Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto NULL
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1746 };
1747
1748 /* 160 onwards: */
1749 static reloc_howto_type elf32_arm_howto_table_2[8] =
1750 {
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1765 0, /* rightshift */
1766 2, /* size (0 = byte, 1 = short, 2 = long) */
1767 32, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_bitfield,/* complain_on_overflow */
1771 bfd_elf_generic_reloc, /* special_function */
1772 "R_ARM_GOTFUNCDESC", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffffffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1778 0, /* rightshift */
1779 2, /* size (0 = byte, 1 = short, 2 = long) */
1780 32, /* bitsize */
1781 FALSE, /* pc_relative */
1782 0, /* bitpos */
1783 complain_overflow_bitfield,/* complain_on_overflow */
1784 bfd_elf_generic_reloc, /* special_function */
1785 "R_ARM_GOTOFFFUNCDESC",/* name */
1786 FALSE, /* partial_inplace */
1787 0, /* src_mask */
1788 0xffffffff, /* dst_mask */
1789 FALSE), /* pcrel_offset */
1790 HOWTO (R_ARM_FUNCDESC, /* type */
1791 0, /* rightshift */
1792 2, /* size (0 = byte, 1 = short, 2 = long) */
1793 32, /* bitsize */
1794 FALSE, /* pc_relative */
1795 0, /* bitpos */
1796 complain_overflow_bitfield,/* complain_on_overflow */
1797 bfd_elf_generic_reloc, /* special_function */
1798 "R_ARM_FUNCDESC", /* name */
1799 FALSE, /* partial_inplace */
1800 0, /* src_mask */
1801 0xffffffff, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1804 0, /* rightshift */
1805 2, /* size (0 = byte, 1 = short, 2 = long) */
1806 64, /* bitsize */
1807 FALSE, /* pc_relative */
1808 0, /* bitpos */
1809 complain_overflow_bitfield,/* complain_on_overflow */
1810 bfd_elf_generic_reloc, /* special_function */
1811 "R_ARM_FUNCDESC_VALUE",/* name */
1812 FALSE, /* partial_inplace */
1813 0, /* src_mask */
1814 0xffffffff, /* dst_mask */
1815 FALSE), /* pcrel_offset */
1816 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1817 0, /* rightshift */
1818 2, /* size (0 = byte, 1 = short, 2 = long) */
1819 32, /* bitsize */
1820 FALSE, /* pc_relative */
1821 0, /* bitpos */
1822 complain_overflow_bitfield,/* complain_on_overflow */
1823 bfd_elf_generic_reloc, /* special_function */
1824 "R_ARM_TLS_GD32_FDPIC",/* name */
1825 FALSE, /* partial_inplace */
1826 0, /* src_mask */
1827 0xffffffff, /* dst_mask */
1828 FALSE), /* pcrel_offset */
1829 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1830 0, /* rightshift */
1831 2, /* size (0 = byte, 1 = short, 2 = long) */
1832 32, /* bitsize */
1833 FALSE, /* pc_relative */
1834 0, /* bitpos */
1835 complain_overflow_bitfield,/* complain_on_overflow */
1836 bfd_elf_generic_reloc, /* special_function */
1837 "R_ARM_TLS_LDM32_FDPIC",/* name */
1838 FALSE, /* partial_inplace */
1839 0, /* src_mask */
1840 0xffffffff, /* dst_mask */
1841 FALSE), /* pcrel_offset */
1842 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1843 0, /* rightshift */
1844 2, /* size (0 = byte, 1 = short, 2 = long) */
1845 32, /* bitsize */
1846 FALSE, /* pc_relative */
1847 0, /* bitpos */
1848 complain_overflow_bitfield,/* complain_on_overflow */
1849 bfd_elf_generic_reloc, /* special_function */
1850 "R_ARM_TLS_IE32_FDPIC",/* name */
1851 FALSE, /* partial_inplace */
1852 0, /* src_mask */
1853 0xffffffff, /* dst_mask */
1854 FALSE), /* pcrel_offset */
1855 };
1856
1857 /* 249-255 extended, currently unused, relocations: */
1858 static reloc_howto_type elf32_arm_howto_table_3[4] =
1859 {
1860 HOWTO (R_ARM_RREL32, /* type */
1861 0, /* rightshift */
1862 0, /* size (0 = byte, 1 = short, 2 = long) */
1863 0, /* bitsize */
1864 FALSE, /* pc_relative */
1865 0, /* bitpos */
1866 complain_overflow_dont,/* complain_on_overflow */
1867 bfd_elf_generic_reloc, /* special_function */
1868 "R_ARM_RREL32", /* name */
1869 FALSE, /* partial_inplace */
1870 0, /* src_mask */
1871 0, /* dst_mask */
1872 FALSE), /* pcrel_offset */
1873
1874 HOWTO (R_ARM_RABS32, /* type */
1875 0, /* rightshift */
1876 0, /* size (0 = byte, 1 = short, 2 = long) */
1877 0, /* bitsize */
1878 FALSE, /* pc_relative */
1879 0, /* bitpos */
1880 complain_overflow_dont,/* complain_on_overflow */
1881 bfd_elf_generic_reloc, /* special_function */
1882 "R_ARM_RABS32", /* name */
1883 FALSE, /* partial_inplace */
1884 0, /* src_mask */
1885 0, /* dst_mask */
1886 FALSE), /* pcrel_offset */
1887
1888 HOWTO (R_ARM_RPC24, /* type */
1889 0, /* rightshift */
1890 0, /* size (0 = byte, 1 = short, 2 = long) */
1891 0, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont,/* complain_on_overflow */
1895 bfd_elf_generic_reloc, /* special_function */
1896 "R_ARM_RPC24", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 HOWTO (R_ARM_RBASE, /* type */
1903 0, /* rightshift */
1904 0, /* size (0 = byte, 1 = short, 2 = long) */
1905 0, /* bitsize */
1906 FALSE, /* pc_relative */
1907 0, /* bitpos */
1908 complain_overflow_dont,/* complain_on_overflow */
1909 bfd_elf_generic_reloc, /* special_function */
1910 "R_ARM_RBASE", /* name */
1911 FALSE, /* partial_inplace */
1912 0, /* src_mask */
1913 0, /* dst_mask */
1914 FALSE) /* pcrel_offset */
1915 };
1916
1917 static reloc_howto_type *
1918 elf32_arm_howto_from_type (unsigned int r_type)
1919 {
1920 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1921 return &elf32_arm_howto_table_1[r_type];
1922
1923 if (r_type >= R_ARM_IRELATIVE
1924 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
1925 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1926
1927 if (r_type >= R_ARM_RREL32
1928 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1929 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1930
1931 return NULL;
1932 }
1933
1934 static bfd_boolean
1935 elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
1936 Elf_Internal_Rela * elf_reloc)
1937 {
1938 unsigned int r_type;
1939
1940 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1941 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1942 {
1943 /* xgettext:c-format */
1944 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1945 abfd, r_type);
1946 bfd_set_error (bfd_error_bad_value);
1947 return FALSE;
1948 }
1949 return TRUE;
1950 }
1951
1952 struct elf32_arm_reloc_map
1953 {
1954 bfd_reloc_code_real_type bfd_reloc_val;
1955 unsigned char elf_reloc_val;
1956 };
1957
1958 /* All entries in this list must also be present in elf32_arm_howto_table. */
1959 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1960 {
1961 {BFD_RELOC_NONE, R_ARM_NONE},
1962 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1963 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1964 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1965 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1966 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1967 {BFD_RELOC_32, R_ARM_ABS32},
1968 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1969 {BFD_RELOC_8, R_ARM_ABS8},
1970 {BFD_RELOC_16, R_ARM_ABS16},
1971 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1972 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1973 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1974 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1975 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1976 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1977 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1978 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1979 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1980 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1981 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1982 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1983 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1984 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1985 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1986 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1987 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1988 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1989 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1990 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1991 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1992 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1993 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1994 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1995 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1996 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1997 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1998 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1999 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2000 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2001 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2002 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2003 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
2004 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2005 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2006 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2007 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
2008 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2009 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2010 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2011 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
2012 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2013 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2014 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
2015 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2016 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
2017 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2018 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2019 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2020 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2021 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2022 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2023 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2024 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
2025 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2026 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2027 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2028 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2029 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2030 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2031 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2032 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2033 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2034 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2035 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2036 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2037 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2038 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2039 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2040 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2041 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2042 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2043 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2044 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2045 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2046 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2047 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2048 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2049 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2050 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2051 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
2052 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
2053 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2054 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2055 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2056 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
2057 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
2058 };
2059
2060 static reloc_howto_type *
2061 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2062 bfd_reloc_code_real_type code)
2063 {
2064 unsigned int i;
2065
2066 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
2067 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2068 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
2069
2070 return NULL;
2071 }
2072
2073 static reloc_howto_type *
2074 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2075 const char *r_name)
2076 {
2077 unsigned int i;
2078
2079 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
2080 if (elf32_arm_howto_table_1[i].name != NULL
2081 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2082 return &elf32_arm_howto_table_1[i];
2083
2084 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
2085 if (elf32_arm_howto_table_2[i].name != NULL
2086 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2087 return &elf32_arm_howto_table_2[i];
2088
2089 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2090 if (elf32_arm_howto_table_3[i].name != NULL
2091 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2092 return &elf32_arm_howto_table_3[i];
2093
2094 return NULL;
2095 }
2096
2097 /* Support for core dump NOTE sections. */
2098
2099 static bfd_boolean
2100 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2101 {
2102 int offset;
2103 size_t size;
2104
2105 switch (note->descsz)
2106 {
2107 default:
2108 return FALSE;
2109
2110 case 148: /* Linux/ARM 32-bit. */
2111 /* pr_cursig */
2112 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2113
2114 /* pr_pid */
2115 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2116
2117 /* pr_reg */
2118 offset = 72;
2119 size = 72;
2120
2121 break;
2122 }
2123
2124 /* Make a ".reg/999" section. */
2125 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2126 size, note->descpos + offset);
2127 }
2128
2129 static bfd_boolean
2130 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2131 {
2132 switch (note->descsz)
2133 {
2134 default:
2135 return FALSE;
2136
2137 case 124: /* Linux/ARM elf_prpsinfo. */
2138 elf_tdata (abfd)->core->pid
2139 = bfd_get_32 (abfd, note->descdata + 12);
2140 elf_tdata (abfd)->core->program
2141 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2142 elf_tdata (abfd)->core->command
2143 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2144 }
2145
2146 /* Note that for some reason, a spurious space is tacked
2147 onto the end of the args in some (at least one anyway)
2148 implementations, so strip it off if it exists. */
2149 {
2150 char *command = elf_tdata (abfd)->core->command;
2151 int n = strlen (command);
2152
2153 if (0 < n && command[n - 1] == ' ')
2154 command[n - 1] = '\0';
2155 }
2156
2157 return TRUE;
2158 }
2159
2160 static char *
2161 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2162 int note_type, ...)
2163 {
2164 switch (note_type)
2165 {
2166 default:
2167 return NULL;
2168
2169 case NT_PRPSINFO:
2170 {
2171 char data[124] ATTRIBUTE_NONSTRING;
2172 va_list ap;
2173
2174 va_start (ap, note_type);
2175 memset (data, 0, sizeof (data));
2176 strncpy (data + 28, va_arg (ap, const char *), 16);
2177 #if GCC_VERSION == 8001
2178 DIAGNOSTIC_PUSH;
2179 /* GCC 8.1 warns about 80 equals destination size with
2180 -Wstringop-truncation:
2181 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2182 */
2183 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2184 #endif
2185 strncpy (data + 44, va_arg (ap, const char *), 80);
2186 #if GCC_VERSION == 8001
2187 DIAGNOSTIC_POP;
2188 #endif
2189 va_end (ap);
2190
2191 return elfcore_write_note (abfd, buf, bufsiz,
2192 "CORE", note_type, data, sizeof (data));
2193 }
2194
2195 case NT_PRSTATUS:
2196 {
2197 char data[148];
2198 va_list ap;
2199 long pid;
2200 int cursig;
2201 const void *greg;
2202
2203 va_start (ap, note_type);
2204 memset (data, 0, sizeof (data));
2205 pid = va_arg (ap, long);
2206 bfd_put_32 (abfd, pid, data + 24);
2207 cursig = va_arg (ap, int);
2208 bfd_put_16 (abfd, cursig, data + 12);
2209 greg = va_arg (ap, const void *);
2210 memcpy (data + 72, greg, 72);
2211 va_end (ap);
2212
2213 return elfcore_write_note (abfd, buf, bufsiz,
2214 "CORE", note_type, data, sizeof (data));
2215 }
2216 }
2217 }
2218
2219 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2220 #define TARGET_LITTLE_NAME "elf32-littlearm"
2221 #define TARGET_BIG_SYM arm_elf32_be_vec
2222 #define TARGET_BIG_NAME "elf32-bigarm"
2223
2224 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2225 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2226 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2227
2228 typedef unsigned long int insn32;
2229 typedef unsigned short int insn16;
2230
2231 /* In lieu of proper flags, assume all EABIv4 or later objects are
2232 interworkable. */
2233 #define INTERWORK_FLAG(abfd) \
2234 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2235 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2236 || ((abfd)->flags & BFD_LINKER_CREATED))
2237
2238 /* The linker script knows the section names for placement.
2239 The entry_names are used to do simple name mangling on the stubs.
2240 Given a function name, and its type, the stub can be found. The
2241 name can be changed. The only requirement is the %s be present. */
2242 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2243 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2244
2245 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2246 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2247
2248 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2249 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2250
2251 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2252 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2253
2254 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2255 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2256
2257 #define STUB_ENTRY_NAME "__%s_veneer"
2258
2259 #define CMSE_PREFIX "__acle_se_"
2260
2261 /* The name of the dynamic interpreter. This is put in the .interp
2262 section. */
2263 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2264
2265 /* FDPIC default stack size. */
2266 #define DEFAULT_STACK_SIZE 0x8000
2267
2268 static const unsigned long tls_trampoline [] =
2269 {
2270 0xe08e0000, /* add r0, lr, r0 */
2271 0xe5901004, /* ldr r1, [r0,#4] */
2272 0xe12fff11, /* bx r1 */
2273 };
2274
2275 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2276 {
2277 0xe52d2004, /* push {r2} */
2278 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2279 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2280 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2281 0xe081100f, /* 2: add r1, pc */
2282 0xe12fff12, /* bx r2 */
2283 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2284 + dl_tlsdesc_lazy_resolver(GOT) */
2285 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2286 };
2287
2288 /* ARM FDPIC PLT entry. */
2289 /* The last 5 words contain PLT lazy fragment code and data. */
2290 static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2291 {
2292 0xe59fc008, /* ldr r12, .L1 */
2293 0xe08cc009, /* add r12, r12, r9 */
2294 0xe59c9004, /* ldr r9, [r12, #4] */
2295 0xe59cf000, /* ldr pc, [r12] */
2296 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2297 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2298 0xe51fc00c, /* ldr r12, [pc, #-12] */
2299 0xe92d1000, /* push {r12} */
2300 0xe599c004, /* ldr r12, [r9, #4] */
2301 0xe599f000, /* ldr pc, [r9] */
2302 };
2303
2304 /* Thumb FDPIC PLT entry. */
2305 /* The last 5 words contain PLT lazy fragment code and data. */
2306 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2307 {
2308 0xc00cf8df, /* ldr.w r12, .L1 */
2309 0x0c09eb0c, /* add.w r12, r12, r9 */
2310 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2311 0xf000f8dc, /* ldr.w pc, [r12] */
2312 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2313 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2314 0xc008f85f, /* ldr.w r12, .L2 */
2315 0xcd04f84d, /* push {r12} */
2316 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2317 0xf000f8d9, /* ldr.w pc, [r9] */
2318 };
2319
2320 #ifdef FOUR_WORD_PLT
2321
2322 /* The first entry in a procedure linkage table looks like
2323 this. It is set up so that any shared library function that is
2324 called before the relocation has been set up calls the dynamic
2325 linker first. */
2326 static const bfd_vma elf32_arm_plt0_entry [] =
2327 {
2328 0xe52de004, /* str lr, [sp, #-4]! */
2329 0xe59fe010, /* ldr lr, [pc, #16] */
2330 0xe08fe00e, /* add lr, pc, lr */
2331 0xe5bef008, /* ldr pc, [lr, #8]! */
2332 };
2333
2334 /* Subsequent entries in a procedure linkage table look like
2335 this. */
2336 static const bfd_vma elf32_arm_plt_entry [] =
2337 {
2338 0xe28fc600, /* add ip, pc, #NN */
2339 0xe28cca00, /* add ip, ip, #NN */
2340 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2341 0x00000000, /* unused */
2342 };
2343
2344 #else /* not FOUR_WORD_PLT */
2345
2346 /* The first entry in a procedure linkage table looks like
2347 this. It is set up so that any shared library function that is
2348 called before the relocation has been set up calls the dynamic
2349 linker first. */
2350 static const bfd_vma elf32_arm_plt0_entry [] =
2351 {
2352 0xe52de004, /* str lr, [sp, #-4]! */
2353 0xe59fe004, /* ldr lr, [pc, #4] */
2354 0xe08fe00e, /* add lr, pc, lr */
2355 0xe5bef008, /* ldr pc, [lr, #8]! */
2356 0x00000000, /* &GOT[0] - . */
2357 };
2358
2359 /* By default subsequent entries in a procedure linkage table look like
2360 this. Offsets that don't fit into 28 bits will cause link error. */
2361 static const bfd_vma elf32_arm_plt_entry_short [] =
2362 {
2363 0xe28fc600, /* add ip, pc, #0xNN00000 */
2364 0xe28cca00, /* add ip, ip, #0xNN000 */
2365 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2366 };
2367
2368 /* When explicitly asked, we'll use this "long" entry format
2369 which can cope with arbitrary displacements. */
2370 static const bfd_vma elf32_arm_plt_entry_long [] =
2371 {
2372 0xe28fc200, /* add ip, pc, #0xN0000000 */
2373 0xe28cc600, /* add ip, ip, #0xNN00000 */
2374 0xe28cca00, /* add ip, ip, #0xNN000 */
2375 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2376 };
2377
2378 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2379
2380 #endif /* not FOUR_WORD_PLT */
2381
2382 /* The first entry in a procedure linkage table looks like this.
2383 It is set up so that any shared library function that is called before the
2384 relocation has been set up calls the dynamic linker first. */
2385 static const bfd_vma elf32_thumb2_plt0_entry [] =
2386 {
2387 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2388 an instruction maybe encoded to one or two array elements. */
2389 0xf8dfb500, /* push {lr} */
2390 0x44fee008, /* ldr.w lr, [pc, #8] */
2391 /* add lr, pc */
2392 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2393 0x00000000, /* &GOT[0] - . */
2394 };
2395
2396 /* Subsequent entries in a procedure linkage table for thumb only target
2397 look like this. */
2398 static const bfd_vma elf32_thumb2_plt_entry [] =
2399 {
2400 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2401 an instruction maybe encoded to one or two array elements. */
2402 0x0c00f240, /* movw ip, #0xNNNN */
2403 0x0c00f2c0, /* movt ip, #0xNNNN */
2404 0xf8dc44fc, /* add ip, pc */
2405 0xbf00f000 /* ldr.w pc, [ip] */
2406 /* nop */
2407 };
2408
2409 /* The format of the first entry in the procedure linkage table
2410 for a VxWorks executable. */
2411 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2412 {
2413 0xe52dc008, /* str ip,[sp,#-8]! */
2414 0xe59fc000, /* ldr ip,[pc] */
2415 0xe59cf008, /* ldr pc,[ip,#8] */
2416 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2417 };
2418
2419 /* The format of subsequent entries in a VxWorks executable. */
2420 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2421 {
2422 0xe59fc000, /* ldr ip,[pc] */
2423 0xe59cf000, /* ldr pc,[ip] */
2424 0x00000000, /* .long @got */
2425 0xe59fc000, /* ldr ip,[pc] */
2426 0xea000000, /* b _PLT */
2427 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2428 };
2429
2430 /* The format of entries in a VxWorks shared library. */
2431 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2432 {
2433 0xe59fc000, /* ldr ip,[pc] */
2434 0xe79cf009, /* ldr pc,[ip,r9] */
2435 0x00000000, /* .long @got */
2436 0xe59fc000, /* ldr ip,[pc] */
2437 0xe599f008, /* ldr pc,[r9,#8] */
2438 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2439 };
2440
2441 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2442 #define PLT_THUMB_STUB_SIZE 4
2443 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2444 {
2445 0x4778, /* bx pc */
2446 0x46c0 /* nop */
2447 };
2448
2449 /* The entries in a PLT when using a DLL-based target with multiple
2450 address spaces. */
2451 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2452 {
2453 0xe51ff004, /* ldr pc, [pc, #-4] */
2454 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2455 };
2456
2457 /* The first entry in a procedure linkage table looks like
2458 this. It is set up so that any shared library function that is
2459 called before the relocation has been set up calls the dynamic
2460 linker first. */
2461 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2462 {
2463 /* First bundle: */
2464 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2465 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2466 0xe08cc00f, /* add ip, ip, pc */
2467 0xe52dc008, /* str ip, [sp, #-8]! */
2468 /* Second bundle: */
2469 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2470 0xe59cc000, /* ldr ip, [ip] */
2471 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2472 0xe12fff1c, /* bx ip */
2473 /* Third bundle: */
2474 0xe320f000, /* nop */
2475 0xe320f000, /* nop */
2476 0xe320f000, /* nop */
2477 /* .Lplt_tail: */
2478 0xe50dc004, /* str ip, [sp, #-4] */
2479 /* Fourth bundle: */
2480 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2481 0xe59cc000, /* ldr ip, [ip] */
2482 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2483 0xe12fff1c, /* bx ip */
2484 };
2485 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2486
2487 /* Subsequent entries in a procedure linkage table look like this. */
2488 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2489 {
2490 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2491 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2492 0xe08cc00f, /* add ip, ip, pc */
2493 0xea000000, /* b .Lplt_tail */
2494 };
2495
2496 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2497 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2498 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2499 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2500 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2501 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2502 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2503 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2504
2505 enum stub_insn_type
2506 {
2507 THUMB16_TYPE = 1,
2508 THUMB32_TYPE,
2509 ARM_TYPE,
2510 DATA_TYPE
2511 };
2512
2513 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2514 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2515 is inserted in arm_build_one_stub(). */
2516 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2517 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2518 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2519 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2520 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2521 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2522 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2523 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2524
2525 typedef struct
2526 {
2527 bfd_vma data;
2528 enum stub_insn_type type;
2529 unsigned int r_type;
2530 int reloc_addend;
2531 } insn_sequence;
2532
2533 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2534 to reach the stub if necessary. */
2535 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2536 {
2537 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2538 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2539 };
2540
2541 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2542 available. */
2543 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2544 {
2545 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2546 ARM_INSN (0xe12fff1c), /* bx ip */
2547 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2548 };
2549
2550 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2551 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2552 {
2553 THUMB16_INSN (0xb401), /* push {r0} */
2554 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2555 THUMB16_INSN (0x4684), /* mov ip, r0 */
2556 THUMB16_INSN (0xbc01), /* pop {r0} */
2557 THUMB16_INSN (0x4760), /* bx ip */
2558 THUMB16_INSN (0xbf00), /* nop */
2559 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2560 };
2561
2562 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2563 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2564 {
2565 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2566 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2567 };
2568
2569 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2570 M-profile architectures. */
2571 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2572 {
2573 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2574 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2575 THUMB16_INSN (0x4760), /* bx ip */
2576 };
2577
2578 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2579 allowed. */
2580 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2581 {
2582 THUMB16_INSN (0x4778), /* bx pc */
2583 THUMB16_INSN (0x46c0), /* nop */
2584 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2585 ARM_INSN (0xe12fff1c), /* bx ip */
2586 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2587 };
2588
2589 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2590 available. */
2591 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2592 {
2593 THUMB16_INSN (0x4778), /* bx pc */
2594 THUMB16_INSN (0x46c0), /* nop */
2595 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2596 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2597 };
2598
2599 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2600 one, when the destination is close enough. */
2601 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2602 {
2603 THUMB16_INSN (0x4778), /* bx pc */
2604 THUMB16_INSN (0x46c0), /* nop */
2605 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2606 };
2607
2608 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2609 blx to reach the stub if necessary. */
2610 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2611 {
2612 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2613 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2614 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2615 };
2616
2617 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2618 blx to reach the stub if necessary. We can not add into pc;
2619 it is not guaranteed to mode switch (different in ARMv6 and
2620 ARMv7). */
2621 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2622 {
2623 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2624 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2625 ARM_INSN (0xe12fff1c), /* bx ip */
2626 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2627 };
2628
2629 /* V4T ARM -> ARM long branch stub, PIC. */
2630 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2631 {
2632 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2633 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2634 ARM_INSN (0xe12fff1c), /* bx ip */
2635 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2636 };
2637
2638 /* V4T Thumb -> ARM long branch stub, PIC. */
2639 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2640 {
2641 THUMB16_INSN (0x4778), /* bx pc */
2642 THUMB16_INSN (0x46c0), /* nop */
2643 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2644 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2645 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2646 };
2647
2648 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2649 architectures. */
2650 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2651 {
2652 THUMB16_INSN (0xb401), /* push {r0} */
2653 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2654 THUMB16_INSN (0x46fc), /* mov ip, pc */
2655 THUMB16_INSN (0x4484), /* add ip, r0 */
2656 THUMB16_INSN (0xbc01), /* pop {r0} */
2657 THUMB16_INSN (0x4760), /* bx ip */
2658 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2659 };
2660
2661 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2662 allowed. */
2663 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2664 {
2665 THUMB16_INSN (0x4778), /* bx pc */
2666 THUMB16_INSN (0x46c0), /* nop */
2667 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2668 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2669 ARM_INSN (0xe12fff1c), /* bx ip */
2670 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2671 };
2672
2673 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2674 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2675 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2676 {
2677 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2678 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2679 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2680 };
2681
2682 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2683 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2684 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2685 {
2686 THUMB16_INSN (0x4778), /* bx pc */
2687 THUMB16_INSN (0x46c0), /* nop */
2688 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2689 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2690 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2691 };
2692
2693 /* NaCl ARM -> ARM long branch stub. */
2694 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2695 {
2696 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2697 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2698 ARM_INSN (0xe12fff1c), /* bx ip */
2699 ARM_INSN (0xe320f000), /* nop */
2700 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2701 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2702 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2703 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2704 };
2705
2706 /* NaCl ARM -> ARM long branch stub, PIC. */
2707 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2708 {
2709 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2710 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2711 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2712 ARM_INSN (0xe12fff1c), /* bx ip */
2713 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2714 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2715 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2716 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2717 };
2718
2719 /* Stub used for transition to secure state (aka SG veneer). */
2720 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2721 {
2722 THUMB32_INSN (0xe97fe97f), /* sg. */
2723 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2724 };
2725
2726
2727 /* Cortex-A8 erratum-workaround stubs. */
2728
2729 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2730 can't use a conditional branch to reach this stub). */
2731
2732 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2733 {
2734 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2735 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2736 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2737 };
2738
2739 /* Stub used for b.w and bl.w instructions. */
2740
2741 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2742 {
2743 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2744 };
2745
2746 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2747 {
2748 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2749 };
2750
2751 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2752 instruction (which switches to ARM mode) to point to this stub. Jump to the
2753 real destination using an ARM-mode branch. */
2754
2755 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2756 {
2757 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2758 };
2759
2760 /* For each section group there can be a specially created linker section
2761 to hold the stubs for that group. The name of the stub section is based
2762 upon the name of another section within that group with the suffix below
2763 applied.
2764
2765 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2766 create what appeared to be a linker stub section when it actually
2767 contained user code/data. For example, consider this fragment:
2768
2769 const char * stubborn_problems[] = { "np" };
2770
2771 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2772 section called:
2773
2774 .data.rel.local.stubborn_problems
2775
2776 This then causes problems in arm32_arm_build_stubs() as it triggers:
2777
2778 // Ignore non-stub sections.
2779 if (!strstr (stub_sec->name, STUB_SUFFIX))
2780 continue;
2781
2782 And so the section would be ignored instead of being processed. Hence
2783 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2784 C identifier. */
2785 #define STUB_SUFFIX ".__stub"
2786
2787 /* One entry per long/short branch stub defined above. */
2788 #define DEF_STUBS \
2789 DEF_STUB(long_branch_any_any) \
2790 DEF_STUB(long_branch_v4t_arm_thumb) \
2791 DEF_STUB(long_branch_thumb_only) \
2792 DEF_STUB(long_branch_v4t_thumb_thumb) \
2793 DEF_STUB(long_branch_v4t_thumb_arm) \
2794 DEF_STUB(short_branch_v4t_thumb_arm) \
2795 DEF_STUB(long_branch_any_arm_pic) \
2796 DEF_STUB(long_branch_any_thumb_pic) \
2797 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2798 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2799 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2800 DEF_STUB(long_branch_thumb_only_pic) \
2801 DEF_STUB(long_branch_any_tls_pic) \
2802 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2803 DEF_STUB(long_branch_arm_nacl) \
2804 DEF_STUB(long_branch_arm_nacl_pic) \
2805 DEF_STUB(cmse_branch_thumb_only) \
2806 DEF_STUB(a8_veneer_b_cond) \
2807 DEF_STUB(a8_veneer_b) \
2808 DEF_STUB(a8_veneer_bl) \
2809 DEF_STUB(a8_veneer_blx) \
2810 DEF_STUB(long_branch_thumb2_only) \
2811 DEF_STUB(long_branch_thumb2_only_pure)
2812
2813 #define DEF_STUB(x) arm_stub_##x,
2814 enum elf32_arm_stub_type
2815 {
2816 arm_stub_none,
2817 DEF_STUBS
2818 max_stub_type
2819 };
2820 #undef DEF_STUB
2821
2822 /* Note the first a8_veneer type. */
2823 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2824
2825 typedef struct
2826 {
2827 const insn_sequence* template_sequence;
2828 int template_size;
2829 } stub_def;
2830
2831 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2832 static const stub_def stub_definitions[] =
2833 {
2834 {NULL, 0},
2835 DEF_STUBS
2836 };
2837
2838 struct elf32_arm_stub_hash_entry
2839 {
2840 /* Base hash table entry structure. */
2841 struct bfd_hash_entry root;
2842
2843 /* The stub section. */
2844 asection *stub_sec;
2845
2846 /* Offset within stub_sec of the beginning of this stub. */
2847 bfd_vma stub_offset;
2848
2849 /* Given the symbol's value and its section we can determine its final
2850 value when building the stubs (so the stub knows where to jump). */
2851 bfd_vma target_value;
2852 asection *target_section;
2853
2854 /* Same as above but for the source of the branch to the stub. Used for
2855 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2856 such, source section does not need to be recorded since Cortex-A8 erratum
2857 workaround stubs are only generated when both source and target are in the
2858 same section. */
2859 bfd_vma source_value;
2860
2861 /* The instruction which caused this stub to be generated (only valid for
2862 Cortex-A8 erratum workaround stubs at present). */
2863 unsigned long orig_insn;
2864
2865 /* The stub type. */
2866 enum elf32_arm_stub_type stub_type;
2867 /* Its encoding size in bytes. */
2868 int stub_size;
2869 /* Its template. */
2870 const insn_sequence *stub_template;
2871 /* The size of the template (number of entries). */
2872 int stub_template_size;
2873
2874 /* The symbol table entry, if any, that this was derived from. */
2875 struct elf32_arm_link_hash_entry *h;
2876
2877 /* Type of branch. */
2878 enum arm_st_branch_type branch_type;
2879
2880 /* Where this stub is being called from, or, in the case of combined
2881 stub sections, the first input section in the group. */
2882 asection *id_sec;
2883
2884 /* The name for the local symbol at the start of this stub. The
2885 stub name in the hash table has to be unique; this does not, so
2886 it can be friendlier. */
2887 char *output_name;
2888 };
2889
2890 /* Used to build a map of a section. This is required for mixed-endian
2891 code/data. */
2892
2893 typedef struct elf32_elf_section_map
2894 {
2895 bfd_vma vma;
2896 char type;
2897 }
2898 elf32_arm_section_map;
2899
2900 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2901
2902 typedef enum
2903 {
2904 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2905 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2906 VFP11_ERRATUM_ARM_VENEER,
2907 VFP11_ERRATUM_THUMB_VENEER
2908 }
2909 elf32_vfp11_erratum_type;
2910
2911 typedef struct elf32_vfp11_erratum_list
2912 {
2913 struct elf32_vfp11_erratum_list *next;
2914 bfd_vma vma;
2915 union
2916 {
2917 struct
2918 {
2919 struct elf32_vfp11_erratum_list *veneer;
2920 unsigned int vfp_insn;
2921 } b;
2922 struct
2923 {
2924 struct elf32_vfp11_erratum_list *branch;
2925 unsigned int id;
2926 } v;
2927 } u;
2928 elf32_vfp11_erratum_type type;
2929 }
2930 elf32_vfp11_erratum_list;
2931
2932 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2933 veneer. */
2934 typedef enum
2935 {
2936 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2937 STM32L4XX_ERRATUM_VENEER
2938 }
2939 elf32_stm32l4xx_erratum_type;
2940
2941 typedef struct elf32_stm32l4xx_erratum_list
2942 {
2943 struct elf32_stm32l4xx_erratum_list *next;
2944 bfd_vma vma;
2945 union
2946 {
2947 struct
2948 {
2949 struct elf32_stm32l4xx_erratum_list *veneer;
2950 unsigned int insn;
2951 } b;
2952 struct
2953 {
2954 struct elf32_stm32l4xx_erratum_list *branch;
2955 unsigned int id;
2956 } v;
2957 } u;
2958 elf32_stm32l4xx_erratum_type type;
2959 }
2960 elf32_stm32l4xx_erratum_list;
2961
2962 typedef enum
2963 {
2964 DELETE_EXIDX_ENTRY,
2965 INSERT_EXIDX_CANTUNWIND_AT_END
2966 }
2967 arm_unwind_edit_type;
2968
2969 /* A (sorted) list of edits to apply to an unwind table. */
2970 typedef struct arm_unwind_table_edit
2971 {
2972 arm_unwind_edit_type type;
2973 /* Note: we sometimes want to insert an unwind entry corresponding to a
2974 section different from the one we're currently writing out, so record the
2975 (text) section this edit relates to here. */
2976 asection *linked_section;
2977 unsigned int index;
2978 struct arm_unwind_table_edit *next;
2979 }
2980 arm_unwind_table_edit;
2981
2982 typedef struct _arm_elf_section_data
2983 {
2984 /* Information about mapping symbols. */
2985 struct bfd_elf_section_data elf;
2986 unsigned int mapcount;
2987 unsigned int mapsize;
2988 elf32_arm_section_map *map;
2989 /* Information about CPU errata. */
2990 unsigned int erratumcount;
2991 elf32_vfp11_erratum_list *erratumlist;
2992 unsigned int stm32l4xx_erratumcount;
2993 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2994 unsigned int additional_reloc_count;
2995 /* Information about unwind tables. */
2996 union
2997 {
2998 /* Unwind info attached to a text section. */
2999 struct
3000 {
3001 asection *arm_exidx_sec;
3002 } text;
3003
3004 /* Unwind info attached to an .ARM.exidx section. */
3005 struct
3006 {
3007 arm_unwind_table_edit *unwind_edit_list;
3008 arm_unwind_table_edit *unwind_edit_tail;
3009 } exidx;
3010 } u;
3011 }
3012 _arm_elf_section_data;
3013
3014 #define elf32_arm_section_data(sec) \
3015 ((_arm_elf_section_data *) elf_section_data (sec))
3016
3017 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3018 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3019 so may be created multiple times: we use an array of these entries whilst
3020 relaxing which we can refresh easily, then create stubs for each potentially
3021 erratum-triggering instruction once we've settled on a solution. */
3022
3023 struct a8_erratum_fix
3024 {
3025 bfd *input_bfd;
3026 asection *section;
3027 bfd_vma offset;
3028 bfd_vma target_offset;
3029 unsigned long orig_insn;
3030 char *stub_name;
3031 enum elf32_arm_stub_type stub_type;
3032 enum arm_st_branch_type branch_type;
3033 };
3034
3035 /* A table of relocs applied to branches which might trigger Cortex-A8
3036 erratum. */
3037
3038 struct a8_erratum_reloc
3039 {
3040 bfd_vma from;
3041 bfd_vma destination;
3042 struct elf32_arm_link_hash_entry *hash;
3043 const char *sym_name;
3044 unsigned int r_type;
3045 enum arm_st_branch_type branch_type;
3046 bfd_boolean non_a8_stub;
3047 };
3048
3049 /* The size of the thread control block. */
3050 #define TCB_SIZE 8
3051
3052 /* ARM-specific information about a PLT entry, over and above the usual
3053 gotplt_union. */
3054 struct arm_plt_info
3055 {
3056 /* We reference count Thumb references to a PLT entry separately,
3057 so that we can emit the Thumb trampoline only if needed. */
3058 bfd_signed_vma thumb_refcount;
3059
3060 /* Some references from Thumb code may be eliminated by BL->BLX
3061 conversion, so record them separately. */
3062 bfd_signed_vma maybe_thumb_refcount;
3063
3064 /* How many of the recorded PLT accesses were from non-call relocations.
3065 This information is useful when deciding whether anything takes the
3066 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3067 non-call references to the function should resolve directly to the
3068 real runtime target. */
3069 unsigned int noncall_refcount;
3070
3071 /* Since PLT entries have variable size if the Thumb prologue is
3072 used, we need to record the index into .got.plt instead of
3073 recomputing it from the PLT offset. */
3074 bfd_signed_vma got_offset;
3075 };
3076
3077 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3078 struct arm_local_iplt_info
3079 {
3080 /* The information that is usually found in the generic ELF part of
3081 the hash table entry. */
3082 union gotplt_union root;
3083
3084 /* The information that is usually found in the ARM-specific part of
3085 the hash table entry. */
3086 struct arm_plt_info arm;
3087
3088 /* A list of all potential dynamic relocations against this symbol. */
3089 struct elf_dyn_relocs *dyn_relocs;
3090 };
3091
3092 /* Structure to handle FDPIC support for local functions. */
3093 struct fdpic_local {
3094 unsigned int funcdesc_cnt;
3095 unsigned int gotofffuncdesc_cnt;
3096 int funcdesc_offset;
3097 };
3098
3099 struct elf_arm_obj_tdata
3100 {
3101 struct elf_obj_tdata root;
3102
3103 /* tls_type for each local got entry. */
3104 char *local_got_tls_type;
3105
3106 /* GOTPLT entries for TLS descriptors. */
3107 bfd_vma *local_tlsdesc_gotent;
3108
3109 /* Information for local symbols that need entries in .iplt. */
3110 struct arm_local_iplt_info **local_iplt;
3111
3112 /* Zero to warn when linking objects with incompatible enum sizes. */
3113 int no_enum_size_warning;
3114
3115 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3116 int no_wchar_size_warning;
3117
3118 /* Maintains FDPIC counters and funcdesc info. */
3119 struct fdpic_local *local_fdpic_cnts;
3120 };
3121
3122 #define elf_arm_tdata(bfd) \
3123 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3124
3125 #define elf32_arm_local_got_tls_type(bfd) \
3126 (elf_arm_tdata (bfd)->local_got_tls_type)
3127
3128 #define elf32_arm_local_tlsdesc_gotent(bfd) \
3129 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3130
3131 #define elf32_arm_local_iplt(bfd) \
3132 (elf_arm_tdata (bfd)->local_iplt)
3133
3134 #define elf32_arm_local_fdpic_cnts(bfd) \
3135 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3136
3137 #define is_arm_elf(bfd) \
3138 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3139 && elf_tdata (bfd) != NULL \
3140 && elf_object_id (bfd) == ARM_ELF_DATA)
3141
3142 static bfd_boolean
3143 elf32_arm_mkobject (bfd *abfd)
3144 {
3145 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
3146 ARM_ELF_DATA);
3147 }
3148
3149 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3150
3151 /* Structure to handle FDPIC support for extern functions. */
3152 struct fdpic_global {
3153 unsigned int gotofffuncdesc_cnt;
3154 unsigned int gotfuncdesc_cnt;
3155 unsigned int funcdesc_cnt;
3156 int funcdesc_offset;
3157 int gotfuncdesc_offset;
3158 };
3159
3160 /* Arm ELF linker hash entry. */
3161 struct elf32_arm_link_hash_entry
3162 {
3163 struct elf_link_hash_entry root;
3164
3165 /* Track dynamic relocs copied for this symbol. */
3166 struct elf_dyn_relocs *dyn_relocs;
3167
3168 /* ARM-specific PLT information. */
3169 struct arm_plt_info plt;
3170
3171 #define GOT_UNKNOWN 0
3172 #define GOT_NORMAL 1
3173 #define GOT_TLS_GD 2
3174 #define GOT_TLS_IE 4
3175 #define GOT_TLS_GDESC 8
3176 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3177 unsigned int tls_type : 8;
3178
3179 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3180 unsigned int is_iplt : 1;
3181
3182 unsigned int unused : 23;
3183
3184 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3185 starting at the end of the jump table. */
3186 bfd_vma tlsdesc_got;
3187
3188 /* The symbol marking the real symbol location for exported thumb
3189 symbols with Arm stubs. */
3190 struct elf_link_hash_entry *export_glue;
3191
3192 /* A pointer to the most recently used stub hash entry against this
3193 symbol. */
3194 struct elf32_arm_stub_hash_entry *stub_cache;
3195
3196 /* Counter for FDPIC relocations against this symbol. */
3197 struct fdpic_global fdpic_cnts;
3198 };
3199
3200 /* Traverse an arm ELF linker hash table. */
3201 #define elf32_arm_link_hash_traverse(table, func, info) \
3202 (elf_link_hash_traverse \
3203 (&(table)->root, \
3204 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3205 (info)))
3206
3207 /* Get the ARM elf linker hash table from a link_info structure. */
3208 #define elf32_arm_hash_table(info) \
3209 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3210 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3211
3212 #define arm_stub_hash_lookup(table, string, create, copy) \
3213 ((struct elf32_arm_stub_hash_entry *) \
3214 bfd_hash_lookup ((table), (string), (create), (copy)))
3215
3216 /* Array to keep track of which stub sections have been created, and
3217 information on stub grouping. */
3218 struct map_stub
3219 {
3220 /* This is the section to which stubs in the group will be
3221 attached. */
3222 asection *link_sec;
3223 /* The stub section. */
3224 asection *stub_sec;
3225 };
3226
3227 #define elf32_arm_compute_jump_table_size(htab) \
3228 ((htab)->next_tls_desc_index * 4)
3229
3230 /* ARM ELF linker hash table. */
3231 struct elf32_arm_link_hash_table
3232 {
3233 /* The main hash table. */
3234 struct elf_link_hash_table root;
3235
3236 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3237 bfd_size_type thumb_glue_size;
3238
3239 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3240 bfd_size_type arm_glue_size;
3241
3242 /* The size in bytes of section containing the ARMv4 BX veneers. */
3243 bfd_size_type bx_glue_size;
3244
3245 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3246 veneer has been populated. */
3247 bfd_vma bx_glue_offset[15];
3248
3249 /* The size in bytes of the section containing glue for VFP11 erratum
3250 veneers. */
3251 bfd_size_type vfp11_erratum_glue_size;
3252
3253 /* The size in bytes of the section containing glue for STM32L4XX erratum
3254 veneers. */
3255 bfd_size_type stm32l4xx_erratum_glue_size;
3256
3257 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3258 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3259 elf32_arm_write_section(). */
3260 struct a8_erratum_fix *a8_erratum_fixes;
3261 unsigned int num_a8_erratum_fixes;
3262
3263 /* An arbitrary input BFD chosen to hold the glue sections. */
3264 bfd * bfd_of_glue_owner;
3265
3266 /* Nonzero to output a BE8 image. */
3267 int byteswap_code;
3268
3269 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3270 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3271 int target1_is_rel;
3272
3273 /* The relocation to use for R_ARM_TARGET2 relocations. */
3274 int target2_reloc;
3275
3276 /* 0 = Ignore R_ARM_V4BX.
3277 1 = Convert BX to MOV PC.
3278 2 = Generate v4 interworing stubs. */
3279 int fix_v4bx;
3280
3281 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3282 int fix_cortex_a8;
3283
3284 /* Whether we should fix the ARM1176 BLX immediate issue. */
3285 int fix_arm1176;
3286
3287 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3288 int use_blx;
3289
3290 /* What sort of code sequences we should look for which may trigger the
3291 VFP11 denorm erratum. */
3292 bfd_arm_vfp11_fix vfp11_fix;
3293
3294 /* Global counter for the number of fixes we have emitted. */
3295 int num_vfp11_fixes;
3296
3297 /* What sort of code sequences we should look for which may trigger the
3298 STM32L4XX erratum. */
3299 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3300
3301 /* Global counter for the number of fixes we have emitted. */
3302 int num_stm32l4xx_fixes;
3303
3304 /* Nonzero to force PIC branch veneers. */
3305 int pic_veneer;
3306
3307 /* The number of bytes in the initial entry in the PLT. */
3308 bfd_size_type plt_header_size;
3309
3310 /* The number of bytes in the subsequent PLT etries. */
3311 bfd_size_type plt_entry_size;
3312
3313 /* True if the target system is VxWorks. */
3314 int vxworks_p;
3315
3316 /* True if the target system is Symbian OS. */
3317 int symbian_p;
3318
3319 /* True if the target system is Native Client. */
3320 int nacl_p;
3321
3322 /* True if the target uses REL relocations. */
3323 bfd_boolean use_rel;
3324
3325 /* Nonzero if import library must be a secure gateway import library
3326 as per ARMv8-M Security Extensions. */
3327 int cmse_implib;
3328
3329 /* The import library whose symbols' address must remain stable in
3330 the import library generated. */
3331 bfd *in_implib_bfd;
3332
3333 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3334 bfd_vma next_tls_desc_index;
3335
3336 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3337 bfd_vma num_tls_desc;
3338
3339 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3340 asection *srelplt2;
3341
3342 /* The offset into splt of the PLT entry for the TLS descriptor
3343 resolver. Special values are 0, if not necessary (or not found
3344 to be necessary yet), and -1 if needed but not determined
3345 yet. */
3346 bfd_vma dt_tlsdesc_plt;
3347
3348 /* The offset into sgot of the GOT entry used by the PLT entry
3349 above. */
3350 bfd_vma dt_tlsdesc_got;
3351
3352 /* Offset in .plt section of tls_arm_trampoline. */
3353 bfd_vma tls_trampoline;
3354
3355 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3356 union
3357 {
3358 bfd_signed_vma refcount;
3359 bfd_vma offset;
3360 } tls_ldm_got;
3361
3362 /* Small local sym cache. */
3363 struct sym_cache sym_cache;
3364
3365 /* For convenience in allocate_dynrelocs. */
3366 bfd * obfd;
3367
3368 /* The amount of space used by the reserved portion of the sgotplt
3369 section, plus whatever space is used by the jump slots. */
3370 bfd_vma sgotplt_jump_table_size;
3371
3372 /* The stub hash table. */
3373 struct bfd_hash_table stub_hash_table;
3374
3375 /* Linker stub bfd. */
3376 bfd *stub_bfd;
3377
3378 /* Linker call-backs. */
3379 asection * (*add_stub_section) (const char *, asection *, asection *,
3380 unsigned int);
3381 void (*layout_sections_again) (void);
3382
3383 /* Array to keep track of which stub sections have been created, and
3384 information on stub grouping. */
3385 struct map_stub *stub_group;
3386
3387 /* Input stub section holding secure gateway veneers. */
3388 asection *cmse_stub_sec;
3389
3390 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3391 start to be allocated. */
3392 bfd_vma new_cmse_stub_offset;
3393
3394 /* Number of elements in stub_group. */
3395 unsigned int top_id;
3396
3397 /* Assorted information used by elf32_arm_size_stubs. */
3398 unsigned int bfd_count;
3399 unsigned int top_index;
3400 asection **input_list;
3401
3402 /* True if the target system uses FDPIC. */
3403 int fdpic_p;
3404
3405 /* Fixup section. Used for FDPIC. */
3406 asection *srofixup;
3407 };
3408
3409 /* Add an FDPIC read-only fixup. */
3410 static void
3411 arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3412 {
3413 bfd_vma fixup_offset;
3414
3415 fixup_offset = srofixup->reloc_count++ * 4;
3416 BFD_ASSERT (fixup_offset < srofixup->size);
3417 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3418 }
3419
3420 static inline int
3421 ctz (unsigned int mask)
3422 {
3423 #if GCC_VERSION >= 3004
3424 return __builtin_ctz (mask);
3425 #else
3426 unsigned int i;
3427
3428 for (i = 0; i < 8 * sizeof (mask); i++)
3429 {
3430 if (mask & 0x1)
3431 break;
3432 mask = (mask >> 1);
3433 }
3434 return i;
3435 #endif
3436 }
3437
3438 static inline int
3439 elf32_arm_popcount (unsigned int mask)
3440 {
3441 #if GCC_VERSION >= 3004
3442 return __builtin_popcount (mask);
3443 #else
3444 unsigned int i;
3445 int sum = 0;
3446
3447 for (i = 0; i < 8 * sizeof (mask); i++)
3448 {
3449 if (mask & 0x1)
3450 sum++;
3451 mask = (mask >> 1);
3452 }
3453 return sum;
3454 #endif
3455 }
3456
3457 static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3458 asection *sreloc, Elf_Internal_Rela *rel);
3459
3460 static void
3461 arm_elf_fill_funcdesc(bfd *output_bfd,
3462 struct bfd_link_info *info,
3463 int *funcdesc_offset,
3464 int dynindx,
3465 int offset,
3466 bfd_vma addr,
3467 bfd_vma dynreloc_value,
3468 bfd_vma seg)
3469 {
3470 if ((*funcdesc_offset & 1) == 0)
3471 {
3472 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3473 asection *sgot = globals->root.sgot;
3474
3475 if (bfd_link_pic(info))
3476 {
3477 asection *srelgot = globals->root.srelgot;
3478 Elf_Internal_Rela outrel;
3479
3480 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3481 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3482 outrel.r_addend = 0;
3483
3484 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3485 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3486 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3487 }
3488 else
3489 {
3490 struct elf_link_hash_entry *hgot = globals->root.hgot;
3491 bfd_vma got_value = hgot->root.u.def.value
3492 + hgot->root.u.def.section->output_section->vma
3493 + hgot->root.u.def.section->output_offset;
3494
3495 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3496 sgot->output_section->vma + sgot->output_offset
3497 + offset);
3498 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3499 sgot->output_section->vma + sgot->output_offset
3500 + offset + 4);
3501 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3502 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3503 }
3504 *funcdesc_offset |= 1;
3505 }
3506 }
3507
3508 /* Create an entry in an ARM ELF linker hash table. */
3509
3510 static struct bfd_hash_entry *
3511 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3512 struct bfd_hash_table * table,
3513 const char * string)
3514 {
3515 struct elf32_arm_link_hash_entry * ret =
3516 (struct elf32_arm_link_hash_entry *) entry;
3517
3518 /* Allocate the structure if it has not already been allocated by a
3519 subclass. */
3520 if (ret == NULL)
3521 ret = (struct elf32_arm_link_hash_entry *)
3522 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3523 if (ret == NULL)
3524 return (struct bfd_hash_entry *) ret;
3525
3526 /* Call the allocation method of the superclass. */
3527 ret = ((struct elf32_arm_link_hash_entry *)
3528 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3529 table, string));
3530 if (ret != NULL)
3531 {
3532 ret->dyn_relocs = NULL;
3533 ret->tls_type = GOT_UNKNOWN;
3534 ret->tlsdesc_got = (bfd_vma) -1;
3535 ret->plt.thumb_refcount = 0;
3536 ret->plt.maybe_thumb_refcount = 0;
3537 ret->plt.noncall_refcount = 0;
3538 ret->plt.got_offset = -1;
3539 ret->is_iplt = FALSE;
3540 ret->export_glue = NULL;
3541
3542 ret->stub_cache = NULL;
3543
3544 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3545 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3546 ret->fdpic_cnts.funcdesc_cnt = 0;
3547 ret->fdpic_cnts.funcdesc_offset = -1;
3548 ret->fdpic_cnts.gotfuncdesc_offset = -1;
3549 }
3550
3551 return (struct bfd_hash_entry *) ret;
3552 }
3553
3554 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3555 symbols. */
3556
3557 static bfd_boolean
3558 elf32_arm_allocate_local_sym_info (bfd *abfd)
3559 {
3560 if (elf_local_got_refcounts (abfd) == NULL)
3561 {
3562 bfd_size_type num_syms;
3563 bfd_size_type size;
3564 char *data;
3565
3566 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3567 size = num_syms * (sizeof (bfd_signed_vma)
3568 + sizeof (struct arm_local_iplt_info *)
3569 + sizeof (bfd_vma)
3570 + sizeof (char)
3571 + sizeof (struct fdpic_local));
3572 data = bfd_zalloc (abfd, size);
3573 if (data == NULL)
3574 return FALSE;
3575
3576 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3577 data += num_syms * sizeof (struct fdpic_local);
3578
3579 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3580 data += num_syms * sizeof (bfd_signed_vma);
3581
3582 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3583 data += num_syms * sizeof (struct arm_local_iplt_info *);
3584
3585 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3586 data += num_syms * sizeof (bfd_vma);
3587
3588 elf32_arm_local_got_tls_type (abfd) = data;
3589 }
3590 return TRUE;
3591 }
3592
3593 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3594 to input bfd ABFD. Create the information if it doesn't already exist.
3595 Return null if an allocation fails. */
3596
3597 static struct arm_local_iplt_info *
3598 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3599 {
3600 struct arm_local_iplt_info **ptr;
3601
3602 if (!elf32_arm_allocate_local_sym_info (abfd))
3603 return NULL;
3604
3605 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3606 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3607 if (*ptr == NULL)
3608 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3609 return *ptr;
3610 }
3611
3612 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3613 in ABFD's symbol table. If the symbol is global, H points to its
3614 hash table entry, otherwise H is null.
3615
3616 Return true if the symbol does have PLT information. When returning
3617 true, point *ROOT_PLT at the target-independent reference count/offset
3618 union and *ARM_PLT at the ARM-specific information. */
3619
3620 static bfd_boolean
3621 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3622 struct elf32_arm_link_hash_entry *h,
3623 unsigned long r_symndx, union gotplt_union **root_plt,
3624 struct arm_plt_info **arm_plt)
3625 {
3626 struct arm_local_iplt_info *local_iplt;
3627
3628 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3629 return FALSE;
3630
3631 if (h != NULL)
3632 {
3633 *root_plt = &h->root.plt;
3634 *arm_plt = &h->plt;
3635 return TRUE;
3636 }
3637
3638 if (elf32_arm_local_iplt (abfd) == NULL)
3639 return FALSE;
3640
3641 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3642 if (local_iplt == NULL)
3643 return FALSE;
3644
3645 *root_plt = &local_iplt->root;
3646 *arm_plt = &local_iplt->arm;
3647 return TRUE;
3648 }
3649
3650 static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3651
3652 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3653 before it. */
3654
3655 static bfd_boolean
3656 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3657 struct arm_plt_info *arm_plt)
3658 {
3659 struct elf32_arm_link_hash_table *htab;
3660
3661 htab = elf32_arm_hash_table (info);
3662
3663 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3664 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
3665 }
3666
3667 /* Return a pointer to the head of the dynamic reloc list that should
3668 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3669 ABFD's symbol table. Return null if an error occurs. */
3670
3671 static struct elf_dyn_relocs **
3672 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3673 Elf_Internal_Sym *isym)
3674 {
3675 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3676 {
3677 struct arm_local_iplt_info *local_iplt;
3678
3679 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3680 if (local_iplt == NULL)
3681 return NULL;
3682 return &local_iplt->dyn_relocs;
3683 }
3684 else
3685 {
3686 /* Track dynamic relocs needed for local syms too.
3687 We really need local syms available to do this
3688 easily. Oh well. */
3689 asection *s;
3690 void *vpp;
3691
3692 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3693 if (s == NULL)
3694 abort ();
3695
3696 vpp = &elf_section_data (s)->local_dynrel;
3697 return (struct elf_dyn_relocs **) vpp;
3698 }
3699 }
3700
3701 /* Initialize an entry in the stub hash table. */
3702
3703 static struct bfd_hash_entry *
3704 stub_hash_newfunc (struct bfd_hash_entry *entry,
3705 struct bfd_hash_table *table,
3706 const char *string)
3707 {
3708 /* Allocate the structure if it has not already been allocated by a
3709 subclass. */
3710 if (entry == NULL)
3711 {
3712 entry = (struct bfd_hash_entry *)
3713 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3714 if (entry == NULL)
3715 return entry;
3716 }
3717
3718 /* Call the allocation method of the superclass. */
3719 entry = bfd_hash_newfunc (entry, table, string);
3720 if (entry != NULL)
3721 {
3722 struct elf32_arm_stub_hash_entry *eh;
3723
3724 /* Initialize the local fields. */
3725 eh = (struct elf32_arm_stub_hash_entry *) entry;
3726 eh->stub_sec = NULL;
3727 eh->stub_offset = (bfd_vma) -1;
3728 eh->source_value = 0;
3729 eh->target_value = 0;
3730 eh->target_section = NULL;
3731 eh->orig_insn = 0;
3732 eh->stub_type = arm_stub_none;
3733 eh->stub_size = 0;
3734 eh->stub_template = NULL;
3735 eh->stub_template_size = -1;
3736 eh->h = NULL;
3737 eh->id_sec = NULL;
3738 eh->output_name = NULL;
3739 }
3740
3741 return entry;
3742 }
3743
3744 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3745 shortcuts to them in our hash table. */
3746
3747 static bfd_boolean
3748 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3749 {
3750 struct elf32_arm_link_hash_table *htab;
3751
3752 htab = elf32_arm_hash_table (info);
3753 if (htab == NULL)
3754 return FALSE;
3755
3756 /* BPABI objects never have a GOT, or associated sections. */
3757 if (htab->symbian_p)
3758 return TRUE;
3759
3760 if (! _bfd_elf_create_got_section (dynobj, info))
3761 return FALSE;
3762
3763 /* Also create .rofixup. */
3764 if (htab->fdpic_p)
3765 {
3766 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3767 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3768 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
3769 if (htab->srofixup == NULL || ! bfd_set_section_alignment (dynobj, htab->srofixup, 2))
3770 return FALSE;
3771 }
3772
3773 return TRUE;
3774 }
3775
3776 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3777
3778 static bfd_boolean
3779 create_ifunc_sections (struct bfd_link_info *info)
3780 {
3781 struct elf32_arm_link_hash_table *htab;
3782 const struct elf_backend_data *bed;
3783 bfd *dynobj;
3784 asection *s;
3785 flagword flags;
3786
3787 htab = elf32_arm_hash_table (info);
3788 dynobj = htab->root.dynobj;
3789 bed = get_elf_backend_data (dynobj);
3790 flags = bed->dynamic_sec_flags;
3791
3792 if (htab->root.iplt == NULL)
3793 {
3794 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3795 flags | SEC_READONLY | SEC_CODE);
3796 if (s == NULL
3797 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3798 return FALSE;
3799 htab->root.iplt = s;
3800 }
3801
3802 if (htab->root.irelplt == NULL)
3803 {
3804 s = bfd_make_section_anyway_with_flags (dynobj,
3805 RELOC_SECTION (htab, ".iplt"),
3806 flags | SEC_READONLY);
3807 if (s == NULL
3808 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3809 return FALSE;
3810 htab->root.irelplt = s;
3811 }
3812
3813 if (htab->root.igotplt == NULL)
3814 {
3815 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3816 if (s == NULL
3817 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3818 return FALSE;
3819 htab->root.igotplt = s;
3820 }
3821 return TRUE;
3822 }
3823
3824 /* Determine if we're dealing with a Thumb only architecture. */
3825
3826 static bfd_boolean
3827 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3828 {
3829 int arch;
3830 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3831 Tag_CPU_arch_profile);
3832
3833 if (profile)
3834 return profile == 'M';
3835
3836 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3837
3838 /* Force return logic to be reviewed for each new architecture. */
3839 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
3840
3841 if (arch == TAG_CPU_ARCH_V6_M
3842 || arch == TAG_CPU_ARCH_V6S_M
3843 || arch == TAG_CPU_ARCH_V7E_M
3844 || arch == TAG_CPU_ARCH_V8M_BASE
3845 || arch == TAG_CPU_ARCH_V8M_MAIN)
3846 return TRUE;
3847
3848 return FALSE;
3849 }
3850
3851 /* Determine if we're dealing with a Thumb-2 object. */
3852
3853 static bfd_boolean
3854 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3855 {
3856 int arch;
3857 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3858 Tag_THUMB_ISA_use);
3859
3860 if (thumb_isa)
3861 return thumb_isa == 2;
3862
3863 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3864
3865 /* Force return logic to be reviewed for each new architecture. */
3866 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
3867
3868 return (arch == TAG_CPU_ARCH_V6T2
3869 || arch == TAG_CPU_ARCH_V7
3870 || arch == TAG_CPU_ARCH_V7E_M
3871 || arch == TAG_CPU_ARCH_V8
3872 || arch == TAG_CPU_ARCH_V8R
3873 || arch == TAG_CPU_ARCH_V8M_MAIN);
3874 }
3875
3876 /* Determine whether Thumb-2 BL instruction is available. */
3877
3878 static bfd_boolean
3879 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3880 {
3881 int arch =
3882 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3883
3884 /* Force return logic to be reviewed for each new architecture. */
3885 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
3886
3887 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3888 return (arch == TAG_CPU_ARCH_V6T2
3889 || arch >= TAG_CPU_ARCH_V7);
3890 }
3891
3892 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3893 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3894 hash table. */
3895
3896 static bfd_boolean
3897 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3898 {
3899 struct elf32_arm_link_hash_table *htab;
3900
3901 htab = elf32_arm_hash_table (info);
3902 if (htab == NULL)
3903 return FALSE;
3904
3905 if (!htab->root.sgot && !create_got_section (dynobj, info))
3906 return FALSE;
3907
3908 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3909 return FALSE;
3910
3911 if (htab->vxworks_p)
3912 {
3913 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3914 return FALSE;
3915
3916 if (bfd_link_pic (info))
3917 {
3918 htab->plt_header_size = 0;
3919 htab->plt_entry_size
3920 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3921 }
3922 else
3923 {
3924 htab->plt_header_size
3925 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3926 htab->plt_entry_size
3927 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3928 }
3929
3930 if (elf_elfheader (dynobj))
3931 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3932 }
3933 else
3934 {
3935 /* PR ld/16017
3936 Test for thumb only architectures. Note - we cannot just call
3937 using_thumb_only() as the attributes in the output bfd have not been
3938 initialised at this point, so instead we use the input bfd. */
3939 bfd * saved_obfd = htab->obfd;
3940
3941 htab->obfd = dynobj;
3942 if (using_thumb_only (htab))
3943 {
3944 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3945 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3946 }
3947 htab->obfd = saved_obfd;
3948 }
3949
3950 if (htab->fdpic_p) {
3951 htab->plt_header_size = 0;
3952 if (info->flags & DF_BIND_NOW)
3953 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
3954 else
3955 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
3956 }
3957
3958 if (!htab->root.splt
3959 || !htab->root.srelplt
3960 || !htab->root.sdynbss
3961 || (!bfd_link_pic (info) && !htab->root.srelbss))
3962 abort ();
3963
3964 return TRUE;
3965 }
3966
3967 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3968
3969 static void
3970 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3971 struct elf_link_hash_entry *dir,
3972 struct elf_link_hash_entry *ind)
3973 {
3974 struct elf32_arm_link_hash_entry *edir, *eind;
3975
3976 edir = (struct elf32_arm_link_hash_entry *) dir;
3977 eind = (struct elf32_arm_link_hash_entry *) ind;
3978
3979 if (eind->dyn_relocs != NULL)
3980 {
3981 if (edir->dyn_relocs != NULL)
3982 {
3983 struct elf_dyn_relocs **pp;
3984 struct elf_dyn_relocs *p;
3985
3986 /* Add reloc counts against the indirect sym to the direct sym
3987 list. Merge any entries against the same section. */
3988 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3989 {
3990 struct elf_dyn_relocs *q;
3991
3992 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3993 if (q->sec == p->sec)
3994 {
3995 q->pc_count += p->pc_count;
3996 q->count += p->count;
3997 *pp = p->next;
3998 break;
3999 }
4000 if (q == NULL)
4001 pp = &p->next;
4002 }
4003 *pp = edir->dyn_relocs;
4004 }
4005
4006 edir->dyn_relocs = eind->dyn_relocs;
4007 eind->dyn_relocs = NULL;
4008 }
4009
4010 if (ind->root.type == bfd_link_hash_indirect)
4011 {
4012 /* Copy over PLT info. */
4013 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4014 eind->plt.thumb_refcount = 0;
4015 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4016 eind->plt.maybe_thumb_refcount = 0;
4017 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4018 eind->plt.noncall_refcount = 0;
4019
4020 /* Copy FDPIC counters. */
4021 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4022 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4023 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4024
4025 /* We should only allocate a function to .iplt once the final
4026 symbol information is known. */
4027 BFD_ASSERT (!eind->is_iplt);
4028
4029 if (dir->got.refcount <= 0)
4030 {
4031 edir->tls_type = eind->tls_type;
4032 eind->tls_type = GOT_UNKNOWN;
4033 }
4034 }
4035
4036 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4037 }
4038
4039 /* Destroy an ARM elf linker hash table. */
4040
4041 static void
4042 elf32_arm_link_hash_table_free (bfd *obfd)
4043 {
4044 struct elf32_arm_link_hash_table *ret
4045 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
4046
4047 bfd_hash_table_free (&ret->stub_hash_table);
4048 _bfd_elf_link_hash_table_free (obfd);
4049 }
4050
4051 /* Create an ARM elf linker hash table. */
4052
4053 static struct bfd_link_hash_table *
4054 elf32_arm_link_hash_table_create (bfd *abfd)
4055 {
4056 struct elf32_arm_link_hash_table *ret;
4057 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
4058
4059 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
4060 if (ret == NULL)
4061 return NULL;
4062
4063 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4064 elf32_arm_link_hash_newfunc,
4065 sizeof (struct elf32_arm_link_hash_entry),
4066 ARM_ELF_DATA))
4067 {
4068 free (ret);
4069 return NULL;
4070 }
4071
4072 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4073 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
4074 #ifdef FOUR_WORD_PLT
4075 ret->plt_header_size = 16;
4076 ret->plt_entry_size = 16;
4077 #else
4078 ret->plt_header_size = 20;
4079 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
4080 #endif
4081 ret->use_rel = TRUE;
4082 ret->obfd = abfd;
4083 ret->fdpic_p = 0;
4084
4085 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4086 sizeof (struct elf32_arm_stub_hash_entry)))
4087 {
4088 _bfd_elf_link_hash_table_free (abfd);
4089 return NULL;
4090 }
4091 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
4092
4093 return &ret->root.root;
4094 }
4095
4096 /* Determine what kind of NOPs are available. */
4097
4098 static bfd_boolean
4099 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4100 {
4101 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4102 Tag_CPU_arch);
4103
4104 /* Force return logic to be reviewed for each new architecture. */
4105 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8M_MAIN);
4106
4107 return (arch == TAG_CPU_ARCH_V6T2
4108 || arch == TAG_CPU_ARCH_V6K
4109 || arch == TAG_CPU_ARCH_V7
4110 || arch == TAG_CPU_ARCH_V8
4111 || arch == TAG_CPU_ARCH_V8R);
4112 }
4113
4114 static bfd_boolean
4115 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4116 {
4117 switch (stub_type)
4118 {
4119 case arm_stub_long_branch_thumb_only:
4120 case arm_stub_long_branch_thumb2_only:
4121 case arm_stub_long_branch_thumb2_only_pure:
4122 case arm_stub_long_branch_v4t_thumb_arm:
4123 case arm_stub_short_branch_v4t_thumb_arm:
4124 case arm_stub_long_branch_v4t_thumb_arm_pic:
4125 case arm_stub_long_branch_v4t_thumb_tls_pic:
4126 case arm_stub_long_branch_thumb_only_pic:
4127 case arm_stub_cmse_branch_thumb_only:
4128 return TRUE;
4129 case arm_stub_none:
4130 BFD_FAIL ();
4131 return FALSE;
4132 break;
4133 default:
4134 return FALSE;
4135 }
4136 }
4137
4138 /* Determine the type of stub needed, if any, for a call. */
4139
4140 static enum elf32_arm_stub_type
4141 arm_type_of_stub (struct bfd_link_info *info,
4142 asection *input_sec,
4143 const Elf_Internal_Rela *rel,
4144 unsigned char st_type,
4145 enum arm_st_branch_type *actual_branch_type,
4146 struct elf32_arm_link_hash_entry *hash,
4147 bfd_vma destination,
4148 asection *sym_sec,
4149 bfd *input_bfd,
4150 const char *name)
4151 {
4152 bfd_vma location;
4153 bfd_signed_vma branch_offset;
4154 unsigned int r_type;
4155 struct elf32_arm_link_hash_table * globals;
4156 bfd_boolean thumb2, thumb2_bl, thumb_only;
4157 enum elf32_arm_stub_type stub_type = arm_stub_none;
4158 int use_plt = 0;
4159 enum arm_st_branch_type branch_type = *actual_branch_type;
4160 union gotplt_union *root_plt;
4161 struct arm_plt_info *arm_plt;
4162 int arch;
4163 int thumb2_movw;
4164
4165 if (branch_type == ST_BRANCH_LONG)
4166 return stub_type;
4167
4168 globals = elf32_arm_hash_table (info);
4169 if (globals == NULL)
4170 return stub_type;
4171
4172 thumb_only = using_thumb_only (globals);
4173 thumb2 = using_thumb2 (globals);
4174 thumb2_bl = using_thumb2_bl (globals);
4175
4176 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4177
4178 /* True for architectures that implement the thumb2 movw instruction. */
4179 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4180
4181 /* Determine where the call point is. */
4182 location = (input_sec->output_offset
4183 + input_sec->output_section->vma
4184 + rel->r_offset);
4185
4186 r_type = ELF32_R_TYPE (rel->r_info);
4187
4188 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4189 are considering a function call relocation. */
4190 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4191 || r_type == R_ARM_THM_JUMP19)
4192 && branch_type == ST_BRANCH_TO_ARM)
4193 branch_type = ST_BRANCH_TO_THUMB;
4194
4195 /* For TLS call relocs, it is the caller's responsibility to provide
4196 the address of the appropriate trampoline. */
4197 if (r_type != R_ARM_TLS_CALL
4198 && r_type != R_ARM_THM_TLS_CALL
4199 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4200 ELF32_R_SYM (rel->r_info), &root_plt,
4201 &arm_plt)
4202 && root_plt->offset != (bfd_vma) -1)
4203 {
4204 asection *splt;
4205
4206 if (hash == NULL || hash->is_iplt)
4207 splt = globals->root.iplt;
4208 else
4209 splt = globals->root.splt;
4210 if (splt != NULL)
4211 {
4212 use_plt = 1;
4213
4214 /* Note when dealing with PLT entries: the main PLT stub is in
4215 ARM mode, so if the branch is in Thumb mode, another
4216 Thumb->ARM stub will be inserted later just before the ARM
4217 PLT stub. If a long branch stub is needed, we'll add a
4218 Thumb->Arm one and branch directly to the ARM PLT entry.
4219 Here, we have to check if a pre-PLT Thumb->ARM stub
4220 is needed and if it will be close enough. */
4221
4222 destination = (splt->output_section->vma
4223 + splt->output_offset
4224 + root_plt->offset);
4225 st_type = STT_FUNC;
4226
4227 /* Thumb branch/call to PLT: it can become a branch to ARM
4228 or to Thumb. We must perform the same checks and
4229 corrections as in elf32_arm_final_link_relocate. */
4230 if ((r_type == R_ARM_THM_CALL)
4231 || (r_type == R_ARM_THM_JUMP24))
4232 {
4233 if (globals->use_blx
4234 && r_type == R_ARM_THM_CALL
4235 && !thumb_only)
4236 {
4237 /* If the Thumb BLX instruction is available, convert
4238 the BL to a BLX instruction to call the ARM-mode
4239 PLT entry. */
4240 branch_type = ST_BRANCH_TO_ARM;
4241 }
4242 else
4243 {
4244 if (!thumb_only)
4245 /* Target the Thumb stub before the ARM PLT entry. */
4246 destination -= PLT_THUMB_STUB_SIZE;
4247 branch_type = ST_BRANCH_TO_THUMB;
4248 }
4249 }
4250 else
4251 {
4252 branch_type = ST_BRANCH_TO_ARM;
4253 }
4254 }
4255 }
4256 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4257 BFD_ASSERT (st_type != STT_GNU_IFUNC);
4258
4259 branch_offset = (bfd_signed_vma)(destination - location);
4260
4261 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4262 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
4263 {
4264 /* Handle cases where:
4265 - this call goes too far (different Thumb/Thumb2 max
4266 distance)
4267 - it's a Thumb->Arm call and blx is not available, or it's a
4268 Thumb->Arm branch (not bl). A stub is needed in this case,
4269 but only if this call is not through a PLT entry. Indeed,
4270 PLT stubs handle mode switching already. */
4271 if ((!thumb2_bl
4272 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4273 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4274 || (thumb2_bl
4275 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4276 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4277 || (thumb2
4278 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4279 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4280 && (r_type == R_ARM_THM_JUMP19))
4281 || (branch_type == ST_BRANCH_TO_ARM
4282 && (((r_type == R_ARM_THM_CALL
4283 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4284 || (r_type == R_ARM_THM_JUMP24)
4285 || (r_type == R_ARM_THM_JUMP19))
4286 && !use_plt))
4287 {
4288 /* If we need to insert a Thumb-Thumb long branch stub to a
4289 PLT, use one that branches directly to the ARM PLT
4290 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4291 stub, undo this now. */
4292 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4293 {
4294 branch_type = ST_BRANCH_TO_ARM;
4295 branch_offset += PLT_THUMB_STUB_SIZE;
4296 }
4297
4298 if (branch_type == ST_BRANCH_TO_THUMB)
4299 {
4300 /* Thumb to thumb. */
4301 if (!thumb_only)
4302 {
4303 if (input_sec->flags & SEC_ELF_PURECODE)
4304 _bfd_error_handler
4305 (_("%pB(%pA): warning: long branch veneers used in"
4306 " section with SHF_ARM_PURECODE section"
4307 " attribute is only supported for M-profile"
4308 " targets that implement the movw instruction"),
4309 input_bfd, input_sec);
4310
4311 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4312 /* PIC stubs. */
4313 ? ((globals->use_blx
4314 && (r_type == R_ARM_THM_CALL))
4315 /* V5T and above. Stub starts with ARM code, so
4316 we must be able to switch mode before
4317 reaching it, which is only possible for 'bl'
4318 (ie R_ARM_THM_CALL relocation). */
4319 ? arm_stub_long_branch_any_thumb_pic
4320 /* On V4T, use Thumb code only. */
4321 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4322
4323 /* non-PIC stubs. */
4324 : ((globals->use_blx
4325 && (r_type == R_ARM_THM_CALL))
4326 /* V5T and above. */
4327 ? arm_stub_long_branch_any_any
4328 /* V4T. */
4329 : arm_stub_long_branch_v4t_thumb_thumb);
4330 }
4331 else
4332 {
4333 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4334 stub_type = arm_stub_long_branch_thumb2_only_pure;
4335 else
4336 {
4337 if (input_sec->flags & SEC_ELF_PURECODE)
4338 _bfd_error_handler
4339 (_("%pB(%pA): warning: long branch veneers used in"
4340 " section with SHF_ARM_PURECODE section"
4341 " attribute is only supported for M-profile"
4342 " targets that implement the movw instruction"),
4343 input_bfd, input_sec);
4344
4345 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4346 /* PIC stub. */
4347 ? arm_stub_long_branch_thumb_only_pic
4348 /* non-PIC stub. */
4349 : (thumb2 ? arm_stub_long_branch_thumb2_only
4350 : arm_stub_long_branch_thumb_only);
4351 }
4352 }
4353 }
4354 else
4355 {
4356 if (input_sec->flags & SEC_ELF_PURECODE)
4357 _bfd_error_handler
4358 (_("%pB(%pA): warning: long branch veneers used in"
4359 " section with SHF_ARM_PURECODE section"
4360 " attribute is only supported" " for M-profile"
4361 " targets that implement the movw instruction"),
4362 input_bfd, input_sec);
4363
4364 /* Thumb to arm. */
4365 if (sym_sec != NULL
4366 && sym_sec->owner != NULL
4367 && !INTERWORK_FLAG (sym_sec->owner))
4368 {
4369 _bfd_error_handler
4370 (_("%pB(%s): warning: interworking not enabled;"
4371 " first occurrence: %pB: %s call to %s"),
4372 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
4373 }
4374
4375 stub_type =
4376 (bfd_link_pic (info) | globals->pic_veneer)
4377 /* PIC stubs. */
4378 ? (r_type == R_ARM_THM_TLS_CALL
4379 /* TLS PIC stubs. */
4380 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4381 : arm_stub_long_branch_v4t_thumb_tls_pic)
4382 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4383 /* V5T PIC and above. */
4384 ? arm_stub_long_branch_any_arm_pic
4385 /* V4T PIC stub. */
4386 : arm_stub_long_branch_v4t_thumb_arm_pic))
4387
4388 /* non-PIC stubs. */
4389 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4390 /* V5T and above. */
4391 ? arm_stub_long_branch_any_any
4392 /* V4T. */
4393 : arm_stub_long_branch_v4t_thumb_arm);
4394
4395 /* Handle v4t short branches. */
4396 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4397 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4398 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4399 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4400 }
4401 }
4402 }
4403 else if (r_type == R_ARM_CALL
4404 || r_type == R_ARM_JUMP24
4405 || r_type == R_ARM_PLT32
4406 || r_type == R_ARM_TLS_CALL)
4407 {
4408 if (input_sec->flags & SEC_ELF_PURECODE)
4409 _bfd_error_handler
4410 (_("%pB(%pA): warning: long branch veneers used in"
4411 " section with SHF_ARM_PURECODE section"
4412 " attribute is only supported for M-profile"
4413 " targets that implement the movw instruction"),
4414 input_bfd, input_sec);
4415 if (branch_type == ST_BRANCH_TO_THUMB)
4416 {
4417 /* Arm to thumb. */
4418
4419 if (sym_sec != NULL
4420 && sym_sec->owner != NULL
4421 && !INTERWORK_FLAG (sym_sec->owner))
4422 {
4423 _bfd_error_handler
4424 (_("%pB(%s): warning: interworking not enabled;"
4425 " first occurrence: %pB: %s call to %s"),
4426 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
4427 }
4428
4429 /* We have an extra 2-bytes reach because of
4430 the mode change (bit 24 (H) of BLX encoding). */
4431 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4432 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4433 || (r_type == R_ARM_CALL && !globals->use_blx)
4434 || (r_type == R_ARM_JUMP24)
4435 || (r_type == R_ARM_PLT32))
4436 {
4437 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4438 /* PIC stubs. */
4439 ? ((globals->use_blx)
4440 /* V5T and above. */
4441 ? arm_stub_long_branch_any_thumb_pic
4442 /* V4T stub. */
4443 : arm_stub_long_branch_v4t_arm_thumb_pic)
4444
4445 /* non-PIC stubs. */
4446 : ((globals->use_blx)
4447 /* V5T and above. */
4448 ? arm_stub_long_branch_any_any
4449 /* V4T. */
4450 : arm_stub_long_branch_v4t_arm_thumb);
4451 }
4452 }
4453 else
4454 {
4455 /* Arm to arm. */
4456 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4457 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4458 {
4459 stub_type =
4460 (bfd_link_pic (info) | globals->pic_veneer)
4461 /* PIC stubs. */
4462 ? (r_type == R_ARM_TLS_CALL
4463 /* TLS PIC Stub. */
4464 ? arm_stub_long_branch_any_tls_pic
4465 : (globals->nacl_p
4466 ? arm_stub_long_branch_arm_nacl_pic
4467 : arm_stub_long_branch_any_arm_pic))
4468 /* non-PIC stubs. */
4469 : (globals->nacl_p
4470 ? arm_stub_long_branch_arm_nacl
4471 : arm_stub_long_branch_any_any);
4472 }
4473 }
4474 }
4475
4476 /* If a stub is needed, record the actual destination type. */
4477 if (stub_type != arm_stub_none)
4478 *actual_branch_type = branch_type;
4479
4480 return stub_type;
4481 }
4482
4483 /* Build a name for an entry in the stub hash table. */
4484
4485 static char *
4486 elf32_arm_stub_name (const asection *input_section,
4487 const asection *sym_sec,
4488 const struct elf32_arm_link_hash_entry *hash,
4489 const Elf_Internal_Rela *rel,
4490 enum elf32_arm_stub_type stub_type)
4491 {
4492 char *stub_name;
4493 bfd_size_type len;
4494
4495 if (hash)
4496 {
4497 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4498 stub_name = (char *) bfd_malloc (len);
4499 if (stub_name != NULL)
4500 sprintf (stub_name, "%08x_%s+%x_%d",
4501 input_section->id & 0xffffffff,
4502 hash->root.root.root.string,
4503 (int) rel->r_addend & 0xffffffff,
4504 (int) stub_type);
4505 }
4506 else
4507 {
4508 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4509 stub_name = (char *) bfd_malloc (len);
4510 if (stub_name != NULL)
4511 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4512 input_section->id & 0xffffffff,
4513 sym_sec->id & 0xffffffff,
4514 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4515 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4516 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4517 (int) rel->r_addend & 0xffffffff,
4518 (int) stub_type);
4519 }
4520
4521 return stub_name;
4522 }
4523
4524 /* Look up an entry in the stub hash. Stub entries are cached because
4525 creating the stub name takes a bit of time. */
4526
4527 static struct elf32_arm_stub_hash_entry *
4528 elf32_arm_get_stub_entry (const asection *input_section,
4529 const asection *sym_sec,
4530 struct elf_link_hash_entry *hash,
4531 const Elf_Internal_Rela *rel,
4532 struct elf32_arm_link_hash_table *htab,
4533 enum elf32_arm_stub_type stub_type)
4534 {
4535 struct elf32_arm_stub_hash_entry *stub_entry;
4536 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4537 const asection *id_sec;
4538
4539 if ((input_section->flags & SEC_CODE) == 0)
4540 return NULL;
4541
4542 /* If this input section is part of a group of sections sharing one
4543 stub section, then use the id of the first section in the group.
4544 Stub names need to include a section id, as there may well be
4545 more than one stub used to reach say, printf, and we need to
4546 distinguish between them. */
4547 BFD_ASSERT (input_section->id <= htab->top_id);
4548 id_sec = htab->stub_group[input_section->id].link_sec;
4549
4550 if (h != NULL && h->stub_cache != NULL
4551 && h->stub_cache->h == h
4552 && h->stub_cache->id_sec == id_sec
4553 && h->stub_cache->stub_type == stub_type)
4554 {
4555 stub_entry = h->stub_cache;
4556 }
4557 else
4558 {
4559 char *stub_name;
4560
4561 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4562 if (stub_name == NULL)
4563 return NULL;
4564
4565 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4566 stub_name, FALSE, FALSE);
4567 if (h != NULL)
4568 h->stub_cache = stub_entry;
4569
4570 free (stub_name);
4571 }
4572
4573 return stub_entry;
4574 }
4575
4576 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4577 section. */
4578
4579 static bfd_boolean
4580 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4581 {
4582 if (stub_type >= max_stub_type)
4583 abort (); /* Should be unreachable. */
4584
4585 switch (stub_type)
4586 {
4587 case arm_stub_cmse_branch_thumb_only:
4588 return TRUE;
4589
4590 default:
4591 return FALSE;
4592 }
4593
4594 abort (); /* Should be unreachable. */
4595 }
4596
4597 /* Required alignment (as a power of 2) for the dedicated section holding
4598 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4599 with input sections. */
4600
4601 static int
4602 arm_dedicated_stub_output_section_required_alignment
4603 (enum elf32_arm_stub_type stub_type)
4604 {
4605 if (stub_type >= max_stub_type)
4606 abort (); /* Should be unreachable. */
4607
4608 switch (stub_type)
4609 {
4610 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4611 boundary. */
4612 case arm_stub_cmse_branch_thumb_only:
4613 return 5;
4614
4615 default:
4616 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4617 return 0;
4618 }
4619
4620 abort (); /* Should be unreachable. */
4621 }
4622
4623 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4624 NULL if veneers of this type are interspersed with input sections. */
4625
4626 static const char *
4627 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4628 {
4629 if (stub_type >= max_stub_type)
4630 abort (); /* Should be unreachable. */
4631
4632 switch (stub_type)
4633 {
4634 case arm_stub_cmse_branch_thumb_only:
4635 return ".gnu.sgstubs";
4636
4637 default:
4638 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4639 return NULL;
4640 }
4641
4642 abort (); /* Should be unreachable. */
4643 }
4644
4645 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4646 returns the address of the hash table field in HTAB holding a pointer to the
4647 corresponding input section. Otherwise, returns NULL. */
4648
4649 static asection **
4650 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4651 enum elf32_arm_stub_type stub_type)
4652 {
4653 if (stub_type >= max_stub_type)
4654 abort (); /* Should be unreachable. */
4655
4656 switch (stub_type)
4657 {
4658 case arm_stub_cmse_branch_thumb_only:
4659 return &htab->cmse_stub_sec;
4660
4661 default:
4662 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4663 return NULL;
4664 }
4665
4666 abort (); /* Should be unreachable. */
4667 }
4668
4669 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4670 is the section that branch into veneer and can be NULL if stub should go in
4671 a dedicated output section. Returns a pointer to the stub section, and the
4672 section to which the stub section will be attached (in *LINK_SEC_P).
4673 LINK_SEC_P may be NULL. */
4674
4675 static asection *
4676 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4677 struct elf32_arm_link_hash_table *htab,
4678 enum elf32_arm_stub_type stub_type)
4679 {
4680 asection *link_sec, *out_sec, **stub_sec_p;
4681 const char *stub_sec_prefix;
4682 bfd_boolean dedicated_output_section =
4683 arm_dedicated_stub_output_section_required (stub_type);
4684 int align;
4685
4686 if (dedicated_output_section)
4687 {
4688 bfd *output_bfd = htab->obfd;
4689 const char *out_sec_name =
4690 arm_dedicated_stub_output_section_name (stub_type);
4691 link_sec = NULL;
4692 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4693 stub_sec_prefix = out_sec_name;
4694 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4695 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4696 if (out_sec == NULL)
4697 {
4698 _bfd_error_handler (_("no address assigned to the veneers output "
4699 "section %s"), out_sec_name);
4700 return NULL;
4701 }
4702 }
4703 else
4704 {
4705 BFD_ASSERT (section->id <= htab->top_id);
4706 link_sec = htab->stub_group[section->id].link_sec;
4707 BFD_ASSERT (link_sec != NULL);
4708 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4709 if (*stub_sec_p == NULL)
4710 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4711 stub_sec_prefix = link_sec->name;
4712 out_sec = link_sec->output_section;
4713 align = htab->nacl_p ? 4 : 3;
4714 }
4715
4716 if (*stub_sec_p == NULL)
4717 {
4718 size_t namelen;
4719 bfd_size_type len;
4720 char *s_name;
4721
4722 namelen = strlen (stub_sec_prefix);
4723 len = namelen + sizeof (STUB_SUFFIX);
4724 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4725 if (s_name == NULL)
4726 return NULL;
4727
4728 memcpy (s_name, stub_sec_prefix, namelen);
4729 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4730 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4731 align);
4732 if (*stub_sec_p == NULL)
4733 return NULL;
4734
4735 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4736 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4737 | SEC_KEEP;
4738 }
4739
4740 if (!dedicated_output_section)
4741 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4742
4743 if (link_sec_p)
4744 *link_sec_p = link_sec;
4745
4746 return *stub_sec_p;
4747 }
4748
4749 /* Add a new stub entry to the stub hash. Not all fields of the new
4750 stub entry are initialised. */
4751
4752 static struct elf32_arm_stub_hash_entry *
4753 elf32_arm_add_stub (const char *stub_name, asection *section,
4754 struct elf32_arm_link_hash_table *htab,
4755 enum elf32_arm_stub_type stub_type)
4756 {
4757 asection *link_sec;
4758 asection *stub_sec;
4759 struct elf32_arm_stub_hash_entry *stub_entry;
4760
4761 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4762 stub_type);
4763 if (stub_sec == NULL)
4764 return NULL;
4765
4766 /* Enter this entry into the linker stub hash table. */
4767 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4768 TRUE, FALSE);
4769 if (stub_entry == NULL)
4770 {
4771 if (section == NULL)
4772 section = stub_sec;
4773 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4774 section->owner, stub_name);
4775 return NULL;
4776 }
4777
4778 stub_entry->stub_sec = stub_sec;
4779 stub_entry->stub_offset = (bfd_vma) -1;
4780 stub_entry->id_sec = link_sec;
4781
4782 return stub_entry;
4783 }
4784
4785 /* Store an Arm insn into an output section not processed by
4786 elf32_arm_write_section. */
4787
4788 static void
4789 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4790 bfd * output_bfd, bfd_vma val, void * ptr)
4791 {
4792 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4793 bfd_putl32 (val, ptr);
4794 else
4795 bfd_putb32 (val, ptr);
4796 }
4797
4798 /* Store a 16-bit Thumb insn into an output section not processed by
4799 elf32_arm_write_section. */
4800
4801 static void
4802 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4803 bfd * output_bfd, bfd_vma val, void * ptr)
4804 {
4805 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4806 bfd_putl16 (val, ptr);
4807 else
4808 bfd_putb16 (val, ptr);
4809 }
4810
4811 /* Store a Thumb2 insn into an output section not processed by
4812 elf32_arm_write_section. */
4813
4814 static void
4815 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4816 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4817 {
4818 /* T2 instructions are 16-bit streamed. */
4819 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4820 {
4821 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4822 bfd_putl16 ((val & 0xffff), ptr + 2);
4823 }
4824 else
4825 {
4826 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4827 bfd_putb16 ((val & 0xffff), ptr + 2);
4828 }
4829 }
4830
4831 /* If it's possible to change R_TYPE to a more efficient access
4832 model, return the new reloc type. */
4833
4834 static unsigned
4835 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4836 struct elf_link_hash_entry *h)
4837 {
4838 int is_local = (h == NULL);
4839
4840 if (bfd_link_pic (info)
4841 || (h && h->root.type == bfd_link_hash_undefweak))
4842 return r_type;
4843
4844 /* We do not support relaxations for Old TLS models. */
4845 switch (r_type)
4846 {
4847 case R_ARM_TLS_GOTDESC:
4848 case R_ARM_TLS_CALL:
4849 case R_ARM_THM_TLS_CALL:
4850 case R_ARM_TLS_DESCSEQ:
4851 case R_ARM_THM_TLS_DESCSEQ:
4852 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4853 }
4854
4855 return r_type;
4856 }
4857
4858 static bfd_reloc_status_type elf32_arm_final_link_relocate
4859 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4860 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4861 const char *, unsigned char, enum arm_st_branch_type,
4862 struct elf_link_hash_entry *, bfd_boolean *, char **);
4863
4864 static unsigned int
4865 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4866 {
4867 switch (stub_type)
4868 {
4869 case arm_stub_a8_veneer_b_cond:
4870 case arm_stub_a8_veneer_b:
4871 case arm_stub_a8_veneer_bl:
4872 return 2;
4873
4874 case arm_stub_long_branch_any_any:
4875 case arm_stub_long_branch_v4t_arm_thumb:
4876 case arm_stub_long_branch_thumb_only:
4877 case arm_stub_long_branch_thumb2_only:
4878 case arm_stub_long_branch_thumb2_only_pure:
4879 case arm_stub_long_branch_v4t_thumb_thumb:
4880 case arm_stub_long_branch_v4t_thumb_arm:
4881 case arm_stub_short_branch_v4t_thumb_arm:
4882 case arm_stub_long_branch_any_arm_pic:
4883 case arm_stub_long_branch_any_thumb_pic:
4884 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4885 case arm_stub_long_branch_v4t_arm_thumb_pic:
4886 case arm_stub_long_branch_v4t_thumb_arm_pic:
4887 case arm_stub_long_branch_thumb_only_pic:
4888 case arm_stub_long_branch_any_tls_pic:
4889 case arm_stub_long_branch_v4t_thumb_tls_pic:
4890 case arm_stub_cmse_branch_thumb_only:
4891 case arm_stub_a8_veneer_blx:
4892 return 4;
4893
4894 case arm_stub_long_branch_arm_nacl:
4895 case arm_stub_long_branch_arm_nacl_pic:
4896 return 16;
4897
4898 default:
4899 abort (); /* Should be unreachable. */
4900 }
4901 }
4902
4903 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4904 veneering (TRUE) or have their own symbol (FALSE). */
4905
4906 static bfd_boolean
4907 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4908 {
4909 if (stub_type >= max_stub_type)
4910 abort (); /* Should be unreachable. */
4911
4912 switch (stub_type)
4913 {
4914 case arm_stub_cmse_branch_thumb_only:
4915 return TRUE;
4916
4917 default:
4918 return FALSE;
4919 }
4920
4921 abort (); /* Should be unreachable. */
4922 }
4923
4924 /* Returns the padding needed for the dedicated section used stubs of type
4925 STUB_TYPE. */
4926
4927 static int
4928 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4929 {
4930 if (stub_type >= max_stub_type)
4931 abort (); /* Should be unreachable. */
4932
4933 switch (stub_type)
4934 {
4935 case arm_stub_cmse_branch_thumb_only:
4936 return 32;
4937
4938 default:
4939 return 0;
4940 }
4941
4942 abort (); /* Should be unreachable. */
4943 }
4944
4945 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4946 returns the address of the hash table field in HTAB holding the offset at
4947 which new veneers should be layed out in the stub section. */
4948
4949 static bfd_vma*
4950 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4951 enum elf32_arm_stub_type stub_type)
4952 {
4953 switch (stub_type)
4954 {
4955 case arm_stub_cmse_branch_thumb_only:
4956 return &htab->new_cmse_stub_offset;
4957
4958 default:
4959 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4960 return NULL;
4961 }
4962 }
4963
4964 static bfd_boolean
4965 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4966 void * in_arg)
4967 {
4968 #define MAXRELOCS 3
4969 bfd_boolean removed_sg_veneer;
4970 struct elf32_arm_stub_hash_entry *stub_entry;
4971 struct elf32_arm_link_hash_table *globals;
4972 struct bfd_link_info *info;
4973 asection *stub_sec;
4974 bfd *stub_bfd;
4975 bfd_byte *loc;
4976 bfd_vma sym_value;
4977 int template_size;
4978 int size;
4979 const insn_sequence *template_sequence;
4980 int i;
4981 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4982 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4983 int nrelocs = 0;
4984 int just_allocated = 0;
4985
4986 /* Massage our args to the form they really have. */
4987 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4988 info = (struct bfd_link_info *) in_arg;
4989
4990 globals = elf32_arm_hash_table (info);
4991 if (globals == NULL)
4992 return FALSE;
4993
4994 stub_sec = stub_entry->stub_sec;
4995
4996 if ((globals->fix_cortex_a8 < 0)
4997 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4998 /* We have to do less-strictly-aligned fixes last. */
4999 return TRUE;
5000
5001 /* Assign a slot at the end of section if none assigned yet. */
5002 if (stub_entry->stub_offset == (bfd_vma) -1)
5003 {
5004 stub_entry->stub_offset = stub_sec->size;
5005 just_allocated = 1;
5006 }
5007 loc = stub_sec->contents + stub_entry->stub_offset;
5008
5009 stub_bfd = stub_sec->owner;
5010
5011 /* This is the address of the stub destination. */
5012 sym_value = (stub_entry->target_value
5013 + stub_entry->target_section->output_offset
5014 + stub_entry->target_section->output_section->vma);
5015
5016 template_sequence = stub_entry->stub_template;
5017 template_size = stub_entry->stub_template_size;
5018
5019 size = 0;
5020 for (i = 0; i < template_size; i++)
5021 {
5022 switch (template_sequence[i].type)
5023 {
5024 case THUMB16_TYPE:
5025 {
5026 bfd_vma data = (bfd_vma) template_sequence[i].data;
5027 if (template_sequence[i].reloc_addend != 0)
5028 {
5029 /* We've borrowed the reloc_addend field to mean we should
5030 insert a condition code into this (Thumb-1 branch)
5031 instruction. See THUMB16_BCOND_INSN. */
5032 BFD_ASSERT ((data & 0xff00) == 0xd000);
5033 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
5034 }
5035 bfd_put_16 (stub_bfd, data, loc + size);
5036 size += 2;
5037 }
5038 break;
5039
5040 case THUMB32_TYPE:
5041 bfd_put_16 (stub_bfd,
5042 (template_sequence[i].data >> 16) & 0xffff,
5043 loc + size);
5044 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5045 loc + size + 2);
5046 if (template_sequence[i].r_type != R_ARM_NONE)
5047 {
5048 stub_reloc_idx[nrelocs] = i;
5049 stub_reloc_offset[nrelocs++] = size;
5050 }
5051 size += 4;
5052 break;
5053
5054 case ARM_TYPE:
5055 bfd_put_32 (stub_bfd, template_sequence[i].data,
5056 loc + size);
5057 /* Handle cases where the target is encoded within the
5058 instruction. */
5059 if (template_sequence[i].r_type == R_ARM_JUMP24)
5060 {
5061 stub_reloc_idx[nrelocs] = i;
5062 stub_reloc_offset[nrelocs++] = size;
5063 }
5064 size += 4;
5065 break;
5066
5067 case DATA_TYPE:
5068 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
5069 stub_reloc_idx[nrelocs] = i;
5070 stub_reloc_offset[nrelocs++] = size;
5071 size += 4;
5072 break;
5073
5074 default:
5075 BFD_FAIL ();
5076 return FALSE;
5077 }
5078 }
5079
5080 if (just_allocated)
5081 stub_sec->size += size;
5082
5083 /* Stub size has already been computed in arm_size_one_stub. Check
5084 consistency. */
5085 BFD_ASSERT (size == stub_entry->stub_size);
5086
5087 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5088 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
5089 sym_value |= 1;
5090
5091 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5092 to relocate in each stub. */
5093 removed_sg_veneer =
5094 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5095 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
5096
5097 for (i = 0; i < nrelocs; i++)
5098 {
5099 Elf_Internal_Rela rel;
5100 bfd_boolean unresolved_reloc;
5101 char *error_message;
5102 bfd_vma points_to =
5103 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5104
5105 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5106 rel.r_info = ELF32_R_INFO (0,
5107 template_sequence[stub_reloc_idx[i]].r_type);
5108 rel.r_addend = 0;
5109
5110 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5111 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5112 template should refer back to the instruction after the original
5113 branch. We use target_section as Cortex-A8 erratum workaround stubs
5114 are only generated when both source and target are in the same
5115 section. */
5116 points_to = stub_entry->target_section->output_section->vma
5117 + stub_entry->target_section->output_offset
5118 + stub_entry->source_value;
5119
5120 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5121 (template_sequence[stub_reloc_idx[i]].r_type),
5122 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5123 points_to, info, stub_entry->target_section, "", STT_FUNC,
5124 stub_entry->branch_type,
5125 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5126 &error_message);
5127 }
5128
5129 return TRUE;
5130 #undef MAXRELOCS
5131 }
5132
5133 /* Calculate the template, template size and instruction size for a stub.
5134 Return value is the instruction size. */
5135
5136 static unsigned int
5137 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5138 const insn_sequence **stub_template,
5139 int *stub_template_size)
5140 {
5141 const insn_sequence *template_sequence = NULL;
5142 int template_size = 0, i;
5143 unsigned int size;
5144
5145 template_sequence = stub_definitions[stub_type].template_sequence;
5146 if (stub_template)
5147 *stub_template = template_sequence;
5148
5149 template_size = stub_definitions[stub_type].template_size;
5150 if (stub_template_size)
5151 *stub_template_size = template_size;
5152
5153 size = 0;
5154 for (i = 0; i < template_size; i++)
5155 {
5156 switch (template_sequence[i].type)
5157 {
5158 case THUMB16_TYPE:
5159 size += 2;
5160 break;
5161
5162 case ARM_TYPE:
5163 case THUMB32_TYPE:
5164 case DATA_TYPE:
5165 size += 4;
5166 break;
5167
5168 default:
5169 BFD_FAIL ();
5170 return 0;
5171 }
5172 }
5173
5174 return size;
5175 }
5176
5177 /* As above, but don't actually build the stub. Just bump offset so
5178 we know stub section sizes. */
5179
5180 static bfd_boolean
5181 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
5182 void *in_arg ATTRIBUTE_UNUSED)
5183 {
5184 struct elf32_arm_stub_hash_entry *stub_entry;
5185 const insn_sequence *template_sequence;
5186 int template_size, size;
5187
5188 /* Massage our args to the form they really have. */
5189 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5190
5191 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5192 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5193
5194 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
5195 &template_size);
5196
5197 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5198 if (stub_entry->stub_template_size)
5199 {
5200 stub_entry->stub_size = size;
5201 stub_entry->stub_template = template_sequence;
5202 stub_entry->stub_template_size = template_size;
5203 }
5204
5205 /* Already accounted for. */
5206 if (stub_entry->stub_offset != (bfd_vma) -1)
5207 return TRUE;
5208
5209 size = (size + 7) & ~7;
5210 stub_entry->stub_sec->size += size;
5211
5212 return TRUE;
5213 }
5214
5215 /* External entry points for sizing and building linker stubs. */
5216
5217 /* Set up various things so that we can make a list of input sections
5218 for each output section included in the link. Returns -1 on error,
5219 0 when no stubs will be needed, and 1 on success. */
5220
5221 int
5222 elf32_arm_setup_section_lists (bfd *output_bfd,
5223 struct bfd_link_info *info)
5224 {
5225 bfd *input_bfd;
5226 unsigned int bfd_count;
5227 unsigned int top_id, top_index;
5228 asection *section;
5229 asection **input_list, **list;
5230 bfd_size_type amt;
5231 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5232
5233 if (htab == NULL)
5234 return 0;
5235 if (! is_elf_hash_table (htab))
5236 return 0;
5237
5238 /* Count the number of input BFDs and find the top input section id. */
5239 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5240 input_bfd != NULL;
5241 input_bfd = input_bfd->link.next)
5242 {
5243 bfd_count += 1;
5244 for (section = input_bfd->sections;
5245 section != NULL;
5246 section = section->next)
5247 {
5248 if (top_id < section->id)
5249 top_id = section->id;
5250 }
5251 }
5252 htab->bfd_count = bfd_count;
5253
5254 amt = sizeof (struct map_stub) * (top_id + 1);
5255 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
5256 if (htab->stub_group == NULL)
5257 return -1;
5258 htab->top_id = top_id;
5259
5260 /* We can't use output_bfd->section_count here to find the top output
5261 section index as some sections may have been removed, and
5262 _bfd_strip_section_from_output doesn't renumber the indices. */
5263 for (section = output_bfd->sections, top_index = 0;
5264 section != NULL;
5265 section = section->next)
5266 {
5267 if (top_index < section->index)
5268 top_index = section->index;
5269 }
5270
5271 htab->top_index = top_index;
5272 amt = sizeof (asection *) * (top_index + 1);
5273 input_list = (asection **) bfd_malloc (amt);
5274 htab->input_list = input_list;
5275 if (input_list == NULL)
5276 return -1;
5277
5278 /* For sections we aren't interested in, mark their entries with a
5279 value we can check later. */
5280 list = input_list + top_index;
5281 do
5282 *list = bfd_abs_section_ptr;
5283 while (list-- != input_list);
5284
5285 for (section = output_bfd->sections;
5286 section != NULL;
5287 section = section->next)
5288 {
5289 if ((section->flags & SEC_CODE) != 0)
5290 input_list[section->index] = NULL;
5291 }
5292
5293 return 1;
5294 }
5295
5296 /* The linker repeatedly calls this function for each input section,
5297 in the order that input sections are linked into output sections.
5298 Build lists of input sections to determine groupings between which
5299 we may insert linker stubs. */
5300
5301 void
5302 elf32_arm_next_input_section (struct bfd_link_info *info,
5303 asection *isec)
5304 {
5305 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5306
5307 if (htab == NULL)
5308 return;
5309
5310 if (isec->output_section->index <= htab->top_index)
5311 {
5312 asection **list = htab->input_list + isec->output_section->index;
5313
5314 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5315 {
5316 /* Steal the link_sec pointer for our list. */
5317 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5318 /* This happens to make the list in reverse order,
5319 which we reverse later. */
5320 PREV_SEC (isec) = *list;
5321 *list = isec;
5322 }
5323 }
5324 }
5325
5326 /* See whether we can group stub sections together. Grouping stub
5327 sections may result in fewer stubs. More importantly, we need to
5328 put all .init* and .fini* stubs at the end of the .init or
5329 .fini output sections respectively, because glibc splits the
5330 _init and _fini functions into multiple parts. Putting a stub in
5331 the middle of a function is not a good idea. */
5332
5333 static void
5334 group_sections (struct elf32_arm_link_hash_table *htab,
5335 bfd_size_type stub_group_size,
5336 bfd_boolean stubs_always_after_branch)
5337 {
5338 asection **list = htab->input_list;
5339
5340 do
5341 {
5342 asection *tail = *list;
5343 asection *head;
5344
5345 if (tail == bfd_abs_section_ptr)
5346 continue;
5347
5348 /* Reverse the list: we must avoid placing stubs at the
5349 beginning of the section because the beginning of the text
5350 section may be required for an interrupt vector in bare metal
5351 code. */
5352 #define NEXT_SEC PREV_SEC
5353 head = NULL;
5354 while (tail != NULL)
5355 {
5356 /* Pop from tail. */
5357 asection *item = tail;
5358 tail = PREV_SEC (item);
5359
5360 /* Push on head. */
5361 NEXT_SEC (item) = head;
5362 head = item;
5363 }
5364
5365 while (head != NULL)
5366 {
5367 asection *curr;
5368 asection *next;
5369 bfd_vma stub_group_start = head->output_offset;
5370 bfd_vma end_of_next;
5371
5372 curr = head;
5373 while (NEXT_SEC (curr) != NULL)
5374 {
5375 next = NEXT_SEC (curr);
5376 end_of_next = next->output_offset + next->size;
5377 if (end_of_next - stub_group_start >= stub_group_size)
5378 /* End of NEXT is too far from start, so stop. */
5379 break;
5380 /* Add NEXT to the group. */
5381 curr = next;
5382 }
5383
5384 /* OK, the size from the start to the start of CURR is less
5385 than stub_group_size and thus can be handled by one stub
5386 section. (Or the head section is itself larger than
5387 stub_group_size, in which case we may be toast.)
5388 We should really be keeping track of the total size of
5389 stubs added here, as stubs contribute to the final output
5390 section size. */
5391 do
5392 {
5393 next = NEXT_SEC (head);
5394 /* Set up this stub group. */
5395 htab->stub_group[head->id].link_sec = curr;
5396 }
5397 while (head != curr && (head = next) != NULL);
5398
5399 /* But wait, there's more! Input sections up to stub_group_size
5400 bytes after the stub section can be handled by it too. */
5401 if (!stubs_always_after_branch)
5402 {
5403 stub_group_start = curr->output_offset + curr->size;
5404
5405 while (next != NULL)
5406 {
5407 end_of_next = next->output_offset + next->size;
5408 if (end_of_next - stub_group_start >= stub_group_size)
5409 /* End of NEXT is too far from stubs, so stop. */
5410 break;
5411 /* Add NEXT to the stub group. */
5412 head = next;
5413 next = NEXT_SEC (head);
5414 htab->stub_group[head->id].link_sec = curr;
5415 }
5416 }
5417 head = next;
5418 }
5419 }
5420 while (list++ != htab->input_list + htab->top_index);
5421
5422 free (htab->input_list);
5423 #undef PREV_SEC
5424 #undef NEXT_SEC
5425 }
5426
5427 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5428 erratum fix. */
5429
5430 static int
5431 a8_reloc_compare (const void *a, const void *b)
5432 {
5433 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5434 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5435
5436 if (ra->from < rb->from)
5437 return -1;
5438 else if (ra->from > rb->from)
5439 return 1;
5440 else
5441 return 0;
5442 }
5443
5444 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5445 const char *, char **);
5446
5447 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5448 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5449 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5450 otherwise. */
5451
5452 static bfd_boolean
5453 cortex_a8_erratum_scan (bfd *input_bfd,
5454 struct bfd_link_info *info,
5455 struct a8_erratum_fix **a8_fixes_p,
5456 unsigned int *num_a8_fixes_p,
5457 unsigned int *a8_fix_table_size_p,
5458 struct a8_erratum_reloc *a8_relocs,
5459 unsigned int num_a8_relocs,
5460 unsigned prev_num_a8_fixes,
5461 bfd_boolean *stub_changed_p)
5462 {
5463 asection *section;
5464 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5465 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5466 unsigned int num_a8_fixes = *num_a8_fixes_p;
5467 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5468
5469 if (htab == NULL)
5470 return FALSE;
5471
5472 for (section = input_bfd->sections;
5473 section != NULL;
5474 section = section->next)
5475 {
5476 bfd_byte *contents = NULL;
5477 struct _arm_elf_section_data *sec_data;
5478 unsigned int span;
5479 bfd_vma base_vma;
5480
5481 if (elf_section_type (section) != SHT_PROGBITS
5482 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5483 || (section->flags & SEC_EXCLUDE) != 0
5484 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5485 || (section->output_section == bfd_abs_section_ptr))
5486 continue;
5487
5488 base_vma = section->output_section->vma + section->output_offset;
5489
5490 if (elf_section_data (section)->this_hdr.contents != NULL)
5491 contents = elf_section_data (section)->this_hdr.contents;
5492 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5493 return TRUE;
5494
5495 sec_data = elf32_arm_section_data (section);
5496
5497 for (span = 0; span < sec_data->mapcount; span++)
5498 {
5499 unsigned int span_start = sec_data->map[span].vma;
5500 unsigned int span_end = (span == sec_data->mapcount - 1)
5501 ? section->size : sec_data->map[span + 1].vma;
5502 unsigned int i;
5503 char span_type = sec_data->map[span].type;
5504 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5505
5506 if (span_type != 't')
5507 continue;
5508
5509 /* Span is entirely within a single 4KB region: skip scanning. */
5510 if (((base_vma + span_start) & ~0xfff)
5511 == ((base_vma + span_end) & ~0xfff))
5512 continue;
5513
5514 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5515
5516 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5517 * The branch target is in the same 4KB region as the
5518 first half of the branch.
5519 * The instruction before the branch is a 32-bit
5520 length non-branch instruction. */
5521 for (i = span_start; i < span_end;)
5522 {
5523 unsigned int insn = bfd_getl16 (&contents[i]);
5524 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5525 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5526
5527 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5528 insn_32bit = TRUE;
5529
5530 if (insn_32bit)
5531 {
5532 /* Load the rest of the insn (in manual-friendly order). */
5533 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5534
5535 /* Encoding T4: B<c>.W. */
5536 is_b = (insn & 0xf800d000) == 0xf0009000;
5537 /* Encoding T1: BL<c>.W. */
5538 is_bl = (insn & 0xf800d000) == 0xf000d000;
5539 /* Encoding T2: BLX<c>.W. */
5540 is_blx = (insn & 0xf800d000) == 0xf000c000;
5541 /* Encoding T3: B<c>.W (not permitted in IT block). */
5542 is_bcc = (insn & 0xf800d000) == 0xf0008000
5543 && (insn & 0x07f00000) != 0x03800000;
5544 }
5545
5546 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5547
5548 if (((base_vma + i) & 0xfff) == 0xffe
5549 && insn_32bit
5550 && is_32bit_branch
5551 && last_was_32bit
5552 && ! last_was_branch)
5553 {
5554 bfd_signed_vma offset = 0;
5555 bfd_boolean force_target_arm = FALSE;
5556 bfd_boolean force_target_thumb = FALSE;
5557 bfd_vma target;
5558 enum elf32_arm_stub_type stub_type = arm_stub_none;
5559 struct a8_erratum_reloc key, *found;
5560 bfd_boolean use_plt = FALSE;
5561
5562 key.from = base_vma + i;
5563 found = (struct a8_erratum_reloc *)
5564 bsearch (&key, a8_relocs, num_a8_relocs,
5565 sizeof (struct a8_erratum_reloc),
5566 &a8_reloc_compare);
5567
5568 if (found)
5569 {
5570 char *error_message = NULL;
5571 struct elf_link_hash_entry *entry;
5572
5573 /* We don't care about the error returned from this
5574 function, only if there is glue or not. */
5575 entry = find_thumb_glue (info, found->sym_name,
5576 &error_message);
5577
5578 if (entry)
5579 found->non_a8_stub = TRUE;
5580
5581 /* Keep a simpler condition, for the sake of clarity. */
5582 if (htab->root.splt != NULL && found->hash != NULL
5583 && found->hash->root.plt.offset != (bfd_vma) -1)
5584 use_plt = TRUE;
5585
5586 if (found->r_type == R_ARM_THM_CALL)
5587 {
5588 if (found->branch_type == ST_BRANCH_TO_ARM
5589 || use_plt)
5590 force_target_arm = TRUE;
5591 else
5592 force_target_thumb = TRUE;
5593 }
5594 }
5595
5596 /* Check if we have an offending branch instruction. */
5597
5598 if (found && found->non_a8_stub)
5599 /* We've already made a stub for this instruction, e.g.
5600 it's a long branch or a Thumb->ARM stub. Assume that
5601 stub will suffice to work around the A8 erratum (see
5602 setting of always_after_branch above). */
5603 ;
5604 else if (is_bcc)
5605 {
5606 offset = (insn & 0x7ff) << 1;
5607 offset |= (insn & 0x3f0000) >> 4;
5608 offset |= (insn & 0x2000) ? 0x40000 : 0;
5609 offset |= (insn & 0x800) ? 0x80000 : 0;
5610 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5611 if (offset & 0x100000)
5612 offset |= ~ ((bfd_signed_vma) 0xfffff);
5613 stub_type = arm_stub_a8_veneer_b_cond;
5614 }
5615 else if (is_b || is_bl || is_blx)
5616 {
5617 int s = (insn & 0x4000000) != 0;
5618 int j1 = (insn & 0x2000) != 0;
5619 int j2 = (insn & 0x800) != 0;
5620 int i1 = !(j1 ^ s);
5621 int i2 = !(j2 ^ s);
5622
5623 offset = (insn & 0x7ff) << 1;
5624 offset |= (insn & 0x3ff0000) >> 4;
5625 offset |= i2 << 22;
5626 offset |= i1 << 23;
5627 offset |= s << 24;
5628 if (offset & 0x1000000)
5629 offset |= ~ ((bfd_signed_vma) 0xffffff);
5630
5631 if (is_blx)
5632 offset &= ~ ((bfd_signed_vma) 3);
5633
5634 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5635 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5636 }
5637
5638 if (stub_type != arm_stub_none)
5639 {
5640 bfd_vma pc_for_insn = base_vma + i + 4;
5641
5642 /* The original instruction is a BL, but the target is
5643 an ARM instruction. If we were not making a stub,
5644 the BL would have been converted to a BLX. Use the
5645 BLX stub instead in that case. */
5646 if (htab->use_blx && force_target_arm
5647 && stub_type == arm_stub_a8_veneer_bl)
5648 {
5649 stub_type = arm_stub_a8_veneer_blx;
5650 is_blx = TRUE;
5651 is_bl = FALSE;
5652 }
5653 /* Conversely, if the original instruction was
5654 BLX but the target is Thumb mode, use the BL
5655 stub. */
5656 else if (force_target_thumb
5657 && stub_type == arm_stub_a8_veneer_blx)
5658 {
5659 stub_type = arm_stub_a8_veneer_bl;
5660 is_blx = FALSE;
5661 is_bl = TRUE;
5662 }
5663
5664 if (is_blx)
5665 pc_for_insn &= ~ ((bfd_vma) 3);
5666
5667 /* If we found a relocation, use the proper destination,
5668 not the offset in the (unrelocated) instruction.
5669 Note this is always done if we switched the stub type
5670 above. */
5671 if (found)
5672 offset =
5673 (bfd_signed_vma) (found->destination - pc_for_insn);
5674
5675 /* If the stub will use a Thumb-mode branch to a
5676 PLT target, redirect it to the preceding Thumb
5677 entry point. */
5678 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5679 offset -= PLT_THUMB_STUB_SIZE;
5680
5681 target = pc_for_insn + offset;
5682
5683 /* The BLX stub is ARM-mode code. Adjust the offset to
5684 take the different PC value (+8 instead of +4) into
5685 account. */
5686 if (stub_type == arm_stub_a8_veneer_blx)
5687 offset += 4;
5688
5689 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5690 {
5691 char *stub_name = NULL;
5692
5693 if (num_a8_fixes == a8_fix_table_size)
5694 {
5695 a8_fix_table_size *= 2;
5696 a8_fixes = (struct a8_erratum_fix *)
5697 bfd_realloc (a8_fixes,
5698 sizeof (struct a8_erratum_fix)
5699 * a8_fix_table_size);
5700 }
5701
5702 if (num_a8_fixes < prev_num_a8_fixes)
5703 {
5704 /* If we're doing a subsequent scan,
5705 check if we've found the same fix as
5706 before, and try and reuse the stub
5707 name. */
5708 stub_name = a8_fixes[num_a8_fixes].stub_name;
5709 if ((a8_fixes[num_a8_fixes].section != section)
5710 || (a8_fixes[num_a8_fixes].offset != i))
5711 {
5712 free (stub_name);
5713 stub_name = NULL;
5714 *stub_changed_p = TRUE;
5715 }
5716 }
5717
5718 if (!stub_name)
5719 {
5720 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5721 if (stub_name != NULL)
5722 sprintf (stub_name, "%x:%x", section->id, i);
5723 }
5724
5725 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5726 a8_fixes[num_a8_fixes].section = section;
5727 a8_fixes[num_a8_fixes].offset = i;
5728 a8_fixes[num_a8_fixes].target_offset =
5729 target - base_vma;
5730 a8_fixes[num_a8_fixes].orig_insn = insn;
5731 a8_fixes[num_a8_fixes].stub_name = stub_name;
5732 a8_fixes[num_a8_fixes].stub_type = stub_type;
5733 a8_fixes[num_a8_fixes].branch_type =
5734 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5735
5736 num_a8_fixes++;
5737 }
5738 }
5739 }
5740
5741 i += insn_32bit ? 4 : 2;
5742 last_was_32bit = insn_32bit;
5743 last_was_branch = is_32bit_branch;
5744 }
5745 }
5746
5747 if (elf_section_data (section)->this_hdr.contents == NULL)
5748 free (contents);
5749 }
5750
5751 *a8_fixes_p = a8_fixes;
5752 *num_a8_fixes_p = num_a8_fixes;
5753 *a8_fix_table_size_p = a8_fix_table_size;
5754
5755 return FALSE;
5756 }
5757
5758 /* Create or update a stub entry depending on whether the stub can already be
5759 found in HTAB. The stub is identified by:
5760 - its type STUB_TYPE
5761 - its source branch (note that several can share the same stub) whose
5762 section and relocation (if any) are given by SECTION and IRELA
5763 respectively
5764 - its target symbol whose input section, hash, name, value and branch type
5765 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5766 respectively
5767
5768 If found, the value of the stub's target symbol is updated from SYM_VALUE
5769 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5770 TRUE and the stub entry is initialized.
5771
5772 Returns the stub that was created or updated, or NULL if an error
5773 occurred. */
5774
5775 static struct elf32_arm_stub_hash_entry *
5776 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5777 enum elf32_arm_stub_type stub_type, asection *section,
5778 Elf_Internal_Rela *irela, asection *sym_sec,
5779 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5780 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5781 bfd_boolean *new_stub)
5782 {
5783 const asection *id_sec;
5784 char *stub_name;
5785 struct elf32_arm_stub_hash_entry *stub_entry;
5786 unsigned int r_type;
5787 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5788
5789 BFD_ASSERT (stub_type != arm_stub_none);
5790 *new_stub = FALSE;
5791
5792 if (sym_claimed)
5793 stub_name = sym_name;
5794 else
5795 {
5796 BFD_ASSERT (irela);
5797 BFD_ASSERT (section);
5798 BFD_ASSERT (section->id <= htab->top_id);
5799
5800 /* Support for grouping stub sections. */
5801 id_sec = htab->stub_group[section->id].link_sec;
5802
5803 /* Get the name of this stub. */
5804 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5805 stub_type);
5806 if (!stub_name)
5807 return NULL;
5808 }
5809
5810 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5811 FALSE);
5812 /* The proper stub has already been created, just update its value. */
5813 if (stub_entry != NULL)
5814 {
5815 if (!sym_claimed)
5816 free (stub_name);
5817 stub_entry->target_value = sym_value;
5818 return stub_entry;
5819 }
5820
5821 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5822 if (stub_entry == NULL)
5823 {
5824 if (!sym_claimed)
5825 free (stub_name);
5826 return NULL;
5827 }
5828
5829 stub_entry->target_value = sym_value;
5830 stub_entry->target_section = sym_sec;
5831 stub_entry->stub_type = stub_type;
5832 stub_entry->h = hash;
5833 stub_entry->branch_type = branch_type;
5834
5835 if (sym_claimed)
5836 stub_entry->output_name = sym_name;
5837 else
5838 {
5839 if (sym_name == NULL)
5840 sym_name = "unnamed";
5841 stub_entry->output_name = (char *)
5842 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5843 + strlen (sym_name));
5844 if (stub_entry->output_name == NULL)
5845 {
5846 free (stub_name);
5847 return NULL;
5848 }
5849
5850 /* For historical reasons, use the existing names for ARM-to-Thumb and
5851 Thumb-to-ARM stubs. */
5852 r_type = ELF32_R_TYPE (irela->r_info);
5853 if ((r_type == (unsigned int) R_ARM_THM_CALL
5854 || r_type == (unsigned int) R_ARM_THM_JUMP24
5855 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5856 && branch_type == ST_BRANCH_TO_ARM)
5857 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5858 else if ((r_type == (unsigned int) R_ARM_CALL
5859 || r_type == (unsigned int) R_ARM_JUMP24)
5860 && branch_type == ST_BRANCH_TO_THUMB)
5861 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5862 else
5863 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5864 }
5865
5866 *new_stub = TRUE;
5867 return stub_entry;
5868 }
5869
5870 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5871 gateway veneer to transition from non secure to secure state and create them
5872 accordingly.
5873
5874 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5875 defines the conditions that govern Secure Gateway veneer creation for a
5876 given symbol <SYM> as follows:
5877 - it has function type
5878 - it has non local binding
5879 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5880 same type, binding and value as <SYM> (called normal symbol).
5881 An entry function can handle secure state transition itself in which case
5882 its special symbol would have a different value from the normal symbol.
5883
5884 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5885 entry mapping while HTAB gives the name to hash entry mapping.
5886 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5887 created.
5888
5889 The return value gives whether a stub failed to be allocated. */
5890
5891 static bfd_boolean
5892 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5893 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5894 int *cmse_stub_created)
5895 {
5896 const struct elf_backend_data *bed;
5897 Elf_Internal_Shdr *symtab_hdr;
5898 unsigned i, j, sym_count, ext_start;
5899 Elf_Internal_Sym *cmse_sym, *local_syms;
5900 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5901 enum arm_st_branch_type branch_type;
5902 char *sym_name, *lsym_name;
5903 bfd_vma sym_value;
5904 asection *section;
5905 struct elf32_arm_stub_hash_entry *stub_entry;
5906 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5907
5908 bed = get_elf_backend_data (input_bfd);
5909 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5910 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5911 ext_start = symtab_hdr->sh_info;
5912 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5913 && out_attr[Tag_CPU_arch_profile].i == 'M');
5914
5915 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5916 if (local_syms == NULL)
5917 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5918 symtab_hdr->sh_info, 0, NULL, NULL,
5919 NULL);
5920 if (symtab_hdr->sh_info && local_syms == NULL)
5921 return FALSE;
5922
5923 /* Scan symbols. */
5924 for (i = 0; i < sym_count; i++)
5925 {
5926 cmse_invalid = FALSE;
5927
5928 if (i < ext_start)
5929 {
5930 cmse_sym = &local_syms[i];
5931 /* Not a special symbol. */
5932 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5933 continue;
5934 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5935 symtab_hdr->sh_link,
5936 cmse_sym->st_name);
5937 /* Special symbol with local binding. */
5938 cmse_invalid = TRUE;
5939 }
5940 else
5941 {
5942 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5943 sym_name = (char *) cmse_hash->root.root.root.string;
5944
5945 /* Not a special symbol. */
5946 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5947 continue;
5948
5949 /* Special symbol has incorrect binding or type. */
5950 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5951 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5952 || cmse_hash->root.type != STT_FUNC)
5953 cmse_invalid = TRUE;
5954 }
5955
5956 if (!is_v8m)
5957 {
5958 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
5959 "ARMv8-M architecture or later"),
5960 input_bfd, sym_name);
5961 is_v8m = TRUE; /* Avoid multiple warning. */
5962 ret = FALSE;
5963 }
5964
5965 if (cmse_invalid)
5966 {
5967 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
5968 " a global or weak function symbol"),
5969 input_bfd, sym_name);
5970 ret = FALSE;
5971 if (i < ext_start)
5972 continue;
5973 }
5974
5975 sym_name += strlen (CMSE_PREFIX);
5976 hash = (struct elf32_arm_link_hash_entry *)
5977 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5978
5979 /* No associated normal symbol or it is neither global nor weak. */
5980 if (!hash
5981 || (hash->root.root.type != bfd_link_hash_defined
5982 && hash->root.root.type != bfd_link_hash_defweak)
5983 || hash->root.type != STT_FUNC)
5984 {
5985 /* Initialize here to avoid warning about use of possibly
5986 uninitialized variable. */
5987 j = 0;
5988
5989 if (!hash)
5990 {
5991 /* Searching for a normal symbol with local binding. */
5992 for (; j < ext_start; j++)
5993 {
5994 lsym_name =
5995 bfd_elf_string_from_elf_section (input_bfd,
5996 symtab_hdr->sh_link,
5997 local_syms[j].st_name);
5998 if (!strcmp (sym_name, lsym_name))
5999 break;
6000 }
6001 }
6002
6003 if (hash || j < ext_start)
6004 {
6005 _bfd_error_handler
6006 (_("%pB: invalid standard symbol `%s'; it must be "
6007 "a global or weak function symbol"),
6008 input_bfd, sym_name);
6009 }
6010 else
6011 _bfd_error_handler
6012 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
6013 ret = FALSE;
6014 if (!hash)
6015 continue;
6016 }
6017
6018 sym_value = hash->root.root.u.def.value;
6019 section = hash->root.root.u.def.section;
6020
6021 if (cmse_hash->root.root.u.def.section != section)
6022 {
6023 _bfd_error_handler
6024 (_("%pB: `%s' and its special symbol are in different sections"),
6025 input_bfd, sym_name);
6026 ret = FALSE;
6027 }
6028 if (cmse_hash->root.root.u.def.value != sym_value)
6029 continue; /* Ignore: could be an entry function starting with SG. */
6030
6031 /* If this section is a link-once section that will be discarded, then
6032 don't create any stubs. */
6033 if (section->output_section == NULL)
6034 {
6035 _bfd_error_handler
6036 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
6037 continue;
6038 }
6039
6040 if (hash->root.size == 0)
6041 {
6042 _bfd_error_handler
6043 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
6044 ret = FALSE;
6045 }
6046
6047 if (!ret)
6048 continue;
6049 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6050 stub_entry
6051 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6052 NULL, NULL, section, hash, sym_name,
6053 sym_value, branch_type, &new_stub);
6054
6055 if (stub_entry == NULL)
6056 ret = FALSE;
6057 else
6058 {
6059 BFD_ASSERT (new_stub);
6060 (*cmse_stub_created)++;
6061 }
6062 }
6063
6064 if (!symtab_hdr->contents)
6065 free (local_syms);
6066 return ret;
6067 }
6068
6069 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6070 code entry function, ie can be called from non secure code without using a
6071 veneer. */
6072
6073 static bfd_boolean
6074 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6075 {
6076 bfd_byte contents[4];
6077 uint32_t first_insn;
6078 asection *section;
6079 file_ptr offset;
6080 bfd *abfd;
6081
6082 /* Defined symbol of function type. */
6083 if (hash->root.root.type != bfd_link_hash_defined
6084 && hash->root.root.type != bfd_link_hash_defweak)
6085 return FALSE;
6086 if (hash->root.type != STT_FUNC)
6087 return FALSE;
6088
6089 /* Read first instruction. */
6090 section = hash->root.root.u.def.section;
6091 abfd = section->owner;
6092 offset = hash->root.root.u.def.value - section->vma;
6093 if (!bfd_get_section_contents (abfd, section, contents, offset,
6094 sizeof (contents)))
6095 return FALSE;
6096
6097 first_insn = bfd_get_32 (abfd, contents);
6098
6099 /* Starts by SG instruction. */
6100 return first_insn == 0xe97fe97f;
6101 }
6102
6103 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6104 secure gateway veneers (ie. the veneers was not in the input import library)
6105 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6106
6107 static bfd_boolean
6108 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6109 {
6110 struct elf32_arm_stub_hash_entry *stub_entry;
6111 struct bfd_link_info *info;
6112
6113 /* Massage our args to the form they really have. */
6114 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6115 info = (struct bfd_link_info *) gen_info;
6116
6117 if (info->out_implib_bfd)
6118 return TRUE;
6119
6120 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6121 return TRUE;
6122
6123 if (stub_entry->stub_offset == (bfd_vma) -1)
6124 _bfd_error_handler (" %s", stub_entry->output_name);
6125
6126 return TRUE;
6127 }
6128
6129 /* Set offset of each secure gateway veneers so that its address remain
6130 identical to the one in the input import library referred by
6131 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6132 (present in input import library but absent from the executable being
6133 linked) or if new veneers appeared and there is no output import library
6134 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6135 number of secure gateway veneers found in the input import library.
6136
6137 The function returns whether an error occurred. If no error occurred,
6138 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6139 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6140 veneer observed set for new veneers to be layed out after. */
6141
6142 static bfd_boolean
6143 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6144 struct elf32_arm_link_hash_table *htab,
6145 int *cmse_stub_created)
6146 {
6147 long symsize;
6148 char *sym_name;
6149 flagword flags;
6150 long i, symcount;
6151 bfd *in_implib_bfd;
6152 asection *stub_out_sec;
6153 bfd_boolean ret = TRUE;
6154 Elf_Internal_Sym *intsym;
6155 const char *out_sec_name;
6156 bfd_size_type cmse_stub_size;
6157 asymbol **sympp = NULL, *sym;
6158 struct elf32_arm_link_hash_entry *hash;
6159 const insn_sequence *cmse_stub_template;
6160 struct elf32_arm_stub_hash_entry *stub_entry;
6161 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6162 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6163 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6164
6165 /* No input secure gateway import library. */
6166 if (!htab->in_implib_bfd)
6167 return TRUE;
6168
6169 in_implib_bfd = htab->in_implib_bfd;
6170 if (!htab->cmse_implib)
6171 {
6172 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6173 "Gateway import libraries"), in_implib_bfd);
6174 return FALSE;
6175 }
6176
6177 /* Get symbol table size. */
6178 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6179 if (symsize < 0)
6180 return FALSE;
6181
6182 /* Read in the input secure gateway import library's symbol table. */
6183 sympp = (asymbol **) xmalloc (symsize);
6184 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6185 if (symcount < 0)
6186 {
6187 ret = FALSE;
6188 goto free_sym_buf;
6189 }
6190
6191 htab->new_cmse_stub_offset = 0;
6192 cmse_stub_size =
6193 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6194 &cmse_stub_template,
6195 &cmse_stub_template_size);
6196 out_sec_name =
6197 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6198 stub_out_sec =
6199 bfd_get_section_by_name (htab->obfd, out_sec_name);
6200 if (stub_out_sec != NULL)
6201 cmse_stub_sec_vma = stub_out_sec->vma;
6202
6203 /* Set addresses of veneers mentionned in input secure gateway import
6204 library's symbol table. */
6205 for (i = 0; i < symcount; i++)
6206 {
6207 sym = sympp[i];
6208 flags = sym->flags;
6209 sym_name = (char *) bfd_asymbol_name (sym);
6210 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6211
6212 if (sym->section != bfd_abs_section_ptr
6213 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6214 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6215 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6216 != ST_BRANCH_TO_THUMB))
6217 {
6218 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6219 "symbol should be absolute, global and "
6220 "refer to Thumb functions"),
6221 in_implib_bfd, sym_name);
6222 ret = FALSE;
6223 continue;
6224 }
6225
6226 veneer_value = bfd_asymbol_value (sym);
6227 stub_offset = veneer_value - cmse_stub_sec_vma;
6228 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6229 FALSE, FALSE);
6230 hash = (struct elf32_arm_link_hash_entry *)
6231 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6232
6233 /* Stub entry should have been created by cmse_scan or the symbol be of
6234 a secure function callable from non secure code. */
6235 if (!stub_entry && !hash)
6236 {
6237 bfd_boolean new_stub;
6238
6239 _bfd_error_handler
6240 (_("entry function `%s' disappeared from secure code"), sym_name);
6241 hash = (struct elf32_arm_link_hash_entry *)
6242 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6243 stub_entry
6244 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6245 NULL, NULL, bfd_abs_section_ptr, hash,
6246 sym_name, veneer_value,
6247 ST_BRANCH_TO_THUMB, &new_stub);
6248 if (stub_entry == NULL)
6249 ret = FALSE;
6250 else
6251 {
6252 BFD_ASSERT (new_stub);
6253 new_cmse_stubs_created++;
6254 (*cmse_stub_created)++;
6255 }
6256 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6257 stub_entry->stub_offset = stub_offset;
6258 }
6259 /* Symbol found is not callable from non secure code. */
6260 else if (!stub_entry)
6261 {
6262 if (!cmse_entry_fct_p (hash))
6263 {
6264 _bfd_error_handler (_("`%s' refers to a non entry function"),
6265 sym_name);
6266 ret = FALSE;
6267 }
6268 continue;
6269 }
6270 else
6271 {
6272 /* Only stubs for SG veneers should have been created. */
6273 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6274
6275 /* Check visibility hasn't changed. */
6276 if (!!(flags & BSF_GLOBAL)
6277 != (hash->root.root.type == bfd_link_hash_defined))
6278 _bfd_error_handler
6279 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
6280 sym_name);
6281
6282 stub_entry->stub_offset = stub_offset;
6283 }
6284
6285 /* Size should match that of a SG veneer. */
6286 if (intsym->st_size != cmse_stub_size)
6287 {
6288 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6289 in_implib_bfd, sym_name);
6290 ret = FALSE;
6291 }
6292
6293 /* Previous veneer address is before current SG veneer section. */
6294 if (veneer_value < cmse_stub_sec_vma)
6295 {
6296 /* Avoid offset underflow. */
6297 if (stub_entry)
6298 stub_entry->stub_offset = 0;
6299 stub_offset = 0;
6300 ret = FALSE;
6301 }
6302
6303 /* Complain if stub offset not a multiple of stub size. */
6304 if (stub_offset % cmse_stub_size)
6305 {
6306 _bfd_error_handler
6307 (_("offset of veneer for entry function `%s' not a multiple of "
6308 "its size"), sym_name);
6309 ret = FALSE;
6310 }
6311
6312 if (!ret)
6313 continue;
6314
6315 new_cmse_stubs_created--;
6316 if (veneer_value < cmse_stub_array_start)
6317 cmse_stub_array_start = veneer_value;
6318 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6319 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6320 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6321 }
6322
6323 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6324 {
6325 BFD_ASSERT (new_cmse_stubs_created > 0);
6326 _bfd_error_handler
6327 (_("new entry function(s) introduced but no output import library "
6328 "specified:"));
6329 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6330 }
6331
6332 if (cmse_stub_array_start != cmse_stub_sec_vma)
6333 {
6334 _bfd_error_handler
6335 (_("start address of `%s' is different from previous link"),
6336 out_sec_name);
6337 ret = FALSE;
6338 }
6339
6340 free_sym_buf:
6341 free (sympp);
6342 return ret;
6343 }
6344
6345 /* Determine and set the size of the stub section for a final link.
6346
6347 The basic idea here is to examine all the relocations looking for
6348 PC-relative calls to a target that is unreachable with a "bl"
6349 instruction. */
6350
6351 bfd_boolean
6352 elf32_arm_size_stubs (bfd *output_bfd,
6353 bfd *stub_bfd,
6354 struct bfd_link_info *info,
6355 bfd_signed_vma group_size,
6356 asection * (*add_stub_section) (const char *, asection *,
6357 asection *,
6358 unsigned int),
6359 void (*layout_sections_again) (void))
6360 {
6361 bfd_boolean ret = TRUE;
6362 obj_attribute *out_attr;
6363 int cmse_stub_created = 0;
6364 bfd_size_type stub_group_size;
6365 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6366 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6367 struct a8_erratum_fix *a8_fixes = NULL;
6368 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6369 struct a8_erratum_reloc *a8_relocs = NULL;
6370 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6371
6372 if (htab == NULL)
6373 return FALSE;
6374
6375 if (htab->fix_cortex_a8)
6376 {
6377 a8_fixes = (struct a8_erratum_fix *)
6378 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6379 a8_relocs = (struct a8_erratum_reloc *)
6380 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6381 }
6382
6383 /* Propagate mach to stub bfd, because it may not have been
6384 finalized when we created stub_bfd. */
6385 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6386 bfd_get_mach (output_bfd));
6387
6388 /* Stash our params away. */
6389 htab->stub_bfd = stub_bfd;
6390 htab->add_stub_section = add_stub_section;
6391 htab->layout_sections_again = layout_sections_again;
6392 stubs_always_after_branch = group_size < 0;
6393
6394 out_attr = elf_known_obj_attributes_proc (output_bfd);
6395 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6396
6397 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6398 as the first half of a 32-bit branch straddling two 4K pages. This is a
6399 crude way of enforcing that. */
6400 if (htab->fix_cortex_a8)
6401 stubs_always_after_branch = 1;
6402
6403 if (group_size < 0)
6404 stub_group_size = -group_size;
6405 else
6406 stub_group_size = group_size;
6407
6408 if (stub_group_size == 1)
6409 {
6410 /* Default values. */
6411 /* Thumb branch range is +-4MB has to be used as the default
6412 maximum size (a given section can contain both ARM and Thumb
6413 code, so the worst case has to be taken into account).
6414
6415 This value is 24K less than that, which allows for 2025
6416 12-byte stubs. If we exceed that, then we will fail to link.
6417 The user will have to relink with an explicit group size
6418 option. */
6419 stub_group_size = 4170000;
6420 }
6421
6422 group_sections (htab, stub_group_size, stubs_always_after_branch);
6423
6424 /* If we're applying the cortex A8 fix, we need to determine the
6425 program header size now, because we cannot change it later --
6426 that could alter section placements. Notice the A8 erratum fix
6427 ends up requiring the section addresses to remain unchanged
6428 modulo the page size. That's something we cannot represent
6429 inside BFD, and we don't want to force the section alignment to
6430 be the page size. */
6431 if (htab->fix_cortex_a8)
6432 (*htab->layout_sections_again) ();
6433
6434 while (1)
6435 {
6436 bfd *input_bfd;
6437 unsigned int bfd_indx;
6438 asection *stub_sec;
6439 enum elf32_arm_stub_type stub_type;
6440 bfd_boolean stub_changed = FALSE;
6441 unsigned prev_num_a8_fixes = num_a8_fixes;
6442
6443 num_a8_fixes = 0;
6444 for (input_bfd = info->input_bfds, bfd_indx = 0;
6445 input_bfd != NULL;
6446 input_bfd = input_bfd->link.next, bfd_indx++)
6447 {
6448 Elf_Internal_Shdr *symtab_hdr;
6449 asection *section;
6450 Elf_Internal_Sym *local_syms = NULL;
6451
6452 if (!is_arm_elf (input_bfd))
6453 continue;
6454
6455 num_a8_relocs = 0;
6456
6457 /* We'll need the symbol table in a second. */
6458 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6459 if (symtab_hdr->sh_info == 0)
6460 continue;
6461
6462 /* Limit scan of symbols to object file whose profile is
6463 Microcontroller to not hinder performance in the general case. */
6464 if (m_profile && first_veneer_scan)
6465 {
6466 struct elf_link_hash_entry **sym_hashes;
6467
6468 sym_hashes = elf_sym_hashes (input_bfd);
6469 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6470 &cmse_stub_created))
6471 goto error_ret_free_local;
6472
6473 if (cmse_stub_created != 0)
6474 stub_changed = TRUE;
6475 }
6476
6477 /* Walk over each section attached to the input bfd. */
6478 for (section = input_bfd->sections;
6479 section != NULL;
6480 section = section->next)
6481 {
6482 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6483
6484 /* If there aren't any relocs, then there's nothing more
6485 to do. */
6486 if ((section->flags & SEC_RELOC) == 0
6487 || section->reloc_count == 0
6488 || (section->flags & SEC_CODE) == 0)
6489 continue;
6490
6491 /* If this section is a link-once section that will be
6492 discarded, then don't create any stubs. */
6493 if (section->output_section == NULL
6494 || section->output_section->owner != output_bfd)
6495 continue;
6496
6497 /* Get the relocs. */
6498 internal_relocs
6499 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6500 NULL, info->keep_memory);
6501 if (internal_relocs == NULL)
6502 goto error_ret_free_local;
6503
6504 /* Now examine each relocation. */
6505 irela = internal_relocs;
6506 irelaend = irela + section->reloc_count;
6507 for (; irela < irelaend; irela++)
6508 {
6509 unsigned int r_type, r_indx;
6510 asection *sym_sec;
6511 bfd_vma sym_value;
6512 bfd_vma destination;
6513 struct elf32_arm_link_hash_entry *hash;
6514 const char *sym_name;
6515 unsigned char st_type;
6516 enum arm_st_branch_type branch_type;
6517 bfd_boolean created_stub = FALSE;
6518
6519 r_type = ELF32_R_TYPE (irela->r_info);
6520 r_indx = ELF32_R_SYM (irela->r_info);
6521
6522 if (r_type >= (unsigned int) R_ARM_max)
6523 {
6524 bfd_set_error (bfd_error_bad_value);
6525 error_ret_free_internal:
6526 if (elf_section_data (section)->relocs == NULL)
6527 free (internal_relocs);
6528 /* Fall through. */
6529 error_ret_free_local:
6530 if (local_syms != NULL
6531 && (symtab_hdr->contents
6532 != (unsigned char *) local_syms))
6533 free (local_syms);
6534 return FALSE;
6535 }
6536
6537 hash = NULL;
6538 if (r_indx >= symtab_hdr->sh_info)
6539 hash = elf32_arm_hash_entry
6540 (elf_sym_hashes (input_bfd)
6541 [r_indx - symtab_hdr->sh_info]);
6542
6543 /* Only look for stubs on branch instructions, or
6544 non-relaxed TLSCALL */
6545 if ((r_type != (unsigned int) R_ARM_CALL)
6546 && (r_type != (unsigned int) R_ARM_THM_CALL)
6547 && (r_type != (unsigned int) R_ARM_JUMP24)
6548 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6549 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6550 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6551 && (r_type != (unsigned int) R_ARM_PLT32)
6552 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6553 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6554 && r_type == elf32_arm_tls_transition
6555 (info, r_type, &hash->root)
6556 && ((hash ? hash->tls_type
6557 : (elf32_arm_local_got_tls_type
6558 (input_bfd)[r_indx]))
6559 & GOT_TLS_GDESC) != 0))
6560 continue;
6561
6562 /* Now determine the call target, its name, value,
6563 section. */
6564 sym_sec = NULL;
6565 sym_value = 0;
6566 destination = 0;
6567 sym_name = NULL;
6568
6569 if (r_type == (unsigned int) R_ARM_TLS_CALL
6570 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6571 {
6572 /* A non-relaxed TLS call. The target is the
6573 plt-resident trampoline and nothing to do
6574 with the symbol. */
6575 BFD_ASSERT (htab->tls_trampoline > 0);
6576 sym_sec = htab->root.splt;
6577 sym_value = htab->tls_trampoline;
6578 hash = 0;
6579 st_type = STT_FUNC;
6580 branch_type = ST_BRANCH_TO_ARM;
6581 }
6582 else if (!hash)
6583 {
6584 /* It's a local symbol. */
6585 Elf_Internal_Sym *sym;
6586
6587 if (local_syms == NULL)
6588 {
6589 local_syms
6590 = (Elf_Internal_Sym *) symtab_hdr->contents;
6591 if (local_syms == NULL)
6592 local_syms
6593 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6594 symtab_hdr->sh_info, 0,
6595 NULL, NULL, NULL);
6596 if (local_syms == NULL)
6597 goto error_ret_free_internal;
6598 }
6599
6600 sym = local_syms + r_indx;
6601 if (sym->st_shndx == SHN_UNDEF)
6602 sym_sec = bfd_und_section_ptr;
6603 else if (sym->st_shndx == SHN_ABS)
6604 sym_sec = bfd_abs_section_ptr;
6605 else if (sym->st_shndx == SHN_COMMON)
6606 sym_sec = bfd_com_section_ptr;
6607 else
6608 sym_sec =
6609 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6610
6611 if (!sym_sec)
6612 /* This is an undefined symbol. It can never
6613 be resolved. */
6614 continue;
6615
6616 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6617 sym_value = sym->st_value;
6618 destination = (sym_value + irela->r_addend
6619 + sym_sec->output_offset
6620 + sym_sec->output_section->vma);
6621 st_type = ELF_ST_TYPE (sym->st_info);
6622 branch_type =
6623 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6624 sym_name
6625 = bfd_elf_string_from_elf_section (input_bfd,
6626 symtab_hdr->sh_link,
6627 sym->st_name);
6628 }
6629 else
6630 {
6631 /* It's an external symbol. */
6632 while (hash->root.root.type == bfd_link_hash_indirect
6633 || hash->root.root.type == bfd_link_hash_warning)
6634 hash = ((struct elf32_arm_link_hash_entry *)
6635 hash->root.root.u.i.link);
6636
6637 if (hash->root.root.type == bfd_link_hash_defined
6638 || hash->root.root.type == bfd_link_hash_defweak)
6639 {
6640 sym_sec = hash->root.root.u.def.section;
6641 sym_value = hash->root.root.u.def.value;
6642
6643 struct elf32_arm_link_hash_table *globals =
6644 elf32_arm_hash_table (info);
6645
6646 /* For a destination in a shared library,
6647 use the PLT stub as target address to
6648 decide whether a branch stub is
6649 needed. */
6650 if (globals != NULL
6651 && globals->root.splt != NULL
6652 && hash != NULL
6653 && hash->root.plt.offset != (bfd_vma) -1)
6654 {
6655 sym_sec = globals->root.splt;
6656 sym_value = hash->root.plt.offset;
6657 if (sym_sec->output_section != NULL)
6658 destination = (sym_value
6659 + sym_sec->output_offset
6660 + sym_sec->output_section->vma);
6661 }
6662 else if (sym_sec->output_section != NULL)
6663 destination = (sym_value + irela->r_addend
6664 + sym_sec->output_offset
6665 + sym_sec->output_section->vma);
6666 }
6667 else if ((hash->root.root.type == bfd_link_hash_undefined)
6668 || (hash->root.root.type == bfd_link_hash_undefweak))
6669 {
6670 /* For a shared library, use the PLT stub as
6671 target address to decide whether a long
6672 branch stub is needed.
6673 For absolute code, they cannot be handled. */
6674 struct elf32_arm_link_hash_table *globals =
6675 elf32_arm_hash_table (info);
6676
6677 if (globals != NULL
6678 && globals->root.splt != NULL
6679 && hash != NULL
6680 && hash->root.plt.offset != (bfd_vma) -1)
6681 {
6682 sym_sec = globals->root.splt;
6683 sym_value = hash->root.plt.offset;
6684 if (sym_sec->output_section != NULL)
6685 destination = (sym_value
6686 + sym_sec->output_offset
6687 + sym_sec->output_section->vma);
6688 }
6689 else
6690 continue;
6691 }
6692 else
6693 {
6694 bfd_set_error (bfd_error_bad_value);
6695 goto error_ret_free_internal;
6696 }
6697 st_type = hash->root.type;
6698 branch_type =
6699 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6700 sym_name = hash->root.root.root.string;
6701 }
6702
6703 do
6704 {
6705 bfd_boolean new_stub;
6706 struct elf32_arm_stub_hash_entry *stub_entry;
6707
6708 /* Determine what (if any) linker stub is needed. */
6709 stub_type = arm_type_of_stub (info, section, irela,
6710 st_type, &branch_type,
6711 hash, destination, sym_sec,
6712 input_bfd, sym_name);
6713 if (stub_type == arm_stub_none)
6714 break;
6715
6716 /* We've either created a stub for this reloc already,
6717 or we are about to. */
6718 stub_entry =
6719 elf32_arm_create_stub (htab, stub_type, section, irela,
6720 sym_sec, hash,
6721 (char *) sym_name, sym_value,
6722 branch_type, &new_stub);
6723
6724 created_stub = stub_entry != NULL;
6725 if (!created_stub)
6726 goto error_ret_free_internal;
6727 else if (!new_stub)
6728 break;
6729 else
6730 stub_changed = TRUE;
6731 }
6732 while (0);
6733
6734 /* Look for relocations which might trigger Cortex-A8
6735 erratum. */
6736 if (htab->fix_cortex_a8
6737 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6738 || r_type == (unsigned int) R_ARM_THM_JUMP19
6739 || r_type == (unsigned int) R_ARM_THM_CALL
6740 || r_type == (unsigned int) R_ARM_THM_XPC22))
6741 {
6742 bfd_vma from = section->output_section->vma
6743 + section->output_offset
6744 + irela->r_offset;
6745
6746 if ((from & 0xfff) == 0xffe)
6747 {
6748 /* Found a candidate. Note we haven't checked the
6749 destination is within 4K here: if we do so (and
6750 don't create an entry in a8_relocs) we can't tell
6751 that a branch should have been relocated when
6752 scanning later. */
6753 if (num_a8_relocs == a8_reloc_table_size)
6754 {
6755 a8_reloc_table_size *= 2;
6756 a8_relocs = (struct a8_erratum_reloc *)
6757 bfd_realloc (a8_relocs,
6758 sizeof (struct a8_erratum_reloc)
6759 * a8_reloc_table_size);
6760 }
6761
6762 a8_relocs[num_a8_relocs].from = from;
6763 a8_relocs[num_a8_relocs].destination = destination;
6764 a8_relocs[num_a8_relocs].r_type = r_type;
6765 a8_relocs[num_a8_relocs].branch_type = branch_type;
6766 a8_relocs[num_a8_relocs].sym_name = sym_name;
6767 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6768 a8_relocs[num_a8_relocs].hash = hash;
6769
6770 num_a8_relocs++;
6771 }
6772 }
6773 }
6774
6775 /* We're done with the internal relocs, free them. */
6776 if (elf_section_data (section)->relocs == NULL)
6777 free (internal_relocs);
6778 }
6779
6780 if (htab->fix_cortex_a8)
6781 {
6782 /* Sort relocs which might apply to Cortex-A8 erratum. */
6783 qsort (a8_relocs, num_a8_relocs,
6784 sizeof (struct a8_erratum_reloc),
6785 &a8_reloc_compare);
6786
6787 /* Scan for branches which might trigger Cortex-A8 erratum. */
6788 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6789 &num_a8_fixes, &a8_fix_table_size,
6790 a8_relocs, num_a8_relocs,
6791 prev_num_a8_fixes, &stub_changed)
6792 != 0)
6793 goto error_ret_free_local;
6794 }
6795
6796 if (local_syms != NULL
6797 && symtab_hdr->contents != (unsigned char *) local_syms)
6798 {
6799 if (!info->keep_memory)
6800 free (local_syms);
6801 else
6802 symtab_hdr->contents = (unsigned char *) local_syms;
6803 }
6804 }
6805
6806 if (first_veneer_scan
6807 && !set_cmse_veneer_addr_from_implib (info, htab,
6808 &cmse_stub_created))
6809 ret = FALSE;
6810
6811 if (prev_num_a8_fixes != num_a8_fixes)
6812 stub_changed = TRUE;
6813
6814 if (!stub_changed)
6815 break;
6816
6817 /* OK, we've added some stubs. Find out the new size of the
6818 stub sections. */
6819 for (stub_sec = htab->stub_bfd->sections;
6820 stub_sec != NULL;
6821 stub_sec = stub_sec->next)
6822 {
6823 /* Ignore non-stub sections. */
6824 if (!strstr (stub_sec->name, STUB_SUFFIX))
6825 continue;
6826
6827 stub_sec->size = 0;
6828 }
6829
6830 /* Add new SG veneers after those already in the input import
6831 library. */
6832 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6833 stub_type++)
6834 {
6835 bfd_vma *start_offset_p;
6836 asection **stub_sec_p;
6837
6838 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6839 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6840 if (start_offset_p == NULL)
6841 continue;
6842
6843 BFD_ASSERT (stub_sec_p != NULL);
6844 if (*stub_sec_p != NULL)
6845 (*stub_sec_p)->size = *start_offset_p;
6846 }
6847
6848 /* Compute stub section size, considering padding. */
6849 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6850 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6851 stub_type++)
6852 {
6853 int size, padding;
6854 asection **stub_sec_p;
6855
6856 padding = arm_dedicated_stub_section_padding (stub_type);
6857 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6858 /* Skip if no stub input section or no stub section padding
6859 required. */
6860 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6861 continue;
6862 /* Stub section padding required but no dedicated section. */
6863 BFD_ASSERT (stub_sec_p);
6864
6865 size = (*stub_sec_p)->size;
6866 size = (size + padding - 1) & ~(padding - 1);
6867 (*stub_sec_p)->size = size;
6868 }
6869
6870 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6871 if (htab->fix_cortex_a8)
6872 for (i = 0; i < num_a8_fixes; i++)
6873 {
6874 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6875 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6876
6877 if (stub_sec == NULL)
6878 return FALSE;
6879
6880 stub_sec->size
6881 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6882 NULL);
6883 }
6884
6885
6886 /* Ask the linker to do its stuff. */
6887 (*htab->layout_sections_again) ();
6888 first_veneer_scan = FALSE;
6889 }
6890
6891 /* Add stubs for Cortex-A8 erratum fixes now. */
6892 if (htab->fix_cortex_a8)
6893 {
6894 for (i = 0; i < num_a8_fixes; i++)
6895 {
6896 struct elf32_arm_stub_hash_entry *stub_entry;
6897 char *stub_name = a8_fixes[i].stub_name;
6898 asection *section = a8_fixes[i].section;
6899 unsigned int section_id = a8_fixes[i].section->id;
6900 asection *link_sec = htab->stub_group[section_id].link_sec;
6901 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6902 const insn_sequence *template_sequence;
6903 int template_size, size = 0;
6904
6905 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6906 TRUE, FALSE);
6907 if (stub_entry == NULL)
6908 {
6909 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
6910 section->owner, stub_name);
6911 return FALSE;
6912 }
6913
6914 stub_entry->stub_sec = stub_sec;
6915 stub_entry->stub_offset = (bfd_vma) -1;
6916 stub_entry->id_sec = link_sec;
6917 stub_entry->stub_type = a8_fixes[i].stub_type;
6918 stub_entry->source_value = a8_fixes[i].offset;
6919 stub_entry->target_section = a8_fixes[i].section;
6920 stub_entry->target_value = a8_fixes[i].target_offset;
6921 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6922 stub_entry->branch_type = a8_fixes[i].branch_type;
6923
6924 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6925 &template_sequence,
6926 &template_size);
6927
6928 stub_entry->stub_size = size;
6929 stub_entry->stub_template = template_sequence;
6930 stub_entry->stub_template_size = template_size;
6931 }
6932
6933 /* Stash the Cortex-A8 erratum fix array for use later in
6934 elf32_arm_write_section(). */
6935 htab->a8_erratum_fixes = a8_fixes;
6936 htab->num_a8_erratum_fixes = num_a8_fixes;
6937 }
6938 else
6939 {
6940 htab->a8_erratum_fixes = NULL;
6941 htab->num_a8_erratum_fixes = 0;
6942 }
6943 return ret;
6944 }
6945
6946 /* Build all the stubs associated with the current output file. The
6947 stubs are kept in a hash table attached to the main linker hash
6948 table. We also set up the .plt entries for statically linked PIC
6949 functions here. This function is called via arm_elf_finish in the
6950 linker. */
6951
6952 bfd_boolean
6953 elf32_arm_build_stubs (struct bfd_link_info *info)
6954 {
6955 asection *stub_sec;
6956 struct bfd_hash_table *table;
6957 enum elf32_arm_stub_type stub_type;
6958 struct elf32_arm_link_hash_table *htab;
6959
6960 htab = elf32_arm_hash_table (info);
6961 if (htab == NULL)
6962 return FALSE;
6963
6964 for (stub_sec = htab->stub_bfd->sections;
6965 stub_sec != NULL;
6966 stub_sec = stub_sec->next)
6967 {
6968 bfd_size_type size;
6969
6970 /* Ignore non-stub sections. */
6971 if (!strstr (stub_sec->name, STUB_SUFFIX))
6972 continue;
6973
6974 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
6975 must at least be done for stub section requiring padding and for SG
6976 veneers to ensure that a non secure code branching to a removed SG
6977 veneer causes an error. */
6978 size = stub_sec->size;
6979 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6980 if (stub_sec->contents == NULL && size != 0)
6981 return FALSE;
6982
6983 stub_sec->size = 0;
6984 }
6985
6986 /* Add new SG veneers after those already in the input import library. */
6987 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6988 {
6989 bfd_vma *start_offset_p;
6990 asection **stub_sec_p;
6991
6992 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6993 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6994 if (start_offset_p == NULL)
6995 continue;
6996
6997 BFD_ASSERT (stub_sec_p != NULL);
6998 if (*stub_sec_p != NULL)
6999 (*stub_sec_p)->size = *start_offset_p;
7000 }
7001
7002 /* Build the stubs as directed by the stub hash table. */
7003 table = &htab->stub_hash_table;
7004 bfd_hash_traverse (table, arm_build_one_stub, info);
7005 if (htab->fix_cortex_a8)
7006 {
7007 /* Place the cortex a8 stubs last. */
7008 htab->fix_cortex_a8 = -1;
7009 bfd_hash_traverse (table, arm_build_one_stub, info);
7010 }
7011
7012 return TRUE;
7013 }
7014
7015 /* Locate the Thumb encoded calling stub for NAME. */
7016
7017 static struct elf_link_hash_entry *
7018 find_thumb_glue (struct bfd_link_info *link_info,
7019 const char *name,
7020 char **error_message)
7021 {
7022 char *tmp_name;
7023 struct elf_link_hash_entry *hash;
7024 struct elf32_arm_link_hash_table *hash_table;
7025
7026 /* We need a pointer to the armelf specific hash table. */
7027 hash_table = elf32_arm_hash_table (link_info);
7028 if (hash_table == NULL)
7029 return NULL;
7030
7031 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7032 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
7033
7034 BFD_ASSERT (tmp_name);
7035
7036 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7037
7038 hash = elf_link_hash_lookup
7039 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7040
7041 if (hash == NULL
7042 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7043 "Thumb", tmp_name, name) == -1)
7044 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7045
7046 free (tmp_name);
7047
7048 return hash;
7049 }
7050
7051 /* Locate the ARM encoded calling stub for NAME. */
7052
7053 static struct elf_link_hash_entry *
7054 find_arm_glue (struct bfd_link_info *link_info,
7055 const char *name,
7056 char **error_message)
7057 {
7058 char *tmp_name;
7059 struct elf_link_hash_entry *myh;
7060 struct elf32_arm_link_hash_table *hash_table;
7061
7062 /* We need a pointer to the elfarm specific hash table. */
7063 hash_table = elf32_arm_hash_table (link_info);
7064 if (hash_table == NULL)
7065 return NULL;
7066
7067 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7068 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7069
7070 BFD_ASSERT (tmp_name);
7071
7072 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7073
7074 myh = elf_link_hash_lookup
7075 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7076
7077 if (myh == NULL
7078 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7079 "ARM", tmp_name, name) == -1)
7080 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7081
7082 free (tmp_name);
7083
7084 return myh;
7085 }
7086
7087 /* ARM->Thumb glue (static images):
7088
7089 .arm
7090 __func_from_arm:
7091 ldr r12, __func_addr
7092 bx r12
7093 __func_addr:
7094 .word func @ behave as if you saw a ARM_32 reloc.
7095
7096 (v5t static images)
7097 .arm
7098 __func_from_arm:
7099 ldr pc, __func_addr
7100 __func_addr:
7101 .word func @ behave as if you saw a ARM_32 reloc.
7102
7103 (relocatable images)
7104 .arm
7105 __func_from_arm:
7106 ldr r12, __func_offset
7107 add r12, r12, pc
7108 bx r12
7109 __func_offset:
7110 .word func - . */
7111
7112 #define ARM2THUMB_STATIC_GLUE_SIZE 12
7113 static const insn32 a2t1_ldr_insn = 0xe59fc000;
7114 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7115 static const insn32 a2t3_func_addr_insn = 0x00000001;
7116
7117 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7118 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7119 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7120
7121 #define ARM2THUMB_PIC_GLUE_SIZE 16
7122 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7123 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7124 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7125
7126 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
7127
7128 .thumb .thumb
7129 .align 2 .align 2
7130 __func_from_thumb: __func_from_thumb:
7131 bx pc push {r6, lr}
7132 nop ldr r6, __func_addr
7133 .arm mov lr, pc
7134 b func bx r6
7135 .arm
7136 ;; back_to_thumb
7137 ldmia r13! {r6, lr}
7138 bx lr
7139 __func_addr:
7140 .word func */
7141
7142 #define THUMB2ARM_GLUE_SIZE 8
7143 static const insn16 t2a1_bx_pc_insn = 0x4778;
7144 static const insn16 t2a2_noop_insn = 0x46c0;
7145 static const insn32 t2a3_b_insn = 0xea000000;
7146
7147 #define VFP11_ERRATUM_VENEER_SIZE 8
7148 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7149 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7150
7151 #define ARM_BX_VENEER_SIZE 12
7152 static const insn32 armbx1_tst_insn = 0xe3100001;
7153 static const insn32 armbx2_moveq_insn = 0x01a0f000;
7154 static const insn32 armbx3_bx_insn = 0xe12fff10;
7155
7156 #ifndef ELFARM_NABI_C_INCLUDED
7157 static void
7158 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
7159 {
7160 asection * s;
7161 bfd_byte * contents;
7162
7163 if (size == 0)
7164 {
7165 /* Do not include empty glue sections in the output. */
7166 if (abfd != NULL)
7167 {
7168 s = bfd_get_linker_section (abfd, name);
7169 if (s != NULL)
7170 s->flags |= SEC_EXCLUDE;
7171 }
7172 return;
7173 }
7174
7175 BFD_ASSERT (abfd != NULL);
7176
7177 s = bfd_get_linker_section (abfd, name);
7178 BFD_ASSERT (s != NULL);
7179
7180 contents = (bfd_byte *) bfd_alloc (abfd, size);
7181
7182 BFD_ASSERT (s->size == size);
7183 s->contents = contents;
7184 }
7185
7186 bfd_boolean
7187 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7188 {
7189 struct elf32_arm_link_hash_table * globals;
7190
7191 globals = elf32_arm_hash_table (info);
7192 BFD_ASSERT (globals != NULL);
7193
7194 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7195 globals->arm_glue_size,
7196 ARM2THUMB_GLUE_SECTION_NAME);
7197
7198 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7199 globals->thumb_glue_size,
7200 THUMB2ARM_GLUE_SECTION_NAME);
7201
7202 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7203 globals->vfp11_erratum_glue_size,
7204 VFP11_ERRATUM_VENEER_SECTION_NAME);
7205
7206 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7207 globals->stm32l4xx_erratum_glue_size,
7208 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7209
7210 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7211 globals->bx_glue_size,
7212 ARM_BX_GLUE_SECTION_NAME);
7213
7214 return TRUE;
7215 }
7216
7217 /* Allocate space and symbols for calling a Thumb function from Arm mode.
7218 returns the symbol identifying the stub. */
7219
7220 static struct elf_link_hash_entry *
7221 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7222 struct elf_link_hash_entry * h)
7223 {
7224 const char * name = h->root.root.string;
7225 asection * s;
7226 char * tmp_name;
7227 struct elf_link_hash_entry * myh;
7228 struct bfd_link_hash_entry * bh;
7229 struct elf32_arm_link_hash_table * globals;
7230 bfd_vma val;
7231 bfd_size_type size;
7232
7233 globals = elf32_arm_hash_table (link_info);
7234 BFD_ASSERT (globals != NULL);
7235 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7236
7237 s = bfd_get_linker_section
7238 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7239
7240 BFD_ASSERT (s != NULL);
7241
7242 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7243 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7244
7245 BFD_ASSERT (tmp_name);
7246
7247 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7248
7249 myh = elf_link_hash_lookup
7250 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7251
7252 if (myh != NULL)
7253 {
7254 /* We've already seen this guy. */
7255 free (tmp_name);
7256 return myh;
7257 }
7258
7259 /* The only trick here is using hash_table->arm_glue_size as the value.
7260 Even though the section isn't allocated yet, this is where we will be
7261 putting it. The +1 on the value marks that the stub has not been
7262 output yet - not that it is a Thumb function. */
7263 bh = NULL;
7264 val = globals->arm_glue_size + 1;
7265 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7266 tmp_name, BSF_GLOBAL, s, val,
7267 NULL, TRUE, FALSE, &bh);
7268
7269 myh = (struct elf_link_hash_entry *) bh;
7270 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7271 myh->forced_local = 1;
7272
7273 free (tmp_name);
7274
7275 if (bfd_link_pic (link_info)
7276 || globals->root.is_relocatable_executable
7277 || globals->pic_veneer)
7278 size = ARM2THUMB_PIC_GLUE_SIZE;
7279 else if (globals->use_blx)
7280 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7281 else
7282 size = ARM2THUMB_STATIC_GLUE_SIZE;
7283
7284 s->size += size;
7285 globals->arm_glue_size += size;
7286
7287 return myh;
7288 }
7289
7290 /* Allocate space for ARMv4 BX veneers. */
7291
7292 static void
7293 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7294 {
7295 asection * s;
7296 struct elf32_arm_link_hash_table *globals;
7297 char *tmp_name;
7298 struct elf_link_hash_entry *myh;
7299 struct bfd_link_hash_entry *bh;
7300 bfd_vma val;
7301
7302 /* BX PC does not need a veneer. */
7303 if (reg == 15)
7304 return;
7305
7306 globals = elf32_arm_hash_table (link_info);
7307 BFD_ASSERT (globals != NULL);
7308 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7309
7310 /* Check if this veneer has already been allocated. */
7311 if (globals->bx_glue_offset[reg])
7312 return;
7313
7314 s = bfd_get_linker_section
7315 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7316
7317 BFD_ASSERT (s != NULL);
7318
7319 /* Add symbol for veneer. */
7320 tmp_name = (char *)
7321 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7322
7323 BFD_ASSERT (tmp_name);
7324
7325 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7326
7327 myh = elf_link_hash_lookup
7328 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7329
7330 BFD_ASSERT (myh == NULL);
7331
7332 bh = NULL;
7333 val = globals->bx_glue_size;
7334 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7335 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7336 NULL, TRUE, FALSE, &bh);
7337
7338 myh = (struct elf_link_hash_entry *) bh;
7339 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7340 myh->forced_local = 1;
7341
7342 s->size += ARM_BX_VENEER_SIZE;
7343 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7344 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7345 }
7346
7347
7348 /* Add an entry to the code/data map for section SEC. */
7349
7350 static void
7351 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7352 {
7353 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7354 unsigned int newidx;
7355
7356 if (sec_data->map == NULL)
7357 {
7358 sec_data->map = (elf32_arm_section_map *)
7359 bfd_malloc (sizeof (elf32_arm_section_map));
7360 sec_data->mapcount = 0;
7361 sec_data->mapsize = 1;
7362 }
7363
7364 newidx = sec_data->mapcount++;
7365
7366 if (sec_data->mapcount > sec_data->mapsize)
7367 {
7368 sec_data->mapsize *= 2;
7369 sec_data->map = (elf32_arm_section_map *)
7370 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7371 * sizeof (elf32_arm_section_map));
7372 }
7373
7374 if (sec_data->map)
7375 {
7376 sec_data->map[newidx].vma = vma;
7377 sec_data->map[newidx].type = type;
7378 }
7379 }
7380
7381
7382 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7383 veneers are handled for now. */
7384
7385 static bfd_vma
7386 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7387 elf32_vfp11_erratum_list *branch,
7388 bfd *branch_bfd,
7389 asection *branch_sec,
7390 unsigned int offset)
7391 {
7392 asection *s;
7393 struct elf32_arm_link_hash_table *hash_table;
7394 char *tmp_name;
7395 struct elf_link_hash_entry *myh;
7396 struct bfd_link_hash_entry *bh;
7397 bfd_vma val;
7398 struct _arm_elf_section_data *sec_data;
7399 elf32_vfp11_erratum_list *newerr;
7400
7401 hash_table = elf32_arm_hash_table (link_info);
7402 BFD_ASSERT (hash_table != NULL);
7403 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7404
7405 s = bfd_get_linker_section
7406 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7407
7408 sec_data = elf32_arm_section_data (s);
7409
7410 BFD_ASSERT (s != NULL);
7411
7412 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7413 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7414
7415 BFD_ASSERT (tmp_name);
7416
7417 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7418 hash_table->num_vfp11_fixes);
7419
7420 myh = elf_link_hash_lookup
7421 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7422
7423 BFD_ASSERT (myh == NULL);
7424
7425 bh = NULL;
7426 val = hash_table->vfp11_erratum_glue_size;
7427 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7428 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7429 NULL, TRUE, FALSE, &bh);
7430
7431 myh = (struct elf_link_hash_entry *) bh;
7432 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7433 myh->forced_local = 1;
7434
7435 /* Link veneer back to calling location. */
7436 sec_data->erratumcount += 1;
7437 newerr = (elf32_vfp11_erratum_list *)
7438 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7439
7440 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7441 newerr->vma = -1;
7442 newerr->u.v.branch = branch;
7443 newerr->u.v.id = hash_table->num_vfp11_fixes;
7444 branch->u.b.veneer = newerr;
7445
7446 newerr->next = sec_data->erratumlist;
7447 sec_data->erratumlist = newerr;
7448
7449 /* A symbol for the return from the veneer. */
7450 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7451 hash_table->num_vfp11_fixes);
7452
7453 myh = elf_link_hash_lookup
7454 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7455
7456 if (myh != NULL)
7457 abort ();
7458
7459 bh = NULL;
7460 val = offset + 4;
7461 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7462 branch_sec, val, NULL, TRUE, FALSE, &bh);
7463
7464 myh = (struct elf_link_hash_entry *) bh;
7465 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7466 myh->forced_local = 1;
7467
7468 free (tmp_name);
7469
7470 /* Generate a mapping symbol for the veneer section, and explicitly add an
7471 entry for that symbol to the code/data map for the section. */
7472 if (hash_table->vfp11_erratum_glue_size == 0)
7473 {
7474 bh = NULL;
7475 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7476 ever requires this erratum fix. */
7477 _bfd_generic_link_add_one_symbol (link_info,
7478 hash_table->bfd_of_glue_owner, "$a",
7479 BSF_LOCAL, s, 0, NULL,
7480 TRUE, FALSE, &bh);
7481
7482 myh = (struct elf_link_hash_entry *) bh;
7483 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7484 myh->forced_local = 1;
7485
7486 /* The elf32_arm_init_maps function only cares about symbols from input
7487 BFDs. We must make a note of this generated mapping symbol
7488 ourselves so that code byteswapping works properly in
7489 elf32_arm_write_section. */
7490 elf32_arm_section_map_add (s, 'a', 0);
7491 }
7492
7493 s->size += VFP11_ERRATUM_VENEER_SIZE;
7494 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7495 hash_table->num_vfp11_fixes++;
7496
7497 /* The offset of the veneer. */
7498 return val;
7499 }
7500
7501 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7502 veneers need to be handled because used only in Cortex-M. */
7503
7504 static bfd_vma
7505 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7506 elf32_stm32l4xx_erratum_list *branch,
7507 bfd *branch_bfd,
7508 asection *branch_sec,
7509 unsigned int offset,
7510 bfd_size_type veneer_size)
7511 {
7512 asection *s;
7513 struct elf32_arm_link_hash_table *hash_table;
7514 char *tmp_name;
7515 struct elf_link_hash_entry *myh;
7516 struct bfd_link_hash_entry *bh;
7517 bfd_vma val;
7518 struct _arm_elf_section_data *sec_data;
7519 elf32_stm32l4xx_erratum_list *newerr;
7520
7521 hash_table = elf32_arm_hash_table (link_info);
7522 BFD_ASSERT (hash_table != NULL);
7523 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7524
7525 s = bfd_get_linker_section
7526 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7527
7528 BFD_ASSERT (s != NULL);
7529
7530 sec_data = elf32_arm_section_data (s);
7531
7532 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7533 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7534
7535 BFD_ASSERT (tmp_name);
7536
7537 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7538 hash_table->num_stm32l4xx_fixes);
7539
7540 myh = elf_link_hash_lookup
7541 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7542
7543 BFD_ASSERT (myh == NULL);
7544
7545 bh = NULL;
7546 val = hash_table->stm32l4xx_erratum_glue_size;
7547 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7548 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7549 NULL, TRUE, FALSE, &bh);
7550
7551 myh = (struct elf_link_hash_entry *) bh;
7552 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7553 myh->forced_local = 1;
7554
7555 /* Link veneer back to calling location. */
7556 sec_data->stm32l4xx_erratumcount += 1;
7557 newerr = (elf32_stm32l4xx_erratum_list *)
7558 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7559
7560 newerr->type = STM32L4XX_ERRATUM_VENEER;
7561 newerr->vma = -1;
7562 newerr->u.v.branch = branch;
7563 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7564 branch->u.b.veneer = newerr;
7565
7566 newerr->next = sec_data->stm32l4xx_erratumlist;
7567 sec_data->stm32l4xx_erratumlist = newerr;
7568
7569 /* A symbol for the return from the veneer. */
7570 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7571 hash_table->num_stm32l4xx_fixes);
7572
7573 myh = elf_link_hash_lookup
7574 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7575
7576 if (myh != NULL)
7577 abort ();
7578
7579 bh = NULL;
7580 val = offset + 4;
7581 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7582 branch_sec, val, NULL, TRUE, FALSE, &bh);
7583
7584 myh = (struct elf_link_hash_entry *) bh;
7585 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7586 myh->forced_local = 1;
7587
7588 free (tmp_name);
7589
7590 /* Generate a mapping symbol for the veneer section, and explicitly add an
7591 entry for that symbol to the code/data map for the section. */
7592 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7593 {
7594 bh = NULL;
7595 /* Creates a THUMB symbol since there is no other choice. */
7596 _bfd_generic_link_add_one_symbol (link_info,
7597 hash_table->bfd_of_glue_owner, "$t",
7598 BSF_LOCAL, s, 0, NULL,
7599 TRUE, FALSE, &bh);
7600
7601 myh = (struct elf_link_hash_entry *) bh;
7602 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7603 myh->forced_local = 1;
7604
7605 /* The elf32_arm_init_maps function only cares about symbols from input
7606 BFDs. We must make a note of this generated mapping symbol
7607 ourselves so that code byteswapping works properly in
7608 elf32_arm_write_section. */
7609 elf32_arm_section_map_add (s, 't', 0);
7610 }
7611
7612 s->size += veneer_size;
7613 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7614 hash_table->num_stm32l4xx_fixes++;
7615
7616 /* The offset of the veneer. */
7617 return val;
7618 }
7619
7620 #define ARM_GLUE_SECTION_FLAGS \
7621 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7622 | SEC_READONLY | SEC_LINKER_CREATED)
7623
7624 /* Create a fake section for use by the ARM backend of the linker. */
7625
7626 static bfd_boolean
7627 arm_make_glue_section (bfd * abfd, const char * name)
7628 {
7629 asection * sec;
7630
7631 sec = bfd_get_linker_section (abfd, name);
7632 if (sec != NULL)
7633 /* Already made. */
7634 return TRUE;
7635
7636 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7637
7638 if (sec == NULL
7639 || !bfd_set_section_alignment (abfd, sec, 2))
7640 return FALSE;
7641
7642 /* Set the gc mark to prevent the section from being removed by garbage
7643 collection, despite the fact that no relocs refer to this section. */
7644 sec->gc_mark = 1;
7645
7646 return TRUE;
7647 }
7648
7649 /* Set size of .plt entries. This function is called from the
7650 linker scripts in ld/emultempl/{armelf}.em. */
7651
7652 void
7653 bfd_elf32_arm_use_long_plt (void)
7654 {
7655 elf32_arm_use_long_plt_entry = TRUE;
7656 }
7657
7658 /* Add the glue sections to ABFD. This function is called from the
7659 linker scripts in ld/emultempl/{armelf}.em. */
7660
7661 bfd_boolean
7662 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7663 struct bfd_link_info *info)
7664 {
7665 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7666 bfd_boolean dostm32l4xx = globals
7667 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7668 bfd_boolean addglue;
7669
7670 /* If we are only performing a partial
7671 link do not bother adding the glue. */
7672 if (bfd_link_relocatable (info))
7673 return TRUE;
7674
7675 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7676 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7677 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7678 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7679
7680 if (!dostm32l4xx)
7681 return addglue;
7682
7683 return addglue
7684 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7685 }
7686
7687 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7688 ensures they are not marked for deletion by
7689 strip_excluded_output_sections () when veneers are going to be created
7690 later. Not doing so would trigger assert on empty section size in
7691 lang_size_sections_1 (). */
7692
7693 void
7694 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7695 {
7696 enum elf32_arm_stub_type stub_type;
7697
7698 /* If we are only performing a partial
7699 link do not bother adding the glue. */
7700 if (bfd_link_relocatable (info))
7701 return;
7702
7703 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7704 {
7705 asection *out_sec;
7706 const char *out_sec_name;
7707
7708 if (!arm_dedicated_stub_output_section_required (stub_type))
7709 continue;
7710
7711 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7712 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7713 if (out_sec != NULL)
7714 out_sec->flags |= SEC_KEEP;
7715 }
7716 }
7717
7718 /* Select a BFD to be used to hold the sections used by the glue code.
7719 This function is called from the linker scripts in ld/emultempl/
7720 {armelf/pe}.em. */
7721
7722 bfd_boolean
7723 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7724 {
7725 struct elf32_arm_link_hash_table *globals;
7726
7727 /* If we are only performing a partial link
7728 do not bother getting a bfd to hold the glue. */
7729 if (bfd_link_relocatable (info))
7730 return TRUE;
7731
7732 /* Make sure we don't attach the glue sections to a dynamic object. */
7733 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7734
7735 globals = elf32_arm_hash_table (info);
7736 BFD_ASSERT (globals != NULL);
7737
7738 if (globals->bfd_of_glue_owner != NULL)
7739 return TRUE;
7740
7741 /* Save the bfd for later use. */
7742 globals->bfd_of_glue_owner = abfd;
7743
7744 return TRUE;
7745 }
7746
7747 static void
7748 check_use_blx (struct elf32_arm_link_hash_table *globals)
7749 {
7750 int cpu_arch;
7751
7752 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7753 Tag_CPU_arch);
7754
7755 if (globals->fix_arm1176)
7756 {
7757 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7758 globals->use_blx = 1;
7759 }
7760 else
7761 {
7762 if (cpu_arch > TAG_CPU_ARCH_V4T)
7763 globals->use_blx = 1;
7764 }
7765 }
7766
7767 bfd_boolean
7768 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7769 struct bfd_link_info *link_info)
7770 {
7771 Elf_Internal_Shdr *symtab_hdr;
7772 Elf_Internal_Rela *internal_relocs = NULL;
7773 Elf_Internal_Rela *irel, *irelend;
7774 bfd_byte *contents = NULL;
7775
7776 asection *sec;
7777 struct elf32_arm_link_hash_table *globals;
7778
7779 /* If we are only performing a partial link do not bother
7780 to construct any glue. */
7781 if (bfd_link_relocatable (link_info))
7782 return TRUE;
7783
7784 /* Here we have a bfd that is to be included on the link. We have a
7785 hook to do reloc rummaging, before section sizes are nailed down. */
7786 globals = elf32_arm_hash_table (link_info);
7787 BFD_ASSERT (globals != NULL);
7788
7789 check_use_blx (globals);
7790
7791 if (globals->byteswap_code && !bfd_big_endian (abfd))
7792 {
7793 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7794 abfd);
7795 return FALSE;
7796 }
7797
7798 /* PR 5398: If we have not decided to include any loadable sections in
7799 the output then we will not have a glue owner bfd. This is OK, it
7800 just means that there is nothing else for us to do here. */
7801 if (globals->bfd_of_glue_owner == NULL)
7802 return TRUE;
7803
7804 /* Rummage around all the relocs and map the glue vectors. */
7805 sec = abfd->sections;
7806
7807 if (sec == NULL)
7808 return TRUE;
7809
7810 for (; sec != NULL; sec = sec->next)
7811 {
7812 if (sec->reloc_count == 0)
7813 continue;
7814
7815 if ((sec->flags & SEC_EXCLUDE) != 0)
7816 continue;
7817
7818 symtab_hdr = & elf_symtab_hdr (abfd);
7819
7820 /* Load the relocs. */
7821 internal_relocs
7822 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7823
7824 if (internal_relocs == NULL)
7825 goto error_return;
7826
7827 irelend = internal_relocs + sec->reloc_count;
7828 for (irel = internal_relocs; irel < irelend; irel++)
7829 {
7830 long r_type;
7831 unsigned long r_index;
7832
7833 struct elf_link_hash_entry *h;
7834
7835 r_type = ELF32_R_TYPE (irel->r_info);
7836 r_index = ELF32_R_SYM (irel->r_info);
7837
7838 /* These are the only relocation types we care about. */
7839 if ( r_type != R_ARM_PC24
7840 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7841 continue;
7842
7843 /* Get the section contents if we haven't done so already. */
7844 if (contents == NULL)
7845 {
7846 /* Get cached copy if it exists. */
7847 if (elf_section_data (sec)->this_hdr.contents != NULL)
7848 contents = elf_section_data (sec)->this_hdr.contents;
7849 else
7850 {
7851 /* Go get them off disk. */
7852 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7853 goto error_return;
7854 }
7855 }
7856
7857 if (r_type == R_ARM_V4BX)
7858 {
7859 int reg;
7860
7861 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7862 record_arm_bx_glue (link_info, reg);
7863 continue;
7864 }
7865
7866 /* If the relocation is not against a symbol it cannot concern us. */
7867 h = NULL;
7868
7869 /* We don't care about local symbols. */
7870 if (r_index < symtab_hdr->sh_info)
7871 continue;
7872
7873 /* This is an external symbol. */
7874 r_index -= symtab_hdr->sh_info;
7875 h = (struct elf_link_hash_entry *)
7876 elf_sym_hashes (abfd)[r_index];
7877
7878 /* If the relocation is against a static symbol it must be within
7879 the current section and so cannot be a cross ARM/Thumb relocation. */
7880 if (h == NULL)
7881 continue;
7882
7883 /* If the call will go through a PLT entry then we do not need
7884 glue. */
7885 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7886 continue;
7887
7888 switch (r_type)
7889 {
7890 case R_ARM_PC24:
7891 /* This one is a call from arm code. We need to look up
7892 the target of the call. If it is a thumb target, we
7893 insert glue. */
7894 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7895 == ST_BRANCH_TO_THUMB)
7896 record_arm_to_thumb_glue (link_info, h);
7897 break;
7898
7899 default:
7900 abort ();
7901 }
7902 }
7903
7904 if (contents != NULL
7905 && elf_section_data (sec)->this_hdr.contents != contents)
7906 free (contents);
7907 contents = NULL;
7908
7909 if (internal_relocs != NULL
7910 && elf_section_data (sec)->relocs != internal_relocs)
7911 free (internal_relocs);
7912 internal_relocs = NULL;
7913 }
7914
7915 return TRUE;
7916
7917 error_return:
7918 if (contents != NULL
7919 && elf_section_data (sec)->this_hdr.contents != contents)
7920 free (contents);
7921 if (internal_relocs != NULL
7922 && elf_section_data (sec)->relocs != internal_relocs)
7923 free (internal_relocs);
7924
7925 return FALSE;
7926 }
7927 #endif
7928
7929
7930 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7931
7932 void
7933 bfd_elf32_arm_init_maps (bfd *abfd)
7934 {
7935 Elf_Internal_Sym *isymbuf;
7936 Elf_Internal_Shdr *hdr;
7937 unsigned int i, localsyms;
7938
7939 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7940 if (! is_arm_elf (abfd))
7941 return;
7942
7943 if ((abfd->flags & DYNAMIC) != 0)
7944 return;
7945
7946 hdr = & elf_symtab_hdr (abfd);
7947 localsyms = hdr->sh_info;
7948
7949 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7950 should contain the number of local symbols, which should come before any
7951 global symbols. Mapping symbols are always local. */
7952 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7953 NULL);
7954
7955 /* No internal symbols read? Skip this BFD. */
7956 if (isymbuf == NULL)
7957 return;
7958
7959 for (i = 0; i < localsyms; i++)
7960 {
7961 Elf_Internal_Sym *isym = &isymbuf[i];
7962 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7963 const char *name;
7964
7965 if (sec != NULL
7966 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7967 {
7968 name = bfd_elf_string_from_elf_section (abfd,
7969 hdr->sh_link, isym->st_name);
7970
7971 if (bfd_is_arm_special_symbol_name (name,
7972 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7973 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7974 }
7975 }
7976 }
7977
7978
7979 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7980 say what they wanted. */
7981
7982 void
7983 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7984 {
7985 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7986 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7987
7988 if (globals == NULL)
7989 return;
7990
7991 if (globals->fix_cortex_a8 == -1)
7992 {
7993 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7994 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7995 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7996 || out_attr[Tag_CPU_arch_profile].i == 0))
7997 globals->fix_cortex_a8 = 1;
7998 else
7999 globals->fix_cortex_a8 = 0;
8000 }
8001 }
8002
8003
8004 void
8005 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8006 {
8007 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8008 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8009
8010 if (globals == NULL)
8011 return;
8012 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8013 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8014 {
8015 switch (globals->vfp11_fix)
8016 {
8017 case BFD_ARM_VFP11_FIX_DEFAULT:
8018 case BFD_ARM_VFP11_FIX_NONE:
8019 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8020 break;
8021
8022 default:
8023 /* Give a warning, but do as the user requests anyway. */
8024 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
8025 "workaround is not necessary for target architecture"), obfd);
8026 }
8027 }
8028 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8029 /* For earlier architectures, we might need the workaround, but do not
8030 enable it by default. If users is running with broken hardware, they
8031 must enable the erratum fix explicitly. */
8032 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8033 }
8034
8035 void
8036 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8037 {
8038 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8039 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8040
8041 if (globals == NULL)
8042 return;
8043
8044 /* We assume only Cortex-M4 may require the fix. */
8045 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8046 || out_attr[Tag_CPU_arch_profile].i != 'M')
8047 {
8048 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8049 /* Give a warning, but do as the user requests anyway. */
8050 _bfd_error_handler
8051 (_("%pB: warning: selected STM32L4XX erratum "
8052 "workaround is not necessary for target architecture"), obfd);
8053 }
8054 }
8055
8056 enum bfd_arm_vfp11_pipe
8057 {
8058 VFP11_FMAC,
8059 VFP11_LS,
8060 VFP11_DS,
8061 VFP11_BAD
8062 };
8063
8064 /* Return a VFP register number. This is encoded as RX:X for single-precision
8065 registers, or X:RX for double-precision registers, where RX is the group of
8066 four bits in the instruction encoding and X is the single extension bit.
8067 RX and X fields are specified using their lowest (starting) bit. The return
8068 value is:
8069
8070 0...31: single-precision registers s0...s31
8071 32...63: double-precision registers d0...d31.
8072
8073 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8074 encounter VFP3 instructions, so we allow the full range for DP registers. */
8075
8076 static unsigned int
8077 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
8078 unsigned int x)
8079 {
8080 if (is_double)
8081 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8082 else
8083 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8084 }
8085
8086 /* Set bits in *WMASK according to a register number REG as encoded by
8087 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8088
8089 static void
8090 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8091 {
8092 if (reg < 32)
8093 *wmask |= 1 << reg;
8094 else if (reg < 48)
8095 *wmask |= 3 << ((reg - 32) * 2);
8096 }
8097
8098 /* Return TRUE if WMASK overwrites anything in REGS. */
8099
8100 static bfd_boolean
8101 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8102 {
8103 int i;
8104
8105 for (i = 0; i < numregs; i++)
8106 {
8107 unsigned int reg = regs[i];
8108
8109 if (reg < 32 && (wmask & (1 << reg)) != 0)
8110 return TRUE;
8111
8112 reg -= 32;
8113
8114 if (reg >= 16)
8115 continue;
8116
8117 if ((wmask & (3 << (reg * 2))) != 0)
8118 return TRUE;
8119 }
8120
8121 return FALSE;
8122 }
8123
8124 /* In this function, we're interested in two things: finding input registers
8125 for VFP data-processing instructions, and finding the set of registers which
8126 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8127 hold the written set, so FLDM etc. are easy to deal with (we're only
8128 interested in 32 SP registers or 16 dp registers, due to the VFP version
8129 implemented by the chip in question). DP registers are marked by setting
8130 both SP registers in the write mask). */
8131
8132 static enum bfd_arm_vfp11_pipe
8133 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
8134 int *numregs)
8135 {
8136 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
8137 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8138
8139 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8140 {
8141 unsigned int pqrs;
8142 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8143 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8144
8145 pqrs = ((insn & 0x00800000) >> 20)
8146 | ((insn & 0x00300000) >> 19)
8147 | ((insn & 0x00000040) >> 6);
8148
8149 switch (pqrs)
8150 {
8151 case 0: /* fmac[sd]. */
8152 case 1: /* fnmac[sd]. */
8153 case 2: /* fmsc[sd]. */
8154 case 3: /* fnmsc[sd]. */
8155 vpipe = VFP11_FMAC;
8156 bfd_arm_vfp11_write_mask (destmask, fd);
8157 regs[0] = fd;
8158 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8159 regs[2] = fm;
8160 *numregs = 3;
8161 break;
8162
8163 case 4: /* fmul[sd]. */
8164 case 5: /* fnmul[sd]. */
8165 case 6: /* fadd[sd]. */
8166 case 7: /* fsub[sd]. */
8167 vpipe = VFP11_FMAC;
8168 goto vfp_binop;
8169
8170 case 8: /* fdiv[sd]. */
8171 vpipe = VFP11_DS;
8172 vfp_binop:
8173 bfd_arm_vfp11_write_mask (destmask, fd);
8174 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8175 regs[1] = fm;
8176 *numregs = 2;
8177 break;
8178
8179 case 15: /* extended opcode. */
8180 {
8181 unsigned int extn = ((insn >> 15) & 0x1e)
8182 | ((insn >> 7) & 1);
8183
8184 switch (extn)
8185 {
8186 case 0: /* fcpy[sd]. */
8187 case 1: /* fabs[sd]. */
8188 case 2: /* fneg[sd]. */
8189 case 8: /* fcmp[sd]. */
8190 case 9: /* fcmpe[sd]. */
8191 case 10: /* fcmpz[sd]. */
8192 case 11: /* fcmpez[sd]. */
8193 case 16: /* fuito[sd]. */
8194 case 17: /* fsito[sd]. */
8195 case 24: /* ftoui[sd]. */
8196 case 25: /* ftouiz[sd]. */
8197 case 26: /* ftosi[sd]. */
8198 case 27: /* ftosiz[sd]. */
8199 /* These instructions will not bounce due to underflow. */
8200 *numregs = 0;
8201 vpipe = VFP11_FMAC;
8202 break;
8203
8204 case 3: /* fsqrt[sd]. */
8205 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8206 registers to cause the erratum in previous instructions. */
8207 bfd_arm_vfp11_write_mask (destmask, fd);
8208 vpipe = VFP11_DS;
8209 break;
8210
8211 case 15: /* fcvt{ds,sd}. */
8212 {
8213 int rnum = 0;
8214
8215 bfd_arm_vfp11_write_mask (destmask, fd);
8216
8217 /* Only FCVTSD can underflow. */
8218 if ((insn & 0x100) != 0)
8219 regs[rnum++] = fm;
8220
8221 *numregs = rnum;
8222
8223 vpipe = VFP11_FMAC;
8224 }
8225 break;
8226
8227 default:
8228 return VFP11_BAD;
8229 }
8230 }
8231 break;
8232
8233 default:
8234 return VFP11_BAD;
8235 }
8236 }
8237 /* Two-register transfer. */
8238 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8239 {
8240 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8241
8242 if ((insn & 0x100000) == 0)
8243 {
8244 if (is_double)
8245 bfd_arm_vfp11_write_mask (destmask, fm);
8246 else
8247 {
8248 bfd_arm_vfp11_write_mask (destmask, fm);
8249 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8250 }
8251 }
8252
8253 vpipe = VFP11_LS;
8254 }
8255 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8256 {
8257 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8258 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
8259
8260 switch (puw)
8261 {
8262 case 0: /* Two-reg transfer. We should catch these above. */
8263 abort ();
8264
8265 case 2: /* fldm[sdx]. */
8266 case 3:
8267 case 5:
8268 {
8269 unsigned int i, offset = insn & 0xff;
8270
8271 if (is_double)
8272 offset >>= 1;
8273
8274 for (i = fd; i < fd + offset; i++)
8275 bfd_arm_vfp11_write_mask (destmask, i);
8276 }
8277 break;
8278
8279 case 4: /* fld[sd]. */
8280 case 6:
8281 bfd_arm_vfp11_write_mask (destmask, fd);
8282 break;
8283
8284 default:
8285 return VFP11_BAD;
8286 }
8287
8288 vpipe = VFP11_LS;
8289 }
8290 /* Single-register transfer. Note L==0. */
8291 else if ((insn & 0x0f100e10) == 0x0e000a10)
8292 {
8293 unsigned int opcode = (insn >> 21) & 7;
8294 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8295
8296 switch (opcode)
8297 {
8298 case 0: /* fmsr/fmdlr. */
8299 case 1: /* fmdhr. */
8300 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8301 destination register. I don't know if this is exactly right,
8302 but it is the conservative choice. */
8303 bfd_arm_vfp11_write_mask (destmask, fn);
8304 break;
8305
8306 case 7: /* fmxr. */
8307 break;
8308 }
8309
8310 vpipe = VFP11_LS;
8311 }
8312
8313 return vpipe;
8314 }
8315
8316
8317 static int elf32_arm_compare_mapping (const void * a, const void * b);
8318
8319
8320 /* Look for potentially-troublesome code sequences which might trigger the
8321 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8322 (available from ARM) for details of the erratum. A short version is
8323 described in ld.texinfo. */
8324
8325 bfd_boolean
8326 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8327 {
8328 asection *sec;
8329 bfd_byte *contents = NULL;
8330 int state = 0;
8331 int regs[3], numregs = 0;
8332 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8333 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8334
8335 if (globals == NULL)
8336 return FALSE;
8337
8338 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8339 The states transition as follows:
8340
8341 0 -> 1 (vector) or 0 -> 2 (scalar)
8342 A VFP FMAC-pipeline instruction has been seen. Fill
8343 regs[0]..regs[numregs-1] with its input operands. Remember this
8344 instruction in 'first_fmac'.
8345
8346 1 -> 2
8347 Any instruction, except for a VFP instruction which overwrites
8348 regs[*].
8349
8350 1 -> 3 [ -> 0 ] or
8351 2 -> 3 [ -> 0 ]
8352 A VFP instruction has been seen which overwrites any of regs[*].
8353 We must make a veneer! Reset state to 0 before examining next
8354 instruction.
8355
8356 2 -> 0
8357 If we fail to match anything in state 2, reset to state 0 and reset
8358 the instruction pointer to the instruction after 'first_fmac'.
8359
8360 If the VFP11 vector mode is in use, there must be at least two unrelated
8361 instructions between anti-dependent VFP11 instructions to properly avoid
8362 triggering the erratum, hence the use of the extra state 1. */
8363
8364 /* If we are only performing a partial link do not bother
8365 to construct any glue. */
8366 if (bfd_link_relocatable (link_info))
8367 return TRUE;
8368
8369 /* Skip if this bfd does not correspond to an ELF image. */
8370 if (! is_arm_elf (abfd))
8371 return TRUE;
8372
8373 /* We should have chosen a fix type by the time we get here. */
8374 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8375
8376 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8377 return TRUE;
8378
8379 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8380 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8381 return TRUE;
8382
8383 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8384 {
8385 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8386 struct _arm_elf_section_data *sec_data;
8387
8388 /* If we don't have executable progbits, we're not interested in this
8389 section. Also skip if section is to be excluded. */
8390 if (elf_section_type (sec) != SHT_PROGBITS
8391 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8392 || (sec->flags & SEC_EXCLUDE) != 0
8393 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8394 || sec->output_section == bfd_abs_section_ptr
8395 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8396 continue;
8397
8398 sec_data = elf32_arm_section_data (sec);
8399
8400 if (sec_data->mapcount == 0)
8401 continue;
8402
8403 if (elf_section_data (sec)->this_hdr.contents != NULL)
8404 contents = elf_section_data (sec)->this_hdr.contents;
8405 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8406 goto error_return;
8407
8408 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8409 elf32_arm_compare_mapping);
8410
8411 for (span = 0; span < sec_data->mapcount; span++)
8412 {
8413 unsigned int span_start = sec_data->map[span].vma;
8414 unsigned int span_end = (span == sec_data->mapcount - 1)
8415 ? sec->size : sec_data->map[span + 1].vma;
8416 char span_type = sec_data->map[span].type;
8417
8418 /* FIXME: Only ARM mode is supported at present. We may need to
8419 support Thumb-2 mode also at some point. */
8420 if (span_type != 'a')
8421 continue;
8422
8423 for (i = span_start; i < span_end;)
8424 {
8425 unsigned int next_i = i + 4;
8426 unsigned int insn = bfd_big_endian (abfd)
8427 ? (contents[i] << 24)
8428 | (contents[i + 1] << 16)
8429 | (contents[i + 2] << 8)
8430 | contents[i + 3]
8431 : (contents[i + 3] << 24)
8432 | (contents[i + 2] << 16)
8433 | (contents[i + 1] << 8)
8434 | contents[i];
8435 unsigned int writemask = 0;
8436 enum bfd_arm_vfp11_pipe vpipe;
8437
8438 switch (state)
8439 {
8440 case 0:
8441 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8442 &numregs);
8443 /* I'm assuming the VFP11 erratum can trigger with denorm
8444 operands on either the FMAC or the DS pipeline. This might
8445 lead to slightly overenthusiastic veneer insertion. */
8446 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8447 {
8448 state = use_vector ? 1 : 2;
8449 first_fmac = i;
8450 veneer_of_insn = insn;
8451 }
8452 break;
8453
8454 case 1:
8455 {
8456 int other_regs[3], other_numregs;
8457 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8458 other_regs,
8459 &other_numregs);
8460 if (vpipe != VFP11_BAD
8461 && bfd_arm_vfp11_antidependency (writemask, regs,
8462 numregs))
8463 state = 3;
8464 else
8465 state = 2;
8466 }
8467 break;
8468
8469 case 2:
8470 {
8471 int other_regs[3], other_numregs;
8472 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8473 other_regs,
8474 &other_numregs);
8475 if (vpipe != VFP11_BAD
8476 && bfd_arm_vfp11_antidependency (writemask, regs,
8477 numregs))
8478 state = 3;
8479 else
8480 {
8481 state = 0;
8482 next_i = first_fmac + 4;
8483 }
8484 }
8485 break;
8486
8487 case 3:
8488 abort (); /* Should be unreachable. */
8489 }
8490
8491 if (state == 3)
8492 {
8493 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8494 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8495
8496 elf32_arm_section_data (sec)->erratumcount += 1;
8497
8498 newerr->u.b.vfp_insn = veneer_of_insn;
8499
8500 switch (span_type)
8501 {
8502 case 'a':
8503 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8504 break;
8505
8506 default:
8507 abort ();
8508 }
8509
8510 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8511 first_fmac);
8512
8513 newerr->vma = -1;
8514
8515 newerr->next = sec_data->erratumlist;
8516 sec_data->erratumlist = newerr;
8517
8518 state = 0;
8519 }
8520
8521 i = next_i;
8522 }
8523 }
8524
8525 if (contents != NULL
8526 && elf_section_data (sec)->this_hdr.contents != contents)
8527 free (contents);
8528 contents = NULL;
8529 }
8530
8531 return TRUE;
8532
8533 error_return:
8534 if (contents != NULL
8535 && elf_section_data (sec)->this_hdr.contents != contents)
8536 free (contents);
8537
8538 return FALSE;
8539 }
8540
8541 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8542 after sections have been laid out, using specially-named symbols. */
8543
8544 void
8545 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8546 struct bfd_link_info *link_info)
8547 {
8548 asection *sec;
8549 struct elf32_arm_link_hash_table *globals;
8550 char *tmp_name;
8551
8552 if (bfd_link_relocatable (link_info))
8553 return;
8554
8555 /* Skip if this bfd does not correspond to an ELF image. */
8556 if (! is_arm_elf (abfd))
8557 return;
8558
8559 globals = elf32_arm_hash_table (link_info);
8560 if (globals == NULL)
8561 return;
8562
8563 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8564 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8565
8566 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8567 {
8568 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8569 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8570
8571 for (; errnode != NULL; errnode = errnode->next)
8572 {
8573 struct elf_link_hash_entry *myh;
8574 bfd_vma vma;
8575
8576 switch (errnode->type)
8577 {
8578 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8579 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8580 /* Find veneer symbol. */
8581 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8582 errnode->u.b.veneer->u.v.id);
8583
8584 myh = elf_link_hash_lookup
8585 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8586
8587 if (myh == NULL)
8588 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8589 abfd, "VFP11", tmp_name);
8590
8591 vma = myh->root.u.def.section->output_section->vma
8592 + myh->root.u.def.section->output_offset
8593 + myh->root.u.def.value;
8594
8595 errnode->u.b.veneer->vma = vma;
8596 break;
8597
8598 case VFP11_ERRATUM_ARM_VENEER:
8599 case VFP11_ERRATUM_THUMB_VENEER:
8600 /* Find return location. */
8601 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8602 errnode->u.v.id);
8603
8604 myh = elf_link_hash_lookup
8605 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8606
8607 if (myh == NULL)
8608 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8609 abfd, "VFP11", tmp_name);
8610
8611 vma = myh->root.u.def.section->output_section->vma
8612 + myh->root.u.def.section->output_offset
8613 + myh->root.u.def.value;
8614
8615 errnode->u.v.branch->vma = vma;
8616 break;
8617
8618 default:
8619 abort ();
8620 }
8621 }
8622 }
8623
8624 free (tmp_name);
8625 }
8626
8627 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8628 return locations after sections have been laid out, using
8629 specially-named symbols. */
8630
8631 void
8632 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8633 struct bfd_link_info *link_info)
8634 {
8635 asection *sec;
8636 struct elf32_arm_link_hash_table *globals;
8637 char *tmp_name;
8638
8639 if (bfd_link_relocatable (link_info))
8640 return;
8641
8642 /* Skip if this bfd does not correspond to an ELF image. */
8643 if (! is_arm_elf (abfd))
8644 return;
8645
8646 globals = elf32_arm_hash_table (link_info);
8647 if (globals == NULL)
8648 return;
8649
8650 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8651 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8652
8653 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8654 {
8655 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8656 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8657
8658 for (; errnode != NULL; errnode = errnode->next)
8659 {
8660 struct elf_link_hash_entry *myh;
8661 bfd_vma vma;
8662
8663 switch (errnode->type)
8664 {
8665 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8666 /* Find veneer symbol. */
8667 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8668 errnode->u.b.veneer->u.v.id);
8669
8670 myh = elf_link_hash_lookup
8671 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8672
8673 if (myh == NULL)
8674 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8675 abfd, "STM32L4XX", tmp_name);
8676
8677 vma = myh->root.u.def.section->output_section->vma
8678 + myh->root.u.def.section->output_offset
8679 + myh->root.u.def.value;
8680
8681 errnode->u.b.veneer->vma = vma;
8682 break;
8683
8684 case STM32L4XX_ERRATUM_VENEER:
8685 /* Find return location. */
8686 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8687 errnode->u.v.id);
8688
8689 myh = elf_link_hash_lookup
8690 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8691
8692 if (myh == NULL)
8693 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8694 abfd, "STM32L4XX", tmp_name);
8695
8696 vma = myh->root.u.def.section->output_section->vma
8697 + myh->root.u.def.section->output_offset
8698 + myh->root.u.def.value;
8699
8700 errnode->u.v.branch->vma = vma;
8701 break;
8702
8703 default:
8704 abort ();
8705 }
8706 }
8707 }
8708
8709 free (tmp_name);
8710 }
8711
8712 static inline bfd_boolean
8713 is_thumb2_ldmia (const insn32 insn)
8714 {
8715 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8716 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8717 return (insn & 0xffd02000) == 0xe8900000;
8718 }
8719
8720 static inline bfd_boolean
8721 is_thumb2_ldmdb (const insn32 insn)
8722 {
8723 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8724 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8725 return (insn & 0xffd02000) == 0xe9100000;
8726 }
8727
8728 static inline bfd_boolean
8729 is_thumb2_vldm (const insn32 insn)
8730 {
8731 /* A6.5 Extension register load or store instruction
8732 A7.7.229
8733 We look for SP 32-bit and DP 64-bit registers.
8734 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8735 <list> is consecutive 64-bit registers
8736 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8737 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8738 <list> is consecutive 32-bit registers
8739 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8740 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8741 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8742 return
8743 (((insn & 0xfe100f00) == 0xec100b00) ||
8744 ((insn & 0xfe100f00) == 0xec100a00))
8745 && /* (IA without !). */
8746 (((((insn << 7) >> 28) & 0xd) == 0x4)
8747 /* (IA with !), includes VPOP (when reg number is SP). */
8748 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8749 /* (DB with !). */
8750 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8751 }
8752
8753 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8754 VLDM opcode and:
8755 - computes the number and the mode of memory accesses
8756 - decides if the replacement should be done:
8757 . replaces only if > 8-word accesses
8758 . or (testing purposes only) replaces all accesses. */
8759
8760 static bfd_boolean
8761 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8762 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8763 {
8764 int nb_words = 0;
8765
8766 /* The field encoding the register list is the same for both LDMIA
8767 and LDMDB encodings. */
8768 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8769 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8770 else if (is_thumb2_vldm (insn))
8771 nb_words = (insn & 0xff);
8772
8773 /* DEFAULT mode accounts for the real bug condition situation,
8774 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8775 return
8776 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8777 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8778 }
8779
8780 /* Look for potentially-troublesome code sequences which might trigger
8781 the STM STM32L4XX erratum. */
8782
8783 bfd_boolean
8784 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8785 struct bfd_link_info *link_info)
8786 {
8787 asection *sec;
8788 bfd_byte *contents = NULL;
8789 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8790
8791 if (globals == NULL)
8792 return FALSE;
8793
8794 /* If we are only performing a partial link do not bother
8795 to construct any glue. */
8796 if (bfd_link_relocatable (link_info))
8797 return TRUE;
8798
8799 /* Skip if this bfd does not correspond to an ELF image. */
8800 if (! is_arm_elf (abfd))
8801 return TRUE;
8802
8803 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8804 return TRUE;
8805
8806 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8807 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8808 return TRUE;
8809
8810 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8811 {
8812 unsigned int i, span;
8813 struct _arm_elf_section_data *sec_data;
8814
8815 /* If we don't have executable progbits, we're not interested in this
8816 section. Also skip if section is to be excluded. */
8817 if (elf_section_type (sec) != SHT_PROGBITS
8818 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8819 || (sec->flags & SEC_EXCLUDE) != 0
8820 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8821 || sec->output_section == bfd_abs_section_ptr
8822 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8823 continue;
8824
8825 sec_data = elf32_arm_section_data (sec);
8826
8827 if (sec_data->mapcount == 0)
8828 continue;
8829
8830 if (elf_section_data (sec)->this_hdr.contents != NULL)
8831 contents = elf_section_data (sec)->this_hdr.contents;
8832 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8833 goto error_return;
8834
8835 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8836 elf32_arm_compare_mapping);
8837
8838 for (span = 0; span < sec_data->mapcount; span++)
8839 {
8840 unsigned int span_start = sec_data->map[span].vma;
8841 unsigned int span_end = (span == sec_data->mapcount - 1)
8842 ? sec->size : sec_data->map[span + 1].vma;
8843 char span_type = sec_data->map[span].type;
8844 int itblock_current_pos = 0;
8845
8846 /* Only Thumb2 mode need be supported with this CM4 specific
8847 code, we should not encounter any arm mode eg span_type
8848 != 'a'. */
8849 if (span_type != 't')
8850 continue;
8851
8852 for (i = span_start; i < span_end;)
8853 {
8854 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8855 bfd_boolean insn_32bit = FALSE;
8856 bfd_boolean is_ldm = FALSE;
8857 bfd_boolean is_vldm = FALSE;
8858 bfd_boolean is_not_last_in_it_block = FALSE;
8859
8860 /* The first 16-bits of all 32-bit thumb2 instructions start
8861 with opcode[15..13]=0b111 and the encoded op1 can be anything
8862 except opcode[12..11]!=0b00.
8863 See 32-bit Thumb instruction encoding. */
8864 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8865 insn_32bit = TRUE;
8866
8867 /* Compute the predicate that tells if the instruction
8868 is concerned by the IT block
8869 - Creates an error if there is a ldm that is not
8870 last in the IT block thus cannot be replaced
8871 - Otherwise we can create a branch at the end of the
8872 IT block, it will be controlled naturally by IT
8873 with the proper pseudo-predicate
8874 - So the only interesting predicate is the one that
8875 tells that we are not on the last item of an IT
8876 block. */
8877 if (itblock_current_pos != 0)
8878 is_not_last_in_it_block = !!--itblock_current_pos;
8879
8880 if (insn_32bit)
8881 {
8882 /* Load the rest of the insn (in manual-friendly order). */
8883 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8884 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8885 is_vldm = is_thumb2_vldm (insn);
8886
8887 /* Veneers are created for (v)ldm depending on
8888 option flags and memory accesses conditions; but
8889 if the instruction is not the last instruction of
8890 an IT block, we cannot create a jump there, so we
8891 bail out. */
8892 if ((is_ldm || is_vldm)
8893 && stm32l4xx_need_create_replacing_stub
8894 (insn, globals->stm32l4xx_fix))
8895 {
8896 if (is_not_last_in_it_block)
8897 {
8898 _bfd_error_handler
8899 /* xgettext:c-format */
8900 (_("%pB(%pA+%#x): error: multiple load detected"
8901 " in non-last IT block instruction:"
8902 " STM32L4XX veneer cannot be generated; "
8903 "use gcc option -mrestrict-it to generate"
8904 " only one instruction per IT block"),
8905 abfd, sec, i);
8906 }
8907 else
8908 {
8909 elf32_stm32l4xx_erratum_list *newerr =
8910 (elf32_stm32l4xx_erratum_list *)
8911 bfd_zmalloc
8912 (sizeof (elf32_stm32l4xx_erratum_list));
8913
8914 elf32_arm_section_data (sec)
8915 ->stm32l4xx_erratumcount += 1;
8916 newerr->u.b.insn = insn;
8917 /* We create only thumb branches. */
8918 newerr->type =
8919 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8920 record_stm32l4xx_erratum_veneer
8921 (link_info, newerr, abfd, sec,
8922 i,
8923 is_ldm ?
8924 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8925 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8926 newerr->vma = -1;
8927 newerr->next = sec_data->stm32l4xx_erratumlist;
8928 sec_data->stm32l4xx_erratumlist = newerr;
8929 }
8930 }
8931 }
8932 else
8933 {
8934 /* A7.7.37 IT p208
8935 IT blocks are only encoded in T1
8936 Encoding T1: IT{x{y{z}}} <firstcond>
8937 1 0 1 1 - 1 1 1 1 - firstcond - mask
8938 if mask = '0000' then see 'related encodings'
8939 We don't deal with UNPREDICTABLE, just ignore these.
8940 There can be no nested IT blocks so an IT block
8941 is naturally a new one for which it is worth
8942 computing its size. */
8943 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8944 && ((insn & 0x000f) != 0x0000);
8945 /* If we have a new IT block we compute its size. */
8946 if (is_newitblock)
8947 {
8948 /* Compute the number of instructions controlled
8949 by the IT block, it will be used to decide
8950 whether we are inside an IT block or not. */
8951 unsigned int mask = insn & 0x000f;
8952 itblock_current_pos = 4 - ctz (mask);
8953 }
8954 }
8955
8956 i += insn_32bit ? 4 : 2;
8957 }
8958 }
8959
8960 if (contents != NULL
8961 && elf_section_data (sec)->this_hdr.contents != contents)
8962 free (contents);
8963 contents = NULL;
8964 }
8965
8966 return TRUE;
8967
8968 error_return:
8969 if (contents != NULL
8970 && elf_section_data (sec)->this_hdr.contents != contents)
8971 free (contents);
8972
8973 return FALSE;
8974 }
8975
8976 /* Set target relocation values needed during linking. */
8977
8978 void
8979 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
8980 struct bfd_link_info *link_info,
8981 struct elf32_arm_params *params)
8982 {
8983 struct elf32_arm_link_hash_table *globals;
8984
8985 globals = elf32_arm_hash_table (link_info);
8986 if (globals == NULL)
8987 return;
8988
8989 globals->target1_is_rel = params->target1_is_rel;
8990 if (globals->fdpic_p)
8991 globals->target2_reloc = R_ARM_GOT32;
8992 else if (strcmp (params->target2_type, "rel") == 0)
8993 globals->target2_reloc = R_ARM_REL32;
8994 else if (strcmp (params->target2_type, "abs") == 0)
8995 globals->target2_reloc = R_ARM_ABS32;
8996 else if (strcmp (params->target2_type, "got-rel") == 0)
8997 globals->target2_reloc = R_ARM_GOT_PREL;
8998 else
8999 {
9000 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
9001 params->target2_type);
9002 }
9003 globals->fix_v4bx = params->fix_v4bx;
9004 globals->use_blx |= params->use_blx;
9005 globals->vfp11_fix = params->vfp11_denorm_fix;
9006 globals->stm32l4xx_fix = params->stm32l4xx_fix;
9007 if (globals->fdpic_p)
9008 globals->pic_veneer = 1;
9009 else
9010 globals->pic_veneer = params->pic_veneer;
9011 globals->fix_cortex_a8 = params->fix_cortex_a8;
9012 globals->fix_arm1176 = params->fix_arm1176;
9013 globals->cmse_implib = params->cmse_implib;
9014 globals->in_implib_bfd = params->in_implib_bfd;
9015
9016 BFD_ASSERT (is_arm_elf (output_bfd));
9017 elf_arm_tdata (output_bfd)->no_enum_size_warning
9018 = params->no_enum_size_warning;
9019 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9020 = params->no_wchar_size_warning;
9021 }
9022
9023 /* Replace the target offset of a Thumb bl or b.w instruction. */
9024
9025 static void
9026 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9027 {
9028 bfd_vma upper;
9029 bfd_vma lower;
9030 int reloc_sign;
9031
9032 BFD_ASSERT ((offset & 1) == 0);
9033
9034 upper = bfd_get_16 (abfd, insn);
9035 lower = bfd_get_16 (abfd, insn + 2);
9036 reloc_sign = (offset < 0) ? 1 : 0;
9037 upper = (upper & ~(bfd_vma) 0x7ff)
9038 | ((offset >> 12) & 0x3ff)
9039 | (reloc_sign << 10);
9040 lower = (lower & ~(bfd_vma) 0x2fff)
9041 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9042 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9043 | ((offset >> 1) & 0x7ff);
9044 bfd_put_16 (abfd, upper, insn);
9045 bfd_put_16 (abfd, lower, insn + 2);
9046 }
9047
9048 /* Thumb code calling an ARM function. */
9049
9050 static int
9051 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
9052 const char * name,
9053 bfd * input_bfd,
9054 bfd * output_bfd,
9055 asection * input_section,
9056 bfd_byte * hit_data,
9057 asection * sym_sec,
9058 bfd_vma offset,
9059 bfd_signed_vma addend,
9060 bfd_vma val,
9061 char **error_message)
9062 {
9063 asection * s = 0;
9064 bfd_vma my_offset;
9065 long int ret_offset;
9066 struct elf_link_hash_entry * myh;
9067 struct elf32_arm_link_hash_table * globals;
9068
9069 myh = find_thumb_glue (info, name, error_message);
9070 if (myh == NULL)
9071 return FALSE;
9072
9073 globals = elf32_arm_hash_table (info);
9074 BFD_ASSERT (globals != NULL);
9075 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9076
9077 my_offset = myh->root.u.def.value;
9078
9079 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9080 THUMB2ARM_GLUE_SECTION_NAME);
9081
9082 BFD_ASSERT (s != NULL);
9083 BFD_ASSERT (s->contents != NULL);
9084 BFD_ASSERT (s->output_section != NULL);
9085
9086 if ((my_offset & 0x01) == 0x01)
9087 {
9088 if (sym_sec != NULL
9089 && sym_sec->owner != NULL
9090 && !INTERWORK_FLAG (sym_sec->owner))
9091 {
9092 _bfd_error_handler
9093 (_("%pB(%s): warning: interworking not enabled;"
9094 " first occurrence: %pB: %s call to %s"),
9095 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
9096
9097 return FALSE;
9098 }
9099
9100 --my_offset;
9101 myh->root.u.def.value = my_offset;
9102
9103 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9104 s->contents + my_offset);
9105
9106 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9107 s->contents + my_offset + 2);
9108
9109 ret_offset =
9110 /* Address of destination of the stub. */
9111 ((bfd_signed_vma) val)
9112 - ((bfd_signed_vma)
9113 /* Offset from the start of the current section
9114 to the start of the stubs. */
9115 (s->output_offset
9116 /* Offset of the start of this stub from the start of the stubs. */
9117 + my_offset
9118 /* Address of the start of the current section. */
9119 + s->output_section->vma)
9120 /* The branch instruction is 4 bytes into the stub. */
9121 + 4
9122 /* ARM branches work from the pc of the instruction + 8. */
9123 + 8);
9124
9125 put_arm_insn (globals, output_bfd,
9126 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9127 s->contents + my_offset + 4);
9128 }
9129
9130 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9131
9132 /* Now go back and fix up the original BL insn to point to here. */
9133 ret_offset =
9134 /* Address of where the stub is located. */
9135 (s->output_section->vma + s->output_offset + my_offset)
9136 /* Address of where the BL is located. */
9137 - (input_section->output_section->vma + input_section->output_offset
9138 + offset)
9139 /* Addend in the relocation. */
9140 - addend
9141 /* Biassing for PC-relative addressing. */
9142 - 8;
9143
9144 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
9145
9146 return TRUE;
9147 }
9148
9149 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
9150
9151 static struct elf_link_hash_entry *
9152 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
9153 const char * name,
9154 bfd * input_bfd,
9155 bfd * output_bfd,
9156 asection * sym_sec,
9157 bfd_vma val,
9158 asection * s,
9159 char ** error_message)
9160 {
9161 bfd_vma my_offset;
9162 long int ret_offset;
9163 struct elf_link_hash_entry * myh;
9164 struct elf32_arm_link_hash_table * globals;
9165
9166 myh = find_arm_glue (info, name, error_message);
9167 if (myh == NULL)
9168 return NULL;
9169
9170 globals = elf32_arm_hash_table (info);
9171 BFD_ASSERT (globals != NULL);
9172 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9173
9174 my_offset = myh->root.u.def.value;
9175
9176 if ((my_offset & 0x01) == 0x01)
9177 {
9178 if (sym_sec != NULL
9179 && sym_sec->owner != NULL
9180 && !INTERWORK_FLAG (sym_sec->owner))
9181 {
9182 _bfd_error_handler
9183 (_("%pB(%s): warning: interworking not enabled;"
9184 " first occurrence: %pB: %s call to %s"),
9185 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
9186 }
9187
9188 --my_offset;
9189 myh->root.u.def.value = my_offset;
9190
9191 if (bfd_link_pic (info)
9192 || globals->root.is_relocatable_executable
9193 || globals->pic_veneer)
9194 {
9195 /* For relocatable objects we can't use absolute addresses,
9196 so construct the address from a relative offset. */
9197 /* TODO: If the offset is small it's probably worth
9198 constructing the address with adds. */
9199 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9200 s->contents + my_offset);
9201 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9202 s->contents + my_offset + 4);
9203 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9204 s->contents + my_offset + 8);
9205 /* Adjust the offset by 4 for the position of the add,
9206 and 8 for the pipeline offset. */
9207 ret_offset = (val - (s->output_offset
9208 + s->output_section->vma
9209 + my_offset + 12))
9210 | 1;
9211 bfd_put_32 (output_bfd, ret_offset,
9212 s->contents + my_offset + 12);
9213 }
9214 else if (globals->use_blx)
9215 {
9216 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9217 s->contents + my_offset);
9218
9219 /* It's a thumb address. Add the low order bit. */
9220 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9221 s->contents + my_offset + 4);
9222 }
9223 else
9224 {
9225 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9226 s->contents + my_offset);
9227
9228 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9229 s->contents + my_offset + 4);
9230
9231 /* It's a thumb address. Add the low order bit. */
9232 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9233 s->contents + my_offset + 8);
9234
9235 my_offset += 12;
9236 }
9237 }
9238
9239 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9240
9241 return myh;
9242 }
9243
9244 /* Arm code calling a Thumb function. */
9245
9246 static int
9247 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
9248 const char * name,
9249 bfd * input_bfd,
9250 bfd * output_bfd,
9251 asection * input_section,
9252 bfd_byte * hit_data,
9253 asection * sym_sec,
9254 bfd_vma offset,
9255 bfd_signed_vma addend,
9256 bfd_vma val,
9257 char **error_message)
9258 {
9259 unsigned long int tmp;
9260 bfd_vma my_offset;
9261 asection * s;
9262 long int ret_offset;
9263 struct elf_link_hash_entry * myh;
9264 struct elf32_arm_link_hash_table * globals;
9265
9266 globals = elf32_arm_hash_table (info);
9267 BFD_ASSERT (globals != NULL);
9268 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9269
9270 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9271 ARM2THUMB_GLUE_SECTION_NAME);
9272 BFD_ASSERT (s != NULL);
9273 BFD_ASSERT (s->contents != NULL);
9274 BFD_ASSERT (s->output_section != NULL);
9275
9276 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9277 sym_sec, val, s, error_message);
9278 if (!myh)
9279 return FALSE;
9280
9281 my_offset = myh->root.u.def.value;
9282 tmp = bfd_get_32 (input_bfd, hit_data);
9283 tmp = tmp & 0xFF000000;
9284
9285 /* Somehow these are both 4 too far, so subtract 8. */
9286 ret_offset = (s->output_offset
9287 + my_offset
9288 + s->output_section->vma
9289 - (input_section->output_offset
9290 + input_section->output_section->vma
9291 + offset + addend)
9292 - 8);
9293
9294 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9295
9296 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9297
9298 return TRUE;
9299 }
9300
9301 /* Populate Arm stub for an exported Thumb function. */
9302
9303 static bfd_boolean
9304 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9305 {
9306 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9307 asection * s;
9308 struct elf_link_hash_entry * myh;
9309 struct elf32_arm_link_hash_entry *eh;
9310 struct elf32_arm_link_hash_table * globals;
9311 asection *sec;
9312 bfd_vma val;
9313 char *error_message;
9314
9315 eh = elf32_arm_hash_entry (h);
9316 /* Allocate stubs for exported Thumb functions on v4t. */
9317 if (eh->export_glue == NULL)
9318 return TRUE;
9319
9320 globals = elf32_arm_hash_table (info);
9321 BFD_ASSERT (globals != NULL);
9322 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9323
9324 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9325 ARM2THUMB_GLUE_SECTION_NAME);
9326 BFD_ASSERT (s != NULL);
9327 BFD_ASSERT (s->contents != NULL);
9328 BFD_ASSERT (s->output_section != NULL);
9329
9330 sec = eh->export_glue->root.u.def.section;
9331
9332 BFD_ASSERT (sec->output_section != NULL);
9333
9334 val = eh->export_glue->root.u.def.value + sec->output_offset
9335 + sec->output_section->vma;
9336
9337 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9338 h->root.u.def.section->owner,
9339 globals->obfd, sec, val, s,
9340 &error_message);
9341 BFD_ASSERT (myh);
9342 return TRUE;
9343 }
9344
9345 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9346
9347 static bfd_vma
9348 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9349 {
9350 bfd_byte *p;
9351 bfd_vma glue_addr;
9352 asection *s;
9353 struct elf32_arm_link_hash_table *globals;
9354
9355 globals = elf32_arm_hash_table (info);
9356 BFD_ASSERT (globals != NULL);
9357 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9358
9359 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9360 ARM_BX_GLUE_SECTION_NAME);
9361 BFD_ASSERT (s != NULL);
9362 BFD_ASSERT (s->contents != NULL);
9363 BFD_ASSERT (s->output_section != NULL);
9364
9365 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9366
9367 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9368
9369 if ((globals->bx_glue_offset[reg] & 1) == 0)
9370 {
9371 p = s->contents + glue_addr;
9372 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9373 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9374 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9375 globals->bx_glue_offset[reg] |= 1;
9376 }
9377
9378 return glue_addr + s->output_section->vma + s->output_offset;
9379 }
9380
9381 /* Generate Arm stubs for exported Thumb symbols. */
9382 static void
9383 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9384 struct bfd_link_info *link_info)
9385 {
9386 struct elf32_arm_link_hash_table * globals;
9387
9388 if (link_info == NULL)
9389 /* Ignore this if we are not called by the ELF backend linker. */
9390 return;
9391
9392 globals = elf32_arm_hash_table (link_info);
9393 if (globals == NULL)
9394 return;
9395
9396 /* If blx is available then exported Thumb symbols are OK and there is
9397 nothing to do. */
9398 if (globals->use_blx)
9399 return;
9400
9401 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9402 link_info);
9403 }
9404
9405 /* Reserve space for COUNT dynamic relocations in relocation selection
9406 SRELOC. */
9407
9408 static void
9409 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9410 bfd_size_type count)
9411 {
9412 struct elf32_arm_link_hash_table *htab;
9413
9414 htab = elf32_arm_hash_table (info);
9415 BFD_ASSERT (htab->root.dynamic_sections_created);
9416 if (sreloc == NULL)
9417 abort ();
9418 sreloc->size += RELOC_SIZE (htab) * count;
9419 }
9420
9421 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9422 dynamic, the relocations should go in SRELOC, otherwise they should
9423 go in the special .rel.iplt section. */
9424
9425 static void
9426 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9427 bfd_size_type count)
9428 {
9429 struct elf32_arm_link_hash_table *htab;
9430
9431 htab = elf32_arm_hash_table (info);
9432 if (!htab->root.dynamic_sections_created)
9433 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9434 else
9435 {
9436 BFD_ASSERT (sreloc != NULL);
9437 sreloc->size += RELOC_SIZE (htab) * count;
9438 }
9439 }
9440
9441 /* Add relocation REL to the end of relocation section SRELOC. */
9442
9443 static void
9444 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9445 asection *sreloc, Elf_Internal_Rela *rel)
9446 {
9447 bfd_byte *loc;
9448 struct elf32_arm_link_hash_table *htab;
9449
9450 htab = elf32_arm_hash_table (info);
9451 if (!htab->root.dynamic_sections_created
9452 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9453 sreloc = htab->root.irelplt;
9454 if (sreloc == NULL)
9455 abort ();
9456 loc = sreloc->contents;
9457 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9458 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9459 abort ();
9460 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9461 }
9462
9463 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9464 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9465 to .plt. */
9466
9467 static void
9468 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9469 bfd_boolean is_iplt_entry,
9470 union gotplt_union *root_plt,
9471 struct arm_plt_info *arm_plt)
9472 {
9473 struct elf32_arm_link_hash_table *htab;
9474 asection *splt;
9475 asection *sgotplt;
9476
9477 htab = elf32_arm_hash_table (info);
9478
9479 if (is_iplt_entry)
9480 {
9481 splt = htab->root.iplt;
9482 sgotplt = htab->root.igotplt;
9483
9484 /* NaCl uses a special first entry in .iplt too. */
9485 if (htab->nacl_p && splt->size == 0)
9486 splt->size += htab->plt_header_size;
9487
9488 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9489 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9490 }
9491 else
9492 {
9493 splt = htab->root.splt;
9494 sgotplt = htab->root.sgotplt;
9495
9496 if (htab->fdpic_p)
9497 {
9498 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9499 /* For lazy binding, relocations will be put into .rel.plt, in
9500 .rel.got otherwise. */
9501 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9502 if (info->flags & DF_BIND_NOW)
9503 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9504 else
9505 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9506 }
9507 else
9508 {
9509 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9510 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9511 }
9512
9513 /* If this is the first .plt entry, make room for the special
9514 first entry. */
9515 if (splt->size == 0)
9516 splt->size += htab->plt_header_size;
9517
9518 htab->next_tls_desc_index++;
9519 }
9520
9521 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9522 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9523 splt->size += PLT_THUMB_STUB_SIZE;
9524 root_plt->offset = splt->size;
9525 splt->size += htab->plt_entry_size;
9526
9527 if (!htab->symbian_p)
9528 {
9529 /* We also need to make an entry in the .got.plt section, which
9530 will be placed in the .got section by the linker script. */
9531 if (is_iplt_entry)
9532 arm_plt->got_offset = sgotplt->size;
9533 else
9534 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9535 if (htab->fdpic_p)
9536 /* Function descriptor takes 64 bits in GOT. */
9537 sgotplt->size += 8;
9538 else
9539 sgotplt->size += 4;
9540 }
9541 }
9542
9543 static bfd_vma
9544 arm_movw_immediate (bfd_vma value)
9545 {
9546 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9547 }
9548
9549 static bfd_vma
9550 arm_movt_immediate (bfd_vma value)
9551 {
9552 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9553 }
9554
9555 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9556 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9557 Otherwise, DYNINDX is the index of the symbol in the dynamic
9558 symbol table and SYM_VALUE is undefined.
9559
9560 ROOT_PLT points to the offset of the PLT entry from the start of its
9561 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9562 bookkeeping information.
9563
9564 Returns FALSE if there was a problem. */
9565
9566 static bfd_boolean
9567 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9568 union gotplt_union *root_plt,
9569 struct arm_plt_info *arm_plt,
9570 int dynindx, bfd_vma sym_value)
9571 {
9572 struct elf32_arm_link_hash_table *htab;
9573 asection *sgot;
9574 asection *splt;
9575 asection *srel;
9576 bfd_byte *loc;
9577 bfd_vma plt_index;
9578 Elf_Internal_Rela rel;
9579 bfd_vma plt_header_size;
9580 bfd_vma got_header_size;
9581
9582 htab = elf32_arm_hash_table (info);
9583
9584 /* Pick the appropriate sections and sizes. */
9585 if (dynindx == -1)
9586 {
9587 splt = htab->root.iplt;
9588 sgot = htab->root.igotplt;
9589 srel = htab->root.irelplt;
9590
9591 /* There are no reserved entries in .igot.plt, and no special
9592 first entry in .iplt. */
9593 got_header_size = 0;
9594 plt_header_size = 0;
9595 }
9596 else
9597 {
9598 splt = htab->root.splt;
9599 sgot = htab->root.sgotplt;
9600 srel = htab->root.srelplt;
9601
9602 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9603 plt_header_size = htab->plt_header_size;
9604 }
9605 BFD_ASSERT (splt != NULL && srel != NULL);
9606
9607 /* Fill in the entry in the procedure linkage table. */
9608 if (htab->symbian_p)
9609 {
9610 BFD_ASSERT (dynindx >= 0);
9611 put_arm_insn (htab, output_bfd,
9612 elf32_arm_symbian_plt_entry[0],
9613 splt->contents + root_plt->offset);
9614 bfd_put_32 (output_bfd,
9615 elf32_arm_symbian_plt_entry[1],
9616 splt->contents + root_plt->offset + 4);
9617
9618 /* Fill in the entry in the .rel.plt section. */
9619 rel.r_offset = (splt->output_section->vma
9620 + splt->output_offset
9621 + root_plt->offset + 4);
9622 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9623
9624 /* Get the index in the procedure linkage table which
9625 corresponds to this symbol. This is the index of this symbol
9626 in all the symbols for which we are making plt entries. The
9627 first entry in the procedure linkage table is reserved. */
9628 plt_index = ((root_plt->offset - plt_header_size)
9629 / htab->plt_entry_size);
9630 }
9631 else
9632 {
9633 bfd_vma got_offset, got_address, plt_address;
9634 bfd_vma got_displacement, initial_got_entry;
9635 bfd_byte * ptr;
9636
9637 BFD_ASSERT (sgot != NULL);
9638
9639 /* Get the offset into the .(i)got.plt table of the entry that
9640 corresponds to this function. */
9641 got_offset = (arm_plt->got_offset & -2);
9642
9643 /* Get the index in the procedure linkage table which
9644 corresponds to this symbol. This is the index of this symbol
9645 in all the symbols for which we are making plt entries.
9646 After the reserved .got.plt entries, all symbols appear in
9647 the same order as in .plt. */
9648 if (htab->fdpic_p)
9649 /* Function descriptor takes 8 bytes. */
9650 plt_index = (got_offset - got_header_size) / 8;
9651 else
9652 plt_index = (got_offset - got_header_size) / 4;
9653
9654 /* Calculate the address of the GOT entry. */
9655 got_address = (sgot->output_section->vma
9656 + sgot->output_offset
9657 + got_offset);
9658
9659 /* ...and the address of the PLT entry. */
9660 plt_address = (splt->output_section->vma
9661 + splt->output_offset
9662 + root_plt->offset);
9663
9664 ptr = splt->contents + root_plt->offset;
9665 if (htab->vxworks_p && bfd_link_pic (info))
9666 {
9667 unsigned int i;
9668 bfd_vma val;
9669
9670 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9671 {
9672 val = elf32_arm_vxworks_shared_plt_entry[i];
9673 if (i == 2)
9674 val |= got_address - sgot->output_section->vma;
9675 if (i == 5)
9676 val |= plt_index * RELOC_SIZE (htab);
9677 if (i == 2 || i == 5)
9678 bfd_put_32 (output_bfd, val, ptr);
9679 else
9680 put_arm_insn (htab, output_bfd, val, ptr);
9681 }
9682 }
9683 else if (htab->vxworks_p)
9684 {
9685 unsigned int i;
9686 bfd_vma val;
9687
9688 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9689 {
9690 val = elf32_arm_vxworks_exec_plt_entry[i];
9691 if (i == 2)
9692 val |= got_address;
9693 if (i == 4)
9694 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9695 if (i == 5)
9696 val |= plt_index * RELOC_SIZE (htab);
9697 if (i == 2 || i == 5)
9698 bfd_put_32 (output_bfd, val, ptr);
9699 else
9700 put_arm_insn (htab, output_bfd, val, ptr);
9701 }
9702
9703 loc = (htab->srelplt2->contents
9704 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9705
9706 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9707 referencing the GOT for this PLT entry. */
9708 rel.r_offset = plt_address + 8;
9709 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9710 rel.r_addend = got_offset;
9711 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9712 loc += RELOC_SIZE (htab);
9713
9714 /* Create the R_ARM_ABS32 relocation referencing the
9715 beginning of the PLT for this GOT entry. */
9716 rel.r_offset = got_address;
9717 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9718 rel.r_addend = 0;
9719 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9720 }
9721 else if (htab->nacl_p)
9722 {
9723 /* Calculate the displacement between the PLT slot and the
9724 common tail that's part of the special initial PLT slot. */
9725 int32_t tail_displacement
9726 = ((splt->output_section->vma + splt->output_offset
9727 + ARM_NACL_PLT_TAIL_OFFSET)
9728 - (plt_address + htab->plt_entry_size + 4));
9729 BFD_ASSERT ((tail_displacement & 3) == 0);
9730 tail_displacement >>= 2;
9731
9732 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9733 || (-tail_displacement & 0xff000000) == 0);
9734
9735 /* Calculate the displacement between the PLT slot and the entry
9736 in the GOT. The offset accounts for the value produced by
9737 adding to pc in the penultimate instruction of the PLT stub. */
9738 got_displacement = (got_address
9739 - (plt_address + htab->plt_entry_size));
9740
9741 /* NaCl does not support interworking at all. */
9742 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9743
9744 put_arm_insn (htab, output_bfd,
9745 elf32_arm_nacl_plt_entry[0]
9746 | arm_movw_immediate (got_displacement),
9747 ptr + 0);
9748 put_arm_insn (htab, output_bfd,
9749 elf32_arm_nacl_plt_entry[1]
9750 | arm_movt_immediate (got_displacement),
9751 ptr + 4);
9752 put_arm_insn (htab, output_bfd,
9753 elf32_arm_nacl_plt_entry[2],
9754 ptr + 8);
9755 put_arm_insn (htab, output_bfd,
9756 elf32_arm_nacl_plt_entry[3]
9757 | (tail_displacement & 0x00ffffff),
9758 ptr + 12);
9759 }
9760 else if (htab->fdpic_p)
9761 {
9762 const bfd_vma *plt_entry = using_thumb_only(htab)
9763 ? elf32_arm_fdpic_thumb_plt_entry
9764 : elf32_arm_fdpic_plt_entry;
9765
9766 /* Fill-up Thumb stub if needed. */
9767 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9768 {
9769 put_thumb_insn (htab, output_bfd,
9770 elf32_arm_plt_thumb_stub[0], ptr - 4);
9771 put_thumb_insn (htab, output_bfd,
9772 elf32_arm_plt_thumb_stub[1], ptr - 2);
9773 }
9774 /* As we are using 32 bit instructions even for the Thumb
9775 version, we have to use 'put_arm_insn' instead of
9776 'put_thumb_insn'. */
9777 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9778 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9779 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9780 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
9781 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9782
9783 if (!(info->flags & DF_BIND_NOW))
9784 {
9785 /* funcdesc_value_reloc_offset. */
9786 bfd_put_32 (output_bfd,
9787 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9788 ptr + 20);
9789 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9790 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9791 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9792 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
9793 }
9794 }
9795 else if (using_thumb_only (htab))
9796 {
9797 /* PR ld/16017: Generate thumb only PLT entries. */
9798 if (!using_thumb2 (htab))
9799 {
9800 /* FIXME: We ought to be able to generate thumb-1 PLT
9801 instructions... */
9802 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9803 output_bfd);
9804 return FALSE;
9805 }
9806
9807 /* Calculate the displacement between the PLT slot and the entry in
9808 the GOT. The 12-byte offset accounts for the value produced by
9809 adding to pc in the 3rd instruction of the PLT stub. */
9810 got_displacement = got_address - (plt_address + 12);
9811
9812 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9813 instead of 'put_thumb_insn'. */
9814 put_arm_insn (htab, output_bfd,
9815 elf32_thumb2_plt_entry[0]
9816 | ((got_displacement & 0x000000ff) << 16)
9817 | ((got_displacement & 0x00000700) << 20)
9818 | ((got_displacement & 0x00000800) >> 1)
9819 | ((got_displacement & 0x0000f000) >> 12),
9820 ptr + 0);
9821 put_arm_insn (htab, output_bfd,
9822 elf32_thumb2_plt_entry[1]
9823 | ((got_displacement & 0x00ff0000) )
9824 | ((got_displacement & 0x07000000) << 4)
9825 | ((got_displacement & 0x08000000) >> 17)
9826 | ((got_displacement & 0xf0000000) >> 28),
9827 ptr + 4);
9828 put_arm_insn (htab, output_bfd,
9829 elf32_thumb2_plt_entry[2],
9830 ptr + 8);
9831 put_arm_insn (htab, output_bfd,
9832 elf32_thumb2_plt_entry[3],
9833 ptr + 12);
9834 }
9835 else
9836 {
9837 /* Calculate the displacement between the PLT slot and the
9838 entry in the GOT. The eight-byte offset accounts for the
9839 value produced by adding to pc in the first instruction
9840 of the PLT stub. */
9841 got_displacement = got_address - (plt_address + 8);
9842
9843 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9844 {
9845 put_thumb_insn (htab, output_bfd,
9846 elf32_arm_plt_thumb_stub[0], ptr - 4);
9847 put_thumb_insn (htab, output_bfd,
9848 elf32_arm_plt_thumb_stub[1], ptr - 2);
9849 }
9850
9851 if (!elf32_arm_use_long_plt_entry)
9852 {
9853 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9854
9855 put_arm_insn (htab, output_bfd,
9856 elf32_arm_plt_entry_short[0]
9857 | ((got_displacement & 0x0ff00000) >> 20),
9858 ptr + 0);
9859 put_arm_insn (htab, output_bfd,
9860 elf32_arm_plt_entry_short[1]
9861 | ((got_displacement & 0x000ff000) >> 12),
9862 ptr+ 4);
9863 put_arm_insn (htab, output_bfd,
9864 elf32_arm_plt_entry_short[2]
9865 | (got_displacement & 0x00000fff),
9866 ptr + 8);
9867 #ifdef FOUR_WORD_PLT
9868 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9869 #endif
9870 }
9871 else
9872 {
9873 put_arm_insn (htab, output_bfd,
9874 elf32_arm_plt_entry_long[0]
9875 | ((got_displacement & 0xf0000000) >> 28),
9876 ptr + 0);
9877 put_arm_insn (htab, output_bfd,
9878 elf32_arm_plt_entry_long[1]
9879 | ((got_displacement & 0x0ff00000) >> 20),
9880 ptr + 4);
9881 put_arm_insn (htab, output_bfd,
9882 elf32_arm_plt_entry_long[2]
9883 | ((got_displacement & 0x000ff000) >> 12),
9884 ptr+ 8);
9885 put_arm_insn (htab, output_bfd,
9886 elf32_arm_plt_entry_long[3]
9887 | (got_displacement & 0x00000fff),
9888 ptr + 12);
9889 }
9890 }
9891
9892 /* Fill in the entry in the .rel(a).(i)plt section. */
9893 rel.r_offset = got_address;
9894 rel.r_addend = 0;
9895 if (dynindx == -1)
9896 {
9897 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9898 The dynamic linker or static executable then calls SYM_VALUE
9899 to determine the correct run-time value of the .igot.plt entry. */
9900 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9901 initial_got_entry = sym_value;
9902 }
9903 else
9904 {
9905 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9906 used by PLT entry. */
9907 if (htab->fdpic_p)
9908 {
9909 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9910 initial_got_entry = 0;
9911 }
9912 else
9913 {
9914 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9915 initial_got_entry = (splt->output_section->vma
9916 + splt->output_offset);
9917 }
9918 }
9919
9920 /* Fill in the entry in the global offset table. */
9921 bfd_put_32 (output_bfd, initial_got_entry,
9922 sgot->contents + got_offset);
9923
9924 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9925 {
9926 /* Setup initial funcdesc value. */
9927 /* FIXME: we don't support lazy binding because there is a
9928 race condition between both words getting written and
9929 some other thread attempting to read them. The ARM
9930 architecture does not have an atomic 64 bit load/store
9931 instruction that could be used to prevent it; it is
9932 recommended that threaded FDPIC applications run with the
9933 LD_BIND_NOW environment variable set. */
9934 bfd_put_32(output_bfd, plt_address + 0x18,
9935 sgot->contents + got_offset);
9936 bfd_put_32(output_bfd, -1 /*TODO*/,
9937 sgot->contents + got_offset + 4);
9938 }
9939 }
9940
9941 if (dynindx == -1)
9942 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9943 else
9944 {
9945 if (htab->fdpic_p)
9946 {
9947 /* For FDPIC we put PLT relocationss into .rel.got when not
9948 lazy binding otherwise we put them in .rel.plt. For now,
9949 we don't support lazy binding so put it in .rel.got. */
9950 if (info->flags & DF_BIND_NOW)
9951 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
9952 else
9953 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
9954 }
9955 else
9956 {
9957 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9958 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9959 }
9960 }
9961
9962 return TRUE;
9963 }
9964
9965 /* Some relocations map to different relocations depending on the
9966 target. Return the real relocation. */
9967
9968 static int
9969 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9970 int r_type)
9971 {
9972 switch (r_type)
9973 {
9974 case R_ARM_TARGET1:
9975 if (globals->target1_is_rel)
9976 return R_ARM_REL32;
9977 else
9978 return R_ARM_ABS32;
9979
9980 case R_ARM_TARGET2:
9981 return globals->target2_reloc;
9982
9983 default:
9984 return r_type;
9985 }
9986 }
9987
9988 /* Return the base VMA address which should be subtracted from real addresses
9989 when resolving @dtpoff relocation.
9990 This is PT_TLS segment p_vaddr. */
9991
9992 static bfd_vma
9993 dtpoff_base (struct bfd_link_info *info)
9994 {
9995 /* If tls_sec is NULL, we should have signalled an error already. */
9996 if (elf_hash_table (info)->tls_sec == NULL)
9997 return 0;
9998 return elf_hash_table (info)->tls_sec->vma;
9999 }
10000
10001 /* Return the relocation value for @tpoff relocation
10002 if STT_TLS virtual address is ADDRESS. */
10003
10004 static bfd_vma
10005 tpoff (struct bfd_link_info *info, bfd_vma address)
10006 {
10007 struct elf_link_hash_table *htab = elf_hash_table (info);
10008 bfd_vma base;
10009
10010 /* If tls_sec is NULL, we should have signalled an error already. */
10011 if (htab->tls_sec == NULL)
10012 return 0;
10013 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10014 return address - htab->tls_sec->vma + base;
10015 }
10016
10017 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10018 VALUE is the relocation value. */
10019
10020 static bfd_reloc_status_type
10021 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10022 {
10023 if (value > 0xfff)
10024 return bfd_reloc_overflow;
10025
10026 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10027 bfd_put_32 (abfd, value, data);
10028 return bfd_reloc_ok;
10029 }
10030
10031 /* Handle TLS relaxations. Relaxing is possible for symbols that use
10032 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10033 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10034
10035 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10036 is to then call final_link_relocate. Return other values in the
10037 case of error.
10038
10039 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10040 the pre-relaxed code. It would be nice if the relocs were updated
10041 to match the optimization. */
10042
10043 static bfd_reloc_status_type
10044 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
10045 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
10046 Elf_Internal_Rela *rel, unsigned long is_local)
10047 {
10048 unsigned long insn;
10049
10050 switch (ELF32_R_TYPE (rel->r_info))
10051 {
10052 default:
10053 return bfd_reloc_notsupported;
10054
10055 case R_ARM_TLS_GOTDESC:
10056 if (is_local)
10057 insn = 0;
10058 else
10059 {
10060 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10061 if (insn & 1)
10062 insn -= 5; /* THUMB */
10063 else
10064 insn -= 8; /* ARM */
10065 }
10066 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10067 return bfd_reloc_continue;
10068
10069 case R_ARM_THM_TLS_DESCSEQ:
10070 /* Thumb insn. */
10071 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10072 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10073 {
10074 if (is_local)
10075 /* nop */
10076 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10077 }
10078 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10079 {
10080 if (is_local)
10081 /* nop */
10082 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10083 else
10084 /* ldr rx,[ry] */
10085 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10086 }
10087 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10088 {
10089 if (is_local)
10090 /* nop */
10091 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10092 else
10093 /* mov r0, rx */
10094 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10095 contents + rel->r_offset);
10096 }
10097 else
10098 {
10099 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10100 /* It's a 32 bit instruction, fetch the rest of it for
10101 error generation. */
10102 insn = (insn << 16)
10103 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
10104 _bfd_error_handler
10105 /* xgettext:c-format */
10106 (_("%pB(%pA+%#" PRIx64 "): "
10107 "unexpected %s instruction '%#lx' in TLS trampoline"),
10108 input_bfd, input_sec, (uint64_t) rel->r_offset,
10109 "Thumb", insn);
10110 return bfd_reloc_notsupported;
10111 }
10112 break;
10113
10114 case R_ARM_TLS_DESCSEQ:
10115 /* arm insn. */
10116 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10117 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10118 {
10119 if (is_local)
10120 /* mov rx, ry */
10121 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10122 contents + rel->r_offset);
10123 }
10124 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10125 {
10126 if (is_local)
10127 /* nop */
10128 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10129 else
10130 /* ldr rx,[ry] */
10131 bfd_put_32 (input_bfd, insn & 0xfffff000,
10132 contents + rel->r_offset);
10133 }
10134 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10135 {
10136 if (is_local)
10137 /* nop */
10138 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10139 else
10140 /* mov r0, rx */
10141 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10142 contents + rel->r_offset);
10143 }
10144 else
10145 {
10146 _bfd_error_handler
10147 /* xgettext:c-format */
10148 (_("%pB(%pA+%#" PRIx64 "): "
10149 "unexpected %s instruction '%#lx' in TLS trampoline"),
10150 input_bfd, input_sec, (uint64_t) rel->r_offset,
10151 "ARM", insn);
10152 return bfd_reloc_notsupported;
10153 }
10154 break;
10155
10156 case R_ARM_TLS_CALL:
10157 /* GD->IE relaxation, turn the instruction into 'nop' or
10158 'ldr r0, [pc,r0]' */
10159 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10160 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10161 break;
10162
10163 case R_ARM_THM_TLS_CALL:
10164 /* GD->IE relaxation. */
10165 if (!is_local)
10166 /* add r0,pc; ldr r0, [r0] */
10167 insn = 0x44786800;
10168 else if (using_thumb2 (globals))
10169 /* nop.w */
10170 insn = 0xf3af8000;
10171 else
10172 /* nop; nop */
10173 insn = 0xbf00bf00;
10174
10175 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10176 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10177 break;
10178 }
10179 return bfd_reloc_ok;
10180 }
10181
10182 /* For a given value of n, calculate the value of G_n as required to
10183 deal with group relocations. We return it in the form of an
10184 encoded constant-and-rotation, together with the final residual. If n is
10185 specified as less than zero, then final_residual is filled with the
10186 input value and no further action is performed. */
10187
10188 static bfd_vma
10189 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10190 {
10191 int current_n;
10192 bfd_vma g_n;
10193 bfd_vma encoded_g_n = 0;
10194 bfd_vma residual = value; /* Also known as Y_n. */
10195
10196 for (current_n = 0; current_n <= n; current_n++)
10197 {
10198 int shift;
10199
10200 /* Calculate which part of the value to mask. */
10201 if (residual == 0)
10202 shift = 0;
10203 else
10204 {
10205 int msb;
10206
10207 /* Determine the most significant bit in the residual and
10208 align the resulting value to a 2-bit boundary. */
10209 for (msb = 30; msb >= 0; msb -= 2)
10210 if (residual & (3 << msb))
10211 break;
10212
10213 /* The desired shift is now (msb - 6), or zero, whichever
10214 is the greater. */
10215 shift = msb - 6;
10216 if (shift < 0)
10217 shift = 0;
10218 }
10219
10220 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10221 g_n = residual & (0xff << shift);
10222 encoded_g_n = (g_n >> shift)
10223 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
10224
10225 /* Calculate the residual for the next time around. */
10226 residual &= ~g_n;
10227 }
10228
10229 *final_residual = residual;
10230
10231 return encoded_g_n;
10232 }
10233
10234 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
10235 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10236
10237 static int
10238 identify_add_or_sub (bfd_vma insn)
10239 {
10240 int opcode = insn & 0x1e00000;
10241
10242 if (opcode == 1 << 23) /* ADD */
10243 return 1;
10244
10245 if (opcode == 1 << 22) /* SUB */
10246 return -1;
10247
10248 return 0;
10249 }
10250
10251 /* Perform a relocation as part of a final link. */
10252
10253 static bfd_reloc_status_type
10254 elf32_arm_final_link_relocate (reloc_howto_type * howto,
10255 bfd * input_bfd,
10256 bfd * output_bfd,
10257 asection * input_section,
10258 bfd_byte * contents,
10259 Elf_Internal_Rela * rel,
10260 bfd_vma value,
10261 struct bfd_link_info * info,
10262 asection * sym_sec,
10263 const char * sym_name,
10264 unsigned char st_type,
10265 enum arm_st_branch_type branch_type,
10266 struct elf_link_hash_entry * h,
10267 bfd_boolean * unresolved_reloc_p,
10268 char ** error_message)
10269 {
10270 unsigned long r_type = howto->type;
10271 unsigned long r_symndx;
10272 bfd_byte * hit_data = contents + rel->r_offset;
10273 bfd_vma * local_got_offsets;
10274 bfd_vma * local_tlsdesc_gotents;
10275 asection * sgot;
10276 asection * splt;
10277 asection * sreloc = NULL;
10278 asection * srelgot;
10279 bfd_vma addend;
10280 bfd_signed_vma signed_addend;
10281 unsigned char dynreloc_st_type;
10282 bfd_vma dynreloc_value;
10283 struct elf32_arm_link_hash_table * globals;
10284 struct elf32_arm_link_hash_entry *eh;
10285 union gotplt_union *root_plt;
10286 struct arm_plt_info *arm_plt;
10287 bfd_vma plt_offset;
10288 bfd_vma gotplt_offset;
10289 bfd_boolean has_iplt_entry;
10290 bfd_boolean resolved_to_zero;
10291
10292 globals = elf32_arm_hash_table (info);
10293 if (globals == NULL)
10294 return bfd_reloc_notsupported;
10295
10296 BFD_ASSERT (is_arm_elf (input_bfd));
10297 BFD_ASSERT (howto != NULL);
10298
10299 /* Some relocation types map to different relocations depending on the
10300 target. We pick the right one here. */
10301 r_type = arm_real_reloc_type (globals, r_type);
10302
10303 /* It is possible to have linker relaxations on some TLS access
10304 models. Update our information here. */
10305 r_type = elf32_arm_tls_transition (info, r_type, h);
10306
10307 if (r_type != howto->type)
10308 howto = elf32_arm_howto_from_type (r_type);
10309
10310 eh = (struct elf32_arm_link_hash_entry *) h;
10311 sgot = globals->root.sgot;
10312 local_got_offsets = elf_local_got_offsets (input_bfd);
10313 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10314
10315 if (globals->root.dynamic_sections_created)
10316 srelgot = globals->root.srelgot;
10317 else
10318 srelgot = NULL;
10319
10320 r_symndx = ELF32_R_SYM (rel->r_info);
10321
10322 if (globals->use_rel)
10323 {
10324 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10325
10326 if (addend & ((howto->src_mask + 1) >> 1))
10327 {
10328 signed_addend = -1;
10329 signed_addend &= ~ howto->src_mask;
10330 signed_addend |= addend;
10331 }
10332 else
10333 signed_addend = addend;
10334 }
10335 else
10336 addend = signed_addend = rel->r_addend;
10337
10338 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10339 are resolving a function call relocation. */
10340 if (using_thumb_only (globals)
10341 && (r_type == R_ARM_THM_CALL
10342 || r_type == R_ARM_THM_JUMP24)
10343 && branch_type == ST_BRANCH_TO_ARM)
10344 branch_type = ST_BRANCH_TO_THUMB;
10345
10346 /* Record the symbol information that should be used in dynamic
10347 relocations. */
10348 dynreloc_st_type = st_type;
10349 dynreloc_value = value;
10350 if (branch_type == ST_BRANCH_TO_THUMB)
10351 dynreloc_value |= 1;
10352
10353 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10354 VALUE appropriately for relocations that we resolve at link time. */
10355 has_iplt_entry = FALSE;
10356 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10357 &arm_plt)
10358 && root_plt->offset != (bfd_vma) -1)
10359 {
10360 plt_offset = root_plt->offset;
10361 gotplt_offset = arm_plt->got_offset;
10362
10363 if (h == NULL || eh->is_iplt)
10364 {
10365 has_iplt_entry = TRUE;
10366 splt = globals->root.iplt;
10367
10368 /* Populate .iplt entries here, because not all of them will
10369 be seen by finish_dynamic_symbol. The lower bit is set if
10370 we have already populated the entry. */
10371 if (plt_offset & 1)
10372 plt_offset--;
10373 else
10374 {
10375 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10376 -1, dynreloc_value))
10377 root_plt->offset |= 1;
10378 else
10379 return bfd_reloc_notsupported;
10380 }
10381
10382 /* Static relocations always resolve to the .iplt entry. */
10383 st_type = STT_FUNC;
10384 value = (splt->output_section->vma
10385 + splt->output_offset
10386 + plt_offset);
10387 branch_type = ST_BRANCH_TO_ARM;
10388
10389 /* If there are non-call relocations that resolve to the .iplt
10390 entry, then all dynamic ones must too. */
10391 if (arm_plt->noncall_refcount != 0)
10392 {
10393 dynreloc_st_type = st_type;
10394 dynreloc_value = value;
10395 }
10396 }
10397 else
10398 /* We populate the .plt entry in finish_dynamic_symbol. */
10399 splt = globals->root.splt;
10400 }
10401 else
10402 {
10403 splt = NULL;
10404 plt_offset = (bfd_vma) -1;
10405 gotplt_offset = (bfd_vma) -1;
10406 }
10407
10408 resolved_to_zero = (h != NULL
10409 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10410
10411 switch (r_type)
10412 {
10413 case R_ARM_NONE:
10414 /* We don't need to find a value for this symbol. It's just a
10415 marker. */
10416 *unresolved_reloc_p = FALSE;
10417 return bfd_reloc_ok;
10418
10419 case R_ARM_ABS12:
10420 if (!globals->vxworks_p)
10421 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10422 /* Fall through. */
10423
10424 case R_ARM_PC24:
10425 case R_ARM_ABS32:
10426 case R_ARM_ABS32_NOI:
10427 case R_ARM_REL32:
10428 case R_ARM_REL32_NOI:
10429 case R_ARM_CALL:
10430 case R_ARM_JUMP24:
10431 case R_ARM_XPC25:
10432 case R_ARM_PREL31:
10433 case R_ARM_PLT32:
10434 /* Handle relocations which should use the PLT entry. ABS32/REL32
10435 will use the symbol's value, which may point to a PLT entry, but we
10436 don't need to handle that here. If we created a PLT entry, all
10437 branches in this object should go to it, except if the PLT is too
10438 far away, in which case a long branch stub should be inserted. */
10439 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10440 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10441 && r_type != R_ARM_CALL
10442 && r_type != R_ARM_JUMP24
10443 && r_type != R_ARM_PLT32)
10444 && plt_offset != (bfd_vma) -1)
10445 {
10446 /* If we've created a .plt section, and assigned a PLT entry
10447 to this function, it must either be a STT_GNU_IFUNC reference
10448 or not be known to bind locally. In other cases, we should
10449 have cleared the PLT entry by now. */
10450 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10451
10452 value = (splt->output_section->vma
10453 + splt->output_offset
10454 + plt_offset);
10455 *unresolved_reloc_p = FALSE;
10456 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10457 contents, rel->r_offset, value,
10458 rel->r_addend);
10459 }
10460
10461 /* When generating a shared object or relocatable executable, these
10462 relocations are copied into the output file to be resolved at
10463 run time. */
10464 if ((bfd_link_pic (info)
10465 || globals->root.is_relocatable_executable
10466 || globals->fdpic_p)
10467 && (input_section->flags & SEC_ALLOC)
10468 && !(globals->vxworks_p
10469 && strcmp (input_section->output_section->name,
10470 ".tls_vars") == 0)
10471 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10472 || !SYMBOL_CALLS_LOCAL (info, h))
10473 && !(input_bfd == globals->stub_bfd
10474 && strstr (input_section->name, STUB_SUFFIX))
10475 && (h == NULL
10476 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10477 && !resolved_to_zero)
10478 || h->root.type != bfd_link_hash_undefweak)
10479 && r_type != R_ARM_PC24
10480 && r_type != R_ARM_CALL
10481 && r_type != R_ARM_JUMP24
10482 && r_type != R_ARM_PREL31
10483 && r_type != R_ARM_PLT32)
10484 {
10485 Elf_Internal_Rela outrel;
10486 bfd_boolean skip, relocate;
10487 int isrofixup = 0;
10488
10489 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10490 && !h->def_regular)
10491 {
10492 char *v = _("shared object");
10493
10494 if (bfd_link_executable (info))
10495 v = _("PIE executable");
10496
10497 _bfd_error_handler
10498 (_("%pB: relocation %s against external or undefined symbol `%s'"
10499 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10500 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10501 return bfd_reloc_notsupported;
10502 }
10503
10504 *unresolved_reloc_p = FALSE;
10505
10506 if (sreloc == NULL && globals->root.dynamic_sections_created)
10507 {
10508 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10509 ! globals->use_rel);
10510
10511 if (sreloc == NULL)
10512 return bfd_reloc_notsupported;
10513 }
10514
10515 skip = FALSE;
10516 relocate = FALSE;
10517
10518 outrel.r_addend = addend;
10519 outrel.r_offset =
10520 _bfd_elf_section_offset (output_bfd, info, input_section,
10521 rel->r_offset);
10522 if (outrel.r_offset == (bfd_vma) -1)
10523 skip = TRUE;
10524 else if (outrel.r_offset == (bfd_vma) -2)
10525 skip = TRUE, relocate = TRUE;
10526 outrel.r_offset += (input_section->output_section->vma
10527 + input_section->output_offset);
10528
10529 if (skip)
10530 memset (&outrel, 0, sizeof outrel);
10531 else if (h != NULL
10532 && h->dynindx != -1
10533 && (!bfd_link_pic (info)
10534 || !(bfd_link_pie (info)
10535 || SYMBOLIC_BIND (info, h))
10536 || !h->def_regular))
10537 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10538 else
10539 {
10540 int symbol;
10541
10542 /* This symbol is local, or marked to become local. */
10543 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10544 || (globals->fdpic_p && !bfd_link_pic(info)));
10545 if (globals->symbian_p)
10546 {
10547 asection *osec;
10548
10549 /* On Symbian OS, the data segment and text segement
10550 can be relocated independently. Therefore, we
10551 must indicate the segment to which this
10552 relocation is relative. The BPABI allows us to
10553 use any symbol in the right segment; we just use
10554 the section symbol as it is convenient. (We
10555 cannot use the symbol given by "h" directly as it
10556 will not appear in the dynamic symbol table.)
10557
10558 Note that the dynamic linker ignores the section
10559 symbol value, so we don't subtract osec->vma
10560 from the emitted reloc addend. */
10561 if (sym_sec)
10562 osec = sym_sec->output_section;
10563 else
10564 osec = input_section->output_section;
10565 symbol = elf_section_data (osec)->dynindx;
10566 if (symbol == 0)
10567 {
10568 struct elf_link_hash_table *htab = elf_hash_table (info);
10569
10570 if ((osec->flags & SEC_READONLY) == 0
10571 && htab->data_index_section != NULL)
10572 osec = htab->data_index_section;
10573 else
10574 osec = htab->text_index_section;
10575 symbol = elf_section_data (osec)->dynindx;
10576 }
10577 BFD_ASSERT (symbol != 0);
10578 }
10579 else
10580 /* On SVR4-ish systems, the dynamic loader cannot
10581 relocate the text and data segments independently,
10582 so the symbol does not matter. */
10583 symbol = 0;
10584 if (dynreloc_st_type == STT_GNU_IFUNC)
10585 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10586 to the .iplt entry. Instead, every non-call reference
10587 must use an R_ARM_IRELATIVE relocation to obtain the
10588 correct run-time address. */
10589 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10590 else if (globals->fdpic_p && !bfd_link_pic(info))
10591 isrofixup = 1;
10592 else
10593 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10594 if (globals->use_rel)
10595 relocate = TRUE;
10596 else
10597 outrel.r_addend += dynreloc_value;
10598 }
10599
10600 if (isrofixup)
10601 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10602 else
10603 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10604
10605 /* If this reloc is against an external symbol, we do not want to
10606 fiddle with the addend. Otherwise, we need to include the symbol
10607 value so that it becomes an addend for the dynamic reloc. */
10608 if (! relocate)
10609 return bfd_reloc_ok;
10610
10611 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10612 contents, rel->r_offset,
10613 dynreloc_value, (bfd_vma) 0);
10614 }
10615 else switch (r_type)
10616 {
10617 case R_ARM_ABS12:
10618 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10619
10620 case R_ARM_XPC25: /* Arm BLX instruction. */
10621 case R_ARM_CALL:
10622 case R_ARM_JUMP24:
10623 case R_ARM_PC24: /* Arm B/BL instruction. */
10624 case R_ARM_PLT32:
10625 {
10626 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10627
10628 if (r_type == R_ARM_XPC25)
10629 {
10630 /* Check for Arm calling Arm function. */
10631 /* FIXME: Should we translate the instruction into a BL
10632 instruction instead ? */
10633 if (branch_type != ST_BRANCH_TO_THUMB)
10634 _bfd_error_handler
10635 (_("\%pB: warning: %s BLX instruction targets"
10636 " %s function '%s'"),
10637 input_bfd, "ARM",
10638 "ARM", h ? h->root.root.string : "(local)");
10639 }
10640 else if (r_type == R_ARM_PC24)
10641 {
10642 /* Check for Arm calling Thumb function. */
10643 if (branch_type == ST_BRANCH_TO_THUMB)
10644 {
10645 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10646 output_bfd, input_section,
10647 hit_data, sym_sec, rel->r_offset,
10648 signed_addend, value,
10649 error_message))
10650 return bfd_reloc_ok;
10651 else
10652 return bfd_reloc_dangerous;
10653 }
10654 }
10655
10656 /* Check if a stub has to be inserted because the
10657 destination is too far or we are changing mode. */
10658 if ( r_type == R_ARM_CALL
10659 || r_type == R_ARM_JUMP24
10660 || r_type == R_ARM_PLT32)
10661 {
10662 enum elf32_arm_stub_type stub_type = arm_stub_none;
10663 struct elf32_arm_link_hash_entry *hash;
10664
10665 hash = (struct elf32_arm_link_hash_entry *) h;
10666 stub_type = arm_type_of_stub (info, input_section, rel,
10667 st_type, &branch_type,
10668 hash, value, sym_sec,
10669 input_bfd, sym_name);
10670
10671 if (stub_type != arm_stub_none)
10672 {
10673 /* The target is out of reach, so redirect the
10674 branch to the local stub for this function. */
10675 stub_entry = elf32_arm_get_stub_entry (input_section,
10676 sym_sec, h,
10677 rel, globals,
10678 stub_type);
10679 {
10680 if (stub_entry != NULL)
10681 value = (stub_entry->stub_offset
10682 + stub_entry->stub_sec->output_offset
10683 + stub_entry->stub_sec->output_section->vma);
10684
10685 if (plt_offset != (bfd_vma) -1)
10686 *unresolved_reloc_p = FALSE;
10687 }
10688 }
10689 else
10690 {
10691 /* If the call goes through a PLT entry, make sure to
10692 check distance to the right destination address. */
10693 if (plt_offset != (bfd_vma) -1)
10694 {
10695 value = (splt->output_section->vma
10696 + splt->output_offset
10697 + plt_offset);
10698 *unresolved_reloc_p = FALSE;
10699 /* The PLT entry is in ARM mode, regardless of the
10700 target function. */
10701 branch_type = ST_BRANCH_TO_ARM;
10702 }
10703 }
10704 }
10705
10706 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10707 where:
10708 S is the address of the symbol in the relocation.
10709 P is address of the instruction being relocated.
10710 A is the addend (extracted from the instruction) in bytes.
10711
10712 S is held in 'value'.
10713 P is the base address of the section containing the
10714 instruction plus the offset of the reloc into that
10715 section, ie:
10716 (input_section->output_section->vma +
10717 input_section->output_offset +
10718 rel->r_offset).
10719 A is the addend, converted into bytes, ie:
10720 (signed_addend * 4)
10721
10722 Note: None of these operations have knowledge of the pipeline
10723 size of the processor, thus it is up to the assembler to
10724 encode this information into the addend. */
10725 value -= (input_section->output_section->vma
10726 + input_section->output_offset);
10727 value -= rel->r_offset;
10728 if (globals->use_rel)
10729 value += (signed_addend << howto->size);
10730 else
10731 /* RELA addends do not have to be adjusted by howto->size. */
10732 value += signed_addend;
10733
10734 signed_addend = value;
10735 signed_addend >>= howto->rightshift;
10736
10737 /* A branch to an undefined weak symbol is turned into a jump to
10738 the next instruction unless a PLT entry will be created.
10739 Do the same for local undefined symbols (but not for STN_UNDEF).
10740 The jump to the next instruction is optimized as a NOP depending
10741 on the architecture. */
10742 if (h ? (h->root.type == bfd_link_hash_undefweak
10743 && plt_offset == (bfd_vma) -1)
10744 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10745 {
10746 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10747
10748 if (arch_has_arm_nop (globals))
10749 value |= 0x0320f000;
10750 else
10751 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10752 }
10753 else
10754 {
10755 /* Perform a signed range check. */
10756 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10757 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10758 return bfd_reloc_overflow;
10759
10760 addend = (value & 2);
10761
10762 value = (signed_addend & howto->dst_mask)
10763 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10764
10765 if (r_type == R_ARM_CALL)
10766 {
10767 /* Set the H bit in the BLX instruction. */
10768 if (branch_type == ST_BRANCH_TO_THUMB)
10769 {
10770 if (addend)
10771 value |= (1 << 24);
10772 else
10773 value &= ~(bfd_vma)(1 << 24);
10774 }
10775
10776 /* Select the correct instruction (BL or BLX). */
10777 /* Only if we are not handling a BL to a stub. In this
10778 case, mode switching is performed by the stub. */
10779 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10780 value |= (1 << 28);
10781 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10782 {
10783 value &= ~(bfd_vma)(1 << 28);
10784 value |= (1 << 24);
10785 }
10786 }
10787 }
10788 }
10789 break;
10790
10791 case R_ARM_ABS32:
10792 value += addend;
10793 if (branch_type == ST_BRANCH_TO_THUMB)
10794 value |= 1;
10795 break;
10796
10797 case R_ARM_ABS32_NOI:
10798 value += addend;
10799 break;
10800
10801 case R_ARM_REL32:
10802 value += addend;
10803 if (branch_type == ST_BRANCH_TO_THUMB)
10804 value |= 1;
10805 value -= (input_section->output_section->vma
10806 + input_section->output_offset + rel->r_offset);
10807 break;
10808
10809 case R_ARM_REL32_NOI:
10810 value += addend;
10811 value -= (input_section->output_section->vma
10812 + input_section->output_offset + rel->r_offset);
10813 break;
10814
10815 case R_ARM_PREL31:
10816 value -= (input_section->output_section->vma
10817 + input_section->output_offset + rel->r_offset);
10818 value += signed_addend;
10819 if (! h || h->root.type != bfd_link_hash_undefweak)
10820 {
10821 /* Check for overflow. */
10822 if ((value ^ (value >> 1)) & (1 << 30))
10823 return bfd_reloc_overflow;
10824 }
10825 value &= 0x7fffffff;
10826 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10827 if (branch_type == ST_BRANCH_TO_THUMB)
10828 value |= 1;
10829 break;
10830 }
10831
10832 bfd_put_32 (input_bfd, value, hit_data);
10833 return bfd_reloc_ok;
10834
10835 case R_ARM_ABS8:
10836 /* PR 16202: Refectch the addend using the correct size. */
10837 if (globals->use_rel)
10838 addend = bfd_get_8 (input_bfd, hit_data);
10839 value += addend;
10840
10841 /* There is no way to tell whether the user intended to use a signed or
10842 unsigned addend. When checking for overflow we accept either,
10843 as specified by the AAELF. */
10844 if ((long) value > 0xff || (long) value < -0x80)
10845 return bfd_reloc_overflow;
10846
10847 bfd_put_8 (input_bfd, value, hit_data);
10848 return bfd_reloc_ok;
10849
10850 case R_ARM_ABS16:
10851 /* PR 16202: Refectch the addend using the correct size. */
10852 if (globals->use_rel)
10853 addend = bfd_get_16 (input_bfd, hit_data);
10854 value += addend;
10855
10856 /* See comment for R_ARM_ABS8. */
10857 if ((long) value > 0xffff || (long) value < -0x8000)
10858 return bfd_reloc_overflow;
10859
10860 bfd_put_16 (input_bfd, value, hit_data);
10861 return bfd_reloc_ok;
10862
10863 case R_ARM_THM_ABS5:
10864 /* Support ldr and str instructions for the thumb. */
10865 if (globals->use_rel)
10866 {
10867 /* Need to refetch addend. */
10868 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10869 /* ??? Need to determine shift amount from operand size. */
10870 addend >>= howto->rightshift;
10871 }
10872 value += addend;
10873
10874 /* ??? Isn't value unsigned? */
10875 if ((long) value > 0x1f || (long) value < -0x10)
10876 return bfd_reloc_overflow;
10877
10878 /* ??? Value needs to be properly shifted into place first. */
10879 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10880 bfd_put_16 (input_bfd, value, hit_data);
10881 return bfd_reloc_ok;
10882
10883 case R_ARM_THM_ALU_PREL_11_0:
10884 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10885 {
10886 bfd_vma insn;
10887 bfd_signed_vma relocation;
10888
10889 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10890 | bfd_get_16 (input_bfd, hit_data + 2);
10891
10892 if (globals->use_rel)
10893 {
10894 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10895 | ((insn & (1 << 26)) >> 15);
10896 if (insn & 0xf00000)
10897 signed_addend = -signed_addend;
10898 }
10899
10900 relocation = value + signed_addend;
10901 relocation -= Pa (input_section->output_section->vma
10902 + input_section->output_offset
10903 + rel->r_offset);
10904
10905 /* PR 21523: Use an absolute value. The user of this reloc will
10906 have already selected an ADD or SUB insn appropriately. */
10907 value = labs (relocation);
10908
10909 if (value >= 0x1000)
10910 return bfd_reloc_overflow;
10911
10912 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10913 if (branch_type == ST_BRANCH_TO_THUMB)
10914 value |= 1;
10915
10916 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10917 | ((value & 0x700) << 4)
10918 | ((value & 0x800) << 15);
10919 if (relocation < 0)
10920 insn |= 0xa00000;
10921
10922 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10923 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10924
10925 return bfd_reloc_ok;
10926 }
10927
10928 case R_ARM_THM_PC8:
10929 /* PR 10073: This reloc is not generated by the GNU toolchain,
10930 but it is supported for compatibility with third party libraries
10931 generated by other compilers, specifically the ARM/IAR. */
10932 {
10933 bfd_vma insn;
10934 bfd_signed_vma relocation;
10935
10936 insn = bfd_get_16 (input_bfd, hit_data);
10937
10938 if (globals->use_rel)
10939 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10940
10941 relocation = value + addend;
10942 relocation -= Pa (input_section->output_section->vma
10943 + input_section->output_offset
10944 + rel->r_offset);
10945
10946 value = relocation;
10947
10948 /* We do not check for overflow of this reloc. Although strictly
10949 speaking this is incorrect, it appears to be necessary in order
10950 to work with IAR generated relocs. Since GCC and GAS do not
10951 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10952 a problem for them. */
10953 value &= 0x3fc;
10954
10955 insn = (insn & 0xff00) | (value >> 2);
10956
10957 bfd_put_16 (input_bfd, insn, hit_data);
10958
10959 return bfd_reloc_ok;
10960 }
10961
10962 case R_ARM_THM_PC12:
10963 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10964 {
10965 bfd_vma insn;
10966 bfd_signed_vma relocation;
10967
10968 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10969 | bfd_get_16 (input_bfd, hit_data + 2);
10970
10971 if (globals->use_rel)
10972 {
10973 signed_addend = insn & 0xfff;
10974 if (!(insn & (1 << 23)))
10975 signed_addend = -signed_addend;
10976 }
10977
10978 relocation = value + signed_addend;
10979 relocation -= Pa (input_section->output_section->vma
10980 + input_section->output_offset
10981 + rel->r_offset);
10982
10983 value = relocation;
10984
10985 if (value >= 0x1000)
10986 return bfd_reloc_overflow;
10987
10988 insn = (insn & 0xff7ff000) | value;
10989 if (relocation >= 0)
10990 insn |= (1 << 23);
10991
10992 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10993 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10994
10995 return bfd_reloc_ok;
10996 }
10997
10998 case R_ARM_THM_XPC22:
10999 case R_ARM_THM_CALL:
11000 case R_ARM_THM_JUMP24:
11001 /* Thumb BL (branch long instruction). */
11002 {
11003 bfd_vma relocation;
11004 bfd_vma reloc_sign;
11005 bfd_boolean overflow = FALSE;
11006 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11007 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11008 bfd_signed_vma reloc_signed_max;
11009 bfd_signed_vma reloc_signed_min;
11010 bfd_vma check;
11011 bfd_signed_vma signed_check;
11012 int bitsize;
11013 const int thumb2 = using_thumb2 (globals);
11014 const int thumb2_bl = using_thumb2_bl (globals);
11015
11016 /* A branch to an undefined weak symbol is turned into a jump to
11017 the next instruction unless a PLT entry will be created.
11018 The jump to the next instruction is optimized as a NOP.W for
11019 Thumb-2 enabled architectures. */
11020 if (h && h->root.type == bfd_link_hash_undefweak
11021 && plt_offset == (bfd_vma) -1)
11022 {
11023 if (thumb2)
11024 {
11025 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11026 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11027 }
11028 else
11029 {
11030 bfd_put_16 (input_bfd, 0xe000, hit_data);
11031 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11032 }
11033 return bfd_reloc_ok;
11034 }
11035
11036 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11037 with Thumb-1) involving the J1 and J2 bits. */
11038 if (globals->use_rel)
11039 {
11040 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11041 bfd_vma upper = upper_insn & 0x3ff;
11042 bfd_vma lower = lower_insn & 0x7ff;
11043 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11044 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
11045 bfd_vma i1 = j1 ^ s ? 0 : 1;
11046 bfd_vma i2 = j2 ^ s ? 0 : 1;
11047
11048 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11049 /* Sign extend. */
11050 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
11051
11052 signed_addend = addend;
11053 }
11054
11055 if (r_type == R_ARM_THM_XPC22)
11056 {
11057 /* Check for Thumb to Thumb call. */
11058 /* FIXME: Should we translate the instruction into a BL
11059 instruction instead ? */
11060 if (branch_type == ST_BRANCH_TO_THUMB)
11061 _bfd_error_handler
11062 (_("%pB: warning: %s BLX instruction targets"
11063 " %s function '%s'"),
11064 input_bfd, "Thumb",
11065 "Thumb", h ? h->root.root.string : "(local)");
11066 }
11067 else
11068 {
11069 /* If it is not a call to Thumb, assume call to Arm.
11070 If it is a call relative to a section name, then it is not a
11071 function call at all, but rather a long jump. Calls through
11072 the PLT do not require stubs. */
11073 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
11074 {
11075 if (globals->use_blx && r_type == R_ARM_THM_CALL)
11076 {
11077 /* Convert BL to BLX. */
11078 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11079 }
11080 else if (( r_type != R_ARM_THM_CALL)
11081 && (r_type != R_ARM_THM_JUMP24))
11082 {
11083 if (elf32_thumb_to_arm_stub
11084 (info, sym_name, input_bfd, output_bfd, input_section,
11085 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11086 error_message))
11087 return bfd_reloc_ok;
11088 else
11089 return bfd_reloc_dangerous;
11090 }
11091 }
11092 else if (branch_type == ST_BRANCH_TO_THUMB
11093 && globals->use_blx
11094 && r_type == R_ARM_THM_CALL)
11095 {
11096 /* Make sure this is a BL. */
11097 lower_insn |= 0x1800;
11098 }
11099 }
11100
11101 enum elf32_arm_stub_type stub_type = arm_stub_none;
11102 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
11103 {
11104 /* Check if a stub has to be inserted because the destination
11105 is too far. */
11106 struct elf32_arm_stub_hash_entry *stub_entry;
11107 struct elf32_arm_link_hash_entry *hash;
11108
11109 hash = (struct elf32_arm_link_hash_entry *) h;
11110
11111 stub_type = arm_type_of_stub (info, input_section, rel,
11112 st_type, &branch_type,
11113 hash, value, sym_sec,
11114 input_bfd, sym_name);
11115
11116 if (stub_type != arm_stub_none)
11117 {
11118 /* The target is out of reach or we are changing modes, so
11119 redirect the branch to the local stub for this
11120 function. */
11121 stub_entry = elf32_arm_get_stub_entry (input_section,
11122 sym_sec, h,
11123 rel, globals,
11124 stub_type);
11125 if (stub_entry != NULL)
11126 {
11127 value = (stub_entry->stub_offset
11128 + stub_entry->stub_sec->output_offset
11129 + stub_entry->stub_sec->output_section->vma);
11130
11131 if (plt_offset != (bfd_vma) -1)
11132 *unresolved_reloc_p = FALSE;
11133 }
11134
11135 /* If this call becomes a call to Arm, force BLX. */
11136 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
11137 {
11138 if ((stub_entry
11139 && !arm_stub_is_thumb (stub_entry->stub_type))
11140 || branch_type != ST_BRANCH_TO_THUMB)
11141 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11142 }
11143 }
11144 }
11145
11146 /* Handle calls via the PLT. */
11147 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
11148 {
11149 value = (splt->output_section->vma
11150 + splt->output_offset
11151 + plt_offset);
11152
11153 if (globals->use_blx
11154 && r_type == R_ARM_THM_CALL
11155 && ! using_thumb_only (globals))
11156 {
11157 /* If the Thumb BLX instruction is available, convert
11158 the BL to a BLX instruction to call the ARM-mode
11159 PLT entry. */
11160 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11161 branch_type = ST_BRANCH_TO_ARM;
11162 }
11163 else
11164 {
11165 if (! using_thumb_only (globals))
11166 /* Target the Thumb stub before the ARM PLT entry. */
11167 value -= PLT_THUMB_STUB_SIZE;
11168 branch_type = ST_BRANCH_TO_THUMB;
11169 }
11170 *unresolved_reloc_p = FALSE;
11171 }
11172
11173 relocation = value + signed_addend;
11174
11175 relocation -= (input_section->output_section->vma
11176 + input_section->output_offset
11177 + rel->r_offset);
11178
11179 check = relocation >> howto->rightshift;
11180
11181 /* If this is a signed value, the rightshift just dropped
11182 leading 1 bits (assuming twos complement). */
11183 if ((bfd_signed_vma) relocation >= 0)
11184 signed_check = check;
11185 else
11186 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11187
11188 /* Calculate the permissable maximum and minimum values for
11189 this relocation according to whether we're relocating for
11190 Thumb-2 or not. */
11191 bitsize = howto->bitsize;
11192 if (!thumb2_bl)
11193 bitsize -= 2;
11194 reloc_signed_max = (1 << (bitsize - 1)) - 1;
11195 reloc_signed_min = ~reloc_signed_max;
11196
11197 /* Assumes two's complement. */
11198 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11199 overflow = TRUE;
11200
11201 if ((lower_insn & 0x5000) == 0x4000)
11202 /* For a BLX instruction, make sure that the relocation is rounded up
11203 to a word boundary. This follows the semantics of the instruction
11204 which specifies that bit 1 of the target address will come from bit
11205 1 of the base address. */
11206 relocation = (relocation + 2) & ~ 3;
11207
11208 /* Put RELOCATION back into the insn. Assumes two's complement.
11209 We use the Thumb-2 encoding, which is safe even if dealing with
11210 a Thumb-1 instruction by virtue of our overflow check above. */
11211 reloc_sign = (signed_check < 0) ? 1 : 0;
11212 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
11213 | ((relocation >> 12) & 0x3ff)
11214 | (reloc_sign << 10);
11215 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
11216 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11217 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11218 | ((relocation >> 1) & 0x7ff);
11219
11220 /* Put the relocated value back in the object file: */
11221 bfd_put_16 (input_bfd, upper_insn, hit_data);
11222 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11223
11224 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11225 }
11226 break;
11227
11228 case R_ARM_THM_JUMP19:
11229 /* Thumb32 conditional branch instruction. */
11230 {
11231 bfd_vma relocation;
11232 bfd_boolean overflow = FALSE;
11233 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11234 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11235 bfd_signed_vma reloc_signed_max = 0xffffe;
11236 bfd_signed_vma reloc_signed_min = -0x100000;
11237 bfd_signed_vma signed_check;
11238 enum elf32_arm_stub_type stub_type = arm_stub_none;
11239 struct elf32_arm_stub_hash_entry *stub_entry;
11240 struct elf32_arm_link_hash_entry *hash;
11241
11242 /* Need to refetch the addend, reconstruct the top three bits,
11243 and squish the two 11 bit pieces together. */
11244 if (globals->use_rel)
11245 {
11246 bfd_vma S = (upper_insn & 0x0400) >> 10;
11247 bfd_vma upper = (upper_insn & 0x003f);
11248 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11249 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11250 bfd_vma lower = (lower_insn & 0x07ff);
11251
11252 upper |= J1 << 6;
11253 upper |= J2 << 7;
11254 upper |= (!S) << 8;
11255 upper -= 0x0100; /* Sign extend. */
11256
11257 addend = (upper << 12) | (lower << 1);
11258 signed_addend = addend;
11259 }
11260
11261 /* Handle calls via the PLT. */
11262 if (plt_offset != (bfd_vma) -1)
11263 {
11264 value = (splt->output_section->vma
11265 + splt->output_offset
11266 + plt_offset);
11267 /* Target the Thumb stub before the ARM PLT entry. */
11268 value -= PLT_THUMB_STUB_SIZE;
11269 *unresolved_reloc_p = FALSE;
11270 }
11271
11272 hash = (struct elf32_arm_link_hash_entry *)h;
11273
11274 stub_type = arm_type_of_stub (info, input_section, rel,
11275 st_type, &branch_type,
11276 hash, value, sym_sec,
11277 input_bfd, sym_name);
11278 if (stub_type != arm_stub_none)
11279 {
11280 stub_entry = elf32_arm_get_stub_entry (input_section,
11281 sym_sec, h,
11282 rel, globals,
11283 stub_type);
11284 if (stub_entry != NULL)
11285 {
11286 value = (stub_entry->stub_offset
11287 + stub_entry->stub_sec->output_offset
11288 + stub_entry->stub_sec->output_section->vma);
11289 }
11290 }
11291
11292 relocation = value + signed_addend;
11293 relocation -= (input_section->output_section->vma
11294 + input_section->output_offset
11295 + rel->r_offset);
11296 signed_check = (bfd_signed_vma) relocation;
11297
11298 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11299 overflow = TRUE;
11300
11301 /* Put RELOCATION back into the insn. */
11302 {
11303 bfd_vma S = (relocation & 0x00100000) >> 20;
11304 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11305 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11306 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11307 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11308
11309 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
11310 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11311 }
11312
11313 /* Put the relocated value back in the object file: */
11314 bfd_put_16 (input_bfd, upper_insn, hit_data);
11315 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11316
11317 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11318 }
11319
11320 case R_ARM_THM_JUMP11:
11321 case R_ARM_THM_JUMP8:
11322 case R_ARM_THM_JUMP6:
11323 /* Thumb B (branch) instruction). */
11324 {
11325 bfd_signed_vma relocation;
11326 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11327 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
11328 bfd_signed_vma signed_check;
11329
11330 /* CZB cannot jump backward. */
11331 if (r_type == R_ARM_THM_JUMP6)
11332 reloc_signed_min = 0;
11333
11334 if (globals->use_rel)
11335 {
11336 /* Need to refetch addend. */
11337 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11338 if (addend & ((howto->src_mask + 1) >> 1))
11339 {
11340 signed_addend = -1;
11341 signed_addend &= ~ howto->src_mask;
11342 signed_addend |= addend;
11343 }
11344 else
11345 signed_addend = addend;
11346 /* The value in the insn has been right shifted. We need to
11347 undo this, so that we can perform the address calculation
11348 in terms of bytes. */
11349 signed_addend <<= howto->rightshift;
11350 }
11351 relocation = value + signed_addend;
11352
11353 relocation -= (input_section->output_section->vma
11354 + input_section->output_offset
11355 + rel->r_offset);
11356
11357 relocation >>= howto->rightshift;
11358 signed_check = relocation;
11359
11360 if (r_type == R_ARM_THM_JUMP6)
11361 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11362 else
11363 relocation &= howto->dst_mask;
11364 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
11365
11366 bfd_put_16 (input_bfd, relocation, hit_data);
11367
11368 /* Assumes two's complement. */
11369 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11370 return bfd_reloc_overflow;
11371
11372 return bfd_reloc_ok;
11373 }
11374
11375 case R_ARM_ALU_PCREL7_0:
11376 case R_ARM_ALU_PCREL15_8:
11377 case R_ARM_ALU_PCREL23_15:
11378 {
11379 bfd_vma insn;
11380 bfd_vma relocation;
11381
11382 insn = bfd_get_32 (input_bfd, hit_data);
11383 if (globals->use_rel)
11384 {
11385 /* Extract the addend. */
11386 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11387 signed_addend = addend;
11388 }
11389 relocation = value + signed_addend;
11390
11391 relocation -= (input_section->output_section->vma
11392 + input_section->output_offset
11393 + rel->r_offset);
11394 insn = (insn & ~0xfff)
11395 | ((howto->bitpos << 7) & 0xf00)
11396 | ((relocation >> howto->bitpos) & 0xff);
11397 bfd_put_32 (input_bfd, value, hit_data);
11398 }
11399 return bfd_reloc_ok;
11400
11401 case R_ARM_GNU_VTINHERIT:
11402 case R_ARM_GNU_VTENTRY:
11403 return bfd_reloc_ok;
11404
11405 case R_ARM_GOTOFF32:
11406 /* Relocation is relative to the start of the
11407 global offset table. */
11408
11409 BFD_ASSERT (sgot != NULL);
11410 if (sgot == NULL)
11411 return bfd_reloc_notsupported;
11412
11413 /* If we are addressing a Thumb function, we need to adjust the
11414 address by one, so that attempts to call the function pointer will
11415 correctly interpret it as Thumb code. */
11416 if (branch_type == ST_BRANCH_TO_THUMB)
11417 value += 1;
11418
11419 /* Note that sgot->output_offset is not involved in this
11420 calculation. We always want the start of .got. If we
11421 define _GLOBAL_OFFSET_TABLE in a different way, as is
11422 permitted by the ABI, we might have to change this
11423 calculation. */
11424 value -= sgot->output_section->vma;
11425 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11426 contents, rel->r_offset, value,
11427 rel->r_addend);
11428
11429 case R_ARM_GOTPC:
11430 /* Use global offset table as symbol value. */
11431 BFD_ASSERT (sgot != NULL);
11432
11433 if (sgot == NULL)
11434 return bfd_reloc_notsupported;
11435
11436 *unresolved_reloc_p = FALSE;
11437 value = sgot->output_section->vma;
11438 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11439 contents, rel->r_offset, value,
11440 rel->r_addend);
11441
11442 case R_ARM_GOT32:
11443 case R_ARM_GOT_PREL:
11444 /* Relocation is to the entry for this symbol in the
11445 global offset table. */
11446 if (sgot == NULL)
11447 return bfd_reloc_notsupported;
11448
11449 if (dynreloc_st_type == STT_GNU_IFUNC
11450 && plt_offset != (bfd_vma) -1
11451 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11452 {
11453 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11454 symbol, and the relocation resolves directly to the runtime
11455 target rather than to the .iplt entry. This means that any
11456 .got entry would be the same value as the .igot.plt entry,
11457 so there's no point creating both. */
11458 sgot = globals->root.igotplt;
11459 value = sgot->output_offset + gotplt_offset;
11460 }
11461 else if (h != NULL)
11462 {
11463 bfd_vma off;
11464
11465 off = h->got.offset;
11466 BFD_ASSERT (off != (bfd_vma) -1);
11467 if ((off & 1) != 0)
11468 {
11469 /* We have already processsed one GOT relocation against
11470 this symbol. */
11471 off &= ~1;
11472 if (globals->root.dynamic_sections_created
11473 && !SYMBOL_REFERENCES_LOCAL (info, h))
11474 *unresolved_reloc_p = FALSE;
11475 }
11476 else
11477 {
11478 Elf_Internal_Rela outrel;
11479 int isrofixup = 0;
11480
11481 if (((h->dynindx != -1) || globals->fdpic_p)
11482 && !SYMBOL_REFERENCES_LOCAL (info, h))
11483 {
11484 /* If the symbol doesn't resolve locally in a static
11485 object, we have an undefined reference. If the
11486 symbol doesn't resolve locally in a dynamic object,
11487 it should be resolved by the dynamic linker. */
11488 if (globals->root.dynamic_sections_created)
11489 {
11490 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11491 *unresolved_reloc_p = FALSE;
11492 }
11493 else
11494 outrel.r_info = 0;
11495 outrel.r_addend = 0;
11496 }
11497 else
11498 {
11499 if (dynreloc_st_type == STT_GNU_IFUNC)
11500 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11501 else if (bfd_link_pic (info)
11502 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11503 || h->root.type != bfd_link_hash_undefweak))
11504 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11505 else if (globals->fdpic_p)
11506 isrofixup = 1;
11507 else
11508 outrel.r_info = 0;
11509 outrel.r_addend = dynreloc_value;
11510 }
11511
11512 /* The GOT entry is initialized to zero by default.
11513 See if we should install a different value. */
11514 if (outrel.r_addend != 0
11515 && (outrel.r_info == 0 || globals->use_rel || isrofixup))
11516 {
11517 bfd_put_32 (output_bfd, outrel.r_addend,
11518 sgot->contents + off);
11519 outrel.r_addend = 0;
11520 }
11521
11522 if (outrel.r_info != 0 && !isrofixup)
11523 {
11524 outrel.r_offset = (sgot->output_section->vma
11525 + sgot->output_offset
11526 + off);
11527 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11528 }
11529 else if (isrofixup)
11530 {
11531 arm_elf_add_rofixup(output_bfd,
11532 elf32_arm_hash_table(info)->srofixup,
11533 sgot->output_section->vma
11534 + sgot->output_offset + off);
11535 }
11536 h->got.offset |= 1;
11537 }
11538 value = sgot->output_offset + off;
11539 }
11540 else
11541 {
11542 bfd_vma off;
11543
11544 BFD_ASSERT (local_got_offsets != NULL
11545 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11546
11547 off = local_got_offsets[r_symndx];
11548
11549 /* The offset must always be a multiple of 4. We use the
11550 least significant bit to record whether we have already
11551 generated the necessary reloc. */
11552 if ((off & 1) != 0)
11553 off &= ~1;
11554 else
11555 {
11556 if (globals->use_rel)
11557 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11558
11559 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
11560 {
11561 Elf_Internal_Rela outrel;
11562
11563 outrel.r_addend = addend + dynreloc_value;
11564 outrel.r_offset = (sgot->output_section->vma
11565 + sgot->output_offset
11566 + off);
11567 if (dynreloc_st_type == STT_GNU_IFUNC)
11568 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11569 else
11570 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11571 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11572 }
11573 else if (globals->fdpic_p)
11574 {
11575 /* For FDPIC executables, we use rofixup to fix
11576 address at runtime. */
11577 arm_elf_add_rofixup(output_bfd, globals->srofixup,
11578 sgot->output_section->vma + sgot->output_offset
11579 + off);
11580 }
11581
11582 local_got_offsets[r_symndx] |= 1;
11583 }
11584
11585 value = sgot->output_offset + off;
11586 }
11587 if (r_type != R_ARM_GOT32)
11588 value += sgot->output_section->vma;
11589
11590 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11591 contents, rel->r_offset, value,
11592 rel->r_addend);
11593
11594 case R_ARM_TLS_LDO32:
11595 value = value - dtpoff_base (info);
11596
11597 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11598 contents, rel->r_offset, value,
11599 rel->r_addend);
11600
11601 case R_ARM_TLS_LDM32:
11602 case R_ARM_TLS_LDM32_FDPIC:
11603 {
11604 bfd_vma off;
11605
11606 if (sgot == NULL)
11607 abort ();
11608
11609 off = globals->tls_ldm_got.offset;
11610
11611 if ((off & 1) != 0)
11612 off &= ~1;
11613 else
11614 {
11615 /* If we don't know the module number, create a relocation
11616 for it. */
11617 if (bfd_link_pic (info))
11618 {
11619 Elf_Internal_Rela outrel;
11620
11621 if (srelgot == NULL)
11622 abort ();
11623
11624 outrel.r_addend = 0;
11625 outrel.r_offset = (sgot->output_section->vma
11626 + sgot->output_offset + off);
11627 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11628
11629 if (globals->use_rel)
11630 bfd_put_32 (output_bfd, outrel.r_addend,
11631 sgot->contents + off);
11632
11633 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11634 }
11635 else
11636 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11637
11638 globals->tls_ldm_got.offset |= 1;
11639 }
11640
11641 if (r_type == R_ARM_TLS_LDM32_FDPIC)
11642 {
11643 bfd_put_32(output_bfd,
11644 globals->root.sgot->output_offset + off,
11645 contents + rel->r_offset);
11646
11647 return bfd_reloc_ok;
11648 }
11649 else
11650 {
11651 value = sgot->output_section->vma + sgot->output_offset + off
11652 - (input_section->output_section->vma
11653 + input_section->output_offset + rel->r_offset);
11654
11655 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11656 contents, rel->r_offset, value,
11657 rel->r_addend);
11658 }
11659 }
11660
11661 case R_ARM_TLS_CALL:
11662 case R_ARM_THM_TLS_CALL:
11663 case R_ARM_TLS_GD32:
11664 case R_ARM_TLS_GD32_FDPIC:
11665 case R_ARM_TLS_IE32:
11666 case R_ARM_TLS_IE32_FDPIC:
11667 case R_ARM_TLS_GOTDESC:
11668 case R_ARM_TLS_DESCSEQ:
11669 case R_ARM_THM_TLS_DESCSEQ:
11670 {
11671 bfd_vma off, offplt;
11672 int indx = 0;
11673 char tls_type;
11674
11675 BFD_ASSERT (sgot != NULL);
11676
11677 if (h != NULL)
11678 {
11679 bfd_boolean dyn;
11680 dyn = globals->root.dynamic_sections_created;
11681 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11682 bfd_link_pic (info),
11683 h)
11684 && (!bfd_link_pic (info)
11685 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11686 {
11687 *unresolved_reloc_p = FALSE;
11688 indx = h->dynindx;
11689 }
11690 off = h->got.offset;
11691 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11692 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11693 }
11694 else
11695 {
11696 BFD_ASSERT (local_got_offsets != NULL);
11697 off = local_got_offsets[r_symndx];
11698 offplt = local_tlsdesc_gotents[r_symndx];
11699 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11700 }
11701
11702 /* Linker relaxations happens from one of the
11703 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11704 if (ELF32_R_TYPE(rel->r_info) != r_type)
11705 tls_type = GOT_TLS_IE;
11706
11707 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11708
11709 if ((off & 1) != 0)
11710 off &= ~1;
11711 else
11712 {
11713 bfd_boolean need_relocs = FALSE;
11714 Elf_Internal_Rela outrel;
11715 int cur_off = off;
11716
11717 /* The GOT entries have not been initialized yet. Do it
11718 now, and emit any relocations. If both an IE GOT and a
11719 GD GOT are necessary, we emit the GD first. */
11720
11721 if ((bfd_link_pic (info) || indx != 0)
11722 && (h == NULL
11723 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11724 && !resolved_to_zero)
11725 || h->root.type != bfd_link_hash_undefweak))
11726 {
11727 need_relocs = TRUE;
11728 BFD_ASSERT (srelgot != NULL);
11729 }
11730
11731 if (tls_type & GOT_TLS_GDESC)
11732 {
11733 bfd_byte *loc;
11734
11735 /* We should have relaxed, unless this is an undefined
11736 weak symbol. */
11737 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11738 || bfd_link_pic (info));
11739 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11740 <= globals->root.sgotplt->size);
11741
11742 outrel.r_addend = 0;
11743 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11744 + globals->root.sgotplt->output_offset
11745 + offplt
11746 + globals->sgotplt_jump_table_size);
11747
11748 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11749 sreloc = globals->root.srelplt;
11750 loc = sreloc->contents;
11751 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11752 BFD_ASSERT (loc + RELOC_SIZE (globals)
11753 <= sreloc->contents + sreloc->size);
11754
11755 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11756
11757 /* For globals, the first word in the relocation gets
11758 the relocation index and the top bit set, or zero,
11759 if we're binding now. For locals, it gets the
11760 symbol's offset in the tls section. */
11761 bfd_put_32 (output_bfd,
11762 !h ? value - elf_hash_table (info)->tls_sec->vma
11763 : info->flags & DF_BIND_NOW ? 0
11764 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11765 globals->root.sgotplt->contents + offplt
11766 + globals->sgotplt_jump_table_size);
11767
11768 /* Second word in the relocation is always zero. */
11769 bfd_put_32 (output_bfd, 0,
11770 globals->root.sgotplt->contents + offplt
11771 + globals->sgotplt_jump_table_size + 4);
11772 }
11773 if (tls_type & GOT_TLS_GD)
11774 {
11775 if (need_relocs)
11776 {
11777 outrel.r_addend = 0;
11778 outrel.r_offset = (sgot->output_section->vma
11779 + sgot->output_offset
11780 + cur_off);
11781 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11782
11783 if (globals->use_rel)
11784 bfd_put_32 (output_bfd, outrel.r_addend,
11785 sgot->contents + cur_off);
11786
11787 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11788
11789 if (indx == 0)
11790 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11791 sgot->contents + cur_off + 4);
11792 else
11793 {
11794 outrel.r_addend = 0;
11795 outrel.r_info = ELF32_R_INFO (indx,
11796 R_ARM_TLS_DTPOFF32);
11797 outrel.r_offset += 4;
11798
11799 if (globals->use_rel)
11800 bfd_put_32 (output_bfd, outrel.r_addend,
11801 sgot->contents + cur_off + 4);
11802
11803 elf32_arm_add_dynreloc (output_bfd, info,
11804 srelgot, &outrel);
11805 }
11806 }
11807 else
11808 {
11809 /* If we are not emitting relocations for a
11810 general dynamic reference, then we must be in a
11811 static link or an executable link with the
11812 symbol binding locally. Mark it as belonging
11813 to module 1, the executable. */
11814 bfd_put_32 (output_bfd, 1,
11815 sgot->contents + cur_off);
11816 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11817 sgot->contents + cur_off + 4);
11818 }
11819
11820 cur_off += 8;
11821 }
11822
11823 if (tls_type & GOT_TLS_IE)
11824 {
11825 if (need_relocs)
11826 {
11827 if (indx == 0)
11828 outrel.r_addend = value - dtpoff_base (info);
11829 else
11830 outrel.r_addend = 0;
11831 outrel.r_offset = (sgot->output_section->vma
11832 + sgot->output_offset
11833 + cur_off);
11834 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11835
11836 if (globals->use_rel)
11837 bfd_put_32 (output_bfd, outrel.r_addend,
11838 sgot->contents + cur_off);
11839
11840 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11841 }
11842 else
11843 bfd_put_32 (output_bfd, tpoff (info, value),
11844 sgot->contents + cur_off);
11845 cur_off += 4;
11846 }
11847
11848 if (h != NULL)
11849 h->got.offset |= 1;
11850 else
11851 local_got_offsets[r_symndx] |= 1;
11852 }
11853
11854 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
11855 off += 8;
11856 else if (tls_type & GOT_TLS_GDESC)
11857 off = offplt;
11858
11859 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11860 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11861 {
11862 bfd_signed_vma offset;
11863 /* TLS stubs are arm mode. The original symbol is a
11864 data object, so branch_type is bogus. */
11865 branch_type = ST_BRANCH_TO_ARM;
11866 enum elf32_arm_stub_type stub_type
11867 = arm_type_of_stub (info, input_section, rel,
11868 st_type, &branch_type,
11869 (struct elf32_arm_link_hash_entry *)h,
11870 globals->tls_trampoline, globals->root.splt,
11871 input_bfd, sym_name);
11872
11873 if (stub_type != arm_stub_none)
11874 {
11875 struct elf32_arm_stub_hash_entry *stub_entry
11876 = elf32_arm_get_stub_entry
11877 (input_section, globals->root.splt, 0, rel,
11878 globals, stub_type);
11879 offset = (stub_entry->stub_offset
11880 + stub_entry->stub_sec->output_offset
11881 + stub_entry->stub_sec->output_section->vma);
11882 }
11883 else
11884 offset = (globals->root.splt->output_section->vma
11885 + globals->root.splt->output_offset
11886 + globals->tls_trampoline);
11887
11888 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11889 {
11890 unsigned long inst;
11891
11892 offset -= (input_section->output_section->vma
11893 + input_section->output_offset
11894 + rel->r_offset + 8);
11895
11896 inst = offset >> 2;
11897 inst &= 0x00ffffff;
11898 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11899 }
11900 else
11901 {
11902 /* Thumb blx encodes the offset in a complicated
11903 fashion. */
11904 unsigned upper_insn, lower_insn;
11905 unsigned neg;
11906
11907 offset -= (input_section->output_section->vma
11908 + input_section->output_offset
11909 + rel->r_offset + 4);
11910
11911 if (stub_type != arm_stub_none
11912 && arm_stub_is_thumb (stub_type))
11913 {
11914 lower_insn = 0xd000;
11915 }
11916 else
11917 {
11918 lower_insn = 0xc000;
11919 /* Round up the offset to a word boundary. */
11920 offset = (offset + 2) & ~2;
11921 }
11922
11923 neg = offset < 0;
11924 upper_insn = (0xf000
11925 | ((offset >> 12) & 0x3ff)
11926 | (neg << 10));
11927 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11928 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11929 | ((offset >> 1) & 0x7ff);
11930 bfd_put_16 (input_bfd, upper_insn, hit_data);
11931 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11932 return bfd_reloc_ok;
11933 }
11934 }
11935 /* These relocations needs special care, as besides the fact
11936 they point somewhere in .gotplt, the addend must be
11937 adjusted accordingly depending on the type of instruction
11938 we refer to. */
11939 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11940 {
11941 unsigned long data, insn;
11942 unsigned thumb;
11943
11944 data = bfd_get_32 (input_bfd, hit_data);
11945 thumb = data & 1;
11946 data &= ~1u;
11947
11948 if (thumb)
11949 {
11950 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11951 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11952 insn = (insn << 16)
11953 | bfd_get_16 (input_bfd,
11954 contents + rel->r_offset - data + 2);
11955 if ((insn & 0xf800c000) == 0xf000c000)
11956 /* bl/blx */
11957 value = -6;
11958 else if ((insn & 0xffffff00) == 0x4400)
11959 /* add */
11960 value = -5;
11961 else
11962 {
11963 _bfd_error_handler
11964 /* xgettext:c-format */
11965 (_("%pB(%pA+%#" PRIx64 "): "
11966 "unexpected %s instruction '%#lx' "
11967 "referenced by TLS_GOTDESC"),
11968 input_bfd, input_section, (uint64_t) rel->r_offset,
11969 "Thumb", insn);
11970 return bfd_reloc_notsupported;
11971 }
11972 }
11973 else
11974 {
11975 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11976
11977 switch (insn >> 24)
11978 {
11979 case 0xeb: /* bl */
11980 case 0xfa: /* blx */
11981 value = -4;
11982 break;
11983
11984 case 0xe0: /* add */
11985 value = -8;
11986 break;
11987
11988 default:
11989 _bfd_error_handler
11990 /* xgettext:c-format */
11991 (_("%pB(%pA+%#" PRIx64 "): "
11992 "unexpected %s instruction '%#lx' "
11993 "referenced by TLS_GOTDESC"),
11994 input_bfd, input_section, (uint64_t) rel->r_offset,
11995 "ARM", insn);
11996 return bfd_reloc_notsupported;
11997 }
11998 }
11999
12000 value += ((globals->root.sgotplt->output_section->vma
12001 + globals->root.sgotplt->output_offset + off)
12002 - (input_section->output_section->vma
12003 + input_section->output_offset
12004 + rel->r_offset)
12005 + globals->sgotplt_jump_table_size);
12006 }
12007 else
12008 value = ((globals->root.sgot->output_section->vma
12009 + globals->root.sgot->output_offset + off)
12010 - (input_section->output_section->vma
12011 + input_section->output_offset + rel->r_offset));
12012
12013 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12014 r_type == R_ARM_TLS_IE32_FDPIC))
12015 {
12016 /* For FDPIC relocations, resolve to the offset of the GOT
12017 entry from the start of GOT. */
12018 bfd_put_32(output_bfd,
12019 globals->root.sgot->output_offset + off,
12020 contents + rel->r_offset);
12021
12022 return bfd_reloc_ok;
12023 }
12024 else
12025 {
12026 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12027 contents, rel->r_offset, value,
12028 rel->r_addend);
12029 }
12030 }
12031
12032 case R_ARM_TLS_LE32:
12033 if (bfd_link_dll (info))
12034 {
12035 _bfd_error_handler
12036 /* xgettext:c-format */
12037 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12038 "in shared object"),
12039 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
12040 return bfd_reloc_notsupported;
12041 }
12042 else
12043 value = tpoff (info, value);
12044
12045 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12046 contents, rel->r_offset, value,
12047 rel->r_addend);
12048
12049 case R_ARM_V4BX:
12050 if (globals->fix_v4bx)
12051 {
12052 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12053
12054 /* Ensure that we have a BX instruction. */
12055 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
12056
12057 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12058 {
12059 /* Branch to veneer. */
12060 bfd_vma glue_addr;
12061 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12062 glue_addr -= input_section->output_section->vma
12063 + input_section->output_offset
12064 + rel->r_offset + 8;
12065 insn = (insn & 0xf0000000) | 0x0a000000
12066 | ((glue_addr >> 2) & 0x00ffffff);
12067 }
12068 else
12069 {
12070 /* Preserve Rm (lowest four bits) and the condition code
12071 (highest four bits). Other bits encode MOV PC,Rm. */
12072 insn = (insn & 0xf000000f) | 0x01a0f000;
12073 }
12074
12075 bfd_put_32 (input_bfd, insn, hit_data);
12076 }
12077 return bfd_reloc_ok;
12078
12079 case R_ARM_MOVW_ABS_NC:
12080 case R_ARM_MOVT_ABS:
12081 case R_ARM_MOVW_PREL_NC:
12082 case R_ARM_MOVT_PREL:
12083 /* Until we properly support segment-base-relative addressing then
12084 we assume the segment base to be zero, as for the group relocations.
12085 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12086 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12087 case R_ARM_MOVW_BREL_NC:
12088 case R_ARM_MOVW_BREL:
12089 case R_ARM_MOVT_BREL:
12090 {
12091 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12092
12093 if (globals->use_rel)
12094 {
12095 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
12096 signed_addend = (addend ^ 0x8000) - 0x8000;
12097 }
12098
12099 value += signed_addend;
12100
12101 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12102 value -= (input_section->output_section->vma
12103 + input_section->output_offset + rel->r_offset);
12104
12105 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
12106 return bfd_reloc_overflow;
12107
12108 if (branch_type == ST_BRANCH_TO_THUMB)
12109 value |= 1;
12110
12111 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
12112 || r_type == R_ARM_MOVT_BREL)
12113 value >>= 16;
12114
12115 insn &= 0xfff0f000;
12116 insn |= value & 0xfff;
12117 insn |= (value & 0xf000) << 4;
12118 bfd_put_32 (input_bfd, insn, hit_data);
12119 }
12120 return bfd_reloc_ok;
12121
12122 case R_ARM_THM_MOVW_ABS_NC:
12123 case R_ARM_THM_MOVT_ABS:
12124 case R_ARM_THM_MOVW_PREL_NC:
12125 case R_ARM_THM_MOVT_PREL:
12126 /* Until we properly support segment-base-relative addressing then
12127 we assume the segment base to be zero, as for the above relocations.
12128 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12129 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12130 as R_ARM_THM_MOVT_ABS. */
12131 case R_ARM_THM_MOVW_BREL_NC:
12132 case R_ARM_THM_MOVW_BREL:
12133 case R_ARM_THM_MOVT_BREL:
12134 {
12135 bfd_vma insn;
12136
12137 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12138 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12139
12140 if (globals->use_rel)
12141 {
12142 addend = ((insn >> 4) & 0xf000)
12143 | ((insn >> 15) & 0x0800)
12144 | ((insn >> 4) & 0x0700)
12145 | (insn & 0x00ff);
12146 signed_addend = (addend ^ 0x8000) - 0x8000;
12147 }
12148
12149 value += signed_addend;
12150
12151 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12152 value -= (input_section->output_section->vma
12153 + input_section->output_offset + rel->r_offset);
12154
12155 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
12156 return bfd_reloc_overflow;
12157
12158 if (branch_type == ST_BRANCH_TO_THUMB)
12159 value |= 1;
12160
12161 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
12162 || r_type == R_ARM_THM_MOVT_BREL)
12163 value >>= 16;
12164
12165 insn &= 0xfbf08f00;
12166 insn |= (value & 0xf000) << 4;
12167 insn |= (value & 0x0800) << 15;
12168 insn |= (value & 0x0700) << 4;
12169 insn |= (value & 0x00ff);
12170
12171 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12172 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12173 }
12174 return bfd_reloc_ok;
12175
12176 case R_ARM_ALU_PC_G0_NC:
12177 case R_ARM_ALU_PC_G1_NC:
12178 case R_ARM_ALU_PC_G0:
12179 case R_ARM_ALU_PC_G1:
12180 case R_ARM_ALU_PC_G2:
12181 case R_ARM_ALU_SB_G0_NC:
12182 case R_ARM_ALU_SB_G1_NC:
12183 case R_ARM_ALU_SB_G0:
12184 case R_ARM_ALU_SB_G1:
12185 case R_ARM_ALU_SB_G2:
12186 {
12187 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12188 bfd_vma pc = input_section->output_section->vma
12189 + input_section->output_offset + rel->r_offset;
12190 /* sb is the origin of the *segment* containing the symbol. */
12191 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12192 bfd_vma residual;
12193 bfd_vma g_n;
12194 bfd_signed_vma signed_value;
12195 int group = 0;
12196
12197 /* Determine which group of bits to select. */
12198 switch (r_type)
12199 {
12200 case R_ARM_ALU_PC_G0_NC:
12201 case R_ARM_ALU_PC_G0:
12202 case R_ARM_ALU_SB_G0_NC:
12203 case R_ARM_ALU_SB_G0:
12204 group = 0;
12205 break;
12206
12207 case R_ARM_ALU_PC_G1_NC:
12208 case R_ARM_ALU_PC_G1:
12209 case R_ARM_ALU_SB_G1_NC:
12210 case R_ARM_ALU_SB_G1:
12211 group = 1;
12212 break;
12213
12214 case R_ARM_ALU_PC_G2:
12215 case R_ARM_ALU_SB_G2:
12216 group = 2;
12217 break;
12218
12219 default:
12220 abort ();
12221 }
12222
12223 /* If REL, extract the addend from the insn. If RELA, it will
12224 have already been fetched for us. */
12225 if (globals->use_rel)
12226 {
12227 int negative;
12228 bfd_vma constant = insn & 0xff;
12229 bfd_vma rotation = (insn & 0xf00) >> 8;
12230
12231 if (rotation == 0)
12232 signed_addend = constant;
12233 else
12234 {
12235 /* Compensate for the fact that in the instruction, the
12236 rotation is stored in multiples of 2 bits. */
12237 rotation *= 2;
12238
12239 /* Rotate "constant" right by "rotation" bits. */
12240 signed_addend = (constant >> rotation) |
12241 (constant << (8 * sizeof (bfd_vma) - rotation));
12242 }
12243
12244 /* Determine if the instruction is an ADD or a SUB.
12245 (For REL, this determines the sign of the addend.) */
12246 negative = identify_add_or_sub (insn);
12247 if (negative == 0)
12248 {
12249 _bfd_error_handler
12250 /* xgettext:c-format */
12251 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
12252 "are allowed for ALU group relocations"),
12253 input_bfd, input_section, (uint64_t) rel->r_offset);
12254 return bfd_reloc_overflow;
12255 }
12256
12257 signed_addend *= negative;
12258 }
12259
12260 /* Compute the value (X) to go in the place. */
12261 if (r_type == R_ARM_ALU_PC_G0_NC
12262 || r_type == R_ARM_ALU_PC_G1_NC
12263 || r_type == R_ARM_ALU_PC_G0
12264 || r_type == R_ARM_ALU_PC_G1
12265 || r_type == R_ARM_ALU_PC_G2)
12266 /* PC relative. */
12267 signed_value = value - pc + signed_addend;
12268 else
12269 /* Section base relative. */
12270 signed_value = value - sb + signed_addend;
12271
12272 /* If the target symbol is a Thumb function, then set the
12273 Thumb bit in the address. */
12274 if (branch_type == ST_BRANCH_TO_THUMB)
12275 signed_value |= 1;
12276
12277 /* Calculate the value of the relevant G_n, in encoded
12278 constant-with-rotation format. */
12279 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12280 group, &residual);
12281
12282 /* Check for overflow if required. */
12283 if ((r_type == R_ARM_ALU_PC_G0
12284 || r_type == R_ARM_ALU_PC_G1
12285 || r_type == R_ARM_ALU_PC_G2
12286 || r_type == R_ARM_ALU_SB_G0
12287 || r_type == R_ARM_ALU_SB_G1
12288 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12289 {
12290 _bfd_error_handler
12291 /* xgettext:c-format */
12292 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12293 "splitting %#" PRIx64 " for group relocation %s"),
12294 input_bfd, input_section, (uint64_t) rel->r_offset,
12295 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12296 howto->name);
12297 return bfd_reloc_overflow;
12298 }
12299
12300 /* Mask out the value and the ADD/SUB part of the opcode; take care
12301 not to destroy the S bit. */
12302 insn &= 0xff1ff000;
12303
12304 /* Set the opcode according to whether the value to go in the
12305 place is negative. */
12306 if (signed_value < 0)
12307 insn |= 1 << 22;
12308 else
12309 insn |= 1 << 23;
12310
12311 /* Encode the offset. */
12312 insn |= g_n;
12313
12314 bfd_put_32 (input_bfd, insn, hit_data);
12315 }
12316 return bfd_reloc_ok;
12317
12318 case R_ARM_LDR_PC_G0:
12319 case R_ARM_LDR_PC_G1:
12320 case R_ARM_LDR_PC_G2:
12321 case R_ARM_LDR_SB_G0:
12322 case R_ARM_LDR_SB_G1:
12323 case R_ARM_LDR_SB_G2:
12324 {
12325 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12326 bfd_vma pc = input_section->output_section->vma
12327 + input_section->output_offset + rel->r_offset;
12328 /* sb is the origin of the *segment* containing the symbol. */
12329 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12330 bfd_vma residual;
12331 bfd_signed_vma signed_value;
12332 int group = 0;
12333
12334 /* Determine which groups of bits to calculate. */
12335 switch (r_type)
12336 {
12337 case R_ARM_LDR_PC_G0:
12338 case R_ARM_LDR_SB_G0:
12339 group = 0;
12340 break;
12341
12342 case R_ARM_LDR_PC_G1:
12343 case R_ARM_LDR_SB_G1:
12344 group = 1;
12345 break;
12346
12347 case R_ARM_LDR_PC_G2:
12348 case R_ARM_LDR_SB_G2:
12349 group = 2;
12350 break;
12351
12352 default:
12353 abort ();
12354 }
12355
12356 /* If REL, extract the addend from the insn. If RELA, it will
12357 have already been fetched for us. */
12358 if (globals->use_rel)
12359 {
12360 int negative = (insn & (1 << 23)) ? 1 : -1;
12361 signed_addend = negative * (insn & 0xfff);
12362 }
12363
12364 /* Compute the value (X) to go in the place. */
12365 if (r_type == R_ARM_LDR_PC_G0
12366 || r_type == R_ARM_LDR_PC_G1
12367 || r_type == R_ARM_LDR_PC_G2)
12368 /* PC relative. */
12369 signed_value = value - pc + signed_addend;
12370 else
12371 /* Section base relative. */
12372 signed_value = value - sb + signed_addend;
12373
12374 /* Calculate the value of the relevant G_{n-1} to obtain
12375 the residual at that stage. */
12376 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12377 group - 1, &residual);
12378
12379 /* Check for overflow. */
12380 if (residual >= 0x1000)
12381 {
12382 _bfd_error_handler
12383 /* xgettext:c-format */
12384 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12385 "splitting %#" PRIx64 " for group relocation %s"),
12386 input_bfd, input_section, (uint64_t) rel->r_offset,
12387 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12388 howto->name);
12389 return bfd_reloc_overflow;
12390 }
12391
12392 /* Mask out the value and U bit. */
12393 insn &= 0xff7ff000;
12394
12395 /* Set the U bit if the value to go in the place is non-negative. */
12396 if (signed_value >= 0)
12397 insn |= 1 << 23;
12398
12399 /* Encode the offset. */
12400 insn |= residual;
12401
12402 bfd_put_32 (input_bfd, insn, hit_data);
12403 }
12404 return bfd_reloc_ok;
12405
12406 case R_ARM_LDRS_PC_G0:
12407 case R_ARM_LDRS_PC_G1:
12408 case R_ARM_LDRS_PC_G2:
12409 case R_ARM_LDRS_SB_G0:
12410 case R_ARM_LDRS_SB_G1:
12411 case R_ARM_LDRS_SB_G2:
12412 {
12413 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12414 bfd_vma pc = input_section->output_section->vma
12415 + input_section->output_offset + rel->r_offset;
12416 /* sb is the origin of the *segment* containing the symbol. */
12417 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12418 bfd_vma residual;
12419 bfd_signed_vma signed_value;
12420 int group = 0;
12421
12422 /* Determine which groups of bits to calculate. */
12423 switch (r_type)
12424 {
12425 case R_ARM_LDRS_PC_G0:
12426 case R_ARM_LDRS_SB_G0:
12427 group = 0;
12428 break;
12429
12430 case R_ARM_LDRS_PC_G1:
12431 case R_ARM_LDRS_SB_G1:
12432 group = 1;
12433 break;
12434
12435 case R_ARM_LDRS_PC_G2:
12436 case R_ARM_LDRS_SB_G2:
12437 group = 2;
12438 break;
12439
12440 default:
12441 abort ();
12442 }
12443
12444 /* If REL, extract the addend from the insn. If RELA, it will
12445 have already been fetched for us. */
12446 if (globals->use_rel)
12447 {
12448 int negative = (insn & (1 << 23)) ? 1 : -1;
12449 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12450 }
12451
12452 /* Compute the value (X) to go in the place. */
12453 if (r_type == R_ARM_LDRS_PC_G0
12454 || r_type == R_ARM_LDRS_PC_G1
12455 || r_type == R_ARM_LDRS_PC_G2)
12456 /* PC relative. */
12457 signed_value = value - pc + signed_addend;
12458 else
12459 /* Section base relative. */
12460 signed_value = value - sb + signed_addend;
12461
12462 /* Calculate the value of the relevant G_{n-1} to obtain
12463 the residual at that stage. */
12464 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12465 group - 1, &residual);
12466
12467 /* Check for overflow. */
12468 if (residual >= 0x100)
12469 {
12470 _bfd_error_handler
12471 /* xgettext:c-format */
12472 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12473 "splitting %#" PRIx64 " for group relocation %s"),
12474 input_bfd, input_section, (uint64_t) rel->r_offset,
12475 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12476 howto->name);
12477 return bfd_reloc_overflow;
12478 }
12479
12480 /* Mask out the value and U bit. */
12481 insn &= 0xff7ff0f0;
12482
12483 /* Set the U bit if the value to go in the place is non-negative. */
12484 if (signed_value >= 0)
12485 insn |= 1 << 23;
12486
12487 /* Encode the offset. */
12488 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12489
12490 bfd_put_32 (input_bfd, insn, hit_data);
12491 }
12492 return bfd_reloc_ok;
12493
12494 case R_ARM_LDC_PC_G0:
12495 case R_ARM_LDC_PC_G1:
12496 case R_ARM_LDC_PC_G2:
12497 case R_ARM_LDC_SB_G0:
12498 case R_ARM_LDC_SB_G1:
12499 case R_ARM_LDC_SB_G2:
12500 {
12501 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12502 bfd_vma pc = input_section->output_section->vma
12503 + input_section->output_offset + rel->r_offset;
12504 /* sb is the origin of the *segment* containing the symbol. */
12505 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12506 bfd_vma residual;
12507 bfd_signed_vma signed_value;
12508 int group = 0;
12509
12510 /* Determine which groups of bits to calculate. */
12511 switch (r_type)
12512 {
12513 case R_ARM_LDC_PC_G0:
12514 case R_ARM_LDC_SB_G0:
12515 group = 0;
12516 break;
12517
12518 case R_ARM_LDC_PC_G1:
12519 case R_ARM_LDC_SB_G1:
12520 group = 1;
12521 break;
12522
12523 case R_ARM_LDC_PC_G2:
12524 case R_ARM_LDC_SB_G2:
12525 group = 2;
12526 break;
12527
12528 default:
12529 abort ();
12530 }
12531
12532 /* If REL, extract the addend from the insn. If RELA, it will
12533 have already been fetched for us. */
12534 if (globals->use_rel)
12535 {
12536 int negative = (insn & (1 << 23)) ? 1 : -1;
12537 signed_addend = negative * ((insn & 0xff) << 2);
12538 }
12539
12540 /* Compute the value (X) to go in the place. */
12541 if (r_type == R_ARM_LDC_PC_G0
12542 || r_type == R_ARM_LDC_PC_G1
12543 || r_type == R_ARM_LDC_PC_G2)
12544 /* PC relative. */
12545 signed_value = value - pc + signed_addend;
12546 else
12547 /* Section base relative. */
12548 signed_value = value - sb + signed_addend;
12549
12550 /* Calculate the value of the relevant G_{n-1} to obtain
12551 the residual at that stage. */
12552 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12553 group - 1, &residual);
12554
12555 /* Check for overflow. (The absolute value to go in the place must be
12556 divisible by four and, after having been divided by four, must
12557 fit in eight bits.) */
12558 if ((residual & 0x3) != 0 || residual >= 0x400)
12559 {
12560 _bfd_error_handler
12561 /* xgettext:c-format */
12562 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12563 "splitting %#" PRIx64 " for group relocation %s"),
12564 input_bfd, input_section, (uint64_t) rel->r_offset,
12565 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12566 howto->name);
12567 return bfd_reloc_overflow;
12568 }
12569
12570 /* Mask out the value and U bit. */
12571 insn &= 0xff7fff00;
12572
12573 /* Set the U bit if the value to go in the place is non-negative. */
12574 if (signed_value >= 0)
12575 insn |= 1 << 23;
12576
12577 /* Encode the offset. */
12578 insn |= residual >> 2;
12579
12580 bfd_put_32 (input_bfd, insn, hit_data);
12581 }
12582 return bfd_reloc_ok;
12583
12584 case R_ARM_THM_ALU_ABS_G0_NC:
12585 case R_ARM_THM_ALU_ABS_G1_NC:
12586 case R_ARM_THM_ALU_ABS_G2_NC:
12587 case R_ARM_THM_ALU_ABS_G3_NC:
12588 {
12589 const int shift_array[4] = {0, 8, 16, 24};
12590 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12591 bfd_vma addr = value;
12592 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12593
12594 /* Compute address. */
12595 if (globals->use_rel)
12596 signed_addend = insn & 0xff;
12597 addr += signed_addend;
12598 if (branch_type == ST_BRANCH_TO_THUMB)
12599 addr |= 1;
12600 /* Clean imm8 insn. */
12601 insn &= 0xff00;
12602 /* And update with correct part of address. */
12603 insn |= (addr >> shift) & 0xff;
12604 /* Update insn. */
12605 bfd_put_16 (input_bfd, insn, hit_data);
12606 }
12607
12608 *unresolved_reloc_p = FALSE;
12609 return bfd_reloc_ok;
12610
12611 case R_ARM_GOTOFFFUNCDESC:
12612 {
12613 if (h == NULL)
12614 {
12615 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12616 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12617 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12618 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12619 bfd_vma seg = -1;
12620
12621 if (bfd_link_pic(info) && dynindx == 0)
12622 abort();
12623
12624 /* Resolve relocation. */
12625 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12626 , contents + rel->r_offset);
12627 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12628 not done yet. */
12629 arm_elf_fill_funcdesc(output_bfd, info,
12630 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12631 dynindx, offset, addr, dynreloc_value, seg);
12632 }
12633 else
12634 {
12635 int dynindx;
12636 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12637 bfd_vma addr;
12638 bfd_vma seg = -1;
12639
12640 /* For static binaries, sym_sec can be null. */
12641 if (sym_sec)
12642 {
12643 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12644 addr = dynreloc_value - sym_sec->output_section->vma;
12645 }
12646 else
12647 {
12648 dynindx = 0;
12649 addr = 0;
12650 }
12651
12652 if (bfd_link_pic(info) && dynindx == 0)
12653 abort();
12654
12655 /* This case cannot occur since funcdesc is allocated by
12656 the dynamic loader so we cannot resolve the relocation. */
12657 if (h->dynindx != -1)
12658 abort();
12659
12660 /* Resolve relocation. */
12661 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12662 contents + rel->r_offset);
12663 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12664 arm_elf_fill_funcdesc(output_bfd, info,
12665 &eh->fdpic_cnts.funcdesc_offset,
12666 dynindx, offset, addr, dynreloc_value, seg);
12667 }
12668 }
12669 *unresolved_reloc_p = FALSE;
12670 return bfd_reloc_ok;
12671
12672 case R_ARM_GOTFUNCDESC:
12673 {
12674 if (h != NULL)
12675 {
12676 Elf_Internal_Rela outrel;
12677
12678 /* Resolve relocation. */
12679 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12680 + sgot->output_offset),
12681 contents + rel->r_offset);
12682 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12683 if(h->dynindx == -1)
12684 {
12685 int dynindx;
12686 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12687 bfd_vma addr;
12688 bfd_vma seg = -1;
12689
12690 /* For static binaries sym_sec can be null. */
12691 if (sym_sec)
12692 {
12693 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12694 addr = dynreloc_value - sym_sec->output_section->vma;
12695 }
12696 else
12697 {
12698 dynindx = 0;
12699 addr = 0;
12700 }
12701
12702 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12703 arm_elf_fill_funcdesc(output_bfd, info,
12704 &eh->fdpic_cnts.funcdesc_offset,
12705 dynindx, offset, addr, dynreloc_value, seg);
12706 }
12707
12708 /* Add a dynamic relocation on GOT entry if not already done. */
12709 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12710 {
12711 if (h->dynindx == -1)
12712 {
12713 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12714 if (h->root.type == bfd_link_hash_undefweak)
12715 bfd_put_32(output_bfd, 0, sgot->contents
12716 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12717 else
12718 bfd_put_32(output_bfd, sgot->output_section->vma
12719 + sgot->output_offset
12720 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12721 sgot->contents
12722 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12723 }
12724 else
12725 {
12726 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12727 }
12728 outrel.r_offset = sgot->output_section->vma
12729 + sgot->output_offset
12730 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12731 outrel.r_addend = 0;
12732 if (h->dynindx == -1 && !bfd_link_pic(info))
12733 if (h->root.type == bfd_link_hash_undefweak)
12734 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
12735 else
12736 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12737 else
12738 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12739 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12740 }
12741 }
12742 else
12743 {
12744 /* Such relocation on static function should not have been
12745 emitted by the compiler. */
12746 abort();
12747 }
12748 }
12749 *unresolved_reloc_p = FALSE;
12750 return bfd_reloc_ok;
12751
12752 case R_ARM_FUNCDESC:
12753 {
12754 if (h == NULL)
12755 {
12756 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12757 Elf_Internal_Rela outrel;
12758 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12759 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12760 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12761 bfd_vma seg = -1;
12762
12763 if (bfd_link_pic(info) && dynindx == 0)
12764 abort();
12765
12766 /* Replace static FUNCDESC relocation with a
12767 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12768 executable. */
12769 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12770 outrel.r_offset = input_section->output_section->vma
12771 + input_section->output_offset + rel->r_offset;
12772 outrel.r_addend = 0;
12773 if (bfd_link_pic(info))
12774 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12775 else
12776 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12777
12778 bfd_put_32 (input_bfd, sgot->output_section->vma
12779 + sgot->output_offset + offset, hit_data);
12780
12781 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12782 arm_elf_fill_funcdesc(output_bfd, info,
12783 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12784 dynindx, offset, addr, dynreloc_value, seg);
12785 }
12786 else
12787 {
12788 if (h->dynindx == -1)
12789 {
12790 int dynindx;
12791 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12792 bfd_vma addr;
12793 bfd_vma seg = -1;
12794 Elf_Internal_Rela outrel;
12795
12796 /* For static binaries sym_sec can be null. */
12797 if (sym_sec)
12798 {
12799 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12800 addr = dynreloc_value - sym_sec->output_section->vma;
12801 }
12802 else
12803 {
12804 dynindx = 0;
12805 addr = 0;
12806 }
12807
12808 if (bfd_link_pic(info) && dynindx == 0)
12809 abort();
12810
12811 /* Replace static FUNCDESC relocation with a
12812 R_ARM_RELATIVE dynamic relocation. */
12813 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12814 outrel.r_offset = input_section->output_section->vma
12815 + input_section->output_offset + rel->r_offset;
12816 outrel.r_addend = 0;
12817 if (bfd_link_pic(info))
12818 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12819 else
12820 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12821
12822 bfd_put_32 (input_bfd, sgot->output_section->vma
12823 + sgot->output_offset + offset, hit_data);
12824
12825 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12826 arm_elf_fill_funcdesc(output_bfd, info,
12827 &eh->fdpic_cnts.funcdesc_offset,
12828 dynindx, offset, addr, dynreloc_value, seg);
12829 }
12830 else
12831 {
12832 Elf_Internal_Rela outrel;
12833
12834 /* Add a dynamic relocation. */
12835 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12836 outrel.r_offset = input_section->output_section->vma
12837 + input_section->output_offset + rel->r_offset;
12838 outrel.r_addend = 0;
12839 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12840 }
12841 }
12842 }
12843 *unresolved_reloc_p = FALSE;
12844 return bfd_reloc_ok;
12845
12846 default:
12847 return bfd_reloc_notsupported;
12848 }
12849 }
12850
12851 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12852 static void
12853 arm_add_to_rel (bfd * abfd,
12854 bfd_byte * address,
12855 reloc_howto_type * howto,
12856 bfd_signed_vma increment)
12857 {
12858 bfd_signed_vma addend;
12859
12860 if (howto->type == R_ARM_THM_CALL
12861 || howto->type == R_ARM_THM_JUMP24)
12862 {
12863 int upper_insn, lower_insn;
12864 int upper, lower;
12865
12866 upper_insn = bfd_get_16 (abfd, address);
12867 lower_insn = bfd_get_16 (abfd, address + 2);
12868 upper = upper_insn & 0x7ff;
12869 lower = lower_insn & 0x7ff;
12870
12871 addend = (upper << 12) | (lower << 1);
12872 addend += increment;
12873 addend >>= 1;
12874
12875 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12876 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12877
12878 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12879 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
12880 }
12881 else
12882 {
12883 bfd_vma contents;
12884
12885 contents = bfd_get_32 (abfd, address);
12886
12887 /* Get the (signed) value from the instruction. */
12888 addend = contents & howto->src_mask;
12889 if (addend & ((howto->src_mask + 1) >> 1))
12890 {
12891 bfd_signed_vma mask;
12892
12893 mask = -1;
12894 mask &= ~ howto->src_mask;
12895 addend |= mask;
12896 }
12897
12898 /* Add in the increment, (which is a byte value). */
12899 switch (howto->type)
12900 {
12901 default:
12902 addend += increment;
12903 break;
12904
12905 case R_ARM_PC24:
12906 case R_ARM_PLT32:
12907 case R_ARM_CALL:
12908 case R_ARM_JUMP24:
12909 addend <<= howto->size;
12910 addend += increment;
12911
12912 /* Should we check for overflow here ? */
12913
12914 /* Drop any undesired bits. */
12915 addend >>= howto->rightshift;
12916 break;
12917 }
12918
12919 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12920
12921 bfd_put_32 (abfd, contents, address);
12922 }
12923 }
12924
12925 #define IS_ARM_TLS_RELOC(R_TYPE) \
12926 ((R_TYPE) == R_ARM_TLS_GD32 \
12927 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
12928 || (R_TYPE) == R_ARM_TLS_LDO32 \
12929 || (R_TYPE) == R_ARM_TLS_LDM32 \
12930 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
12931 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12932 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12933 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12934 || (R_TYPE) == R_ARM_TLS_LE32 \
12935 || (R_TYPE) == R_ARM_TLS_IE32 \
12936 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
12937 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12938
12939 /* Specific set of relocations for the gnu tls dialect. */
12940 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12941 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12942 || (R_TYPE) == R_ARM_TLS_CALL \
12943 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12944 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12945 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
12946
12947 /* Relocate an ARM ELF section. */
12948
12949 static bfd_boolean
12950 elf32_arm_relocate_section (bfd * output_bfd,
12951 struct bfd_link_info * info,
12952 bfd * input_bfd,
12953 asection * input_section,
12954 bfd_byte * contents,
12955 Elf_Internal_Rela * relocs,
12956 Elf_Internal_Sym * local_syms,
12957 asection ** local_sections)
12958 {
12959 Elf_Internal_Shdr *symtab_hdr;
12960 struct elf_link_hash_entry **sym_hashes;
12961 Elf_Internal_Rela *rel;
12962 Elf_Internal_Rela *relend;
12963 const char *name;
12964 struct elf32_arm_link_hash_table * globals;
12965
12966 globals = elf32_arm_hash_table (info);
12967 if (globals == NULL)
12968 return FALSE;
12969
12970 symtab_hdr = & elf_symtab_hdr (input_bfd);
12971 sym_hashes = elf_sym_hashes (input_bfd);
12972
12973 rel = relocs;
12974 relend = relocs + input_section->reloc_count;
12975 for (; rel < relend; rel++)
12976 {
12977 int r_type;
12978 reloc_howto_type * howto;
12979 unsigned long r_symndx;
12980 Elf_Internal_Sym * sym;
12981 asection * sec;
12982 struct elf_link_hash_entry * h;
12983 bfd_vma relocation;
12984 bfd_reloc_status_type r;
12985 arelent bfd_reloc;
12986 char sym_type;
12987 bfd_boolean unresolved_reloc = FALSE;
12988 char *error_message = NULL;
12989
12990 r_symndx = ELF32_R_SYM (rel->r_info);
12991 r_type = ELF32_R_TYPE (rel->r_info);
12992 r_type = arm_real_reloc_type (globals, r_type);
12993
12994 if ( r_type == R_ARM_GNU_VTENTRY
12995 || r_type == R_ARM_GNU_VTINHERIT)
12996 continue;
12997
12998 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
12999
13000 if (howto == NULL)
13001 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
13002
13003 h = NULL;
13004 sym = NULL;
13005 sec = NULL;
13006
13007 if (r_symndx < symtab_hdr->sh_info)
13008 {
13009 sym = local_syms + r_symndx;
13010 sym_type = ELF32_ST_TYPE (sym->st_info);
13011 sec = local_sections[r_symndx];
13012
13013 /* An object file might have a reference to a local
13014 undefined symbol. This is a daft object file, but we
13015 should at least do something about it. V4BX & NONE
13016 relocations do not use the symbol and are explicitly
13017 allowed to use the undefined symbol, so allow those.
13018 Likewise for relocations against STN_UNDEF. */
13019 if (r_type != R_ARM_V4BX
13020 && r_type != R_ARM_NONE
13021 && r_symndx != STN_UNDEF
13022 && bfd_is_und_section (sec)
13023 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
13024 (*info->callbacks->undefined_symbol)
13025 (info, bfd_elf_string_from_elf_section
13026 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13027 input_bfd, input_section,
13028 rel->r_offset, TRUE);
13029
13030 if (globals->use_rel)
13031 {
13032 relocation = (sec->output_section->vma
13033 + sec->output_offset
13034 + sym->st_value);
13035 if (!bfd_link_relocatable (info)
13036 && (sec->flags & SEC_MERGE)
13037 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13038 {
13039 asection *msec;
13040 bfd_vma addend, value;
13041
13042 switch (r_type)
13043 {
13044 case R_ARM_MOVW_ABS_NC:
13045 case R_ARM_MOVT_ABS:
13046 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13047 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13048 addend = (addend ^ 0x8000) - 0x8000;
13049 break;
13050
13051 case R_ARM_THM_MOVW_ABS_NC:
13052 case R_ARM_THM_MOVT_ABS:
13053 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13054 << 16;
13055 value |= bfd_get_16 (input_bfd,
13056 contents + rel->r_offset + 2);
13057 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13058 | ((value & 0x04000000) >> 15);
13059 addend = (addend ^ 0x8000) - 0x8000;
13060 break;
13061
13062 default:
13063 if (howto->rightshift
13064 || (howto->src_mask & (howto->src_mask + 1)))
13065 {
13066 _bfd_error_handler
13067 /* xgettext:c-format */
13068 (_("%pB(%pA+%#" PRIx64 "): "
13069 "%s relocation against SEC_MERGE section"),
13070 input_bfd, input_section,
13071 (uint64_t) rel->r_offset, howto->name);
13072 return FALSE;
13073 }
13074
13075 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13076
13077 /* Get the (signed) value from the instruction. */
13078 addend = value & howto->src_mask;
13079 if (addend & ((howto->src_mask + 1) >> 1))
13080 {
13081 bfd_signed_vma mask;
13082
13083 mask = -1;
13084 mask &= ~ howto->src_mask;
13085 addend |= mask;
13086 }
13087 break;
13088 }
13089
13090 msec = sec;
13091 addend =
13092 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13093 - relocation;
13094 addend += msec->output_section->vma + msec->output_offset;
13095
13096 /* Cases here must match those in the preceding
13097 switch statement. */
13098 switch (r_type)
13099 {
13100 case R_ARM_MOVW_ABS_NC:
13101 case R_ARM_MOVT_ABS:
13102 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13103 | (addend & 0xfff);
13104 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13105 break;
13106
13107 case R_ARM_THM_MOVW_ABS_NC:
13108 case R_ARM_THM_MOVT_ABS:
13109 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13110 | (addend & 0xff) | ((addend & 0x0800) << 15);
13111 bfd_put_16 (input_bfd, value >> 16,
13112 contents + rel->r_offset);
13113 bfd_put_16 (input_bfd, value,
13114 contents + rel->r_offset + 2);
13115 break;
13116
13117 default:
13118 value = (value & ~ howto->dst_mask)
13119 | (addend & howto->dst_mask);
13120 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13121 break;
13122 }
13123 }
13124 }
13125 else
13126 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13127 }
13128 else
13129 {
13130 bfd_boolean warned, ignored;
13131
13132 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13133 r_symndx, symtab_hdr, sym_hashes,
13134 h, sec, relocation,
13135 unresolved_reloc, warned, ignored);
13136
13137 sym_type = h->type;
13138 }
13139
13140 if (sec != NULL && discarded_section (sec))
13141 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13142 rel, 1, relend, howto, 0, contents);
13143
13144 if (bfd_link_relocatable (info))
13145 {
13146 /* This is a relocatable link. We don't have to change
13147 anything, unless the reloc is against a section symbol,
13148 in which case we have to adjust according to where the
13149 section symbol winds up in the output section. */
13150 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13151 {
13152 if (globals->use_rel)
13153 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13154 howto, (bfd_signed_vma) sec->output_offset);
13155 else
13156 rel->r_addend += sec->output_offset;
13157 }
13158 continue;
13159 }
13160
13161 if (h != NULL)
13162 name = h->root.root.string;
13163 else
13164 {
13165 name = (bfd_elf_string_from_elf_section
13166 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13167 if (name == NULL || *name == '\0')
13168 name = bfd_section_name (input_bfd, sec);
13169 }
13170
13171 if (r_symndx != STN_UNDEF
13172 && r_type != R_ARM_NONE
13173 && (h == NULL
13174 || h->root.type == bfd_link_hash_defined
13175 || h->root.type == bfd_link_hash_defweak)
13176 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13177 {
13178 _bfd_error_handler
13179 ((sym_type == STT_TLS
13180 /* xgettext:c-format */
13181 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
13182 /* xgettext:c-format */
13183 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
13184 input_bfd,
13185 input_section,
13186 (uint64_t) rel->r_offset,
13187 howto->name,
13188 name);
13189 }
13190
13191 /* We call elf32_arm_final_link_relocate unless we're completely
13192 done, i.e., the relaxation produced the final output we want,
13193 and we won't let anybody mess with it. Also, we have to do
13194 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13195 both in relaxed and non-relaxed cases. */
13196 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13197 || (IS_ARM_TLS_GNU_RELOC (r_type)
13198 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13199 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13200 & GOT_TLS_GDESC)))
13201 {
13202 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13203 contents, rel, h == NULL);
13204 /* This may have been marked unresolved because it came from
13205 a shared library. But we've just dealt with that. */
13206 unresolved_reloc = 0;
13207 }
13208 else
13209 r = bfd_reloc_continue;
13210
13211 if (r == bfd_reloc_continue)
13212 {
13213 unsigned char branch_type =
13214 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13215 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13216
13217 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13218 input_section, contents, rel,
13219 relocation, info, sec, name,
13220 sym_type, branch_type, h,
13221 &unresolved_reloc,
13222 &error_message);
13223 }
13224
13225 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13226 because such sections are not SEC_ALLOC and thus ld.so will
13227 not process them. */
13228 if (unresolved_reloc
13229 && !((input_section->flags & SEC_DEBUGGING) != 0
13230 && h->def_dynamic)
13231 && _bfd_elf_section_offset (output_bfd, info, input_section,
13232 rel->r_offset) != (bfd_vma) -1)
13233 {
13234 _bfd_error_handler
13235 /* xgettext:c-format */
13236 (_("%pB(%pA+%#" PRIx64 "): "
13237 "unresolvable %s relocation against symbol `%s'"),
13238 input_bfd,
13239 input_section,
13240 (uint64_t) rel->r_offset,
13241 howto->name,
13242 h->root.root.string);
13243 return FALSE;
13244 }
13245
13246 if (r != bfd_reloc_ok)
13247 {
13248 switch (r)
13249 {
13250 case bfd_reloc_overflow:
13251 /* If the overflowing reloc was to an undefined symbol,
13252 we have already printed one error message and there
13253 is no point complaining again. */
13254 if (!h || h->root.type != bfd_link_hash_undefined)
13255 (*info->callbacks->reloc_overflow)
13256 (info, (h ? &h->root : NULL), name, howto->name,
13257 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
13258 break;
13259
13260 case bfd_reloc_undefined:
13261 (*info->callbacks->undefined_symbol)
13262 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
13263 break;
13264
13265 case bfd_reloc_outofrange:
13266 error_message = _("out of range");
13267 goto common_error;
13268
13269 case bfd_reloc_notsupported:
13270 error_message = _("unsupported relocation");
13271 goto common_error;
13272
13273 case bfd_reloc_dangerous:
13274 /* error_message should already be set. */
13275 goto common_error;
13276
13277 default:
13278 error_message = _("unknown error");
13279 /* Fall through. */
13280
13281 common_error:
13282 BFD_ASSERT (error_message != NULL);
13283 (*info->callbacks->reloc_dangerous)
13284 (info, error_message, input_bfd, input_section, rel->r_offset);
13285 break;
13286 }
13287 }
13288 }
13289
13290 return TRUE;
13291 }
13292
13293 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13294 adds the edit to the start of the list. (The list must be built in order of
13295 ascending TINDEX: the function's callers are primarily responsible for
13296 maintaining that condition). */
13297
13298 static void
13299 add_unwind_table_edit (arm_unwind_table_edit **head,
13300 arm_unwind_table_edit **tail,
13301 arm_unwind_edit_type type,
13302 asection *linked_section,
13303 unsigned int tindex)
13304 {
13305 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13306 xmalloc (sizeof (arm_unwind_table_edit));
13307
13308 new_edit->type = type;
13309 new_edit->linked_section = linked_section;
13310 new_edit->index = tindex;
13311
13312 if (tindex > 0)
13313 {
13314 new_edit->next = NULL;
13315
13316 if (*tail)
13317 (*tail)->next = new_edit;
13318
13319 (*tail) = new_edit;
13320
13321 if (!*head)
13322 (*head) = new_edit;
13323 }
13324 else
13325 {
13326 new_edit->next = *head;
13327
13328 if (!*tail)
13329 *tail = new_edit;
13330
13331 *head = new_edit;
13332 }
13333 }
13334
13335 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13336
13337 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13338 static void
13339 adjust_exidx_size(asection *exidx_sec, int adjust)
13340 {
13341 asection *out_sec;
13342
13343 if (!exidx_sec->rawsize)
13344 exidx_sec->rawsize = exidx_sec->size;
13345
13346 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
13347 out_sec = exidx_sec->output_section;
13348 /* Adjust size of output section. */
13349 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
13350 }
13351
13352 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13353 static void
13354 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13355 {
13356 struct _arm_elf_section_data *exidx_arm_data;
13357
13358 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13359 add_unwind_table_edit (
13360 &exidx_arm_data->u.exidx.unwind_edit_list,
13361 &exidx_arm_data->u.exidx.unwind_edit_tail,
13362 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13363
13364 exidx_arm_data->additional_reloc_count++;
13365
13366 adjust_exidx_size(exidx_sec, 8);
13367 }
13368
13369 /* Scan .ARM.exidx tables, and create a list describing edits which should be
13370 made to those tables, such that:
13371
13372 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13373 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13374 codes which have been inlined into the index).
13375
13376 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13377
13378 The edits are applied when the tables are written
13379 (in elf32_arm_write_section). */
13380
13381 bfd_boolean
13382 elf32_arm_fix_exidx_coverage (asection **text_section_order,
13383 unsigned int num_text_sections,
13384 struct bfd_link_info *info,
13385 bfd_boolean merge_exidx_entries)
13386 {
13387 bfd *inp;
13388 unsigned int last_second_word = 0, i;
13389 asection *last_exidx_sec = NULL;
13390 asection *last_text_sec = NULL;
13391 int last_unwind_type = -1;
13392
13393 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13394 text sections. */
13395 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
13396 {
13397 asection *sec;
13398
13399 for (sec = inp->sections; sec != NULL; sec = sec->next)
13400 {
13401 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13402 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
13403
13404 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
13405 continue;
13406
13407 if (elf_sec->linked_to)
13408 {
13409 Elf_Internal_Shdr *linked_hdr
13410 = &elf_section_data (elf_sec->linked_to)->this_hdr;
13411 struct _arm_elf_section_data *linked_sec_arm_data
13412 = get_arm_elf_section_data (linked_hdr->bfd_section);
13413
13414 if (linked_sec_arm_data == NULL)
13415 continue;
13416
13417 /* Link this .ARM.exidx section back from the text section it
13418 describes. */
13419 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13420 }
13421 }
13422 }
13423
13424 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13425 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13426 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13427
13428 for (i = 0; i < num_text_sections; i++)
13429 {
13430 asection *sec = text_section_order[i];
13431 asection *exidx_sec;
13432 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13433 struct _arm_elf_section_data *exidx_arm_data;
13434 bfd_byte *contents = NULL;
13435 int deleted_exidx_bytes = 0;
13436 bfd_vma j;
13437 arm_unwind_table_edit *unwind_edit_head = NULL;
13438 arm_unwind_table_edit *unwind_edit_tail = NULL;
13439 Elf_Internal_Shdr *hdr;
13440 bfd *ibfd;
13441
13442 if (arm_data == NULL)
13443 continue;
13444
13445 exidx_sec = arm_data->u.text.arm_exidx_sec;
13446 if (exidx_sec == NULL)
13447 {
13448 /* Section has no unwind data. */
13449 if (last_unwind_type == 0 || !last_exidx_sec)
13450 continue;
13451
13452 /* Ignore zero sized sections. */
13453 if (sec->size == 0)
13454 continue;
13455
13456 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13457 last_unwind_type = 0;
13458 continue;
13459 }
13460
13461 /* Skip /DISCARD/ sections. */
13462 if (bfd_is_abs_section (exidx_sec->output_section))
13463 continue;
13464
13465 hdr = &elf_section_data (exidx_sec)->this_hdr;
13466 if (hdr->sh_type != SHT_ARM_EXIDX)
13467 continue;
13468
13469 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13470 if (exidx_arm_data == NULL)
13471 continue;
13472
13473 ibfd = exidx_sec->owner;
13474
13475 if (hdr->contents != NULL)
13476 contents = hdr->contents;
13477 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13478 /* An error? */
13479 continue;
13480
13481 if (last_unwind_type > 0)
13482 {
13483 unsigned int first_word = bfd_get_32 (ibfd, contents);
13484 /* Add cantunwind if first unwind item does not match section
13485 start. */
13486 if (first_word != sec->vma)
13487 {
13488 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13489 last_unwind_type = 0;
13490 }
13491 }
13492
13493 for (j = 0; j < hdr->sh_size; j += 8)
13494 {
13495 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13496 int unwind_type;
13497 int elide = 0;
13498
13499 /* An EXIDX_CANTUNWIND entry. */
13500 if (second_word == 1)
13501 {
13502 if (last_unwind_type == 0)
13503 elide = 1;
13504 unwind_type = 0;
13505 }
13506 /* Inlined unwinding data. Merge if equal to previous. */
13507 else if ((second_word & 0x80000000) != 0)
13508 {
13509 if (merge_exidx_entries
13510 && last_second_word == second_word && last_unwind_type == 1)
13511 elide = 1;
13512 unwind_type = 1;
13513 last_second_word = second_word;
13514 }
13515 /* Normal table entry. In theory we could merge these too,
13516 but duplicate entries are likely to be much less common. */
13517 else
13518 unwind_type = 2;
13519
13520 if (elide && !bfd_link_relocatable (info))
13521 {
13522 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13523 DELETE_EXIDX_ENTRY, NULL, j / 8);
13524
13525 deleted_exidx_bytes += 8;
13526 }
13527
13528 last_unwind_type = unwind_type;
13529 }
13530
13531 /* Free contents if we allocated it ourselves. */
13532 if (contents != hdr->contents)
13533 free (contents);
13534
13535 /* Record edits to be applied later (in elf32_arm_write_section). */
13536 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13537 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
13538
13539 if (deleted_exidx_bytes > 0)
13540 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13541
13542 last_exidx_sec = exidx_sec;
13543 last_text_sec = sec;
13544 }
13545
13546 /* Add terminating CANTUNWIND entry. */
13547 if (!bfd_link_relocatable (info) && last_exidx_sec
13548 && last_unwind_type != 0)
13549 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13550
13551 return TRUE;
13552 }
13553
13554 static bfd_boolean
13555 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13556 bfd *ibfd, const char *name)
13557 {
13558 asection *sec, *osec;
13559
13560 sec = bfd_get_linker_section (ibfd, name);
13561 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13562 return TRUE;
13563
13564 osec = sec->output_section;
13565 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13566 return TRUE;
13567
13568 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13569 sec->output_offset, sec->size))
13570 return FALSE;
13571
13572 return TRUE;
13573 }
13574
13575 static bfd_boolean
13576 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13577 {
13578 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
13579 asection *sec, *osec;
13580
13581 if (globals == NULL)
13582 return FALSE;
13583
13584 /* Invoke the regular ELF backend linker to do all the work. */
13585 if (!bfd_elf_final_link (abfd, info))
13586 return FALSE;
13587
13588 /* Process stub sections (eg BE8 encoding, ...). */
13589 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
13590 unsigned int i;
13591 for (i=0; i<htab->top_id; i++)
13592 {
13593 sec = htab->stub_group[i].stub_sec;
13594 /* Only process it once, in its link_sec slot. */
13595 if (sec && i == htab->stub_group[i].link_sec->id)
13596 {
13597 osec = sec->output_section;
13598 elf32_arm_write_section (abfd, info, sec, sec->contents);
13599 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13600 sec->output_offset, sec->size))
13601 return FALSE;
13602 }
13603 }
13604
13605 /* Write out any glue sections now that we have created all the
13606 stubs. */
13607 if (globals->bfd_of_glue_owner != NULL)
13608 {
13609 if (! elf32_arm_output_glue_section (info, abfd,
13610 globals->bfd_of_glue_owner,
13611 ARM2THUMB_GLUE_SECTION_NAME))
13612 return FALSE;
13613
13614 if (! elf32_arm_output_glue_section (info, abfd,
13615 globals->bfd_of_glue_owner,
13616 THUMB2ARM_GLUE_SECTION_NAME))
13617 return FALSE;
13618
13619 if (! elf32_arm_output_glue_section (info, abfd,
13620 globals->bfd_of_glue_owner,
13621 VFP11_ERRATUM_VENEER_SECTION_NAME))
13622 return FALSE;
13623
13624 if (! elf32_arm_output_glue_section (info, abfd,
13625 globals->bfd_of_glue_owner,
13626 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13627 return FALSE;
13628
13629 if (! elf32_arm_output_glue_section (info, abfd,
13630 globals->bfd_of_glue_owner,
13631 ARM_BX_GLUE_SECTION_NAME))
13632 return FALSE;
13633 }
13634
13635 return TRUE;
13636 }
13637
13638 /* Return a best guess for the machine number based on the attributes. */
13639
13640 static unsigned int
13641 bfd_arm_get_mach_from_attributes (bfd * abfd)
13642 {
13643 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13644
13645 switch (arch)
13646 {
13647 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
13648 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13649 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13650 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13651
13652 case TAG_CPU_ARCH_V5TE:
13653 {
13654 char * name;
13655
13656 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13657 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13658
13659 if (name)
13660 {
13661 if (strcmp (name, "IWMMXT2") == 0)
13662 return bfd_mach_arm_iWMMXt2;
13663
13664 if (strcmp (name, "IWMMXT") == 0)
13665 return bfd_mach_arm_iWMMXt;
13666
13667 if (strcmp (name, "XSCALE") == 0)
13668 {
13669 int wmmx;
13670
13671 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13672 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13673 switch (wmmx)
13674 {
13675 case 1: return bfd_mach_arm_iWMMXt;
13676 case 2: return bfd_mach_arm_iWMMXt2;
13677 default: return bfd_mach_arm_XScale;
13678 }
13679 }
13680 }
13681
13682 return bfd_mach_arm_5TE;
13683 }
13684
13685 case TAG_CPU_ARCH_V5TEJ:
13686 return bfd_mach_arm_5TEJ;
13687 case TAG_CPU_ARCH_V6:
13688 return bfd_mach_arm_6;
13689 case TAG_CPU_ARCH_V6KZ:
13690 return bfd_mach_arm_6KZ;
13691 case TAG_CPU_ARCH_V6T2:
13692 return bfd_mach_arm_6T2;
13693 case TAG_CPU_ARCH_V6K:
13694 return bfd_mach_arm_6K;
13695 case TAG_CPU_ARCH_V7:
13696 return bfd_mach_arm_7;
13697 case TAG_CPU_ARCH_V6_M:
13698 return bfd_mach_arm_6M;
13699 case TAG_CPU_ARCH_V6S_M:
13700 return bfd_mach_arm_6SM;
13701 case TAG_CPU_ARCH_V7E_M:
13702 return bfd_mach_arm_7EM;
13703 case TAG_CPU_ARCH_V8:
13704 return bfd_mach_arm_8;
13705 case TAG_CPU_ARCH_V8R:
13706 return bfd_mach_arm_8R;
13707 case TAG_CPU_ARCH_V8M_BASE:
13708 return bfd_mach_arm_8M_BASE;
13709 case TAG_CPU_ARCH_V8M_MAIN:
13710 return bfd_mach_arm_8M_MAIN;
13711
13712 default:
13713 /* Force entry to be added for any new known Tag_CPU_arch value. */
13714 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13715
13716 /* Unknown Tag_CPU_arch value. */
13717 return bfd_mach_arm_unknown;
13718 }
13719 }
13720
13721 /* Set the right machine number. */
13722
13723 static bfd_boolean
13724 elf32_arm_object_p (bfd *abfd)
13725 {
13726 unsigned int mach;
13727
13728 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
13729
13730 if (mach == bfd_mach_arm_unknown)
13731 {
13732 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13733 mach = bfd_mach_arm_ep9312;
13734 else
13735 mach = bfd_arm_get_mach_from_attributes (abfd);
13736 }
13737
13738 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13739 return TRUE;
13740 }
13741
13742 /* Function to keep ARM specific flags in the ELF header. */
13743
13744 static bfd_boolean
13745 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13746 {
13747 if (elf_flags_init (abfd)
13748 && elf_elfheader (abfd)->e_flags != flags)
13749 {
13750 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13751 {
13752 if (flags & EF_ARM_INTERWORK)
13753 _bfd_error_handler
13754 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
13755 abfd);
13756 else
13757 _bfd_error_handler
13758 (_("warning: clearing the interworking flag of %pB due to outside request"),
13759 abfd);
13760 }
13761 }
13762 else
13763 {
13764 elf_elfheader (abfd)->e_flags = flags;
13765 elf_flags_init (abfd) = TRUE;
13766 }
13767
13768 return TRUE;
13769 }
13770
13771 /* Copy backend specific data from one object module to another. */
13772
13773 static bfd_boolean
13774 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13775 {
13776 flagword in_flags;
13777 flagword out_flags;
13778
13779 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13780 return TRUE;
13781
13782 in_flags = elf_elfheader (ibfd)->e_flags;
13783 out_flags = elf_elfheader (obfd)->e_flags;
13784
13785 if (elf_flags_init (obfd)
13786 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13787 && in_flags != out_flags)
13788 {
13789 /* Cannot mix APCS26 and APCS32 code. */
13790 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13791 return FALSE;
13792
13793 /* Cannot mix float APCS and non-float APCS code. */
13794 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13795 return FALSE;
13796
13797 /* If the src and dest have different interworking flags
13798 then turn off the interworking bit. */
13799 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13800 {
13801 if (out_flags & EF_ARM_INTERWORK)
13802 _bfd_error_handler
13803 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
13804 obfd, ibfd);
13805
13806 in_flags &= ~EF_ARM_INTERWORK;
13807 }
13808
13809 /* Likewise for PIC, though don't warn for this case. */
13810 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13811 in_flags &= ~EF_ARM_PIC;
13812 }
13813
13814 elf_elfheader (obfd)->e_flags = in_flags;
13815 elf_flags_init (obfd) = TRUE;
13816
13817 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13818 }
13819
13820 /* Values for Tag_ABI_PCS_R9_use. */
13821 enum
13822 {
13823 AEABI_R9_V6,
13824 AEABI_R9_SB,
13825 AEABI_R9_TLS,
13826 AEABI_R9_unused
13827 };
13828
13829 /* Values for Tag_ABI_PCS_RW_data. */
13830 enum
13831 {
13832 AEABI_PCS_RW_data_absolute,
13833 AEABI_PCS_RW_data_PCrel,
13834 AEABI_PCS_RW_data_SBrel,
13835 AEABI_PCS_RW_data_unused
13836 };
13837
13838 /* Values for Tag_ABI_enum_size. */
13839 enum
13840 {
13841 AEABI_enum_unused,
13842 AEABI_enum_short,
13843 AEABI_enum_wide,
13844 AEABI_enum_forced_wide
13845 };
13846
13847 /* Determine whether an object attribute tag takes an integer, a
13848 string or both. */
13849
13850 static int
13851 elf32_arm_obj_attrs_arg_type (int tag)
13852 {
13853 if (tag == Tag_compatibility)
13854 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
13855 else if (tag == Tag_nodefaults)
13856 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13857 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13858 return ATTR_TYPE_FLAG_STR_VAL;
13859 else if (tag < 32)
13860 return ATTR_TYPE_FLAG_INT_VAL;
13861 else
13862 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
13863 }
13864
13865 /* The ABI defines that Tag_conformance should be emitted first, and that
13866 Tag_nodefaults should be second (if either is defined). This sets those
13867 two positions, and bumps up the position of all the remaining tags to
13868 compensate. */
13869 static int
13870 elf32_arm_obj_attrs_order (int num)
13871 {
13872 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
13873 return Tag_conformance;
13874 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
13875 return Tag_nodefaults;
13876 if ((num - 2) < Tag_nodefaults)
13877 return num - 2;
13878 if ((num - 1) < Tag_conformance)
13879 return num - 1;
13880 return num;
13881 }
13882
13883 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
13884 static bfd_boolean
13885 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13886 {
13887 if ((tag & 127) < 64)
13888 {
13889 _bfd_error_handler
13890 (_("%pB: unknown mandatory EABI object attribute %d"),
13891 abfd, tag);
13892 bfd_set_error (bfd_error_bad_value);
13893 return FALSE;
13894 }
13895 else
13896 {
13897 _bfd_error_handler
13898 (_("warning: %pB: unknown EABI object attribute %d"),
13899 abfd, tag);
13900 return TRUE;
13901 }
13902 }
13903
13904 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
13905 Returns -1 if no architecture could be read. */
13906
13907 static int
13908 get_secondary_compatible_arch (bfd *abfd)
13909 {
13910 obj_attribute *attr =
13911 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13912
13913 /* Note: the tag and its argument below are uleb128 values, though
13914 currently-defined values fit in one byte for each. */
13915 if (attr->s
13916 && attr->s[0] == Tag_CPU_arch
13917 && (attr->s[1] & 128) != 128
13918 && attr->s[2] == 0)
13919 return attr->s[1];
13920
13921 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13922 return -1;
13923 }
13924
13925 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13926 The tag is removed if ARCH is -1. */
13927
13928 static void
13929 set_secondary_compatible_arch (bfd *abfd, int arch)
13930 {
13931 obj_attribute *attr =
13932 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13933
13934 if (arch == -1)
13935 {
13936 attr->s = NULL;
13937 return;
13938 }
13939
13940 /* Note: the tag and its argument below are uleb128 values, though
13941 currently-defined values fit in one byte for each. */
13942 if (!attr->s)
13943 attr->s = (char *) bfd_alloc (abfd, 3);
13944 attr->s[0] = Tag_CPU_arch;
13945 attr->s[1] = arch;
13946 attr->s[2] = '\0';
13947 }
13948
13949 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13950 into account. */
13951
13952 static int
13953 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13954 int newtag, int secondary_compat)
13955 {
13956 #define T(X) TAG_CPU_ARCH_##X
13957 int tagl, tagh, result;
13958 const int v6t2[] =
13959 {
13960 T(V6T2), /* PRE_V4. */
13961 T(V6T2), /* V4. */
13962 T(V6T2), /* V4T. */
13963 T(V6T2), /* V5T. */
13964 T(V6T2), /* V5TE. */
13965 T(V6T2), /* V5TEJ. */
13966 T(V6T2), /* V6. */
13967 T(V7), /* V6KZ. */
13968 T(V6T2) /* V6T2. */
13969 };
13970 const int v6k[] =
13971 {
13972 T(V6K), /* PRE_V4. */
13973 T(V6K), /* V4. */
13974 T(V6K), /* V4T. */
13975 T(V6K), /* V5T. */
13976 T(V6K), /* V5TE. */
13977 T(V6K), /* V5TEJ. */
13978 T(V6K), /* V6. */
13979 T(V6KZ), /* V6KZ. */
13980 T(V7), /* V6T2. */
13981 T(V6K) /* V6K. */
13982 };
13983 const int v7[] =
13984 {
13985 T(V7), /* PRE_V4. */
13986 T(V7), /* V4. */
13987 T(V7), /* V4T. */
13988 T(V7), /* V5T. */
13989 T(V7), /* V5TE. */
13990 T(V7), /* V5TEJ. */
13991 T(V7), /* V6. */
13992 T(V7), /* V6KZ. */
13993 T(V7), /* V6T2. */
13994 T(V7), /* V6K. */
13995 T(V7) /* V7. */
13996 };
13997 const int v6_m[] =
13998 {
13999 -1, /* PRE_V4. */
14000 -1, /* V4. */
14001 T(V6K), /* V4T. */
14002 T(V6K), /* V5T. */
14003 T(V6K), /* V5TE. */
14004 T(V6K), /* V5TEJ. */
14005 T(V6K), /* V6. */
14006 T(V6KZ), /* V6KZ. */
14007 T(V7), /* V6T2. */
14008 T(V6K), /* V6K. */
14009 T(V7), /* V7. */
14010 T(V6_M) /* V6_M. */
14011 };
14012 const int v6s_m[] =
14013 {
14014 -1, /* PRE_V4. */
14015 -1, /* V4. */
14016 T(V6K), /* V4T. */
14017 T(V6K), /* V5T. */
14018 T(V6K), /* V5TE. */
14019 T(V6K), /* V5TEJ. */
14020 T(V6K), /* V6. */
14021 T(V6KZ), /* V6KZ. */
14022 T(V7), /* V6T2. */
14023 T(V6K), /* V6K. */
14024 T(V7), /* V7. */
14025 T(V6S_M), /* V6_M. */
14026 T(V6S_M) /* V6S_M. */
14027 };
14028 const int v7e_m[] =
14029 {
14030 -1, /* PRE_V4. */
14031 -1, /* V4. */
14032 T(V7E_M), /* V4T. */
14033 T(V7E_M), /* V5T. */
14034 T(V7E_M), /* V5TE. */
14035 T(V7E_M), /* V5TEJ. */
14036 T(V7E_M), /* V6. */
14037 T(V7E_M), /* V6KZ. */
14038 T(V7E_M), /* V6T2. */
14039 T(V7E_M), /* V6K. */
14040 T(V7E_M), /* V7. */
14041 T(V7E_M), /* V6_M. */
14042 T(V7E_M), /* V6S_M. */
14043 T(V7E_M) /* V7E_M. */
14044 };
14045 const int v8[] =
14046 {
14047 T(V8), /* PRE_V4. */
14048 T(V8), /* V4. */
14049 T(V8), /* V4T. */
14050 T(V8), /* V5T. */
14051 T(V8), /* V5TE. */
14052 T(V8), /* V5TEJ. */
14053 T(V8), /* V6. */
14054 T(V8), /* V6KZ. */
14055 T(V8), /* V6T2. */
14056 T(V8), /* V6K. */
14057 T(V8), /* V7. */
14058 T(V8), /* V6_M. */
14059 T(V8), /* V6S_M. */
14060 T(V8), /* V7E_M. */
14061 T(V8) /* V8. */
14062 };
14063 const int v8r[] =
14064 {
14065 T(V8R), /* PRE_V4. */
14066 T(V8R), /* V4. */
14067 T(V8R), /* V4T. */
14068 T(V8R), /* V5T. */
14069 T(V8R), /* V5TE. */
14070 T(V8R), /* V5TEJ. */
14071 T(V8R), /* V6. */
14072 T(V8R), /* V6KZ. */
14073 T(V8R), /* V6T2. */
14074 T(V8R), /* V6K. */
14075 T(V8R), /* V7. */
14076 T(V8R), /* V6_M. */
14077 T(V8R), /* V6S_M. */
14078 T(V8R), /* V7E_M. */
14079 T(V8), /* V8. */
14080 T(V8R), /* V8R. */
14081 };
14082 const int v8m_baseline[] =
14083 {
14084 -1, /* PRE_V4. */
14085 -1, /* V4. */
14086 -1, /* V4T. */
14087 -1, /* V5T. */
14088 -1, /* V5TE. */
14089 -1, /* V5TEJ. */
14090 -1, /* V6. */
14091 -1, /* V6KZ. */
14092 -1, /* V6T2. */
14093 -1, /* V6K. */
14094 -1, /* V7. */
14095 T(V8M_BASE), /* V6_M. */
14096 T(V8M_BASE), /* V6S_M. */
14097 -1, /* V7E_M. */
14098 -1, /* V8. */
14099 -1, /* V8R. */
14100 T(V8M_BASE) /* V8-M BASELINE. */
14101 };
14102 const int v8m_mainline[] =
14103 {
14104 -1, /* PRE_V4. */
14105 -1, /* V4. */
14106 -1, /* V4T. */
14107 -1, /* V5T. */
14108 -1, /* V5TE. */
14109 -1, /* V5TEJ. */
14110 -1, /* V6. */
14111 -1, /* V6KZ. */
14112 -1, /* V6T2. */
14113 -1, /* V6K. */
14114 T(V8M_MAIN), /* V7. */
14115 T(V8M_MAIN), /* V6_M. */
14116 T(V8M_MAIN), /* V6S_M. */
14117 T(V8M_MAIN), /* V7E_M. */
14118 -1, /* V8. */
14119 -1, /* V8R. */
14120 T(V8M_MAIN), /* V8-M BASELINE. */
14121 T(V8M_MAIN) /* V8-M MAINLINE. */
14122 };
14123 const int v4t_plus_v6_m[] =
14124 {
14125 -1, /* PRE_V4. */
14126 -1, /* V4. */
14127 T(V4T), /* V4T. */
14128 T(V5T), /* V5T. */
14129 T(V5TE), /* V5TE. */
14130 T(V5TEJ), /* V5TEJ. */
14131 T(V6), /* V6. */
14132 T(V6KZ), /* V6KZ. */
14133 T(V6T2), /* V6T2. */
14134 T(V6K), /* V6K. */
14135 T(V7), /* V7. */
14136 T(V6_M), /* V6_M. */
14137 T(V6S_M), /* V6S_M. */
14138 T(V7E_M), /* V7E_M. */
14139 T(V8), /* V8. */
14140 -1, /* V8R. */
14141 T(V8M_BASE), /* V8-M BASELINE. */
14142 T(V8M_MAIN), /* V8-M MAINLINE. */
14143 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14144 };
14145 const int *comb[] =
14146 {
14147 v6t2,
14148 v6k,
14149 v7,
14150 v6_m,
14151 v6s_m,
14152 v7e_m,
14153 v8,
14154 v8r,
14155 v8m_baseline,
14156 v8m_mainline,
14157 /* Pseudo-architecture. */
14158 v4t_plus_v6_m
14159 };
14160
14161 /* Check we've not got a higher architecture than we know about. */
14162
14163 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
14164 {
14165 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
14166 return -1;
14167 }
14168
14169 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14170
14171 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14172 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14173 oldtag = T(V4T_PLUS_V6_M);
14174
14175 /* And override the new tag if we have a Tag_also_compatible_with on the
14176 input. */
14177
14178 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14179 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14180 newtag = T(V4T_PLUS_V6_M);
14181
14182 tagl = (oldtag < newtag) ? oldtag : newtag;
14183 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14184
14185 /* Architectures before V6KZ add features monotonically. */
14186 if (tagh <= TAG_CPU_ARCH_V6KZ)
14187 return result;
14188
14189 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
14190
14191 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14192 as the canonical version. */
14193 if (result == T(V4T_PLUS_V6_M))
14194 {
14195 result = T(V4T);
14196 *secondary_compat_out = T(V6_M);
14197 }
14198 else
14199 *secondary_compat_out = -1;
14200
14201 if (result == -1)
14202 {
14203 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
14204 ibfd, oldtag, newtag);
14205 return -1;
14206 }
14207
14208 return result;
14209 #undef T
14210 }
14211
14212 /* Query attributes object to see if integer divide instructions may be
14213 present in an object. */
14214 static bfd_boolean
14215 elf32_arm_attributes_accept_div (const obj_attribute *attr)
14216 {
14217 int arch = attr[Tag_CPU_arch].i;
14218 int profile = attr[Tag_CPU_arch_profile].i;
14219
14220 switch (attr[Tag_DIV_use].i)
14221 {
14222 case 0:
14223 /* Integer divide allowed if instruction contained in archetecture. */
14224 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14225 return TRUE;
14226 else if (arch >= TAG_CPU_ARCH_V7E_M)
14227 return TRUE;
14228 else
14229 return FALSE;
14230
14231 case 1:
14232 /* Integer divide explicitly prohibited. */
14233 return FALSE;
14234
14235 default:
14236 /* Unrecognised case - treat as allowing divide everywhere. */
14237 case 2:
14238 /* Integer divide allowed in ARM state. */
14239 return TRUE;
14240 }
14241 }
14242
14243 /* Query attributes object to see if integer divide instructions are
14244 forbidden to be in the object. This is not the inverse of
14245 elf32_arm_attributes_accept_div. */
14246 static bfd_boolean
14247 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14248 {
14249 return attr[Tag_DIV_use].i == 1;
14250 }
14251
14252 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14253 are conflicting attributes. */
14254
14255 static bfd_boolean
14256 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
14257 {
14258 bfd *obfd = info->output_bfd;
14259 obj_attribute *in_attr;
14260 obj_attribute *out_attr;
14261 /* Some tags have 0 = don't care, 1 = strong requirement,
14262 2 = weak requirement. */
14263 static const int order_021[3] = {0, 2, 1};
14264 int i;
14265 bfd_boolean result = TRUE;
14266 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
14267
14268 /* Skip the linker stubs file. This preserves previous behavior
14269 of accepting unknown attributes in the first input file - but
14270 is that a bug? */
14271 if (ibfd->flags & BFD_LINKER_CREATED)
14272 return TRUE;
14273
14274 /* Skip any input that hasn't attribute section.
14275 This enables to link object files without attribute section with
14276 any others. */
14277 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14278 return TRUE;
14279
14280 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14281 {
14282 /* This is the first object. Copy the attributes. */
14283 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14284
14285 out_attr = elf_known_obj_attributes_proc (obfd);
14286
14287 /* Use the Tag_null value to indicate the attributes have been
14288 initialized. */
14289 out_attr[0].i = 1;
14290
14291 /* We do not output objects with Tag_MPextension_use_legacy - we move
14292 the attribute's value to Tag_MPextension_use. */
14293 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14294 {
14295 if (out_attr[Tag_MPextension_use].i != 0
14296 && out_attr[Tag_MPextension_use_legacy].i
14297 != out_attr[Tag_MPextension_use].i)
14298 {
14299 _bfd_error_handler
14300 (_("Error: %pB has both the current and legacy "
14301 "Tag_MPextension_use attributes"), ibfd);
14302 result = FALSE;
14303 }
14304
14305 out_attr[Tag_MPextension_use] =
14306 out_attr[Tag_MPextension_use_legacy];
14307 out_attr[Tag_MPextension_use_legacy].type = 0;
14308 out_attr[Tag_MPextension_use_legacy].i = 0;
14309 }
14310
14311 return result;
14312 }
14313
14314 in_attr = elf_known_obj_attributes_proc (ibfd);
14315 out_attr = elf_known_obj_attributes_proc (obfd);
14316 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14317 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14318 {
14319 /* Ignore mismatches if the object doesn't use floating point or is
14320 floating point ABI independent. */
14321 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14322 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14323 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
14324 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
14325 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14326 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
14327 {
14328 _bfd_error_handler
14329 (_("error: %pB uses VFP register arguments, %pB does not"),
14330 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14331 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
14332 result = FALSE;
14333 }
14334 }
14335
14336 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
14337 {
14338 /* Merge this attribute with existing attributes. */
14339 switch (i)
14340 {
14341 case Tag_CPU_raw_name:
14342 case Tag_CPU_name:
14343 /* These are merged after Tag_CPU_arch. */
14344 break;
14345
14346 case Tag_ABI_optimization_goals:
14347 case Tag_ABI_FP_optimization_goals:
14348 /* Use the first value seen. */
14349 break;
14350
14351 case Tag_CPU_arch:
14352 {
14353 int secondary_compat = -1, secondary_compat_out = -1;
14354 unsigned int saved_out_attr = out_attr[i].i;
14355 int arch_attr;
14356 static const char *name_table[] =
14357 {
14358 /* These aren't real CPU names, but we can't guess
14359 that from the architecture version alone. */
14360 "Pre v4",
14361 "ARM v4",
14362 "ARM v4T",
14363 "ARM v5T",
14364 "ARM v5TE",
14365 "ARM v5TEJ",
14366 "ARM v6",
14367 "ARM v6KZ",
14368 "ARM v6T2",
14369 "ARM v6K",
14370 "ARM v7",
14371 "ARM v6-M",
14372 "ARM v6S-M",
14373 "ARM v8",
14374 "",
14375 "ARM v8-M.baseline",
14376 "ARM v8-M.mainline",
14377 };
14378
14379 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14380 secondary_compat = get_secondary_compatible_arch (ibfd);
14381 secondary_compat_out = get_secondary_compatible_arch (obfd);
14382 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14383 &secondary_compat_out,
14384 in_attr[i].i,
14385 secondary_compat);
14386
14387 /* Return with error if failed to merge. */
14388 if (arch_attr == -1)
14389 return FALSE;
14390
14391 out_attr[i].i = arch_attr;
14392
14393 set_secondary_compatible_arch (obfd, secondary_compat_out);
14394
14395 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14396 if (out_attr[i].i == saved_out_attr)
14397 ; /* Leave the names alone. */
14398 else if (out_attr[i].i == in_attr[i].i)
14399 {
14400 /* The output architecture has been changed to match the
14401 input architecture. Use the input names. */
14402 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14403 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14404 : NULL;
14405 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14406 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14407 : NULL;
14408 }
14409 else
14410 {
14411 out_attr[Tag_CPU_name].s = NULL;
14412 out_attr[Tag_CPU_raw_name].s = NULL;
14413 }
14414
14415 /* If we still don't have a value for Tag_CPU_name,
14416 make one up now. Tag_CPU_raw_name remains blank. */
14417 if (out_attr[Tag_CPU_name].s == NULL
14418 && out_attr[i].i < ARRAY_SIZE (name_table))
14419 out_attr[Tag_CPU_name].s =
14420 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14421 }
14422 break;
14423
14424 case Tag_ARM_ISA_use:
14425 case Tag_THUMB_ISA_use:
14426 case Tag_WMMX_arch:
14427 case Tag_Advanced_SIMD_arch:
14428 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14429 case Tag_ABI_FP_rounding:
14430 case Tag_ABI_FP_exceptions:
14431 case Tag_ABI_FP_user_exceptions:
14432 case Tag_ABI_FP_number_model:
14433 case Tag_FP_HP_extension:
14434 case Tag_CPU_unaligned_access:
14435 case Tag_T2EE_use:
14436 case Tag_MPextension_use:
14437 /* Use the largest value specified. */
14438 if (in_attr[i].i > out_attr[i].i)
14439 out_attr[i].i = in_attr[i].i;
14440 break;
14441
14442 case Tag_ABI_align_preserved:
14443 case Tag_ABI_PCS_RO_data:
14444 /* Use the smallest value specified. */
14445 if (in_attr[i].i < out_attr[i].i)
14446 out_attr[i].i = in_attr[i].i;
14447 break;
14448
14449 case Tag_ABI_align_needed:
14450 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
14451 && (in_attr[Tag_ABI_align_preserved].i == 0
14452 || out_attr[Tag_ABI_align_preserved].i == 0))
14453 {
14454 /* This error message should be enabled once all non-conformant
14455 binaries in the toolchain have had the attributes set
14456 properly.
14457 _bfd_error_handler
14458 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14459 obfd, ibfd);
14460 result = FALSE; */
14461 }
14462 /* Fall through. */
14463 case Tag_ABI_FP_denormal:
14464 case Tag_ABI_PCS_GOT_use:
14465 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14466 value if greater than 2 (for future-proofing). */
14467 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14468 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14469 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
14470 out_attr[i].i = in_attr[i].i;
14471 break;
14472
14473 case Tag_Virtualization_use:
14474 /* The virtualization tag effectively stores two bits of
14475 information: the intended use of TrustZone (in bit 0), and the
14476 intended use of Virtualization (in bit 1). */
14477 if (out_attr[i].i == 0)
14478 out_attr[i].i = in_attr[i].i;
14479 else if (in_attr[i].i != 0
14480 && in_attr[i].i != out_attr[i].i)
14481 {
14482 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14483 out_attr[i].i = 3;
14484 else
14485 {
14486 _bfd_error_handler
14487 (_("error: %pB: unable to merge virtualization attributes "
14488 "with %pB"),
14489 obfd, ibfd);
14490 result = FALSE;
14491 }
14492 }
14493 break;
14494
14495 case Tag_CPU_arch_profile:
14496 if (out_attr[i].i != in_attr[i].i)
14497 {
14498 /* 0 will merge with anything.
14499 'A' and 'S' merge to 'A'.
14500 'R' and 'S' merge to 'R'.
14501 'M' and 'A|R|S' is an error. */
14502 if (out_attr[i].i == 0
14503 || (out_attr[i].i == 'S'
14504 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14505 out_attr[i].i = in_attr[i].i;
14506 else if (in_attr[i].i == 0
14507 || (in_attr[i].i == 'S'
14508 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
14509 ; /* Do nothing. */
14510 else
14511 {
14512 _bfd_error_handler
14513 (_("error: %pB: conflicting architecture profiles %c/%c"),
14514 ibfd,
14515 in_attr[i].i ? in_attr[i].i : '0',
14516 out_attr[i].i ? out_attr[i].i : '0');
14517 result = FALSE;
14518 }
14519 }
14520 break;
14521
14522 case Tag_DSP_extension:
14523 /* No need to change output value if any of:
14524 - pre (<=) ARMv5T input architecture (do not have DSP)
14525 - M input profile not ARMv7E-M and do not have DSP. */
14526 if (in_attr[Tag_CPU_arch].i <= 3
14527 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14528 && in_attr[Tag_CPU_arch].i != 13
14529 && in_attr[i].i == 0))
14530 ; /* Do nothing. */
14531 /* Output value should be 0 if DSP part of architecture, ie.
14532 - post (>=) ARMv5te architecture output
14533 - A, R or S profile output or ARMv7E-M output architecture. */
14534 else if (out_attr[Tag_CPU_arch].i >= 4
14535 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14536 || out_attr[Tag_CPU_arch_profile].i == 'R'
14537 || out_attr[Tag_CPU_arch_profile].i == 'S'
14538 || out_attr[Tag_CPU_arch].i == 13))
14539 out_attr[i].i = 0;
14540 /* Otherwise, DSP instructions are added and not part of output
14541 architecture. */
14542 else
14543 out_attr[i].i = 1;
14544 break;
14545
14546 case Tag_FP_arch:
14547 {
14548 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14549 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14550 when it's 0. It might mean absence of FP hardware if
14551 Tag_FP_arch is zero. */
14552
14553 #define VFP_VERSION_COUNT 9
14554 static const struct
14555 {
14556 int ver;
14557 int regs;
14558 } vfp_versions[VFP_VERSION_COUNT] =
14559 {
14560 {0, 0},
14561 {1, 16},
14562 {2, 16},
14563 {3, 32},
14564 {3, 16},
14565 {4, 32},
14566 {4, 16},
14567 {8, 32},
14568 {8, 16}
14569 };
14570 int ver;
14571 int regs;
14572 int newval;
14573
14574 /* If the output has no requirement about FP hardware,
14575 follow the requirement of the input. */
14576 if (out_attr[i].i == 0)
14577 {
14578 /* This assert is still reasonable, we shouldn't
14579 produce the suspicious build attribute
14580 combination (See below for in_attr). */
14581 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14582 out_attr[i].i = in_attr[i].i;
14583 out_attr[Tag_ABI_HardFP_use].i
14584 = in_attr[Tag_ABI_HardFP_use].i;
14585 break;
14586 }
14587 /* If the input has no requirement about FP hardware, do
14588 nothing. */
14589 else if (in_attr[i].i == 0)
14590 {
14591 /* We used to assert that Tag_ABI_HardFP_use was
14592 zero here, but we should never assert when
14593 consuming an object file that has suspicious
14594 build attributes. The single precision variant
14595 of 'no FP architecture' is still 'no FP
14596 architecture', so we just ignore the tag in this
14597 case. */
14598 break;
14599 }
14600
14601 /* Both the input and the output have nonzero Tag_FP_arch.
14602 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14603
14604 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14605 do nothing. */
14606 if (in_attr[Tag_ABI_HardFP_use].i == 0
14607 && out_attr[Tag_ABI_HardFP_use].i == 0)
14608 ;
14609 /* If the input and the output have different Tag_ABI_HardFP_use,
14610 the combination of them is 0 (implied by Tag_FP_arch). */
14611 else if (in_attr[Tag_ABI_HardFP_use].i
14612 != out_attr[Tag_ABI_HardFP_use].i)
14613 out_attr[Tag_ABI_HardFP_use].i = 0;
14614
14615 /* Now we can handle Tag_FP_arch. */
14616
14617 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14618 pick the biggest. */
14619 if (in_attr[i].i >= VFP_VERSION_COUNT
14620 && in_attr[i].i > out_attr[i].i)
14621 {
14622 out_attr[i] = in_attr[i];
14623 break;
14624 }
14625 /* The output uses the superset of input features
14626 (ISA version) and registers. */
14627 ver = vfp_versions[in_attr[i].i].ver;
14628 if (ver < vfp_versions[out_attr[i].i].ver)
14629 ver = vfp_versions[out_attr[i].i].ver;
14630 regs = vfp_versions[in_attr[i].i].regs;
14631 if (regs < vfp_versions[out_attr[i].i].regs)
14632 regs = vfp_versions[out_attr[i].i].regs;
14633 /* This assumes all possible supersets are also a valid
14634 options. */
14635 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
14636 {
14637 if (regs == vfp_versions[newval].regs
14638 && ver == vfp_versions[newval].ver)
14639 break;
14640 }
14641 out_attr[i].i = newval;
14642 }
14643 break;
14644 case Tag_PCS_config:
14645 if (out_attr[i].i == 0)
14646 out_attr[i].i = in_attr[i].i;
14647 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
14648 {
14649 /* It's sometimes ok to mix different configs, so this is only
14650 a warning. */
14651 _bfd_error_handler
14652 (_("warning: %pB: conflicting platform configuration"), ibfd);
14653 }
14654 break;
14655 case Tag_ABI_PCS_R9_use:
14656 if (in_attr[i].i != out_attr[i].i
14657 && out_attr[i].i != AEABI_R9_unused
14658 && in_attr[i].i != AEABI_R9_unused)
14659 {
14660 _bfd_error_handler
14661 (_("error: %pB: conflicting use of R9"), ibfd);
14662 result = FALSE;
14663 }
14664 if (out_attr[i].i == AEABI_R9_unused)
14665 out_attr[i].i = in_attr[i].i;
14666 break;
14667 case Tag_ABI_PCS_RW_data:
14668 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14669 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14670 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14671 {
14672 _bfd_error_handler
14673 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14674 ibfd);
14675 result = FALSE;
14676 }
14677 /* Use the smallest value specified. */
14678 if (in_attr[i].i < out_attr[i].i)
14679 out_attr[i].i = in_attr[i].i;
14680 break;
14681 case Tag_ABI_PCS_wchar_t:
14682 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14683 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
14684 {
14685 _bfd_error_handler
14686 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14687 ibfd, in_attr[i].i, out_attr[i].i);
14688 }
14689 else if (in_attr[i].i && !out_attr[i].i)
14690 out_attr[i].i = in_attr[i].i;
14691 break;
14692 case Tag_ABI_enum_size:
14693 if (in_attr[i].i != AEABI_enum_unused)
14694 {
14695 if (out_attr[i].i == AEABI_enum_unused
14696 || out_attr[i].i == AEABI_enum_forced_wide)
14697 {
14698 /* The existing object is compatible with anything.
14699 Use whatever requirements the new object has. */
14700 out_attr[i].i = in_attr[i].i;
14701 }
14702 else if (in_attr[i].i != AEABI_enum_forced_wide
14703 && out_attr[i].i != in_attr[i].i
14704 && !elf_arm_tdata (obfd)->no_enum_size_warning)
14705 {
14706 static const char *aeabi_enum_names[] =
14707 { "", "variable-size", "32-bit", "" };
14708 const char *in_name =
14709 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14710 ? aeabi_enum_names[in_attr[i].i]
14711 : "<unknown>";
14712 const char *out_name =
14713 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14714 ? aeabi_enum_names[out_attr[i].i]
14715 : "<unknown>";
14716 _bfd_error_handler
14717 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14718 ibfd, in_name, out_name);
14719 }
14720 }
14721 break;
14722 case Tag_ABI_VFP_args:
14723 /* Aready done. */
14724 break;
14725 case Tag_ABI_WMMX_args:
14726 if (in_attr[i].i != out_attr[i].i)
14727 {
14728 _bfd_error_handler
14729 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
14730 ibfd, obfd);
14731 result = FALSE;
14732 }
14733 break;
14734 case Tag_compatibility:
14735 /* Merged in target-independent code. */
14736 break;
14737 case Tag_ABI_HardFP_use:
14738 /* This is handled along with Tag_FP_arch. */
14739 break;
14740 case Tag_ABI_FP_16bit_format:
14741 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14742 {
14743 if (in_attr[i].i != out_attr[i].i)
14744 {
14745 _bfd_error_handler
14746 (_("error: fp16 format mismatch between %pB and %pB"),
14747 ibfd, obfd);
14748 result = FALSE;
14749 }
14750 }
14751 if (in_attr[i].i != 0)
14752 out_attr[i].i = in_attr[i].i;
14753 break;
14754
14755 case Tag_DIV_use:
14756 /* A value of zero on input means that the divide instruction may
14757 be used if available in the base architecture as specified via
14758 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
14759 the user did not want divide instructions. A value of 2
14760 explicitly means that divide instructions were allowed in ARM
14761 and Thumb state. */
14762 if (in_attr[i].i == out_attr[i].i)
14763 /* Do nothing. */ ;
14764 else if (elf32_arm_attributes_forbid_div (in_attr)
14765 && !elf32_arm_attributes_accept_div (out_attr))
14766 out_attr[i].i = 1;
14767 else if (elf32_arm_attributes_forbid_div (out_attr)
14768 && elf32_arm_attributes_accept_div (in_attr))
14769 out_attr[i].i = in_attr[i].i;
14770 else if (in_attr[i].i == 2)
14771 out_attr[i].i = in_attr[i].i;
14772 break;
14773
14774 case Tag_MPextension_use_legacy:
14775 /* We don't output objects with Tag_MPextension_use_legacy - we
14776 move the value to Tag_MPextension_use. */
14777 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14778 {
14779 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14780 {
14781 _bfd_error_handler
14782 (_("%pB has both the current and legacy "
14783 "Tag_MPextension_use attributes"),
14784 ibfd);
14785 result = FALSE;
14786 }
14787 }
14788
14789 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14790 out_attr[Tag_MPextension_use] = in_attr[i];
14791
14792 break;
14793
14794 case Tag_nodefaults:
14795 /* This tag is set if it exists, but the value is unused (and is
14796 typically zero). We don't actually need to do anything here -
14797 the merge happens automatically when the type flags are merged
14798 below. */
14799 break;
14800 case Tag_also_compatible_with:
14801 /* Already done in Tag_CPU_arch. */
14802 break;
14803 case Tag_conformance:
14804 /* Keep the attribute if it matches. Throw it away otherwise.
14805 No attribute means no claim to conform. */
14806 if (!in_attr[i].s || !out_attr[i].s
14807 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14808 out_attr[i].s = NULL;
14809 break;
14810
14811 default:
14812 result
14813 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
14814 }
14815
14816 /* If out_attr was copied from in_attr then it won't have a type yet. */
14817 if (in_attr[i].type && !out_attr[i].type)
14818 out_attr[i].type = in_attr[i].type;
14819 }
14820
14821 /* Merge Tag_compatibility attributes and any common GNU ones. */
14822 if (!_bfd_elf_merge_object_attributes (ibfd, info))
14823 return FALSE;
14824
14825 /* Check for any attributes not known on ARM. */
14826 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
14827
14828 return result;
14829 }
14830
14831
14832 /* Return TRUE if the two EABI versions are incompatible. */
14833
14834 static bfd_boolean
14835 elf32_arm_versions_compatible (unsigned iver, unsigned over)
14836 {
14837 /* v4 and v5 are the same spec before and after it was released,
14838 so allow mixing them. */
14839 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14840 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14841 return TRUE;
14842
14843 return (iver == over);
14844 }
14845
14846 /* Merge backend specific data from an object file to the output
14847 object file when linking. */
14848
14849 static bfd_boolean
14850 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
14851
14852 /* Display the flags field. */
14853
14854 static bfd_boolean
14855 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
14856 {
14857 FILE * file = (FILE *) ptr;
14858 unsigned long flags;
14859
14860 BFD_ASSERT (abfd != NULL && ptr != NULL);
14861
14862 /* Print normal ELF private data. */
14863 _bfd_elf_print_private_bfd_data (abfd, ptr);
14864
14865 flags = elf_elfheader (abfd)->e_flags;
14866 /* Ignore init flag - it may not be set, despite the flags field
14867 containing valid data. */
14868
14869 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14870
14871 switch (EF_ARM_EABI_VERSION (flags))
14872 {
14873 case EF_ARM_EABI_UNKNOWN:
14874 /* The following flag bits are GNU extensions and not part of the
14875 official ARM ELF extended ABI. Hence they are only decoded if
14876 the EABI version is not set. */
14877 if (flags & EF_ARM_INTERWORK)
14878 fprintf (file, _(" [interworking enabled]"));
14879
14880 if (flags & EF_ARM_APCS_26)
14881 fprintf (file, " [APCS-26]");
14882 else
14883 fprintf (file, " [APCS-32]");
14884
14885 if (flags & EF_ARM_VFP_FLOAT)
14886 fprintf (file, _(" [VFP float format]"));
14887 else if (flags & EF_ARM_MAVERICK_FLOAT)
14888 fprintf (file, _(" [Maverick float format]"));
14889 else
14890 fprintf (file, _(" [FPA float format]"));
14891
14892 if (flags & EF_ARM_APCS_FLOAT)
14893 fprintf (file, _(" [floats passed in float registers]"));
14894
14895 if (flags & EF_ARM_PIC)
14896 fprintf (file, _(" [position independent]"));
14897
14898 if (flags & EF_ARM_NEW_ABI)
14899 fprintf (file, _(" [new ABI]"));
14900
14901 if (flags & EF_ARM_OLD_ABI)
14902 fprintf (file, _(" [old ABI]"));
14903
14904 if (flags & EF_ARM_SOFT_FLOAT)
14905 fprintf (file, _(" [software FP]"));
14906
14907 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14908 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
14909 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14910 | EF_ARM_MAVERICK_FLOAT);
14911 break;
14912
14913 case EF_ARM_EABI_VER1:
14914 fprintf (file, _(" [Version1 EABI]"));
14915
14916 if (flags & EF_ARM_SYMSARESORTED)
14917 fprintf (file, _(" [sorted symbol table]"));
14918 else
14919 fprintf (file, _(" [unsorted symbol table]"));
14920
14921 flags &= ~ EF_ARM_SYMSARESORTED;
14922 break;
14923
14924 case EF_ARM_EABI_VER2:
14925 fprintf (file, _(" [Version2 EABI]"));
14926
14927 if (flags & EF_ARM_SYMSARESORTED)
14928 fprintf (file, _(" [sorted symbol table]"));
14929 else
14930 fprintf (file, _(" [unsorted symbol table]"));
14931
14932 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14933 fprintf (file, _(" [dynamic symbols use segment index]"));
14934
14935 if (flags & EF_ARM_MAPSYMSFIRST)
14936 fprintf (file, _(" [mapping symbols precede others]"));
14937
14938 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
14939 | EF_ARM_MAPSYMSFIRST);
14940 break;
14941
14942 case EF_ARM_EABI_VER3:
14943 fprintf (file, _(" [Version3 EABI]"));
14944 break;
14945
14946 case EF_ARM_EABI_VER4:
14947 fprintf (file, _(" [Version4 EABI]"));
14948 goto eabi;
14949
14950 case EF_ARM_EABI_VER5:
14951 fprintf (file, _(" [Version5 EABI]"));
14952
14953 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14954 fprintf (file, _(" [soft-float ABI]"));
14955
14956 if (flags & EF_ARM_ABI_FLOAT_HARD)
14957 fprintf (file, _(" [hard-float ABI]"));
14958
14959 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14960
14961 eabi:
14962 if (flags & EF_ARM_BE8)
14963 fprintf (file, _(" [BE8]"));
14964
14965 if (flags & EF_ARM_LE8)
14966 fprintf (file, _(" [LE8]"));
14967
14968 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14969 break;
14970
14971 default:
14972 fprintf (file, _(" <EABI version unrecognised>"));
14973 break;
14974 }
14975
14976 flags &= ~ EF_ARM_EABIMASK;
14977
14978 if (flags & EF_ARM_RELEXEC)
14979 fprintf (file, _(" [relocatable executable]"));
14980
14981 if (flags & EF_ARM_PIC)
14982 fprintf (file, _(" [position independent]"));
14983
14984 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
14985 fprintf (file, _(" [FDPIC ABI supplement]"));
14986
14987 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
14988
14989 if (flags)
14990 fprintf (file, _("<Unrecognised flag bits set>"));
14991
14992 fputc ('\n', file);
14993
14994 return TRUE;
14995 }
14996
14997 static int
14998 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
14999 {
15000 switch (ELF_ST_TYPE (elf_sym->st_info))
15001 {
15002 case STT_ARM_TFUNC:
15003 return ELF_ST_TYPE (elf_sym->st_info);
15004
15005 case STT_ARM_16BIT:
15006 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15007 This allows us to distinguish between data used by Thumb instructions
15008 and non-data (which is probably code) inside Thumb regions of an
15009 executable. */
15010 if (type != STT_OBJECT && type != STT_TLS)
15011 return ELF_ST_TYPE (elf_sym->st_info);
15012 break;
15013
15014 default:
15015 break;
15016 }
15017
15018 return type;
15019 }
15020
15021 static asection *
15022 elf32_arm_gc_mark_hook (asection *sec,
15023 struct bfd_link_info *info,
15024 Elf_Internal_Rela *rel,
15025 struct elf_link_hash_entry *h,
15026 Elf_Internal_Sym *sym)
15027 {
15028 if (h != NULL)
15029 switch (ELF32_R_TYPE (rel->r_info))
15030 {
15031 case R_ARM_GNU_VTINHERIT:
15032 case R_ARM_GNU_VTENTRY:
15033 return NULL;
15034 }
15035
15036 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
15037 }
15038
15039 /* Look through the relocs for a section during the first phase. */
15040
15041 static bfd_boolean
15042 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15043 asection *sec, const Elf_Internal_Rela *relocs)
15044 {
15045 Elf_Internal_Shdr *symtab_hdr;
15046 struct elf_link_hash_entry **sym_hashes;
15047 const Elf_Internal_Rela *rel;
15048 const Elf_Internal_Rela *rel_end;
15049 bfd *dynobj;
15050 asection *sreloc;
15051 struct elf32_arm_link_hash_table *htab;
15052 bfd_boolean call_reloc_p;
15053 bfd_boolean may_become_dynamic_p;
15054 bfd_boolean may_need_local_target_p;
15055 unsigned long nsyms;
15056
15057 if (bfd_link_relocatable (info))
15058 return TRUE;
15059
15060 BFD_ASSERT (is_arm_elf (abfd));
15061
15062 htab = elf32_arm_hash_table (info);
15063 if (htab == NULL)
15064 return FALSE;
15065
15066 sreloc = NULL;
15067
15068 /* Create dynamic sections for relocatable executables so that we can
15069 copy relocations. */
15070 if (htab->root.is_relocatable_executable
15071 && ! htab->root.dynamic_sections_created)
15072 {
15073 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15074 return FALSE;
15075 }
15076
15077 if (htab->root.dynobj == NULL)
15078 htab->root.dynobj = abfd;
15079 if (!create_ifunc_sections (info))
15080 return FALSE;
15081
15082 dynobj = htab->root.dynobj;
15083
15084 symtab_hdr = & elf_symtab_hdr (abfd);
15085 sym_hashes = elf_sym_hashes (abfd);
15086 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
15087
15088 rel_end = relocs + sec->reloc_count;
15089 for (rel = relocs; rel < rel_end; rel++)
15090 {
15091 Elf_Internal_Sym *isym;
15092 struct elf_link_hash_entry *h;
15093 struct elf32_arm_link_hash_entry *eh;
15094 unsigned int r_symndx;
15095 int r_type;
15096
15097 r_symndx = ELF32_R_SYM (rel->r_info);
15098 r_type = ELF32_R_TYPE (rel->r_info);
15099 r_type = arm_real_reloc_type (htab, r_type);
15100
15101 if (r_symndx >= nsyms
15102 /* PR 9934: It is possible to have relocations that do not
15103 refer to symbols, thus it is also possible to have an
15104 object file containing relocations but no symbol table. */
15105 && (r_symndx > STN_UNDEF || nsyms > 0))
15106 {
15107 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15108 r_symndx);
15109 return FALSE;
15110 }
15111
15112 h = NULL;
15113 isym = NULL;
15114 if (nsyms > 0)
15115 {
15116 if (r_symndx < symtab_hdr->sh_info)
15117 {
15118 /* A local symbol. */
15119 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15120 abfd, r_symndx);
15121 if (isym == NULL)
15122 return FALSE;
15123 }
15124 else
15125 {
15126 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15127 while (h->root.type == bfd_link_hash_indirect
15128 || h->root.type == bfd_link_hash_warning)
15129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15130 }
15131 }
15132
15133 eh = (struct elf32_arm_link_hash_entry *) h;
15134
15135 call_reloc_p = FALSE;
15136 may_become_dynamic_p = FALSE;
15137 may_need_local_target_p = FALSE;
15138
15139 /* Could be done earlier, if h were already available. */
15140 r_type = elf32_arm_tls_transition (info, r_type, h);
15141 switch (r_type)
15142 {
15143 case R_ARM_GOTOFFFUNCDESC:
15144 {
15145 if (h == NULL)
15146 {
15147 if (!elf32_arm_allocate_local_sym_info (abfd))
15148 return FALSE;
15149 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15150 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15151 }
15152 else
15153 {
15154 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15155 }
15156 }
15157 break;
15158
15159 case R_ARM_GOTFUNCDESC:
15160 {
15161 if (h == NULL)
15162 {
15163 /* Such a relocation is not supposed to be generated
15164 by gcc on a static function. */
15165 /* Anyway if needed it could be handled. */
15166 abort();
15167 }
15168 else
15169 {
15170 eh->fdpic_cnts.gotfuncdesc_cnt++;
15171 }
15172 }
15173 break;
15174
15175 case R_ARM_FUNCDESC:
15176 {
15177 if (h == NULL)
15178 {
15179 if (!elf32_arm_allocate_local_sym_info (abfd))
15180 return FALSE;
15181 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15182 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15183 }
15184 else
15185 {
15186 eh->fdpic_cnts.funcdesc_cnt++;
15187 }
15188 }
15189 break;
15190
15191 case R_ARM_GOT32:
15192 case R_ARM_GOT_PREL:
15193 case R_ARM_TLS_GD32:
15194 case R_ARM_TLS_GD32_FDPIC:
15195 case R_ARM_TLS_IE32:
15196 case R_ARM_TLS_IE32_FDPIC:
15197 case R_ARM_TLS_GOTDESC:
15198 case R_ARM_TLS_DESCSEQ:
15199 case R_ARM_THM_TLS_DESCSEQ:
15200 case R_ARM_TLS_CALL:
15201 case R_ARM_THM_TLS_CALL:
15202 /* This symbol requires a global offset table entry. */
15203 {
15204 int tls_type, old_tls_type;
15205
15206 switch (r_type)
15207 {
15208 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
15209 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
15210
15211 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
15212 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
15213
15214 case R_ARM_TLS_GOTDESC:
15215 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15216 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15217 tls_type = GOT_TLS_GDESC; break;
15218
15219 default: tls_type = GOT_NORMAL; break;
15220 }
15221
15222 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
15223 info->flags |= DF_STATIC_TLS;
15224
15225 if (h != NULL)
15226 {
15227 h->got.refcount++;
15228 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15229 }
15230 else
15231 {
15232 /* This is a global offset table entry for a local symbol. */
15233 if (!elf32_arm_allocate_local_sym_info (abfd))
15234 return FALSE;
15235 elf_local_got_refcounts (abfd)[r_symndx] += 1;
15236 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15237 }
15238
15239 /* If a variable is accessed with both tls methods, two
15240 slots may be created. */
15241 if (GOT_TLS_GD_ANY_P (old_tls_type)
15242 && GOT_TLS_GD_ANY_P (tls_type))
15243 tls_type |= old_tls_type;
15244
15245 /* We will already have issued an error message if there
15246 is a TLS/non-TLS mismatch, based on the symbol
15247 type. So just combine any TLS types needed. */
15248 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15249 && tls_type != GOT_NORMAL)
15250 tls_type |= old_tls_type;
15251
15252 /* If the symbol is accessed in both IE and GDESC
15253 method, we're able to relax. Turn off the GDESC flag,
15254 without messing up with any other kind of tls types
15255 that may be involved. */
15256 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15257 tls_type &= ~GOT_TLS_GDESC;
15258
15259 if (old_tls_type != tls_type)
15260 {
15261 if (h != NULL)
15262 elf32_arm_hash_entry (h)->tls_type = tls_type;
15263 else
15264 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15265 }
15266 }
15267 /* Fall through. */
15268
15269 case R_ARM_TLS_LDM32:
15270 case R_ARM_TLS_LDM32_FDPIC:
15271 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
15272 htab->tls_ldm_got.refcount++;
15273 /* Fall through. */
15274
15275 case R_ARM_GOTOFF32:
15276 case R_ARM_GOTPC:
15277 if (htab->root.sgot == NULL
15278 && !create_got_section (htab->root.dynobj, info))
15279 return FALSE;
15280 break;
15281
15282 case R_ARM_PC24:
15283 case R_ARM_PLT32:
15284 case R_ARM_CALL:
15285 case R_ARM_JUMP24:
15286 case R_ARM_PREL31:
15287 case R_ARM_THM_CALL:
15288 case R_ARM_THM_JUMP24:
15289 case R_ARM_THM_JUMP19:
15290 call_reloc_p = TRUE;
15291 may_need_local_target_p = TRUE;
15292 break;
15293
15294 case R_ARM_ABS12:
15295 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15296 ldr __GOTT_INDEX__ offsets. */
15297 if (!htab->vxworks_p)
15298 {
15299 may_need_local_target_p = TRUE;
15300 break;
15301 }
15302 else goto jump_over;
15303
15304 /* Fall through. */
15305
15306 case R_ARM_MOVW_ABS_NC:
15307 case R_ARM_MOVT_ABS:
15308 case R_ARM_THM_MOVW_ABS_NC:
15309 case R_ARM_THM_MOVT_ABS:
15310 if (bfd_link_pic (info))
15311 {
15312 _bfd_error_handler
15313 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15314 abfd, elf32_arm_howto_table_1[r_type].name,
15315 (h) ? h->root.root.string : "a local symbol");
15316 bfd_set_error (bfd_error_bad_value);
15317 return FALSE;
15318 }
15319
15320 /* Fall through. */
15321 case R_ARM_ABS32:
15322 case R_ARM_ABS32_NOI:
15323 jump_over:
15324 if (h != NULL && bfd_link_executable (info))
15325 {
15326 h->pointer_equality_needed = 1;
15327 }
15328 /* Fall through. */
15329 case R_ARM_REL32:
15330 case R_ARM_REL32_NOI:
15331 case R_ARM_MOVW_PREL_NC:
15332 case R_ARM_MOVT_PREL:
15333 case R_ARM_THM_MOVW_PREL_NC:
15334 case R_ARM_THM_MOVT_PREL:
15335
15336 /* Should the interworking branches be listed here? */
15337 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15338 || htab->fdpic_p)
15339 && (sec->flags & SEC_ALLOC) != 0)
15340 {
15341 if (h == NULL
15342 && elf32_arm_howto_from_type (r_type)->pc_relative)
15343 {
15344 /* In shared libraries and relocatable executables,
15345 we treat local relative references as calls;
15346 see the related SYMBOL_CALLS_LOCAL code in
15347 allocate_dynrelocs. */
15348 call_reloc_p = TRUE;
15349 may_need_local_target_p = TRUE;
15350 }
15351 else
15352 /* We are creating a shared library or relocatable
15353 executable, and this is a reloc against a global symbol,
15354 or a non-PC-relative reloc against a local symbol.
15355 We may need to copy the reloc into the output. */
15356 may_become_dynamic_p = TRUE;
15357 }
15358 else
15359 may_need_local_target_p = TRUE;
15360 break;
15361
15362 /* This relocation describes the C++ object vtable hierarchy.
15363 Reconstruct it for later use during GC. */
15364 case R_ARM_GNU_VTINHERIT:
15365 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15366 return FALSE;
15367 break;
15368
15369 /* This relocation describes which C++ vtable entries are actually
15370 used. Record for later use during GC. */
15371 case R_ARM_GNU_VTENTRY:
15372 BFD_ASSERT (h != NULL);
15373 if (h != NULL
15374 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
15375 return FALSE;
15376 break;
15377 }
15378
15379 if (h != NULL)
15380 {
15381 if (call_reloc_p)
15382 /* We may need a .plt entry if the function this reloc
15383 refers to is in a different object, regardless of the
15384 symbol's type. We can't tell for sure yet, because
15385 something later might force the symbol local. */
15386 h->needs_plt = 1;
15387 else if (may_need_local_target_p)
15388 /* If this reloc is in a read-only section, we might
15389 need a copy reloc. We can't check reliably at this
15390 stage whether the section is read-only, as input
15391 sections have not yet been mapped to output sections.
15392 Tentatively set the flag for now, and correct in
15393 adjust_dynamic_symbol. */
15394 h->non_got_ref = 1;
15395 }
15396
15397 if (may_need_local_target_p
15398 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
15399 {
15400 union gotplt_union *root_plt;
15401 struct arm_plt_info *arm_plt;
15402 struct arm_local_iplt_info *local_iplt;
15403
15404 if (h != NULL)
15405 {
15406 root_plt = &h->plt;
15407 arm_plt = &eh->plt;
15408 }
15409 else
15410 {
15411 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15412 if (local_iplt == NULL)
15413 return FALSE;
15414 root_plt = &local_iplt->root;
15415 arm_plt = &local_iplt->arm;
15416 }
15417
15418 /* If the symbol is a function that doesn't bind locally,
15419 this relocation will need a PLT entry. */
15420 if (root_plt->refcount != -1)
15421 root_plt->refcount += 1;
15422
15423 if (!call_reloc_p)
15424 arm_plt->noncall_refcount++;
15425
15426 /* It's too early to use htab->use_blx here, so we have to
15427 record possible blx references separately from
15428 relocs that definitely need a thumb stub. */
15429
15430 if (r_type == R_ARM_THM_CALL)
15431 arm_plt->maybe_thumb_refcount += 1;
15432
15433 if (r_type == R_ARM_THM_JUMP24
15434 || r_type == R_ARM_THM_JUMP19)
15435 arm_plt->thumb_refcount += 1;
15436 }
15437
15438 if (may_become_dynamic_p)
15439 {
15440 struct elf_dyn_relocs *p, **head;
15441
15442 /* Create a reloc section in dynobj. */
15443 if (sreloc == NULL)
15444 {
15445 sreloc = _bfd_elf_make_dynamic_reloc_section
15446 (sec, dynobj, 2, abfd, ! htab->use_rel);
15447
15448 if (sreloc == NULL)
15449 return FALSE;
15450
15451 /* BPABI objects never have dynamic relocations mapped. */
15452 if (htab->symbian_p)
15453 {
15454 flagword flags;
15455
15456 flags = bfd_get_section_flags (dynobj, sreloc);
15457 flags &= ~(SEC_LOAD | SEC_ALLOC);
15458 bfd_set_section_flags (dynobj, sreloc, flags);
15459 }
15460 }
15461
15462 /* If this is a global symbol, count the number of
15463 relocations we need for this symbol. */
15464 if (h != NULL)
15465 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
15466 else
15467 {
15468 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15469 if (head == NULL)
15470 return FALSE;
15471 }
15472
15473 p = *head;
15474 if (p == NULL || p->sec != sec)
15475 {
15476 bfd_size_type amt = sizeof *p;
15477
15478 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15479 if (p == NULL)
15480 return FALSE;
15481 p->next = *head;
15482 *head = p;
15483 p->sec = sec;
15484 p->count = 0;
15485 p->pc_count = 0;
15486 }
15487
15488 if (elf32_arm_howto_from_type (r_type)->pc_relative)
15489 p->pc_count += 1;
15490 p->count += 1;
15491 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15492 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15493 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15494 that will become rofixup. */
15495 /* This is due to the fact that we suppose all will become rofixup. */
15496 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15497 _bfd_error_handler
15498 (_("FDPIC does not yet support %s relocation"
15499 " to become dynamic for executable"),
15500 elf32_arm_howto_table_1[r_type].name);
15501 abort();
15502 }
15503 }
15504 }
15505
15506 return TRUE;
15507 }
15508
15509 static void
15510 elf32_arm_update_relocs (asection *o,
15511 struct bfd_elf_section_reloc_data *reldata)
15512 {
15513 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15514 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15515 const struct elf_backend_data *bed;
15516 _arm_elf_section_data *eado;
15517 struct bfd_link_order *p;
15518 bfd_byte *erela_head, *erela;
15519 Elf_Internal_Rela *irela_head, *irela;
15520 Elf_Internal_Shdr *rel_hdr;
15521 bfd *abfd;
15522 unsigned int count;
15523
15524 eado = get_arm_elf_section_data (o);
15525
15526 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15527 return;
15528
15529 abfd = o->owner;
15530 bed = get_elf_backend_data (abfd);
15531 rel_hdr = reldata->hdr;
15532
15533 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15534 {
15535 swap_in = bed->s->swap_reloc_in;
15536 swap_out = bed->s->swap_reloc_out;
15537 }
15538 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15539 {
15540 swap_in = bed->s->swap_reloca_in;
15541 swap_out = bed->s->swap_reloca_out;
15542 }
15543 else
15544 abort ();
15545
15546 erela_head = rel_hdr->contents;
15547 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15548 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15549
15550 erela = erela_head;
15551 irela = irela_head;
15552 count = 0;
15553
15554 for (p = o->map_head.link_order; p; p = p->next)
15555 {
15556 if (p->type == bfd_section_reloc_link_order
15557 || p->type == bfd_symbol_reloc_link_order)
15558 {
15559 (*swap_in) (abfd, erela, irela);
15560 erela += rel_hdr->sh_entsize;
15561 irela++;
15562 count++;
15563 }
15564 else if (p->type == bfd_indirect_link_order)
15565 {
15566 struct bfd_elf_section_reloc_data *input_reldata;
15567 arm_unwind_table_edit *edit_list, *edit_tail;
15568 _arm_elf_section_data *eadi;
15569 bfd_size_type j;
15570 bfd_vma offset;
15571 asection *i;
15572
15573 i = p->u.indirect.section;
15574
15575 eadi = get_arm_elf_section_data (i);
15576 edit_list = eadi->u.exidx.unwind_edit_list;
15577 edit_tail = eadi->u.exidx.unwind_edit_tail;
15578 offset = o->vma + i->output_offset;
15579
15580 if (eadi->elf.rel.hdr &&
15581 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15582 input_reldata = &eadi->elf.rel;
15583 else if (eadi->elf.rela.hdr &&
15584 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15585 input_reldata = &eadi->elf.rela;
15586 else
15587 abort ();
15588
15589 if (edit_list)
15590 {
15591 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15592 {
15593 arm_unwind_table_edit *edit_node, *edit_next;
15594 bfd_vma bias;
15595 bfd_vma reloc_index;
15596
15597 (*swap_in) (abfd, erela, irela);
15598 reloc_index = (irela->r_offset - offset) / 8;
15599
15600 bias = 0;
15601 edit_node = edit_list;
15602 for (edit_next = edit_list;
15603 edit_next && edit_next->index <= reloc_index;
15604 edit_next = edit_node->next)
15605 {
15606 bias++;
15607 edit_node = edit_next;
15608 }
15609
15610 if (edit_node->type != DELETE_EXIDX_ENTRY
15611 || edit_node->index != reloc_index)
15612 {
15613 irela->r_offset -= bias * 8;
15614 irela++;
15615 count++;
15616 }
15617
15618 erela += rel_hdr->sh_entsize;
15619 }
15620
15621 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15622 {
15623 /* New relocation entity. */
15624 asection *text_sec = edit_tail->linked_section;
15625 asection *text_out = text_sec->output_section;
15626 bfd_vma exidx_offset = offset + i->size - 8;
15627
15628 irela->r_addend = 0;
15629 irela->r_offset = exidx_offset;
15630 irela->r_info = ELF32_R_INFO
15631 (text_out->target_index, R_ARM_PREL31);
15632 irela++;
15633 count++;
15634 }
15635 }
15636 else
15637 {
15638 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15639 {
15640 (*swap_in) (abfd, erela, irela);
15641 erela += rel_hdr->sh_entsize;
15642 irela++;
15643 }
15644
15645 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15646 }
15647 }
15648 }
15649
15650 reldata->count = count;
15651 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15652
15653 erela = erela_head;
15654 irela = irela_head;
15655 while (count > 0)
15656 {
15657 (*swap_out) (abfd, irela, erela);
15658 erela += rel_hdr->sh_entsize;
15659 irela++;
15660 count--;
15661 }
15662
15663 free (irela_head);
15664
15665 /* Hashes are no longer valid. */
15666 free (reldata->hashes);
15667 reldata->hashes = NULL;
15668 }
15669
15670 /* Unwinding tables are not referenced directly. This pass marks them as
15671 required if the corresponding code section is marked. Similarly, ARMv8-M
15672 secure entry functions can only be referenced by SG veneers which are
15673 created after the GC process. They need to be marked in case they reside in
15674 their own section (as would be the case if code was compiled with
15675 -ffunction-sections). */
15676
15677 static bfd_boolean
15678 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15679 elf_gc_mark_hook_fn gc_mark_hook)
15680 {
15681 bfd *sub;
15682 Elf_Internal_Shdr **elf_shdrp;
15683 asection *cmse_sec;
15684 obj_attribute *out_attr;
15685 Elf_Internal_Shdr *symtab_hdr;
15686 unsigned i, sym_count, ext_start;
15687 const struct elf_backend_data *bed;
15688 struct elf_link_hash_entry **sym_hashes;
15689 struct elf32_arm_link_hash_entry *cmse_hash;
15690 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15691
15692 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15693
15694 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15695 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15696 && out_attr[Tag_CPU_arch_profile].i == 'M';
15697
15698 /* Marking EH data may cause additional code sections to be marked,
15699 requiring multiple passes. */
15700 again = TRUE;
15701 while (again)
15702 {
15703 again = FALSE;
15704 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15705 {
15706 asection *o;
15707
15708 if (! is_arm_elf (sub))
15709 continue;
15710
15711 elf_shdrp = elf_elfsections (sub);
15712 for (o = sub->sections; o != NULL; o = o->next)
15713 {
15714 Elf_Internal_Shdr *hdr;
15715
15716 hdr = &elf_section_data (o)->this_hdr;
15717 if (hdr->sh_type == SHT_ARM_EXIDX
15718 && hdr->sh_link
15719 && hdr->sh_link < elf_numsections (sub)
15720 && !o->gc_mark
15721 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15722 {
15723 again = TRUE;
15724 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15725 return FALSE;
15726 }
15727 }
15728
15729 /* Mark section holding ARMv8-M secure entry functions. We mark all
15730 of them so no need for a second browsing. */
15731 if (is_v8m && first_bfd_browse)
15732 {
15733 sym_hashes = elf_sym_hashes (sub);
15734 bed = get_elf_backend_data (sub);
15735 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15736 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15737 ext_start = symtab_hdr->sh_info;
15738
15739 /* Scan symbols. */
15740 for (i = ext_start; i < sym_count; i++)
15741 {
15742 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15743
15744 /* Assume it is a special symbol. If not, cmse_scan will
15745 warn about it and user can do something about it. */
15746 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15747 {
15748 cmse_sec = cmse_hash->root.root.u.def.section;
15749 if (!cmse_sec->gc_mark
15750 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15751 return FALSE;
15752 }
15753 }
15754 }
15755 }
15756 first_bfd_browse = FALSE;
15757 }
15758
15759 return TRUE;
15760 }
15761
15762 /* Treat mapping symbols as special target symbols. */
15763
15764 static bfd_boolean
15765 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15766 {
15767 return bfd_is_arm_special_symbol_name (sym->name,
15768 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
15769 }
15770
15771 /* This is a copy of elf_find_function() from elf.c except that
15772 ARM mapping symbols are ignored when looking for function names
15773 and STT_ARM_TFUNC is considered to a function type. */
15774
15775 static bfd_boolean
15776 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
15777 asymbol ** symbols,
15778 asection * section,
15779 bfd_vma offset,
15780 const char ** filename_ptr,
15781 const char ** functionname_ptr)
15782 {
15783 const char * filename = NULL;
15784 asymbol * func = NULL;
15785 bfd_vma low_func = 0;
15786 asymbol ** p;
15787
15788 for (p = symbols; *p != NULL; p++)
15789 {
15790 elf_symbol_type *q;
15791
15792 q = (elf_symbol_type *) *p;
15793
15794 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15795 {
15796 default:
15797 break;
15798 case STT_FILE:
15799 filename = bfd_asymbol_name (&q->symbol);
15800 break;
15801 case STT_FUNC:
15802 case STT_ARM_TFUNC:
15803 case STT_NOTYPE:
15804 /* Skip mapping symbols. */
15805 if ((q->symbol.flags & BSF_LOCAL)
15806 && bfd_is_arm_special_symbol_name (q->symbol.name,
15807 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
15808 continue;
15809 /* Fall through. */
15810 if (bfd_get_section (&q->symbol) == section
15811 && q->symbol.value >= low_func
15812 && q->symbol.value <= offset)
15813 {
15814 func = (asymbol *) q;
15815 low_func = q->symbol.value;
15816 }
15817 break;
15818 }
15819 }
15820
15821 if (func == NULL)
15822 return FALSE;
15823
15824 if (filename_ptr)
15825 *filename_ptr = filename;
15826 if (functionname_ptr)
15827 *functionname_ptr = bfd_asymbol_name (func);
15828
15829 return TRUE;
15830 }
15831
15832
15833 /* Find the nearest line to a particular section and offset, for error
15834 reporting. This code is a duplicate of the code in elf.c, except
15835 that it uses arm_elf_find_function. */
15836
15837 static bfd_boolean
15838 elf32_arm_find_nearest_line (bfd * abfd,
15839 asymbol ** symbols,
15840 asection * section,
15841 bfd_vma offset,
15842 const char ** filename_ptr,
15843 const char ** functionname_ptr,
15844 unsigned int * line_ptr,
15845 unsigned int * discriminator_ptr)
15846 {
15847 bfd_boolean found = FALSE;
15848
15849 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
15850 filename_ptr, functionname_ptr,
15851 line_ptr, discriminator_ptr,
15852 dwarf_debug_sections, 0,
15853 & elf_tdata (abfd)->dwarf2_find_line_info))
15854 {
15855 if (!*functionname_ptr)
15856 arm_elf_find_function (abfd, symbols, section, offset,
15857 *filename_ptr ? NULL : filename_ptr,
15858 functionname_ptr);
15859
15860 return TRUE;
15861 }
15862
15863 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15864 uses DWARF1. */
15865
15866 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15867 & found, filename_ptr,
15868 functionname_ptr, line_ptr,
15869 & elf_tdata (abfd)->line_info))
15870 return FALSE;
15871
15872 if (found && (*functionname_ptr || *line_ptr))
15873 return TRUE;
15874
15875 if (symbols == NULL)
15876 return FALSE;
15877
15878 if (! arm_elf_find_function (abfd, symbols, section, offset,
15879 filename_ptr, functionname_ptr))
15880 return FALSE;
15881
15882 *line_ptr = 0;
15883 return TRUE;
15884 }
15885
15886 static bfd_boolean
15887 elf32_arm_find_inliner_info (bfd * abfd,
15888 const char ** filename_ptr,
15889 const char ** functionname_ptr,
15890 unsigned int * line_ptr)
15891 {
15892 bfd_boolean found;
15893 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15894 functionname_ptr, line_ptr,
15895 & elf_tdata (abfd)->dwarf2_find_line_info);
15896 return found;
15897 }
15898
15899 /* Find dynamic relocs for H that apply to read-only sections. */
15900
15901 static asection *
15902 readonly_dynrelocs (struct elf_link_hash_entry *h)
15903 {
15904 struct elf_dyn_relocs *p;
15905
15906 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
15907 {
15908 asection *s = p->sec->output_section;
15909
15910 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15911 return p->sec;
15912 }
15913 return NULL;
15914 }
15915
15916 /* Adjust a symbol defined by a dynamic object and referenced by a
15917 regular object. The current definition is in some section of the
15918 dynamic object, but we're not including those sections. We have to
15919 change the definition to something the rest of the link can
15920 understand. */
15921
15922 static bfd_boolean
15923 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15924 struct elf_link_hash_entry * h)
15925 {
15926 bfd * dynobj;
15927 asection *s, *srel;
15928 struct elf32_arm_link_hash_entry * eh;
15929 struct elf32_arm_link_hash_table *globals;
15930
15931 globals = elf32_arm_hash_table (info);
15932 if (globals == NULL)
15933 return FALSE;
15934
15935 dynobj = elf_hash_table (info)->dynobj;
15936
15937 /* Make sure we know what is going on here. */
15938 BFD_ASSERT (dynobj != NULL
15939 && (h->needs_plt
15940 || h->type == STT_GNU_IFUNC
15941 || h->is_weakalias
15942 || (h->def_dynamic
15943 && h->ref_regular
15944 && !h->def_regular)));
15945
15946 eh = (struct elf32_arm_link_hash_entry *) h;
15947
15948 /* If this is a function, put it in the procedure linkage table. We
15949 will fill in the contents of the procedure linkage table later,
15950 when we know the address of the .got section. */
15951 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
15952 {
15953 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15954 symbol binds locally. */
15955 if (h->plt.refcount <= 0
15956 || (h->type != STT_GNU_IFUNC
15957 && (SYMBOL_CALLS_LOCAL (info, h)
15958 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15959 && h->root.type == bfd_link_hash_undefweak))))
15960 {
15961 /* This case can occur if we saw a PLT32 reloc in an input
15962 file, but the symbol was never referred to by a dynamic
15963 object, or if all references were garbage collected. In
15964 such a case, we don't actually need to build a procedure
15965 linkage table, and we can just do a PC24 reloc instead. */
15966 h->plt.offset = (bfd_vma) -1;
15967 eh->plt.thumb_refcount = 0;
15968 eh->plt.maybe_thumb_refcount = 0;
15969 eh->plt.noncall_refcount = 0;
15970 h->needs_plt = 0;
15971 }
15972
15973 return TRUE;
15974 }
15975 else
15976 {
15977 /* It's possible that we incorrectly decided a .plt reloc was
15978 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15979 in check_relocs. We can't decide accurately between function
15980 and non-function syms in check-relocs; Objects loaded later in
15981 the link may change h->type. So fix it now. */
15982 h->plt.offset = (bfd_vma) -1;
15983 eh->plt.thumb_refcount = 0;
15984 eh->plt.maybe_thumb_refcount = 0;
15985 eh->plt.noncall_refcount = 0;
15986 }
15987
15988 /* If this is a weak symbol, and there is a real definition, the
15989 processor independent code will have arranged for us to see the
15990 real definition first, and we can just use the same value. */
15991 if (h->is_weakalias)
15992 {
15993 struct elf_link_hash_entry *def = weakdef (h);
15994 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
15995 h->root.u.def.section = def->root.u.def.section;
15996 h->root.u.def.value = def->root.u.def.value;
15997 return TRUE;
15998 }
15999
16000 /* If there are no non-GOT references, we do not need a copy
16001 relocation. */
16002 if (!h->non_got_ref)
16003 return TRUE;
16004
16005 /* This is a reference to a symbol defined by a dynamic object which
16006 is not a function. */
16007
16008 /* If we are creating a shared library, we must presume that the
16009 only references to the symbol are via the global offset table.
16010 For such cases we need not do anything here; the relocations will
16011 be handled correctly by relocate_section. Relocatable executables
16012 can reference data in shared objects directly, so we don't need to
16013 do anything here. */
16014 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
16015 return TRUE;
16016
16017 /* We must allocate the symbol in our .dynbss section, which will
16018 become part of the .bss section of the executable. There will be
16019 an entry for this symbol in the .dynsym section. The dynamic
16020 object will contain position independent code, so all references
16021 from the dynamic object to this symbol will go through the global
16022 offset table. The dynamic linker will use the .dynsym entry to
16023 determine the address it must put in the global offset table, so
16024 both the dynamic object and the regular object will refer to the
16025 same memory location for the variable. */
16026 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16027 linker to copy the initial value out of the dynamic object and into
16028 the runtime process image. We need to remember the offset into the
16029 .rel(a).bss section we are going to use. */
16030 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16031 {
16032 s = globals->root.sdynrelro;
16033 srel = globals->root.sreldynrelro;
16034 }
16035 else
16036 {
16037 s = globals->root.sdynbss;
16038 srel = globals->root.srelbss;
16039 }
16040 if (info->nocopyreloc == 0
16041 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
16042 && h->size != 0)
16043 {
16044 elf32_arm_allocate_dynrelocs (info, srel, 1);
16045 h->needs_copy = 1;
16046 }
16047
16048 return _bfd_elf_adjust_dynamic_copy (info, h, s);
16049 }
16050
16051 /* Allocate space in .plt, .got and associated reloc sections for
16052 dynamic relocs. */
16053
16054 static bfd_boolean
16055 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
16056 {
16057 struct bfd_link_info *info;
16058 struct elf32_arm_link_hash_table *htab;
16059 struct elf32_arm_link_hash_entry *eh;
16060 struct elf_dyn_relocs *p;
16061
16062 if (h->root.type == bfd_link_hash_indirect)
16063 return TRUE;
16064
16065 eh = (struct elf32_arm_link_hash_entry *) h;
16066
16067 info = (struct bfd_link_info *) inf;
16068 htab = elf32_arm_hash_table (info);
16069 if (htab == NULL)
16070 return FALSE;
16071
16072 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
16073 && h->plt.refcount > 0)
16074 {
16075 /* Make sure this symbol is output as a dynamic symbol.
16076 Undefined weak syms won't yet be marked as dynamic. */
16077 if (h->dynindx == -1 && !h->forced_local
16078 && h->root.type == bfd_link_hash_undefweak)
16079 {
16080 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16081 return FALSE;
16082 }
16083
16084 /* If the call in the PLT entry binds locally, the associated
16085 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16086 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16087 than the .plt section. */
16088 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16089 {
16090 eh->is_iplt = 1;
16091 if (eh->plt.noncall_refcount == 0
16092 && SYMBOL_REFERENCES_LOCAL (info, h))
16093 /* All non-call references can be resolved directly.
16094 This means that they can (and in some cases, must)
16095 resolve directly to the run-time target, rather than
16096 to the PLT. That in turns means that any .got entry
16097 would be equal to the .igot.plt entry, so there's
16098 no point having both. */
16099 h->got.refcount = 0;
16100 }
16101
16102 if (bfd_link_pic (info)
16103 || eh->is_iplt
16104 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
16105 {
16106 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
16107
16108 /* If this symbol is not defined in a regular file, and we are
16109 not generating a shared library, then set the symbol to this
16110 location in the .plt. This is required to make function
16111 pointers compare as equal between the normal executable and
16112 the shared library. */
16113 if (! bfd_link_pic (info)
16114 && !h->def_regular)
16115 {
16116 h->root.u.def.section = htab->root.splt;
16117 h->root.u.def.value = h->plt.offset;
16118
16119 /* Make sure the function is not marked as Thumb, in case
16120 it is the target of an ABS32 relocation, which will
16121 point to the PLT entry. */
16122 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16123 }
16124
16125 /* VxWorks executables have a second set of relocations for
16126 each PLT entry. They go in a separate relocation section,
16127 which is processed by the kernel loader. */
16128 if (htab->vxworks_p && !bfd_link_pic (info))
16129 {
16130 /* There is a relocation for the initial PLT entry:
16131 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16132 if (h->plt.offset == htab->plt_header_size)
16133 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
16134
16135 /* There are two extra relocations for each subsequent
16136 PLT entry: an R_ARM_32 relocation for the GOT entry,
16137 and an R_ARM_32 relocation for the PLT entry. */
16138 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
16139 }
16140 }
16141 else
16142 {
16143 h->plt.offset = (bfd_vma) -1;
16144 h->needs_plt = 0;
16145 }
16146 }
16147 else
16148 {
16149 h->plt.offset = (bfd_vma) -1;
16150 h->needs_plt = 0;
16151 }
16152
16153 eh = (struct elf32_arm_link_hash_entry *) h;
16154 eh->tlsdesc_got = (bfd_vma) -1;
16155
16156 if (h->got.refcount > 0)
16157 {
16158 asection *s;
16159 bfd_boolean dyn;
16160 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16161 int indx;
16162
16163 /* Make sure this symbol is output as a dynamic symbol.
16164 Undefined weak syms won't yet be marked as dynamic. */
16165 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
16166 && h->root.type == bfd_link_hash_undefweak)
16167 {
16168 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16169 return FALSE;
16170 }
16171
16172 if (!htab->symbian_p)
16173 {
16174 s = htab->root.sgot;
16175 h->got.offset = s->size;
16176
16177 if (tls_type == GOT_UNKNOWN)
16178 abort ();
16179
16180 if (tls_type == GOT_NORMAL)
16181 /* Non-TLS symbols need one GOT slot. */
16182 s->size += 4;
16183 else
16184 {
16185 if (tls_type & GOT_TLS_GDESC)
16186 {
16187 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16188 eh->tlsdesc_got
16189 = (htab->root.sgotplt->size
16190 - elf32_arm_compute_jump_table_size (htab));
16191 htab->root.sgotplt->size += 8;
16192 h->got.offset = (bfd_vma) -2;
16193 /* plt.got_offset needs to know there's a TLS_DESC
16194 reloc in the middle of .got.plt. */
16195 htab->num_tls_desc++;
16196 }
16197
16198 if (tls_type & GOT_TLS_GD)
16199 {
16200 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16201 consecutive GOT slots. If the symbol is both GD
16202 and GDESC, got.offset may have been
16203 overwritten. */
16204 h->got.offset = s->size;
16205 s->size += 8;
16206 }
16207
16208 if (tls_type & GOT_TLS_IE)
16209 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16210 slot. */
16211 s->size += 4;
16212 }
16213
16214 dyn = htab->root.dynamic_sections_created;
16215
16216 indx = 0;
16217 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16218 bfd_link_pic (info),
16219 h)
16220 && (!bfd_link_pic (info)
16221 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16222 indx = h->dynindx;
16223
16224 if (tls_type != GOT_NORMAL
16225 && (bfd_link_pic (info) || indx != 0)
16226 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16227 || h->root.type != bfd_link_hash_undefweak))
16228 {
16229 if (tls_type & GOT_TLS_IE)
16230 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16231
16232 if (tls_type & GOT_TLS_GD)
16233 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16234
16235 if (tls_type & GOT_TLS_GDESC)
16236 {
16237 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16238 /* GDESC needs a trampoline to jump to. */
16239 htab->tls_trampoline = -1;
16240 }
16241
16242 /* Only GD needs it. GDESC just emits one relocation per
16243 2 entries. */
16244 if ((tls_type & GOT_TLS_GD) && indx != 0)
16245 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16246 }
16247 else if (((indx != -1) || htab->fdpic_p)
16248 && !SYMBOL_REFERENCES_LOCAL (info, h))
16249 {
16250 if (htab->root.dynamic_sections_created)
16251 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16252 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16253 }
16254 else if (h->type == STT_GNU_IFUNC
16255 && eh->plt.noncall_refcount == 0)
16256 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16257 they all resolve dynamically instead. Reserve room for the
16258 GOT entry's R_ARM_IRELATIVE relocation. */
16259 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16260 else if (bfd_link_pic (info)
16261 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16262 || h->root.type != bfd_link_hash_undefweak))
16263 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16264 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16265 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16266 /* Reserve room for rofixup for FDPIC executable. */
16267 /* TLS relocs do not need space since they are completely
16268 resolved. */
16269 htab->srofixup->size += 4;
16270 }
16271 }
16272 else
16273 h->got.offset = (bfd_vma) -1;
16274
16275 /* FDPIC support. */
16276 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16277 {
16278 /* Symbol musn't be exported. */
16279 if (h->dynindx != -1)
16280 abort();
16281
16282 /* We only allocate one function descriptor with its associated relocation. */
16283 if (eh->fdpic_cnts.funcdesc_offset == -1)
16284 {
16285 asection *s = htab->root.sgot;
16286
16287 eh->fdpic_cnts.funcdesc_offset = s->size;
16288 s->size += 8;
16289 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16290 if (bfd_link_pic(info))
16291 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16292 else
16293 htab->srofixup->size += 8;
16294 }
16295 }
16296
16297 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16298 {
16299 asection *s = htab->root.sgot;
16300
16301 if (htab->root.dynamic_sections_created && h->dynindx == -1
16302 && !h->forced_local)
16303 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16304 return FALSE;
16305
16306 if (h->dynindx == -1)
16307 {
16308 /* We only allocate one function descriptor with its associated relocation. q */
16309 if (eh->fdpic_cnts.funcdesc_offset == -1)
16310 {
16311
16312 eh->fdpic_cnts.funcdesc_offset = s->size;
16313 s->size += 8;
16314 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16315 if (bfd_link_pic(info))
16316 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16317 else
16318 htab->srofixup->size += 8;
16319 }
16320 }
16321
16322 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16323 R_ARM_RELATIVE/rofixup relocation on it. */
16324 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16325 s->size += 4;
16326 if (h->dynindx == -1 && !bfd_link_pic(info))
16327 htab->srofixup->size += 4;
16328 else
16329 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16330 }
16331
16332 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16333 {
16334 if (htab->root.dynamic_sections_created && h->dynindx == -1
16335 && !h->forced_local)
16336 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16337 return FALSE;
16338
16339 if (h->dynindx == -1)
16340 {
16341 /* We only allocate one function descriptor with its associated relocation. */
16342 if (eh->fdpic_cnts.funcdesc_offset == -1)
16343 {
16344 asection *s = htab->root.sgot;
16345
16346 eh->fdpic_cnts.funcdesc_offset = s->size;
16347 s->size += 8;
16348 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16349 if (bfd_link_pic(info))
16350 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16351 else
16352 htab->srofixup->size += 8;
16353 }
16354 }
16355 if (h->dynindx == -1 && !bfd_link_pic(info))
16356 {
16357 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16358 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16359 }
16360 else
16361 {
16362 /* Will need one dynamic reloc per reference. will be either
16363 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16364 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16365 eh->fdpic_cnts.funcdesc_cnt);
16366 }
16367 }
16368
16369 /* Allocate stubs for exported Thumb functions on v4t. */
16370 if (!htab->use_blx && h->dynindx != -1
16371 && h->def_regular
16372 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
16373 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16374 {
16375 struct elf_link_hash_entry * th;
16376 struct bfd_link_hash_entry * bh;
16377 struct elf_link_hash_entry * myh;
16378 char name[1024];
16379 asection *s;
16380 bh = NULL;
16381 /* Create a new symbol to regist the real location of the function. */
16382 s = h->root.u.def.section;
16383 sprintf (name, "__real_%s", h->root.root.string);
16384 _bfd_generic_link_add_one_symbol (info, s->owner,
16385 name, BSF_GLOBAL, s,
16386 h->root.u.def.value,
16387 NULL, TRUE, FALSE, &bh);
16388
16389 myh = (struct elf_link_hash_entry *) bh;
16390 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16391 myh->forced_local = 1;
16392 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
16393 eh->export_glue = myh;
16394 th = record_arm_to_thumb_glue (info, h);
16395 /* Point the symbol at the stub. */
16396 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
16397 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16398 h->root.u.def.section = th->root.u.def.section;
16399 h->root.u.def.value = th->root.u.def.value & ~1;
16400 }
16401
16402 if (eh->dyn_relocs == NULL)
16403 return TRUE;
16404
16405 /* In the shared -Bsymbolic case, discard space allocated for
16406 dynamic pc-relative relocs against symbols which turn out to be
16407 defined in regular objects. For the normal shared case, discard
16408 space for pc-relative relocs that have become local due to symbol
16409 visibility changes. */
16410
16411 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
16412 {
16413 /* Relocs that use pc_count are PC-relative forms, which will appear
16414 on something like ".long foo - ." or "movw REG, foo - .". We want
16415 calls to protected symbols to resolve directly to the function
16416 rather than going via the plt. If people want function pointer
16417 comparisons to work as expected then they should avoid writing
16418 assembly like ".long foo - .". */
16419 if (SYMBOL_CALLS_LOCAL (info, h))
16420 {
16421 struct elf_dyn_relocs **pp;
16422
16423 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16424 {
16425 p->count -= p->pc_count;
16426 p->pc_count = 0;
16427 if (p->count == 0)
16428 *pp = p->next;
16429 else
16430 pp = &p->next;
16431 }
16432 }
16433
16434 if (htab->vxworks_p)
16435 {
16436 struct elf_dyn_relocs **pp;
16437
16438 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16439 {
16440 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
16441 *pp = p->next;
16442 else
16443 pp = &p->next;
16444 }
16445 }
16446
16447 /* Also discard relocs on undefined weak syms with non-default
16448 visibility. */
16449 if (eh->dyn_relocs != NULL
16450 && h->root.type == bfd_link_hash_undefweak)
16451 {
16452 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16453 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16454 eh->dyn_relocs = NULL;
16455
16456 /* Make sure undefined weak symbols are output as a dynamic
16457 symbol in PIEs. */
16458 else if (htab->root.dynamic_sections_created && h->dynindx == -1
16459 && !h->forced_local)
16460 {
16461 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16462 return FALSE;
16463 }
16464 }
16465
16466 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16467 && h->root.type == bfd_link_hash_new)
16468 {
16469 /* Output absolute symbols so that we can create relocations
16470 against them. For normal symbols we output a relocation
16471 against the section that contains them. */
16472 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16473 return FALSE;
16474 }
16475
16476 }
16477 else
16478 {
16479 /* For the non-shared case, discard space for relocs against
16480 symbols which turn out to need copy relocs or are not
16481 dynamic. */
16482
16483 if (!h->non_got_ref
16484 && ((h->def_dynamic
16485 && !h->def_regular)
16486 || (htab->root.dynamic_sections_created
16487 && (h->root.type == bfd_link_hash_undefweak
16488 || h->root.type == bfd_link_hash_undefined))))
16489 {
16490 /* Make sure this symbol is output as a dynamic symbol.
16491 Undefined weak syms won't yet be marked as dynamic. */
16492 if (h->dynindx == -1 && !h->forced_local
16493 && h->root.type == bfd_link_hash_undefweak)
16494 {
16495 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16496 return FALSE;
16497 }
16498
16499 /* If that succeeded, we know we'll be keeping all the
16500 relocs. */
16501 if (h->dynindx != -1)
16502 goto keep;
16503 }
16504
16505 eh->dyn_relocs = NULL;
16506
16507 keep: ;
16508 }
16509
16510 /* Finally, allocate space. */
16511 for (p = eh->dyn_relocs; p != NULL; p = p->next)
16512 {
16513 asection *sreloc = elf_section_data (p->sec)->sreloc;
16514
16515 if (h->type == STT_GNU_IFUNC
16516 && eh->plt.noncall_refcount == 0
16517 && SYMBOL_REFERENCES_LOCAL (info, h))
16518 elf32_arm_allocate_irelocs (info, sreloc, p->count);
16519 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16520 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16521 else if (htab->fdpic_p && !bfd_link_pic(info))
16522 htab->srofixup->size += 4 * p->count;
16523 else
16524 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16525 }
16526
16527 return TRUE;
16528 }
16529
16530 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
16531 read-only sections. */
16532
16533 static bfd_boolean
16534 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
16535 {
16536 asection *sec;
16537
16538 if (h->root.type == bfd_link_hash_indirect)
16539 return TRUE;
16540
16541 sec = readonly_dynrelocs (h);
16542 if (sec != NULL)
16543 {
16544 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
16545
16546 info->flags |= DF_TEXTREL;
16547 info->callbacks->minfo
16548 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
16549 sec->owner, h->root.root.string, sec);
16550
16551 /* Not an error, just cut short the traversal. */
16552 return FALSE;
16553 }
16554
16555 return TRUE;
16556 }
16557
16558 void
16559 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16560 int byteswap_code)
16561 {
16562 struct elf32_arm_link_hash_table *globals;
16563
16564 globals = elf32_arm_hash_table (info);
16565 if (globals == NULL)
16566 return;
16567
16568 globals->byteswap_code = byteswap_code;
16569 }
16570
16571 /* Set the sizes of the dynamic sections. */
16572
16573 static bfd_boolean
16574 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16575 struct bfd_link_info * info)
16576 {
16577 bfd * dynobj;
16578 asection * s;
16579 bfd_boolean plt;
16580 bfd_boolean relocs;
16581 bfd *ibfd;
16582 struct elf32_arm_link_hash_table *htab;
16583
16584 htab = elf32_arm_hash_table (info);
16585 if (htab == NULL)
16586 return FALSE;
16587
16588 dynobj = elf_hash_table (info)->dynobj;
16589 BFD_ASSERT (dynobj != NULL);
16590 check_use_blx (htab);
16591
16592 if (elf_hash_table (info)->dynamic_sections_created)
16593 {
16594 /* Set the contents of the .interp section to the interpreter. */
16595 if (bfd_link_executable (info) && !info->nointerp)
16596 {
16597 s = bfd_get_linker_section (dynobj, ".interp");
16598 BFD_ASSERT (s != NULL);
16599 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
16600 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16601 }
16602 }
16603
16604 /* Set up .got offsets for local syms, and space for local dynamic
16605 relocs. */
16606 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16607 {
16608 bfd_signed_vma *local_got;
16609 bfd_signed_vma *end_local_got;
16610 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
16611 char *local_tls_type;
16612 bfd_vma *local_tlsdesc_gotent;
16613 bfd_size_type locsymcount;
16614 Elf_Internal_Shdr *symtab_hdr;
16615 asection *srel;
16616 bfd_boolean is_vxworks = htab->vxworks_p;
16617 unsigned int symndx;
16618 struct fdpic_local *local_fdpic_cnts;
16619
16620 if (! is_arm_elf (ibfd))
16621 continue;
16622
16623 for (s = ibfd->sections; s != NULL; s = s->next)
16624 {
16625 struct elf_dyn_relocs *p;
16626
16627 for (p = (struct elf_dyn_relocs *)
16628 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
16629 {
16630 if (!bfd_is_abs_section (p->sec)
16631 && bfd_is_abs_section (p->sec->output_section))
16632 {
16633 /* Input section has been discarded, either because
16634 it is a copy of a linkonce section or due to
16635 linker script /DISCARD/, so we'll be discarding
16636 the relocs too. */
16637 }
16638 else if (is_vxworks
16639 && strcmp (p->sec->output_section->name,
16640 ".tls_vars") == 0)
16641 {
16642 /* Relocations in vxworks .tls_vars sections are
16643 handled specially by the loader. */
16644 }
16645 else if (p->count != 0)
16646 {
16647 srel = elf_section_data (p->sec)->sreloc;
16648 if (htab->fdpic_p && !bfd_link_pic(info))
16649 htab->srofixup->size += 4 * p->count;
16650 else
16651 elf32_arm_allocate_dynrelocs (info, srel, p->count);
16652 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
16653 info->flags |= DF_TEXTREL;
16654 }
16655 }
16656 }
16657
16658 local_got = elf_local_got_refcounts (ibfd);
16659 if (!local_got)
16660 continue;
16661
16662 symtab_hdr = & elf_symtab_hdr (ibfd);
16663 locsymcount = symtab_hdr->sh_info;
16664 end_local_got = local_got + locsymcount;
16665 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
16666 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
16667 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
16668 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
16669 symndx = 0;
16670 s = htab->root.sgot;
16671 srel = htab->root.srelgot;
16672 for (; local_got < end_local_got;
16673 ++local_got, ++local_iplt_ptr, ++local_tls_type,
16674 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
16675 {
16676 *local_tlsdesc_gotent = (bfd_vma) -1;
16677 local_iplt = *local_iplt_ptr;
16678
16679 /* FDPIC support. */
16680 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16681 {
16682 if (local_fdpic_cnts->funcdesc_offset == -1)
16683 {
16684 local_fdpic_cnts->funcdesc_offset = s->size;
16685 s->size += 8;
16686
16687 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16688 if (bfd_link_pic(info))
16689 elf32_arm_allocate_dynrelocs (info, srel, 1);
16690 else
16691 htab->srofixup->size += 8;
16692 }
16693 }
16694
16695 if (local_fdpic_cnts->funcdesc_cnt > 0)
16696 {
16697 if (local_fdpic_cnts->funcdesc_offset == -1)
16698 {
16699 local_fdpic_cnts->funcdesc_offset = s->size;
16700 s->size += 8;
16701
16702 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16703 if (bfd_link_pic(info))
16704 elf32_arm_allocate_dynrelocs (info, srel, 1);
16705 else
16706 htab->srofixup->size += 8;
16707 }
16708
16709 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16710 if (bfd_link_pic(info))
16711 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16712 else
16713 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16714 }
16715
16716 if (local_iplt != NULL)
16717 {
16718 struct elf_dyn_relocs *p;
16719
16720 if (local_iplt->root.refcount > 0)
16721 {
16722 elf32_arm_allocate_plt_entry (info, TRUE,
16723 &local_iplt->root,
16724 &local_iplt->arm);
16725 if (local_iplt->arm.noncall_refcount == 0)
16726 /* All references to the PLT are calls, so all
16727 non-call references can resolve directly to the
16728 run-time target. This means that the .got entry
16729 would be the same as the .igot.plt entry, so there's
16730 no point creating both. */
16731 *local_got = 0;
16732 }
16733 else
16734 {
16735 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16736 local_iplt->root.offset = (bfd_vma) -1;
16737 }
16738
16739 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16740 {
16741 asection *psrel;
16742
16743 psrel = elf_section_data (p->sec)->sreloc;
16744 if (local_iplt->arm.noncall_refcount == 0)
16745 elf32_arm_allocate_irelocs (info, psrel, p->count);
16746 else
16747 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16748 }
16749 }
16750 if (*local_got > 0)
16751 {
16752 Elf_Internal_Sym *isym;
16753
16754 *local_got = s->size;
16755 if (*local_tls_type & GOT_TLS_GD)
16756 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16757 s->size += 8;
16758 if (*local_tls_type & GOT_TLS_GDESC)
16759 {
16760 *local_tlsdesc_gotent = htab->root.sgotplt->size
16761 - elf32_arm_compute_jump_table_size (htab);
16762 htab->root.sgotplt->size += 8;
16763 *local_got = (bfd_vma) -2;
16764 /* plt.got_offset needs to know there's a TLS_DESC
16765 reloc in the middle of .got.plt. */
16766 htab->num_tls_desc++;
16767 }
16768 if (*local_tls_type & GOT_TLS_IE)
16769 s->size += 4;
16770
16771 if (*local_tls_type & GOT_NORMAL)
16772 {
16773 /* If the symbol is both GD and GDESC, *local_got
16774 may have been overwritten. */
16775 *local_got = s->size;
16776 s->size += 4;
16777 }
16778
16779 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
16780 if (isym == NULL)
16781 return FALSE;
16782
16783 /* If all references to an STT_GNU_IFUNC PLT are calls,
16784 then all non-call references, including this GOT entry,
16785 resolve directly to the run-time target. */
16786 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
16787 && (local_iplt == NULL
16788 || local_iplt->arm.noncall_refcount == 0))
16789 elf32_arm_allocate_irelocs (info, srel, 1);
16790 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
16791 {
16792 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
16793 elf32_arm_allocate_dynrelocs (info, srel, 1);
16794 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
16795 htab->srofixup->size += 4;
16796
16797 if ((bfd_link_pic (info) || htab->fdpic_p)
16798 && *local_tls_type & GOT_TLS_GDESC)
16799 {
16800 elf32_arm_allocate_dynrelocs (info,
16801 htab->root.srelplt, 1);
16802 htab->tls_trampoline = -1;
16803 }
16804 }
16805 }
16806 else
16807 *local_got = (bfd_vma) -1;
16808 }
16809 }
16810
16811 if (htab->tls_ldm_got.refcount > 0)
16812 {
16813 /* Allocate two GOT entries and one dynamic relocation (if necessary)
16814 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
16815 htab->tls_ldm_got.offset = htab->root.sgot->size;
16816 htab->root.sgot->size += 8;
16817 if (bfd_link_pic (info))
16818 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16819 }
16820 else
16821 htab->tls_ldm_got.offset = -1;
16822
16823 /* At the very end of the .rofixup section is a pointer to the GOT,
16824 reserve space for it. */
16825 if (htab->fdpic_p && htab->srofixup != NULL)
16826 htab->srofixup->size += 4;
16827
16828 /* Allocate global sym .plt and .got entries, and space for global
16829 sym dynamic relocs. */
16830 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
16831
16832 /* Here we rummage through the found bfds to collect glue information. */
16833 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16834 {
16835 if (! is_arm_elf (ibfd))
16836 continue;
16837
16838 /* Initialise mapping tables for code/data. */
16839 bfd_elf32_arm_init_maps (ibfd);
16840
16841 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
16842 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16843 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
16844 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
16845 }
16846
16847 /* Allocate space for the glue sections now that we've sized them. */
16848 bfd_elf32_arm_allocate_interworking_sections (info);
16849
16850 /* For every jump slot reserved in the sgotplt, reloc_count is
16851 incremented. However, when we reserve space for TLS descriptors,
16852 it's not incremented, so in order to compute the space reserved
16853 for them, it suffices to multiply the reloc count by the jump
16854 slot size. */
16855 if (htab->root.srelplt)
16856 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16857
16858 if (htab->tls_trampoline)
16859 {
16860 if (htab->root.splt->size == 0)
16861 htab->root.splt->size += htab->plt_header_size;
16862
16863 htab->tls_trampoline = htab->root.splt->size;
16864 htab->root.splt->size += htab->plt_entry_size;
16865
16866 /* If we're not using lazy TLS relocations, don't generate the
16867 PLT and GOT entries they require. */
16868 if (!(info->flags & DF_BIND_NOW))
16869 {
16870 htab->dt_tlsdesc_got = htab->root.sgot->size;
16871 htab->root.sgot->size += 4;
16872
16873 htab->dt_tlsdesc_plt = htab->root.splt->size;
16874 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16875 }
16876 }
16877
16878 /* The check_relocs and adjust_dynamic_symbol entry points have
16879 determined the sizes of the various dynamic sections. Allocate
16880 memory for them. */
16881 plt = FALSE;
16882 relocs = FALSE;
16883 for (s = dynobj->sections; s != NULL; s = s->next)
16884 {
16885 const char * name;
16886
16887 if ((s->flags & SEC_LINKER_CREATED) == 0)
16888 continue;
16889
16890 /* It's OK to base decisions on the section name, because none
16891 of the dynobj section names depend upon the input files. */
16892 name = bfd_get_section_name (dynobj, s);
16893
16894 if (s == htab->root.splt)
16895 {
16896 /* Remember whether there is a PLT. */
16897 plt = s->size != 0;
16898 }
16899 else if (CONST_STRNEQ (name, ".rel"))
16900 {
16901 if (s->size != 0)
16902 {
16903 /* Remember whether there are any reloc sections other
16904 than .rel(a).plt and .rela.plt.unloaded. */
16905 if (s != htab->root.srelplt && s != htab->srelplt2)
16906 relocs = TRUE;
16907
16908 /* We use the reloc_count field as a counter if we need
16909 to copy relocs into the output file. */
16910 s->reloc_count = 0;
16911 }
16912 }
16913 else if (s != htab->root.sgot
16914 && s != htab->root.sgotplt
16915 && s != htab->root.iplt
16916 && s != htab->root.igotplt
16917 && s != htab->root.sdynbss
16918 && s != htab->root.sdynrelro
16919 && s != htab->srofixup)
16920 {
16921 /* It's not one of our sections, so don't allocate space. */
16922 continue;
16923 }
16924
16925 if (s->size == 0)
16926 {
16927 /* If we don't need this section, strip it from the
16928 output file. This is mostly to handle .rel(a).bss and
16929 .rel(a).plt. We must create both sections in
16930 create_dynamic_sections, because they must be created
16931 before the linker maps input sections to output
16932 sections. The linker does that before
16933 adjust_dynamic_symbol is called, and it is that
16934 function which decides whether anything needs to go
16935 into these sections. */
16936 s->flags |= SEC_EXCLUDE;
16937 continue;
16938 }
16939
16940 if ((s->flags & SEC_HAS_CONTENTS) == 0)
16941 continue;
16942
16943 /* Allocate memory for the section contents. */
16944 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
16945 if (s->contents == NULL)
16946 return FALSE;
16947 }
16948
16949 if (elf_hash_table (info)->dynamic_sections_created)
16950 {
16951 /* Add some entries to the .dynamic section. We fill in the
16952 values later, in elf32_arm_finish_dynamic_sections, but we
16953 must add the entries now so that we get the correct size for
16954 the .dynamic section. The DT_DEBUG entry is filled in by the
16955 dynamic linker and used by the debugger. */
16956 #define add_dynamic_entry(TAG, VAL) \
16957 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
16958
16959 if (bfd_link_executable (info))
16960 {
16961 if (!add_dynamic_entry (DT_DEBUG, 0))
16962 return FALSE;
16963 }
16964
16965 if (plt)
16966 {
16967 if ( !add_dynamic_entry (DT_PLTGOT, 0)
16968 || !add_dynamic_entry (DT_PLTRELSZ, 0)
16969 || !add_dynamic_entry (DT_PLTREL,
16970 htab->use_rel ? DT_REL : DT_RELA)
16971 || !add_dynamic_entry (DT_JMPREL, 0))
16972 return FALSE;
16973
16974 if (htab->dt_tlsdesc_plt
16975 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16976 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
16977 return FALSE;
16978 }
16979
16980 if (relocs)
16981 {
16982 if (htab->use_rel)
16983 {
16984 if (!add_dynamic_entry (DT_REL, 0)
16985 || !add_dynamic_entry (DT_RELSZ, 0)
16986 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16987 return FALSE;
16988 }
16989 else
16990 {
16991 if (!add_dynamic_entry (DT_RELA, 0)
16992 || !add_dynamic_entry (DT_RELASZ, 0)
16993 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
16994 return FALSE;
16995 }
16996 }
16997
16998 /* If any dynamic relocs apply to a read-only section,
16999 then we need a DT_TEXTREL entry. */
17000 if ((info->flags & DF_TEXTREL) == 0)
17001 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
17002
17003 if ((info->flags & DF_TEXTREL) != 0)
17004 {
17005 if (!add_dynamic_entry (DT_TEXTREL, 0))
17006 return FALSE;
17007 }
17008 if (htab->vxworks_p
17009 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
17010 return FALSE;
17011 }
17012 #undef add_dynamic_entry
17013
17014 return TRUE;
17015 }
17016
17017 /* Size sections even though they're not dynamic. We use it to setup
17018 _TLS_MODULE_BASE_, if needed. */
17019
17020 static bfd_boolean
17021 elf32_arm_always_size_sections (bfd *output_bfd,
17022 struct bfd_link_info *info)
17023 {
17024 asection *tls_sec;
17025 struct elf32_arm_link_hash_table *htab;
17026
17027 htab = elf32_arm_hash_table (info);
17028
17029 if (bfd_link_relocatable (info))
17030 return TRUE;
17031
17032 tls_sec = elf_hash_table (info)->tls_sec;
17033
17034 if (tls_sec)
17035 {
17036 struct elf_link_hash_entry *tlsbase;
17037
17038 tlsbase = elf_link_hash_lookup
17039 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17040
17041 if (tlsbase)
17042 {
17043 struct bfd_link_hash_entry *bh = NULL;
17044 const struct elf_backend_data *bed
17045 = get_elf_backend_data (output_bfd);
17046
17047 if (!(_bfd_generic_link_add_one_symbol
17048 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17049 tls_sec, 0, NULL, FALSE,
17050 bed->collect, &bh)))
17051 return FALSE;
17052
17053 tlsbase->type = STT_TLS;
17054 tlsbase = (struct elf_link_hash_entry *)bh;
17055 tlsbase->def_regular = 1;
17056 tlsbase->other = STV_HIDDEN;
17057 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
17058 }
17059 }
17060
17061 if (htab->fdpic_p && !bfd_link_relocatable (info)
17062 && !bfd_elf_stack_segment_size (output_bfd, info,
17063 "__stacksize", DEFAULT_STACK_SIZE))
17064 return FALSE;
17065
17066 return TRUE;
17067 }
17068
17069 /* Finish up dynamic symbol handling. We set the contents of various
17070 dynamic sections here. */
17071
17072 static bfd_boolean
17073 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17074 struct bfd_link_info * info,
17075 struct elf_link_hash_entry * h,
17076 Elf_Internal_Sym * sym)
17077 {
17078 struct elf32_arm_link_hash_table *htab;
17079 struct elf32_arm_link_hash_entry *eh;
17080
17081 htab = elf32_arm_hash_table (info);
17082 if (htab == NULL)
17083 return FALSE;
17084
17085 eh = (struct elf32_arm_link_hash_entry *) h;
17086
17087 if (h->plt.offset != (bfd_vma) -1)
17088 {
17089 if (!eh->is_iplt)
17090 {
17091 BFD_ASSERT (h->dynindx != -1);
17092 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17093 h->dynindx, 0))
17094 return FALSE;
17095 }
17096
17097 if (!h->def_regular)
17098 {
17099 /* Mark the symbol as undefined, rather than as defined in
17100 the .plt section. */
17101 sym->st_shndx = SHN_UNDEF;
17102 /* If the symbol is weak we need to clear the value.
17103 Otherwise, the PLT entry would provide a definition for
17104 the symbol even if the symbol wasn't defined anywhere,
17105 and so the symbol would never be NULL. Leave the value if
17106 there were any relocations where pointer equality matters
17107 (this is a clue for the dynamic linker, to make function
17108 pointer comparisons work between an application and shared
17109 library). */
17110 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
17111 sym->st_value = 0;
17112 }
17113 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17114 {
17115 /* At least one non-call relocation references this .iplt entry,
17116 so the .iplt entry is the function's canonical address. */
17117 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
17118 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
17119 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17120 (output_bfd, htab->root.iplt->output_section));
17121 sym->st_value = (h->plt.offset
17122 + htab->root.iplt->output_section->vma
17123 + htab->root.iplt->output_offset);
17124 }
17125 }
17126
17127 if (h->needs_copy)
17128 {
17129 asection * s;
17130 Elf_Internal_Rela rel;
17131
17132 /* This symbol needs a copy reloc. Set it up. */
17133 BFD_ASSERT (h->dynindx != -1
17134 && (h->root.type == bfd_link_hash_defined
17135 || h->root.type == bfd_link_hash_defweak));
17136
17137 rel.r_addend = 0;
17138 rel.r_offset = (h->root.u.def.value
17139 + h->root.u.def.section->output_section->vma
17140 + h->root.u.def.section->output_offset);
17141 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
17142 if (h->root.u.def.section == htab->root.sdynrelro)
17143 s = htab->root.sreldynrelro;
17144 else
17145 s = htab->root.srelbss;
17146 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
17147 }
17148
17149 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17150 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17151 it is relative to the ".got" section. */
17152 if (h == htab->root.hdynamic
17153 || (!htab->fdpic_p && !htab->vxworks_p && h == htab->root.hgot))
17154 sym->st_shndx = SHN_ABS;
17155
17156 return TRUE;
17157 }
17158
17159 static void
17160 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17161 void *contents,
17162 const unsigned long *template, unsigned count)
17163 {
17164 unsigned ix;
17165
17166 for (ix = 0; ix != count; ix++)
17167 {
17168 unsigned long insn = template[ix];
17169
17170 /* Emit mov pc,rx if bx is not permitted. */
17171 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17172 insn = (insn & 0xf000000f) | 0x01a0f000;
17173 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17174 }
17175 }
17176
17177 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
17178 other variants, NaCl needs this entry in a static executable's
17179 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17180 zero. For .iplt really only the last bundle is useful, and .iplt
17181 could have a shorter first entry, with each individual PLT entry's
17182 relative branch calculated differently so it targets the last
17183 bundle instead of the instruction before it (labelled .Lplt_tail
17184 above). But it's simpler to keep the size and layout of PLT0
17185 consistent with the dynamic case, at the cost of some dead code at
17186 the start of .iplt and the one dead store to the stack at the start
17187 of .Lplt_tail. */
17188 static void
17189 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17190 asection *plt, bfd_vma got_displacement)
17191 {
17192 unsigned int i;
17193
17194 put_arm_insn (htab, output_bfd,
17195 elf32_arm_nacl_plt0_entry[0]
17196 | arm_movw_immediate (got_displacement),
17197 plt->contents + 0);
17198 put_arm_insn (htab, output_bfd,
17199 elf32_arm_nacl_plt0_entry[1]
17200 | arm_movt_immediate (got_displacement),
17201 plt->contents + 4);
17202
17203 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17204 put_arm_insn (htab, output_bfd,
17205 elf32_arm_nacl_plt0_entry[i],
17206 plt->contents + (i * 4));
17207 }
17208
17209 /* Finish up the dynamic sections. */
17210
17211 static bfd_boolean
17212 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
17213 {
17214 bfd * dynobj;
17215 asection * sgot;
17216 asection * sdyn;
17217 struct elf32_arm_link_hash_table *htab;
17218
17219 htab = elf32_arm_hash_table (info);
17220 if (htab == NULL)
17221 return FALSE;
17222
17223 dynobj = elf_hash_table (info)->dynobj;
17224
17225 sgot = htab->root.sgotplt;
17226 /* A broken linker script might have discarded the dynamic sections.
17227 Catch this here so that we do not seg-fault later on. */
17228 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17229 return FALSE;
17230 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17231
17232 if (elf_hash_table (info)->dynamic_sections_created)
17233 {
17234 asection *splt;
17235 Elf32_External_Dyn *dyncon, *dynconend;
17236
17237 splt = htab->root.splt;
17238 BFD_ASSERT (splt != NULL && sdyn != NULL);
17239 BFD_ASSERT (htab->symbian_p || sgot != NULL);
17240
17241 dyncon = (Elf32_External_Dyn *) sdyn->contents;
17242 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
17243
17244 for (; dyncon < dynconend; dyncon++)
17245 {
17246 Elf_Internal_Dyn dyn;
17247 const char * name;
17248 asection * s;
17249
17250 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17251
17252 switch (dyn.d_tag)
17253 {
17254 unsigned int type;
17255
17256 default:
17257 if (htab->vxworks_p
17258 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17259 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17260 break;
17261
17262 case DT_HASH:
17263 name = ".hash";
17264 goto get_vma_if_bpabi;
17265 case DT_STRTAB:
17266 name = ".dynstr";
17267 goto get_vma_if_bpabi;
17268 case DT_SYMTAB:
17269 name = ".dynsym";
17270 goto get_vma_if_bpabi;
17271 case DT_VERSYM:
17272 name = ".gnu.version";
17273 goto get_vma_if_bpabi;
17274 case DT_VERDEF:
17275 name = ".gnu.version_d";
17276 goto get_vma_if_bpabi;
17277 case DT_VERNEED:
17278 name = ".gnu.version_r";
17279 goto get_vma_if_bpabi;
17280
17281 case DT_PLTGOT:
17282 name = htab->symbian_p ? ".got" : ".got.plt";
17283 goto get_vma;
17284 case DT_JMPREL:
17285 name = RELOC_SECTION (htab, ".plt");
17286 get_vma:
17287 s = bfd_get_linker_section (dynobj, name);
17288 if (s == NULL)
17289 {
17290 _bfd_error_handler
17291 (_("could not find section %s"), name);
17292 bfd_set_error (bfd_error_invalid_operation);
17293 return FALSE;
17294 }
17295 if (!htab->symbian_p)
17296 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17297 else
17298 /* In the BPABI, tags in the PT_DYNAMIC section point
17299 at the file offset, not the memory address, for the
17300 convenience of the post linker. */
17301 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
17302 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17303 break;
17304
17305 get_vma_if_bpabi:
17306 if (htab->symbian_p)
17307 goto get_vma;
17308 break;
17309
17310 case DT_PLTRELSZ:
17311 s = htab->root.srelplt;
17312 BFD_ASSERT (s != NULL);
17313 dyn.d_un.d_val = s->size;
17314 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17315 break;
17316
17317 case DT_RELSZ:
17318 case DT_RELASZ:
17319 case DT_REL:
17320 case DT_RELA:
17321 /* In the BPABI, the DT_REL tag must point at the file
17322 offset, not the VMA, of the first relocation
17323 section. So, we use code similar to that in
17324 elflink.c, but do not check for SHF_ALLOC on the
17325 relocation section, since relocation sections are
17326 never allocated under the BPABI. PLT relocs are also
17327 included. */
17328 if (htab->symbian_p)
17329 {
17330 unsigned int i;
17331 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17332 ? SHT_REL : SHT_RELA);
17333 dyn.d_un.d_val = 0;
17334 for (i = 1; i < elf_numsections (output_bfd); i++)
17335 {
17336 Elf_Internal_Shdr *hdr
17337 = elf_elfsections (output_bfd)[i];
17338 if (hdr->sh_type == type)
17339 {
17340 if (dyn.d_tag == DT_RELSZ
17341 || dyn.d_tag == DT_RELASZ)
17342 dyn.d_un.d_val += hdr->sh_size;
17343 else if ((ufile_ptr) hdr->sh_offset
17344 <= dyn.d_un.d_val - 1)
17345 dyn.d_un.d_val = hdr->sh_offset;
17346 }
17347 }
17348 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17349 }
17350 break;
17351
17352 case DT_TLSDESC_PLT:
17353 s = htab->root.splt;
17354 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17355 + htab->dt_tlsdesc_plt);
17356 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17357 break;
17358
17359 case DT_TLSDESC_GOT:
17360 s = htab->root.sgot;
17361 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17362 + htab->dt_tlsdesc_got);
17363 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17364 break;
17365
17366 /* Set the bottom bit of DT_INIT/FINI if the
17367 corresponding function is Thumb. */
17368 case DT_INIT:
17369 name = info->init_function;
17370 goto get_sym;
17371 case DT_FINI:
17372 name = info->fini_function;
17373 get_sym:
17374 /* If it wasn't set by elf_bfd_final_link
17375 then there is nothing to adjust. */
17376 if (dyn.d_un.d_val != 0)
17377 {
17378 struct elf_link_hash_entry * eh;
17379
17380 eh = elf_link_hash_lookup (elf_hash_table (info), name,
17381 FALSE, FALSE, TRUE);
17382 if (eh != NULL
17383 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17384 == ST_BRANCH_TO_THUMB)
17385 {
17386 dyn.d_un.d_val |= 1;
17387 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17388 }
17389 }
17390 break;
17391 }
17392 }
17393
17394 /* Fill in the first entry in the procedure linkage table. */
17395 if (splt->size > 0 && htab->plt_header_size)
17396 {
17397 const bfd_vma *plt0_entry;
17398 bfd_vma got_address, plt_address, got_displacement;
17399
17400 /* Calculate the addresses of the GOT and PLT. */
17401 got_address = sgot->output_section->vma + sgot->output_offset;
17402 plt_address = splt->output_section->vma + splt->output_offset;
17403
17404 if (htab->vxworks_p)
17405 {
17406 /* The VxWorks GOT is relocated by the dynamic linker.
17407 Therefore, we must emit relocations rather than simply
17408 computing the values now. */
17409 Elf_Internal_Rela rel;
17410
17411 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
17412 put_arm_insn (htab, output_bfd, plt0_entry[0],
17413 splt->contents + 0);
17414 put_arm_insn (htab, output_bfd, plt0_entry[1],
17415 splt->contents + 4);
17416 put_arm_insn (htab, output_bfd, plt0_entry[2],
17417 splt->contents + 8);
17418 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17419
17420 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17421 rel.r_offset = plt_address + 12;
17422 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17423 rel.r_addend = 0;
17424 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17425 htab->srelplt2->contents);
17426 }
17427 else if (htab->nacl_p)
17428 arm_nacl_put_plt0 (htab, output_bfd, splt,
17429 got_address + 8 - (plt_address + 16));
17430 else if (using_thumb_only (htab))
17431 {
17432 got_displacement = got_address - (plt_address + 12);
17433
17434 plt0_entry = elf32_thumb2_plt0_entry;
17435 put_arm_insn (htab, output_bfd, plt0_entry[0],
17436 splt->contents + 0);
17437 put_arm_insn (htab, output_bfd, plt0_entry[1],
17438 splt->contents + 4);
17439 put_arm_insn (htab, output_bfd, plt0_entry[2],
17440 splt->contents + 8);
17441
17442 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17443 }
17444 else
17445 {
17446 got_displacement = got_address - (plt_address + 16);
17447
17448 plt0_entry = elf32_arm_plt0_entry;
17449 put_arm_insn (htab, output_bfd, plt0_entry[0],
17450 splt->contents + 0);
17451 put_arm_insn (htab, output_bfd, plt0_entry[1],
17452 splt->contents + 4);
17453 put_arm_insn (htab, output_bfd, plt0_entry[2],
17454 splt->contents + 8);
17455 put_arm_insn (htab, output_bfd, plt0_entry[3],
17456 splt->contents + 12);
17457
17458 #ifdef FOUR_WORD_PLT
17459 /* The displacement value goes in the otherwise-unused
17460 last word of the second entry. */
17461 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
17462 #else
17463 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
17464 #endif
17465 }
17466 }
17467
17468 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17469 really seem like the right value. */
17470 if (splt->output_section->owner == output_bfd)
17471 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
17472
17473 if (htab->dt_tlsdesc_plt)
17474 {
17475 bfd_vma got_address
17476 = sgot->output_section->vma + sgot->output_offset;
17477 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17478 + htab->root.sgot->output_offset);
17479 bfd_vma plt_address
17480 = splt->output_section->vma + splt->output_offset;
17481
17482 arm_put_trampoline (htab, output_bfd,
17483 splt->contents + htab->dt_tlsdesc_plt,
17484 dl_tlsdesc_lazy_trampoline, 6);
17485
17486 bfd_put_32 (output_bfd,
17487 gotplt_address + htab->dt_tlsdesc_got
17488 - (plt_address + htab->dt_tlsdesc_plt)
17489 - dl_tlsdesc_lazy_trampoline[6],
17490 splt->contents + htab->dt_tlsdesc_plt + 24);
17491 bfd_put_32 (output_bfd,
17492 got_address - (plt_address + htab->dt_tlsdesc_plt)
17493 - dl_tlsdesc_lazy_trampoline[7],
17494 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17495 }
17496
17497 if (htab->tls_trampoline)
17498 {
17499 arm_put_trampoline (htab, output_bfd,
17500 splt->contents + htab->tls_trampoline,
17501 tls_trampoline, 3);
17502 #ifdef FOUR_WORD_PLT
17503 bfd_put_32 (output_bfd, 0x00000000,
17504 splt->contents + htab->tls_trampoline + 12);
17505 #endif
17506 }
17507
17508 if (htab->vxworks_p
17509 && !bfd_link_pic (info)
17510 && htab->root.splt->size > 0)
17511 {
17512 /* Correct the .rel(a).plt.unloaded relocations. They will have
17513 incorrect symbol indexes. */
17514 int num_plts;
17515 unsigned char *p;
17516
17517 num_plts = ((htab->root.splt->size - htab->plt_header_size)
17518 / htab->plt_entry_size);
17519 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17520
17521 for (; num_plts; num_plts--)
17522 {
17523 Elf_Internal_Rela rel;
17524
17525 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17526 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17527 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17528 p += RELOC_SIZE (htab);
17529
17530 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17531 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17532 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17533 p += RELOC_SIZE (htab);
17534 }
17535 }
17536 }
17537
17538 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
17539 /* NaCl uses a special first entry in .iplt too. */
17540 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17541
17542 /* Fill in the first three entries in the global offset table. */
17543 if (sgot)
17544 {
17545 if (sgot->size > 0)
17546 {
17547 if (sdyn == NULL)
17548 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17549 else
17550 bfd_put_32 (output_bfd,
17551 sdyn->output_section->vma + sdyn->output_offset,
17552 sgot->contents);
17553 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17554 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17555 }
17556
17557 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17558 }
17559
17560 /* At the very end of the .rofixup section is a pointer to the GOT. */
17561 if (htab->fdpic_p && htab->srofixup != NULL)
17562 {
17563 struct elf_link_hash_entry *hgot = htab->root.hgot;
17564
17565 bfd_vma got_value = hgot->root.u.def.value
17566 + hgot->root.u.def.section->output_section->vma
17567 + hgot->root.u.def.section->output_offset;
17568
17569 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17570
17571 /* Make sure we allocated and generated the same number of fixups. */
17572 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17573 }
17574
17575 return TRUE;
17576 }
17577
17578 static void
17579 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
17580 {
17581 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
17582 struct elf32_arm_link_hash_table *globals;
17583 struct elf_segment_map *m;
17584
17585 i_ehdrp = elf_elfheader (abfd);
17586
17587 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17588 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
17589 else
17590 _bfd_elf_post_process_headers (abfd, link_info);
17591 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
17592
17593 if (link_info)
17594 {
17595 globals = elf32_arm_hash_table (link_info);
17596 if (globals != NULL && globals->byteswap_code)
17597 i_ehdrp->e_flags |= EF_ARM_BE8;
17598
17599 if (globals->fdpic_p)
17600 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
17601 }
17602
17603 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17604 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17605 {
17606 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
17607 if (abi == AEABI_VFP_args_vfp)
17608 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17609 else
17610 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17611 }
17612
17613 /* Scan segment to set p_flags attribute if it contains only sections with
17614 SHF_ARM_PURECODE flag. */
17615 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17616 {
17617 unsigned int j;
17618
17619 if (m->count == 0)
17620 continue;
17621 for (j = 0; j < m->count; j++)
17622 {
17623 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
17624 break;
17625 }
17626 if (j == m->count)
17627 {
17628 m->p_flags = PF_X;
17629 m->p_flags_valid = 1;
17630 }
17631 }
17632 }
17633
17634 static enum elf_reloc_type_class
17635 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17636 const asection *rel_sec ATTRIBUTE_UNUSED,
17637 const Elf_Internal_Rela *rela)
17638 {
17639 switch ((int) ELF32_R_TYPE (rela->r_info))
17640 {
17641 case R_ARM_RELATIVE:
17642 return reloc_class_relative;
17643 case R_ARM_JUMP_SLOT:
17644 return reloc_class_plt;
17645 case R_ARM_COPY:
17646 return reloc_class_copy;
17647 case R_ARM_IRELATIVE:
17648 return reloc_class_ifunc;
17649 default:
17650 return reloc_class_normal;
17651 }
17652 }
17653
17654 static void
17655 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
17656 {
17657 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
17658 }
17659
17660 /* Return TRUE if this is an unwinding table entry. */
17661
17662 static bfd_boolean
17663 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17664 {
17665 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17666 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
17667 }
17668
17669
17670 /* Set the type and flags for an ARM section. We do this by
17671 the section name, which is a hack, but ought to work. */
17672
17673 static bfd_boolean
17674 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17675 {
17676 const char * name;
17677
17678 name = bfd_get_section_name (abfd, sec);
17679
17680 if (is_arm_elf_unwind_section_name (abfd, name))
17681 {
17682 hdr->sh_type = SHT_ARM_EXIDX;
17683 hdr->sh_flags |= SHF_LINK_ORDER;
17684 }
17685
17686 if (sec->flags & SEC_ELF_PURECODE)
17687 hdr->sh_flags |= SHF_ARM_PURECODE;
17688
17689 return TRUE;
17690 }
17691
17692 /* Handle an ARM specific section when reading an object file. This is
17693 called when bfd_section_from_shdr finds a section with an unknown
17694 type. */
17695
17696 static bfd_boolean
17697 elf32_arm_section_from_shdr (bfd *abfd,
17698 Elf_Internal_Shdr * hdr,
17699 const char *name,
17700 int shindex)
17701 {
17702 /* There ought to be a place to keep ELF backend specific flags, but
17703 at the moment there isn't one. We just keep track of the
17704 sections by their name, instead. Fortunately, the ABI gives
17705 names for all the ARM specific sections, so we will probably get
17706 away with this. */
17707 switch (hdr->sh_type)
17708 {
17709 case SHT_ARM_EXIDX:
17710 case SHT_ARM_PREEMPTMAP:
17711 case SHT_ARM_ATTRIBUTES:
17712 break;
17713
17714 default:
17715 return FALSE;
17716 }
17717
17718 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
17719 return FALSE;
17720
17721 return TRUE;
17722 }
17723
17724 static _arm_elf_section_data *
17725 get_arm_elf_section_data (asection * sec)
17726 {
17727 if (sec && sec->owner && is_arm_elf (sec->owner))
17728 return elf32_arm_section_data (sec);
17729 else
17730 return NULL;
17731 }
17732
17733 typedef struct
17734 {
17735 void *flaginfo;
17736 struct bfd_link_info *info;
17737 asection *sec;
17738 int sec_shndx;
17739 int (*func) (void *, const char *, Elf_Internal_Sym *,
17740 asection *, struct elf_link_hash_entry *);
17741 } output_arch_syminfo;
17742
17743 enum map_symbol_type
17744 {
17745 ARM_MAP_ARM,
17746 ARM_MAP_THUMB,
17747 ARM_MAP_DATA
17748 };
17749
17750
17751 /* Output a single mapping symbol. */
17752
17753 static bfd_boolean
17754 elf32_arm_output_map_sym (output_arch_syminfo *osi,
17755 enum map_symbol_type type,
17756 bfd_vma offset)
17757 {
17758 static const char *names[3] = {"$a", "$t", "$d"};
17759 Elf_Internal_Sym sym;
17760
17761 sym.st_value = osi->sec->output_section->vma
17762 + osi->sec->output_offset
17763 + offset;
17764 sym.st_size = 0;
17765 sym.st_other = 0;
17766 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
17767 sym.st_shndx = osi->sec_shndx;
17768 sym.st_target_internal = 0;
17769 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
17770 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
17771 }
17772
17773 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17774 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
17775
17776 static bfd_boolean
17777 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
17778 bfd_boolean is_iplt_entry_p,
17779 union gotplt_union *root_plt,
17780 struct arm_plt_info *arm_plt)
17781 {
17782 struct elf32_arm_link_hash_table *htab;
17783 bfd_vma addr, plt_header_size;
17784
17785 if (root_plt->offset == (bfd_vma) -1)
17786 return TRUE;
17787
17788 htab = elf32_arm_hash_table (osi->info);
17789 if (htab == NULL)
17790 return FALSE;
17791
17792 if (is_iplt_entry_p)
17793 {
17794 osi->sec = htab->root.iplt;
17795 plt_header_size = 0;
17796 }
17797 else
17798 {
17799 osi->sec = htab->root.splt;
17800 plt_header_size = htab->plt_header_size;
17801 }
17802 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
17803 (osi->info->output_bfd, osi->sec->output_section));
17804
17805 addr = root_plt->offset & -2;
17806 if (htab->symbian_p)
17807 {
17808 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17809 return FALSE;
17810 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
17811 return FALSE;
17812 }
17813 else if (htab->vxworks_p)
17814 {
17815 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17816 return FALSE;
17817 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
17818 return FALSE;
17819 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
17820 return FALSE;
17821 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
17822 return FALSE;
17823 }
17824 else if (htab->nacl_p)
17825 {
17826 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17827 return FALSE;
17828 }
17829 else if (htab->fdpic_p)
17830 {
17831 enum map_symbol_type type = using_thumb_only(htab)
17832 ? ARM_MAP_THUMB
17833 : ARM_MAP_ARM;
17834
17835 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
17836 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
17837 return FALSE;
17838 if (!elf32_arm_output_map_sym (osi, type, addr))
17839 return FALSE;
17840 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
17841 return FALSE;
17842 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
17843 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
17844 return FALSE;
17845 }
17846 else if (using_thumb_only (htab))
17847 {
17848 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
17849 return FALSE;
17850 }
17851 else
17852 {
17853 bfd_boolean thumb_stub_p;
17854
17855 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
17856 if (thumb_stub_p)
17857 {
17858 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
17859 return FALSE;
17860 }
17861 #ifdef FOUR_WORD_PLT
17862 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17863 return FALSE;
17864 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
17865 return FALSE;
17866 #else
17867 /* A three-word PLT with no Thumb thunk contains only Arm code,
17868 so only need to output a mapping symbol for the first PLT entry and
17869 entries with thumb thunks. */
17870 if (thumb_stub_p || addr == plt_header_size)
17871 {
17872 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17873 return FALSE;
17874 }
17875 #endif
17876 }
17877
17878 return TRUE;
17879 }
17880
17881 /* Output mapping symbols for PLT entries associated with H. */
17882
17883 static bfd_boolean
17884 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17885 {
17886 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17887 struct elf32_arm_link_hash_entry *eh;
17888
17889 if (h->root.type == bfd_link_hash_indirect)
17890 return TRUE;
17891
17892 if (h->root.type == bfd_link_hash_warning)
17893 /* When warning symbols are created, they **replace** the "real"
17894 entry in the hash table, thus we never get to see the real
17895 symbol in a hash traversal. So look at it now. */
17896 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17897
17898 eh = (struct elf32_arm_link_hash_entry *) h;
17899 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17900 &h->plt, &eh->plt);
17901 }
17902
17903 /* Bind a veneered symbol to its veneer identified by its hash entry
17904 STUB_ENTRY. The veneered location thus loose its symbol. */
17905
17906 static void
17907 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17908 {
17909 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17910
17911 BFD_ASSERT (hash);
17912 hash->root.root.u.def.section = stub_entry->stub_sec;
17913 hash->root.root.u.def.value = stub_entry->stub_offset;
17914 hash->root.size = stub_entry->stub_size;
17915 }
17916
17917 /* Output a single local symbol for a generated stub. */
17918
17919 static bfd_boolean
17920 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17921 bfd_vma offset, bfd_vma size)
17922 {
17923 Elf_Internal_Sym sym;
17924
17925 sym.st_value = osi->sec->output_section->vma
17926 + osi->sec->output_offset
17927 + offset;
17928 sym.st_size = size;
17929 sym.st_other = 0;
17930 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17931 sym.st_shndx = osi->sec_shndx;
17932 sym.st_target_internal = 0;
17933 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
17934 }
17935
17936 static bfd_boolean
17937 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17938 void * in_arg)
17939 {
17940 struct elf32_arm_stub_hash_entry *stub_entry;
17941 asection *stub_sec;
17942 bfd_vma addr;
17943 char *stub_name;
17944 output_arch_syminfo *osi;
17945 const insn_sequence *template_sequence;
17946 enum stub_insn_type prev_type;
17947 int size;
17948 int i;
17949 enum map_symbol_type sym_type;
17950
17951 /* Massage our args to the form they really have. */
17952 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17953 osi = (output_arch_syminfo *) in_arg;
17954
17955 stub_sec = stub_entry->stub_sec;
17956
17957 /* Ensure this stub is attached to the current section being
17958 processed. */
17959 if (stub_sec != osi->sec)
17960 return TRUE;
17961
17962 addr = (bfd_vma) stub_entry->stub_offset;
17963 template_sequence = stub_entry->stub_template;
17964
17965 if (arm_stub_sym_claimed (stub_entry->stub_type))
17966 arm_stub_claim_sym (stub_entry);
17967 else
17968 {
17969 stub_name = stub_entry->output_name;
17970 switch (template_sequence[0].type)
17971 {
17972 case ARM_TYPE:
17973 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17974 stub_entry->stub_size))
17975 return FALSE;
17976 break;
17977 case THUMB16_TYPE:
17978 case THUMB32_TYPE:
17979 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17980 stub_entry->stub_size))
17981 return FALSE;
17982 break;
17983 default:
17984 BFD_FAIL ();
17985 return 0;
17986 }
17987 }
17988
17989 prev_type = DATA_TYPE;
17990 size = 0;
17991 for (i = 0; i < stub_entry->stub_template_size; i++)
17992 {
17993 switch (template_sequence[i].type)
17994 {
17995 case ARM_TYPE:
17996 sym_type = ARM_MAP_ARM;
17997 break;
17998
17999 case THUMB16_TYPE:
18000 case THUMB32_TYPE:
18001 sym_type = ARM_MAP_THUMB;
18002 break;
18003
18004 case DATA_TYPE:
18005 sym_type = ARM_MAP_DATA;
18006 break;
18007
18008 default:
18009 BFD_FAIL ();
18010 return FALSE;
18011 }
18012
18013 if (template_sequence[i].type != prev_type)
18014 {
18015 prev_type = template_sequence[i].type;
18016 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18017 return FALSE;
18018 }
18019
18020 switch (template_sequence[i].type)
18021 {
18022 case ARM_TYPE:
18023 case THUMB32_TYPE:
18024 size += 4;
18025 break;
18026
18027 case THUMB16_TYPE:
18028 size += 2;
18029 break;
18030
18031 case DATA_TYPE:
18032 size += 4;
18033 break;
18034
18035 default:
18036 BFD_FAIL ();
18037 return FALSE;
18038 }
18039 }
18040
18041 return TRUE;
18042 }
18043
18044 /* Output mapping symbols for linker generated sections,
18045 and for those data-only sections that do not have a
18046 $d. */
18047
18048 static bfd_boolean
18049 elf32_arm_output_arch_local_syms (bfd *output_bfd,
18050 struct bfd_link_info *info,
18051 void *flaginfo,
18052 int (*func) (void *, const char *,
18053 Elf_Internal_Sym *,
18054 asection *,
18055 struct elf_link_hash_entry *))
18056 {
18057 output_arch_syminfo osi;
18058 struct elf32_arm_link_hash_table *htab;
18059 bfd_vma offset;
18060 bfd_size_type size;
18061 bfd *input_bfd;
18062
18063 htab = elf32_arm_hash_table (info);
18064 if (htab == NULL)
18065 return FALSE;
18066
18067 check_use_blx (htab);
18068
18069 osi.flaginfo = flaginfo;
18070 osi.info = info;
18071 osi.func = func;
18072
18073 /* Add a $d mapping symbol to data-only sections that
18074 don't have any mapping symbol. This may result in (harmless) redundant
18075 mapping symbols. */
18076 for (input_bfd = info->input_bfds;
18077 input_bfd != NULL;
18078 input_bfd = input_bfd->link.next)
18079 {
18080 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18081 for (osi.sec = input_bfd->sections;
18082 osi.sec != NULL;
18083 osi.sec = osi.sec->next)
18084 {
18085 if (osi.sec->output_section != NULL
18086 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18087 != 0)
18088 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18089 == SEC_HAS_CONTENTS
18090 && get_arm_elf_section_data (osi.sec) != NULL
18091 && get_arm_elf_section_data (osi.sec)->mapcount == 0
18092 && osi.sec->size > 0
18093 && (osi.sec->flags & SEC_EXCLUDE) == 0)
18094 {
18095 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18096 (output_bfd, osi.sec->output_section);
18097 if (osi.sec_shndx != (int)SHN_BAD)
18098 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18099 }
18100 }
18101 }
18102
18103 /* ARM->Thumb glue. */
18104 if (htab->arm_glue_size > 0)
18105 {
18106 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18107 ARM2THUMB_GLUE_SECTION_NAME);
18108
18109 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18110 (output_bfd, osi.sec->output_section);
18111 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
18112 || htab->pic_veneer)
18113 size = ARM2THUMB_PIC_GLUE_SIZE;
18114 else if (htab->use_blx)
18115 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18116 else
18117 size = ARM2THUMB_STATIC_GLUE_SIZE;
18118
18119 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18120 {
18121 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18122 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
18123 }
18124 }
18125
18126 /* Thumb->ARM glue. */
18127 if (htab->thumb_glue_size > 0)
18128 {
18129 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18130 THUMB2ARM_GLUE_SECTION_NAME);
18131
18132 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18133 (output_bfd, osi.sec->output_section);
18134 size = THUMB2ARM_GLUE_SIZE;
18135
18136 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18137 {
18138 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18139 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
18140 }
18141 }
18142
18143 /* ARMv4 BX veneers. */
18144 if (htab->bx_glue_size > 0)
18145 {
18146 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18147 ARM_BX_GLUE_SECTION_NAME);
18148
18149 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18150 (output_bfd, osi.sec->output_section);
18151
18152 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
18153 }
18154
18155 /* Long calls stubs. */
18156 if (htab->stub_bfd && htab->stub_bfd->sections)
18157 {
18158 asection* stub_sec;
18159
18160 for (stub_sec = htab->stub_bfd->sections;
18161 stub_sec != NULL;
18162 stub_sec = stub_sec->next)
18163 {
18164 /* Ignore non-stub sections. */
18165 if (!strstr (stub_sec->name, STUB_SUFFIX))
18166 continue;
18167
18168 osi.sec = stub_sec;
18169
18170 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18171 (output_bfd, osi.sec->output_section);
18172
18173 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18174 }
18175 }
18176
18177 /* Finally, output mapping symbols for the PLT. */
18178 if (htab->root.splt && htab->root.splt->size > 0)
18179 {
18180 osi.sec = htab->root.splt;
18181 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18182 (output_bfd, osi.sec->output_section));
18183
18184 /* Output mapping symbols for the plt header. SymbianOS does not have a
18185 plt header. */
18186 if (htab->vxworks_p)
18187 {
18188 /* VxWorks shared libraries have no PLT header. */
18189 if (!bfd_link_pic (info))
18190 {
18191 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18192 return FALSE;
18193 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18194 return FALSE;
18195 }
18196 }
18197 else if (htab->nacl_p)
18198 {
18199 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18200 return FALSE;
18201 }
18202 else if (using_thumb_only (htab) && !htab->fdpic_p)
18203 {
18204 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18205 return FALSE;
18206 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18207 return FALSE;
18208 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18209 return FALSE;
18210 }
18211 else if (!htab->symbian_p && !htab->fdpic_p)
18212 {
18213 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18214 return FALSE;
18215 #ifndef FOUR_WORD_PLT
18216 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
18217 return FALSE;
18218 #endif
18219 }
18220 }
18221 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
18222 {
18223 /* NaCl uses a special first entry in .iplt too. */
18224 osi.sec = htab->root.iplt;
18225 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18226 (output_bfd, osi.sec->output_section));
18227 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18228 return FALSE;
18229 }
18230 if ((htab->root.splt && htab->root.splt->size > 0)
18231 || (htab->root.iplt && htab->root.iplt->size > 0))
18232 {
18233 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18234 for (input_bfd = info->input_bfds;
18235 input_bfd != NULL;
18236 input_bfd = input_bfd->link.next)
18237 {
18238 struct arm_local_iplt_info **local_iplt;
18239 unsigned int i, num_syms;
18240
18241 local_iplt = elf32_arm_local_iplt (input_bfd);
18242 if (local_iplt != NULL)
18243 {
18244 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18245 for (i = 0; i < num_syms; i++)
18246 if (local_iplt[i] != NULL
18247 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18248 &local_iplt[i]->root,
18249 &local_iplt[i]->arm))
18250 return FALSE;
18251 }
18252 }
18253 }
18254 if (htab->dt_tlsdesc_plt != 0)
18255 {
18256 /* Mapping symbols for the lazy tls trampoline. */
18257 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18258 return FALSE;
18259
18260 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18261 htab->dt_tlsdesc_plt + 24))
18262 return FALSE;
18263 }
18264 if (htab->tls_trampoline != 0)
18265 {
18266 /* Mapping symbols for the tls trampoline. */
18267 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18268 return FALSE;
18269 #ifdef FOUR_WORD_PLT
18270 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18271 htab->tls_trampoline + 12))
18272 return FALSE;
18273 #endif
18274 }
18275
18276 return TRUE;
18277 }
18278
18279 /* Filter normal symbols of CMSE entry functions of ABFD to include in
18280 the import library. All SYMCOUNT symbols of ABFD can be examined
18281 from their pointers in SYMS. Pointers of symbols to keep should be
18282 stored continuously at the beginning of that array.
18283
18284 Returns the number of symbols to keep. */
18285
18286 static unsigned int
18287 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18288 struct bfd_link_info *info,
18289 asymbol **syms, long symcount)
18290 {
18291 size_t maxnamelen;
18292 char *cmse_name;
18293 long src_count, dst_count = 0;
18294 struct elf32_arm_link_hash_table *htab;
18295
18296 htab = elf32_arm_hash_table (info);
18297 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18298 symcount = 0;
18299
18300 maxnamelen = 128;
18301 cmse_name = (char *) bfd_malloc (maxnamelen);
18302 for (src_count = 0; src_count < symcount; src_count++)
18303 {
18304 struct elf32_arm_link_hash_entry *cmse_hash;
18305 asymbol *sym;
18306 flagword flags;
18307 char *name;
18308 size_t namelen;
18309
18310 sym = syms[src_count];
18311 flags = sym->flags;
18312 name = (char *) bfd_asymbol_name (sym);
18313
18314 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18315 continue;
18316 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18317 continue;
18318
18319 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18320 if (namelen > maxnamelen)
18321 {
18322 cmse_name = (char *)
18323 bfd_realloc (cmse_name, namelen);
18324 maxnamelen = namelen;
18325 }
18326 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18327 cmse_hash = (struct elf32_arm_link_hash_entry *)
18328 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18329
18330 if (!cmse_hash
18331 || (cmse_hash->root.root.type != bfd_link_hash_defined
18332 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18333 || cmse_hash->root.type != STT_FUNC)
18334 continue;
18335
18336 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
18337 continue;
18338
18339 syms[dst_count++] = sym;
18340 }
18341 free (cmse_name);
18342
18343 syms[dst_count] = NULL;
18344
18345 return dst_count;
18346 }
18347
18348 /* Filter symbols of ABFD to include in the import library. All
18349 SYMCOUNT symbols of ABFD can be examined from their pointers in
18350 SYMS. Pointers of symbols to keep should be stored continuously at
18351 the beginning of that array.
18352
18353 Returns the number of symbols to keep. */
18354
18355 static unsigned int
18356 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18357 struct bfd_link_info *info,
18358 asymbol **syms, long symcount)
18359 {
18360 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18361
18362 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18363 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18364 library to be a relocatable object file. */
18365 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
18366 if (globals->cmse_implib)
18367 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18368 else
18369 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18370 }
18371
18372 /* Allocate target specific section data. */
18373
18374 static bfd_boolean
18375 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18376 {
18377 if (!sec->used_by_bfd)
18378 {
18379 _arm_elf_section_data *sdata;
18380 bfd_size_type amt = sizeof (*sdata);
18381
18382 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
18383 if (sdata == NULL)
18384 return FALSE;
18385 sec->used_by_bfd = sdata;
18386 }
18387
18388 return _bfd_elf_new_section_hook (abfd, sec);
18389 }
18390
18391
18392 /* Used to order a list of mapping symbols by address. */
18393
18394 static int
18395 elf32_arm_compare_mapping (const void * a, const void * b)
18396 {
18397 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18398 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18399
18400 if (amap->vma > bmap->vma)
18401 return 1;
18402 else if (amap->vma < bmap->vma)
18403 return -1;
18404 else if (amap->type > bmap->type)
18405 /* Ensure results do not depend on the host qsort for objects with
18406 multiple mapping symbols at the same address by sorting on type
18407 after vma. */
18408 return 1;
18409 else if (amap->type < bmap->type)
18410 return -1;
18411 else
18412 return 0;
18413 }
18414
18415 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18416
18417 static unsigned long
18418 offset_prel31 (unsigned long addr, bfd_vma offset)
18419 {
18420 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18421 }
18422
18423 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18424 relocations. */
18425
18426 static void
18427 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18428 {
18429 unsigned long first_word = bfd_get_32 (output_bfd, from);
18430 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
18431
18432 /* High bit of first word is supposed to be zero. */
18433 if ((first_word & 0x80000000ul) == 0)
18434 first_word = offset_prel31 (first_word, offset);
18435
18436 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18437 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18438 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18439 second_word = offset_prel31 (second_word, offset);
18440
18441 bfd_put_32 (output_bfd, first_word, to);
18442 bfd_put_32 (output_bfd, second_word, to + 4);
18443 }
18444
18445 /* Data for make_branch_to_a8_stub(). */
18446
18447 struct a8_branch_to_stub_data
18448 {
18449 asection *writing_section;
18450 bfd_byte *contents;
18451 };
18452
18453
18454 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
18455 places for a particular section. */
18456
18457 static bfd_boolean
18458 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
18459 void *in_arg)
18460 {
18461 struct elf32_arm_stub_hash_entry *stub_entry;
18462 struct a8_branch_to_stub_data *data;
18463 bfd_byte *contents;
18464 unsigned long branch_insn;
18465 bfd_vma veneered_insn_loc, veneer_entry_loc;
18466 bfd_signed_vma branch_offset;
18467 bfd *abfd;
18468 unsigned int loc;
18469
18470 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18471 data = (struct a8_branch_to_stub_data *) in_arg;
18472
18473 if (stub_entry->target_section != data->writing_section
18474 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
18475 return TRUE;
18476
18477 contents = data->contents;
18478
18479 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18480 generated when both source and target are in the same section. */
18481 veneered_insn_loc = stub_entry->target_section->output_section->vma
18482 + stub_entry->target_section->output_offset
18483 + stub_entry->source_value;
18484
18485 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18486 + stub_entry->stub_sec->output_offset
18487 + stub_entry->stub_offset;
18488
18489 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18490 veneered_insn_loc &= ~3u;
18491
18492 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18493
18494 abfd = stub_entry->target_section->owner;
18495 loc = stub_entry->source_value;
18496
18497 /* We attempt to avoid this condition by setting stubs_always_after_branch
18498 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18499 This check is just to be on the safe side... */
18500 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18501 {
18502 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18503 "allocated in unsafe location"), abfd);
18504 return FALSE;
18505 }
18506
18507 switch (stub_entry->stub_type)
18508 {
18509 case arm_stub_a8_veneer_b:
18510 case arm_stub_a8_veneer_b_cond:
18511 branch_insn = 0xf0009000;
18512 goto jump24;
18513
18514 case arm_stub_a8_veneer_blx:
18515 branch_insn = 0xf000e800;
18516 goto jump24;
18517
18518 case arm_stub_a8_veneer_bl:
18519 {
18520 unsigned int i1, j1, i2, j2, s;
18521
18522 branch_insn = 0xf000d000;
18523
18524 jump24:
18525 if (branch_offset < -16777216 || branch_offset > 16777214)
18526 {
18527 /* There's not much we can do apart from complain if this
18528 happens. */
18529 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18530 "of range (input file too large)"), abfd);
18531 return FALSE;
18532 }
18533
18534 /* i1 = not(j1 eor s), so:
18535 not i1 = j1 eor s
18536 j1 = (not i1) eor s. */
18537
18538 branch_insn |= (branch_offset >> 1) & 0x7ff;
18539 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18540 i2 = (branch_offset >> 22) & 1;
18541 i1 = (branch_offset >> 23) & 1;
18542 s = (branch_offset >> 24) & 1;
18543 j1 = (!i1) ^ s;
18544 j2 = (!i2) ^ s;
18545 branch_insn |= j2 << 11;
18546 branch_insn |= j1 << 13;
18547 branch_insn |= s << 26;
18548 }
18549 break;
18550
18551 default:
18552 BFD_FAIL ();
18553 return FALSE;
18554 }
18555
18556 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18557 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
18558
18559 return TRUE;
18560 }
18561
18562 /* Beginning of stm32l4xx work-around. */
18563
18564 /* Functions encoding instructions necessary for the emission of the
18565 fix-stm32l4xx-629360.
18566 Encoding is extracted from the
18567 ARM (C) Architecture Reference Manual
18568 ARMv7-A and ARMv7-R edition
18569 ARM DDI 0406C.b (ID072512). */
18570
18571 static inline bfd_vma
18572 create_instruction_branch_absolute (int branch_offset)
18573 {
18574 /* A8.8.18 B (A8-334)
18575 B target_address (Encoding T4). */
18576 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18577 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18578 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18579
18580 int s = ((branch_offset & 0x1000000) >> 24);
18581 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18582 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18583
18584 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18585 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18586
18587 bfd_vma patched_inst = 0xf0009000
18588 | s << 26 /* S. */
18589 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18590 | j1 << 13 /* J1. */
18591 | j2 << 11 /* J2. */
18592 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18593
18594 return patched_inst;
18595 }
18596
18597 static inline bfd_vma
18598 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18599 {
18600 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18601 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18602 bfd_vma patched_inst = 0xe8900000
18603 | (/*W=*/wback << 21)
18604 | (base_reg << 16)
18605 | (reg_mask & 0x0000ffff);
18606
18607 return patched_inst;
18608 }
18609
18610 static inline bfd_vma
18611 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18612 {
18613 /* A8.8.60 LDMDB/LDMEA (A8-402)
18614 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18615 bfd_vma patched_inst = 0xe9100000
18616 | (/*W=*/wback << 21)
18617 | (base_reg << 16)
18618 | (reg_mask & 0x0000ffff);
18619
18620 return patched_inst;
18621 }
18622
18623 static inline bfd_vma
18624 create_instruction_mov (int target_reg, int source_reg)
18625 {
18626 /* A8.8.103 MOV (register) (A8-486)
18627 MOV Rd, Rm (Encoding T1). */
18628 bfd_vma patched_inst = 0x4600
18629 | (target_reg & 0x7)
18630 | ((target_reg & 0x8) >> 3) << 7
18631 | (source_reg << 3);
18632
18633 return patched_inst;
18634 }
18635
18636 static inline bfd_vma
18637 create_instruction_sub (int target_reg, int source_reg, int value)
18638 {
18639 /* A8.8.221 SUB (immediate) (A8-708)
18640 SUB Rd, Rn, #value (Encoding T3). */
18641 bfd_vma patched_inst = 0xf1a00000
18642 | (target_reg << 8)
18643 | (source_reg << 16)
18644 | (/*S=*/0 << 20)
18645 | ((value & 0x800) >> 11) << 26
18646 | ((value & 0x700) >> 8) << 12
18647 | (value & 0x0ff);
18648
18649 return patched_inst;
18650 }
18651
18652 static inline bfd_vma
18653 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
18654 int first_reg)
18655 {
18656 /* A8.8.332 VLDM (A8-922)
18657 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18658 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
18659 | (/*W=*/wback << 21)
18660 | (base_reg << 16)
18661 | (num_words & 0x000000ff)
18662 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
18663 | (first_reg & 0x00000001) << 22;
18664
18665 return patched_inst;
18666 }
18667
18668 static inline bfd_vma
18669 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18670 int first_reg)
18671 {
18672 /* A8.8.332 VLDM (A8-922)
18673 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18674 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
18675 | (base_reg << 16)
18676 | (num_words & 0x000000ff)
18677 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
18678 | (first_reg & 0x00000001) << 22;
18679
18680 return patched_inst;
18681 }
18682
18683 static inline bfd_vma
18684 create_instruction_udf_w (int value)
18685 {
18686 /* A8.8.247 UDF (A8-758)
18687 Undefined (Encoding T2). */
18688 bfd_vma patched_inst = 0xf7f0a000
18689 | (value & 0x00000fff)
18690 | (value & 0x000f0000) << 16;
18691
18692 return patched_inst;
18693 }
18694
18695 static inline bfd_vma
18696 create_instruction_udf (int value)
18697 {
18698 /* A8.8.247 UDF (A8-758)
18699 Undefined (Encoding T1). */
18700 bfd_vma patched_inst = 0xde00
18701 | (value & 0xff);
18702
18703 return patched_inst;
18704 }
18705
18706 /* Functions writing an instruction in memory, returning the next
18707 memory position to write to. */
18708
18709 static inline bfd_byte *
18710 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18711 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18712 {
18713 put_thumb2_insn (htab, output_bfd, insn, pt);
18714 return pt + 4;
18715 }
18716
18717 static inline bfd_byte *
18718 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18719 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18720 {
18721 put_thumb_insn (htab, output_bfd, insn, pt);
18722 return pt + 2;
18723 }
18724
18725 /* Function filling up a region in memory with T1 and T2 UDFs taking
18726 care of alignment. */
18727
18728 static bfd_byte *
18729 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
18730 bfd * output_bfd,
18731 const bfd_byte * const base_stub_contents,
18732 bfd_byte * const from_stub_contents,
18733 const bfd_byte * const end_stub_contents)
18734 {
18735 bfd_byte *current_stub_contents = from_stub_contents;
18736
18737 /* Fill the remaining of the stub with deterministic contents : UDF
18738 instructions.
18739 Check if realignment is needed on modulo 4 frontier using T1, to
18740 further use T2. */
18741 if ((current_stub_contents < end_stub_contents)
18742 && !((current_stub_contents - base_stub_contents) % 2)
18743 && ((current_stub_contents - base_stub_contents) % 4))
18744 current_stub_contents =
18745 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18746 create_instruction_udf (0));
18747
18748 for (; current_stub_contents < end_stub_contents;)
18749 current_stub_contents =
18750 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18751 create_instruction_udf_w (0));
18752
18753 return current_stub_contents;
18754 }
18755
18756 /* Functions writing the stream of instructions equivalent to the
18757 derived sequence for ldmia, ldmdb, vldm respectively. */
18758
18759 static void
18760 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18761 bfd * output_bfd,
18762 const insn32 initial_insn,
18763 const bfd_byte *const initial_insn_addr,
18764 bfd_byte *const base_stub_contents)
18765 {
18766 int wback = (initial_insn & 0x00200000) >> 21;
18767 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18768 int insn_all_registers = initial_insn & 0x0000ffff;
18769 int insn_low_registers, insn_high_registers;
18770 int usable_register_mask;
18771 int nb_registers = elf32_arm_popcount (insn_all_registers);
18772 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18773 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18774 bfd_byte *current_stub_contents = base_stub_contents;
18775
18776 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18777
18778 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18779 smaller than 8 registers load sequences that do not cause the
18780 hardware issue. */
18781 if (nb_registers <= 8)
18782 {
18783 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18784 current_stub_contents =
18785 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18786 initial_insn);
18787
18788 /* B initial_insn_addr+4. */
18789 if (!restore_pc)
18790 current_stub_contents =
18791 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18792 create_instruction_branch_absolute
18793 (initial_insn_addr - current_stub_contents));
18794
18795 /* Fill the remaining of the stub with deterministic contents. */
18796 current_stub_contents =
18797 stm32l4xx_fill_stub_udf (htab, output_bfd,
18798 base_stub_contents, current_stub_contents,
18799 base_stub_contents +
18800 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18801
18802 return;
18803 }
18804
18805 /* - reg_list[13] == 0. */
18806 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
18807
18808 /* - reg_list[14] & reg_list[15] != 1. */
18809 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18810
18811 /* - if (wback==1) reg_list[rn] == 0. */
18812 BFD_ASSERT (!wback || !restore_rn);
18813
18814 /* - nb_registers > 8. */
18815 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
18816
18817 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18818
18819 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
18820 - One with the 7 lowest registers (register mask 0x007F)
18821 This LDM will finally contain between 2 and 7 registers
18822 - One with the 7 highest registers (register mask 0xDF80)
18823 This ldm will finally contain between 2 and 7 registers. */
18824 insn_low_registers = insn_all_registers & 0x007F;
18825 insn_high_registers = insn_all_registers & 0xDF80;
18826
18827 /* A spare register may be needed during this veneer to temporarily
18828 handle the base register. This register will be restored with the
18829 last LDM operation.
18830 The usable register may be any general purpose register (that
18831 excludes PC, SP, LR : register mask is 0x1FFF). */
18832 usable_register_mask = 0x1FFF;
18833
18834 /* Generate the stub function. */
18835 if (wback)
18836 {
18837 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18838 current_stub_contents =
18839 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18840 create_instruction_ldmia
18841 (rn, /*wback=*/1, insn_low_registers));
18842
18843 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18844 current_stub_contents =
18845 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18846 create_instruction_ldmia
18847 (rn, /*wback=*/1, insn_high_registers));
18848 if (!restore_pc)
18849 {
18850 /* B initial_insn_addr+4. */
18851 current_stub_contents =
18852 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18853 create_instruction_branch_absolute
18854 (initial_insn_addr - current_stub_contents));
18855 }
18856 }
18857 else /* if (!wback). */
18858 {
18859 ri = rn;
18860
18861 /* If Rn is not part of the high-register-list, move it there. */
18862 if (!(insn_high_registers & (1 << rn)))
18863 {
18864 /* Choose a Ri in the high-register-list that will be restored. */
18865 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18866
18867 /* MOV Ri, Rn. */
18868 current_stub_contents =
18869 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18870 create_instruction_mov (ri, rn));
18871 }
18872
18873 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18874 current_stub_contents =
18875 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18876 create_instruction_ldmia
18877 (ri, /*wback=*/1, insn_low_registers));
18878
18879 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18880 current_stub_contents =
18881 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18882 create_instruction_ldmia
18883 (ri, /*wback=*/0, insn_high_registers));
18884
18885 if (!restore_pc)
18886 {
18887 /* B initial_insn_addr+4. */
18888 current_stub_contents =
18889 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18890 create_instruction_branch_absolute
18891 (initial_insn_addr - current_stub_contents));
18892 }
18893 }
18894
18895 /* Fill the remaining of the stub with deterministic contents. */
18896 current_stub_contents =
18897 stm32l4xx_fill_stub_udf (htab, output_bfd,
18898 base_stub_contents, current_stub_contents,
18899 base_stub_contents +
18900 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18901 }
18902
18903 static void
18904 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18905 bfd * output_bfd,
18906 const insn32 initial_insn,
18907 const bfd_byte *const initial_insn_addr,
18908 bfd_byte *const base_stub_contents)
18909 {
18910 int wback = (initial_insn & 0x00200000) >> 21;
18911 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18912 int insn_all_registers = initial_insn & 0x0000ffff;
18913 int insn_low_registers, insn_high_registers;
18914 int usable_register_mask;
18915 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18916 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18917 int nb_registers = elf32_arm_popcount (insn_all_registers);
18918 bfd_byte *current_stub_contents = base_stub_contents;
18919
18920 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18921
18922 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18923 smaller than 8 registers load sequences that do not cause the
18924 hardware issue. */
18925 if (nb_registers <= 8)
18926 {
18927 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18928 current_stub_contents =
18929 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18930 initial_insn);
18931
18932 /* B initial_insn_addr+4. */
18933 current_stub_contents =
18934 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18935 create_instruction_branch_absolute
18936 (initial_insn_addr - current_stub_contents));
18937
18938 /* Fill the remaining of the stub with deterministic contents. */
18939 current_stub_contents =
18940 stm32l4xx_fill_stub_udf (htab, output_bfd,
18941 base_stub_contents, current_stub_contents,
18942 base_stub_contents +
18943 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18944
18945 return;
18946 }
18947
18948 /* - reg_list[13] == 0. */
18949 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18950
18951 /* - reg_list[14] & reg_list[15] != 1. */
18952 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18953
18954 /* - if (wback==1) reg_list[rn] == 0. */
18955 BFD_ASSERT (!wback || !restore_rn);
18956
18957 /* - nb_registers > 8. */
18958 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
18959
18960 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18961
18962 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18963 - One with the 7 lowest registers (register mask 0x007F)
18964 This LDM will finally contain between 2 and 7 registers
18965 - One with the 7 highest registers (register mask 0xDF80)
18966 This ldm will finally contain between 2 and 7 registers. */
18967 insn_low_registers = insn_all_registers & 0x007F;
18968 insn_high_registers = insn_all_registers & 0xDF80;
18969
18970 /* A spare register may be needed during this veneer to temporarily
18971 handle the base register. This register will be restored with
18972 the last LDM operation.
18973 The usable register may be any general purpose register (that excludes
18974 PC, SP, LR : register mask is 0x1FFF). */
18975 usable_register_mask = 0x1FFF;
18976
18977 /* Generate the stub function. */
18978 if (!wback && !restore_pc && !restore_rn)
18979 {
18980 /* Choose a Ri in the low-register-list that will be restored. */
18981 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18982
18983 /* MOV Ri, Rn. */
18984 current_stub_contents =
18985 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18986 create_instruction_mov (ri, rn));
18987
18988 /* LDMDB Ri!, {R-high-register-list}. */
18989 current_stub_contents =
18990 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18991 create_instruction_ldmdb
18992 (ri, /*wback=*/1, insn_high_registers));
18993
18994 /* LDMDB Ri, {R-low-register-list}. */
18995 current_stub_contents =
18996 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18997 create_instruction_ldmdb
18998 (ri, /*wback=*/0, insn_low_registers));
18999
19000 /* B initial_insn_addr+4. */
19001 current_stub_contents =
19002 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19003 create_instruction_branch_absolute
19004 (initial_insn_addr - current_stub_contents));
19005 }
19006 else if (wback && !restore_pc && !restore_rn)
19007 {
19008 /* LDMDB Rn!, {R-high-register-list}. */
19009 current_stub_contents =
19010 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19011 create_instruction_ldmdb
19012 (rn, /*wback=*/1, insn_high_registers));
19013
19014 /* LDMDB Rn!, {R-low-register-list}. */
19015 current_stub_contents =
19016 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19017 create_instruction_ldmdb
19018 (rn, /*wback=*/1, insn_low_registers));
19019
19020 /* B initial_insn_addr+4. */
19021 current_stub_contents =
19022 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19023 create_instruction_branch_absolute
19024 (initial_insn_addr - current_stub_contents));
19025 }
19026 else if (!wback && restore_pc && !restore_rn)
19027 {
19028 /* Choose a Ri in the high-register-list that will be restored. */
19029 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19030
19031 /* SUB Ri, Rn, #(4*nb_registers). */
19032 current_stub_contents =
19033 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19034 create_instruction_sub (ri, rn, (4 * nb_registers)));
19035
19036 /* LDMIA Ri!, {R-low-register-list}. */
19037 current_stub_contents =
19038 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19039 create_instruction_ldmia
19040 (ri, /*wback=*/1, insn_low_registers));
19041
19042 /* LDMIA Ri, {R-high-register-list}. */
19043 current_stub_contents =
19044 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19045 create_instruction_ldmia
19046 (ri, /*wback=*/0, insn_high_registers));
19047 }
19048 else if (wback && restore_pc && !restore_rn)
19049 {
19050 /* Choose a Ri in the high-register-list that will be restored. */
19051 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19052
19053 /* SUB Rn, Rn, #(4*nb_registers) */
19054 current_stub_contents =
19055 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19056 create_instruction_sub (rn, rn, (4 * nb_registers)));
19057
19058 /* MOV Ri, Rn. */
19059 current_stub_contents =
19060 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19061 create_instruction_mov (ri, rn));
19062
19063 /* LDMIA Ri!, {R-low-register-list}. */
19064 current_stub_contents =
19065 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19066 create_instruction_ldmia
19067 (ri, /*wback=*/1, insn_low_registers));
19068
19069 /* LDMIA Ri, {R-high-register-list}. */
19070 current_stub_contents =
19071 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19072 create_instruction_ldmia
19073 (ri, /*wback=*/0, insn_high_registers));
19074 }
19075 else if (!wback && !restore_pc && restore_rn)
19076 {
19077 ri = rn;
19078 if (!(insn_low_registers & (1 << rn)))
19079 {
19080 /* Choose a Ri in the low-register-list that will be restored. */
19081 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19082
19083 /* MOV Ri, Rn. */
19084 current_stub_contents =
19085 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19086 create_instruction_mov (ri, rn));
19087 }
19088
19089 /* LDMDB Ri!, {R-high-register-list}. */
19090 current_stub_contents =
19091 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19092 create_instruction_ldmdb
19093 (ri, /*wback=*/1, insn_high_registers));
19094
19095 /* LDMDB Ri, {R-low-register-list}. */
19096 current_stub_contents =
19097 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19098 create_instruction_ldmdb
19099 (ri, /*wback=*/0, insn_low_registers));
19100
19101 /* B initial_insn_addr+4. */
19102 current_stub_contents =
19103 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19104 create_instruction_branch_absolute
19105 (initial_insn_addr - current_stub_contents));
19106 }
19107 else if (!wback && restore_pc && restore_rn)
19108 {
19109 ri = rn;
19110 if (!(insn_high_registers & (1 << rn)))
19111 {
19112 /* Choose a Ri in the high-register-list that will be restored. */
19113 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19114 }
19115
19116 /* SUB Ri, Rn, #(4*nb_registers). */
19117 current_stub_contents =
19118 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19119 create_instruction_sub (ri, rn, (4 * nb_registers)));
19120
19121 /* LDMIA Ri!, {R-low-register-list}. */
19122 current_stub_contents =
19123 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19124 create_instruction_ldmia
19125 (ri, /*wback=*/1, insn_low_registers));
19126
19127 /* LDMIA Ri, {R-high-register-list}. */
19128 current_stub_contents =
19129 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19130 create_instruction_ldmia
19131 (ri, /*wback=*/0, insn_high_registers));
19132 }
19133 else if (wback && restore_rn)
19134 {
19135 /* The assembler should not have accepted to encode this. */
19136 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19137 "undefined behavior.\n");
19138 }
19139
19140 /* Fill the remaining of the stub with deterministic contents. */
19141 current_stub_contents =
19142 stm32l4xx_fill_stub_udf (htab, output_bfd,
19143 base_stub_contents, current_stub_contents,
19144 base_stub_contents +
19145 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19146
19147 }
19148
19149 static void
19150 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19151 bfd * output_bfd,
19152 const insn32 initial_insn,
19153 const bfd_byte *const initial_insn_addr,
19154 bfd_byte *const base_stub_contents)
19155 {
19156 int num_words = ((unsigned int) initial_insn << 24) >> 24;
19157 bfd_byte *current_stub_contents = base_stub_contents;
19158
19159 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19160
19161 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19162 smaller than 8 words load sequences that do not cause the
19163 hardware issue. */
19164 if (num_words <= 8)
19165 {
19166 /* Untouched instruction. */
19167 current_stub_contents =
19168 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19169 initial_insn);
19170
19171 /* B initial_insn_addr+4. */
19172 current_stub_contents =
19173 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19174 create_instruction_branch_absolute
19175 (initial_insn_addr - current_stub_contents));
19176 }
19177 else
19178 {
19179 bfd_boolean is_dp = /* DP encoding. */
19180 (initial_insn & 0xfe100f00) == 0xec100b00;
19181 bfd_boolean is_ia_nobang = /* (IA without !). */
19182 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19183 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19184 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19185 bfd_boolean is_db_bang = /* (DB with !). */
19186 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
19187 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
19188 /* d = UInt (Vd:D);. */
19189 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
19190 | (((unsigned int)initial_insn << 9) >> 31);
19191
19192 /* Compute the number of 8-words chunks needed to split. */
19193 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
19194 int chunk;
19195
19196 /* The test coverage has been done assuming the following
19197 hypothesis that exactly one of the previous is_ predicates is
19198 true. */
19199 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19200 && !(is_ia_nobang & is_ia_bang & is_db_bang));
19201
19202 /* We treat the cutting of the words in one pass for all
19203 cases, then we emit the adjustments:
19204
19205 vldm rx, {...}
19206 -> vldm rx!, {8_words_or_less} for each needed 8_word
19207 -> sub rx, rx, #size (list)
19208
19209 vldm rx!, {...}
19210 -> vldm rx!, {8_words_or_less} for each needed 8_word
19211 This also handles vpop instruction (when rx is sp)
19212
19213 vldmd rx!, {...}
19214 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19215 for (chunk = 0; chunk < chunks; ++chunk)
19216 {
19217 bfd_vma new_insn = 0;
19218
19219 if (is_ia_nobang || is_ia_bang)
19220 {
19221 new_insn = create_instruction_vldmia
19222 (base_reg,
19223 is_dp,
19224 /*wback= . */1,
19225 chunks - (chunk + 1) ?
19226 8 : num_words - chunk * 8,
19227 first_reg + chunk * 8);
19228 }
19229 else if (is_db_bang)
19230 {
19231 new_insn = create_instruction_vldmdb
19232 (base_reg,
19233 is_dp,
19234 chunks - (chunk + 1) ?
19235 8 : num_words - chunk * 8,
19236 first_reg + chunk * 8);
19237 }
19238
19239 if (new_insn)
19240 current_stub_contents =
19241 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19242 new_insn);
19243 }
19244
19245 /* Only this case requires the base register compensation
19246 subtract. */
19247 if (is_ia_nobang)
19248 {
19249 current_stub_contents =
19250 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19251 create_instruction_sub
19252 (base_reg, base_reg, 4*num_words));
19253 }
19254
19255 /* B initial_insn_addr+4. */
19256 current_stub_contents =
19257 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19258 create_instruction_branch_absolute
19259 (initial_insn_addr - current_stub_contents));
19260 }
19261
19262 /* Fill the remaining of the stub with deterministic contents. */
19263 current_stub_contents =
19264 stm32l4xx_fill_stub_udf (htab, output_bfd,
19265 base_stub_contents, current_stub_contents,
19266 base_stub_contents +
19267 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19268 }
19269
19270 static void
19271 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19272 bfd * output_bfd,
19273 const insn32 wrong_insn,
19274 const bfd_byte *const wrong_insn_addr,
19275 bfd_byte *const stub_contents)
19276 {
19277 if (is_thumb2_ldmia (wrong_insn))
19278 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19279 wrong_insn, wrong_insn_addr,
19280 stub_contents);
19281 else if (is_thumb2_ldmdb (wrong_insn))
19282 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19283 wrong_insn, wrong_insn_addr,
19284 stub_contents);
19285 else if (is_thumb2_vldm (wrong_insn))
19286 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19287 wrong_insn, wrong_insn_addr,
19288 stub_contents);
19289 }
19290
19291 /* End of stm32l4xx work-around. */
19292
19293
19294 /* Do code byteswapping. Return FALSE afterwards so that the section is
19295 written out as normal. */
19296
19297 static bfd_boolean
19298 elf32_arm_write_section (bfd *output_bfd,
19299 struct bfd_link_info *link_info,
19300 asection *sec,
19301 bfd_byte *contents)
19302 {
19303 unsigned int mapcount, errcount;
19304 _arm_elf_section_data *arm_data;
19305 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
19306 elf32_arm_section_map *map;
19307 elf32_vfp11_erratum_list *errnode;
19308 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
19309 bfd_vma ptr;
19310 bfd_vma end;
19311 bfd_vma offset = sec->output_section->vma + sec->output_offset;
19312 bfd_byte tmp;
19313 unsigned int i;
19314
19315 if (globals == NULL)
19316 return FALSE;
19317
19318 /* If this section has not been allocated an _arm_elf_section_data
19319 structure then we cannot record anything. */
19320 arm_data = get_arm_elf_section_data (sec);
19321 if (arm_data == NULL)
19322 return FALSE;
19323
19324 mapcount = arm_data->mapcount;
19325 map = arm_data->map;
19326 errcount = arm_data->erratumcount;
19327
19328 if (errcount != 0)
19329 {
19330 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19331
19332 for (errnode = arm_data->erratumlist; errnode != 0;
19333 errnode = errnode->next)
19334 {
19335 bfd_vma target = errnode->vma - offset;
19336
19337 switch (errnode->type)
19338 {
19339 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19340 {
19341 bfd_vma branch_to_veneer;
19342 /* Original condition code of instruction, plus bit mask for
19343 ARM B instruction. */
19344 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19345 | 0x0a000000;
19346
19347 /* The instruction is before the label. */
19348 target -= 4;
19349
19350 /* Above offset included in -4 below. */
19351 branch_to_veneer = errnode->u.b.veneer->vma
19352 - errnode->vma - 4;
19353
19354 if ((signed) branch_to_veneer < -(1 << 25)
19355 || (signed) branch_to_veneer >= (1 << 25))
19356 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19357 "range"), output_bfd);
19358
19359 insn |= (branch_to_veneer >> 2) & 0xffffff;
19360 contents[endianflip ^ target] = insn & 0xff;
19361 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19362 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19363 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19364 }
19365 break;
19366
19367 case VFP11_ERRATUM_ARM_VENEER:
19368 {
19369 bfd_vma branch_from_veneer;
19370 unsigned int insn;
19371
19372 /* Take size of veneer into account. */
19373 branch_from_veneer = errnode->u.v.branch->vma
19374 - errnode->vma - 12;
19375
19376 if ((signed) branch_from_veneer < -(1 << 25)
19377 || (signed) branch_from_veneer >= (1 << 25))
19378 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19379 "range"), output_bfd);
19380
19381 /* Original instruction. */
19382 insn = errnode->u.v.branch->u.b.vfp_insn;
19383 contents[endianflip ^ target] = insn & 0xff;
19384 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19385 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19386 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19387
19388 /* Branch back to insn after original insn. */
19389 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19390 contents[endianflip ^ (target + 4)] = insn & 0xff;
19391 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19392 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19393 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19394 }
19395 break;
19396
19397 default:
19398 abort ();
19399 }
19400 }
19401 }
19402
19403 if (arm_data->stm32l4xx_erratumcount != 0)
19404 {
19405 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19406 stm32l4xx_errnode != 0;
19407 stm32l4xx_errnode = stm32l4xx_errnode->next)
19408 {
19409 bfd_vma target = stm32l4xx_errnode->vma - offset;
19410
19411 switch (stm32l4xx_errnode->type)
19412 {
19413 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19414 {
19415 unsigned int insn;
19416 bfd_vma branch_to_veneer =
19417 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19418
19419 if ((signed) branch_to_veneer < -(1 << 24)
19420 || (signed) branch_to_veneer >= (1 << 24))
19421 {
19422 bfd_vma out_of_range =
19423 ((signed) branch_to_veneer < -(1 << 24)) ?
19424 - branch_to_veneer - (1 << 24) :
19425 ((signed) branch_to_veneer >= (1 << 24)) ?
19426 branch_to_veneer - (1 << 24) : 0;
19427
19428 _bfd_error_handler
19429 (_("%pB(%#" PRIx64 "): error: "
19430 "cannot create STM32L4XX veneer; "
19431 "jump out of range by %" PRId64 " bytes; "
19432 "cannot encode branch instruction"),
19433 output_bfd,
19434 (uint64_t) (stm32l4xx_errnode->vma - 4),
19435 (int64_t) out_of_range);
19436 continue;
19437 }
19438
19439 insn = create_instruction_branch_absolute
19440 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
19441
19442 /* The instruction is before the label. */
19443 target -= 4;
19444
19445 put_thumb2_insn (globals, output_bfd,
19446 (bfd_vma) insn, contents + target);
19447 }
19448 break;
19449
19450 case STM32L4XX_ERRATUM_VENEER:
19451 {
19452 bfd_byte * veneer;
19453 bfd_byte * veneer_r;
19454 unsigned int insn;
19455
19456 veneer = contents + target;
19457 veneer_r = veneer
19458 + stm32l4xx_errnode->u.b.veneer->vma
19459 - stm32l4xx_errnode->vma - 4;
19460
19461 if ((signed) (veneer_r - veneer -
19462 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19463 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19464 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19465 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19466 || (signed) (veneer_r - veneer) >= (1 << 24))
19467 {
19468 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19469 "veneer"), output_bfd);
19470 continue;
19471 }
19472
19473 /* Original instruction. */
19474 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19475
19476 stm32l4xx_create_replacing_stub
19477 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19478 }
19479 break;
19480
19481 default:
19482 abort ();
19483 }
19484 }
19485 }
19486
19487 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19488 {
19489 arm_unwind_table_edit *edit_node
19490 = arm_data->u.exidx.unwind_edit_list;
19491 /* Now, sec->size is the size of the section we will write. The original
19492 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19493 markers) was sec->rawsize. (This isn't the case if we perform no
19494 edits, then rawsize will be zero and we should use size). */
19495 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
19496 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19497 unsigned int in_index, out_index;
19498 bfd_vma add_to_offsets = 0;
19499
19500 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
19501 {
19502 if (edit_node)
19503 {
19504 unsigned int edit_index = edit_node->index;
19505
19506 if (in_index < edit_index && in_index * 8 < input_size)
19507 {
19508 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19509 contents + in_index * 8, add_to_offsets);
19510 out_index++;
19511 in_index++;
19512 }
19513 else if (in_index == edit_index
19514 || (in_index * 8 >= input_size
19515 && edit_index == UINT_MAX))
19516 {
19517 switch (edit_node->type)
19518 {
19519 case DELETE_EXIDX_ENTRY:
19520 in_index++;
19521 add_to_offsets += 8;
19522 break;
19523
19524 case INSERT_EXIDX_CANTUNWIND_AT_END:
19525 {
19526 asection *text_sec = edit_node->linked_section;
19527 bfd_vma text_offset = text_sec->output_section->vma
19528 + text_sec->output_offset
19529 + text_sec->size;
19530 bfd_vma exidx_offset = offset + out_index * 8;
19531 unsigned long prel31_offset;
19532
19533 /* Note: this is meant to be equivalent to an
19534 R_ARM_PREL31 relocation. These synthetic
19535 EXIDX_CANTUNWIND markers are not relocated by the
19536 usual BFD method. */
19537 prel31_offset = (text_offset - exidx_offset)
19538 & 0x7ffffffful;
19539 if (bfd_link_relocatable (link_info))
19540 {
19541 /* Here relocation for new EXIDX_CANTUNWIND is
19542 created, so there is no need to
19543 adjust offset by hand. */
19544 prel31_offset = text_sec->output_offset
19545 + text_sec->size;
19546 }
19547
19548 /* First address we can't unwind. */
19549 bfd_put_32 (output_bfd, prel31_offset,
19550 &edited_contents[out_index * 8]);
19551
19552 /* Code for EXIDX_CANTUNWIND. */
19553 bfd_put_32 (output_bfd, 0x1,
19554 &edited_contents[out_index * 8 + 4]);
19555
19556 out_index++;
19557 add_to_offsets -= 8;
19558 }
19559 break;
19560 }
19561
19562 edit_node = edit_node->next;
19563 }
19564 }
19565 else
19566 {
19567 /* No more edits, copy remaining entries verbatim. */
19568 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19569 contents + in_index * 8, add_to_offsets);
19570 out_index++;
19571 in_index++;
19572 }
19573 }
19574
19575 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19576 bfd_set_section_contents (output_bfd, sec->output_section,
19577 edited_contents,
19578 (file_ptr) sec->output_offset, sec->size);
19579
19580 return TRUE;
19581 }
19582
19583 /* Fix code to point to Cortex-A8 erratum stubs. */
19584 if (globals->fix_cortex_a8)
19585 {
19586 struct a8_branch_to_stub_data data;
19587
19588 data.writing_section = sec;
19589 data.contents = contents;
19590
19591 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19592 & data);
19593 }
19594
19595 if (mapcount == 0)
19596 return FALSE;
19597
19598 if (globals->byteswap_code)
19599 {
19600 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
19601
19602 ptr = map[0].vma;
19603 for (i = 0; i < mapcount; i++)
19604 {
19605 if (i == mapcount - 1)
19606 end = sec->size;
19607 else
19608 end = map[i + 1].vma;
19609
19610 switch (map[i].type)
19611 {
19612 case 'a':
19613 /* Byte swap code words. */
19614 while (ptr + 3 < end)
19615 {
19616 tmp = contents[ptr];
19617 contents[ptr] = contents[ptr + 3];
19618 contents[ptr + 3] = tmp;
19619 tmp = contents[ptr + 1];
19620 contents[ptr + 1] = contents[ptr + 2];
19621 contents[ptr + 2] = tmp;
19622 ptr += 4;
19623 }
19624 break;
19625
19626 case 't':
19627 /* Byte swap code halfwords. */
19628 while (ptr + 1 < end)
19629 {
19630 tmp = contents[ptr];
19631 contents[ptr] = contents[ptr + 1];
19632 contents[ptr + 1] = tmp;
19633 ptr += 2;
19634 }
19635 break;
19636
19637 case 'd':
19638 /* Leave data alone. */
19639 break;
19640 }
19641 ptr = end;
19642 }
19643 }
19644
19645 free (map);
19646 arm_data->mapcount = -1;
19647 arm_data->mapsize = 0;
19648 arm_data->map = NULL;
19649
19650 return FALSE;
19651 }
19652
19653 /* Mangle thumb function symbols as we read them in. */
19654
19655 static bfd_boolean
19656 elf32_arm_swap_symbol_in (bfd * abfd,
19657 const void *psrc,
19658 const void *pshn,
19659 Elf_Internal_Sym *dst)
19660 {
19661 Elf_Internal_Shdr *symtab_hdr;
19662 const char *name = NULL;
19663
19664 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19665 return FALSE;
19666 dst->st_target_internal = 0;
19667
19668 /* New EABI objects mark thumb function symbols by setting the low bit of
19669 the address. */
19670 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19671 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
19672 {
19673 if (dst->st_value & 1)
19674 {
19675 dst->st_value &= ~(bfd_vma) 1;
19676 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19677 ST_BRANCH_TO_THUMB);
19678 }
19679 else
19680 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
19681 }
19682 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19683 {
19684 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
19685 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
19686 }
19687 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
19688 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
19689 else
19690 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
19691
19692 /* Mark CMSE special symbols. */
19693 symtab_hdr = & elf_symtab_hdr (abfd);
19694 if (symtab_hdr->sh_size)
19695 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
19696 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
19697 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
19698
19699 return TRUE;
19700 }
19701
19702
19703 /* Mangle thumb function symbols as we write them out. */
19704
19705 static void
19706 elf32_arm_swap_symbol_out (bfd *abfd,
19707 const Elf_Internal_Sym *src,
19708 void *cdst,
19709 void *shndx)
19710 {
19711 Elf_Internal_Sym newsym;
19712
19713 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19714 of the address set, as per the new EABI. We do this unconditionally
19715 because objcopy does not set the elf header flags until after
19716 it writes out the symbol table. */
19717 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
19718 {
19719 newsym = *src;
19720 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19721 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
19722 if (newsym.st_shndx != SHN_UNDEF)
19723 {
19724 /* Do this only for defined symbols. At link type, the static
19725 linker will simulate the work of dynamic linker of resolving
19726 symbols and will carry over the thumbness of found symbols to
19727 the output symbol table. It's not clear how it happens, but
19728 the thumbness of undefined symbols can well be different at
19729 runtime, and writing '1' for them will be confusing for users
19730 and possibly for dynamic linker itself.
19731 */
19732 newsym.st_value |= 1;
19733 }
19734
19735 src = &newsym;
19736 }
19737 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19738 }
19739
19740 /* Add the PT_ARM_EXIDX program header. */
19741
19742 static bfd_boolean
19743 elf32_arm_modify_segment_map (bfd *abfd,
19744 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19745 {
19746 struct elf_segment_map *m;
19747 asection *sec;
19748
19749 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19750 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19751 {
19752 /* If there is already a PT_ARM_EXIDX header, then we do not
19753 want to add another one. This situation arises when running
19754 "strip"; the input binary already has the header. */
19755 m = elf_seg_map (abfd);
19756 while (m && m->p_type != PT_ARM_EXIDX)
19757 m = m->next;
19758 if (!m)
19759 {
19760 m = (struct elf_segment_map *)
19761 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
19762 if (m == NULL)
19763 return FALSE;
19764 m->p_type = PT_ARM_EXIDX;
19765 m->count = 1;
19766 m->sections[0] = sec;
19767
19768 m->next = elf_seg_map (abfd);
19769 elf_seg_map (abfd) = m;
19770 }
19771 }
19772
19773 return TRUE;
19774 }
19775
19776 /* We may add a PT_ARM_EXIDX program header. */
19777
19778 static int
19779 elf32_arm_additional_program_headers (bfd *abfd,
19780 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19781 {
19782 asection *sec;
19783
19784 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19785 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19786 return 1;
19787 else
19788 return 0;
19789 }
19790
19791 /* Hook called by the linker routine which adds symbols from an object
19792 file. */
19793
19794 static bfd_boolean
19795 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
19796 Elf_Internal_Sym *sym, const char **namep,
19797 flagword *flagsp, asection **secp, bfd_vma *valp)
19798 {
19799 if (elf32_arm_hash_table (info) == NULL)
19800 return FALSE;
19801
19802 if (elf32_arm_hash_table (info)->vxworks_p
19803 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
19804 flagsp, secp, valp))
19805 return FALSE;
19806
19807 return TRUE;
19808 }
19809
19810 /* We use this to override swap_symbol_in and swap_symbol_out. */
19811 const struct elf_size_info elf32_arm_size_info =
19812 {
19813 sizeof (Elf32_External_Ehdr),
19814 sizeof (Elf32_External_Phdr),
19815 sizeof (Elf32_External_Shdr),
19816 sizeof (Elf32_External_Rel),
19817 sizeof (Elf32_External_Rela),
19818 sizeof (Elf32_External_Sym),
19819 sizeof (Elf32_External_Dyn),
19820 sizeof (Elf_External_Note),
19821 4,
19822 1,
19823 32, 2,
19824 ELFCLASS32, EV_CURRENT,
19825 bfd_elf32_write_out_phdrs,
19826 bfd_elf32_write_shdrs_and_ehdr,
19827 bfd_elf32_checksum_contents,
19828 bfd_elf32_write_relocs,
19829 elf32_arm_swap_symbol_in,
19830 elf32_arm_swap_symbol_out,
19831 bfd_elf32_slurp_reloc_table,
19832 bfd_elf32_slurp_symbol_table,
19833 bfd_elf32_swap_dyn_in,
19834 bfd_elf32_swap_dyn_out,
19835 bfd_elf32_swap_reloc_in,
19836 bfd_elf32_swap_reloc_out,
19837 bfd_elf32_swap_reloca_in,
19838 bfd_elf32_swap_reloca_out
19839 };
19840
19841 static bfd_vma
19842 read_code32 (const bfd *abfd, const bfd_byte *addr)
19843 {
19844 /* V7 BE8 code is always little endian. */
19845 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19846 return bfd_getl32 (addr);
19847
19848 return bfd_get_32 (abfd, addr);
19849 }
19850
19851 static bfd_vma
19852 read_code16 (const bfd *abfd, const bfd_byte *addr)
19853 {
19854 /* V7 BE8 code is always little endian. */
19855 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
19856 return bfd_getl16 (addr);
19857
19858 return bfd_get_16 (abfd, addr);
19859 }
19860
19861 /* Return size of plt0 entry starting at ADDR
19862 or (bfd_vma) -1 if size can not be determined. */
19863
19864 static bfd_vma
19865 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19866 {
19867 bfd_vma first_word;
19868 bfd_vma plt0_size;
19869
19870 first_word = read_code32 (abfd, addr);
19871
19872 if (first_word == elf32_arm_plt0_entry[0])
19873 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19874 else if (first_word == elf32_thumb2_plt0_entry[0])
19875 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19876 else
19877 /* We don't yet handle this PLT format. */
19878 return (bfd_vma) -1;
19879
19880 return plt0_size;
19881 }
19882
19883 /* Return size of plt entry starting at offset OFFSET
19884 of plt section located at address START
19885 or (bfd_vma) -1 if size can not be determined. */
19886
19887 static bfd_vma
19888 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19889 {
19890 bfd_vma first_insn;
19891 bfd_vma plt_size = 0;
19892 const bfd_byte *addr = start + offset;
19893
19894 /* PLT entry size if fixed on Thumb-only platforms. */
19895 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
19896 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19897
19898 /* Respect Thumb stub if necessary. */
19899 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
19900 {
19901 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19902 }
19903
19904 /* Strip immediate from first add. */
19905 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
19906
19907 #ifdef FOUR_WORD_PLT
19908 if (first_insn == elf32_arm_plt_entry[0])
19909 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19910 #else
19911 if (first_insn == elf32_arm_plt_entry_long[0])
19912 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19913 else if (first_insn == elf32_arm_plt_entry_short[0])
19914 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19915 #endif
19916 else
19917 /* We don't yet handle this PLT format. */
19918 return (bfd_vma) -1;
19919
19920 return plt_size;
19921 }
19922
19923 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19924
19925 static long
19926 elf32_arm_get_synthetic_symtab (bfd *abfd,
19927 long symcount ATTRIBUTE_UNUSED,
19928 asymbol **syms ATTRIBUTE_UNUSED,
19929 long dynsymcount,
19930 asymbol **dynsyms,
19931 asymbol **ret)
19932 {
19933 asection *relplt;
19934 asymbol *s;
19935 arelent *p;
19936 long count, i, n;
19937 size_t size;
19938 Elf_Internal_Shdr *hdr;
19939 char *names;
19940 asection *plt;
19941 bfd_vma offset;
19942 bfd_byte *data;
19943
19944 *ret = NULL;
19945
19946 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19947 return 0;
19948
19949 if (dynsymcount <= 0)
19950 return 0;
19951
19952 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19953 if (relplt == NULL)
19954 return 0;
19955
19956 hdr = &elf_section_data (relplt)->this_hdr;
19957 if (hdr->sh_link != elf_dynsymtab (abfd)
19958 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19959 return 0;
19960
19961 plt = bfd_get_section_by_name (abfd, ".plt");
19962 if (plt == NULL)
19963 return 0;
19964
19965 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19966 return -1;
19967
19968 data = plt->contents;
19969 if (data == NULL)
19970 {
19971 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19972 return -1;
19973 bfd_cache_section_contents((asection *) plt, data);
19974 }
19975
19976 count = relplt->size / hdr->sh_entsize;
19977 size = count * sizeof (asymbol);
19978 p = relplt->relocation;
19979 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19980 {
19981 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19982 if (p->addend != 0)
19983 size += sizeof ("+0x") - 1 + 8;
19984 }
19985
19986 s = *ret = (asymbol *) bfd_malloc (size);
19987 if (s == NULL)
19988 return -1;
19989
19990 offset = elf32_arm_plt0_size (abfd, data);
19991 if (offset == (bfd_vma) -1)
19992 return -1;
19993
19994 names = (char *) (s + count);
19995 p = relplt->relocation;
19996 n = 0;
19997 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19998 {
19999 size_t len;
20000
20001 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20002 if (plt_size == (bfd_vma) -1)
20003 break;
20004
20005 *s = **p->sym_ptr_ptr;
20006 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20007 we are defining a symbol, ensure one of them is set. */
20008 if ((s->flags & BSF_LOCAL) == 0)
20009 s->flags |= BSF_GLOBAL;
20010 s->flags |= BSF_SYNTHETIC;
20011 s->section = plt;
20012 s->value = offset;
20013 s->name = names;
20014 s->udata.p = NULL;
20015 len = strlen ((*p->sym_ptr_ptr)->name);
20016 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20017 names += len;
20018 if (p->addend != 0)
20019 {
20020 char buf[30], *a;
20021
20022 memcpy (names, "+0x", sizeof ("+0x") - 1);
20023 names += sizeof ("+0x") - 1;
20024 bfd_sprintf_vma (abfd, buf, p->addend);
20025 for (a = buf; *a == '0'; ++a)
20026 ;
20027 len = strlen (a);
20028 memcpy (names, a, len);
20029 names += len;
20030 }
20031 memcpy (names, "@plt", sizeof ("@plt"));
20032 names += sizeof ("@plt");
20033 ++s, ++n;
20034 offset += plt_size;
20035 }
20036
20037 return n;
20038 }
20039
20040 static bfd_boolean
20041 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
20042 {
20043 if (hdr->sh_flags & SHF_ARM_PURECODE)
20044 *flags |= SEC_ELF_PURECODE;
20045 return TRUE;
20046 }
20047
20048 static flagword
20049 elf32_arm_lookup_section_flags (char *flag_name)
20050 {
20051 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20052 return SHF_ARM_PURECODE;
20053
20054 return SEC_NO_FLAGS;
20055 }
20056
20057 static unsigned int
20058 elf32_arm_count_additional_relocs (asection *sec)
20059 {
20060 struct _arm_elf_section_data *arm_data;
20061 arm_data = get_arm_elf_section_data (sec);
20062
20063 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
20064 }
20065
20066 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
20067 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
20068 FALSE otherwise. ISECTION is the best guess matching section from the
20069 input bfd IBFD, but it might be NULL. */
20070
20071 static bfd_boolean
20072 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20073 bfd *obfd ATTRIBUTE_UNUSED,
20074 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20075 Elf_Internal_Shdr *osection)
20076 {
20077 switch (osection->sh_type)
20078 {
20079 case SHT_ARM_EXIDX:
20080 {
20081 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20082 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20083 unsigned i = 0;
20084
20085 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20086 osection->sh_info = 0;
20087
20088 /* The sh_link field must be set to the text section associated with
20089 this index section. Unfortunately the ARM EHABI does not specify
20090 exactly how to determine this association. Our caller does try
20091 to match up OSECTION with its corresponding input section however
20092 so that is a good first guess. */
20093 if (isection != NULL
20094 && osection->bfd_section != NULL
20095 && isection->bfd_section != NULL
20096 && isection->bfd_section->output_section != NULL
20097 && isection->bfd_section->output_section == osection->bfd_section
20098 && iheaders != NULL
20099 && isection->sh_link > 0
20100 && isection->sh_link < elf_numsections (ibfd)
20101 && iheaders[isection->sh_link]->bfd_section != NULL
20102 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20103 )
20104 {
20105 for (i = elf_numsections (obfd); i-- > 0;)
20106 if (oheaders[i]->bfd_section
20107 == iheaders[isection->sh_link]->bfd_section->output_section)
20108 break;
20109 }
20110
20111 if (i == 0)
20112 {
20113 /* Failing that we have to find a matching section ourselves. If
20114 we had the output section name available we could compare that
20115 with input section names. Unfortunately we don't. So instead
20116 we use a simple heuristic and look for the nearest executable
20117 section before this one. */
20118 for (i = elf_numsections (obfd); i-- > 0;)
20119 if (oheaders[i] == osection)
20120 break;
20121 if (i == 0)
20122 break;
20123
20124 while (i-- > 0)
20125 if (oheaders[i]->sh_type == SHT_PROGBITS
20126 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20127 == (SHF_ALLOC | SHF_EXECINSTR))
20128 break;
20129 }
20130
20131 if (i)
20132 {
20133 osection->sh_link = i;
20134 /* If the text section was part of a group
20135 then the index section should be too. */
20136 if (oheaders[i]->sh_flags & SHF_GROUP)
20137 osection->sh_flags |= SHF_GROUP;
20138 return TRUE;
20139 }
20140 }
20141 break;
20142
20143 case SHT_ARM_PREEMPTMAP:
20144 osection->sh_flags = SHF_ALLOC;
20145 break;
20146
20147 case SHT_ARM_ATTRIBUTES:
20148 case SHT_ARM_DEBUGOVERLAY:
20149 case SHT_ARM_OVERLAYSECTION:
20150 default:
20151 break;
20152 }
20153
20154 return FALSE;
20155 }
20156
20157 /* Returns TRUE if NAME is an ARM mapping symbol.
20158 Traditionally the symbols $a, $d and $t have been used.
20159 The ARM ELF standard also defines $x (for A64 code). It also allows a
20160 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20161 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20162 not support them here. $t.x indicates the start of ThumbEE instructions. */
20163
20164 static bfd_boolean
20165 is_arm_mapping_symbol (const char * name)
20166 {
20167 return name != NULL /* Paranoia. */
20168 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20169 the mapping symbols could have acquired a prefix.
20170 We do not support this here, since such symbols no
20171 longer conform to the ARM ELF ABI. */
20172 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20173 && (name[2] == 0 || name[2] == '.');
20174 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20175 any characters that follow the period are legal characters for the body
20176 of a symbol's name. For now we just assume that this is the case. */
20177 }
20178
20179 /* Make sure that mapping symbols in object files are not removed via the
20180 "strip --strip-unneeded" tool. These symbols are needed in order to
20181 correctly generate interworking veneers, and for byte swapping code
20182 regions. Once an object file has been linked, it is safe to remove the
20183 symbols as they will no longer be needed. */
20184
20185 static void
20186 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20187 {
20188 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
20189 && sym->section != bfd_abs_section_ptr
20190 && is_arm_mapping_symbol (sym->name))
20191 sym->flags |= BSF_KEEP;
20192 }
20193
20194 #undef elf_backend_copy_special_section_fields
20195 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20196
20197 #define ELF_ARCH bfd_arch_arm
20198 #define ELF_TARGET_ID ARM_ELF_DATA
20199 #define ELF_MACHINE_CODE EM_ARM
20200 #ifdef __QNXTARGET__
20201 #define ELF_MAXPAGESIZE 0x1000
20202 #else
20203 #define ELF_MAXPAGESIZE 0x10000
20204 #endif
20205 #define ELF_MINPAGESIZE 0x1000
20206 #define ELF_COMMONPAGESIZE 0x1000
20207
20208 #define bfd_elf32_mkobject elf32_arm_mkobject
20209
20210 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20211 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20212 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20213 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20214 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20215 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20216 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20217 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
20218 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20219 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20220 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20221 #define bfd_elf32_bfd_final_link elf32_arm_final_link
20222 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20223
20224 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20225 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20226 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20227 #define elf_backend_check_relocs elf32_arm_check_relocs
20228 #define elf_backend_update_relocs elf32_arm_update_relocs
20229 #define elf_backend_relocate_section elf32_arm_relocate_section
20230 #define elf_backend_write_section elf32_arm_write_section
20231 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20232 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20233 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20234 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20235 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20236 #define elf_backend_always_size_sections elf32_arm_always_size_sections
20237 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20238 #define elf_backend_post_process_headers elf32_arm_post_process_headers
20239 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20240 #define elf_backend_object_p elf32_arm_object_p
20241 #define elf_backend_fake_sections elf32_arm_fake_sections
20242 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20243 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20244 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20245 #define elf_backend_size_info elf32_arm_size_info
20246 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20247 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20248 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20249 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20250 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20251 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20252 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20253 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20254
20255 #define elf_backend_can_refcount 1
20256 #define elf_backend_can_gc_sections 1
20257 #define elf_backend_plt_readonly 1
20258 #define elf_backend_want_got_plt 1
20259 #define elf_backend_want_plt_sym 0
20260 #define elf_backend_want_dynrelro 1
20261 #define elf_backend_may_use_rel_p 1
20262 #define elf_backend_may_use_rela_p 0
20263 #define elf_backend_default_use_rela_p 0
20264 #define elf_backend_dtrel_excludes_plt 1
20265
20266 #define elf_backend_got_header_size 12
20267 #define elf_backend_extern_protected_data 1
20268
20269 #undef elf_backend_obj_attrs_vendor
20270 #define elf_backend_obj_attrs_vendor "aeabi"
20271 #undef elf_backend_obj_attrs_section
20272 #define elf_backend_obj_attrs_section ".ARM.attributes"
20273 #undef elf_backend_obj_attrs_arg_type
20274 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20275 #undef elf_backend_obj_attrs_section_type
20276 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20277 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20278 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20279
20280 #undef elf_backend_section_flags
20281 #define elf_backend_section_flags elf32_arm_section_flags
20282 #undef elf_backend_lookup_section_flags_hook
20283 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20284
20285 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
20286
20287 #include "elf32-target.h"
20288
20289 /* Native Client targets. */
20290
20291 #undef TARGET_LITTLE_SYM
20292 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20293 #undef TARGET_LITTLE_NAME
20294 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20295 #undef TARGET_BIG_SYM
20296 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20297 #undef TARGET_BIG_NAME
20298 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
20299
20300 /* Like elf32_arm_link_hash_table_create -- but overrides
20301 appropriately for NaCl. */
20302
20303 static struct bfd_link_hash_table *
20304 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20305 {
20306 struct bfd_link_hash_table *ret;
20307
20308 ret = elf32_arm_link_hash_table_create (abfd);
20309 if (ret)
20310 {
20311 struct elf32_arm_link_hash_table *htab
20312 = (struct elf32_arm_link_hash_table *) ret;
20313
20314 htab->nacl_p = 1;
20315
20316 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20317 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20318 }
20319 return ret;
20320 }
20321
20322 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
20323 really need to use elf32_arm_modify_segment_map. But we do it
20324 anyway just to reduce gratuitous differences with the stock ARM backend. */
20325
20326 static bfd_boolean
20327 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20328 {
20329 return (elf32_arm_modify_segment_map (abfd, info)
20330 && nacl_modify_segment_map (abfd, info));
20331 }
20332
20333 static void
20334 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
20335 {
20336 elf32_arm_final_write_processing (abfd, linker);
20337 nacl_final_write_processing (abfd, linker);
20338 }
20339
20340 static bfd_vma
20341 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20342 const arelent *rel ATTRIBUTE_UNUSED)
20343 {
20344 return plt->vma
20345 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20346 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20347 }
20348
20349 #undef elf32_bed
20350 #define elf32_bed elf32_arm_nacl_bed
20351 #undef bfd_elf32_bfd_link_hash_table_create
20352 #define bfd_elf32_bfd_link_hash_table_create \
20353 elf32_arm_nacl_link_hash_table_create
20354 #undef elf_backend_plt_alignment
20355 #define elf_backend_plt_alignment 4
20356 #undef elf_backend_modify_segment_map
20357 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20358 #undef elf_backend_modify_program_headers
20359 #define elf_backend_modify_program_headers nacl_modify_program_headers
20360 #undef elf_backend_final_write_processing
20361 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20362 #undef bfd_elf32_get_synthetic_symtab
20363 #undef elf_backend_plt_sym_val
20364 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20365 #undef elf_backend_copy_special_section_fields
20366
20367 #undef ELF_MINPAGESIZE
20368 #undef ELF_COMMONPAGESIZE
20369
20370
20371 #include "elf32-target.h"
20372
20373 /* Reset to defaults. */
20374 #undef elf_backend_plt_alignment
20375 #undef elf_backend_modify_segment_map
20376 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20377 #undef elf_backend_modify_program_headers
20378 #undef elf_backend_final_write_processing
20379 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20380 #undef ELF_MINPAGESIZE
20381 #define ELF_MINPAGESIZE 0x1000
20382 #undef ELF_COMMONPAGESIZE
20383 #define ELF_COMMONPAGESIZE 0x1000
20384
20385
20386 /* FDPIC Targets. */
20387
20388 #undef TARGET_LITTLE_SYM
20389 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20390 #undef TARGET_LITTLE_NAME
20391 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20392 #undef TARGET_BIG_SYM
20393 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20394 #undef TARGET_BIG_NAME
20395 #define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20396 #undef elf_match_priority
20397 #define elf_match_priority 128
20398 #undef ELF_OSABI
20399 #define ELF_OSABI ELFOSABI_ARM_FDPIC
20400
20401 /* Like elf32_arm_link_hash_table_create -- but overrides
20402 appropriately for FDPIC. */
20403
20404 static struct bfd_link_hash_table *
20405 elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20406 {
20407 struct bfd_link_hash_table *ret;
20408
20409 ret = elf32_arm_link_hash_table_create (abfd);
20410 if (ret)
20411 {
20412 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20413
20414 htab->fdpic_p = 1;
20415 }
20416 return ret;
20417 }
20418
20419 /* We need dynamic symbols for every section, since segments can
20420 relocate independently. */
20421 static bfd_boolean
20422 elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20423 struct bfd_link_info *info
20424 ATTRIBUTE_UNUSED,
20425 asection *p ATTRIBUTE_UNUSED)
20426 {
20427 switch (elf_section_data (p)->this_hdr.sh_type)
20428 {
20429 case SHT_PROGBITS:
20430 case SHT_NOBITS:
20431 /* If sh_type is yet undecided, assume it could be
20432 SHT_PROGBITS/SHT_NOBITS. */
20433 case SHT_NULL:
20434 return FALSE;
20435
20436 /* There shouldn't be section relative relocations
20437 against any other section. */
20438 default:
20439 return TRUE;
20440 }
20441 }
20442
20443 #undef elf32_bed
20444 #define elf32_bed elf32_arm_fdpic_bed
20445
20446 #undef bfd_elf32_bfd_link_hash_table_create
20447 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20448
20449 #undef elf_backend_omit_section_dynsym
20450 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20451
20452 #include "elf32-target.h"
20453
20454 #undef elf_match_priority
20455 #undef ELF_OSABI
20456 #undef elf_backend_omit_section_dynsym
20457
20458 /* VxWorks Targets. */
20459
20460 #undef TARGET_LITTLE_SYM
20461 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20462 #undef TARGET_LITTLE_NAME
20463 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20464 #undef TARGET_BIG_SYM
20465 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20466 #undef TARGET_BIG_NAME
20467 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20468
20469 /* Like elf32_arm_link_hash_table_create -- but overrides
20470 appropriately for VxWorks. */
20471
20472 static struct bfd_link_hash_table *
20473 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20474 {
20475 struct bfd_link_hash_table *ret;
20476
20477 ret = elf32_arm_link_hash_table_create (abfd);
20478 if (ret)
20479 {
20480 struct elf32_arm_link_hash_table *htab
20481 = (struct elf32_arm_link_hash_table *) ret;
20482 htab->use_rel = 0;
20483 htab->vxworks_p = 1;
20484 }
20485 return ret;
20486 }
20487
20488 static void
20489 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
20490 {
20491 elf32_arm_final_write_processing (abfd, linker);
20492 elf_vxworks_final_write_processing (abfd, linker);
20493 }
20494
20495 #undef elf32_bed
20496 #define elf32_bed elf32_arm_vxworks_bed
20497
20498 #undef bfd_elf32_bfd_link_hash_table_create
20499 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20500 #undef elf_backend_final_write_processing
20501 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20502 #undef elf_backend_emit_relocs
20503 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
20504
20505 #undef elf_backend_may_use_rel_p
20506 #define elf_backend_may_use_rel_p 0
20507 #undef elf_backend_may_use_rela_p
20508 #define elf_backend_may_use_rela_p 1
20509 #undef elf_backend_default_use_rela_p
20510 #define elf_backend_default_use_rela_p 1
20511 #undef elf_backend_want_plt_sym
20512 #define elf_backend_want_plt_sym 1
20513 #undef ELF_MAXPAGESIZE
20514 #define ELF_MAXPAGESIZE 0x1000
20515
20516 #include "elf32-target.h"
20517
20518
20519 /* Merge backend specific data from an object file to the output
20520 object file when linking. */
20521
20522 static bfd_boolean
20523 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
20524 {
20525 bfd *obfd = info->output_bfd;
20526 flagword out_flags;
20527 flagword in_flags;
20528 bfd_boolean flags_compatible = TRUE;
20529 asection *sec;
20530
20531 /* Check if we have the same endianness. */
20532 if (! _bfd_generic_verify_endian_match (ibfd, info))
20533 return FALSE;
20534
20535 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20536 return TRUE;
20537
20538 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
20539 return FALSE;
20540
20541 /* The input BFD must have had its flags initialised. */
20542 /* The following seems bogus to me -- The flags are initialized in
20543 the assembler but I don't think an elf_flags_init field is
20544 written into the object. */
20545 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20546
20547 in_flags = elf_elfheader (ibfd)->e_flags;
20548 out_flags = elf_elfheader (obfd)->e_flags;
20549
20550 /* In theory there is no reason why we couldn't handle this. However
20551 in practice it isn't even close to working and there is no real
20552 reason to want it. */
20553 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20554 && !(ibfd->flags & DYNAMIC)
20555 && (in_flags & EF_ARM_BE8))
20556 {
20557 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20558 ibfd);
20559 return FALSE;
20560 }
20561
20562 if (!elf_flags_init (obfd))
20563 {
20564 /* If the input is the default architecture and had the default
20565 flags then do not bother setting the flags for the output
20566 architecture, instead allow future merges to do this. If no
20567 future merges ever set these flags then they will retain their
20568 uninitialised values, which surprise surprise, correspond
20569 to the default values. */
20570 if (bfd_get_arch_info (ibfd)->the_default
20571 && elf_elfheader (ibfd)->e_flags == 0)
20572 return TRUE;
20573
20574 elf_flags_init (obfd) = TRUE;
20575 elf_elfheader (obfd)->e_flags = in_flags;
20576
20577 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20578 && bfd_get_arch_info (obfd)->the_default)
20579 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20580
20581 return TRUE;
20582 }
20583
20584 /* Determine what should happen if the input ARM architecture
20585 does not match the output ARM architecture. */
20586 if (! bfd_arm_merge_machines (ibfd, obfd))
20587 return FALSE;
20588
20589 /* Identical flags must be compatible. */
20590 if (in_flags == out_flags)
20591 return TRUE;
20592
20593 /* Check to see if the input BFD actually contains any sections. If
20594 not, its flags may not have been initialised either, but it
20595 cannot actually cause any incompatiblity. Do not short-circuit
20596 dynamic objects; their section list may be emptied by
20597 elf_link_add_object_symbols.
20598
20599 Also check to see if there are no code sections in the input.
20600 In this case there is no need to check for code specific flags.
20601 XXX - do we need to worry about floating-point format compatability
20602 in data sections ? */
20603 if (!(ibfd->flags & DYNAMIC))
20604 {
20605 bfd_boolean null_input_bfd = TRUE;
20606 bfd_boolean only_data_sections = TRUE;
20607
20608 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20609 {
20610 /* Ignore synthetic glue sections. */
20611 if (strcmp (sec->name, ".glue_7")
20612 && strcmp (sec->name, ".glue_7t"))
20613 {
20614 if ((bfd_get_section_flags (ibfd, sec)
20615 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20616 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20617 only_data_sections = FALSE;
20618
20619 null_input_bfd = FALSE;
20620 break;
20621 }
20622 }
20623
20624 if (null_input_bfd || only_data_sections)
20625 return TRUE;
20626 }
20627
20628 /* Complain about various flag mismatches. */
20629 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20630 EF_ARM_EABI_VERSION (out_flags)))
20631 {
20632 _bfd_error_handler
20633 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20634 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20635 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
20636 return FALSE;
20637 }
20638
20639 /* Not sure what needs to be checked for EABI versions >= 1. */
20640 /* VxWorks libraries do not use these flags. */
20641 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20642 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20643 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20644 {
20645 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20646 {
20647 _bfd_error_handler
20648 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20649 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20650 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
20651 flags_compatible = FALSE;
20652 }
20653
20654 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20655 {
20656 if (in_flags & EF_ARM_APCS_FLOAT)
20657 _bfd_error_handler
20658 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20659 ibfd, obfd);
20660 else
20661 _bfd_error_handler
20662 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20663 ibfd, obfd);
20664
20665 flags_compatible = FALSE;
20666 }
20667
20668 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20669 {
20670 if (in_flags & EF_ARM_VFP_FLOAT)
20671 _bfd_error_handler
20672 (_("error: %pB uses %s instructions, whereas %pB does not"),
20673 ibfd, "VFP", obfd);
20674 else
20675 _bfd_error_handler
20676 (_("error: %pB uses %s instructions, whereas %pB does not"),
20677 ibfd, "FPA", obfd);
20678
20679 flags_compatible = FALSE;
20680 }
20681
20682 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20683 {
20684 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20685 _bfd_error_handler
20686 (_("error: %pB uses %s instructions, whereas %pB does not"),
20687 ibfd, "Maverick", obfd);
20688 else
20689 _bfd_error_handler
20690 (_("error: %pB does not use %s instructions, whereas %pB does"),
20691 ibfd, "Maverick", obfd);
20692
20693 flags_compatible = FALSE;
20694 }
20695
20696 #ifdef EF_ARM_SOFT_FLOAT
20697 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20698 {
20699 /* We can allow interworking between code that is VFP format
20700 layout, and uses either soft float or integer regs for
20701 passing floating point arguments and results. We already
20702 know that the APCS_FLOAT flags match; similarly for VFP
20703 flags. */
20704 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20705 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20706 {
20707 if (in_flags & EF_ARM_SOFT_FLOAT)
20708 _bfd_error_handler
20709 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20710 ibfd, obfd);
20711 else
20712 _bfd_error_handler
20713 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20714 ibfd, obfd);
20715
20716 flags_compatible = FALSE;
20717 }
20718 }
20719 #endif
20720
20721 /* Interworking mismatch is only a warning. */
20722 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20723 {
20724 if (in_flags & EF_ARM_INTERWORK)
20725 {
20726 _bfd_error_handler
20727 (_("warning: %pB supports interworking, whereas %pB does not"),
20728 ibfd, obfd);
20729 }
20730 else
20731 {
20732 _bfd_error_handler
20733 (_("warning: %pB does not support interworking, whereas %pB does"),
20734 ibfd, obfd);
20735 }
20736 }
20737 }
20738
20739 return flags_compatible;
20740 }
20741
20742
20743 /* Symbian OS Targets. */
20744
20745 #undef TARGET_LITTLE_SYM
20746 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
20747 #undef TARGET_LITTLE_NAME
20748 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
20749 #undef TARGET_BIG_SYM
20750 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
20751 #undef TARGET_BIG_NAME
20752 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
20753
20754 /* Like elf32_arm_link_hash_table_create -- but overrides
20755 appropriately for Symbian OS. */
20756
20757 static struct bfd_link_hash_table *
20758 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
20759 {
20760 struct bfd_link_hash_table *ret;
20761
20762 ret = elf32_arm_link_hash_table_create (abfd);
20763 if (ret)
20764 {
20765 struct elf32_arm_link_hash_table *htab
20766 = (struct elf32_arm_link_hash_table *)ret;
20767 /* There is no PLT header for Symbian OS. */
20768 htab->plt_header_size = 0;
20769 /* The PLT entries are each one instruction and one word. */
20770 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
20771 htab->symbian_p = 1;
20772 /* Symbian uses armv5t or above, so use_blx is always true. */
20773 htab->use_blx = 1;
20774 htab->root.is_relocatable_executable = 1;
20775 }
20776 return ret;
20777 }
20778
20779 static const struct bfd_elf_special_section
20780 elf32_arm_symbian_special_sections[] =
20781 {
20782 /* In a BPABI executable, the dynamic linking sections do not go in
20783 the loadable read-only segment. The post-linker may wish to
20784 refer to these sections, but they are not part of the final
20785 program image. */
20786 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
20787 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
20788 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
20789 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
20790 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
20791 /* These sections do not need to be writable as the SymbianOS
20792 postlinker will arrange things so that no dynamic relocation is
20793 required. */
20794 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
20795 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
20796 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
20797 { NULL, 0, 0, 0, 0 }
20798 };
20799
20800 static void
20801 elf32_arm_symbian_begin_write_processing (bfd *abfd,
20802 struct bfd_link_info *link_info)
20803 {
20804 /* BPABI objects are never loaded directly by an OS kernel; they are
20805 processed by a postlinker first, into an OS-specific format. If
20806 the D_PAGED bit is set on the file, BFD will align segments on
20807 page boundaries, so that an OS can directly map the file. With
20808 BPABI objects, that just results in wasted space. In addition,
20809 because we clear the D_PAGED bit, map_sections_to_segments will
20810 recognize that the program headers should not be mapped into any
20811 loadable segment. */
20812 abfd->flags &= ~D_PAGED;
20813 elf32_arm_begin_write_processing (abfd, link_info);
20814 }
20815
20816 static bfd_boolean
20817 elf32_arm_symbian_modify_segment_map (bfd *abfd,
20818 struct bfd_link_info *info)
20819 {
20820 struct elf_segment_map *m;
20821 asection *dynsec;
20822
20823 /* BPABI shared libraries and executables should have a PT_DYNAMIC
20824 segment. However, because the .dynamic section is not marked
20825 with SEC_LOAD, the generic ELF code will not create such a
20826 segment. */
20827 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
20828 if (dynsec)
20829 {
20830 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
20831 if (m->p_type == PT_DYNAMIC)
20832 break;
20833
20834 if (m == NULL)
20835 {
20836 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
20837 m->next = elf_seg_map (abfd);
20838 elf_seg_map (abfd) = m;
20839 }
20840 }
20841
20842 /* Also call the generic arm routine. */
20843 return elf32_arm_modify_segment_map (abfd, info);
20844 }
20845
20846 /* Return address for Ith PLT stub in section PLT, for relocation REL
20847 or (bfd_vma) -1 if it should not be included. */
20848
20849 static bfd_vma
20850 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
20851 const arelent *rel ATTRIBUTE_UNUSED)
20852 {
20853 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
20854 }
20855
20856 #undef elf32_bed
20857 #define elf32_bed elf32_arm_symbian_bed
20858
20859 /* The dynamic sections are not allocated on SymbianOS; the postlinker
20860 will process them and then discard them. */
20861 #undef ELF_DYNAMIC_SEC_FLAGS
20862 #define ELF_DYNAMIC_SEC_FLAGS \
20863 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
20864
20865 #undef elf_backend_emit_relocs
20866
20867 #undef bfd_elf32_bfd_link_hash_table_create
20868 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
20869 #undef elf_backend_special_sections
20870 #define elf_backend_special_sections elf32_arm_symbian_special_sections
20871 #undef elf_backend_begin_write_processing
20872 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
20873 #undef elf_backend_final_write_processing
20874 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20875
20876 #undef elf_backend_modify_segment_map
20877 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
20878
20879 /* There is no .got section for BPABI objects, and hence no header. */
20880 #undef elf_backend_got_header_size
20881 #define elf_backend_got_header_size 0
20882
20883 /* Similarly, there is no .got.plt section. */
20884 #undef elf_backend_want_got_plt
20885 #define elf_backend_want_got_plt 0
20886
20887 #undef elf_backend_plt_sym_val
20888 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
20889
20890 #undef elf_backend_may_use_rel_p
20891 #define elf_backend_may_use_rel_p 1
20892 #undef elf_backend_may_use_rela_p
20893 #define elf_backend_may_use_rela_p 0
20894 #undef elf_backend_default_use_rela_p
20895 #define elf_backend_default_use_rela_p 0
20896 #undef elf_backend_want_plt_sym
20897 #define elf_backend_want_plt_sym 0
20898 #undef elf_backend_dtrel_excludes_plt
20899 #define elf_backend_dtrel_excludes_plt 0
20900 #undef ELF_MAXPAGESIZE
20901 #define ELF_MAXPAGESIZE 0x8000
20902
20903 #include "elf32-target.h"
This page took 0.477755 seconds and 4 git commands to generate.