6a9e60fcab9fdcbf79adfad877a54fb06e9b922e
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998-2013 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 0, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 bfd_elf_generic_reloc, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 };
1693
1694 /* 160 onwards: */
1695 static reloc_howto_type elf32_arm_howto_table_2[1] =
1696 {
1697 HOWTO (R_ARM_IRELATIVE, /* type */
1698 0, /* rightshift */
1699 2, /* size (0 = byte, 1 = short, 2 = long) */
1700 32, /* bitsize */
1701 FALSE, /* pc_relative */
1702 0, /* bitpos */
1703 complain_overflow_bitfield,/* complain_on_overflow */
1704 bfd_elf_generic_reloc, /* special_function */
1705 "R_ARM_IRELATIVE", /* name */
1706 TRUE, /* partial_inplace */
1707 0xffffffff, /* src_mask */
1708 0xffffffff, /* dst_mask */
1709 FALSE) /* pcrel_offset */
1710 };
1711
1712 /* 249-255 extended, currently unused, relocations: */
1713 static reloc_howto_type elf32_arm_howto_table_3[4] =
1714 {
1715 HOWTO (R_ARM_RREL32, /* type */
1716 0, /* rightshift */
1717 0, /* size (0 = byte, 1 = short, 2 = long) */
1718 0, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_dont,/* complain_on_overflow */
1722 bfd_elf_generic_reloc, /* special_function */
1723 "R_ARM_RREL32", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 HOWTO (R_ARM_RABS32, /* type */
1730 0, /* rightshift */
1731 0, /* size (0 = byte, 1 = short, 2 = long) */
1732 0, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont,/* complain_on_overflow */
1736 bfd_elf_generic_reloc, /* special_function */
1737 "R_ARM_RABS32", /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 0, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 HOWTO (R_ARM_RPC24, /* type */
1744 0, /* rightshift */
1745 0, /* size (0 = byte, 1 = short, 2 = long) */
1746 0, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_dont,/* complain_on_overflow */
1750 bfd_elf_generic_reloc, /* special_function */
1751 "R_ARM_RPC24", /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 0, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 HOWTO (R_ARM_RBASE, /* type */
1758 0, /* rightshift */
1759 0, /* size (0 = byte, 1 = short, 2 = long) */
1760 0, /* bitsize */
1761 FALSE, /* pc_relative */
1762 0, /* bitpos */
1763 complain_overflow_dont,/* complain_on_overflow */
1764 bfd_elf_generic_reloc, /* special_function */
1765 "R_ARM_RBASE", /* name */
1766 FALSE, /* partial_inplace */
1767 0, /* src_mask */
1768 0, /* dst_mask */
1769 FALSE) /* pcrel_offset */
1770 };
1771
1772 static reloc_howto_type *
1773 elf32_arm_howto_from_type (unsigned int r_type)
1774 {
1775 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1776 return &elf32_arm_howto_table_1[r_type];
1777
1778 if (r_type == R_ARM_IRELATIVE)
1779 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1780
1781 if (r_type >= R_ARM_RREL32
1782 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1783 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1784
1785 return NULL;
1786 }
1787
1788 static void
1789 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1790 Elf_Internal_Rela * elf_reloc)
1791 {
1792 unsigned int r_type;
1793
1794 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1795 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1796 }
1797
1798 struct elf32_arm_reloc_map
1799 {
1800 bfd_reloc_code_real_type bfd_reloc_val;
1801 unsigned char elf_reloc_val;
1802 };
1803
1804 /* All entries in this list must also be present in elf32_arm_howto_table. */
1805 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1806 {
1807 {BFD_RELOC_NONE, R_ARM_NONE},
1808 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1809 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1810 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1811 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1812 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1813 {BFD_RELOC_32, R_ARM_ABS32},
1814 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1815 {BFD_RELOC_8, R_ARM_ABS8},
1816 {BFD_RELOC_16, R_ARM_ABS16},
1817 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1818 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1825 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1826 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1827 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1828 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1829 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1830 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1831 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1832 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1833 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1834 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1835 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1836 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1837 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1838 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1839 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1840 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1841 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1842 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1843 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1844 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1845 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1846 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1847 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1848 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1849 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1850 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1851 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1852 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1853 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1854 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1855 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1856 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1858 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1860 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1861 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1862 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1863 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1864 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1865 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1866 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1867 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1868 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1869 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1870 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1871 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1872 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1873 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1874 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1875 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1876 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1877 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1878 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1879 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1880 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1881 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1882 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1883 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1884 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1885 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1886 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1887 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1888 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1889 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1890 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1891 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1892 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1893 };
1894
1895 static reloc_howto_type *
1896 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1897 bfd_reloc_code_real_type code)
1898 {
1899 unsigned int i;
1900
1901 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1902 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1903 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1904
1905 return NULL;
1906 }
1907
1908 static reloc_howto_type *
1909 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1910 const char *r_name)
1911 {
1912 unsigned int i;
1913
1914 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1915 if (elf32_arm_howto_table_1[i].name != NULL
1916 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1917 return &elf32_arm_howto_table_1[i];
1918
1919 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1920 if (elf32_arm_howto_table_2[i].name != NULL
1921 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1922 return &elf32_arm_howto_table_2[i];
1923
1924 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1925 if (elf32_arm_howto_table_3[i].name != NULL
1926 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1927 return &elf32_arm_howto_table_3[i];
1928
1929 return NULL;
1930 }
1931
1932 /* Support for core dump NOTE sections. */
1933
1934 static bfd_boolean
1935 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1936 {
1937 int offset;
1938 size_t size;
1939
1940 switch (note->descsz)
1941 {
1942 default:
1943 return FALSE;
1944
1945 case 148: /* Linux/ARM 32-bit. */
1946 /* pr_cursig */
1947 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1948
1949 /* pr_pid */
1950 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1951
1952 /* pr_reg */
1953 offset = 72;
1954 size = 72;
1955
1956 break;
1957 }
1958
1959 /* Make a ".reg/999" section. */
1960 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1961 size, note->descpos + offset);
1962 }
1963
1964 static bfd_boolean
1965 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1966 {
1967 switch (note->descsz)
1968 {
1969 default:
1970 return FALSE;
1971
1972 case 124: /* Linux/ARM elf_prpsinfo. */
1973 elf_tdata (abfd)->core->pid
1974 = bfd_get_32 (abfd, note->descdata + 12);
1975 elf_tdata (abfd)->core->program
1976 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1977 elf_tdata (abfd)->core->command
1978 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1979 }
1980
1981 /* Note that for some reason, a spurious space is tacked
1982 onto the end of the args in some (at least one anyway)
1983 implementations, so strip it off if it exists. */
1984 {
1985 char *command = elf_tdata (abfd)->core->command;
1986 int n = strlen (command);
1987
1988 if (0 < n && command[n - 1] == ' ')
1989 command[n - 1] = '\0';
1990 }
1991
1992 return TRUE;
1993 }
1994
1995 static char *
1996 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1997 int note_type, ...)
1998 {
1999 switch (note_type)
2000 {
2001 default:
2002 return NULL;
2003
2004 case NT_PRPSINFO:
2005 {
2006 char data[124];
2007 va_list ap;
2008
2009 va_start (ap, note_type);
2010 memset (data, 0, sizeof (data));
2011 strncpy (data + 28, va_arg (ap, const char *), 16);
2012 strncpy (data + 44, va_arg (ap, const char *), 80);
2013 va_end (ap);
2014
2015 return elfcore_write_note (abfd, buf, bufsiz,
2016 "CORE", note_type, data, sizeof (data));
2017 }
2018
2019 case NT_PRSTATUS:
2020 {
2021 char data[148];
2022 va_list ap;
2023 long pid;
2024 int cursig;
2025 const void *greg;
2026
2027 va_start (ap, note_type);
2028 memset (data, 0, sizeof (data));
2029 pid = va_arg (ap, long);
2030 bfd_put_32 (abfd, pid, data + 24);
2031 cursig = va_arg (ap, int);
2032 bfd_put_16 (abfd, cursig, data + 12);
2033 greg = va_arg (ap, const void *);
2034 memcpy (data + 72, greg, 72);
2035 va_end (ap);
2036
2037 return elfcore_write_note (abfd, buf, bufsiz,
2038 "CORE", note_type, data, sizeof (data));
2039 }
2040 }
2041 }
2042
2043 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
2044 #define TARGET_LITTLE_NAME "elf32-littlearm"
2045 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
2046 #define TARGET_BIG_NAME "elf32-bigarm"
2047
2048 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2049 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2050 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2051
2052 typedef unsigned long int insn32;
2053 typedef unsigned short int insn16;
2054
2055 /* In lieu of proper flags, assume all EABIv4 or later objects are
2056 interworkable. */
2057 #define INTERWORK_FLAG(abfd) \
2058 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2059 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2060 || ((abfd)->flags & BFD_LINKER_CREATED))
2061
2062 /* The linker script knows the section names for placement.
2063 The entry_names are used to do simple name mangling on the stubs.
2064 Given a function name, and its type, the stub can be found. The
2065 name can be changed. The only requirement is the %s be present. */
2066 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2067 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2068
2069 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2070 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2071
2072 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2073 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2074
2075 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2076 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2077
2078 #define STUB_ENTRY_NAME "__%s_veneer"
2079
2080 /* The name of the dynamic interpreter. This is put in the .interp
2081 section. */
2082 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2083
2084 static const unsigned long tls_trampoline [] =
2085 {
2086 0xe08e0000, /* add r0, lr, r0 */
2087 0xe5901004, /* ldr r1, [r0,#4] */
2088 0xe12fff11, /* bx r1 */
2089 };
2090
2091 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2092 {
2093 0xe52d2004, /* push {r2} */
2094 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2095 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2096 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2097 0xe081100f, /* 2: add r1, pc */
2098 0xe12fff12, /* bx r2 */
2099 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2100 + dl_tlsdesc_lazy_resolver(GOT) */
2101 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2102 };
2103
2104 #ifdef FOUR_WORD_PLT
2105
2106 /* The first entry in a procedure linkage table looks like
2107 this. It is set up so that any shared library function that is
2108 called before the relocation has been set up calls the dynamic
2109 linker first. */
2110 static const bfd_vma elf32_arm_plt0_entry [] =
2111 {
2112 0xe52de004, /* str lr, [sp, #-4]! */
2113 0xe59fe010, /* ldr lr, [pc, #16] */
2114 0xe08fe00e, /* add lr, pc, lr */
2115 0xe5bef008, /* ldr pc, [lr, #8]! */
2116 };
2117
2118 /* Subsequent entries in a procedure linkage table look like
2119 this. */
2120 static const bfd_vma elf32_arm_plt_entry [] =
2121 {
2122 0xe28fc600, /* add ip, pc, #NN */
2123 0xe28cca00, /* add ip, ip, #NN */
2124 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2125 0x00000000, /* unused */
2126 };
2127
2128 #else
2129
2130 /* The first entry in a procedure linkage table looks like
2131 this. It is set up so that any shared library function that is
2132 called before the relocation has been set up calls the dynamic
2133 linker first. */
2134 static const bfd_vma elf32_arm_plt0_entry [] =
2135 {
2136 0xe52de004, /* str lr, [sp, #-4]! */
2137 0xe59fe004, /* ldr lr, [pc, #4] */
2138 0xe08fe00e, /* add lr, pc, lr */
2139 0xe5bef008, /* ldr pc, [lr, #8]! */
2140 0x00000000, /* &GOT[0] - . */
2141 };
2142
2143 /* Subsequent entries in a procedure linkage table look like
2144 this. */
2145 static const bfd_vma elf32_arm_plt_entry [] =
2146 {
2147 0xe28fc600, /* add ip, pc, #0xNN00000 */
2148 0xe28cca00, /* add ip, ip, #0xNN000 */
2149 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2150 };
2151
2152 #endif
2153
2154 /* The format of the first entry in the procedure linkage table
2155 for a VxWorks executable. */
2156 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2157 {
2158 0xe52dc008, /* str ip,[sp,#-8]! */
2159 0xe59fc000, /* ldr ip,[pc] */
2160 0xe59cf008, /* ldr pc,[ip,#8] */
2161 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2162 };
2163
2164 /* The format of subsequent entries in a VxWorks executable. */
2165 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2166 {
2167 0xe59fc000, /* ldr ip,[pc] */
2168 0xe59cf000, /* ldr pc,[ip] */
2169 0x00000000, /* .long @got */
2170 0xe59fc000, /* ldr ip,[pc] */
2171 0xea000000, /* b _PLT */
2172 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2173 };
2174
2175 /* The format of entries in a VxWorks shared library. */
2176 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2177 {
2178 0xe59fc000, /* ldr ip,[pc] */
2179 0xe79cf009, /* ldr pc,[ip,r9] */
2180 0x00000000, /* .long @got */
2181 0xe59fc000, /* ldr ip,[pc] */
2182 0xe599f008, /* ldr pc,[r9,#8] */
2183 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2184 };
2185
2186 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2187 #define PLT_THUMB_STUB_SIZE 4
2188 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2189 {
2190 0x4778, /* bx pc */
2191 0x46c0 /* nop */
2192 };
2193
2194 /* The entries in a PLT when using a DLL-based target with multiple
2195 address spaces. */
2196 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2197 {
2198 0xe51ff004, /* ldr pc, [pc, #-4] */
2199 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2200 };
2201
2202 /* The first entry in a procedure linkage table looks like
2203 this. It is set up so that any shared library function that is
2204 called before the relocation has been set up calls the dynamic
2205 linker first. */
2206 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2207 {
2208 /* First bundle: */
2209 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2210 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2211 0xe08cc00f, /* add ip, ip, pc */
2212 0xe52dc008, /* str ip, [sp, #-8]! */
2213 /* Second bundle: */
2214 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2215 0xe59cc000, /* ldr ip, [ip] */
2216 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2217 0xe12fff1c, /* bx ip */
2218 /* Third bundle: */
2219 0xe320f000, /* nop */
2220 0xe320f000, /* nop */
2221 0xe320f000, /* nop */
2222 /* .Lplt_tail: */
2223 0xe50dc004, /* str ip, [sp, #-4] */
2224 /* Fourth bundle: */
2225 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2226 0xe59cc000, /* ldr ip, [ip] */
2227 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2228 0xe12fff1c, /* bx ip */
2229 };
2230 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2231
2232 /* Subsequent entries in a procedure linkage table look like this. */
2233 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2234 {
2235 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2236 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2237 0xe08cc00f, /* add ip, ip, pc */
2238 0xea000000, /* b .Lplt_tail */
2239 };
2240
2241 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2242 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2243 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2244 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2245 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2246 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2247
2248 enum stub_insn_type
2249 {
2250 THUMB16_TYPE = 1,
2251 THUMB32_TYPE,
2252 ARM_TYPE,
2253 DATA_TYPE
2254 };
2255
2256 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2257 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2258 is inserted in arm_build_one_stub(). */
2259 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2260 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2261 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2262 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2263 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2264 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2265
2266 typedef struct
2267 {
2268 bfd_vma data;
2269 enum stub_insn_type type;
2270 unsigned int r_type;
2271 int reloc_addend;
2272 } insn_sequence;
2273
2274 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2275 to reach the stub if necessary. */
2276 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2277 {
2278 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2279 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2280 };
2281
2282 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2283 available. */
2284 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2285 {
2286 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2287 ARM_INSN (0xe12fff1c), /* bx ip */
2288 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2289 };
2290
2291 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2292 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2293 {
2294 THUMB16_INSN (0xb401), /* push {r0} */
2295 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2296 THUMB16_INSN (0x4684), /* mov ip, r0 */
2297 THUMB16_INSN (0xbc01), /* pop {r0} */
2298 THUMB16_INSN (0x4760), /* bx ip */
2299 THUMB16_INSN (0xbf00), /* nop */
2300 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2301 };
2302
2303 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2304 allowed. */
2305 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2306 {
2307 THUMB16_INSN (0x4778), /* bx pc */
2308 THUMB16_INSN (0x46c0), /* nop */
2309 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2310 ARM_INSN (0xe12fff1c), /* bx ip */
2311 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2312 };
2313
2314 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2315 available. */
2316 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2317 {
2318 THUMB16_INSN (0x4778), /* bx pc */
2319 THUMB16_INSN (0x46c0), /* nop */
2320 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2321 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2322 };
2323
2324 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2325 one, when the destination is close enough. */
2326 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2327 {
2328 THUMB16_INSN (0x4778), /* bx pc */
2329 THUMB16_INSN (0x46c0), /* nop */
2330 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2331 };
2332
2333 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2334 blx to reach the stub if necessary. */
2335 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2336 {
2337 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2338 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2339 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2340 };
2341
2342 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2343 blx to reach the stub if necessary. We can not add into pc;
2344 it is not guaranteed to mode switch (different in ARMv6 and
2345 ARMv7). */
2346 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2347 {
2348 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2349 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2350 ARM_INSN (0xe12fff1c), /* bx ip */
2351 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2352 };
2353
2354 /* V4T ARM -> ARM long branch stub, PIC. */
2355 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2356 {
2357 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2358 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2359 ARM_INSN (0xe12fff1c), /* bx ip */
2360 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2361 };
2362
2363 /* V4T Thumb -> ARM long branch stub, PIC. */
2364 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2365 {
2366 THUMB16_INSN (0x4778), /* bx pc */
2367 THUMB16_INSN (0x46c0), /* nop */
2368 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2369 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2370 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2371 };
2372
2373 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2374 architectures. */
2375 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2376 {
2377 THUMB16_INSN (0xb401), /* push {r0} */
2378 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2379 THUMB16_INSN (0x46fc), /* mov ip, pc */
2380 THUMB16_INSN (0x4484), /* add ip, r0 */
2381 THUMB16_INSN (0xbc01), /* pop {r0} */
2382 THUMB16_INSN (0x4760), /* bx ip */
2383 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2384 };
2385
2386 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2387 allowed. */
2388 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2389 {
2390 THUMB16_INSN (0x4778), /* bx pc */
2391 THUMB16_INSN (0x46c0), /* nop */
2392 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2393 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2394 ARM_INSN (0xe12fff1c), /* bx ip */
2395 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2396 };
2397
2398 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2399 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2400 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2401 {
2402 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2403 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2404 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2405 };
2406
2407 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2408 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2409 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2410 {
2411 THUMB16_INSN (0x4778), /* bx pc */
2412 THUMB16_INSN (0x46c0), /* nop */
2413 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2414 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2415 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2416 };
2417
2418 /* NaCl ARM -> ARM long branch stub. */
2419 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2420 {
2421 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2422 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2423 ARM_INSN (0xe12fff1c), /* bx ip */
2424 ARM_INSN (0xe320f000), /* nop */
2425 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2426 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2427 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2428 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2429 };
2430
2431 /* NaCl ARM -> ARM long branch stub, PIC. */
2432 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2433 {
2434 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2435 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2436 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2437 ARM_INSN (0xe12fff1c), /* bx ip */
2438 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2439 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2440 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2441 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2442 };
2443
2444
2445 /* Cortex-A8 erratum-workaround stubs. */
2446
2447 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2448 can't use a conditional branch to reach this stub). */
2449
2450 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2451 {
2452 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2453 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2454 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2455 };
2456
2457 /* Stub used for b.w and bl.w instructions. */
2458
2459 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2460 {
2461 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2462 };
2463
2464 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2465 {
2466 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2467 };
2468
2469 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2470 instruction (which switches to ARM mode) to point to this stub. Jump to the
2471 real destination using an ARM-mode branch. */
2472
2473 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2474 {
2475 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2476 };
2477
2478 /* For each section group there can be a specially created linker section
2479 to hold the stubs for that group. The name of the stub section is based
2480 upon the name of another section within that group with the suffix below
2481 applied.
2482
2483 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2484 create what appeared to be a linker stub section when it actually
2485 contained user code/data. For example, consider this fragment:
2486
2487 const char * stubborn_problems[] = { "np" };
2488
2489 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2490 section called:
2491
2492 .data.rel.local.stubborn_problems
2493
2494 This then causes problems in arm32_arm_build_stubs() as it triggers:
2495
2496 // Ignore non-stub sections.
2497 if (!strstr (stub_sec->name, STUB_SUFFIX))
2498 continue;
2499
2500 And so the section would be ignored instead of being processed. Hence
2501 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2502 C identifier. */
2503 #define STUB_SUFFIX ".__stub"
2504
2505 /* One entry per long/short branch stub defined above. */
2506 #define DEF_STUBS \
2507 DEF_STUB(long_branch_any_any) \
2508 DEF_STUB(long_branch_v4t_arm_thumb) \
2509 DEF_STUB(long_branch_thumb_only) \
2510 DEF_STUB(long_branch_v4t_thumb_thumb) \
2511 DEF_STUB(long_branch_v4t_thumb_arm) \
2512 DEF_STUB(short_branch_v4t_thumb_arm) \
2513 DEF_STUB(long_branch_any_arm_pic) \
2514 DEF_STUB(long_branch_any_thumb_pic) \
2515 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2516 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2517 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2518 DEF_STUB(long_branch_thumb_only_pic) \
2519 DEF_STUB(long_branch_any_tls_pic) \
2520 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2521 DEF_STUB(long_branch_arm_nacl) \
2522 DEF_STUB(long_branch_arm_nacl_pic) \
2523 DEF_STUB(a8_veneer_b_cond) \
2524 DEF_STUB(a8_veneer_b) \
2525 DEF_STUB(a8_veneer_bl) \
2526 DEF_STUB(a8_veneer_blx)
2527
2528 #define DEF_STUB(x) arm_stub_##x,
2529 enum elf32_arm_stub_type
2530 {
2531 arm_stub_none,
2532 DEF_STUBS
2533 /* Note the first a8_veneer type */
2534 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2535 };
2536 #undef DEF_STUB
2537
2538 typedef struct
2539 {
2540 const insn_sequence* template_sequence;
2541 int template_size;
2542 } stub_def;
2543
2544 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2545 static const stub_def stub_definitions[] =
2546 {
2547 {NULL, 0},
2548 DEF_STUBS
2549 };
2550
2551 struct elf32_arm_stub_hash_entry
2552 {
2553 /* Base hash table entry structure. */
2554 struct bfd_hash_entry root;
2555
2556 /* The stub section. */
2557 asection *stub_sec;
2558
2559 /* Offset within stub_sec of the beginning of this stub. */
2560 bfd_vma stub_offset;
2561
2562 /* Given the symbol's value and its section we can determine its final
2563 value when building the stubs (so the stub knows where to jump). */
2564 bfd_vma target_value;
2565 asection *target_section;
2566
2567 /* Offset to apply to relocation referencing target_value. */
2568 bfd_vma target_addend;
2569
2570 /* The instruction which caused this stub to be generated (only valid for
2571 Cortex-A8 erratum workaround stubs at present). */
2572 unsigned long orig_insn;
2573
2574 /* The stub type. */
2575 enum elf32_arm_stub_type stub_type;
2576 /* Its encoding size in bytes. */
2577 int stub_size;
2578 /* Its template. */
2579 const insn_sequence *stub_template;
2580 /* The size of the template (number of entries). */
2581 int stub_template_size;
2582
2583 /* The symbol table entry, if any, that this was derived from. */
2584 struct elf32_arm_link_hash_entry *h;
2585
2586 /* Type of branch. */
2587 enum arm_st_branch_type branch_type;
2588
2589 /* Where this stub is being called from, or, in the case of combined
2590 stub sections, the first input section in the group. */
2591 asection *id_sec;
2592
2593 /* The name for the local symbol at the start of this stub. The
2594 stub name in the hash table has to be unique; this does not, so
2595 it can be friendlier. */
2596 char *output_name;
2597 };
2598
2599 /* Used to build a map of a section. This is required for mixed-endian
2600 code/data. */
2601
2602 typedef struct elf32_elf_section_map
2603 {
2604 bfd_vma vma;
2605 char type;
2606 }
2607 elf32_arm_section_map;
2608
2609 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2610
2611 typedef enum
2612 {
2613 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2614 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2615 VFP11_ERRATUM_ARM_VENEER,
2616 VFP11_ERRATUM_THUMB_VENEER
2617 }
2618 elf32_vfp11_erratum_type;
2619
2620 typedef struct elf32_vfp11_erratum_list
2621 {
2622 struct elf32_vfp11_erratum_list *next;
2623 bfd_vma vma;
2624 union
2625 {
2626 struct
2627 {
2628 struct elf32_vfp11_erratum_list *veneer;
2629 unsigned int vfp_insn;
2630 } b;
2631 struct
2632 {
2633 struct elf32_vfp11_erratum_list *branch;
2634 unsigned int id;
2635 } v;
2636 } u;
2637 elf32_vfp11_erratum_type type;
2638 }
2639 elf32_vfp11_erratum_list;
2640
2641 typedef enum
2642 {
2643 DELETE_EXIDX_ENTRY,
2644 INSERT_EXIDX_CANTUNWIND_AT_END
2645 }
2646 arm_unwind_edit_type;
2647
2648 /* A (sorted) list of edits to apply to an unwind table. */
2649 typedef struct arm_unwind_table_edit
2650 {
2651 arm_unwind_edit_type type;
2652 /* Note: we sometimes want to insert an unwind entry corresponding to a
2653 section different from the one we're currently writing out, so record the
2654 (text) section this edit relates to here. */
2655 asection *linked_section;
2656 unsigned int index;
2657 struct arm_unwind_table_edit *next;
2658 }
2659 arm_unwind_table_edit;
2660
2661 typedef struct _arm_elf_section_data
2662 {
2663 /* Information about mapping symbols. */
2664 struct bfd_elf_section_data elf;
2665 unsigned int mapcount;
2666 unsigned int mapsize;
2667 elf32_arm_section_map *map;
2668 /* Information about CPU errata. */
2669 unsigned int erratumcount;
2670 elf32_vfp11_erratum_list *erratumlist;
2671 /* Information about unwind tables. */
2672 union
2673 {
2674 /* Unwind info attached to a text section. */
2675 struct
2676 {
2677 asection *arm_exidx_sec;
2678 } text;
2679
2680 /* Unwind info attached to an .ARM.exidx section. */
2681 struct
2682 {
2683 arm_unwind_table_edit *unwind_edit_list;
2684 arm_unwind_table_edit *unwind_edit_tail;
2685 } exidx;
2686 } u;
2687 }
2688 _arm_elf_section_data;
2689
2690 #define elf32_arm_section_data(sec) \
2691 ((_arm_elf_section_data *) elf_section_data (sec))
2692
2693 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2694 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2695 so may be created multiple times: we use an array of these entries whilst
2696 relaxing which we can refresh easily, then create stubs for each potentially
2697 erratum-triggering instruction once we've settled on a solution. */
2698
2699 struct a8_erratum_fix
2700 {
2701 bfd *input_bfd;
2702 asection *section;
2703 bfd_vma offset;
2704 bfd_vma addend;
2705 unsigned long orig_insn;
2706 char *stub_name;
2707 enum elf32_arm_stub_type stub_type;
2708 enum arm_st_branch_type branch_type;
2709 };
2710
2711 /* A table of relocs applied to branches which might trigger Cortex-A8
2712 erratum. */
2713
2714 struct a8_erratum_reloc
2715 {
2716 bfd_vma from;
2717 bfd_vma destination;
2718 struct elf32_arm_link_hash_entry *hash;
2719 const char *sym_name;
2720 unsigned int r_type;
2721 enum arm_st_branch_type branch_type;
2722 bfd_boolean non_a8_stub;
2723 };
2724
2725 /* The size of the thread control block. */
2726 #define TCB_SIZE 8
2727
2728 /* ARM-specific information about a PLT entry, over and above the usual
2729 gotplt_union. */
2730 struct arm_plt_info
2731 {
2732 /* We reference count Thumb references to a PLT entry separately,
2733 so that we can emit the Thumb trampoline only if needed. */
2734 bfd_signed_vma thumb_refcount;
2735
2736 /* Some references from Thumb code may be eliminated by BL->BLX
2737 conversion, so record them separately. */
2738 bfd_signed_vma maybe_thumb_refcount;
2739
2740 /* How many of the recorded PLT accesses were from non-call relocations.
2741 This information is useful when deciding whether anything takes the
2742 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2743 non-call references to the function should resolve directly to the
2744 real runtime target. */
2745 unsigned int noncall_refcount;
2746
2747 /* Since PLT entries have variable size if the Thumb prologue is
2748 used, we need to record the index into .got.plt instead of
2749 recomputing it from the PLT offset. */
2750 bfd_signed_vma got_offset;
2751 };
2752
2753 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2754 struct arm_local_iplt_info
2755 {
2756 /* The information that is usually found in the generic ELF part of
2757 the hash table entry. */
2758 union gotplt_union root;
2759
2760 /* The information that is usually found in the ARM-specific part of
2761 the hash table entry. */
2762 struct arm_plt_info arm;
2763
2764 /* A list of all potential dynamic relocations against this symbol. */
2765 struct elf_dyn_relocs *dyn_relocs;
2766 };
2767
2768 struct elf_arm_obj_tdata
2769 {
2770 struct elf_obj_tdata root;
2771
2772 /* tls_type for each local got entry. */
2773 char *local_got_tls_type;
2774
2775 /* GOTPLT entries for TLS descriptors. */
2776 bfd_vma *local_tlsdesc_gotent;
2777
2778 /* Information for local symbols that need entries in .iplt. */
2779 struct arm_local_iplt_info **local_iplt;
2780
2781 /* Zero to warn when linking objects with incompatible enum sizes. */
2782 int no_enum_size_warning;
2783
2784 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2785 int no_wchar_size_warning;
2786 };
2787
2788 #define elf_arm_tdata(bfd) \
2789 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2790
2791 #define elf32_arm_local_got_tls_type(bfd) \
2792 (elf_arm_tdata (bfd)->local_got_tls_type)
2793
2794 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2795 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2796
2797 #define elf32_arm_local_iplt(bfd) \
2798 (elf_arm_tdata (bfd)->local_iplt)
2799
2800 #define is_arm_elf(bfd) \
2801 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2802 && elf_tdata (bfd) != NULL \
2803 && elf_object_id (bfd) == ARM_ELF_DATA)
2804
2805 static bfd_boolean
2806 elf32_arm_mkobject (bfd *abfd)
2807 {
2808 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2809 ARM_ELF_DATA);
2810 }
2811
2812 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2813
2814 /* Arm ELF linker hash entry. */
2815 struct elf32_arm_link_hash_entry
2816 {
2817 struct elf_link_hash_entry root;
2818
2819 /* Track dynamic relocs copied for this symbol. */
2820 struct elf_dyn_relocs *dyn_relocs;
2821
2822 /* ARM-specific PLT information. */
2823 struct arm_plt_info plt;
2824
2825 #define GOT_UNKNOWN 0
2826 #define GOT_NORMAL 1
2827 #define GOT_TLS_GD 2
2828 #define GOT_TLS_IE 4
2829 #define GOT_TLS_GDESC 8
2830 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2831 unsigned int tls_type : 8;
2832
2833 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2834 unsigned int is_iplt : 1;
2835
2836 unsigned int unused : 23;
2837
2838 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2839 starting at the end of the jump table. */
2840 bfd_vma tlsdesc_got;
2841
2842 /* The symbol marking the real symbol location for exported thumb
2843 symbols with Arm stubs. */
2844 struct elf_link_hash_entry *export_glue;
2845
2846 /* A pointer to the most recently used stub hash entry against this
2847 symbol. */
2848 struct elf32_arm_stub_hash_entry *stub_cache;
2849 };
2850
2851 /* Traverse an arm ELF linker hash table. */
2852 #define elf32_arm_link_hash_traverse(table, func, info) \
2853 (elf_link_hash_traverse \
2854 (&(table)->root, \
2855 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2856 (info)))
2857
2858 /* Get the ARM elf linker hash table from a link_info structure. */
2859 #define elf32_arm_hash_table(info) \
2860 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2861 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2862
2863 #define arm_stub_hash_lookup(table, string, create, copy) \
2864 ((struct elf32_arm_stub_hash_entry *) \
2865 bfd_hash_lookup ((table), (string), (create), (copy)))
2866
2867 /* Array to keep track of which stub sections have been created, and
2868 information on stub grouping. */
2869 struct map_stub
2870 {
2871 /* This is the section to which stubs in the group will be
2872 attached. */
2873 asection *link_sec;
2874 /* The stub section. */
2875 asection *stub_sec;
2876 };
2877
2878 #define elf32_arm_compute_jump_table_size(htab) \
2879 ((htab)->next_tls_desc_index * 4)
2880
2881 /* ARM ELF linker hash table. */
2882 struct elf32_arm_link_hash_table
2883 {
2884 /* The main hash table. */
2885 struct elf_link_hash_table root;
2886
2887 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2888 bfd_size_type thumb_glue_size;
2889
2890 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2891 bfd_size_type arm_glue_size;
2892
2893 /* The size in bytes of section containing the ARMv4 BX veneers. */
2894 bfd_size_type bx_glue_size;
2895
2896 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2897 veneer has been populated. */
2898 bfd_vma bx_glue_offset[15];
2899
2900 /* The size in bytes of the section containing glue for VFP11 erratum
2901 veneers. */
2902 bfd_size_type vfp11_erratum_glue_size;
2903
2904 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2905 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2906 elf32_arm_write_section(). */
2907 struct a8_erratum_fix *a8_erratum_fixes;
2908 unsigned int num_a8_erratum_fixes;
2909
2910 /* An arbitrary input BFD chosen to hold the glue sections. */
2911 bfd * bfd_of_glue_owner;
2912
2913 /* Nonzero to output a BE8 image. */
2914 int byteswap_code;
2915
2916 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2917 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2918 int target1_is_rel;
2919
2920 /* The relocation to use for R_ARM_TARGET2 relocations. */
2921 int target2_reloc;
2922
2923 /* 0 = Ignore R_ARM_V4BX.
2924 1 = Convert BX to MOV PC.
2925 2 = Generate v4 interworing stubs. */
2926 int fix_v4bx;
2927
2928 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2929 int fix_cortex_a8;
2930
2931 /* Whether we should fix the ARM1176 BLX immediate issue. */
2932 int fix_arm1176;
2933
2934 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2935 int use_blx;
2936
2937 /* What sort of code sequences we should look for which may trigger the
2938 VFP11 denorm erratum. */
2939 bfd_arm_vfp11_fix vfp11_fix;
2940
2941 /* Global counter for the number of fixes we have emitted. */
2942 int num_vfp11_fixes;
2943
2944 /* Nonzero to force PIC branch veneers. */
2945 int pic_veneer;
2946
2947 /* The number of bytes in the initial entry in the PLT. */
2948 bfd_size_type plt_header_size;
2949
2950 /* The number of bytes in the subsequent PLT etries. */
2951 bfd_size_type plt_entry_size;
2952
2953 /* True if the target system is VxWorks. */
2954 int vxworks_p;
2955
2956 /* True if the target system is Symbian OS. */
2957 int symbian_p;
2958
2959 /* True if the target system is Native Client. */
2960 int nacl_p;
2961
2962 /* True if the target uses REL relocations. */
2963 int use_rel;
2964
2965 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2966 bfd_vma next_tls_desc_index;
2967
2968 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2969 bfd_vma num_tls_desc;
2970
2971 /* Short-cuts to get to dynamic linker sections. */
2972 asection *sdynbss;
2973 asection *srelbss;
2974
2975 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2976 asection *srelplt2;
2977
2978 /* The offset into splt of the PLT entry for the TLS descriptor
2979 resolver. Special values are 0, if not necessary (or not found
2980 to be necessary yet), and -1 if needed but not determined
2981 yet. */
2982 bfd_vma dt_tlsdesc_plt;
2983
2984 /* The offset into sgot of the GOT entry used by the PLT entry
2985 above. */
2986 bfd_vma dt_tlsdesc_got;
2987
2988 /* Offset in .plt section of tls_arm_trampoline. */
2989 bfd_vma tls_trampoline;
2990
2991 /* Data for R_ARM_TLS_LDM32 relocations. */
2992 union
2993 {
2994 bfd_signed_vma refcount;
2995 bfd_vma offset;
2996 } tls_ldm_got;
2997
2998 /* Small local sym cache. */
2999 struct sym_cache sym_cache;
3000
3001 /* For convenience in allocate_dynrelocs. */
3002 bfd * obfd;
3003
3004 /* The amount of space used by the reserved portion of the sgotplt
3005 section, plus whatever space is used by the jump slots. */
3006 bfd_vma sgotplt_jump_table_size;
3007
3008 /* The stub hash table. */
3009 struct bfd_hash_table stub_hash_table;
3010
3011 /* Linker stub bfd. */
3012 bfd *stub_bfd;
3013
3014 /* Linker call-backs. */
3015 asection * (*add_stub_section) (const char *, asection *, unsigned int);
3016 void (*layout_sections_again) (void);
3017
3018 /* Array to keep track of which stub sections have been created, and
3019 information on stub grouping. */
3020 struct map_stub *stub_group;
3021
3022 /* Number of elements in stub_group. */
3023 int top_id;
3024
3025 /* Assorted information used by elf32_arm_size_stubs. */
3026 unsigned int bfd_count;
3027 int top_index;
3028 asection **input_list;
3029 };
3030
3031 /* Create an entry in an ARM ELF linker hash table. */
3032
3033 static struct bfd_hash_entry *
3034 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3035 struct bfd_hash_table * table,
3036 const char * string)
3037 {
3038 struct elf32_arm_link_hash_entry * ret =
3039 (struct elf32_arm_link_hash_entry *) entry;
3040
3041 /* Allocate the structure if it has not already been allocated by a
3042 subclass. */
3043 if (ret == NULL)
3044 ret = (struct elf32_arm_link_hash_entry *)
3045 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3046 if (ret == NULL)
3047 return (struct bfd_hash_entry *) ret;
3048
3049 /* Call the allocation method of the superclass. */
3050 ret = ((struct elf32_arm_link_hash_entry *)
3051 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3052 table, string));
3053 if (ret != NULL)
3054 {
3055 ret->dyn_relocs = NULL;
3056 ret->tls_type = GOT_UNKNOWN;
3057 ret->tlsdesc_got = (bfd_vma) -1;
3058 ret->plt.thumb_refcount = 0;
3059 ret->plt.maybe_thumb_refcount = 0;
3060 ret->plt.noncall_refcount = 0;
3061 ret->plt.got_offset = -1;
3062 ret->is_iplt = FALSE;
3063 ret->export_glue = NULL;
3064
3065 ret->stub_cache = NULL;
3066 }
3067
3068 return (struct bfd_hash_entry *) ret;
3069 }
3070
3071 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3072 symbols. */
3073
3074 static bfd_boolean
3075 elf32_arm_allocate_local_sym_info (bfd *abfd)
3076 {
3077 if (elf_local_got_refcounts (abfd) == NULL)
3078 {
3079 bfd_size_type num_syms;
3080 bfd_size_type size;
3081 char *data;
3082
3083 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3084 size = num_syms * (sizeof (bfd_signed_vma)
3085 + sizeof (struct arm_local_iplt_info *)
3086 + sizeof (bfd_vma)
3087 + sizeof (char));
3088 data = bfd_zalloc (abfd, size);
3089 if (data == NULL)
3090 return FALSE;
3091
3092 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3093 data += num_syms * sizeof (bfd_signed_vma);
3094
3095 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3096 data += num_syms * sizeof (struct arm_local_iplt_info *);
3097
3098 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3099 data += num_syms * sizeof (bfd_vma);
3100
3101 elf32_arm_local_got_tls_type (abfd) = data;
3102 }
3103 return TRUE;
3104 }
3105
3106 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3107 to input bfd ABFD. Create the information if it doesn't already exist.
3108 Return null if an allocation fails. */
3109
3110 static struct arm_local_iplt_info *
3111 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3112 {
3113 struct arm_local_iplt_info **ptr;
3114
3115 if (!elf32_arm_allocate_local_sym_info (abfd))
3116 return NULL;
3117
3118 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3119 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3120 if (*ptr == NULL)
3121 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3122 return *ptr;
3123 }
3124
3125 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3126 in ABFD's symbol table. If the symbol is global, H points to its
3127 hash table entry, otherwise H is null.
3128
3129 Return true if the symbol does have PLT information. When returning
3130 true, point *ROOT_PLT at the target-independent reference count/offset
3131 union and *ARM_PLT at the ARM-specific information. */
3132
3133 static bfd_boolean
3134 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3135 unsigned long r_symndx, union gotplt_union **root_plt,
3136 struct arm_plt_info **arm_plt)
3137 {
3138 struct arm_local_iplt_info *local_iplt;
3139
3140 if (h != NULL)
3141 {
3142 *root_plt = &h->root.plt;
3143 *arm_plt = &h->plt;
3144 return TRUE;
3145 }
3146
3147 if (elf32_arm_local_iplt (abfd) == NULL)
3148 return FALSE;
3149
3150 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3151 if (local_iplt == NULL)
3152 return FALSE;
3153
3154 *root_plt = &local_iplt->root;
3155 *arm_plt = &local_iplt->arm;
3156 return TRUE;
3157 }
3158
3159 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3160 before it. */
3161
3162 static bfd_boolean
3163 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3164 struct arm_plt_info *arm_plt)
3165 {
3166 struct elf32_arm_link_hash_table *htab;
3167
3168 htab = elf32_arm_hash_table (info);
3169 return (arm_plt->thumb_refcount != 0
3170 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3171 }
3172
3173 /* Return a pointer to the head of the dynamic reloc list that should
3174 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3175 ABFD's symbol table. Return null if an error occurs. */
3176
3177 static struct elf_dyn_relocs **
3178 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3179 Elf_Internal_Sym *isym)
3180 {
3181 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3182 {
3183 struct arm_local_iplt_info *local_iplt;
3184
3185 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3186 if (local_iplt == NULL)
3187 return NULL;
3188 return &local_iplt->dyn_relocs;
3189 }
3190 else
3191 {
3192 /* Track dynamic relocs needed for local syms too.
3193 We really need local syms available to do this
3194 easily. Oh well. */
3195 asection *s;
3196 void *vpp;
3197
3198 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3199 if (s == NULL)
3200 abort ();
3201
3202 vpp = &elf_section_data (s)->local_dynrel;
3203 return (struct elf_dyn_relocs **) vpp;
3204 }
3205 }
3206
3207 /* Initialize an entry in the stub hash table. */
3208
3209 static struct bfd_hash_entry *
3210 stub_hash_newfunc (struct bfd_hash_entry *entry,
3211 struct bfd_hash_table *table,
3212 const char *string)
3213 {
3214 /* Allocate the structure if it has not already been allocated by a
3215 subclass. */
3216 if (entry == NULL)
3217 {
3218 entry = (struct bfd_hash_entry *)
3219 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3220 if (entry == NULL)
3221 return entry;
3222 }
3223
3224 /* Call the allocation method of the superclass. */
3225 entry = bfd_hash_newfunc (entry, table, string);
3226 if (entry != NULL)
3227 {
3228 struct elf32_arm_stub_hash_entry *eh;
3229
3230 /* Initialize the local fields. */
3231 eh = (struct elf32_arm_stub_hash_entry *) entry;
3232 eh->stub_sec = NULL;
3233 eh->stub_offset = 0;
3234 eh->target_value = 0;
3235 eh->target_section = NULL;
3236 eh->target_addend = 0;
3237 eh->orig_insn = 0;
3238 eh->stub_type = arm_stub_none;
3239 eh->stub_size = 0;
3240 eh->stub_template = NULL;
3241 eh->stub_template_size = 0;
3242 eh->h = NULL;
3243 eh->id_sec = NULL;
3244 eh->output_name = NULL;
3245 }
3246
3247 return entry;
3248 }
3249
3250 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3251 shortcuts to them in our hash table. */
3252
3253 static bfd_boolean
3254 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3255 {
3256 struct elf32_arm_link_hash_table *htab;
3257
3258 htab = elf32_arm_hash_table (info);
3259 if (htab == NULL)
3260 return FALSE;
3261
3262 /* BPABI objects never have a GOT, or associated sections. */
3263 if (htab->symbian_p)
3264 return TRUE;
3265
3266 if (! _bfd_elf_create_got_section (dynobj, info))
3267 return FALSE;
3268
3269 return TRUE;
3270 }
3271
3272 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3273
3274 static bfd_boolean
3275 create_ifunc_sections (struct bfd_link_info *info)
3276 {
3277 struct elf32_arm_link_hash_table *htab;
3278 const struct elf_backend_data *bed;
3279 bfd *dynobj;
3280 asection *s;
3281 flagword flags;
3282
3283 htab = elf32_arm_hash_table (info);
3284 dynobj = htab->root.dynobj;
3285 bed = get_elf_backend_data (dynobj);
3286 flags = bed->dynamic_sec_flags;
3287
3288 if (htab->root.iplt == NULL)
3289 {
3290 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3291 flags | SEC_READONLY | SEC_CODE);
3292 if (s == NULL
3293 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3294 return FALSE;
3295 htab->root.iplt = s;
3296 }
3297
3298 if (htab->root.irelplt == NULL)
3299 {
3300 s = bfd_make_section_anyway_with_flags (dynobj,
3301 RELOC_SECTION (htab, ".iplt"),
3302 flags | SEC_READONLY);
3303 if (s == NULL
3304 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3305 return FALSE;
3306 htab->root.irelplt = s;
3307 }
3308
3309 if (htab->root.igotplt == NULL)
3310 {
3311 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3312 if (s == NULL
3313 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3314 return FALSE;
3315 htab->root.igotplt = s;
3316 }
3317 return TRUE;
3318 }
3319
3320 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3321 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3322 hash table. */
3323
3324 static bfd_boolean
3325 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3326 {
3327 struct elf32_arm_link_hash_table *htab;
3328
3329 htab = elf32_arm_hash_table (info);
3330 if (htab == NULL)
3331 return FALSE;
3332
3333 if (!htab->root.sgot && !create_got_section (dynobj, info))
3334 return FALSE;
3335
3336 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3337 return FALSE;
3338
3339 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3340 if (!info->shared)
3341 htab->srelbss = bfd_get_linker_section (dynobj,
3342 RELOC_SECTION (htab, ".bss"));
3343
3344 if (htab->vxworks_p)
3345 {
3346 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3347 return FALSE;
3348
3349 if (info->shared)
3350 {
3351 htab->plt_header_size = 0;
3352 htab->plt_entry_size
3353 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3354 }
3355 else
3356 {
3357 htab->plt_header_size
3358 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3359 htab->plt_entry_size
3360 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3361 }
3362 }
3363
3364 if (!htab->root.splt
3365 || !htab->root.srelplt
3366 || !htab->sdynbss
3367 || (!info->shared && !htab->srelbss))
3368 abort ();
3369
3370 return TRUE;
3371 }
3372
3373 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3374
3375 static void
3376 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3377 struct elf_link_hash_entry *dir,
3378 struct elf_link_hash_entry *ind)
3379 {
3380 struct elf32_arm_link_hash_entry *edir, *eind;
3381
3382 edir = (struct elf32_arm_link_hash_entry *) dir;
3383 eind = (struct elf32_arm_link_hash_entry *) ind;
3384
3385 if (eind->dyn_relocs != NULL)
3386 {
3387 if (edir->dyn_relocs != NULL)
3388 {
3389 struct elf_dyn_relocs **pp;
3390 struct elf_dyn_relocs *p;
3391
3392 /* Add reloc counts against the indirect sym to the direct sym
3393 list. Merge any entries against the same section. */
3394 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3395 {
3396 struct elf_dyn_relocs *q;
3397
3398 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3399 if (q->sec == p->sec)
3400 {
3401 q->pc_count += p->pc_count;
3402 q->count += p->count;
3403 *pp = p->next;
3404 break;
3405 }
3406 if (q == NULL)
3407 pp = &p->next;
3408 }
3409 *pp = edir->dyn_relocs;
3410 }
3411
3412 edir->dyn_relocs = eind->dyn_relocs;
3413 eind->dyn_relocs = NULL;
3414 }
3415
3416 if (ind->root.type == bfd_link_hash_indirect)
3417 {
3418 /* Copy over PLT info. */
3419 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3420 eind->plt.thumb_refcount = 0;
3421 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3422 eind->plt.maybe_thumb_refcount = 0;
3423 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3424 eind->plt.noncall_refcount = 0;
3425
3426 /* We should only allocate a function to .iplt once the final
3427 symbol information is known. */
3428 BFD_ASSERT (!eind->is_iplt);
3429
3430 if (dir->got.refcount <= 0)
3431 {
3432 edir->tls_type = eind->tls_type;
3433 eind->tls_type = GOT_UNKNOWN;
3434 }
3435 }
3436
3437 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3438 }
3439
3440 /* Create an ARM elf linker hash table. */
3441
3442 static struct bfd_link_hash_table *
3443 elf32_arm_link_hash_table_create (bfd *abfd)
3444 {
3445 struct elf32_arm_link_hash_table *ret;
3446 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3447
3448 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3449 if (ret == NULL)
3450 return NULL;
3451
3452 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3453 elf32_arm_link_hash_newfunc,
3454 sizeof (struct elf32_arm_link_hash_entry),
3455 ARM_ELF_DATA))
3456 {
3457 free (ret);
3458 return NULL;
3459 }
3460
3461 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3462 #ifdef FOUR_WORD_PLT
3463 ret->plt_header_size = 16;
3464 ret->plt_entry_size = 16;
3465 #else
3466 ret->plt_header_size = 20;
3467 ret->plt_entry_size = 12;
3468 #endif
3469 ret->use_rel = 1;
3470 ret->obfd = abfd;
3471
3472 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3473 sizeof (struct elf32_arm_stub_hash_entry)))
3474 {
3475 free (ret);
3476 return NULL;
3477 }
3478
3479 return &ret->root.root;
3480 }
3481
3482 /* Free the derived linker hash table. */
3483
3484 static void
3485 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3486 {
3487 struct elf32_arm_link_hash_table *ret
3488 = (struct elf32_arm_link_hash_table *) hash;
3489
3490 bfd_hash_table_free (&ret->stub_hash_table);
3491 _bfd_elf_link_hash_table_free (hash);
3492 }
3493
3494 /* Determine if we're dealing with a Thumb only architecture. */
3495
3496 static bfd_boolean
3497 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3498 {
3499 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3500 Tag_CPU_arch);
3501 int profile;
3502
3503 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3504 return TRUE;
3505
3506 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3507 return FALSE;
3508
3509 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3510 Tag_CPU_arch_profile);
3511
3512 return profile == 'M';
3513 }
3514
3515 /* Determine if we're dealing with a Thumb-2 object. */
3516
3517 static bfd_boolean
3518 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3519 {
3520 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3521 Tag_CPU_arch);
3522 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3523 }
3524
3525 /* Determine what kind of NOPs are available. */
3526
3527 static bfd_boolean
3528 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3529 {
3530 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3531 Tag_CPU_arch);
3532 return arch == TAG_CPU_ARCH_V6T2
3533 || arch == TAG_CPU_ARCH_V6K
3534 || arch == TAG_CPU_ARCH_V7
3535 || arch == TAG_CPU_ARCH_V7E_M;
3536 }
3537
3538 static bfd_boolean
3539 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3540 {
3541 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3542 Tag_CPU_arch);
3543 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3544 || arch == TAG_CPU_ARCH_V7E_M);
3545 }
3546
3547 static bfd_boolean
3548 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3549 {
3550 switch (stub_type)
3551 {
3552 case arm_stub_long_branch_thumb_only:
3553 case arm_stub_long_branch_v4t_thumb_arm:
3554 case arm_stub_short_branch_v4t_thumb_arm:
3555 case arm_stub_long_branch_v4t_thumb_arm_pic:
3556 case arm_stub_long_branch_v4t_thumb_tls_pic:
3557 case arm_stub_long_branch_thumb_only_pic:
3558 return TRUE;
3559 case arm_stub_none:
3560 BFD_FAIL ();
3561 return FALSE;
3562 break;
3563 default:
3564 return FALSE;
3565 }
3566 }
3567
3568 /* Determine the type of stub needed, if any, for a call. */
3569
3570 static enum elf32_arm_stub_type
3571 arm_type_of_stub (struct bfd_link_info *info,
3572 asection *input_sec,
3573 const Elf_Internal_Rela *rel,
3574 unsigned char st_type,
3575 enum arm_st_branch_type *actual_branch_type,
3576 struct elf32_arm_link_hash_entry *hash,
3577 bfd_vma destination,
3578 asection *sym_sec,
3579 bfd *input_bfd,
3580 const char *name)
3581 {
3582 bfd_vma location;
3583 bfd_signed_vma branch_offset;
3584 unsigned int r_type;
3585 struct elf32_arm_link_hash_table * globals;
3586 int thumb2;
3587 int thumb_only;
3588 enum elf32_arm_stub_type stub_type = arm_stub_none;
3589 int use_plt = 0;
3590 enum arm_st_branch_type branch_type = *actual_branch_type;
3591 union gotplt_union *root_plt;
3592 struct arm_plt_info *arm_plt;
3593
3594 if (branch_type == ST_BRANCH_LONG)
3595 return stub_type;
3596
3597 globals = elf32_arm_hash_table (info);
3598 if (globals == NULL)
3599 return stub_type;
3600
3601 thumb_only = using_thumb_only (globals);
3602
3603 thumb2 = using_thumb2 (globals);
3604
3605 /* Determine where the call point is. */
3606 location = (input_sec->output_offset
3607 + input_sec->output_section->vma
3608 + rel->r_offset);
3609
3610 r_type = ELF32_R_TYPE (rel->r_info);
3611
3612 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3613 are considering a function call relocation. */
3614 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3615 && branch_type == ST_BRANCH_TO_ARM)
3616 branch_type = ST_BRANCH_TO_THUMB;
3617
3618 /* For TLS call relocs, it is the caller's responsibility to provide
3619 the address of the appropriate trampoline. */
3620 if (r_type != R_ARM_TLS_CALL
3621 && r_type != R_ARM_THM_TLS_CALL
3622 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3623 &root_plt, &arm_plt)
3624 && root_plt->offset != (bfd_vma) -1)
3625 {
3626 asection *splt;
3627
3628 if (hash == NULL || hash->is_iplt)
3629 splt = globals->root.iplt;
3630 else
3631 splt = globals->root.splt;
3632 if (splt != NULL)
3633 {
3634 use_plt = 1;
3635
3636 /* Note when dealing with PLT entries: the main PLT stub is in
3637 ARM mode, so if the branch is in Thumb mode, another
3638 Thumb->ARM stub will be inserted later just before the ARM
3639 PLT stub. We don't take this extra distance into account
3640 here, because if a long branch stub is needed, we'll add a
3641 Thumb->Arm one and branch directly to the ARM PLT entry
3642 because it avoids spreading offset corrections in several
3643 places. */
3644
3645 destination = (splt->output_section->vma
3646 + splt->output_offset
3647 + root_plt->offset);
3648 st_type = STT_FUNC;
3649 branch_type = ST_BRANCH_TO_ARM;
3650 }
3651 }
3652 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3653 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3654
3655 branch_offset = (bfd_signed_vma)(destination - location);
3656
3657 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3658 || r_type == R_ARM_THM_TLS_CALL)
3659 {
3660 /* Handle cases where:
3661 - this call goes too far (different Thumb/Thumb2 max
3662 distance)
3663 - it's a Thumb->Arm call and blx is not available, or it's a
3664 Thumb->Arm branch (not bl). A stub is needed in this case,
3665 but only if this call is not through a PLT entry. Indeed,
3666 PLT stubs handle mode switching already.
3667 */
3668 if ((!thumb2
3669 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3670 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3671 || (thumb2
3672 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3673 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3674 || (branch_type == ST_BRANCH_TO_ARM
3675 && (((r_type == R_ARM_THM_CALL
3676 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3677 || (r_type == R_ARM_THM_JUMP24))
3678 && !use_plt))
3679 {
3680 if (branch_type == ST_BRANCH_TO_THUMB)
3681 {
3682 /* Thumb to thumb. */
3683 if (!thumb_only)
3684 {
3685 stub_type = (info->shared | globals->pic_veneer)
3686 /* PIC stubs. */
3687 ? ((globals->use_blx
3688 && (r_type == R_ARM_THM_CALL))
3689 /* V5T and above. Stub starts with ARM code, so
3690 we must be able to switch mode before
3691 reaching it, which is only possible for 'bl'
3692 (ie R_ARM_THM_CALL relocation). */
3693 ? arm_stub_long_branch_any_thumb_pic
3694 /* On V4T, use Thumb code only. */
3695 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3696
3697 /* non-PIC stubs. */
3698 : ((globals->use_blx
3699 && (r_type == R_ARM_THM_CALL))
3700 /* V5T and above. */
3701 ? arm_stub_long_branch_any_any
3702 /* V4T. */
3703 : arm_stub_long_branch_v4t_thumb_thumb);
3704 }
3705 else
3706 {
3707 stub_type = (info->shared | globals->pic_veneer)
3708 /* PIC stub. */
3709 ? arm_stub_long_branch_thumb_only_pic
3710 /* non-PIC stub. */
3711 : arm_stub_long_branch_thumb_only;
3712 }
3713 }
3714 else
3715 {
3716 /* Thumb to arm. */
3717 if (sym_sec != NULL
3718 && sym_sec->owner != NULL
3719 && !INTERWORK_FLAG (sym_sec->owner))
3720 {
3721 (*_bfd_error_handler)
3722 (_("%B(%s): warning: interworking not enabled.\n"
3723 " first occurrence: %B: Thumb call to ARM"),
3724 sym_sec->owner, input_bfd, name);
3725 }
3726
3727 stub_type =
3728 (info->shared | globals->pic_veneer)
3729 /* PIC stubs. */
3730 ? (r_type == R_ARM_THM_TLS_CALL
3731 /* TLS PIC stubs */
3732 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3733 : arm_stub_long_branch_v4t_thumb_tls_pic)
3734 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3735 /* V5T PIC and above. */
3736 ? arm_stub_long_branch_any_arm_pic
3737 /* V4T PIC stub. */
3738 : arm_stub_long_branch_v4t_thumb_arm_pic))
3739
3740 /* non-PIC stubs. */
3741 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3742 /* V5T and above. */
3743 ? arm_stub_long_branch_any_any
3744 /* V4T. */
3745 : arm_stub_long_branch_v4t_thumb_arm);
3746
3747 /* Handle v4t short branches. */
3748 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3749 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3750 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3751 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3752 }
3753 }
3754 }
3755 else if (r_type == R_ARM_CALL
3756 || r_type == R_ARM_JUMP24
3757 || r_type == R_ARM_PLT32
3758 || r_type == R_ARM_TLS_CALL)
3759 {
3760 if (branch_type == ST_BRANCH_TO_THUMB)
3761 {
3762 /* Arm to thumb. */
3763
3764 if (sym_sec != NULL
3765 && sym_sec->owner != NULL
3766 && !INTERWORK_FLAG (sym_sec->owner))
3767 {
3768 (*_bfd_error_handler)
3769 (_("%B(%s): warning: interworking not enabled.\n"
3770 " first occurrence: %B: ARM call to Thumb"),
3771 sym_sec->owner, input_bfd, name);
3772 }
3773
3774 /* We have an extra 2-bytes reach because of
3775 the mode change (bit 24 (H) of BLX encoding). */
3776 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3777 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3778 || (r_type == R_ARM_CALL && !globals->use_blx)
3779 || (r_type == R_ARM_JUMP24)
3780 || (r_type == R_ARM_PLT32))
3781 {
3782 stub_type = (info->shared | globals->pic_veneer)
3783 /* PIC stubs. */
3784 ? ((globals->use_blx)
3785 /* V5T and above. */
3786 ? arm_stub_long_branch_any_thumb_pic
3787 /* V4T stub. */
3788 : arm_stub_long_branch_v4t_arm_thumb_pic)
3789
3790 /* non-PIC stubs. */
3791 : ((globals->use_blx)
3792 /* V5T and above. */
3793 ? arm_stub_long_branch_any_any
3794 /* V4T. */
3795 : arm_stub_long_branch_v4t_arm_thumb);
3796 }
3797 }
3798 else
3799 {
3800 /* Arm to arm. */
3801 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3802 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3803 {
3804 stub_type =
3805 (info->shared | globals->pic_veneer)
3806 /* PIC stubs. */
3807 ? (r_type == R_ARM_TLS_CALL
3808 /* TLS PIC Stub */
3809 ? arm_stub_long_branch_any_tls_pic
3810 : (globals->nacl_p
3811 ? arm_stub_long_branch_arm_nacl_pic
3812 : arm_stub_long_branch_any_arm_pic))
3813 /* non-PIC stubs. */
3814 : (globals->nacl_p
3815 ? arm_stub_long_branch_arm_nacl
3816 : arm_stub_long_branch_any_any);
3817 }
3818 }
3819 }
3820
3821 /* If a stub is needed, record the actual destination type. */
3822 if (stub_type != arm_stub_none)
3823 *actual_branch_type = branch_type;
3824
3825 return stub_type;
3826 }
3827
3828 /* Build a name for an entry in the stub hash table. */
3829
3830 static char *
3831 elf32_arm_stub_name (const asection *input_section,
3832 const asection *sym_sec,
3833 const struct elf32_arm_link_hash_entry *hash,
3834 const Elf_Internal_Rela *rel,
3835 enum elf32_arm_stub_type stub_type)
3836 {
3837 char *stub_name;
3838 bfd_size_type len;
3839
3840 if (hash)
3841 {
3842 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3843 stub_name = (char *) bfd_malloc (len);
3844 if (stub_name != NULL)
3845 sprintf (stub_name, "%08x_%s+%x_%d",
3846 input_section->id & 0xffffffff,
3847 hash->root.root.root.string,
3848 (int) rel->r_addend & 0xffffffff,
3849 (int) stub_type);
3850 }
3851 else
3852 {
3853 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3854 stub_name = (char *) bfd_malloc (len);
3855 if (stub_name != NULL)
3856 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3857 input_section->id & 0xffffffff,
3858 sym_sec->id & 0xffffffff,
3859 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3860 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3861 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3862 (int) rel->r_addend & 0xffffffff,
3863 (int) stub_type);
3864 }
3865
3866 return stub_name;
3867 }
3868
3869 /* Look up an entry in the stub hash. Stub entries are cached because
3870 creating the stub name takes a bit of time. */
3871
3872 static struct elf32_arm_stub_hash_entry *
3873 elf32_arm_get_stub_entry (const asection *input_section,
3874 const asection *sym_sec,
3875 struct elf_link_hash_entry *hash,
3876 const Elf_Internal_Rela *rel,
3877 struct elf32_arm_link_hash_table *htab,
3878 enum elf32_arm_stub_type stub_type)
3879 {
3880 struct elf32_arm_stub_hash_entry *stub_entry;
3881 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3882 const asection *id_sec;
3883
3884 if ((input_section->flags & SEC_CODE) == 0)
3885 return NULL;
3886
3887 /* If this input section is part of a group of sections sharing one
3888 stub section, then use the id of the first section in the group.
3889 Stub names need to include a section id, as there may well be
3890 more than one stub used to reach say, printf, and we need to
3891 distinguish between them. */
3892 id_sec = htab->stub_group[input_section->id].link_sec;
3893
3894 if (h != NULL && h->stub_cache != NULL
3895 && h->stub_cache->h == h
3896 && h->stub_cache->id_sec == id_sec
3897 && h->stub_cache->stub_type == stub_type)
3898 {
3899 stub_entry = h->stub_cache;
3900 }
3901 else
3902 {
3903 char *stub_name;
3904
3905 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3906 if (stub_name == NULL)
3907 return NULL;
3908
3909 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3910 stub_name, FALSE, FALSE);
3911 if (h != NULL)
3912 h->stub_cache = stub_entry;
3913
3914 free (stub_name);
3915 }
3916
3917 return stub_entry;
3918 }
3919
3920 /* Find or create a stub section. Returns a pointer to the stub section, and
3921 the section to which the stub section will be attached (in *LINK_SEC_P).
3922 LINK_SEC_P may be NULL. */
3923
3924 static asection *
3925 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3926 struct elf32_arm_link_hash_table *htab)
3927 {
3928 asection *link_sec;
3929 asection *stub_sec;
3930
3931 link_sec = htab->stub_group[section->id].link_sec;
3932 BFD_ASSERT (link_sec != NULL);
3933 stub_sec = htab->stub_group[section->id].stub_sec;
3934
3935 if (stub_sec == NULL)
3936 {
3937 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3938 if (stub_sec == NULL)
3939 {
3940 size_t namelen;
3941 bfd_size_type len;
3942 char *s_name;
3943
3944 namelen = strlen (link_sec->name);
3945 len = namelen + sizeof (STUB_SUFFIX);
3946 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3947 if (s_name == NULL)
3948 return NULL;
3949
3950 memcpy (s_name, link_sec->name, namelen);
3951 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3952 stub_sec = (*htab->add_stub_section) (s_name, link_sec,
3953 htab->nacl_p ? 4 : 3);
3954 if (stub_sec == NULL)
3955 return NULL;
3956 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3957 }
3958 htab->stub_group[section->id].stub_sec = stub_sec;
3959 }
3960
3961 if (link_sec_p)
3962 *link_sec_p = link_sec;
3963
3964 return stub_sec;
3965 }
3966
3967 /* Add a new stub entry to the stub hash. Not all fields of the new
3968 stub entry are initialised. */
3969
3970 static struct elf32_arm_stub_hash_entry *
3971 elf32_arm_add_stub (const char *stub_name,
3972 asection *section,
3973 struct elf32_arm_link_hash_table *htab)
3974 {
3975 asection *link_sec;
3976 asection *stub_sec;
3977 struct elf32_arm_stub_hash_entry *stub_entry;
3978
3979 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3980 if (stub_sec == NULL)
3981 return NULL;
3982
3983 /* Enter this entry into the linker stub hash table. */
3984 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3985 TRUE, FALSE);
3986 if (stub_entry == NULL)
3987 {
3988 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3989 section->owner,
3990 stub_name);
3991 return NULL;
3992 }
3993
3994 stub_entry->stub_sec = stub_sec;
3995 stub_entry->stub_offset = 0;
3996 stub_entry->id_sec = link_sec;
3997
3998 return stub_entry;
3999 }
4000
4001 /* Store an Arm insn into an output section not processed by
4002 elf32_arm_write_section. */
4003
4004 static void
4005 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4006 bfd * output_bfd, bfd_vma val, void * ptr)
4007 {
4008 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4009 bfd_putl32 (val, ptr);
4010 else
4011 bfd_putb32 (val, ptr);
4012 }
4013
4014 /* Store a 16-bit Thumb insn into an output section not processed by
4015 elf32_arm_write_section. */
4016
4017 static void
4018 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4019 bfd * output_bfd, bfd_vma val, void * ptr)
4020 {
4021 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4022 bfd_putl16 (val, ptr);
4023 else
4024 bfd_putb16 (val, ptr);
4025 }
4026
4027 /* If it's possible to change R_TYPE to a more efficient access
4028 model, return the new reloc type. */
4029
4030 static unsigned
4031 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4032 struct elf_link_hash_entry *h)
4033 {
4034 int is_local = (h == NULL);
4035
4036 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
4037 return r_type;
4038
4039 /* We do not support relaxations for Old TLS models. */
4040 switch (r_type)
4041 {
4042 case R_ARM_TLS_GOTDESC:
4043 case R_ARM_TLS_CALL:
4044 case R_ARM_THM_TLS_CALL:
4045 case R_ARM_TLS_DESCSEQ:
4046 case R_ARM_THM_TLS_DESCSEQ:
4047 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4048 }
4049
4050 return r_type;
4051 }
4052
4053 static bfd_reloc_status_type elf32_arm_final_link_relocate
4054 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4055 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4056 const char *, unsigned char, enum arm_st_branch_type,
4057 struct elf_link_hash_entry *, bfd_boolean *, char **);
4058
4059 static unsigned int
4060 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4061 {
4062 switch (stub_type)
4063 {
4064 case arm_stub_a8_veneer_b_cond:
4065 case arm_stub_a8_veneer_b:
4066 case arm_stub_a8_veneer_bl:
4067 return 2;
4068
4069 case arm_stub_long_branch_any_any:
4070 case arm_stub_long_branch_v4t_arm_thumb:
4071 case arm_stub_long_branch_thumb_only:
4072 case arm_stub_long_branch_v4t_thumb_thumb:
4073 case arm_stub_long_branch_v4t_thumb_arm:
4074 case arm_stub_short_branch_v4t_thumb_arm:
4075 case arm_stub_long_branch_any_arm_pic:
4076 case arm_stub_long_branch_any_thumb_pic:
4077 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4078 case arm_stub_long_branch_v4t_arm_thumb_pic:
4079 case arm_stub_long_branch_v4t_thumb_arm_pic:
4080 case arm_stub_long_branch_thumb_only_pic:
4081 case arm_stub_long_branch_any_tls_pic:
4082 case arm_stub_long_branch_v4t_thumb_tls_pic:
4083 case arm_stub_a8_veneer_blx:
4084 return 4;
4085
4086 case arm_stub_long_branch_arm_nacl:
4087 case arm_stub_long_branch_arm_nacl_pic:
4088 return 16;
4089
4090 default:
4091 abort (); /* Should be unreachable. */
4092 }
4093 }
4094
4095 static bfd_boolean
4096 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4097 void * in_arg)
4098 {
4099 #define MAXRELOCS 3
4100 struct elf32_arm_stub_hash_entry *stub_entry;
4101 struct elf32_arm_link_hash_table *globals;
4102 struct bfd_link_info *info;
4103 asection *stub_sec;
4104 bfd *stub_bfd;
4105 bfd_byte *loc;
4106 bfd_vma sym_value;
4107 int template_size;
4108 int size;
4109 const insn_sequence *template_sequence;
4110 int i;
4111 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4112 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4113 int nrelocs = 0;
4114
4115 /* Massage our args to the form they really have. */
4116 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4117 info = (struct bfd_link_info *) in_arg;
4118
4119 globals = elf32_arm_hash_table (info);
4120 if (globals == NULL)
4121 return FALSE;
4122
4123 stub_sec = stub_entry->stub_sec;
4124
4125 if ((globals->fix_cortex_a8 < 0)
4126 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4127 /* We have to do less-strictly-aligned fixes last. */
4128 return TRUE;
4129
4130 /* Make a note of the offset within the stubs for this entry. */
4131 stub_entry->stub_offset = stub_sec->size;
4132 loc = stub_sec->contents + stub_entry->stub_offset;
4133
4134 stub_bfd = stub_sec->owner;
4135
4136 /* This is the address of the stub destination. */
4137 sym_value = (stub_entry->target_value
4138 + stub_entry->target_section->output_offset
4139 + stub_entry->target_section->output_section->vma);
4140
4141 template_sequence = stub_entry->stub_template;
4142 template_size = stub_entry->stub_template_size;
4143
4144 size = 0;
4145 for (i = 0; i < template_size; i++)
4146 {
4147 switch (template_sequence[i].type)
4148 {
4149 case THUMB16_TYPE:
4150 {
4151 bfd_vma data = (bfd_vma) template_sequence[i].data;
4152 if (template_sequence[i].reloc_addend != 0)
4153 {
4154 /* We've borrowed the reloc_addend field to mean we should
4155 insert a condition code into this (Thumb-1 branch)
4156 instruction. See THUMB16_BCOND_INSN. */
4157 BFD_ASSERT ((data & 0xff00) == 0xd000);
4158 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4159 }
4160 bfd_put_16 (stub_bfd, data, loc + size);
4161 size += 2;
4162 }
4163 break;
4164
4165 case THUMB32_TYPE:
4166 bfd_put_16 (stub_bfd,
4167 (template_sequence[i].data >> 16) & 0xffff,
4168 loc + size);
4169 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4170 loc + size + 2);
4171 if (template_sequence[i].r_type != R_ARM_NONE)
4172 {
4173 stub_reloc_idx[nrelocs] = i;
4174 stub_reloc_offset[nrelocs++] = size;
4175 }
4176 size += 4;
4177 break;
4178
4179 case ARM_TYPE:
4180 bfd_put_32 (stub_bfd, template_sequence[i].data,
4181 loc + size);
4182 /* Handle cases where the target is encoded within the
4183 instruction. */
4184 if (template_sequence[i].r_type == R_ARM_JUMP24)
4185 {
4186 stub_reloc_idx[nrelocs] = i;
4187 stub_reloc_offset[nrelocs++] = size;
4188 }
4189 size += 4;
4190 break;
4191
4192 case DATA_TYPE:
4193 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4194 stub_reloc_idx[nrelocs] = i;
4195 stub_reloc_offset[nrelocs++] = size;
4196 size += 4;
4197 break;
4198
4199 default:
4200 BFD_FAIL ();
4201 return FALSE;
4202 }
4203 }
4204
4205 stub_sec->size += size;
4206
4207 /* Stub size has already been computed in arm_size_one_stub. Check
4208 consistency. */
4209 BFD_ASSERT (size == stub_entry->stub_size);
4210
4211 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4212 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4213 sym_value |= 1;
4214
4215 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4216 in each stub. */
4217 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4218
4219 for (i = 0; i < nrelocs; i++)
4220 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4221 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4222 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4223 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4224 {
4225 Elf_Internal_Rela rel;
4226 bfd_boolean unresolved_reloc;
4227 char *error_message;
4228 enum arm_st_branch_type branch_type
4229 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4230 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4231 bfd_vma points_to = sym_value + stub_entry->target_addend;
4232
4233 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4234 rel.r_info = ELF32_R_INFO (0,
4235 template_sequence[stub_reloc_idx[i]].r_type);
4236 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4237
4238 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4239 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4240 template should refer back to the instruction after the original
4241 branch. */
4242 points_to = sym_value;
4243
4244 /* There may be unintended consequences if this is not true. */
4245 BFD_ASSERT (stub_entry->h == NULL);
4246
4247 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4248 properly. We should probably use this function unconditionally,
4249 rather than only for certain relocations listed in the enclosing
4250 conditional, for the sake of consistency. */
4251 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4252 (template_sequence[stub_reloc_idx[i]].r_type),
4253 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4254 points_to, info, stub_entry->target_section, "", STT_FUNC,
4255 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4256 &unresolved_reloc, &error_message);
4257 }
4258 else
4259 {
4260 Elf_Internal_Rela rel;
4261 bfd_boolean unresolved_reloc;
4262 char *error_message;
4263 bfd_vma points_to = sym_value + stub_entry->target_addend
4264 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4265
4266 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4267 rel.r_info = ELF32_R_INFO (0,
4268 template_sequence[stub_reloc_idx[i]].r_type);
4269 rel.r_addend = 0;
4270
4271 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4272 (template_sequence[stub_reloc_idx[i]].r_type),
4273 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4274 points_to, info, stub_entry->target_section, "", STT_FUNC,
4275 stub_entry->branch_type,
4276 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4277 &error_message);
4278 }
4279
4280 return TRUE;
4281 #undef MAXRELOCS
4282 }
4283
4284 /* Calculate the template, template size and instruction size for a stub.
4285 Return value is the instruction size. */
4286
4287 static unsigned int
4288 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4289 const insn_sequence **stub_template,
4290 int *stub_template_size)
4291 {
4292 const insn_sequence *template_sequence = NULL;
4293 int template_size = 0, i;
4294 unsigned int size;
4295
4296 template_sequence = stub_definitions[stub_type].template_sequence;
4297 if (stub_template)
4298 *stub_template = template_sequence;
4299
4300 template_size = stub_definitions[stub_type].template_size;
4301 if (stub_template_size)
4302 *stub_template_size = template_size;
4303
4304 size = 0;
4305 for (i = 0; i < template_size; i++)
4306 {
4307 switch (template_sequence[i].type)
4308 {
4309 case THUMB16_TYPE:
4310 size += 2;
4311 break;
4312
4313 case ARM_TYPE:
4314 case THUMB32_TYPE:
4315 case DATA_TYPE:
4316 size += 4;
4317 break;
4318
4319 default:
4320 BFD_FAIL ();
4321 return 0;
4322 }
4323 }
4324
4325 return size;
4326 }
4327
4328 /* As above, but don't actually build the stub. Just bump offset so
4329 we know stub section sizes. */
4330
4331 static bfd_boolean
4332 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4333 void *in_arg ATTRIBUTE_UNUSED)
4334 {
4335 struct elf32_arm_stub_hash_entry *stub_entry;
4336 const insn_sequence *template_sequence;
4337 int template_size, size;
4338
4339 /* Massage our args to the form they really have. */
4340 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4341
4342 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4343 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4344
4345 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4346 &template_size);
4347
4348 stub_entry->stub_size = size;
4349 stub_entry->stub_template = template_sequence;
4350 stub_entry->stub_template_size = template_size;
4351
4352 size = (size + 7) & ~7;
4353 stub_entry->stub_sec->size += size;
4354
4355 return TRUE;
4356 }
4357
4358 /* External entry points for sizing and building linker stubs. */
4359
4360 /* Set up various things so that we can make a list of input sections
4361 for each output section included in the link. Returns -1 on error,
4362 0 when no stubs will be needed, and 1 on success. */
4363
4364 int
4365 elf32_arm_setup_section_lists (bfd *output_bfd,
4366 struct bfd_link_info *info)
4367 {
4368 bfd *input_bfd;
4369 unsigned int bfd_count;
4370 int top_id, top_index;
4371 asection *section;
4372 asection **input_list, **list;
4373 bfd_size_type amt;
4374 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4375
4376 if (htab == NULL)
4377 return 0;
4378 if (! is_elf_hash_table (htab))
4379 return 0;
4380
4381 /* Count the number of input BFDs and find the top input section id. */
4382 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4383 input_bfd != NULL;
4384 input_bfd = input_bfd->link_next)
4385 {
4386 bfd_count += 1;
4387 for (section = input_bfd->sections;
4388 section != NULL;
4389 section = section->next)
4390 {
4391 if (top_id < section->id)
4392 top_id = section->id;
4393 }
4394 }
4395 htab->bfd_count = bfd_count;
4396
4397 amt = sizeof (struct map_stub) * (top_id + 1);
4398 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4399 if (htab->stub_group == NULL)
4400 return -1;
4401 htab->top_id = top_id;
4402
4403 /* We can't use output_bfd->section_count here to find the top output
4404 section index as some sections may have been removed, and
4405 _bfd_strip_section_from_output doesn't renumber the indices. */
4406 for (section = output_bfd->sections, top_index = 0;
4407 section != NULL;
4408 section = section->next)
4409 {
4410 if (top_index < section->index)
4411 top_index = section->index;
4412 }
4413
4414 htab->top_index = top_index;
4415 amt = sizeof (asection *) * (top_index + 1);
4416 input_list = (asection **) bfd_malloc (amt);
4417 htab->input_list = input_list;
4418 if (input_list == NULL)
4419 return -1;
4420
4421 /* For sections we aren't interested in, mark their entries with a
4422 value we can check later. */
4423 list = input_list + top_index;
4424 do
4425 *list = bfd_abs_section_ptr;
4426 while (list-- != input_list);
4427
4428 for (section = output_bfd->sections;
4429 section != NULL;
4430 section = section->next)
4431 {
4432 if ((section->flags & SEC_CODE) != 0)
4433 input_list[section->index] = NULL;
4434 }
4435
4436 return 1;
4437 }
4438
4439 /* The linker repeatedly calls this function for each input section,
4440 in the order that input sections are linked into output sections.
4441 Build lists of input sections to determine groupings between which
4442 we may insert linker stubs. */
4443
4444 void
4445 elf32_arm_next_input_section (struct bfd_link_info *info,
4446 asection *isec)
4447 {
4448 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4449
4450 if (htab == NULL)
4451 return;
4452
4453 if (isec->output_section->index <= htab->top_index)
4454 {
4455 asection **list = htab->input_list + isec->output_section->index;
4456
4457 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4458 {
4459 /* Steal the link_sec pointer for our list. */
4460 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4461 /* This happens to make the list in reverse order,
4462 which we reverse later. */
4463 PREV_SEC (isec) = *list;
4464 *list = isec;
4465 }
4466 }
4467 }
4468
4469 /* See whether we can group stub sections together. Grouping stub
4470 sections may result in fewer stubs. More importantly, we need to
4471 put all .init* and .fini* stubs at the end of the .init or
4472 .fini output sections respectively, because glibc splits the
4473 _init and _fini functions into multiple parts. Putting a stub in
4474 the middle of a function is not a good idea. */
4475
4476 static void
4477 group_sections (struct elf32_arm_link_hash_table *htab,
4478 bfd_size_type stub_group_size,
4479 bfd_boolean stubs_always_after_branch)
4480 {
4481 asection **list = htab->input_list;
4482
4483 do
4484 {
4485 asection *tail = *list;
4486 asection *head;
4487
4488 if (tail == bfd_abs_section_ptr)
4489 continue;
4490
4491 /* Reverse the list: we must avoid placing stubs at the
4492 beginning of the section because the beginning of the text
4493 section may be required for an interrupt vector in bare metal
4494 code. */
4495 #define NEXT_SEC PREV_SEC
4496 head = NULL;
4497 while (tail != NULL)
4498 {
4499 /* Pop from tail. */
4500 asection *item = tail;
4501 tail = PREV_SEC (item);
4502
4503 /* Push on head. */
4504 NEXT_SEC (item) = head;
4505 head = item;
4506 }
4507
4508 while (head != NULL)
4509 {
4510 asection *curr;
4511 asection *next;
4512 bfd_vma stub_group_start = head->output_offset;
4513 bfd_vma end_of_next;
4514
4515 curr = head;
4516 while (NEXT_SEC (curr) != NULL)
4517 {
4518 next = NEXT_SEC (curr);
4519 end_of_next = next->output_offset + next->size;
4520 if (end_of_next - stub_group_start >= stub_group_size)
4521 /* End of NEXT is too far from start, so stop. */
4522 break;
4523 /* Add NEXT to the group. */
4524 curr = next;
4525 }
4526
4527 /* OK, the size from the start to the start of CURR is less
4528 than stub_group_size and thus can be handled by one stub
4529 section. (Or the head section is itself larger than
4530 stub_group_size, in which case we may be toast.)
4531 We should really be keeping track of the total size of
4532 stubs added here, as stubs contribute to the final output
4533 section size. */
4534 do
4535 {
4536 next = NEXT_SEC (head);
4537 /* Set up this stub group. */
4538 htab->stub_group[head->id].link_sec = curr;
4539 }
4540 while (head != curr && (head = next) != NULL);
4541
4542 /* But wait, there's more! Input sections up to stub_group_size
4543 bytes after the stub section can be handled by it too. */
4544 if (!stubs_always_after_branch)
4545 {
4546 stub_group_start = curr->output_offset + curr->size;
4547
4548 while (next != NULL)
4549 {
4550 end_of_next = next->output_offset + next->size;
4551 if (end_of_next - stub_group_start >= stub_group_size)
4552 /* End of NEXT is too far from stubs, so stop. */
4553 break;
4554 /* Add NEXT to the stub group. */
4555 head = next;
4556 next = NEXT_SEC (head);
4557 htab->stub_group[head->id].link_sec = curr;
4558 }
4559 }
4560 head = next;
4561 }
4562 }
4563 while (list++ != htab->input_list + htab->top_index);
4564
4565 free (htab->input_list);
4566 #undef PREV_SEC
4567 #undef NEXT_SEC
4568 }
4569
4570 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4571 erratum fix. */
4572
4573 static int
4574 a8_reloc_compare (const void *a, const void *b)
4575 {
4576 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4577 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4578
4579 if (ra->from < rb->from)
4580 return -1;
4581 else if (ra->from > rb->from)
4582 return 1;
4583 else
4584 return 0;
4585 }
4586
4587 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4588 const char *, char **);
4589
4590 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4591 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4592 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4593 otherwise. */
4594
4595 static bfd_boolean
4596 cortex_a8_erratum_scan (bfd *input_bfd,
4597 struct bfd_link_info *info,
4598 struct a8_erratum_fix **a8_fixes_p,
4599 unsigned int *num_a8_fixes_p,
4600 unsigned int *a8_fix_table_size_p,
4601 struct a8_erratum_reloc *a8_relocs,
4602 unsigned int num_a8_relocs,
4603 unsigned prev_num_a8_fixes,
4604 bfd_boolean *stub_changed_p)
4605 {
4606 asection *section;
4607 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4608 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4609 unsigned int num_a8_fixes = *num_a8_fixes_p;
4610 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4611
4612 if (htab == NULL)
4613 return FALSE;
4614
4615 for (section = input_bfd->sections;
4616 section != NULL;
4617 section = section->next)
4618 {
4619 bfd_byte *contents = NULL;
4620 struct _arm_elf_section_data *sec_data;
4621 unsigned int span;
4622 bfd_vma base_vma;
4623
4624 if (elf_section_type (section) != SHT_PROGBITS
4625 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4626 || (section->flags & SEC_EXCLUDE) != 0
4627 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4628 || (section->output_section == bfd_abs_section_ptr))
4629 continue;
4630
4631 base_vma = section->output_section->vma + section->output_offset;
4632
4633 if (elf_section_data (section)->this_hdr.contents != NULL)
4634 contents = elf_section_data (section)->this_hdr.contents;
4635 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4636 return TRUE;
4637
4638 sec_data = elf32_arm_section_data (section);
4639
4640 for (span = 0; span < sec_data->mapcount; span++)
4641 {
4642 unsigned int span_start = sec_data->map[span].vma;
4643 unsigned int span_end = (span == sec_data->mapcount - 1)
4644 ? section->size : sec_data->map[span + 1].vma;
4645 unsigned int i;
4646 char span_type = sec_data->map[span].type;
4647 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4648
4649 if (span_type != 't')
4650 continue;
4651
4652 /* Span is entirely within a single 4KB region: skip scanning. */
4653 if (((base_vma + span_start) & ~0xfff)
4654 == ((base_vma + span_end) & ~0xfff))
4655 continue;
4656
4657 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4658
4659 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4660 * The branch target is in the same 4KB region as the
4661 first half of the branch.
4662 * The instruction before the branch is a 32-bit
4663 length non-branch instruction. */
4664 for (i = span_start; i < span_end;)
4665 {
4666 unsigned int insn = bfd_getl16 (&contents[i]);
4667 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4668 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4669
4670 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4671 insn_32bit = TRUE;
4672
4673 if (insn_32bit)
4674 {
4675 /* Load the rest of the insn (in manual-friendly order). */
4676 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4677
4678 /* Encoding T4: B<c>.W. */
4679 is_b = (insn & 0xf800d000) == 0xf0009000;
4680 /* Encoding T1: BL<c>.W. */
4681 is_bl = (insn & 0xf800d000) == 0xf000d000;
4682 /* Encoding T2: BLX<c>.W. */
4683 is_blx = (insn & 0xf800d000) == 0xf000c000;
4684 /* Encoding T3: B<c>.W (not permitted in IT block). */
4685 is_bcc = (insn & 0xf800d000) == 0xf0008000
4686 && (insn & 0x07f00000) != 0x03800000;
4687 }
4688
4689 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4690
4691 if (((base_vma + i) & 0xfff) == 0xffe
4692 && insn_32bit
4693 && is_32bit_branch
4694 && last_was_32bit
4695 && ! last_was_branch)
4696 {
4697 bfd_signed_vma offset = 0;
4698 bfd_boolean force_target_arm = FALSE;
4699 bfd_boolean force_target_thumb = FALSE;
4700 bfd_vma target;
4701 enum elf32_arm_stub_type stub_type = arm_stub_none;
4702 struct a8_erratum_reloc key, *found;
4703 bfd_boolean use_plt = FALSE;
4704
4705 key.from = base_vma + i;
4706 found = (struct a8_erratum_reloc *)
4707 bsearch (&key, a8_relocs, num_a8_relocs,
4708 sizeof (struct a8_erratum_reloc),
4709 &a8_reloc_compare);
4710
4711 if (found)
4712 {
4713 char *error_message = NULL;
4714 struct elf_link_hash_entry *entry;
4715
4716 /* We don't care about the error returned from this
4717 function, only if there is glue or not. */
4718 entry = find_thumb_glue (info, found->sym_name,
4719 &error_message);
4720
4721 if (entry)
4722 found->non_a8_stub = TRUE;
4723
4724 /* Keep a simpler condition, for the sake of clarity. */
4725 if (htab->root.splt != NULL && found->hash != NULL
4726 && found->hash->root.plt.offset != (bfd_vma) -1)
4727 use_plt = TRUE;
4728
4729 if (found->r_type == R_ARM_THM_CALL)
4730 {
4731 if (found->branch_type == ST_BRANCH_TO_ARM
4732 || use_plt)
4733 force_target_arm = TRUE;
4734 else
4735 force_target_thumb = TRUE;
4736 }
4737 }
4738
4739 /* Check if we have an offending branch instruction. */
4740
4741 if (found && found->non_a8_stub)
4742 /* We've already made a stub for this instruction, e.g.
4743 it's a long branch or a Thumb->ARM stub. Assume that
4744 stub will suffice to work around the A8 erratum (see
4745 setting of always_after_branch above). */
4746 ;
4747 else if (is_bcc)
4748 {
4749 offset = (insn & 0x7ff) << 1;
4750 offset |= (insn & 0x3f0000) >> 4;
4751 offset |= (insn & 0x2000) ? 0x40000 : 0;
4752 offset |= (insn & 0x800) ? 0x80000 : 0;
4753 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4754 if (offset & 0x100000)
4755 offset |= ~ ((bfd_signed_vma) 0xfffff);
4756 stub_type = arm_stub_a8_veneer_b_cond;
4757 }
4758 else if (is_b || is_bl || is_blx)
4759 {
4760 int s = (insn & 0x4000000) != 0;
4761 int j1 = (insn & 0x2000) != 0;
4762 int j2 = (insn & 0x800) != 0;
4763 int i1 = !(j1 ^ s);
4764 int i2 = !(j2 ^ s);
4765
4766 offset = (insn & 0x7ff) << 1;
4767 offset |= (insn & 0x3ff0000) >> 4;
4768 offset |= i2 << 22;
4769 offset |= i1 << 23;
4770 offset |= s << 24;
4771 if (offset & 0x1000000)
4772 offset |= ~ ((bfd_signed_vma) 0xffffff);
4773
4774 if (is_blx)
4775 offset &= ~ ((bfd_signed_vma) 3);
4776
4777 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4778 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4779 }
4780
4781 if (stub_type != arm_stub_none)
4782 {
4783 bfd_vma pc_for_insn = base_vma + i + 4;
4784
4785 /* The original instruction is a BL, but the target is
4786 an ARM instruction. If we were not making a stub,
4787 the BL would have been converted to a BLX. Use the
4788 BLX stub instead in that case. */
4789 if (htab->use_blx && force_target_arm
4790 && stub_type == arm_stub_a8_veneer_bl)
4791 {
4792 stub_type = arm_stub_a8_veneer_blx;
4793 is_blx = TRUE;
4794 is_bl = FALSE;
4795 }
4796 /* Conversely, if the original instruction was
4797 BLX but the target is Thumb mode, use the BL
4798 stub. */
4799 else if (force_target_thumb
4800 && stub_type == arm_stub_a8_veneer_blx)
4801 {
4802 stub_type = arm_stub_a8_veneer_bl;
4803 is_blx = FALSE;
4804 is_bl = TRUE;
4805 }
4806
4807 if (is_blx)
4808 pc_for_insn &= ~ ((bfd_vma) 3);
4809
4810 /* If we found a relocation, use the proper destination,
4811 not the offset in the (unrelocated) instruction.
4812 Note this is always done if we switched the stub type
4813 above. */
4814 if (found)
4815 offset =
4816 (bfd_signed_vma) (found->destination - pc_for_insn);
4817
4818 /* If the stub will use a Thumb-mode branch to a
4819 PLT target, redirect it to the preceding Thumb
4820 entry point. */
4821 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4822 offset -= PLT_THUMB_STUB_SIZE;
4823
4824 target = pc_for_insn + offset;
4825
4826 /* The BLX stub is ARM-mode code. Adjust the offset to
4827 take the different PC value (+8 instead of +4) into
4828 account. */
4829 if (stub_type == arm_stub_a8_veneer_blx)
4830 offset += 4;
4831
4832 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4833 {
4834 char *stub_name = NULL;
4835
4836 if (num_a8_fixes == a8_fix_table_size)
4837 {
4838 a8_fix_table_size *= 2;
4839 a8_fixes = (struct a8_erratum_fix *)
4840 bfd_realloc (a8_fixes,
4841 sizeof (struct a8_erratum_fix)
4842 * a8_fix_table_size);
4843 }
4844
4845 if (num_a8_fixes < prev_num_a8_fixes)
4846 {
4847 /* If we're doing a subsequent scan,
4848 check if we've found the same fix as
4849 before, and try and reuse the stub
4850 name. */
4851 stub_name = a8_fixes[num_a8_fixes].stub_name;
4852 if ((a8_fixes[num_a8_fixes].section != section)
4853 || (a8_fixes[num_a8_fixes].offset != i))
4854 {
4855 free (stub_name);
4856 stub_name = NULL;
4857 *stub_changed_p = TRUE;
4858 }
4859 }
4860
4861 if (!stub_name)
4862 {
4863 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4864 if (stub_name != NULL)
4865 sprintf (stub_name, "%x:%x", section->id, i);
4866 }
4867
4868 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4869 a8_fixes[num_a8_fixes].section = section;
4870 a8_fixes[num_a8_fixes].offset = i;
4871 a8_fixes[num_a8_fixes].addend = offset;
4872 a8_fixes[num_a8_fixes].orig_insn = insn;
4873 a8_fixes[num_a8_fixes].stub_name = stub_name;
4874 a8_fixes[num_a8_fixes].stub_type = stub_type;
4875 a8_fixes[num_a8_fixes].branch_type =
4876 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4877
4878 num_a8_fixes++;
4879 }
4880 }
4881 }
4882
4883 i += insn_32bit ? 4 : 2;
4884 last_was_32bit = insn_32bit;
4885 last_was_branch = is_32bit_branch;
4886 }
4887 }
4888
4889 if (elf_section_data (section)->this_hdr.contents == NULL)
4890 free (contents);
4891 }
4892
4893 *a8_fixes_p = a8_fixes;
4894 *num_a8_fixes_p = num_a8_fixes;
4895 *a8_fix_table_size_p = a8_fix_table_size;
4896
4897 return FALSE;
4898 }
4899
4900 /* Determine and set the size of the stub section for a final link.
4901
4902 The basic idea here is to examine all the relocations looking for
4903 PC-relative calls to a target that is unreachable with a "bl"
4904 instruction. */
4905
4906 bfd_boolean
4907 elf32_arm_size_stubs (bfd *output_bfd,
4908 bfd *stub_bfd,
4909 struct bfd_link_info *info,
4910 bfd_signed_vma group_size,
4911 asection * (*add_stub_section) (const char *, asection *,
4912 unsigned int),
4913 void (*layout_sections_again) (void))
4914 {
4915 bfd_size_type stub_group_size;
4916 bfd_boolean stubs_always_after_branch;
4917 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4918 struct a8_erratum_fix *a8_fixes = NULL;
4919 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4920 struct a8_erratum_reloc *a8_relocs = NULL;
4921 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4922
4923 if (htab == NULL)
4924 return FALSE;
4925
4926 if (htab->fix_cortex_a8)
4927 {
4928 a8_fixes = (struct a8_erratum_fix *)
4929 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4930 a8_relocs = (struct a8_erratum_reloc *)
4931 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4932 }
4933
4934 /* Propagate mach to stub bfd, because it may not have been
4935 finalized when we created stub_bfd. */
4936 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4937 bfd_get_mach (output_bfd));
4938
4939 /* Stash our params away. */
4940 htab->stub_bfd = stub_bfd;
4941 htab->add_stub_section = add_stub_section;
4942 htab->layout_sections_again = layout_sections_again;
4943 stubs_always_after_branch = group_size < 0;
4944
4945 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4946 as the first half of a 32-bit branch straddling two 4K pages. This is a
4947 crude way of enforcing that. */
4948 if (htab->fix_cortex_a8)
4949 stubs_always_after_branch = 1;
4950
4951 if (group_size < 0)
4952 stub_group_size = -group_size;
4953 else
4954 stub_group_size = group_size;
4955
4956 if (stub_group_size == 1)
4957 {
4958 /* Default values. */
4959 /* Thumb branch range is +-4MB has to be used as the default
4960 maximum size (a given section can contain both ARM and Thumb
4961 code, so the worst case has to be taken into account).
4962
4963 This value is 24K less than that, which allows for 2025
4964 12-byte stubs. If we exceed that, then we will fail to link.
4965 The user will have to relink with an explicit group size
4966 option. */
4967 stub_group_size = 4170000;
4968 }
4969
4970 group_sections (htab, stub_group_size, stubs_always_after_branch);
4971
4972 /* If we're applying the cortex A8 fix, we need to determine the
4973 program header size now, because we cannot change it later --
4974 that could alter section placements. Notice the A8 erratum fix
4975 ends up requiring the section addresses to remain unchanged
4976 modulo the page size. That's something we cannot represent
4977 inside BFD, and we don't want to force the section alignment to
4978 be the page size. */
4979 if (htab->fix_cortex_a8)
4980 (*htab->layout_sections_again) ();
4981
4982 while (1)
4983 {
4984 bfd *input_bfd;
4985 unsigned int bfd_indx;
4986 asection *stub_sec;
4987 bfd_boolean stub_changed = FALSE;
4988 unsigned prev_num_a8_fixes = num_a8_fixes;
4989
4990 num_a8_fixes = 0;
4991 for (input_bfd = info->input_bfds, bfd_indx = 0;
4992 input_bfd != NULL;
4993 input_bfd = input_bfd->link_next, bfd_indx++)
4994 {
4995 Elf_Internal_Shdr *symtab_hdr;
4996 asection *section;
4997 Elf_Internal_Sym *local_syms = NULL;
4998
4999 if (!is_arm_elf (input_bfd))
5000 continue;
5001
5002 num_a8_relocs = 0;
5003
5004 /* We'll need the symbol table in a second. */
5005 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5006 if (symtab_hdr->sh_info == 0)
5007 continue;
5008
5009 /* Walk over each section attached to the input bfd. */
5010 for (section = input_bfd->sections;
5011 section != NULL;
5012 section = section->next)
5013 {
5014 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5015
5016 /* If there aren't any relocs, then there's nothing more
5017 to do. */
5018 if ((section->flags & SEC_RELOC) == 0
5019 || section->reloc_count == 0
5020 || (section->flags & SEC_CODE) == 0)
5021 continue;
5022
5023 /* If this section is a link-once section that will be
5024 discarded, then don't create any stubs. */
5025 if (section->output_section == NULL
5026 || section->output_section->owner != output_bfd)
5027 continue;
5028
5029 /* Get the relocs. */
5030 internal_relocs
5031 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5032 NULL, info->keep_memory);
5033 if (internal_relocs == NULL)
5034 goto error_ret_free_local;
5035
5036 /* Now examine each relocation. */
5037 irela = internal_relocs;
5038 irelaend = irela + section->reloc_count;
5039 for (; irela < irelaend; irela++)
5040 {
5041 unsigned int r_type, r_indx;
5042 enum elf32_arm_stub_type stub_type;
5043 struct elf32_arm_stub_hash_entry *stub_entry;
5044 asection *sym_sec;
5045 bfd_vma sym_value;
5046 bfd_vma destination;
5047 struct elf32_arm_link_hash_entry *hash;
5048 const char *sym_name;
5049 char *stub_name;
5050 const asection *id_sec;
5051 unsigned char st_type;
5052 enum arm_st_branch_type branch_type;
5053 bfd_boolean created_stub = FALSE;
5054
5055 r_type = ELF32_R_TYPE (irela->r_info);
5056 r_indx = ELF32_R_SYM (irela->r_info);
5057
5058 if (r_type >= (unsigned int) R_ARM_max)
5059 {
5060 bfd_set_error (bfd_error_bad_value);
5061 error_ret_free_internal:
5062 if (elf_section_data (section)->relocs == NULL)
5063 free (internal_relocs);
5064 goto error_ret_free_local;
5065 }
5066
5067 hash = NULL;
5068 if (r_indx >= symtab_hdr->sh_info)
5069 hash = elf32_arm_hash_entry
5070 (elf_sym_hashes (input_bfd)
5071 [r_indx - symtab_hdr->sh_info]);
5072
5073 /* Only look for stubs on branch instructions, or
5074 non-relaxed TLSCALL */
5075 if ((r_type != (unsigned int) R_ARM_CALL)
5076 && (r_type != (unsigned int) R_ARM_THM_CALL)
5077 && (r_type != (unsigned int) R_ARM_JUMP24)
5078 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5079 && (r_type != (unsigned int) R_ARM_THM_XPC22)
5080 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5081 && (r_type != (unsigned int) R_ARM_PLT32)
5082 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5083 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5084 && r_type == elf32_arm_tls_transition
5085 (info, r_type, &hash->root)
5086 && ((hash ? hash->tls_type
5087 : (elf32_arm_local_got_tls_type
5088 (input_bfd)[r_indx]))
5089 & GOT_TLS_GDESC) != 0))
5090 continue;
5091
5092 /* Now determine the call target, its name, value,
5093 section. */
5094 sym_sec = NULL;
5095 sym_value = 0;
5096 destination = 0;
5097 sym_name = NULL;
5098
5099 if (r_type == (unsigned int) R_ARM_TLS_CALL
5100 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5101 {
5102 /* A non-relaxed TLS call. The target is the
5103 plt-resident trampoline and nothing to do
5104 with the symbol. */
5105 BFD_ASSERT (htab->tls_trampoline > 0);
5106 sym_sec = htab->root.splt;
5107 sym_value = htab->tls_trampoline;
5108 hash = 0;
5109 st_type = STT_FUNC;
5110 branch_type = ST_BRANCH_TO_ARM;
5111 }
5112 else if (!hash)
5113 {
5114 /* It's a local symbol. */
5115 Elf_Internal_Sym *sym;
5116
5117 if (local_syms == NULL)
5118 {
5119 local_syms
5120 = (Elf_Internal_Sym *) symtab_hdr->contents;
5121 if (local_syms == NULL)
5122 local_syms
5123 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5124 symtab_hdr->sh_info, 0,
5125 NULL, NULL, NULL);
5126 if (local_syms == NULL)
5127 goto error_ret_free_internal;
5128 }
5129
5130 sym = local_syms + r_indx;
5131 if (sym->st_shndx == SHN_UNDEF)
5132 sym_sec = bfd_und_section_ptr;
5133 else if (sym->st_shndx == SHN_ABS)
5134 sym_sec = bfd_abs_section_ptr;
5135 else if (sym->st_shndx == SHN_COMMON)
5136 sym_sec = bfd_com_section_ptr;
5137 else
5138 sym_sec =
5139 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5140
5141 if (!sym_sec)
5142 /* This is an undefined symbol. It can never
5143 be resolved. */
5144 continue;
5145
5146 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5147 sym_value = sym->st_value;
5148 destination = (sym_value + irela->r_addend
5149 + sym_sec->output_offset
5150 + sym_sec->output_section->vma);
5151 st_type = ELF_ST_TYPE (sym->st_info);
5152 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5153 sym_name
5154 = bfd_elf_string_from_elf_section (input_bfd,
5155 symtab_hdr->sh_link,
5156 sym->st_name);
5157 }
5158 else
5159 {
5160 /* It's an external symbol. */
5161 while (hash->root.root.type == bfd_link_hash_indirect
5162 || hash->root.root.type == bfd_link_hash_warning)
5163 hash = ((struct elf32_arm_link_hash_entry *)
5164 hash->root.root.u.i.link);
5165
5166 if (hash->root.root.type == bfd_link_hash_defined
5167 || hash->root.root.type == bfd_link_hash_defweak)
5168 {
5169 sym_sec = hash->root.root.u.def.section;
5170 sym_value = hash->root.root.u.def.value;
5171
5172 struct elf32_arm_link_hash_table *globals =
5173 elf32_arm_hash_table (info);
5174
5175 /* For a destination in a shared library,
5176 use the PLT stub as target address to
5177 decide whether a branch stub is
5178 needed. */
5179 if (globals != NULL
5180 && globals->root.splt != NULL
5181 && hash != NULL
5182 && hash->root.plt.offset != (bfd_vma) -1)
5183 {
5184 sym_sec = globals->root.splt;
5185 sym_value = hash->root.plt.offset;
5186 if (sym_sec->output_section != NULL)
5187 destination = (sym_value
5188 + sym_sec->output_offset
5189 + sym_sec->output_section->vma);
5190 }
5191 else if (sym_sec->output_section != NULL)
5192 destination = (sym_value + irela->r_addend
5193 + sym_sec->output_offset
5194 + sym_sec->output_section->vma);
5195 }
5196 else if ((hash->root.root.type == bfd_link_hash_undefined)
5197 || (hash->root.root.type == bfd_link_hash_undefweak))
5198 {
5199 /* For a shared library, use the PLT stub as
5200 target address to decide whether a long
5201 branch stub is needed.
5202 For absolute code, they cannot be handled. */
5203 struct elf32_arm_link_hash_table *globals =
5204 elf32_arm_hash_table (info);
5205
5206 if (globals != NULL
5207 && globals->root.splt != NULL
5208 && hash != NULL
5209 && hash->root.plt.offset != (bfd_vma) -1)
5210 {
5211 sym_sec = globals->root.splt;
5212 sym_value = hash->root.plt.offset;
5213 if (sym_sec->output_section != NULL)
5214 destination = (sym_value
5215 + sym_sec->output_offset
5216 + sym_sec->output_section->vma);
5217 }
5218 else
5219 continue;
5220 }
5221 else
5222 {
5223 bfd_set_error (bfd_error_bad_value);
5224 goto error_ret_free_internal;
5225 }
5226 st_type = hash->root.type;
5227 branch_type = hash->root.target_internal;
5228 sym_name = hash->root.root.root.string;
5229 }
5230
5231 do
5232 {
5233 /* Determine what (if any) linker stub is needed. */
5234 stub_type = arm_type_of_stub (info, section, irela,
5235 st_type, &branch_type,
5236 hash, destination, sym_sec,
5237 input_bfd, sym_name);
5238 if (stub_type == arm_stub_none)
5239 break;
5240
5241 /* Support for grouping stub sections. */
5242 id_sec = htab->stub_group[section->id].link_sec;
5243
5244 /* Get the name of this stub. */
5245 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5246 irela, stub_type);
5247 if (!stub_name)
5248 goto error_ret_free_internal;
5249
5250 /* We've either created a stub for this reloc already,
5251 or we are about to. */
5252 created_stub = TRUE;
5253
5254 stub_entry = arm_stub_hash_lookup
5255 (&htab->stub_hash_table, stub_name,
5256 FALSE, FALSE);
5257 if (stub_entry != NULL)
5258 {
5259 /* The proper stub has already been created. */
5260 free (stub_name);
5261 stub_entry->target_value = sym_value;
5262 break;
5263 }
5264
5265 stub_entry = elf32_arm_add_stub (stub_name, section,
5266 htab);
5267 if (stub_entry == NULL)
5268 {
5269 free (stub_name);
5270 goto error_ret_free_internal;
5271 }
5272
5273 stub_entry->target_value = sym_value;
5274 stub_entry->target_section = sym_sec;
5275 stub_entry->stub_type = stub_type;
5276 stub_entry->h = hash;
5277 stub_entry->branch_type = branch_type;
5278
5279 if (sym_name == NULL)
5280 sym_name = "unnamed";
5281 stub_entry->output_name = (char *)
5282 bfd_alloc (htab->stub_bfd,
5283 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5284 + strlen (sym_name));
5285 if (stub_entry->output_name == NULL)
5286 {
5287 free (stub_name);
5288 goto error_ret_free_internal;
5289 }
5290
5291 /* For historical reasons, use the existing names for
5292 ARM-to-Thumb and Thumb-to-ARM stubs. */
5293 if ((r_type == (unsigned int) R_ARM_THM_CALL
5294 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5295 && branch_type == ST_BRANCH_TO_ARM)
5296 sprintf (stub_entry->output_name,
5297 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5298 else if ((r_type == (unsigned int) R_ARM_CALL
5299 || r_type == (unsigned int) R_ARM_JUMP24)
5300 && branch_type == ST_BRANCH_TO_THUMB)
5301 sprintf (stub_entry->output_name,
5302 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5303 else
5304 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5305 sym_name);
5306
5307 stub_changed = TRUE;
5308 }
5309 while (0);
5310
5311 /* Look for relocations which might trigger Cortex-A8
5312 erratum. */
5313 if (htab->fix_cortex_a8
5314 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5315 || r_type == (unsigned int) R_ARM_THM_JUMP19
5316 || r_type == (unsigned int) R_ARM_THM_CALL
5317 || r_type == (unsigned int) R_ARM_THM_XPC22))
5318 {
5319 bfd_vma from = section->output_section->vma
5320 + section->output_offset
5321 + irela->r_offset;
5322
5323 if ((from & 0xfff) == 0xffe)
5324 {
5325 /* Found a candidate. Note we haven't checked the
5326 destination is within 4K here: if we do so (and
5327 don't create an entry in a8_relocs) we can't tell
5328 that a branch should have been relocated when
5329 scanning later. */
5330 if (num_a8_relocs == a8_reloc_table_size)
5331 {
5332 a8_reloc_table_size *= 2;
5333 a8_relocs = (struct a8_erratum_reloc *)
5334 bfd_realloc (a8_relocs,
5335 sizeof (struct a8_erratum_reloc)
5336 * a8_reloc_table_size);
5337 }
5338
5339 a8_relocs[num_a8_relocs].from = from;
5340 a8_relocs[num_a8_relocs].destination = destination;
5341 a8_relocs[num_a8_relocs].r_type = r_type;
5342 a8_relocs[num_a8_relocs].branch_type = branch_type;
5343 a8_relocs[num_a8_relocs].sym_name = sym_name;
5344 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5345 a8_relocs[num_a8_relocs].hash = hash;
5346
5347 num_a8_relocs++;
5348 }
5349 }
5350 }
5351
5352 /* We're done with the internal relocs, free them. */
5353 if (elf_section_data (section)->relocs == NULL)
5354 free (internal_relocs);
5355 }
5356
5357 if (htab->fix_cortex_a8)
5358 {
5359 /* Sort relocs which might apply to Cortex-A8 erratum. */
5360 qsort (a8_relocs, num_a8_relocs,
5361 sizeof (struct a8_erratum_reloc),
5362 &a8_reloc_compare);
5363
5364 /* Scan for branches which might trigger Cortex-A8 erratum. */
5365 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5366 &num_a8_fixes, &a8_fix_table_size,
5367 a8_relocs, num_a8_relocs,
5368 prev_num_a8_fixes, &stub_changed)
5369 != 0)
5370 goto error_ret_free_local;
5371 }
5372 }
5373
5374 if (prev_num_a8_fixes != num_a8_fixes)
5375 stub_changed = TRUE;
5376
5377 if (!stub_changed)
5378 break;
5379
5380 /* OK, we've added some stubs. Find out the new size of the
5381 stub sections. */
5382 for (stub_sec = htab->stub_bfd->sections;
5383 stub_sec != NULL;
5384 stub_sec = stub_sec->next)
5385 {
5386 /* Ignore non-stub sections. */
5387 if (!strstr (stub_sec->name, STUB_SUFFIX))
5388 continue;
5389
5390 stub_sec->size = 0;
5391 }
5392
5393 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5394
5395 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5396 if (htab->fix_cortex_a8)
5397 for (i = 0; i < num_a8_fixes; i++)
5398 {
5399 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5400 a8_fixes[i].section, htab);
5401
5402 if (stub_sec == NULL)
5403 goto error_ret_free_local;
5404
5405 stub_sec->size
5406 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5407 NULL);
5408 }
5409
5410
5411 /* Ask the linker to do its stuff. */
5412 (*htab->layout_sections_again) ();
5413 }
5414
5415 /* Add stubs for Cortex-A8 erratum fixes now. */
5416 if (htab->fix_cortex_a8)
5417 {
5418 for (i = 0; i < num_a8_fixes; i++)
5419 {
5420 struct elf32_arm_stub_hash_entry *stub_entry;
5421 char *stub_name = a8_fixes[i].stub_name;
5422 asection *section = a8_fixes[i].section;
5423 unsigned int section_id = a8_fixes[i].section->id;
5424 asection *link_sec = htab->stub_group[section_id].link_sec;
5425 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5426 const insn_sequence *template_sequence;
5427 int template_size, size = 0;
5428
5429 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5430 TRUE, FALSE);
5431 if (stub_entry == NULL)
5432 {
5433 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5434 section->owner,
5435 stub_name);
5436 return FALSE;
5437 }
5438
5439 stub_entry->stub_sec = stub_sec;
5440 stub_entry->stub_offset = 0;
5441 stub_entry->id_sec = link_sec;
5442 stub_entry->stub_type = a8_fixes[i].stub_type;
5443 stub_entry->target_section = a8_fixes[i].section;
5444 stub_entry->target_value = a8_fixes[i].offset;
5445 stub_entry->target_addend = a8_fixes[i].addend;
5446 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5447 stub_entry->branch_type = a8_fixes[i].branch_type;
5448
5449 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5450 &template_sequence,
5451 &template_size);
5452
5453 stub_entry->stub_size = size;
5454 stub_entry->stub_template = template_sequence;
5455 stub_entry->stub_template_size = template_size;
5456 }
5457
5458 /* Stash the Cortex-A8 erratum fix array for use later in
5459 elf32_arm_write_section(). */
5460 htab->a8_erratum_fixes = a8_fixes;
5461 htab->num_a8_erratum_fixes = num_a8_fixes;
5462 }
5463 else
5464 {
5465 htab->a8_erratum_fixes = NULL;
5466 htab->num_a8_erratum_fixes = 0;
5467 }
5468 return TRUE;
5469
5470 error_ret_free_local:
5471 return FALSE;
5472 }
5473
5474 /* Build all the stubs associated with the current output file. The
5475 stubs are kept in a hash table attached to the main linker hash
5476 table. We also set up the .plt entries for statically linked PIC
5477 functions here. This function is called via arm_elf_finish in the
5478 linker. */
5479
5480 bfd_boolean
5481 elf32_arm_build_stubs (struct bfd_link_info *info)
5482 {
5483 asection *stub_sec;
5484 struct bfd_hash_table *table;
5485 struct elf32_arm_link_hash_table *htab;
5486
5487 htab = elf32_arm_hash_table (info);
5488 if (htab == NULL)
5489 return FALSE;
5490
5491 for (stub_sec = htab->stub_bfd->sections;
5492 stub_sec != NULL;
5493 stub_sec = stub_sec->next)
5494 {
5495 bfd_size_type size;
5496
5497 /* Ignore non-stub sections. */
5498 if (!strstr (stub_sec->name, STUB_SUFFIX))
5499 continue;
5500
5501 /* Allocate memory to hold the linker stubs. */
5502 size = stub_sec->size;
5503 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5504 if (stub_sec->contents == NULL && size != 0)
5505 return FALSE;
5506 stub_sec->size = 0;
5507 }
5508
5509 /* Build the stubs as directed by the stub hash table. */
5510 table = &htab->stub_hash_table;
5511 bfd_hash_traverse (table, arm_build_one_stub, info);
5512 if (htab->fix_cortex_a8)
5513 {
5514 /* Place the cortex a8 stubs last. */
5515 htab->fix_cortex_a8 = -1;
5516 bfd_hash_traverse (table, arm_build_one_stub, info);
5517 }
5518
5519 return TRUE;
5520 }
5521
5522 /* Locate the Thumb encoded calling stub for NAME. */
5523
5524 static struct elf_link_hash_entry *
5525 find_thumb_glue (struct bfd_link_info *link_info,
5526 const char *name,
5527 char **error_message)
5528 {
5529 char *tmp_name;
5530 struct elf_link_hash_entry *hash;
5531 struct elf32_arm_link_hash_table *hash_table;
5532
5533 /* We need a pointer to the armelf specific hash table. */
5534 hash_table = elf32_arm_hash_table (link_info);
5535 if (hash_table == NULL)
5536 return NULL;
5537
5538 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5539 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5540
5541 BFD_ASSERT (tmp_name);
5542
5543 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5544
5545 hash = elf_link_hash_lookup
5546 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5547
5548 if (hash == NULL
5549 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5550 tmp_name, name) == -1)
5551 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5552
5553 free (tmp_name);
5554
5555 return hash;
5556 }
5557
5558 /* Locate the ARM encoded calling stub for NAME. */
5559
5560 static struct elf_link_hash_entry *
5561 find_arm_glue (struct bfd_link_info *link_info,
5562 const char *name,
5563 char **error_message)
5564 {
5565 char *tmp_name;
5566 struct elf_link_hash_entry *myh;
5567 struct elf32_arm_link_hash_table *hash_table;
5568
5569 /* We need a pointer to the elfarm specific hash table. */
5570 hash_table = elf32_arm_hash_table (link_info);
5571 if (hash_table == NULL)
5572 return NULL;
5573
5574 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5575 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5576
5577 BFD_ASSERT (tmp_name);
5578
5579 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5580
5581 myh = elf_link_hash_lookup
5582 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5583
5584 if (myh == NULL
5585 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5586 tmp_name, name) == -1)
5587 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5588
5589 free (tmp_name);
5590
5591 return myh;
5592 }
5593
5594 /* ARM->Thumb glue (static images):
5595
5596 .arm
5597 __func_from_arm:
5598 ldr r12, __func_addr
5599 bx r12
5600 __func_addr:
5601 .word func @ behave as if you saw a ARM_32 reloc.
5602
5603 (v5t static images)
5604 .arm
5605 __func_from_arm:
5606 ldr pc, __func_addr
5607 __func_addr:
5608 .word func @ behave as if you saw a ARM_32 reloc.
5609
5610 (relocatable images)
5611 .arm
5612 __func_from_arm:
5613 ldr r12, __func_offset
5614 add r12, r12, pc
5615 bx r12
5616 __func_offset:
5617 .word func - . */
5618
5619 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5620 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5621 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5622 static const insn32 a2t3_func_addr_insn = 0x00000001;
5623
5624 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5625 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5626 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5627
5628 #define ARM2THUMB_PIC_GLUE_SIZE 16
5629 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5630 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5631 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5632
5633 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5634
5635 .thumb .thumb
5636 .align 2 .align 2
5637 __func_from_thumb: __func_from_thumb:
5638 bx pc push {r6, lr}
5639 nop ldr r6, __func_addr
5640 .arm mov lr, pc
5641 b func bx r6
5642 .arm
5643 ;; back_to_thumb
5644 ldmia r13! {r6, lr}
5645 bx lr
5646 __func_addr:
5647 .word func */
5648
5649 #define THUMB2ARM_GLUE_SIZE 8
5650 static const insn16 t2a1_bx_pc_insn = 0x4778;
5651 static const insn16 t2a2_noop_insn = 0x46c0;
5652 static const insn32 t2a3_b_insn = 0xea000000;
5653
5654 #define VFP11_ERRATUM_VENEER_SIZE 8
5655
5656 #define ARM_BX_VENEER_SIZE 12
5657 static const insn32 armbx1_tst_insn = 0xe3100001;
5658 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5659 static const insn32 armbx3_bx_insn = 0xe12fff10;
5660
5661 #ifndef ELFARM_NABI_C_INCLUDED
5662 static void
5663 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5664 {
5665 asection * s;
5666 bfd_byte * contents;
5667
5668 if (size == 0)
5669 {
5670 /* Do not include empty glue sections in the output. */
5671 if (abfd != NULL)
5672 {
5673 s = bfd_get_linker_section (abfd, name);
5674 if (s != NULL)
5675 s->flags |= SEC_EXCLUDE;
5676 }
5677 return;
5678 }
5679
5680 BFD_ASSERT (abfd != NULL);
5681
5682 s = bfd_get_linker_section (abfd, name);
5683 BFD_ASSERT (s != NULL);
5684
5685 contents = (bfd_byte *) bfd_alloc (abfd, size);
5686
5687 BFD_ASSERT (s->size == size);
5688 s->contents = contents;
5689 }
5690
5691 bfd_boolean
5692 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5693 {
5694 struct elf32_arm_link_hash_table * globals;
5695
5696 globals = elf32_arm_hash_table (info);
5697 BFD_ASSERT (globals != NULL);
5698
5699 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5700 globals->arm_glue_size,
5701 ARM2THUMB_GLUE_SECTION_NAME);
5702
5703 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5704 globals->thumb_glue_size,
5705 THUMB2ARM_GLUE_SECTION_NAME);
5706
5707 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5708 globals->vfp11_erratum_glue_size,
5709 VFP11_ERRATUM_VENEER_SECTION_NAME);
5710
5711 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5712 globals->bx_glue_size,
5713 ARM_BX_GLUE_SECTION_NAME);
5714
5715 return TRUE;
5716 }
5717
5718 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5719 returns the symbol identifying the stub. */
5720
5721 static struct elf_link_hash_entry *
5722 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5723 struct elf_link_hash_entry * h)
5724 {
5725 const char * name = h->root.root.string;
5726 asection * s;
5727 char * tmp_name;
5728 struct elf_link_hash_entry * myh;
5729 struct bfd_link_hash_entry * bh;
5730 struct elf32_arm_link_hash_table * globals;
5731 bfd_vma val;
5732 bfd_size_type size;
5733
5734 globals = elf32_arm_hash_table (link_info);
5735 BFD_ASSERT (globals != NULL);
5736 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5737
5738 s = bfd_get_linker_section
5739 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5740
5741 BFD_ASSERT (s != NULL);
5742
5743 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5744 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5745
5746 BFD_ASSERT (tmp_name);
5747
5748 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5749
5750 myh = elf_link_hash_lookup
5751 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5752
5753 if (myh != NULL)
5754 {
5755 /* We've already seen this guy. */
5756 free (tmp_name);
5757 return myh;
5758 }
5759
5760 /* The only trick here is using hash_table->arm_glue_size as the value.
5761 Even though the section isn't allocated yet, this is where we will be
5762 putting it. The +1 on the value marks that the stub has not been
5763 output yet - not that it is a Thumb function. */
5764 bh = NULL;
5765 val = globals->arm_glue_size + 1;
5766 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5767 tmp_name, BSF_GLOBAL, s, val,
5768 NULL, TRUE, FALSE, &bh);
5769
5770 myh = (struct elf_link_hash_entry *) bh;
5771 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5772 myh->forced_local = 1;
5773
5774 free (tmp_name);
5775
5776 if (link_info->shared || globals->root.is_relocatable_executable
5777 || globals->pic_veneer)
5778 size = ARM2THUMB_PIC_GLUE_SIZE;
5779 else if (globals->use_blx)
5780 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5781 else
5782 size = ARM2THUMB_STATIC_GLUE_SIZE;
5783
5784 s->size += size;
5785 globals->arm_glue_size += size;
5786
5787 return myh;
5788 }
5789
5790 /* Allocate space for ARMv4 BX veneers. */
5791
5792 static void
5793 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5794 {
5795 asection * s;
5796 struct elf32_arm_link_hash_table *globals;
5797 char *tmp_name;
5798 struct elf_link_hash_entry *myh;
5799 struct bfd_link_hash_entry *bh;
5800 bfd_vma val;
5801
5802 /* BX PC does not need a veneer. */
5803 if (reg == 15)
5804 return;
5805
5806 globals = elf32_arm_hash_table (link_info);
5807 BFD_ASSERT (globals != NULL);
5808 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5809
5810 /* Check if this veneer has already been allocated. */
5811 if (globals->bx_glue_offset[reg])
5812 return;
5813
5814 s = bfd_get_linker_section
5815 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5816
5817 BFD_ASSERT (s != NULL);
5818
5819 /* Add symbol for veneer. */
5820 tmp_name = (char *)
5821 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5822
5823 BFD_ASSERT (tmp_name);
5824
5825 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5826
5827 myh = elf_link_hash_lookup
5828 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5829
5830 BFD_ASSERT (myh == NULL);
5831
5832 bh = NULL;
5833 val = globals->bx_glue_size;
5834 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5835 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5836 NULL, TRUE, FALSE, &bh);
5837
5838 myh = (struct elf_link_hash_entry *) bh;
5839 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5840 myh->forced_local = 1;
5841
5842 s->size += ARM_BX_VENEER_SIZE;
5843 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5844 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5845 }
5846
5847
5848 /* Add an entry to the code/data map for section SEC. */
5849
5850 static void
5851 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5852 {
5853 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5854 unsigned int newidx;
5855
5856 if (sec_data->map == NULL)
5857 {
5858 sec_data->map = (elf32_arm_section_map *)
5859 bfd_malloc (sizeof (elf32_arm_section_map));
5860 sec_data->mapcount = 0;
5861 sec_data->mapsize = 1;
5862 }
5863
5864 newidx = sec_data->mapcount++;
5865
5866 if (sec_data->mapcount > sec_data->mapsize)
5867 {
5868 sec_data->mapsize *= 2;
5869 sec_data->map = (elf32_arm_section_map *)
5870 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5871 * sizeof (elf32_arm_section_map));
5872 }
5873
5874 if (sec_data->map)
5875 {
5876 sec_data->map[newidx].vma = vma;
5877 sec_data->map[newidx].type = type;
5878 }
5879 }
5880
5881
5882 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5883 veneers are handled for now. */
5884
5885 static bfd_vma
5886 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5887 elf32_vfp11_erratum_list *branch,
5888 bfd *branch_bfd,
5889 asection *branch_sec,
5890 unsigned int offset)
5891 {
5892 asection *s;
5893 struct elf32_arm_link_hash_table *hash_table;
5894 char *tmp_name;
5895 struct elf_link_hash_entry *myh;
5896 struct bfd_link_hash_entry *bh;
5897 bfd_vma val;
5898 struct _arm_elf_section_data *sec_data;
5899 elf32_vfp11_erratum_list *newerr;
5900
5901 hash_table = elf32_arm_hash_table (link_info);
5902 BFD_ASSERT (hash_table != NULL);
5903 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5904
5905 s = bfd_get_linker_section
5906 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5907
5908 sec_data = elf32_arm_section_data (s);
5909
5910 BFD_ASSERT (s != NULL);
5911
5912 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5913 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5914
5915 BFD_ASSERT (tmp_name);
5916
5917 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5918 hash_table->num_vfp11_fixes);
5919
5920 myh = elf_link_hash_lookup
5921 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5922
5923 BFD_ASSERT (myh == NULL);
5924
5925 bh = NULL;
5926 val = hash_table->vfp11_erratum_glue_size;
5927 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5928 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5929 NULL, TRUE, FALSE, &bh);
5930
5931 myh = (struct elf_link_hash_entry *) bh;
5932 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5933 myh->forced_local = 1;
5934
5935 /* Link veneer back to calling location. */
5936 sec_data->erratumcount += 1;
5937 newerr = (elf32_vfp11_erratum_list *)
5938 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5939
5940 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5941 newerr->vma = -1;
5942 newerr->u.v.branch = branch;
5943 newerr->u.v.id = hash_table->num_vfp11_fixes;
5944 branch->u.b.veneer = newerr;
5945
5946 newerr->next = sec_data->erratumlist;
5947 sec_data->erratumlist = newerr;
5948
5949 /* A symbol for the return from the veneer. */
5950 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5951 hash_table->num_vfp11_fixes);
5952
5953 myh = elf_link_hash_lookup
5954 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5955
5956 if (myh != NULL)
5957 abort ();
5958
5959 bh = NULL;
5960 val = offset + 4;
5961 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5962 branch_sec, val, NULL, TRUE, FALSE, &bh);
5963
5964 myh = (struct elf_link_hash_entry *) bh;
5965 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5966 myh->forced_local = 1;
5967
5968 free (tmp_name);
5969
5970 /* Generate a mapping symbol for the veneer section, and explicitly add an
5971 entry for that symbol to the code/data map for the section. */
5972 if (hash_table->vfp11_erratum_glue_size == 0)
5973 {
5974 bh = NULL;
5975 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5976 ever requires this erratum fix. */
5977 _bfd_generic_link_add_one_symbol (link_info,
5978 hash_table->bfd_of_glue_owner, "$a",
5979 BSF_LOCAL, s, 0, NULL,
5980 TRUE, FALSE, &bh);
5981
5982 myh = (struct elf_link_hash_entry *) bh;
5983 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5984 myh->forced_local = 1;
5985
5986 /* The elf32_arm_init_maps function only cares about symbols from input
5987 BFDs. We must make a note of this generated mapping symbol
5988 ourselves so that code byteswapping works properly in
5989 elf32_arm_write_section. */
5990 elf32_arm_section_map_add (s, 'a', 0);
5991 }
5992
5993 s->size += VFP11_ERRATUM_VENEER_SIZE;
5994 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5995 hash_table->num_vfp11_fixes++;
5996
5997 /* The offset of the veneer. */
5998 return val;
5999 }
6000
6001 #define ARM_GLUE_SECTION_FLAGS \
6002 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6003 | SEC_READONLY | SEC_LINKER_CREATED)
6004
6005 /* Create a fake section for use by the ARM backend of the linker. */
6006
6007 static bfd_boolean
6008 arm_make_glue_section (bfd * abfd, const char * name)
6009 {
6010 asection * sec;
6011
6012 sec = bfd_get_linker_section (abfd, name);
6013 if (sec != NULL)
6014 /* Already made. */
6015 return TRUE;
6016
6017 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
6018
6019 if (sec == NULL
6020 || !bfd_set_section_alignment (abfd, sec, 2))
6021 return FALSE;
6022
6023 /* Set the gc mark to prevent the section from being removed by garbage
6024 collection, despite the fact that no relocs refer to this section. */
6025 sec->gc_mark = 1;
6026
6027 return TRUE;
6028 }
6029
6030 /* Add the glue sections to ABFD. This function is called from the
6031 linker scripts in ld/emultempl/{armelf}.em. */
6032
6033 bfd_boolean
6034 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6035 struct bfd_link_info *info)
6036 {
6037 /* If we are only performing a partial
6038 link do not bother adding the glue. */
6039 if (info->relocatable)
6040 return TRUE;
6041
6042 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6043 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6044 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6045 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
6046 }
6047
6048 /* Select a BFD to be used to hold the sections used by the glue code.
6049 This function is called from the linker scripts in ld/emultempl/
6050 {armelf/pe}.em. */
6051
6052 bfd_boolean
6053 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
6054 {
6055 struct elf32_arm_link_hash_table *globals;
6056
6057 /* If we are only performing a partial link
6058 do not bother getting a bfd to hold the glue. */
6059 if (info->relocatable)
6060 return TRUE;
6061
6062 /* Make sure we don't attach the glue sections to a dynamic object. */
6063 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6064
6065 globals = elf32_arm_hash_table (info);
6066 BFD_ASSERT (globals != NULL);
6067
6068 if (globals->bfd_of_glue_owner != NULL)
6069 return TRUE;
6070
6071 /* Save the bfd for later use. */
6072 globals->bfd_of_glue_owner = abfd;
6073
6074 return TRUE;
6075 }
6076
6077 static void
6078 check_use_blx (struct elf32_arm_link_hash_table *globals)
6079 {
6080 int cpu_arch;
6081
6082 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6083 Tag_CPU_arch);
6084
6085 if (globals->fix_arm1176)
6086 {
6087 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6088 globals->use_blx = 1;
6089 }
6090 else
6091 {
6092 if (cpu_arch > TAG_CPU_ARCH_V4T)
6093 globals->use_blx = 1;
6094 }
6095 }
6096
6097 bfd_boolean
6098 bfd_elf32_arm_process_before_allocation (bfd *abfd,
6099 struct bfd_link_info *link_info)
6100 {
6101 Elf_Internal_Shdr *symtab_hdr;
6102 Elf_Internal_Rela *internal_relocs = NULL;
6103 Elf_Internal_Rela *irel, *irelend;
6104 bfd_byte *contents = NULL;
6105
6106 asection *sec;
6107 struct elf32_arm_link_hash_table *globals;
6108
6109 /* If we are only performing a partial link do not bother
6110 to construct any glue. */
6111 if (link_info->relocatable)
6112 return TRUE;
6113
6114 /* Here we have a bfd that is to be included on the link. We have a
6115 hook to do reloc rummaging, before section sizes are nailed down. */
6116 globals = elf32_arm_hash_table (link_info);
6117 BFD_ASSERT (globals != NULL);
6118
6119 check_use_blx (globals);
6120
6121 if (globals->byteswap_code && !bfd_big_endian (abfd))
6122 {
6123 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6124 abfd);
6125 return FALSE;
6126 }
6127
6128 /* PR 5398: If we have not decided to include any loadable sections in
6129 the output then we will not have a glue owner bfd. This is OK, it
6130 just means that there is nothing else for us to do here. */
6131 if (globals->bfd_of_glue_owner == NULL)
6132 return TRUE;
6133
6134 /* Rummage around all the relocs and map the glue vectors. */
6135 sec = abfd->sections;
6136
6137 if (sec == NULL)
6138 return TRUE;
6139
6140 for (; sec != NULL; sec = sec->next)
6141 {
6142 if (sec->reloc_count == 0)
6143 continue;
6144
6145 if ((sec->flags & SEC_EXCLUDE) != 0)
6146 continue;
6147
6148 symtab_hdr = & elf_symtab_hdr (abfd);
6149
6150 /* Load the relocs. */
6151 internal_relocs
6152 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6153
6154 if (internal_relocs == NULL)
6155 goto error_return;
6156
6157 irelend = internal_relocs + sec->reloc_count;
6158 for (irel = internal_relocs; irel < irelend; irel++)
6159 {
6160 long r_type;
6161 unsigned long r_index;
6162
6163 struct elf_link_hash_entry *h;
6164
6165 r_type = ELF32_R_TYPE (irel->r_info);
6166 r_index = ELF32_R_SYM (irel->r_info);
6167
6168 /* These are the only relocation types we care about. */
6169 if ( r_type != R_ARM_PC24
6170 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6171 continue;
6172
6173 /* Get the section contents if we haven't done so already. */
6174 if (contents == NULL)
6175 {
6176 /* Get cached copy if it exists. */
6177 if (elf_section_data (sec)->this_hdr.contents != NULL)
6178 contents = elf_section_data (sec)->this_hdr.contents;
6179 else
6180 {
6181 /* Go get them off disk. */
6182 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6183 goto error_return;
6184 }
6185 }
6186
6187 if (r_type == R_ARM_V4BX)
6188 {
6189 int reg;
6190
6191 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6192 record_arm_bx_glue (link_info, reg);
6193 continue;
6194 }
6195
6196 /* If the relocation is not against a symbol it cannot concern us. */
6197 h = NULL;
6198
6199 /* We don't care about local symbols. */
6200 if (r_index < symtab_hdr->sh_info)
6201 continue;
6202
6203 /* This is an external symbol. */
6204 r_index -= symtab_hdr->sh_info;
6205 h = (struct elf_link_hash_entry *)
6206 elf_sym_hashes (abfd)[r_index];
6207
6208 /* If the relocation is against a static symbol it must be within
6209 the current section and so cannot be a cross ARM/Thumb relocation. */
6210 if (h == NULL)
6211 continue;
6212
6213 /* If the call will go through a PLT entry then we do not need
6214 glue. */
6215 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6216 continue;
6217
6218 switch (r_type)
6219 {
6220 case R_ARM_PC24:
6221 /* This one is a call from arm code. We need to look up
6222 the target of the call. If it is a thumb target, we
6223 insert glue. */
6224 if (h->target_internal == ST_BRANCH_TO_THUMB)
6225 record_arm_to_thumb_glue (link_info, h);
6226 break;
6227
6228 default:
6229 abort ();
6230 }
6231 }
6232
6233 if (contents != NULL
6234 && elf_section_data (sec)->this_hdr.contents != contents)
6235 free (contents);
6236 contents = NULL;
6237
6238 if (internal_relocs != NULL
6239 && elf_section_data (sec)->relocs != internal_relocs)
6240 free (internal_relocs);
6241 internal_relocs = NULL;
6242 }
6243
6244 return TRUE;
6245
6246 error_return:
6247 if (contents != NULL
6248 && elf_section_data (sec)->this_hdr.contents != contents)
6249 free (contents);
6250 if (internal_relocs != NULL
6251 && elf_section_data (sec)->relocs != internal_relocs)
6252 free (internal_relocs);
6253
6254 return FALSE;
6255 }
6256 #endif
6257
6258
6259 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6260
6261 void
6262 bfd_elf32_arm_init_maps (bfd *abfd)
6263 {
6264 Elf_Internal_Sym *isymbuf;
6265 Elf_Internal_Shdr *hdr;
6266 unsigned int i, localsyms;
6267
6268 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6269 if (! is_arm_elf (abfd))
6270 return;
6271
6272 if ((abfd->flags & DYNAMIC) != 0)
6273 return;
6274
6275 hdr = & elf_symtab_hdr (abfd);
6276 localsyms = hdr->sh_info;
6277
6278 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6279 should contain the number of local symbols, which should come before any
6280 global symbols. Mapping symbols are always local. */
6281 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6282 NULL);
6283
6284 /* No internal symbols read? Skip this BFD. */
6285 if (isymbuf == NULL)
6286 return;
6287
6288 for (i = 0; i < localsyms; i++)
6289 {
6290 Elf_Internal_Sym *isym = &isymbuf[i];
6291 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6292 const char *name;
6293
6294 if (sec != NULL
6295 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6296 {
6297 name = bfd_elf_string_from_elf_section (abfd,
6298 hdr->sh_link, isym->st_name);
6299
6300 if (bfd_is_arm_special_symbol_name (name,
6301 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6302 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6303 }
6304 }
6305 }
6306
6307
6308 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6309 say what they wanted. */
6310
6311 void
6312 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6313 {
6314 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6315 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6316
6317 if (globals == NULL)
6318 return;
6319
6320 if (globals->fix_cortex_a8 == -1)
6321 {
6322 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6323 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6324 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6325 || out_attr[Tag_CPU_arch_profile].i == 0))
6326 globals->fix_cortex_a8 = 1;
6327 else
6328 globals->fix_cortex_a8 = 0;
6329 }
6330 }
6331
6332
6333 void
6334 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6335 {
6336 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6337 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6338
6339 if (globals == NULL)
6340 return;
6341 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6342 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6343 {
6344 switch (globals->vfp11_fix)
6345 {
6346 case BFD_ARM_VFP11_FIX_DEFAULT:
6347 case BFD_ARM_VFP11_FIX_NONE:
6348 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6349 break;
6350
6351 default:
6352 /* Give a warning, but do as the user requests anyway. */
6353 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6354 "workaround is not necessary for target architecture"), obfd);
6355 }
6356 }
6357 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6358 /* For earlier architectures, we might need the workaround, but do not
6359 enable it by default. If users is running with broken hardware, they
6360 must enable the erratum fix explicitly. */
6361 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6362 }
6363
6364
6365 enum bfd_arm_vfp11_pipe
6366 {
6367 VFP11_FMAC,
6368 VFP11_LS,
6369 VFP11_DS,
6370 VFP11_BAD
6371 };
6372
6373 /* Return a VFP register number. This is encoded as RX:X for single-precision
6374 registers, or X:RX for double-precision registers, where RX is the group of
6375 four bits in the instruction encoding and X is the single extension bit.
6376 RX and X fields are specified using their lowest (starting) bit. The return
6377 value is:
6378
6379 0...31: single-precision registers s0...s31
6380 32...63: double-precision registers d0...d31.
6381
6382 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6383 encounter VFP3 instructions, so we allow the full range for DP registers. */
6384
6385 static unsigned int
6386 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6387 unsigned int x)
6388 {
6389 if (is_double)
6390 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6391 else
6392 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6393 }
6394
6395 /* Set bits in *WMASK according to a register number REG as encoded by
6396 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6397
6398 static void
6399 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6400 {
6401 if (reg < 32)
6402 *wmask |= 1 << reg;
6403 else if (reg < 48)
6404 *wmask |= 3 << ((reg - 32) * 2);
6405 }
6406
6407 /* Return TRUE if WMASK overwrites anything in REGS. */
6408
6409 static bfd_boolean
6410 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6411 {
6412 int i;
6413
6414 for (i = 0; i < numregs; i++)
6415 {
6416 unsigned int reg = regs[i];
6417
6418 if (reg < 32 && (wmask & (1 << reg)) != 0)
6419 return TRUE;
6420
6421 reg -= 32;
6422
6423 if (reg >= 16)
6424 continue;
6425
6426 if ((wmask & (3 << (reg * 2))) != 0)
6427 return TRUE;
6428 }
6429
6430 return FALSE;
6431 }
6432
6433 /* In this function, we're interested in two things: finding input registers
6434 for VFP data-processing instructions, and finding the set of registers which
6435 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6436 hold the written set, so FLDM etc. are easy to deal with (we're only
6437 interested in 32 SP registers or 16 dp registers, due to the VFP version
6438 implemented by the chip in question). DP registers are marked by setting
6439 both SP registers in the write mask). */
6440
6441 static enum bfd_arm_vfp11_pipe
6442 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6443 int *numregs)
6444 {
6445 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6446 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6447
6448 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6449 {
6450 unsigned int pqrs;
6451 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6452 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6453
6454 pqrs = ((insn & 0x00800000) >> 20)
6455 | ((insn & 0x00300000) >> 19)
6456 | ((insn & 0x00000040) >> 6);
6457
6458 switch (pqrs)
6459 {
6460 case 0: /* fmac[sd]. */
6461 case 1: /* fnmac[sd]. */
6462 case 2: /* fmsc[sd]. */
6463 case 3: /* fnmsc[sd]. */
6464 vpipe = VFP11_FMAC;
6465 bfd_arm_vfp11_write_mask (destmask, fd);
6466 regs[0] = fd;
6467 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6468 regs[2] = fm;
6469 *numregs = 3;
6470 break;
6471
6472 case 4: /* fmul[sd]. */
6473 case 5: /* fnmul[sd]. */
6474 case 6: /* fadd[sd]. */
6475 case 7: /* fsub[sd]. */
6476 vpipe = VFP11_FMAC;
6477 goto vfp_binop;
6478
6479 case 8: /* fdiv[sd]. */
6480 vpipe = VFP11_DS;
6481 vfp_binop:
6482 bfd_arm_vfp11_write_mask (destmask, fd);
6483 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6484 regs[1] = fm;
6485 *numregs = 2;
6486 break;
6487
6488 case 15: /* extended opcode. */
6489 {
6490 unsigned int extn = ((insn >> 15) & 0x1e)
6491 | ((insn >> 7) & 1);
6492
6493 switch (extn)
6494 {
6495 case 0: /* fcpy[sd]. */
6496 case 1: /* fabs[sd]. */
6497 case 2: /* fneg[sd]. */
6498 case 8: /* fcmp[sd]. */
6499 case 9: /* fcmpe[sd]. */
6500 case 10: /* fcmpz[sd]. */
6501 case 11: /* fcmpez[sd]. */
6502 case 16: /* fuito[sd]. */
6503 case 17: /* fsito[sd]. */
6504 case 24: /* ftoui[sd]. */
6505 case 25: /* ftouiz[sd]. */
6506 case 26: /* ftosi[sd]. */
6507 case 27: /* ftosiz[sd]. */
6508 /* These instructions will not bounce due to underflow. */
6509 *numregs = 0;
6510 vpipe = VFP11_FMAC;
6511 break;
6512
6513 case 3: /* fsqrt[sd]. */
6514 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6515 registers to cause the erratum in previous instructions. */
6516 bfd_arm_vfp11_write_mask (destmask, fd);
6517 vpipe = VFP11_DS;
6518 break;
6519
6520 case 15: /* fcvt{ds,sd}. */
6521 {
6522 int rnum = 0;
6523
6524 bfd_arm_vfp11_write_mask (destmask, fd);
6525
6526 /* Only FCVTSD can underflow. */
6527 if ((insn & 0x100) != 0)
6528 regs[rnum++] = fm;
6529
6530 *numregs = rnum;
6531
6532 vpipe = VFP11_FMAC;
6533 }
6534 break;
6535
6536 default:
6537 return VFP11_BAD;
6538 }
6539 }
6540 break;
6541
6542 default:
6543 return VFP11_BAD;
6544 }
6545 }
6546 /* Two-register transfer. */
6547 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6548 {
6549 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6550
6551 if ((insn & 0x100000) == 0)
6552 {
6553 if (is_double)
6554 bfd_arm_vfp11_write_mask (destmask, fm);
6555 else
6556 {
6557 bfd_arm_vfp11_write_mask (destmask, fm);
6558 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6559 }
6560 }
6561
6562 vpipe = VFP11_LS;
6563 }
6564 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6565 {
6566 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6567 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6568
6569 switch (puw)
6570 {
6571 case 0: /* Two-reg transfer. We should catch these above. */
6572 abort ();
6573
6574 case 2: /* fldm[sdx]. */
6575 case 3:
6576 case 5:
6577 {
6578 unsigned int i, offset = insn & 0xff;
6579
6580 if (is_double)
6581 offset >>= 1;
6582
6583 for (i = fd; i < fd + offset; i++)
6584 bfd_arm_vfp11_write_mask (destmask, i);
6585 }
6586 break;
6587
6588 case 4: /* fld[sd]. */
6589 case 6:
6590 bfd_arm_vfp11_write_mask (destmask, fd);
6591 break;
6592
6593 default:
6594 return VFP11_BAD;
6595 }
6596
6597 vpipe = VFP11_LS;
6598 }
6599 /* Single-register transfer. Note L==0. */
6600 else if ((insn & 0x0f100e10) == 0x0e000a10)
6601 {
6602 unsigned int opcode = (insn >> 21) & 7;
6603 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6604
6605 switch (opcode)
6606 {
6607 case 0: /* fmsr/fmdlr. */
6608 case 1: /* fmdhr. */
6609 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6610 destination register. I don't know if this is exactly right,
6611 but it is the conservative choice. */
6612 bfd_arm_vfp11_write_mask (destmask, fn);
6613 break;
6614
6615 case 7: /* fmxr. */
6616 break;
6617 }
6618
6619 vpipe = VFP11_LS;
6620 }
6621
6622 return vpipe;
6623 }
6624
6625
6626 static int elf32_arm_compare_mapping (const void * a, const void * b);
6627
6628
6629 /* Look for potentially-troublesome code sequences which might trigger the
6630 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6631 (available from ARM) for details of the erratum. A short version is
6632 described in ld.texinfo. */
6633
6634 bfd_boolean
6635 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6636 {
6637 asection *sec;
6638 bfd_byte *contents = NULL;
6639 int state = 0;
6640 int regs[3], numregs = 0;
6641 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6642 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6643
6644 if (globals == NULL)
6645 return FALSE;
6646
6647 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6648 The states transition as follows:
6649
6650 0 -> 1 (vector) or 0 -> 2 (scalar)
6651 A VFP FMAC-pipeline instruction has been seen. Fill
6652 regs[0]..regs[numregs-1] with its input operands. Remember this
6653 instruction in 'first_fmac'.
6654
6655 1 -> 2
6656 Any instruction, except for a VFP instruction which overwrites
6657 regs[*].
6658
6659 1 -> 3 [ -> 0 ] or
6660 2 -> 3 [ -> 0 ]
6661 A VFP instruction has been seen which overwrites any of regs[*].
6662 We must make a veneer! Reset state to 0 before examining next
6663 instruction.
6664
6665 2 -> 0
6666 If we fail to match anything in state 2, reset to state 0 and reset
6667 the instruction pointer to the instruction after 'first_fmac'.
6668
6669 If the VFP11 vector mode is in use, there must be at least two unrelated
6670 instructions between anti-dependent VFP11 instructions to properly avoid
6671 triggering the erratum, hence the use of the extra state 1. */
6672
6673 /* If we are only performing a partial link do not bother
6674 to construct any glue. */
6675 if (link_info->relocatable)
6676 return TRUE;
6677
6678 /* Skip if this bfd does not correspond to an ELF image. */
6679 if (! is_arm_elf (abfd))
6680 return TRUE;
6681
6682 /* We should have chosen a fix type by the time we get here. */
6683 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6684
6685 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6686 return TRUE;
6687
6688 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6689 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6690 return TRUE;
6691
6692 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6693 {
6694 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6695 struct _arm_elf_section_data *sec_data;
6696
6697 /* If we don't have executable progbits, we're not interested in this
6698 section. Also skip if section is to be excluded. */
6699 if (elf_section_type (sec) != SHT_PROGBITS
6700 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6701 || (sec->flags & SEC_EXCLUDE) != 0
6702 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
6703 || sec->output_section == bfd_abs_section_ptr
6704 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6705 continue;
6706
6707 sec_data = elf32_arm_section_data (sec);
6708
6709 if (sec_data->mapcount == 0)
6710 continue;
6711
6712 if (elf_section_data (sec)->this_hdr.contents != NULL)
6713 contents = elf_section_data (sec)->this_hdr.contents;
6714 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6715 goto error_return;
6716
6717 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6718 elf32_arm_compare_mapping);
6719
6720 for (span = 0; span < sec_data->mapcount; span++)
6721 {
6722 unsigned int span_start = sec_data->map[span].vma;
6723 unsigned int span_end = (span == sec_data->mapcount - 1)
6724 ? sec->size : sec_data->map[span + 1].vma;
6725 char span_type = sec_data->map[span].type;
6726
6727 /* FIXME: Only ARM mode is supported at present. We may need to
6728 support Thumb-2 mode also at some point. */
6729 if (span_type != 'a')
6730 continue;
6731
6732 for (i = span_start; i < span_end;)
6733 {
6734 unsigned int next_i = i + 4;
6735 unsigned int insn = bfd_big_endian (abfd)
6736 ? (contents[i] << 24)
6737 | (contents[i + 1] << 16)
6738 | (contents[i + 2] << 8)
6739 | contents[i + 3]
6740 : (contents[i + 3] << 24)
6741 | (contents[i + 2] << 16)
6742 | (contents[i + 1] << 8)
6743 | contents[i];
6744 unsigned int writemask = 0;
6745 enum bfd_arm_vfp11_pipe vpipe;
6746
6747 switch (state)
6748 {
6749 case 0:
6750 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6751 &numregs);
6752 /* I'm assuming the VFP11 erratum can trigger with denorm
6753 operands on either the FMAC or the DS pipeline. This might
6754 lead to slightly overenthusiastic veneer insertion. */
6755 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6756 {
6757 state = use_vector ? 1 : 2;
6758 first_fmac = i;
6759 veneer_of_insn = insn;
6760 }
6761 break;
6762
6763 case 1:
6764 {
6765 int other_regs[3], other_numregs;
6766 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6767 other_regs,
6768 &other_numregs);
6769 if (vpipe != VFP11_BAD
6770 && bfd_arm_vfp11_antidependency (writemask, regs,
6771 numregs))
6772 state = 3;
6773 else
6774 state = 2;
6775 }
6776 break;
6777
6778 case 2:
6779 {
6780 int other_regs[3], other_numregs;
6781 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6782 other_regs,
6783 &other_numregs);
6784 if (vpipe != VFP11_BAD
6785 && bfd_arm_vfp11_antidependency (writemask, regs,
6786 numregs))
6787 state = 3;
6788 else
6789 {
6790 state = 0;
6791 next_i = first_fmac + 4;
6792 }
6793 }
6794 break;
6795
6796 case 3:
6797 abort (); /* Should be unreachable. */
6798 }
6799
6800 if (state == 3)
6801 {
6802 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6803 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6804
6805 elf32_arm_section_data (sec)->erratumcount += 1;
6806
6807 newerr->u.b.vfp_insn = veneer_of_insn;
6808
6809 switch (span_type)
6810 {
6811 case 'a':
6812 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6813 break;
6814
6815 default:
6816 abort ();
6817 }
6818
6819 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6820 first_fmac);
6821
6822 newerr->vma = -1;
6823
6824 newerr->next = sec_data->erratumlist;
6825 sec_data->erratumlist = newerr;
6826
6827 state = 0;
6828 }
6829
6830 i = next_i;
6831 }
6832 }
6833
6834 if (contents != NULL
6835 && elf_section_data (sec)->this_hdr.contents != contents)
6836 free (contents);
6837 contents = NULL;
6838 }
6839
6840 return TRUE;
6841
6842 error_return:
6843 if (contents != NULL
6844 && elf_section_data (sec)->this_hdr.contents != contents)
6845 free (contents);
6846
6847 return FALSE;
6848 }
6849
6850 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6851 after sections have been laid out, using specially-named symbols. */
6852
6853 void
6854 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6855 struct bfd_link_info *link_info)
6856 {
6857 asection *sec;
6858 struct elf32_arm_link_hash_table *globals;
6859 char *tmp_name;
6860
6861 if (link_info->relocatable)
6862 return;
6863
6864 /* Skip if this bfd does not correspond to an ELF image. */
6865 if (! is_arm_elf (abfd))
6866 return;
6867
6868 globals = elf32_arm_hash_table (link_info);
6869 if (globals == NULL)
6870 return;
6871
6872 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6873 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6874
6875 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6876 {
6877 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6878 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6879
6880 for (; errnode != NULL; errnode = errnode->next)
6881 {
6882 struct elf_link_hash_entry *myh;
6883 bfd_vma vma;
6884
6885 switch (errnode->type)
6886 {
6887 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6888 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6889 /* Find veneer symbol. */
6890 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6891 errnode->u.b.veneer->u.v.id);
6892
6893 myh = elf_link_hash_lookup
6894 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6895
6896 if (myh == NULL)
6897 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6898 "`%s'"), abfd, tmp_name);
6899
6900 vma = myh->root.u.def.section->output_section->vma
6901 + myh->root.u.def.section->output_offset
6902 + myh->root.u.def.value;
6903
6904 errnode->u.b.veneer->vma = vma;
6905 break;
6906
6907 case VFP11_ERRATUM_ARM_VENEER:
6908 case VFP11_ERRATUM_THUMB_VENEER:
6909 /* Find return location. */
6910 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6911 errnode->u.v.id);
6912
6913 myh = elf_link_hash_lookup
6914 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6915
6916 if (myh == NULL)
6917 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6918 "`%s'"), abfd, tmp_name);
6919
6920 vma = myh->root.u.def.section->output_section->vma
6921 + myh->root.u.def.section->output_offset
6922 + myh->root.u.def.value;
6923
6924 errnode->u.v.branch->vma = vma;
6925 break;
6926
6927 default:
6928 abort ();
6929 }
6930 }
6931 }
6932
6933 free (tmp_name);
6934 }
6935
6936
6937 /* Set target relocation values needed during linking. */
6938
6939 void
6940 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6941 struct bfd_link_info *link_info,
6942 int target1_is_rel,
6943 char * target2_type,
6944 int fix_v4bx,
6945 int use_blx,
6946 bfd_arm_vfp11_fix vfp11_fix,
6947 int no_enum_warn, int no_wchar_warn,
6948 int pic_veneer, int fix_cortex_a8,
6949 int fix_arm1176)
6950 {
6951 struct elf32_arm_link_hash_table *globals;
6952
6953 globals = elf32_arm_hash_table (link_info);
6954 if (globals == NULL)
6955 return;
6956
6957 globals->target1_is_rel = target1_is_rel;
6958 if (strcmp (target2_type, "rel") == 0)
6959 globals->target2_reloc = R_ARM_REL32;
6960 else if (strcmp (target2_type, "abs") == 0)
6961 globals->target2_reloc = R_ARM_ABS32;
6962 else if (strcmp (target2_type, "got-rel") == 0)
6963 globals->target2_reloc = R_ARM_GOT_PREL;
6964 else
6965 {
6966 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6967 target2_type);
6968 }
6969 globals->fix_v4bx = fix_v4bx;
6970 globals->use_blx |= use_blx;
6971 globals->vfp11_fix = vfp11_fix;
6972 globals->pic_veneer = pic_veneer;
6973 globals->fix_cortex_a8 = fix_cortex_a8;
6974 globals->fix_arm1176 = fix_arm1176;
6975
6976 BFD_ASSERT (is_arm_elf (output_bfd));
6977 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6978 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6979 }
6980
6981 /* Replace the target offset of a Thumb bl or b.w instruction. */
6982
6983 static void
6984 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6985 {
6986 bfd_vma upper;
6987 bfd_vma lower;
6988 int reloc_sign;
6989
6990 BFD_ASSERT ((offset & 1) == 0);
6991
6992 upper = bfd_get_16 (abfd, insn);
6993 lower = bfd_get_16 (abfd, insn + 2);
6994 reloc_sign = (offset < 0) ? 1 : 0;
6995 upper = (upper & ~(bfd_vma) 0x7ff)
6996 | ((offset >> 12) & 0x3ff)
6997 | (reloc_sign << 10);
6998 lower = (lower & ~(bfd_vma) 0x2fff)
6999 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7000 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7001 | ((offset >> 1) & 0x7ff);
7002 bfd_put_16 (abfd, upper, insn);
7003 bfd_put_16 (abfd, lower, insn + 2);
7004 }
7005
7006 /* Thumb code calling an ARM function. */
7007
7008 static int
7009 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7010 const char * name,
7011 bfd * input_bfd,
7012 bfd * output_bfd,
7013 asection * input_section,
7014 bfd_byte * hit_data,
7015 asection * sym_sec,
7016 bfd_vma offset,
7017 bfd_signed_vma addend,
7018 bfd_vma val,
7019 char **error_message)
7020 {
7021 asection * s = 0;
7022 bfd_vma my_offset;
7023 long int ret_offset;
7024 struct elf_link_hash_entry * myh;
7025 struct elf32_arm_link_hash_table * globals;
7026
7027 myh = find_thumb_glue (info, name, error_message);
7028 if (myh == NULL)
7029 return FALSE;
7030
7031 globals = elf32_arm_hash_table (info);
7032 BFD_ASSERT (globals != NULL);
7033 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7034
7035 my_offset = myh->root.u.def.value;
7036
7037 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7038 THUMB2ARM_GLUE_SECTION_NAME);
7039
7040 BFD_ASSERT (s != NULL);
7041 BFD_ASSERT (s->contents != NULL);
7042 BFD_ASSERT (s->output_section != NULL);
7043
7044 if ((my_offset & 0x01) == 0x01)
7045 {
7046 if (sym_sec != NULL
7047 && sym_sec->owner != NULL
7048 && !INTERWORK_FLAG (sym_sec->owner))
7049 {
7050 (*_bfd_error_handler)
7051 (_("%B(%s): warning: interworking not enabled.\n"
7052 " first occurrence: %B: Thumb call to ARM"),
7053 sym_sec->owner, input_bfd, name);
7054
7055 return FALSE;
7056 }
7057
7058 --my_offset;
7059 myh->root.u.def.value = my_offset;
7060
7061 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7062 s->contents + my_offset);
7063
7064 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7065 s->contents + my_offset + 2);
7066
7067 ret_offset =
7068 /* Address of destination of the stub. */
7069 ((bfd_signed_vma) val)
7070 - ((bfd_signed_vma)
7071 /* Offset from the start of the current section
7072 to the start of the stubs. */
7073 (s->output_offset
7074 /* Offset of the start of this stub from the start of the stubs. */
7075 + my_offset
7076 /* Address of the start of the current section. */
7077 + s->output_section->vma)
7078 /* The branch instruction is 4 bytes into the stub. */
7079 + 4
7080 /* ARM branches work from the pc of the instruction + 8. */
7081 + 8);
7082
7083 put_arm_insn (globals, output_bfd,
7084 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7085 s->contents + my_offset + 4);
7086 }
7087
7088 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7089
7090 /* Now go back and fix up the original BL insn to point to here. */
7091 ret_offset =
7092 /* Address of where the stub is located. */
7093 (s->output_section->vma + s->output_offset + my_offset)
7094 /* Address of where the BL is located. */
7095 - (input_section->output_section->vma + input_section->output_offset
7096 + offset)
7097 /* Addend in the relocation. */
7098 - addend
7099 /* Biassing for PC-relative addressing. */
7100 - 8;
7101
7102 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7103
7104 return TRUE;
7105 }
7106
7107 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7108
7109 static struct elf_link_hash_entry *
7110 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7111 const char * name,
7112 bfd * input_bfd,
7113 bfd * output_bfd,
7114 asection * sym_sec,
7115 bfd_vma val,
7116 asection * s,
7117 char ** error_message)
7118 {
7119 bfd_vma my_offset;
7120 long int ret_offset;
7121 struct elf_link_hash_entry * myh;
7122 struct elf32_arm_link_hash_table * globals;
7123
7124 myh = find_arm_glue (info, name, error_message);
7125 if (myh == NULL)
7126 return NULL;
7127
7128 globals = elf32_arm_hash_table (info);
7129 BFD_ASSERT (globals != NULL);
7130 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7131
7132 my_offset = myh->root.u.def.value;
7133
7134 if ((my_offset & 0x01) == 0x01)
7135 {
7136 if (sym_sec != NULL
7137 && sym_sec->owner != NULL
7138 && !INTERWORK_FLAG (sym_sec->owner))
7139 {
7140 (*_bfd_error_handler)
7141 (_("%B(%s): warning: interworking not enabled.\n"
7142 " first occurrence: %B: arm call to thumb"),
7143 sym_sec->owner, input_bfd, name);
7144 }
7145
7146 --my_offset;
7147 myh->root.u.def.value = my_offset;
7148
7149 if (info->shared || globals->root.is_relocatable_executable
7150 || globals->pic_veneer)
7151 {
7152 /* For relocatable objects we can't use absolute addresses,
7153 so construct the address from a relative offset. */
7154 /* TODO: If the offset is small it's probably worth
7155 constructing the address with adds. */
7156 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7157 s->contents + my_offset);
7158 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7159 s->contents + my_offset + 4);
7160 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7161 s->contents + my_offset + 8);
7162 /* Adjust the offset by 4 for the position of the add,
7163 and 8 for the pipeline offset. */
7164 ret_offset = (val - (s->output_offset
7165 + s->output_section->vma
7166 + my_offset + 12))
7167 | 1;
7168 bfd_put_32 (output_bfd, ret_offset,
7169 s->contents + my_offset + 12);
7170 }
7171 else if (globals->use_blx)
7172 {
7173 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7174 s->contents + my_offset);
7175
7176 /* It's a thumb address. Add the low order bit. */
7177 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7178 s->contents + my_offset + 4);
7179 }
7180 else
7181 {
7182 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7183 s->contents + my_offset);
7184
7185 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7186 s->contents + my_offset + 4);
7187
7188 /* It's a thumb address. Add the low order bit. */
7189 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7190 s->contents + my_offset + 8);
7191
7192 my_offset += 12;
7193 }
7194 }
7195
7196 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7197
7198 return myh;
7199 }
7200
7201 /* Arm code calling a Thumb function. */
7202
7203 static int
7204 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7205 const char * name,
7206 bfd * input_bfd,
7207 bfd * output_bfd,
7208 asection * input_section,
7209 bfd_byte * hit_data,
7210 asection * sym_sec,
7211 bfd_vma offset,
7212 bfd_signed_vma addend,
7213 bfd_vma val,
7214 char **error_message)
7215 {
7216 unsigned long int tmp;
7217 bfd_vma my_offset;
7218 asection * s;
7219 long int ret_offset;
7220 struct elf_link_hash_entry * myh;
7221 struct elf32_arm_link_hash_table * globals;
7222
7223 globals = elf32_arm_hash_table (info);
7224 BFD_ASSERT (globals != NULL);
7225 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7226
7227 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7228 ARM2THUMB_GLUE_SECTION_NAME);
7229 BFD_ASSERT (s != NULL);
7230 BFD_ASSERT (s->contents != NULL);
7231 BFD_ASSERT (s->output_section != NULL);
7232
7233 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7234 sym_sec, val, s, error_message);
7235 if (!myh)
7236 return FALSE;
7237
7238 my_offset = myh->root.u.def.value;
7239 tmp = bfd_get_32 (input_bfd, hit_data);
7240 tmp = tmp & 0xFF000000;
7241
7242 /* Somehow these are both 4 too far, so subtract 8. */
7243 ret_offset = (s->output_offset
7244 + my_offset
7245 + s->output_section->vma
7246 - (input_section->output_offset
7247 + input_section->output_section->vma
7248 + offset + addend)
7249 - 8);
7250
7251 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7252
7253 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7254
7255 return TRUE;
7256 }
7257
7258 /* Populate Arm stub for an exported Thumb function. */
7259
7260 static bfd_boolean
7261 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7262 {
7263 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7264 asection * s;
7265 struct elf_link_hash_entry * myh;
7266 struct elf32_arm_link_hash_entry *eh;
7267 struct elf32_arm_link_hash_table * globals;
7268 asection *sec;
7269 bfd_vma val;
7270 char *error_message;
7271
7272 eh = elf32_arm_hash_entry (h);
7273 /* Allocate stubs for exported Thumb functions on v4t. */
7274 if (eh->export_glue == NULL)
7275 return TRUE;
7276
7277 globals = elf32_arm_hash_table (info);
7278 BFD_ASSERT (globals != NULL);
7279 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7280
7281 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7282 ARM2THUMB_GLUE_SECTION_NAME);
7283 BFD_ASSERT (s != NULL);
7284 BFD_ASSERT (s->contents != NULL);
7285 BFD_ASSERT (s->output_section != NULL);
7286
7287 sec = eh->export_glue->root.u.def.section;
7288
7289 BFD_ASSERT (sec->output_section != NULL);
7290
7291 val = eh->export_glue->root.u.def.value + sec->output_offset
7292 + sec->output_section->vma;
7293
7294 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7295 h->root.u.def.section->owner,
7296 globals->obfd, sec, val, s,
7297 &error_message);
7298 BFD_ASSERT (myh);
7299 return TRUE;
7300 }
7301
7302 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7303
7304 static bfd_vma
7305 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7306 {
7307 bfd_byte *p;
7308 bfd_vma glue_addr;
7309 asection *s;
7310 struct elf32_arm_link_hash_table *globals;
7311
7312 globals = elf32_arm_hash_table (info);
7313 BFD_ASSERT (globals != NULL);
7314 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7315
7316 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7317 ARM_BX_GLUE_SECTION_NAME);
7318 BFD_ASSERT (s != NULL);
7319 BFD_ASSERT (s->contents != NULL);
7320 BFD_ASSERT (s->output_section != NULL);
7321
7322 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7323
7324 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7325
7326 if ((globals->bx_glue_offset[reg] & 1) == 0)
7327 {
7328 p = s->contents + glue_addr;
7329 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7330 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7331 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7332 globals->bx_glue_offset[reg] |= 1;
7333 }
7334
7335 return glue_addr + s->output_section->vma + s->output_offset;
7336 }
7337
7338 /* Generate Arm stubs for exported Thumb symbols. */
7339 static void
7340 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7341 struct bfd_link_info *link_info)
7342 {
7343 struct elf32_arm_link_hash_table * globals;
7344
7345 if (link_info == NULL)
7346 /* Ignore this if we are not called by the ELF backend linker. */
7347 return;
7348
7349 globals = elf32_arm_hash_table (link_info);
7350 if (globals == NULL)
7351 return;
7352
7353 /* If blx is available then exported Thumb symbols are OK and there is
7354 nothing to do. */
7355 if (globals->use_blx)
7356 return;
7357
7358 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7359 link_info);
7360 }
7361
7362 /* Reserve space for COUNT dynamic relocations in relocation selection
7363 SRELOC. */
7364
7365 static void
7366 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7367 bfd_size_type count)
7368 {
7369 struct elf32_arm_link_hash_table *htab;
7370
7371 htab = elf32_arm_hash_table (info);
7372 BFD_ASSERT (htab->root.dynamic_sections_created);
7373 if (sreloc == NULL)
7374 abort ();
7375 sreloc->size += RELOC_SIZE (htab) * count;
7376 }
7377
7378 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7379 dynamic, the relocations should go in SRELOC, otherwise they should
7380 go in the special .rel.iplt section. */
7381
7382 static void
7383 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7384 bfd_size_type count)
7385 {
7386 struct elf32_arm_link_hash_table *htab;
7387
7388 htab = elf32_arm_hash_table (info);
7389 if (!htab->root.dynamic_sections_created)
7390 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7391 else
7392 {
7393 BFD_ASSERT (sreloc != NULL);
7394 sreloc->size += RELOC_SIZE (htab) * count;
7395 }
7396 }
7397
7398 /* Add relocation REL to the end of relocation section SRELOC. */
7399
7400 static void
7401 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7402 asection *sreloc, Elf_Internal_Rela *rel)
7403 {
7404 bfd_byte *loc;
7405 struct elf32_arm_link_hash_table *htab;
7406
7407 htab = elf32_arm_hash_table (info);
7408 if (!htab->root.dynamic_sections_created
7409 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7410 sreloc = htab->root.irelplt;
7411 if (sreloc == NULL)
7412 abort ();
7413 loc = sreloc->contents;
7414 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7415 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7416 abort ();
7417 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7418 }
7419
7420 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7421 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7422 to .plt. */
7423
7424 static void
7425 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7426 bfd_boolean is_iplt_entry,
7427 union gotplt_union *root_plt,
7428 struct arm_plt_info *arm_plt)
7429 {
7430 struct elf32_arm_link_hash_table *htab;
7431 asection *splt;
7432 asection *sgotplt;
7433
7434 htab = elf32_arm_hash_table (info);
7435
7436 if (is_iplt_entry)
7437 {
7438 splt = htab->root.iplt;
7439 sgotplt = htab->root.igotplt;
7440
7441 /* NaCl uses a special first entry in .iplt too. */
7442 if (htab->nacl_p && splt->size == 0)
7443 splt->size += htab->plt_header_size;
7444
7445 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7446 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7447 }
7448 else
7449 {
7450 splt = htab->root.splt;
7451 sgotplt = htab->root.sgotplt;
7452
7453 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7454 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7455
7456 /* If this is the first .plt entry, make room for the special
7457 first entry. */
7458 if (splt->size == 0)
7459 splt->size += htab->plt_header_size;
7460 }
7461
7462 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7463 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7464 splt->size += PLT_THUMB_STUB_SIZE;
7465 root_plt->offset = splt->size;
7466 splt->size += htab->plt_entry_size;
7467
7468 if (!htab->symbian_p)
7469 {
7470 /* We also need to make an entry in the .got.plt section, which
7471 will be placed in the .got section by the linker script. */
7472 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7473 sgotplt->size += 4;
7474 }
7475 }
7476
7477 static bfd_vma
7478 arm_movw_immediate (bfd_vma value)
7479 {
7480 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7481 }
7482
7483 static bfd_vma
7484 arm_movt_immediate (bfd_vma value)
7485 {
7486 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7487 }
7488
7489 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7490 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7491 Otherwise, DYNINDX is the index of the symbol in the dynamic
7492 symbol table and SYM_VALUE is undefined.
7493
7494 ROOT_PLT points to the offset of the PLT entry from the start of its
7495 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7496 bookkeeping information.
7497
7498 Returns FALSE if there was a problem. */
7499
7500 static bfd_boolean
7501 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7502 union gotplt_union *root_plt,
7503 struct arm_plt_info *arm_plt,
7504 int dynindx, bfd_vma sym_value)
7505 {
7506 struct elf32_arm_link_hash_table *htab;
7507 asection *sgot;
7508 asection *splt;
7509 asection *srel;
7510 bfd_byte *loc;
7511 bfd_vma plt_index;
7512 Elf_Internal_Rela rel;
7513 bfd_vma plt_header_size;
7514 bfd_vma got_header_size;
7515
7516 htab = elf32_arm_hash_table (info);
7517
7518 /* Pick the appropriate sections and sizes. */
7519 if (dynindx == -1)
7520 {
7521 splt = htab->root.iplt;
7522 sgot = htab->root.igotplt;
7523 srel = htab->root.irelplt;
7524
7525 /* There are no reserved entries in .igot.plt, and no special
7526 first entry in .iplt. */
7527 got_header_size = 0;
7528 plt_header_size = 0;
7529 }
7530 else
7531 {
7532 splt = htab->root.splt;
7533 sgot = htab->root.sgotplt;
7534 srel = htab->root.srelplt;
7535
7536 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7537 plt_header_size = htab->plt_header_size;
7538 }
7539 BFD_ASSERT (splt != NULL && srel != NULL);
7540
7541 /* Fill in the entry in the procedure linkage table. */
7542 if (htab->symbian_p)
7543 {
7544 BFD_ASSERT (dynindx >= 0);
7545 put_arm_insn (htab, output_bfd,
7546 elf32_arm_symbian_plt_entry[0],
7547 splt->contents + root_plt->offset);
7548 bfd_put_32 (output_bfd,
7549 elf32_arm_symbian_plt_entry[1],
7550 splt->contents + root_plt->offset + 4);
7551
7552 /* Fill in the entry in the .rel.plt section. */
7553 rel.r_offset = (splt->output_section->vma
7554 + splt->output_offset
7555 + root_plt->offset + 4);
7556 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7557
7558 /* Get the index in the procedure linkage table which
7559 corresponds to this symbol. This is the index of this symbol
7560 in all the symbols for which we are making plt entries. The
7561 first entry in the procedure linkage table is reserved. */
7562 plt_index = ((root_plt->offset - plt_header_size)
7563 / htab->plt_entry_size);
7564 }
7565 else
7566 {
7567 bfd_vma got_offset, got_address, plt_address;
7568 bfd_vma got_displacement, initial_got_entry;
7569 bfd_byte * ptr;
7570
7571 BFD_ASSERT (sgot != NULL);
7572
7573 /* Get the offset into the .(i)got.plt table of the entry that
7574 corresponds to this function. */
7575 got_offset = (arm_plt->got_offset & -2);
7576
7577 /* Get the index in the procedure linkage table which
7578 corresponds to this symbol. This is the index of this symbol
7579 in all the symbols for which we are making plt entries.
7580 After the reserved .got.plt entries, all symbols appear in
7581 the same order as in .plt. */
7582 plt_index = (got_offset - got_header_size) / 4;
7583
7584 /* Calculate the address of the GOT entry. */
7585 got_address = (sgot->output_section->vma
7586 + sgot->output_offset
7587 + got_offset);
7588
7589 /* ...and the address of the PLT entry. */
7590 plt_address = (splt->output_section->vma
7591 + splt->output_offset
7592 + root_plt->offset);
7593
7594 ptr = splt->contents + root_plt->offset;
7595 if (htab->vxworks_p && info->shared)
7596 {
7597 unsigned int i;
7598 bfd_vma val;
7599
7600 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7601 {
7602 val = elf32_arm_vxworks_shared_plt_entry[i];
7603 if (i == 2)
7604 val |= got_address - sgot->output_section->vma;
7605 if (i == 5)
7606 val |= plt_index * RELOC_SIZE (htab);
7607 if (i == 2 || i == 5)
7608 bfd_put_32 (output_bfd, val, ptr);
7609 else
7610 put_arm_insn (htab, output_bfd, val, ptr);
7611 }
7612 }
7613 else if (htab->vxworks_p)
7614 {
7615 unsigned int i;
7616 bfd_vma val;
7617
7618 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7619 {
7620 val = elf32_arm_vxworks_exec_plt_entry[i];
7621 if (i == 2)
7622 val |= got_address;
7623 if (i == 4)
7624 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7625 if (i == 5)
7626 val |= plt_index * RELOC_SIZE (htab);
7627 if (i == 2 || i == 5)
7628 bfd_put_32 (output_bfd, val, ptr);
7629 else
7630 put_arm_insn (htab, output_bfd, val, ptr);
7631 }
7632
7633 loc = (htab->srelplt2->contents
7634 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7635
7636 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7637 referencing the GOT for this PLT entry. */
7638 rel.r_offset = plt_address + 8;
7639 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7640 rel.r_addend = got_offset;
7641 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7642 loc += RELOC_SIZE (htab);
7643
7644 /* Create the R_ARM_ABS32 relocation referencing the
7645 beginning of the PLT for this GOT entry. */
7646 rel.r_offset = got_address;
7647 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7648 rel.r_addend = 0;
7649 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7650 }
7651 else if (htab->nacl_p)
7652 {
7653 /* Calculate the displacement between the PLT slot and the
7654 common tail that's part of the special initial PLT slot. */
7655 int32_t tail_displacement
7656 = ((splt->output_section->vma + splt->output_offset
7657 + ARM_NACL_PLT_TAIL_OFFSET)
7658 - (plt_address + htab->plt_entry_size + 4));
7659 BFD_ASSERT ((tail_displacement & 3) == 0);
7660 tail_displacement >>= 2;
7661
7662 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7663 || (-tail_displacement & 0xff000000) == 0);
7664
7665 /* Calculate the displacement between the PLT slot and the entry
7666 in the GOT. The offset accounts for the value produced by
7667 adding to pc in the penultimate instruction of the PLT stub. */
7668 got_displacement = (got_address
7669 - (plt_address + htab->plt_entry_size));
7670
7671 /* NaCl does not support interworking at all. */
7672 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7673
7674 put_arm_insn (htab, output_bfd,
7675 elf32_arm_nacl_plt_entry[0]
7676 | arm_movw_immediate (got_displacement),
7677 ptr + 0);
7678 put_arm_insn (htab, output_bfd,
7679 elf32_arm_nacl_plt_entry[1]
7680 | arm_movt_immediate (got_displacement),
7681 ptr + 4);
7682 put_arm_insn (htab, output_bfd,
7683 elf32_arm_nacl_plt_entry[2],
7684 ptr + 8);
7685 put_arm_insn (htab, output_bfd,
7686 elf32_arm_nacl_plt_entry[3]
7687 | (tail_displacement & 0x00ffffff),
7688 ptr + 12);
7689 }
7690 else if (using_thumb_only (htab))
7691 {
7692 /* PR ld/16017: Do not generate ARM instructions for
7693 the PLT if compiling for a thumb-only target.
7694
7695 FIXME: We ought to be able to generate thumb PLT instructions... */
7696 _bfd_error_handler (_("%B: Warning: thumb mode PLT generation not currently supported"),
7697 output_bfd);
7698 return FALSE;
7699 }
7700 else
7701 {
7702 /* Calculate the displacement between the PLT slot and the
7703 entry in the GOT. The eight-byte offset accounts for the
7704 value produced by adding to pc in the first instruction
7705 of the PLT stub. */
7706 got_displacement = got_address - (plt_address + 8);
7707
7708 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7709
7710 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7711 {
7712 put_thumb_insn (htab, output_bfd,
7713 elf32_arm_plt_thumb_stub[0], ptr - 4);
7714 put_thumb_insn (htab, output_bfd,
7715 elf32_arm_plt_thumb_stub[1], ptr - 2);
7716 }
7717
7718 put_arm_insn (htab, output_bfd,
7719 elf32_arm_plt_entry[0]
7720 | ((got_displacement & 0x0ff00000) >> 20),
7721 ptr + 0);
7722 put_arm_insn (htab, output_bfd,
7723 elf32_arm_plt_entry[1]
7724 | ((got_displacement & 0x000ff000) >> 12),
7725 ptr+ 4);
7726 put_arm_insn (htab, output_bfd,
7727 elf32_arm_plt_entry[2]
7728 | (got_displacement & 0x00000fff),
7729 ptr + 8);
7730 #ifdef FOUR_WORD_PLT
7731 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7732 #endif
7733 }
7734
7735 /* Fill in the entry in the .rel(a).(i)plt section. */
7736 rel.r_offset = got_address;
7737 rel.r_addend = 0;
7738 if (dynindx == -1)
7739 {
7740 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7741 The dynamic linker or static executable then calls SYM_VALUE
7742 to determine the correct run-time value of the .igot.plt entry. */
7743 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7744 initial_got_entry = sym_value;
7745 }
7746 else
7747 {
7748 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7749 initial_got_entry = (splt->output_section->vma
7750 + splt->output_offset);
7751 }
7752
7753 /* Fill in the entry in the global offset table. */
7754 bfd_put_32 (output_bfd, initial_got_entry,
7755 sgot->contents + got_offset);
7756 }
7757
7758 if (dynindx == -1)
7759 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
7760 else
7761 {
7762 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7763 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7764 }
7765
7766 return TRUE;
7767 }
7768
7769 /* Some relocations map to different relocations depending on the
7770 target. Return the real relocation. */
7771
7772 static int
7773 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7774 int r_type)
7775 {
7776 switch (r_type)
7777 {
7778 case R_ARM_TARGET1:
7779 if (globals->target1_is_rel)
7780 return R_ARM_REL32;
7781 else
7782 return R_ARM_ABS32;
7783
7784 case R_ARM_TARGET2:
7785 return globals->target2_reloc;
7786
7787 default:
7788 return r_type;
7789 }
7790 }
7791
7792 /* Return the base VMA address which should be subtracted from real addresses
7793 when resolving @dtpoff relocation.
7794 This is PT_TLS segment p_vaddr. */
7795
7796 static bfd_vma
7797 dtpoff_base (struct bfd_link_info *info)
7798 {
7799 /* If tls_sec is NULL, we should have signalled an error already. */
7800 if (elf_hash_table (info)->tls_sec == NULL)
7801 return 0;
7802 return elf_hash_table (info)->tls_sec->vma;
7803 }
7804
7805 /* Return the relocation value for @tpoff relocation
7806 if STT_TLS virtual address is ADDRESS. */
7807
7808 static bfd_vma
7809 tpoff (struct bfd_link_info *info, bfd_vma address)
7810 {
7811 struct elf_link_hash_table *htab = elf_hash_table (info);
7812 bfd_vma base;
7813
7814 /* If tls_sec is NULL, we should have signalled an error already. */
7815 if (htab->tls_sec == NULL)
7816 return 0;
7817 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7818 return address - htab->tls_sec->vma + base;
7819 }
7820
7821 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7822 VALUE is the relocation value. */
7823
7824 static bfd_reloc_status_type
7825 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7826 {
7827 if (value > 0xfff)
7828 return bfd_reloc_overflow;
7829
7830 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7831 bfd_put_32 (abfd, value, data);
7832 return bfd_reloc_ok;
7833 }
7834
7835 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7836 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7837 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7838
7839 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7840 is to then call final_link_relocate. Return other values in the
7841 case of error.
7842
7843 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7844 the pre-relaxed code. It would be nice if the relocs were updated
7845 to match the optimization. */
7846
7847 static bfd_reloc_status_type
7848 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7849 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7850 Elf_Internal_Rela *rel, unsigned long is_local)
7851 {
7852 unsigned long insn;
7853
7854 switch (ELF32_R_TYPE (rel->r_info))
7855 {
7856 default:
7857 return bfd_reloc_notsupported;
7858
7859 case R_ARM_TLS_GOTDESC:
7860 if (is_local)
7861 insn = 0;
7862 else
7863 {
7864 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7865 if (insn & 1)
7866 insn -= 5; /* THUMB */
7867 else
7868 insn -= 8; /* ARM */
7869 }
7870 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7871 return bfd_reloc_continue;
7872
7873 case R_ARM_THM_TLS_DESCSEQ:
7874 /* Thumb insn. */
7875 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7876 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7877 {
7878 if (is_local)
7879 /* nop */
7880 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7881 }
7882 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7883 {
7884 if (is_local)
7885 /* nop */
7886 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7887 else
7888 /* ldr rx,[ry] */
7889 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7890 }
7891 else if ((insn & 0xff87) == 0x4780) /* blx rx */
7892 {
7893 if (is_local)
7894 /* nop */
7895 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7896 else
7897 /* mov r0, rx */
7898 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7899 contents + rel->r_offset);
7900 }
7901 else
7902 {
7903 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7904 /* It's a 32 bit instruction, fetch the rest of it for
7905 error generation. */
7906 insn = (insn << 16)
7907 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7908 (*_bfd_error_handler)
7909 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7910 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7911 return bfd_reloc_notsupported;
7912 }
7913 break;
7914
7915 case R_ARM_TLS_DESCSEQ:
7916 /* arm insn. */
7917 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7918 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7919 {
7920 if (is_local)
7921 /* mov rx, ry */
7922 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7923 contents + rel->r_offset);
7924 }
7925 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7926 {
7927 if (is_local)
7928 /* nop */
7929 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7930 else
7931 /* ldr rx,[ry] */
7932 bfd_put_32 (input_bfd, insn & 0xfffff000,
7933 contents + rel->r_offset);
7934 }
7935 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7936 {
7937 if (is_local)
7938 /* nop */
7939 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7940 else
7941 /* mov r0, rx */
7942 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7943 contents + rel->r_offset);
7944 }
7945 else
7946 {
7947 (*_bfd_error_handler)
7948 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7949 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7950 return bfd_reloc_notsupported;
7951 }
7952 break;
7953
7954 case R_ARM_TLS_CALL:
7955 /* GD->IE relaxation, turn the instruction into 'nop' or
7956 'ldr r0, [pc,r0]' */
7957 insn = is_local ? 0xe1a00000 : 0xe79f0000;
7958 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7959 break;
7960
7961 case R_ARM_THM_TLS_CALL:
7962 /* GD->IE relaxation */
7963 if (!is_local)
7964 /* add r0,pc; ldr r0, [r0] */
7965 insn = 0x44786800;
7966 else if (arch_has_thumb2_nop (globals))
7967 /* nop.w */
7968 insn = 0xf3af8000;
7969 else
7970 /* nop; nop */
7971 insn = 0xbf00bf00;
7972
7973 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7974 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7975 break;
7976 }
7977 return bfd_reloc_ok;
7978 }
7979
7980 /* For a given value of n, calculate the value of G_n as required to
7981 deal with group relocations. We return it in the form of an
7982 encoded constant-and-rotation, together with the final residual. If n is
7983 specified as less than zero, then final_residual is filled with the
7984 input value and no further action is performed. */
7985
7986 static bfd_vma
7987 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7988 {
7989 int current_n;
7990 bfd_vma g_n;
7991 bfd_vma encoded_g_n = 0;
7992 bfd_vma residual = value; /* Also known as Y_n. */
7993
7994 for (current_n = 0; current_n <= n; current_n++)
7995 {
7996 int shift;
7997
7998 /* Calculate which part of the value to mask. */
7999 if (residual == 0)
8000 shift = 0;
8001 else
8002 {
8003 int msb;
8004
8005 /* Determine the most significant bit in the residual and
8006 align the resulting value to a 2-bit boundary. */
8007 for (msb = 30; msb >= 0; msb -= 2)
8008 if (residual & (3 << msb))
8009 break;
8010
8011 /* The desired shift is now (msb - 6), or zero, whichever
8012 is the greater. */
8013 shift = msb - 6;
8014 if (shift < 0)
8015 shift = 0;
8016 }
8017
8018 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8019 g_n = residual & (0xff << shift);
8020 encoded_g_n = (g_n >> shift)
8021 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
8022
8023 /* Calculate the residual for the next time around. */
8024 residual &= ~g_n;
8025 }
8026
8027 *final_residual = residual;
8028
8029 return encoded_g_n;
8030 }
8031
8032 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
8033 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
8034
8035 static int
8036 identify_add_or_sub (bfd_vma insn)
8037 {
8038 int opcode = insn & 0x1e00000;
8039
8040 if (opcode == 1 << 23) /* ADD */
8041 return 1;
8042
8043 if (opcode == 1 << 22) /* SUB */
8044 return -1;
8045
8046 return 0;
8047 }
8048
8049 /* Perform a relocation as part of a final link. */
8050
8051 static bfd_reloc_status_type
8052 elf32_arm_final_link_relocate (reloc_howto_type * howto,
8053 bfd * input_bfd,
8054 bfd * output_bfd,
8055 asection * input_section,
8056 bfd_byte * contents,
8057 Elf_Internal_Rela * rel,
8058 bfd_vma value,
8059 struct bfd_link_info * info,
8060 asection * sym_sec,
8061 const char * sym_name,
8062 unsigned char st_type,
8063 enum arm_st_branch_type branch_type,
8064 struct elf_link_hash_entry * h,
8065 bfd_boolean * unresolved_reloc_p,
8066 char ** error_message)
8067 {
8068 unsigned long r_type = howto->type;
8069 unsigned long r_symndx;
8070 bfd_byte * hit_data = contents + rel->r_offset;
8071 bfd_vma * local_got_offsets;
8072 bfd_vma * local_tlsdesc_gotents;
8073 asection * sgot;
8074 asection * splt;
8075 asection * sreloc = NULL;
8076 asection * srelgot;
8077 bfd_vma addend;
8078 bfd_signed_vma signed_addend;
8079 unsigned char dynreloc_st_type;
8080 bfd_vma dynreloc_value;
8081 struct elf32_arm_link_hash_table * globals;
8082 struct elf32_arm_link_hash_entry *eh;
8083 union gotplt_union *root_plt;
8084 struct arm_plt_info *arm_plt;
8085 bfd_vma plt_offset;
8086 bfd_vma gotplt_offset;
8087 bfd_boolean has_iplt_entry;
8088
8089 globals = elf32_arm_hash_table (info);
8090 if (globals == NULL)
8091 return bfd_reloc_notsupported;
8092
8093 BFD_ASSERT (is_arm_elf (input_bfd));
8094
8095 /* Some relocation types map to different relocations depending on the
8096 target. We pick the right one here. */
8097 r_type = arm_real_reloc_type (globals, r_type);
8098
8099 /* It is possible to have linker relaxations on some TLS access
8100 models. Update our information here. */
8101 r_type = elf32_arm_tls_transition (info, r_type, h);
8102
8103 if (r_type != howto->type)
8104 howto = elf32_arm_howto_from_type (r_type);
8105
8106 /* If the start address has been set, then set the EF_ARM_HASENTRY
8107 flag. Setting this more than once is redundant, but the cost is
8108 not too high, and it keeps the code simple.
8109
8110 The test is done here, rather than somewhere else, because the
8111 start address is only set just before the final link commences.
8112
8113 Note - if the user deliberately sets a start address of 0, the
8114 flag will not be set. */
8115 if (bfd_get_start_address (output_bfd) != 0)
8116 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
8117
8118 eh = (struct elf32_arm_link_hash_entry *) h;
8119 sgot = globals->root.sgot;
8120 local_got_offsets = elf_local_got_offsets (input_bfd);
8121 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8122
8123 if (globals->root.dynamic_sections_created)
8124 srelgot = globals->root.srelgot;
8125 else
8126 srelgot = NULL;
8127
8128 r_symndx = ELF32_R_SYM (rel->r_info);
8129
8130 if (globals->use_rel)
8131 {
8132 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8133
8134 if (addend & ((howto->src_mask + 1) >> 1))
8135 {
8136 signed_addend = -1;
8137 signed_addend &= ~ howto->src_mask;
8138 signed_addend |= addend;
8139 }
8140 else
8141 signed_addend = addend;
8142 }
8143 else
8144 addend = signed_addend = rel->r_addend;
8145
8146 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8147 are resolving a function call relocation. */
8148 if (using_thumb_only (globals)
8149 && (r_type == R_ARM_THM_CALL
8150 || r_type == R_ARM_THM_JUMP24)
8151 && branch_type == ST_BRANCH_TO_ARM)
8152 branch_type = ST_BRANCH_TO_THUMB;
8153
8154 /* Record the symbol information that should be used in dynamic
8155 relocations. */
8156 dynreloc_st_type = st_type;
8157 dynreloc_value = value;
8158 if (branch_type == ST_BRANCH_TO_THUMB)
8159 dynreloc_value |= 1;
8160
8161 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8162 VALUE appropriately for relocations that we resolve at link time. */
8163 has_iplt_entry = FALSE;
8164 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8165 && root_plt->offset != (bfd_vma) -1)
8166 {
8167 plt_offset = root_plt->offset;
8168 gotplt_offset = arm_plt->got_offset;
8169
8170 if (h == NULL || eh->is_iplt)
8171 {
8172 has_iplt_entry = TRUE;
8173 splt = globals->root.iplt;
8174
8175 /* Populate .iplt entries here, because not all of them will
8176 be seen by finish_dynamic_symbol. The lower bit is set if
8177 we have already populated the entry. */
8178 if (plt_offset & 1)
8179 plt_offset--;
8180 else
8181 {
8182 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8183 -1, dynreloc_value))
8184 root_plt->offset |= 1;
8185 else
8186 return bfd_reloc_notsupported;
8187 }
8188
8189 /* Static relocations always resolve to the .iplt entry. */
8190 st_type = STT_FUNC;
8191 value = (splt->output_section->vma
8192 + splt->output_offset
8193 + plt_offset);
8194 branch_type = ST_BRANCH_TO_ARM;
8195
8196 /* If there are non-call relocations that resolve to the .iplt
8197 entry, then all dynamic ones must too. */
8198 if (arm_plt->noncall_refcount != 0)
8199 {
8200 dynreloc_st_type = st_type;
8201 dynreloc_value = value;
8202 }
8203 }
8204 else
8205 /* We populate the .plt entry in finish_dynamic_symbol. */
8206 splt = globals->root.splt;
8207 }
8208 else
8209 {
8210 splt = NULL;
8211 plt_offset = (bfd_vma) -1;
8212 gotplt_offset = (bfd_vma) -1;
8213 }
8214
8215 switch (r_type)
8216 {
8217 case R_ARM_NONE:
8218 /* We don't need to find a value for this symbol. It's just a
8219 marker. */
8220 *unresolved_reloc_p = FALSE;
8221 return bfd_reloc_ok;
8222
8223 case R_ARM_ABS12:
8224 if (!globals->vxworks_p)
8225 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8226
8227 case R_ARM_PC24:
8228 case R_ARM_ABS32:
8229 case R_ARM_ABS32_NOI:
8230 case R_ARM_REL32:
8231 case R_ARM_REL32_NOI:
8232 case R_ARM_CALL:
8233 case R_ARM_JUMP24:
8234 case R_ARM_XPC25:
8235 case R_ARM_PREL31:
8236 case R_ARM_PLT32:
8237 /* Handle relocations which should use the PLT entry. ABS32/REL32
8238 will use the symbol's value, which may point to a PLT entry, but we
8239 don't need to handle that here. If we created a PLT entry, all
8240 branches in this object should go to it, except if the PLT is too
8241 far away, in which case a long branch stub should be inserted. */
8242 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8243 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8244 && r_type != R_ARM_CALL
8245 && r_type != R_ARM_JUMP24
8246 && r_type != R_ARM_PLT32)
8247 && plt_offset != (bfd_vma) -1)
8248 {
8249 /* If we've created a .plt section, and assigned a PLT entry
8250 to this function, it must either be a STT_GNU_IFUNC reference
8251 or not be known to bind locally. In other cases, we should
8252 have cleared the PLT entry by now. */
8253 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8254
8255 value = (splt->output_section->vma
8256 + splt->output_offset
8257 + plt_offset);
8258 *unresolved_reloc_p = FALSE;
8259 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8260 contents, rel->r_offset, value,
8261 rel->r_addend);
8262 }
8263
8264 /* When generating a shared object or relocatable executable, these
8265 relocations are copied into the output file to be resolved at
8266 run time. */
8267 if ((info->shared || globals->root.is_relocatable_executable)
8268 && (input_section->flags & SEC_ALLOC)
8269 && !(globals->vxworks_p
8270 && strcmp (input_section->output_section->name,
8271 ".tls_vars") == 0)
8272 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8273 || !SYMBOL_CALLS_LOCAL (info, h))
8274 && !(input_bfd == globals->stub_bfd
8275 && strstr (input_section->name, STUB_SUFFIX))
8276 && (h == NULL
8277 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8278 || h->root.type != bfd_link_hash_undefweak)
8279 && r_type != R_ARM_PC24
8280 && r_type != R_ARM_CALL
8281 && r_type != R_ARM_JUMP24
8282 && r_type != R_ARM_PREL31
8283 && r_type != R_ARM_PLT32)
8284 {
8285 Elf_Internal_Rela outrel;
8286 bfd_boolean skip, relocate;
8287
8288 *unresolved_reloc_p = FALSE;
8289
8290 if (sreloc == NULL && globals->root.dynamic_sections_created)
8291 {
8292 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8293 ! globals->use_rel);
8294
8295 if (sreloc == NULL)
8296 return bfd_reloc_notsupported;
8297 }
8298
8299 skip = FALSE;
8300 relocate = FALSE;
8301
8302 outrel.r_addend = addend;
8303 outrel.r_offset =
8304 _bfd_elf_section_offset (output_bfd, info, input_section,
8305 rel->r_offset);
8306 if (outrel.r_offset == (bfd_vma) -1)
8307 skip = TRUE;
8308 else if (outrel.r_offset == (bfd_vma) -2)
8309 skip = TRUE, relocate = TRUE;
8310 outrel.r_offset += (input_section->output_section->vma
8311 + input_section->output_offset);
8312
8313 if (skip)
8314 memset (&outrel, 0, sizeof outrel);
8315 else if (h != NULL
8316 && h->dynindx != -1
8317 && (!info->shared
8318 || !info->symbolic
8319 || !h->def_regular))
8320 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8321 else
8322 {
8323 int symbol;
8324
8325 /* This symbol is local, or marked to become local. */
8326 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8327 if (globals->symbian_p)
8328 {
8329 asection *osec;
8330
8331 /* On Symbian OS, the data segment and text segement
8332 can be relocated independently. Therefore, we
8333 must indicate the segment to which this
8334 relocation is relative. The BPABI allows us to
8335 use any symbol in the right segment; we just use
8336 the section symbol as it is convenient. (We
8337 cannot use the symbol given by "h" directly as it
8338 will not appear in the dynamic symbol table.)
8339
8340 Note that the dynamic linker ignores the section
8341 symbol value, so we don't subtract osec->vma
8342 from the emitted reloc addend. */
8343 if (sym_sec)
8344 osec = sym_sec->output_section;
8345 else
8346 osec = input_section->output_section;
8347 symbol = elf_section_data (osec)->dynindx;
8348 if (symbol == 0)
8349 {
8350 struct elf_link_hash_table *htab = elf_hash_table (info);
8351
8352 if ((osec->flags & SEC_READONLY) == 0
8353 && htab->data_index_section != NULL)
8354 osec = htab->data_index_section;
8355 else
8356 osec = htab->text_index_section;
8357 symbol = elf_section_data (osec)->dynindx;
8358 }
8359 BFD_ASSERT (symbol != 0);
8360 }
8361 else
8362 /* On SVR4-ish systems, the dynamic loader cannot
8363 relocate the text and data segments independently,
8364 so the symbol does not matter. */
8365 symbol = 0;
8366 if (dynreloc_st_type == STT_GNU_IFUNC)
8367 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8368 to the .iplt entry. Instead, every non-call reference
8369 must use an R_ARM_IRELATIVE relocation to obtain the
8370 correct run-time address. */
8371 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8372 else
8373 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8374 if (globals->use_rel)
8375 relocate = TRUE;
8376 else
8377 outrel.r_addend += dynreloc_value;
8378 }
8379
8380 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8381
8382 /* If this reloc is against an external symbol, we do not want to
8383 fiddle with the addend. Otherwise, we need to include the symbol
8384 value so that it becomes an addend for the dynamic reloc. */
8385 if (! relocate)
8386 return bfd_reloc_ok;
8387
8388 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8389 contents, rel->r_offset,
8390 dynreloc_value, (bfd_vma) 0);
8391 }
8392 else switch (r_type)
8393 {
8394 case R_ARM_ABS12:
8395 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8396
8397 case R_ARM_XPC25: /* Arm BLX instruction. */
8398 case R_ARM_CALL:
8399 case R_ARM_JUMP24:
8400 case R_ARM_PC24: /* Arm B/BL instruction. */
8401 case R_ARM_PLT32:
8402 {
8403 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8404
8405 if (r_type == R_ARM_XPC25)
8406 {
8407 /* Check for Arm calling Arm function. */
8408 /* FIXME: Should we translate the instruction into a BL
8409 instruction instead ? */
8410 if (branch_type != ST_BRANCH_TO_THUMB)
8411 (*_bfd_error_handler)
8412 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8413 input_bfd,
8414 h ? h->root.root.string : "(local)");
8415 }
8416 else if (r_type == R_ARM_PC24)
8417 {
8418 /* Check for Arm calling Thumb function. */
8419 if (branch_type == ST_BRANCH_TO_THUMB)
8420 {
8421 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8422 output_bfd, input_section,
8423 hit_data, sym_sec, rel->r_offset,
8424 signed_addend, value,
8425 error_message))
8426 return bfd_reloc_ok;
8427 else
8428 return bfd_reloc_dangerous;
8429 }
8430 }
8431
8432 /* Check if a stub has to be inserted because the
8433 destination is too far or we are changing mode. */
8434 if ( r_type == R_ARM_CALL
8435 || r_type == R_ARM_JUMP24
8436 || r_type == R_ARM_PLT32)
8437 {
8438 enum elf32_arm_stub_type stub_type = arm_stub_none;
8439 struct elf32_arm_link_hash_entry *hash;
8440
8441 hash = (struct elf32_arm_link_hash_entry *) h;
8442 stub_type = arm_type_of_stub (info, input_section, rel,
8443 st_type, &branch_type,
8444 hash, value, sym_sec,
8445 input_bfd, sym_name);
8446
8447 if (stub_type != arm_stub_none)
8448 {
8449 /* The target is out of reach, so redirect the
8450 branch to the local stub for this function. */
8451 stub_entry = elf32_arm_get_stub_entry (input_section,
8452 sym_sec, h,
8453 rel, globals,
8454 stub_type);
8455 {
8456 if (stub_entry != NULL)
8457 value = (stub_entry->stub_offset
8458 + stub_entry->stub_sec->output_offset
8459 + stub_entry->stub_sec->output_section->vma);
8460
8461 if (plt_offset != (bfd_vma) -1)
8462 *unresolved_reloc_p = FALSE;
8463 }
8464 }
8465 else
8466 {
8467 /* If the call goes through a PLT entry, make sure to
8468 check distance to the right destination address. */
8469 if (plt_offset != (bfd_vma) -1)
8470 {
8471 value = (splt->output_section->vma
8472 + splt->output_offset
8473 + plt_offset);
8474 *unresolved_reloc_p = FALSE;
8475 /* The PLT entry is in ARM mode, regardless of the
8476 target function. */
8477 branch_type = ST_BRANCH_TO_ARM;
8478 }
8479 }
8480 }
8481
8482 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8483 where:
8484 S is the address of the symbol in the relocation.
8485 P is address of the instruction being relocated.
8486 A is the addend (extracted from the instruction) in bytes.
8487
8488 S is held in 'value'.
8489 P is the base address of the section containing the
8490 instruction plus the offset of the reloc into that
8491 section, ie:
8492 (input_section->output_section->vma +
8493 input_section->output_offset +
8494 rel->r_offset).
8495 A is the addend, converted into bytes, ie:
8496 (signed_addend * 4)
8497
8498 Note: None of these operations have knowledge of the pipeline
8499 size of the processor, thus it is up to the assembler to
8500 encode this information into the addend. */
8501 value -= (input_section->output_section->vma
8502 + input_section->output_offset);
8503 value -= rel->r_offset;
8504 if (globals->use_rel)
8505 value += (signed_addend << howto->size);
8506 else
8507 /* RELA addends do not have to be adjusted by howto->size. */
8508 value += signed_addend;
8509
8510 signed_addend = value;
8511 signed_addend >>= howto->rightshift;
8512
8513 /* A branch to an undefined weak symbol is turned into a jump to
8514 the next instruction unless a PLT entry will be created.
8515 Do the same for local undefined symbols (but not for STN_UNDEF).
8516 The jump to the next instruction is optimized as a NOP depending
8517 on the architecture. */
8518 if (h ? (h->root.type == bfd_link_hash_undefweak
8519 && plt_offset == (bfd_vma) -1)
8520 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8521 {
8522 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8523
8524 if (arch_has_arm_nop (globals))
8525 value |= 0x0320f000;
8526 else
8527 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8528 }
8529 else
8530 {
8531 /* Perform a signed range check. */
8532 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
8533 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8534 return bfd_reloc_overflow;
8535
8536 addend = (value & 2);
8537
8538 value = (signed_addend & howto->dst_mask)
8539 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8540
8541 if (r_type == R_ARM_CALL)
8542 {
8543 /* Set the H bit in the BLX instruction. */
8544 if (branch_type == ST_BRANCH_TO_THUMB)
8545 {
8546 if (addend)
8547 value |= (1 << 24);
8548 else
8549 value &= ~(bfd_vma)(1 << 24);
8550 }
8551
8552 /* Select the correct instruction (BL or BLX). */
8553 /* Only if we are not handling a BL to a stub. In this
8554 case, mode switching is performed by the stub. */
8555 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8556 value |= (1 << 28);
8557 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8558 {
8559 value &= ~(bfd_vma)(1 << 28);
8560 value |= (1 << 24);
8561 }
8562 }
8563 }
8564 }
8565 break;
8566
8567 case R_ARM_ABS32:
8568 value += addend;
8569 if (branch_type == ST_BRANCH_TO_THUMB)
8570 value |= 1;
8571 break;
8572
8573 case R_ARM_ABS32_NOI:
8574 value += addend;
8575 break;
8576
8577 case R_ARM_REL32:
8578 value += addend;
8579 if (branch_type == ST_BRANCH_TO_THUMB)
8580 value |= 1;
8581 value -= (input_section->output_section->vma
8582 + input_section->output_offset + rel->r_offset);
8583 break;
8584
8585 case R_ARM_REL32_NOI:
8586 value += addend;
8587 value -= (input_section->output_section->vma
8588 + input_section->output_offset + rel->r_offset);
8589 break;
8590
8591 case R_ARM_PREL31:
8592 value -= (input_section->output_section->vma
8593 + input_section->output_offset + rel->r_offset);
8594 value += signed_addend;
8595 if (! h || h->root.type != bfd_link_hash_undefweak)
8596 {
8597 /* Check for overflow. */
8598 if ((value ^ (value >> 1)) & (1 << 30))
8599 return bfd_reloc_overflow;
8600 }
8601 value &= 0x7fffffff;
8602 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8603 if (branch_type == ST_BRANCH_TO_THUMB)
8604 value |= 1;
8605 break;
8606 }
8607
8608 bfd_put_32 (input_bfd, value, hit_data);
8609 return bfd_reloc_ok;
8610
8611 case R_ARM_ABS8:
8612 value += addend;
8613
8614 /* There is no way to tell whether the user intended to use a signed or
8615 unsigned addend. When checking for overflow we accept either,
8616 as specified by the AAELF. */
8617 if ((long) value > 0xff || (long) value < -0x80)
8618 return bfd_reloc_overflow;
8619
8620 bfd_put_8 (input_bfd, value, hit_data);
8621 return bfd_reloc_ok;
8622
8623 case R_ARM_ABS16:
8624 value += addend;
8625
8626 /* See comment for R_ARM_ABS8. */
8627 if ((long) value > 0xffff || (long) value < -0x8000)
8628 return bfd_reloc_overflow;
8629
8630 bfd_put_16 (input_bfd, value, hit_data);
8631 return bfd_reloc_ok;
8632
8633 case R_ARM_THM_ABS5:
8634 /* Support ldr and str instructions for the thumb. */
8635 if (globals->use_rel)
8636 {
8637 /* Need to refetch addend. */
8638 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8639 /* ??? Need to determine shift amount from operand size. */
8640 addend >>= howto->rightshift;
8641 }
8642 value += addend;
8643
8644 /* ??? Isn't value unsigned? */
8645 if ((long) value > 0x1f || (long) value < -0x10)
8646 return bfd_reloc_overflow;
8647
8648 /* ??? Value needs to be properly shifted into place first. */
8649 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8650 bfd_put_16 (input_bfd, value, hit_data);
8651 return bfd_reloc_ok;
8652
8653 case R_ARM_THM_ALU_PREL_11_0:
8654 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8655 {
8656 bfd_vma insn;
8657 bfd_signed_vma relocation;
8658
8659 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8660 | bfd_get_16 (input_bfd, hit_data + 2);
8661
8662 if (globals->use_rel)
8663 {
8664 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8665 | ((insn & (1 << 26)) >> 15);
8666 if (insn & 0xf00000)
8667 signed_addend = -signed_addend;
8668 }
8669
8670 relocation = value + signed_addend;
8671 relocation -= Pa (input_section->output_section->vma
8672 + input_section->output_offset
8673 + rel->r_offset);
8674
8675 value = abs (relocation);
8676
8677 if (value >= 0x1000)
8678 return bfd_reloc_overflow;
8679
8680 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8681 | ((value & 0x700) << 4)
8682 | ((value & 0x800) << 15);
8683 if (relocation < 0)
8684 insn |= 0xa00000;
8685
8686 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8687 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8688
8689 return bfd_reloc_ok;
8690 }
8691
8692 case R_ARM_THM_PC8:
8693 /* PR 10073: This reloc is not generated by the GNU toolchain,
8694 but it is supported for compatibility with third party libraries
8695 generated by other compilers, specifically the ARM/IAR. */
8696 {
8697 bfd_vma insn;
8698 bfd_signed_vma relocation;
8699
8700 insn = bfd_get_16 (input_bfd, hit_data);
8701
8702 if (globals->use_rel)
8703 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
8704
8705 relocation = value + addend;
8706 relocation -= Pa (input_section->output_section->vma
8707 + input_section->output_offset
8708 + rel->r_offset);
8709
8710 value = abs (relocation);
8711
8712 /* We do not check for overflow of this reloc. Although strictly
8713 speaking this is incorrect, it appears to be necessary in order
8714 to work with IAR generated relocs. Since GCC and GAS do not
8715 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8716 a problem for them. */
8717 value &= 0x3fc;
8718
8719 insn = (insn & 0xff00) | (value >> 2);
8720
8721 bfd_put_16 (input_bfd, insn, hit_data);
8722
8723 return bfd_reloc_ok;
8724 }
8725
8726 case R_ARM_THM_PC12:
8727 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8728 {
8729 bfd_vma insn;
8730 bfd_signed_vma relocation;
8731
8732 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8733 | bfd_get_16 (input_bfd, hit_data + 2);
8734
8735 if (globals->use_rel)
8736 {
8737 signed_addend = insn & 0xfff;
8738 if (!(insn & (1 << 23)))
8739 signed_addend = -signed_addend;
8740 }
8741
8742 relocation = value + signed_addend;
8743 relocation -= Pa (input_section->output_section->vma
8744 + input_section->output_offset
8745 + rel->r_offset);
8746
8747 value = abs (relocation);
8748
8749 if (value >= 0x1000)
8750 return bfd_reloc_overflow;
8751
8752 insn = (insn & 0xff7ff000) | value;
8753 if (relocation >= 0)
8754 insn |= (1 << 23);
8755
8756 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8757 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8758
8759 return bfd_reloc_ok;
8760 }
8761
8762 case R_ARM_THM_XPC22:
8763 case R_ARM_THM_CALL:
8764 case R_ARM_THM_JUMP24:
8765 /* Thumb BL (branch long instruction). */
8766 {
8767 bfd_vma relocation;
8768 bfd_vma reloc_sign;
8769 bfd_boolean overflow = FALSE;
8770 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8771 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8772 bfd_signed_vma reloc_signed_max;
8773 bfd_signed_vma reloc_signed_min;
8774 bfd_vma check;
8775 bfd_signed_vma signed_check;
8776 int bitsize;
8777 const int thumb2 = using_thumb2 (globals);
8778
8779 /* A branch to an undefined weak symbol is turned into a jump to
8780 the next instruction unless a PLT entry will be created.
8781 The jump to the next instruction is optimized as a NOP.W for
8782 Thumb-2 enabled architectures. */
8783 if (h && h->root.type == bfd_link_hash_undefweak
8784 && plt_offset == (bfd_vma) -1)
8785 {
8786 if (arch_has_thumb2_nop (globals))
8787 {
8788 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8789 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8790 }
8791 else
8792 {
8793 bfd_put_16 (input_bfd, 0xe000, hit_data);
8794 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8795 }
8796 return bfd_reloc_ok;
8797 }
8798
8799 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8800 with Thumb-1) involving the J1 and J2 bits. */
8801 if (globals->use_rel)
8802 {
8803 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8804 bfd_vma upper = upper_insn & 0x3ff;
8805 bfd_vma lower = lower_insn & 0x7ff;
8806 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8807 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8808 bfd_vma i1 = j1 ^ s ? 0 : 1;
8809 bfd_vma i2 = j2 ^ s ? 0 : 1;
8810
8811 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8812 /* Sign extend. */
8813 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8814
8815 signed_addend = addend;
8816 }
8817
8818 if (r_type == R_ARM_THM_XPC22)
8819 {
8820 /* Check for Thumb to Thumb call. */
8821 /* FIXME: Should we translate the instruction into a BL
8822 instruction instead ? */
8823 if (branch_type == ST_BRANCH_TO_THUMB)
8824 (*_bfd_error_handler)
8825 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8826 input_bfd,
8827 h ? h->root.root.string : "(local)");
8828 }
8829 else
8830 {
8831 /* If it is not a call to Thumb, assume call to Arm.
8832 If it is a call relative to a section name, then it is not a
8833 function call at all, but rather a long jump. Calls through
8834 the PLT do not require stubs. */
8835 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8836 {
8837 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8838 {
8839 /* Convert BL to BLX. */
8840 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8841 }
8842 else if (( r_type != R_ARM_THM_CALL)
8843 && (r_type != R_ARM_THM_JUMP24))
8844 {
8845 if (elf32_thumb_to_arm_stub
8846 (info, sym_name, input_bfd, output_bfd, input_section,
8847 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8848 error_message))
8849 return bfd_reloc_ok;
8850 else
8851 return bfd_reloc_dangerous;
8852 }
8853 }
8854 else if (branch_type == ST_BRANCH_TO_THUMB
8855 && globals->use_blx
8856 && r_type == R_ARM_THM_CALL)
8857 {
8858 /* Make sure this is a BL. */
8859 lower_insn |= 0x1800;
8860 }
8861 }
8862
8863 enum elf32_arm_stub_type stub_type = arm_stub_none;
8864 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8865 {
8866 /* Check if a stub has to be inserted because the destination
8867 is too far. */
8868 struct elf32_arm_stub_hash_entry *stub_entry;
8869 struct elf32_arm_link_hash_entry *hash;
8870
8871 hash = (struct elf32_arm_link_hash_entry *) h;
8872
8873 stub_type = arm_type_of_stub (info, input_section, rel,
8874 st_type, &branch_type,
8875 hash, value, sym_sec,
8876 input_bfd, sym_name);
8877
8878 if (stub_type != arm_stub_none)
8879 {
8880 /* The target is out of reach or we are changing modes, so
8881 redirect the branch to the local stub for this
8882 function. */
8883 stub_entry = elf32_arm_get_stub_entry (input_section,
8884 sym_sec, h,
8885 rel, globals,
8886 stub_type);
8887 if (stub_entry != NULL)
8888 {
8889 value = (stub_entry->stub_offset
8890 + stub_entry->stub_sec->output_offset
8891 + stub_entry->stub_sec->output_section->vma);
8892
8893 if (plt_offset != (bfd_vma) -1)
8894 *unresolved_reloc_p = FALSE;
8895 }
8896
8897 /* If this call becomes a call to Arm, force BLX. */
8898 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8899 {
8900 if ((stub_entry
8901 && !arm_stub_is_thumb (stub_entry->stub_type))
8902 || branch_type != ST_BRANCH_TO_THUMB)
8903 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8904 }
8905 }
8906 }
8907
8908 /* Handle calls via the PLT. */
8909 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8910 {
8911 value = (splt->output_section->vma
8912 + splt->output_offset
8913 + plt_offset);
8914
8915 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8916 {
8917 /* If the Thumb BLX instruction is available, convert
8918 the BL to a BLX instruction to call the ARM-mode
8919 PLT entry. */
8920 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8921 branch_type = ST_BRANCH_TO_ARM;
8922 }
8923 else
8924 {
8925 /* Target the Thumb stub before the ARM PLT entry. */
8926 value -= PLT_THUMB_STUB_SIZE;
8927 branch_type = ST_BRANCH_TO_THUMB;
8928 }
8929 *unresolved_reloc_p = FALSE;
8930 }
8931
8932 relocation = value + signed_addend;
8933
8934 relocation -= (input_section->output_section->vma
8935 + input_section->output_offset
8936 + rel->r_offset);
8937
8938 check = relocation >> howto->rightshift;
8939
8940 /* If this is a signed value, the rightshift just dropped
8941 leading 1 bits (assuming twos complement). */
8942 if ((bfd_signed_vma) relocation >= 0)
8943 signed_check = check;
8944 else
8945 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8946
8947 /* Calculate the permissable maximum and minimum values for
8948 this relocation according to whether we're relocating for
8949 Thumb-2 or not. */
8950 bitsize = howto->bitsize;
8951 if (!thumb2)
8952 bitsize -= 2;
8953 reloc_signed_max = (1 << (bitsize - 1)) - 1;
8954 reloc_signed_min = ~reloc_signed_max;
8955
8956 /* Assumes two's complement. */
8957 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8958 overflow = TRUE;
8959
8960 if ((lower_insn & 0x5000) == 0x4000)
8961 /* For a BLX instruction, make sure that the relocation is rounded up
8962 to a word boundary. This follows the semantics of the instruction
8963 which specifies that bit 1 of the target address will come from bit
8964 1 of the base address. */
8965 relocation = (relocation + 2) & ~ 3;
8966
8967 /* Put RELOCATION back into the insn. Assumes two's complement.
8968 We use the Thumb-2 encoding, which is safe even if dealing with
8969 a Thumb-1 instruction by virtue of our overflow check above. */
8970 reloc_sign = (signed_check < 0) ? 1 : 0;
8971 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8972 | ((relocation >> 12) & 0x3ff)
8973 | (reloc_sign << 10);
8974 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8975 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8976 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8977 | ((relocation >> 1) & 0x7ff);
8978
8979 /* Put the relocated value back in the object file: */
8980 bfd_put_16 (input_bfd, upper_insn, hit_data);
8981 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8982
8983 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8984 }
8985 break;
8986
8987 case R_ARM_THM_JUMP19:
8988 /* Thumb32 conditional branch instruction. */
8989 {
8990 bfd_vma relocation;
8991 bfd_boolean overflow = FALSE;
8992 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8993 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8994 bfd_signed_vma reloc_signed_max = 0xffffe;
8995 bfd_signed_vma reloc_signed_min = -0x100000;
8996 bfd_signed_vma signed_check;
8997
8998 /* Need to refetch the addend, reconstruct the top three bits,
8999 and squish the two 11 bit pieces together. */
9000 if (globals->use_rel)
9001 {
9002 bfd_vma S = (upper_insn & 0x0400) >> 10;
9003 bfd_vma upper = (upper_insn & 0x003f);
9004 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
9005 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
9006 bfd_vma lower = (lower_insn & 0x07ff);
9007
9008 upper |= J1 << 6;
9009 upper |= J2 << 7;
9010 upper |= (!S) << 8;
9011 upper -= 0x0100; /* Sign extend. */
9012
9013 addend = (upper << 12) | (lower << 1);
9014 signed_addend = addend;
9015 }
9016
9017 /* Handle calls via the PLT. */
9018 if (plt_offset != (bfd_vma) -1)
9019 {
9020 value = (splt->output_section->vma
9021 + splt->output_offset
9022 + plt_offset);
9023 /* Target the Thumb stub before the ARM PLT entry. */
9024 value -= PLT_THUMB_STUB_SIZE;
9025 *unresolved_reloc_p = FALSE;
9026 }
9027
9028 /* ??? Should handle interworking? GCC might someday try to
9029 use this for tail calls. */
9030
9031 relocation = value + signed_addend;
9032 relocation -= (input_section->output_section->vma
9033 + input_section->output_offset
9034 + rel->r_offset);
9035 signed_check = (bfd_signed_vma) relocation;
9036
9037 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9038 overflow = TRUE;
9039
9040 /* Put RELOCATION back into the insn. */
9041 {
9042 bfd_vma S = (relocation & 0x00100000) >> 20;
9043 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9044 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9045 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9046 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9047
9048 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
9049 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9050 }
9051
9052 /* Put the relocated value back in the object file: */
9053 bfd_put_16 (input_bfd, upper_insn, hit_data);
9054 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9055
9056 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9057 }
9058
9059 case R_ARM_THM_JUMP11:
9060 case R_ARM_THM_JUMP8:
9061 case R_ARM_THM_JUMP6:
9062 /* Thumb B (branch) instruction). */
9063 {
9064 bfd_signed_vma relocation;
9065 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9066 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
9067 bfd_signed_vma signed_check;
9068
9069 /* CZB cannot jump backward. */
9070 if (r_type == R_ARM_THM_JUMP6)
9071 reloc_signed_min = 0;
9072
9073 if (globals->use_rel)
9074 {
9075 /* Need to refetch addend. */
9076 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9077 if (addend & ((howto->src_mask + 1) >> 1))
9078 {
9079 signed_addend = -1;
9080 signed_addend &= ~ howto->src_mask;
9081 signed_addend |= addend;
9082 }
9083 else
9084 signed_addend = addend;
9085 /* The value in the insn has been right shifted. We need to
9086 undo this, so that we can perform the address calculation
9087 in terms of bytes. */
9088 signed_addend <<= howto->rightshift;
9089 }
9090 relocation = value + signed_addend;
9091
9092 relocation -= (input_section->output_section->vma
9093 + input_section->output_offset
9094 + rel->r_offset);
9095
9096 relocation >>= howto->rightshift;
9097 signed_check = relocation;
9098
9099 if (r_type == R_ARM_THM_JUMP6)
9100 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9101 else
9102 relocation &= howto->dst_mask;
9103 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
9104
9105 bfd_put_16 (input_bfd, relocation, hit_data);
9106
9107 /* Assumes two's complement. */
9108 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9109 return bfd_reloc_overflow;
9110
9111 return bfd_reloc_ok;
9112 }
9113
9114 case R_ARM_ALU_PCREL7_0:
9115 case R_ARM_ALU_PCREL15_8:
9116 case R_ARM_ALU_PCREL23_15:
9117 {
9118 bfd_vma insn;
9119 bfd_vma relocation;
9120
9121 insn = bfd_get_32 (input_bfd, hit_data);
9122 if (globals->use_rel)
9123 {
9124 /* Extract the addend. */
9125 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9126 signed_addend = addend;
9127 }
9128 relocation = value + signed_addend;
9129
9130 relocation -= (input_section->output_section->vma
9131 + input_section->output_offset
9132 + rel->r_offset);
9133 insn = (insn & ~0xfff)
9134 | ((howto->bitpos << 7) & 0xf00)
9135 | ((relocation >> howto->bitpos) & 0xff);
9136 bfd_put_32 (input_bfd, value, hit_data);
9137 }
9138 return bfd_reloc_ok;
9139
9140 case R_ARM_GNU_VTINHERIT:
9141 case R_ARM_GNU_VTENTRY:
9142 return bfd_reloc_ok;
9143
9144 case R_ARM_GOTOFF32:
9145 /* Relocation is relative to the start of the
9146 global offset table. */
9147
9148 BFD_ASSERT (sgot != NULL);
9149 if (sgot == NULL)
9150 return bfd_reloc_notsupported;
9151
9152 /* If we are addressing a Thumb function, we need to adjust the
9153 address by one, so that attempts to call the function pointer will
9154 correctly interpret it as Thumb code. */
9155 if (branch_type == ST_BRANCH_TO_THUMB)
9156 value += 1;
9157
9158 /* Note that sgot->output_offset is not involved in this
9159 calculation. We always want the start of .got. If we
9160 define _GLOBAL_OFFSET_TABLE in a different way, as is
9161 permitted by the ABI, we might have to change this
9162 calculation. */
9163 value -= sgot->output_section->vma;
9164 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9165 contents, rel->r_offset, value,
9166 rel->r_addend);
9167
9168 case R_ARM_GOTPC:
9169 /* Use global offset table as symbol value. */
9170 BFD_ASSERT (sgot != NULL);
9171
9172 if (sgot == NULL)
9173 return bfd_reloc_notsupported;
9174
9175 *unresolved_reloc_p = FALSE;
9176 value = sgot->output_section->vma;
9177 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9178 contents, rel->r_offset, value,
9179 rel->r_addend);
9180
9181 case R_ARM_GOT32:
9182 case R_ARM_GOT_PREL:
9183 /* Relocation is to the entry for this symbol in the
9184 global offset table. */
9185 if (sgot == NULL)
9186 return bfd_reloc_notsupported;
9187
9188 if (dynreloc_st_type == STT_GNU_IFUNC
9189 && plt_offset != (bfd_vma) -1
9190 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9191 {
9192 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9193 symbol, and the relocation resolves directly to the runtime
9194 target rather than to the .iplt entry. This means that any
9195 .got entry would be the same value as the .igot.plt entry,
9196 so there's no point creating both. */
9197 sgot = globals->root.igotplt;
9198 value = sgot->output_offset + gotplt_offset;
9199 }
9200 else if (h != NULL)
9201 {
9202 bfd_vma off;
9203
9204 off = h->got.offset;
9205 BFD_ASSERT (off != (bfd_vma) -1);
9206 if ((off & 1) != 0)
9207 {
9208 /* We have already processsed one GOT relocation against
9209 this symbol. */
9210 off &= ~1;
9211 if (globals->root.dynamic_sections_created
9212 && !SYMBOL_REFERENCES_LOCAL (info, h))
9213 *unresolved_reloc_p = FALSE;
9214 }
9215 else
9216 {
9217 Elf_Internal_Rela outrel;
9218
9219 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
9220 {
9221 /* If the symbol doesn't resolve locally in a static
9222 object, we have an undefined reference. If the
9223 symbol doesn't resolve locally in a dynamic object,
9224 it should be resolved by the dynamic linker. */
9225 if (globals->root.dynamic_sections_created)
9226 {
9227 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9228 *unresolved_reloc_p = FALSE;
9229 }
9230 else
9231 outrel.r_info = 0;
9232 outrel.r_addend = 0;
9233 }
9234 else
9235 {
9236 if (dynreloc_st_type == STT_GNU_IFUNC)
9237 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9238 else if (info->shared &&
9239 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9240 || h->root.type != bfd_link_hash_undefweak))
9241 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9242 else
9243 outrel.r_info = 0;
9244 outrel.r_addend = dynreloc_value;
9245 }
9246
9247 /* The GOT entry is initialized to zero by default.
9248 See if we should install a different value. */
9249 if (outrel.r_addend != 0
9250 && (outrel.r_info == 0 || globals->use_rel))
9251 {
9252 bfd_put_32 (output_bfd, outrel.r_addend,
9253 sgot->contents + off);
9254 outrel.r_addend = 0;
9255 }
9256
9257 if (outrel.r_info != 0)
9258 {
9259 outrel.r_offset = (sgot->output_section->vma
9260 + sgot->output_offset
9261 + off);
9262 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9263 }
9264 h->got.offset |= 1;
9265 }
9266 value = sgot->output_offset + off;
9267 }
9268 else
9269 {
9270 bfd_vma off;
9271
9272 BFD_ASSERT (local_got_offsets != NULL &&
9273 local_got_offsets[r_symndx] != (bfd_vma) -1);
9274
9275 off = local_got_offsets[r_symndx];
9276
9277 /* The offset must always be a multiple of 4. We use the
9278 least significant bit to record whether we have already
9279 generated the necessary reloc. */
9280 if ((off & 1) != 0)
9281 off &= ~1;
9282 else
9283 {
9284 if (globals->use_rel)
9285 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9286
9287 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9288 {
9289 Elf_Internal_Rela outrel;
9290
9291 outrel.r_addend = addend + dynreloc_value;
9292 outrel.r_offset = (sgot->output_section->vma
9293 + sgot->output_offset
9294 + off);
9295 if (dynreloc_st_type == STT_GNU_IFUNC)
9296 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9297 else
9298 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9299 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9300 }
9301
9302 local_got_offsets[r_symndx] |= 1;
9303 }
9304
9305 value = sgot->output_offset + off;
9306 }
9307 if (r_type != R_ARM_GOT32)
9308 value += sgot->output_section->vma;
9309
9310 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9311 contents, rel->r_offset, value,
9312 rel->r_addend);
9313
9314 case R_ARM_TLS_LDO32:
9315 value = value - dtpoff_base (info);
9316
9317 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9318 contents, rel->r_offset, value,
9319 rel->r_addend);
9320
9321 case R_ARM_TLS_LDM32:
9322 {
9323 bfd_vma off;
9324
9325 if (sgot == NULL)
9326 abort ();
9327
9328 off = globals->tls_ldm_got.offset;
9329
9330 if ((off & 1) != 0)
9331 off &= ~1;
9332 else
9333 {
9334 /* If we don't know the module number, create a relocation
9335 for it. */
9336 if (info->shared)
9337 {
9338 Elf_Internal_Rela outrel;
9339
9340 if (srelgot == NULL)
9341 abort ();
9342
9343 outrel.r_addend = 0;
9344 outrel.r_offset = (sgot->output_section->vma
9345 + sgot->output_offset + off);
9346 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9347
9348 if (globals->use_rel)
9349 bfd_put_32 (output_bfd, outrel.r_addend,
9350 sgot->contents + off);
9351
9352 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9353 }
9354 else
9355 bfd_put_32 (output_bfd, 1, sgot->contents + off);
9356
9357 globals->tls_ldm_got.offset |= 1;
9358 }
9359
9360 value = sgot->output_section->vma + sgot->output_offset + off
9361 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9362
9363 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9364 contents, rel->r_offset, value,
9365 rel->r_addend);
9366 }
9367
9368 case R_ARM_TLS_CALL:
9369 case R_ARM_THM_TLS_CALL:
9370 case R_ARM_TLS_GD32:
9371 case R_ARM_TLS_IE32:
9372 case R_ARM_TLS_GOTDESC:
9373 case R_ARM_TLS_DESCSEQ:
9374 case R_ARM_THM_TLS_DESCSEQ:
9375 {
9376 bfd_vma off, offplt;
9377 int indx = 0;
9378 char tls_type;
9379
9380 BFD_ASSERT (sgot != NULL);
9381
9382 if (h != NULL)
9383 {
9384 bfd_boolean dyn;
9385 dyn = globals->root.dynamic_sections_created;
9386 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9387 && (!info->shared
9388 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9389 {
9390 *unresolved_reloc_p = FALSE;
9391 indx = h->dynindx;
9392 }
9393 off = h->got.offset;
9394 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9395 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9396 }
9397 else
9398 {
9399 BFD_ASSERT (local_got_offsets != NULL);
9400 off = local_got_offsets[r_symndx];
9401 offplt = local_tlsdesc_gotents[r_symndx];
9402 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9403 }
9404
9405 /* Linker relaxations happens from one of the
9406 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9407 if (ELF32_R_TYPE(rel->r_info) != r_type)
9408 tls_type = GOT_TLS_IE;
9409
9410 BFD_ASSERT (tls_type != GOT_UNKNOWN);
9411
9412 if ((off & 1) != 0)
9413 off &= ~1;
9414 else
9415 {
9416 bfd_boolean need_relocs = FALSE;
9417 Elf_Internal_Rela outrel;
9418 int cur_off = off;
9419
9420 /* The GOT entries have not been initialized yet. Do it
9421 now, and emit any relocations. If both an IE GOT and a
9422 GD GOT are necessary, we emit the GD first. */
9423
9424 if ((info->shared || indx != 0)
9425 && (h == NULL
9426 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9427 || h->root.type != bfd_link_hash_undefweak))
9428 {
9429 need_relocs = TRUE;
9430 BFD_ASSERT (srelgot != NULL);
9431 }
9432
9433 if (tls_type & GOT_TLS_GDESC)
9434 {
9435 bfd_byte *loc;
9436
9437 /* We should have relaxed, unless this is an undefined
9438 weak symbol. */
9439 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9440 || info->shared);
9441 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9442 <= globals->root.sgotplt->size);
9443
9444 outrel.r_addend = 0;
9445 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9446 + globals->root.sgotplt->output_offset
9447 + offplt
9448 + globals->sgotplt_jump_table_size);
9449
9450 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9451 sreloc = globals->root.srelplt;
9452 loc = sreloc->contents;
9453 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9454 BFD_ASSERT (loc + RELOC_SIZE (globals)
9455 <= sreloc->contents + sreloc->size);
9456
9457 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9458
9459 /* For globals, the first word in the relocation gets
9460 the relocation index and the top bit set, or zero,
9461 if we're binding now. For locals, it gets the
9462 symbol's offset in the tls section. */
9463 bfd_put_32 (output_bfd,
9464 !h ? value - elf_hash_table (info)->tls_sec->vma
9465 : info->flags & DF_BIND_NOW ? 0
9466 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9467 globals->root.sgotplt->contents + offplt
9468 + globals->sgotplt_jump_table_size);
9469
9470 /* Second word in the relocation is always zero. */
9471 bfd_put_32 (output_bfd, 0,
9472 globals->root.sgotplt->contents + offplt
9473 + globals->sgotplt_jump_table_size + 4);
9474 }
9475 if (tls_type & GOT_TLS_GD)
9476 {
9477 if (need_relocs)
9478 {
9479 outrel.r_addend = 0;
9480 outrel.r_offset = (sgot->output_section->vma
9481 + sgot->output_offset
9482 + cur_off);
9483 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9484
9485 if (globals->use_rel)
9486 bfd_put_32 (output_bfd, outrel.r_addend,
9487 sgot->contents + cur_off);
9488
9489 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9490
9491 if (indx == 0)
9492 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9493 sgot->contents + cur_off + 4);
9494 else
9495 {
9496 outrel.r_addend = 0;
9497 outrel.r_info = ELF32_R_INFO (indx,
9498 R_ARM_TLS_DTPOFF32);
9499 outrel.r_offset += 4;
9500
9501 if (globals->use_rel)
9502 bfd_put_32 (output_bfd, outrel.r_addend,
9503 sgot->contents + cur_off + 4);
9504
9505 elf32_arm_add_dynreloc (output_bfd, info,
9506 srelgot, &outrel);
9507 }
9508 }
9509 else
9510 {
9511 /* If we are not emitting relocations for a
9512 general dynamic reference, then we must be in a
9513 static link or an executable link with the
9514 symbol binding locally. Mark it as belonging
9515 to module 1, the executable. */
9516 bfd_put_32 (output_bfd, 1,
9517 sgot->contents + cur_off);
9518 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9519 sgot->contents + cur_off + 4);
9520 }
9521
9522 cur_off += 8;
9523 }
9524
9525 if (tls_type & GOT_TLS_IE)
9526 {
9527 if (need_relocs)
9528 {
9529 if (indx == 0)
9530 outrel.r_addend = value - dtpoff_base (info);
9531 else
9532 outrel.r_addend = 0;
9533 outrel.r_offset = (sgot->output_section->vma
9534 + sgot->output_offset
9535 + cur_off);
9536 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9537
9538 if (globals->use_rel)
9539 bfd_put_32 (output_bfd, outrel.r_addend,
9540 sgot->contents + cur_off);
9541
9542 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9543 }
9544 else
9545 bfd_put_32 (output_bfd, tpoff (info, value),
9546 sgot->contents + cur_off);
9547 cur_off += 4;
9548 }
9549
9550 if (h != NULL)
9551 h->got.offset |= 1;
9552 else
9553 local_got_offsets[r_symndx] |= 1;
9554 }
9555
9556 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9557 off += 8;
9558 else if (tls_type & GOT_TLS_GDESC)
9559 off = offplt;
9560
9561 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9562 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9563 {
9564 bfd_signed_vma offset;
9565 /* TLS stubs are arm mode. The original symbol is a
9566 data object, so branch_type is bogus. */
9567 branch_type = ST_BRANCH_TO_ARM;
9568 enum elf32_arm_stub_type stub_type
9569 = arm_type_of_stub (info, input_section, rel,
9570 st_type, &branch_type,
9571 (struct elf32_arm_link_hash_entry *)h,
9572 globals->tls_trampoline, globals->root.splt,
9573 input_bfd, sym_name);
9574
9575 if (stub_type != arm_stub_none)
9576 {
9577 struct elf32_arm_stub_hash_entry *stub_entry
9578 = elf32_arm_get_stub_entry
9579 (input_section, globals->root.splt, 0, rel,
9580 globals, stub_type);
9581 offset = (stub_entry->stub_offset
9582 + stub_entry->stub_sec->output_offset
9583 + stub_entry->stub_sec->output_section->vma);
9584 }
9585 else
9586 offset = (globals->root.splt->output_section->vma
9587 + globals->root.splt->output_offset
9588 + globals->tls_trampoline);
9589
9590 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9591 {
9592 unsigned long inst;
9593
9594 offset -= (input_section->output_section->vma
9595 + input_section->output_offset
9596 + rel->r_offset + 8);
9597
9598 inst = offset >> 2;
9599 inst &= 0x00ffffff;
9600 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9601 }
9602 else
9603 {
9604 /* Thumb blx encodes the offset in a complicated
9605 fashion. */
9606 unsigned upper_insn, lower_insn;
9607 unsigned neg;
9608
9609 offset -= (input_section->output_section->vma
9610 + input_section->output_offset
9611 + rel->r_offset + 4);
9612
9613 if (stub_type != arm_stub_none
9614 && arm_stub_is_thumb (stub_type))
9615 {
9616 lower_insn = 0xd000;
9617 }
9618 else
9619 {
9620 lower_insn = 0xc000;
9621 /* Round up the offset to a word boundary */
9622 offset = (offset + 2) & ~2;
9623 }
9624
9625 neg = offset < 0;
9626 upper_insn = (0xf000
9627 | ((offset >> 12) & 0x3ff)
9628 | (neg << 10));
9629 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9630 | (((!((offset >> 22) & 1)) ^ neg) << 11)
9631 | ((offset >> 1) & 0x7ff);
9632 bfd_put_16 (input_bfd, upper_insn, hit_data);
9633 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9634 return bfd_reloc_ok;
9635 }
9636 }
9637 /* These relocations needs special care, as besides the fact
9638 they point somewhere in .gotplt, the addend must be
9639 adjusted accordingly depending on the type of instruction
9640 we refer to */
9641 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9642 {
9643 unsigned long data, insn;
9644 unsigned thumb;
9645
9646 data = bfd_get_32 (input_bfd, hit_data);
9647 thumb = data & 1;
9648 data &= ~1u;
9649
9650 if (thumb)
9651 {
9652 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9653 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9654 insn = (insn << 16)
9655 | bfd_get_16 (input_bfd,
9656 contents + rel->r_offset - data + 2);
9657 if ((insn & 0xf800c000) == 0xf000c000)
9658 /* bl/blx */
9659 value = -6;
9660 else if ((insn & 0xffffff00) == 0x4400)
9661 /* add */
9662 value = -5;
9663 else
9664 {
9665 (*_bfd_error_handler)
9666 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9667 input_bfd, input_section,
9668 (unsigned long)rel->r_offset, insn);
9669 return bfd_reloc_notsupported;
9670 }
9671 }
9672 else
9673 {
9674 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9675
9676 switch (insn >> 24)
9677 {
9678 case 0xeb: /* bl */
9679 case 0xfa: /* blx */
9680 value = -4;
9681 break;
9682
9683 case 0xe0: /* add */
9684 value = -8;
9685 break;
9686
9687 default:
9688 (*_bfd_error_handler)
9689 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9690 input_bfd, input_section,
9691 (unsigned long)rel->r_offset, insn);
9692 return bfd_reloc_notsupported;
9693 }
9694 }
9695
9696 value += ((globals->root.sgotplt->output_section->vma
9697 + globals->root.sgotplt->output_offset + off)
9698 - (input_section->output_section->vma
9699 + input_section->output_offset
9700 + rel->r_offset)
9701 + globals->sgotplt_jump_table_size);
9702 }
9703 else
9704 value = ((globals->root.sgot->output_section->vma
9705 + globals->root.sgot->output_offset + off)
9706 - (input_section->output_section->vma
9707 + input_section->output_offset + rel->r_offset));
9708
9709 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9710 contents, rel->r_offset, value,
9711 rel->r_addend);
9712 }
9713
9714 case R_ARM_TLS_LE32:
9715 if (info->shared && !info->pie)
9716 {
9717 (*_bfd_error_handler)
9718 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9719 input_bfd, input_section,
9720 (long) rel->r_offset, howto->name);
9721 return bfd_reloc_notsupported;
9722 }
9723 else
9724 value = tpoff (info, value);
9725
9726 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9727 contents, rel->r_offset, value,
9728 rel->r_addend);
9729
9730 case R_ARM_V4BX:
9731 if (globals->fix_v4bx)
9732 {
9733 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9734
9735 /* Ensure that we have a BX instruction. */
9736 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9737
9738 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9739 {
9740 /* Branch to veneer. */
9741 bfd_vma glue_addr;
9742 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9743 glue_addr -= input_section->output_section->vma
9744 + input_section->output_offset
9745 + rel->r_offset + 8;
9746 insn = (insn & 0xf0000000) | 0x0a000000
9747 | ((glue_addr >> 2) & 0x00ffffff);
9748 }
9749 else
9750 {
9751 /* Preserve Rm (lowest four bits) and the condition code
9752 (highest four bits). Other bits encode MOV PC,Rm. */
9753 insn = (insn & 0xf000000f) | 0x01a0f000;
9754 }
9755
9756 bfd_put_32 (input_bfd, insn, hit_data);
9757 }
9758 return bfd_reloc_ok;
9759
9760 case R_ARM_MOVW_ABS_NC:
9761 case R_ARM_MOVT_ABS:
9762 case R_ARM_MOVW_PREL_NC:
9763 case R_ARM_MOVT_PREL:
9764 /* Until we properly support segment-base-relative addressing then
9765 we assume the segment base to be zero, as for the group relocations.
9766 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9767 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9768 case R_ARM_MOVW_BREL_NC:
9769 case R_ARM_MOVW_BREL:
9770 case R_ARM_MOVT_BREL:
9771 {
9772 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9773
9774 if (globals->use_rel)
9775 {
9776 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9777 signed_addend = (addend ^ 0x8000) - 0x8000;
9778 }
9779
9780 value += signed_addend;
9781
9782 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9783 value -= (input_section->output_section->vma
9784 + input_section->output_offset + rel->r_offset);
9785
9786 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9787 return bfd_reloc_overflow;
9788
9789 if (branch_type == ST_BRANCH_TO_THUMB)
9790 value |= 1;
9791
9792 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9793 || r_type == R_ARM_MOVT_BREL)
9794 value >>= 16;
9795
9796 insn &= 0xfff0f000;
9797 insn |= value & 0xfff;
9798 insn |= (value & 0xf000) << 4;
9799 bfd_put_32 (input_bfd, insn, hit_data);
9800 }
9801 return bfd_reloc_ok;
9802
9803 case R_ARM_THM_MOVW_ABS_NC:
9804 case R_ARM_THM_MOVT_ABS:
9805 case R_ARM_THM_MOVW_PREL_NC:
9806 case R_ARM_THM_MOVT_PREL:
9807 /* Until we properly support segment-base-relative addressing then
9808 we assume the segment base to be zero, as for the above relocations.
9809 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9810 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9811 as R_ARM_THM_MOVT_ABS. */
9812 case R_ARM_THM_MOVW_BREL_NC:
9813 case R_ARM_THM_MOVW_BREL:
9814 case R_ARM_THM_MOVT_BREL:
9815 {
9816 bfd_vma insn;
9817
9818 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9819 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9820
9821 if (globals->use_rel)
9822 {
9823 addend = ((insn >> 4) & 0xf000)
9824 | ((insn >> 15) & 0x0800)
9825 | ((insn >> 4) & 0x0700)
9826 | (insn & 0x00ff);
9827 signed_addend = (addend ^ 0x8000) - 0x8000;
9828 }
9829
9830 value += signed_addend;
9831
9832 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9833 value -= (input_section->output_section->vma
9834 + input_section->output_offset + rel->r_offset);
9835
9836 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9837 return bfd_reloc_overflow;
9838
9839 if (branch_type == ST_BRANCH_TO_THUMB)
9840 value |= 1;
9841
9842 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9843 || r_type == R_ARM_THM_MOVT_BREL)
9844 value >>= 16;
9845
9846 insn &= 0xfbf08f00;
9847 insn |= (value & 0xf000) << 4;
9848 insn |= (value & 0x0800) << 15;
9849 insn |= (value & 0x0700) << 4;
9850 insn |= (value & 0x00ff);
9851
9852 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9853 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9854 }
9855 return bfd_reloc_ok;
9856
9857 case R_ARM_ALU_PC_G0_NC:
9858 case R_ARM_ALU_PC_G1_NC:
9859 case R_ARM_ALU_PC_G0:
9860 case R_ARM_ALU_PC_G1:
9861 case R_ARM_ALU_PC_G2:
9862 case R_ARM_ALU_SB_G0_NC:
9863 case R_ARM_ALU_SB_G1_NC:
9864 case R_ARM_ALU_SB_G0:
9865 case R_ARM_ALU_SB_G1:
9866 case R_ARM_ALU_SB_G2:
9867 {
9868 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9869 bfd_vma pc = input_section->output_section->vma
9870 + input_section->output_offset + rel->r_offset;
9871 /* sb is the origin of the *segment* containing the symbol. */
9872 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
9873 bfd_vma residual;
9874 bfd_vma g_n;
9875 bfd_signed_vma signed_value;
9876 int group = 0;
9877
9878 /* Determine which group of bits to select. */
9879 switch (r_type)
9880 {
9881 case R_ARM_ALU_PC_G0_NC:
9882 case R_ARM_ALU_PC_G0:
9883 case R_ARM_ALU_SB_G0_NC:
9884 case R_ARM_ALU_SB_G0:
9885 group = 0;
9886 break;
9887
9888 case R_ARM_ALU_PC_G1_NC:
9889 case R_ARM_ALU_PC_G1:
9890 case R_ARM_ALU_SB_G1_NC:
9891 case R_ARM_ALU_SB_G1:
9892 group = 1;
9893 break;
9894
9895 case R_ARM_ALU_PC_G2:
9896 case R_ARM_ALU_SB_G2:
9897 group = 2;
9898 break;
9899
9900 default:
9901 abort ();
9902 }
9903
9904 /* If REL, extract the addend from the insn. If RELA, it will
9905 have already been fetched for us. */
9906 if (globals->use_rel)
9907 {
9908 int negative;
9909 bfd_vma constant = insn & 0xff;
9910 bfd_vma rotation = (insn & 0xf00) >> 8;
9911
9912 if (rotation == 0)
9913 signed_addend = constant;
9914 else
9915 {
9916 /* Compensate for the fact that in the instruction, the
9917 rotation is stored in multiples of 2 bits. */
9918 rotation *= 2;
9919
9920 /* Rotate "constant" right by "rotation" bits. */
9921 signed_addend = (constant >> rotation) |
9922 (constant << (8 * sizeof (bfd_vma) - rotation));
9923 }
9924
9925 /* Determine if the instruction is an ADD or a SUB.
9926 (For REL, this determines the sign of the addend.) */
9927 negative = identify_add_or_sub (insn);
9928 if (negative == 0)
9929 {
9930 (*_bfd_error_handler)
9931 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9932 input_bfd, input_section,
9933 (long) rel->r_offset, howto->name);
9934 return bfd_reloc_overflow;
9935 }
9936
9937 signed_addend *= negative;
9938 }
9939
9940 /* Compute the value (X) to go in the place. */
9941 if (r_type == R_ARM_ALU_PC_G0_NC
9942 || r_type == R_ARM_ALU_PC_G1_NC
9943 || r_type == R_ARM_ALU_PC_G0
9944 || r_type == R_ARM_ALU_PC_G1
9945 || r_type == R_ARM_ALU_PC_G2)
9946 /* PC relative. */
9947 signed_value = value - pc + signed_addend;
9948 else
9949 /* Section base relative. */
9950 signed_value = value - sb + signed_addend;
9951
9952 /* If the target symbol is a Thumb function, then set the
9953 Thumb bit in the address. */
9954 if (branch_type == ST_BRANCH_TO_THUMB)
9955 signed_value |= 1;
9956
9957 /* Calculate the value of the relevant G_n, in encoded
9958 constant-with-rotation format. */
9959 g_n = calculate_group_reloc_mask (abs (signed_value), group,
9960 &residual);
9961
9962 /* Check for overflow if required. */
9963 if ((r_type == R_ARM_ALU_PC_G0
9964 || r_type == R_ARM_ALU_PC_G1
9965 || r_type == R_ARM_ALU_PC_G2
9966 || r_type == R_ARM_ALU_SB_G0
9967 || r_type == R_ARM_ALU_SB_G1
9968 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9969 {
9970 (*_bfd_error_handler)
9971 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9972 input_bfd, input_section,
9973 (long) rel->r_offset, abs (signed_value), howto->name);
9974 return bfd_reloc_overflow;
9975 }
9976
9977 /* Mask out the value and the ADD/SUB part of the opcode; take care
9978 not to destroy the S bit. */
9979 insn &= 0xff1ff000;
9980
9981 /* Set the opcode according to whether the value to go in the
9982 place is negative. */
9983 if (signed_value < 0)
9984 insn |= 1 << 22;
9985 else
9986 insn |= 1 << 23;
9987
9988 /* Encode the offset. */
9989 insn |= g_n;
9990
9991 bfd_put_32 (input_bfd, insn, hit_data);
9992 }
9993 return bfd_reloc_ok;
9994
9995 case R_ARM_LDR_PC_G0:
9996 case R_ARM_LDR_PC_G1:
9997 case R_ARM_LDR_PC_G2:
9998 case R_ARM_LDR_SB_G0:
9999 case R_ARM_LDR_SB_G1:
10000 case R_ARM_LDR_SB_G2:
10001 {
10002 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10003 bfd_vma pc = input_section->output_section->vma
10004 + input_section->output_offset + rel->r_offset;
10005 /* sb is the origin of the *segment* containing the symbol. */
10006 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10007 bfd_vma residual;
10008 bfd_signed_vma signed_value;
10009 int group = 0;
10010
10011 /* Determine which groups of bits to calculate. */
10012 switch (r_type)
10013 {
10014 case R_ARM_LDR_PC_G0:
10015 case R_ARM_LDR_SB_G0:
10016 group = 0;
10017 break;
10018
10019 case R_ARM_LDR_PC_G1:
10020 case R_ARM_LDR_SB_G1:
10021 group = 1;
10022 break;
10023
10024 case R_ARM_LDR_PC_G2:
10025 case R_ARM_LDR_SB_G2:
10026 group = 2;
10027 break;
10028
10029 default:
10030 abort ();
10031 }
10032
10033 /* If REL, extract the addend from the insn. If RELA, it will
10034 have already been fetched for us. */
10035 if (globals->use_rel)
10036 {
10037 int negative = (insn & (1 << 23)) ? 1 : -1;
10038 signed_addend = negative * (insn & 0xfff);
10039 }
10040
10041 /* Compute the value (X) to go in the place. */
10042 if (r_type == R_ARM_LDR_PC_G0
10043 || r_type == R_ARM_LDR_PC_G1
10044 || r_type == R_ARM_LDR_PC_G2)
10045 /* PC relative. */
10046 signed_value = value - pc + signed_addend;
10047 else
10048 /* Section base relative. */
10049 signed_value = value - sb + signed_addend;
10050
10051 /* Calculate the value of the relevant G_{n-1} to obtain
10052 the residual at that stage. */
10053 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10054
10055 /* Check for overflow. */
10056 if (residual >= 0x1000)
10057 {
10058 (*_bfd_error_handler)
10059 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10060 input_bfd, input_section,
10061 (long) rel->r_offset, abs (signed_value), howto->name);
10062 return bfd_reloc_overflow;
10063 }
10064
10065 /* Mask out the value and U bit. */
10066 insn &= 0xff7ff000;
10067
10068 /* Set the U bit if the value to go in the place is non-negative. */
10069 if (signed_value >= 0)
10070 insn |= 1 << 23;
10071
10072 /* Encode the offset. */
10073 insn |= residual;
10074
10075 bfd_put_32 (input_bfd, insn, hit_data);
10076 }
10077 return bfd_reloc_ok;
10078
10079 case R_ARM_LDRS_PC_G0:
10080 case R_ARM_LDRS_PC_G1:
10081 case R_ARM_LDRS_PC_G2:
10082 case R_ARM_LDRS_SB_G0:
10083 case R_ARM_LDRS_SB_G1:
10084 case R_ARM_LDRS_SB_G2:
10085 {
10086 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10087 bfd_vma pc = input_section->output_section->vma
10088 + input_section->output_offset + rel->r_offset;
10089 /* sb is the origin of the *segment* containing the symbol. */
10090 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10091 bfd_vma residual;
10092 bfd_signed_vma signed_value;
10093 int group = 0;
10094
10095 /* Determine which groups of bits to calculate. */
10096 switch (r_type)
10097 {
10098 case R_ARM_LDRS_PC_G0:
10099 case R_ARM_LDRS_SB_G0:
10100 group = 0;
10101 break;
10102
10103 case R_ARM_LDRS_PC_G1:
10104 case R_ARM_LDRS_SB_G1:
10105 group = 1;
10106 break;
10107
10108 case R_ARM_LDRS_PC_G2:
10109 case R_ARM_LDRS_SB_G2:
10110 group = 2;
10111 break;
10112
10113 default:
10114 abort ();
10115 }
10116
10117 /* If REL, extract the addend from the insn. If RELA, it will
10118 have already been fetched for us. */
10119 if (globals->use_rel)
10120 {
10121 int negative = (insn & (1 << 23)) ? 1 : -1;
10122 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10123 }
10124
10125 /* Compute the value (X) to go in the place. */
10126 if (r_type == R_ARM_LDRS_PC_G0
10127 || r_type == R_ARM_LDRS_PC_G1
10128 || r_type == R_ARM_LDRS_PC_G2)
10129 /* PC relative. */
10130 signed_value = value - pc + signed_addend;
10131 else
10132 /* Section base relative. */
10133 signed_value = value - sb + signed_addend;
10134
10135 /* Calculate the value of the relevant G_{n-1} to obtain
10136 the residual at that stage. */
10137 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10138
10139 /* Check for overflow. */
10140 if (residual >= 0x100)
10141 {
10142 (*_bfd_error_handler)
10143 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10144 input_bfd, input_section,
10145 (long) rel->r_offset, abs (signed_value), howto->name);
10146 return bfd_reloc_overflow;
10147 }
10148
10149 /* Mask out the value and U bit. */
10150 insn &= 0xff7ff0f0;
10151
10152 /* Set the U bit if the value to go in the place is non-negative. */
10153 if (signed_value >= 0)
10154 insn |= 1 << 23;
10155
10156 /* Encode the offset. */
10157 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
10158
10159 bfd_put_32 (input_bfd, insn, hit_data);
10160 }
10161 return bfd_reloc_ok;
10162
10163 case R_ARM_LDC_PC_G0:
10164 case R_ARM_LDC_PC_G1:
10165 case R_ARM_LDC_PC_G2:
10166 case R_ARM_LDC_SB_G0:
10167 case R_ARM_LDC_SB_G1:
10168 case R_ARM_LDC_SB_G2:
10169 {
10170 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10171 bfd_vma pc = input_section->output_section->vma
10172 + input_section->output_offset + rel->r_offset;
10173 /* sb is the origin of the *segment* containing the symbol. */
10174 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10175 bfd_vma residual;
10176 bfd_signed_vma signed_value;
10177 int group = 0;
10178
10179 /* Determine which groups of bits to calculate. */
10180 switch (r_type)
10181 {
10182 case R_ARM_LDC_PC_G0:
10183 case R_ARM_LDC_SB_G0:
10184 group = 0;
10185 break;
10186
10187 case R_ARM_LDC_PC_G1:
10188 case R_ARM_LDC_SB_G1:
10189 group = 1;
10190 break;
10191
10192 case R_ARM_LDC_PC_G2:
10193 case R_ARM_LDC_SB_G2:
10194 group = 2;
10195 break;
10196
10197 default:
10198 abort ();
10199 }
10200
10201 /* If REL, extract the addend from the insn. If RELA, it will
10202 have already been fetched for us. */
10203 if (globals->use_rel)
10204 {
10205 int negative = (insn & (1 << 23)) ? 1 : -1;
10206 signed_addend = negative * ((insn & 0xff) << 2);
10207 }
10208
10209 /* Compute the value (X) to go in the place. */
10210 if (r_type == R_ARM_LDC_PC_G0
10211 || r_type == R_ARM_LDC_PC_G1
10212 || r_type == R_ARM_LDC_PC_G2)
10213 /* PC relative. */
10214 signed_value = value - pc + signed_addend;
10215 else
10216 /* Section base relative. */
10217 signed_value = value - sb + signed_addend;
10218
10219 /* Calculate the value of the relevant G_{n-1} to obtain
10220 the residual at that stage. */
10221 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10222
10223 /* Check for overflow. (The absolute value to go in the place must be
10224 divisible by four and, after having been divided by four, must
10225 fit in eight bits.) */
10226 if ((residual & 0x3) != 0 || residual >= 0x400)
10227 {
10228 (*_bfd_error_handler)
10229 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10230 input_bfd, input_section,
10231 (long) rel->r_offset, abs (signed_value), howto->name);
10232 return bfd_reloc_overflow;
10233 }
10234
10235 /* Mask out the value and U bit. */
10236 insn &= 0xff7fff00;
10237
10238 /* Set the U bit if the value to go in the place is non-negative. */
10239 if (signed_value >= 0)
10240 insn |= 1 << 23;
10241
10242 /* Encode the offset. */
10243 insn |= residual >> 2;
10244
10245 bfd_put_32 (input_bfd, insn, hit_data);
10246 }
10247 return bfd_reloc_ok;
10248
10249 default:
10250 return bfd_reloc_notsupported;
10251 }
10252 }
10253
10254 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10255 static void
10256 arm_add_to_rel (bfd * abfd,
10257 bfd_byte * address,
10258 reloc_howto_type * howto,
10259 bfd_signed_vma increment)
10260 {
10261 bfd_signed_vma addend;
10262
10263 if (howto->type == R_ARM_THM_CALL
10264 || howto->type == R_ARM_THM_JUMP24)
10265 {
10266 int upper_insn, lower_insn;
10267 int upper, lower;
10268
10269 upper_insn = bfd_get_16 (abfd, address);
10270 lower_insn = bfd_get_16 (abfd, address + 2);
10271 upper = upper_insn & 0x7ff;
10272 lower = lower_insn & 0x7ff;
10273
10274 addend = (upper << 12) | (lower << 1);
10275 addend += increment;
10276 addend >>= 1;
10277
10278 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10279 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10280
10281 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10282 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10283 }
10284 else
10285 {
10286 bfd_vma contents;
10287
10288 contents = bfd_get_32 (abfd, address);
10289
10290 /* Get the (signed) value from the instruction. */
10291 addend = contents & howto->src_mask;
10292 if (addend & ((howto->src_mask + 1) >> 1))
10293 {
10294 bfd_signed_vma mask;
10295
10296 mask = -1;
10297 mask &= ~ howto->src_mask;
10298 addend |= mask;
10299 }
10300
10301 /* Add in the increment, (which is a byte value). */
10302 switch (howto->type)
10303 {
10304 default:
10305 addend += increment;
10306 break;
10307
10308 case R_ARM_PC24:
10309 case R_ARM_PLT32:
10310 case R_ARM_CALL:
10311 case R_ARM_JUMP24:
10312 addend <<= howto->size;
10313 addend += increment;
10314
10315 /* Should we check for overflow here ? */
10316
10317 /* Drop any undesired bits. */
10318 addend >>= howto->rightshift;
10319 break;
10320 }
10321
10322 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10323
10324 bfd_put_32 (abfd, contents, address);
10325 }
10326 }
10327
10328 #define IS_ARM_TLS_RELOC(R_TYPE) \
10329 ((R_TYPE) == R_ARM_TLS_GD32 \
10330 || (R_TYPE) == R_ARM_TLS_LDO32 \
10331 || (R_TYPE) == R_ARM_TLS_LDM32 \
10332 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10333 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10334 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10335 || (R_TYPE) == R_ARM_TLS_LE32 \
10336 || (R_TYPE) == R_ARM_TLS_IE32 \
10337 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10338
10339 /* Specific set of relocations for the gnu tls dialect. */
10340 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10341 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10342 || (R_TYPE) == R_ARM_TLS_CALL \
10343 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10344 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10345 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10346
10347 /* Relocate an ARM ELF section. */
10348
10349 static bfd_boolean
10350 elf32_arm_relocate_section (bfd * output_bfd,
10351 struct bfd_link_info * info,
10352 bfd * input_bfd,
10353 asection * input_section,
10354 bfd_byte * contents,
10355 Elf_Internal_Rela * relocs,
10356 Elf_Internal_Sym * local_syms,
10357 asection ** local_sections)
10358 {
10359 Elf_Internal_Shdr *symtab_hdr;
10360 struct elf_link_hash_entry **sym_hashes;
10361 Elf_Internal_Rela *rel;
10362 Elf_Internal_Rela *relend;
10363 const char *name;
10364 struct elf32_arm_link_hash_table * globals;
10365
10366 globals = elf32_arm_hash_table (info);
10367 if (globals == NULL)
10368 return FALSE;
10369
10370 symtab_hdr = & elf_symtab_hdr (input_bfd);
10371 sym_hashes = elf_sym_hashes (input_bfd);
10372
10373 rel = relocs;
10374 relend = relocs + input_section->reloc_count;
10375 for (; rel < relend; rel++)
10376 {
10377 int r_type;
10378 reloc_howto_type * howto;
10379 unsigned long r_symndx;
10380 Elf_Internal_Sym * sym;
10381 asection * sec;
10382 struct elf_link_hash_entry * h;
10383 bfd_vma relocation;
10384 bfd_reloc_status_type r;
10385 arelent bfd_reloc;
10386 char sym_type;
10387 bfd_boolean unresolved_reloc = FALSE;
10388 char *error_message = NULL;
10389
10390 r_symndx = ELF32_R_SYM (rel->r_info);
10391 r_type = ELF32_R_TYPE (rel->r_info);
10392 r_type = arm_real_reloc_type (globals, r_type);
10393
10394 if ( r_type == R_ARM_GNU_VTENTRY
10395 || r_type == R_ARM_GNU_VTINHERIT)
10396 continue;
10397
10398 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10399 howto = bfd_reloc.howto;
10400
10401 h = NULL;
10402 sym = NULL;
10403 sec = NULL;
10404
10405 if (r_symndx < symtab_hdr->sh_info)
10406 {
10407 sym = local_syms + r_symndx;
10408 sym_type = ELF32_ST_TYPE (sym->st_info);
10409 sec = local_sections[r_symndx];
10410
10411 /* An object file might have a reference to a local
10412 undefined symbol. This is a daft object file, but we
10413 should at least do something about it. V4BX & NONE
10414 relocations do not use the symbol and are explicitly
10415 allowed to use the undefined symbol, so allow those.
10416 Likewise for relocations against STN_UNDEF. */
10417 if (r_type != R_ARM_V4BX
10418 && r_type != R_ARM_NONE
10419 && r_symndx != STN_UNDEF
10420 && bfd_is_und_section (sec)
10421 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10422 {
10423 if (!info->callbacks->undefined_symbol
10424 (info, bfd_elf_string_from_elf_section
10425 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10426 input_bfd, input_section,
10427 rel->r_offset, TRUE))
10428 return FALSE;
10429 }
10430
10431 if (globals->use_rel)
10432 {
10433 relocation = (sec->output_section->vma
10434 + sec->output_offset
10435 + sym->st_value);
10436 if (!info->relocatable
10437 && (sec->flags & SEC_MERGE)
10438 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10439 {
10440 asection *msec;
10441 bfd_vma addend, value;
10442
10443 switch (r_type)
10444 {
10445 case R_ARM_MOVW_ABS_NC:
10446 case R_ARM_MOVT_ABS:
10447 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10448 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10449 addend = (addend ^ 0x8000) - 0x8000;
10450 break;
10451
10452 case R_ARM_THM_MOVW_ABS_NC:
10453 case R_ARM_THM_MOVT_ABS:
10454 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10455 << 16;
10456 value |= bfd_get_16 (input_bfd,
10457 contents + rel->r_offset + 2);
10458 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10459 | ((value & 0x04000000) >> 15);
10460 addend = (addend ^ 0x8000) - 0x8000;
10461 break;
10462
10463 default:
10464 if (howto->rightshift
10465 || (howto->src_mask & (howto->src_mask + 1)))
10466 {
10467 (*_bfd_error_handler)
10468 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10469 input_bfd, input_section,
10470 (long) rel->r_offset, howto->name);
10471 return FALSE;
10472 }
10473
10474 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10475
10476 /* Get the (signed) value from the instruction. */
10477 addend = value & howto->src_mask;
10478 if (addend & ((howto->src_mask + 1) >> 1))
10479 {
10480 bfd_signed_vma mask;
10481
10482 mask = -1;
10483 mask &= ~ howto->src_mask;
10484 addend |= mask;
10485 }
10486 break;
10487 }
10488
10489 msec = sec;
10490 addend =
10491 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10492 - relocation;
10493 addend += msec->output_section->vma + msec->output_offset;
10494
10495 /* Cases here must match those in the preceding
10496 switch statement. */
10497 switch (r_type)
10498 {
10499 case R_ARM_MOVW_ABS_NC:
10500 case R_ARM_MOVT_ABS:
10501 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10502 | (addend & 0xfff);
10503 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10504 break;
10505
10506 case R_ARM_THM_MOVW_ABS_NC:
10507 case R_ARM_THM_MOVT_ABS:
10508 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10509 | (addend & 0xff) | ((addend & 0x0800) << 15);
10510 bfd_put_16 (input_bfd, value >> 16,
10511 contents + rel->r_offset);
10512 bfd_put_16 (input_bfd, value,
10513 contents + rel->r_offset + 2);
10514 break;
10515
10516 default:
10517 value = (value & ~ howto->dst_mask)
10518 | (addend & howto->dst_mask);
10519 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10520 break;
10521 }
10522 }
10523 }
10524 else
10525 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10526 }
10527 else
10528 {
10529 bfd_boolean warned, ignored;
10530
10531 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10532 r_symndx, symtab_hdr, sym_hashes,
10533 h, sec, relocation,
10534 unresolved_reloc, warned, ignored);
10535
10536 sym_type = h->type;
10537 }
10538
10539 if (sec != NULL && discarded_section (sec))
10540 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10541 rel, 1, relend, howto, 0, contents);
10542
10543 if (info->relocatable)
10544 {
10545 /* This is a relocatable link. We don't have to change
10546 anything, unless the reloc is against a section symbol,
10547 in which case we have to adjust according to where the
10548 section symbol winds up in the output section. */
10549 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10550 {
10551 if (globals->use_rel)
10552 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10553 howto, (bfd_signed_vma) sec->output_offset);
10554 else
10555 rel->r_addend += sec->output_offset;
10556 }
10557 continue;
10558 }
10559
10560 if (h != NULL)
10561 name = h->root.root.string;
10562 else
10563 {
10564 name = (bfd_elf_string_from_elf_section
10565 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10566 if (name == NULL || *name == '\0')
10567 name = bfd_section_name (input_bfd, sec);
10568 }
10569
10570 if (r_symndx != STN_UNDEF
10571 && r_type != R_ARM_NONE
10572 && (h == NULL
10573 || h->root.type == bfd_link_hash_defined
10574 || h->root.type == bfd_link_hash_defweak)
10575 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10576 {
10577 (*_bfd_error_handler)
10578 ((sym_type == STT_TLS
10579 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10580 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10581 input_bfd,
10582 input_section,
10583 (long) rel->r_offset,
10584 howto->name,
10585 name);
10586 }
10587
10588 /* We call elf32_arm_final_link_relocate unless we're completely
10589 done, i.e., the relaxation produced the final output we want,
10590 and we won't let anybody mess with it. Also, we have to do
10591 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10592 both in relaxed and non-relaxed cases */
10593 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10594 || (IS_ARM_TLS_GNU_RELOC (r_type)
10595 && !((h ? elf32_arm_hash_entry (h)->tls_type :
10596 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10597 & GOT_TLS_GDESC)))
10598 {
10599 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10600 contents, rel, h == NULL);
10601 /* This may have been marked unresolved because it came from
10602 a shared library. But we've just dealt with that. */
10603 unresolved_reloc = 0;
10604 }
10605 else
10606 r = bfd_reloc_continue;
10607
10608 if (r == bfd_reloc_continue)
10609 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10610 input_section, contents, rel,
10611 relocation, info, sec, name, sym_type,
10612 (h ? h->target_internal
10613 : ARM_SYM_BRANCH_TYPE (sym)), h,
10614 &unresolved_reloc, &error_message);
10615
10616 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10617 because such sections are not SEC_ALLOC and thus ld.so will
10618 not process them. */
10619 if (unresolved_reloc
10620 && !((input_section->flags & SEC_DEBUGGING) != 0
10621 && h->def_dynamic)
10622 && _bfd_elf_section_offset (output_bfd, info, input_section,
10623 rel->r_offset) != (bfd_vma) -1)
10624 {
10625 (*_bfd_error_handler)
10626 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10627 input_bfd,
10628 input_section,
10629 (long) rel->r_offset,
10630 howto->name,
10631 h->root.root.string);
10632 return FALSE;
10633 }
10634
10635 if (r != bfd_reloc_ok)
10636 {
10637 switch (r)
10638 {
10639 case bfd_reloc_overflow:
10640 /* If the overflowing reloc was to an undefined symbol,
10641 we have already printed one error message and there
10642 is no point complaining again. */
10643 if ((! h ||
10644 h->root.type != bfd_link_hash_undefined)
10645 && (!((*info->callbacks->reloc_overflow)
10646 (info, (h ? &h->root : NULL), name, howto->name,
10647 (bfd_vma) 0, input_bfd, input_section,
10648 rel->r_offset))))
10649 return FALSE;
10650 break;
10651
10652 case bfd_reloc_undefined:
10653 if (!((*info->callbacks->undefined_symbol)
10654 (info, name, input_bfd, input_section,
10655 rel->r_offset, TRUE)))
10656 return FALSE;
10657 break;
10658
10659 case bfd_reloc_outofrange:
10660 error_message = _("out of range");
10661 goto common_error;
10662
10663 case bfd_reloc_notsupported:
10664 error_message = _("unsupported relocation");
10665 goto common_error;
10666
10667 case bfd_reloc_dangerous:
10668 /* error_message should already be set. */
10669 goto common_error;
10670
10671 default:
10672 error_message = _("unknown error");
10673 /* Fall through. */
10674
10675 common_error:
10676 BFD_ASSERT (error_message != NULL);
10677 if (!((*info->callbacks->reloc_dangerous)
10678 (info, error_message, input_bfd, input_section,
10679 rel->r_offset)))
10680 return FALSE;
10681 break;
10682 }
10683 }
10684 }
10685
10686 return TRUE;
10687 }
10688
10689 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10690 adds the edit to the start of the list. (The list must be built in order of
10691 ascending TINDEX: the function's callers are primarily responsible for
10692 maintaining that condition). */
10693
10694 static void
10695 add_unwind_table_edit (arm_unwind_table_edit **head,
10696 arm_unwind_table_edit **tail,
10697 arm_unwind_edit_type type,
10698 asection *linked_section,
10699 unsigned int tindex)
10700 {
10701 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10702 xmalloc (sizeof (arm_unwind_table_edit));
10703
10704 new_edit->type = type;
10705 new_edit->linked_section = linked_section;
10706 new_edit->index = tindex;
10707
10708 if (tindex > 0)
10709 {
10710 new_edit->next = NULL;
10711
10712 if (*tail)
10713 (*tail)->next = new_edit;
10714
10715 (*tail) = new_edit;
10716
10717 if (!*head)
10718 (*head) = new_edit;
10719 }
10720 else
10721 {
10722 new_edit->next = *head;
10723
10724 if (!*tail)
10725 *tail = new_edit;
10726
10727 *head = new_edit;
10728 }
10729 }
10730
10731 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10732
10733 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10734 static void
10735 adjust_exidx_size(asection *exidx_sec, int adjust)
10736 {
10737 asection *out_sec;
10738
10739 if (!exidx_sec->rawsize)
10740 exidx_sec->rawsize = exidx_sec->size;
10741
10742 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10743 out_sec = exidx_sec->output_section;
10744 /* Adjust size of output section. */
10745 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10746 }
10747
10748 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10749 static void
10750 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10751 {
10752 struct _arm_elf_section_data *exidx_arm_data;
10753
10754 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10755 add_unwind_table_edit (
10756 &exidx_arm_data->u.exidx.unwind_edit_list,
10757 &exidx_arm_data->u.exidx.unwind_edit_tail,
10758 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10759
10760 adjust_exidx_size(exidx_sec, 8);
10761 }
10762
10763 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10764 made to those tables, such that:
10765
10766 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10767 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10768 codes which have been inlined into the index).
10769
10770 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10771
10772 The edits are applied when the tables are written
10773 (in elf32_arm_write_section). */
10774
10775 bfd_boolean
10776 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10777 unsigned int num_text_sections,
10778 struct bfd_link_info *info,
10779 bfd_boolean merge_exidx_entries)
10780 {
10781 bfd *inp;
10782 unsigned int last_second_word = 0, i;
10783 asection *last_exidx_sec = NULL;
10784 asection *last_text_sec = NULL;
10785 int last_unwind_type = -1;
10786
10787 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10788 text sections. */
10789 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10790 {
10791 asection *sec;
10792
10793 for (sec = inp->sections; sec != NULL; sec = sec->next)
10794 {
10795 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10796 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10797
10798 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10799 continue;
10800
10801 if (elf_sec->linked_to)
10802 {
10803 Elf_Internal_Shdr *linked_hdr
10804 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10805 struct _arm_elf_section_data *linked_sec_arm_data
10806 = get_arm_elf_section_data (linked_hdr->bfd_section);
10807
10808 if (linked_sec_arm_data == NULL)
10809 continue;
10810
10811 /* Link this .ARM.exidx section back from the text section it
10812 describes. */
10813 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10814 }
10815 }
10816 }
10817
10818 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10819 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10820 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10821
10822 for (i = 0; i < num_text_sections; i++)
10823 {
10824 asection *sec = text_section_order[i];
10825 asection *exidx_sec;
10826 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10827 struct _arm_elf_section_data *exidx_arm_data;
10828 bfd_byte *contents = NULL;
10829 int deleted_exidx_bytes = 0;
10830 bfd_vma j;
10831 arm_unwind_table_edit *unwind_edit_head = NULL;
10832 arm_unwind_table_edit *unwind_edit_tail = NULL;
10833 Elf_Internal_Shdr *hdr;
10834 bfd *ibfd;
10835
10836 if (arm_data == NULL)
10837 continue;
10838
10839 exidx_sec = arm_data->u.text.arm_exidx_sec;
10840 if (exidx_sec == NULL)
10841 {
10842 /* Section has no unwind data. */
10843 if (last_unwind_type == 0 || !last_exidx_sec)
10844 continue;
10845
10846 /* Ignore zero sized sections. */
10847 if (sec->size == 0)
10848 continue;
10849
10850 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10851 last_unwind_type = 0;
10852 continue;
10853 }
10854
10855 /* Skip /DISCARD/ sections. */
10856 if (bfd_is_abs_section (exidx_sec->output_section))
10857 continue;
10858
10859 hdr = &elf_section_data (exidx_sec)->this_hdr;
10860 if (hdr->sh_type != SHT_ARM_EXIDX)
10861 continue;
10862
10863 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10864 if (exidx_arm_data == NULL)
10865 continue;
10866
10867 ibfd = exidx_sec->owner;
10868
10869 if (hdr->contents != NULL)
10870 contents = hdr->contents;
10871 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10872 /* An error? */
10873 continue;
10874
10875 for (j = 0; j < hdr->sh_size; j += 8)
10876 {
10877 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10878 int unwind_type;
10879 int elide = 0;
10880
10881 /* An EXIDX_CANTUNWIND entry. */
10882 if (second_word == 1)
10883 {
10884 if (last_unwind_type == 0)
10885 elide = 1;
10886 unwind_type = 0;
10887 }
10888 /* Inlined unwinding data. Merge if equal to previous. */
10889 else if ((second_word & 0x80000000) != 0)
10890 {
10891 if (merge_exidx_entries
10892 && last_second_word == second_word && last_unwind_type == 1)
10893 elide = 1;
10894 unwind_type = 1;
10895 last_second_word = second_word;
10896 }
10897 /* Normal table entry. In theory we could merge these too,
10898 but duplicate entries are likely to be much less common. */
10899 else
10900 unwind_type = 2;
10901
10902 if (elide)
10903 {
10904 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10905 DELETE_EXIDX_ENTRY, NULL, j / 8);
10906
10907 deleted_exidx_bytes += 8;
10908 }
10909
10910 last_unwind_type = unwind_type;
10911 }
10912
10913 /* Free contents if we allocated it ourselves. */
10914 if (contents != hdr->contents)
10915 free (contents);
10916
10917 /* Record edits to be applied later (in elf32_arm_write_section). */
10918 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10919 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10920
10921 if (deleted_exidx_bytes > 0)
10922 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10923
10924 last_exidx_sec = exidx_sec;
10925 last_text_sec = sec;
10926 }
10927
10928 /* Add terminating CANTUNWIND entry. */
10929 if (last_exidx_sec && last_unwind_type != 0)
10930 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10931
10932 return TRUE;
10933 }
10934
10935 static bfd_boolean
10936 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10937 bfd *ibfd, const char *name)
10938 {
10939 asection *sec, *osec;
10940
10941 sec = bfd_get_linker_section (ibfd, name);
10942 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10943 return TRUE;
10944
10945 osec = sec->output_section;
10946 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10947 return TRUE;
10948
10949 if (! bfd_set_section_contents (obfd, osec, sec->contents,
10950 sec->output_offset, sec->size))
10951 return FALSE;
10952
10953 return TRUE;
10954 }
10955
10956 static bfd_boolean
10957 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10958 {
10959 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10960 asection *sec, *osec;
10961
10962 if (globals == NULL)
10963 return FALSE;
10964
10965 /* Invoke the regular ELF backend linker to do all the work. */
10966 if (!bfd_elf_final_link (abfd, info))
10967 return FALSE;
10968
10969 /* Process stub sections (eg BE8 encoding, ...). */
10970 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10971 int i;
10972 for (i=0; i<htab->top_id; i++)
10973 {
10974 sec = htab->stub_group[i].stub_sec;
10975 /* Only process it once, in its link_sec slot. */
10976 if (sec && i == htab->stub_group[i].link_sec->id)
10977 {
10978 osec = sec->output_section;
10979 elf32_arm_write_section (abfd, info, sec, sec->contents);
10980 if (! bfd_set_section_contents (abfd, osec, sec->contents,
10981 sec->output_offset, sec->size))
10982 return FALSE;
10983 }
10984 }
10985
10986 /* Write out any glue sections now that we have created all the
10987 stubs. */
10988 if (globals->bfd_of_glue_owner != NULL)
10989 {
10990 if (! elf32_arm_output_glue_section (info, abfd,
10991 globals->bfd_of_glue_owner,
10992 ARM2THUMB_GLUE_SECTION_NAME))
10993 return FALSE;
10994
10995 if (! elf32_arm_output_glue_section (info, abfd,
10996 globals->bfd_of_glue_owner,
10997 THUMB2ARM_GLUE_SECTION_NAME))
10998 return FALSE;
10999
11000 if (! elf32_arm_output_glue_section (info, abfd,
11001 globals->bfd_of_glue_owner,
11002 VFP11_ERRATUM_VENEER_SECTION_NAME))
11003 return FALSE;
11004
11005 if (! elf32_arm_output_glue_section (info, abfd,
11006 globals->bfd_of_glue_owner,
11007 ARM_BX_GLUE_SECTION_NAME))
11008 return FALSE;
11009 }
11010
11011 return TRUE;
11012 }
11013
11014 /* Return a best guess for the machine number based on the attributes. */
11015
11016 static unsigned int
11017 bfd_arm_get_mach_from_attributes (bfd * abfd)
11018 {
11019 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11020
11021 switch (arch)
11022 {
11023 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11024 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11025 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11026
11027 case TAG_CPU_ARCH_V5TE:
11028 {
11029 char * name;
11030
11031 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11032 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11033
11034 if (name)
11035 {
11036 if (strcmp (name, "IWMMXT2") == 0)
11037 return bfd_mach_arm_iWMMXt2;
11038
11039 if (strcmp (name, "IWMMXT") == 0)
11040 return bfd_mach_arm_iWMMXt;
11041
11042 if (strcmp (name, "XSCALE") == 0)
11043 {
11044 int wmmx;
11045
11046 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11047 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11048 switch (wmmx)
11049 {
11050 case 1: return bfd_mach_arm_iWMMXt;
11051 case 2: return bfd_mach_arm_iWMMXt2;
11052 default: return bfd_mach_arm_XScale;
11053 }
11054 }
11055 }
11056
11057 return bfd_mach_arm_5TE;
11058 }
11059
11060 default:
11061 return bfd_mach_arm_unknown;
11062 }
11063 }
11064
11065 /* Set the right machine number. */
11066
11067 static bfd_boolean
11068 elf32_arm_object_p (bfd *abfd)
11069 {
11070 unsigned int mach;
11071
11072 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
11073
11074 if (mach == bfd_mach_arm_unknown)
11075 {
11076 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11077 mach = bfd_mach_arm_ep9312;
11078 else
11079 mach = bfd_arm_get_mach_from_attributes (abfd);
11080 }
11081
11082 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
11083 return TRUE;
11084 }
11085
11086 /* Function to keep ARM specific flags in the ELF header. */
11087
11088 static bfd_boolean
11089 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
11090 {
11091 if (elf_flags_init (abfd)
11092 && elf_elfheader (abfd)->e_flags != flags)
11093 {
11094 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11095 {
11096 if (flags & EF_ARM_INTERWORK)
11097 (*_bfd_error_handler)
11098 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11099 abfd);
11100 else
11101 _bfd_error_handler
11102 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11103 abfd);
11104 }
11105 }
11106 else
11107 {
11108 elf_elfheader (abfd)->e_flags = flags;
11109 elf_flags_init (abfd) = TRUE;
11110 }
11111
11112 return TRUE;
11113 }
11114
11115 /* Copy backend specific data from one object module to another. */
11116
11117 static bfd_boolean
11118 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
11119 {
11120 flagword in_flags;
11121 flagword out_flags;
11122
11123 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
11124 return TRUE;
11125
11126 in_flags = elf_elfheader (ibfd)->e_flags;
11127 out_flags = elf_elfheader (obfd)->e_flags;
11128
11129 if (elf_flags_init (obfd)
11130 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11131 && in_flags != out_flags)
11132 {
11133 /* Cannot mix APCS26 and APCS32 code. */
11134 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
11135 return FALSE;
11136
11137 /* Cannot mix float APCS and non-float APCS code. */
11138 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
11139 return FALSE;
11140
11141 /* If the src and dest have different interworking flags
11142 then turn off the interworking bit. */
11143 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
11144 {
11145 if (out_flags & EF_ARM_INTERWORK)
11146 _bfd_error_handler
11147 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11148 obfd, ibfd);
11149
11150 in_flags &= ~EF_ARM_INTERWORK;
11151 }
11152
11153 /* Likewise for PIC, though don't warn for this case. */
11154 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11155 in_flags &= ~EF_ARM_PIC;
11156 }
11157
11158 elf_elfheader (obfd)->e_flags = in_flags;
11159 elf_flags_init (obfd) = TRUE;
11160
11161 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
11162 }
11163
11164 /* Values for Tag_ABI_PCS_R9_use. */
11165 enum
11166 {
11167 AEABI_R9_V6,
11168 AEABI_R9_SB,
11169 AEABI_R9_TLS,
11170 AEABI_R9_unused
11171 };
11172
11173 /* Values for Tag_ABI_PCS_RW_data. */
11174 enum
11175 {
11176 AEABI_PCS_RW_data_absolute,
11177 AEABI_PCS_RW_data_PCrel,
11178 AEABI_PCS_RW_data_SBrel,
11179 AEABI_PCS_RW_data_unused
11180 };
11181
11182 /* Values for Tag_ABI_enum_size. */
11183 enum
11184 {
11185 AEABI_enum_unused,
11186 AEABI_enum_short,
11187 AEABI_enum_wide,
11188 AEABI_enum_forced_wide
11189 };
11190
11191 /* Determine whether an object attribute tag takes an integer, a
11192 string or both. */
11193
11194 static int
11195 elf32_arm_obj_attrs_arg_type (int tag)
11196 {
11197 if (tag == Tag_compatibility)
11198 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
11199 else if (tag == Tag_nodefaults)
11200 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11201 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11202 return ATTR_TYPE_FLAG_STR_VAL;
11203 else if (tag < 32)
11204 return ATTR_TYPE_FLAG_INT_VAL;
11205 else
11206 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
11207 }
11208
11209 /* The ABI defines that Tag_conformance should be emitted first, and that
11210 Tag_nodefaults should be second (if either is defined). This sets those
11211 two positions, and bumps up the position of all the remaining tags to
11212 compensate. */
11213 static int
11214 elf32_arm_obj_attrs_order (int num)
11215 {
11216 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
11217 return Tag_conformance;
11218 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
11219 return Tag_nodefaults;
11220 if ((num - 2) < Tag_nodefaults)
11221 return num - 2;
11222 if ((num - 1) < Tag_conformance)
11223 return num - 1;
11224 return num;
11225 }
11226
11227 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
11228 static bfd_boolean
11229 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11230 {
11231 if ((tag & 127) < 64)
11232 {
11233 _bfd_error_handler
11234 (_("%B: Unknown mandatory EABI object attribute %d"),
11235 abfd, tag);
11236 bfd_set_error (bfd_error_bad_value);
11237 return FALSE;
11238 }
11239 else
11240 {
11241 _bfd_error_handler
11242 (_("Warning: %B: Unknown EABI object attribute %d"),
11243 abfd, tag);
11244 return TRUE;
11245 }
11246 }
11247
11248 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
11249 Returns -1 if no architecture could be read. */
11250
11251 static int
11252 get_secondary_compatible_arch (bfd *abfd)
11253 {
11254 obj_attribute *attr =
11255 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11256
11257 /* Note: the tag and its argument below are uleb128 values, though
11258 currently-defined values fit in one byte for each. */
11259 if (attr->s
11260 && attr->s[0] == Tag_CPU_arch
11261 && (attr->s[1] & 128) != 128
11262 && attr->s[2] == 0)
11263 return attr->s[1];
11264
11265 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11266 return -1;
11267 }
11268
11269 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11270 The tag is removed if ARCH is -1. */
11271
11272 static void
11273 set_secondary_compatible_arch (bfd *abfd, int arch)
11274 {
11275 obj_attribute *attr =
11276 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11277
11278 if (arch == -1)
11279 {
11280 attr->s = NULL;
11281 return;
11282 }
11283
11284 /* Note: the tag and its argument below are uleb128 values, though
11285 currently-defined values fit in one byte for each. */
11286 if (!attr->s)
11287 attr->s = (char *) bfd_alloc (abfd, 3);
11288 attr->s[0] = Tag_CPU_arch;
11289 attr->s[1] = arch;
11290 attr->s[2] = '\0';
11291 }
11292
11293 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11294 into account. */
11295
11296 static int
11297 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11298 int newtag, int secondary_compat)
11299 {
11300 #define T(X) TAG_CPU_ARCH_##X
11301 int tagl, tagh, result;
11302 const int v6t2[] =
11303 {
11304 T(V6T2), /* PRE_V4. */
11305 T(V6T2), /* V4. */
11306 T(V6T2), /* V4T. */
11307 T(V6T2), /* V5T. */
11308 T(V6T2), /* V5TE. */
11309 T(V6T2), /* V5TEJ. */
11310 T(V6T2), /* V6. */
11311 T(V7), /* V6KZ. */
11312 T(V6T2) /* V6T2. */
11313 };
11314 const int v6k[] =
11315 {
11316 T(V6K), /* PRE_V4. */
11317 T(V6K), /* V4. */
11318 T(V6K), /* V4T. */
11319 T(V6K), /* V5T. */
11320 T(V6K), /* V5TE. */
11321 T(V6K), /* V5TEJ. */
11322 T(V6K), /* V6. */
11323 T(V6KZ), /* V6KZ. */
11324 T(V7), /* V6T2. */
11325 T(V6K) /* V6K. */
11326 };
11327 const int v7[] =
11328 {
11329 T(V7), /* PRE_V4. */
11330 T(V7), /* V4. */
11331 T(V7), /* V4T. */
11332 T(V7), /* V5T. */
11333 T(V7), /* V5TE. */
11334 T(V7), /* V5TEJ. */
11335 T(V7), /* V6. */
11336 T(V7), /* V6KZ. */
11337 T(V7), /* V6T2. */
11338 T(V7), /* V6K. */
11339 T(V7) /* V7. */
11340 };
11341 const int v6_m[] =
11342 {
11343 -1, /* PRE_V4. */
11344 -1, /* V4. */
11345 T(V6K), /* V4T. */
11346 T(V6K), /* V5T. */
11347 T(V6K), /* V5TE. */
11348 T(V6K), /* V5TEJ. */
11349 T(V6K), /* V6. */
11350 T(V6KZ), /* V6KZ. */
11351 T(V7), /* V6T2. */
11352 T(V6K), /* V6K. */
11353 T(V7), /* V7. */
11354 T(V6_M) /* V6_M. */
11355 };
11356 const int v6s_m[] =
11357 {
11358 -1, /* PRE_V4. */
11359 -1, /* V4. */
11360 T(V6K), /* V4T. */
11361 T(V6K), /* V5T. */
11362 T(V6K), /* V5TE. */
11363 T(V6K), /* V5TEJ. */
11364 T(V6K), /* V6. */
11365 T(V6KZ), /* V6KZ. */
11366 T(V7), /* V6T2. */
11367 T(V6K), /* V6K. */
11368 T(V7), /* V7. */
11369 T(V6S_M), /* V6_M. */
11370 T(V6S_M) /* V6S_M. */
11371 };
11372 const int v7e_m[] =
11373 {
11374 -1, /* PRE_V4. */
11375 -1, /* V4. */
11376 T(V7E_M), /* V4T. */
11377 T(V7E_M), /* V5T. */
11378 T(V7E_M), /* V5TE. */
11379 T(V7E_M), /* V5TEJ. */
11380 T(V7E_M), /* V6. */
11381 T(V7E_M), /* V6KZ. */
11382 T(V7E_M), /* V6T2. */
11383 T(V7E_M), /* V6K. */
11384 T(V7E_M), /* V7. */
11385 T(V7E_M), /* V6_M. */
11386 T(V7E_M), /* V6S_M. */
11387 T(V7E_M) /* V7E_M. */
11388 };
11389 const int v8[] =
11390 {
11391 T(V8), /* PRE_V4. */
11392 T(V8), /* V4. */
11393 T(V8), /* V4T. */
11394 T(V8), /* V5T. */
11395 T(V8), /* V5TE. */
11396 T(V8), /* V5TEJ. */
11397 T(V8), /* V6. */
11398 T(V8), /* V6KZ. */
11399 T(V8), /* V6T2. */
11400 T(V8), /* V6K. */
11401 T(V8), /* V7. */
11402 T(V8), /* V6_M. */
11403 T(V8), /* V6S_M. */
11404 T(V8), /* V7E_M. */
11405 T(V8) /* V8. */
11406 };
11407 const int v4t_plus_v6_m[] =
11408 {
11409 -1, /* PRE_V4. */
11410 -1, /* V4. */
11411 T(V4T), /* V4T. */
11412 T(V5T), /* V5T. */
11413 T(V5TE), /* V5TE. */
11414 T(V5TEJ), /* V5TEJ. */
11415 T(V6), /* V6. */
11416 T(V6KZ), /* V6KZ. */
11417 T(V6T2), /* V6T2. */
11418 T(V6K), /* V6K. */
11419 T(V7), /* V7. */
11420 T(V6_M), /* V6_M. */
11421 T(V6S_M), /* V6S_M. */
11422 T(V7E_M), /* V7E_M. */
11423 T(V8), /* V8. */
11424 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11425 };
11426 const int *comb[] =
11427 {
11428 v6t2,
11429 v6k,
11430 v7,
11431 v6_m,
11432 v6s_m,
11433 v7e_m,
11434 v8,
11435 /* Pseudo-architecture. */
11436 v4t_plus_v6_m
11437 };
11438
11439 /* Check we've not got a higher architecture than we know about. */
11440
11441 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11442 {
11443 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11444 return -1;
11445 }
11446
11447 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11448
11449 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11450 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11451 oldtag = T(V4T_PLUS_V6_M);
11452
11453 /* And override the new tag if we have a Tag_also_compatible_with on the
11454 input. */
11455
11456 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11457 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11458 newtag = T(V4T_PLUS_V6_M);
11459
11460 tagl = (oldtag < newtag) ? oldtag : newtag;
11461 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11462
11463 /* Architectures before V6KZ add features monotonically. */
11464 if (tagh <= TAG_CPU_ARCH_V6KZ)
11465 return result;
11466
11467 result = comb[tagh - T(V6T2)][tagl];
11468
11469 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11470 as the canonical version. */
11471 if (result == T(V4T_PLUS_V6_M))
11472 {
11473 result = T(V4T);
11474 *secondary_compat_out = T(V6_M);
11475 }
11476 else
11477 *secondary_compat_out = -1;
11478
11479 if (result == -1)
11480 {
11481 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11482 ibfd, oldtag, newtag);
11483 return -1;
11484 }
11485
11486 return result;
11487 #undef T
11488 }
11489
11490 /* Query attributes object to see if integer divide instructions may be
11491 present in an object. */
11492 static bfd_boolean
11493 elf32_arm_attributes_accept_div (const obj_attribute *attr)
11494 {
11495 int arch = attr[Tag_CPU_arch].i;
11496 int profile = attr[Tag_CPU_arch_profile].i;
11497
11498 switch (attr[Tag_DIV_use].i)
11499 {
11500 case 0:
11501 /* Integer divide allowed if instruction contained in archetecture. */
11502 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11503 return TRUE;
11504 else if (arch >= TAG_CPU_ARCH_V7E_M)
11505 return TRUE;
11506 else
11507 return FALSE;
11508
11509 case 1:
11510 /* Integer divide explicitly prohibited. */
11511 return FALSE;
11512
11513 default:
11514 /* Unrecognised case - treat as allowing divide everywhere. */
11515 case 2:
11516 /* Integer divide allowed in ARM state. */
11517 return TRUE;
11518 }
11519 }
11520
11521 /* Query attributes object to see if integer divide instructions are
11522 forbidden to be in the object. This is not the inverse of
11523 elf32_arm_attributes_accept_div. */
11524 static bfd_boolean
11525 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11526 {
11527 return attr[Tag_DIV_use].i == 1;
11528 }
11529
11530 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11531 are conflicting attributes. */
11532
11533 static bfd_boolean
11534 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11535 {
11536 obj_attribute *in_attr;
11537 obj_attribute *out_attr;
11538 /* Some tags have 0 = don't care, 1 = strong requirement,
11539 2 = weak requirement. */
11540 static const int order_021[3] = {0, 2, 1};
11541 int i;
11542 bfd_boolean result = TRUE;
11543
11544 /* Skip the linker stubs file. This preserves previous behavior
11545 of accepting unknown attributes in the first input file - but
11546 is that a bug? */
11547 if (ibfd->flags & BFD_LINKER_CREATED)
11548 return TRUE;
11549
11550 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11551 {
11552 /* This is the first object. Copy the attributes. */
11553 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11554
11555 out_attr = elf_known_obj_attributes_proc (obfd);
11556
11557 /* Use the Tag_null value to indicate the attributes have been
11558 initialized. */
11559 out_attr[0].i = 1;
11560
11561 /* We do not output objects with Tag_MPextension_use_legacy - we move
11562 the attribute's value to Tag_MPextension_use. */
11563 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11564 {
11565 if (out_attr[Tag_MPextension_use].i != 0
11566 && out_attr[Tag_MPextension_use_legacy].i
11567 != out_attr[Tag_MPextension_use].i)
11568 {
11569 _bfd_error_handler
11570 (_("Error: %B has both the current and legacy "
11571 "Tag_MPextension_use attributes"), ibfd);
11572 result = FALSE;
11573 }
11574
11575 out_attr[Tag_MPextension_use] =
11576 out_attr[Tag_MPextension_use_legacy];
11577 out_attr[Tag_MPextension_use_legacy].type = 0;
11578 out_attr[Tag_MPextension_use_legacy].i = 0;
11579 }
11580
11581 return result;
11582 }
11583
11584 in_attr = elf_known_obj_attributes_proc (ibfd);
11585 out_attr = elf_known_obj_attributes_proc (obfd);
11586 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11587 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11588 {
11589 /* Ignore mismatches if the object doesn't use floating point. */
11590 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11591 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11592 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11593 {
11594 _bfd_error_handler
11595 (_("error: %B uses VFP register arguments, %B does not"),
11596 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11597 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11598 result = FALSE;
11599 }
11600 }
11601
11602 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11603 {
11604 /* Merge this attribute with existing attributes. */
11605 switch (i)
11606 {
11607 case Tag_CPU_raw_name:
11608 case Tag_CPU_name:
11609 /* These are merged after Tag_CPU_arch. */
11610 break;
11611
11612 case Tag_ABI_optimization_goals:
11613 case Tag_ABI_FP_optimization_goals:
11614 /* Use the first value seen. */
11615 break;
11616
11617 case Tag_CPU_arch:
11618 {
11619 int secondary_compat = -1, secondary_compat_out = -1;
11620 unsigned int saved_out_attr = out_attr[i].i;
11621 static const char *name_table[] = {
11622 /* These aren't real CPU names, but we can't guess
11623 that from the architecture version alone. */
11624 "Pre v4",
11625 "ARM v4",
11626 "ARM v4T",
11627 "ARM v5T",
11628 "ARM v5TE",
11629 "ARM v5TEJ",
11630 "ARM v6",
11631 "ARM v6KZ",
11632 "ARM v6T2",
11633 "ARM v6K",
11634 "ARM v7",
11635 "ARM v6-M",
11636 "ARM v6S-M",
11637 "ARM v8"
11638 };
11639
11640 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11641 secondary_compat = get_secondary_compatible_arch (ibfd);
11642 secondary_compat_out = get_secondary_compatible_arch (obfd);
11643 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11644 &secondary_compat_out,
11645 in_attr[i].i,
11646 secondary_compat);
11647 set_secondary_compatible_arch (obfd, secondary_compat_out);
11648
11649 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11650 if (out_attr[i].i == saved_out_attr)
11651 ; /* Leave the names alone. */
11652 else if (out_attr[i].i == in_attr[i].i)
11653 {
11654 /* The output architecture has been changed to match the
11655 input architecture. Use the input names. */
11656 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11657 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11658 : NULL;
11659 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11660 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11661 : NULL;
11662 }
11663 else
11664 {
11665 out_attr[Tag_CPU_name].s = NULL;
11666 out_attr[Tag_CPU_raw_name].s = NULL;
11667 }
11668
11669 /* If we still don't have a value for Tag_CPU_name,
11670 make one up now. Tag_CPU_raw_name remains blank. */
11671 if (out_attr[Tag_CPU_name].s == NULL
11672 && out_attr[i].i < ARRAY_SIZE (name_table))
11673 out_attr[Tag_CPU_name].s =
11674 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11675 }
11676 break;
11677
11678 case Tag_ARM_ISA_use:
11679 case Tag_THUMB_ISA_use:
11680 case Tag_WMMX_arch:
11681 case Tag_Advanced_SIMD_arch:
11682 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11683 case Tag_ABI_FP_rounding:
11684 case Tag_ABI_FP_exceptions:
11685 case Tag_ABI_FP_user_exceptions:
11686 case Tag_ABI_FP_number_model:
11687 case Tag_FP_HP_extension:
11688 case Tag_CPU_unaligned_access:
11689 case Tag_T2EE_use:
11690 case Tag_MPextension_use:
11691 /* Use the largest value specified. */
11692 if (in_attr[i].i > out_attr[i].i)
11693 out_attr[i].i = in_attr[i].i;
11694 break;
11695
11696 case Tag_ABI_align_preserved:
11697 case Tag_ABI_PCS_RO_data:
11698 /* Use the smallest value specified. */
11699 if (in_attr[i].i < out_attr[i].i)
11700 out_attr[i].i = in_attr[i].i;
11701 break;
11702
11703 case Tag_ABI_align_needed:
11704 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11705 && (in_attr[Tag_ABI_align_preserved].i == 0
11706 || out_attr[Tag_ABI_align_preserved].i == 0))
11707 {
11708 /* This error message should be enabled once all non-conformant
11709 binaries in the toolchain have had the attributes set
11710 properly.
11711 _bfd_error_handler
11712 (_("error: %B: 8-byte data alignment conflicts with %B"),
11713 obfd, ibfd);
11714 result = FALSE; */
11715 }
11716 /* Fall through. */
11717 case Tag_ABI_FP_denormal:
11718 case Tag_ABI_PCS_GOT_use:
11719 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11720 value if greater than 2 (for future-proofing). */
11721 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11722 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11723 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11724 out_attr[i].i = in_attr[i].i;
11725 break;
11726
11727 case Tag_Virtualization_use:
11728 /* The virtualization tag effectively stores two bits of
11729 information: the intended use of TrustZone (in bit 0), and the
11730 intended use of Virtualization (in bit 1). */
11731 if (out_attr[i].i == 0)
11732 out_attr[i].i = in_attr[i].i;
11733 else if (in_attr[i].i != 0
11734 && in_attr[i].i != out_attr[i].i)
11735 {
11736 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11737 out_attr[i].i = 3;
11738 else
11739 {
11740 _bfd_error_handler
11741 (_("error: %B: unable to merge virtualization attributes "
11742 "with %B"),
11743 obfd, ibfd);
11744 result = FALSE;
11745 }
11746 }
11747 break;
11748
11749 case Tag_CPU_arch_profile:
11750 if (out_attr[i].i != in_attr[i].i)
11751 {
11752 /* 0 will merge with anything.
11753 'A' and 'S' merge to 'A'.
11754 'R' and 'S' merge to 'R'.
11755 'M' and 'A|R|S' is an error. */
11756 if (out_attr[i].i == 0
11757 || (out_attr[i].i == 'S'
11758 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11759 out_attr[i].i = in_attr[i].i;
11760 else if (in_attr[i].i == 0
11761 || (in_attr[i].i == 'S'
11762 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11763 ; /* Do nothing. */
11764 else
11765 {
11766 _bfd_error_handler
11767 (_("error: %B: Conflicting architecture profiles %c/%c"),
11768 ibfd,
11769 in_attr[i].i ? in_attr[i].i : '0',
11770 out_attr[i].i ? out_attr[i].i : '0');
11771 result = FALSE;
11772 }
11773 }
11774 break;
11775 case Tag_FP_arch:
11776 {
11777 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11778 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11779 when it's 0. It might mean absence of FP hardware if
11780 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11781
11782 #define VFP_VERSION_COUNT 8
11783 static const struct
11784 {
11785 int ver;
11786 int regs;
11787 } vfp_versions[VFP_VERSION_COUNT] =
11788 {
11789 {0, 0},
11790 {1, 16},
11791 {2, 16},
11792 {3, 32},
11793 {3, 16},
11794 {4, 32},
11795 {4, 16},
11796 {8, 32}
11797 };
11798 int ver;
11799 int regs;
11800 int newval;
11801
11802 /* If the output has no requirement about FP hardware,
11803 follow the requirement of the input. */
11804 if (out_attr[i].i == 0)
11805 {
11806 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11807 out_attr[i].i = in_attr[i].i;
11808 out_attr[Tag_ABI_HardFP_use].i
11809 = in_attr[Tag_ABI_HardFP_use].i;
11810 break;
11811 }
11812 /* If the input has no requirement about FP hardware, do
11813 nothing. */
11814 else if (in_attr[i].i == 0)
11815 {
11816 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11817 break;
11818 }
11819
11820 /* Both the input and the output have nonzero Tag_FP_arch.
11821 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11822
11823 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11824 do nothing. */
11825 if (in_attr[Tag_ABI_HardFP_use].i == 0
11826 && out_attr[Tag_ABI_HardFP_use].i == 0)
11827 ;
11828 /* If the input and the output have different Tag_ABI_HardFP_use,
11829 the combination of them is 3 (SP & DP). */
11830 else if (in_attr[Tag_ABI_HardFP_use].i
11831 != out_attr[Tag_ABI_HardFP_use].i)
11832 out_attr[Tag_ABI_HardFP_use].i = 3;
11833
11834 /* Now we can handle Tag_FP_arch. */
11835
11836 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
11837 pick the biggest. */
11838 if (in_attr[i].i >= VFP_VERSION_COUNT
11839 && in_attr[i].i > out_attr[i].i)
11840 {
11841 out_attr[i] = in_attr[i];
11842 break;
11843 }
11844 /* The output uses the superset of input features
11845 (ISA version) and registers. */
11846 ver = vfp_versions[in_attr[i].i].ver;
11847 if (ver < vfp_versions[out_attr[i].i].ver)
11848 ver = vfp_versions[out_attr[i].i].ver;
11849 regs = vfp_versions[in_attr[i].i].regs;
11850 if (regs < vfp_versions[out_attr[i].i].regs)
11851 regs = vfp_versions[out_attr[i].i].regs;
11852 /* This assumes all possible supersets are also a valid
11853 options. */
11854 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
11855 {
11856 if (regs == vfp_versions[newval].regs
11857 && ver == vfp_versions[newval].ver)
11858 break;
11859 }
11860 out_attr[i].i = newval;
11861 }
11862 break;
11863 case Tag_PCS_config:
11864 if (out_attr[i].i == 0)
11865 out_attr[i].i = in_attr[i].i;
11866 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
11867 {
11868 /* It's sometimes ok to mix different configs, so this is only
11869 a warning. */
11870 _bfd_error_handler
11871 (_("Warning: %B: Conflicting platform configuration"), ibfd);
11872 }
11873 break;
11874 case Tag_ABI_PCS_R9_use:
11875 if (in_attr[i].i != out_attr[i].i
11876 && out_attr[i].i != AEABI_R9_unused
11877 && in_attr[i].i != AEABI_R9_unused)
11878 {
11879 _bfd_error_handler
11880 (_("error: %B: Conflicting use of R9"), ibfd);
11881 result = FALSE;
11882 }
11883 if (out_attr[i].i == AEABI_R9_unused)
11884 out_attr[i].i = in_attr[i].i;
11885 break;
11886 case Tag_ABI_PCS_RW_data:
11887 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11888 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11889 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11890 {
11891 _bfd_error_handler
11892 (_("error: %B: SB relative addressing conflicts with use of R9"),
11893 ibfd);
11894 result = FALSE;
11895 }
11896 /* Use the smallest value specified. */
11897 if (in_attr[i].i < out_attr[i].i)
11898 out_attr[i].i = in_attr[i].i;
11899 break;
11900 case Tag_ABI_PCS_wchar_t:
11901 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11902 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11903 {
11904 _bfd_error_handler
11905 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11906 ibfd, in_attr[i].i, out_attr[i].i);
11907 }
11908 else if (in_attr[i].i && !out_attr[i].i)
11909 out_attr[i].i = in_attr[i].i;
11910 break;
11911 case Tag_ABI_enum_size:
11912 if (in_attr[i].i != AEABI_enum_unused)
11913 {
11914 if (out_attr[i].i == AEABI_enum_unused
11915 || out_attr[i].i == AEABI_enum_forced_wide)
11916 {
11917 /* The existing object is compatible with anything.
11918 Use whatever requirements the new object has. */
11919 out_attr[i].i = in_attr[i].i;
11920 }
11921 else if (in_attr[i].i != AEABI_enum_forced_wide
11922 && out_attr[i].i != in_attr[i].i
11923 && !elf_arm_tdata (obfd)->no_enum_size_warning)
11924 {
11925 static const char *aeabi_enum_names[] =
11926 { "", "variable-size", "32-bit", "" };
11927 const char *in_name =
11928 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11929 ? aeabi_enum_names[in_attr[i].i]
11930 : "<unknown>";
11931 const char *out_name =
11932 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11933 ? aeabi_enum_names[out_attr[i].i]
11934 : "<unknown>";
11935 _bfd_error_handler
11936 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11937 ibfd, in_name, out_name);
11938 }
11939 }
11940 break;
11941 case Tag_ABI_VFP_args:
11942 /* Aready done. */
11943 break;
11944 case Tag_ABI_WMMX_args:
11945 if (in_attr[i].i != out_attr[i].i)
11946 {
11947 _bfd_error_handler
11948 (_("error: %B uses iWMMXt register arguments, %B does not"),
11949 ibfd, obfd);
11950 result = FALSE;
11951 }
11952 break;
11953 case Tag_compatibility:
11954 /* Merged in target-independent code. */
11955 break;
11956 case Tag_ABI_HardFP_use:
11957 /* This is handled along with Tag_FP_arch. */
11958 break;
11959 case Tag_ABI_FP_16bit_format:
11960 if (in_attr[i].i != 0 && out_attr[i].i != 0)
11961 {
11962 if (in_attr[i].i != out_attr[i].i)
11963 {
11964 _bfd_error_handler
11965 (_("error: fp16 format mismatch between %B and %B"),
11966 ibfd, obfd);
11967 result = FALSE;
11968 }
11969 }
11970 if (in_attr[i].i != 0)
11971 out_attr[i].i = in_attr[i].i;
11972 break;
11973
11974 case Tag_DIV_use:
11975 /* A value of zero on input means that the divide instruction may
11976 be used if available in the base architecture as specified via
11977 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
11978 the user did not want divide instructions. A value of 2
11979 explicitly means that divide instructions were allowed in ARM
11980 and Thumb state. */
11981 if (in_attr[i].i == out_attr[i].i)
11982 /* Do nothing. */ ;
11983 else if (elf32_arm_attributes_forbid_div (in_attr)
11984 && !elf32_arm_attributes_accept_div (out_attr))
11985 out_attr[i].i = 1;
11986 else if (elf32_arm_attributes_forbid_div (out_attr)
11987 && elf32_arm_attributes_accept_div (in_attr))
11988 out_attr[i].i = in_attr[i].i;
11989 else if (in_attr[i].i == 2)
11990 out_attr[i].i = in_attr[i].i;
11991 break;
11992
11993 case Tag_MPextension_use_legacy:
11994 /* We don't output objects with Tag_MPextension_use_legacy - we
11995 move the value to Tag_MPextension_use. */
11996 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11997 {
11998 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11999 {
12000 _bfd_error_handler
12001 (_("%B has has both the current and legacy "
12002 "Tag_MPextension_use attributes"),
12003 ibfd);
12004 result = FALSE;
12005 }
12006 }
12007
12008 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
12009 out_attr[Tag_MPextension_use] = in_attr[i];
12010
12011 break;
12012
12013 case Tag_nodefaults:
12014 /* This tag is set if it exists, but the value is unused (and is
12015 typically zero). We don't actually need to do anything here -
12016 the merge happens automatically when the type flags are merged
12017 below. */
12018 break;
12019 case Tag_also_compatible_with:
12020 /* Already done in Tag_CPU_arch. */
12021 break;
12022 case Tag_conformance:
12023 /* Keep the attribute if it matches. Throw it away otherwise.
12024 No attribute means no claim to conform. */
12025 if (!in_attr[i].s || !out_attr[i].s
12026 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
12027 out_attr[i].s = NULL;
12028 break;
12029
12030 default:
12031 result
12032 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
12033 }
12034
12035 /* If out_attr was copied from in_attr then it won't have a type yet. */
12036 if (in_attr[i].type && !out_attr[i].type)
12037 out_attr[i].type = in_attr[i].type;
12038 }
12039
12040 /* Merge Tag_compatibility attributes and any common GNU ones. */
12041 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
12042 return FALSE;
12043
12044 /* Check for any attributes not known on ARM. */
12045 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
12046
12047 return result;
12048 }
12049
12050
12051 /* Return TRUE if the two EABI versions are incompatible. */
12052
12053 static bfd_boolean
12054 elf32_arm_versions_compatible (unsigned iver, unsigned over)
12055 {
12056 /* v4 and v5 are the same spec before and after it was released,
12057 so allow mixing them. */
12058 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
12059 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
12060 return TRUE;
12061
12062 return (iver == over);
12063 }
12064
12065 /* Merge backend specific data from an object file to the output
12066 object file when linking. */
12067
12068 static bfd_boolean
12069 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
12070
12071 /* Display the flags field. */
12072
12073 static bfd_boolean
12074 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
12075 {
12076 FILE * file = (FILE *) ptr;
12077 unsigned long flags;
12078
12079 BFD_ASSERT (abfd != NULL && ptr != NULL);
12080
12081 /* Print normal ELF private data. */
12082 _bfd_elf_print_private_bfd_data (abfd, ptr);
12083
12084 flags = elf_elfheader (abfd)->e_flags;
12085 /* Ignore init flag - it may not be set, despite the flags field
12086 containing valid data. */
12087
12088 /* xgettext:c-format */
12089 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12090
12091 switch (EF_ARM_EABI_VERSION (flags))
12092 {
12093 case EF_ARM_EABI_UNKNOWN:
12094 /* The following flag bits are GNU extensions and not part of the
12095 official ARM ELF extended ABI. Hence they are only decoded if
12096 the EABI version is not set. */
12097 if (flags & EF_ARM_INTERWORK)
12098 fprintf (file, _(" [interworking enabled]"));
12099
12100 if (flags & EF_ARM_APCS_26)
12101 fprintf (file, " [APCS-26]");
12102 else
12103 fprintf (file, " [APCS-32]");
12104
12105 if (flags & EF_ARM_VFP_FLOAT)
12106 fprintf (file, _(" [VFP float format]"));
12107 else if (flags & EF_ARM_MAVERICK_FLOAT)
12108 fprintf (file, _(" [Maverick float format]"));
12109 else
12110 fprintf (file, _(" [FPA float format]"));
12111
12112 if (flags & EF_ARM_APCS_FLOAT)
12113 fprintf (file, _(" [floats passed in float registers]"));
12114
12115 if (flags & EF_ARM_PIC)
12116 fprintf (file, _(" [position independent]"));
12117
12118 if (flags & EF_ARM_NEW_ABI)
12119 fprintf (file, _(" [new ABI]"));
12120
12121 if (flags & EF_ARM_OLD_ABI)
12122 fprintf (file, _(" [old ABI]"));
12123
12124 if (flags & EF_ARM_SOFT_FLOAT)
12125 fprintf (file, _(" [software FP]"));
12126
12127 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12128 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
12129 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12130 | EF_ARM_MAVERICK_FLOAT);
12131 break;
12132
12133 case EF_ARM_EABI_VER1:
12134 fprintf (file, _(" [Version1 EABI]"));
12135
12136 if (flags & EF_ARM_SYMSARESORTED)
12137 fprintf (file, _(" [sorted symbol table]"));
12138 else
12139 fprintf (file, _(" [unsorted symbol table]"));
12140
12141 flags &= ~ EF_ARM_SYMSARESORTED;
12142 break;
12143
12144 case EF_ARM_EABI_VER2:
12145 fprintf (file, _(" [Version2 EABI]"));
12146
12147 if (flags & EF_ARM_SYMSARESORTED)
12148 fprintf (file, _(" [sorted symbol table]"));
12149 else
12150 fprintf (file, _(" [unsorted symbol table]"));
12151
12152 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12153 fprintf (file, _(" [dynamic symbols use segment index]"));
12154
12155 if (flags & EF_ARM_MAPSYMSFIRST)
12156 fprintf (file, _(" [mapping symbols precede others]"));
12157
12158 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
12159 | EF_ARM_MAPSYMSFIRST);
12160 break;
12161
12162 case EF_ARM_EABI_VER3:
12163 fprintf (file, _(" [Version3 EABI]"));
12164 break;
12165
12166 case EF_ARM_EABI_VER4:
12167 fprintf (file, _(" [Version4 EABI]"));
12168 goto eabi;
12169
12170 case EF_ARM_EABI_VER5:
12171 fprintf (file, _(" [Version5 EABI]"));
12172
12173 if (flags & EF_ARM_ABI_FLOAT_SOFT)
12174 fprintf (file, _(" [soft-float ABI]"));
12175
12176 if (flags & EF_ARM_ABI_FLOAT_HARD)
12177 fprintf (file, _(" [hard-float ABI]"));
12178
12179 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12180
12181 eabi:
12182 if (flags & EF_ARM_BE8)
12183 fprintf (file, _(" [BE8]"));
12184
12185 if (flags & EF_ARM_LE8)
12186 fprintf (file, _(" [LE8]"));
12187
12188 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12189 break;
12190
12191 default:
12192 fprintf (file, _(" <EABI version unrecognised>"));
12193 break;
12194 }
12195
12196 flags &= ~ EF_ARM_EABIMASK;
12197
12198 if (flags & EF_ARM_RELEXEC)
12199 fprintf (file, _(" [relocatable executable]"));
12200
12201 if (flags & EF_ARM_HASENTRY)
12202 fprintf (file, _(" [has entry point]"));
12203
12204 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
12205
12206 if (flags)
12207 fprintf (file, _("<Unrecognised flag bits set>"));
12208
12209 fputc ('\n', file);
12210
12211 return TRUE;
12212 }
12213
12214 static int
12215 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
12216 {
12217 switch (ELF_ST_TYPE (elf_sym->st_info))
12218 {
12219 case STT_ARM_TFUNC:
12220 return ELF_ST_TYPE (elf_sym->st_info);
12221
12222 case STT_ARM_16BIT:
12223 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12224 This allows us to distinguish between data used by Thumb instructions
12225 and non-data (which is probably code) inside Thumb regions of an
12226 executable. */
12227 if (type != STT_OBJECT && type != STT_TLS)
12228 return ELF_ST_TYPE (elf_sym->st_info);
12229 break;
12230
12231 default:
12232 break;
12233 }
12234
12235 return type;
12236 }
12237
12238 static asection *
12239 elf32_arm_gc_mark_hook (asection *sec,
12240 struct bfd_link_info *info,
12241 Elf_Internal_Rela *rel,
12242 struct elf_link_hash_entry *h,
12243 Elf_Internal_Sym *sym)
12244 {
12245 if (h != NULL)
12246 switch (ELF32_R_TYPE (rel->r_info))
12247 {
12248 case R_ARM_GNU_VTINHERIT:
12249 case R_ARM_GNU_VTENTRY:
12250 return NULL;
12251 }
12252
12253 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12254 }
12255
12256 /* Update the got entry reference counts for the section being removed. */
12257
12258 static bfd_boolean
12259 elf32_arm_gc_sweep_hook (bfd * abfd,
12260 struct bfd_link_info * info,
12261 asection * sec,
12262 const Elf_Internal_Rela * relocs)
12263 {
12264 Elf_Internal_Shdr *symtab_hdr;
12265 struct elf_link_hash_entry **sym_hashes;
12266 bfd_signed_vma *local_got_refcounts;
12267 const Elf_Internal_Rela *rel, *relend;
12268 struct elf32_arm_link_hash_table * globals;
12269
12270 if (info->relocatable)
12271 return TRUE;
12272
12273 globals = elf32_arm_hash_table (info);
12274 if (globals == NULL)
12275 return FALSE;
12276
12277 elf_section_data (sec)->local_dynrel = NULL;
12278
12279 symtab_hdr = & elf_symtab_hdr (abfd);
12280 sym_hashes = elf_sym_hashes (abfd);
12281 local_got_refcounts = elf_local_got_refcounts (abfd);
12282
12283 check_use_blx (globals);
12284
12285 relend = relocs + sec->reloc_count;
12286 for (rel = relocs; rel < relend; rel++)
12287 {
12288 unsigned long r_symndx;
12289 struct elf_link_hash_entry *h = NULL;
12290 struct elf32_arm_link_hash_entry *eh;
12291 int r_type;
12292 bfd_boolean call_reloc_p;
12293 bfd_boolean may_become_dynamic_p;
12294 bfd_boolean may_need_local_target_p;
12295 union gotplt_union *root_plt;
12296 struct arm_plt_info *arm_plt;
12297
12298 r_symndx = ELF32_R_SYM (rel->r_info);
12299 if (r_symndx >= symtab_hdr->sh_info)
12300 {
12301 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12302 while (h->root.type == bfd_link_hash_indirect
12303 || h->root.type == bfd_link_hash_warning)
12304 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12305 }
12306 eh = (struct elf32_arm_link_hash_entry *) h;
12307
12308 call_reloc_p = FALSE;
12309 may_become_dynamic_p = FALSE;
12310 may_need_local_target_p = FALSE;
12311
12312 r_type = ELF32_R_TYPE (rel->r_info);
12313 r_type = arm_real_reloc_type (globals, r_type);
12314 switch (r_type)
12315 {
12316 case R_ARM_GOT32:
12317 case R_ARM_GOT_PREL:
12318 case R_ARM_TLS_GD32:
12319 case R_ARM_TLS_IE32:
12320 if (h != NULL)
12321 {
12322 if (h->got.refcount > 0)
12323 h->got.refcount -= 1;
12324 }
12325 else if (local_got_refcounts != NULL)
12326 {
12327 if (local_got_refcounts[r_symndx] > 0)
12328 local_got_refcounts[r_symndx] -= 1;
12329 }
12330 break;
12331
12332 case R_ARM_TLS_LDM32:
12333 globals->tls_ldm_got.refcount -= 1;
12334 break;
12335
12336 case R_ARM_PC24:
12337 case R_ARM_PLT32:
12338 case R_ARM_CALL:
12339 case R_ARM_JUMP24:
12340 case R_ARM_PREL31:
12341 case R_ARM_THM_CALL:
12342 case R_ARM_THM_JUMP24:
12343 case R_ARM_THM_JUMP19:
12344 call_reloc_p = TRUE;
12345 may_need_local_target_p = TRUE;
12346 break;
12347
12348 case R_ARM_ABS12:
12349 if (!globals->vxworks_p)
12350 {
12351 may_need_local_target_p = TRUE;
12352 break;
12353 }
12354 /* Fall through. */
12355 case R_ARM_ABS32:
12356 case R_ARM_ABS32_NOI:
12357 case R_ARM_REL32:
12358 case R_ARM_REL32_NOI:
12359 case R_ARM_MOVW_ABS_NC:
12360 case R_ARM_MOVT_ABS:
12361 case R_ARM_MOVW_PREL_NC:
12362 case R_ARM_MOVT_PREL:
12363 case R_ARM_THM_MOVW_ABS_NC:
12364 case R_ARM_THM_MOVT_ABS:
12365 case R_ARM_THM_MOVW_PREL_NC:
12366 case R_ARM_THM_MOVT_PREL:
12367 /* Should the interworking branches be here also? */
12368 if ((info->shared || globals->root.is_relocatable_executable)
12369 && (sec->flags & SEC_ALLOC) != 0)
12370 {
12371 if (h == NULL
12372 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12373 {
12374 call_reloc_p = TRUE;
12375 may_need_local_target_p = TRUE;
12376 }
12377 else
12378 may_become_dynamic_p = TRUE;
12379 }
12380 else
12381 may_need_local_target_p = TRUE;
12382 break;
12383
12384 default:
12385 break;
12386 }
12387
12388 if (may_need_local_target_p
12389 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12390 {
12391 /* If PLT refcount book-keeping is wrong and too low, we'll
12392 see a zero value (going to -1) for the root PLT reference
12393 count. */
12394 if (root_plt->refcount >= 0)
12395 {
12396 BFD_ASSERT (root_plt->refcount != 0);
12397 root_plt->refcount -= 1;
12398 }
12399 else
12400 /* A value of -1 means the symbol has become local, forced
12401 or seeing a hidden definition. Any other negative value
12402 is an error. */
12403 BFD_ASSERT (root_plt->refcount == -1);
12404
12405 if (!call_reloc_p)
12406 arm_plt->noncall_refcount--;
12407
12408 if (r_type == R_ARM_THM_CALL)
12409 arm_plt->maybe_thumb_refcount--;
12410
12411 if (r_type == R_ARM_THM_JUMP24
12412 || r_type == R_ARM_THM_JUMP19)
12413 arm_plt->thumb_refcount--;
12414 }
12415
12416 if (may_become_dynamic_p)
12417 {
12418 struct elf_dyn_relocs **pp;
12419 struct elf_dyn_relocs *p;
12420
12421 if (h != NULL)
12422 pp = &(eh->dyn_relocs);
12423 else
12424 {
12425 Elf_Internal_Sym *isym;
12426
12427 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12428 abfd, r_symndx);
12429 if (isym == NULL)
12430 return FALSE;
12431 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12432 if (pp == NULL)
12433 return FALSE;
12434 }
12435 for (; (p = *pp) != NULL; pp = &p->next)
12436 if (p->sec == sec)
12437 {
12438 /* Everything must go for SEC. */
12439 *pp = p->next;
12440 break;
12441 }
12442 }
12443 }
12444
12445 return TRUE;
12446 }
12447
12448 /* Look through the relocs for a section during the first phase. */
12449
12450 static bfd_boolean
12451 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12452 asection *sec, const Elf_Internal_Rela *relocs)
12453 {
12454 Elf_Internal_Shdr *symtab_hdr;
12455 struct elf_link_hash_entry **sym_hashes;
12456 const Elf_Internal_Rela *rel;
12457 const Elf_Internal_Rela *rel_end;
12458 bfd *dynobj;
12459 asection *sreloc;
12460 struct elf32_arm_link_hash_table *htab;
12461 bfd_boolean call_reloc_p;
12462 bfd_boolean may_become_dynamic_p;
12463 bfd_boolean may_need_local_target_p;
12464 unsigned long nsyms;
12465
12466 if (info->relocatable)
12467 return TRUE;
12468
12469 BFD_ASSERT (is_arm_elf (abfd));
12470
12471 htab = elf32_arm_hash_table (info);
12472 if (htab == NULL)
12473 return FALSE;
12474
12475 sreloc = NULL;
12476
12477 /* Create dynamic sections for relocatable executables so that we can
12478 copy relocations. */
12479 if (htab->root.is_relocatable_executable
12480 && ! htab->root.dynamic_sections_created)
12481 {
12482 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12483 return FALSE;
12484 }
12485
12486 if (htab->root.dynobj == NULL)
12487 htab->root.dynobj = abfd;
12488 if (!create_ifunc_sections (info))
12489 return FALSE;
12490
12491 dynobj = htab->root.dynobj;
12492
12493 symtab_hdr = & elf_symtab_hdr (abfd);
12494 sym_hashes = elf_sym_hashes (abfd);
12495 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12496
12497 rel_end = relocs + sec->reloc_count;
12498 for (rel = relocs; rel < rel_end; rel++)
12499 {
12500 Elf_Internal_Sym *isym;
12501 struct elf_link_hash_entry *h;
12502 struct elf32_arm_link_hash_entry *eh;
12503 unsigned long r_symndx;
12504 int r_type;
12505
12506 r_symndx = ELF32_R_SYM (rel->r_info);
12507 r_type = ELF32_R_TYPE (rel->r_info);
12508 r_type = arm_real_reloc_type (htab, r_type);
12509
12510 if (r_symndx >= nsyms
12511 /* PR 9934: It is possible to have relocations that do not
12512 refer to symbols, thus it is also possible to have an
12513 object file containing relocations but no symbol table. */
12514 && (r_symndx > STN_UNDEF || nsyms > 0))
12515 {
12516 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12517 r_symndx);
12518 return FALSE;
12519 }
12520
12521 h = NULL;
12522 isym = NULL;
12523 if (nsyms > 0)
12524 {
12525 if (r_symndx < symtab_hdr->sh_info)
12526 {
12527 /* A local symbol. */
12528 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12529 abfd, r_symndx);
12530 if (isym == NULL)
12531 return FALSE;
12532 }
12533 else
12534 {
12535 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12536 while (h->root.type == bfd_link_hash_indirect
12537 || h->root.type == bfd_link_hash_warning)
12538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12539
12540 /* PR15323, ref flags aren't set for references in the
12541 same object. */
12542 h->root.non_ir_ref = 1;
12543 }
12544 }
12545
12546 eh = (struct elf32_arm_link_hash_entry *) h;
12547
12548 call_reloc_p = FALSE;
12549 may_become_dynamic_p = FALSE;
12550 may_need_local_target_p = FALSE;
12551
12552 /* Could be done earlier, if h were already available. */
12553 r_type = elf32_arm_tls_transition (info, r_type, h);
12554 switch (r_type)
12555 {
12556 case R_ARM_GOT32:
12557 case R_ARM_GOT_PREL:
12558 case R_ARM_TLS_GD32:
12559 case R_ARM_TLS_IE32:
12560 case R_ARM_TLS_GOTDESC:
12561 case R_ARM_TLS_DESCSEQ:
12562 case R_ARM_THM_TLS_DESCSEQ:
12563 case R_ARM_TLS_CALL:
12564 case R_ARM_THM_TLS_CALL:
12565 /* This symbol requires a global offset table entry. */
12566 {
12567 int tls_type, old_tls_type;
12568
12569 switch (r_type)
12570 {
12571 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12572
12573 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12574
12575 case R_ARM_TLS_GOTDESC:
12576 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12577 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12578 tls_type = GOT_TLS_GDESC; break;
12579
12580 default: tls_type = GOT_NORMAL; break;
12581 }
12582
12583 if (h != NULL)
12584 {
12585 h->got.refcount++;
12586 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12587 }
12588 else
12589 {
12590 /* This is a global offset table entry for a local symbol. */
12591 if (!elf32_arm_allocate_local_sym_info (abfd))
12592 return FALSE;
12593 elf_local_got_refcounts (abfd)[r_symndx] += 1;
12594 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12595 }
12596
12597 /* If a variable is accessed with both tls methods, two
12598 slots may be created. */
12599 if (GOT_TLS_GD_ANY_P (old_tls_type)
12600 && GOT_TLS_GD_ANY_P (tls_type))
12601 tls_type |= old_tls_type;
12602
12603 /* We will already have issued an error message if there
12604 is a TLS/non-TLS mismatch, based on the symbol
12605 type. So just combine any TLS types needed. */
12606 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12607 && tls_type != GOT_NORMAL)
12608 tls_type |= old_tls_type;
12609
12610 /* If the symbol is accessed in both IE and GDESC
12611 method, we're able to relax. Turn off the GDESC flag,
12612 without messing up with any other kind of tls types
12613 that may be involved */
12614 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12615 tls_type &= ~GOT_TLS_GDESC;
12616
12617 if (old_tls_type != tls_type)
12618 {
12619 if (h != NULL)
12620 elf32_arm_hash_entry (h)->tls_type = tls_type;
12621 else
12622 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12623 }
12624 }
12625 /* Fall through. */
12626
12627 case R_ARM_TLS_LDM32:
12628 if (r_type == R_ARM_TLS_LDM32)
12629 htab->tls_ldm_got.refcount++;
12630 /* Fall through. */
12631
12632 case R_ARM_GOTOFF32:
12633 case R_ARM_GOTPC:
12634 if (htab->root.sgot == NULL
12635 && !create_got_section (htab->root.dynobj, info))
12636 return FALSE;
12637 break;
12638
12639 case R_ARM_PC24:
12640 case R_ARM_PLT32:
12641 case R_ARM_CALL:
12642 case R_ARM_JUMP24:
12643 case R_ARM_PREL31:
12644 case R_ARM_THM_CALL:
12645 case R_ARM_THM_JUMP24:
12646 case R_ARM_THM_JUMP19:
12647 call_reloc_p = TRUE;
12648 may_need_local_target_p = TRUE;
12649 break;
12650
12651 case R_ARM_ABS12:
12652 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12653 ldr __GOTT_INDEX__ offsets. */
12654 if (!htab->vxworks_p)
12655 {
12656 may_need_local_target_p = TRUE;
12657 break;
12658 }
12659 /* Fall through. */
12660
12661 case R_ARM_MOVW_ABS_NC:
12662 case R_ARM_MOVT_ABS:
12663 case R_ARM_THM_MOVW_ABS_NC:
12664 case R_ARM_THM_MOVT_ABS:
12665 if (info->shared)
12666 {
12667 (*_bfd_error_handler)
12668 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12669 abfd, elf32_arm_howto_table_1[r_type].name,
12670 (h) ? h->root.root.string : "a local symbol");
12671 bfd_set_error (bfd_error_bad_value);
12672 return FALSE;
12673 }
12674
12675 /* Fall through. */
12676 case R_ARM_ABS32:
12677 case R_ARM_ABS32_NOI:
12678 case R_ARM_REL32:
12679 case R_ARM_REL32_NOI:
12680 case R_ARM_MOVW_PREL_NC:
12681 case R_ARM_MOVT_PREL:
12682 case R_ARM_THM_MOVW_PREL_NC:
12683 case R_ARM_THM_MOVT_PREL:
12684
12685 /* Should the interworking branches be listed here? */
12686 if ((info->shared || htab->root.is_relocatable_executable)
12687 && (sec->flags & SEC_ALLOC) != 0)
12688 {
12689 if (h == NULL
12690 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12691 {
12692 /* In shared libraries and relocatable executables,
12693 we treat local relative references as calls;
12694 see the related SYMBOL_CALLS_LOCAL code in
12695 allocate_dynrelocs. */
12696 call_reloc_p = TRUE;
12697 may_need_local_target_p = TRUE;
12698 }
12699 else
12700 /* We are creating a shared library or relocatable
12701 executable, and this is a reloc against a global symbol,
12702 or a non-PC-relative reloc against a local symbol.
12703 We may need to copy the reloc into the output. */
12704 may_become_dynamic_p = TRUE;
12705 }
12706 else
12707 may_need_local_target_p = TRUE;
12708 break;
12709
12710 /* This relocation describes the C++ object vtable hierarchy.
12711 Reconstruct it for later use during GC. */
12712 case R_ARM_GNU_VTINHERIT:
12713 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12714 return FALSE;
12715 break;
12716
12717 /* This relocation describes which C++ vtable entries are actually
12718 used. Record for later use during GC. */
12719 case R_ARM_GNU_VTENTRY:
12720 BFD_ASSERT (h != NULL);
12721 if (h != NULL
12722 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12723 return FALSE;
12724 break;
12725 }
12726
12727 if (h != NULL)
12728 {
12729 if (call_reloc_p)
12730 /* We may need a .plt entry if the function this reloc
12731 refers to is in a different object, regardless of the
12732 symbol's type. We can't tell for sure yet, because
12733 something later might force the symbol local. */
12734 h->needs_plt = 1;
12735 else if (may_need_local_target_p)
12736 /* If this reloc is in a read-only section, we might
12737 need a copy reloc. We can't check reliably at this
12738 stage whether the section is read-only, as input
12739 sections have not yet been mapped to output sections.
12740 Tentatively set the flag for now, and correct in
12741 adjust_dynamic_symbol. */
12742 h->non_got_ref = 1;
12743 }
12744
12745 if (may_need_local_target_p
12746 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12747 {
12748 union gotplt_union *root_plt;
12749 struct arm_plt_info *arm_plt;
12750 struct arm_local_iplt_info *local_iplt;
12751
12752 if (h != NULL)
12753 {
12754 root_plt = &h->plt;
12755 arm_plt = &eh->plt;
12756 }
12757 else
12758 {
12759 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12760 if (local_iplt == NULL)
12761 return FALSE;
12762 root_plt = &local_iplt->root;
12763 arm_plt = &local_iplt->arm;
12764 }
12765
12766 /* If the symbol is a function that doesn't bind locally,
12767 this relocation will need a PLT entry. */
12768 if (root_plt->refcount != -1)
12769 root_plt->refcount += 1;
12770
12771 if (!call_reloc_p)
12772 arm_plt->noncall_refcount++;
12773
12774 /* It's too early to use htab->use_blx here, so we have to
12775 record possible blx references separately from
12776 relocs that definitely need a thumb stub. */
12777
12778 if (r_type == R_ARM_THM_CALL)
12779 arm_plt->maybe_thumb_refcount += 1;
12780
12781 if (r_type == R_ARM_THM_JUMP24
12782 || r_type == R_ARM_THM_JUMP19)
12783 arm_plt->thumb_refcount += 1;
12784 }
12785
12786 if (may_become_dynamic_p)
12787 {
12788 struct elf_dyn_relocs *p, **head;
12789
12790 /* Create a reloc section in dynobj. */
12791 if (sreloc == NULL)
12792 {
12793 sreloc = _bfd_elf_make_dynamic_reloc_section
12794 (sec, dynobj, 2, abfd, ! htab->use_rel);
12795
12796 if (sreloc == NULL)
12797 return FALSE;
12798
12799 /* BPABI objects never have dynamic relocations mapped. */
12800 if (htab->symbian_p)
12801 {
12802 flagword flags;
12803
12804 flags = bfd_get_section_flags (dynobj, sreloc);
12805 flags &= ~(SEC_LOAD | SEC_ALLOC);
12806 bfd_set_section_flags (dynobj, sreloc, flags);
12807 }
12808 }
12809
12810 /* If this is a global symbol, count the number of
12811 relocations we need for this symbol. */
12812 if (h != NULL)
12813 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12814 else
12815 {
12816 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12817 if (head == NULL)
12818 return FALSE;
12819 }
12820
12821 p = *head;
12822 if (p == NULL || p->sec != sec)
12823 {
12824 bfd_size_type amt = sizeof *p;
12825
12826 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12827 if (p == NULL)
12828 return FALSE;
12829 p->next = *head;
12830 *head = p;
12831 p->sec = sec;
12832 p->count = 0;
12833 p->pc_count = 0;
12834 }
12835
12836 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12837 p->pc_count += 1;
12838 p->count += 1;
12839 }
12840 }
12841
12842 return TRUE;
12843 }
12844
12845 /* Unwinding tables are not referenced directly. This pass marks them as
12846 required if the corresponding code section is marked. */
12847
12848 static bfd_boolean
12849 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12850 elf_gc_mark_hook_fn gc_mark_hook)
12851 {
12852 bfd *sub;
12853 Elf_Internal_Shdr **elf_shdrp;
12854 bfd_boolean again;
12855
12856 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12857
12858 /* Marking EH data may cause additional code sections to be marked,
12859 requiring multiple passes. */
12860 again = TRUE;
12861 while (again)
12862 {
12863 again = FALSE;
12864 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12865 {
12866 asection *o;
12867
12868 if (! is_arm_elf (sub))
12869 continue;
12870
12871 elf_shdrp = elf_elfsections (sub);
12872 for (o = sub->sections; o != NULL; o = o->next)
12873 {
12874 Elf_Internal_Shdr *hdr;
12875
12876 hdr = &elf_section_data (o)->this_hdr;
12877 if (hdr->sh_type == SHT_ARM_EXIDX
12878 && hdr->sh_link
12879 && hdr->sh_link < elf_numsections (sub)
12880 && !o->gc_mark
12881 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12882 {
12883 again = TRUE;
12884 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12885 return FALSE;
12886 }
12887 }
12888 }
12889 }
12890
12891 return TRUE;
12892 }
12893
12894 /* Treat mapping symbols as special target symbols. */
12895
12896 static bfd_boolean
12897 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12898 {
12899 return bfd_is_arm_special_symbol_name (sym->name,
12900 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12901 }
12902
12903 /* This is a copy of elf_find_function() from elf.c except that
12904 ARM mapping symbols are ignored when looking for function names
12905 and STT_ARM_TFUNC is considered to a function type. */
12906
12907 static bfd_boolean
12908 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
12909 asection * section,
12910 asymbol ** symbols,
12911 bfd_vma offset,
12912 const char ** filename_ptr,
12913 const char ** functionname_ptr)
12914 {
12915 const char * filename = NULL;
12916 asymbol * func = NULL;
12917 bfd_vma low_func = 0;
12918 asymbol ** p;
12919
12920 for (p = symbols; *p != NULL; p++)
12921 {
12922 elf_symbol_type *q;
12923
12924 q = (elf_symbol_type *) *p;
12925
12926 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12927 {
12928 default:
12929 break;
12930 case STT_FILE:
12931 filename = bfd_asymbol_name (&q->symbol);
12932 break;
12933 case STT_FUNC:
12934 case STT_ARM_TFUNC:
12935 case STT_NOTYPE:
12936 /* Skip mapping symbols. */
12937 if ((q->symbol.flags & BSF_LOCAL)
12938 && bfd_is_arm_special_symbol_name (q->symbol.name,
12939 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12940 continue;
12941 /* Fall through. */
12942 if (bfd_get_section (&q->symbol) == section
12943 && q->symbol.value >= low_func
12944 && q->symbol.value <= offset)
12945 {
12946 func = (asymbol *) q;
12947 low_func = q->symbol.value;
12948 }
12949 break;
12950 }
12951 }
12952
12953 if (func == NULL)
12954 return FALSE;
12955
12956 if (filename_ptr)
12957 *filename_ptr = filename;
12958 if (functionname_ptr)
12959 *functionname_ptr = bfd_asymbol_name (func);
12960
12961 return TRUE;
12962 }
12963
12964
12965 /* Find the nearest line to a particular section and offset, for error
12966 reporting. This code is a duplicate of the code in elf.c, except
12967 that it uses arm_elf_find_function. */
12968
12969 static bfd_boolean
12970 elf32_arm_find_nearest_line (bfd * abfd,
12971 asection * section,
12972 asymbol ** symbols,
12973 bfd_vma offset,
12974 const char ** filename_ptr,
12975 const char ** functionname_ptr,
12976 unsigned int * line_ptr)
12977 {
12978 bfd_boolean found = FALSE;
12979
12980 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12981
12982 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12983 section, symbols, offset,
12984 filename_ptr, functionname_ptr,
12985 line_ptr, NULL, 0,
12986 & elf_tdata (abfd)->dwarf2_find_line_info))
12987 {
12988 if (!*functionname_ptr)
12989 arm_elf_find_function (abfd, section, symbols, offset,
12990 *filename_ptr ? NULL : filename_ptr,
12991 functionname_ptr);
12992
12993 return TRUE;
12994 }
12995
12996 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12997 & found, filename_ptr,
12998 functionname_ptr, line_ptr,
12999 & elf_tdata (abfd)->line_info))
13000 return FALSE;
13001
13002 if (found && (*functionname_ptr || *line_ptr))
13003 return TRUE;
13004
13005 if (symbols == NULL)
13006 return FALSE;
13007
13008 if (! arm_elf_find_function (abfd, section, symbols, offset,
13009 filename_ptr, functionname_ptr))
13010 return FALSE;
13011
13012 *line_ptr = 0;
13013 return TRUE;
13014 }
13015
13016 static bfd_boolean
13017 elf32_arm_find_inliner_info (bfd * abfd,
13018 const char ** filename_ptr,
13019 const char ** functionname_ptr,
13020 unsigned int * line_ptr)
13021 {
13022 bfd_boolean found;
13023 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13024 functionname_ptr, line_ptr,
13025 & elf_tdata (abfd)->dwarf2_find_line_info);
13026 return found;
13027 }
13028
13029 /* Adjust a symbol defined by a dynamic object and referenced by a
13030 regular object. The current definition is in some section of the
13031 dynamic object, but we're not including those sections. We have to
13032 change the definition to something the rest of the link can
13033 understand. */
13034
13035 static bfd_boolean
13036 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
13037 struct elf_link_hash_entry * h)
13038 {
13039 bfd * dynobj;
13040 asection * s;
13041 struct elf32_arm_link_hash_entry * eh;
13042 struct elf32_arm_link_hash_table *globals;
13043
13044 globals = elf32_arm_hash_table (info);
13045 if (globals == NULL)
13046 return FALSE;
13047
13048 dynobj = elf_hash_table (info)->dynobj;
13049
13050 /* Make sure we know what is going on here. */
13051 BFD_ASSERT (dynobj != NULL
13052 && (h->needs_plt
13053 || h->type == STT_GNU_IFUNC
13054 || h->u.weakdef != NULL
13055 || (h->def_dynamic
13056 && h->ref_regular
13057 && !h->def_regular)));
13058
13059 eh = (struct elf32_arm_link_hash_entry *) h;
13060
13061 /* If this is a function, put it in the procedure linkage table. We
13062 will fill in the contents of the procedure linkage table later,
13063 when we know the address of the .got section. */
13064 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
13065 {
13066 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
13067 symbol binds locally. */
13068 if (h->plt.refcount <= 0
13069 || (h->type != STT_GNU_IFUNC
13070 && (SYMBOL_CALLS_LOCAL (info, h)
13071 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
13072 && h->root.type == bfd_link_hash_undefweak))))
13073 {
13074 /* This case can occur if we saw a PLT32 reloc in an input
13075 file, but the symbol was never referred to by a dynamic
13076 object, or if all references were garbage collected. In
13077 such a case, we don't actually need to build a procedure
13078 linkage table, and we can just do a PC24 reloc instead. */
13079 h->plt.offset = (bfd_vma) -1;
13080 eh->plt.thumb_refcount = 0;
13081 eh->plt.maybe_thumb_refcount = 0;
13082 eh->plt.noncall_refcount = 0;
13083 h->needs_plt = 0;
13084 }
13085
13086 return TRUE;
13087 }
13088 else
13089 {
13090 /* It's possible that we incorrectly decided a .plt reloc was
13091 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13092 in check_relocs. We can't decide accurately between function
13093 and non-function syms in check-relocs; Objects loaded later in
13094 the link may change h->type. So fix it now. */
13095 h->plt.offset = (bfd_vma) -1;
13096 eh->plt.thumb_refcount = 0;
13097 eh->plt.maybe_thumb_refcount = 0;
13098 eh->plt.noncall_refcount = 0;
13099 }
13100
13101 /* If this is a weak symbol, and there is a real definition, the
13102 processor independent code will have arranged for us to see the
13103 real definition first, and we can just use the same value. */
13104 if (h->u.weakdef != NULL)
13105 {
13106 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13107 || h->u.weakdef->root.type == bfd_link_hash_defweak);
13108 h->root.u.def.section = h->u.weakdef->root.u.def.section;
13109 h->root.u.def.value = h->u.weakdef->root.u.def.value;
13110 return TRUE;
13111 }
13112
13113 /* If there are no non-GOT references, we do not need a copy
13114 relocation. */
13115 if (!h->non_got_ref)
13116 return TRUE;
13117
13118 /* This is a reference to a symbol defined by a dynamic object which
13119 is not a function. */
13120
13121 /* If we are creating a shared library, we must presume that the
13122 only references to the symbol are via the global offset table.
13123 For such cases we need not do anything here; the relocations will
13124 be handled correctly by relocate_section. Relocatable executables
13125 can reference data in shared objects directly, so we don't need to
13126 do anything here. */
13127 if (info->shared || globals->root.is_relocatable_executable)
13128 return TRUE;
13129
13130 /* We must allocate the symbol in our .dynbss section, which will
13131 become part of the .bss section of the executable. There will be
13132 an entry for this symbol in the .dynsym section. The dynamic
13133 object will contain position independent code, so all references
13134 from the dynamic object to this symbol will go through the global
13135 offset table. The dynamic linker will use the .dynsym entry to
13136 determine the address it must put in the global offset table, so
13137 both the dynamic object and the regular object will refer to the
13138 same memory location for the variable. */
13139 s = bfd_get_linker_section (dynobj, ".dynbss");
13140 BFD_ASSERT (s != NULL);
13141
13142 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13143 copy the initial value out of the dynamic object and into the
13144 runtime process image. We need to remember the offset into the
13145 .rel(a).bss section we are going to use. */
13146 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
13147 {
13148 asection *srel;
13149
13150 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
13151 elf32_arm_allocate_dynrelocs (info, srel, 1);
13152 h->needs_copy = 1;
13153 }
13154
13155 return _bfd_elf_adjust_dynamic_copy (h, s);
13156 }
13157
13158 /* Allocate space in .plt, .got and associated reloc sections for
13159 dynamic relocs. */
13160
13161 static bfd_boolean
13162 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
13163 {
13164 struct bfd_link_info *info;
13165 struct elf32_arm_link_hash_table *htab;
13166 struct elf32_arm_link_hash_entry *eh;
13167 struct elf_dyn_relocs *p;
13168
13169 if (h->root.type == bfd_link_hash_indirect)
13170 return TRUE;
13171
13172 eh = (struct elf32_arm_link_hash_entry *) h;
13173
13174 info = (struct bfd_link_info *) inf;
13175 htab = elf32_arm_hash_table (info);
13176 if (htab == NULL)
13177 return FALSE;
13178
13179 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
13180 && h->plt.refcount > 0)
13181 {
13182 /* Make sure this symbol is output as a dynamic symbol.
13183 Undefined weak syms won't yet be marked as dynamic. */
13184 if (h->dynindx == -1
13185 && !h->forced_local)
13186 {
13187 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13188 return FALSE;
13189 }
13190
13191 /* If the call in the PLT entry binds locally, the associated
13192 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13193 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13194 than the .plt section. */
13195 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13196 {
13197 eh->is_iplt = 1;
13198 if (eh->plt.noncall_refcount == 0
13199 && SYMBOL_REFERENCES_LOCAL (info, h))
13200 /* All non-call references can be resolved directly.
13201 This means that they can (and in some cases, must)
13202 resolve directly to the run-time target, rather than
13203 to the PLT. That in turns means that any .got entry
13204 would be equal to the .igot.plt entry, so there's
13205 no point having both. */
13206 h->got.refcount = 0;
13207 }
13208
13209 if (info->shared
13210 || eh->is_iplt
13211 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
13212 {
13213 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
13214
13215 /* If this symbol is not defined in a regular file, and we are
13216 not generating a shared library, then set the symbol to this
13217 location in the .plt. This is required to make function
13218 pointers compare as equal between the normal executable and
13219 the shared library. */
13220 if (! info->shared
13221 && !h->def_regular)
13222 {
13223 h->root.u.def.section = htab->root.splt;
13224 h->root.u.def.value = h->plt.offset;
13225
13226 /* Make sure the function is not marked as Thumb, in case
13227 it is the target of an ABS32 relocation, which will
13228 point to the PLT entry. */
13229 h->target_internal = ST_BRANCH_TO_ARM;
13230 }
13231
13232 htab->next_tls_desc_index++;
13233
13234 /* VxWorks executables have a second set of relocations for
13235 each PLT entry. They go in a separate relocation section,
13236 which is processed by the kernel loader. */
13237 if (htab->vxworks_p && !info->shared)
13238 {
13239 /* There is a relocation for the initial PLT entry:
13240 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13241 if (h->plt.offset == htab->plt_header_size)
13242 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
13243
13244 /* There are two extra relocations for each subsequent
13245 PLT entry: an R_ARM_32 relocation for the GOT entry,
13246 and an R_ARM_32 relocation for the PLT entry. */
13247 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
13248 }
13249 }
13250 else
13251 {
13252 h->plt.offset = (bfd_vma) -1;
13253 h->needs_plt = 0;
13254 }
13255 }
13256 else
13257 {
13258 h->plt.offset = (bfd_vma) -1;
13259 h->needs_plt = 0;
13260 }
13261
13262 eh = (struct elf32_arm_link_hash_entry *) h;
13263 eh->tlsdesc_got = (bfd_vma) -1;
13264
13265 if (h->got.refcount > 0)
13266 {
13267 asection *s;
13268 bfd_boolean dyn;
13269 int tls_type = elf32_arm_hash_entry (h)->tls_type;
13270 int indx;
13271
13272 /* Make sure this symbol is output as a dynamic symbol.
13273 Undefined weak syms won't yet be marked as dynamic. */
13274 if (h->dynindx == -1
13275 && !h->forced_local)
13276 {
13277 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13278 return FALSE;
13279 }
13280
13281 if (!htab->symbian_p)
13282 {
13283 s = htab->root.sgot;
13284 h->got.offset = s->size;
13285
13286 if (tls_type == GOT_UNKNOWN)
13287 abort ();
13288
13289 if (tls_type == GOT_NORMAL)
13290 /* Non-TLS symbols need one GOT slot. */
13291 s->size += 4;
13292 else
13293 {
13294 if (tls_type & GOT_TLS_GDESC)
13295 {
13296 /* R_ARM_TLS_DESC needs 2 GOT slots. */
13297 eh->tlsdesc_got
13298 = (htab->root.sgotplt->size
13299 - elf32_arm_compute_jump_table_size (htab));
13300 htab->root.sgotplt->size += 8;
13301 h->got.offset = (bfd_vma) -2;
13302 /* plt.got_offset needs to know there's a TLS_DESC
13303 reloc in the middle of .got.plt. */
13304 htab->num_tls_desc++;
13305 }
13306
13307 if (tls_type & GOT_TLS_GD)
13308 {
13309 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13310 the symbol is both GD and GDESC, got.offset may
13311 have been overwritten. */
13312 h->got.offset = s->size;
13313 s->size += 8;
13314 }
13315
13316 if (tls_type & GOT_TLS_IE)
13317 /* R_ARM_TLS_IE32 needs one GOT slot. */
13318 s->size += 4;
13319 }
13320
13321 dyn = htab->root.dynamic_sections_created;
13322
13323 indx = 0;
13324 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13325 && (!info->shared
13326 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13327 indx = h->dynindx;
13328
13329 if (tls_type != GOT_NORMAL
13330 && (info->shared || indx != 0)
13331 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13332 || h->root.type != bfd_link_hash_undefweak))
13333 {
13334 if (tls_type & GOT_TLS_IE)
13335 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13336
13337 if (tls_type & GOT_TLS_GD)
13338 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13339
13340 if (tls_type & GOT_TLS_GDESC)
13341 {
13342 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13343 /* GDESC needs a trampoline to jump to. */
13344 htab->tls_trampoline = -1;
13345 }
13346
13347 /* Only GD needs it. GDESC just emits one relocation per
13348 2 entries. */
13349 if ((tls_type & GOT_TLS_GD) && indx != 0)
13350 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13351 }
13352 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
13353 {
13354 if (htab->root.dynamic_sections_created)
13355 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13356 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13357 }
13358 else if (h->type == STT_GNU_IFUNC
13359 && eh->plt.noncall_refcount == 0)
13360 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13361 they all resolve dynamically instead. Reserve room for the
13362 GOT entry's R_ARM_IRELATIVE relocation. */
13363 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13364 else if (info->shared && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13365 || h->root.type != bfd_link_hash_undefweak))
13366 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13367 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13368 }
13369 }
13370 else
13371 h->got.offset = (bfd_vma) -1;
13372
13373 /* Allocate stubs for exported Thumb functions on v4t. */
13374 if (!htab->use_blx && h->dynindx != -1
13375 && h->def_regular
13376 && h->target_internal == ST_BRANCH_TO_THUMB
13377 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13378 {
13379 struct elf_link_hash_entry * th;
13380 struct bfd_link_hash_entry * bh;
13381 struct elf_link_hash_entry * myh;
13382 char name[1024];
13383 asection *s;
13384 bh = NULL;
13385 /* Create a new symbol to regist the real location of the function. */
13386 s = h->root.u.def.section;
13387 sprintf (name, "__real_%s", h->root.root.string);
13388 _bfd_generic_link_add_one_symbol (info, s->owner,
13389 name, BSF_GLOBAL, s,
13390 h->root.u.def.value,
13391 NULL, TRUE, FALSE, &bh);
13392
13393 myh = (struct elf_link_hash_entry *) bh;
13394 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13395 myh->forced_local = 1;
13396 myh->target_internal = ST_BRANCH_TO_THUMB;
13397 eh->export_glue = myh;
13398 th = record_arm_to_thumb_glue (info, h);
13399 /* Point the symbol at the stub. */
13400 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13401 h->target_internal = ST_BRANCH_TO_ARM;
13402 h->root.u.def.section = th->root.u.def.section;
13403 h->root.u.def.value = th->root.u.def.value & ~1;
13404 }
13405
13406 if (eh->dyn_relocs == NULL)
13407 return TRUE;
13408
13409 /* In the shared -Bsymbolic case, discard space allocated for
13410 dynamic pc-relative relocs against symbols which turn out to be
13411 defined in regular objects. For the normal shared case, discard
13412 space for pc-relative relocs that have become local due to symbol
13413 visibility changes. */
13414
13415 if (info->shared || htab->root.is_relocatable_executable)
13416 {
13417 /* The only relocs that use pc_count are R_ARM_REL32 and
13418 R_ARM_REL32_NOI, which will appear on something like
13419 ".long foo - .". We want calls to protected symbols to resolve
13420 directly to the function rather than going via the plt. If people
13421 want function pointer comparisons to work as expected then they
13422 should avoid writing assembly like ".long foo - .". */
13423 if (SYMBOL_CALLS_LOCAL (info, h))
13424 {
13425 struct elf_dyn_relocs **pp;
13426
13427 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13428 {
13429 p->count -= p->pc_count;
13430 p->pc_count = 0;
13431 if (p->count == 0)
13432 *pp = p->next;
13433 else
13434 pp = &p->next;
13435 }
13436 }
13437
13438 if (htab->vxworks_p)
13439 {
13440 struct elf_dyn_relocs **pp;
13441
13442 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13443 {
13444 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13445 *pp = p->next;
13446 else
13447 pp = &p->next;
13448 }
13449 }
13450
13451 /* Also discard relocs on undefined weak syms with non-default
13452 visibility. */
13453 if (eh->dyn_relocs != NULL
13454 && h->root.type == bfd_link_hash_undefweak)
13455 {
13456 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13457 eh->dyn_relocs = NULL;
13458
13459 /* Make sure undefined weak symbols are output as a dynamic
13460 symbol in PIEs. */
13461 else if (h->dynindx == -1
13462 && !h->forced_local)
13463 {
13464 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13465 return FALSE;
13466 }
13467 }
13468
13469 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13470 && h->root.type == bfd_link_hash_new)
13471 {
13472 /* Output absolute symbols so that we can create relocations
13473 against them. For normal symbols we output a relocation
13474 against the section that contains them. */
13475 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13476 return FALSE;
13477 }
13478
13479 }
13480 else
13481 {
13482 /* For the non-shared case, discard space for relocs against
13483 symbols which turn out to need copy relocs or are not
13484 dynamic. */
13485
13486 if (!h->non_got_ref
13487 && ((h->def_dynamic
13488 && !h->def_regular)
13489 || (htab->root.dynamic_sections_created
13490 && (h->root.type == bfd_link_hash_undefweak
13491 || h->root.type == bfd_link_hash_undefined))))
13492 {
13493 /* Make sure this symbol is output as a dynamic symbol.
13494 Undefined weak syms won't yet be marked as dynamic. */
13495 if (h->dynindx == -1
13496 && !h->forced_local)
13497 {
13498 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13499 return FALSE;
13500 }
13501
13502 /* If that succeeded, we know we'll be keeping all the
13503 relocs. */
13504 if (h->dynindx != -1)
13505 goto keep;
13506 }
13507
13508 eh->dyn_relocs = NULL;
13509
13510 keep: ;
13511 }
13512
13513 /* Finally, allocate space. */
13514 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13515 {
13516 asection *sreloc = elf_section_data (p->sec)->sreloc;
13517 if (h->type == STT_GNU_IFUNC
13518 && eh->plt.noncall_refcount == 0
13519 && SYMBOL_REFERENCES_LOCAL (info, h))
13520 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13521 else
13522 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13523 }
13524
13525 return TRUE;
13526 }
13527
13528 /* Find any dynamic relocs that apply to read-only sections. */
13529
13530 static bfd_boolean
13531 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13532 {
13533 struct elf32_arm_link_hash_entry * eh;
13534 struct elf_dyn_relocs * p;
13535
13536 eh = (struct elf32_arm_link_hash_entry *) h;
13537 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13538 {
13539 asection *s = p->sec;
13540
13541 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13542 {
13543 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13544
13545 info->flags |= DF_TEXTREL;
13546
13547 /* Not an error, just cut short the traversal. */
13548 return FALSE;
13549 }
13550 }
13551 return TRUE;
13552 }
13553
13554 void
13555 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13556 int byteswap_code)
13557 {
13558 struct elf32_arm_link_hash_table *globals;
13559
13560 globals = elf32_arm_hash_table (info);
13561 if (globals == NULL)
13562 return;
13563
13564 globals->byteswap_code = byteswap_code;
13565 }
13566
13567 /* Set the sizes of the dynamic sections. */
13568
13569 static bfd_boolean
13570 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13571 struct bfd_link_info * info)
13572 {
13573 bfd * dynobj;
13574 asection * s;
13575 bfd_boolean plt;
13576 bfd_boolean relocs;
13577 bfd *ibfd;
13578 struct elf32_arm_link_hash_table *htab;
13579
13580 htab = elf32_arm_hash_table (info);
13581 if (htab == NULL)
13582 return FALSE;
13583
13584 dynobj = elf_hash_table (info)->dynobj;
13585 BFD_ASSERT (dynobj != NULL);
13586 check_use_blx (htab);
13587
13588 if (elf_hash_table (info)->dynamic_sections_created)
13589 {
13590 /* Set the contents of the .interp section to the interpreter. */
13591 if (info->executable)
13592 {
13593 s = bfd_get_linker_section (dynobj, ".interp");
13594 BFD_ASSERT (s != NULL);
13595 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13596 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13597 }
13598 }
13599
13600 /* Set up .got offsets for local syms, and space for local dynamic
13601 relocs. */
13602 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13603 {
13604 bfd_signed_vma *local_got;
13605 bfd_signed_vma *end_local_got;
13606 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13607 char *local_tls_type;
13608 bfd_vma *local_tlsdesc_gotent;
13609 bfd_size_type locsymcount;
13610 Elf_Internal_Shdr *symtab_hdr;
13611 asection *srel;
13612 bfd_boolean is_vxworks = htab->vxworks_p;
13613 unsigned int symndx;
13614
13615 if (! is_arm_elf (ibfd))
13616 continue;
13617
13618 for (s = ibfd->sections; s != NULL; s = s->next)
13619 {
13620 struct elf_dyn_relocs *p;
13621
13622 for (p = (struct elf_dyn_relocs *)
13623 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13624 {
13625 if (!bfd_is_abs_section (p->sec)
13626 && bfd_is_abs_section (p->sec->output_section))
13627 {
13628 /* Input section has been discarded, either because
13629 it is a copy of a linkonce section or due to
13630 linker script /DISCARD/, so we'll be discarding
13631 the relocs too. */
13632 }
13633 else if (is_vxworks
13634 && strcmp (p->sec->output_section->name,
13635 ".tls_vars") == 0)
13636 {
13637 /* Relocations in vxworks .tls_vars sections are
13638 handled specially by the loader. */
13639 }
13640 else if (p->count != 0)
13641 {
13642 srel = elf_section_data (p->sec)->sreloc;
13643 elf32_arm_allocate_dynrelocs (info, srel, p->count);
13644 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13645 info->flags |= DF_TEXTREL;
13646 }
13647 }
13648 }
13649
13650 local_got = elf_local_got_refcounts (ibfd);
13651 if (!local_got)
13652 continue;
13653
13654 symtab_hdr = & elf_symtab_hdr (ibfd);
13655 locsymcount = symtab_hdr->sh_info;
13656 end_local_got = local_got + locsymcount;
13657 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13658 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13659 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13660 symndx = 0;
13661 s = htab->root.sgot;
13662 srel = htab->root.srelgot;
13663 for (; local_got < end_local_got;
13664 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13665 ++local_tlsdesc_gotent, ++symndx)
13666 {
13667 *local_tlsdesc_gotent = (bfd_vma) -1;
13668 local_iplt = *local_iplt_ptr;
13669 if (local_iplt != NULL)
13670 {
13671 struct elf_dyn_relocs *p;
13672
13673 if (local_iplt->root.refcount > 0)
13674 {
13675 elf32_arm_allocate_plt_entry (info, TRUE,
13676 &local_iplt->root,
13677 &local_iplt->arm);
13678 if (local_iplt->arm.noncall_refcount == 0)
13679 /* All references to the PLT are calls, so all
13680 non-call references can resolve directly to the
13681 run-time target. This means that the .got entry
13682 would be the same as the .igot.plt entry, so there's
13683 no point creating both. */
13684 *local_got = 0;
13685 }
13686 else
13687 {
13688 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13689 local_iplt->root.offset = (bfd_vma) -1;
13690 }
13691
13692 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13693 {
13694 asection *psrel;
13695
13696 psrel = elf_section_data (p->sec)->sreloc;
13697 if (local_iplt->arm.noncall_refcount == 0)
13698 elf32_arm_allocate_irelocs (info, psrel, p->count);
13699 else
13700 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13701 }
13702 }
13703 if (*local_got > 0)
13704 {
13705 Elf_Internal_Sym *isym;
13706
13707 *local_got = s->size;
13708 if (*local_tls_type & GOT_TLS_GD)
13709 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13710 s->size += 8;
13711 if (*local_tls_type & GOT_TLS_GDESC)
13712 {
13713 *local_tlsdesc_gotent = htab->root.sgotplt->size
13714 - elf32_arm_compute_jump_table_size (htab);
13715 htab->root.sgotplt->size += 8;
13716 *local_got = (bfd_vma) -2;
13717 /* plt.got_offset needs to know there's a TLS_DESC
13718 reloc in the middle of .got.plt. */
13719 htab->num_tls_desc++;
13720 }
13721 if (*local_tls_type & GOT_TLS_IE)
13722 s->size += 4;
13723
13724 if (*local_tls_type & GOT_NORMAL)
13725 {
13726 /* If the symbol is both GD and GDESC, *local_got
13727 may have been overwritten. */
13728 *local_got = s->size;
13729 s->size += 4;
13730 }
13731
13732 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13733 if (isym == NULL)
13734 return FALSE;
13735
13736 /* If all references to an STT_GNU_IFUNC PLT are calls,
13737 then all non-call references, including this GOT entry,
13738 resolve directly to the run-time target. */
13739 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13740 && (local_iplt == NULL
13741 || local_iplt->arm.noncall_refcount == 0))
13742 elf32_arm_allocate_irelocs (info, srel, 1);
13743 else if (info->shared || output_bfd->flags & DYNAMIC)
13744 {
13745 if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13746 || *local_tls_type & GOT_TLS_GD)
13747 elf32_arm_allocate_dynrelocs (info, srel, 1);
13748
13749 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13750 {
13751 elf32_arm_allocate_dynrelocs (info,
13752 htab->root.srelplt, 1);
13753 htab->tls_trampoline = -1;
13754 }
13755 }
13756 }
13757 else
13758 *local_got = (bfd_vma) -1;
13759 }
13760 }
13761
13762 if (htab->tls_ldm_got.refcount > 0)
13763 {
13764 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13765 for R_ARM_TLS_LDM32 relocations. */
13766 htab->tls_ldm_got.offset = htab->root.sgot->size;
13767 htab->root.sgot->size += 8;
13768 if (info->shared)
13769 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13770 }
13771 else
13772 htab->tls_ldm_got.offset = -1;
13773
13774 /* Allocate global sym .plt and .got entries, and space for global
13775 sym dynamic relocs. */
13776 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13777
13778 /* Here we rummage through the found bfds to collect glue information. */
13779 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13780 {
13781 if (! is_arm_elf (ibfd))
13782 continue;
13783
13784 /* Initialise mapping tables for code/data. */
13785 bfd_elf32_arm_init_maps (ibfd);
13786
13787 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13788 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13789 /* xgettext:c-format */
13790 _bfd_error_handler (_("Errors encountered processing file %s"),
13791 ibfd->filename);
13792 }
13793
13794 /* Allocate space for the glue sections now that we've sized them. */
13795 bfd_elf32_arm_allocate_interworking_sections (info);
13796
13797 /* For every jump slot reserved in the sgotplt, reloc_count is
13798 incremented. However, when we reserve space for TLS descriptors,
13799 it's not incremented, so in order to compute the space reserved
13800 for them, it suffices to multiply the reloc count by the jump
13801 slot size. */
13802 if (htab->root.srelplt)
13803 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13804
13805 if (htab->tls_trampoline)
13806 {
13807 if (htab->root.splt->size == 0)
13808 htab->root.splt->size += htab->plt_header_size;
13809
13810 htab->tls_trampoline = htab->root.splt->size;
13811 htab->root.splt->size += htab->plt_entry_size;
13812
13813 /* If we're not using lazy TLS relocations, don't generate the
13814 PLT and GOT entries they require. */
13815 if (!(info->flags & DF_BIND_NOW))
13816 {
13817 htab->dt_tlsdesc_got = htab->root.sgot->size;
13818 htab->root.sgot->size += 4;
13819
13820 htab->dt_tlsdesc_plt = htab->root.splt->size;
13821 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13822 }
13823 }
13824
13825 /* The check_relocs and adjust_dynamic_symbol entry points have
13826 determined the sizes of the various dynamic sections. Allocate
13827 memory for them. */
13828 plt = FALSE;
13829 relocs = FALSE;
13830 for (s = dynobj->sections; s != NULL; s = s->next)
13831 {
13832 const char * name;
13833
13834 if ((s->flags & SEC_LINKER_CREATED) == 0)
13835 continue;
13836
13837 /* It's OK to base decisions on the section name, because none
13838 of the dynobj section names depend upon the input files. */
13839 name = bfd_get_section_name (dynobj, s);
13840
13841 if (s == htab->root.splt)
13842 {
13843 /* Remember whether there is a PLT. */
13844 plt = s->size != 0;
13845 }
13846 else if (CONST_STRNEQ (name, ".rel"))
13847 {
13848 if (s->size != 0)
13849 {
13850 /* Remember whether there are any reloc sections other
13851 than .rel(a).plt and .rela.plt.unloaded. */
13852 if (s != htab->root.srelplt && s != htab->srelplt2)
13853 relocs = TRUE;
13854
13855 /* We use the reloc_count field as a counter if we need
13856 to copy relocs into the output file. */
13857 s->reloc_count = 0;
13858 }
13859 }
13860 else if (s != htab->root.sgot
13861 && s != htab->root.sgotplt
13862 && s != htab->root.iplt
13863 && s != htab->root.igotplt
13864 && s != htab->sdynbss)
13865 {
13866 /* It's not one of our sections, so don't allocate space. */
13867 continue;
13868 }
13869
13870 if (s->size == 0)
13871 {
13872 /* If we don't need this section, strip it from the
13873 output file. This is mostly to handle .rel(a).bss and
13874 .rel(a).plt. We must create both sections in
13875 create_dynamic_sections, because they must be created
13876 before the linker maps input sections to output
13877 sections. The linker does that before
13878 adjust_dynamic_symbol is called, and it is that
13879 function which decides whether anything needs to go
13880 into these sections. */
13881 s->flags |= SEC_EXCLUDE;
13882 continue;
13883 }
13884
13885 if ((s->flags & SEC_HAS_CONTENTS) == 0)
13886 continue;
13887
13888 /* Allocate memory for the section contents. */
13889 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13890 if (s->contents == NULL)
13891 return FALSE;
13892 }
13893
13894 if (elf_hash_table (info)->dynamic_sections_created)
13895 {
13896 /* Add some entries to the .dynamic section. We fill in the
13897 values later, in elf32_arm_finish_dynamic_sections, but we
13898 must add the entries now so that we get the correct size for
13899 the .dynamic section. The DT_DEBUG entry is filled in by the
13900 dynamic linker and used by the debugger. */
13901 #define add_dynamic_entry(TAG, VAL) \
13902 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13903
13904 if (info->executable)
13905 {
13906 if (!add_dynamic_entry (DT_DEBUG, 0))
13907 return FALSE;
13908 }
13909
13910 if (plt)
13911 {
13912 if ( !add_dynamic_entry (DT_PLTGOT, 0)
13913 || !add_dynamic_entry (DT_PLTRELSZ, 0)
13914 || !add_dynamic_entry (DT_PLTREL,
13915 htab->use_rel ? DT_REL : DT_RELA)
13916 || !add_dynamic_entry (DT_JMPREL, 0))
13917 return FALSE;
13918
13919 if (htab->dt_tlsdesc_plt &&
13920 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
13921 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13922 return FALSE;
13923 }
13924
13925 if (relocs)
13926 {
13927 if (htab->use_rel)
13928 {
13929 if (!add_dynamic_entry (DT_REL, 0)
13930 || !add_dynamic_entry (DT_RELSZ, 0)
13931 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13932 return FALSE;
13933 }
13934 else
13935 {
13936 if (!add_dynamic_entry (DT_RELA, 0)
13937 || !add_dynamic_entry (DT_RELASZ, 0)
13938 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13939 return FALSE;
13940 }
13941 }
13942
13943 /* If any dynamic relocs apply to a read-only section,
13944 then we need a DT_TEXTREL entry. */
13945 if ((info->flags & DF_TEXTREL) == 0)
13946 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13947 info);
13948
13949 if ((info->flags & DF_TEXTREL) != 0)
13950 {
13951 if (!add_dynamic_entry (DT_TEXTREL, 0))
13952 return FALSE;
13953 }
13954 if (htab->vxworks_p
13955 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13956 return FALSE;
13957 }
13958 #undef add_dynamic_entry
13959
13960 return TRUE;
13961 }
13962
13963 /* Size sections even though they're not dynamic. We use it to setup
13964 _TLS_MODULE_BASE_, if needed. */
13965
13966 static bfd_boolean
13967 elf32_arm_always_size_sections (bfd *output_bfd,
13968 struct bfd_link_info *info)
13969 {
13970 asection *tls_sec;
13971
13972 if (info->relocatable)
13973 return TRUE;
13974
13975 tls_sec = elf_hash_table (info)->tls_sec;
13976
13977 if (tls_sec)
13978 {
13979 struct elf_link_hash_entry *tlsbase;
13980
13981 tlsbase = elf_link_hash_lookup
13982 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13983
13984 if (tlsbase)
13985 {
13986 struct bfd_link_hash_entry *bh = NULL;
13987 const struct elf_backend_data *bed
13988 = get_elf_backend_data (output_bfd);
13989
13990 if (!(_bfd_generic_link_add_one_symbol
13991 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13992 tls_sec, 0, NULL, FALSE,
13993 bed->collect, &bh)))
13994 return FALSE;
13995
13996 tlsbase->type = STT_TLS;
13997 tlsbase = (struct elf_link_hash_entry *)bh;
13998 tlsbase->def_regular = 1;
13999 tlsbase->other = STV_HIDDEN;
14000 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
14001 }
14002 }
14003 return TRUE;
14004 }
14005
14006 /* Finish up dynamic symbol handling. We set the contents of various
14007 dynamic sections here. */
14008
14009 static bfd_boolean
14010 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
14011 struct bfd_link_info * info,
14012 struct elf_link_hash_entry * h,
14013 Elf_Internal_Sym * sym)
14014 {
14015 struct elf32_arm_link_hash_table *htab;
14016 struct elf32_arm_link_hash_entry *eh;
14017
14018 htab = elf32_arm_hash_table (info);
14019 if (htab == NULL)
14020 return FALSE;
14021
14022 eh = (struct elf32_arm_link_hash_entry *) h;
14023
14024 if (h->plt.offset != (bfd_vma) -1)
14025 {
14026 if (!eh->is_iplt)
14027 {
14028 BFD_ASSERT (h->dynindx != -1);
14029 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
14030 h->dynindx, 0))
14031 return FALSE;
14032 }
14033
14034 if (!h->def_regular)
14035 {
14036 /* Mark the symbol as undefined, rather than as defined in
14037 the .plt section. Leave the value alone. */
14038 sym->st_shndx = SHN_UNDEF;
14039 /* If the symbol is weak, we do need to clear the value.
14040 Otherwise, the PLT entry would provide a definition for
14041 the symbol even if the symbol wasn't defined anywhere,
14042 and so the symbol would never be NULL. */
14043 if (!h->ref_regular_nonweak)
14044 sym->st_value = 0;
14045 }
14046 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
14047 {
14048 /* At least one non-call relocation references this .iplt entry,
14049 so the .iplt entry is the function's canonical address. */
14050 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
14051 sym->st_target_internal = ST_BRANCH_TO_ARM;
14052 sym->st_shndx = (_bfd_elf_section_from_bfd_section
14053 (output_bfd, htab->root.iplt->output_section));
14054 sym->st_value = (h->plt.offset
14055 + htab->root.iplt->output_section->vma
14056 + htab->root.iplt->output_offset);
14057 }
14058 }
14059
14060 if (h->needs_copy)
14061 {
14062 asection * s;
14063 Elf_Internal_Rela rel;
14064
14065 /* This symbol needs a copy reloc. Set it up. */
14066 BFD_ASSERT (h->dynindx != -1
14067 && (h->root.type == bfd_link_hash_defined
14068 || h->root.type == bfd_link_hash_defweak));
14069
14070 s = htab->srelbss;
14071 BFD_ASSERT (s != NULL);
14072
14073 rel.r_addend = 0;
14074 rel.r_offset = (h->root.u.def.value
14075 + h->root.u.def.section->output_section->vma
14076 + h->root.u.def.section->output_offset);
14077 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
14078 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
14079 }
14080
14081 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
14082 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14083 to the ".got" section. */
14084 if (h == htab->root.hdynamic
14085 || (!htab->vxworks_p && h == htab->root.hgot))
14086 sym->st_shndx = SHN_ABS;
14087
14088 return TRUE;
14089 }
14090
14091 static void
14092 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14093 void *contents,
14094 const unsigned long *template, unsigned count)
14095 {
14096 unsigned ix;
14097
14098 for (ix = 0; ix != count; ix++)
14099 {
14100 unsigned long insn = template[ix];
14101
14102 /* Emit mov pc,rx if bx is not permitted. */
14103 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14104 insn = (insn & 0xf000000f) | 0x01a0f000;
14105 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14106 }
14107 }
14108
14109 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
14110 other variants, NaCl needs this entry in a static executable's
14111 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
14112 zero. For .iplt really only the last bundle is useful, and .iplt
14113 could have a shorter first entry, with each individual PLT entry's
14114 relative branch calculated differently so it targets the last
14115 bundle instead of the instruction before it (labelled .Lplt_tail
14116 above). But it's simpler to keep the size and layout of PLT0
14117 consistent with the dynamic case, at the cost of some dead code at
14118 the start of .iplt and the one dead store to the stack at the start
14119 of .Lplt_tail. */
14120 static void
14121 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14122 asection *plt, bfd_vma got_displacement)
14123 {
14124 unsigned int i;
14125
14126 put_arm_insn (htab, output_bfd,
14127 elf32_arm_nacl_plt0_entry[0]
14128 | arm_movw_immediate (got_displacement),
14129 plt->contents + 0);
14130 put_arm_insn (htab, output_bfd,
14131 elf32_arm_nacl_plt0_entry[1]
14132 | arm_movt_immediate (got_displacement),
14133 plt->contents + 4);
14134
14135 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14136 put_arm_insn (htab, output_bfd,
14137 elf32_arm_nacl_plt0_entry[i],
14138 plt->contents + (i * 4));
14139 }
14140
14141 /* Finish up the dynamic sections. */
14142
14143 static bfd_boolean
14144 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
14145 {
14146 bfd * dynobj;
14147 asection * sgot;
14148 asection * sdyn;
14149 struct elf32_arm_link_hash_table *htab;
14150
14151 htab = elf32_arm_hash_table (info);
14152 if (htab == NULL)
14153 return FALSE;
14154
14155 dynobj = elf_hash_table (info)->dynobj;
14156
14157 sgot = htab->root.sgotplt;
14158 /* A broken linker script might have discarded the dynamic sections.
14159 Catch this here so that we do not seg-fault later on. */
14160 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14161 return FALSE;
14162 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14163
14164 if (elf_hash_table (info)->dynamic_sections_created)
14165 {
14166 asection *splt;
14167 Elf32_External_Dyn *dyncon, *dynconend;
14168
14169 splt = htab->root.splt;
14170 BFD_ASSERT (splt != NULL && sdyn != NULL);
14171 BFD_ASSERT (htab->symbian_p || sgot != NULL);
14172
14173 dyncon = (Elf32_External_Dyn *) sdyn->contents;
14174 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
14175
14176 for (; dyncon < dynconend; dyncon++)
14177 {
14178 Elf_Internal_Dyn dyn;
14179 const char * name;
14180 asection * s;
14181
14182 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14183
14184 switch (dyn.d_tag)
14185 {
14186 unsigned int type;
14187
14188 default:
14189 if (htab->vxworks_p
14190 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14191 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14192 break;
14193
14194 case DT_HASH:
14195 name = ".hash";
14196 goto get_vma_if_bpabi;
14197 case DT_STRTAB:
14198 name = ".dynstr";
14199 goto get_vma_if_bpabi;
14200 case DT_SYMTAB:
14201 name = ".dynsym";
14202 goto get_vma_if_bpabi;
14203 case DT_VERSYM:
14204 name = ".gnu.version";
14205 goto get_vma_if_bpabi;
14206 case DT_VERDEF:
14207 name = ".gnu.version_d";
14208 goto get_vma_if_bpabi;
14209 case DT_VERNEED:
14210 name = ".gnu.version_r";
14211 goto get_vma_if_bpabi;
14212
14213 case DT_PLTGOT:
14214 name = ".got";
14215 goto get_vma;
14216 case DT_JMPREL:
14217 name = RELOC_SECTION (htab, ".plt");
14218 get_vma:
14219 s = bfd_get_section_by_name (output_bfd, name);
14220 if (s == NULL)
14221 {
14222 /* PR ld/14397: Issue an error message if a required section is missing. */
14223 (*_bfd_error_handler)
14224 (_("error: required section '%s' not found in the linker script"), name);
14225 bfd_set_error (bfd_error_invalid_operation);
14226 return FALSE;
14227 }
14228 if (!htab->symbian_p)
14229 dyn.d_un.d_ptr = s->vma;
14230 else
14231 /* In the BPABI, tags in the PT_DYNAMIC section point
14232 at the file offset, not the memory address, for the
14233 convenience of the post linker. */
14234 dyn.d_un.d_ptr = s->filepos;
14235 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14236 break;
14237
14238 get_vma_if_bpabi:
14239 if (htab->symbian_p)
14240 goto get_vma;
14241 break;
14242
14243 case DT_PLTRELSZ:
14244 s = htab->root.srelplt;
14245 BFD_ASSERT (s != NULL);
14246 dyn.d_un.d_val = s->size;
14247 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14248 break;
14249
14250 case DT_RELSZ:
14251 case DT_RELASZ:
14252 if (!htab->symbian_p)
14253 {
14254 /* My reading of the SVR4 ABI indicates that the
14255 procedure linkage table relocs (DT_JMPREL) should be
14256 included in the overall relocs (DT_REL). This is
14257 what Solaris does. However, UnixWare can not handle
14258 that case. Therefore, we override the DT_RELSZ entry
14259 here to make it not include the JMPREL relocs. Since
14260 the linker script arranges for .rel(a).plt to follow all
14261 other relocation sections, we don't have to worry
14262 about changing the DT_REL entry. */
14263 s = htab->root.srelplt;
14264 if (s != NULL)
14265 dyn.d_un.d_val -= s->size;
14266 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14267 break;
14268 }
14269 /* Fall through. */
14270
14271 case DT_REL:
14272 case DT_RELA:
14273 /* In the BPABI, the DT_REL tag must point at the file
14274 offset, not the VMA, of the first relocation
14275 section. So, we use code similar to that in
14276 elflink.c, but do not check for SHF_ALLOC on the
14277 relcoation section, since relocations sections are
14278 never allocated under the BPABI. The comments above
14279 about Unixware notwithstanding, we include all of the
14280 relocations here. */
14281 if (htab->symbian_p)
14282 {
14283 unsigned int i;
14284 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14285 ? SHT_REL : SHT_RELA);
14286 dyn.d_un.d_val = 0;
14287 for (i = 1; i < elf_numsections (output_bfd); i++)
14288 {
14289 Elf_Internal_Shdr *hdr
14290 = elf_elfsections (output_bfd)[i];
14291 if (hdr->sh_type == type)
14292 {
14293 if (dyn.d_tag == DT_RELSZ
14294 || dyn.d_tag == DT_RELASZ)
14295 dyn.d_un.d_val += hdr->sh_size;
14296 else if ((ufile_ptr) hdr->sh_offset
14297 <= dyn.d_un.d_val - 1)
14298 dyn.d_un.d_val = hdr->sh_offset;
14299 }
14300 }
14301 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14302 }
14303 break;
14304
14305 case DT_TLSDESC_PLT:
14306 s = htab->root.splt;
14307 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14308 + htab->dt_tlsdesc_plt);
14309 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14310 break;
14311
14312 case DT_TLSDESC_GOT:
14313 s = htab->root.sgot;
14314 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14315 + htab->dt_tlsdesc_got);
14316 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14317 break;
14318
14319 /* Set the bottom bit of DT_INIT/FINI if the
14320 corresponding function is Thumb. */
14321 case DT_INIT:
14322 name = info->init_function;
14323 goto get_sym;
14324 case DT_FINI:
14325 name = info->fini_function;
14326 get_sym:
14327 /* If it wasn't set by elf_bfd_final_link
14328 then there is nothing to adjust. */
14329 if (dyn.d_un.d_val != 0)
14330 {
14331 struct elf_link_hash_entry * eh;
14332
14333 eh = elf_link_hash_lookup (elf_hash_table (info), name,
14334 FALSE, FALSE, TRUE);
14335 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
14336 {
14337 dyn.d_un.d_val |= 1;
14338 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14339 }
14340 }
14341 break;
14342 }
14343 }
14344
14345 /* Fill in the first entry in the procedure linkage table. */
14346 if (splt->size > 0 && htab->plt_header_size)
14347 {
14348 const bfd_vma *plt0_entry;
14349 bfd_vma got_address, plt_address, got_displacement;
14350
14351 /* Calculate the addresses of the GOT and PLT. */
14352 got_address = sgot->output_section->vma + sgot->output_offset;
14353 plt_address = splt->output_section->vma + splt->output_offset;
14354
14355 if (htab->vxworks_p)
14356 {
14357 /* The VxWorks GOT is relocated by the dynamic linker.
14358 Therefore, we must emit relocations rather than simply
14359 computing the values now. */
14360 Elf_Internal_Rela rel;
14361
14362 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
14363 put_arm_insn (htab, output_bfd, plt0_entry[0],
14364 splt->contents + 0);
14365 put_arm_insn (htab, output_bfd, plt0_entry[1],
14366 splt->contents + 4);
14367 put_arm_insn (htab, output_bfd, plt0_entry[2],
14368 splt->contents + 8);
14369 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14370
14371 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
14372 rel.r_offset = plt_address + 12;
14373 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14374 rel.r_addend = 0;
14375 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14376 htab->srelplt2->contents);
14377 }
14378 else if (htab->nacl_p)
14379 arm_nacl_put_plt0 (htab, output_bfd, splt,
14380 got_address + 8 - (plt_address + 16));
14381 else
14382 {
14383 got_displacement = got_address - (plt_address + 16);
14384
14385 plt0_entry = elf32_arm_plt0_entry;
14386 put_arm_insn (htab, output_bfd, plt0_entry[0],
14387 splt->contents + 0);
14388 put_arm_insn (htab, output_bfd, plt0_entry[1],
14389 splt->contents + 4);
14390 put_arm_insn (htab, output_bfd, plt0_entry[2],
14391 splt->contents + 8);
14392 put_arm_insn (htab, output_bfd, plt0_entry[3],
14393 splt->contents + 12);
14394
14395 #ifdef FOUR_WORD_PLT
14396 /* The displacement value goes in the otherwise-unused
14397 last word of the second entry. */
14398 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
14399 #else
14400 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
14401 #endif
14402 }
14403 }
14404
14405 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14406 really seem like the right value. */
14407 if (splt->output_section->owner == output_bfd)
14408 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
14409
14410 if (htab->dt_tlsdesc_plt)
14411 {
14412 bfd_vma got_address
14413 = sgot->output_section->vma + sgot->output_offset;
14414 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14415 + htab->root.sgot->output_offset);
14416 bfd_vma plt_address
14417 = splt->output_section->vma + splt->output_offset;
14418
14419 arm_put_trampoline (htab, output_bfd,
14420 splt->contents + htab->dt_tlsdesc_plt,
14421 dl_tlsdesc_lazy_trampoline, 6);
14422
14423 bfd_put_32 (output_bfd,
14424 gotplt_address + htab->dt_tlsdesc_got
14425 - (plt_address + htab->dt_tlsdesc_plt)
14426 - dl_tlsdesc_lazy_trampoline[6],
14427 splt->contents + htab->dt_tlsdesc_plt + 24);
14428 bfd_put_32 (output_bfd,
14429 got_address - (plt_address + htab->dt_tlsdesc_plt)
14430 - dl_tlsdesc_lazy_trampoline[7],
14431 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14432 }
14433
14434 if (htab->tls_trampoline)
14435 {
14436 arm_put_trampoline (htab, output_bfd,
14437 splt->contents + htab->tls_trampoline,
14438 tls_trampoline, 3);
14439 #ifdef FOUR_WORD_PLT
14440 bfd_put_32 (output_bfd, 0x00000000,
14441 splt->contents + htab->tls_trampoline + 12);
14442 #endif
14443 }
14444
14445 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14446 {
14447 /* Correct the .rel(a).plt.unloaded relocations. They will have
14448 incorrect symbol indexes. */
14449 int num_plts;
14450 unsigned char *p;
14451
14452 num_plts = ((htab->root.splt->size - htab->plt_header_size)
14453 / htab->plt_entry_size);
14454 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14455
14456 for (; num_plts; num_plts--)
14457 {
14458 Elf_Internal_Rela rel;
14459
14460 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14461 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14462 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14463 p += RELOC_SIZE (htab);
14464
14465 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14466 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14467 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14468 p += RELOC_SIZE (htab);
14469 }
14470 }
14471 }
14472
14473 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
14474 /* NaCl uses a special first entry in .iplt too. */
14475 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
14476
14477 /* Fill in the first three entries in the global offset table. */
14478 if (sgot)
14479 {
14480 if (sgot->size > 0)
14481 {
14482 if (sdyn == NULL)
14483 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14484 else
14485 bfd_put_32 (output_bfd,
14486 sdyn->output_section->vma + sdyn->output_offset,
14487 sgot->contents);
14488 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14489 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14490 }
14491
14492 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14493 }
14494
14495 return TRUE;
14496 }
14497
14498 static void
14499 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14500 {
14501 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
14502 struct elf32_arm_link_hash_table *globals;
14503
14504 i_ehdrp = elf_elfheader (abfd);
14505
14506 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14507 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14508 else
14509 _bfd_elf_post_process_headers (abfd, link_info);
14510 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14511
14512 if (link_info)
14513 {
14514 globals = elf32_arm_hash_table (link_info);
14515 if (globals != NULL && globals->byteswap_code)
14516 i_ehdrp->e_flags |= EF_ARM_BE8;
14517 }
14518
14519 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14520 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14521 {
14522 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
14523 if (abi)
14524 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14525 else
14526 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14527 }
14528 }
14529
14530 static enum elf_reloc_type_class
14531 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
14532 const asection *rel_sec ATTRIBUTE_UNUSED,
14533 const Elf_Internal_Rela *rela)
14534 {
14535 switch ((int) ELF32_R_TYPE (rela->r_info))
14536 {
14537 case R_ARM_RELATIVE:
14538 return reloc_class_relative;
14539 case R_ARM_JUMP_SLOT:
14540 return reloc_class_plt;
14541 case R_ARM_COPY:
14542 return reloc_class_copy;
14543 default:
14544 return reloc_class_normal;
14545 }
14546 }
14547
14548 static void
14549 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14550 {
14551 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14552 }
14553
14554 /* Return TRUE if this is an unwinding table entry. */
14555
14556 static bfd_boolean
14557 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14558 {
14559 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14560 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14561 }
14562
14563
14564 /* Set the type and flags for an ARM section. We do this by
14565 the section name, which is a hack, but ought to work. */
14566
14567 static bfd_boolean
14568 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14569 {
14570 const char * name;
14571
14572 name = bfd_get_section_name (abfd, sec);
14573
14574 if (is_arm_elf_unwind_section_name (abfd, name))
14575 {
14576 hdr->sh_type = SHT_ARM_EXIDX;
14577 hdr->sh_flags |= SHF_LINK_ORDER;
14578 }
14579 return TRUE;
14580 }
14581
14582 /* Handle an ARM specific section when reading an object file. This is
14583 called when bfd_section_from_shdr finds a section with an unknown
14584 type. */
14585
14586 static bfd_boolean
14587 elf32_arm_section_from_shdr (bfd *abfd,
14588 Elf_Internal_Shdr * hdr,
14589 const char *name,
14590 int shindex)
14591 {
14592 /* There ought to be a place to keep ELF backend specific flags, but
14593 at the moment there isn't one. We just keep track of the
14594 sections by their name, instead. Fortunately, the ABI gives
14595 names for all the ARM specific sections, so we will probably get
14596 away with this. */
14597 switch (hdr->sh_type)
14598 {
14599 case SHT_ARM_EXIDX:
14600 case SHT_ARM_PREEMPTMAP:
14601 case SHT_ARM_ATTRIBUTES:
14602 break;
14603
14604 default:
14605 return FALSE;
14606 }
14607
14608 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14609 return FALSE;
14610
14611 return TRUE;
14612 }
14613
14614 static _arm_elf_section_data *
14615 get_arm_elf_section_data (asection * sec)
14616 {
14617 if (sec && sec->owner && is_arm_elf (sec->owner))
14618 return elf32_arm_section_data (sec);
14619 else
14620 return NULL;
14621 }
14622
14623 typedef struct
14624 {
14625 void *flaginfo;
14626 struct bfd_link_info *info;
14627 asection *sec;
14628 int sec_shndx;
14629 int (*func) (void *, const char *, Elf_Internal_Sym *,
14630 asection *, struct elf_link_hash_entry *);
14631 } output_arch_syminfo;
14632
14633 enum map_symbol_type
14634 {
14635 ARM_MAP_ARM,
14636 ARM_MAP_THUMB,
14637 ARM_MAP_DATA
14638 };
14639
14640
14641 /* Output a single mapping symbol. */
14642
14643 static bfd_boolean
14644 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14645 enum map_symbol_type type,
14646 bfd_vma offset)
14647 {
14648 static const char *names[3] = {"$a", "$t", "$d"};
14649 Elf_Internal_Sym sym;
14650
14651 sym.st_value = osi->sec->output_section->vma
14652 + osi->sec->output_offset
14653 + offset;
14654 sym.st_size = 0;
14655 sym.st_other = 0;
14656 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14657 sym.st_shndx = osi->sec_shndx;
14658 sym.st_target_internal = 0;
14659 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14660 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
14661 }
14662
14663 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14664 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14665
14666 static bfd_boolean
14667 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14668 bfd_boolean is_iplt_entry_p,
14669 union gotplt_union *root_plt,
14670 struct arm_plt_info *arm_plt)
14671 {
14672 struct elf32_arm_link_hash_table *htab;
14673 bfd_vma addr, plt_header_size;
14674
14675 if (root_plt->offset == (bfd_vma) -1)
14676 return TRUE;
14677
14678 htab = elf32_arm_hash_table (osi->info);
14679 if (htab == NULL)
14680 return FALSE;
14681
14682 if (is_iplt_entry_p)
14683 {
14684 osi->sec = htab->root.iplt;
14685 plt_header_size = 0;
14686 }
14687 else
14688 {
14689 osi->sec = htab->root.splt;
14690 plt_header_size = htab->plt_header_size;
14691 }
14692 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14693 (osi->info->output_bfd, osi->sec->output_section));
14694
14695 addr = root_plt->offset & -2;
14696 if (htab->symbian_p)
14697 {
14698 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14699 return FALSE;
14700 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14701 return FALSE;
14702 }
14703 else if (htab->vxworks_p)
14704 {
14705 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14706 return FALSE;
14707 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14708 return FALSE;
14709 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14710 return FALSE;
14711 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14712 return FALSE;
14713 }
14714 else if (htab->nacl_p)
14715 {
14716 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14717 return FALSE;
14718 }
14719 else
14720 {
14721 bfd_boolean thumb_stub_p;
14722
14723 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14724 if (thumb_stub_p)
14725 {
14726 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14727 return FALSE;
14728 }
14729 #ifdef FOUR_WORD_PLT
14730 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14731 return FALSE;
14732 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14733 return FALSE;
14734 #else
14735 /* A three-word PLT with no Thumb thunk contains only Arm code,
14736 so only need to output a mapping symbol for the first PLT entry and
14737 entries with thumb thunks. */
14738 if (thumb_stub_p || addr == plt_header_size)
14739 {
14740 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14741 return FALSE;
14742 }
14743 #endif
14744 }
14745
14746 return TRUE;
14747 }
14748
14749 /* Output mapping symbols for PLT entries associated with H. */
14750
14751 static bfd_boolean
14752 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14753 {
14754 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14755 struct elf32_arm_link_hash_entry *eh;
14756
14757 if (h->root.type == bfd_link_hash_indirect)
14758 return TRUE;
14759
14760 if (h->root.type == bfd_link_hash_warning)
14761 /* When warning symbols are created, they **replace** the "real"
14762 entry in the hash table, thus we never get to see the real
14763 symbol in a hash traversal. So look at it now. */
14764 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14765
14766 eh = (struct elf32_arm_link_hash_entry *) h;
14767 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14768 &h->plt, &eh->plt);
14769 }
14770
14771 /* Output a single local symbol for a generated stub. */
14772
14773 static bfd_boolean
14774 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14775 bfd_vma offset, bfd_vma size)
14776 {
14777 Elf_Internal_Sym sym;
14778
14779 sym.st_value = osi->sec->output_section->vma
14780 + osi->sec->output_offset
14781 + offset;
14782 sym.st_size = size;
14783 sym.st_other = 0;
14784 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14785 sym.st_shndx = osi->sec_shndx;
14786 sym.st_target_internal = 0;
14787 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
14788 }
14789
14790 static bfd_boolean
14791 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14792 void * in_arg)
14793 {
14794 struct elf32_arm_stub_hash_entry *stub_entry;
14795 asection *stub_sec;
14796 bfd_vma addr;
14797 char *stub_name;
14798 output_arch_syminfo *osi;
14799 const insn_sequence *template_sequence;
14800 enum stub_insn_type prev_type;
14801 int size;
14802 int i;
14803 enum map_symbol_type sym_type;
14804
14805 /* Massage our args to the form they really have. */
14806 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14807 osi = (output_arch_syminfo *) in_arg;
14808
14809 stub_sec = stub_entry->stub_sec;
14810
14811 /* Ensure this stub is attached to the current section being
14812 processed. */
14813 if (stub_sec != osi->sec)
14814 return TRUE;
14815
14816 addr = (bfd_vma) stub_entry->stub_offset;
14817 stub_name = stub_entry->output_name;
14818
14819 template_sequence = stub_entry->stub_template;
14820 switch (template_sequence[0].type)
14821 {
14822 case ARM_TYPE:
14823 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14824 return FALSE;
14825 break;
14826 case THUMB16_TYPE:
14827 case THUMB32_TYPE:
14828 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14829 stub_entry->stub_size))
14830 return FALSE;
14831 break;
14832 default:
14833 BFD_FAIL ();
14834 return 0;
14835 }
14836
14837 prev_type = DATA_TYPE;
14838 size = 0;
14839 for (i = 0; i < stub_entry->stub_template_size; i++)
14840 {
14841 switch (template_sequence[i].type)
14842 {
14843 case ARM_TYPE:
14844 sym_type = ARM_MAP_ARM;
14845 break;
14846
14847 case THUMB16_TYPE:
14848 case THUMB32_TYPE:
14849 sym_type = ARM_MAP_THUMB;
14850 break;
14851
14852 case DATA_TYPE:
14853 sym_type = ARM_MAP_DATA;
14854 break;
14855
14856 default:
14857 BFD_FAIL ();
14858 return FALSE;
14859 }
14860
14861 if (template_sequence[i].type != prev_type)
14862 {
14863 prev_type = template_sequence[i].type;
14864 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14865 return FALSE;
14866 }
14867
14868 switch (template_sequence[i].type)
14869 {
14870 case ARM_TYPE:
14871 case THUMB32_TYPE:
14872 size += 4;
14873 break;
14874
14875 case THUMB16_TYPE:
14876 size += 2;
14877 break;
14878
14879 case DATA_TYPE:
14880 size += 4;
14881 break;
14882
14883 default:
14884 BFD_FAIL ();
14885 return FALSE;
14886 }
14887 }
14888
14889 return TRUE;
14890 }
14891
14892 /* Output mapping symbols for linker generated sections,
14893 and for those data-only sections that do not have a
14894 $d. */
14895
14896 static bfd_boolean
14897 elf32_arm_output_arch_local_syms (bfd *output_bfd,
14898 struct bfd_link_info *info,
14899 void *flaginfo,
14900 int (*func) (void *, const char *,
14901 Elf_Internal_Sym *,
14902 asection *,
14903 struct elf_link_hash_entry *))
14904 {
14905 output_arch_syminfo osi;
14906 struct elf32_arm_link_hash_table *htab;
14907 bfd_vma offset;
14908 bfd_size_type size;
14909 bfd *input_bfd;
14910
14911 htab = elf32_arm_hash_table (info);
14912 if (htab == NULL)
14913 return FALSE;
14914
14915 check_use_blx (htab);
14916
14917 osi.flaginfo = flaginfo;
14918 osi.info = info;
14919 osi.func = func;
14920
14921 /* Add a $d mapping symbol to data-only sections that
14922 don't have any mapping symbol. This may result in (harmless) redundant
14923 mapping symbols. */
14924 for (input_bfd = info->input_bfds;
14925 input_bfd != NULL;
14926 input_bfd = input_bfd->link_next)
14927 {
14928 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14929 for (osi.sec = input_bfd->sections;
14930 osi.sec != NULL;
14931 osi.sec = osi.sec->next)
14932 {
14933 if (osi.sec->output_section != NULL
14934 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14935 != 0)
14936 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14937 == SEC_HAS_CONTENTS
14938 && get_arm_elf_section_data (osi.sec) != NULL
14939 && get_arm_elf_section_data (osi.sec)->mapcount == 0
14940 && osi.sec->size > 0
14941 && (osi.sec->flags & SEC_EXCLUDE) == 0)
14942 {
14943 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14944 (output_bfd, osi.sec->output_section);
14945 if (osi.sec_shndx != (int)SHN_BAD)
14946 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14947 }
14948 }
14949 }
14950
14951 /* ARM->Thumb glue. */
14952 if (htab->arm_glue_size > 0)
14953 {
14954 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14955 ARM2THUMB_GLUE_SECTION_NAME);
14956
14957 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14958 (output_bfd, osi.sec->output_section);
14959 if (info->shared || htab->root.is_relocatable_executable
14960 || htab->pic_veneer)
14961 size = ARM2THUMB_PIC_GLUE_SIZE;
14962 else if (htab->use_blx)
14963 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14964 else
14965 size = ARM2THUMB_STATIC_GLUE_SIZE;
14966
14967 for (offset = 0; offset < htab->arm_glue_size; offset += size)
14968 {
14969 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14970 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14971 }
14972 }
14973
14974 /* Thumb->ARM glue. */
14975 if (htab->thumb_glue_size > 0)
14976 {
14977 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14978 THUMB2ARM_GLUE_SECTION_NAME);
14979
14980 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14981 (output_bfd, osi.sec->output_section);
14982 size = THUMB2ARM_GLUE_SIZE;
14983
14984 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14985 {
14986 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14987 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14988 }
14989 }
14990
14991 /* ARMv4 BX veneers. */
14992 if (htab->bx_glue_size > 0)
14993 {
14994 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14995 ARM_BX_GLUE_SECTION_NAME);
14996
14997 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14998 (output_bfd, osi.sec->output_section);
14999
15000 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
15001 }
15002
15003 /* Long calls stubs. */
15004 if (htab->stub_bfd && htab->stub_bfd->sections)
15005 {
15006 asection* stub_sec;
15007
15008 for (stub_sec = htab->stub_bfd->sections;
15009 stub_sec != NULL;
15010 stub_sec = stub_sec->next)
15011 {
15012 /* Ignore non-stub sections. */
15013 if (!strstr (stub_sec->name, STUB_SUFFIX))
15014 continue;
15015
15016 osi.sec = stub_sec;
15017
15018 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15019 (output_bfd, osi.sec->output_section);
15020
15021 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
15022 }
15023 }
15024
15025 /* Finally, output mapping symbols for the PLT. */
15026 if (htab->root.splt && htab->root.splt->size > 0)
15027 {
15028 osi.sec = htab->root.splt;
15029 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15030 (output_bfd, osi.sec->output_section));
15031
15032 /* Output mapping symbols for the plt header. SymbianOS does not have a
15033 plt header. */
15034 if (htab->vxworks_p)
15035 {
15036 /* VxWorks shared libraries have no PLT header. */
15037 if (!info->shared)
15038 {
15039 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15040 return FALSE;
15041 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15042 return FALSE;
15043 }
15044 }
15045 else if (htab->nacl_p)
15046 {
15047 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15048 return FALSE;
15049 }
15050 else if (!htab->symbian_p)
15051 {
15052 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15053 return FALSE;
15054 #ifndef FOUR_WORD_PLT
15055 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
15056 return FALSE;
15057 #endif
15058 }
15059 }
15060 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
15061 {
15062 /* NaCl uses a special first entry in .iplt too. */
15063 osi.sec = htab->root.iplt;
15064 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15065 (output_bfd, osi.sec->output_section));
15066 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15067 return FALSE;
15068 }
15069 if ((htab->root.splt && htab->root.splt->size > 0)
15070 || (htab->root.iplt && htab->root.iplt->size > 0))
15071 {
15072 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
15073 for (input_bfd = info->input_bfds;
15074 input_bfd != NULL;
15075 input_bfd = input_bfd->link_next)
15076 {
15077 struct arm_local_iplt_info **local_iplt;
15078 unsigned int i, num_syms;
15079
15080 local_iplt = elf32_arm_local_iplt (input_bfd);
15081 if (local_iplt != NULL)
15082 {
15083 num_syms = elf_symtab_hdr (input_bfd).sh_info;
15084 for (i = 0; i < num_syms; i++)
15085 if (local_iplt[i] != NULL
15086 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
15087 &local_iplt[i]->root,
15088 &local_iplt[i]->arm))
15089 return FALSE;
15090 }
15091 }
15092 }
15093 if (htab->dt_tlsdesc_plt != 0)
15094 {
15095 /* Mapping symbols for the lazy tls trampoline. */
15096 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
15097 return FALSE;
15098
15099 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15100 htab->dt_tlsdesc_plt + 24))
15101 return FALSE;
15102 }
15103 if (htab->tls_trampoline != 0)
15104 {
15105 /* Mapping symbols for the tls trampoline. */
15106 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
15107 return FALSE;
15108 #ifdef FOUR_WORD_PLT
15109 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15110 htab->tls_trampoline + 12))
15111 return FALSE;
15112 #endif
15113 }
15114
15115 return TRUE;
15116 }
15117
15118 /* Allocate target specific section data. */
15119
15120 static bfd_boolean
15121 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
15122 {
15123 if (!sec->used_by_bfd)
15124 {
15125 _arm_elf_section_data *sdata;
15126 bfd_size_type amt = sizeof (*sdata);
15127
15128 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
15129 if (sdata == NULL)
15130 return FALSE;
15131 sec->used_by_bfd = sdata;
15132 }
15133
15134 return _bfd_elf_new_section_hook (abfd, sec);
15135 }
15136
15137
15138 /* Used to order a list of mapping symbols by address. */
15139
15140 static int
15141 elf32_arm_compare_mapping (const void * a, const void * b)
15142 {
15143 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15144 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15145
15146 if (amap->vma > bmap->vma)
15147 return 1;
15148 else if (amap->vma < bmap->vma)
15149 return -1;
15150 else if (amap->type > bmap->type)
15151 /* Ensure results do not depend on the host qsort for objects with
15152 multiple mapping symbols at the same address by sorting on type
15153 after vma. */
15154 return 1;
15155 else if (amap->type < bmap->type)
15156 return -1;
15157 else
15158 return 0;
15159 }
15160
15161 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15162
15163 static unsigned long
15164 offset_prel31 (unsigned long addr, bfd_vma offset)
15165 {
15166 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15167 }
15168
15169 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15170 relocations. */
15171
15172 static void
15173 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15174 {
15175 unsigned long first_word = bfd_get_32 (output_bfd, from);
15176 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
15177
15178 /* High bit of first word is supposed to be zero. */
15179 if ((first_word & 0x80000000ul) == 0)
15180 first_word = offset_prel31 (first_word, offset);
15181
15182 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15183 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15184 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15185 second_word = offset_prel31 (second_word, offset);
15186
15187 bfd_put_32 (output_bfd, first_word, to);
15188 bfd_put_32 (output_bfd, second_word, to + 4);
15189 }
15190
15191 /* Data for make_branch_to_a8_stub(). */
15192
15193 struct a8_branch_to_stub_data
15194 {
15195 asection *writing_section;
15196 bfd_byte *contents;
15197 };
15198
15199
15200 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
15201 places for a particular section. */
15202
15203 static bfd_boolean
15204 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
15205 void *in_arg)
15206 {
15207 struct elf32_arm_stub_hash_entry *stub_entry;
15208 struct a8_branch_to_stub_data *data;
15209 bfd_byte *contents;
15210 unsigned long branch_insn;
15211 bfd_vma veneered_insn_loc, veneer_entry_loc;
15212 bfd_signed_vma branch_offset;
15213 bfd *abfd;
15214 unsigned int target;
15215
15216 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15217 data = (struct a8_branch_to_stub_data *) in_arg;
15218
15219 if (stub_entry->target_section != data->writing_section
15220 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
15221 return TRUE;
15222
15223 contents = data->contents;
15224
15225 veneered_insn_loc = stub_entry->target_section->output_section->vma
15226 + stub_entry->target_section->output_offset
15227 + stub_entry->target_value;
15228
15229 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15230 + stub_entry->stub_sec->output_offset
15231 + stub_entry->stub_offset;
15232
15233 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15234 veneered_insn_loc &= ~3u;
15235
15236 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15237
15238 abfd = stub_entry->target_section->owner;
15239 target = stub_entry->target_value;
15240
15241 /* We attempt to avoid this condition by setting stubs_always_after_branch
15242 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15243 This check is just to be on the safe side... */
15244 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15245 {
15246 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15247 "allocated in unsafe location"), abfd);
15248 return FALSE;
15249 }
15250
15251 switch (stub_entry->stub_type)
15252 {
15253 case arm_stub_a8_veneer_b:
15254 case arm_stub_a8_veneer_b_cond:
15255 branch_insn = 0xf0009000;
15256 goto jump24;
15257
15258 case arm_stub_a8_veneer_blx:
15259 branch_insn = 0xf000e800;
15260 goto jump24;
15261
15262 case arm_stub_a8_veneer_bl:
15263 {
15264 unsigned int i1, j1, i2, j2, s;
15265
15266 branch_insn = 0xf000d000;
15267
15268 jump24:
15269 if (branch_offset < -16777216 || branch_offset > 16777214)
15270 {
15271 /* There's not much we can do apart from complain if this
15272 happens. */
15273 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15274 "of range (input file too large)"), abfd);
15275 return FALSE;
15276 }
15277
15278 /* i1 = not(j1 eor s), so:
15279 not i1 = j1 eor s
15280 j1 = (not i1) eor s. */
15281
15282 branch_insn |= (branch_offset >> 1) & 0x7ff;
15283 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15284 i2 = (branch_offset >> 22) & 1;
15285 i1 = (branch_offset >> 23) & 1;
15286 s = (branch_offset >> 24) & 1;
15287 j1 = (!i1) ^ s;
15288 j2 = (!i2) ^ s;
15289 branch_insn |= j2 << 11;
15290 branch_insn |= j1 << 13;
15291 branch_insn |= s << 26;
15292 }
15293 break;
15294
15295 default:
15296 BFD_FAIL ();
15297 return FALSE;
15298 }
15299
15300 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15301 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
15302
15303 return TRUE;
15304 }
15305
15306 /* Do code byteswapping. Return FALSE afterwards so that the section is
15307 written out as normal. */
15308
15309 static bfd_boolean
15310 elf32_arm_write_section (bfd *output_bfd,
15311 struct bfd_link_info *link_info,
15312 asection *sec,
15313 bfd_byte *contents)
15314 {
15315 unsigned int mapcount, errcount;
15316 _arm_elf_section_data *arm_data;
15317 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
15318 elf32_arm_section_map *map;
15319 elf32_vfp11_erratum_list *errnode;
15320 bfd_vma ptr;
15321 bfd_vma end;
15322 bfd_vma offset = sec->output_section->vma + sec->output_offset;
15323 bfd_byte tmp;
15324 unsigned int i;
15325
15326 if (globals == NULL)
15327 return FALSE;
15328
15329 /* If this section has not been allocated an _arm_elf_section_data
15330 structure then we cannot record anything. */
15331 arm_data = get_arm_elf_section_data (sec);
15332 if (arm_data == NULL)
15333 return FALSE;
15334
15335 mapcount = arm_data->mapcount;
15336 map = arm_data->map;
15337 errcount = arm_data->erratumcount;
15338
15339 if (errcount != 0)
15340 {
15341 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15342
15343 for (errnode = arm_data->erratumlist; errnode != 0;
15344 errnode = errnode->next)
15345 {
15346 bfd_vma target = errnode->vma - offset;
15347
15348 switch (errnode->type)
15349 {
15350 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15351 {
15352 bfd_vma branch_to_veneer;
15353 /* Original condition code of instruction, plus bit mask for
15354 ARM B instruction. */
15355 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15356 | 0x0a000000;
15357
15358 /* The instruction is before the label. */
15359 target -= 4;
15360
15361 /* Above offset included in -4 below. */
15362 branch_to_veneer = errnode->u.b.veneer->vma
15363 - errnode->vma - 4;
15364
15365 if ((signed) branch_to_veneer < -(1 << 25)
15366 || (signed) branch_to_veneer >= (1 << 25))
15367 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15368 "range"), output_bfd);
15369
15370 insn |= (branch_to_veneer >> 2) & 0xffffff;
15371 contents[endianflip ^ target] = insn & 0xff;
15372 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15373 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15374 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15375 }
15376 break;
15377
15378 case VFP11_ERRATUM_ARM_VENEER:
15379 {
15380 bfd_vma branch_from_veneer;
15381 unsigned int insn;
15382
15383 /* Take size of veneer into account. */
15384 branch_from_veneer = errnode->u.v.branch->vma
15385 - errnode->vma - 12;
15386
15387 if ((signed) branch_from_veneer < -(1 << 25)
15388 || (signed) branch_from_veneer >= (1 << 25))
15389 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15390 "range"), output_bfd);
15391
15392 /* Original instruction. */
15393 insn = errnode->u.v.branch->u.b.vfp_insn;
15394 contents[endianflip ^ target] = insn & 0xff;
15395 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15396 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15397 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15398
15399 /* Branch back to insn after original insn. */
15400 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15401 contents[endianflip ^ (target + 4)] = insn & 0xff;
15402 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15403 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15404 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15405 }
15406 break;
15407
15408 default:
15409 abort ();
15410 }
15411 }
15412 }
15413
15414 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15415 {
15416 arm_unwind_table_edit *edit_node
15417 = arm_data->u.exidx.unwind_edit_list;
15418 /* Now, sec->size is the size of the section we will write. The original
15419 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15420 markers) was sec->rawsize. (This isn't the case if we perform no
15421 edits, then rawsize will be zero and we should use size). */
15422 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
15423 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15424 unsigned int in_index, out_index;
15425 bfd_vma add_to_offsets = 0;
15426
15427 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
15428 {
15429 if (edit_node)
15430 {
15431 unsigned int edit_index = edit_node->index;
15432
15433 if (in_index < edit_index && in_index * 8 < input_size)
15434 {
15435 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15436 contents + in_index * 8, add_to_offsets);
15437 out_index++;
15438 in_index++;
15439 }
15440 else if (in_index == edit_index
15441 || (in_index * 8 >= input_size
15442 && edit_index == UINT_MAX))
15443 {
15444 switch (edit_node->type)
15445 {
15446 case DELETE_EXIDX_ENTRY:
15447 in_index++;
15448 add_to_offsets += 8;
15449 break;
15450
15451 case INSERT_EXIDX_CANTUNWIND_AT_END:
15452 {
15453 asection *text_sec = edit_node->linked_section;
15454 bfd_vma text_offset = text_sec->output_section->vma
15455 + text_sec->output_offset
15456 + text_sec->size;
15457 bfd_vma exidx_offset = offset + out_index * 8;
15458 unsigned long prel31_offset;
15459
15460 /* Note: this is meant to be equivalent to an
15461 R_ARM_PREL31 relocation. These synthetic
15462 EXIDX_CANTUNWIND markers are not relocated by the
15463 usual BFD method. */
15464 prel31_offset = (text_offset - exidx_offset)
15465 & 0x7ffffffful;
15466
15467 /* First address we can't unwind. */
15468 bfd_put_32 (output_bfd, prel31_offset,
15469 &edited_contents[out_index * 8]);
15470
15471 /* Code for EXIDX_CANTUNWIND. */
15472 bfd_put_32 (output_bfd, 0x1,
15473 &edited_contents[out_index * 8 + 4]);
15474
15475 out_index++;
15476 add_to_offsets -= 8;
15477 }
15478 break;
15479 }
15480
15481 edit_node = edit_node->next;
15482 }
15483 }
15484 else
15485 {
15486 /* No more edits, copy remaining entries verbatim. */
15487 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15488 contents + in_index * 8, add_to_offsets);
15489 out_index++;
15490 in_index++;
15491 }
15492 }
15493
15494 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15495 bfd_set_section_contents (output_bfd, sec->output_section,
15496 edited_contents,
15497 (file_ptr) sec->output_offset, sec->size);
15498
15499 return TRUE;
15500 }
15501
15502 /* Fix code to point to Cortex-A8 erratum stubs. */
15503 if (globals->fix_cortex_a8)
15504 {
15505 struct a8_branch_to_stub_data data;
15506
15507 data.writing_section = sec;
15508 data.contents = contents;
15509
15510 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15511 &data);
15512 }
15513
15514 if (mapcount == 0)
15515 return FALSE;
15516
15517 if (globals->byteswap_code)
15518 {
15519 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15520
15521 ptr = map[0].vma;
15522 for (i = 0; i < mapcount; i++)
15523 {
15524 if (i == mapcount - 1)
15525 end = sec->size;
15526 else
15527 end = map[i + 1].vma;
15528
15529 switch (map[i].type)
15530 {
15531 case 'a':
15532 /* Byte swap code words. */
15533 while (ptr + 3 < end)
15534 {
15535 tmp = contents[ptr];
15536 contents[ptr] = contents[ptr + 3];
15537 contents[ptr + 3] = tmp;
15538 tmp = contents[ptr + 1];
15539 contents[ptr + 1] = contents[ptr + 2];
15540 contents[ptr + 2] = tmp;
15541 ptr += 4;
15542 }
15543 break;
15544
15545 case 't':
15546 /* Byte swap code halfwords. */
15547 while (ptr + 1 < end)
15548 {
15549 tmp = contents[ptr];
15550 contents[ptr] = contents[ptr + 1];
15551 contents[ptr + 1] = tmp;
15552 ptr += 2;
15553 }
15554 break;
15555
15556 case 'd':
15557 /* Leave data alone. */
15558 break;
15559 }
15560 ptr = end;
15561 }
15562 }
15563
15564 free (map);
15565 arm_data->mapcount = -1;
15566 arm_data->mapsize = 0;
15567 arm_data->map = NULL;
15568
15569 return FALSE;
15570 }
15571
15572 /* Mangle thumb function symbols as we read them in. */
15573
15574 static bfd_boolean
15575 elf32_arm_swap_symbol_in (bfd * abfd,
15576 const void *psrc,
15577 const void *pshn,
15578 Elf_Internal_Sym *dst)
15579 {
15580 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15581 return FALSE;
15582
15583 /* New EABI objects mark thumb function symbols by setting the low bit of
15584 the address. */
15585 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15586 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15587 {
15588 if (dst->st_value & 1)
15589 {
15590 dst->st_value &= ~(bfd_vma) 1;
15591 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15592 }
15593 else
15594 dst->st_target_internal = ST_BRANCH_TO_ARM;
15595 }
15596 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15597 {
15598 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15599 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15600 }
15601 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15602 dst->st_target_internal = ST_BRANCH_LONG;
15603 else
15604 dst->st_target_internal = ST_BRANCH_UNKNOWN;
15605
15606 return TRUE;
15607 }
15608
15609
15610 /* Mangle thumb function symbols as we write them out. */
15611
15612 static void
15613 elf32_arm_swap_symbol_out (bfd *abfd,
15614 const Elf_Internal_Sym *src,
15615 void *cdst,
15616 void *shndx)
15617 {
15618 Elf_Internal_Sym newsym;
15619
15620 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15621 of the address set, as per the new EABI. We do this unconditionally
15622 because objcopy does not set the elf header flags until after
15623 it writes out the symbol table. */
15624 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15625 {
15626 newsym = *src;
15627 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15628 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15629 if (newsym.st_shndx != SHN_UNDEF)
15630 {
15631 /* Do this only for defined symbols. At link type, the static
15632 linker will simulate the work of dynamic linker of resolving
15633 symbols and will carry over the thumbness of found symbols to
15634 the output symbol table. It's not clear how it happens, but
15635 the thumbness of undefined symbols can well be different at
15636 runtime, and writing '1' for them will be confusing for users
15637 and possibly for dynamic linker itself.
15638 */
15639 newsym.st_value |= 1;
15640 }
15641
15642 src = &newsym;
15643 }
15644 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15645 }
15646
15647 /* Add the PT_ARM_EXIDX program header. */
15648
15649 static bfd_boolean
15650 elf32_arm_modify_segment_map (bfd *abfd,
15651 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15652 {
15653 struct elf_segment_map *m;
15654 asection *sec;
15655
15656 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15657 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15658 {
15659 /* If there is already a PT_ARM_EXIDX header, then we do not
15660 want to add another one. This situation arises when running
15661 "strip"; the input binary already has the header. */
15662 m = elf_seg_map (abfd);
15663 while (m && m->p_type != PT_ARM_EXIDX)
15664 m = m->next;
15665 if (!m)
15666 {
15667 m = (struct elf_segment_map *)
15668 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15669 if (m == NULL)
15670 return FALSE;
15671 m->p_type = PT_ARM_EXIDX;
15672 m->count = 1;
15673 m->sections[0] = sec;
15674
15675 m->next = elf_seg_map (abfd);
15676 elf_seg_map (abfd) = m;
15677 }
15678 }
15679
15680 return TRUE;
15681 }
15682
15683 /* We may add a PT_ARM_EXIDX program header. */
15684
15685 static int
15686 elf32_arm_additional_program_headers (bfd *abfd,
15687 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15688 {
15689 asection *sec;
15690
15691 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15692 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15693 return 1;
15694 else
15695 return 0;
15696 }
15697
15698 /* Hook called by the linker routine which adds symbols from an object
15699 file. */
15700
15701 static bfd_boolean
15702 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15703 Elf_Internal_Sym *sym, const char **namep,
15704 flagword *flagsp, asection **secp, bfd_vma *valp)
15705 {
15706 if ((abfd->flags & DYNAMIC) == 0
15707 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15708 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15709 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15710
15711 if (elf32_arm_hash_table (info)->vxworks_p
15712 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15713 flagsp, secp, valp))
15714 return FALSE;
15715
15716 return TRUE;
15717 }
15718
15719 /* We use this to override swap_symbol_in and swap_symbol_out. */
15720 const struct elf_size_info elf32_arm_size_info =
15721 {
15722 sizeof (Elf32_External_Ehdr),
15723 sizeof (Elf32_External_Phdr),
15724 sizeof (Elf32_External_Shdr),
15725 sizeof (Elf32_External_Rel),
15726 sizeof (Elf32_External_Rela),
15727 sizeof (Elf32_External_Sym),
15728 sizeof (Elf32_External_Dyn),
15729 sizeof (Elf_External_Note),
15730 4,
15731 1,
15732 32, 2,
15733 ELFCLASS32, EV_CURRENT,
15734 bfd_elf32_write_out_phdrs,
15735 bfd_elf32_write_shdrs_and_ehdr,
15736 bfd_elf32_checksum_contents,
15737 bfd_elf32_write_relocs,
15738 elf32_arm_swap_symbol_in,
15739 elf32_arm_swap_symbol_out,
15740 bfd_elf32_slurp_reloc_table,
15741 bfd_elf32_slurp_symbol_table,
15742 bfd_elf32_swap_dyn_in,
15743 bfd_elf32_swap_dyn_out,
15744 bfd_elf32_swap_reloc_in,
15745 bfd_elf32_swap_reloc_out,
15746 bfd_elf32_swap_reloca_in,
15747 bfd_elf32_swap_reloca_out
15748 };
15749
15750 #define ELF_ARCH bfd_arch_arm
15751 #define ELF_TARGET_ID ARM_ELF_DATA
15752 #define ELF_MACHINE_CODE EM_ARM
15753 #ifdef __QNXTARGET__
15754 #define ELF_MAXPAGESIZE 0x1000
15755 #else
15756 #define ELF_MAXPAGESIZE 0x8000
15757 #endif
15758 #define ELF_MINPAGESIZE 0x1000
15759 #define ELF_COMMONPAGESIZE 0x1000
15760
15761 #define bfd_elf32_mkobject elf32_arm_mkobject
15762
15763 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15764 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15765 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15766 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15767 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15768 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15769 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15770 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15771 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15772 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15773 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15774 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15775 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15776
15777 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15778 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15779 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15780 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15781 #define elf_backend_check_relocs elf32_arm_check_relocs
15782 #define elf_backend_relocate_section elf32_arm_relocate_section
15783 #define elf_backend_write_section elf32_arm_write_section
15784 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15785 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15786 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15787 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15788 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15789 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15790 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15791 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15792 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15793 #define elf_backend_object_p elf32_arm_object_p
15794 #define elf_backend_fake_sections elf32_arm_fake_sections
15795 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15796 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15797 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15798 #define elf_backend_size_info elf32_arm_size_info
15799 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15800 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15801 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15802 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15803 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15804
15805 #define elf_backend_can_refcount 1
15806 #define elf_backend_can_gc_sections 1
15807 #define elf_backend_plt_readonly 1
15808 #define elf_backend_want_got_plt 1
15809 #define elf_backend_want_plt_sym 0
15810 #define elf_backend_may_use_rel_p 1
15811 #define elf_backend_may_use_rela_p 0
15812 #define elf_backend_default_use_rela_p 0
15813
15814 #define elf_backend_got_header_size 12
15815
15816 #undef elf_backend_obj_attrs_vendor
15817 #define elf_backend_obj_attrs_vendor "aeabi"
15818 #undef elf_backend_obj_attrs_section
15819 #define elf_backend_obj_attrs_section ".ARM.attributes"
15820 #undef elf_backend_obj_attrs_arg_type
15821 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15822 #undef elf_backend_obj_attrs_section_type
15823 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15824 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15825 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15826
15827 #include "elf32-target.h"
15828
15829 /* Native Client targets. */
15830
15831 #undef TARGET_LITTLE_SYM
15832 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_nacl_vec
15833 #undef TARGET_LITTLE_NAME
15834 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
15835 #undef TARGET_BIG_SYM
15836 #define TARGET_BIG_SYM bfd_elf32_bigarm_nacl_vec
15837 #undef TARGET_BIG_NAME
15838 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
15839
15840 /* Like elf32_arm_link_hash_table_create -- but overrides
15841 appropriately for NaCl. */
15842
15843 static struct bfd_link_hash_table *
15844 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
15845 {
15846 struct bfd_link_hash_table *ret;
15847
15848 ret = elf32_arm_link_hash_table_create (abfd);
15849 if (ret)
15850 {
15851 struct elf32_arm_link_hash_table *htab
15852 = (struct elf32_arm_link_hash_table *) ret;
15853
15854 htab->nacl_p = 1;
15855
15856 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
15857 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
15858 }
15859 return ret;
15860 }
15861
15862 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
15863 really need to use elf32_arm_modify_segment_map. But we do it
15864 anyway just to reduce gratuitous differences with the stock ARM backend. */
15865
15866 static bfd_boolean
15867 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
15868 {
15869 return (elf32_arm_modify_segment_map (abfd, info)
15870 && nacl_modify_segment_map (abfd, info));
15871 }
15872
15873 static void
15874 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
15875 {
15876 elf32_arm_final_write_processing (abfd, linker);
15877 nacl_final_write_processing (abfd, linker);
15878 }
15879
15880
15881 #undef elf32_bed
15882 #define elf32_bed elf32_arm_nacl_bed
15883 #undef bfd_elf32_bfd_link_hash_table_create
15884 #define bfd_elf32_bfd_link_hash_table_create \
15885 elf32_arm_nacl_link_hash_table_create
15886 #undef elf_backend_plt_alignment
15887 #define elf_backend_plt_alignment 4
15888 #undef elf_backend_modify_segment_map
15889 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
15890 #undef elf_backend_modify_program_headers
15891 #define elf_backend_modify_program_headers nacl_modify_program_headers
15892 #undef elf_backend_final_write_processing
15893 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
15894
15895 #undef ELF_MAXPAGESIZE
15896 #define ELF_MAXPAGESIZE 0x10000
15897 #undef ELF_MINPAGESIZE
15898 #undef ELF_COMMONPAGESIZE
15899
15900
15901 #include "elf32-target.h"
15902
15903 /* Reset to defaults. */
15904 #undef elf_backend_plt_alignment
15905 #undef elf_backend_modify_segment_map
15906 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15907 #undef elf_backend_modify_program_headers
15908 #undef elf_backend_final_write_processing
15909 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15910 #undef ELF_MINPAGESIZE
15911 #define ELF_MINPAGESIZE 0x1000
15912 #undef ELF_COMMONPAGESIZE
15913 #define ELF_COMMONPAGESIZE 0x1000
15914
15915
15916 /* VxWorks Targets. */
15917
15918 #undef TARGET_LITTLE_SYM
15919 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15920 #undef TARGET_LITTLE_NAME
15921 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15922 #undef TARGET_BIG_SYM
15923 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15924 #undef TARGET_BIG_NAME
15925 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15926
15927 /* Like elf32_arm_link_hash_table_create -- but overrides
15928 appropriately for VxWorks. */
15929
15930 static struct bfd_link_hash_table *
15931 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15932 {
15933 struct bfd_link_hash_table *ret;
15934
15935 ret = elf32_arm_link_hash_table_create (abfd);
15936 if (ret)
15937 {
15938 struct elf32_arm_link_hash_table *htab
15939 = (struct elf32_arm_link_hash_table *) ret;
15940 htab->use_rel = 0;
15941 htab->vxworks_p = 1;
15942 }
15943 return ret;
15944 }
15945
15946 static void
15947 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15948 {
15949 elf32_arm_final_write_processing (abfd, linker);
15950 elf_vxworks_final_write_processing (abfd, linker);
15951 }
15952
15953 #undef elf32_bed
15954 #define elf32_bed elf32_arm_vxworks_bed
15955
15956 #undef bfd_elf32_bfd_link_hash_table_create
15957 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15958 #undef elf_backend_final_write_processing
15959 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15960 #undef elf_backend_emit_relocs
15961 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15962
15963 #undef elf_backend_may_use_rel_p
15964 #define elf_backend_may_use_rel_p 0
15965 #undef elf_backend_may_use_rela_p
15966 #define elf_backend_may_use_rela_p 1
15967 #undef elf_backend_default_use_rela_p
15968 #define elf_backend_default_use_rela_p 1
15969 #undef elf_backend_want_plt_sym
15970 #define elf_backend_want_plt_sym 1
15971 #undef ELF_MAXPAGESIZE
15972 #define ELF_MAXPAGESIZE 0x1000
15973
15974 #include "elf32-target.h"
15975
15976
15977 /* Merge backend specific data from an object file to the output
15978 object file when linking. */
15979
15980 static bfd_boolean
15981 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15982 {
15983 flagword out_flags;
15984 flagword in_flags;
15985 bfd_boolean flags_compatible = TRUE;
15986 asection *sec;
15987
15988 /* Check if we have the same endianness. */
15989 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15990 return FALSE;
15991
15992 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15993 return TRUE;
15994
15995 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15996 return FALSE;
15997
15998 /* The input BFD must have had its flags initialised. */
15999 /* The following seems bogus to me -- The flags are initialized in
16000 the assembler but I don't think an elf_flags_init field is
16001 written into the object. */
16002 /* BFD_ASSERT (elf_flags_init (ibfd)); */
16003
16004 in_flags = elf_elfheader (ibfd)->e_flags;
16005 out_flags = elf_elfheader (obfd)->e_flags;
16006
16007 /* In theory there is no reason why we couldn't handle this. However
16008 in practice it isn't even close to working and there is no real
16009 reason to want it. */
16010 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
16011 && !(ibfd->flags & DYNAMIC)
16012 && (in_flags & EF_ARM_BE8))
16013 {
16014 _bfd_error_handler (_("error: %B is already in final BE8 format"),
16015 ibfd);
16016 return FALSE;
16017 }
16018
16019 if (!elf_flags_init (obfd))
16020 {
16021 /* If the input is the default architecture and had the default
16022 flags then do not bother setting the flags for the output
16023 architecture, instead allow future merges to do this. If no
16024 future merges ever set these flags then they will retain their
16025 uninitialised values, which surprise surprise, correspond
16026 to the default values. */
16027 if (bfd_get_arch_info (ibfd)->the_default
16028 && elf_elfheader (ibfd)->e_flags == 0)
16029 return TRUE;
16030
16031 elf_flags_init (obfd) = TRUE;
16032 elf_elfheader (obfd)->e_flags = in_flags;
16033
16034 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
16035 && bfd_get_arch_info (obfd)->the_default)
16036 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
16037
16038 return TRUE;
16039 }
16040
16041 /* Determine what should happen if the input ARM architecture
16042 does not match the output ARM architecture. */
16043 if (! bfd_arm_merge_machines (ibfd, obfd))
16044 return FALSE;
16045
16046 /* Identical flags must be compatible. */
16047 if (in_flags == out_flags)
16048 return TRUE;
16049
16050 /* Check to see if the input BFD actually contains any sections. If
16051 not, its flags may not have been initialised either, but it
16052 cannot actually cause any incompatiblity. Do not short-circuit
16053 dynamic objects; their section list may be emptied by
16054 elf_link_add_object_symbols.
16055
16056 Also check to see if there are no code sections in the input.
16057 In this case there is no need to check for code specific flags.
16058 XXX - do we need to worry about floating-point format compatability
16059 in data sections ? */
16060 if (!(ibfd->flags & DYNAMIC))
16061 {
16062 bfd_boolean null_input_bfd = TRUE;
16063 bfd_boolean only_data_sections = TRUE;
16064
16065 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
16066 {
16067 /* Ignore synthetic glue sections. */
16068 if (strcmp (sec->name, ".glue_7")
16069 && strcmp (sec->name, ".glue_7t"))
16070 {
16071 if ((bfd_get_section_flags (ibfd, sec)
16072 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16073 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16074 only_data_sections = FALSE;
16075
16076 null_input_bfd = FALSE;
16077 break;
16078 }
16079 }
16080
16081 if (null_input_bfd || only_data_sections)
16082 return TRUE;
16083 }
16084
16085 /* Complain about various flag mismatches. */
16086 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
16087 EF_ARM_EABI_VERSION (out_flags)))
16088 {
16089 _bfd_error_handler
16090 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
16091 ibfd, obfd,
16092 (in_flags & EF_ARM_EABIMASK) >> 24,
16093 (out_flags & EF_ARM_EABIMASK) >> 24);
16094 return FALSE;
16095 }
16096
16097 /* Not sure what needs to be checked for EABI versions >= 1. */
16098 /* VxWorks libraries do not use these flags. */
16099 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
16100 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
16101 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
16102 {
16103 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
16104 {
16105 _bfd_error_handler
16106 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
16107 ibfd, obfd,
16108 in_flags & EF_ARM_APCS_26 ? 26 : 32,
16109 out_flags & EF_ARM_APCS_26 ? 26 : 32);
16110 flags_compatible = FALSE;
16111 }
16112
16113 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
16114 {
16115 if (in_flags & EF_ARM_APCS_FLOAT)
16116 _bfd_error_handler
16117 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
16118 ibfd, obfd);
16119 else
16120 _bfd_error_handler
16121 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
16122 ibfd, obfd);
16123
16124 flags_compatible = FALSE;
16125 }
16126
16127 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
16128 {
16129 if (in_flags & EF_ARM_VFP_FLOAT)
16130 _bfd_error_handler
16131 (_("error: %B uses VFP instructions, whereas %B does not"),
16132 ibfd, obfd);
16133 else
16134 _bfd_error_handler
16135 (_("error: %B uses FPA instructions, whereas %B does not"),
16136 ibfd, obfd);
16137
16138 flags_compatible = FALSE;
16139 }
16140
16141 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
16142 {
16143 if (in_flags & EF_ARM_MAVERICK_FLOAT)
16144 _bfd_error_handler
16145 (_("error: %B uses Maverick instructions, whereas %B does not"),
16146 ibfd, obfd);
16147 else
16148 _bfd_error_handler
16149 (_("error: %B does not use Maverick instructions, whereas %B does"),
16150 ibfd, obfd);
16151
16152 flags_compatible = FALSE;
16153 }
16154
16155 #ifdef EF_ARM_SOFT_FLOAT
16156 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16157 {
16158 /* We can allow interworking between code that is VFP format
16159 layout, and uses either soft float or integer regs for
16160 passing floating point arguments and results. We already
16161 know that the APCS_FLOAT flags match; similarly for VFP
16162 flags. */
16163 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16164 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16165 {
16166 if (in_flags & EF_ARM_SOFT_FLOAT)
16167 _bfd_error_handler
16168 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16169 ibfd, obfd);
16170 else
16171 _bfd_error_handler
16172 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16173 ibfd, obfd);
16174
16175 flags_compatible = FALSE;
16176 }
16177 }
16178 #endif
16179
16180 /* Interworking mismatch is only a warning. */
16181 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16182 {
16183 if (in_flags & EF_ARM_INTERWORK)
16184 {
16185 _bfd_error_handler
16186 (_("Warning: %B supports interworking, whereas %B does not"),
16187 ibfd, obfd);
16188 }
16189 else
16190 {
16191 _bfd_error_handler
16192 (_("Warning: %B does not support interworking, whereas %B does"),
16193 ibfd, obfd);
16194 }
16195 }
16196 }
16197
16198 return flags_compatible;
16199 }
16200
16201
16202 /* Symbian OS Targets. */
16203
16204 #undef TARGET_LITTLE_SYM
16205 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
16206 #undef TARGET_LITTLE_NAME
16207 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
16208 #undef TARGET_BIG_SYM
16209 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
16210 #undef TARGET_BIG_NAME
16211 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
16212
16213 /* Like elf32_arm_link_hash_table_create -- but overrides
16214 appropriately for Symbian OS. */
16215
16216 static struct bfd_link_hash_table *
16217 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16218 {
16219 struct bfd_link_hash_table *ret;
16220
16221 ret = elf32_arm_link_hash_table_create (abfd);
16222 if (ret)
16223 {
16224 struct elf32_arm_link_hash_table *htab
16225 = (struct elf32_arm_link_hash_table *)ret;
16226 /* There is no PLT header for Symbian OS. */
16227 htab->plt_header_size = 0;
16228 /* The PLT entries are each one instruction and one word. */
16229 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
16230 htab->symbian_p = 1;
16231 /* Symbian uses armv5t or above, so use_blx is always true. */
16232 htab->use_blx = 1;
16233 htab->root.is_relocatable_executable = 1;
16234 }
16235 return ret;
16236 }
16237
16238 static const struct bfd_elf_special_section
16239 elf32_arm_symbian_special_sections[] =
16240 {
16241 /* In a BPABI executable, the dynamic linking sections do not go in
16242 the loadable read-only segment. The post-linker may wish to
16243 refer to these sections, but they are not part of the final
16244 program image. */
16245 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
16246 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
16247 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
16248 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
16249 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
16250 /* These sections do not need to be writable as the SymbianOS
16251 postlinker will arrange things so that no dynamic relocation is
16252 required. */
16253 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
16254 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
16255 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16256 { NULL, 0, 0, 0, 0 }
16257 };
16258
16259 static void
16260 elf32_arm_symbian_begin_write_processing (bfd *abfd,
16261 struct bfd_link_info *link_info)
16262 {
16263 /* BPABI objects are never loaded directly by an OS kernel; they are
16264 processed by a postlinker first, into an OS-specific format. If
16265 the D_PAGED bit is set on the file, BFD will align segments on
16266 page boundaries, so that an OS can directly map the file. With
16267 BPABI objects, that just results in wasted space. In addition,
16268 because we clear the D_PAGED bit, map_sections_to_segments will
16269 recognize that the program headers should not be mapped into any
16270 loadable segment. */
16271 abfd->flags &= ~D_PAGED;
16272 elf32_arm_begin_write_processing (abfd, link_info);
16273 }
16274
16275 static bfd_boolean
16276 elf32_arm_symbian_modify_segment_map (bfd *abfd,
16277 struct bfd_link_info *info)
16278 {
16279 struct elf_segment_map *m;
16280 asection *dynsec;
16281
16282 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16283 segment. However, because the .dynamic section is not marked
16284 with SEC_LOAD, the generic ELF code will not create such a
16285 segment. */
16286 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16287 if (dynsec)
16288 {
16289 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16290 if (m->p_type == PT_DYNAMIC)
16291 break;
16292
16293 if (m == NULL)
16294 {
16295 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
16296 m->next = elf_seg_map (abfd);
16297 elf_seg_map (abfd) = m;
16298 }
16299 }
16300
16301 /* Also call the generic arm routine. */
16302 return elf32_arm_modify_segment_map (abfd, info);
16303 }
16304
16305 /* Return address for Ith PLT stub in section PLT, for relocation REL
16306 or (bfd_vma) -1 if it should not be included. */
16307
16308 static bfd_vma
16309 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16310 const arelent *rel ATTRIBUTE_UNUSED)
16311 {
16312 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16313 }
16314
16315
16316 #undef elf32_bed
16317 #define elf32_bed elf32_arm_symbian_bed
16318
16319 /* The dynamic sections are not allocated on SymbianOS; the postlinker
16320 will process them and then discard them. */
16321 #undef ELF_DYNAMIC_SEC_FLAGS
16322 #define ELF_DYNAMIC_SEC_FLAGS \
16323 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16324
16325 #undef elf_backend_emit_relocs
16326
16327 #undef bfd_elf32_bfd_link_hash_table_create
16328 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16329 #undef elf_backend_special_sections
16330 #define elf_backend_special_sections elf32_arm_symbian_special_sections
16331 #undef elf_backend_begin_write_processing
16332 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16333 #undef elf_backend_final_write_processing
16334 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16335
16336 #undef elf_backend_modify_segment_map
16337 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16338
16339 /* There is no .got section for BPABI objects, and hence no header. */
16340 #undef elf_backend_got_header_size
16341 #define elf_backend_got_header_size 0
16342
16343 /* Similarly, there is no .got.plt section. */
16344 #undef elf_backend_want_got_plt
16345 #define elf_backend_want_got_plt 0
16346
16347 #undef elf_backend_plt_sym_val
16348 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16349
16350 #undef elf_backend_may_use_rel_p
16351 #define elf_backend_may_use_rel_p 1
16352 #undef elf_backend_may_use_rela_p
16353 #define elf_backend_may_use_rela_p 0
16354 #undef elf_backend_default_use_rela_p
16355 #define elf_backend_default_use_rela_p 0
16356 #undef elf_backend_want_plt_sym
16357 #define elf_backend_want_plt_sym 0
16358 #undef ELF_MAXPAGESIZE
16359 #define ELF_MAXPAGESIZE 0x8000
16360
16361 #include "elf32-target.h"
This page took 0.372466 seconds and 4 git commands to generate.