99beb9e63cc8c123ff22da7c61ab3ee2fcb728e4
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation. */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* Unallocated. */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781
1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1785
1786 return NULL;
1787 }
1788
1789 static reloc_howto_type *
1790 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806 }
1807
1808 /* Support for core dump NOTE sections. */
1809
1810 static bfd_boolean
1811 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1812 {
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
1821 case 148: /* Linux/ARM 32-bit. */
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838 }
1839
1840 static bfd_boolean
1841 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 {
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1873
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
1877 typedef unsigned long int insn32;
1878 typedef unsigned short int insn16;
1879
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1903
1904 /* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
1908 #ifdef FOUR_WORD_PLT
1909
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1913 linker first. */
1914 static const bfd_vma elf32_arm_plt0_entry [] =
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922 /* Subsequent entries in a procedure linkage table look like
1923 this. */
1924 static const bfd_vma elf32_arm_plt_entry [] =
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932 #else
1933
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
1938 static const bfd_vma elf32_arm_plt0_entry [] =
1939 {
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1945 };
1946
1947 /* Subsequent entries in a procedure linkage table look like
1948 this. */
1949 static const bfd_vma elf32_arm_plt_entry [] =
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956 #endif
1957
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
1998 /* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
2000 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2001 {
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
2013 enum stub_insn_type
2014 {
2015 THUMB16_TYPE = 1,
2016 THUMB32_TYPE,
2017 ARM_TYPE,
2018 DATA_TYPE
2019 };
2020
2021 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2022 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2023 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2024 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2025 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2026
2027 typedef struct
2028 {
2029 bfd_vma data;
2030 enum stub_insn_type type;
2031 unsigned int r_type;
2032 int reloc_addend;
2033 } insn_sequence;
2034
2035 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2036 to reach the stub if necessary. */
2037 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2038 {
2039 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2040 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2041 };
2042
2043 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2044 available. */
2045 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2046 {
2047 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2048 ARM_INSN(0xe12fff1c), /* bx ip */
2049 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2050 };
2051
2052 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2053 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2054 {
2055 THUMB16_INSN(0xb401), /* push {r0} */
2056 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2057 THUMB16_INSN(0x4684), /* mov ip, r0 */
2058 THUMB16_INSN(0xbc01), /* pop {r0} */
2059 THUMB16_INSN(0x4760), /* bx ip */
2060 THUMB16_INSN(0xbf00), /* nop */
2061 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2062 };
2063
2064 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2065 allowed. */
2066 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2067 {
2068 THUMB16_INSN(0x4778), /* bx pc */
2069 THUMB16_INSN(0x46c0), /* nop */
2070 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2071 ARM_INSN(0xe12fff1c), /* bx ip */
2072 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2073 };
2074
2075 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2076 available. */
2077 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2078 {
2079 THUMB16_INSN(0x4778), /* bx pc */
2080 THUMB16_INSN(0x46c0), /* nop */
2081 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2082 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2083 };
2084
2085 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2086 one, when the destination is close enough. */
2087 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2088 {
2089 THUMB16_INSN(0x4778), /* bx pc */
2090 THUMB16_INSN(0x46c0), /* nop */
2091 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2092 };
2093
2094 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2095 blx to reach the stub if necessary. */
2096 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2097 {
2098 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2099 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2100 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2101 };
2102
2103 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2104 blx to reach the stub if necessary. We can not add into pc;
2105 it is not guaranteed to mode switch (different in ARMv6 and
2106 ARMv7). */
2107 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2108 {
2109 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2110 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2111 ARM_INSN(0xe12fff1c), /* bx ip */
2112 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2113 };
2114
2115 /* V4T ARM -> ARM long branch stub, PIC. */
2116 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2117 {
2118 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2119 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2120 ARM_INSN(0xe12fff1c), /* bx ip */
2121 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2122 };
2123
2124 /* V4T Thumb -> ARM long branch stub, PIC. */
2125 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2126 {
2127 THUMB16_INSN(0x4778), /* bx pc */
2128 THUMB16_INSN(0x46c0), /* nop */
2129 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2130 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2131 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2132 };
2133
2134 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2135 architectures. */
2136 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2137 {
2138 THUMB16_INSN(0xb401), /* push {r0} */
2139 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2140 THUMB16_INSN(0x46fc), /* mov ip, pc */
2141 THUMB16_INSN(0x4484), /* add ip, r0 */
2142 THUMB16_INSN(0xbc01), /* pop {r0} */
2143 THUMB16_INSN(0x4760), /* bx ip */
2144 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2145 };
2146
2147 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2148 allowed. */
2149 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2150 {
2151 THUMB16_INSN(0x4778), /* bx pc */
2152 THUMB16_INSN(0x46c0), /* nop */
2153 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2154 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2155 ARM_INSN(0xe12fff1c), /* bx ip */
2156 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2157 };
2158
2159 /* Section name for stubs is the associated section name plus this
2160 string. */
2161 #define STUB_SUFFIX ".stub"
2162
2163 enum elf32_arm_stub_type
2164 {
2165 arm_stub_none,
2166 arm_stub_long_branch_any_any,
2167 arm_stub_long_branch_v4t_arm_thumb,
2168 arm_stub_long_branch_thumb_only,
2169 arm_stub_long_branch_v4t_thumb_thumb,
2170 arm_stub_long_branch_v4t_thumb_arm,
2171 arm_stub_short_branch_v4t_thumb_arm,
2172 arm_stub_long_branch_any_arm_pic,
2173 arm_stub_long_branch_any_thumb_pic,
2174 arm_stub_long_branch_v4t_arm_thumb_pic,
2175 arm_stub_long_branch_v4t_thumb_arm_pic,
2176 arm_stub_long_branch_thumb_only_pic,
2177 arm_stub_long_branch_v4t_thumb_thumb_pic,
2178 };
2179
2180 struct elf32_arm_stub_hash_entry
2181 {
2182 /* Base hash table entry structure. */
2183 struct bfd_hash_entry root;
2184
2185 /* The stub section. */
2186 asection *stub_sec;
2187
2188 /* Offset within stub_sec of the beginning of this stub. */
2189 bfd_vma stub_offset;
2190
2191 /* Given the symbol's value and its section we can determine its final
2192 value when building the stubs (so the stub knows where to jump). */
2193 bfd_vma target_value;
2194 asection *target_section;
2195
2196 /* The stub type. */
2197 enum elf32_arm_stub_type stub_type;
2198 /* Its encoding size in bytes. */
2199 int stub_size;
2200 /* Its template. */
2201 const insn_sequence *stub_template;
2202 /* The size of the template (number of entries). */
2203 int stub_template_size;
2204
2205 /* The symbol table entry, if any, that this was derived from. */
2206 struct elf32_arm_link_hash_entry *h;
2207
2208 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2209 unsigned char st_type;
2210
2211 /* Where this stub is being called from, or, in the case of combined
2212 stub sections, the first input section in the group. */
2213 asection *id_sec;
2214
2215 /* The name for the local symbol at the start of this stub. The
2216 stub name in the hash table has to be unique; this does not, so
2217 it can be friendlier. */
2218 char *output_name;
2219 };
2220
2221 /* Used to build a map of a section. This is required for mixed-endian
2222 code/data. */
2223
2224 typedef struct elf32_elf_section_map
2225 {
2226 bfd_vma vma;
2227 char type;
2228 }
2229 elf32_arm_section_map;
2230
2231 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2232
2233 typedef enum
2234 {
2235 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2236 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2237 VFP11_ERRATUM_ARM_VENEER,
2238 VFP11_ERRATUM_THUMB_VENEER
2239 }
2240 elf32_vfp11_erratum_type;
2241
2242 typedef struct elf32_vfp11_erratum_list
2243 {
2244 struct elf32_vfp11_erratum_list *next;
2245 bfd_vma vma;
2246 union
2247 {
2248 struct
2249 {
2250 struct elf32_vfp11_erratum_list *veneer;
2251 unsigned int vfp_insn;
2252 } b;
2253 struct
2254 {
2255 struct elf32_vfp11_erratum_list *branch;
2256 unsigned int id;
2257 } v;
2258 } u;
2259 elf32_vfp11_erratum_type type;
2260 }
2261 elf32_vfp11_erratum_list;
2262
2263 typedef struct _arm_elf_section_data
2264 {
2265 struct bfd_elf_section_data elf;
2266 unsigned int mapcount;
2267 unsigned int mapsize;
2268 elf32_arm_section_map *map;
2269 unsigned int erratumcount;
2270 elf32_vfp11_erratum_list *erratumlist;
2271 }
2272 _arm_elf_section_data;
2273
2274 #define elf32_arm_section_data(sec) \
2275 ((_arm_elf_section_data *) elf_section_data (sec))
2276
2277 /* The size of the thread control block. */
2278 #define TCB_SIZE 8
2279
2280 struct elf_arm_obj_tdata
2281 {
2282 struct elf_obj_tdata root;
2283
2284 /* tls_type for each local got entry. */
2285 char *local_got_tls_type;
2286
2287 /* Zero to warn when linking objects with incompatible enum sizes. */
2288 int no_enum_size_warning;
2289
2290 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2291 int no_wchar_size_warning;
2292 };
2293
2294 #define elf_arm_tdata(bfd) \
2295 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2296
2297 #define elf32_arm_local_got_tls_type(bfd) \
2298 (elf_arm_tdata (bfd)->local_got_tls_type)
2299
2300 #define is_arm_elf(bfd) \
2301 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2302 && elf_tdata (bfd) != NULL \
2303 && elf_object_id (bfd) == ARM_ELF_TDATA)
2304
2305 static bfd_boolean
2306 elf32_arm_mkobject (bfd *abfd)
2307 {
2308 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2309 ARM_ELF_TDATA);
2310 }
2311
2312 /* The ARM linker needs to keep track of the number of relocs that it
2313 decides to copy in check_relocs for each symbol. This is so that
2314 it can discard PC relative relocs if it doesn't need them when
2315 linking with -Bsymbolic. We store the information in a field
2316 extending the regular ELF linker hash table. */
2317
2318 /* This structure keeps track of the number of relocs we have copied
2319 for a given symbol. */
2320 struct elf32_arm_relocs_copied
2321 {
2322 /* Next section. */
2323 struct elf32_arm_relocs_copied * next;
2324 /* A section in dynobj. */
2325 asection * section;
2326 /* Number of relocs copied in this section. */
2327 bfd_size_type count;
2328 /* Number of PC-relative relocs copied in this section. */
2329 bfd_size_type pc_count;
2330 };
2331
2332 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2333
2334 /* Arm ELF linker hash entry. */
2335 struct elf32_arm_link_hash_entry
2336 {
2337 struct elf_link_hash_entry root;
2338
2339 /* Number of PC relative relocs copied for this symbol. */
2340 struct elf32_arm_relocs_copied * relocs_copied;
2341
2342 /* We reference count Thumb references to a PLT entry separately,
2343 so that we can emit the Thumb trampoline only if needed. */
2344 bfd_signed_vma plt_thumb_refcount;
2345
2346 /* Some references from Thumb code may be eliminated by BL->BLX
2347 conversion, so record them separately. */
2348 bfd_signed_vma plt_maybe_thumb_refcount;
2349
2350 /* Since PLT entries have variable size if the Thumb prologue is
2351 used, we need to record the index into .got.plt instead of
2352 recomputing it from the PLT offset. */
2353 bfd_signed_vma plt_got_offset;
2354
2355 #define GOT_UNKNOWN 0
2356 #define GOT_NORMAL 1
2357 #define GOT_TLS_GD 2
2358 #define GOT_TLS_IE 4
2359 unsigned char tls_type;
2360
2361 /* The symbol marking the real symbol location for exported thumb
2362 symbols with Arm stubs. */
2363 struct elf_link_hash_entry *export_glue;
2364
2365 /* A pointer to the most recently used stub hash entry against this
2366 symbol. */
2367 struct elf32_arm_stub_hash_entry *stub_cache;
2368 };
2369
2370 /* Traverse an arm ELF linker hash table. */
2371 #define elf32_arm_link_hash_traverse(table, func, info) \
2372 (elf_link_hash_traverse \
2373 (&(table)->root, \
2374 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2375 (info)))
2376
2377 /* Get the ARM elf linker hash table from a link_info structure. */
2378 #define elf32_arm_hash_table(info) \
2379 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2380
2381 #define arm_stub_hash_lookup(table, string, create, copy) \
2382 ((struct elf32_arm_stub_hash_entry *) \
2383 bfd_hash_lookup ((table), (string), (create), (copy)))
2384
2385 /* ARM ELF linker hash table. */
2386 struct elf32_arm_link_hash_table
2387 {
2388 /* The main hash table. */
2389 struct elf_link_hash_table root;
2390
2391 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2392 bfd_size_type thumb_glue_size;
2393
2394 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2395 bfd_size_type arm_glue_size;
2396
2397 /* The size in bytes of section containing the ARMv4 BX veneers. */
2398 bfd_size_type bx_glue_size;
2399
2400 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2401 veneer has been populated. */
2402 bfd_vma bx_glue_offset[15];
2403
2404 /* The size in bytes of the section containing glue for VFP11 erratum
2405 veneers. */
2406 bfd_size_type vfp11_erratum_glue_size;
2407
2408 /* An arbitrary input BFD chosen to hold the glue sections. */
2409 bfd * bfd_of_glue_owner;
2410
2411 /* Nonzero to output a BE8 image. */
2412 int byteswap_code;
2413
2414 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2415 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2416 int target1_is_rel;
2417
2418 /* The relocation to use for R_ARM_TARGET2 relocations. */
2419 int target2_reloc;
2420
2421 /* 0 = Ignore R_ARM_V4BX.
2422 1 = Convert BX to MOV PC.
2423 2 = Generate v4 interworing stubs. */
2424 int fix_v4bx;
2425
2426 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2427 int use_blx;
2428
2429 /* What sort of code sequences we should look for which may trigger the
2430 VFP11 denorm erratum. */
2431 bfd_arm_vfp11_fix vfp11_fix;
2432
2433 /* Global counter for the number of fixes we have emitted. */
2434 int num_vfp11_fixes;
2435
2436 /* Nonzero to force PIC branch veneers. */
2437 int pic_veneer;
2438
2439 /* The number of bytes in the initial entry in the PLT. */
2440 bfd_size_type plt_header_size;
2441
2442 /* The number of bytes in the subsequent PLT etries. */
2443 bfd_size_type plt_entry_size;
2444
2445 /* True if the target system is VxWorks. */
2446 int vxworks_p;
2447
2448 /* True if the target system is Symbian OS. */
2449 int symbian_p;
2450
2451 /* True if the target uses REL relocations. */
2452 int use_rel;
2453
2454 /* Short-cuts to get to dynamic linker sections. */
2455 asection *sgot;
2456 asection *sgotplt;
2457 asection *srelgot;
2458 asection *splt;
2459 asection *srelplt;
2460 asection *sdynbss;
2461 asection *srelbss;
2462
2463 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2464 asection *srelplt2;
2465
2466 /* Data for R_ARM_TLS_LDM32 relocations. */
2467 union
2468 {
2469 bfd_signed_vma refcount;
2470 bfd_vma offset;
2471 } tls_ldm_got;
2472
2473 /* Small local sym to section mapping cache. */
2474 struct sym_sec_cache sym_sec;
2475
2476 /* For convenience in allocate_dynrelocs. */
2477 bfd * obfd;
2478
2479 /* The stub hash table. */
2480 struct bfd_hash_table stub_hash_table;
2481
2482 /* Linker stub bfd. */
2483 bfd *stub_bfd;
2484
2485 /* Linker call-backs. */
2486 asection * (*add_stub_section) (const char *, asection *);
2487 void (*layout_sections_again) (void);
2488
2489 /* Array to keep track of which stub sections have been created, and
2490 information on stub grouping. */
2491 struct map_stub
2492 {
2493 /* This is the section to which stubs in the group will be
2494 attached. */
2495 asection *link_sec;
2496 /* The stub section. */
2497 asection *stub_sec;
2498 } *stub_group;
2499
2500 /* Assorted information used by elf32_arm_size_stubs. */
2501 unsigned int bfd_count;
2502 int top_index;
2503 asection **input_list;
2504 };
2505
2506 /* Create an entry in an ARM ELF linker hash table. */
2507
2508 static struct bfd_hash_entry *
2509 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2510 struct bfd_hash_table * table,
2511 const char * string)
2512 {
2513 struct elf32_arm_link_hash_entry * ret =
2514 (struct elf32_arm_link_hash_entry *) entry;
2515
2516 /* Allocate the structure if it has not already been allocated by a
2517 subclass. */
2518 if (ret == NULL)
2519 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2520 if (ret == NULL)
2521 return (struct bfd_hash_entry *) ret;
2522
2523 /* Call the allocation method of the superclass. */
2524 ret = ((struct elf32_arm_link_hash_entry *)
2525 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2526 table, string));
2527 if (ret != NULL)
2528 {
2529 ret->relocs_copied = NULL;
2530 ret->tls_type = GOT_UNKNOWN;
2531 ret->plt_thumb_refcount = 0;
2532 ret->plt_maybe_thumb_refcount = 0;
2533 ret->plt_got_offset = -1;
2534 ret->export_glue = NULL;
2535
2536 ret->stub_cache = NULL;
2537 }
2538
2539 return (struct bfd_hash_entry *) ret;
2540 }
2541
2542 /* Initialize an entry in the stub hash table. */
2543
2544 static struct bfd_hash_entry *
2545 stub_hash_newfunc (struct bfd_hash_entry *entry,
2546 struct bfd_hash_table *table,
2547 const char *string)
2548 {
2549 /* Allocate the structure if it has not already been allocated by a
2550 subclass. */
2551 if (entry == NULL)
2552 {
2553 entry = bfd_hash_allocate (table,
2554 sizeof (struct elf32_arm_stub_hash_entry));
2555 if (entry == NULL)
2556 return entry;
2557 }
2558
2559 /* Call the allocation method of the superclass. */
2560 entry = bfd_hash_newfunc (entry, table, string);
2561 if (entry != NULL)
2562 {
2563 struct elf32_arm_stub_hash_entry *eh;
2564
2565 /* Initialize the local fields. */
2566 eh = (struct elf32_arm_stub_hash_entry *) entry;
2567 eh->stub_sec = NULL;
2568 eh->stub_offset = 0;
2569 eh->target_value = 0;
2570 eh->target_section = NULL;
2571 eh->stub_type = arm_stub_none;
2572 eh->stub_size = 0;
2573 eh->stub_template = NULL;
2574 eh->stub_template_size = 0;
2575 eh->h = NULL;
2576 eh->id_sec = NULL;
2577 }
2578
2579 return entry;
2580 }
2581
2582 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2583 shortcuts to them in our hash table. */
2584
2585 static bfd_boolean
2586 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2587 {
2588 struct elf32_arm_link_hash_table *htab;
2589
2590 htab = elf32_arm_hash_table (info);
2591 /* BPABI objects never have a GOT, or associated sections. */
2592 if (htab->symbian_p)
2593 return TRUE;
2594
2595 if (! _bfd_elf_create_got_section (dynobj, info))
2596 return FALSE;
2597
2598 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2599 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2600 if (!htab->sgot || !htab->sgotplt)
2601 abort ();
2602
2603 htab->srelgot = bfd_make_section_with_flags (dynobj,
2604 RELOC_SECTION (htab, ".got"),
2605 (SEC_ALLOC | SEC_LOAD
2606 | SEC_HAS_CONTENTS
2607 | SEC_IN_MEMORY
2608 | SEC_LINKER_CREATED
2609 | SEC_READONLY));
2610 if (htab->srelgot == NULL
2611 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2612 return FALSE;
2613 return TRUE;
2614 }
2615
2616 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2617 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2618 hash table. */
2619
2620 static bfd_boolean
2621 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2622 {
2623 struct elf32_arm_link_hash_table *htab;
2624
2625 htab = elf32_arm_hash_table (info);
2626 if (!htab->sgot && !create_got_section (dynobj, info))
2627 return FALSE;
2628
2629 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2630 return FALSE;
2631
2632 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2633 htab->srelplt = bfd_get_section_by_name (dynobj,
2634 RELOC_SECTION (htab, ".plt"));
2635 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2636 if (!info->shared)
2637 htab->srelbss = bfd_get_section_by_name (dynobj,
2638 RELOC_SECTION (htab, ".bss"));
2639
2640 if (htab->vxworks_p)
2641 {
2642 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2643 return FALSE;
2644
2645 if (info->shared)
2646 {
2647 htab->plt_header_size = 0;
2648 htab->plt_entry_size
2649 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2650 }
2651 else
2652 {
2653 htab->plt_header_size
2654 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2655 htab->plt_entry_size
2656 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2657 }
2658 }
2659
2660 if (!htab->splt
2661 || !htab->srelplt
2662 || !htab->sdynbss
2663 || (!info->shared && !htab->srelbss))
2664 abort ();
2665
2666 return TRUE;
2667 }
2668
2669 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2670
2671 static void
2672 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2673 struct elf_link_hash_entry *dir,
2674 struct elf_link_hash_entry *ind)
2675 {
2676 struct elf32_arm_link_hash_entry *edir, *eind;
2677
2678 edir = (struct elf32_arm_link_hash_entry *) dir;
2679 eind = (struct elf32_arm_link_hash_entry *) ind;
2680
2681 if (eind->relocs_copied != NULL)
2682 {
2683 if (edir->relocs_copied != NULL)
2684 {
2685 struct elf32_arm_relocs_copied **pp;
2686 struct elf32_arm_relocs_copied *p;
2687
2688 /* Add reloc counts against the indirect sym to the direct sym
2689 list. Merge any entries against the same section. */
2690 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2691 {
2692 struct elf32_arm_relocs_copied *q;
2693
2694 for (q = edir->relocs_copied; q != NULL; q = q->next)
2695 if (q->section == p->section)
2696 {
2697 q->pc_count += p->pc_count;
2698 q->count += p->count;
2699 *pp = p->next;
2700 break;
2701 }
2702 if (q == NULL)
2703 pp = &p->next;
2704 }
2705 *pp = edir->relocs_copied;
2706 }
2707
2708 edir->relocs_copied = eind->relocs_copied;
2709 eind->relocs_copied = NULL;
2710 }
2711
2712 if (ind->root.type == bfd_link_hash_indirect)
2713 {
2714 /* Copy over PLT info. */
2715 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2716 eind->plt_thumb_refcount = 0;
2717 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2718 eind->plt_maybe_thumb_refcount = 0;
2719
2720 if (dir->got.refcount <= 0)
2721 {
2722 edir->tls_type = eind->tls_type;
2723 eind->tls_type = GOT_UNKNOWN;
2724 }
2725 }
2726
2727 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2728 }
2729
2730 /* Create an ARM elf linker hash table. */
2731
2732 static struct bfd_link_hash_table *
2733 elf32_arm_link_hash_table_create (bfd *abfd)
2734 {
2735 struct elf32_arm_link_hash_table *ret;
2736 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2737
2738 ret = bfd_malloc (amt);
2739 if (ret == NULL)
2740 return NULL;
2741
2742 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2743 elf32_arm_link_hash_newfunc,
2744 sizeof (struct elf32_arm_link_hash_entry)))
2745 {
2746 free (ret);
2747 return NULL;
2748 }
2749
2750 ret->sgot = NULL;
2751 ret->sgotplt = NULL;
2752 ret->srelgot = NULL;
2753 ret->splt = NULL;
2754 ret->srelplt = NULL;
2755 ret->sdynbss = NULL;
2756 ret->srelbss = NULL;
2757 ret->srelplt2 = NULL;
2758 ret->thumb_glue_size = 0;
2759 ret->arm_glue_size = 0;
2760 ret->bx_glue_size = 0;
2761 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2762 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2763 ret->vfp11_erratum_glue_size = 0;
2764 ret->num_vfp11_fixes = 0;
2765 ret->bfd_of_glue_owner = NULL;
2766 ret->byteswap_code = 0;
2767 ret->target1_is_rel = 0;
2768 ret->target2_reloc = R_ARM_NONE;
2769 #ifdef FOUR_WORD_PLT
2770 ret->plt_header_size = 16;
2771 ret->plt_entry_size = 16;
2772 #else
2773 ret->plt_header_size = 20;
2774 ret->plt_entry_size = 12;
2775 #endif
2776 ret->fix_v4bx = 0;
2777 ret->use_blx = 0;
2778 ret->vxworks_p = 0;
2779 ret->symbian_p = 0;
2780 ret->use_rel = 1;
2781 ret->sym_sec.abfd = NULL;
2782 ret->obfd = abfd;
2783 ret->tls_ldm_got.refcount = 0;
2784 ret->stub_bfd = NULL;
2785 ret->add_stub_section = NULL;
2786 ret->layout_sections_again = NULL;
2787 ret->stub_group = NULL;
2788 ret->bfd_count = 0;
2789 ret->top_index = 0;
2790 ret->input_list = NULL;
2791
2792 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2793 sizeof (struct elf32_arm_stub_hash_entry)))
2794 {
2795 free (ret);
2796 return NULL;
2797 }
2798
2799 return &ret->root.root;
2800 }
2801
2802 /* Free the derived linker hash table. */
2803
2804 static void
2805 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2806 {
2807 struct elf32_arm_link_hash_table *ret
2808 = (struct elf32_arm_link_hash_table *) hash;
2809
2810 bfd_hash_table_free (&ret->stub_hash_table);
2811 _bfd_generic_link_hash_table_free (hash);
2812 }
2813
2814 /* Determine if we're dealing with a Thumb only architecture. */
2815
2816 static bfd_boolean
2817 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2818 {
2819 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2820 Tag_CPU_arch);
2821 int profile;
2822
2823 if (arch != TAG_CPU_ARCH_V7)
2824 return FALSE;
2825
2826 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2827 Tag_CPU_arch_profile);
2828
2829 return profile == 'M';
2830 }
2831
2832 /* Determine if we're dealing with a Thumb-2 object. */
2833
2834 static bfd_boolean
2835 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2836 {
2837 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2838 Tag_CPU_arch);
2839 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2840 }
2841
2842 static bfd_boolean
2843 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2844 {
2845 switch (stub_type)
2846 {
2847 case arm_stub_long_branch_thumb_only:
2848 case arm_stub_long_branch_v4t_thumb_arm:
2849 case arm_stub_short_branch_v4t_thumb_arm:
2850 case arm_stub_long_branch_v4t_thumb_arm_pic:
2851 case arm_stub_long_branch_thumb_only_pic:
2852 return TRUE;
2853 case arm_stub_none:
2854 BFD_FAIL ();
2855 return FALSE;
2856 break;
2857 default:
2858 return FALSE;
2859 }
2860 }
2861
2862 /* Determine the type of stub needed, if any, for a call. */
2863
2864 static enum elf32_arm_stub_type
2865 arm_type_of_stub (struct bfd_link_info *info,
2866 asection *input_sec,
2867 const Elf_Internal_Rela *rel,
2868 unsigned char st_type,
2869 struct elf32_arm_link_hash_entry *hash,
2870 bfd_vma destination,
2871 asection *sym_sec,
2872 bfd *input_bfd,
2873 const char *name)
2874 {
2875 bfd_vma location;
2876 bfd_signed_vma branch_offset;
2877 unsigned int r_type;
2878 struct elf32_arm_link_hash_table * globals;
2879 int thumb2;
2880 int thumb_only;
2881 enum elf32_arm_stub_type stub_type = arm_stub_none;
2882 int use_plt = 0;
2883
2884 /* We don't know the actual type of destination in case it is of
2885 type STT_SECTION: give up. */
2886 if (st_type == STT_SECTION)
2887 return stub_type;
2888
2889 globals = elf32_arm_hash_table (info);
2890
2891 thumb_only = using_thumb_only (globals);
2892
2893 thumb2 = using_thumb2 (globals);
2894
2895 /* Determine where the call point is. */
2896 location = (input_sec->output_offset
2897 + input_sec->output_section->vma
2898 + rel->r_offset);
2899
2900 branch_offset = (bfd_signed_vma)(destination - location);
2901
2902 r_type = ELF32_R_TYPE (rel->r_info);
2903
2904 /* Keep a simpler condition, for the sake of clarity. */
2905 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2906 {
2907 use_plt = 1;
2908 /* Note when dealing with PLT entries: the main PLT stub is in
2909 ARM mode, so if the branch is in Thumb mode, another
2910 Thumb->ARM stub will be inserted later just before the ARM
2911 PLT stub. We don't take this extra distance into account
2912 here, because if a long branch stub is needed, we'll add a
2913 Thumb->Arm one and branch directly to the ARM PLT entry
2914 because it avoids spreading offset corrections in several
2915 places. */
2916 }
2917
2918 if (r_type == R_ARM_THM_CALL)
2919 {
2920 /* Handle cases where:
2921 - this call goes too far (different Thumb/Thumb2 max
2922 distance)
2923 - it's a Thumb->Arm call and blx is not available. A stub is
2924 needed in this case, but only if this call is not through a
2925 PLT entry. Indeed, PLT stubs handle mode switching already.
2926 */
2927 if ((!thumb2
2928 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2929 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2930 || (thumb2
2931 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2932 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2933 || ((st_type != STT_ARM_TFUNC)
2934 && ((r_type == R_ARM_THM_CALL) && !globals->use_blx)
2935 && !use_plt))
2936 {
2937 if (st_type == STT_ARM_TFUNC)
2938 {
2939 /* Thumb to thumb. */
2940 if (!thumb_only)
2941 {
2942 stub_type = (info->shared | globals->pic_veneer)
2943 /* PIC stubs. */
2944 ? ((globals->use_blx)
2945 /* V5T and above. */
2946 ? arm_stub_long_branch_any_thumb_pic
2947 /* On V4T, use Thumb code only. */
2948 : arm_stub_long_branch_v4t_thumb_thumb_pic)
2949
2950 /* non-PIC stubs. */
2951 : ((globals->use_blx)
2952 /* V5T and above. */
2953 ? arm_stub_long_branch_any_any
2954 /* V4T. */
2955 : arm_stub_long_branch_v4t_thumb_thumb);
2956 }
2957 else
2958 {
2959 stub_type = (info->shared | globals->pic_veneer)
2960 /* PIC stub. */
2961 ? arm_stub_long_branch_thumb_only_pic
2962 /* non-PIC stub. */
2963 : arm_stub_long_branch_thumb_only;
2964 }
2965 }
2966 else
2967 {
2968 /* Thumb to arm. */
2969 if (sym_sec != NULL
2970 && sym_sec->owner != NULL
2971 && !INTERWORK_FLAG (sym_sec->owner))
2972 {
2973 (*_bfd_error_handler)
2974 (_("%B(%s): warning: interworking not enabled.\n"
2975 " first occurrence: %B: Thumb call to ARM"),
2976 sym_sec->owner, input_bfd, name);
2977 }
2978
2979 stub_type = (info->shared | globals->pic_veneer)
2980 /* PIC stubs. */
2981 ? ((globals->use_blx)
2982 /* V5T and above. */
2983 ? arm_stub_long_branch_any_arm_pic
2984 /* V4T PIC stub. */
2985 : arm_stub_long_branch_v4t_thumb_arm_pic)
2986
2987 /* non-PIC stubs. */
2988 : ((globals->use_blx)
2989 /* V5T and above. */
2990 ? arm_stub_long_branch_any_any
2991 /* V4T. */
2992 : arm_stub_long_branch_v4t_thumb_arm);
2993
2994 /* Handle v4t short branches. */
2995 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
2996 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2997 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2998 stub_type = arm_stub_short_branch_v4t_thumb_arm;
2999 }
3000 }
3001 }
3002 else if (r_type == R_ARM_CALL)
3003 {
3004 if (st_type == STT_ARM_TFUNC)
3005 {
3006 /* Arm to thumb. */
3007
3008 if (sym_sec != NULL
3009 && sym_sec->owner != NULL
3010 && !INTERWORK_FLAG (sym_sec->owner))
3011 {
3012 (*_bfd_error_handler)
3013 (_("%B(%s): warning: interworking not enabled.\n"
3014 " first occurrence: %B: ARM call to Thumb"),
3015 sym_sec->owner, input_bfd, name);
3016 }
3017
3018 /* We have an extra 2-bytes reach because of
3019 the mode change (bit 24 (H) of BLX encoding). */
3020 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3021 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3022 || !globals->use_blx)
3023 {
3024 stub_type = (info->shared | globals->pic_veneer)
3025 /* PIC stubs. */
3026 ? ((globals->use_blx)
3027 /* V5T and above. */
3028 ? arm_stub_long_branch_any_thumb_pic
3029 /* V4T stub. */
3030 : arm_stub_long_branch_v4t_arm_thumb_pic)
3031
3032 /* non-PIC stubs. */
3033 : ((globals->use_blx)
3034 /* V5T and above. */
3035 ? arm_stub_long_branch_any_any
3036 /* V4T. */
3037 : arm_stub_long_branch_v4t_arm_thumb);
3038 }
3039 }
3040 else
3041 {
3042 /* Arm to arm. */
3043 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3044 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3045 {
3046 stub_type = (info->shared | globals->pic_veneer)
3047 /* PIC stubs. */
3048 ? arm_stub_long_branch_any_arm_pic
3049 /* non-PIC stubs. */
3050 : arm_stub_long_branch_any_any;
3051 }
3052 }
3053 }
3054
3055 return stub_type;
3056 }
3057
3058 /* Build a name for an entry in the stub hash table. */
3059
3060 static char *
3061 elf32_arm_stub_name (const asection *input_section,
3062 const asection *sym_sec,
3063 const struct elf32_arm_link_hash_entry *hash,
3064 const Elf_Internal_Rela *rel)
3065 {
3066 char *stub_name;
3067 bfd_size_type len;
3068
3069 if (hash)
3070 {
3071 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
3072 stub_name = bfd_malloc (len);
3073 if (stub_name != NULL)
3074 sprintf (stub_name, "%08x_%s+%x",
3075 input_section->id & 0xffffffff,
3076 hash->root.root.root.string,
3077 (int) rel->r_addend & 0xffffffff);
3078 }
3079 else
3080 {
3081 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3082 stub_name = bfd_malloc (len);
3083 if (stub_name != NULL)
3084 sprintf (stub_name, "%08x_%x:%x+%x",
3085 input_section->id & 0xffffffff,
3086 sym_sec->id & 0xffffffff,
3087 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3088 (int) rel->r_addend & 0xffffffff);
3089 }
3090
3091 return stub_name;
3092 }
3093
3094 /* Look up an entry in the stub hash. Stub entries are cached because
3095 creating the stub name takes a bit of time. */
3096
3097 static struct elf32_arm_stub_hash_entry *
3098 elf32_arm_get_stub_entry (const asection *input_section,
3099 const asection *sym_sec,
3100 struct elf_link_hash_entry *hash,
3101 const Elf_Internal_Rela *rel,
3102 struct elf32_arm_link_hash_table *htab)
3103 {
3104 struct elf32_arm_stub_hash_entry *stub_entry;
3105 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3106 const asection *id_sec;
3107
3108 if ((input_section->flags & SEC_CODE) == 0)
3109 return NULL;
3110
3111 /* If this input section is part of a group of sections sharing one
3112 stub section, then use the id of the first section in the group.
3113 Stub names need to include a section id, as there may well be
3114 more than one stub used to reach say, printf, and we need to
3115 distinguish between them. */
3116 id_sec = htab->stub_group[input_section->id].link_sec;
3117
3118 if (h != NULL && h->stub_cache != NULL
3119 && h->stub_cache->h == h
3120 && h->stub_cache->id_sec == id_sec)
3121 {
3122 stub_entry = h->stub_cache;
3123 }
3124 else
3125 {
3126 char *stub_name;
3127
3128 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3129 if (stub_name == NULL)
3130 return NULL;
3131
3132 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3133 stub_name, FALSE, FALSE);
3134 if (h != NULL)
3135 h->stub_cache = stub_entry;
3136
3137 free (stub_name);
3138 }
3139
3140 return stub_entry;
3141 }
3142
3143 /* Add a new stub entry to the stub hash. Not all fields of the new
3144 stub entry are initialised. */
3145
3146 static struct elf32_arm_stub_hash_entry *
3147 elf32_arm_add_stub (const char *stub_name,
3148 asection *section,
3149 struct elf32_arm_link_hash_table *htab)
3150 {
3151 asection *link_sec;
3152 asection *stub_sec;
3153 struct elf32_arm_stub_hash_entry *stub_entry;
3154
3155 link_sec = htab->stub_group[section->id].link_sec;
3156 stub_sec = htab->stub_group[section->id].stub_sec;
3157 if (stub_sec == NULL)
3158 {
3159 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3160 if (stub_sec == NULL)
3161 {
3162 size_t namelen;
3163 bfd_size_type len;
3164 char *s_name;
3165
3166 namelen = strlen (link_sec->name);
3167 len = namelen + sizeof (STUB_SUFFIX);
3168 s_name = bfd_alloc (htab->stub_bfd, len);
3169 if (s_name == NULL)
3170 return NULL;
3171
3172 memcpy (s_name, link_sec->name, namelen);
3173 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3174 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3175 if (stub_sec == NULL)
3176 return NULL;
3177 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3178 }
3179 htab->stub_group[section->id].stub_sec = stub_sec;
3180 }
3181
3182 /* Enter this entry into the linker stub hash table. */
3183 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3184 TRUE, FALSE);
3185 if (stub_entry == NULL)
3186 {
3187 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3188 section->owner,
3189 stub_name);
3190 return NULL;
3191 }
3192
3193 stub_entry->stub_sec = stub_sec;
3194 stub_entry->stub_offset = 0;
3195 stub_entry->id_sec = link_sec;
3196
3197 return stub_entry;
3198 }
3199
3200 /* Store an Arm insn into an output section not processed by
3201 elf32_arm_write_section. */
3202
3203 static void
3204 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3205 bfd * output_bfd, bfd_vma val, void * ptr)
3206 {
3207 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3208 bfd_putl32 (val, ptr);
3209 else
3210 bfd_putb32 (val, ptr);
3211 }
3212
3213 /* Store a 16-bit Thumb insn into an output section not processed by
3214 elf32_arm_write_section. */
3215
3216 static void
3217 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3218 bfd * output_bfd, bfd_vma val, void * ptr)
3219 {
3220 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3221 bfd_putl16 (val, ptr);
3222 else
3223 bfd_putb16 (val, ptr);
3224 }
3225
3226 static bfd_boolean
3227 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3228 void * in_arg)
3229 {
3230 struct elf32_arm_stub_hash_entry *stub_entry;
3231 struct bfd_link_info *info;
3232 struct elf32_arm_link_hash_table *htab;
3233 asection *stub_sec;
3234 bfd *stub_bfd;
3235 bfd_vma stub_addr;
3236 bfd_byte *loc;
3237 bfd_vma sym_value;
3238 int template_size;
3239 int size;
3240 const insn_sequence *template;
3241 int i;
3242 struct elf32_arm_link_hash_table * globals;
3243 int stub_reloc_idx = -1;
3244 int stub_reloc_offset = 0;
3245
3246 /* Massage our args to the form they really have. */
3247 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3248 info = (struct bfd_link_info *) in_arg;
3249
3250 globals = elf32_arm_hash_table (info);
3251
3252 htab = elf32_arm_hash_table (info);
3253 stub_sec = stub_entry->stub_sec;
3254
3255 /* Make a note of the offset within the stubs for this entry. */
3256 stub_entry->stub_offset = stub_sec->size;
3257 loc = stub_sec->contents + stub_entry->stub_offset;
3258
3259 stub_bfd = stub_sec->owner;
3260
3261 /* This is the address of the start of the stub. */
3262 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3263 + stub_entry->stub_offset;
3264
3265 /* This is the address of the stub destination. */
3266 sym_value = (stub_entry->target_value
3267 + stub_entry->target_section->output_offset
3268 + stub_entry->target_section->output_section->vma);
3269
3270 template = stub_entry->stub_template;
3271 template_size = stub_entry->stub_template_size;
3272
3273 size = 0;
3274 for (i = 0; i < template_size; i++)
3275 {
3276 switch (template[i].type)
3277 {
3278 case THUMB16_TYPE:
3279 put_thumb_insn (globals, stub_bfd, template[i].data, loc + size);
3280 size += 2;
3281 break;
3282
3283 case ARM_TYPE:
3284 put_arm_insn (globals, stub_bfd, template[i].data, loc + size);
3285 /* Handle cases where the target is encoded within the
3286 instruction. */
3287 if (template[i].r_type == R_ARM_JUMP24)
3288 {
3289 stub_reloc_idx = i;
3290 stub_reloc_offset = size;
3291 }
3292 size += 4;
3293 break;
3294
3295 case DATA_TYPE:
3296 bfd_put_32 (stub_bfd, template[i].data, loc + size);
3297 stub_reloc_idx = i;
3298 stub_reloc_offset = size;
3299 size += 4;
3300 break;
3301
3302 default:
3303 BFD_FAIL ();
3304 return FALSE;
3305 }
3306 }
3307
3308 stub_sec->size += size;
3309
3310 /* Stub size has already been computed in arm_size_one_stub. Check
3311 consistency. */
3312 BFD_ASSERT (size == stub_entry->stub_size);
3313
3314 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3315 if (stub_entry->st_type == STT_ARM_TFUNC)
3316 sym_value |= 1;
3317
3318 /* Assume there is one and only one entry to relocate in each stub. */
3319 BFD_ASSERT (stub_reloc_idx != -1);
3320
3321 _bfd_final_link_relocate (elf32_arm_howto_from_type (template[stub_reloc_idx].r_type),
3322 stub_bfd, stub_sec, stub_sec->contents,
3323 stub_entry->stub_offset + stub_reloc_offset,
3324 sym_value, template[stub_reloc_idx].reloc_addend);
3325
3326 return TRUE;
3327 }
3328
3329 /* As above, but don't actually build the stub. Just bump offset so
3330 we know stub section sizes. */
3331
3332 static bfd_boolean
3333 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3334 void * in_arg)
3335 {
3336 struct elf32_arm_stub_hash_entry *stub_entry;
3337 struct elf32_arm_link_hash_table *htab;
3338 const insn_sequence *template;
3339 int template_size;
3340 int size;
3341 int i;
3342
3343 /* Massage our args to the form they really have. */
3344 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3345 htab = (struct elf32_arm_link_hash_table *) in_arg;
3346
3347 switch (stub_entry->stub_type)
3348 {
3349 case arm_stub_long_branch_any_any:
3350 template = elf32_arm_stub_long_branch_any_any;
3351 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_any);
3352 break;
3353 case arm_stub_long_branch_v4t_arm_thumb:
3354 template = elf32_arm_stub_long_branch_v4t_arm_thumb;
3355 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_arm_thumb);
3356 break;
3357 case arm_stub_long_branch_thumb_only:
3358 template = elf32_arm_stub_long_branch_thumb_only;
3359 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_thumb_only);
3360 break;
3361 case arm_stub_long_branch_v4t_thumb_thumb:
3362 template = elf32_arm_stub_long_branch_v4t_thumb_thumb;
3363 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_thumb);
3364 break;
3365 case arm_stub_long_branch_v4t_thumb_arm:
3366 template = elf32_arm_stub_long_branch_v4t_thumb_arm;
3367 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_arm);
3368 break;
3369 case arm_stub_short_branch_v4t_thumb_arm:
3370 template = elf32_arm_stub_short_branch_v4t_thumb_arm;
3371 template_size = ARRAY_SIZE (elf32_arm_stub_short_branch_v4t_thumb_arm);
3372 break;
3373 case arm_stub_long_branch_any_arm_pic:
3374 template = elf32_arm_stub_long_branch_any_arm_pic;
3375 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_arm_pic);
3376 break;
3377 case arm_stub_long_branch_any_thumb_pic:
3378 template = elf32_arm_stub_long_branch_any_thumb_pic;
3379 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_thumb_pic);
3380 break;
3381 case arm_stub_long_branch_v4t_arm_thumb_pic:
3382 template = elf32_arm_stub_long_branch_v4t_arm_thumb_pic;
3383 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_arm_thumb_pic);
3384 break;
3385 case arm_stub_long_branch_v4t_thumb_arm_pic:
3386 template = elf32_arm_stub_long_branch_v4t_thumb_arm_pic;
3387 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_arm_pic);
3388 break;
3389 case arm_stub_long_branch_thumb_only_pic:
3390 template = elf32_arm_stub_long_branch_thumb_only_pic;
3391 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_thumb_only_pic);
3392 break;
3393 case arm_stub_long_branch_v4t_thumb_thumb_pic:
3394 template = elf32_arm_stub_long_branch_v4t_thumb_thumb_pic;
3395 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_thumb_pic);
3396 break;
3397 default:
3398 BFD_FAIL ();
3399 return FALSE;
3400 }
3401
3402 size = 0;
3403 for (i = 0; i < template_size; i++)
3404 {
3405 switch (template[i].type)
3406 {
3407 case THUMB16_TYPE:
3408 size += 2;
3409 break;
3410
3411 case ARM_TYPE:
3412 size += 4;
3413 break;
3414
3415 case DATA_TYPE:
3416 size += 4;
3417 break;
3418
3419 default:
3420 BFD_FAIL ();
3421 return FALSE;
3422 }
3423 }
3424
3425 stub_entry->stub_size = size;
3426 stub_entry->stub_template = template;
3427 stub_entry->stub_template_size = template_size;
3428
3429 size = (size + 7) & ~7;
3430 stub_entry->stub_sec->size += size;
3431
3432 return TRUE;
3433 }
3434
3435 /* External entry points for sizing and building linker stubs. */
3436
3437 /* Set up various things so that we can make a list of input sections
3438 for each output section included in the link. Returns -1 on error,
3439 0 when no stubs will be needed, and 1 on success. */
3440
3441 int
3442 elf32_arm_setup_section_lists (bfd *output_bfd,
3443 struct bfd_link_info *info)
3444 {
3445 bfd *input_bfd;
3446 unsigned int bfd_count;
3447 int top_id, top_index;
3448 asection *section;
3449 asection **input_list, **list;
3450 bfd_size_type amt;
3451 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3452
3453 if (! is_elf_hash_table (htab))
3454 return 0;
3455
3456 /* Count the number of input BFDs and find the top input section id. */
3457 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3458 input_bfd != NULL;
3459 input_bfd = input_bfd->link_next)
3460 {
3461 bfd_count += 1;
3462 for (section = input_bfd->sections;
3463 section != NULL;
3464 section = section->next)
3465 {
3466 if (top_id < section->id)
3467 top_id = section->id;
3468 }
3469 }
3470 htab->bfd_count = bfd_count;
3471
3472 amt = sizeof (struct map_stub) * (top_id + 1);
3473 htab->stub_group = bfd_zmalloc (amt);
3474 if (htab->stub_group == NULL)
3475 return -1;
3476
3477 /* We can't use output_bfd->section_count here to find the top output
3478 section index as some sections may have been removed, and
3479 _bfd_strip_section_from_output doesn't renumber the indices. */
3480 for (section = output_bfd->sections, top_index = 0;
3481 section != NULL;
3482 section = section->next)
3483 {
3484 if (top_index < section->index)
3485 top_index = section->index;
3486 }
3487
3488 htab->top_index = top_index;
3489 amt = sizeof (asection *) * (top_index + 1);
3490 input_list = bfd_malloc (amt);
3491 htab->input_list = input_list;
3492 if (input_list == NULL)
3493 return -1;
3494
3495 /* For sections we aren't interested in, mark their entries with a
3496 value we can check later. */
3497 list = input_list + top_index;
3498 do
3499 *list = bfd_abs_section_ptr;
3500 while (list-- != input_list);
3501
3502 for (section = output_bfd->sections;
3503 section != NULL;
3504 section = section->next)
3505 {
3506 if ((section->flags & SEC_CODE) != 0)
3507 input_list[section->index] = NULL;
3508 }
3509
3510 return 1;
3511 }
3512
3513 /* The linker repeatedly calls this function for each input section,
3514 in the order that input sections are linked into output sections.
3515 Build lists of input sections to determine groupings between which
3516 we may insert linker stubs. */
3517
3518 void
3519 elf32_arm_next_input_section (struct bfd_link_info *info,
3520 asection *isec)
3521 {
3522 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3523
3524 if (isec->output_section->index <= htab->top_index)
3525 {
3526 asection **list = htab->input_list + isec->output_section->index;
3527
3528 if (*list != bfd_abs_section_ptr)
3529 {
3530 /* Steal the link_sec pointer for our list. */
3531 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3532 /* This happens to make the list in reverse order,
3533 which we reverse later. */
3534 PREV_SEC (isec) = *list;
3535 *list = isec;
3536 }
3537 }
3538 }
3539
3540 /* See whether we can group stub sections together. Grouping stub
3541 sections may result in fewer stubs. More importantly, we need to
3542 put all .init* and .fini* stubs at the end of the .init or
3543 .fini output sections respectively, because glibc splits the
3544 _init and _fini functions into multiple parts. Putting a stub in
3545 the middle of a function is not a good idea. */
3546
3547 static void
3548 group_sections (struct elf32_arm_link_hash_table *htab,
3549 bfd_size_type stub_group_size,
3550 bfd_boolean stubs_always_after_branch)
3551 {
3552 asection **list = htab->input_list;
3553
3554 do
3555 {
3556 asection *tail = *list;
3557 asection *head;
3558
3559 if (tail == bfd_abs_section_ptr)
3560 continue;
3561
3562 /* Reverse the list: we must avoid placing stubs at the
3563 beginning of the section because the beginning of the text
3564 section may be required for an interrupt vector in bare metal
3565 code. */
3566 #define NEXT_SEC PREV_SEC
3567 head = NULL;
3568 while (tail != NULL)
3569 {
3570 /* Pop from tail. */
3571 asection *item = tail;
3572 tail = PREV_SEC (item);
3573
3574 /* Push on head. */
3575 NEXT_SEC (item) = head;
3576 head = item;
3577 }
3578
3579 while (head != NULL)
3580 {
3581 asection *curr;
3582 asection *next;
3583 bfd_vma stub_group_start = head->output_offset;
3584 bfd_vma end_of_next;
3585
3586 curr = head;
3587 while (NEXT_SEC (curr) != NULL)
3588 {
3589 next = NEXT_SEC (curr);
3590 end_of_next = next->output_offset + next->size;
3591 if (end_of_next - stub_group_start >= stub_group_size)
3592 /* End of NEXT is too far from start, so stop. */
3593 break;
3594 /* Add NEXT to the group. */
3595 curr = next;
3596 }
3597
3598 /* OK, the size from the start to the start of CURR is less
3599 than stub_group_size and thus can be handled by one stub
3600 section. (Or the head section is itself larger than
3601 stub_group_size, in which case we may be toast.)
3602 We should really be keeping track of the total size of
3603 stubs added here, as stubs contribute to the final output
3604 section size. */
3605 do
3606 {
3607 next = NEXT_SEC (head);
3608 /* Set up this stub group. */
3609 htab->stub_group[head->id].link_sec = curr;
3610 }
3611 while (head != curr && (head = next) != NULL);
3612
3613 /* But wait, there's more! Input sections up to stub_group_size
3614 bytes after the stub section can be handled by it too. */
3615 if (!stubs_always_after_branch)
3616 {
3617 stub_group_start = curr->output_offset + curr->size;
3618
3619 while (next != NULL)
3620 {
3621 end_of_next = next->output_offset + next->size;
3622 if (end_of_next - stub_group_start >= stub_group_size)
3623 /* End of NEXT is too far from stubs, so stop. */
3624 break;
3625 /* Add NEXT to the stub group. */
3626 head = next;
3627 next = NEXT_SEC (head);
3628 htab->stub_group[head->id].link_sec = curr;
3629 }
3630 }
3631 head = next;
3632 }
3633 }
3634 while (list++ != htab->input_list + htab->top_index);
3635
3636 free (htab->input_list);
3637 #undef PREV_SEC
3638 #undef NEXT_SEC
3639 }
3640
3641 /* Determine and set the size of the stub section for a final link.
3642
3643 The basic idea here is to examine all the relocations looking for
3644 PC-relative calls to a target that is unreachable with a "bl"
3645 instruction. */
3646
3647 bfd_boolean
3648 elf32_arm_size_stubs (bfd *output_bfd,
3649 bfd *stub_bfd,
3650 struct bfd_link_info *info,
3651 bfd_signed_vma group_size,
3652 asection * (*add_stub_section) (const char *, asection *),
3653 void (*layout_sections_again) (void))
3654 {
3655 bfd_size_type stub_group_size;
3656 bfd_boolean stubs_always_after_branch;
3657 bfd_boolean stub_changed = 0;
3658 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3659
3660 /* Propagate mach to stub bfd, because it may not have been
3661 finalized when we created stub_bfd. */
3662 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3663 bfd_get_mach (output_bfd));
3664
3665 /* Stash our params away. */
3666 htab->stub_bfd = stub_bfd;
3667 htab->add_stub_section = add_stub_section;
3668 htab->layout_sections_again = layout_sections_again;
3669 stubs_always_after_branch = group_size < 0;
3670 if (group_size < 0)
3671 stub_group_size = -group_size;
3672 else
3673 stub_group_size = group_size;
3674
3675 if (stub_group_size == 1)
3676 {
3677 /* Default values. */
3678 /* Thumb branch range is +-4MB has to be used as the default
3679 maximum size (a given section can contain both ARM and Thumb
3680 code, so the worst case has to be taken into account).
3681
3682 This value is 24K less than that, which allows for 2025
3683 12-byte stubs. If we exceed that, then we will fail to link.
3684 The user will have to relink with an explicit group size
3685 option. */
3686 stub_group_size = 4170000;
3687 }
3688
3689 group_sections (htab, stub_group_size, stubs_always_after_branch);
3690
3691 while (1)
3692 {
3693 bfd *input_bfd;
3694 unsigned int bfd_indx;
3695 asection *stub_sec;
3696
3697 for (input_bfd = info->input_bfds, bfd_indx = 0;
3698 input_bfd != NULL;
3699 input_bfd = input_bfd->link_next, bfd_indx++)
3700 {
3701 Elf_Internal_Shdr *symtab_hdr;
3702 asection *section;
3703 Elf_Internal_Sym *local_syms = NULL;
3704
3705 /* We'll need the symbol table in a second. */
3706 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3707 if (symtab_hdr->sh_info == 0)
3708 continue;
3709
3710 /* Walk over each section attached to the input bfd. */
3711 for (section = input_bfd->sections;
3712 section != NULL;
3713 section = section->next)
3714 {
3715 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3716
3717 /* If there aren't any relocs, then there's nothing more
3718 to do. */
3719 if ((section->flags & SEC_RELOC) == 0
3720 || section->reloc_count == 0
3721 || (section->flags & SEC_CODE) == 0)
3722 continue;
3723
3724 /* If this section is a link-once section that will be
3725 discarded, then don't create any stubs. */
3726 if (section->output_section == NULL
3727 || section->output_section->owner != output_bfd)
3728 continue;
3729
3730 /* Get the relocs. */
3731 internal_relocs
3732 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3733 NULL, info->keep_memory);
3734 if (internal_relocs == NULL)
3735 goto error_ret_free_local;
3736
3737 /* Now examine each relocation. */
3738 irela = internal_relocs;
3739 irelaend = irela + section->reloc_count;
3740 for (; irela < irelaend; irela++)
3741 {
3742 unsigned int r_type, r_indx;
3743 enum elf32_arm_stub_type stub_type;
3744 struct elf32_arm_stub_hash_entry *stub_entry;
3745 asection *sym_sec;
3746 bfd_vma sym_value;
3747 bfd_vma destination;
3748 struct elf32_arm_link_hash_entry *hash;
3749 const char *sym_name;
3750 char *stub_name;
3751 const asection *id_sec;
3752 unsigned char st_type;
3753
3754 r_type = ELF32_R_TYPE (irela->r_info);
3755 r_indx = ELF32_R_SYM (irela->r_info);
3756
3757 if (r_type >= (unsigned int) R_ARM_max)
3758 {
3759 bfd_set_error (bfd_error_bad_value);
3760 error_ret_free_internal:
3761 if (elf_section_data (section)->relocs == NULL)
3762 free (internal_relocs);
3763 goto error_ret_free_local;
3764 }
3765
3766 /* Only look for stubs on call instructions. */
3767 if ((r_type != (unsigned int) R_ARM_CALL)
3768 && (r_type != (unsigned int) R_ARM_THM_CALL))
3769 continue;
3770
3771 /* Now determine the call target, its name, value,
3772 section. */
3773 sym_sec = NULL;
3774 sym_value = 0;
3775 destination = 0;
3776 hash = NULL;
3777 sym_name = NULL;
3778 if (r_indx < symtab_hdr->sh_info)
3779 {
3780 /* It's a local symbol. */
3781 Elf_Internal_Sym *sym;
3782 Elf_Internal_Shdr *hdr;
3783
3784 if (local_syms == NULL)
3785 {
3786 local_syms
3787 = (Elf_Internal_Sym *) symtab_hdr->contents;
3788 if (local_syms == NULL)
3789 local_syms
3790 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3791 symtab_hdr->sh_info, 0,
3792 NULL, NULL, NULL);
3793 if (local_syms == NULL)
3794 goto error_ret_free_internal;
3795 }
3796
3797 sym = local_syms + r_indx;
3798 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3799 sym_sec = hdr->bfd_section;
3800 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3801 sym_value = sym->st_value;
3802 destination = (sym_value + irela->r_addend
3803 + sym_sec->output_offset
3804 + sym_sec->output_section->vma);
3805 st_type = ELF_ST_TYPE (sym->st_info);
3806 sym_name
3807 = bfd_elf_string_from_elf_section (input_bfd,
3808 symtab_hdr->sh_link,
3809 sym->st_name);
3810 }
3811 else
3812 {
3813 /* It's an external symbol. */
3814 int e_indx;
3815
3816 e_indx = r_indx - symtab_hdr->sh_info;
3817 hash = ((struct elf32_arm_link_hash_entry *)
3818 elf_sym_hashes (input_bfd)[e_indx]);
3819
3820 while (hash->root.root.type == bfd_link_hash_indirect
3821 || hash->root.root.type == bfd_link_hash_warning)
3822 hash = ((struct elf32_arm_link_hash_entry *)
3823 hash->root.root.u.i.link);
3824
3825 if (hash->root.root.type == bfd_link_hash_defined
3826 || hash->root.root.type == bfd_link_hash_defweak)
3827 {
3828 sym_sec = hash->root.root.u.def.section;
3829 sym_value = hash->root.root.u.def.value;
3830 if (sym_sec->output_section != NULL)
3831 destination = (sym_value + irela->r_addend
3832 + sym_sec->output_offset
3833 + sym_sec->output_section->vma);
3834 }
3835 else if (hash->root.root.type == bfd_link_hash_undefweak
3836 || hash->root.root.type == bfd_link_hash_undefined)
3837 /* For a shared library, these will need a PLT stub,
3838 which is treated separately.
3839 For absolute code, they cannot be handled. */
3840 continue;
3841 else
3842 {
3843 bfd_set_error (bfd_error_bad_value);
3844 goto error_ret_free_internal;
3845 }
3846 st_type = ELF_ST_TYPE (hash->root.type);
3847 sym_name = hash->root.root.root.string;
3848 }
3849
3850 /* Determine what (if any) linker stub is needed. */
3851 stub_type = arm_type_of_stub (info, section, irela, st_type,
3852 hash, destination, sym_sec,
3853 input_bfd, sym_name);
3854 if (stub_type == arm_stub_none)
3855 continue;
3856
3857 /* Support for grouping stub sections. */
3858 id_sec = htab->stub_group[section->id].link_sec;
3859
3860 /* Get the name of this stub. */
3861 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3862 if (!stub_name)
3863 goto error_ret_free_internal;
3864
3865 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3866 stub_name,
3867 FALSE, FALSE);
3868 if (stub_entry != NULL)
3869 {
3870 /* The proper stub has already been created. */
3871 free (stub_name);
3872 continue;
3873 }
3874
3875 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3876 if (stub_entry == NULL)
3877 {
3878 free (stub_name);
3879 goto error_ret_free_internal;
3880 }
3881
3882 stub_entry->target_value = sym_value;
3883 stub_entry->target_section = sym_sec;
3884 stub_entry->stub_type = stub_type;
3885 stub_entry->h = hash;
3886 stub_entry->st_type = st_type;
3887
3888 if (sym_name == NULL)
3889 sym_name = "unnamed";
3890 stub_entry->output_name
3891 = bfd_alloc (htab->stub_bfd,
3892 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3893 + strlen (sym_name));
3894 if (stub_entry->output_name == NULL)
3895 {
3896 free (stub_name);
3897 goto error_ret_free_internal;
3898 }
3899
3900 /* For historical reasons, use the existing names for
3901 ARM-to-Thumb and Thumb-to-ARM stubs. */
3902 if (r_type == (unsigned int) R_ARM_THM_CALL
3903 && st_type != STT_ARM_TFUNC)
3904 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3905 sym_name);
3906 else if (r_type == (unsigned int) R_ARM_CALL
3907 && st_type == STT_ARM_TFUNC)
3908 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3909 sym_name);
3910 else
3911 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3912 sym_name);
3913
3914 stub_changed = TRUE;
3915 }
3916
3917 /* We're done with the internal relocs, free them. */
3918 if (elf_section_data (section)->relocs == NULL)
3919 free (internal_relocs);
3920 }
3921 }
3922
3923 if (!stub_changed)
3924 break;
3925
3926 /* OK, we've added some stubs. Find out the new size of the
3927 stub sections. */
3928 for (stub_sec = htab->stub_bfd->sections;
3929 stub_sec != NULL;
3930 stub_sec = stub_sec->next)
3931 stub_sec->size = 0;
3932
3933 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3934
3935 /* Ask the linker to do its stuff. */
3936 (*htab->layout_sections_again) ();
3937 stub_changed = FALSE;
3938 }
3939
3940 return TRUE;
3941
3942 error_ret_free_local:
3943 return FALSE;
3944 }
3945
3946 /* Build all the stubs associated with the current output file. The
3947 stubs are kept in a hash table attached to the main linker hash
3948 table. We also set up the .plt entries for statically linked PIC
3949 functions here. This function is called via arm_elf_finish in the
3950 linker. */
3951
3952 bfd_boolean
3953 elf32_arm_build_stubs (struct bfd_link_info *info)
3954 {
3955 asection *stub_sec;
3956 struct bfd_hash_table *table;
3957 struct elf32_arm_link_hash_table *htab;
3958
3959 htab = elf32_arm_hash_table (info);
3960
3961 for (stub_sec = htab->stub_bfd->sections;
3962 stub_sec != NULL;
3963 stub_sec = stub_sec->next)
3964 {
3965 bfd_size_type size;
3966
3967 /* Ignore non-stub sections. */
3968 if (!strstr (stub_sec->name, STUB_SUFFIX))
3969 continue;
3970
3971 /* Allocate memory to hold the linker stubs. */
3972 size = stub_sec->size;
3973 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3974 if (stub_sec->contents == NULL && size != 0)
3975 return FALSE;
3976 stub_sec->size = 0;
3977 }
3978
3979 /* Build the stubs as directed by the stub hash table. */
3980 table = &htab->stub_hash_table;
3981 bfd_hash_traverse (table, arm_build_one_stub, info);
3982
3983 return TRUE;
3984 }
3985
3986 /* Locate the Thumb encoded calling stub for NAME. */
3987
3988 static struct elf_link_hash_entry *
3989 find_thumb_glue (struct bfd_link_info *link_info,
3990 const char *name,
3991 char **error_message)
3992 {
3993 char *tmp_name;
3994 struct elf_link_hash_entry *hash;
3995 struct elf32_arm_link_hash_table *hash_table;
3996
3997 /* We need a pointer to the armelf specific hash table. */
3998 hash_table = elf32_arm_hash_table (link_info);
3999
4000 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4001 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4002
4003 BFD_ASSERT (tmp_name);
4004
4005 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4006
4007 hash = elf_link_hash_lookup
4008 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4009
4010 if (hash == NULL
4011 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4012 tmp_name, name) == -1)
4013 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4014
4015 free (tmp_name);
4016
4017 return hash;
4018 }
4019
4020 /* Locate the ARM encoded calling stub for NAME. */
4021
4022 static struct elf_link_hash_entry *
4023 find_arm_glue (struct bfd_link_info *link_info,
4024 const char *name,
4025 char **error_message)
4026 {
4027 char *tmp_name;
4028 struct elf_link_hash_entry *myh;
4029 struct elf32_arm_link_hash_table *hash_table;
4030
4031 /* We need a pointer to the elfarm specific hash table. */
4032 hash_table = elf32_arm_hash_table (link_info);
4033
4034 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4035 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4036
4037 BFD_ASSERT (tmp_name);
4038
4039 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4040
4041 myh = elf_link_hash_lookup
4042 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4043
4044 if (myh == NULL
4045 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4046 tmp_name, name) == -1)
4047 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4048
4049 free (tmp_name);
4050
4051 return myh;
4052 }
4053
4054 /* ARM->Thumb glue (static images):
4055
4056 .arm
4057 __func_from_arm:
4058 ldr r12, __func_addr
4059 bx r12
4060 __func_addr:
4061 .word func @ behave as if you saw a ARM_32 reloc.
4062
4063 (v5t static images)
4064 .arm
4065 __func_from_arm:
4066 ldr pc, __func_addr
4067 __func_addr:
4068 .word func @ behave as if you saw a ARM_32 reloc.
4069
4070 (relocatable images)
4071 .arm
4072 __func_from_arm:
4073 ldr r12, __func_offset
4074 add r12, r12, pc
4075 bx r12
4076 __func_offset:
4077 .word func - . */
4078
4079 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4080 static const insn32 a2t1_ldr_insn = 0xe59fc000;
4081 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4082 static const insn32 a2t3_func_addr_insn = 0x00000001;
4083
4084 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4085 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4086 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4087
4088 #define ARM2THUMB_PIC_GLUE_SIZE 16
4089 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4090 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4091 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4092
4093 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4094
4095 .thumb .thumb
4096 .align 2 .align 2
4097 __func_from_thumb: __func_from_thumb:
4098 bx pc push {r6, lr}
4099 nop ldr r6, __func_addr
4100 .arm mov lr, pc
4101 b func bx r6
4102 .arm
4103 ;; back_to_thumb
4104 ldmia r13! {r6, lr}
4105 bx lr
4106 __func_addr:
4107 .word func */
4108
4109 #define THUMB2ARM_GLUE_SIZE 8
4110 static const insn16 t2a1_bx_pc_insn = 0x4778;
4111 static const insn16 t2a2_noop_insn = 0x46c0;
4112 static const insn32 t2a3_b_insn = 0xea000000;
4113
4114 #define VFP11_ERRATUM_VENEER_SIZE 8
4115
4116 #define ARM_BX_VENEER_SIZE 12
4117 static const insn32 armbx1_tst_insn = 0xe3100001;
4118 static const insn32 armbx2_moveq_insn = 0x01a0f000;
4119 static const insn32 armbx3_bx_insn = 0xe12fff10;
4120
4121 #ifndef ELFARM_NABI_C_INCLUDED
4122 static void
4123 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
4124 {
4125 asection * s;
4126 bfd_byte * contents;
4127
4128 if (size == 0)
4129 return;
4130
4131 BFD_ASSERT (abfd != NULL);
4132
4133 s = bfd_get_section_by_name (abfd, name);
4134 BFD_ASSERT (s != NULL);
4135
4136 contents = bfd_alloc (abfd, size);
4137
4138 BFD_ASSERT (s->size == size);
4139 s->contents = contents;
4140 }
4141
4142 bfd_boolean
4143 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4144 {
4145 struct elf32_arm_link_hash_table * globals;
4146
4147 globals = elf32_arm_hash_table (info);
4148 BFD_ASSERT (globals != NULL);
4149
4150 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4151 globals->arm_glue_size,
4152 ARM2THUMB_GLUE_SECTION_NAME);
4153
4154 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4155 globals->thumb_glue_size,
4156 THUMB2ARM_GLUE_SECTION_NAME);
4157
4158 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4159 globals->vfp11_erratum_glue_size,
4160 VFP11_ERRATUM_VENEER_SECTION_NAME);
4161
4162 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4163 globals->bx_glue_size,
4164 ARM_BX_GLUE_SECTION_NAME);
4165
4166 return TRUE;
4167 }
4168
4169 /* Allocate space and symbols for calling a Thumb function from Arm mode.
4170 returns the symbol identifying the stub. */
4171
4172 static struct elf_link_hash_entry *
4173 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4174 struct elf_link_hash_entry * h)
4175 {
4176 const char * name = h->root.root.string;
4177 asection * s;
4178 char * tmp_name;
4179 struct elf_link_hash_entry * myh;
4180 struct bfd_link_hash_entry * bh;
4181 struct elf32_arm_link_hash_table * globals;
4182 bfd_vma val;
4183 bfd_size_type size;
4184
4185 globals = elf32_arm_hash_table (link_info);
4186
4187 BFD_ASSERT (globals != NULL);
4188 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4189
4190 s = bfd_get_section_by_name
4191 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4192
4193 BFD_ASSERT (s != NULL);
4194
4195 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4196
4197 BFD_ASSERT (tmp_name);
4198
4199 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4200
4201 myh = elf_link_hash_lookup
4202 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4203
4204 if (myh != NULL)
4205 {
4206 /* We've already seen this guy. */
4207 free (tmp_name);
4208 return myh;
4209 }
4210
4211 /* The only trick here is using hash_table->arm_glue_size as the value.
4212 Even though the section isn't allocated yet, this is where we will be
4213 putting it. The +1 on the value marks that the stub has not been
4214 output yet - not that it is a Thumb function. */
4215 bh = NULL;
4216 val = globals->arm_glue_size + 1;
4217 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4218 tmp_name, BSF_GLOBAL, s, val,
4219 NULL, TRUE, FALSE, &bh);
4220
4221 myh = (struct elf_link_hash_entry *) bh;
4222 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4223 myh->forced_local = 1;
4224
4225 free (tmp_name);
4226
4227 if (link_info->shared || globals->root.is_relocatable_executable
4228 || globals->pic_veneer)
4229 size = ARM2THUMB_PIC_GLUE_SIZE;
4230 else if (globals->use_blx)
4231 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4232 else
4233 size = ARM2THUMB_STATIC_GLUE_SIZE;
4234
4235 s->size += size;
4236 globals->arm_glue_size += size;
4237
4238 return myh;
4239 }
4240
4241 static void
4242 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4243 struct elf_link_hash_entry *h)
4244 {
4245 const char *name = h->root.root.string;
4246 asection *s;
4247 char *tmp_name;
4248 struct elf_link_hash_entry *myh;
4249 struct bfd_link_hash_entry *bh;
4250 struct elf32_arm_link_hash_table *hash_table;
4251 bfd_vma val;
4252
4253 hash_table = elf32_arm_hash_table (link_info);
4254
4255 BFD_ASSERT (hash_table != NULL);
4256 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4257
4258 s = bfd_get_section_by_name
4259 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4260
4261 BFD_ASSERT (s != NULL);
4262
4263 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4264 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4265
4266 BFD_ASSERT (tmp_name);
4267
4268 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4269
4270 myh = elf_link_hash_lookup
4271 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4272
4273 if (myh != NULL)
4274 {
4275 /* We've already seen this guy. */
4276 free (tmp_name);
4277 return;
4278 }
4279
4280 /* The only trick here is using hash_table->thumb_glue_size as the value.
4281 Even though the section isn't allocated yet, this is where we will be
4282 putting it. The +1 on the value marks that the stub has not been
4283 output yet - not that it is a Thumb function. */
4284 bh = NULL;
4285 val = hash_table->thumb_glue_size + 1;
4286 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4287 tmp_name, BSF_GLOBAL, s, val,
4288 NULL, TRUE, FALSE, &bh);
4289
4290 /* If we mark it 'Thumb', the disassembler will do a better job. */
4291 myh = (struct elf_link_hash_entry *) bh;
4292 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4293 myh->forced_local = 1;
4294
4295 free (tmp_name);
4296
4297 #define CHANGE_TO_ARM "__%s_change_to_arm"
4298 #define BACK_FROM_ARM "__%s_back_from_arm"
4299
4300 /* Allocate another symbol to mark where we switch to Arm mode. */
4301 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4302 + strlen (CHANGE_TO_ARM) + 1);
4303
4304 BFD_ASSERT (tmp_name);
4305
4306 sprintf (tmp_name, CHANGE_TO_ARM, name);
4307
4308 bh = NULL;
4309 val = hash_table->thumb_glue_size + 4,
4310 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4311 tmp_name, BSF_LOCAL, s, val,
4312 NULL, TRUE, FALSE, &bh);
4313
4314 free (tmp_name);
4315
4316 s->size += THUMB2ARM_GLUE_SIZE;
4317 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4318 }
4319
4320
4321 /* Allocate space for ARMv4 BX veneers. */
4322
4323 static void
4324 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4325 {
4326 asection * s;
4327 struct elf32_arm_link_hash_table *globals;
4328 char *tmp_name;
4329 struct elf_link_hash_entry *myh;
4330 struct bfd_link_hash_entry *bh;
4331 bfd_vma val;
4332
4333 /* BX PC does not need a veneer. */
4334 if (reg == 15)
4335 return;
4336
4337 globals = elf32_arm_hash_table (link_info);
4338
4339 BFD_ASSERT (globals != NULL);
4340 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4341
4342 /* Check if this veneer has already been allocated. */
4343 if (globals->bx_glue_offset[reg])
4344 return;
4345
4346 s = bfd_get_section_by_name
4347 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4348
4349 BFD_ASSERT (s != NULL);
4350
4351 /* Add symbol for veneer. */
4352 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4353
4354 BFD_ASSERT (tmp_name);
4355
4356 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4357
4358 myh = elf_link_hash_lookup
4359 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4360
4361 BFD_ASSERT (myh == NULL);
4362
4363 bh = NULL;
4364 val = globals->bx_glue_size;
4365 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4366 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4367 NULL, TRUE, FALSE, &bh);
4368
4369 myh = (struct elf_link_hash_entry *) bh;
4370 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4371 myh->forced_local = 1;
4372
4373 s->size += ARM_BX_VENEER_SIZE;
4374 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4375 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4376 }
4377
4378
4379 /* Add an entry to the code/data map for section SEC. */
4380
4381 static void
4382 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4383 {
4384 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4385 unsigned int newidx;
4386
4387 if (sec_data->map == NULL)
4388 {
4389 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4390 sec_data->mapcount = 0;
4391 sec_data->mapsize = 1;
4392 }
4393
4394 newidx = sec_data->mapcount++;
4395
4396 if (sec_data->mapcount > sec_data->mapsize)
4397 {
4398 sec_data->mapsize *= 2;
4399 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4400 * sizeof (elf32_arm_section_map));
4401 }
4402
4403 if (sec_data->map)
4404 {
4405 sec_data->map[newidx].vma = vma;
4406 sec_data->map[newidx].type = type;
4407 }
4408 }
4409
4410
4411 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4412 veneers are handled for now. */
4413
4414 static bfd_vma
4415 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4416 elf32_vfp11_erratum_list *branch,
4417 bfd *branch_bfd,
4418 asection *branch_sec,
4419 unsigned int offset)
4420 {
4421 asection *s;
4422 struct elf32_arm_link_hash_table *hash_table;
4423 char *tmp_name;
4424 struct elf_link_hash_entry *myh;
4425 struct bfd_link_hash_entry *bh;
4426 bfd_vma val;
4427 struct _arm_elf_section_data *sec_data;
4428 int errcount;
4429 elf32_vfp11_erratum_list *newerr;
4430
4431 hash_table = elf32_arm_hash_table (link_info);
4432
4433 BFD_ASSERT (hash_table != NULL);
4434 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4435
4436 s = bfd_get_section_by_name
4437 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4438
4439 sec_data = elf32_arm_section_data (s);
4440
4441 BFD_ASSERT (s != NULL);
4442
4443 tmp_name = bfd_malloc ((bfd_size_type) strlen
4444 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4445
4446 BFD_ASSERT (tmp_name);
4447
4448 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4449 hash_table->num_vfp11_fixes);
4450
4451 myh = elf_link_hash_lookup
4452 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4453
4454 BFD_ASSERT (myh == NULL);
4455
4456 bh = NULL;
4457 val = hash_table->vfp11_erratum_glue_size;
4458 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4459 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4460 NULL, TRUE, FALSE, &bh);
4461
4462 myh = (struct elf_link_hash_entry *) bh;
4463 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4464 myh->forced_local = 1;
4465
4466 /* Link veneer back to calling location. */
4467 errcount = ++(sec_data->erratumcount);
4468 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4469
4470 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4471 newerr->vma = -1;
4472 newerr->u.v.branch = branch;
4473 newerr->u.v.id = hash_table->num_vfp11_fixes;
4474 branch->u.b.veneer = newerr;
4475
4476 newerr->next = sec_data->erratumlist;
4477 sec_data->erratumlist = newerr;
4478
4479 /* A symbol for the return from the veneer. */
4480 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4481 hash_table->num_vfp11_fixes);
4482
4483 myh = elf_link_hash_lookup
4484 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4485
4486 if (myh != NULL)
4487 abort ();
4488
4489 bh = NULL;
4490 val = offset + 4;
4491 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4492 branch_sec, val, NULL, TRUE, FALSE, &bh);
4493
4494 myh = (struct elf_link_hash_entry *) bh;
4495 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4496 myh->forced_local = 1;
4497
4498 free (tmp_name);
4499
4500 /* Generate a mapping symbol for the veneer section, and explicitly add an
4501 entry for that symbol to the code/data map for the section. */
4502 if (hash_table->vfp11_erratum_glue_size == 0)
4503 {
4504 bh = NULL;
4505 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4506 ever requires this erratum fix. */
4507 _bfd_generic_link_add_one_symbol (link_info,
4508 hash_table->bfd_of_glue_owner, "$a",
4509 BSF_LOCAL, s, 0, NULL,
4510 TRUE, FALSE, &bh);
4511
4512 myh = (struct elf_link_hash_entry *) bh;
4513 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4514 myh->forced_local = 1;
4515
4516 /* The elf32_arm_init_maps function only cares about symbols from input
4517 BFDs. We must make a note of this generated mapping symbol
4518 ourselves so that code byteswapping works properly in
4519 elf32_arm_write_section. */
4520 elf32_arm_section_map_add (s, 'a', 0);
4521 }
4522
4523 s->size += VFP11_ERRATUM_VENEER_SIZE;
4524 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4525 hash_table->num_vfp11_fixes++;
4526
4527 /* The offset of the veneer. */
4528 return val;
4529 }
4530
4531 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4532 would prevent elf_link_input_bfd() from processing the contents
4533 of the section. */
4534 #define ARM_GLUE_SECTION_FLAGS \
4535 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4536
4537 /* Create a fake section for use by the ARM backend of the linker. */
4538
4539 static bfd_boolean
4540 arm_make_glue_section (bfd * abfd, const char * name)
4541 {
4542 asection * sec;
4543
4544 sec = bfd_get_section_by_name (abfd, name);
4545 if (sec != NULL)
4546 /* Already made. */
4547 return TRUE;
4548
4549 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4550
4551 if (sec == NULL
4552 || !bfd_set_section_alignment (abfd, sec, 2))
4553 return FALSE;
4554
4555 /* Set the gc mark to prevent the section from being removed by garbage
4556 collection, despite the fact that no relocs refer to this section. */
4557 sec->gc_mark = 1;
4558
4559 return TRUE;
4560 }
4561
4562 /* Add the glue sections to ABFD. This function is called from the
4563 linker scripts in ld/emultempl/{armelf}.em. */
4564
4565 bfd_boolean
4566 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4567 struct bfd_link_info *info)
4568 {
4569 /* If we are only performing a partial
4570 link do not bother adding the glue. */
4571 if (info->relocatable)
4572 return TRUE;
4573
4574 /* Linker stubs don't need glue. */
4575 if (!strcmp (abfd->filename, "linker stubs"))
4576 return TRUE;
4577
4578 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4579 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4580 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4581 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
4582 }
4583
4584 /* Select a BFD to be used to hold the sections used by the glue code.
4585 This function is called from the linker scripts in ld/emultempl/
4586 {armelf/pe}.em. */
4587
4588 bfd_boolean
4589 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4590 {
4591 struct elf32_arm_link_hash_table *globals;
4592
4593 /* If we are only performing a partial link
4594 do not bother getting a bfd to hold the glue. */
4595 if (info->relocatable)
4596 return TRUE;
4597
4598 /* Make sure we don't attach the glue sections to a dynamic object. */
4599 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4600
4601 globals = elf32_arm_hash_table (info);
4602
4603 BFD_ASSERT (globals != NULL);
4604
4605 if (globals->bfd_of_glue_owner != NULL)
4606 return TRUE;
4607
4608 /* Save the bfd for later use. */
4609 globals->bfd_of_glue_owner = abfd;
4610
4611 return TRUE;
4612 }
4613
4614 static void
4615 check_use_blx (struct elf32_arm_link_hash_table *globals)
4616 {
4617 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4618 Tag_CPU_arch) > 2)
4619 globals->use_blx = 1;
4620 }
4621
4622 bfd_boolean
4623 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4624 struct bfd_link_info *link_info)
4625 {
4626 Elf_Internal_Shdr *symtab_hdr;
4627 Elf_Internal_Rela *internal_relocs = NULL;
4628 Elf_Internal_Rela *irel, *irelend;
4629 bfd_byte *contents = NULL;
4630
4631 asection *sec;
4632 struct elf32_arm_link_hash_table *globals;
4633
4634 /* If we are only performing a partial link do not bother
4635 to construct any glue. */
4636 if (link_info->relocatable)
4637 return TRUE;
4638
4639 /* Here we have a bfd that is to be included on the link. We have a
4640 hook to do reloc rummaging, before section sizes are nailed down. */
4641 globals = elf32_arm_hash_table (link_info);
4642
4643 BFD_ASSERT (globals != NULL);
4644
4645 check_use_blx (globals);
4646
4647 if (globals->byteswap_code && !bfd_big_endian (abfd))
4648 {
4649 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4650 abfd);
4651 return FALSE;
4652 }
4653
4654 /* PR 5398: If we have not decided to include any loadable sections in
4655 the output then we will not have a glue owner bfd. This is OK, it
4656 just means that there is nothing else for us to do here. */
4657 if (globals->bfd_of_glue_owner == NULL)
4658 return TRUE;
4659
4660 /* Rummage around all the relocs and map the glue vectors. */
4661 sec = abfd->sections;
4662
4663 if (sec == NULL)
4664 return TRUE;
4665
4666 for (; sec != NULL; sec = sec->next)
4667 {
4668 if (sec->reloc_count == 0)
4669 continue;
4670
4671 if ((sec->flags & SEC_EXCLUDE) != 0)
4672 continue;
4673
4674 symtab_hdr = & elf_symtab_hdr (abfd);
4675
4676 /* Load the relocs. */
4677 internal_relocs
4678 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4679
4680 if (internal_relocs == NULL)
4681 goto error_return;
4682
4683 irelend = internal_relocs + sec->reloc_count;
4684 for (irel = internal_relocs; irel < irelend; irel++)
4685 {
4686 long r_type;
4687 unsigned long r_index;
4688
4689 struct elf_link_hash_entry *h;
4690
4691 r_type = ELF32_R_TYPE (irel->r_info);
4692 r_index = ELF32_R_SYM (irel->r_info);
4693
4694 /* These are the only relocation types we care about. */
4695 if ( r_type != R_ARM_PC24
4696 && r_type != R_ARM_PLT32
4697 && r_type != R_ARM_JUMP24
4698 && r_type != R_ARM_THM_JUMP24
4699 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4700 continue;
4701
4702 /* Get the section contents if we haven't done so already. */
4703 if (contents == NULL)
4704 {
4705 /* Get cached copy if it exists. */
4706 if (elf_section_data (sec)->this_hdr.contents != NULL)
4707 contents = elf_section_data (sec)->this_hdr.contents;
4708 else
4709 {
4710 /* Go get them off disk. */
4711 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4712 goto error_return;
4713 }
4714 }
4715
4716 if (r_type == R_ARM_V4BX)
4717 {
4718 int reg;
4719
4720 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4721 record_arm_bx_glue (link_info, reg);
4722 continue;
4723 }
4724
4725 /* If the relocation is not against a symbol it cannot concern us. */
4726 h = NULL;
4727
4728 /* We don't care about local symbols. */
4729 if (r_index < symtab_hdr->sh_info)
4730 continue;
4731
4732 /* This is an external symbol. */
4733 r_index -= symtab_hdr->sh_info;
4734 h = (struct elf_link_hash_entry *)
4735 elf_sym_hashes (abfd)[r_index];
4736
4737 /* If the relocation is against a static symbol it must be within
4738 the current section and so cannot be a cross ARM/Thumb relocation. */
4739 if (h == NULL)
4740 continue;
4741
4742 /* If the call will go through a PLT entry then we do not need
4743 glue. */
4744 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4745 continue;
4746
4747 switch (r_type)
4748 {
4749 case R_ARM_PC24:
4750 case R_ARM_PLT32:
4751 case R_ARM_JUMP24:
4752 /* This one is a call from arm code. We need to look up
4753 the target of the call. If it is a thumb target, we
4754 insert glue. */
4755 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
4756 record_arm_to_thumb_glue (link_info, h);
4757 break;
4758
4759 case R_ARM_THM_JUMP24:
4760 /* This one is a call from thumb code. We look
4761 up the target of the call. If it is not a thumb
4762 target, we insert glue. */
4763 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4764 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4765 && h->root.type != bfd_link_hash_undefweak)
4766 record_thumb_to_arm_glue (link_info, h);
4767 break;
4768
4769 default:
4770 abort ();
4771 }
4772 }
4773
4774 if (contents != NULL
4775 && elf_section_data (sec)->this_hdr.contents != contents)
4776 free (contents);
4777 contents = NULL;
4778
4779 if (internal_relocs != NULL
4780 && elf_section_data (sec)->relocs != internal_relocs)
4781 free (internal_relocs);
4782 internal_relocs = NULL;
4783 }
4784
4785 return TRUE;
4786
4787 error_return:
4788 if (contents != NULL
4789 && elf_section_data (sec)->this_hdr.contents != contents)
4790 free (contents);
4791 if (internal_relocs != NULL
4792 && elf_section_data (sec)->relocs != internal_relocs)
4793 free (internal_relocs);
4794
4795 return FALSE;
4796 }
4797 #endif
4798
4799
4800 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4801
4802 void
4803 bfd_elf32_arm_init_maps (bfd *abfd)
4804 {
4805 Elf_Internal_Sym *isymbuf;
4806 Elf_Internal_Shdr *hdr;
4807 unsigned int i, localsyms;
4808
4809 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
4810 if (! is_arm_elf (abfd))
4811 return;
4812
4813 if ((abfd->flags & DYNAMIC) != 0)
4814 return;
4815
4816 hdr = & elf_symtab_hdr (abfd);
4817 localsyms = hdr->sh_info;
4818
4819 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4820 should contain the number of local symbols, which should come before any
4821 global symbols. Mapping symbols are always local. */
4822 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4823 NULL);
4824
4825 /* No internal symbols read? Skip this BFD. */
4826 if (isymbuf == NULL)
4827 return;
4828
4829 for (i = 0; i < localsyms; i++)
4830 {
4831 Elf_Internal_Sym *isym = &isymbuf[i];
4832 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4833 const char *name;
4834
4835 if (sec != NULL
4836 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4837 {
4838 name = bfd_elf_string_from_elf_section (abfd,
4839 hdr->sh_link, isym->st_name);
4840
4841 if (bfd_is_arm_special_symbol_name (name,
4842 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4843 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4844 }
4845 }
4846 }
4847
4848
4849 void
4850 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4851 {
4852 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4853 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4854
4855 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4856 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4857 {
4858 switch (globals->vfp11_fix)
4859 {
4860 case BFD_ARM_VFP11_FIX_DEFAULT:
4861 case BFD_ARM_VFP11_FIX_NONE:
4862 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4863 break;
4864
4865 default:
4866 /* Give a warning, but do as the user requests anyway. */
4867 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4868 "workaround is not necessary for target architecture"), obfd);
4869 }
4870 }
4871 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4872 /* For earlier architectures, we might need the workaround, but do not
4873 enable it by default. If users is running with broken hardware, they
4874 must enable the erratum fix explicitly. */
4875 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4876 }
4877
4878
4879 enum bfd_arm_vfp11_pipe
4880 {
4881 VFP11_FMAC,
4882 VFP11_LS,
4883 VFP11_DS,
4884 VFP11_BAD
4885 };
4886
4887 /* Return a VFP register number. This is encoded as RX:X for single-precision
4888 registers, or X:RX for double-precision registers, where RX is the group of
4889 four bits in the instruction encoding and X is the single extension bit.
4890 RX and X fields are specified using their lowest (starting) bit. The return
4891 value is:
4892
4893 0...31: single-precision registers s0...s31
4894 32...63: double-precision registers d0...d31.
4895
4896 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4897 encounter VFP3 instructions, so we allow the full range for DP registers. */
4898
4899 static unsigned int
4900 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4901 unsigned int x)
4902 {
4903 if (is_double)
4904 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4905 else
4906 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4907 }
4908
4909 /* Set bits in *WMASK according to a register number REG as encoded by
4910 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4911
4912 static void
4913 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4914 {
4915 if (reg < 32)
4916 *wmask |= 1 << reg;
4917 else if (reg < 48)
4918 *wmask |= 3 << ((reg - 32) * 2);
4919 }
4920
4921 /* Return TRUE if WMASK overwrites anything in REGS. */
4922
4923 static bfd_boolean
4924 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4925 {
4926 int i;
4927
4928 for (i = 0; i < numregs; i++)
4929 {
4930 unsigned int reg = regs[i];
4931
4932 if (reg < 32 && (wmask & (1 << reg)) != 0)
4933 return TRUE;
4934
4935 reg -= 32;
4936
4937 if (reg >= 16)
4938 continue;
4939
4940 if ((wmask & (3 << (reg * 2))) != 0)
4941 return TRUE;
4942 }
4943
4944 return FALSE;
4945 }
4946
4947 /* In this function, we're interested in two things: finding input registers
4948 for VFP data-processing instructions, and finding the set of registers which
4949 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4950 hold the written set, so FLDM etc. are easy to deal with (we're only
4951 interested in 32 SP registers or 16 dp registers, due to the VFP version
4952 implemented by the chip in question). DP registers are marked by setting
4953 both SP registers in the write mask). */
4954
4955 static enum bfd_arm_vfp11_pipe
4956 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4957 int *numregs)
4958 {
4959 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4960 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4961
4962 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4963 {
4964 unsigned int pqrs;
4965 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4966 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4967
4968 pqrs = ((insn & 0x00800000) >> 20)
4969 | ((insn & 0x00300000) >> 19)
4970 | ((insn & 0x00000040) >> 6);
4971
4972 switch (pqrs)
4973 {
4974 case 0: /* fmac[sd]. */
4975 case 1: /* fnmac[sd]. */
4976 case 2: /* fmsc[sd]. */
4977 case 3: /* fnmsc[sd]. */
4978 pipe = VFP11_FMAC;
4979 bfd_arm_vfp11_write_mask (destmask, fd);
4980 regs[0] = fd;
4981 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4982 regs[2] = fm;
4983 *numregs = 3;
4984 break;
4985
4986 case 4: /* fmul[sd]. */
4987 case 5: /* fnmul[sd]. */
4988 case 6: /* fadd[sd]. */
4989 case 7: /* fsub[sd]. */
4990 pipe = VFP11_FMAC;
4991 goto vfp_binop;
4992
4993 case 8: /* fdiv[sd]. */
4994 pipe = VFP11_DS;
4995 vfp_binop:
4996 bfd_arm_vfp11_write_mask (destmask, fd);
4997 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4998 regs[1] = fm;
4999 *numregs = 2;
5000 break;
5001
5002 case 15: /* extended opcode. */
5003 {
5004 unsigned int extn = ((insn >> 15) & 0x1e)
5005 | ((insn >> 7) & 1);
5006
5007 switch (extn)
5008 {
5009 case 0: /* fcpy[sd]. */
5010 case 1: /* fabs[sd]. */
5011 case 2: /* fneg[sd]. */
5012 case 8: /* fcmp[sd]. */
5013 case 9: /* fcmpe[sd]. */
5014 case 10: /* fcmpz[sd]. */
5015 case 11: /* fcmpez[sd]. */
5016 case 16: /* fuito[sd]. */
5017 case 17: /* fsito[sd]. */
5018 case 24: /* ftoui[sd]. */
5019 case 25: /* ftouiz[sd]. */
5020 case 26: /* ftosi[sd]. */
5021 case 27: /* ftosiz[sd]. */
5022 /* These instructions will not bounce due to underflow. */
5023 *numregs = 0;
5024 pipe = VFP11_FMAC;
5025 break;
5026
5027 case 3: /* fsqrt[sd]. */
5028 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5029 registers to cause the erratum in previous instructions. */
5030 bfd_arm_vfp11_write_mask (destmask, fd);
5031 pipe = VFP11_DS;
5032 break;
5033
5034 case 15: /* fcvt{ds,sd}. */
5035 {
5036 int rnum = 0;
5037
5038 bfd_arm_vfp11_write_mask (destmask, fd);
5039
5040 /* Only FCVTSD can underflow. */
5041 if ((insn & 0x100) != 0)
5042 regs[rnum++] = fm;
5043
5044 *numregs = rnum;
5045
5046 pipe = VFP11_FMAC;
5047 }
5048 break;
5049
5050 default:
5051 return VFP11_BAD;
5052 }
5053 }
5054 break;
5055
5056 default:
5057 return VFP11_BAD;
5058 }
5059 }
5060 /* Two-register transfer. */
5061 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5062 {
5063 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5064
5065 if ((insn & 0x100000) == 0)
5066 {
5067 if (is_double)
5068 bfd_arm_vfp11_write_mask (destmask, fm);
5069 else
5070 {
5071 bfd_arm_vfp11_write_mask (destmask, fm);
5072 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5073 }
5074 }
5075
5076 pipe = VFP11_LS;
5077 }
5078 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5079 {
5080 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5081 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
5082
5083 switch (puw)
5084 {
5085 case 0: /* Two-reg transfer. We should catch these above. */
5086 abort ();
5087
5088 case 2: /* fldm[sdx]. */
5089 case 3:
5090 case 5:
5091 {
5092 unsigned int i, offset = insn & 0xff;
5093
5094 if (is_double)
5095 offset >>= 1;
5096
5097 for (i = fd; i < fd + offset; i++)
5098 bfd_arm_vfp11_write_mask (destmask, i);
5099 }
5100 break;
5101
5102 case 4: /* fld[sd]. */
5103 case 6:
5104 bfd_arm_vfp11_write_mask (destmask, fd);
5105 break;
5106
5107 default:
5108 return VFP11_BAD;
5109 }
5110
5111 pipe = VFP11_LS;
5112 }
5113 /* Single-register transfer. Note L==0. */
5114 else if ((insn & 0x0f100e10) == 0x0e000a10)
5115 {
5116 unsigned int opcode = (insn >> 21) & 7;
5117 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5118
5119 switch (opcode)
5120 {
5121 case 0: /* fmsr/fmdlr. */
5122 case 1: /* fmdhr. */
5123 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5124 destination register. I don't know if this is exactly right,
5125 but it is the conservative choice. */
5126 bfd_arm_vfp11_write_mask (destmask, fn);
5127 break;
5128
5129 case 7: /* fmxr. */
5130 break;
5131 }
5132
5133 pipe = VFP11_LS;
5134 }
5135
5136 return pipe;
5137 }
5138
5139
5140 static int elf32_arm_compare_mapping (const void * a, const void * b);
5141
5142
5143 /* Look for potentially-troublesome code sequences which might trigger the
5144 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5145 (available from ARM) for details of the erratum. A short version is
5146 described in ld.texinfo. */
5147
5148 bfd_boolean
5149 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5150 {
5151 asection *sec;
5152 bfd_byte *contents = NULL;
5153 int state = 0;
5154 int regs[3], numregs = 0;
5155 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5156 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
5157
5158 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5159 The states transition as follows:
5160
5161 0 -> 1 (vector) or 0 -> 2 (scalar)
5162 A VFP FMAC-pipeline instruction has been seen. Fill
5163 regs[0]..regs[numregs-1] with its input operands. Remember this
5164 instruction in 'first_fmac'.
5165
5166 1 -> 2
5167 Any instruction, except for a VFP instruction which overwrites
5168 regs[*].
5169
5170 1 -> 3 [ -> 0 ] or
5171 2 -> 3 [ -> 0 ]
5172 A VFP instruction has been seen which overwrites any of regs[*].
5173 We must make a veneer! Reset state to 0 before examining next
5174 instruction.
5175
5176 2 -> 0
5177 If we fail to match anything in state 2, reset to state 0 and reset
5178 the instruction pointer to the instruction after 'first_fmac'.
5179
5180 If the VFP11 vector mode is in use, there must be at least two unrelated
5181 instructions between anti-dependent VFP11 instructions to properly avoid
5182 triggering the erratum, hence the use of the extra state 1. */
5183
5184 /* If we are only performing a partial link do not bother
5185 to construct any glue. */
5186 if (link_info->relocatable)
5187 return TRUE;
5188
5189 /* Skip if this bfd does not correspond to an ELF image. */
5190 if (! is_arm_elf (abfd))
5191 return TRUE;
5192
5193 /* We should have chosen a fix type by the time we get here. */
5194 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5195
5196 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5197 return TRUE;
5198
5199 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5200 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5201 return TRUE;
5202
5203 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5204 {
5205 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5206 struct _arm_elf_section_data *sec_data;
5207
5208 /* If we don't have executable progbits, we're not interested in this
5209 section. Also skip if section is to be excluded. */
5210 if (elf_section_type (sec) != SHT_PROGBITS
5211 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5212 || (sec->flags & SEC_EXCLUDE) != 0
5213 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5214 || sec->output_section == bfd_abs_section_ptr
5215 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5216 continue;
5217
5218 sec_data = elf32_arm_section_data (sec);
5219
5220 if (sec_data->mapcount == 0)
5221 continue;
5222
5223 if (elf_section_data (sec)->this_hdr.contents != NULL)
5224 contents = elf_section_data (sec)->this_hdr.contents;
5225 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5226 goto error_return;
5227
5228 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5229 elf32_arm_compare_mapping);
5230
5231 for (span = 0; span < sec_data->mapcount; span++)
5232 {
5233 unsigned int span_start = sec_data->map[span].vma;
5234 unsigned int span_end = (span == sec_data->mapcount - 1)
5235 ? sec->size : sec_data->map[span + 1].vma;
5236 char span_type = sec_data->map[span].type;
5237
5238 /* FIXME: Only ARM mode is supported at present. We may need to
5239 support Thumb-2 mode also at some point. */
5240 if (span_type != 'a')
5241 continue;
5242
5243 for (i = span_start; i < span_end;)
5244 {
5245 unsigned int next_i = i + 4;
5246 unsigned int insn = bfd_big_endian (abfd)
5247 ? (contents[i] << 24)
5248 | (contents[i + 1] << 16)
5249 | (contents[i + 2] << 8)
5250 | contents[i + 3]
5251 : (contents[i + 3] << 24)
5252 | (contents[i + 2] << 16)
5253 | (contents[i + 1] << 8)
5254 | contents[i];
5255 unsigned int writemask = 0;
5256 enum bfd_arm_vfp11_pipe pipe;
5257
5258 switch (state)
5259 {
5260 case 0:
5261 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5262 &numregs);
5263 /* I'm assuming the VFP11 erratum can trigger with denorm
5264 operands on either the FMAC or the DS pipeline. This might
5265 lead to slightly overenthusiastic veneer insertion. */
5266 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5267 {
5268 state = use_vector ? 1 : 2;
5269 first_fmac = i;
5270 veneer_of_insn = insn;
5271 }
5272 break;
5273
5274 case 1:
5275 {
5276 int other_regs[3], other_numregs;
5277 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5278 other_regs,
5279 &other_numregs);
5280 if (pipe != VFP11_BAD
5281 && bfd_arm_vfp11_antidependency (writemask, regs,
5282 numregs))
5283 state = 3;
5284 else
5285 state = 2;
5286 }
5287 break;
5288
5289 case 2:
5290 {
5291 int other_regs[3], other_numregs;
5292 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5293 other_regs,
5294 &other_numregs);
5295 if (pipe != VFP11_BAD
5296 && bfd_arm_vfp11_antidependency (writemask, regs,
5297 numregs))
5298 state = 3;
5299 else
5300 {
5301 state = 0;
5302 next_i = first_fmac + 4;
5303 }
5304 }
5305 break;
5306
5307 case 3:
5308 abort (); /* Should be unreachable. */
5309 }
5310
5311 if (state == 3)
5312 {
5313 elf32_vfp11_erratum_list *newerr
5314 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5315 int errcount;
5316
5317 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5318
5319 newerr->u.b.vfp_insn = veneer_of_insn;
5320
5321 switch (span_type)
5322 {
5323 case 'a':
5324 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5325 break;
5326
5327 default:
5328 abort ();
5329 }
5330
5331 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5332 first_fmac);
5333
5334 newerr->vma = -1;
5335
5336 newerr->next = sec_data->erratumlist;
5337 sec_data->erratumlist = newerr;
5338
5339 state = 0;
5340 }
5341
5342 i = next_i;
5343 }
5344 }
5345
5346 if (contents != NULL
5347 && elf_section_data (sec)->this_hdr.contents != contents)
5348 free (contents);
5349 contents = NULL;
5350 }
5351
5352 return TRUE;
5353
5354 error_return:
5355 if (contents != NULL
5356 && elf_section_data (sec)->this_hdr.contents != contents)
5357 free (contents);
5358
5359 return FALSE;
5360 }
5361
5362 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5363 after sections have been laid out, using specially-named symbols. */
5364
5365 void
5366 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5367 struct bfd_link_info *link_info)
5368 {
5369 asection *sec;
5370 struct elf32_arm_link_hash_table *globals;
5371 char *tmp_name;
5372
5373 if (link_info->relocatable)
5374 return;
5375
5376 /* Skip if this bfd does not correspond to an ELF image. */
5377 if (! is_arm_elf (abfd))
5378 return;
5379
5380 globals = elf32_arm_hash_table (link_info);
5381
5382 tmp_name = bfd_malloc ((bfd_size_type) strlen
5383 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5384
5385 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5386 {
5387 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5388 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5389
5390 for (; errnode != NULL; errnode = errnode->next)
5391 {
5392 struct elf_link_hash_entry *myh;
5393 bfd_vma vma;
5394
5395 switch (errnode->type)
5396 {
5397 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5398 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5399 /* Find veneer symbol. */
5400 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5401 errnode->u.b.veneer->u.v.id);
5402
5403 myh = elf_link_hash_lookup
5404 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5405
5406 if (myh == NULL)
5407 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5408 "`%s'"), abfd, tmp_name);
5409
5410 vma = myh->root.u.def.section->output_section->vma
5411 + myh->root.u.def.section->output_offset
5412 + myh->root.u.def.value;
5413
5414 errnode->u.b.veneer->vma = vma;
5415 break;
5416
5417 case VFP11_ERRATUM_ARM_VENEER:
5418 case VFP11_ERRATUM_THUMB_VENEER:
5419 /* Find return location. */
5420 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5421 errnode->u.v.id);
5422
5423 myh = elf_link_hash_lookup
5424 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5425
5426 if (myh == NULL)
5427 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5428 "`%s'"), abfd, tmp_name);
5429
5430 vma = myh->root.u.def.section->output_section->vma
5431 + myh->root.u.def.section->output_offset
5432 + myh->root.u.def.value;
5433
5434 errnode->u.v.branch->vma = vma;
5435 break;
5436
5437 default:
5438 abort ();
5439 }
5440 }
5441 }
5442
5443 free (tmp_name);
5444 }
5445
5446
5447 /* Set target relocation values needed during linking. */
5448
5449 void
5450 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5451 struct bfd_link_info *link_info,
5452 int target1_is_rel,
5453 char * target2_type,
5454 int fix_v4bx,
5455 int use_blx,
5456 bfd_arm_vfp11_fix vfp11_fix,
5457 int no_enum_warn, int no_wchar_warn,
5458 int pic_veneer)
5459 {
5460 struct elf32_arm_link_hash_table *globals;
5461
5462 globals = elf32_arm_hash_table (link_info);
5463
5464 globals->target1_is_rel = target1_is_rel;
5465 if (strcmp (target2_type, "rel") == 0)
5466 globals->target2_reloc = R_ARM_REL32;
5467 else if (strcmp (target2_type, "abs") == 0)
5468 globals->target2_reloc = R_ARM_ABS32;
5469 else if (strcmp (target2_type, "got-rel") == 0)
5470 globals->target2_reloc = R_ARM_GOT_PREL;
5471 else
5472 {
5473 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5474 target2_type);
5475 }
5476 globals->fix_v4bx = fix_v4bx;
5477 globals->use_blx |= use_blx;
5478 globals->vfp11_fix = vfp11_fix;
5479 globals->pic_veneer = pic_veneer;
5480
5481 BFD_ASSERT (is_arm_elf (output_bfd));
5482 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5483 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
5484 }
5485
5486 /* Replace the target offset of a Thumb bl or b.w instruction. */
5487
5488 static void
5489 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5490 {
5491 bfd_vma upper;
5492 bfd_vma lower;
5493 int reloc_sign;
5494
5495 BFD_ASSERT ((offset & 1) == 0);
5496
5497 upper = bfd_get_16 (abfd, insn);
5498 lower = bfd_get_16 (abfd, insn + 2);
5499 reloc_sign = (offset < 0) ? 1 : 0;
5500 upper = (upper & ~(bfd_vma) 0x7ff)
5501 | ((offset >> 12) & 0x3ff)
5502 | (reloc_sign << 10);
5503 lower = (lower & ~(bfd_vma) 0x2fff)
5504 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5505 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5506 | ((offset >> 1) & 0x7ff);
5507 bfd_put_16 (abfd, upper, insn);
5508 bfd_put_16 (abfd, lower, insn + 2);
5509 }
5510
5511 /* Thumb code calling an ARM function. */
5512
5513 static int
5514 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5515 const char * name,
5516 bfd * input_bfd,
5517 bfd * output_bfd,
5518 asection * input_section,
5519 bfd_byte * hit_data,
5520 asection * sym_sec,
5521 bfd_vma offset,
5522 bfd_signed_vma addend,
5523 bfd_vma val,
5524 char **error_message)
5525 {
5526 asection * s = 0;
5527 bfd_vma my_offset;
5528 long int ret_offset;
5529 struct elf_link_hash_entry * myh;
5530 struct elf32_arm_link_hash_table * globals;
5531
5532 myh = find_thumb_glue (info, name, error_message);
5533 if (myh == NULL)
5534 return FALSE;
5535
5536 globals = elf32_arm_hash_table (info);
5537
5538 BFD_ASSERT (globals != NULL);
5539 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5540
5541 my_offset = myh->root.u.def.value;
5542
5543 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5544 THUMB2ARM_GLUE_SECTION_NAME);
5545
5546 BFD_ASSERT (s != NULL);
5547 BFD_ASSERT (s->contents != NULL);
5548 BFD_ASSERT (s->output_section != NULL);
5549
5550 if ((my_offset & 0x01) == 0x01)
5551 {
5552 if (sym_sec != NULL
5553 && sym_sec->owner != NULL
5554 && !INTERWORK_FLAG (sym_sec->owner))
5555 {
5556 (*_bfd_error_handler)
5557 (_("%B(%s): warning: interworking not enabled.\n"
5558 " first occurrence: %B: thumb call to arm"),
5559 sym_sec->owner, input_bfd, name);
5560
5561 return FALSE;
5562 }
5563
5564 --my_offset;
5565 myh->root.u.def.value = my_offset;
5566
5567 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5568 s->contents + my_offset);
5569
5570 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5571 s->contents + my_offset + 2);
5572
5573 ret_offset =
5574 /* Address of destination of the stub. */
5575 ((bfd_signed_vma) val)
5576 - ((bfd_signed_vma)
5577 /* Offset from the start of the current section
5578 to the start of the stubs. */
5579 (s->output_offset
5580 /* Offset of the start of this stub from the start of the stubs. */
5581 + my_offset
5582 /* Address of the start of the current section. */
5583 + s->output_section->vma)
5584 /* The branch instruction is 4 bytes into the stub. */
5585 + 4
5586 /* ARM branches work from the pc of the instruction + 8. */
5587 + 8);
5588
5589 put_arm_insn (globals, output_bfd,
5590 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5591 s->contents + my_offset + 4);
5592 }
5593
5594 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5595
5596 /* Now go back and fix up the original BL insn to point to here. */
5597 ret_offset =
5598 /* Address of where the stub is located. */
5599 (s->output_section->vma + s->output_offset + my_offset)
5600 /* Address of where the BL is located. */
5601 - (input_section->output_section->vma + input_section->output_offset
5602 + offset)
5603 /* Addend in the relocation. */
5604 - addend
5605 /* Biassing for PC-relative addressing. */
5606 - 8;
5607
5608 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5609
5610 return TRUE;
5611 }
5612
5613 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5614
5615 static struct elf_link_hash_entry *
5616 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5617 const char * name,
5618 bfd * input_bfd,
5619 bfd * output_bfd,
5620 asection * sym_sec,
5621 bfd_vma val,
5622 asection * s,
5623 char ** error_message)
5624 {
5625 bfd_vma my_offset;
5626 long int ret_offset;
5627 struct elf_link_hash_entry * myh;
5628 struct elf32_arm_link_hash_table * globals;
5629
5630 myh = find_arm_glue (info, name, error_message);
5631 if (myh == NULL)
5632 return NULL;
5633
5634 globals = elf32_arm_hash_table (info);
5635
5636 BFD_ASSERT (globals != NULL);
5637 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5638
5639 my_offset = myh->root.u.def.value;
5640
5641 if ((my_offset & 0x01) == 0x01)
5642 {
5643 if (sym_sec != NULL
5644 && sym_sec->owner != NULL
5645 && !INTERWORK_FLAG (sym_sec->owner))
5646 {
5647 (*_bfd_error_handler)
5648 (_("%B(%s): warning: interworking not enabled.\n"
5649 " first occurrence: %B: arm call to thumb"),
5650 sym_sec->owner, input_bfd, name);
5651 }
5652
5653 --my_offset;
5654 myh->root.u.def.value = my_offset;
5655
5656 if (info->shared || globals->root.is_relocatable_executable
5657 || globals->pic_veneer)
5658 {
5659 /* For relocatable objects we can't use absolute addresses,
5660 so construct the address from a relative offset. */
5661 /* TODO: If the offset is small it's probably worth
5662 constructing the address with adds. */
5663 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5664 s->contents + my_offset);
5665 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5666 s->contents + my_offset + 4);
5667 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5668 s->contents + my_offset + 8);
5669 /* Adjust the offset by 4 for the position of the add,
5670 and 8 for the pipeline offset. */
5671 ret_offset = (val - (s->output_offset
5672 + s->output_section->vma
5673 + my_offset + 12))
5674 | 1;
5675 bfd_put_32 (output_bfd, ret_offset,
5676 s->contents + my_offset + 12);
5677 }
5678 else if (globals->use_blx)
5679 {
5680 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5681 s->contents + my_offset);
5682
5683 /* It's a thumb address. Add the low order bit. */
5684 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5685 s->contents + my_offset + 4);
5686 }
5687 else
5688 {
5689 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5690 s->contents + my_offset);
5691
5692 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5693 s->contents + my_offset + 4);
5694
5695 /* It's a thumb address. Add the low order bit. */
5696 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5697 s->contents + my_offset + 8);
5698
5699 my_offset += 12;
5700 }
5701 }
5702
5703 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5704
5705 return myh;
5706 }
5707
5708 /* Arm code calling a Thumb function. */
5709
5710 static int
5711 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5712 const char * name,
5713 bfd * input_bfd,
5714 bfd * output_bfd,
5715 asection * input_section,
5716 bfd_byte * hit_data,
5717 asection * sym_sec,
5718 bfd_vma offset,
5719 bfd_signed_vma addend,
5720 bfd_vma val,
5721 char **error_message)
5722 {
5723 unsigned long int tmp;
5724 bfd_vma my_offset;
5725 asection * s;
5726 long int ret_offset;
5727 struct elf_link_hash_entry * myh;
5728 struct elf32_arm_link_hash_table * globals;
5729
5730 globals = elf32_arm_hash_table (info);
5731
5732 BFD_ASSERT (globals != NULL);
5733 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5734
5735 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5736 ARM2THUMB_GLUE_SECTION_NAME);
5737 BFD_ASSERT (s != NULL);
5738 BFD_ASSERT (s->contents != NULL);
5739 BFD_ASSERT (s->output_section != NULL);
5740
5741 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5742 sym_sec, val, s, error_message);
5743 if (!myh)
5744 return FALSE;
5745
5746 my_offset = myh->root.u.def.value;
5747 tmp = bfd_get_32 (input_bfd, hit_data);
5748 tmp = tmp & 0xFF000000;
5749
5750 /* Somehow these are both 4 too far, so subtract 8. */
5751 ret_offset = (s->output_offset
5752 + my_offset
5753 + s->output_section->vma
5754 - (input_section->output_offset
5755 + input_section->output_section->vma
5756 + offset + addend)
5757 - 8);
5758
5759 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5760
5761 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5762
5763 return TRUE;
5764 }
5765
5766 /* Populate Arm stub for an exported Thumb function. */
5767
5768 static bfd_boolean
5769 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5770 {
5771 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5772 asection * s;
5773 struct elf_link_hash_entry * myh;
5774 struct elf32_arm_link_hash_entry *eh;
5775 struct elf32_arm_link_hash_table * globals;
5776 asection *sec;
5777 bfd_vma val;
5778 char *error_message;
5779
5780 eh = elf32_arm_hash_entry (h);
5781 /* Allocate stubs for exported Thumb functions on v4t. */
5782 if (eh->export_glue == NULL)
5783 return TRUE;
5784
5785 globals = elf32_arm_hash_table (info);
5786
5787 BFD_ASSERT (globals != NULL);
5788 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5789
5790 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5791 ARM2THUMB_GLUE_SECTION_NAME);
5792 BFD_ASSERT (s != NULL);
5793 BFD_ASSERT (s->contents != NULL);
5794 BFD_ASSERT (s->output_section != NULL);
5795
5796 sec = eh->export_glue->root.u.def.section;
5797
5798 BFD_ASSERT (sec->output_section != NULL);
5799
5800 val = eh->export_glue->root.u.def.value + sec->output_offset
5801 + sec->output_section->vma;
5802
5803 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5804 h->root.u.def.section->owner,
5805 globals->obfd, sec, val, s,
5806 &error_message);
5807 BFD_ASSERT (myh);
5808 return TRUE;
5809 }
5810
5811 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5812
5813 static bfd_vma
5814 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5815 {
5816 bfd_byte *p;
5817 bfd_vma glue_addr;
5818 asection *s;
5819 struct elf32_arm_link_hash_table *globals;
5820
5821 globals = elf32_arm_hash_table (info);
5822
5823 BFD_ASSERT (globals != NULL);
5824 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5825
5826 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5827 ARM_BX_GLUE_SECTION_NAME);
5828 BFD_ASSERT (s != NULL);
5829 BFD_ASSERT (s->contents != NULL);
5830 BFD_ASSERT (s->output_section != NULL);
5831
5832 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5833
5834 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5835
5836 if ((globals->bx_glue_offset[reg] & 1) == 0)
5837 {
5838 p = s->contents + glue_addr;
5839 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5840 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5841 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5842 globals->bx_glue_offset[reg] |= 1;
5843 }
5844
5845 return glue_addr + s->output_section->vma + s->output_offset;
5846 }
5847
5848 /* Generate Arm stubs for exported Thumb symbols. */
5849 static void
5850 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5851 struct bfd_link_info *link_info)
5852 {
5853 struct elf32_arm_link_hash_table * globals;
5854
5855 if (link_info == NULL)
5856 /* Ignore this if we are not called by the ELF backend linker. */
5857 return;
5858
5859 globals = elf32_arm_hash_table (link_info);
5860 /* If blx is available then exported Thumb symbols are OK and there is
5861 nothing to do. */
5862 if (globals->use_blx)
5863 return;
5864
5865 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5866 link_info);
5867 }
5868
5869 /* Some relocations map to different relocations depending on the
5870 target. Return the real relocation. */
5871
5872 static int
5873 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5874 int r_type)
5875 {
5876 switch (r_type)
5877 {
5878 case R_ARM_TARGET1:
5879 if (globals->target1_is_rel)
5880 return R_ARM_REL32;
5881 else
5882 return R_ARM_ABS32;
5883
5884 case R_ARM_TARGET2:
5885 return globals->target2_reloc;
5886
5887 default:
5888 return r_type;
5889 }
5890 }
5891
5892 /* Return the base VMA address which should be subtracted from real addresses
5893 when resolving @dtpoff relocation.
5894 This is PT_TLS segment p_vaddr. */
5895
5896 static bfd_vma
5897 dtpoff_base (struct bfd_link_info *info)
5898 {
5899 /* If tls_sec is NULL, we should have signalled an error already. */
5900 if (elf_hash_table (info)->tls_sec == NULL)
5901 return 0;
5902 return elf_hash_table (info)->tls_sec->vma;
5903 }
5904
5905 /* Return the relocation value for @tpoff relocation
5906 if STT_TLS virtual address is ADDRESS. */
5907
5908 static bfd_vma
5909 tpoff (struct bfd_link_info *info, bfd_vma address)
5910 {
5911 struct elf_link_hash_table *htab = elf_hash_table (info);
5912 bfd_vma base;
5913
5914 /* If tls_sec is NULL, we should have signalled an error already. */
5915 if (htab->tls_sec == NULL)
5916 return 0;
5917 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5918 return address - htab->tls_sec->vma + base;
5919 }
5920
5921 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5922 VALUE is the relocation value. */
5923
5924 static bfd_reloc_status_type
5925 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5926 {
5927 if (value > 0xfff)
5928 return bfd_reloc_overflow;
5929
5930 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5931 bfd_put_32 (abfd, value, data);
5932 return bfd_reloc_ok;
5933 }
5934
5935 /* For a given value of n, calculate the value of G_n as required to
5936 deal with group relocations. We return it in the form of an
5937 encoded constant-and-rotation, together with the final residual. If n is
5938 specified as less than zero, then final_residual is filled with the
5939 input value and no further action is performed. */
5940
5941 static bfd_vma
5942 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5943 {
5944 int current_n;
5945 bfd_vma g_n;
5946 bfd_vma encoded_g_n = 0;
5947 bfd_vma residual = value; /* Also known as Y_n. */
5948
5949 for (current_n = 0; current_n <= n; current_n++)
5950 {
5951 int shift;
5952
5953 /* Calculate which part of the value to mask. */
5954 if (residual == 0)
5955 shift = 0;
5956 else
5957 {
5958 int msb;
5959
5960 /* Determine the most significant bit in the residual and
5961 align the resulting value to a 2-bit boundary. */
5962 for (msb = 30; msb >= 0; msb -= 2)
5963 if (residual & (3 << msb))
5964 break;
5965
5966 /* The desired shift is now (msb - 6), or zero, whichever
5967 is the greater. */
5968 shift = msb - 6;
5969 if (shift < 0)
5970 shift = 0;
5971 }
5972
5973 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5974 g_n = residual & (0xff << shift);
5975 encoded_g_n = (g_n >> shift)
5976 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5977
5978 /* Calculate the residual for the next time around. */
5979 residual &= ~g_n;
5980 }
5981
5982 *final_residual = residual;
5983
5984 return encoded_g_n;
5985 }
5986
5987 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5988 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5989
5990 static int
5991 identify_add_or_sub (bfd_vma insn)
5992 {
5993 int opcode = insn & 0x1e00000;
5994
5995 if (opcode == 1 << 23) /* ADD */
5996 return 1;
5997
5998 if (opcode == 1 << 22) /* SUB */
5999 return -1;
6000
6001 return 0;
6002 }
6003
6004 /* Perform a relocation as part of a final link. */
6005
6006 static bfd_reloc_status_type
6007 elf32_arm_final_link_relocate (reloc_howto_type * howto,
6008 bfd * input_bfd,
6009 bfd * output_bfd,
6010 asection * input_section,
6011 bfd_byte * contents,
6012 Elf_Internal_Rela * rel,
6013 bfd_vma value,
6014 struct bfd_link_info * info,
6015 asection * sym_sec,
6016 const char * sym_name,
6017 int sym_flags,
6018 struct elf_link_hash_entry * h,
6019 bfd_boolean * unresolved_reloc_p,
6020 char ** error_message)
6021 {
6022 unsigned long r_type = howto->type;
6023 unsigned long r_symndx;
6024 bfd_byte * hit_data = contents + rel->r_offset;
6025 bfd * dynobj = NULL;
6026 Elf_Internal_Shdr * symtab_hdr;
6027 struct elf_link_hash_entry ** sym_hashes;
6028 bfd_vma * local_got_offsets;
6029 asection * sgot = NULL;
6030 asection * splt = NULL;
6031 asection * sreloc = NULL;
6032 bfd_vma addend;
6033 bfd_signed_vma signed_addend;
6034 struct elf32_arm_link_hash_table * globals;
6035
6036 globals = elf32_arm_hash_table (info);
6037
6038 BFD_ASSERT (is_arm_elf (input_bfd));
6039
6040 /* Some relocation types map to different relocations depending on the
6041 target. We pick the right one here. */
6042 r_type = arm_real_reloc_type (globals, r_type);
6043 if (r_type != howto->type)
6044 howto = elf32_arm_howto_from_type (r_type);
6045
6046 /* If the start address has been set, then set the EF_ARM_HASENTRY
6047 flag. Setting this more than once is redundant, but the cost is
6048 not too high, and it keeps the code simple.
6049
6050 The test is done here, rather than somewhere else, because the
6051 start address is only set just before the final link commences.
6052
6053 Note - if the user deliberately sets a start address of 0, the
6054 flag will not be set. */
6055 if (bfd_get_start_address (output_bfd) != 0)
6056 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
6057
6058 dynobj = elf_hash_table (info)->dynobj;
6059 if (dynobj)
6060 {
6061 sgot = bfd_get_section_by_name (dynobj, ".got");
6062 splt = bfd_get_section_by_name (dynobj, ".plt");
6063 }
6064 symtab_hdr = & elf_symtab_hdr (input_bfd);
6065 sym_hashes = elf_sym_hashes (input_bfd);
6066 local_got_offsets = elf_local_got_offsets (input_bfd);
6067 r_symndx = ELF32_R_SYM (rel->r_info);
6068
6069 if (globals->use_rel)
6070 {
6071 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6072
6073 if (addend & ((howto->src_mask + 1) >> 1))
6074 {
6075 signed_addend = -1;
6076 signed_addend &= ~ howto->src_mask;
6077 signed_addend |= addend;
6078 }
6079 else
6080 signed_addend = addend;
6081 }
6082 else
6083 addend = signed_addend = rel->r_addend;
6084
6085 switch (r_type)
6086 {
6087 case R_ARM_NONE:
6088 /* We don't need to find a value for this symbol. It's just a
6089 marker. */
6090 *unresolved_reloc_p = FALSE;
6091 return bfd_reloc_ok;
6092
6093 case R_ARM_ABS12:
6094 if (!globals->vxworks_p)
6095 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6096
6097 case R_ARM_PC24:
6098 case R_ARM_ABS32:
6099 case R_ARM_ABS32_NOI:
6100 case R_ARM_REL32:
6101 case R_ARM_REL32_NOI:
6102 case R_ARM_CALL:
6103 case R_ARM_JUMP24:
6104 case R_ARM_XPC25:
6105 case R_ARM_PREL31:
6106 case R_ARM_PLT32:
6107 /* Handle relocations which should use the PLT entry. ABS32/REL32
6108 will use the symbol's value, which may point to a PLT entry, but we
6109 don't need to handle that here. If we created a PLT entry, all
6110 branches in this object should go to it, except if the PLT is too
6111 far away, in which case a long branch stub should be inserted. */
6112 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6113 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6114 && r_type != R_ARM_CALL)
6115 && h != NULL
6116 && splt != NULL
6117 && h->plt.offset != (bfd_vma) -1)
6118 {
6119 /* If we've created a .plt section, and assigned a PLT entry to
6120 this function, it should not be known to bind locally. If
6121 it were, we would have cleared the PLT entry. */
6122 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6123
6124 value = (splt->output_section->vma
6125 + splt->output_offset
6126 + h->plt.offset);
6127 *unresolved_reloc_p = FALSE;
6128 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6129 contents, rel->r_offset, value,
6130 rel->r_addend);
6131 }
6132
6133 /* When generating a shared object or relocatable executable, these
6134 relocations are copied into the output file to be resolved at
6135 run time. */
6136 if ((info->shared || globals->root.is_relocatable_executable)
6137 && (input_section->flags & SEC_ALLOC)
6138 && !(elf32_arm_hash_table (info)->vxworks_p
6139 && strcmp (input_section->output_section->name,
6140 ".tls_vars") == 0)
6141 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
6142 || !SYMBOL_CALLS_LOCAL (info, h))
6143 && (h == NULL
6144 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6145 || h->root.type != bfd_link_hash_undefweak)
6146 && r_type != R_ARM_PC24
6147 && r_type != R_ARM_CALL
6148 && r_type != R_ARM_JUMP24
6149 && r_type != R_ARM_PREL31
6150 && r_type != R_ARM_PLT32)
6151 {
6152 Elf_Internal_Rela outrel;
6153 bfd_byte *loc;
6154 bfd_boolean skip, relocate;
6155
6156 *unresolved_reloc_p = FALSE;
6157
6158 if (sreloc == NULL)
6159 {
6160 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6161 ! globals->use_rel);
6162
6163 if (sreloc == NULL)
6164 return bfd_reloc_notsupported;
6165 }
6166
6167 skip = FALSE;
6168 relocate = FALSE;
6169
6170 outrel.r_addend = addend;
6171 outrel.r_offset =
6172 _bfd_elf_section_offset (output_bfd, info, input_section,
6173 rel->r_offset);
6174 if (outrel.r_offset == (bfd_vma) -1)
6175 skip = TRUE;
6176 else if (outrel.r_offset == (bfd_vma) -2)
6177 skip = TRUE, relocate = TRUE;
6178 outrel.r_offset += (input_section->output_section->vma
6179 + input_section->output_offset);
6180
6181 if (skip)
6182 memset (&outrel, 0, sizeof outrel);
6183 else if (h != NULL
6184 && h->dynindx != -1
6185 && (!info->shared
6186 || !info->symbolic
6187 || !h->def_regular))
6188 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
6189 else
6190 {
6191 int symbol;
6192
6193 /* This symbol is local, or marked to become local. */
6194 if (sym_flags == STT_ARM_TFUNC)
6195 value |= 1;
6196 if (globals->symbian_p)
6197 {
6198 asection *osec;
6199
6200 /* On Symbian OS, the data segment and text segement
6201 can be relocated independently. Therefore, we
6202 must indicate the segment to which this
6203 relocation is relative. The BPABI allows us to
6204 use any symbol in the right segment; we just use
6205 the section symbol as it is convenient. (We
6206 cannot use the symbol given by "h" directly as it
6207 will not appear in the dynamic symbol table.)
6208
6209 Note that the dynamic linker ignores the section
6210 symbol value, so we don't subtract osec->vma
6211 from the emitted reloc addend. */
6212 if (sym_sec)
6213 osec = sym_sec->output_section;
6214 else
6215 osec = input_section->output_section;
6216 symbol = elf_section_data (osec)->dynindx;
6217 if (symbol == 0)
6218 {
6219 struct elf_link_hash_table *htab = elf_hash_table (info);
6220
6221 if ((osec->flags & SEC_READONLY) == 0
6222 && htab->data_index_section != NULL)
6223 osec = htab->data_index_section;
6224 else
6225 osec = htab->text_index_section;
6226 symbol = elf_section_data (osec)->dynindx;
6227 }
6228 BFD_ASSERT (symbol != 0);
6229 }
6230 else
6231 /* On SVR4-ish systems, the dynamic loader cannot
6232 relocate the text and data segments independently,
6233 so the symbol does not matter. */
6234 symbol = 0;
6235 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6236 if (globals->use_rel)
6237 relocate = TRUE;
6238 else
6239 outrel.r_addend += value;
6240 }
6241
6242 loc = sreloc->contents;
6243 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6244 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6245
6246 /* If this reloc is against an external symbol, we do not want to
6247 fiddle with the addend. Otherwise, we need to include the symbol
6248 value so that it becomes an addend for the dynamic reloc. */
6249 if (! relocate)
6250 return bfd_reloc_ok;
6251
6252 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6253 contents, rel->r_offset, value,
6254 (bfd_vma) 0);
6255 }
6256 else switch (r_type)
6257 {
6258 case R_ARM_ABS12:
6259 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6260
6261 case R_ARM_XPC25: /* Arm BLX instruction. */
6262 case R_ARM_CALL:
6263 case R_ARM_JUMP24:
6264 case R_ARM_PC24: /* Arm B/BL instruction. */
6265 case R_ARM_PLT32:
6266 {
6267 bfd_vma from;
6268 bfd_signed_vma branch_offset;
6269 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6270
6271 if (r_type == R_ARM_XPC25)
6272 {
6273 /* Check for Arm calling Arm function. */
6274 /* FIXME: Should we translate the instruction into a BL
6275 instruction instead ? */
6276 if (sym_flags != STT_ARM_TFUNC)
6277 (*_bfd_error_handler)
6278 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6279 input_bfd,
6280 h ? h->root.root.string : "(local)");
6281 }
6282 else if (r_type != R_ARM_CALL)
6283 {
6284 /* Check for Arm calling Thumb function. */
6285 if (sym_flags == STT_ARM_TFUNC)
6286 {
6287 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6288 output_bfd, input_section,
6289 hit_data, sym_sec, rel->r_offset,
6290 signed_addend, value,
6291 error_message))
6292 return bfd_reloc_ok;
6293 else
6294 return bfd_reloc_dangerous;
6295 }
6296 }
6297
6298 /* Check if a stub has to be inserted because the
6299 destination is too far or we are changing mode. */
6300 if (r_type == R_ARM_CALL)
6301 {
6302 /* If the call goes through a PLT entry, make sure to
6303 check distance to the right destination address. */
6304 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6305 {
6306 value = (splt->output_section->vma
6307 + splt->output_offset
6308 + h->plt.offset);
6309 *unresolved_reloc_p = FALSE;
6310 }
6311
6312 from = (input_section->output_section->vma
6313 + input_section->output_offset
6314 + rel->r_offset);
6315 branch_offset = (bfd_signed_vma)(value - from);
6316
6317 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6318 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6319 || sym_flags == STT_ARM_TFUNC)
6320 {
6321 /* The target is out of reach, so redirect the
6322 branch to the local stub for this function. */
6323
6324 stub_entry = elf32_arm_get_stub_entry (input_section,
6325 sym_sec, h,
6326 rel, globals);
6327 if (stub_entry != NULL)
6328 value = (stub_entry->stub_offset
6329 + stub_entry->stub_sec->output_offset
6330 + stub_entry->stub_sec->output_section->vma);
6331 }
6332 }
6333
6334 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6335 where:
6336 S is the address of the symbol in the relocation.
6337 P is address of the instruction being relocated.
6338 A is the addend (extracted from the instruction) in bytes.
6339
6340 S is held in 'value'.
6341 P is the base address of the section containing the
6342 instruction plus the offset of the reloc into that
6343 section, ie:
6344 (input_section->output_section->vma +
6345 input_section->output_offset +
6346 rel->r_offset).
6347 A is the addend, converted into bytes, ie:
6348 (signed_addend * 4)
6349
6350 Note: None of these operations have knowledge of the pipeline
6351 size of the processor, thus it is up to the assembler to
6352 encode this information into the addend. */
6353 value -= (input_section->output_section->vma
6354 + input_section->output_offset);
6355 value -= rel->r_offset;
6356 if (globals->use_rel)
6357 value += (signed_addend << howto->size);
6358 else
6359 /* RELA addends do not have to be adjusted by howto->size. */
6360 value += signed_addend;
6361
6362 signed_addend = value;
6363 signed_addend >>= howto->rightshift;
6364
6365 /* A branch to an undefined weak symbol is turned into a jump to
6366 the next instruction unless a PLT entry will be created. */
6367 if (h && h->root.type == bfd_link_hash_undefweak
6368 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
6369 {
6370 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6371 | 0x0affffff;
6372 }
6373 else
6374 {
6375 /* Perform a signed range check. */
6376 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6377 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6378 return bfd_reloc_overflow;
6379
6380 addend = (value & 2);
6381
6382 value = (signed_addend & howto->dst_mask)
6383 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6384
6385 /* Set the H bit in the BLX instruction. */
6386 if (sym_flags == STT_ARM_TFUNC)
6387 {
6388 if (addend)
6389 value |= (1 << 24);
6390 else
6391 value &= ~(bfd_vma)(1 << 24);
6392 }
6393 if (r_type == R_ARM_CALL)
6394 {
6395 /* Select the correct instruction (BL or BLX). */
6396 /* Only if we are not handling a BL to a stub. In this
6397 case, mode switching is performed by the stub. */
6398 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6399 value |= (1 << 28);
6400 else
6401 {
6402 value &= ~(bfd_vma)(1 << 28);
6403 value |= (1 << 24);
6404 }
6405 }
6406 }
6407 }
6408 break;
6409
6410 case R_ARM_ABS32:
6411 value += addend;
6412 if (sym_flags == STT_ARM_TFUNC)
6413 value |= 1;
6414 break;
6415
6416 case R_ARM_ABS32_NOI:
6417 value += addend;
6418 break;
6419
6420 case R_ARM_REL32:
6421 value += addend;
6422 if (sym_flags == STT_ARM_TFUNC)
6423 value |= 1;
6424 value -= (input_section->output_section->vma
6425 + input_section->output_offset + rel->r_offset);
6426 break;
6427
6428 case R_ARM_REL32_NOI:
6429 value += addend;
6430 value -= (input_section->output_section->vma
6431 + input_section->output_offset + rel->r_offset);
6432 break;
6433
6434 case R_ARM_PREL31:
6435 value -= (input_section->output_section->vma
6436 + input_section->output_offset + rel->r_offset);
6437 value += signed_addend;
6438 if (! h || h->root.type != bfd_link_hash_undefweak)
6439 {
6440 /* Check for overflow. */
6441 if ((value ^ (value >> 1)) & (1 << 30))
6442 return bfd_reloc_overflow;
6443 }
6444 value &= 0x7fffffff;
6445 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6446 if (sym_flags == STT_ARM_TFUNC)
6447 value |= 1;
6448 break;
6449 }
6450
6451 bfd_put_32 (input_bfd, value, hit_data);
6452 return bfd_reloc_ok;
6453
6454 case R_ARM_ABS8:
6455 value += addend;
6456 if ((long) value > 0x7f || (long) value < -0x80)
6457 return bfd_reloc_overflow;
6458
6459 bfd_put_8 (input_bfd, value, hit_data);
6460 return bfd_reloc_ok;
6461
6462 case R_ARM_ABS16:
6463 value += addend;
6464
6465 if ((long) value > 0x7fff || (long) value < -0x8000)
6466 return bfd_reloc_overflow;
6467
6468 bfd_put_16 (input_bfd, value, hit_data);
6469 return bfd_reloc_ok;
6470
6471 case R_ARM_THM_ABS5:
6472 /* Support ldr and str instructions for the thumb. */
6473 if (globals->use_rel)
6474 {
6475 /* Need to refetch addend. */
6476 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6477 /* ??? Need to determine shift amount from operand size. */
6478 addend >>= howto->rightshift;
6479 }
6480 value += addend;
6481
6482 /* ??? Isn't value unsigned? */
6483 if ((long) value > 0x1f || (long) value < -0x10)
6484 return bfd_reloc_overflow;
6485
6486 /* ??? Value needs to be properly shifted into place first. */
6487 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6488 bfd_put_16 (input_bfd, value, hit_data);
6489 return bfd_reloc_ok;
6490
6491 case R_ARM_THM_ALU_PREL_11_0:
6492 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6493 {
6494 bfd_vma insn;
6495 bfd_signed_vma relocation;
6496
6497 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6498 | bfd_get_16 (input_bfd, hit_data + 2);
6499
6500 if (globals->use_rel)
6501 {
6502 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6503 | ((insn & (1 << 26)) >> 15);
6504 if (insn & 0xf00000)
6505 signed_addend = -signed_addend;
6506 }
6507
6508 relocation = value + signed_addend;
6509 relocation -= (input_section->output_section->vma
6510 + input_section->output_offset
6511 + rel->r_offset);
6512
6513 value = abs (relocation);
6514
6515 if (value >= 0x1000)
6516 return bfd_reloc_overflow;
6517
6518 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6519 | ((value & 0x700) << 4)
6520 | ((value & 0x800) << 15);
6521 if (relocation < 0)
6522 insn |= 0xa00000;
6523
6524 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6525 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6526
6527 return bfd_reloc_ok;
6528 }
6529
6530 case R_ARM_THM_PC12:
6531 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6532 {
6533 bfd_vma insn;
6534 bfd_signed_vma relocation;
6535
6536 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6537 | bfd_get_16 (input_bfd, hit_data + 2);
6538
6539 if (globals->use_rel)
6540 {
6541 signed_addend = insn & 0xfff;
6542 if (!(insn & (1 << 23)))
6543 signed_addend = -signed_addend;
6544 }
6545
6546 relocation = value + signed_addend;
6547 relocation -= (input_section->output_section->vma
6548 + input_section->output_offset
6549 + rel->r_offset);
6550
6551 value = abs (relocation);
6552
6553 if (value >= 0x1000)
6554 return bfd_reloc_overflow;
6555
6556 insn = (insn & 0xff7ff000) | value;
6557 if (relocation >= 0)
6558 insn |= (1 << 23);
6559
6560 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6561 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6562
6563 return bfd_reloc_ok;
6564 }
6565
6566 case R_ARM_THM_XPC22:
6567 case R_ARM_THM_CALL:
6568 case R_ARM_THM_JUMP24:
6569 /* Thumb BL (branch long instruction). */
6570 {
6571 bfd_vma relocation;
6572 bfd_vma reloc_sign;
6573 bfd_boolean overflow = FALSE;
6574 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6575 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6576 bfd_signed_vma reloc_signed_max;
6577 bfd_signed_vma reloc_signed_min;
6578 bfd_vma check;
6579 bfd_signed_vma signed_check;
6580 int bitsize;
6581 int thumb2 = using_thumb2 (globals);
6582
6583 /* A branch to an undefined weak symbol is turned into a jump to
6584 the next instruction unless a PLT entry will be created. */
6585 if (h && h->root.type == bfd_link_hash_undefweak
6586 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
6587 {
6588 bfd_put_16 (input_bfd, 0xe000, hit_data);
6589 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6590 return bfd_reloc_ok;
6591 }
6592
6593 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6594 with Thumb-1) involving the J1 and J2 bits. */
6595 if (globals->use_rel)
6596 {
6597 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6598 bfd_vma upper = upper_insn & 0x3ff;
6599 bfd_vma lower = lower_insn & 0x7ff;
6600 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6601 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6602 bfd_vma i1 = j1 ^ s ? 0 : 1;
6603 bfd_vma i2 = j2 ^ s ? 0 : 1;
6604
6605 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6606 /* Sign extend. */
6607 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6608
6609 signed_addend = addend;
6610 }
6611
6612 if (r_type == R_ARM_THM_XPC22)
6613 {
6614 /* Check for Thumb to Thumb call. */
6615 /* FIXME: Should we translate the instruction into a BL
6616 instruction instead ? */
6617 if (sym_flags == STT_ARM_TFUNC)
6618 (*_bfd_error_handler)
6619 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6620 input_bfd,
6621 h ? h->root.root.string : "(local)");
6622 }
6623 else
6624 {
6625 /* If it is not a call to Thumb, assume call to Arm.
6626 If it is a call relative to a section name, then it is not a
6627 function call at all, but rather a long jump. Calls through
6628 the PLT do not require stubs. */
6629 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6630 && (h == NULL || splt == NULL
6631 || h->plt.offset == (bfd_vma) -1))
6632 {
6633 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6634 {
6635 /* Convert BL to BLX. */
6636 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6637 }
6638 else if (r_type != R_ARM_THM_CALL)
6639 {
6640 if (elf32_thumb_to_arm_stub
6641 (info, sym_name, input_bfd, output_bfd, input_section,
6642 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6643 error_message))
6644 return bfd_reloc_ok;
6645 else
6646 return bfd_reloc_dangerous;
6647 }
6648 }
6649 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6650 && r_type == R_ARM_THM_CALL)
6651 {
6652 /* Make sure this is a BL. */
6653 lower_insn |= 0x1800;
6654 }
6655 }
6656
6657 /* Handle calls via the PLT. */
6658 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6659 {
6660 value = (splt->output_section->vma
6661 + splt->output_offset
6662 + h->plt.offset);
6663 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6664 {
6665 /* If the Thumb BLX instruction is available, convert the
6666 BL to a BLX instruction to call the ARM-mode PLT entry. */
6667 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6668 }
6669 else
6670 /* Target the Thumb stub before the ARM PLT entry. */
6671 value -= PLT_THUMB_STUB_SIZE;
6672 *unresolved_reloc_p = FALSE;
6673 }
6674
6675 if (r_type == R_ARM_THM_CALL)
6676 {
6677 /* Check if a stub has to be inserted because the destination
6678 is too far. */
6679 bfd_vma from;
6680 bfd_signed_vma branch_offset;
6681 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6682
6683 from = (input_section->output_section->vma
6684 + input_section->output_offset
6685 + rel->r_offset);
6686 branch_offset = (bfd_signed_vma)(value - from);
6687
6688 if ((!thumb2
6689 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6690 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6691 ||
6692 (thumb2
6693 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6694 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6695 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6696 {
6697 /* The target is out of reach or we are changing modes, so
6698 redirect the branch to the local stub for this
6699 function. */
6700 stub_entry = elf32_arm_get_stub_entry (input_section,
6701 sym_sec, h,
6702 rel, globals);
6703 if (stub_entry != NULL)
6704 value = (stub_entry->stub_offset
6705 + stub_entry->stub_sec->output_offset
6706 + stub_entry->stub_sec->output_section->vma);
6707
6708 /* If this call becomes a call to Arm, force BLX. */
6709 if (globals->use_blx)
6710 {
6711 if ((stub_entry
6712 && !arm_stub_is_thumb (stub_entry->stub_type))
6713 || (sym_flags != STT_ARM_TFUNC))
6714 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6715 }
6716 }
6717 }
6718
6719 relocation = value + signed_addend;
6720
6721 relocation -= (input_section->output_section->vma
6722 + input_section->output_offset
6723 + rel->r_offset);
6724
6725 check = relocation >> howto->rightshift;
6726
6727 /* If this is a signed value, the rightshift just dropped
6728 leading 1 bits (assuming twos complement). */
6729 if ((bfd_signed_vma) relocation >= 0)
6730 signed_check = check;
6731 else
6732 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6733
6734 /* Calculate the permissable maximum and minimum values for
6735 this relocation according to whether we're relocating for
6736 Thumb-2 or not. */
6737 bitsize = howto->bitsize;
6738 if (!thumb2)
6739 bitsize -= 2;
6740 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6741 reloc_signed_min = ~reloc_signed_max;
6742
6743 /* Assumes two's complement. */
6744 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6745 overflow = TRUE;
6746
6747 if ((lower_insn & 0x5000) == 0x4000)
6748 /* For a BLX instruction, make sure that the relocation is rounded up
6749 to a word boundary. This follows the semantics of the instruction
6750 which specifies that bit 1 of the target address will come from bit
6751 1 of the base address. */
6752 relocation = (relocation + 2) & ~ 3;
6753
6754 /* Put RELOCATION back into the insn. Assumes two's complement.
6755 We use the Thumb-2 encoding, which is safe even if dealing with
6756 a Thumb-1 instruction by virtue of our overflow check above. */
6757 reloc_sign = (signed_check < 0) ? 1 : 0;
6758 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6759 | ((relocation >> 12) & 0x3ff)
6760 | (reloc_sign << 10);
6761 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6762 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6763 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6764 | ((relocation >> 1) & 0x7ff);
6765
6766 /* Put the relocated value back in the object file: */
6767 bfd_put_16 (input_bfd, upper_insn, hit_data);
6768 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6769
6770 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6771 }
6772 break;
6773
6774 case R_ARM_THM_JUMP19:
6775 /* Thumb32 conditional branch instruction. */
6776 {
6777 bfd_vma relocation;
6778 bfd_boolean overflow = FALSE;
6779 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6780 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6781 bfd_signed_vma reloc_signed_max = 0xffffe;
6782 bfd_signed_vma reloc_signed_min = -0x100000;
6783 bfd_signed_vma signed_check;
6784
6785 /* Need to refetch the addend, reconstruct the top three bits,
6786 and squish the two 11 bit pieces together. */
6787 if (globals->use_rel)
6788 {
6789 bfd_vma S = (upper_insn & 0x0400) >> 10;
6790 bfd_vma upper = (upper_insn & 0x003f);
6791 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6792 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6793 bfd_vma lower = (lower_insn & 0x07ff);
6794
6795 upper |= J1 << 6;
6796 upper |= J2 << 7;
6797 upper |= (!S) << 8;
6798 upper -= 0x0100; /* Sign extend. */
6799
6800 addend = (upper << 12) | (lower << 1);
6801 signed_addend = addend;
6802 }
6803
6804 /* Handle calls via the PLT. */
6805 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6806 {
6807 value = (splt->output_section->vma
6808 + splt->output_offset
6809 + h->plt.offset);
6810 /* Target the Thumb stub before the ARM PLT entry. */
6811 value -= PLT_THUMB_STUB_SIZE;
6812 *unresolved_reloc_p = FALSE;
6813 }
6814
6815 /* ??? Should handle interworking? GCC might someday try to
6816 use this for tail calls. */
6817
6818 relocation = value + signed_addend;
6819 relocation -= (input_section->output_section->vma
6820 + input_section->output_offset
6821 + rel->r_offset);
6822 signed_check = (bfd_signed_vma) relocation;
6823
6824 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6825 overflow = TRUE;
6826
6827 /* Put RELOCATION back into the insn. */
6828 {
6829 bfd_vma S = (relocation & 0x00100000) >> 20;
6830 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6831 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6832 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6833 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6834
6835 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6836 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6837 }
6838
6839 /* Put the relocated value back in the object file: */
6840 bfd_put_16 (input_bfd, upper_insn, hit_data);
6841 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6842
6843 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6844 }
6845
6846 case R_ARM_THM_JUMP11:
6847 case R_ARM_THM_JUMP8:
6848 case R_ARM_THM_JUMP6:
6849 /* Thumb B (branch) instruction). */
6850 {
6851 bfd_signed_vma relocation;
6852 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6853 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6854 bfd_signed_vma signed_check;
6855
6856 /* CZB cannot jump backward. */
6857 if (r_type == R_ARM_THM_JUMP6)
6858 reloc_signed_min = 0;
6859
6860 if (globals->use_rel)
6861 {
6862 /* Need to refetch addend. */
6863 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6864 if (addend & ((howto->src_mask + 1) >> 1))
6865 {
6866 signed_addend = -1;
6867 signed_addend &= ~ howto->src_mask;
6868 signed_addend |= addend;
6869 }
6870 else
6871 signed_addend = addend;
6872 /* The value in the insn has been right shifted. We need to
6873 undo this, so that we can perform the address calculation
6874 in terms of bytes. */
6875 signed_addend <<= howto->rightshift;
6876 }
6877 relocation = value + signed_addend;
6878
6879 relocation -= (input_section->output_section->vma
6880 + input_section->output_offset
6881 + rel->r_offset);
6882
6883 relocation >>= howto->rightshift;
6884 signed_check = relocation;
6885
6886 if (r_type == R_ARM_THM_JUMP6)
6887 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6888 else
6889 relocation &= howto->dst_mask;
6890 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6891
6892 bfd_put_16 (input_bfd, relocation, hit_data);
6893
6894 /* Assumes two's complement. */
6895 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6896 return bfd_reloc_overflow;
6897
6898 return bfd_reloc_ok;
6899 }
6900
6901 case R_ARM_ALU_PCREL7_0:
6902 case R_ARM_ALU_PCREL15_8:
6903 case R_ARM_ALU_PCREL23_15:
6904 {
6905 bfd_vma insn;
6906 bfd_vma relocation;
6907
6908 insn = bfd_get_32 (input_bfd, hit_data);
6909 if (globals->use_rel)
6910 {
6911 /* Extract the addend. */
6912 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6913 signed_addend = addend;
6914 }
6915 relocation = value + signed_addend;
6916
6917 relocation -= (input_section->output_section->vma
6918 + input_section->output_offset
6919 + rel->r_offset);
6920 insn = (insn & ~0xfff)
6921 | ((howto->bitpos << 7) & 0xf00)
6922 | ((relocation >> howto->bitpos) & 0xff);
6923 bfd_put_32 (input_bfd, value, hit_data);
6924 }
6925 return bfd_reloc_ok;
6926
6927 case R_ARM_GNU_VTINHERIT:
6928 case R_ARM_GNU_VTENTRY:
6929 return bfd_reloc_ok;
6930
6931 case R_ARM_GOTOFF32:
6932 /* Relocation is relative to the start of the
6933 global offset table. */
6934
6935 BFD_ASSERT (sgot != NULL);
6936 if (sgot == NULL)
6937 return bfd_reloc_notsupported;
6938
6939 /* If we are addressing a Thumb function, we need to adjust the
6940 address by one, so that attempts to call the function pointer will
6941 correctly interpret it as Thumb code. */
6942 if (sym_flags == STT_ARM_TFUNC)
6943 value += 1;
6944
6945 /* Note that sgot->output_offset is not involved in this
6946 calculation. We always want the start of .got. If we
6947 define _GLOBAL_OFFSET_TABLE in a different way, as is
6948 permitted by the ABI, we might have to change this
6949 calculation. */
6950 value -= sgot->output_section->vma;
6951 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6952 contents, rel->r_offset, value,
6953 rel->r_addend);
6954
6955 case R_ARM_GOTPC:
6956 /* Use global offset table as symbol value. */
6957 BFD_ASSERT (sgot != NULL);
6958
6959 if (sgot == NULL)
6960 return bfd_reloc_notsupported;
6961
6962 *unresolved_reloc_p = FALSE;
6963 value = sgot->output_section->vma;
6964 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6965 contents, rel->r_offset, value,
6966 rel->r_addend);
6967
6968 case R_ARM_GOT32:
6969 case R_ARM_GOT_PREL:
6970 /* Relocation is to the entry for this symbol in the
6971 global offset table. */
6972 if (sgot == NULL)
6973 return bfd_reloc_notsupported;
6974
6975 if (h != NULL)
6976 {
6977 bfd_vma off;
6978 bfd_boolean dyn;
6979
6980 off = h->got.offset;
6981 BFD_ASSERT (off != (bfd_vma) -1);
6982 dyn = globals->root.dynamic_sections_created;
6983
6984 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6985 || (info->shared
6986 && SYMBOL_REFERENCES_LOCAL (info, h))
6987 || (ELF_ST_VISIBILITY (h->other)
6988 && h->root.type == bfd_link_hash_undefweak))
6989 {
6990 /* This is actually a static link, or it is a -Bsymbolic link
6991 and the symbol is defined locally. We must initialize this
6992 entry in the global offset table. Since the offset must
6993 always be a multiple of 4, we use the least significant bit
6994 to record whether we have initialized it already.
6995
6996 When doing a dynamic link, we create a .rel(a).got relocation
6997 entry to initialize the value. This is done in the
6998 finish_dynamic_symbol routine. */
6999 if ((off & 1) != 0)
7000 off &= ~1;
7001 else
7002 {
7003 /* If we are addressing a Thumb function, we need to
7004 adjust the address by one, so that attempts to
7005 call the function pointer will correctly
7006 interpret it as Thumb code. */
7007 if (sym_flags == STT_ARM_TFUNC)
7008 value |= 1;
7009
7010 bfd_put_32 (output_bfd, value, sgot->contents + off);
7011 h->got.offset |= 1;
7012 }
7013 }
7014 else
7015 *unresolved_reloc_p = FALSE;
7016
7017 value = sgot->output_offset + off;
7018 }
7019 else
7020 {
7021 bfd_vma off;
7022
7023 BFD_ASSERT (local_got_offsets != NULL &&
7024 local_got_offsets[r_symndx] != (bfd_vma) -1);
7025
7026 off = local_got_offsets[r_symndx];
7027
7028 /* The offset must always be a multiple of 4. We use the
7029 least significant bit to record whether we have already
7030 generated the necessary reloc. */
7031 if ((off & 1) != 0)
7032 off &= ~1;
7033 else
7034 {
7035 /* If we are addressing a Thumb function, we need to
7036 adjust the address by one, so that attempts to
7037 call the function pointer will correctly
7038 interpret it as Thumb code. */
7039 if (sym_flags == STT_ARM_TFUNC)
7040 value |= 1;
7041
7042 if (globals->use_rel)
7043 bfd_put_32 (output_bfd, value, sgot->contents + off);
7044
7045 if (info->shared)
7046 {
7047 asection * srelgot;
7048 Elf_Internal_Rela outrel;
7049 bfd_byte *loc;
7050
7051 srelgot = (bfd_get_section_by_name
7052 (dynobj, RELOC_SECTION (globals, ".got")));
7053 BFD_ASSERT (srelgot != NULL);
7054
7055 outrel.r_addend = addend + value;
7056 outrel.r_offset = (sgot->output_section->vma
7057 + sgot->output_offset
7058 + off);
7059 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
7060 loc = srelgot->contents;
7061 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7062 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7063 }
7064
7065 local_got_offsets[r_symndx] |= 1;
7066 }
7067
7068 value = sgot->output_offset + off;
7069 }
7070 if (r_type != R_ARM_GOT32)
7071 value += sgot->output_section->vma;
7072
7073 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7074 contents, rel->r_offset, value,
7075 rel->r_addend);
7076
7077 case R_ARM_TLS_LDO32:
7078 value = value - dtpoff_base (info);
7079
7080 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7081 contents, rel->r_offset, value,
7082 rel->r_addend);
7083
7084 case R_ARM_TLS_LDM32:
7085 {
7086 bfd_vma off;
7087
7088 if (globals->sgot == NULL)
7089 abort ();
7090
7091 off = globals->tls_ldm_got.offset;
7092
7093 if ((off & 1) != 0)
7094 off &= ~1;
7095 else
7096 {
7097 /* If we don't know the module number, create a relocation
7098 for it. */
7099 if (info->shared)
7100 {
7101 Elf_Internal_Rela outrel;
7102 bfd_byte *loc;
7103
7104 if (globals->srelgot == NULL)
7105 abort ();
7106
7107 outrel.r_addend = 0;
7108 outrel.r_offset = (globals->sgot->output_section->vma
7109 + globals->sgot->output_offset + off);
7110 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7111
7112 if (globals->use_rel)
7113 bfd_put_32 (output_bfd, outrel.r_addend,
7114 globals->sgot->contents + off);
7115
7116 loc = globals->srelgot->contents;
7117 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7118 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7119 }
7120 else
7121 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7122
7123 globals->tls_ldm_got.offset |= 1;
7124 }
7125
7126 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7127 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7128
7129 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7130 contents, rel->r_offset, value,
7131 rel->r_addend);
7132 }
7133
7134 case R_ARM_TLS_GD32:
7135 case R_ARM_TLS_IE32:
7136 {
7137 bfd_vma off;
7138 int indx;
7139 char tls_type;
7140
7141 if (globals->sgot == NULL)
7142 abort ();
7143
7144 indx = 0;
7145 if (h != NULL)
7146 {
7147 bfd_boolean dyn;
7148 dyn = globals->root.dynamic_sections_created;
7149 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7150 && (!info->shared
7151 || !SYMBOL_REFERENCES_LOCAL (info, h)))
7152 {
7153 *unresolved_reloc_p = FALSE;
7154 indx = h->dynindx;
7155 }
7156 off = h->got.offset;
7157 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7158 }
7159 else
7160 {
7161 if (local_got_offsets == NULL)
7162 abort ();
7163 off = local_got_offsets[r_symndx];
7164 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7165 }
7166
7167 if (tls_type == GOT_UNKNOWN)
7168 abort ();
7169
7170 if ((off & 1) != 0)
7171 off &= ~1;
7172 else
7173 {
7174 bfd_boolean need_relocs = FALSE;
7175 Elf_Internal_Rela outrel;
7176 bfd_byte *loc = NULL;
7177 int cur_off = off;
7178
7179 /* The GOT entries have not been initialized yet. Do it
7180 now, and emit any relocations. If both an IE GOT and a
7181 GD GOT are necessary, we emit the GD first. */
7182
7183 if ((info->shared || indx != 0)
7184 && (h == NULL
7185 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7186 || h->root.type != bfd_link_hash_undefweak))
7187 {
7188 need_relocs = TRUE;
7189 if (globals->srelgot == NULL)
7190 abort ();
7191 loc = globals->srelgot->contents;
7192 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
7193 }
7194
7195 if (tls_type & GOT_TLS_GD)
7196 {
7197 if (need_relocs)
7198 {
7199 outrel.r_addend = 0;
7200 outrel.r_offset = (globals->sgot->output_section->vma
7201 + globals->sgot->output_offset
7202 + cur_off);
7203 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
7204
7205 if (globals->use_rel)
7206 bfd_put_32 (output_bfd, outrel.r_addend,
7207 globals->sgot->contents + cur_off);
7208
7209 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7210 globals->srelgot->reloc_count++;
7211 loc += RELOC_SIZE (globals);
7212
7213 if (indx == 0)
7214 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7215 globals->sgot->contents + cur_off + 4);
7216 else
7217 {
7218 outrel.r_addend = 0;
7219 outrel.r_info = ELF32_R_INFO (indx,
7220 R_ARM_TLS_DTPOFF32);
7221 outrel.r_offset += 4;
7222
7223 if (globals->use_rel)
7224 bfd_put_32 (output_bfd, outrel.r_addend,
7225 globals->sgot->contents + cur_off + 4);
7226
7227
7228 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7229 globals->srelgot->reloc_count++;
7230 loc += RELOC_SIZE (globals);
7231 }
7232 }
7233 else
7234 {
7235 /* If we are not emitting relocations for a
7236 general dynamic reference, then we must be in a
7237 static link or an executable link with the
7238 symbol binding locally. Mark it as belonging
7239 to module 1, the executable. */
7240 bfd_put_32 (output_bfd, 1,
7241 globals->sgot->contents + cur_off);
7242 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7243 globals->sgot->contents + cur_off + 4);
7244 }
7245
7246 cur_off += 8;
7247 }
7248
7249 if (tls_type & GOT_TLS_IE)
7250 {
7251 if (need_relocs)
7252 {
7253 if (indx == 0)
7254 outrel.r_addend = value - dtpoff_base (info);
7255 else
7256 outrel.r_addend = 0;
7257 outrel.r_offset = (globals->sgot->output_section->vma
7258 + globals->sgot->output_offset
7259 + cur_off);
7260 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7261
7262 if (globals->use_rel)
7263 bfd_put_32 (output_bfd, outrel.r_addend,
7264 globals->sgot->contents + cur_off);
7265
7266 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7267 globals->srelgot->reloc_count++;
7268 loc += RELOC_SIZE (globals);
7269 }
7270 else
7271 bfd_put_32 (output_bfd, tpoff (info, value),
7272 globals->sgot->contents + cur_off);
7273 cur_off += 4;
7274 }
7275
7276 if (h != NULL)
7277 h->got.offset |= 1;
7278 else
7279 local_got_offsets[r_symndx] |= 1;
7280 }
7281
7282 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7283 off += 8;
7284 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7285 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7286
7287 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7288 contents, rel->r_offset, value,
7289 rel->r_addend);
7290 }
7291
7292 case R_ARM_TLS_LE32:
7293 if (info->shared)
7294 {
7295 (*_bfd_error_handler)
7296 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7297 input_bfd, input_section,
7298 (long) rel->r_offset, howto->name);
7299 return FALSE;
7300 }
7301 else
7302 value = tpoff (info, value);
7303
7304 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7305 contents, rel->r_offset, value,
7306 rel->r_addend);
7307
7308 case R_ARM_V4BX:
7309 if (globals->fix_v4bx)
7310 {
7311 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7312
7313 /* Ensure that we have a BX instruction. */
7314 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7315
7316 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7317 {
7318 /* Branch to veneer. */
7319 bfd_vma glue_addr;
7320 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7321 glue_addr -= input_section->output_section->vma
7322 + input_section->output_offset
7323 + rel->r_offset + 8;
7324 insn = (insn & 0xf0000000) | 0x0a000000
7325 | ((glue_addr >> 2) & 0x00ffffff);
7326 }
7327 else
7328 {
7329 /* Preserve Rm (lowest four bits) and the condition code
7330 (highest four bits). Other bits encode MOV PC,Rm. */
7331 insn = (insn & 0xf000000f) | 0x01a0f000;
7332 }
7333
7334 bfd_put_32 (input_bfd, insn, hit_data);
7335 }
7336 return bfd_reloc_ok;
7337
7338 case R_ARM_MOVW_ABS_NC:
7339 case R_ARM_MOVT_ABS:
7340 case R_ARM_MOVW_PREL_NC:
7341 case R_ARM_MOVT_PREL:
7342 /* Until we properly support segment-base-relative addressing then
7343 we assume the segment base to be zero, as for the group relocations.
7344 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7345 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7346 case R_ARM_MOVW_BREL_NC:
7347 case R_ARM_MOVW_BREL:
7348 case R_ARM_MOVT_BREL:
7349 {
7350 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7351
7352 if (globals->use_rel)
7353 {
7354 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7355 signed_addend = (addend ^ 0x8000) - 0x8000;
7356 }
7357
7358 value += signed_addend;
7359
7360 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7361 value -= (input_section->output_section->vma
7362 + input_section->output_offset + rel->r_offset);
7363
7364 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7365 return bfd_reloc_overflow;
7366
7367 if (sym_flags == STT_ARM_TFUNC)
7368 value |= 1;
7369
7370 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7371 || r_type == R_ARM_MOVT_BREL)
7372 value >>= 16;
7373
7374 insn &= 0xfff0f000;
7375 insn |= value & 0xfff;
7376 insn |= (value & 0xf000) << 4;
7377 bfd_put_32 (input_bfd, insn, hit_data);
7378 }
7379 return bfd_reloc_ok;
7380
7381 case R_ARM_THM_MOVW_ABS_NC:
7382 case R_ARM_THM_MOVT_ABS:
7383 case R_ARM_THM_MOVW_PREL_NC:
7384 case R_ARM_THM_MOVT_PREL:
7385 /* Until we properly support segment-base-relative addressing then
7386 we assume the segment base to be zero, as for the above relocations.
7387 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7388 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7389 as R_ARM_THM_MOVT_ABS. */
7390 case R_ARM_THM_MOVW_BREL_NC:
7391 case R_ARM_THM_MOVW_BREL:
7392 case R_ARM_THM_MOVT_BREL:
7393 {
7394 bfd_vma insn;
7395
7396 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7397 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7398
7399 if (globals->use_rel)
7400 {
7401 addend = ((insn >> 4) & 0xf000)
7402 | ((insn >> 15) & 0x0800)
7403 | ((insn >> 4) & 0x0700)
7404 | (insn & 0x00ff);
7405 signed_addend = (addend ^ 0x8000) - 0x8000;
7406 }
7407
7408 value += signed_addend;
7409
7410 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7411 value -= (input_section->output_section->vma
7412 + input_section->output_offset + rel->r_offset);
7413
7414 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7415 return bfd_reloc_overflow;
7416
7417 if (sym_flags == STT_ARM_TFUNC)
7418 value |= 1;
7419
7420 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7421 || r_type == R_ARM_THM_MOVT_BREL)
7422 value >>= 16;
7423
7424 insn &= 0xfbf08f00;
7425 insn |= (value & 0xf000) << 4;
7426 insn |= (value & 0x0800) << 15;
7427 insn |= (value & 0x0700) << 4;
7428 insn |= (value & 0x00ff);
7429
7430 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7431 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7432 }
7433 return bfd_reloc_ok;
7434
7435 case R_ARM_ALU_PC_G0_NC:
7436 case R_ARM_ALU_PC_G1_NC:
7437 case R_ARM_ALU_PC_G0:
7438 case R_ARM_ALU_PC_G1:
7439 case R_ARM_ALU_PC_G2:
7440 case R_ARM_ALU_SB_G0_NC:
7441 case R_ARM_ALU_SB_G1_NC:
7442 case R_ARM_ALU_SB_G0:
7443 case R_ARM_ALU_SB_G1:
7444 case R_ARM_ALU_SB_G2:
7445 {
7446 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7447 bfd_vma pc = input_section->output_section->vma
7448 + input_section->output_offset + rel->r_offset;
7449 /* sb should be the origin of the *segment* containing the symbol.
7450 It is not clear how to obtain this OS-dependent value, so we
7451 make an arbitrary choice of zero. */
7452 bfd_vma sb = 0;
7453 bfd_vma residual;
7454 bfd_vma g_n;
7455 bfd_signed_vma signed_value;
7456 int group = 0;
7457
7458 /* Determine which group of bits to select. */
7459 switch (r_type)
7460 {
7461 case R_ARM_ALU_PC_G0_NC:
7462 case R_ARM_ALU_PC_G0:
7463 case R_ARM_ALU_SB_G0_NC:
7464 case R_ARM_ALU_SB_G0:
7465 group = 0;
7466 break;
7467
7468 case R_ARM_ALU_PC_G1_NC:
7469 case R_ARM_ALU_PC_G1:
7470 case R_ARM_ALU_SB_G1_NC:
7471 case R_ARM_ALU_SB_G1:
7472 group = 1;
7473 break;
7474
7475 case R_ARM_ALU_PC_G2:
7476 case R_ARM_ALU_SB_G2:
7477 group = 2;
7478 break;
7479
7480 default:
7481 abort ();
7482 }
7483
7484 /* If REL, extract the addend from the insn. If RELA, it will
7485 have already been fetched for us. */
7486 if (globals->use_rel)
7487 {
7488 int negative;
7489 bfd_vma constant = insn & 0xff;
7490 bfd_vma rotation = (insn & 0xf00) >> 8;
7491
7492 if (rotation == 0)
7493 signed_addend = constant;
7494 else
7495 {
7496 /* Compensate for the fact that in the instruction, the
7497 rotation is stored in multiples of 2 bits. */
7498 rotation *= 2;
7499
7500 /* Rotate "constant" right by "rotation" bits. */
7501 signed_addend = (constant >> rotation) |
7502 (constant << (8 * sizeof (bfd_vma) - rotation));
7503 }
7504
7505 /* Determine if the instruction is an ADD or a SUB.
7506 (For REL, this determines the sign of the addend.) */
7507 negative = identify_add_or_sub (insn);
7508 if (negative == 0)
7509 {
7510 (*_bfd_error_handler)
7511 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7512 input_bfd, input_section,
7513 (long) rel->r_offset, howto->name);
7514 return bfd_reloc_overflow;
7515 }
7516
7517 signed_addend *= negative;
7518 }
7519
7520 /* Compute the value (X) to go in the place. */
7521 if (r_type == R_ARM_ALU_PC_G0_NC
7522 || r_type == R_ARM_ALU_PC_G1_NC
7523 || r_type == R_ARM_ALU_PC_G0
7524 || r_type == R_ARM_ALU_PC_G1
7525 || r_type == R_ARM_ALU_PC_G2)
7526 /* PC relative. */
7527 signed_value = value - pc + signed_addend;
7528 else
7529 /* Section base relative. */
7530 signed_value = value - sb + signed_addend;
7531
7532 /* If the target symbol is a Thumb function, then set the
7533 Thumb bit in the address. */
7534 if (sym_flags == STT_ARM_TFUNC)
7535 signed_value |= 1;
7536
7537 /* Calculate the value of the relevant G_n, in encoded
7538 constant-with-rotation format. */
7539 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7540 &residual);
7541
7542 /* Check for overflow if required. */
7543 if ((r_type == R_ARM_ALU_PC_G0
7544 || r_type == R_ARM_ALU_PC_G1
7545 || r_type == R_ARM_ALU_PC_G2
7546 || r_type == R_ARM_ALU_SB_G0
7547 || r_type == R_ARM_ALU_SB_G1
7548 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7549 {
7550 (*_bfd_error_handler)
7551 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7552 input_bfd, input_section,
7553 (long) rel->r_offset, abs (signed_value), howto->name);
7554 return bfd_reloc_overflow;
7555 }
7556
7557 /* Mask out the value and the ADD/SUB part of the opcode; take care
7558 not to destroy the S bit. */
7559 insn &= 0xff1ff000;
7560
7561 /* Set the opcode according to whether the value to go in the
7562 place is negative. */
7563 if (signed_value < 0)
7564 insn |= 1 << 22;
7565 else
7566 insn |= 1 << 23;
7567
7568 /* Encode the offset. */
7569 insn |= g_n;
7570
7571 bfd_put_32 (input_bfd, insn, hit_data);
7572 }
7573 return bfd_reloc_ok;
7574
7575 case R_ARM_LDR_PC_G0:
7576 case R_ARM_LDR_PC_G1:
7577 case R_ARM_LDR_PC_G2:
7578 case R_ARM_LDR_SB_G0:
7579 case R_ARM_LDR_SB_G1:
7580 case R_ARM_LDR_SB_G2:
7581 {
7582 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7583 bfd_vma pc = input_section->output_section->vma
7584 + input_section->output_offset + rel->r_offset;
7585 bfd_vma sb = 0; /* See note above. */
7586 bfd_vma residual;
7587 bfd_signed_vma signed_value;
7588 int group = 0;
7589
7590 /* Determine which groups of bits to calculate. */
7591 switch (r_type)
7592 {
7593 case R_ARM_LDR_PC_G0:
7594 case R_ARM_LDR_SB_G0:
7595 group = 0;
7596 break;
7597
7598 case R_ARM_LDR_PC_G1:
7599 case R_ARM_LDR_SB_G1:
7600 group = 1;
7601 break;
7602
7603 case R_ARM_LDR_PC_G2:
7604 case R_ARM_LDR_SB_G2:
7605 group = 2;
7606 break;
7607
7608 default:
7609 abort ();
7610 }
7611
7612 /* If REL, extract the addend from the insn. If RELA, it will
7613 have already been fetched for us. */
7614 if (globals->use_rel)
7615 {
7616 int negative = (insn & (1 << 23)) ? 1 : -1;
7617 signed_addend = negative * (insn & 0xfff);
7618 }
7619
7620 /* Compute the value (X) to go in the place. */
7621 if (r_type == R_ARM_LDR_PC_G0
7622 || r_type == R_ARM_LDR_PC_G1
7623 || r_type == R_ARM_LDR_PC_G2)
7624 /* PC relative. */
7625 signed_value = value - pc + signed_addend;
7626 else
7627 /* Section base relative. */
7628 signed_value = value - sb + signed_addend;
7629
7630 /* Calculate the value of the relevant G_{n-1} to obtain
7631 the residual at that stage. */
7632 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7633
7634 /* Check for overflow. */
7635 if (residual >= 0x1000)
7636 {
7637 (*_bfd_error_handler)
7638 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7639 input_bfd, input_section,
7640 (long) rel->r_offset, abs (signed_value), howto->name);
7641 return bfd_reloc_overflow;
7642 }
7643
7644 /* Mask out the value and U bit. */
7645 insn &= 0xff7ff000;
7646
7647 /* Set the U bit if the value to go in the place is non-negative. */
7648 if (signed_value >= 0)
7649 insn |= 1 << 23;
7650
7651 /* Encode the offset. */
7652 insn |= residual;
7653
7654 bfd_put_32 (input_bfd, insn, hit_data);
7655 }
7656 return bfd_reloc_ok;
7657
7658 case R_ARM_LDRS_PC_G0:
7659 case R_ARM_LDRS_PC_G1:
7660 case R_ARM_LDRS_PC_G2:
7661 case R_ARM_LDRS_SB_G0:
7662 case R_ARM_LDRS_SB_G1:
7663 case R_ARM_LDRS_SB_G2:
7664 {
7665 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7666 bfd_vma pc = input_section->output_section->vma
7667 + input_section->output_offset + rel->r_offset;
7668 bfd_vma sb = 0; /* See note above. */
7669 bfd_vma residual;
7670 bfd_signed_vma signed_value;
7671 int group = 0;
7672
7673 /* Determine which groups of bits to calculate. */
7674 switch (r_type)
7675 {
7676 case R_ARM_LDRS_PC_G0:
7677 case R_ARM_LDRS_SB_G0:
7678 group = 0;
7679 break;
7680
7681 case R_ARM_LDRS_PC_G1:
7682 case R_ARM_LDRS_SB_G1:
7683 group = 1;
7684 break;
7685
7686 case R_ARM_LDRS_PC_G2:
7687 case R_ARM_LDRS_SB_G2:
7688 group = 2;
7689 break;
7690
7691 default:
7692 abort ();
7693 }
7694
7695 /* If REL, extract the addend from the insn. If RELA, it will
7696 have already been fetched for us. */
7697 if (globals->use_rel)
7698 {
7699 int negative = (insn & (1 << 23)) ? 1 : -1;
7700 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7701 }
7702
7703 /* Compute the value (X) to go in the place. */
7704 if (r_type == R_ARM_LDRS_PC_G0
7705 || r_type == R_ARM_LDRS_PC_G1
7706 || r_type == R_ARM_LDRS_PC_G2)
7707 /* PC relative. */
7708 signed_value = value - pc + signed_addend;
7709 else
7710 /* Section base relative. */
7711 signed_value = value - sb + signed_addend;
7712
7713 /* Calculate the value of the relevant G_{n-1} to obtain
7714 the residual at that stage. */
7715 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7716
7717 /* Check for overflow. */
7718 if (residual >= 0x100)
7719 {
7720 (*_bfd_error_handler)
7721 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7722 input_bfd, input_section,
7723 (long) rel->r_offset, abs (signed_value), howto->name);
7724 return bfd_reloc_overflow;
7725 }
7726
7727 /* Mask out the value and U bit. */
7728 insn &= 0xff7ff0f0;
7729
7730 /* Set the U bit if the value to go in the place is non-negative. */
7731 if (signed_value >= 0)
7732 insn |= 1 << 23;
7733
7734 /* Encode the offset. */
7735 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7736
7737 bfd_put_32 (input_bfd, insn, hit_data);
7738 }
7739 return bfd_reloc_ok;
7740
7741 case R_ARM_LDC_PC_G0:
7742 case R_ARM_LDC_PC_G1:
7743 case R_ARM_LDC_PC_G2:
7744 case R_ARM_LDC_SB_G0:
7745 case R_ARM_LDC_SB_G1:
7746 case R_ARM_LDC_SB_G2:
7747 {
7748 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7749 bfd_vma pc = input_section->output_section->vma
7750 + input_section->output_offset + rel->r_offset;
7751 bfd_vma sb = 0; /* See note above. */
7752 bfd_vma residual;
7753 bfd_signed_vma signed_value;
7754 int group = 0;
7755
7756 /* Determine which groups of bits to calculate. */
7757 switch (r_type)
7758 {
7759 case R_ARM_LDC_PC_G0:
7760 case R_ARM_LDC_SB_G0:
7761 group = 0;
7762 break;
7763
7764 case R_ARM_LDC_PC_G1:
7765 case R_ARM_LDC_SB_G1:
7766 group = 1;
7767 break;
7768
7769 case R_ARM_LDC_PC_G2:
7770 case R_ARM_LDC_SB_G2:
7771 group = 2;
7772 break;
7773
7774 default:
7775 abort ();
7776 }
7777
7778 /* If REL, extract the addend from the insn. If RELA, it will
7779 have already been fetched for us. */
7780 if (globals->use_rel)
7781 {
7782 int negative = (insn & (1 << 23)) ? 1 : -1;
7783 signed_addend = negative * ((insn & 0xff) << 2);
7784 }
7785
7786 /* Compute the value (X) to go in the place. */
7787 if (r_type == R_ARM_LDC_PC_G0
7788 || r_type == R_ARM_LDC_PC_G1
7789 || r_type == R_ARM_LDC_PC_G2)
7790 /* PC relative. */
7791 signed_value = value - pc + signed_addend;
7792 else
7793 /* Section base relative. */
7794 signed_value = value - sb + signed_addend;
7795
7796 /* Calculate the value of the relevant G_{n-1} to obtain
7797 the residual at that stage. */
7798 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7799
7800 /* Check for overflow. (The absolute value to go in the place must be
7801 divisible by four and, after having been divided by four, must
7802 fit in eight bits.) */
7803 if ((residual & 0x3) != 0 || residual >= 0x400)
7804 {
7805 (*_bfd_error_handler)
7806 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7807 input_bfd, input_section,
7808 (long) rel->r_offset, abs (signed_value), howto->name);
7809 return bfd_reloc_overflow;
7810 }
7811
7812 /* Mask out the value and U bit. */
7813 insn &= 0xff7fff00;
7814
7815 /* Set the U bit if the value to go in the place is non-negative. */
7816 if (signed_value >= 0)
7817 insn |= 1 << 23;
7818
7819 /* Encode the offset. */
7820 insn |= residual >> 2;
7821
7822 bfd_put_32 (input_bfd, insn, hit_data);
7823 }
7824 return bfd_reloc_ok;
7825
7826 default:
7827 return bfd_reloc_notsupported;
7828 }
7829 }
7830
7831 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7832 static void
7833 arm_add_to_rel (bfd * abfd,
7834 bfd_byte * address,
7835 reloc_howto_type * howto,
7836 bfd_signed_vma increment)
7837 {
7838 bfd_signed_vma addend;
7839
7840 if (howto->type == R_ARM_THM_CALL
7841 || howto->type == R_ARM_THM_JUMP24)
7842 {
7843 int upper_insn, lower_insn;
7844 int upper, lower;
7845
7846 upper_insn = bfd_get_16 (abfd, address);
7847 lower_insn = bfd_get_16 (abfd, address + 2);
7848 upper = upper_insn & 0x7ff;
7849 lower = lower_insn & 0x7ff;
7850
7851 addend = (upper << 12) | (lower << 1);
7852 addend += increment;
7853 addend >>= 1;
7854
7855 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7856 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7857
7858 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7859 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7860 }
7861 else
7862 {
7863 bfd_vma contents;
7864
7865 contents = bfd_get_32 (abfd, address);
7866
7867 /* Get the (signed) value from the instruction. */
7868 addend = contents & howto->src_mask;
7869 if (addend & ((howto->src_mask + 1) >> 1))
7870 {
7871 bfd_signed_vma mask;
7872
7873 mask = -1;
7874 mask &= ~ howto->src_mask;
7875 addend |= mask;
7876 }
7877
7878 /* Add in the increment, (which is a byte value). */
7879 switch (howto->type)
7880 {
7881 default:
7882 addend += increment;
7883 break;
7884
7885 case R_ARM_PC24:
7886 case R_ARM_PLT32:
7887 case R_ARM_CALL:
7888 case R_ARM_JUMP24:
7889 addend <<= howto->size;
7890 addend += increment;
7891
7892 /* Should we check for overflow here ? */
7893
7894 /* Drop any undesired bits. */
7895 addend >>= howto->rightshift;
7896 break;
7897 }
7898
7899 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7900
7901 bfd_put_32 (abfd, contents, address);
7902 }
7903 }
7904
7905 #define IS_ARM_TLS_RELOC(R_TYPE) \
7906 ((R_TYPE) == R_ARM_TLS_GD32 \
7907 || (R_TYPE) == R_ARM_TLS_LDO32 \
7908 || (R_TYPE) == R_ARM_TLS_LDM32 \
7909 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7910 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7911 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7912 || (R_TYPE) == R_ARM_TLS_LE32 \
7913 || (R_TYPE) == R_ARM_TLS_IE32)
7914
7915 /* Relocate an ARM ELF section. */
7916
7917 static bfd_boolean
7918 elf32_arm_relocate_section (bfd * output_bfd,
7919 struct bfd_link_info * info,
7920 bfd * input_bfd,
7921 asection * input_section,
7922 bfd_byte * contents,
7923 Elf_Internal_Rela * relocs,
7924 Elf_Internal_Sym * local_syms,
7925 asection ** local_sections)
7926 {
7927 Elf_Internal_Shdr *symtab_hdr;
7928 struct elf_link_hash_entry **sym_hashes;
7929 Elf_Internal_Rela *rel;
7930 Elf_Internal_Rela *relend;
7931 const char *name;
7932 struct elf32_arm_link_hash_table * globals;
7933
7934 globals = elf32_arm_hash_table (info);
7935
7936 symtab_hdr = & elf_symtab_hdr (input_bfd);
7937 sym_hashes = elf_sym_hashes (input_bfd);
7938
7939 rel = relocs;
7940 relend = relocs + input_section->reloc_count;
7941 for (; rel < relend; rel++)
7942 {
7943 int r_type;
7944 reloc_howto_type * howto;
7945 unsigned long r_symndx;
7946 Elf_Internal_Sym * sym;
7947 asection * sec;
7948 struct elf_link_hash_entry * h;
7949 bfd_vma relocation;
7950 bfd_reloc_status_type r;
7951 arelent bfd_reloc;
7952 char sym_type;
7953 bfd_boolean unresolved_reloc = FALSE;
7954 char *error_message = NULL;
7955
7956 r_symndx = ELF32_R_SYM (rel->r_info);
7957 r_type = ELF32_R_TYPE (rel->r_info);
7958 r_type = arm_real_reloc_type (globals, r_type);
7959
7960 if ( r_type == R_ARM_GNU_VTENTRY
7961 || r_type == R_ARM_GNU_VTINHERIT)
7962 continue;
7963
7964 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7965 howto = bfd_reloc.howto;
7966
7967 h = NULL;
7968 sym = NULL;
7969 sec = NULL;
7970
7971 if (r_symndx < symtab_hdr->sh_info)
7972 {
7973 sym = local_syms + r_symndx;
7974 sym_type = ELF32_ST_TYPE (sym->st_info);
7975 sec = local_sections[r_symndx];
7976 if (globals->use_rel)
7977 {
7978 relocation = (sec->output_section->vma
7979 + sec->output_offset
7980 + sym->st_value);
7981 if (!info->relocatable
7982 && (sec->flags & SEC_MERGE)
7983 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7984 {
7985 asection *msec;
7986 bfd_vma addend, value;
7987
7988 switch (r_type)
7989 {
7990 case R_ARM_MOVW_ABS_NC:
7991 case R_ARM_MOVT_ABS:
7992 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7993 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7994 addend = (addend ^ 0x8000) - 0x8000;
7995 break;
7996
7997 case R_ARM_THM_MOVW_ABS_NC:
7998 case R_ARM_THM_MOVT_ABS:
7999 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8000 << 16;
8001 value |= bfd_get_16 (input_bfd,
8002 contents + rel->r_offset + 2);
8003 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8004 | ((value & 0x04000000) >> 15);
8005 addend = (addend ^ 0x8000) - 0x8000;
8006 break;
8007
8008 default:
8009 if (howto->rightshift
8010 || (howto->src_mask & (howto->src_mask + 1)))
8011 {
8012 (*_bfd_error_handler)
8013 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8014 input_bfd, input_section,
8015 (long) rel->r_offset, howto->name);
8016 return FALSE;
8017 }
8018
8019 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8020
8021 /* Get the (signed) value from the instruction. */
8022 addend = value & howto->src_mask;
8023 if (addend & ((howto->src_mask + 1) >> 1))
8024 {
8025 bfd_signed_vma mask;
8026
8027 mask = -1;
8028 mask &= ~ howto->src_mask;
8029 addend |= mask;
8030 }
8031 break;
8032 }
8033
8034 msec = sec;
8035 addend =
8036 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8037 - relocation;
8038 addend += msec->output_section->vma + msec->output_offset;
8039
8040 /* Cases here must match those in the preceeding
8041 switch statement. */
8042 switch (r_type)
8043 {
8044 case R_ARM_MOVW_ABS_NC:
8045 case R_ARM_MOVT_ABS:
8046 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8047 | (addend & 0xfff);
8048 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8049 break;
8050
8051 case R_ARM_THM_MOVW_ABS_NC:
8052 case R_ARM_THM_MOVT_ABS:
8053 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8054 | (addend & 0xff) | ((addend & 0x0800) << 15);
8055 bfd_put_16 (input_bfd, value >> 16,
8056 contents + rel->r_offset);
8057 bfd_put_16 (input_bfd, value,
8058 contents + rel->r_offset + 2);
8059 break;
8060
8061 default:
8062 value = (value & ~ howto->dst_mask)
8063 | (addend & howto->dst_mask);
8064 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8065 break;
8066 }
8067 }
8068 }
8069 else
8070 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8071 }
8072 else
8073 {
8074 bfd_boolean warned;
8075
8076 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8077 r_symndx, symtab_hdr, sym_hashes,
8078 h, sec, relocation,
8079 unresolved_reloc, warned);
8080
8081 sym_type = h->type;
8082 }
8083
8084 if (sec != NULL && elf_discarded_section (sec))
8085 {
8086 /* For relocs against symbols from removed linkonce sections,
8087 or sections discarded by a linker script, we just want the
8088 section contents zeroed. Avoid any special processing. */
8089 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8090 rel->r_info = 0;
8091 rel->r_addend = 0;
8092 continue;
8093 }
8094
8095 if (info->relocatable)
8096 {
8097 /* This is a relocatable link. We don't have to change
8098 anything, unless the reloc is against a section symbol,
8099 in which case we have to adjust according to where the
8100 section symbol winds up in the output section. */
8101 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8102 {
8103 if (globals->use_rel)
8104 arm_add_to_rel (input_bfd, contents + rel->r_offset,
8105 howto, (bfd_signed_vma) sec->output_offset);
8106 else
8107 rel->r_addend += sec->output_offset;
8108 }
8109 continue;
8110 }
8111
8112 if (h != NULL)
8113 name = h->root.root.string;
8114 else
8115 {
8116 name = (bfd_elf_string_from_elf_section
8117 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8118 if (name == NULL || *name == '\0')
8119 name = bfd_section_name (input_bfd, sec);
8120 }
8121
8122 if (r_symndx != 0
8123 && r_type != R_ARM_NONE
8124 && (h == NULL
8125 || h->root.type == bfd_link_hash_defined
8126 || h->root.type == bfd_link_hash_defweak)
8127 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8128 {
8129 (*_bfd_error_handler)
8130 ((sym_type == STT_TLS
8131 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8132 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8133 input_bfd,
8134 input_section,
8135 (long) rel->r_offset,
8136 howto->name,
8137 name);
8138 }
8139
8140 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8141 input_section, contents, rel,
8142 relocation, info, sec, name,
8143 (h ? ELF_ST_TYPE (h->type) :
8144 ELF_ST_TYPE (sym->st_info)), h,
8145 &unresolved_reloc, &error_message);
8146
8147 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8148 because such sections are not SEC_ALLOC and thus ld.so will
8149 not process them. */
8150 if (unresolved_reloc
8151 && !((input_section->flags & SEC_DEBUGGING) != 0
8152 && h->def_dynamic))
8153 {
8154 (*_bfd_error_handler)
8155 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8156 input_bfd,
8157 input_section,
8158 (long) rel->r_offset,
8159 howto->name,
8160 h->root.root.string);
8161 return FALSE;
8162 }
8163
8164 if (r != bfd_reloc_ok)
8165 {
8166 switch (r)
8167 {
8168 case bfd_reloc_overflow:
8169 /* If the overflowing reloc was to an undefined symbol,
8170 we have already printed one error message and there
8171 is no point complaining again. */
8172 if ((! h ||
8173 h->root.type != bfd_link_hash_undefined)
8174 && (!((*info->callbacks->reloc_overflow)
8175 (info, (h ? &h->root : NULL), name, howto->name,
8176 (bfd_vma) 0, input_bfd, input_section,
8177 rel->r_offset))))
8178 return FALSE;
8179 break;
8180
8181 case bfd_reloc_undefined:
8182 if (!((*info->callbacks->undefined_symbol)
8183 (info, name, input_bfd, input_section,
8184 rel->r_offset, TRUE)))
8185 return FALSE;
8186 break;
8187
8188 case bfd_reloc_outofrange:
8189 error_message = _("out of range");
8190 goto common_error;
8191
8192 case bfd_reloc_notsupported:
8193 error_message = _("unsupported relocation");
8194 goto common_error;
8195
8196 case bfd_reloc_dangerous:
8197 /* error_message should already be set. */
8198 goto common_error;
8199
8200 default:
8201 error_message = _("unknown error");
8202 /* Fall through. */
8203
8204 common_error:
8205 BFD_ASSERT (error_message != NULL);
8206 if (!((*info->callbacks->reloc_dangerous)
8207 (info, error_message, input_bfd, input_section,
8208 rel->r_offset)))
8209 return FALSE;
8210 break;
8211 }
8212 }
8213 }
8214
8215 return TRUE;
8216 }
8217
8218 /* Set the right machine number. */
8219
8220 static bfd_boolean
8221 elf32_arm_object_p (bfd *abfd)
8222 {
8223 unsigned int mach;
8224
8225 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8226
8227 if (mach != bfd_mach_arm_unknown)
8228 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8229
8230 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8231 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8232
8233 else
8234 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8235
8236 return TRUE;
8237 }
8238
8239 /* Function to keep ARM specific flags in the ELF header. */
8240
8241 static bfd_boolean
8242 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8243 {
8244 if (elf_flags_init (abfd)
8245 && elf_elfheader (abfd)->e_flags != flags)
8246 {
8247 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8248 {
8249 if (flags & EF_ARM_INTERWORK)
8250 (*_bfd_error_handler)
8251 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8252 abfd);
8253 else
8254 _bfd_error_handler
8255 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8256 abfd);
8257 }
8258 }
8259 else
8260 {
8261 elf_elfheader (abfd)->e_flags = flags;
8262 elf_flags_init (abfd) = TRUE;
8263 }
8264
8265 return TRUE;
8266 }
8267
8268 /* Copy backend specific data from one object module to another. */
8269
8270 static bfd_boolean
8271 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8272 {
8273 flagword in_flags;
8274 flagword out_flags;
8275
8276 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8277 return TRUE;
8278
8279 in_flags = elf_elfheader (ibfd)->e_flags;
8280 out_flags = elf_elfheader (obfd)->e_flags;
8281
8282 if (elf_flags_init (obfd)
8283 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8284 && in_flags != out_flags)
8285 {
8286 /* Cannot mix APCS26 and APCS32 code. */
8287 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8288 return FALSE;
8289
8290 /* Cannot mix float APCS and non-float APCS code. */
8291 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8292 return FALSE;
8293
8294 /* If the src and dest have different interworking flags
8295 then turn off the interworking bit. */
8296 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8297 {
8298 if (out_flags & EF_ARM_INTERWORK)
8299 _bfd_error_handler
8300 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8301 obfd, ibfd);
8302
8303 in_flags &= ~EF_ARM_INTERWORK;
8304 }
8305
8306 /* Likewise for PIC, though don't warn for this case. */
8307 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8308 in_flags &= ~EF_ARM_PIC;
8309 }
8310
8311 elf_elfheader (obfd)->e_flags = in_flags;
8312 elf_flags_init (obfd) = TRUE;
8313
8314 /* Also copy the EI_OSABI field. */
8315 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8316 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8317
8318 /* Copy object attributes. */
8319 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8320
8321 return TRUE;
8322 }
8323
8324 /* Values for Tag_ABI_PCS_R9_use. */
8325 enum
8326 {
8327 AEABI_R9_V6,
8328 AEABI_R9_SB,
8329 AEABI_R9_TLS,
8330 AEABI_R9_unused
8331 };
8332
8333 /* Values for Tag_ABI_PCS_RW_data. */
8334 enum
8335 {
8336 AEABI_PCS_RW_data_absolute,
8337 AEABI_PCS_RW_data_PCrel,
8338 AEABI_PCS_RW_data_SBrel,
8339 AEABI_PCS_RW_data_unused
8340 };
8341
8342 /* Values for Tag_ABI_enum_size. */
8343 enum
8344 {
8345 AEABI_enum_unused,
8346 AEABI_enum_short,
8347 AEABI_enum_wide,
8348 AEABI_enum_forced_wide
8349 };
8350
8351 /* Determine whether an object attribute tag takes an integer, a
8352 string or both. */
8353
8354 static int
8355 elf32_arm_obj_attrs_arg_type (int tag)
8356 {
8357 if (tag == Tag_compatibility)
8358 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
8359 else if (tag == Tag_nodefaults)
8360 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
8361 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
8362 return ATTR_TYPE_FLAG_STR_VAL;
8363 else if (tag < 32)
8364 return ATTR_TYPE_FLAG_INT_VAL;
8365 else
8366 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
8367 }
8368
8369 /* The ABI defines that Tag_conformance should be emitted first, and that
8370 Tag_nodefaults should be second (if either is defined). This sets those
8371 two positions, and bumps up the position of all the remaining tags to
8372 compensate. */
8373 static int
8374 elf32_arm_obj_attrs_order (int num)
8375 {
8376 if (num == 4)
8377 return Tag_conformance;
8378 if (num == 5)
8379 return Tag_nodefaults;
8380 if ((num - 2) < Tag_nodefaults)
8381 return num - 2;
8382 if ((num - 1) < Tag_conformance)
8383 return num - 1;
8384 return num;
8385 }
8386
8387 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
8388 Returns -1 if no architecture could be read. */
8389
8390 static int
8391 get_secondary_compatible_arch (bfd *abfd)
8392 {
8393 obj_attribute *attr =
8394 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8395
8396 /* Note: the tag and its argument below are uleb128 values, though
8397 currently-defined values fit in one byte for each. */
8398 if (attr->s
8399 && attr->s[0] == Tag_CPU_arch
8400 && (attr->s[1] & 128) != 128
8401 && attr->s[2] == 0)
8402 return attr->s[1];
8403
8404 /* This tag is "safely ignorable", so don't complain if it looks funny. */
8405 return -1;
8406 }
8407
8408 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
8409 The tag is removed if ARCH is -1. */
8410
8411 static void
8412 set_secondary_compatible_arch (bfd *abfd, int arch)
8413 {
8414 obj_attribute *attr =
8415 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8416
8417 if (arch == -1)
8418 {
8419 attr->s = NULL;
8420 return;
8421 }
8422
8423 /* Note: the tag and its argument below are uleb128 values, though
8424 currently-defined values fit in one byte for each. */
8425 if (!attr->s)
8426 attr->s = bfd_alloc (abfd, 3);
8427 attr->s[0] = Tag_CPU_arch;
8428 attr->s[1] = arch;
8429 attr->s[2] = '\0';
8430 }
8431
8432 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
8433 into account. */
8434
8435 static int
8436 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
8437 int newtag, int secondary_compat)
8438 {
8439 #define T(X) TAG_CPU_ARCH_##X
8440 int tagl, tagh, result;
8441 const int v6t2[] =
8442 {
8443 T(V6T2), /* PRE_V4. */
8444 T(V6T2), /* V4. */
8445 T(V6T2), /* V4T. */
8446 T(V6T2), /* V5T. */
8447 T(V6T2), /* V5TE. */
8448 T(V6T2), /* V5TEJ. */
8449 T(V6T2), /* V6. */
8450 T(V7), /* V6KZ. */
8451 T(V6T2) /* V6T2. */
8452 };
8453 const int v6k[] =
8454 {
8455 T(V6K), /* PRE_V4. */
8456 T(V6K), /* V4. */
8457 T(V6K), /* V4T. */
8458 T(V6K), /* V5T. */
8459 T(V6K), /* V5TE. */
8460 T(V6K), /* V5TEJ. */
8461 T(V6K), /* V6. */
8462 T(V6KZ), /* V6KZ. */
8463 T(V7), /* V6T2. */
8464 T(V6K) /* V6K. */
8465 };
8466 const int v7[] =
8467 {
8468 T(V7), /* PRE_V4. */
8469 T(V7), /* V4. */
8470 T(V7), /* V4T. */
8471 T(V7), /* V5T. */
8472 T(V7), /* V5TE. */
8473 T(V7), /* V5TEJ. */
8474 T(V7), /* V6. */
8475 T(V7), /* V6KZ. */
8476 T(V7), /* V6T2. */
8477 T(V7), /* V6K. */
8478 T(V7) /* V7. */
8479 };
8480 const int v6_m[] =
8481 {
8482 -1, /* PRE_V4. */
8483 -1, /* V4. */
8484 T(V6K), /* V4T. */
8485 T(V6K), /* V5T. */
8486 T(V6K), /* V5TE. */
8487 T(V6K), /* V5TEJ. */
8488 T(V6K), /* V6. */
8489 T(V6KZ), /* V6KZ. */
8490 T(V7), /* V6T2. */
8491 T(V6K), /* V6K. */
8492 T(V7), /* V7. */
8493 T(V6_M) /* V6_M. */
8494 };
8495 const int v6s_m[] =
8496 {
8497 -1, /* PRE_V4. */
8498 -1, /* V4. */
8499 T(V6K), /* V4T. */
8500 T(V6K), /* V5T. */
8501 T(V6K), /* V5TE. */
8502 T(V6K), /* V5TEJ. */
8503 T(V6K), /* V6. */
8504 T(V6KZ), /* V6KZ. */
8505 T(V7), /* V6T2. */
8506 T(V6K), /* V6K. */
8507 T(V7), /* V7. */
8508 T(V6S_M), /* V6_M. */
8509 T(V6S_M) /* V6S_M. */
8510 };
8511 const int v4t_plus_v6_m[] =
8512 {
8513 -1, /* PRE_V4. */
8514 -1, /* V4. */
8515 T(V4T), /* V4T. */
8516 T(V5T), /* V5T. */
8517 T(V5TE), /* V5TE. */
8518 T(V5TEJ), /* V5TEJ. */
8519 T(V6), /* V6. */
8520 T(V6KZ), /* V6KZ. */
8521 T(V6T2), /* V6T2. */
8522 T(V6K), /* V6K. */
8523 T(V7), /* V7. */
8524 T(V6_M), /* V6_M. */
8525 T(V6S_M), /* V6S_M. */
8526 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
8527 };
8528 const int *comb[] =
8529 {
8530 v6t2,
8531 v6k,
8532 v7,
8533 v6_m,
8534 v6s_m,
8535 /* Pseudo-architecture. */
8536 v4t_plus_v6_m
8537 };
8538
8539 /* Check we've not got a higher architecture than we know about. */
8540
8541 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
8542 {
8543 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
8544 return -1;
8545 }
8546
8547 /* Override old tag if we have a Tag_also_compatible_with on the output. */
8548
8549 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
8550 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
8551 oldtag = T(V4T_PLUS_V6_M);
8552
8553 /* And override the new tag if we have a Tag_also_compatible_with on the
8554 input. */
8555
8556 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
8557 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
8558 newtag = T(V4T_PLUS_V6_M);
8559
8560 tagl = (oldtag < newtag) ? oldtag : newtag;
8561 result = tagh = (oldtag > newtag) ? oldtag : newtag;
8562
8563 /* Architectures before V6KZ add features monotonically. */
8564 if (tagh <= TAG_CPU_ARCH_V6KZ)
8565 return result;
8566
8567 result = comb[tagh - T(V6T2)][tagl];
8568
8569 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
8570 as the canonical version. */
8571 if (result == T(V4T_PLUS_V6_M))
8572 {
8573 result = T(V4T);
8574 *secondary_compat_out = T(V6_M);
8575 }
8576 else
8577 *secondary_compat_out = -1;
8578
8579 if (result == -1)
8580 {
8581 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
8582 ibfd, oldtag, newtag);
8583 return -1;
8584 }
8585
8586 return result;
8587 #undef T
8588 }
8589
8590 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8591 are conflicting attributes. */
8592
8593 static bfd_boolean
8594 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8595 {
8596 obj_attribute *in_attr;
8597 obj_attribute *out_attr;
8598 obj_attribute_list *in_list;
8599 obj_attribute_list *out_list;
8600 obj_attribute_list **out_listp;
8601 /* Some tags have 0 = don't care, 1 = strong requirement,
8602 2 = weak requirement. */
8603 static const int order_021[3] = {0, 2, 1};
8604 /* For use with Tag_VFP_arch. */
8605 static const int order_01243[5] = {0, 1, 2, 4, 3};
8606 int i;
8607 bfd_boolean result = TRUE;
8608
8609 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8610 {
8611 /* This is the first object. Copy the attributes. */
8612 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8613
8614 /* Use the Tag_null value to indicate the attributes have been
8615 initialized. */
8616 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8617
8618 return TRUE;
8619 }
8620
8621 in_attr = elf_known_obj_attributes_proc (ibfd);
8622 out_attr = elf_known_obj_attributes_proc (obfd);
8623 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8624 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8625 {
8626 /* Ignore mismatches if the object doesn't use floating point. */
8627 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8628 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8629 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8630 {
8631 _bfd_error_handler
8632 (_("error: %B uses VFP register arguments, %B does not"),
8633 ibfd, obfd);
8634 result = FALSE;
8635 }
8636 }
8637
8638 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8639 {
8640 /* Merge this attribute with existing attributes. */
8641 switch (i)
8642 {
8643 case Tag_CPU_raw_name:
8644 case Tag_CPU_name:
8645 /* These are merged after Tag_CPU_arch. */
8646 break;
8647
8648 case Tag_ABI_optimization_goals:
8649 case Tag_ABI_FP_optimization_goals:
8650 /* Use the first value seen. */
8651 break;
8652
8653 case Tag_CPU_arch:
8654 {
8655 int secondary_compat = -1, secondary_compat_out = -1;
8656 unsigned int saved_out_attr = out_attr[i].i;
8657 static const char *name_table[] = {
8658 /* These aren't real CPU names, but we can't guess
8659 that from the architecture version alone. */
8660 "Pre v4",
8661 "ARM v4",
8662 "ARM v4T",
8663 "ARM v5T",
8664 "ARM v5TE",
8665 "ARM v5TEJ",
8666 "ARM v6",
8667 "ARM v6KZ",
8668 "ARM v6T2",
8669 "ARM v6K",
8670 "ARM v7",
8671 "ARM v6-M",
8672 "ARM v6S-M"
8673 };
8674
8675 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
8676 secondary_compat = get_secondary_compatible_arch (ibfd);
8677 secondary_compat_out = get_secondary_compatible_arch (obfd);
8678 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
8679 &secondary_compat_out,
8680 in_attr[i].i,
8681 secondary_compat);
8682 set_secondary_compatible_arch (obfd, secondary_compat_out);
8683
8684 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
8685 if (out_attr[i].i == saved_out_attr)
8686 ; /* Leave the names alone. */
8687 else if (out_attr[i].i == in_attr[i].i)
8688 {
8689 /* The output architecture has been changed to match the
8690 input architecture. Use the input names. */
8691 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
8692 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
8693 : NULL;
8694 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
8695 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
8696 : NULL;
8697 }
8698 else
8699 {
8700 out_attr[Tag_CPU_name].s = NULL;
8701 out_attr[Tag_CPU_raw_name].s = NULL;
8702 }
8703
8704 /* If we still don't have a value for Tag_CPU_name,
8705 make one up now. Tag_CPU_raw_name remains blank. */
8706 if (out_attr[Tag_CPU_name].s == NULL
8707 && out_attr[i].i < ARRAY_SIZE (name_table))
8708 out_attr[Tag_CPU_name].s =
8709 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
8710 }
8711 break;
8712
8713 case Tag_ARM_ISA_use:
8714 case Tag_THUMB_ISA_use:
8715 case Tag_WMMX_arch:
8716 case Tag_Advanced_SIMD_arch:
8717 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
8718 case Tag_ABI_FP_rounding:
8719 case Tag_ABI_FP_exceptions:
8720 case Tag_ABI_FP_user_exceptions:
8721 case Tag_ABI_FP_number_model:
8722 case Tag_VFP_HP_extension:
8723 case Tag_CPU_unaligned_access:
8724 case Tag_T2EE_use:
8725 case Tag_Virtualization_use:
8726 case Tag_MPextension_use:
8727 /* Use the largest value specified. */
8728 if (in_attr[i].i > out_attr[i].i)
8729 out_attr[i].i = in_attr[i].i;
8730 break;
8731
8732 case Tag_ABI_align8_preserved:
8733 case Tag_ABI_PCS_RO_data:
8734 /* Use the smallest value specified. */
8735 if (in_attr[i].i < out_attr[i].i)
8736 out_attr[i].i = in_attr[i].i;
8737 break;
8738
8739 case Tag_ABI_align8_needed:
8740 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
8741 && (in_attr[Tag_ABI_align8_preserved].i == 0
8742 || out_attr[Tag_ABI_align8_preserved].i == 0))
8743 {
8744 /* This error message should be enabled once all non-conformant
8745 binaries in the toolchain have had the attributes set
8746 properly.
8747 _bfd_error_handler
8748 (_("error: %B: 8-byte data alignment conflicts with %B"),
8749 obfd, ibfd);
8750 result = FALSE; */
8751 }
8752 /* Fall through. */
8753 case Tag_ABI_FP_denormal:
8754 case Tag_ABI_PCS_GOT_use:
8755 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
8756 value if greater than 2 (for future-proofing). */
8757 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
8758 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
8759 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
8760 out_attr[i].i = in_attr[i].i;
8761 break;
8762
8763
8764 case Tag_CPU_arch_profile:
8765 if (out_attr[i].i != in_attr[i].i)
8766 {
8767 /* 0 will merge with anything.
8768 'A' and 'S' merge to 'A'.
8769 'R' and 'S' merge to 'R'.
8770 'M' and 'A|R|S' is an error. */
8771 if (out_attr[i].i == 0
8772 || (out_attr[i].i == 'S'
8773 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
8774 out_attr[i].i = in_attr[i].i;
8775 else if (in_attr[i].i == 0
8776 || (in_attr[i].i == 'S'
8777 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
8778 ; /* Do nothing. */
8779 else
8780 {
8781 _bfd_error_handler
8782 (_("error: %B: Conflicting architecture profiles %c/%c"),
8783 ibfd,
8784 in_attr[i].i ? in_attr[i].i : '0',
8785 out_attr[i].i ? out_attr[i].i : '0');
8786 result = FALSE;
8787 }
8788 }
8789 break;
8790 case Tag_VFP_arch:
8791 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
8792 largest value if greater than 4 (for future-proofing). */
8793 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
8794 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
8795 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
8796 out_attr[i].i = in_attr[i].i;
8797 break;
8798 case Tag_PCS_config:
8799 if (out_attr[i].i == 0)
8800 out_attr[i].i = in_attr[i].i;
8801 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8802 {
8803 /* It's sometimes ok to mix different configs, so this is only
8804 a warning. */
8805 _bfd_error_handler
8806 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8807 }
8808 break;
8809 case Tag_ABI_PCS_R9_use:
8810 if (in_attr[i].i != out_attr[i].i
8811 && out_attr[i].i != AEABI_R9_unused
8812 && in_attr[i].i != AEABI_R9_unused)
8813 {
8814 _bfd_error_handler
8815 (_("error: %B: Conflicting use of R9"), ibfd);
8816 result = FALSE;
8817 }
8818 if (out_attr[i].i == AEABI_R9_unused)
8819 out_attr[i].i = in_attr[i].i;
8820 break;
8821 case Tag_ABI_PCS_RW_data:
8822 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8823 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8824 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8825 {
8826 _bfd_error_handler
8827 (_("error: %B: SB relative addressing conflicts with use of R9"),
8828 ibfd);
8829 result = FALSE;
8830 }
8831 /* Use the smallest value specified. */
8832 if (in_attr[i].i < out_attr[i].i)
8833 out_attr[i].i = in_attr[i].i;
8834 break;
8835 case Tag_ABI_PCS_wchar_t:
8836 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8837 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
8838 {
8839 _bfd_error_handler
8840 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8841 ibfd, in_attr[i].i, out_attr[i].i);
8842 }
8843 else if (in_attr[i].i && !out_attr[i].i)
8844 out_attr[i].i = in_attr[i].i;
8845 break;
8846 case Tag_ABI_enum_size:
8847 if (in_attr[i].i != AEABI_enum_unused)
8848 {
8849 if (out_attr[i].i == AEABI_enum_unused
8850 || out_attr[i].i == AEABI_enum_forced_wide)
8851 {
8852 /* The existing object is compatible with anything.
8853 Use whatever requirements the new object has. */
8854 out_attr[i].i = in_attr[i].i;
8855 }
8856 else if (in_attr[i].i != AEABI_enum_forced_wide
8857 && out_attr[i].i != in_attr[i].i
8858 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8859 {
8860 static const char *aeabi_enum_names[] =
8861 { "", "variable-size", "32-bit", "" };
8862 const char *in_name =
8863 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8864 ? aeabi_enum_names[in_attr[i].i]
8865 : "<unknown>";
8866 const char *out_name =
8867 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8868 ? aeabi_enum_names[out_attr[i].i]
8869 : "<unknown>";
8870 _bfd_error_handler
8871 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8872 ibfd, in_name, out_name);
8873 }
8874 }
8875 break;
8876 case Tag_ABI_VFP_args:
8877 /* Aready done. */
8878 break;
8879 case Tag_ABI_WMMX_args:
8880 if (in_attr[i].i != out_attr[i].i)
8881 {
8882 _bfd_error_handler
8883 (_("error: %B uses iWMMXt register arguments, %B does not"),
8884 ibfd, obfd);
8885 result = FALSE;
8886 }
8887 break;
8888 case Tag_compatibility:
8889 /* Merged in target-independent code. */
8890 break;
8891 case Tag_ABI_HardFP_use:
8892 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
8893 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
8894 || (in_attr[i].i == 2 && out_attr[i].i == 1))
8895 out_attr[i].i = 3;
8896 else if (in_attr[i].i > out_attr[i].i)
8897 out_attr[i].i = in_attr[i].i;
8898 break;
8899 case Tag_ABI_FP_16bit_format:
8900 if (in_attr[i].i != 0 && out_attr[i].i != 0)
8901 {
8902 if (in_attr[i].i != out_attr[i].i)
8903 {
8904 _bfd_error_handler
8905 (_("error: fp16 format mismatch between %B and %B"),
8906 ibfd, obfd);
8907 result = FALSE;
8908 }
8909 }
8910 if (in_attr[i].i != 0)
8911 out_attr[i].i = in_attr[i].i;
8912 break;
8913
8914 case Tag_nodefaults:
8915 /* This tag is set if it exists, but the value is unused (and is
8916 typically zero). We don't actually need to do anything here -
8917 the merge happens automatically when the type flags are merged
8918 below. */
8919 break;
8920 case Tag_also_compatible_with:
8921 /* Already done in Tag_CPU_arch. */
8922 break;
8923 case Tag_conformance:
8924 /* Keep the attribute if it matches. Throw it away otherwise.
8925 No attribute means no claim to conform. */
8926 if (!in_attr[i].s || !out_attr[i].s
8927 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
8928 out_attr[i].s = NULL;
8929 break;
8930
8931 default:
8932 {
8933 bfd *err_bfd = NULL;
8934
8935 /* The "known_obj_attributes" table does contain some undefined
8936 attributes. Ensure that there are unused. */
8937 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
8938 err_bfd = obfd;
8939 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
8940 err_bfd = ibfd;
8941
8942 if (err_bfd != NULL)
8943 {
8944 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8945 if ((i & 127) < 64)
8946 {
8947 _bfd_error_handler
8948 (_("%B: Unknown mandatory EABI object attribute %d"),
8949 err_bfd, i);
8950 bfd_set_error (bfd_error_bad_value);
8951 result = FALSE;
8952 }
8953 else
8954 {
8955 _bfd_error_handler
8956 (_("Warning: %B: Unknown EABI object attribute %d"),
8957 err_bfd, i);
8958 }
8959 }
8960
8961 /* Only pass on attributes that match in both inputs. */
8962 if (in_attr[i].i != out_attr[i].i
8963 || in_attr[i].s != out_attr[i].s
8964 || (in_attr[i].s != NULL && out_attr[i].s != NULL
8965 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
8966 {
8967 out_attr[i].i = 0;
8968 out_attr[i].s = NULL;
8969 }
8970 }
8971 }
8972
8973 /* If out_attr was copied from in_attr then it won't have a type yet. */
8974 if (in_attr[i].type && !out_attr[i].type)
8975 out_attr[i].type = in_attr[i].type;
8976 }
8977
8978 /* Merge Tag_compatibility attributes and any common GNU ones. */
8979 _bfd_elf_merge_object_attributes (ibfd, obfd);
8980
8981 /* Check for any attributes not known on ARM. */
8982 in_list = elf_other_obj_attributes_proc (ibfd);
8983 out_listp = &elf_other_obj_attributes_proc (obfd);
8984 out_list = *out_listp;
8985
8986 for (; in_list || out_list; )
8987 {
8988 bfd *err_bfd = NULL;
8989 int err_tag = 0;
8990
8991 /* The tags for each list are in numerical order. */
8992 /* If the tags are equal, then merge. */
8993 if (out_list && (!in_list || in_list->tag > out_list->tag))
8994 {
8995 /* This attribute only exists in obfd. We can't merge, and we don't
8996 know what the tag means, so delete it. */
8997 err_bfd = obfd;
8998 err_tag = out_list->tag;
8999 *out_listp = out_list->next;
9000 out_list = *out_listp;
9001 }
9002 else if (in_list && (!out_list || in_list->tag < out_list->tag))
9003 {
9004 /* This attribute only exists in ibfd. We can't merge, and we don't
9005 know what the tag means, so ignore it. */
9006 err_bfd = ibfd;
9007 err_tag = in_list->tag;
9008 in_list = in_list->next;
9009 }
9010 else /* The tags are equal. */
9011 {
9012 /* As present, all attributes in the list are unknown, and
9013 therefore can't be merged meaningfully. */
9014 err_bfd = obfd;
9015 err_tag = out_list->tag;
9016
9017 /* Only pass on attributes that match in both inputs. */
9018 if (in_list->attr.i != out_list->attr.i
9019 || in_list->attr.s != out_list->attr.s
9020 || (in_list->attr.s && out_list->attr.s
9021 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
9022 {
9023 /* No match. Delete the attribute. */
9024 *out_listp = out_list->next;
9025 out_list = *out_listp;
9026 }
9027 else
9028 {
9029 /* Matched. Keep the attribute and move to the next. */
9030 out_list = out_list->next;
9031 in_list = in_list->next;
9032 }
9033 }
9034
9035 if (err_bfd)
9036 {
9037 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
9038 if ((err_tag & 127) < 64)
9039 {
9040 _bfd_error_handler
9041 (_("%B: Unknown mandatory EABI object attribute %d"),
9042 err_bfd, err_tag);
9043 bfd_set_error (bfd_error_bad_value);
9044 result = FALSE;
9045 }
9046 else
9047 {
9048 _bfd_error_handler
9049 (_("Warning: %B: Unknown EABI object attribute %d"),
9050 err_bfd, err_tag);
9051 }
9052 }
9053 }
9054 return result;
9055 }
9056
9057
9058 /* Return TRUE if the two EABI versions are incompatible. */
9059
9060 static bfd_boolean
9061 elf32_arm_versions_compatible (unsigned iver, unsigned over)
9062 {
9063 /* v4 and v5 are the same spec before and after it was released,
9064 so allow mixing them. */
9065 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
9066 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
9067 return TRUE;
9068
9069 return (iver == over);
9070 }
9071
9072 /* Merge backend specific data from an object file to the output
9073 object file when linking. */
9074
9075 static bfd_boolean
9076 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
9077 {
9078 flagword out_flags;
9079 flagword in_flags;
9080 bfd_boolean flags_compatible = TRUE;
9081 asection *sec;
9082
9083 /* Check if we have the same endianess. */
9084 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9085 return FALSE;
9086
9087 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
9088 return TRUE;
9089
9090 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
9091 return FALSE;
9092
9093 /* The input BFD must have had its flags initialised. */
9094 /* The following seems bogus to me -- The flags are initialized in
9095 the assembler but I don't think an elf_flags_init field is
9096 written into the object. */
9097 /* BFD_ASSERT (elf_flags_init (ibfd)); */
9098
9099 in_flags = elf_elfheader (ibfd)->e_flags;
9100 out_flags = elf_elfheader (obfd)->e_flags;
9101
9102 /* In theory there is no reason why we couldn't handle this. However
9103 in practice it isn't even close to working and there is no real
9104 reason to want it. */
9105 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
9106 && !(ibfd->flags & DYNAMIC)
9107 && (in_flags & EF_ARM_BE8))
9108 {
9109 _bfd_error_handler (_("error: %B is already in final BE8 format"),
9110 ibfd);
9111 return FALSE;
9112 }
9113
9114 if (!elf_flags_init (obfd))
9115 {
9116 /* If the input is the default architecture and had the default
9117 flags then do not bother setting the flags for the output
9118 architecture, instead allow future merges to do this. If no
9119 future merges ever set these flags then they will retain their
9120 uninitialised values, which surprise surprise, correspond
9121 to the default values. */
9122 if (bfd_get_arch_info (ibfd)->the_default
9123 && elf_elfheader (ibfd)->e_flags == 0)
9124 return TRUE;
9125
9126 elf_flags_init (obfd) = TRUE;
9127 elf_elfheader (obfd)->e_flags = in_flags;
9128
9129 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9130 && bfd_get_arch_info (obfd)->the_default)
9131 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
9132
9133 return TRUE;
9134 }
9135
9136 /* Determine what should happen if the input ARM architecture
9137 does not match the output ARM architecture. */
9138 if (! bfd_arm_merge_machines (ibfd, obfd))
9139 return FALSE;
9140
9141 /* Identical flags must be compatible. */
9142 if (in_flags == out_flags)
9143 return TRUE;
9144
9145 /* Check to see if the input BFD actually contains any sections. If
9146 not, its flags may not have been initialised either, but it
9147 cannot actually cause any incompatiblity. Do not short-circuit
9148 dynamic objects; their section list may be emptied by
9149 elf_link_add_object_symbols.
9150
9151 Also check to see if there are no code sections in the input.
9152 In this case there is no need to check for code specific flags.
9153 XXX - do we need to worry about floating-point format compatability
9154 in data sections ? */
9155 if (!(ibfd->flags & DYNAMIC))
9156 {
9157 bfd_boolean null_input_bfd = TRUE;
9158 bfd_boolean only_data_sections = TRUE;
9159
9160 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9161 {
9162 /* Ignore synthetic glue sections. */
9163 if (strcmp (sec->name, ".glue_7")
9164 && strcmp (sec->name, ".glue_7t"))
9165 {
9166 if ((bfd_get_section_flags (ibfd, sec)
9167 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9168 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9169 only_data_sections = FALSE;
9170
9171 null_input_bfd = FALSE;
9172 break;
9173 }
9174 }
9175
9176 if (null_input_bfd || only_data_sections)
9177 return TRUE;
9178 }
9179
9180 /* Complain about various flag mismatches. */
9181 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
9182 EF_ARM_EABI_VERSION (out_flags)))
9183 {
9184 _bfd_error_handler
9185 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
9186 ibfd, obfd,
9187 (in_flags & EF_ARM_EABIMASK) >> 24,
9188 (out_flags & EF_ARM_EABIMASK) >> 24);
9189 return FALSE;
9190 }
9191
9192 /* Not sure what needs to be checked for EABI versions >= 1. */
9193 /* VxWorks libraries do not use these flags. */
9194 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
9195 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
9196 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
9197 {
9198 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9199 {
9200 _bfd_error_handler
9201 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
9202 ibfd, obfd,
9203 in_flags & EF_ARM_APCS_26 ? 26 : 32,
9204 out_flags & EF_ARM_APCS_26 ? 26 : 32);
9205 flags_compatible = FALSE;
9206 }
9207
9208 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9209 {
9210 if (in_flags & EF_ARM_APCS_FLOAT)
9211 _bfd_error_handler
9212 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
9213 ibfd, obfd);
9214 else
9215 _bfd_error_handler
9216 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
9217 ibfd, obfd);
9218
9219 flags_compatible = FALSE;
9220 }
9221
9222 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
9223 {
9224 if (in_flags & EF_ARM_VFP_FLOAT)
9225 _bfd_error_handler
9226 (_("error: %B uses VFP instructions, whereas %B does not"),
9227 ibfd, obfd);
9228 else
9229 _bfd_error_handler
9230 (_("error: %B uses FPA instructions, whereas %B does not"),
9231 ibfd, obfd);
9232
9233 flags_compatible = FALSE;
9234 }
9235
9236 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
9237 {
9238 if (in_flags & EF_ARM_MAVERICK_FLOAT)
9239 _bfd_error_handler
9240 (_("error: %B uses Maverick instructions, whereas %B does not"),
9241 ibfd, obfd);
9242 else
9243 _bfd_error_handler
9244 (_("error: %B does not use Maverick instructions, whereas %B does"),
9245 ibfd, obfd);
9246
9247 flags_compatible = FALSE;
9248 }
9249
9250 #ifdef EF_ARM_SOFT_FLOAT
9251 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
9252 {
9253 /* We can allow interworking between code that is VFP format
9254 layout, and uses either soft float or integer regs for
9255 passing floating point arguments and results. We already
9256 know that the APCS_FLOAT flags match; similarly for VFP
9257 flags. */
9258 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
9259 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
9260 {
9261 if (in_flags & EF_ARM_SOFT_FLOAT)
9262 _bfd_error_handler
9263 (_("error: %B uses software FP, whereas %B uses hardware FP"),
9264 ibfd, obfd);
9265 else
9266 _bfd_error_handler
9267 (_("error: %B uses hardware FP, whereas %B uses software FP"),
9268 ibfd, obfd);
9269
9270 flags_compatible = FALSE;
9271 }
9272 }
9273 #endif
9274
9275 /* Interworking mismatch is only a warning. */
9276 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9277 {
9278 if (in_flags & EF_ARM_INTERWORK)
9279 {
9280 _bfd_error_handler
9281 (_("Warning: %B supports interworking, whereas %B does not"),
9282 ibfd, obfd);
9283 }
9284 else
9285 {
9286 _bfd_error_handler
9287 (_("Warning: %B does not support interworking, whereas %B does"),
9288 ibfd, obfd);
9289 }
9290 }
9291 }
9292
9293 return flags_compatible;
9294 }
9295
9296 /* Display the flags field. */
9297
9298 static bfd_boolean
9299 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
9300 {
9301 FILE * file = (FILE *) ptr;
9302 unsigned long flags;
9303
9304 BFD_ASSERT (abfd != NULL && ptr != NULL);
9305
9306 /* Print normal ELF private data. */
9307 _bfd_elf_print_private_bfd_data (abfd, ptr);
9308
9309 flags = elf_elfheader (abfd)->e_flags;
9310 /* Ignore init flag - it may not be set, despite the flags field
9311 containing valid data. */
9312
9313 /* xgettext:c-format */
9314 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9315
9316 switch (EF_ARM_EABI_VERSION (flags))
9317 {
9318 case EF_ARM_EABI_UNKNOWN:
9319 /* The following flag bits are GNU extensions and not part of the
9320 official ARM ELF extended ABI. Hence they are only decoded if
9321 the EABI version is not set. */
9322 if (flags & EF_ARM_INTERWORK)
9323 fprintf (file, _(" [interworking enabled]"));
9324
9325 if (flags & EF_ARM_APCS_26)
9326 fprintf (file, " [APCS-26]");
9327 else
9328 fprintf (file, " [APCS-32]");
9329
9330 if (flags & EF_ARM_VFP_FLOAT)
9331 fprintf (file, _(" [VFP float format]"));
9332 else if (flags & EF_ARM_MAVERICK_FLOAT)
9333 fprintf (file, _(" [Maverick float format]"));
9334 else
9335 fprintf (file, _(" [FPA float format]"));
9336
9337 if (flags & EF_ARM_APCS_FLOAT)
9338 fprintf (file, _(" [floats passed in float registers]"));
9339
9340 if (flags & EF_ARM_PIC)
9341 fprintf (file, _(" [position independent]"));
9342
9343 if (flags & EF_ARM_NEW_ABI)
9344 fprintf (file, _(" [new ABI]"));
9345
9346 if (flags & EF_ARM_OLD_ABI)
9347 fprintf (file, _(" [old ABI]"));
9348
9349 if (flags & EF_ARM_SOFT_FLOAT)
9350 fprintf (file, _(" [software FP]"));
9351
9352 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
9353 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
9354 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
9355 | EF_ARM_MAVERICK_FLOAT);
9356 break;
9357
9358 case EF_ARM_EABI_VER1:
9359 fprintf (file, _(" [Version1 EABI]"));
9360
9361 if (flags & EF_ARM_SYMSARESORTED)
9362 fprintf (file, _(" [sorted symbol table]"));
9363 else
9364 fprintf (file, _(" [unsorted symbol table]"));
9365
9366 flags &= ~ EF_ARM_SYMSARESORTED;
9367 break;
9368
9369 case EF_ARM_EABI_VER2:
9370 fprintf (file, _(" [Version2 EABI]"));
9371
9372 if (flags & EF_ARM_SYMSARESORTED)
9373 fprintf (file, _(" [sorted symbol table]"));
9374 else
9375 fprintf (file, _(" [unsorted symbol table]"));
9376
9377 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
9378 fprintf (file, _(" [dynamic symbols use segment index]"));
9379
9380 if (flags & EF_ARM_MAPSYMSFIRST)
9381 fprintf (file, _(" [mapping symbols precede others]"));
9382
9383 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
9384 | EF_ARM_MAPSYMSFIRST);
9385 break;
9386
9387 case EF_ARM_EABI_VER3:
9388 fprintf (file, _(" [Version3 EABI]"));
9389 break;
9390
9391 case EF_ARM_EABI_VER4:
9392 fprintf (file, _(" [Version4 EABI]"));
9393 goto eabi;
9394
9395 case EF_ARM_EABI_VER5:
9396 fprintf (file, _(" [Version5 EABI]"));
9397 eabi:
9398 if (flags & EF_ARM_BE8)
9399 fprintf (file, _(" [BE8]"));
9400
9401 if (flags & EF_ARM_LE8)
9402 fprintf (file, _(" [LE8]"));
9403
9404 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
9405 break;
9406
9407 default:
9408 fprintf (file, _(" <EABI version unrecognised>"));
9409 break;
9410 }
9411
9412 flags &= ~ EF_ARM_EABIMASK;
9413
9414 if (flags & EF_ARM_RELEXEC)
9415 fprintf (file, _(" [relocatable executable]"));
9416
9417 if (flags & EF_ARM_HASENTRY)
9418 fprintf (file, _(" [has entry point]"));
9419
9420 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
9421
9422 if (flags)
9423 fprintf (file, _("<Unrecognised flag bits set>"));
9424
9425 fputc ('\n', file);
9426
9427 return TRUE;
9428 }
9429
9430 static int
9431 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
9432 {
9433 switch (ELF_ST_TYPE (elf_sym->st_info))
9434 {
9435 case STT_ARM_TFUNC:
9436 return ELF_ST_TYPE (elf_sym->st_info);
9437
9438 case STT_ARM_16BIT:
9439 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
9440 This allows us to distinguish between data used by Thumb instructions
9441 and non-data (which is probably code) inside Thumb regions of an
9442 executable. */
9443 if (type != STT_OBJECT && type != STT_TLS)
9444 return ELF_ST_TYPE (elf_sym->st_info);
9445 break;
9446
9447 default:
9448 break;
9449 }
9450
9451 return type;
9452 }
9453
9454 static asection *
9455 elf32_arm_gc_mark_hook (asection *sec,
9456 struct bfd_link_info *info,
9457 Elf_Internal_Rela *rel,
9458 struct elf_link_hash_entry *h,
9459 Elf_Internal_Sym *sym)
9460 {
9461 if (h != NULL)
9462 switch (ELF32_R_TYPE (rel->r_info))
9463 {
9464 case R_ARM_GNU_VTINHERIT:
9465 case R_ARM_GNU_VTENTRY:
9466 return NULL;
9467 }
9468
9469 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9470 }
9471
9472 /* Update the got entry reference counts for the section being removed. */
9473
9474 static bfd_boolean
9475 elf32_arm_gc_sweep_hook (bfd * abfd,
9476 struct bfd_link_info * info,
9477 asection * sec,
9478 const Elf_Internal_Rela * relocs)
9479 {
9480 Elf_Internal_Shdr *symtab_hdr;
9481 struct elf_link_hash_entry **sym_hashes;
9482 bfd_signed_vma *local_got_refcounts;
9483 const Elf_Internal_Rela *rel, *relend;
9484 struct elf32_arm_link_hash_table * globals;
9485
9486 if (info->relocatable)
9487 return TRUE;
9488
9489 globals = elf32_arm_hash_table (info);
9490
9491 elf_section_data (sec)->local_dynrel = NULL;
9492
9493 symtab_hdr = & elf_symtab_hdr (abfd);
9494 sym_hashes = elf_sym_hashes (abfd);
9495 local_got_refcounts = elf_local_got_refcounts (abfd);
9496
9497 check_use_blx (globals);
9498
9499 relend = relocs + sec->reloc_count;
9500 for (rel = relocs; rel < relend; rel++)
9501 {
9502 unsigned long r_symndx;
9503 struct elf_link_hash_entry *h = NULL;
9504 int r_type;
9505
9506 r_symndx = ELF32_R_SYM (rel->r_info);
9507 if (r_symndx >= symtab_hdr->sh_info)
9508 {
9509 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9510 while (h->root.type == bfd_link_hash_indirect
9511 || h->root.type == bfd_link_hash_warning)
9512 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9513 }
9514
9515 r_type = ELF32_R_TYPE (rel->r_info);
9516 r_type = arm_real_reloc_type (globals, r_type);
9517 switch (r_type)
9518 {
9519 case R_ARM_GOT32:
9520 case R_ARM_GOT_PREL:
9521 case R_ARM_TLS_GD32:
9522 case R_ARM_TLS_IE32:
9523 if (h != NULL)
9524 {
9525 if (h->got.refcount > 0)
9526 h->got.refcount -= 1;
9527 }
9528 else if (local_got_refcounts != NULL)
9529 {
9530 if (local_got_refcounts[r_symndx] > 0)
9531 local_got_refcounts[r_symndx] -= 1;
9532 }
9533 break;
9534
9535 case R_ARM_TLS_LDM32:
9536 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
9537 break;
9538
9539 case R_ARM_ABS32:
9540 case R_ARM_ABS32_NOI:
9541 case R_ARM_REL32:
9542 case R_ARM_REL32_NOI:
9543 case R_ARM_PC24:
9544 case R_ARM_PLT32:
9545 case R_ARM_CALL:
9546 case R_ARM_JUMP24:
9547 case R_ARM_PREL31:
9548 case R_ARM_THM_CALL:
9549 case R_ARM_THM_JUMP24:
9550 case R_ARM_THM_JUMP19:
9551 case R_ARM_MOVW_ABS_NC:
9552 case R_ARM_MOVT_ABS:
9553 case R_ARM_MOVW_PREL_NC:
9554 case R_ARM_MOVT_PREL:
9555 case R_ARM_THM_MOVW_ABS_NC:
9556 case R_ARM_THM_MOVT_ABS:
9557 case R_ARM_THM_MOVW_PREL_NC:
9558 case R_ARM_THM_MOVT_PREL:
9559 /* Should the interworking branches be here also? */
9560
9561 if (h != NULL)
9562 {
9563 struct elf32_arm_link_hash_entry *eh;
9564 struct elf32_arm_relocs_copied **pp;
9565 struct elf32_arm_relocs_copied *p;
9566
9567 eh = (struct elf32_arm_link_hash_entry *) h;
9568
9569 if (h->plt.refcount > 0)
9570 {
9571 h->plt.refcount -= 1;
9572 if (r_type == R_ARM_THM_CALL)
9573 eh->plt_maybe_thumb_refcount--;
9574
9575 if (r_type == R_ARM_THM_JUMP24
9576 || r_type == R_ARM_THM_JUMP19)
9577 eh->plt_thumb_refcount--;
9578 }
9579
9580 if (r_type == R_ARM_ABS32
9581 || r_type == R_ARM_REL32
9582 || r_type == R_ARM_ABS32_NOI
9583 || r_type == R_ARM_REL32_NOI)
9584 {
9585 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
9586 pp = &p->next)
9587 if (p->section == sec)
9588 {
9589 p->count -= 1;
9590 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9591 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
9592 p->pc_count -= 1;
9593 if (p->count == 0)
9594 *pp = p->next;
9595 break;
9596 }
9597 }
9598 }
9599 break;
9600
9601 default:
9602 break;
9603 }
9604 }
9605
9606 return TRUE;
9607 }
9608
9609 /* Look through the relocs for a section during the first phase. */
9610
9611 static bfd_boolean
9612 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9613 asection *sec, const Elf_Internal_Rela *relocs)
9614 {
9615 Elf_Internal_Shdr *symtab_hdr;
9616 struct elf_link_hash_entry **sym_hashes;
9617 const Elf_Internal_Rela *rel;
9618 const Elf_Internal_Rela *rel_end;
9619 bfd *dynobj;
9620 asection *sreloc;
9621 bfd_vma *local_got_offsets;
9622 struct elf32_arm_link_hash_table *htab;
9623 bfd_boolean needs_plt;
9624 unsigned long nsyms;
9625
9626 if (info->relocatable)
9627 return TRUE;
9628
9629 BFD_ASSERT (is_arm_elf (abfd));
9630
9631 htab = elf32_arm_hash_table (info);
9632 sreloc = NULL;
9633
9634 /* Create dynamic sections for relocatable executables so that we can
9635 copy relocations. */
9636 if (htab->root.is_relocatable_executable
9637 && ! htab->root.dynamic_sections_created)
9638 {
9639 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9640 return FALSE;
9641 }
9642
9643 dynobj = elf_hash_table (info)->dynobj;
9644 local_got_offsets = elf_local_got_offsets (abfd);
9645
9646 symtab_hdr = & elf_symtab_hdr (abfd);
9647 sym_hashes = elf_sym_hashes (abfd);
9648 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
9649
9650 rel_end = relocs + sec->reloc_count;
9651 for (rel = relocs; rel < rel_end; rel++)
9652 {
9653 struct elf_link_hash_entry *h;
9654 struct elf32_arm_link_hash_entry *eh;
9655 unsigned long r_symndx;
9656 int r_type;
9657
9658 r_symndx = ELF32_R_SYM (rel->r_info);
9659 r_type = ELF32_R_TYPE (rel->r_info);
9660 r_type = arm_real_reloc_type (htab, r_type);
9661
9662 if (r_symndx >= nsyms
9663 /* PR 9934: It is possible to have relocations that do not
9664 refer to symbols, thus it is also possible to have an
9665 object file containing relocations but no symbol table. */
9666 && (r_symndx > 0 || nsyms > 0))
9667 {
9668 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9669 r_symndx);
9670 return FALSE;
9671 }
9672
9673 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
9674 h = NULL;
9675 else
9676 {
9677 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9678 while (h->root.type == bfd_link_hash_indirect
9679 || h->root.type == bfd_link_hash_warning)
9680 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9681 }
9682
9683 eh = (struct elf32_arm_link_hash_entry *) h;
9684
9685 switch (r_type)
9686 {
9687 case R_ARM_GOT32:
9688 case R_ARM_GOT_PREL:
9689 case R_ARM_TLS_GD32:
9690 case R_ARM_TLS_IE32:
9691 /* This symbol requires a global offset table entry. */
9692 {
9693 int tls_type, old_tls_type;
9694
9695 switch (r_type)
9696 {
9697 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9698 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9699 default: tls_type = GOT_NORMAL; break;
9700 }
9701
9702 if (h != NULL)
9703 {
9704 h->got.refcount++;
9705 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9706 }
9707 else
9708 {
9709 bfd_signed_vma *local_got_refcounts;
9710
9711 /* This is a global offset table entry for a local symbol. */
9712 local_got_refcounts = elf_local_got_refcounts (abfd);
9713 if (local_got_refcounts == NULL)
9714 {
9715 bfd_size_type size;
9716
9717 size = symtab_hdr->sh_info;
9718 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9719 local_got_refcounts = bfd_zalloc (abfd, size);
9720 if (local_got_refcounts == NULL)
9721 return FALSE;
9722 elf_local_got_refcounts (abfd) = local_got_refcounts;
9723 elf32_arm_local_got_tls_type (abfd)
9724 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9725 }
9726 local_got_refcounts[r_symndx] += 1;
9727 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9728 }
9729
9730 /* We will already have issued an error message if there is a
9731 TLS / non-TLS mismatch, based on the symbol type. We don't
9732 support any linker relaxations. So just combine any TLS
9733 types needed. */
9734 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9735 && tls_type != GOT_NORMAL)
9736 tls_type |= old_tls_type;
9737
9738 if (old_tls_type != tls_type)
9739 {
9740 if (h != NULL)
9741 elf32_arm_hash_entry (h)->tls_type = tls_type;
9742 else
9743 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9744 }
9745 }
9746 /* Fall through. */
9747
9748 case R_ARM_TLS_LDM32:
9749 if (r_type == R_ARM_TLS_LDM32)
9750 htab->tls_ldm_got.refcount++;
9751 /* Fall through. */
9752
9753 case R_ARM_GOTOFF32:
9754 case R_ARM_GOTPC:
9755 if (htab->sgot == NULL)
9756 {
9757 if (htab->root.dynobj == NULL)
9758 htab->root.dynobj = abfd;
9759 if (!create_got_section (htab->root.dynobj, info))
9760 return FALSE;
9761 }
9762 break;
9763
9764 case R_ARM_ABS12:
9765 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9766 ldr __GOTT_INDEX__ offsets. */
9767 if (!htab->vxworks_p)
9768 break;
9769 /* Fall through. */
9770
9771 case R_ARM_PC24:
9772 case R_ARM_PLT32:
9773 case R_ARM_CALL:
9774 case R_ARM_JUMP24:
9775 case R_ARM_PREL31:
9776 case R_ARM_THM_CALL:
9777 case R_ARM_THM_JUMP24:
9778 case R_ARM_THM_JUMP19:
9779 needs_plt = 1;
9780 goto normal_reloc;
9781
9782 case R_ARM_ABS32:
9783 case R_ARM_ABS32_NOI:
9784 case R_ARM_REL32:
9785 case R_ARM_REL32_NOI:
9786 case R_ARM_MOVW_ABS_NC:
9787 case R_ARM_MOVT_ABS:
9788 case R_ARM_MOVW_PREL_NC:
9789 case R_ARM_MOVT_PREL:
9790 case R_ARM_THM_MOVW_ABS_NC:
9791 case R_ARM_THM_MOVT_ABS:
9792 case R_ARM_THM_MOVW_PREL_NC:
9793 case R_ARM_THM_MOVT_PREL:
9794 needs_plt = 0;
9795 normal_reloc:
9796
9797 /* Should the interworking branches be listed here? */
9798 if (h != NULL)
9799 {
9800 /* If this reloc is in a read-only section, we might
9801 need a copy reloc. We can't check reliably at this
9802 stage whether the section is read-only, as input
9803 sections have not yet been mapped to output sections.
9804 Tentatively set the flag for now, and correct in
9805 adjust_dynamic_symbol. */
9806 if (!info->shared)
9807 h->non_got_ref = 1;
9808
9809 /* We may need a .plt entry if the function this reloc
9810 refers to is in a different object. We can't tell for
9811 sure yet, because something later might force the
9812 symbol local. */
9813 if (needs_plt)
9814 h->needs_plt = 1;
9815
9816 /* If we create a PLT entry, this relocation will reference
9817 it, even if it's an ABS32 relocation. */
9818 h->plt.refcount += 1;
9819
9820 /* It's too early to use htab->use_blx here, so we have to
9821 record possible blx references separately from
9822 relocs that definitely need a thumb stub. */
9823
9824 if (r_type == R_ARM_THM_CALL)
9825 eh->plt_maybe_thumb_refcount += 1;
9826
9827 if (r_type == R_ARM_THM_JUMP24
9828 || r_type == R_ARM_THM_JUMP19)
9829 eh->plt_thumb_refcount += 1;
9830 }
9831
9832 /* If we are creating a shared library or relocatable executable,
9833 and this is a reloc against a global symbol, or a non PC
9834 relative reloc against a local symbol, then we need to copy
9835 the reloc into the shared library. However, if we are linking
9836 with -Bsymbolic, we do not need to copy a reloc against a
9837 global symbol which is defined in an object we are
9838 including in the link (i.e., DEF_REGULAR is set). At
9839 this point we have not seen all the input files, so it is
9840 possible that DEF_REGULAR is not set now but will be set
9841 later (it is never cleared). We account for that
9842 possibility below by storing information in the
9843 relocs_copied field of the hash table entry. */
9844 if ((info->shared || htab->root.is_relocatable_executable)
9845 && (sec->flags & SEC_ALLOC) != 0
9846 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9847 || (h != NULL && ! h->needs_plt
9848 && (! info->symbolic || ! h->def_regular))))
9849 {
9850 struct elf32_arm_relocs_copied *p, **head;
9851
9852 /* When creating a shared object, we must copy these
9853 reloc types into the output file. We create a reloc
9854 section in dynobj and make room for this reloc. */
9855 if (sreloc == NULL)
9856 {
9857 sreloc = _bfd_elf_make_dynamic_reloc_section
9858 (sec, dynobj, 2, abfd, ! htab->use_rel);
9859
9860 if (sreloc == NULL)
9861 return FALSE;
9862
9863 /* BPABI objects never have dynamic relocations mapped. */
9864 if (htab->symbian_p)
9865 {
9866 flagword flags;
9867
9868 flags = bfd_get_section_flags (dynobj, sreloc);
9869 flags &= ~(SEC_LOAD | SEC_ALLOC);
9870 bfd_set_section_flags (dynobj, sreloc, flags);
9871 }
9872 }
9873
9874 /* If this is a global symbol, we count the number of
9875 relocations we need for this symbol. */
9876 if (h != NULL)
9877 {
9878 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9879 }
9880 else
9881 {
9882 /* Track dynamic relocs needed for local syms too.
9883 We really need local syms available to do this
9884 easily. Oh well. */
9885
9886 asection *s;
9887 void *vpp;
9888
9889 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9890 sec, r_symndx);
9891 if (s == NULL)
9892 return FALSE;
9893
9894 vpp = &elf_section_data (s)->local_dynrel;
9895 head = (struct elf32_arm_relocs_copied **) vpp;
9896 }
9897
9898 p = *head;
9899 if (p == NULL || p->section != sec)
9900 {
9901 bfd_size_type amt = sizeof *p;
9902
9903 p = bfd_alloc (htab->root.dynobj, amt);
9904 if (p == NULL)
9905 return FALSE;
9906 p->next = *head;
9907 *head = p;
9908 p->section = sec;
9909 p->count = 0;
9910 p->pc_count = 0;
9911 }
9912
9913 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9914 p->pc_count += 1;
9915 p->count += 1;
9916 }
9917 break;
9918
9919 /* This relocation describes the C++ object vtable hierarchy.
9920 Reconstruct it for later use during GC. */
9921 case R_ARM_GNU_VTINHERIT:
9922 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9923 return FALSE;
9924 break;
9925
9926 /* This relocation describes which C++ vtable entries are actually
9927 used. Record for later use during GC. */
9928 case R_ARM_GNU_VTENTRY:
9929 BFD_ASSERT (h != NULL);
9930 if (h != NULL
9931 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9932 return FALSE;
9933 break;
9934 }
9935 }
9936
9937 return TRUE;
9938 }
9939
9940 /* Unwinding tables are not referenced directly. This pass marks them as
9941 required if the corresponding code section is marked. */
9942
9943 static bfd_boolean
9944 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9945 elf_gc_mark_hook_fn gc_mark_hook)
9946 {
9947 bfd *sub;
9948 Elf_Internal_Shdr **elf_shdrp;
9949 bfd_boolean again;
9950
9951 /* Marking EH data may cause additional code sections to be marked,
9952 requiring multiple passes. */
9953 again = TRUE;
9954 while (again)
9955 {
9956 again = FALSE;
9957 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9958 {
9959 asection *o;
9960
9961 if (! is_arm_elf (sub))
9962 continue;
9963
9964 elf_shdrp = elf_elfsections (sub);
9965 for (o = sub->sections; o != NULL; o = o->next)
9966 {
9967 Elf_Internal_Shdr *hdr;
9968
9969 hdr = &elf_section_data (o)->this_hdr;
9970 if (hdr->sh_type == SHT_ARM_EXIDX
9971 && hdr->sh_link
9972 && hdr->sh_link < elf_numsections (sub)
9973 && !o->gc_mark
9974 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9975 {
9976 again = TRUE;
9977 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9978 return FALSE;
9979 }
9980 }
9981 }
9982 }
9983
9984 return TRUE;
9985 }
9986
9987 /* Treat mapping symbols as special target symbols. */
9988
9989 static bfd_boolean
9990 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9991 {
9992 return bfd_is_arm_special_symbol_name (sym->name,
9993 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9994 }
9995
9996 /* This is a copy of elf_find_function() from elf.c except that
9997 ARM mapping symbols are ignored when looking for function names
9998 and STT_ARM_TFUNC is considered to a function type. */
9999
10000 static bfd_boolean
10001 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
10002 asection * section,
10003 asymbol ** symbols,
10004 bfd_vma offset,
10005 const char ** filename_ptr,
10006 const char ** functionname_ptr)
10007 {
10008 const char * filename = NULL;
10009 asymbol * func = NULL;
10010 bfd_vma low_func = 0;
10011 asymbol ** p;
10012
10013 for (p = symbols; *p != NULL; p++)
10014 {
10015 elf_symbol_type *q;
10016
10017 q = (elf_symbol_type *) *p;
10018
10019 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
10020 {
10021 default:
10022 break;
10023 case STT_FILE:
10024 filename = bfd_asymbol_name (&q->symbol);
10025 break;
10026 case STT_FUNC:
10027 case STT_ARM_TFUNC:
10028 case STT_NOTYPE:
10029 /* Skip mapping symbols. */
10030 if ((q->symbol.flags & BSF_LOCAL)
10031 && bfd_is_arm_special_symbol_name (q->symbol.name,
10032 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
10033 continue;
10034 /* Fall through. */
10035 if (bfd_get_section (&q->symbol) == section
10036 && q->symbol.value >= low_func
10037 && q->symbol.value <= offset)
10038 {
10039 func = (asymbol *) q;
10040 low_func = q->symbol.value;
10041 }
10042 break;
10043 }
10044 }
10045
10046 if (func == NULL)
10047 return FALSE;
10048
10049 if (filename_ptr)
10050 *filename_ptr = filename;
10051 if (functionname_ptr)
10052 *functionname_ptr = bfd_asymbol_name (func);
10053
10054 return TRUE;
10055 }
10056
10057
10058 /* Find the nearest line to a particular section and offset, for error
10059 reporting. This code is a duplicate of the code in elf.c, except
10060 that it uses arm_elf_find_function. */
10061
10062 static bfd_boolean
10063 elf32_arm_find_nearest_line (bfd * abfd,
10064 asection * section,
10065 asymbol ** symbols,
10066 bfd_vma offset,
10067 const char ** filename_ptr,
10068 const char ** functionname_ptr,
10069 unsigned int * line_ptr)
10070 {
10071 bfd_boolean found = FALSE;
10072
10073 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
10074
10075 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10076 filename_ptr, functionname_ptr,
10077 line_ptr, 0,
10078 & elf_tdata (abfd)->dwarf2_find_line_info))
10079 {
10080 if (!*functionname_ptr)
10081 arm_elf_find_function (abfd, section, symbols, offset,
10082 *filename_ptr ? NULL : filename_ptr,
10083 functionname_ptr);
10084
10085 return TRUE;
10086 }
10087
10088 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
10089 & found, filename_ptr,
10090 functionname_ptr, line_ptr,
10091 & elf_tdata (abfd)->line_info))
10092 return FALSE;
10093
10094 if (found && (*functionname_ptr || *line_ptr))
10095 return TRUE;
10096
10097 if (symbols == NULL)
10098 return FALSE;
10099
10100 if (! arm_elf_find_function (abfd, section, symbols, offset,
10101 filename_ptr, functionname_ptr))
10102 return FALSE;
10103
10104 *line_ptr = 0;
10105 return TRUE;
10106 }
10107
10108 static bfd_boolean
10109 elf32_arm_find_inliner_info (bfd * abfd,
10110 const char ** filename_ptr,
10111 const char ** functionname_ptr,
10112 unsigned int * line_ptr)
10113 {
10114 bfd_boolean found;
10115 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10116 functionname_ptr, line_ptr,
10117 & elf_tdata (abfd)->dwarf2_find_line_info);
10118 return found;
10119 }
10120
10121 /* Adjust a symbol defined by a dynamic object and referenced by a
10122 regular object. The current definition is in some section of the
10123 dynamic object, but we're not including those sections. We have to
10124 change the definition to something the rest of the link can
10125 understand. */
10126
10127 static bfd_boolean
10128 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
10129 struct elf_link_hash_entry * h)
10130 {
10131 bfd * dynobj;
10132 asection * s;
10133 struct elf32_arm_link_hash_entry * eh;
10134 struct elf32_arm_link_hash_table *globals;
10135
10136 globals = elf32_arm_hash_table (info);
10137 dynobj = elf_hash_table (info)->dynobj;
10138
10139 /* Make sure we know what is going on here. */
10140 BFD_ASSERT (dynobj != NULL
10141 && (h->needs_plt
10142 || h->u.weakdef != NULL
10143 || (h->def_dynamic
10144 && h->ref_regular
10145 && !h->def_regular)));
10146
10147 eh = (struct elf32_arm_link_hash_entry *) h;
10148
10149 /* If this is a function, put it in the procedure linkage table. We
10150 will fill in the contents of the procedure linkage table later,
10151 when we know the address of the .got section. */
10152 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
10153 || h->needs_plt)
10154 {
10155 if (h->plt.refcount <= 0
10156 || SYMBOL_CALLS_LOCAL (info, h)
10157 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
10158 && h->root.type == bfd_link_hash_undefweak))
10159 {
10160 /* This case can occur if we saw a PLT32 reloc in an input
10161 file, but the symbol was never referred to by a dynamic
10162 object, or if all references were garbage collected. In
10163 such a case, we don't actually need to build a procedure
10164 linkage table, and we can just do a PC24 reloc instead. */
10165 h->plt.offset = (bfd_vma) -1;
10166 eh->plt_thumb_refcount = 0;
10167 eh->plt_maybe_thumb_refcount = 0;
10168 h->needs_plt = 0;
10169 }
10170
10171 return TRUE;
10172 }
10173 else
10174 {
10175 /* It's possible that we incorrectly decided a .plt reloc was
10176 needed for an R_ARM_PC24 or similar reloc to a non-function sym
10177 in check_relocs. We can't decide accurately between function
10178 and non-function syms in check-relocs; Objects loaded later in
10179 the link may change h->type. So fix it now. */
10180 h->plt.offset = (bfd_vma) -1;
10181 eh->plt_thumb_refcount = 0;
10182 eh->plt_maybe_thumb_refcount = 0;
10183 }
10184
10185 /* If this is a weak symbol, and there is a real definition, the
10186 processor independent code will have arranged for us to see the
10187 real definition first, and we can just use the same value. */
10188 if (h->u.weakdef != NULL)
10189 {
10190 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
10191 || h->u.weakdef->root.type == bfd_link_hash_defweak);
10192 h->root.u.def.section = h->u.weakdef->root.u.def.section;
10193 h->root.u.def.value = h->u.weakdef->root.u.def.value;
10194 return TRUE;
10195 }
10196
10197 /* If there are no non-GOT references, we do not need a copy
10198 relocation. */
10199 if (!h->non_got_ref)
10200 return TRUE;
10201
10202 /* This is a reference to a symbol defined by a dynamic object which
10203 is not a function. */
10204
10205 /* If we are creating a shared library, we must presume that the
10206 only references to the symbol are via the global offset table.
10207 For such cases we need not do anything here; the relocations will
10208 be handled correctly by relocate_section. Relocatable executables
10209 can reference data in shared objects directly, so we don't need to
10210 do anything here. */
10211 if (info->shared || globals->root.is_relocatable_executable)
10212 return TRUE;
10213
10214 if (h->size == 0)
10215 {
10216 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
10217 h->root.root.string);
10218 return TRUE;
10219 }
10220
10221 /* We must allocate the symbol in our .dynbss section, which will
10222 become part of the .bss section of the executable. There will be
10223 an entry for this symbol in the .dynsym section. The dynamic
10224 object will contain position independent code, so all references
10225 from the dynamic object to this symbol will go through the global
10226 offset table. The dynamic linker will use the .dynsym entry to
10227 determine the address it must put in the global offset table, so
10228 both the dynamic object and the regular object will refer to the
10229 same memory location for the variable. */
10230 s = bfd_get_section_by_name (dynobj, ".dynbss");
10231 BFD_ASSERT (s != NULL);
10232
10233 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
10234 copy the initial value out of the dynamic object and into the
10235 runtime process image. We need to remember the offset into the
10236 .rel(a).bss section we are going to use. */
10237 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
10238 {
10239 asection *srel;
10240
10241 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
10242 BFD_ASSERT (srel != NULL);
10243 srel->size += RELOC_SIZE (globals);
10244 h->needs_copy = 1;
10245 }
10246
10247 return _bfd_elf_adjust_dynamic_copy (h, s);
10248 }
10249
10250 /* Allocate space in .plt, .got and associated reloc sections for
10251 dynamic relocs. */
10252
10253 static bfd_boolean
10254 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
10255 {
10256 struct bfd_link_info *info;
10257 struct elf32_arm_link_hash_table *htab;
10258 struct elf32_arm_link_hash_entry *eh;
10259 struct elf32_arm_relocs_copied *p;
10260 bfd_signed_vma thumb_refs;
10261
10262 eh = (struct elf32_arm_link_hash_entry *) h;
10263
10264 if (h->root.type == bfd_link_hash_indirect)
10265 return TRUE;
10266
10267 if (h->root.type == bfd_link_hash_warning)
10268 /* When warning symbols are created, they **replace** the "real"
10269 entry in the hash table, thus we never get to see the real
10270 symbol in a hash traversal. So look at it now. */
10271 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10272
10273 info = (struct bfd_link_info *) inf;
10274 htab = elf32_arm_hash_table (info);
10275
10276 if (htab->root.dynamic_sections_created
10277 && h->plt.refcount > 0)
10278 {
10279 /* Make sure this symbol is output as a dynamic symbol.
10280 Undefined weak syms won't yet be marked as dynamic. */
10281 if (h->dynindx == -1
10282 && !h->forced_local)
10283 {
10284 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10285 return FALSE;
10286 }
10287
10288 if (info->shared
10289 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
10290 {
10291 asection *s = htab->splt;
10292
10293 /* If this is the first .plt entry, make room for the special
10294 first entry. */
10295 if (s->size == 0)
10296 s->size += htab->plt_header_size;
10297
10298 h->plt.offset = s->size;
10299
10300 /* If we will insert a Thumb trampoline before this PLT, leave room
10301 for it. */
10302 thumb_refs = eh->plt_thumb_refcount;
10303 if (!htab->use_blx)
10304 thumb_refs += eh->plt_maybe_thumb_refcount;
10305
10306 if (thumb_refs > 0)
10307 {
10308 h->plt.offset += PLT_THUMB_STUB_SIZE;
10309 s->size += PLT_THUMB_STUB_SIZE;
10310 }
10311
10312 /* If this symbol is not defined in a regular file, and we are
10313 not generating a shared library, then set the symbol to this
10314 location in the .plt. This is required to make function
10315 pointers compare as equal between the normal executable and
10316 the shared library. */
10317 if (! info->shared
10318 && !h->def_regular)
10319 {
10320 h->root.u.def.section = s;
10321 h->root.u.def.value = h->plt.offset;
10322
10323 /* Make sure the function is not marked as Thumb, in case
10324 it is the target of an ABS32 relocation, which will
10325 point to the PLT entry. */
10326 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
10327 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10328 }
10329
10330 /* Make room for this entry. */
10331 s->size += htab->plt_entry_size;
10332
10333 if (!htab->symbian_p)
10334 {
10335 /* We also need to make an entry in the .got.plt section, which
10336 will be placed in the .got section by the linker script. */
10337 eh->plt_got_offset = htab->sgotplt->size;
10338 htab->sgotplt->size += 4;
10339 }
10340
10341 /* We also need to make an entry in the .rel(a).plt section. */
10342 htab->srelplt->size += RELOC_SIZE (htab);
10343
10344 /* VxWorks executables have a second set of relocations for
10345 each PLT entry. They go in a separate relocation section,
10346 which is processed by the kernel loader. */
10347 if (htab->vxworks_p && !info->shared)
10348 {
10349 /* There is a relocation for the initial PLT entry:
10350 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
10351 if (h->plt.offset == htab->plt_header_size)
10352 htab->srelplt2->size += RELOC_SIZE (htab);
10353
10354 /* There are two extra relocations for each subsequent
10355 PLT entry: an R_ARM_32 relocation for the GOT entry,
10356 and an R_ARM_32 relocation for the PLT entry. */
10357 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
10358 }
10359 }
10360 else
10361 {
10362 h->plt.offset = (bfd_vma) -1;
10363 h->needs_plt = 0;
10364 }
10365 }
10366 else
10367 {
10368 h->plt.offset = (bfd_vma) -1;
10369 h->needs_plt = 0;
10370 }
10371
10372 if (h->got.refcount > 0)
10373 {
10374 asection *s;
10375 bfd_boolean dyn;
10376 int tls_type = elf32_arm_hash_entry (h)->tls_type;
10377 int indx;
10378
10379 /* Make sure this symbol is output as a dynamic symbol.
10380 Undefined weak syms won't yet be marked as dynamic. */
10381 if (h->dynindx == -1
10382 && !h->forced_local)
10383 {
10384 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10385 return FALSE;
10386 }
10387
10388 if (!htab->symbian_p)
10389 {
10390 s = htab->sgot;
10391 h->got.offset = s->size;
10392
10393 if (tls_type == GOT_UNKNOWN)
10394 abort ();
10395
10396 if (tls_type == GOT_NORMAL)
10397 /* Non-TLS symbols need one GOT slot. */
10398 s->size += 4;
10399 else
10400 {
10401 if (tls_type & GOT_TLS_GD)
10402 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
10403 s->size += 8;
10404 if (tls_type & GOT_TLS_IE)
10405 /* R_ARM_TLS_IE32 needs one GOT slot. */
10406 s->size += 4;
10407 }
10408
10409 dyn = htab->root.dynamic_sections_created;
10410
10411 indx = 0;
10412 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
10413 && (!info->shared
10414 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10415 indx = h->dynindx;
10416
10417 if (tls_type != GOT_NORMAL
10418 && (info->shared || indx != 0)
10419 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10420 || h->root.type != bfd_link_hash_undefweak))
10421 {
10422 if (tls_type & GOT_TLS_IE)
10423 htab->srelgot->size += RELOC_SIZE (htab);
10424
10425 if (tls_type & GOT_TLS_GD)
10426 htab->srelgot->size += RELOC_SIZE (htab);
10427
10428 if ((tls_type & GOT_TLS_GD) && indx != 0)
10429 htab->srelgot->size += RELOC_SIZE (htab);
10430 }
10431 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10432 || h->root.type != bfd_link_hash_undefweak)
10433 && (info->shared
10434 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
10435 htab->srelgot->size += RELOC_SIZE (htab);
10436 }
10437 }
10438 else
10439 h->got.offset = (bfd_vma) -1;
10440
10441 /* Allocate stubs for exported Thumb functions on v4t. */
10442 if (!htab->use_blx && h->dynindx != -1
10443 && h->def_regular
10444 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
10445 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
10446 {
10447 struct elf_link_hash_entry * th;
10448 struct bfd_link_hash_entry * bh;
10449 struct elf_link_hash_entry * myh;
10450 char name[1024];
10451 asection *s;
10452 bh = NULL;
10453 /* Create a new symbol to regist the real location of the function. */
10454 s = h->root.u.def.section;
10455 sprintf (name, "__real_%s", h->root.root.string);
10456 _bfd_generic_link_add_one_symbol (info, s->owner,
10457 name, BSF_GLOBAL, s,
10458 h->root.u.def.value,
10459 NULL, TRUE, FALSE, &bh);
10460
10461 myh = (struct elf_link_hash_entry *) bh;
10462 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
10463 myh->forced_local = 1;
10464 eh->export_glue = myh;
10465 th = record_arm_to_thumb_glue (info, h);
10466 /* Point the symbol at the stub. */
10467 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10468 h->root.u.def.section = th->root.u.def.section;
10469 h->root.u.def.value = th->root.u.def.value & ~1;
10470 }
10471
10472 if (eh->relocs_copied == NULL)
10473 return TRUE;
10474
10475 /* In the shared -Bsymbolic case, discard space allocated for
10476 dynamic pc-relative relocs against symbols which turn out to be
10477 defined in regular objects. For the normal shared case, discard
10478 space for pc-relative relocs that have become local due to symbol
10479 visibility changes. */
10480
10481 if (info->shared || htab->root.is_relocatable_executable)
10482 {
10483 /* The only relocs that use pc_count are R_ARM_REL32 and
10484 R_ARM_REL32_NOI, which will appear on something like
10485 ".long foo - .". We want calls to protected symbols to resolve
10486 directly to the function rather than going via the plt. If people
10487 want function pointer comparisons to work as expected then they
10488 should avoid writing assembly like ".long foo - .". */
10489 if (SYMBOL_CALLS_LOCAL (info, h))
10490 {
10491 struct elf32_arm_relocs_copied **pp;
10492
10493 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10494 {
10495 p->count -= p->pc_count;
10496 p->pc_count = 0;
10497 if (p->count == 0)
10498 *pp = p->next;
10499 else
10500 pp = &p->next;
10501 }
10502 }
10503
10504 if (elf32_arm_hash_table (info)->vxworks_p)
10505 {
10506 struct elf32_arm_relocs_copied **pp;
10507
10508 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10509 {
10510 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
10511 *pp = p->next;
10512 else
10513 pp = &p->next;
10514 }
10515 }
10516
10517 /* Also discard relocs on undefined weak syms with non-default
10518 visibility. */
10519 if (eh->relocs_copied != NULL
10520 && h->root.type == bfd_link_hash_undefweak)
10521 {
10522 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
10523 eh->relocs_copied = NULL;
10524
10525 /* Make sure undefined weak symbols are output as a dynamic
10526 symbol in PIEs. */
10527 else if (h->dynindx == -1
10528 && !h->forced_local)
10529 {
10530 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10531 return FALSE;
10532 }
10533 }
10534
10535 else if (htab->root.is_relocatable_executable && h->dynindx == -1
10536 && h->root.type == bfd_link_hash_new)
10537 {
10538 /* Output absolute symbols so that we can create relocations
10539 against them. For normal symbols we output a relocation
10540 against the section that contains them. */
10541 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10542 return FALSE;
10543 }
10544
10545 }
10546 else
10547 {
10548 /* For the non-shared case, discard space for relocs against
10549 symbols which turn out to need copy relocs or are not
10550 dynamic. */
10551
10552 if (!h->non_got_ref
10553 && ((h->def_dynamic
10554 && !h->def_regular)
10555 || (htab->root.dynamic_sections_created
10556 && (h->root.type == bfd_link_hash_undefweak
10557 || h->root.type == bfd_link_hash_undefined))))
10558 {
10559 /* Make sure this symbol is output as a dynamic symbol.
10560 Undefined weak syms won't yet be marked as dynamic. */
10561 if (h->dynindx == -1
10562 && !h->forced_local)
10563 {
10564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10565 return FALSE;
10566 }
10567
10568 /* If that succeeded, we know we'll be keeping all the
10569 relocs. */
10570 if (h->dynindx != -1)
10571 goto keep;
10572 }
10573
10574 eh->relocs_copied = NULL;
10575
10576 keep: ;
10577 }
10578
10579 /* Finally, allocate space. */
10580 for (p = eh->relocs_copied; p != NULL; p = p->next)
10581 {
10582 asection *sreloc = elf_section_data (p->section)->sreloc;
10583 sreloc->size += p->count * RELOC_SIZE (htab);
10584 }
10585
10586 return TRUE;
10587 }
10588
10589 /* Find any dynamic relocs that apply to read-only sections. */
10590
10591 static bfd_boolean
10592 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
10593 {
10594 struct elf32_arm_link_hash_entry * eh;
10595 struct elf32_arm_relocs_copied * p;
10596
10597 if (h->root.type == bfd_link_hash_warning)
10598 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10599
10600 eh = (struct elf32_arm_link_hash_entry *) h;
10601 for (p = eh->relocs_copied; p != NULL; p = p->next)
10602 {
10603 asection *s = p->section;
10604
10605 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10606 {
10607 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10608
10609 info->flags |= DF_TEXTREL;
10610
10611 /* Not an error, just cut short the traversal. */
10612 return FALSE;
10613 }
10614 }
10615 return TRUE;
10616 }
10617
10618 void
10619 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10620 int byteswap_code)
10621 {
10622 struct elf32_arm_link_hash_table *globals;
10623
10624 globals = elf32_arm_hash_table (info);
10625 globals->byteswap_code = byteswap_code;
10626 }
10627
10628 /* Set the sizes of the dynamic sections. */
10629
10630 static bfd_boolean
10631 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10632 struct bfd_link_info * info)
10633 {
10634 bfd * dynobj;
10635 asection * s;
10636 bfd_boolean plt;
10637 bfd_boolean relocs;
10638 bfd *ibfd;
10639 struct elf32_arm_link_hash_table *htab;
10640
10641 htab = elf32_arm_hash_table (info);
10642 dynobj = elf_hash_table (info)->dynobj;
10643 BFD_ASSERT (dynobj != NULL);
10644 check_use_blx (htab);
10645
10646 if (elf_hash_table (info)->dynamic_sections_created)
10647 {
10648 /* Set the contents of the .interp section to the interpreter. */
10649 if (info->executable)
10650 {
10651 s = bfd_get_section_by_name (dynobj, ".interp");
10652 BFD_ASSERT (s != NULL);
10653 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10654 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10655 }
10656 }
10657
10658 /* Set up .got offsets for local syms, and space for local dynamic
10659 relocs. */
10660 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10661 {
10662 bfd_signed_vma *local_got;
10663 bfd_signed_vma *end_local_got;
10664 char *local_tls_type;
10665 bfd_size_type locsymcount;
10666 Elf_Internal_Shdr *symtab_hdr;
10667 asection *srel;
10668 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10669
10670 if (! is_arm_elf (ibfd))
10671 continue;
10672
10673 for (s = ibfd->sections; s != NULL; s = s->next)
10674 {
10675 struct elf32_arm_relocs_copied *p;
10676
10677 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10678 {
10679 if (!bfd_is_abs_section (p->section)
10680 && bfd_is_abs_section (p->section->output_section))
10681 {
10682 /* Input section has been discarded, either because
10683 it is a copy of a linkonce section or due to
10684 linker script /DISCARD/, so we'll be discarding
10685 the relocs too. */
10686 }
10687 else if (is_vxworks
10688 && strcmp (p->section->output_section->name,
10689 ".tls_vars") == 0)
10690 {
10691 /* Relocations in vxworks .tls_vars sections are
10692 handled specially by the loader. */
10693 }
10694 else if (p->count != 0)
10695 {
10696 srel = elf_section_data (p->section)->sreloc;
10697 srel->size += p->count * RELOC_SIZE (htab);
10698 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10699 info->flags |= DF_TEXTREL;
10700 }
10701 }
10702 }
10703
10704 local_got = elf_local_got_refcounts (ibfd);
10705 if (!local_got)
10706 continue;
10707
10708 symtab_hdr = & elf_symtab_hdr (ibfd);
10709 locsymcount = symtab_hdr->sh_info;
10710 end_local_got = local_got + locsymcount;
10711 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10712 s = htab->sgot;
10713 srel = htab->srelgot;
10714 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10715 {
10716 if (*local_got > 0)
10717 {
10718 *local_got = s->size;
10719 if (*local_tls_type & GOT_TLS_GD)
10720 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10721 s->size += 8;
10722 if (*local_tls_type & GOT_TLS_IE)
10723 s->size += 4;
10724 if (*local_tls_type == GOT_NORMAL)
10725 s->size += 4;
10726
10727 if (info->shared || *local_tls_type == GOT_TLS_GD)
10728 srel->size += RELOC_SIZE (htab);
10729 }
10730 else
10731 *local_got = (bfd_vma) -1;
10732 }
10733 }
10734
10735 if (htab->tls_ldm_got.refcount > 0)
10736 {
10737 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10738 for R_ARM_TLS_LDM32 relocations. */
10739 htab->tls_ldm_got.offset = htab->sgot->size;
10740 htab->sgot->size += 8;
10741 if (info->shared)
10742 htab->srelgot->size += RELOC_SIZE (htab);
10743 }
10744 else
10745 htab->tls_ldm_got.offset = -1;
10746
10747 /* Allocate global sym .plt and .got entries, and space for global
10748 sym dynamic relocs. */
10749 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10750
10751 /* Here we rummage through the found bfds to collect glue information. */
10752 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10753 {
10754 if (! is_arm_elf (ibfd))
10755 continue;
10756
10757 /* Initialise mapping tables for code/data. */
10758 bfd_elf32_arm_init_maps (ibfd);
10759
10760 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10761 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10762 /* xgettext:c-format */
10763 _bfd_error_handler (_("Errors encountered processing file %s"),
10764 ibfd->filename);
10765 }
10766
10767 /* The check_relocs and adjust_dynamic_symbol entry points have
10768 determined the sizes of the various dynamic sections. Allocate
10769 memory for them. */
10770 plt = FALSE;
10771 relocs = FALSE;
10772 for (s = dynobj->sections; s != NULL; s = s->next)
10773 {
10774 const char * name;
10775
10776 if ((s->flags & SEC_LINKER_CREATED) == 0)
10777 continue;
10778
10779 /* It's OK to base decisions on the section name, because none
10780 of the dynobj section names depend upon the input files. */
10781 name = bfd_get_section_name (dynobj, s);
10782
10783 if (strcmp (name, ".plt") == 0)
10784 {
10785 /* Remember whether there is a PLT. */
10786 plt = s->size != 0;
10787 }
10788 else if (CONST_STRNEQ (name, ".rel"))
10789 {
10790 if (s->size != 0)
10791 {
10792 /* Remember whether there are any reloc sections other
10793 than .rel(a).plt and .rela.plt.unloaded. */
10794 if (s != htab->srelplt && s != htab->srelplt2)
10795 relocs = TRUE;
10796
10797 /* We use the reloc_count field as a counter if we need
10798 to copy relocs into the output file. */
10799 s->reloc_count = 0;
10800 }
10801 }
10802 else if (! CONST_STRNEQ (name, ".got")
10803 && strcmp (name, ".dynbss") != 0)
10804 {
10805 /* It's not one of our sections, so don't allocate space. */
10806 continue;
10807 }
10808
10809 if (s->size == 0)
10810 {
10811 /* If we don't need this section, strip it from the
10812 output file. This is mostly to handle .rel(a).bss and
10813 .rel(a).plt. We must create both sections in
10814 create_dynamic_sections, because they must be created
10815 before the linker maps input sections to output
10816 sections. The linker does that before
10817 adjust_dynamic_symbol is called, and it is that
10818 function which decides whether anything needs to go
10819 into these sections. */
10820 s->flags |= SEC_EXCLUDE;
10821 continue;
10822 }
10823
10824 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10825 continue;
10826
10827 /* Allocate memory for the section contents. */
10828 s->contents = bfd_zalloc (dynobj, s->size);
10829 if (s->contents == NULL)
10830 return FALSE;
10831 }
10832
10833 if (elf_hash_table (info)->dynamic_sections_created)
10834 {
10835 /* Add some entries to the .dynamic section. We fill in the
10836 values later, in elf32_arm_finish_dynamic_sections, but we
10837 must add the entries now so that we get the correct size for
10838 the .dynamic section. The DT_DEBUG entry is filled in by the
10839 dynamic linker and used by the debugger. */
10840 #define add_dynamic_entry(TAG, VAL) \
10841 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10842
10843 if (info->executable)
10844 {
10845 if (!add_dynamic_entry (DT_DEBUG, 0))
10846 return FALSE;
10847 }
10848
10849 if (plt)
10850 {
10851 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10852 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10853 || !add_dynamic_entry (DT_PLTREL,
10854 htab->use_rel ? DT_REL : DT_RELA)
10855 || !add_dynamic_entry (DT_JMPREL, 0))
10856 return FALSE;
10857 }
10858
10859 if (relocs)
10860 {
10861 if (htab->use_rel)
10862 {
10863 if (!add_dynamic_entry (DT_REL, 0)
10864 || !add_dynamic_entry (DT_RELSZ, 0)
10865 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10866 return FALSE;
10867 }
10868 else
10869 {
10870 if (!add_dynamic_entry (DT_RELA, 0)
10871 || !add_dynamic_entry (DT_RELASZ, 0)
10872 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10873 return FALSE;
10874 }
10875 }
10876
10877 /* If any dynamic relocs apply to a read-only section,
10878 then we need a DT_TEXTREL entry. */
10879 if ((info->flags & DF_TEXTREL) == 0)
10880 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10881 info);
10882
10883 if ((info->flags & DF_TEXTREL) != 0)
10884 {
10885 if (!add_dynamic_entry (DT_TEXTREL, 0))
10886 return FALSE;
10887 }
10888 if (htab->vxworks_p
10889 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10890 return FALSE;
10891 }
10892 #undef add_dynamic_entry
10893
10894 return TRUE;
10895 }
10896
10897 /* Finish up dynamic symbol handling. We set the contents of various
10898 dynamic sections here. */
10899
10900 static bfd_boolean
10901 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10902 struct bfd_link_info * info,
10903 struct elf_link_hash_entry * h,
10904 Elf_Internal_Sym * sym)
10905 {
10906 bfd * dynobj;
10907 struct elf32_arm_link_hash_table *htab;
10908 struct elf32_arm_link_hash_entry *eh;
10909
10910 dynobj = elf_hash_table (info)->dynobj;
10911 htab = elf32_arm_hash_table (info);
10912 eh = (struct elf32_arm_link_hash_entry *) h;
10913
10914 if (h->plt.offset != (bfd_vma) -1)
10915 {
10916 asection * splt;
10917 asection * srel;
10918 bfd_byte *loc;
10919 bfd_vma plt_index;
10920 Elf_Internal_Rela rel;
10921
10922 /* This symbol has an entry in the procedure linkage table. Set
10923 it up. */
10924
10925 BFD_ASSERT (h->dynindx != -1);
10926
10927 splt = bfd_get_section_by_name (dynobj, ".plt");
10928 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10929 BFD_ASSERT (splt != NULL && srel != NULL);
10930
10931 /* Fill in the entry in the procedure linkage table. */
10932 if (htab->symbian_p)
10933 {
10934 put_arm_insn (htab, output_bfd,
10935 elf32_arm_symbian_plt_entry[0],
10936 splt->contents + h->plt.offset);
10937 bfd_put_32 (output_bfd,
10938 elf32_arm_symbian_plt_entry[1],
10939 splt->contents + h->plt.offset + 4);
10940
10941 /* Fill in the entry in the .rel.plt section. */
10942 rel.r_offset = (splt->output_section->vma
10943 + splt->output_offset
10944 + h->plt.offset + 4);
10945 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10946
10947 /* Get the index in the procedure linkage table which
10948 corresponds to this symbol. This is the index of this symbol
10949 in all the symbols for which we are making plt entries. The
10950 first entry in the procedure linkage table is reserved. */
10951 plt_index = ((h->plt.offset - htab->plt_header_size)
10952 / htab->plt_entry_size);
10953 }
10954 else
10955 {
10956 bfd_vma got_offset, got_address, plt_address;
10957 bfd_vma got_displacement;
10958 asection * sgot;
10959 bfd_byte * ptr;
10960
10961 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10962 BFD_ASSERT (sgot != NULL);
10963
10964 /* Get the offset into the .got.plt table of the entry that
10965 corresponds to this function. */
10966 got_offset = eh->plt_got_offset;
10967
10968 /* Get the index in the procedure linkage table which
10969 corresponds to this symbol. This is the index of this symbol
10970 in all the symbols for which we are making plt entries. The
10971 first three entries in .got.plt are reserved; after that
10972 symbols appear in the same order as in .plt. */
10973 plt_index = (got_offset - 12) / 4;
10974
10975 /* Calculate the address of the GOT entry. */
10976 got_address = (sgot->output_section->vma
10977 + sgot->output_offset
10978 + got_offset);
10979
10980 /* ...and the address of the PLT entry. */
10981 plt_address = (splt->output_section->vma
10982 + splt->output_offset
10983 + h->plt.offset);
10984
10985 ptr = htab->splt->contents + h->plt.offset;
10986 if (htab->vxworks_p && info->shared)
10987 {
10988 unsigned int i;
10989 bfd_vma val;
10990
10991 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10992 {
10993 val = elf32_arm_vxworks_shared_plt_entry[i];
10994 if (i == 2)
10995 val |= got_address - sgot->output_section->vma;
10996 if (i == 5)
10997 val |= plt_index * RELOC_SIZE (htab);
10998 if (i == 2 || i == 5)
10999 bfd_put_32 (output_bfd, val, ptr);
11000 else
11001 put_arm_insn (htab, output_bfd, val, ptr);
11002 }
11003 }
11004 else if (htab->vxworks_p)
11005 {
11006 unsigned int i;
11007 bfd_vma val;
11008
11009 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
11010 {
11011 val = elf32_arm_vxworks_exec_plt_entry[i];
11012 if (i == 2)
11013 val |= got_address;
11014 if (i == 4)
11015 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
11016 if (i == 5)
11017 val |= plt_index * RELOC_SIZE (htab);
11018 if (i == 2 || i == 5)
11019 bfd_put_32 (output_bfd, val, ptr);
11020 else
11021 put_arm_insn (htab, output_bfd, val, ptr);
11022 }
11023
11024 loc = (htab->srelplt2->contents
11025 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
11026
11027 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
11028 referencing the GOT for this PLT entry. */
11029 rel.r_offset = plt_address + 8;
11030 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11031 rel.r_addend = got_offset;
11032 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11033 loc += RELOC_SIZE (htab);
11034
11035 /* Create the R_ARM_ABS32 relocation referencing the
11036 beginning of the PLT for this GOT entry. */
11037 rel.r_offset = got_address;
11038 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11039 rel.r_addend = 0;
11040 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11041 }
11042 else
11043 {
11044 bfd_signed_vma thumb_refs;
11045 /* Calculate the displacement between the PLT slot and the
11046 entry in the GOT. The eight-byte offset accounts for the
11047 value produced by adding to pc in the first instruction
11048 of the PLT stub. */
11049 got_displacement = got_address - (plt_address + 8);
11050
11051 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
11052
11053 thumb_refs = eh->plt_thumb_refcount;
11054 if (!htab->use_blx)
11055 thumb_refs += eh->plt_maybe_thumb_refcount;
11056
11057 if (thumb_refs > 0)
11058 {
11059 put_thumb_insn (htab, output_bfd,
11060 elf32_arm_plt_thumb_stub[0], ptr - 4);
11061 put_thumb_insn (htab, output_bfd,
11062 elf32_arm_plt_thumb_stub[1], ptr - 2);
11063 }
11064
11065 put_arm_insn (htab, output_bfd,
11066 elf32_arm_plt_entry[0]
11067 | ((got_displacement & 0x0ff00000) >> 20),
11068 ptr + 0);
11069 put_arm_insn (htab, output_bfd,
11070 elf32_arm_plt_entry[1]
11071 | ((got_displacement & 0x000ff000) >> 12),
11072 ptr+ 4);
11073 put_arm_insn (htab, output_bfd,
11074 elf32_arm_plt_entry[2]
11075 | (got_displacement & 0x00000fff),
11076 ptr + 8);
11077 #ifdef FOUR_WORD_PLT
11078 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
11079 #endif
11080 }
11081
11082 /* Fill in the entry in the global offset table. */
11083 bfd_put_32 (output_bfd,
11084 (splt->output_section->vma
11085 + splt->output_offset),
11086 sgot->contents + got_offset);
11087
11088 /* Fill in the entry in the .rel(a).plt section. */
11089 rel.r_addend = 0;
11090 rel.r_offset = got_address;
11091 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
11092 }
11093
11094 loc = srel->contents + plt_index * RELOC_SIZE (htab);
11095 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11096
11097 if (!h->def_regular)
11098 {
11099 /* Mark the symbol as undefined, rather than as defined in
11100 the .plt section. Leave the value alone. */
11101 sym->st_shndx = SHN_UNDEF;
11102 /* If the symbol is weak, we do need to clear the value.
11103 Otherwise, the PLT entry would provide a definition for
11104 the symbol even if the symbol wasn't defined anywhere,
11105 and so the symbol would never be NULL. */
11106 if (!h->ref_regular_nonweak)
11107 sym->st_value = 0;
11108 }
11109 }
11110
11111 if (h->got.offset != (bfd_vma) -1
11112 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
11113 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
11114 {
11115 asection * sgot;
11116 asection * srel;
11117 Elf_Internal_Rela rel;
11118 bfd_byte *loc;
11119 bfd_vma offset;
11120
11121 /* This symbol has an entry in the global offset table. Set it
11122 up. */
11123 sgot = bfd_get_section_by_name (dynobj, ".got");
11124 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
11125 BFD_ASSERT (sgot != NULL && srel != NULL);
11126
11127 offset = (h->got.offset & ~(bfd_vma) 1);
11128 rel.r_addend = 0;
11129 rel.r_offset = (sgot->output_section->vma
11130 + sgot->output_offset
11131 + offset);
11132
11133 /* If this is a static link, or it is a -Bsymbolic link and the
11134 symbol is defined locally or was forced to be local because
11135 of a version file, we just want to emit a RELATIVE reloc.
11136 The entry in the global offset table will already have been
11137 initialized in the relocate_section function. */
11138 if (info->shared
11139 && SYMBOL_REFERENCES_LOCAL (info, h))
11140 {
11141 BFD_ASSERT ((h->got.offset & 1) != 0);
11142 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11143 if (!htab->use_rel)
11144 {
11145 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
11146 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11147 }
11148 }
11149 else
11150 {
11151 BFD_ASSERT ((h->got.offset & 1) == 0);
11152 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11153 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11154 }
11155
11156 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
11157 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11158 }
11159
11160 if (h->needs_copy)
11161 {
11162 asection * s;
11163 Elf_Internal_Rela rel;
11164 bfd_byte *loc;
11165
11166 /* This symbol needs a copy reloc. Set it up. */
11167 BFD_ASSERT (h->dynindx != -1
11168 && (h->root.type == bfd_link_hash_defined
11169 || h->root.type == bfd_link_hash_defweak));
11170
11171 s = bfd_get_section_by_name (h->root.u.def.section->owner,
11172 RELOC_SECTION (htab, ".bss"));
11173 BFD_ASSERT (s != NULL);
11174
11175 rel.r_addend = 0;
11176 rel.r_offset = (h->root.u.def.value
11177 + h->root.u.def.section->output_section->vma
11178 + h->root.u.def.section->output_offset);
11179 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
11180 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
11181 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11182 }
11183
11184 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
11185 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
11186 to the ".got" section. */
11187 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
11188 || (!htab->vxworks_p && h == htab->root.hgot))
11189 sym->st_shndx = SHN_ABS;
11190
11191 return TRUE;
11192 }
11193
11194 /* Finish up the dynamic sections. */
11195
11196 static bfd_boolean
11197 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
11198 {
11199 bfd * dynobj;
11200 asection * sgot;
11201 asection * sdyn;
11202
11203 dynobj = elf_hash_table (info)->dynobj;
11204
11205 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
11206 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
11207 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11208
11209 if (elf_hash_table (info)->dynamic_sections_created)
11210 {
11211 asection *splt;
11212 Elf32_External_Dyn *dyncon, *dynconend;
11213 struct elf32_arm_link_hash_table *htab;
11214
11215 htab = elf32_arm_hash_table (info);
11216 splt = bfd_get_section_by_name (dynobj, ".plt");
11217 BFD_ASSERT (splt != NULL && sdyn != NULL);
11218
11219 dyncon = (Elf32_External_Dyn *) sdyn->contents;
11220 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
11221
11222 for (; dyncon < dynconend; dyncon++)
11223 {
11224 Elf_Internal_Dyn dyn;
11225 const char * name;
11226 asection * s;
11227
11228 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
11229
11230 switch (dyn.d_tag)
11231 {
11232 unsigned int type;
11233
11234 default:
11235 if (htab->vxworks_p
11236 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11237 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11238 break;
11239
11240 case DT_HASH:
11241 name = ".hash";
11242 goto get_vma_if_bpabi;
11243 case DT_STRTAB:
11244 name = ".dynstr";
11245 goto get_vma_if_bpabi;
11246 case DT_SYMTAB:
11247 name = ".dynsym";
11248 goto get_vma_if_bpabi;
11249 case DT_VERSYM:
11250 name = ".gnu.version";
11251 goto get_vma_if_bpabi;
11252 case DT_VERDEF:
11253 name = ".gnu.version_d";
11254 goto get_vma_if_bpabi;
11255 case DT_VERNEED:
11256 name = ".gnu.version_r";
11257 goto get_vma_if_bpabi;
11258
11259 case DT_PLTGOT:
11260 name = ".got";
11261 goto get_vma;
11262 case DT_JMPREL:
11263 name = RELOC_SECTION (htab, ".plt");
11264 get_vma:
11265 s = bfd_get_section_by_name (output_bfd, name);
11266 BFD_ASSERT (s != NULL);
11267 if (!htab->symbian_p)
11268 dyn.d_un.d_ptr = s->vma;
11269 else
11270 /* In the BPABI, tags in the PT_DYNAMIC section point
11271 at the file offset, not the memory address, for the
11272 convenience of the post linker. */
11273 dyn.d_un.d_ptr = s->filepos;
11274 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11275 break;
11276
11277 get_vma_if_bpabi:
11278 if (htab->symbian_p)
11279 goto get_vma;
11280 break;
11281
11282 case DT_PLTRELSZ:
11283 s = bfd_get_section_by_name (output_bfd,
11284 RELOC_SECTION (htab, ".plt"));
11285 BFD_ASSERT (s != NULL);
11286 dyn.d_un.d_val = s->size;
11287 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11288 break;
11289
11290 case DT_RELSZ:
11291 case DT_RELASZ:
11292 if (!htab->symbian_p)
11293 {
11294 /* My reading of the SVR4 ABI indicates that the
11295 procedure linkage table relocs (DT_JMPREL) should be
11296 included in the overall relocs (DT_REL). This is
11297 what Solaris does. However, UnixWare can not handle
11298 that case. Therefore, we override the DT_RELSZ entry
11299 here to make it not include the JMPREL relocs. Since
11300 the linker script arranges for .rel(a).plt to follow all
11301 other relocation sections, we don't have to worry
11302 about changing the DT_REL entry. */
11303 s = bfd_get_section_by_name (output_bfd,
11304 RELOC_SECTION (htab, ".plt"));
11305 if (s != NULL)
11306 dyn.d_un.d_val -= s->size;
11307 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11308 break;
11309 }
11310 /* Fall through. */
11311
11312 case DT_REL:
11313 case DT_RELA:
11314 /* In the BPABI, the DT_REL tag must point at the file
11315 offset, not the VMA, of the first relocation
11316 section. So, we use code similar to that in
11317 elflink.c, but do not check for SHF_ALLOC on the
11318 relcoation section, since relocations sections are
11319 never allocated under the BPABI. The comments above
11320 about Unixware notwithstanding, we include all of the
11321 relocations here. */
11322 if (htab->symbian_p)
11323 {
11324 unsigned int i;
11325 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11326 ? SHT_REL : SHT_RELA);
11327 dyn.d_un.d_val = 0;
11328 for (i = 1; i < elf_numsections (output_bfd); i++)
11329 {
11330 Elf_Internal_Shdr *hdr
11331 = elf_elfsections (output_bfd)[i];
11332 if (hdr->sh_type == type)
11333 {
11334 if (dyn.d_tag == DT_RELSZ
11335 || dyn.d_tag == DT_RELASZ)
11336 dyn.d_un.d_val += hdr->sh_size;
11337 else if ((ufile_ptr) hdr->sh_offset
11338 <= dyn.d_un.d_val - 1)
11339 dyn.d_un.d_val = hdr->sh_offset;
11340 }
11341 }
11342 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11343 }
11344 break;
11345
11346 /* Set the bottom bit of DT_INIT/FINI if the
11347 corresponding function is Thumb. */
11348 case DT_INIT:
11349 name = info->init_function;
11350 goto get_sym;
11351 case DT_FINI:
11352 name = info->fini_function;
11353 get_sym:
11354 /* If it wasn't set by elf_bfd_final_link
11355 then there is nothing to adjust. */
11356 if (dyn.d_un.d_val != 0)
11357 {
11358 struct elf_link_hash_entry * eh;
11359
11360 eh = elf_link_hash_lookup (elf_hash_table (info), name,
11361 FALSE, FALSE, TRUE);
11362 if (eh != NULL
11363 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
11364 {
11365 dyn.d_un.d_val |= 1;
11366 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11367 }
11368 }
11369 break;
11370 }
11371 }
11372
11373 /* Fill in the first entry in the procedure linkage table. */
11374 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
11375 {
11376 const bfd_vma *plt0_entry;
11377 bfd_vma got_address, plt_address, got_displacement;
11378
11379 /* Calculate the addresses of the GOT and PLT. */
11380 got_address = sgot->output_section->vma + sgot->output_offset;
11381 plt_address = splt->output_section->vma + splt->output_offset;
11382
11383 if (htab->vxworks_p)
11384 {
11385 /* The VxWorks GOT is relocated by the dynamic linker.
11386 Therefore, we must emit relocations rather than simply
11387 computing the values now. */
11388 Elf_Internal_Rela rel;
11389
11390 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
11391 put_arm_insn (htab, output_bfd, plt0_entry[0],
11392 splt->contents + 0);
11393 put_arm_insn (htab, output_bfd, plt0_entry[1],
11394 splt->contents + 4);
11395 put_arm_insn (htab, output_bfd, plt0_entry[2],
11396 splt->contents + 8);
11397 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
11398
11399 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
11400 rel.r_offset = plt_address + 12;
11401 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11402 rel.r_addend = 0;
11403 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
11404 htab->srelplt2->contents);
11405 }
11406 else
11407 {
11408 got_displacement = got_address - (plt_address + 16);
11409
11410 plt0_entry = elf32_arm_plt0_entry;
11411 put_arm_insn (htab, output_bfd, plt0_entry[0],
11412 splt->contents + 0);
11413 put_arm_insn (htab, output_bfd, plt0_entry[1],
11414 splt->contents + 4);
11415 put_arm_insn (htab, output_bfd, plt0_entry[2],
11416 splt->contents + 8);
11417 put_arm_insn (htab, output_bfd, plt0_entry[3],
11418 splt->contents + 12);
11419
11420 #ifdef FOUR_WORD_PLT
11421 /* The displacement value goes in the otherwise-unused
11422 last word of the second entry. */
11423 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
11424 #else
11425 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
11426 #endif
11427 }
11428 }
11429
11430 /* UnixWare sets the entsize of .plt to 4, although that doesn't
11431 really seem like the right value. */
11432 if (splt->output_section->owner == output_bfd)
11433 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
11434
11435 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
11436 {
11437 /* Correct the .rel(a).plt.unloaded relocations. They will have
11438 incorrect symbol indexes. */
11439 int num_plts;
11440 unsigned char *p;
11441
11442 num_plts = ((htab->splt->size - htab->plt_header_size)
11443 / htab->plt_entry_size);
11444 p = htab->srelplt2->contents + RELOC_SIZE (htab);
11445
11446 for (; num_plts; num_plts--)
11447 {
11448 Elf_Internal_Rela rel;
11449
11450 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11451 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11452 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11453 p += RELOC_SIZE (htab);
11454
11455 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11456 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11457 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11458 p += RELOC_SIZE (htab);
11459 }
11460 }
11461 }
11462
11463 /* Fill in the first three entries in the global offset table. */
11464 if (sgot)
11465 {
11466 if (sgot->size > 0)
11467 {
11468 if (sdyn == NULL)
11469 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
11470 else
11471 bfd_put_32 (output_bfd,
11472 sdyn->output_section->vma + sdyn->output_offset,
11473 sgot->contents);
11474 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
11475 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
11476 }
11477
11478 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
11479 }
11480
11481 return TRUE;
11482 }
11483
11484 static void
11485 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11486 {
11487 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11488 struct elf32_arm_link_hash_table *globals;
11489
11490 i_ehdrp = elf_elfheader (abfd);
11491
11492 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
11493 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
11494 else
11495 i_ehdrp->e_ident[EI_OSABI] = 0;
11496 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
11497
11498 if (link_info)
11499 {
11500 globals = elf32_arm_hash_table (link_info);
11501 if (globals->byteswap_code)
11502 i_ehdrp->e_flags |= EF_ARM_BE8;
11503 }
11504 }
11505
11506 static enum elf_reloc_type_class
11507 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
11508 {
11509 switch ((int) ELF32_R_TYPE (rela->r_info))
11510 {
11511 case R_ARM_RELATIVE:
11512 return reloc_class_relative;
11513 case R_ARM_JUMP_SLOT:
11514 return reloc_class_plt;
11515 case R_ARM_COPY:
11516 return reloc_class_copy;
11517 default:
11518 return reloc_class_normal;
11519 }
11520 }
11521
11522 /* Set the right machine number for an Arm ELF file. */
11523
11524 static bfd_boolean
11525 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
11526 {
11527 if (hdr->sh_type == SHT_NOTE)
11528 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
11529
11530 return TRUE;
11531 }
11532
11533 static void
11534 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
11535 {
11536 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
11537 }
11538
11539 /* Return TRUE if this is an unwinding table entry. */
11540
11541 static bfd_boolean
11542 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
11543 {
11544 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
11545 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
11546 }
11547
11548
11549 /* Set the type and flags for an ARM section. We do this by
11550 the section name, which is a hack, but ought to work. */
11551
11552 static bfd_boolean
11553 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
11554 {
11555 const char * name;
11556
11557 name = bfd_get_section_name (abfd, sec);
11558
11559 if (is_arm_elf_unwind_section_name (abfd, name))
11560 {
11561 hdr->sh_type = SHT_ARM_EXIDX;
11562 hdr->sh_flags |= SHF_LINK_ORDER;
11563 }
11564 return TRUE;
11565 }
11566
11567 /* Handle an ARM specific section when reading an object file. This is
11568 called when bfd_section_from_shdr finds a section with an unknown
11569 type. */
11570
11571 static bfd_boolean
11572 elf32_arm_section_from_shdr (bfd *abfd,
11573 Elf_Internal_Shdr * hdr,
11574 const char *name,
11575 int shindex)
11576 {
11577 /* There ought to be a place to keep ELF backend specific flags, but
11578 at the moment there isn't one. We just keep track of the
11579 sections by their name, instead. Fortunately, the ABI gives
11580 names for all the ARM specific sections, so we will probably get
11581 away with this. */
11582 switch (hdr->sh_type)
11583 {
11584 case SHT_ARM_EXIDX:
11585 case SHT_ARM_PREEMPTMAP:
11586 case SHT_ARM_ATTRIBUTES:
11587 break;
11588
11589 default:
11590 return FALSE;
11591 }
11592
11593 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
11594 return FALSE;
11595
11596 return TRUE;
11597 }
11598
11599 /* A structure used to record a list of sections, independently
11600 of the next and prev fields in the asection structure. */
11601 typedef struct section_list
11602 {
11603 asection * sec;
11604 struct section_list * next;
11605 struct section_list * prev;
11606 }
11607 section_list;
11608
11609 /* Unfortunately we need to keep a list of sections for which
11610 an _arm_elf_section_data structure has been allocated. This
11611 is because it is possible for functions like elf32_arm_write_section
11612 to be called on a section which has had an elf_data_structure
11613 allocated for it (and so the used_by_bfd field is valid) but
11614 for which the ARM extended version of this structure - the
11615 _arm_elf_section_data structure - has not been allocated. */
11616 static section_list * sections_with_arm_elf_section_data = NULL;
11617
11618 static void
11619 record_section_with_arm_elf_section_data (asection * sec)
11620 {
11621 struct section_list * entry;
11622
11623 entry = bfd_malloc (sizeof (* entry));
11624 if (entry == NULL)
11625 return;
11626 entry->sec = sec;
11627 entry->next = sections_with_arm_elf_section_data;
11628 entry->prev = NULL;
11629 if (entry->next != NULL)
11630 entry->next->prev = entry;
11631 sections_with_arm_elf_section_data = entry;
11632 }
11633
11634 static struct section_list *
11635 find_arm_elf_section_entry (asection * sec)
11636 {
11637 struct section_list * entry;
11638 static struct section_list * last_entry = NULL;
11639
11640 /* This is a short cut for the typical case where the sections are added
11641 to the sections_with_arm_elf_section_data list in forward order and
11642 then looked up here in backwards order. This makes a real difference
11643 to the ld-srec/sec64k.exp linker test. */
11644 entry = sections_with_arm_elf_section_data;
11645 if (last_entry != NULL)
11646 {
11647 if (last_entry->sec == sec)
11648 entry = last_entry;
11649 else if (last_entry->next != NULL
11650 && last_entry->next->sec == sec)
11651 entry = last_entry->next;
11652 }
11653
11654 for (; entry; entry = entry->next)
11655 if (entry->sec == sec)
11656 break;
11657
11658 if (entry)
11659 /* Record the entry prior to this one - it is the entry we are most
11660 likely to want to locate next time. Also this way if we have been
11661 called from unrecord_section_with_arm_elf_section_data() we will not
11662 be caching a pointer that is about to be freed. */
11663 last_entry = entry->prev;
11664
11665 return entry;
11666 }
11667
11668 static _arm_elf_section_data *
11669 get_arm_elf_section_data (asection * sec)
11670 {
11671 struct section_list * entry;
11672
11673 entry = find_arm_elf_section_entry (sec);
11674
11675 if (entry)
11676 return elf32_arm_section_data (entry->sec);
11677 else
11678 return NULL;
11679 }
11680
11681 static void
11682 unrecord_section_with_arm_elf_section_data (asection * sec)
11683 {
11684 struct section_list * entry;
11685
11686 entry = find_arm_elf_section_entry (sec);
11687
11688 if (entry)
11689 {
11690 if (entry->prev != NULL)
11691 entry->prev->next = entry->next;
11692 if (entry->next != NULL)
11693 entry->next->prev = entry->prev;
11694 if (entry == sections_with_arm_elf_section_data)
11695 sections_with_arm_elf_section_data = entry->next;
11696 free (entry);
11697 }
11698 }
11699
11700
11701 typedef struct
11702 {
11703 void *finfo;
11704 struct bfd_link_info *info;
11705 asection *sec;
11706 int sec_shndx;
11707 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11708 asection *, struct elf_link_hash_entry *);
11709 } output_arch_syminfo;
11710
11711 enum map_symbol_type
11712 {
11713 ARM_MAP_ARM,
11714 ARM_MAP_THUMB,
11715 ARM_MAP_DATA
11716 };
11717
11718
11719 /* Output a single mapping symbol. */
11720
11721 static bfd_boolean
11722 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11723 enum map_symbol_type type,
11724 bfd_vma offset)
11725 {
11726 static const char *names[3] = {"$a", "$t", "$d"};
11727 struct elf32_arm_link_hash_table *htab;
11728 Elf_Internal_Sym sym;
11729
11730 htab = elf32_arm_hash_table (osi->info);
11731 sym.st_value = osi->sec->output_section->vma
11732 + osi->sec->output_offset
11733 + offset;
11734 sym.st_size = 0;
11735 sym.st_other = 0;
11736 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11737 sym.st_shndx = osi->sec_shndx;
11738 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11739 return FALSE;
11740 return TRUE;
11741 }
11742
11743
11744 /* Output mapping symbols for PLT entries associated with H. */
11745
11746 static bfd_boolean
11747 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11748 {
11749 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11750 struct elf32_arm_link_hash_table *htab;
11751 struct elf32_arm_link_hash_entry *eh;
11752 bfd_vma addr;
11753
11754 htab = elf32_arm_hash_table (osi->info);
11755
11756 if (h->root.type == bfd_link_hash_indirect)
11757 return TRUE;
11758
11759 if (h->root.type == bfd_link_hash_warning)
11760 /* When warning symbols are created, they **replace** the "real"
11761 entry in the hash table, thus we never get to see the real
11762 symbol in a hash traversal. So look at it now. */
11763 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11764
11765 if (h->plt.offset == (bfd_vma) -1)
11766 return TRUE;
11767
11768 eh = (struct elf32_arm_link_hash_entry *) h;
11769 addr = h->plt.offset;
11770 if (htab->symbian_p)
11771 {
11772 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11773 return FALSE;
11774 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11775 return FALSE;
11776 }
11777 else if (htab->vxworks_p)
11778 {
11779 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11780 return FALSE;
11781 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11782 return FALSE;
11783 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11784 return FALSE;
11785 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11786 return FALSE;
11787 }
11788 else
11789 {
11790 bfd_signed_vma thumb_refs;
11791
11792 thumb_refs = eh->plt_thumb_refcount;
11793 if (!htab->use_blx)
11794 thumb_refs += eh->plt_maybe_thumb_refcount;
11795
11796 if (thumb_refs > 0)
11797 {
11798 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11799 return FALSE;
11800 }
11801 #ifdef FOUR_WORD_PLT
11802 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11803 return FALSE;
11804 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11805 return FALSE;
11806 #else
11807 /* A three-word PLT with no Thumb thunk contains only Arm code,
11808 so only need to output a mapping symbol for the first PLT entry and
11809 entries with thumb thunks. */
11810 if (thumb_refs > 0 || addr == 20)
11811 {
11812 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11813 return FALSE;
11814 }
11815 #endif
11816 }
11817
11818 return TRUE;
11819 }
11820
11821 /* Output a single local symbol for a generated stub. */
11822
11823 static bfd_boolean
11824 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11825 bfd_vma offset, bfd_vma size)
11826 {
11827 struct elf32_arm_link_hash_table *htab;
11828 Elf_Internal_Sym sym;
11829
11830 htab = elf32_arm_hash_table (osi->info);
11831 sym.st_value = osi->sec->output_section->vma
11832 + osi->sec->output_offset
11833 + offset;
11834 sym.st_size = size;
11835 sym.st_other = 0;
11836 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11837 sym.st_shndx = osi->sec_shndx;
11838 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11839 return FALSE;
11840 return TRUE;
11841 }
11842
11843 static bfd_boolean
11844 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11845 void * in_arg)
11846 {
11847 struct elf32_arm_stub_hash_entry *stub_entry;
11848 struct bfd_link_info *info;
11849 struct elf32_arm_link_hash_table *htab;
11850 asection *stub_sec;
11851 bfd_vma addr;
11852 char *stub_name;
11853 output_arch_syminfo *osi;
11854 const insn_sequence *template;
11855 enum stub_insn_type prev_type;
11856 int size;
11857 int i;
11858 enum map_symbol_type sym_type;
11859
11860 /* Massage our args to the form they really have. */
11861 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11862 osi = (output_arch_syminfo *) in_arg;
11863
11864 info = osi->info;
11865
11866 htab = elf32_arm_hash_table (info);
11867 stub_sec = stub_entry->stub_sec;
11868
11869 /* Ensure this stub is attached to the current section being
11870 processed. */
11871 if (stub_sec != osi->sec)
11872 return TRUE;
11873
11874 addr = (bfd_vma) stub_entry->stub_offset;
11875 stub_name = stub_entry->output_name;
11876
11877 template = stub_entry->stub_template;
11878 switch (template[0].type)
11879 {
11880 case ARM_TYPE:
11881 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
11882 return FALSE;
11883 break;
11884 case THUMB16_TYPE:
11885 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
11886 stub_entry->stub_size))
11887 return FALSE;
11888 break;
11889 default:
11890 BFD_FAIL ();
11891 return FALSE;
11892 }
11893
11894 prev_type = DATA_TYPE;
11895 size = 0;
11896 for (i = 0; i < stub_entry->stub_template_size; i++)
11897 {
11898 switch (template[i].type)
11899 {
11900 case ARM_TYPE:
11901 sym_type = ARM_MAP_ARM;
11902 break;
11903
11904 case THUMB16_TYPE:
11905 sym_type = ARM_MAP_THUMB;
11906 break;
11907
11908 case DATA_TYPE:
11909 sym_type = ARM_MAP_DATA;
11910 break;
11911
11912 default:
11913 BFD_FAIL ();
11914 return FALSE;
11915 }
11916
11917 if (template[i].type != prev_type)
11918 {
11919 prev_type = template[i].type;
11920 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
11921 return FALSE;
11922 }
11923
11924 switch (template[i].type)
11925 {
11926 case ARM_TYPE:
11927 size += 4;
11928 break;
11929
11930 case THUMB16_TYPE:
11931 size += 2;
11932 break;
11933
11934 case DATA_TYPE:
11935 size += 4;
11936 break;
11937
11938 default:
11939 BFD_FAIL ();
11940 return FALSE;
11941 }
11942 }
11943
11944 return TRUE;
11945 }
11946
11947 /* Output mapping symbols for linker generated sections. */
11948
11949 static bfd_boolean
11950 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11951 struct bfd_link_info *info,
11952 void *finfo,
11953 bfd_boolean (*func) (void *, const char *,
11954 Elf_Internal_Sym *,
11955 asection *,
11956 struct elf_link_hash_entry *))
11957 {
11958 output_arch_syminfo osi;
11959 struct elf32_arm_link_hash_table *htab;
11960 bfd_vma offset;
11961 bfd_size_type size;
11962
11963 htab = elf32_arm_hash_table (info);
11964 check_use_blx (htab);
11965
11966 osi.finfo = finfo;
11967 osi.info = info;
11968 osi.func = func;
11969
11970 /* ARM->Thumb glue. */
11971 if (htab->arm_glue_size > 0)
11972 {
11973 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11974 ARM2THUMB_GLUE_SECTION_NAME);
11975
11976 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11977 (output_bfd, osi.sec->output_section);
11978 if (info->shared || htab->root.is_relocatable_executable
11979 || htab->pic_veneer)
11980 size = ARM2THUMB_PIC_GLUE_SIZE;
11981 else if (htab->use_blx)
11982 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11983 else
11984 size = ARM2THUMB_STATIC_GLUE_SIZE;
11985
11986 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11987 {
11988 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11989 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11990 }
11991 }
11992
11993 /* Thumb->ARM glue. */
11994 if (htab->thumb_glue_size > 0)
11995 {
11996 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11997 THUMB2ARM_GLUE_SECTION_NAME);
11998
11999 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12000 (output_bfd, osi.sec->output_section);
12001 size = THUMB2ARM_GLUE_SIZE;
12002
12003 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
12004 {
12005 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
12006 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
12007 }
12008 }
12009
12010 /* ARMv4 BX veneers. */
12011 if (htab->bx_glue_size > 0)
12012 {
12013 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12014 ARM_BX_GLUE_SECTION_NAME);
12015
12016 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12017 (output_bfd, osi.sec->output_section);
12018
12019 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
12020 }
12021
12022 /* Long calls stubs. */
12023 if (htab->stub_bfd && htab->stub_bfd->sections)
12024 {
12025 asection* stub_sec;
12026
12027 for (stub_sec = htab->stub_bfd->sections;
12028 stub_sec != NULL;
12029 stub_sec = stub_sec->next)
12030 {
12031 /* Ignore non-stub sections. */
12032 if (!strstr (stub_sec->name, STUB_SUFFIX))
12033 continue;
12034
12035 osi.sec = stub_sec;
12036
12037 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12038 (output_bfd, osi.sec->output_section);
12039
12040 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
12041 }
12042 }
12043
12044 /* Finally, output mapping symbols for the PLT. */
12045 if (!htab->splt || htab->splt->size == 0)
12046 return TRUE;
12047
12048 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
12049 htab->splt->output_section);
12050 osi.sec = htab->splt;
12051 /* Output mapping symbols for the plt header. SymbianOS does not have a
12052 plt header. */
12053 if (htab->vxworks_p)
12054 {
12055 /* VxWorks shared libraries have no PLT header. */
12056 if (!info->shared)
12057 {
12058 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
12059 return FALSE;
12060 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
12061 return FALSE;
12062 }
12063 }
12064 else if (!htab->symbian_p)
12065 {
12066 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
12067 return FALSE;
12068 #ifndef FOUR_WORD_PLT
12069 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
12070 return FALSE;
12071 #endif
12072 }
12073
12074 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
12075 return TRUE;
12076 }
12077
12078 /* Allocate target specific section data. */
12079
12080 static bfd_boolean
12081 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
12082 {
12083 if (!sec->used_by_bfd)
12084 {
12085 _arm_elf_section_data *sdata;
12086 bfd_size_type amt = sizeof (*sdata);
12087
12088 sdata = bfd_zalloc (abfd, amt);
12089 if (sdata == NULL)
12090 return FALSE;
12091 sec->used_by_bfd = sdata;
12092 }
12093
12094 record_section_with_arm_elf_section_data (sec);
12095
12096 return _bfd_elf_new_section_hook (abfd, sec);
12097 }
12098
12099
12100 /* Used to order a list of mapping symbols by address. */
12101
12102 static int
12103 elf32_arm_compare_mapping (const void * a, const void * b)
12104 {
12105 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
12106 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
12107
12108 if (amap->vma > bmap->vma)
12109 return 1;
12110 else if (amap->vma < bmap->vma)
12111 return -1;
12112 else if (amap->type > bmap->type)
12113 /* Ensure results do not depend on the host qsort for objects with
12114 multiple mapping symbols at the same address by sorting on type
12115 after vma. */
12116 return 1;
12117 else if (amap->type < bmap->type)
12118 return -1;
12119 else
12120 return 0;
12121 }
12122
12123
12124 /* Do code byteswapping. Return FALSE afterwards so that the section is
12125 written out as normal. */
12126
12127 static bfd_boolean
12128 elf32_arm_write_section (bfd *output_bfd,
12129 struct bfd_link_info *link_info,
12130 asection *sec,
12131 bfd_byte *contents)
12132 {
12133 int mapcount, errcount;
12134 _arm_elf_section_data *arm_data;
12135 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
12136 elf32_arm_section_map *map;
12137 elf32_vfp11_erratum_list *errnode;
12138 bfd_vma ptr;
12139 bfd_vma end;
12140 bfd_vma offset = sec->output_section->vma + sec->output_offset;
12141 bfd_byte tmp;
12142 int i;
12143
12144 /* If this section has not been allocated an _arm_elf_section_data
12145 structure then we cannot record anything. */
12146 arm_data = get_arm_elf_section_data (sec);
12147 if (arm_data == NULL)
12148 return FALSE;
12149
12150 mapcount = arm_data->mapcount;
12151 map = arm_data->map;
12152 errcount = arm_data->erratumcount;
12153
12154 if (errcount != 0)
12155 {
12156 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
12157
12158 for (errnode = arm_data->erratumlist; errnode != 0;
12159 errnode = errnode->next)
12160 {
12161 bfd_vma index = errnode->vma - offset;
12162
12163 switch (errnode->type)
12164 {
12165 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
12166 {
12167 bfd_vma branch_to_veneer;
12168 /* Original condition code of instruction, plus bit mask for
12169 ARM B instruction. */
12170 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
12171 | 0x0a000000;
12172
12173 /* The instruction is before the label. */
12174 index -= 4;
12175
12176 /* Above offset included in -4 below. */
12177 branch_to_veneer = errnode->u.b.veneer->vma
12178 - errnode->vma - 4;
12179
12180 if ((signed) branch_to_veneer < -(1 << 25)
12181 || (signed) branch_to_veneer >= (1 << 25))
12182 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12183 "range"), output_bfd);
12184
12185 insn |= (branch_to_veneer >> 2) & 0xffffff;
12186 contents[endianflip ^ index] = insn & 0xff;
12187 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12188 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12189 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12190 }
12191 break;
12192
12193 case VFP11_ERRATUM_ARM_VENEER:
12194 {
12195 bfd_vma branch_from_veneer;
12196 unsigned int insn;
12197
12198 /* Take size of veneer into account. */
12199 branch_from_veneer = errnode->u.v.branch->vma
12200 - errnode->vma - 12;
12201
12202 if ((signed) branch_from_veneer < -(1 << 25)
12203 || (signed) branch_from_veneer >= (1 << 25))
12204 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12205 "range"), output_bfd);
12206
12207 /* Original instruction. */
12208 insn = errnode->u.v.branch->u.b.vfp_insn;
12209 contents[endianflip ^ index] = insn & 0xff;
12210 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12211 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12212 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12213
12214 /* Branch back to insn after original insn. */
12215 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
12216 contents[endianflip ^ (index + 4)] = insn & 0xff;
12217 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
12218 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
12219 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
12220 }
12221 break;
12222
12223 default:
12224 abort ();
12225 }
12226 }
12227 }
12228
12229 if (mapcount == 0)
12230 return FALSE;
12231
12232 if (globals->byteswap_code)
12233 {
12234 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
12235
12236 ptr = map[0].vma;
12237 for (i = 0; i < mapcount; i++)
12238 {
12239 if (i == mapcount - 1)
12240 end = sec->size;
12241 else
12242 end = map[i + 1].vma;
12243
12244 switch (map[i].type)
12245 {
12246 case 'a':
12247 /* Byte swap code words. */
12248 while (ptr + 3 < end)
12249 {
12250 tmp = contents[ptr];
12251 contents[ptr] = contents[ptr + 3];
12252 contents[ptr + 3] = tmp;
12253 tmp = contents[ptr + 1];
12254 contents[ptr + 1] = contents[ptr + 2];
12255 contents[ptr + 2] = tmp;
12256 ptr += 4;
12257 }
12258 break;
12259
12260 case 't':
12261 /* Byte swap code halfwords. */
12262 while (ptr + 1 < end)
12263 {
12264 tmp = contents[ptr];
12265 contents[ptr] = contents[ptr + 1];
12266 contents[ptr + 1] = tmp;
12267 ptr += 2;
12268 }
12269 break;
12270
12271 case 'd':
12272 /* Leave data alone. */
12273 break;
12274 }
12275 ptr = end;
12276 }
12277 }
12278
12279 free (map);
12280 arm_data->mapcount = 0;
12281 arm_data->mapsize = 0;
12282 arm_data->map = NULL;
12283 unrecord_section_with_arm_elf_section_data (sec);
12284
12285 return FALSE;
12286 }
12287
12288 static void
12289 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
12290 asection * sec,
12291 void * ignore ATTRIBUTE_UNUSED)
12292 {
12293 unrecord_section_with_arm_elf_section_data (sec);
12294 }
12295
12296 static bfd_boolean
12297 elf32_arm_close_and_cleanup (bfd * abfd)
12298 {
12299 if (abfd->sections)
12300 bfd_map_over_sections (abfd,
12301 unrecord_section_via_map_over_sections,
12302 NULL);
12303
12304 return _bfd_elf_close_and_cleanup (abfd);
12305 }
12306
12307 static bfd_boolean
12308 elf32_arm_bfd_free_cached_info (bfd * abfd)
12309 {
12310 if (abfd->sections)
12311 bfd_map_over_sections (abfd,
12312 unrecord_section_via_map_over_sections,
12313 NULL);
12314
12315 return _bfd_free_cached_info (abfd);
12316 }
12317
12318 /* Display STT_ARM_TFUNC symbols as functions. */
12319
12320 static void
12321 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
12322 asymbol *asym)
12323 {
12324 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
12325
12326 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
12327 elfsym->symbol.flags |= BSF_FUNCTION;
12328 }
12329
12330
12331 /* Mangle thumb function symbols as we read them in. */
12332
12333 static bfd_boolean
12334 elf32_arm_swap_symbol_in (bfd * abfd,
12335 const void *psrc,
12336 const void *pshn,
12337 Elf_Internal_Sym *dst)
12338 {
12339 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
12340 return FALSE;
12341
12342 /* New EABI objects mark thumb function symbols by setting the low bit of
12343 the address. Turn these into STT_ARM_TFUNC. */
12344 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
12345 && (dst->st_value & 1))
12346 {
12347 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
12348 dst->st_value &= ~(bfd_vma) 1;
12349 }
12350 return TRUE;
12351 }
12352
12353
12354 /* Mangle thumb function symbols as we write them out. */
12355
12356 static void
12357 elf32_arm_swap_symbol_out (bfd *abfd,
12358 const Elf_Internal_Sym *src,
12359 void *cdst,
12360 void *shndx)
12361 {
12362 Elf_Internal_Sym newsym;
12363
12364 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
12365 of the address set, as per the new EABI. We do this unconditionally
12366 because objcopy does not set the elf header flags until after
12367 it writes out the symbol table. */
12368 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
12369 {
12370 newsym = *src;
12371 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
12372 if (newsym.st_shndx != SHN_UNDEF)
12373 {
12374 /* Do this only for defined symbols. At link type, the static
12375 linker will simulate the work of dynamic linker of resolving
12376 symbols and will carry over the thumbness of found symbols to
12377 the output symbol table. It's not clear how it happens, but
12378 the thumbness of undefined symbols can well be different at
12379 runtime, and writing '1' for them will be confusing for users
12380 and possibly for dynamic linker itself.
12381 */
12382 newsym.st_value |= 1;
12383 }
12384
12385 src = &newsym;
12386 }
12387 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
12388 }
12389
12390 /* Add the PT_ARM_EXIDX program header. */
12391
12392 static bfd_boolean
12393 elf32_arm_modify_segment_map (bfd *abfd,
12394 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12395 {
12396 struct elf_segment_map *m;
12397 asection *sec;
12398
12399 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12400 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12401 {
12402 /* If there is already a PT_ARM_EXIDX header, then we do not
12403 want to add another one. This situation arises when running
12404 "strip"; the input binary already has the header. */
12405 m = elf_tdata (abfd)->segment_map;
12406 while (m && m->p_type != PT_ARM_EXIDX)
12407 m = m->next;
12408 if (!m)
12409 {
12410 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
12411 if (m == NULL)
12412 return FALSE;
12413 m->p_type = PT_ARM_EXIDX;
12414 m->count = 1;
12415 m->sections[0] = sec;
12416
12417 m->next = elf_tdata (abfd)->segment_map;
12418 elf_tdata (abfd)->segment_map = m;
12419 }
12420 }
12421
12422 return TRUE;
12423 }
12424
12425 /* We may add a PT_ARM_EXIDX program header. */
12426
12427 static int
12428 elf32_arm_additional_program_headers (bfd *abfd,
12429 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12430 {
12431 asection *sec;
12432
12433 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12434 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12435 return 1;
12436 else
12437 return 0;
12438 }
12439
12440 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
12441
12442 static bfd_boolean
12443 elf32_arm_is_function_type (unsigned int type)
12444 {
12445 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
12446 }
12447
12448 /* We use this to override swap_symbol_in and swap_symbol_out. */
12449 const struct elf_size_info elf32_arm_size_info =
12450 {
12451 sizeof (Elf32_External_Ehdr),
12452 sizeof (Elf32_External_Phdr),
12453 sizeof (Elf32_External_Shdr),
12454 sizeof (Elf32_External_Rel),
12455 sizeof (Elf32_External_Rela),
12456 sizeof (Elf32_External_Sym),
12457 sizeof (Elf32_External_Dyn),
12458 sizeof (Elf_External_Note),
12459 4,
12460 1,
12461 32, 2,
12462 ELFCLASS32, EV_CURRENT,
12463 bfd_elf32_write_out_phdrs,
12464 bfd_elf32_write_shdrs_and_ehdr,
12465 bfd_elf32_checksum_contents,
12466 bfd_elf32_write_relocs,
12467 elf32_arm_swap_symbol_in,
12468 elf32_arm_swap_symbol_out,
12469 bfd_elf32_slurp_reloc_table,
12470 bfd_elf32_slurp_symbol_table,
12471 bfd_elf32_swap_dyn_in,
12472 bfd_elf32_swap_dyn_out,
12473 bfd_elf32_swap_reloc_in,
12474 bfd_elf32_swap_reloc_out,
12475 bfd_elf32_swap_reloca_in,
12476 bfd_elf32_swap_reloca_out
12477 };
12478
12479 #define ELF_ARCH bfd_arch_arm
12480 #define ELF_MACHINE_CODE EM_ARM
12481 #ifdef __QNXTARGET__
12482 #define ELF_MAXPAGESIZE 0x1000
12483 #else
12484 #define ELF_MAXPAGESIZE 0x8000
12485 #endif
12486 #define ELF_MINPAGESIZE 0x1000
12487 #define ELF_COMMONPAGESIZE 0x1000
12488
12489 #define bfd_elf32_mkobject elf32_arm_mkobject
12490
12491 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
12492 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
12493 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
12494 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
12495 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
12496 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
12497 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
12498 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
12499 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
12500 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
12501 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
12502 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
12503 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
12504 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
12505
12506 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
12507 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
12508 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
12509 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
12510 #define elf_backend_check_relocs elf32_arm_check_relocs
12511 #define elf_backend_relocate_section elf32_arm_relocate_section
12512 #define elf_backend_write_section elf32_arm_write_section
12513 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
12514 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
12515 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
12516 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
12517 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
12518 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
12519 #define elf_backend_post_process_headers elf32_arm_post_process_headers
12520 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
12521 #define elf_backend_object_p elf32_arm_object_p
12522 #define elf_backend_section_flags elf32_arm_section_flags
12523 #define elf_backend_fake_sections elf32_arm_fake_sections
12524 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
12525 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12526 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
12527 #define elf_backend_symbol_processing elf32_arm_symbol_processing
12528 #define elf_backend_size_info elf32_arm_size_info
12529 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
12530 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
12531 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
12532 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
12533 #define elf_backend_is_function_type elf32_arm_is_function_type
12534
12535 #define elf_backend_can_refcount 1
12536 #define elf_backend_can_gc_sections 1
12537 #define elf_backend_plt_readonly 1
12538 #define elf_backend_want_got_plt 1
12539 #define elf_backend_want_plt_sym 0
12540 #define elf_backend_may_use_rel_p 1
12541 #define elf_backend_may_use_rela_p 0
12542 #define elf_backend_default_use_rela_p 0
12543
12544 #define elf_backend_got_header_size 12
12545
12546 #undef elf_backend_obj_attrs_vendor
12547 #define elf_backend_obj_attrs_vendor "aeabi"
12548 #undef elf_backend_obj_attrs_section
12549 #define elf_backend_obj_attrs_section ".ARM.attributes"
12550 #undef elf_backend_obj_attrs_arg_type
12551 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
12552 #undef elf_backend_obj_attrs_section_type
12553 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
12554 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
12555
12556 #include "elf32-target.h"
12557
12558 /* VxWorks Targets. */
12559
12560 #undef TARGET_LITTLE_SYM
12561 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
12562 #undef TARGET_LITTLE_NAME
12563 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
12564 #undef TARGET_BIG_SYM
12565 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
12566 #undef TARGET_BIG_NAME
12567 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
12568
12569 /* Like elf32_arm_link_hash_table_create -- but overrides
12570 appropriately for VxWorks. */
12571
12572 static struct bfd_link_hash_table *
12573 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
12574 {
12575 struct bfd_link_hash_table *ret;
12576
12577 ret = elf32_arm_link_hash_table_create (abfd);
12578 if (ret)
12579 {
12580 struct elf32_arm_link_hash_table *htab
12581 = (struct elf32_arm_link_hash_table *) ret;
12582 htab->use_rel = 0;
12583 htab->vxworks_p = 1;
12584 }
12585 return ret;
12586 }
12587
12588 static void
12589 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
12590 {
12591 elf32_arm_final_write_processing (abfd, linker);
12592 elf_vxworks_final_write_processing (abfd, linker);
12593 }
12594
12595 #undef elf32_bed
12596 #define elf32_bed elf32_arm_vxworks_bed
12597
12598 #undef bfd_elf32_bfd_link_hash_table_create
12599 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
12600 #undef elf_backend_add_symbol_hook
12601 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
12602 #undef elf_backend_final_write_processing
12603 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
12604 #undef elf_backend_emit_relocs
12605 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
12606
12607 #undef elf_backend_may_use_rel_p
12608 #define elf_backend_may_use_rel_p 0
12609 #undef elf_backend_may_use_rela_p
12610 #define elf_backend_may_use_rela_p 1
12611 #undef elf_backend_default_use_rela_p
12612 #define elf_backend_default_use_rela_p 1
12613 #undef elf_backend_want_plt_sym
12614 #define elf_backend_want_plt_sym 1
12615 #undef ELF_MAXPAGESIZE
12616 #define ELF_MAXPAGESIZE 0x1000
12617
12618 #include "elf32-target.h"
12619
12620
12621 /* Symbian OS Targets. */
12622
12623 #undef TARGET_LITTLE_SYM
12624 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
12625 #undef TARGET_LITTLE_NAME
12626 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
12627 #undef TARGET_BIG_SYM
12628 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
12629 #undef TARGET_BIG_NAME
12630 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
12631
12632 /* Like elf32_arm_link_hash_table_create -- but overrides
12633 appropriately for Symbian OS. */
12634
12635 static struct bfd_link_hash_table *
12636 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
12637 {
12638 struct bfd_link_hash_table *ret;
12639
12640 ret = elf32_arm_link_hash_table_create (abfd);
12641 if (ret)
12642 {
12643 struct elf32_arm_link_hash_table *htab
12644 = (struct elf32_arm_link_hash_table *)ret;
12645 /* There is no PLT header for Symbian OS. */
12646 htab->plt_header_size = 0;
12647 /* The PLT entries are each one instruction and one word. */
12648 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
12649 htab->symbian_p = 1;
12650 /* Symbian uses armv5t or above, so use_blx is always true. */
12651 htab->use_blx = 1;
12652 htab->root.is_relocatable_executable = 1;
12653 }
12654 return ret;
12655 }
12656
12657 static const struct bfd_elf_special_section
12658 elf32_arm_symbian_special_sections[] =
12659 {
12660 /* In a BPABI executable, the dynamic linking sections do not go in
12661 the loadable read-only segment. The post-linker may wish to
12662 refer to these sections, but they are not part of the final
12663 program image. */
12664 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12665 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12666 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12667 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12668 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
12669 /* These sections do not need to be writable as the SymbianOS
12670 postlinker will arrange things so that no dynamic relocation is
12671 required. */
12672 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12673 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12674 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12675 { NULL, 0, 0, 0, 0 }
12676 };
12677
12678 static void
12679 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12680 struct bfd_link_info *link_info)
12681 {
12682 /* BPABI objects are never loaded directly by an OS kernel; they are
12683 processed by a postlinker first, into an OS-specific format. If
12684 the D_PAGED bit is set on the file, BFD will align segments on
12685 page boundaries, so that an OS can directly map the file. With
12686 BPABI objects, that just results in wasted space. In addition,
12687 because we clear the D_PAGED bit, map_sections_to_segments will
12688 recognize that the program headers should not be mapped into any
12689 loadable segment. */
12690 abfd->flags &= ~D_PAGED;
12691 elf32_arm_begin_write_processing (abfd, link_info);
12692 }
12693
12694 static bfd_boolean
12695 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12696 struct bfd_link_info *info)
12697 {
12698 struct elf_segment_map *m;
12699 asection *dynsec;
12700
12701 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12702 segment. However, because the .dynamic section is not marked
12703 with SEC_LOAD, the generic ELF code will not create such a
12704 segment. */
12705 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12706 if (dynsec)
12707 {
12708 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12709 if (m->p_type == PT_DYNAMIC)
12710 break;
12711
12712 if (m == NULL)
12713 {
12714 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12715 m->next = elf_tdata (abfd)->segment_map;
12716 elf_tdata (abfd)->segment_map = m;
12717 }
12718 }
12719
12720 /* Also call the generic arm routine. */
12721 return elf32_arm_modify_segment_map (abfd, info);
12722 }
12723
12724 /* Return address for Ith PLT stub in section PLT, for relocation REL
12725 or (bfd_vma) -1 if it should not be included. */
12726
12727 static bfd_vma
12728 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12729 const arelent *rel ATTRIBUTE_UNUSED)
12730 {
12731 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12732 }
12733
12734
12735 #undef elf32_bed
12736 #define elf32_bed elf32_arm_symbian_bed
12737
12738 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12739 will process them and then discard them. */
12740 #undef ELF_DYNAMIC_SEC_FLAGS
12741 #define ELF_DYNAMIC_SEC_FLAGS \
12742 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12743
12744 #undef elf_backend_add_symbol_hook
12745 #undef elf_backend_emit_relocs
12746
12747 #undef bfd_elf32_bfd_link_hash_table_create
12748 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12749 #undef elf_backend_special_sections
12750 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12751 #undef elf_backend_begin_write_processing
12752 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12753 #undef elf_backend_final_write_processing
12754 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12755
12756 #undef elf_backend_modify_segment_map
12757 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12758
12759 /* There is no .got section for BPABI objects, and hence no header. */
12760 #undef elf_backend_got_header_size
12761 #define elf_backend_got_header_size 0
12762
12763 /* Similarly, there is no .got.plt section. */
12764 #undef elf_backend_want_got_plt
12765 #define elf_backend_want_got_plt 0
12766
12767 #undef elf_backend_plt_sym_val
12768 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12769
12770 #undef elf_backend_may_use_rel_p
12771 #define elf_backend_may_use_rel_p 1
12772 #undef elf_backend_may_use_rela_p
12773 #define elf_backend_may_use_rela_p 0
12774 #undef elf_backend_default_use_rela_p
12775 #define elf_backend_default_use_rela_p 0
12776 #undef elf_backend_want_plt_sym
12777 #define elf_backend_want_plt_sym 0
12778 #undef ELF_MAXPAGESIZE
12779 #define ELF_MAXPAGESIZE 0x8000
12780
12781 #include "elf32-target.h"
This page took 0.464455 seconds and 4 git commands to generate.