32 and
9762 R_ARM_REL32_NOI, which will appear on something like
9763 ".long foo - .". We want calls to protected symbols to resolve
9764 directly to the function rather than going via the plt. If people
9765 want function pointer comparisons to work as expected then they
9766 should avoid writing assembly like ".long foo - .". */
9767 if (SYMBOL_CALLS_LOCAL (info, h))
9768 {
9769 struct elf32_arm_relocs_copied **pp;
9770
9771 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9772 {
9773 p->count -= p->pc_count;
9774 p->pc_count = 0;
9775 if (p->count == 0)
9776 *pp = p->next;
9777 else
9778 pp = &p->next;
9779 }
9780 }
9781
9782 if (elf32_arm_hash_table (info)->vxworks_p)
9783 {
9784 struct elf32_arm_relocs_copied **pp;
9785
9786 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9787 {
9788 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
9789 *pp = p->next;
9790 else
9791 pp = &p->next;
9792 }
9793 }
9794
9795 /* Also discard relocs on undefined weak syms with non-default
9796 visibility. */
9797 if (eh->relocs_copied != NULL
9798 && h->root.type == bfd_link_hash_undefweak)
9799 {
9800 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9801 eh->relocs_copied = NULL;
9802
9803 /* Make sure undefined weak symbols are output as a dynamic
9804 symbol in PIEs. */
9805 else if (h->dynindx == -1
9806 && !h->forced_local)
9807 {
9808 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9809 return FALSE;
9810 }
9811 }
9812
9813 else if (htab->root.is_relocatable_executable && h->dynindx == -1
9814 && h->root.type == bfd_link_hash_new)
9815 {
9816 /* Output absolute symbols so that we can create relocations
9817 against them. For normal symbols we output a relocation
9818 against the section that contains them. */
9819 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9820 return FALSE;
9821 }
9822
9823 }
9824 else
9825 {
9826 /* For the non-shared case, discard space for relocs against
9827 symbols which turn out to need copy relocs or are not
9828 dynamic. */
9829
9830 if (!h->non_got_ref
9831 && ((h->def_dynamic
9832 && !h->def_regular)
9833 || (htab->root.dynamic_sections_created
9834 && (h->root.type == bfd_link_hash_undefweak
9835 || h->root.type == bfd_link_hash_undefined))))
9836 {
9837 /* Make sure this symbol is output as a dynamic symbol.
9838 Undefined weak syms won't yet be marked as dynamic. */
9839 if (h->dynindx == -1
9840 && !h->forced_local)
9841 {
9842 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9843 return FALSE;
9844 }
9845
9846 /* If that succeeded, we know we'll be keeping all the
9847 relocs. */
9848 if (h->dynindx != -1)
9849 goto keep;
9850 }
9851
9852 eh->relocs_copied = NULL;
9853
9854 keep: ;
9855 }
9856
9857 /* Finally, allocate space. */
9858 for (p = eh->relocs_copied; p != NULL; p = p->next)
9859 {
9860 asection *sreloc = elf_section_data (p->section)->sreloc;
9861 sreloc->size += p->count * RELOC_SIZE (htab);
9862 }
9863
9864 return TRUE;
9865 }
9866
9867 /* Find any dynamic relocs that apply to read-only sections. */
9868
9869 static bfd_boolean
9870 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
9871 {
9872 struct elf32_arm_link_hash_entry *eh;
9873 struct elf32_arm_relocs_copied *p;
9874
9875 if (h->root.type == bfd_link_hash_warning)
9876 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9877
9878 eh = (struct elf32_arm_link_hash_entry *) h;
9879 for (p = eh->relocs_copied; p != NULL; p = p->next)
9880 {
9881 asection *s = p->section;
9882
9883 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9884 {
9885 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9886
9887 info->flags |= DF_TEXTREL;
9888
9889 /* Not an error, just cut short the traversal. */
9890 return FALSE;
9891 }
9892 }
9893 return TRUE;
9894 }
9895
9896 void
9897 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
9898 int byteswap_code)
9899 {
9900 struct elf32_arm_link_hash_table *globals;
9901
9902 globals = elf32_arm_hash_table (info);
9903 globals->byteswap_code = byteswap_code;
9904 }
9905
9906 /* Set the sizes of the dynamic sections. */
9907
9908 static bfd_boolean
9909 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
9910 struct bfd_link_info * info)
9911 {
9912 bfd * dynobj;
9913 asection * s;
9914 bfd_boolean plt;
9915 bfd_boolean relocs;
9916 bfd *ibfd;
9917 struct elf32_arm_link_hash_table *htab;
9918
9919 htab = elf32_arm_hash_table (info);
9920 dynobj = elf_hash_table (info)->dynobj;
9921 BFD_ASSERT (dynobj != NULL);
9922 check_use_blx (htab);
9923
9924 if (elf_hash_table (info)->dynamic_sections_created)
9925 {
9926 /* Set the contents of the .interp section to the interpreter. */
9927 if (info->executable)
9928 {
9929 s = bfd_get_section_by_name (dynobj, ".interp");
9930 BFD_ASSERT (s != NULL);
9931 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9932 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9933 }
9934 }
9935
9936 /* Set up .got offsets for local syms, and space for local dynamic
9937 relocs. */
9938 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9939 {
9940 bfd_signed_vma *local_got;
9941 bfd_signed_vma *end_local_got;
9942 char *local_tls_type;
9943 bfd_size_type locsymcount;
9944 Elf_Internal_Shdr *symtab_hdr;
9945 asection *srel;
9946 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
9947
9948 if (! is_arm_elf (ibfd))
9949 continue;
9950
9951 for (s = ibfd->sections; s != NULL; s = s->next)
9952 {
9953 struct elf32_arm_relocs_copied *p;
9954
9955 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9956 {
9957 if (!bfd_is_abs_section (p->section)
9958 && bfd_is_abs_section (p->section->output_section))
9959 {
9960 /* Input section has been discarded, either because
9961 it is a copy of a linkonce section or due to
9962 linker script /DISCARD/, so we'll be discarding
9963 the relocs too. */
9964 }
9965 else if (is_vxworks
9966 && strcmp (p->section->output_section->name,
9967 ".tls_vars") == 0)
9968 {
9969 /* Relocations in vxworks .tls_vars sections are
9970 handled specially by the loader. */
9971 }
9972 else if (p->count != 0)
9973 {
9974 srel = elf_section_data (p->section)->sreloc;
9975 srel->size += p->count * RELOC_SIZE (htab);
9976 if ((p->section->output_section->flags & SEC_READONLY) != 0)
9977 info->flags |= DF_TEXTREL;
9978 }
9979 }
9980 }
9981
9982 local_got = elf_local_got_refcounts (ibfd);
9983 if (!local_got)
9984 continue;
9985
9986 symtab_hdr = & elf_symtab_hdr (ibfd);
9987 locsymcount = symtab_hdr->sh_info;
9988 end_local_got = local_got + locsymcount;
9989 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
9990 s = htab->sgot;
9991 srel = htab->srelgot;
9992 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
9993 {
9994 if (*local_got > 0)
9995 {
9996 *local_got = s->size;
9997 if (*local_tls_type & GOT_TLS_GD)
9998 /* TLS_GD relocs need an 8-byte structure in the GOT. */
9999 s->size += 8;
10000 if (*local_tls_type & GOT_TLS_IE)
10001 s->size += 4;
10002 if (*local_tls_type == GOT_NORMAL)
10003 s->size += 4;
10004
10005 if (info->shared || *local_tls_type == GOT_TLS_GD)
10006 srel->size += RELOC_SIZE (htab);
10007 }
10008 else
10009 *local_got = (bfd_vma) -1;
10010 }
10011 }
10012
10013 if (htab->tls_ldm_got.refcount > 0)
10014 {
10015 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10016 for R_ARM_TLS_LDM32 relocations. */
10017 htab->tls_ldm_got.offset = htab->sgot->size;
10018 htab->sgot->size += 8;
10019 if (info->shared)
10020 htab->srelgot->size += RELOC_SIZE (htab);
10021 }
10022 else
10023 htab->tls_ldm_got.offset = -1;
10024
10025 /* Allocate global sym .plt and .got entries, and space for global
10026 sym dynamic relocs. */
10027 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10028
10029 /* Here we rummage through the found bfds to collect glue information. */
10030 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10031 {
10032 if (! is_arm_elf (ibfd))
10033 continue;
10034
10035 /* Initialise mapping tables for code/data. */
10036 bfd_elf32_arm_init_maps (ibfd);
10037
10038 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10039 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10040 /* xgettext:c-format */
10041 _bfd_error_handler (_("Errors encountered processing file %s"),
10042 ibfd->filename);
10043 }
10044
10045 /* The check_relocs and adjust_dynamic_symbol entry points have
10046 determined the sizes of the various dynamic sections. Allocate
10047 memory for them. */
10048 plt = FALSE;
10049 relocs = FALSE;
10050 for (s = dynobj->sections; s != NULL; s = s->next)
10051 {
10052 const char * name;
10053
10054 if ((s->flags & SEC_LINKER_CREATED) == 0)
10055 continue;
10056
10057 /* It's OK to base decisions on the section name, because none
10058 of the dynobj section names depend upon the input files. */
10059 name = bfd_get_section_name (dynobj, s);
10060
10061 if (strcmp (name, ".plt") == 0)
10062 {
10063 /* Remember whether there is a PLT. */
10064 plt = s->size != 0;
10065 }
10066 else if (CONST_STRNEQ (name, ".rel"))
10067 {
10068 if (s->size != 0)
10069 {
10070 /* Remember whether there are any reloc sections other
10071 than .rel(a).plt and .rela.plt.unloaded. */
10072 if (s != htab->srelplt && s != htab->srelplt2)
10073 relocs = TRUE;
10074
10075 /* We use the reloc_count field as a counter if we need
10076 to copy relocs into the output file. */
10077 s->reloc_count = 0;
10078 }
10079 }
10080 else if (! CONST_STRNEQ (name, ".got")
10081 && strcmp (name, ".dynbss") != 0)
10082 {
10083 /* It's not one of our sections, so don't allocate space. */
10084 continue;
10085 }
10086
10087 if (s->size == 0)
10088 {
10089 /* If we don't need this section, strip it from the
10090 output file. This is mostly to handle .rel(a).bss and
10091 .rel(a).plt. We must create both sections in
10092 create_dynamic_sections, because they must be created
10093 before the linker maps input sections to output
10094 sections. The linker does that before
10095 adjust_dynamic_symbol is called, and it is that
10096 function which decides whether anything needs to go
10097 into these sections. */
10098 s->flags |= SEC_EXCLUDE;
10099 continue;
10100 }
10101
10102 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10103 continue;
10104
10105 /* Allocate memory for the section contents. */
10106 s->contents = bfd_zalloc (dynobj, s->size);
10107 if (s->contents == NULL)
10108 return FALSE;
10109 }
10110
10111 if (elf_hash_table (info)->dynamic_sections_created)
10112 {
10113 /* Add some entries to the .dynamic section. We fill in the
10114 values later, in elf32_arm_finish_dynamic_sections, but we
10115 must add the entries now so that we get the correct size for
10116 the .dynamic section. The DT_DEBUG entry is filled in by the
10117 dynamic linker and used by the debugger. */
10118 #define add_dynamic_entry(TAG, VAL) \
10119 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10120
10121 if (info->executable)
10122 {
10123 if (!add_dynamic_entry (DT_DEBUG, 0))
10124 return FALSE;
10125 }
10126
10127 if (plt)
10128 {
10129 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10130 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10131 || !add_dynamic_entry (DT_PLTREL,
10132 htab->use_rel ? DT_REL : DT_RELA)
10133 || !add_dynamic_entry (DT_JMPREL, 0))
10134 return FALSE;
10135 }
10136
10137 if (relocs)
10138 {
10139 if (htab->use_rel)
10140 {
10141 if (!add_dynamic_entry (DT_REL, 0)
10142 || !add_dynamic_entry (DT_RELSZ, 0)
10143 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10144 return FALSE;
10145 }
10146 else
10147 {
10148 if (!add_dynamic_entry (DT_RELA, 0)
10149 || !add_dynamic_entry (DT_RELASZ, 0)
10150 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10151 return FALSE;
10152 }
10153 }
10154
10155 /* If any dynamic relocs apply to a read-only section,
10156 then we need a DT_TEXTREL entry. */
10157 if ((info->flags & DF_TEXTREL) == 0)
10158 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
10159 (PTR) info);
10160
10161 if ((info->flags & DF_TEXTREL) != 0)
10162 {
10163 if (!add_dynamic_entry (DT_TEXTREL, 0))
10164 return FALSE;
10165 }
10166 if (htab->vxworks_p
10167 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10168 return FALSE;
10169 }
10170 #undef add_dynamic_entry
10171
10172 return TRUE;
10173 }
10174
10175 /* Finish up dynamic symbol handling. We set the contents of various
10176 dynamic sections here. */
10177
10178 static bfd_boolean
10179 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10180 struct bfd_link_info * info,
10181 struct elf_link_hash_entry * h,
10182 Elf_Internal_Sym * sym)
10183 {
10184 bfd * dynobj;
10185 struct elf32_arm_link_hash_table *htab;
10186 struct elf32_arm_link_hash_entry *eh;
10187
10188 dynobj = elf_hash_table (info)->dynobj;
10189 htab = elf32_arm_hash_table (info);
10190 eh = (struct elf32_arm_link_hash_entry *) h;
10191
10192 if (h->plt.offset != (bfd_vma) -1)
10193 {
10194 asection * splt;
10195 asection * srel;
10196 bfd_byte *loc;
10197 bfd_vma plt_index;
10198 Elf_Internal_Rela rel;
10199
10200 /* This symbol has an entry in the procedure linkage table. Set
10201 it up. */
10202
10203 BFD_ASSERT (h->dynindx != -1);
10204
10205 splt = bfd_get_section_by_name (dynobj, ".plt");
10206 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10207 BFD_ASSERT (splt != NULL && srel != NULL);
10208
10209 /* Fill in the entry in the procedure linkage table. */
10210 if (htab->symbian_p)
10211 {
10212 put_arm_insn (htab, output_bfd,
10213 elf32_arm_symbian_plt_entry[0],
10214 splt->contents + h->plt.offset);
10215 bfd_put_32 (output_bfd,
10216 elf32_arm_symbian_plt_entry[1],
10217 splt->contents + h->plt.offset + 4);
10218
10219 /* Fill in the entry in the .rel.plt section. */
10220 rel.r_offset = (splt->output_section->vma
10221 + splt->output_offset
10222 + h->plt.offset + 4);
10223 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10224
10225 /* Get the index in the procedure linkage table which
10226 corresponds to this symbol. This is the index of this symbol
10227 in all the symbols for which we are making plt entries. The
10228 first entry in the procedure linkage table is reserved. */
10229 plt_index = ((h->plt.offset - htab->plt_header_size)
10230 / htab->plt_entry_size);
10231 }
10232 else
10233 {
10234 bfd_vma got_offset, got_address, plt_address;
10235 bfd_vma got_displacement;
10236 asection * sgot;
10237 bfd_byte * ptr;
10238
10239 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10240 BFD_ASSERT (sgot != NULL);
10241
10242 /* Get the offset into the .got.plt table of the entry that
10243 corresponds to this function. */
10244 got_offset = eh->plt_got_offset;
10245
10246 /* Get the index in the procedure linkage table which
10247 corresponds to this symbol. This is the index of this symbol
10248 in all the symbols for which we are making plt entries. The
10249 first three entries in .got.plt are reserved; after that
10250 symbols appear in the same order as in .plt. */
10251 plt_index = (got_offset - 12) / 4;
10252
10253 /* Calculate the address of the GOT entry. */
10254 got_address = (sgot->output_section->vma
10255 + sgot->output_offset
10256 + got_offset);
10257
10258 /* ...and the address of the PLT entry. */
10259 plt_address = (splt->output_section->vma
10260 + splt->output_offset
10261 + h->plt.offset);
10262
10263 ptr = htab->splt->contents + h->plt.offset;
10264 if (htab->vxworks_p && info->shared)
10265 {
10266 unsigned int i;
10267 bfd_vma val;
10268
10269 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10270 {
10271 val = elf32_arm_vxworks_shared_plt_entry[i];
10272 if (i == 2)
10273 val |= got_address - sgot->output_section->vma;
10274 if (i == 5)
10275 val |= plt_index * RELOC_SIZE (htab);
10276 if (i == 2 || i == 5)
10277 bfd_put_32 (output_bfd, val, ptr);
10278 else
10279 put_arm_insn (htab, output_bfd, val, ptr);
10280 }
10281 }
10282 else if (htab->vxworks_p)
10283 {
10284 unsigned int i;
10285 bfd_vma val;
10286
10287 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10288 {
10289 val = elf32_arm_vxworks_exec_plt_entry[i];
10290 if (i == 2)
10291 val |= got_address;
10292 if (i == 4)
10293 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10294 if (i == 5)
10295 val |= plt_index * RELOC_SIZE (htab);
10296 if (i == 2 || i == 5)
10297 bfd_put_32 (output_bfd, val, ptr);
10298 else
10299 put_arm_insn (htab, output_bfd, val, ptr);
10300 }
10301
10302 loc = (htab->srelplt2->contents
10303 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10304
10305 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10306 referencing the GOT for this PLT entry. */
10307 rel.r_offset = plt_address + 8;
10308 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10309 rel.r_addend = got_offset;
10310 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10311 loc += RELOC_SIZE (htab);
10312
10313 /* Create the R_ARM_ABS32 relocation referencing the
10314 beginning of the PLT for this GOT entry. */
10315 rel.r_offset = got_address;
10316 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10317 rel.r_addend = 0;
10318 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10319 }
10320 else
10321 {
10322 bfd_signed_vma thumb_refs;
10323 /* Calculate the displacement between the PLT slot and the
10324 entry in the GOT. The eight-byte offset accounts for the
10325 value produced by adding to pc in the first instruction
10326 of the PLT stub. */
10327 got_displacement = got_address - (plt_address + 8);
10328
10329 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10330
10331 thumb_refs = eh->plt_thumb_refcount;
10332 if (!htab->use_blx)
10333 thumb_refs += eh->plt_maybe_thumb_refcount;
10334
10335 if (thumb_refs > 0)
10336 {
10337 put_thumb_insn (htab, output_bfd,
10338 elf32_arm_plt_thumb_stub[0], ptr - 4);
10339 put_thumb_insn (htab, output_bfd,
10340 elf32_arm_plt_thumb_stub[1], ptr - 2);
10341 }
10342
10343 put_arm_insn (htab, output_bfd,
10344 elf32_arm_plt_entry[0]
10345 | ((got_displacement & 0x0ff00000) >> 20),
10346 ptr + 0);
10347 put_arm_insn (htab, output_bfd,
10348 elf32_arm_plt_entry[1]
10349 | ((got_displacement & 0x000ff000) >> 12),
10350 ptr+ 4);
10351 put_arm_insn (htab, output_bfd,
10352 elf32_arm_plt_entry[2]
10353 | (got_displacement & 0x00000fff),
10354 ptr + 8);
10355 #ifdef FOUR_WORD_PLT
10356 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10357 #endif
10358 }
10359
10360 /* Fill in the entry in the global offset table. */
10361 bfd_put_32 (output_bfd,
10362 (splt->output_section->vma
10363 + splt->output_offset),
10364 sgot->contents + got_offset);
10365
10366 /* Fill in the entry in the .rel(a).plt section. */
10367 rel.r_addend = 0;
10368 rel.r_offset = got_address;
10369 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10370 }
10371
10372 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10373 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10374
10375 if (!h->def_regular)
10376 {
10377 /* Mark the symbol as undefined, rather than as defined in
10378 the .plt section. Leave the value alone. */
10379 sym->st_shndx = SHN_UNDEF;
10380 /* If the symbol is weak, we do need to clear the value.
10381 Otherwise, the PLT entry would provide a definition for
10382 the symbol even if the symbol wasn't defined anywhere,
10383 and so the symbol would never be NULL. */
10384 if (!h->ref_regular_nonweak)
10385 sym->st_value = 0;
10386 }
10387 }
10388
10389 if (h->got.offset != (bfd_vma) -1
10390 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10391 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10392 {
10393 asection * sgot;
10394 asection * srel;
10395 Elf_Internal_Rela rel;
10396 bfd_byte *loc;
10397 bfd_vma offset;
10398
10399 /* This symbol has an entry in the global offset table. Set it
10400 up. */
10401 sgot = bfd_get_section_by_name (dynobj, ".got");
10402 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10403 BFD_ASSERT (sgot != NULL && srel != NULL);
10404
10405 offset = (h->got.offset & ~(bfd_vma) 1);
10406 rel.r_addend = 0;
10407 rel.r_offset = (sgot->output_section->vma
10408 + sgot->output_offset
10409 + offset);
10410
10411 /* If this is a static link, or it is a -Bsymbolic link and the
10412 symbol is defined locally or was forced to be local because
10413 of a version file, we just want to emit a RELATIVE reloc.
10414 The entry in the global offset table will already have been
10415 initialized in the relocate_section function. */
10416 if (info->shared
10417 && SYMBOL_REFERENCES_LOCAL (info, h))
10418 {
10419 BFD_ASSERT ((h->got.offset & 1) != 0);
10420 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10421 if (!htab->use_rel)
10422 {
10423 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10424 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10425 }
10426 }
10427 else
10428 {
10429 BFD_ASSERT ((h->got.offset & 1) == 0);
10430 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10431 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10432 }
10433
10434 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10435 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10436 }
10437
10438 if (h->needs_copy)
10439 {
10440 asection * s;
10441 Elf_Internal_Rela rel;
10442 bfd_byte *loc;
10443
10444 /* This symbol needs a copy reloc. Set it up. */
10445 BFD_ASSERT (h->dynindx != -1
10446 && (h->root.type == bfd_link_hash_defined
10447 || h->root.type == bfd_link_hash_defweak));
10448
10449 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10450 RELOC_SECTION (htab, ".bss"));
10451 BFD_ASSERT (s != NULL);
10452
10453 rel.r_addend = 0;
10454 rel.r_offset = (h->root.u.def.value
10455 + h->root.u.def.section->output_section->vma
10456 + h->root.u.def.section->output_offset);
10457 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10458 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10459 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10460 }
10461
10462 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10463 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10464 to the ".got" section. */
10465 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10466 || (!htab->vxworks_p && h == htab->root.hgot))
10467 sym->st_shndx = SHN_ABS;
10468
10469 return TRUE;
10470 }
10471
10472 /* Finish up the dynamic sections. */
10473
10474 static bfd_boolean
10475 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10476 {
10477 bfd * dynobj;
10478 asection * sgot;
10479 asection * sdyn;
10480
10481 dynobj = elf_hash_table (info)->dynobj;
10482
10483 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10484 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10485 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10486
10487 if (elf_hash_table (info)->dynamic_sections_created)
10488 {
10489 asection *splt;
10490 Elf32_External_Dyn *dyncon, *dynconend;
10491 struct elf32_arm_link_hash_table *htab;
10492
10493 htab = elf32_arm_hash_table (info);
10494 splt = bfd_get_section_by_name (dynobj, ".plt");
10495 BFD_ASSERT (splt != NULL && sdyn != NULL);
10496
10497 dyncon = (Elf32_External_Dyn *) sdyn->contents;
10498 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
10499
10500 for (; dyncon < dynconend; dyncon++)
10501 {
10502 Elf_Internal_Dyn dyn;
10503 const char * name;
10504 asection * s;
10505
10506 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
10507
10508 switch (dyn.d_tag)
10509 {
10510 unsigned int type;
10511
10512 default:
10513 if (htab->vxworks_p
10514 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10515 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10516 break;
10517
10518 case DT_HASH:
10519 name = ".hash";
10520 goto get_vma_if_bpabi;
10521 case DT_STRTAB:
10522 name = ".dynstr";
10523 goto get_vma_if_bpabi;
10524 case DT_SYMTAB:
10525 name = ".dynsym";
10526 goto get_vma_if_bpabi;
10527 case DT_VERSYM:
10528 name = ".gnu.version";
10529 goto get_vma_if_bpabi;
10530 case DT_VERDEF:
10531 name = ".gnu.version_d";
10532 goto get_vma_if_bpabi;
10533 case DT_VERNEED:
10534 name = ".gnu.version_r";
10535 goto get_vma_if_bpabi;
10536
10537 case DT_PLTGOT:
10538 name = ".got";
10539 goto get_vma;
10540 case DT_JMPREL:
10541 name = RELOC_SECTION (htab, ".plt");
10542 get_vma:
10543 s = bfd_get_section_by_name (output_bfd, name);
10544 BFD_ASSERT (s != NULL);
10545 if (!htab->symbian_p)
10546 dyn.d_un.d_ptr = s->vma;
10547 else
10548 /* In the BPABI, tags in the PT_DYNAMIC section point
10549 at the file offset, not the memory address, for the
10550 convenience of the post linker. */
10551 dyn.d_un.d_ptr = s->filepos;
10552 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10553 break;
10554
10555 get_vma_if_bpabi:
10556 if (htab->symbian_p)
10557 goto get_vma;
10558 break;
10559
10560 case DT_PLTRELSZ:
10561 s = bfd_get_section_by_name (output_bfd,
10562 RELOC_SECTION (htab, ".plt"));
10563 BFD_ASSERT (s != NULL);
10564 dyn.d_un.d_val = s->size;
10565 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10566 break;
10567
10568 case DT_RELSZ:
10569 case DT_RELASZ:
10570 if (!htab->symbian_p)
10571 {
10572 /* My reading of the SVR4 ABI indicates that the
10573 procedure linkage table relocs (DT_JMPREL) should be
10574 included in the overall relocs (DT_REL). This is
10575 what Solaris does. However, UnixWare can not handle
10576 that case. Therefore, we override the DT_RELSZ entry
10577 here to make it not include the JMPREL relocs. Since
10578 the linker script arranges for .rel(a).plt to follow all
10579 other relocation sections, we don't have to worry
10580 about changing the DT_REL entry. */
10581 s = bfd_get_section_by_name (output_bfd,
10582 RELOC_SECTION (htab, ".plt"));
10583 if (s != NULL)
10584 dyn.d_un.d_val -= s->size;
10585 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10586 break;
10587 }
10588 /* Fall through */
10589
10590 case DT_REL:
10591 case DT_RELA:
10592 /* In the BPABI, the DT_REL tag must point at the file
10593 offset, not the VMA, of the first relocation
10594 section. So, we use code similar to that in
10595 elflink.c, but do not check for SHF_ALLOC on the
10596 relcoation section, since relocations sections are
10597 never allocated under the BPABI. The comments above
10598 about Unixware notwithstanding, we include all of the
10599 relocations here. */
10600 if (htab->symbian_p)
10601 {
10602 unsigned int i;
10603 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10604 ? SHT_REL : SHT_RELA);
10605 dyn.d_un.d_val = 0;
10606 for (i = 1; i < elf_numsections (output_bfd); i++)
10607 {
10608 Elf_Internal_Shdr *hdr
10609 = elf_elfsections (output_bfd)[i];
10610 if (hdr->sh_type == type)
10611 {
10612 if (dyn.d_tag == DT_RELSZ
10613 || dyn.d_tag == DT_RELASZ)
10614 dyn.d_un.d_val += hdr->sh_size;
10615 else if ((ufile_ptr) hdr->sh_offset
10616 <= dyn.d_un.d_val - 1)
10617 dyn.d_un.d_val = hdr->sh_offset;
10618 }
10619 }
10620 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10621 }
10622 break;
10623
10624 /* Set the bottom bit of DT_INIT/FINI if the
10625 corresponding function is Thumb. */
10626 case DT_INIT:
10627 name = info->init_function;
10628 goto get_sym;
10629 case DT_FINI:
10630 name = info->fini_function;
10631 get_sym:
10632 /* If it wasn't set by elf_bfd_final_link
10633 then there is nothing to adjust. */
10634 if (dyn.d_un.d_val != 0)
10635 {
10636 struct elf_link_hash_entry * eh;
10637
10638 eh = elf_link_hash_lookup (elf_hash_table (info), name,
10639 FALSE, FALSE, TRUE);
10640 if (eh != NULL
10641 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
10642 {
10643 dyn.d_un.d_val |= 1;
10644 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10645 }
10646 }
10647 break;
10648 }
10649 }
10650
10651 /* Fill in the first entry in the procedure linkage table. */
10652 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
10653 {
10654 const bfd_vma *plt0_entry;
10655 bfd_vma got_address, plt_address, got_displacement;
10656
10657 /* Calculate the addresses of the GOT and PLT. */
10658 got_address = sgot->output_section->vma + sgot->output_offset;
10659 plt_address = splt->output_section->vma + splt->output_offset;
10660
10661 if (htab->vxworks_p)
10662 {
10663 /* The VxWorks GOT is relocated by the dynamic linker.
10664 Therefore, we must emit relocations rather than simply
10665 computing the values now. */
10666 Elf_Internal_Rela rel;
10667
10668 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
10669 put_arm_insn (htab, output_bfd, plt0_entry[0],
10670 splt->contents + 0);
10671 put_arm_insn (htab, output_bfd, plt0_entry[1],
10672 splt->contents + 4);
10673 put_arm_insn (htab, output_bfd, plt0_entry[2],
10674 splt->contents + 8);
10675 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
10676
10677 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10678 rel.r_offset = plt_address + 12;
10679 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10680 rel.r_addend = 0;
10681 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
10682 htab->srelplt2->contents);
10683 }
10684 else
10685 {
10686 got_displacement = got_address - (plt_address + 16);
10687
10688 plt0_entry = elf32_arm_plt0_entry;
10689 put_arm_insn (htab, output_bfd, plt0_entry[0],
10690 splt->contents + 0);
10691 put_arm_insn (htab, output_bfd, plt0_entry[1],
10692 splt->contents + 4);
10693 put_arm_insn (htab, output_bfd, plt0_entry[2],
10694 splt->contents + 8);
10695 put_arm_insn (htab, output_bfd, plt0_entry[3],
10696 splt->contents + 12);
10697
10698 #ifdef FOUR_WORD_PLT
10699 /* The displacement value goes in the otherwise-unused
10700 last word of the second entry. */
10701 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
10702 #else
10703 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
10704 #endif
10705 }
10706 }
10707
10708 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10709 really seem like the right value. */
10710 if (splt->output_section->owner == output_bfd)
10711 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
10712
10713 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
10714 {
10715 /* Correct the .rel(a).plt.unloaded relocations. They will have
10716 incorrect symbol indexes. */
10717 int num_plts;
10718 unsigned char *p;
10719
10720 num_plts = ((htab->splt->size - htab->plt_header_size)
10721 / htab->plt_entry_size);
10722 p = htab->srelplt2->contents + RELOC_SIZE (htab);
10723
10724 for (; num_plts; num_plts--)
10725 {
10726 Elf_Internal_Rela rel;
10727
10728 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10729 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10730 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10731 p += RELOC_SIZE (htab);
10732
10733 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10734 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10735 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10736 p += RELOC_SIZE (htab);
10737 }
10738 }
10739 }
10740
10741 /* Fill in the first three entries in the global offset table. */
10742 if (sgot)
10743 {
10744 if (sgot->size > 0)
10745 {
10746 if (sdyn == NULL)
10747 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
10748 else
10749 bfd_put_32 (output_bfd,
10750 sdyn->output_section->vma + sdyn->output_offset,
10751 sgot->contents);
10752 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
10753 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
10754 }
10755
10756 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
10757 }
10758
10759 return TRUE;
10760 }
10761
10762 static void
10763 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10764 {
10765 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10766 struct elf32_arm_link_hash_table *globals;
10767
10768 i_ehdrp = elf_elfheader (abfd);
10769
10770 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
10771 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
10772 else
10773 i_ehdrp->e_ident[EI_OSABI] = 0;
10774 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
10775
10776 if (link_info)
10777 {
10778 globals = elf32_arm_hash_table (link_info);
10779 if (globals->byteswap_code)
10780 i_ehdrp->e_flags |= EF_ARM_BE8;
10781 }
10782 }
10783
10784 static enum elf_reloc_type_class
10785 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
10786 {
10787 switch ((int) ELF32_R_TYPE (rela->r_info))
10788 {
10789 case R_ARM_RELATIVE:
10790 return reloc_class_relative;
10791 case R_ARM_JUMP_SLOT:
10792 return reloc_class_plt;
10793 case R_ARM_COPY:
10794 return reloc_class_copy;
10795 default:
10796 return reloc_class_normal;
10797 }
10798 }
10799
10800 /* Set the right machine number for an Arm ELF file. */
10801
10802 static bfd_boolean
10803 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
10804 {
10805 if (hdr->sh_type == SHT_NOTE)
10806 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
10807
10808 return TRUE;
10809 }
10810
10811 static void
10812 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
10813 {
10814 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
10815 }
10816
10817 /* Return TRUE if this is an unwinding table entry. */
10818
10819 static bfd_boolean
10820 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
10821 {
10822 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
10823 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
10824 }
10825
10826
10827 /* Set the type and flags for an ARM section. We do this by
10828 the section name, which is a hack, but ought to work. */
10829
10830 static bfd_boolean
10831 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
10832 {
10833 const char * name;
10834
10835 name = bfd_get_section_name (abfd, sec);
10836
10837 if (is_arm_elf_unwind_section_name (abfd, name))
10838 {
10839 hdr->sh_type = SHT_ARM_EXIDX;
10840 hdr->sh_flags |= SHF_LINK_ORDER;
10841 }
10842 return TRUE;
10843 }
10844
10845 /* Handle an ARM specific section when reading an object file. This is
10846 called when bfd_section_from_shdr finds a section with an unknown
10847 type. */
10848
10849 static bfd_boolean
10850 elf32_arm_section_from_shdr (bfd *abfd,
10851 Elf_Internal_Shdr * hdr,
10852 const char *name,
10853 int shindex)
10854 {
10855 /* There ought to be a place to keep ELF backend specific flags, but
10856 at the moment there isn't one. We just keep track of the
10857 sections by their name, instead. Fortunately, the ABI gives
10858 names for all the ARM specific sections, so we will probably get
10859 away with this. */
10860 switch (hdr->sh_type)
10861 {
10862 case SHT_ARM_EXIDX:
10863 case SHT_ARM_PREEMPTMAP:
10864 case SHT_ARM_ATTRIBUTES:
10865 break;
10866
10867 default:
10868 return FALSE;
10869 }
10870
10871 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
10872 return FALSE;
10873
10874 return TRUE;
10875 }
10876
10877 /* A structure used to record a list of sections, independently
10878 of the next and prev fields in the asection structure. */
10879 typedef struct section_list
10880 {
10881 asection * sec;
10882 struct section_list * next;
10883 struct section_list * prev;
10884 }
10885 section_list;
10886
10887 /* Unfortunately we need to keep a list of sections for which
10888 an _arm_elf_section_data structure has been allocated. This
10889 is because it is possible for functions like elf32_arm_write_section
10890 to be called on a section which has had an elf_data_structure
10891 allocated for it (and so the used_by_bfd field is valid) but
10892 for which the ARM extended version of this structure - the
10893 _arm_elf_section_data structure - has not been allocated. */
10894 static section_list * sections_with_arm_elf_section_data = NULL;
10895
10896 static void
10897 record_section_with_arm_elf_section_data (asection * sec)
10898 {
10899 struct section_list * entry;
10900
10901 entry = bfd_malloc (sizeof (* entry));
10902 if (entry == NULL)
10903 return;
10904 entry->sec = sec;
10905 entry->next = sections_with_arm_elf_section_data;
10906 entry->prev = NULL;
10907 if (entry->next != NULL)
10908 entry->next->prev = entry;
10909 sections_with_arm_elf_section_data = entry;
10910 }
10911
10912 static struct section_list *
10913 find_arm_elf_section_entry (asection * sec)
10914 {
10915 struct section_list * entry;
10916 static struct section_list * last_entry = NULL;
10917
10918 /* This is a short cut for the typical case where the sections are added
10919 to the sections_with_arm_elf_section_data list in forward order and
10920 then looked up here in backwards order. This makes a real difference
10921 to the ld-srec/sec64k.exp linker test. */
10922 entry = sections_with_arm_elf_section_data;
10923 if (last_entry != NULL)
10924 {
10925 if (last_entry->sec == sec)
10926 entry = last_entry;
10927 else if (last_entry->next != NULL
10928 && last_entry->next->sec == sec)
10929 entry = last_entry->next;
10930 }
10931
10932 for (; entry; entry = entry->next)
10933 if (entry->sec == sec)
10934 break;
10935
10936 if (entry)
10937 /* Record the entry prior to this one - it is the entry we are most
10938 likely to want to locate next time. Also this way if we have been
10939 called from unrecord_section_with_arm_elf_section_data() we will not
10940 be caching a pointer that is about to be freed. */
10941 last_entry = entry->prev;
10942
10943 return entry;
10944 }
10945
10946 static _arm_elf_section_data *
10947 get_arm_elf_section_data (asection * sec)
10948 {
10949 struct section_list * entry;
10950
10951 entry = find_arm_elf_section_entry (sec);
10952
10953 if (entry)
10954 return elf32_arm_section_data (entry->sec);
10955 else
10956 return NULL;
10957 }
10958
10959 static void
10960 unrecord_section_with_arm_elf_section_data (asection * sec)
10961 {
10962 struct section_list * entry;
10963
10964 entry = find_arm_elf_section_entry (sec);
10965
10966 if (entry)
10967 {
10968 if (entry->prev != NULL)
10969 entry->prev->next = entry->next;
10970 if (entry->next != NULL)
10971 entry->next->prev = entry->prev;
10972 if (entry == sections_with_arm_elf_section_data)
10973 sections_with_arm_elf_section_data = entry->next;
10974 free (entry);
10975 }
10976 }
10977
10978
10979 typedef struct
10980 {
10981 void *finfo;
10982 struct bfd_link_info *info;
10983 asection *sec;
10984 int sec_shndx;
10985 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
10986 asection *, struct elf_link_hash_entry *);
10987 } output_arch_syminfo;
10988
10989 enum map_symbol_type
10990 {
10991 ARM_MAP_ARM,
10992 ARM_MAP_THUMB,
10993 ARM_MAP_DATA
10994 };
10995
10996
10997 /* Output a single PLT mapping symbol. */
10998
10999 static bfd_boolean
11000 elf32_arm_ouput_plt_map_sym (output_arch_syminfo *osi,
11001 enum map_symbol_type type,
11002 bfd_vma offset)
11003 {
11004 static const char *names[3] = {"$a", "$t", "$d"};
11005 struct elf32_arm_link_hash_table *htab;
11006 Elf_Internal_Sym sym;
11007
11008 htab = elf32_arm_hash_table (osi->info);
11009 sym.st_value = osi->sec->output_section->vma
11010 + osi->sec->output_offset
11011 + offset;
11012 sym.st_size = 0;
11013 sym.st_other = 0;
11014 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11015 sym.st_shndx = osi->sec_shndx;
11016 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11017 return FALSE;
11018 return TRUE;
11019 }
11020
11021
11022 /* Output mapping symbols for PLT entries associated with H. */
11023
11024 static bfd_boolean
11025 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11026 {
11027 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11028 struct elf32_arm_link_hash_table *htab;
11029 struct elf32_arm_link_hash_entry *eh;
11030 bfd_vma addr;
11031
11032 htab = elf32_arm_hash_table (osi->info);
11033
11034 if (h->root.type == bfd_link_hash_indirect)
11035 return TRUE;
11036
11037 if (h->root.type == bfd_link_hash_warning)
11038 /* When warning symbols are created, they **replace** the "real"
11039 entry in the hash table, thus we never get to see the real
11040 symbol in a hash traversal. So look at it now. */
11041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11042
11043 if (h->plt.offset == (bfd_vma) -1)
11044 return TRUE;
11045
11046 eh = (struct elf32_arm_link_hash_entry *) h;
11047 addr = h->plt.offset;
11048 if (htab->symbian_p)
11049 {
11050 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11051 return FALSE;
11052 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
11053 return FALSE;
11054 }
11055 else if (htab->vxworks_p)
11056 {
11057 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11058 return FALSE;
11059 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
11060 return FALSE;
11061 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 12))
11062 return FALSE;
11063 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 20))
11064 return FALSE;
11065 }
11066 else
11067 {
11068 bfd_signed_vma thumb_refs;
11069
11070 thumb_refs = eh->plt_thumb_refcount;
11071 if (!htab->use_blx)
11072 thumb_refs += eh->plt_maybe_thumb_refcount;
11073
11074 if (thumb_refs > 0)
11075 {
11076 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11077 return FALSE;
11078 }
11079 #ifdef FOUR_WORD_PLT
11080 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11081 return FALSE;
11082 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
11083 return FALSE;
11084 #else
11085 /* A three-word PLT with no Thumb thunk contains only Arm code,
11086 so only need to output a mapping symbol for the first PLT entry and
11087 entries with thumb thunks. */
11088 if (thumb_refs > 0 || addr == 20)
11089 {
11090 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11091 return FALSE;
11092 }
11093 #endif
11094 }
11095
11096 return TRUE;
11097 }
11098
11099
11100 static bfd_boolean
11101 arm_map_one_stub (struct bfd_hash_entry *gen_entry,
11102 PTR in_arg)
11103 {
11104 struct elf32_arm_stub_hash_entry *stub_entry;
11105 struct bfd_link_info *info;
11106 struct elf32_arm_link_hash_table *htab;
11107 asection *stub_sec;
11108 bfd_vma addr;
11109
11110 /* Massage our args to the form they really have. */
11111 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11112
11113 output_arch_syminfo *osi = (output_arch_syminfo *) in_arg;
11114 info = osi->info;
11115
11116 htab = elf32_arm_hash_table (info);
11117 stub_sec = stub_entry->stub_sec;
11118
11119 /* Ensure this stub is attached to the current section being
11120 processed */
11121 if (stub_sec != osi->sec)
11122 return TRUE;
11123
11124 addr = (bfd_vma)stub_entry->stub_offset;
11125
11126 switch(stub_entry->stub_type) {
11127 case arm_stub_long_branch:
11128 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11129 return FALSE;
11130 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
11131 return FALSE;
11132 break;
11133 case arm_thumb_v4t_stub_long_branch:
11134 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11135 return FALSE;
11136 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
11137 return FALSE;
11138 break;
11139 case arm_thumb_thumb_stub_long_branch:
11140 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr))
11141 return FALSE;
11142 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
11143 return FALSE;
11144 break;
11145 case arm_thumb_arm_v4t_stub_long_branch:
11146 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr))
11147 return FALSE;
11148 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 8))
11149 return FALSE;
11150 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 16))
11151 return FALSE;
11152 break;
11153 case arm_stub_pic_long_branch:
11154 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11155 return FALSE;
11156 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
11157 return FALSE;
11158 break;
11159 default:
11160 BFD_FAIL ();
11161 }
11162
11163 return TRUE;
11164 }
11165
11166 /* Output mapping symbols for linker generated sections. */
11167
11168 static bfd_boolean
11169 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11170 struct bfd_link_info *info,
11171 void *finfo,
11172 bfd_boolean (*func) (void *, const char *,
11173 Elf_Internal_Sym *,
11174 asection *,
11175 struct elf_link_hash_entry *))
11176 {
11177 output_arch_syminfo osi;
11178 struct elf32_arm_link_hash_table *htab;
11179 bfd_vma offset;
11180 bfd_size_type size;
11181
11182 htab = elf32_arm_hash_table (info);
11183 check_use_blx (htab);
11184
11185 osi.finfo = finfo;
11186 osi.info = info;
11187 osi.func = func;
11188
11189 /* ARM->Thumb glue. */
11190 if (htab->arm_glue_size > 0)
11191 {
11192 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11193 ARM2THUMB_GLUE_SECTION_NAME);
11194
11195 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11196 (output_bfd, osi.sec->output_section);
11197 if (info->shared || htab->root.is_relocatable_executable
11198 || htab->pic_veneer)
11199 size = ARM2THUMB_PIC_GLUE_SIZE;
11200 else if (htab->use_blx)
11201 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11202 else
11203 size = ARM2THUMB_STATIC_GLUE_SIZE;
11204
11205 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11206 {
11207 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset);
11208 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11209 }
11210 }
11211
11212 /* Thumb->ARM glue. */
11213 if (htab->thumb_glue_size > 0)
11214 {
11215 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11216 THUMB2ARM_GLUE_SECTION_NAME);
11217
11218 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11219 (output_bfd, osi.sec->output_section);
11220 size = THUMB2ARM_GLUE_SIZE;
11221
11222 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11223 {
11224 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_THUMB, offset);
11225 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11226 }
11227 }
11228
11229 /* ARMv4 BX veneers. */
11230 if (htab->bx_glue_size > 0)
11231 {
11232 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11233 ARM_BX_GLUE_SECTION_NAME);
11234
11235 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11236 (output_bfd, osi.sec->output_section);
11237
11238 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0);
11239 }
11240
11241 /* Long calls stubs. */
11242 if (htab->stub_bfd && htab->stub_bfd->sections) {
11243 asection* stub_sec;
11244 for (stub_sec = htab->stub_bfd->sections;
11245 stub_sec != NULL;
11246 stub_sec = stub_sec->next) {
11247
11248 /* Ignore non-stub sections */
11249 if (!strstr(stub_sec->name, STUB_SUFFIX))
11250 continue;
11251
11252 osi.sec = stub_sec;
11253
11254 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11255 (output_bfd, osi.sec->output_section);
11256
11257 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
11258 }
11259 }
11260
11261 /* Finally, output mapping symbols for the PLT. */
11262 if (!htab->splt || htab->splt->size == 0)
11263 return TRUE;
11264
11265 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11266 htab->splt->output_section);
11267 osi.sec = htab->splt;
11268 /* Output mapping symbols for the plt header. SymbianOS does not have a
11269 plt header. */
11270 if (htab->vxworks_p)
11271 {
11272 /* VxWorks shared libraries have no PLT header. */
11273 if (!info->shared)
11274 {
11275 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
11276 return FALSE;
11277 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 12))
11278 return FALSE;
11279 }
11280 }
11281 else if (!htab->symbian_p)
11282 {
11283 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
11284 return FALSE;
11285 #ifndef FOUR_WORD_PLT
11286 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 16))
11287 return FALSE;
11288 #endif
11289 }
11290
11291 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11292 return TRUE;
11293 }
11294
11295 /* Allocate target specific section data. */
11296
11297 static bfd_boolean
11298 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11299 {
11300 if (!sec->used_by_bfd)
11301 {
11302 _arm_elf_section_data *sdata;
11303 bfd_size_type amt = sizeof (*sdata);
11304
11305 sdata = bfd_zalloc (abfd, amt);
11306 if (sdata == NULL)
11307 return FALSE;
11308 sec->used_by_bfd = sdata;
11309 }
11310
11311 record_section_with_arm_elf_section_data (sec);
11312
11313 return _bfd_elf_new_section_hook (abfd, sec);
11314 }
11315
11316
11317 /* Used to order a list of mapping symbols by address. */
11318
11319 static int
11320 elf32_arm_compare_mapping (const void * a, const void * b)
11321 {
11322 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11323 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11324
11325 if (amap->vma > bmap->vma)
11326 return 1;
11327 else if (amap->vma < bmap->vma)
11328 return -1;
11329 else if (amap->type > bmap->type)
11330 /* Ensure results do not depend on the host qsort for objects with
11331 multiple mapping symbols at the same address by sorting on type
11332 after vma. */
11333 return 1;
11334 else if (amap->type < bmap->type)
11335 return -1;
11336 else
11337 return 0;
11338 }
11339
11340
11341 /* Do code byteswapping. Return FALSE afterwards so that the section is
11342 written out as normal. */
11343
11344 static bfd_boolean
11345 elf32_arm_write_section (bfd *output_bfd,
11346 struct bfd_link_info *link_info, asection *sec,
11347 bfd_byte *contents)
11348 {
11349 int mapcount, errcount;
11350 _arm_elf_section_data *arm_data;
11351 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11352 elf32_arm_section_map *map;
11353 elf32_vfp11_erratum_list *errnode;
11354 bfd_vma ptr;
11355 bfd_vma end;
11356 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11357 bfd_byte tmp;
11358 int i;
11359
11360 /* If this section has not been allocated an _arm_elf_section_data
11361 structure then we cannot record anything. */
11362 arm_data = get_arm_elf_section_data (sec);
11363 if (arm_data == NULL)
11364 return FALSE;
11365
11366 mapcount = arm_data->mapcount;
11367 map = arm_data->map;
11368 errcount = arm_data->erratumcount;
11369
11370 if (errcount != 0)
11371 {
11372 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11373
11374 for (errnode = arm_data->erratumlist; errnode != 0;
11375 errnode = errnode->next)
11376 {
11377 bfd_vma index = errnode->vma - offset;
11378
11379 switch (errnode->type)
11380 {
11381 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11382 {
11383 bfd_vma branch_to_veneer;
11384 /* Original condition code of instruction, plus bit mask for
11385 ARM B instruction. */
11386 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11387 | 0x0a000000;
11388
11389 /* The instruction is before the label. */
11390 index -= 4;
11391
11392 /* Above offset included in -4 below. */
11393 branch_to_veneer = errnode->u.b.veneer->vma
11394 - errnode->vma - 4;
11395
11396 if ((signed) branch_to_veneer < -(1 << 25)
11397 || (signed) branch_to_veneer >= (1 << 25))
11398 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11399 "range"), output_bfd);
11400
11401 insn |= (branch_to_veneer >> 2) & 0xffffff;
11402 contents[endianflip ^ index] = insn & 0xff;
11403 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11404 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11405 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11406 }
11407 break;
11408
11409 case VFP11_ERRATUM_ARM_VENEER:
11410 {
11411 bfd_vma branch_from_veneer;
11412 unsigned int insn;
11413
11414 /* Take size of veneer into account. */
11415 branch_from_veneer = errnode->u.v.branch->vma
11416 - errnode->vma - 12;
11417
11418 if ((signed) branch_from_veneer < -(1 << 25)
11419 || (signed) branch_from_veneer >= (1 << 25))
11420 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11421 "range"), output_bfd);
11422
11423 /* Original instruction. */
11424 insn = errnode->u.v.branch->u.b.vfp_insn;
11425 contents[endianflip ^ index] = insn & 0xff;
11426 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11427 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11428 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11429
11430 /* Branch back to insn after original insn. */
11431 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11432 contents[endianflip ^ (index + 4)] = insn & 0xff;
11433 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11434 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11435 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11436 }
11437 break;
11438
11439 default:
11440 abort ();
11441 }
11442 }
11443 }
11444
11445 if (mapcount == 0)
11446 return FALSE;
11447
11448 if (globals->byteswap_code)
11449 {
11450 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
11451
11452 ptr = map[0].vma;
11453 for (i = 0; i < mapcount; i++)
11454 {
11455 if (i == mapcount - 1)
11456 end = sec->size;
11457 else
11458 end = map[i + 1].vma;
11459
11460 switch (map[i].type)
11461 {
11462 case 'a':
11463 /* Byte swap code words. */
11464 while (ptr + 3 < end)
11465 {
11466 tmp = contents[ptr];
11467 contents[ptr] = contents[ptr + 3];
11468 contents[ptr + 3] = tmp;
11469 tmp = contents[ptr + 1];
11470 contents[ptr + 1] = contents[ptr + 2];
11471 contents[ptr + 2] = tmp;
11472 ptr += 4;
11473 }
11474 break;
11475
11476 case 't':
11477 /* Byte swap code halfwords. */
11478 while (ptr + 1 < end)
11479 {
11480 tmp = contents[ptr];
11481 contents[ptr] = contents[ptr + 1];
11482 contents[ptr + 1] = tmp;
11483 ptr += 2;
11484 }
11485 break;
11486
11487 case 'd':
11488 /* Leave data alone. */
11489 break;
11490 }
11491 ptr = end;
11492 }
11493 }
11494
11495 free (map);
11496 arm_data->mapcount = 0;
11497 arm_data->mapsize = 0;
11498 arm_data->map = NULL;
11499 unrecord_section_with_arm_elf_section_data (sec);
11500
11501 return FALSE;
11502 }
11503
11504 static void
11505 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
11506 asection * sec,
11507 void * ignore ATTRIBUTE_UNUSED)
11508 {
11509 unrecord_section_with_arm_elf_section_data (sec);
11510 }
11511
11512 static bfd_boolean
11513 elf32_arm_close_and_cleanup (bfd * abfd)
11514 {
11515 if (abfd->sections)
11516 bfd_map_over_sections (abfd,
11517 unrecord_section_via_map_over_sections,
11518 NULL);
11519
11520 return _bfd_elf_close_and_cleanup (abfd);
11521 }
11522
11523 static bfd_boolean
11524 elf32_arm_bfd_free_cached_info (bfd * abfd)
11525 {
11526 if (abfd->sections)
11527 bfd_map_over_sections (abfd,
11528 unrecord_section_via_map_over_sections,
11529 NULL);
11530
11531 return _bfd_free_cached_info (abfd);
11532 }
11533
11534 /* Display STT_ARM_TFUNC symbols as functions. */
11535
11536 static void
11537 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
11538 asymbol *asym)
11539 {
11540 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
11541
11542 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
11543 elfsym->symbol.flags |= BSF_FUNCTION;
11544 }
11545
11546
11547 /* Mangle thumb function symbols as we read them in. */
11548
11549 static bfd_boolean
11550 elf32_arm_swap_symbol_in (bfd * abfd,
11551 const void *psrc,
11552 const void *pshn,
11553 Elf_Internal_Sym *dst)
11554 {
11555 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
11556 return FALSE;
11557
11558 /* New EABI objects mark thumb function symbols by setting the low bit of
11559 the address. Turn these into STT_ARM_TFUNC. */
11560 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
11561 && (dst->st_value & 1))
11562 {
11563 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
11564 dst->st_value &= ~(bfd_vma) 1;
11565 }
11566 return TRUE;
11567 }
11568
11569
11570 /* Mangle thumb function symbols as we write them out. */
11571
11572 static void
11573 elf32_arm_swap_symbol_out (bfd *abfd,
11574 const Elf_Internal_Sym *src,
11575 void *cdst,
11576 void *shndx)
11577 {
11578 Elf_Internal_Sym newsym;
11579
11580 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11581 of the address set, as per the new EABI. We do this unconditionally
11582 because objcopy does not set the elf header flags until after
11583 it writes out the symbol table. */
11584 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
11585 {
11586 newsym = *src;
11587 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
11588 if (newsym.st_shndx != SHN_UNDEF)
11589 {
11590 /* Do this only for defined symbols. At link type, the static
11591 linker will simulate the work of dynamic linker of resolving
11592 symbols and will carry over the thumbness of found symbols to
11593 the output symbol table. It's not clear how it happens, but
11594 the thumbness of undefined symbols can well be different at
11595 runtime, and writing '1' for them will be confusing for users
11596 and possibly for dynamic linker itself.
11597 */
11598 newsym.st_value |= 1;
11599 }
11600
11601 src = &newsym;
11602 }
11603 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
11604 }
11605
11606 /* Add the PT_ARM_EXIDX program header. */
11607
11608 static bfd_boolean
11609 elf32_arm_modify_segment_map (bfd *abfd,
11610 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11611 {
11612 struct elf_segment_map *m;
11613 asection *sec;
11614
11615 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11616 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11617 {
11618 /* If there is already a PT_ARM_EXIDX header, then we do not
11619 want to add another one. This situation arises when running
11620 "strip"; the input binary already has the header. */
11621 m = elf_tdata (abfd)->segment_map;
11622 while (m && m->p_type != PT_ARM_EXIDX)
11623 m = m->next;
11624 if (!m)
11625 {
11626 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
11627 if (m == NULL)
11628 return FALSE;
11629 m->p_type = PT_ARM_EXIDX;
11630 m->count = 1;
11631 m->sections[0] = sec;
11632
11633 m->next = elf_tdata (abfd)->segment_map;
11634 elf_tdata (abfd)->segment_map = m;
11635 }
11636 }
11637
11638 return TRUE;
11639 }
11640
11641 /* We may add a PT_ARM_EXIDX program header. */
11642
11643 static int
11644 elf32_arm_additional_program_headers (bfd *abfd,
11645 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11646 {
11647 asection *sec;
11648
11649 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11650 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11651 return 1;
11652 else
11653 return 0;
11654 }
11655
11656 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11657
11658 static bfd_boolean
11659 elf32_arm_is_function_type (unsigned int type)
11660 {
11661 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
11662 }
11663
11664 /* We use this to override swap_symbol_in and swap_symbol_out. */
11665 const struct elf_size_info elf32_arm_size_info =
11666 {
11667 sizeof (Elf32_External_Ehdr),
11668 sizeof (Elf32_External_Phdr),
11669 sizeof (Elf32_External_Shdr),
11670 sizeof (Elf32_External_Rel),
11671 sizeof (Elf32_External_Rela),
11672 sizeof (Elf32_External_Sym),
11673 sizeof (Elf32_External_Dyn),
11674 sizeof (Elf_External_Note),
11675 4,
11676 1,
11677 32, 2,
11678 ELFCLASS32, EV_CURRENT,
11679 bfd_elf32_write_out_phdrs,
11680 bfd_elf32_write_shdrs_and_ehdr,
11681 bfd_elf32_checksum_contents,
11682 bfd_elf32_write_relocs,
11683 elf32_arm_swap_symbol_in,
11684 elf32_arm_swap_symbol_out,
11685 bfd_elf32_slurp_reloc_table,
11686 bfd_elf32_slurp_symbol_table,
11687 bfd_elf32_swap_dyn_in,
11688 bfd_elf32_swap_dyn_out,
11689 bfd_elf32_swap_reloc_in,
11690 bfd_elf32_swap_reloc_out,
11691 bfd_elf32_swap_reloca_in,
11692 bfd_elf32_swap_reloca_out
11693 };
11694
11695 #define ELF_ARCH bfd_arch_arm
11696 #define ELF_MACHINE_CODE EM_ARM
11697 #ifdef __QNXTARGET__
11698 #define ELF_MAXPAGESIZE 0x1000
11699 #else
11700 #define ELF_MAXPAGESIZE 0x8000
11701 #endif
11702 #define ELF_MINPAGESIZE 0x1000
11703 #define ELF_COMMONPAGESIZE 0x1000
11704
11705 #define bfd_elf32_mkobject elf32_arm_mkobject
11706
11707 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11708 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11709 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11710 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11711 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11712 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11713 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11714 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11715 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11716 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11717 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11718 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11719 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11720 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11721
11722 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11723 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11724 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11725 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11726 #define elf_backend_check_relocs elf32_arm_check_relocs
11727 #define elf_backend_relocate_section elf32_arm_relocate_section
11728 #define elf_backend_write_section elf32_arm_write_section
11729 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11730 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11731 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11732 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11733 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11734 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11735 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11736 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11737 #define elf_backend_object_p elf32_arm_object_p
11738 #define elf_backend_section_flags elf32_arm_section_flags
11739 #define elf_backend_fake_sections elf32_arm_fake_sections
11740 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11741 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11742 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11743 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11744 #define elf_backend_size_info elf32_arm_size_info
11745 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11746 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11747 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11748 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11749 #define elf_backend_is_function_type elf32_arm_is_function_type
11750
11751 #define elf_backend_can_refcount 1
11752 #define elf_backend_can_gc_sections 1
11753 #define elf_backend_plt_readonly 1
11754 #define elf_backend_want_got_plt 1
11755 #define elf_backend_want_plt_sym 0
11756 #define elf_backend_may_use_rel_p 1
11757 #define elf_backend_may_use_rela_p 0
11758 #define elf_backend_default_use_rela_p 0
11759
11760 #define elf_backend_got_header_size 12
11761
11762 #undef elf_backend_obj_attrs_vendor
11763 #define elf_backend_obj_attrs_vendor "aeabi"
11764 #undef elf_backend_obj_attrs_section
11765 #define elf_backend_obj_attrs_section ".ARM.attributes"
11766 #undef elf_backend_obj_attrs_arg_type
11767 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11768 #undef elf_backend_obj_attrs_section_type
11769 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11770
11771 #include "elf32-target.h"
11772
11773 /* VxWorks Targets. */
11774
11775 #undef TARGET_LITTLE_SYM
11776 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11777 #undef TARGET_LITTLE_NAME
11778 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11779 #undef TARGET_BIG_SYM
11780 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11781 #undef TARGET_BIG_NAME
11782 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11783
11784 /* Like elf32_arm_link_hash_table_create -- but overrides
11785 appropriately for VxWorks. */
11786
11787 static struct bfd_link_hash_table *
11788 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
11789 {
11790 struct bfd_link_hash_table *ret;
11791
11792 ret = elf32_arm_link_hash_table_create (abfd);
11793 if (ret)
11794 {
11795 struct elf32_arm_link_hash_table *htab
11796 = (struct elf32_arm_link_hash_table *) ret;
11797 htab->use_rel = 0;
11798 htab->vxworks_p = 1;
11799 }
11800 return ret;
11801 }
11802
11803 static void
11804 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
11805 {
11806 elf32_arm_final_write_processing (abfd, linker);
11807 elf_vxworks_final_write_processing (abfd, linker);
11808 }
11809
11810 #undef elf32_bed
11811 #define elf32_bed elf32_arm_vxworks_bed
11812
11813 #undef bfd_elf32_bfd_link_hash_table_create
11814 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
11815 #undef elf_backend_add_symbol_hook
11816 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
11817 #undef elf_backend_final_write_processing
11818 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
11819 #undef elf_backend_emit_relocs
11820 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
11821
11822 #undef elf_backend_may_use_rel_p
11823 #define elf_backend_may_use_rel_p 0
11824 #undef elf_backend_may_use_rela_p
11825 #define elf_backend_may_use_rela_p 1
11826 #undef elf_backend_default_use_rela_p
11827 #define elf_backend_default_use_rela_p 1
11828 #undef elf_backend_want_plt_sym
11829 #define elf_backend_want_plt_sym 1
11830 #undef ELF_MAXPAGESIZE
11831 #define ELF_MAXPAGESIZE 0x1000
11832
11833 #include "elf32-target.h"
11834
11835
11836 /* Symbian OS Targets. */
11837
11838 #undef TARGET_LITTLE_SYM
11839 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
11840 #undef TARGET_LITTLE_NAME
11841 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
11842 #undef TARGET_BIG_SYM
11843 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
11844 #undef TARGET_BIG_NAME
11845 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
11846
11847 /* Like elf32_arm_link_hash_table_create -- but overrides
11848 appropriately for Symbian OS. */
11849
11850 static struct bfd_link_hash_table *
11851 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
11852 {
11853 struct bfd_link_hash_table *ret;
11854
11855 ret = elf32_arm_link_hash_table_create (abfd);
11856 if (ret)
11857 {
11858 struct elf32_arm_link_hash_table *htab
11859 = (struct elf32_arm_link_hash_table *)ret;
11860 /* There is no PLT header for Symbian OS. */
11861 htab->plt_header_size = 0;
11862 /* The PLT entries are each one instruction and one word. */
11863 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
11864 htab->symbian_p = 1;
11865 /* Symbian uses armv5t or above, so use_blx is always true. */
11866 htab->use_blx = 1;
11867 htab->root.is_relocatable_executable = 1;
11868 }
11869 return ret;
11870 }
11871
11872 static const struct bfd_elf_special_section
11873 elf32_arm_symbian_special_sections[] =
11874 {
11875 /* In a BPABI executable, the dynamic linking sections do not go in
11876 the loadable read-only segment. The post-linker may wish to
11877 refer to these sections, but they are not part of the final
11878 program image. */
11879 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
11880 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
11881 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
11882 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
11883 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
11884 /* These sections do not need to be writable as the SymbianOS
11885 postlinker will arrange things so that no dynamic relocation is
11886 required. */
11887 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
11888 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
11889 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
11890 { NULL, 0, 0, 0, 0 }
11891 };
11892
11893 static void
11894 elf32_arm_symbian_begin_write_processing (bfd *abfd,
11895 struct bfd_link_info *link_info)
11896 {
11897 /* BPABI objects are never loaded directly by an OS kernel; they are
11898 processed by a postlinker first, into an OS-specific format. If
11899 the D_PAGED bit is set on the file, BFD will align segments on
11900 page boundaries, so that an OS can directly map the file. With
11901 BPABI objects, that just results in wasted space. In addition,
11902 because we clear the D_PAGED bit, map_sections_to_segments will
11903 recognize that the program headers should not be mapped into any
11904 loadable segment. */
11905 abfd->flags &= ~D_PAGED;
11906 elf32_arm_begin_write_processing (abfd, link_info);
11907 }
11908
11909 static bfd_boolean
11910 elf32_arm_symbian_modify_segment_map (bfd *abfd,
11911 struct bfd_link_info *info)
11912 {
11913 struct elf_segment_map *m;
11914 asection *dynsec;
11915
11916 /* BPABI shared libraries and executables should have a PT_DYNAMIC
11917 segment. However, because the .dynamic section is not marked
11918 with SEC_LOAD, the generic ELF code will not create such a
11919 segment. */
11920 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
11921 if (dynsec)
11922 {
11923 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11924 if (m->p_type == PT_DYNAMIC)
11925 break;
11926
11927 if (m == NULL)
11928 {
11929 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
11930 m->next = elf_tdata (abfd)->segment_map;
11931 elf_tdata (abfd)->segment_map = m;
11932 }
11933 }
11934
11935 /* Also call the generic arm routine. */
11936 return elf32_arm_modify_segment_map (abfd, info);
11937 }
11938
11939 /* Return address for Ith PLT stub in section PLT, for relocation REL
11940 or (bfd_vma) -1 if it should not be included. */
11941
11942 static bfd_vma
11943 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
11944 const arelent *rel ATTRIBUTE_UNUSED)
11945 {
11946 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
11947 }
11948
11949
11950 #undef elf32_bed
11951 #define elf32_bed elf32_arm_symbian_bed
11952
11953 /* The dynamic sections are not allocated on SymbianOS; the postlinker
11954 will process them and then discard them. */
11955 #undef ELF_DYNAMIC_SEC_FLAGS
11956 #define ELF_DYNAMIC_SEC_FLAGS \
11957 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
11958
11959 #undef elf_backend_add_symbol_hook
11960 #undef elf_backend_emit_relocs
11961
11962 #undef bfd_elf32_bfd_link_hash_table_create
11963 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
11964 #undef elf_backend_special_sections
11965 #define elf_backend_special_sections elf32_arm_symbian_special_sections
11966 #undef elf_backend_begin_write_processing
11967 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
11968 #undef elf_backend_final_write_processing
11969 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11970
11971 #undef elf_backend_modify_segment_map
11972 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
11973
11974 /* There is no .got section for BPABI objects, and hence no header. */
11975 #undef elf_backend_got_header_size
11976 #define elf_backend_got_header_size 0
11977
11978 /* Similarly, there is no .got.plt section. */
11979 #undef elf_backend_want_got_plt
11980 #define elf_backend_want_got_plt 0
11981
11982 #undef elf_backend_plt_sym_val
11983 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
11984
11985 #undef elf_backend_may_use_rel_p
11986 #define elf_backend_may_use_rel_p 1
11987 #undef elf_backend_may_use_rela_p
11988 #define elf_backend_may_use_rela_p 0
11989 #undef elf_backend_default_use_rela_p
11990 #define elf_backend_default_use_rela_p 0
11991 #undef elf_backend_want_plt_sym
11992 #define elf_backend_want_plt_sym 0
11993 #undef ELF_MAXPAGESIZE
11994 #define ELF_MAXPAGESIZE 0x8000
11995
11996 #include "elf32-target.h"
This page took 0.27414 seconds and 4 git commands to generate.