1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2015 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
30 #include "elf-vxworks.h"
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
68 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
69 struct bfd_link_info
*link_info
,
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
77 static reloc_howto_type elf32_arm_howto_table_1
[] =
80 HOWTO (R_ARM_NONE
, /* type */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
84 FALSE
, /* pc_relative */
86 complain_overflow_dont
,/* complain_on_overflow */
87 bfd_elf_generic_reloc
, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE
, /* partial_inplace */
92 FALSE
), /* pcrel_offset */
94 HOWTO (R_ARM_PC24
, /* type */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
98 TRUE
, /* pc_relative */
100 complain_overflow_signed
,/* complain_on_overflow */
101 bfd_elf_generic_reloc
, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE
, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE
), /* pcrel_offset */
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32
, /* type */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
113 FALSE
, /* pc_relative */
115 complain_overflow_bitfield
,/* complain_on_overflow */
116 bfd_elf_generic_reloc
, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE
, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE
), /* pcrel_offset */
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32
, /* type */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
128 TRUE
, /* pc_relative */
130 complain_overflow_bitfield
,/* complain_on_overflow */
131 bfd_elf_generic_reloc
, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE
, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE
), /* pcrel_offset */
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0
, /* type */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
143 TRUE
, /* pc_relative */
145 complain_overflow_dont
,/* complain_on_overflow */
146 bfd_elf_generic_reloc
, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE
, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE
), /* pcrel_offset */
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16
, /* type */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
158 FALSE
, /* pc_relative */
160 complain_overflow_bitfield
,/* complain_on_overflow */
161 bfd_elf_generic_reloc
, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE
, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE
), /* pcrel_offset */
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12
, /* type */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
173 FALSE
, /* pc_relative */
175 complain_overflow_bitfield
,/* complain_on_overflow */
176 bfd_elf_generic_reloc
, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE
, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE
), /* pcrel_offset */
183 HOWTO (R_ARM_THM_ABS5
, /* type */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
187 FALSE
, /* pc_relative */
189 complain_overflow_bitfield
,/* complain_on_overflow */
190 bfd_elf_generic_reloc
, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE
, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE
), /* pcrel_offset */
198 HOWTO (R_ARM_ABS8
, /* type */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
202 FALSE
, /* pc_relative */
204 complain_overflow_bitfield
,/* complain_on_overflow */
205 bfd_elf_generic_reloc
, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE
, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE
), /* pcrel_offset */
212 HOWTO (R_ARM_SBREL32
, /* type */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
216 FALSE
, /* pc_relative */
218 complain_overflow_dont
,/* complain_on_overflow */
219 bfd_elf_generic_reloc
, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE
, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE
), /* pcrel_offset */
226 HOWTO (R_ARM_THM_CALL
, /* type */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
230 TRUE
, /* pc_relative */
232 complain_overflow_signed
,/* complain_on_overflow */
233 bfd_elf_generic_reloc
, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE
, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE
), /* pcrel_offset */
240 HOWTO (R_ARM_THM_PC8
, /* type */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
244 TRUE
, /* pc_relative */
246 complain_overflow_signed
,/* complain_on_overflow */
247 bfd_elf_generic_reloc
, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE
, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE
), /* pcrel_offset */
254 HOWTO (R_ARM_BREL_ADJ
, /* type */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
258 FALSE
, /* pc_relative */
260 complain_overflow_signed
,/* complain_on_overflow */
261 bfd_elf_generic_reloc
, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE
, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE
), /* pcrel_offset */
268 HOWTO (R_ARM_TLS_DESC
, /* type */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
272 FALSE
, /* pc_relative */
274 complain_overflow_bitfield
,/* complain_on_overflow */
275 bfd_elf_generic_reloc
, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE
, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE
), /* pcrel_offset */
282 HOWTO (R_ARM_THM_SWI8
, /* type */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
286 FALSE
, /* pc_relative */
288 complain_overflow_signed
,/* complain_on_overflow */
289 bfd_elf_generic_reloc
, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE
, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE
), /* pcrel_offset */
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25
, /* type */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
301 TRUE
, /* pc_relative */
303 complain_overflow_signed
,/* complain_on_overflow */
304 bfd_elf_generic_reloc
, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE
, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE
), /* pcrel_offset */
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22
, /* type */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
316 TRUE
, /* pc_relative */
318 complain_overflow_signed
,/* complain_on_overflow */
319 bfd_elf_generic_reloc
, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE
, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE
), /* pcrel_offset */
326 /* Dynamic TLS relocations. */
328 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
332 FALSE
, /* pc_relative */
334 complain_overflow_bitfield
,/* complain_on_overflow */
335 bfd_elf_generic_reloc
, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE
, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE
), /* pcrel_offset */
342 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
346 FALSE
, /* pc_relative */
348 complain_overflow_bitfield
,/* complain_on_overflow */
349 bfd_elf_generic_reloc
, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE
, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE
), /* pcrel_offset */
356 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
360 FALSE
, /* pc_relative */
362 complain_overflow_bitfield
,/* complain_on_overflow */
363 bfd_elf_generic_reloc
, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE
, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE
), /* pcrel_offset */
370 /* Relocs used in ARM Linux */
372 HOWTO (R_ARM_COPY
, /* type */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
376 FALSE
, /* pc_relative */
378 complain_overflow_bitfield
,/* complain_on_overflow */
379 bfd_elf_generic_reloc
, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE
, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE
), /* pcrel_offset */
386 HOWTO (R_ARM_GLOB_DAT
, /* type */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
390 FALSE
, /* pc_relative */
392 complain_overflow_bitfield
,/* complain_on_overflow */
393 bfd_elf_generic_reloc
, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE
, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE
), /* pcrel_offset */
400 HOWTO (R_ARM_JUMP_SLOT
, /* type */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
404 FALSE
, /* pc_relative */
406 complain_overflow_bitfield
,/* complain_on_overflow */
407 bfd_elf_generic_reloc
, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE
, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE
), /* pcrel_offset */
414 HOWTO (R_ARM_RELATIVE
, /* type */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
418 FALSE
, /* pc_relative */
420 complain_overflow_bitfield
,/* complain_on_overflow */
421 bfd_elf_generic_reloc
, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE
, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE
), /* pcrel_offset */
428 HOWTO (R_ARM_GOTOFF32
, /* type */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
432 FALSE
, /* pc_relative */
434 complain_overflow_bitfield
,/* complain_on_overflow */
435 bfd_elf_generic_reloc
, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE
, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE
), /* pcrel_offset */
442 HOWTO (R_ARM_GOTPC
, /* type */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
446 TRUE
, /* pc_relative */
448 complain_overflow_bitfield
,/* complain_on_overflow */
449 bfd_elf_generic_reloc
, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE
, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE
), /* pcrel_offset */
456 HOWTO (R_ARM_GOT32
, /* type */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
460 FALSE
, /* pc_relative */
462 complain_overflow_bitfield
,/* complain_on_overflow */
463 bfd_elf_generic_reloc
, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE
, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE
), /* pcrel_offset */
470 HOWTO (R_ARM_PLT32
, /* type */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
474 TRUE
, /* pc_relative */
476 complain_overflow_bitfield
,/* complain_on_overflow */
477 bfd_elf_generic_reloc
, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE
, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE
), /* pcrel_offset */
484 HOWTO (R_ARM_CALL
, /* type */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
488 TRUE
, /* pc_relative */
490 complain_overflow_signed
,/* complain_on_overflow */
491 bfd_elf_generic_reloc
, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE
, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE
), /* pcrel_offset */
498 HOWTO (R_ARM_JUMP24
, /* type */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
502 TRUE
, /* pc_relative */
504 complain_overflow_signed
,/* complain_on_overflow */
505 bfd_elf_generic_reloc
, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE
, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE
), /* pcrel_offset */
512 HOWTO (R_ARM_THM_JUMP24
, /* type */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
516 TRUE
, /* pc_relative */
518 complain_overflow_signed
,/* complain_on_overflow */
519 bfd_elf_generic_reloc
, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE
, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE
), /* pcrel_offset */
526 HOWTO (R_ARM_BASE_ABS
, /* type */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
530 FALSE
, /* pc_relative */
532 complain_overflow_dont
,/* complain_on_overflow */
533 bfd_elf_generic_reloc
, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE
, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE
), /* pcrel_offset */
540 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
544 TRUE
, /* pc_relative */
546 complain_overflow_dont
,/* complain_on_overflow */
547 bfd_elf_generic_reloc
, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE
, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE
), /* pcrel_offset */
554 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
558 TRUE
, /* pc_relative */
560 complain_overflow_dont
,/* complain_on_overflow */
561 bfd_elf_generic_reloc
, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE
, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE
), /* pcrel_offset */
568 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
572 TRUE
, /* pc_relative */
574 complain_overflow_dont
,/* complain_on_overflow */
575 bfd_elf_generic_reloc
, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE
, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE
), /* pcrel_offset */
582 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
586 FALSE
, /* pc_relative */
588 complain_overflow_dont
,/* complain_on_overflow */
589 bfd_elf_generic_reloc
, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE
, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE
), /* pcrel_offset */
596 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
600 FALSE
, /* pc_relative */
602 complain_overflow_dont
,/* complain_on_overflow */
603 bfd_elf_generic_reloc
, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE
, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE
), /* pcrel_offset */
610 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
614 FALSE
, /* pc_relative */
616 complain_overflow_dont
,/* complain_on_overflow */
617 bfd_elf_generic_reloc
, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE
, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE
), /* pcrel_offset */
624 HOWTO (R_ARM_TARGET1
, /* type */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
628 FALSE
, /* pc_relative */
630 complain_overflow_dont
,/* complain_on_overflow */
631 bfd_elf_generic_reloc
, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE
, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE
), /* pcrel_offset */
638 HOWTO (R_ARM_ROSEGREL32
, /* type */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
642 FALSE
, /* pc_relative */
644 complain_overflow_dont
,/* complain_on_overflow */
645 bfd_elf_generic_reloc
, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE
, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE
), /* pcrel_offset */
652 HOWTO (R_ARM_V4BX
, /* type */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
656 FALSE
, /* pc_relative */
658 complain_overflow_dont
,/* complain_on_overflow */
659 bfd_elf_generic_reloc
, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE
, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE
), /* pcrel_offset */
666 HOWTO (R_ARM_TARGET2
, /* type */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
670 FALSE
, /* pc_relative */
672 complain_overflow_signed
,/* complain_on_overflow */
673 bfd_elf_generic_reloc
, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE
, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE
), /* pcrel_offset */
680 HOWTO (R_ARM_PREL31
, /* type */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
684 TRUE
, /* pc_relative */
686 complain_overflow_signed
,/* complain_on_overflow */
687 bfd_elf_generic_reloc
, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE
, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE
), /* pcrel_offset */
694 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
698 FALSE
, /* pc_relative */
700 complain_overflow_dont
,/* complain_on_overflow */
701 bfd_elf_generic_reloc
, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE
, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE
), /* pcrel_offset */
708 HOWTO (R_ARM_MOVT_ABS
, /* type */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
712 FALSE
, /* pc_relative */
714 complain_overflow_bitfield
,/* complain_on_overflow */
715 bfd_elf_generic_reloc
, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE
, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE
), /* pcrel_offset */
722 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
726 TRUE
, /* pc_relative */
728 complain_overflow_dont
,/* complain_on_overflow */
729 bfd_elf_generic_reloc
, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE
, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE
), /* pcrel_offset */
736 HOWTO (R_ARM_MOVT_PREL
, /* type */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
740 TRUE
, /* pc_relative */
742 complain_overflow_bitfield
,/* complain_on_overflow */
743 bfd_elf_generic_reloc
, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE
, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE
), /* pcrel_offset */
750 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
754 FALSE
, /* pc_relative */
756 complain_overflow_dont
,/* complain_on_overflow */
757 bfd_elf_generic_reloc
, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE
, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE
), /* pcrel_offset */
764 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
768 FALSE
, /* pc_relative */
770 complain_overflow_bitfield
,/* complain_on_overflow */
771 bfd_elf_generic_reloc
, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE
, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE
), /* pcrel_offset */
778 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
782 TRUE
, /* pc_relative */
784 complain_overflow_dont
,/* complain_on_overflow */
785 bfd_elf_generic_reloc
, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE
, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE
), /* pcrel_offset */
792 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
796 TRUE
, /* pc_relative */
798 complain_overflow_bitfield
,/* complain_on_overflow */
799 bfd_elf_generic_reloc
, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE
, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE
), /* pcrel_offset */
806 HOWTO (R_ARM_THM_JUMP19
, /* type */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
810 TRUE
, /* pc_relative */
812 complain_overflow_signed
,/* complain_on_overflow */
813 bfd_elf_generic_reloc
, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE
, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE
), /* pcrel_offset */
820 HOWTO (R_ARM_THM_JUMP6
, /* type */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
824 TRUE
, /* pc_relative */
826 complain_overflow_unsigned
,/* complain_on_overflow */
827 bfd_elf_generic_reloc
, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE
, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE
), /* pcrel_offset */
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
841 TRUE
, /* pc_relative */
843 complain_overflow_dont
,/* complain_on_overflow */
844 bfd_elf_generic_reloc
, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE
, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE
), /* pcrel_offset */
851 HOWTO (R_ARM_THM_PC12
, /* type */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
855 TRUE
, /* pc_relative */
857 complain_overflow_dont
,/* complain_on_overflow */
858 bfd_elf_generic_reloc
, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE
, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE
), /* pcrel_offset */
865 HOWTO (R_ARM_ABS32_NOI
, /* type */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
869 FALSE
, /* pc_relative */
871 complain_overflow_dont
,/* complain_on_overflow */
872 bfd_elf_generic_reloc
, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE
, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE
), /* pcrel_offset */
879 HOWTO (R_ARM_REL32_NOI
, /* type */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
883 TRUE
, /* pc_relative */
885 complain_overflow_dont
,/* complain_on_overflow */
886 bfd_elf_generic_reloc
, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE
, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE
), /* pcrel_offset */
893 /* Group relocations. */
895 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
899 TRUE
, /* pc_relative */
901 complain_overflow_dont
,/* complain_on_overflow */
902 bfd_elf_generic_reloc
, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE
, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE
), /* pcrel_offset */
909 HOWTO (R_ARM_ALU_PC_G0
, /* type */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
913 TRUE
, /* pc_relative */
915 complain_overflow_dont
,/* complain_on_overflow */
916 bfd_elf_generic_reloc
, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE
, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE
), /* pcrel_offset */
923 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
927 TRUE
, /* pc_relative */
929 complain_overflow_dont
,/* complain_on_overflow */
930 bfd_elf_generic_reloc
, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE
, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE
), /* pcrel_offset */
937 HOWTO (R_ARM_ALU_PC_G1
, /* type */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
941 TRUE
, /* pc_relative */
943 complain_overflow_dont
,/* complain_on_overflow */
944 bfd_elf_generic_reloc
, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE
, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE
), /* pcrel_offset */
951 HOWTO (R_ARM_ALU_PC_G2
, /* type */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
955 TRUE
, /* pc_relative */
957 complain_overflow_dont
,/* complain_on_overflow */
958 bfd_elf_generic_reloc
, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE
, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE
), /* pcrel_offset */
965 HOWTO (R_ARM_LDR_PC_G1
, /* type */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
969 TRUE
, /* pc_relative */
971 complain_overflow_dont
,/* complain_on_overflow */
972 bfd_elf_generic_reloc
, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE
, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE
), /* pcrel_offset */
979 HOWTO (R_ARM_LDR_PC_G2
, /* type */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
983 TRUE
, /* pc_relative */
985 complain_overflow_dont
,/* complain_on_overflow */
986 bfd_elf_generic_reloc
, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE
, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE
), /* pcrel_offset */
993 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
997 TRUE
, /* pc_relative */
999 complain_overflow_dont
,/* complain_on_overflow */
1000 bfd_elf_generic_reloc
, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE
, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE
), /* pcrel_offset */
1007 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 TRUE
, /* pc_relative */
1013 complain_overflow_dont
,/* complain_on_overflow */
1014 bfd_elf_generic_reloc
, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE
, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE
), /* pcrel_offset */
1021 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 TRUE
, /* pc_relative */
1027 complain_overflow_dont
,/* complain_on_overflow */
1028 bfd_elf_generic_reloc
, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE
, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE
), /* pcrel_offset */
1035 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 TRUE
, /* pc_relative */
1041 complain_overflow_dont
,/* complain_on_overflow */
1042 bfd_elf_generic_reloc
, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE
, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE
), /* pcrel_offset */
1049 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 TRUE
, /* pc_relative */
1055 complain_overflow_dont
,/* complain_on_overflow */
1056 bfd_elf_generic_reloc
, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE
, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE
), /* pcrel_offset */
1063 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 TRUE
, /* pc_relative */
1069 complain_overflow_dont
,/* complain_on_overflow */
1070 bfd_elf_generic_reloc
, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE
, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE
), /* pcrel_offset */
1077 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 TRUE
, /* pc_relative */
1083 complain_overflow_dont
,/* complain_on_overflow */
1084 bfd_elf_generic_reloc
, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE
, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE
), /* pcrel_offset */
1091 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 TRUE
, /* pc_relative */
1097 complain_overflow_dont
,/* complain_on_overflow */
1098 bfd_elf_generic_reloc
, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE
, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE
), /* pcrel_offset */
1105 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 TRUE
, /* pc_relative */
1111 complain_overflow_dont
,/* complain_on_overflow */
1112 bfd_elf_generic_reloc
, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE
, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE
), /* pcrel_offset */
1119 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 TRUE
, /* pc_relative */
1125 complain_overflow_dont
,/* complain_on_overflow */
1126 bfd_elf_generic_reloc
, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE
, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE
), /* pcrel_offset */
1133 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 TRUE
, /* pc_relative */
1139 complain_overflow_dont
,/* complain_on_overflow */
1140 bfd_elf_generic_reloc
, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE
, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE
), /* pcrel_offset */
1147 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 TRUE
, /* pc_relative */
1153 complain_overflow_dont
,/* complain_on_overflow */
1154 bfd_elf_generic_reloc
, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE
, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE
), /* pcrel_offset */
1161 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1165 TRUE
, /* pc_relative */
1167 complain_overflow_dont
,/* complain_on_overflow */
1168 bfd_elf_generic_reloc
, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE
, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE
), /* pcrel_offset */
1175 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 TRUE
, /* pc_relative */
1181 complain_overflow_dont
,/* complain_on_overflow */
1182 bfd_elf_generic_reloc
, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE
, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE
), /* pcrel_offset */
1189 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1193 TRUE
, /* pc_relative */
1195 complain_overflow_dont
,/* complain_on_overflow */
1196 bfd_elf_generic_reloc
, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE
, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE
), /* pcrel_offset */
1203 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 TRUE
, /* pc_relative */
1209 complain_overflow_dont
,/* complain_on_overflow */
1210 bfd_elf_generic_reloc
, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE
, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE
), /* pcrel_offset */
1217 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1221 TRUE
, /* pc_relative */
1223 complain_overflow_dont
,/* complain_on_overflow */
1224 bfd_elf_generic_reloc
, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE
, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE
), /* pcrel_offset */
1231 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1235 TRUE
, /* pc_relative */
1237 complain_overflow_dont
,/* complain_on_overflow */
1238 bfd_elf_generic_reloc
, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE
, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE
), /* pcrel_offset */
1245 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 TRUE
, /* pc_relative */
1251 complain_overflow_dont
,/* complain_on_overflow */
1252 bfd_elf_generic_reloc
, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE
, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE
), /* pcrel_offset */
1259 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 TRUE
, /* pc_relative */
1265 complain_overflow_dont
,/* complain_on_overflow */
1266 bfd_elf_generic_reloc
, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE
, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE
), /* pcrel_offset */
1273 /* End of group relocations. */
1275 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 FALSE
, /* pc_relative */
1281 complain_overflow_dont
,/* complain_on_overflow */
1282 bfd_elf_generic_reloc
, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE
, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE
), /* pcrel_offset */
1289 HOWTO (R_ARM_MOVT_BREL
, /* type */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 FALSE
, /* pc_relative */
1295 complain_overflow_bitfield
,/* complain_on_overflow */
1296 bfd_elf_generic_reloc
, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE
, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE
), /* pcrel_offset */
1303 HOWTO (R_ARM_MOVW_BREL
, /* type */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 FALSE
, /* pc_relative */
1309 complain_overflow_dont
,/* complain_on_overflow */
1310 bfd_elf_generic_reloc
, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE
, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE
), /* pcrel_offset */
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1321 FALSE
, /* pc_relative */
1323 complain_overflow_dont
,/* complain_on_overflow */
1324 bfd_elf_generic_reloc
, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE
, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE
), /* pcrel_offset */
1331 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 FALSE
, /* pc_relative */
1337 complain_overflow_bitfield
,/* complain_on_overflow */
1338 bfd_elf_generic_reloc
, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE
, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE
), /* pcrel_offset */
1345 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 FALSE
, /* pc_relative */
1351 complain_overflow_dont
,/* complain_on_overflow */
1352 bfd_elf_generic_reloc
, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE
, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE
), /* pcrel_offset */
1359 HOWTO (R_ARM_TLS_GOTDESC
, /* type */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 FALSE
, /* pc_relative */
1365 complain_overflow_bitfield
,/* complain_on_overflow */
1366 NULL
, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE
, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE
), /* pcrel_offset */
1373 HOWTO (R_ARM_TLS_CALL
, /* type */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 FALSE
, /* pc_relative */
1379 complain_overflow_dont
,/* complain_on_overflow */
1380 bfd_elf_generic_reloc
, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE
, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE
), /* pcrel_offset */
1387 HOWTO (R_ARM_TLS_DESCSEQ
, /* type */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 FALSE
, /* pc_relative */
1393 complain_overflow_bitfield
,/* complain_on_overflow */
1394 bfd_elf_generic_reloc
, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE
, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE
), /* pcrel_offset */
1401 HOWTO (R_ARM_THM_TLS_CALL
, /* type */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 FALSE
, /* pc_relative */
1407 complain_overflow_dont
,/* complain_on_overflow */
1408 bfd_elf_generic_reloc
, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE
, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE
), /* pcrel_offset */
1415 HOWTO (R_ARM_PLT32_ABS
, /* type */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 FALSE
, /* pc_relative */
1421 complain_overflow_dont
,/* complain_on_overflow */
1422 bfd_elf_generic_reloc
, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE
, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE
), /* pcrel_offset */
1429 HOWTO (R_ARM_GOT_ABS
, /* type */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 FALSE
, /* pc_relative */
1435 complain_overflow_dont
,/* complain_on_overflow */
1436 bfd_elf_generic_reloc
, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE
, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE
), /* pcrel_offset */
1443 HOWTO (R_ARM_GOT_PREL
, /* type */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 TRUE
, /* pc_relative */
1449 complain_overflow_dont
, /* complain_on_overflow */
1450 bfd_elf_generic_reloc
, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE
, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE
), /* pcrel_offset */
1457 HOWTO (R_ARM_GOT_BREL12
, /* type */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 FALSE
, /* pc_relative */
1463 complain_overflow_bitfield
,/* complain_on_overflow */
1464 bfd_elf_generic_reloc
, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE
, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE
), /* pcrel_offset */
1471 HOWTO (R_ARM_GOTOFF12
, /* type */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1475 FALSE
, /* pc_relative */
1477 complain_overflow_bitfield
,/* complain_on_overflow */
1478 bfd_elf_generic_reloc
, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE
, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE
), /* pcrel_offset */
1485 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 FALSE
, /* pc_relative */
1494 complain_overflow_dont
, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE
, /* partial_inplace */
1500 FALSE
), /* pcrel_offset */
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 FALSE
, /* pc_relative */
1509 complain_overflow_dont
, /* complain_on_overflow */
1510 NULL
, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE
, /* partial_inplace */
1515 FALSE
), /* pcrel_offset */
1517 HOWTO (R_ARM_THM_JUMP11
, /* type */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1521 TRUE
, /* pc_relative */
1523 complain_overflow_signed
, /* complain_on_overflow */
1524 bfd_elf_generic_reloc
, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE
, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE
), /* pcrel_offset */
1531 HOWTO (R_ARM_THM_JUMP8
, /* type */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1535 TRUE
, /* pc_relative */
1537 complain_overflow_signed
, /* complain_on_overflow */
1538 bfd_elf_generic_reloc
, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE
, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE
), /* pcrel_offset */
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32
, /* type */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 FALSE
, /* pc_relative */
1552 complain_overflow_bitfield
,/* complain_on_overflow */
1553 NULL
, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE
, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE
), /* pcrel_offset */
1560 HOWTO (R_ARM_TLS_LDM32
, /* type */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 FALSE
, /* pc_relative */
1566 complain_overflow_bitfield
,/* complain_on_overflow */
1567 bfd_elf_generic_reloc
, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE
, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE
), /* pcrel_offset */
1574 HOWTO (R_ARM_TLS_LDO32
, /* type */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 FALSE
, /* pc_relative */
1580 complain_overflow_bitfield
,/* complain_on_overflow */
1581 bfd_elf_generic_reloc
, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE
, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE
), /* pcrel_offset */
1588 HOWTO (R_ARM_TLS_IE32
, /* type */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 FALSE
, /* pc_relative */
1594 complain_overflow_bitfield
,/* complain_on_overflow */
1595 NULL
, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE
, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE
), /* pcrel_offset */
1602 HOWTO (R_ARM_TLS_LE32
, /* type */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 FALSE
, /* pc_relative */
1608 complain_overflow_bitfield
,/* complain_on_overflow */
1609 NULL
, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE
, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE
), /* pcrel_offset */
1616 HOWTO (R_ARM_TLS_LDO12
, /* type */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 FALSE
, /* pc_relative */
1622 complain_overflow_bitfield
,/* complain_on_overflow */
1623 bfd_elf_generic_reloc
, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE
, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE
), /* pcrel_offset */
1630 HOWTO (R_ARM_TLS_LE12
, /* type */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 FALSE
, /* pc_relative */
1636 complain_overflow_bitfield
,/* complain_on_overflow */
1637 bfd_elf_generic_reloc
, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE
, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE
), /* pcrel_offset */
1644 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1648 FALSE
, /* pc_relative */
1650 complain_overflow_bitfield
,/* complain_on_overflow */
1651 bfd_elf_generic_reloc
, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE
, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE
), /* pcrel_offset */
1658 /* 112-127 private relocations. */
1676 /* R_ARM_ME_TOO, obsolete. */
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ
, /* type */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1683 FALSE
, /* pc_relative */
1685 complain_overflow_bitfield
,/* complain_on_overflow */
1686 bfd_elf_generic_reloc
, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE
, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE
), /* pcrel_offset */
1695 static reloc_howto_type elf32_arm_howto_table_2
[1] =
1697 HOWTO (R_ARM_IRELATIVE
, /* type */
1699 2, /* size (0 = byte, 1 = short, 2 = long) */
1701 FALSE
, /* pc_relative */
1703 complain_overflow_bitfield
,/* complain_on_overflow */
1704 bfd_elf_generic_reloc
, /* special_function */
1705 "R_ARM_IRELATIVE", /* name */
1706 TRUE
, /* partial_inplace */
1707 0xffffffff, /* src_mask */
1708 0xffffffff, /* dst_mask */
1709 FALSE
) /* pcrel_offset */
1712 /* 249-255 extended, currently unused, relocations: */
1713 static reloc_howto_type elf32_arm_howto_table_3
[4] =
1715 HOWTO (R_ARM_RREL32
, /* type */
1717 0, /* size (0 = byte, 1 = short, 2 = long) */
1719 FALSE
, /* pc_relative */
1721 complain_overflow_dont
,/* complain_on_overflow */
1722 bfd_elf_generic_reloc
, /* special_function */
1723 "R_ARM_RREL32", /* name */
1724 FALSE
, /* partial_inplace */
1727 FALSE
), /* pcrel_offset */
1729 HOWTO (R_ARM_RABS32
, /* type */
1731 0, /* size (0 = byte, 1 = short, 2 = long) */
1733 FALSE
, /* pc_relative */
1735 complain_overflow_dont
,/* complain_on_overflow */
1736 bfd_elf_generic_reloc
, /* special_function */
1737 "R_ARM_RABS32", /* name */
1738 FALSE
, /* partial_inplace */
1741 FALSE
), /* pcrel_offset */
1743 HOWTO (R_ARM_RPC24
, /* type */
1745 0, /* size (0 = byte, 1 = short, 2 = long) */
1747 FALSE
, /* pc_relative */
1749 complain_overflow_dont
,/* complain_on_overflow */
1750 bfd_elf_generic_reloc
, /* special_function */
1751 "R_ARM_RPC24", /* name */
1752 FALSE
, /* partial_inplace */
1755 FALSE
), /* pcrel_offset */
1757 HOWTO (R_ARM_RBASE
, /* type */
1759 0, /* size (0 = byte, 1 = short, 2 = long) */
1761 FALSE
, /* pc_relative */
1763 complain_overflow_dont
,/* complain_on_overflow */
1764 bfd_elf_generic_reloc
, /* special_function */
1765 "R_ARM_RBASE", /* name */
1766 FALSE
, /* partial_inplace */
1769 FALSE
) /* pcrel_offset */
1772 static reloc_howto_type
*
1773 elf32_arm_howto_from_type (unsigned int r_type
)
1775 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1776 return &elf32_arm_howto_table_1
[r_type
];
1778 if (r_type
== R_ARM_IRELATIVE
)
1779 return &elf32_arm_howto_table_2
[r_type
- R_ARM_IRELATIVE
];
1781 if (r_type
>= R_ARM_RREL32
1782 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_3
))
1783 return &elf32_arm_howto_table_3
[r_type
- R_ARM_RREL32
];
1789 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1790 Elf_Internal_Rela
* elf_reloc
)
1792 unsigned int r_type
;
1794 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1795 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1798 struct elf32_arm_reloc_map
1800 bfd_reloc_code_real_type bfd_reloc_val
;
1801 unsigned char elf_reloc_val
;
1804 /* All entries in this list must also be present in elf32_arm_howto_table. */
1805 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1807 {BFD_RELOC_NONE
, R_ARM_NONE
},
1808 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1809 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1810 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1811 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1812 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1813 {BFD_RELOC_32
, R_ARM_ABS32
},
1814 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1815 {BFD_RELOC_8
, R_ARM_ABS8
},
1816 {BFD_RELOC_16
, R_ARM_ABS16
},
1817 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1818 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1825 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1826 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1827 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1828 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1829 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1830 {BFD_RELOC_ARM_GOT_PREL
, R_ARM_GOT_PREL
},
1831 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1832 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1833 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1834 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1835 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1836 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1837 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1838 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1839 {BFD_RELOC_ARM_TLS_GOTDESC
, R_ARM_TLS_GOTDESC
},
1840 {BFD_RELOC_ARM_TLS_CALL
, R_ARM_TLS_CALL
},
1841 {BFD_RELOC_ARM_THM_TLS_CALL
, R_ARM_THM_TLS_CALL
},
1842 {BFD_RELOC_ARM_TLS_DESCSEQ
, R_ARM_TLS_DESCSEQ
},
1843 {BFD_RELOC_ARM_THM_TLS_DESCSEQ
, R_ARM_THM_TLS_DESCSEQ
},
1844 {BFD_RELOC_ARM_TLS_DESC
, R_ARM_TLS_DESC
},
1845 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1846 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1847 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1848 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1849 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1850 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1851 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1852 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1853 {BFD_RELOC_ARM_IRELATIVE
, R_ARM_IRELATIVE
},
1854 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1855 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1856 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1857 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1858 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1859 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1860 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1861 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1862 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1863 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1864 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1865 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1866 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1867 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1868 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1869 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1870 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1871 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1872 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1873 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1874 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1875 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1876 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1877 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1878 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1879 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1880 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1881 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1882 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1883 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1884 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1885 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1886 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1887 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1888 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1889 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1890 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1891 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1892 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1895 static reloc_howto_type
*
1896 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1897 bfd_reloc_code_real_type code
)
1901 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1902 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1903 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1908 static reloc_howto_type
*
1909 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1914 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1915 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1916 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1917 return &elf32_arm_howto_table_1
[i
];
1919 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1920 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1921 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1922 return &elf32_arm_howto_table_2
[i
];
1924 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_3
); i
++)
1925 if (elf32_arm_howto_table_3
[i
].name
!= NULL
1926 && strcasecmp (elf32_arm_howto_table_3
[i
].name
, r_name
) == 0)
1927 return &elf32_arm_howto_table_3
[i
];
1932 /* Support for core dump NOTE sections. */
1935 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1940 switch (note
->descsz
)
1945 case 148: /* Linux/ARM 32-bit. */
1947 elf_tdata (abfd
)->core
->signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1950 elf_tdata (abfd
)->core
->lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1959 /* Make a ".reg/999" section. */
1960 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1961 size
, note
->descpos
+ offset
);
1965 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1967 switch (note
->descsz
)
1972 case 124: /* Linux/ARM elf_prpsinfo. */
1973 elf_tdata (abfd
)->core
->pid
1974 = bfd_get_32 (abfd
, note
->descdata
+ 12);
1975 elf_tdata (abfd
)->core
->program
1976 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1977 elf_tdata (abfd
)->core
->command
1978 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1981 /* Note that for some reason, a spurious space is tacked
1982 onto the end of the args in some (at least one anyway)
1983 implementations, so strip it off if it exists. */
1985 char *command
= elf_tdata (abfd
)->core
->command
;
1986 int n
= strlen (command
);
1988 if (0 < n
&& command
[n
- 1] == ' ')
1989 command
[n
- 1] = '\0';
1996 elf32_arm_nabi_write_core_note (bfd
*abfd
, char *buf
, int *bufsiz
,
2009 va_start (ap
, note_type
);
2010 memset (data
, 0, sizeof (data
));
2011 strncpy (data
+ 28, va_arg (ap
, const char *), 16);
2012 strncpy (data
+ 44, va_arg (ap
, const char *), 80);
2015 return elfcore_write_note (abfd
, buf
, bufsiz
,
2016 "CORE", note_type
, data
, sizeof (data
));
2027 va_start (ap
, note_type
);
2028 memset (data
, 0, sizeof (data
));
2029 pid
= va_arg (ap
, long);
2030 bfd_put_32 (abfd
, pid
, data
+ 24);
2031 cursig
= va_arg (ap
, int);
2032 bfd_put_16 (abfd
, cursig
, data
+ 12);
2033 greg
= va_arg (ap
, const void *);
2034 memcpy (data
+ 72, greg
, 72);
2037 return elfcore_write_note (abfd
, buf
, bufsiz
,
2038 "CORE", note_type
, data
, sizeof (data
));
2043 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2044 #define TARGET_LITTLE_NAME "elf32-littlearm"
2045 #define TARGET_BIG_SYM arm_elf32_be_vec
2046 #define TARGET_BIG_NAME "elf32-bigarm"
2048 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2049 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2050 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2052 typedef unsigned long int insn32
;
2053 typedef unsigned short int insn16
;
2055 /* In lieu of proper flags, assume all EABIv4 or later objects are
2057 #define INTERWORK_FLAG(abfd) \
2058 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2059 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2060 || ((abfd)->flags & BFD_LINKER_CREATED))
2062 /* The linker script knows the section names for placement.
2063 The entry_names are used to do simple name mangling on the stubs.
2064 Given a function name, and its type, the stub can be found. The
2065 name can be changed. The only requirement is the %s be present. */
2066 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2067 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2069 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2070 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2072 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2073 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2075 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2076 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2078 #define STUB_ENTRY_NAME "__%s_veneer"
2080 /* The name of the dynamic interpreter. This is put in the .interp
2082 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2084 static const unsigned long tls_trampoline
[] =
2086 0xe08e0000, /* add r0, lr, r0 */
2087 0xe5901004, /* ldr r1, [r0,#4] */
2088 0xe12fff11, /* bx r1 */
2091 static const unsigned long dl_tlsdesc_lazy_trampoline
[] =
2093 0xe52d2004, /* push {r2} */
2094 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2095 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2096 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2097 0xe081100f, /* 2: add r1, pc */
2098 0xe12fff12, /* bx r2 */
2099 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2100 + dl_tlsdesc_lazy_resolver(GOT) */
2101 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2104 #ifdef FOUR_WORD_PLT
2106 /* The first entry in a procedure linkage table looks like
2107 this. It is set up so that any shared library function that is
2108 called before the relocation has been set up calls the dynamic
2110 static const bfd_vma elf32_arm_plt0_entry
[] =
2112 0xe52de004, /* str lr, [sp, #-4]! */
2113 0xe59fe010, /* ldr lr, [pc, #16] */
2114 0xe08fe00e, /* add lr, pc, lr */
2115 0xe5bef008, /* ldr pc, [lr, #8]! */
2118 /* Subsequent entries in a procedure linkage table look like
2120 static const bfd_vma elf32_arm_plt_entry
[] =
2122 0xe28fc600, /* add ip, pc, #NN */
2123 0xe28cca00, /* add ip, ip, #NN */
2124 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2125 0x00000000, /* unused */
2128 #else /* not FOUR_WORD_PLT */
2130 /* The first entry in a procedure linkage table looks like
2131 this. It is set up so that any shared library function that is
2132 called before the relocation has been set up calls the dynamic
2134 static const bfd_vma elf32_arm_plt0_entry
[] =
2136 0xe52de004, /* str lr, [sp, #-4]! */
2137 0xe59fe004, /* ldr lr, [pc, #4] */
2138 0xe08fe00e, /* add lr, pc, lr */
2139 0xe5bef008, /* ldr pc, [lr, #8]! */
2140 0x00000000, /* &GOT[0] - . */
2143 /* By default subsequent entries in a procedure linkage table look like
2144 this. Offsets that don't fit into 28 bits will cause link error. */
2145 static const bfd_vma elf32_arm_plt_entry_short
[] =
2147 0xe28fc600, /* add ip, pc, #0xNN00000 */
2148 0xe28cca00, /* add ip, ip, #0xNN000 */
2149 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2152 /* When explicitly asked, we'll use this "long" entry format
2153 which can cope with arbitrary displacements. */
2154 static const bfd_vma elf32_arm_plt_entry_long
[] =
2156 0xe28fc200, /* add ip, pc, #0xN0000000 */
2157 0xe28cc600, /* add ip, ip, #0xNN00000 */
2158 0xe28cca00, /* add ip, ip, #0xNN000 */
2159 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2162 static bfd_boolean elf32_arm_use_long_plt_entry
= FALSE
;
2164 #endif /* not FOUR_WORD_PLT */
2166 /* The first entry in a procedure linkage table looks like this.
2167 It is set up so that any shared library function that is called before the
2168 relocation has been set up calls the dynamic linker first. */
2169 static const bfd_vma elf32_thumb2_plt0_entry
[] =
2171 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2172 an instruction maybe encoded to one or two array elements. */
2173 0xf8dfb500, /* push {lr} */
2174 0x44fee008, /* ldr.w lr, [pc, #8] */
2176 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2177 0x00000000, /* &GOT[0] - . */
2180 /* Subsequent entries in a procedure linkage table for thumb only target
2182 static const bfd_vma elf32_thumb2_plt_entry
[] =
2184 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2185 an instruction maybe encoded to one or two array elements. */
2186 0x0c00f240, /* movw ip, #0xNNNN */
2187 0x0c00f2c0, /* movt ip, #0xNNNN */
2188 0xf8dc44fc, /* add ip, pc */
2189 0xbf00f000 /* ldr.w pc, [ip] */
2193 /* The format of the first entry in the procedure linkage table
2194 for a VxWorks executable. */
2195 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
2197 0xe52dc008, /* str ip,[sp,#-8]! */
2198 0xe59fc000, /* ldr ip,[pc] */
2199 0xe59cf008, /* ldr pc,[ip,#8] */
2200 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2203 /* The format of subsequent entries in a VxWorks executable. */
2204 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
2206 0xe59fc000, /* ldr ip,[pc] */
2207 0xe59cf000, /* ldr pc,[ip] */
2208 0x00000000, /* .long @got */
2209 0xe59fc000, /* ldr ip,[pc] */
2210 0xea000000, /* b _PLT */
2211 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2214 /* The format of entries in a VxWorks shared library. */
2215 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
2217 0xe59fc000, /* ldr ip,[pc] */
2218 0xe79cf009, /* ldr pc,[ip,r9] */
2219 0x00000000, /* .long @got */
2220 0xe59fc000, /* ldr ip,[pc] */
2221 0xe599f008, /* ldr pc,[r9,#8] */
2222 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2225 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2226 #define PLT_THUMB_STUB_SIZE 4
2227 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2233 /* The entries in a PLT when using a DLL-based target with multiple
2235 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2237 0xe51ff004, /* ldr pc, [pc, #-4] */
2238 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2241 /* The first entry in a procedure linkage table looks like
2242 this. It is set up so that any shared library function that is
2243 called before the relocation has been set up calls the dynamic
2245 static const bfd_vma elf32_arm_nacl_plt0_entry
[] =
2248 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2249 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2250 0xe08cc00f, /* add ip, ip, pc */
2251 0xe52dc008, /* str ip, [sp, #-8]! */
2252 /* Second bundle: */
2253 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2254 0xe59cc000, /* ldr ip, [ip] */
2255 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2256 0xe12fff1c, /* bx ip */
2258 0xe320f000, /* nop */
2259 0xe320f000, /* nop */
2260 0xe320f000, /* nop */
2262 0xe50dc004, /* str ip, [sp, #-4] */
2263 /* Fourth bundle: */
2264 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2265 0xe59cc000, /* ldr ip, [ip] */
2266 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2267 0xe12fff1c, /* bx ip */
2269 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2271 /* Subsequent entries in a procedure linkage table look like this. */
2272 static const bfd_vma elf32_arm_nacl_plt_entry
[] =
2274 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2275 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2276 0xe08cc00f, /* add ip, ip, pc */
2277 0xea000000, /* b .Lplt_tail */
2280 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2281 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2282 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2283 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2284 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2285 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2286 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2287 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2297 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2298 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2299 is inserted in arm_build_one_stub(). */
2300 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2301 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2302 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2303 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2304 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2305 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2310 enum stub_insn_type type
;
2311 unsigned int r_type
;
2315 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2316 to reach the stub if necessary. */
2317 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2319 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2320 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2323 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2325 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2327 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2328 ARM_INSN (0xe12fff1c), /* bx ip */
2329 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2332 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2333 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2335 THUMB16_INSN (0xb401), /* push {r0} */
2336 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2337 THUMB16_INSN (0x4684), /* mov ip, r0 */
2338 THUMB16_INSN (0xbc01), /* pop {r0} */
2339 THUMB16_INSN (0x4760), /* bx ip */
2340 THUMB16_INSN (0xbf00), /* nop */
2341 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2344 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2346 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2348 THUMB16_INSN (0x4778), /* bx pc */
2349 THUMB16_INSN (0x46c0), /* nop */
2350 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2351 ARM_INSN (0xe12fff1c), /* bx ip */
2352 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2355 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2357 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2359 THUMB16_INSN (0x4778), /* bx pc */
2360 THUMB16_INSN (0x46c0), /* nop */
2361 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2362 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2365 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2366 one, when the destination is close enough. */
2367 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2369 THUMB16_INSN (0x4778), /* bx pc */
2370 THUMB16_INSN (0x46c0), /* nop */
2371 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2374 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2375 blx to reach the stub if necessary. */
2376 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2378 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2379 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2380 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2383 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2384 blx to reach the stub if necessary. We can not add into pc;
2385 it is not guaranteed to mode switch (different in ARMv6 and
2387 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2389 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2390 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2391 ARM_INSN (0xe12fff1c), /* bx ip */
2392 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2395 /* V4T ARM -> ARM long branch stub, PIC. */
2396 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2398 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2399 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2400 ARM_INSN (0xe12fff1c), /* bx ip */
2401 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2404 /* V4T Thumb -> ARM long branch stub, PIC. */
2405 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2407 THUMB16_INSN (0x4778), /* bx pc */
2408 THUMB16_INSN (0x46c0), /* nop */
2409 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2410 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2411 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2414 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2416 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2418 THUMB16_INSN (0xb401), /* push {r0} */
2419 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2420 THUMB16_INSN (0x46fc), /* mov ip, pc */
2421 THUMB16_INSN (0x4484), /* add ip, r0 */
2422 THUMB16_INSN (0xbc01), /* pop {r0} */
2423 THUMB16_INSN (0x4760), /* bx ip */
2424 DATA_WORD (0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2427 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2429 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2431 THUMB16_INSN (0x4778), /* bx pc */
2432 THUMB16_INSN (0x46c0), /* nop */
2433 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2434 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2435 ARM_INSN (0xe12fff1c), /* bx ip */
2436 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2439 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2440 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2441 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic
[] =
2443 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2444 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2445 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2448 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2449 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2450 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic
[] =
2452 THUMB16_INSN (0x4778), /* bx pc */
2453 THUMB16_INSN (0x46c0), /* nop */
2454 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2455 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2456 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2459 /* NaCl ARM -> ARM long branch stub. */
2460 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl
[] =
2462 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2463 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2464 ARM_INSN (0xe12fff1c), /* bx ip */
2465 ARM_INSN (0xe320f000), /* nop */
2466 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2467 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2468 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2469 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2472 /* NaCl ARM -> ARM long branch stub, PIC. */
2473 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic
[] =
2475 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2476 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2477 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2478 ARM_INSN (0xe12fff1c), /* bx ip */
2479 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2480 DATA_WORD (0, R_ARM_REL32
, 8), /* dcd R_ARM_REL32(X+8) */
2481 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2482 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2486 /* Cortex-A8 erratum-workaround stubs. */
2488 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2489 can't use a conditional branch to reach this stub). */
2491 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2493 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2494 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2495 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2498 /* Stub used for b.w and bl.w instructions. */
2500 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2502 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2505 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2507 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2510 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2511 instruction (which switches to ARM mode) to point to this stub. Jump to the
2512 real destination using an ARM-mode branch. */
2514 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2516 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2519 /* For each section group there can be a specially created linker section
2520 to hold the stubs for that group. The name of the stub section is based
2521 upon the name of another section within that group with the suffix below
2524 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2525 create what appeared to be a linker stub section when it actually
2526 contained user code/data. For example, consider this fragment:
2528 const char * stubborn_problems[] = { "np" };
2530 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2533 .data.rel.local.stubborn_problems
2535 This then causes problems in arm32_arm_build_stubs() as it triggers:
2537 // Ignore non-stub sections.
2538 if (!strstr (stub_sec->name, STUB_SUFFIX))
2541 And so the section would be ignored instead of being processed. Hence
2542 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2544 #define STUB_SUFFIX ".__stub"
2546 /* One entry per long/short branch stub defined above. */
2548 DEF_STUB(long_branch_any_any) \
2549 DEF_STUB(long_branch_v4t_arm_thumb) \
2550 DEF_STUB(long_branch_thumb_only) \
2551 DEF_STUB(long_branch_v4t_thumb_thumb) \
2552 DEF_STUB(long_branch_v4t_thumb_arm) \
2553 DEF_STUB(short_branch_v4t_thumb_arm) \
2554 DEF_STUB(long_branch_any_arm_pic) \
2555 DEF_STUB(long_branch_any_thumb_pic) \
2556 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2557 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2558 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2559 DEF_STUB(long_branch_thumb_only_pic) \
2560 DEF_STUB(long_branch_any_tls_pic) \
2561 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2562 DEF_STUB(long_branch_arm_nacl) \
2563 DEF_STUB(long_branch_arm_nacl_pic) \
2564 DEF_STUB(a8_veneer_b_cond) \
2565 DEF_STUB(a8_veneer_b) \
2566 DEF_STUB(a8_veneer_bl) \
2567 DEF_STUB(a8_veneer_blx)
2569 #define DEF_STUB(x) arm_stub_##x,
2570 enum elf32_arm_stub_type
2574 /* Note the first a8_veneer type. */
2575 arm_stub_a8_veneer_lwm
= arm_stub_a8_veneer_b_cond
2581 const insn_sequence
* template_sequence
;
2585 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2586 static const stub_def stub_definitions
[] =
2592 struct elf32_arm_stub_hash_entry
2594 /* Base hash table entry structure. */
2595 struct bfd_hash_entry root
;
2597 /* The stub section. */
2600 /* Offset within stub_sec of the beginning of this stub. */
2601 bfd_vma stub_offset
;
2603 /* Given the symbol's value and its section we can determine its final
2604 value when building the stubs (so the stub knows where to jump). */
2605 bfd_vma target_value
;
2606 asection
*target_section
;
2608 /* Offset to apply to relocation referencing target_value. */
2609 bfd_vma target_addend
;
2611 /* The instruction which caused this stub to be generated (only valid for
2612 Cortex-A8 erratum workaround stubs at present). */
2613 unsigned long orig_insn
;
2615 /* The stub type. */
2616 enum elf32_arm_stub_type stub_type
;
2617 /* Its encoding size in bytes. */
2620 const insn_sequence
*stub_template
;
2621 /* The size of the template (number of entries). */
2622 int stub_template_size
;
2624 /* The symbol table entry, if any, that this was derived from. */
2625 struct elf32_arm_link_hash_entry
*h
;
2627 /* Type of branch. */
2628 enum arm_st_branch_type branch_type
;
2630 /* Where this stub is being called from, or, in the case of combined
2631 stub sections, the first input section in the group. */
2634 /* The name for the local symbol at the start of this stub. The
2635 stub name in the hash table has to be unique; this does not, so
2636 it can be friendlier. */
2640 /* Used to build a map of a section. This is required for mixed-endian
2643 typedef struct elf32_elf_section_map
2648 elf32_arm_section_map
;
2650 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2654 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2655 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2656 VFP11_ERRATUM_ARM_VENEER
,
2657 VFP11_ERRATUM_THUMB_VENEER
2659 elf32_vfp11_erratum_type
;
2661 typedef struct elf32_vfp11_erratum_list
2663 struct elf32_vfp11_erratum_list
*next
;
2669 struct elf32_vfp11_erratum_list
*veneer
;
2670 unsigned int vfp_insn
;
2674 struct elf32_vfp11_erratum_list
*branch
;
2678 elf32_vfp11_erratum_type type
;
2680 elf32_vfp11_erratum_list
;
2685 INSERT_EXIDX_CANTUNWIND_AT_END
2687 arm_unwind_edit_type
;
2689 /* A (sorted) list of edits to apply to an unwind table. */
2690 typedef struct arm_unwind_table_edit
2692 arm_unwind_edit_type type
;
2693 /* Note: we sometimes want to insert an unwind entry corresponding to a
2694 section different from the one we're currently writing out, so record the
2695 (text) section this edit relates to here. */
2696 asection
*linked_section
;
2698 struct arm_unwind_table_edit
*next
;
2700 arm_unwind_table_edit
;
2702 typedef struct _arm_elf_section_data
2704 /* Information about mapping symbols. */
2705 struct bfd_elf_section_data elf
;
2706 unsigned int mapcount
;
2707 unsigned int mapsize
;
2708 elf32_arm_section_map
*map
;
2709 /* Information about CPU errata. */
2710 unsigned int erratumcount
;
2711 elf32_vfp11_erratum_list
*erratumlist
;
2712 /* Information about unwind tables. */
2715 /* Unwind info attached to a text section. */
2718 asection
*arm_exidx_sec
;
2721 /* Unwind info attached to an .ARM.exidx section. */
2724 arm_unwind_table_edit
*unwind_edit_list
;
2725 arm_unwind_table_edit
*unwind_edit_tail
;
2729 _arm_elf_section_data
;
2731 #define elf32_arm_section_data(sec) \
2732 ((_arm_elf_section_data *) elf_section_data (sec))
2734 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2735 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2736 so may be created multiple times: we use an array of these entries whilst
2737 relaxing which we can refresh easily, then create stubs for each potentially
2738 erratum-triggering instruction once we've settled on a solution. */
2740 struct a8_erratum_fix
2746 unsigned long orig_insn
;
2748 enum elf32_arm_stub_type stub_type
;
2749 enum arm_st_branch_type branch_type
;
2752 /* A table of relocs applied to branches which might trigger Cortex-A8
2755 struct a8_erratum_reloc
2758 bfd_vma destination
;
2759 struct elf32_arm_link_hash_entry
*hash
;
2760 const char *sym_name
;
2761 unsigned int r_type
;
2762 enum arm_st_branch_type branch_type
;
2763 bfd_boolean non_a8_stub
;
2766 /* The size of the thread control block. */
2769 /* ARM-specific information about a PLT entry, over and above the usual
2773 /* We reference count Thumb references to a PLT entry separately,
2774 so that we can emit the Thumb trampoline only if needed. */
2775 bfd_signed_vma thumb_refcount
;
2777 /* Some references from Thumb code may be eliminated by BL->BLX
2778 conversion, so record them separately. */
2779 bfd_signed_vma maybe_thumb_refcount
;
2781 /* How many of the recorded PLT accesses were from non-call relocations.
2782 This information is useful when deciding whether anything takes the
2783 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2784 non-call references to the function should resolve directly to the
2785 real runtime target. */
2786 unsigned int noncall_refcount
;
2788 /* Since PLT entries have variable size if the Thumb prologue is
2789 used, we need to record the index into .got.plt instead of
2790 recomputing it from the PLT offset. */
2791 bfd_signed_vma got_offset
;
2794 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2795 struct arm_local_iplt_info
2797 /* The information that is usually found in the generic ELF part of
2798 the hash table entry. */
2799 union gotplt_union root
;
2801 /* The information that is usually found in the ARM-specific part of
2802 the hash table entry. */
2803 struct arm_plt_info arm
;
2805 /* A list of all potential dynamic relocations against this symbol. */
2806 struct elf_dyn_relocs
*dyn_relocs
;
2809 struct elf_arm_obj_tdata
2811 struct elf_obj_tdata root
;
2813 /* tls_type for each local got entry. */
2814 char *local_got_tls_type
;
2816 /* GOTPLT entries for TLS descriptors. */
2817 bfd_vma
*local_tlsdesc_gotent
;
2819 /* Information for local symbols that need entries in .iplt. */
2820 struct arm_local_iplt_info
**local_iplt
;
2822 /* Zero to warn when linking objects with incompatible enum sizes. */
2823 int no_enum_size_warning
;
2825 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2826 int no_wchar_size_warning
;
2829 #define elf_arm_tdata(bfd) \
2830 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2832 #define elf32_arm_local_got_tls_type(bfd) \
2833 (elf_arm_tdata (bfd)->local_got_tls_type)
2835 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2836 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2838 #define elf32_arm_local_iplt(bfd) \
2839 (elf_arm_tdata (bfd)->local_iplt)
2841 #define is_arm_elf(bfd) \
2842 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2843 && elf_tdata (bfd) != NULL \
2844 && elf_object_id (bfd) == ARM_ELF_DATA)
2847 elf32_arm_mkobject (bfd
*abfd
)
2849 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2853 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2855 /* Arm ELF linker hash entry. */
2856 struct elf32_arm_link_hash_entry
2858 struct elf_link_hash_entry root
;
2860 /* Track dynamic relocs copied for this symbol. */
2861 struct elf_dyn_relocs
*dyn_relocs
;
2863 /* ARM-specific PLT information. */
2864 struct arm_plt_info plt
;
2866 #define GOT_UNKNOWN 0
2867 #define GOT_NORMAL 1
2868 #define GOT_TLS_GD 2
2869 #define GOT_TLS_IE 4
2870 #define GOT_TLS_GDESC 8
2871 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2872 unsigned int tls_type
: 8;
2874 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2875 unsigned int is_iplt
: 1;
2877 unsigned int unused
: 23;
2879 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2880 starting at the end of the jump table. */
2881 bfd_vma tlsdesc_got
;
2883 /* The symbol marking the real symbol location for exported thumb
2884 symbols with Arm stubs. */
2885 struct elf_link_hash_entry
*export_glue
;
2887 /* A pointer to the most recently used stub hash entry against this
2889 struct elf32_arm_stub_hash_entry
*stub_cache
;
2892 /* Traverse an arm ELF linker hash table. */
2893 #define elf32_arm_link_hash_traverse(table, func, info) \
2894 (elf_link_hash_traverse \
2896 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2899 /* Get the ARM elf linker hash table from a link_info structure. */
2900 #define elf32_arm_hash_table(info) \
2901 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2902 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2904 #define arm_stub_hash_lookup(table, string, create, copy) \
2905 ((struct elf32_arm_stub_hash_entry *) \
2906 bfd_hash_lookup ((table), (string), (create), (copy)))
2908 /* Array to keep track of which stub sections have been created, and
2909 information on stub grouping. */
2912 /* This is the section to which stubs in the group will be
2915 /* The stub section. */
2919 #define elf32_arm_compute_jump_table_size(htab) \
2920 ((htab)->next_tls_desc_index * 4)
2922 /* ARM ELF linker hash table. */
2923 struct elf32_arm_link_hash_table
2925 /* The main hash table. */
2926 struct elf_link_hash_table root
;
2928 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2929 bfd_size_type thumb_glue_size
;
2931 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2932 bfd_size_type arm_glue_size
;
2934 /* The size in bytes of section containing the ARMv4 BX veneers. */
2935 bfd_size_type bx_glue_size
;
2937 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2938 veneer has been populated. */
2939 bfd_vma bx_glue_offset
[15];
2941 /* The size in bytes of the section containing glue for VFP11 erratum
2943 bfd_size_type vfp11_erratum_glue_size
;
2945 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2946 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2947 elf32_arm_write_section(). */
2948 struct a8_erratum_fix
*a8_erratum_fixes
;
2949 unsigned int num_a8_erratum_fixes
;
2951 /* An arbitrary input BFD chosen to hold the glue sections. */
2952 bfd
* bfd_of_glue_owner
;
2954 /* Nonzero to output a BE8 image. */
2957 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2958 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2961 /* The relocation to use for R_ARM_TARGET2 relocations. */
2964 /* 0 = Ignore R_ARM_V4BX.
2965 1 = Convert BX to MOV PC.
2966 2 = Generate v4 interworing stubs. */
2969 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2972 /* Whether we should fix the ARM1176 BLX immediate issue. */
2975 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2978 /* What sort of code sequences we should look for which may trigger the
2979 VFP11 denorm erratum. */
2980 bfd_arm_vfp11_fix vfp11_fix
;
2982 /* Global counter for the number of fixes we have emitted. */
2983 int num_vfp11_fixes
;
2985 /* Nonzero to force PIC branch veneers. */
2988 /* The number of bytes in the initial entry in the PLT. */
2989 bfd_size_type plt_header_size
;
2991 /* The number of bytes in the subsequent PLT etries. */
2992 bfd_size_type plt_entry_size
;
2994 /* True if the target system is VxWorks. */
2997 /* True if the target system is Symbian OS. */
3000 /* True if the target system is Native Client. */
3003 /* True if the target uses REL relocations. */
3006 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3007 bfd_vma next_tls_desc_index
;
3009 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3010 bfd_vma num_tls_desc
;
3012 /* Short-cuts to get to dynamic linker sections. */
3016 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3019 /* The offset into splt of the PLT entry for the TLS descriptor
3020 resolver. Special values are 0, if not necessary (or not found
3021 to be necessary yet), and -1 if needed but not determined
3023 bfd_vma dt_tlsdesc_plt
;
3025 /* The offset into sgot of the GOT entry used by the PLT entry
3027 bfd_vma dt_tlsdesc_got
;
3029 /* Offset in .plt section of tls_arm_trampoline. */
3030 bfd_vma tls_trampoline
;
3032 /* Data for R_ARM_TLS_LDM32 relocations. */
3035 bfd_signed_vma refcount
;
3039 /* Small local sym cache. */
3040 struct sym_cache sym_cache
;
3042 /* For convenience in allocate_dynrelocs. */
3045 /* The amount of space used by the reserved portion of the sgotplt
3046 section, plus whatever space is used by the jump slots. */
3047 bfd_vma sgotplt_jump_table_size
;
3049 /* The stub hash table. */
3050 struct bfd_hash_table stub_hash_table
;
3052 /* Linker stub bfd. */
3055 /* Linker call-backs. */
3056 asection
* (*add_stub_section
) (const char *, asection
*, unsigned int);
3057 void (*layout_sections_again
) (void);
3059 /* Array to keep track of which stub sections have been created, and
3060 information on stub grouping. */
3061 struct map_stub
*stub_group
;
3063 /* Number of elements in stub_group. */
3064 unsigned int top_id
;
3066 /* Assorted information used by elf32_arm_size_stubs. */
3067 unsigned int bfd_count
;
3068 unsigned int top_index
;
3069 asection
**input_list
;
3072 /* Create an entry in an ARM ELF linker hash table. */
3074 static struct bfd_hash_entry
*
3075 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
3076 struct bfd_hash_table
* table
,
3077 const char * string
)
3079 struct elf32_arm_link_hash_entry
* ret
=
3080 (struct elf32_arm_link_hash_entry
*) entry
;
3082 /* Allocate the structure if it has not already been allocated by a
3085 ret
= (struct elf32_arm_link_hash_entry
*)
3086 bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
3088 return (struct bfd_hash_entry
*) ret
;
3090 /* Call the allocation method of the superclass. */
3091 ret
= ((struct elf32_arm_link_hash_entry
*)
3092 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
3096 ret
->dyn_relocs
= NULL
;
3097 ret
->tls_type
= GOT_UNKNOWN
;
3098 ret
->tlsdesc_got
= (bfd_vma
) -1;
3099 ret
->plt
.thumb_refcount
= 0;
3100 ret
->plt
.maybe_thumb_refcount
= 0;
3101 ret
->plt
.noncall_refcount
= 0;
3102 ret
->plt
.got_offset
= -1;
3103 ret
->is_iplt
= FALSE
;
3104 ret
->export_glue
= NULL
;
3106 ret
->stub_cache
= NULL
;
3109 return (struct bfd_hash_entry
*) ret
;
3112 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3116 elf32_arm_allocate_local_sym_info (bfd
*abfd
)
3118 if (elf_local_got_refcounts (abfd
) == NULL
)
3120 bfd_size_type num_syms
;
3124 num_syms
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
3125 size
= num_syms
* (sizeof (bfd_signed_vma
)
3126 + sizeof (struct arm_local_iplt_info
*)
3129 data
= bfd_zalloc (abfd
, size
);
3133 elf_local_got_refcounts (abfd
) = (bfd_signed_vma
*) data
;
3134 data
+= num_syms
* sizeof (bfd_signed_vma
);
3136 elf32_arm_local_iplt (abfd
) = (struct arm_local_iplt_info
**) data
;
3137 data
+= num_syms
* sizeof (struct arm_local_iplt_info
*);
3139 elf32_arm_local_tlsdesc_gotent (abfd
) = (bfd_vma
*) data
;
3140 data
+= num_syms
* sizeof (bfd_vma
);
3142 elf32_arm_local_got_tls_type (abfd
) = data
;
3147 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3148 to input bfd ABFD. Create the information if it doesn't already exist.
3149 Return null if an allocation fails. */
3151 static struct arm_local_iplt_info
*
3152 elf32_arm_create_local_iplt (bfd
*abfd
, unsigned long r_symndx
)
3154 struct arm_local_iplt_info
**ptr
;
3156 if (!elf32_arm_allocate_local_sym_info (abfd
))
3159 BFD_ASSERT (r_symndx
< elf_tdata (abfd
)->symtab_hdr
.sh_info
);
3160 ptr
= &elf32_arm_local_iplt (abfd
)[r_symndx
];
3162 *ptr
= bfd_zalloc (abfd
, sizeof (**ptr
));
3166 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3167 in ABFD's symbol table. If the symbol is global, H points to its
3168 hash table entry, otherwise H is null.
3170 Return true if the symbol does have PLT information. When returning
3171 true, point *ROOT_PLT at the target-independent reference count/offset
3172 union and *ARM_PLT at the ARM-specific information. */
3175 elf32_arm_get_plt_info (bfd
*abfd
, struct elf32_arm_link_hash_entry
*h
,
3176 unsigned long r_symndx
, union gotplt_union
**root_plt
,
3177 struct arm_plt_info
**arm_plt
)
3179 struct arm_local_iplt_info
*local_iplt
;
3183 *root_plt
= &h
->root
.plt
;
3188 if (elf32_arm_local_iplt (abfd
) == NULL
)
3191 local_iplt
= elf32_arm_local_iplt (abfd
)[r_symndx
];
3192 if (local_iplt
== NULL
)
3195 *root_plt
= &local_iplt
->root
;
3196 *arm_plt
= &local_iplt
->arm
;
3200 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3204 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info
*info
,
3205 struct arm_plt_info
*arm_plt
)
3207 struct elf32_arm_link_hash_table
*htab
;
3209 htab
= elf32_arm_hash_table (info
);
3210 return (arm_plt
->thumb_refcount
!= 0
3211 || (!htab
->use_blx
&& arm_plt
->maybe_thumb_refcount
!= 0));
3214 /* Return a pointer to the head of the dynamic reloc list that should
3215 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3216 ABFD's symbol table. Return null if an error occurs. */
3218 static struct elf_dyn_relocs
**
3219 elf32_arm_get_local_dynreloc_list (bfd
*abfd
, unsigned long r_symndx
,
3220 Elf_Internal_Sym
*isym
)
3222 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
3224 struct arm_local_iplt_info
*local_iplt
;
3226 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
3227 if (local_iplt
== NULL
)
3229 return &local_iplt
->dyn_relocs
;
3233 /* Track dynamic relocs needed for local syms too.
3234 We really need local syms available to do this
3239 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3243 vpp
= &elf_section_data (s
)->local_dynrel
;
3244 return (struct elf_dyn_relocs
**) vpp
;
3248 /* Initialize an entry in the stub hash table. */
3250 static struct bfd_hash_entry
*
3251 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
3252 struct bfd_hash_table
*table
,
3255 /* Allocate the structure if it has not already been allocated by a
3259 entry
= (struct bfd_hash_entry
*)
3260 bfd_hash_allocate (table
, sizeof (struct elf32_arm_stub_hash_entry
));
3265 /* Call the allocation method of the superclass. */
3266 entry
= bfd_hash_newfunc (entry
, table
, string
);
3269 struct elf32_arm_stub_hash_entry
*eh
;
3271 /* Initialize the local fields. */
3272 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
3273 eh
->stub_sec
= NULL
;
3274 eh
->stub_offset
= 0;
3275 eh
->target_value
= 0;
3276 eh
->target_section
= NULL
;
3277 eh
->target_addend
= 0;
3279 eh
->stub_type
= arm_stub_none
;
3281 eh
->stub_template
= NULL
;
3282 eh
->stub_template_size
= 0;
3285 eh
->output_name
= NULL
;
3291 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3292 shortcuts to them in our hash table. */
3295 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
3297 struct elf32_arm_link_hash_table
*htab
;
3299 htab
= elf32_arm_hash_table (info
);
3303 /* BPABI objects never have a GOT, or associated sections. */
3304 if (htab
->symbian_p
)
3307 if (! _bfd_elf_create_got_section (dynobj
, info
))
3313 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3316 create_ifunc_sections (struct bfd_link_info
*info
)
3318 struct elf32_arm_link_hash_table
*htab
;
3319 const struct elf_backend_data
*bed
;
3324 htab
= elf32_arm_hash_table (info
);
3325 dynobj
= htab
->root
.dynobj
;
3326 bed
= get_elf_backend_data (dynobj
);
3327 flags
= bed
->dynamic_sec_flags
;
3329 if (htab
->root
.iplt
== NULL
)
3331 s
= bfd_make_section_anyway_with_flags (dynobj
, ".iplt",
3332 flags
| SEC_READONLY
| SEC_CODE
);
3334 || !bfd_set_section_alignment (dynobj
, s
, bed
->plt_alignment
))
3336 htab
->root
.iplt
= s
;
3339 if (htab
->root
.irelplt
== NULL
)
3341 s
= bfd_make_section_anyway_with_flags (dynobj
,
3342 RELOC_SECTION (htab
, ".iplt"),
3343 flags
| SEC_READONLY
);
3345 || !bfd_set_section_alignment (dynobj
, s
, bed
->s
->log_file_align
))
3347 htab
->root
.irelplt
= s
;
3350 if (htab
->root
.igotplt
== NULL
)
3352 s
= bfd_make_section_anyway_with_flags (dynobj
, ".igot.plt", flags
);
3354 || !bfd_set_section_alignment (dynobj
, s
, bed
->s
->log_file_align
))
3356 htab
->root
.igotplt
= s
;
3361 /* Determine if we're dealing with a Thumb only architecture. */
3364 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
3366 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3370 if (arch
== TAG_CPU_ARCH_V6_M
|| arch
== TAG_CPU_ARCH_V6S_M
)
3373 if (arch
!= TAG_CPU_ARCH_V7
&& arch
!= TAG_CPU_ARCH_V7E_M
)
3376 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3377 Tag_CPU_arch_profile
);
3379 return profile
== 'M';
3382 /* Determine if we're dealing with a Thumb-2 object. */
3385 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
3387 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3389 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
3392 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3393 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3397 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
3399 struct elf32_arm_link_hash_table
*htab
;
3401 htab
= elf32_arm_hash_table (info
);
3405 if (!htab
->root
.sgot
&& !create_got_section (dynobj
, info
))
3408 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
3411 htab
->sdynbss
= bfd_get_linker_section (dynobj
, ".dynbss");
3412 if (!bfd_link_pic (info
))
3413 htab
->srelbss
= bfd_get_linker_section (dynobj
,
3414 RELOC_SECTION (htab
, ".bss"));
3416 if (htab
->vxworks_p
)
3418 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
3421 if (bfd_link_pic (info
))
3423 htab
->plt_header_size
= 0;
3424 htab
->plt_entry_size
3425 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
3429 htab
->plt_header_size
3430 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
3431 htab
->plt_entry_size
3432 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
3438 Test for thumb only architectures. Note - we cannot just call
3439 using_thumb_only() as the attributes in the output bfd have not been
3440 initialised at this point, so instead we use the input bfd. */
3441 bfd
* saved_obfd
= htab
->obfd
;
3443 htab
->obfd
= dynobj
;
3444 if (using_thumb_only (htab
))
3446 htab
->plt_header_size
= 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry
);
3447 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_thumb2_plt_entry
);
3449 htab
->obfd
= saved_obfd
;
3452 if (!htab
->root
.splt
3453 || !htab
->root
.srelplt
3455 || (!bfd_link_pic (info
) && !htab
->srelbss
))
3461 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3464 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
3465 struct elf_link_hash_entry
*dir
,
3466 struct elf_link_hash_entry
*ind
)
3468 struct elf32_arm_link_hash_entry
*edir
, *eind
;
3470 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
3471 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
3473 if (eind
->dyn_relocs
!= NULL
)
3475 if (edir
->dyn_relocs
!= NULL
)
3477 struct elf_dyn_relocs
**pp
;
3478 struct elf_dyn_relocs
*p
;
3480 /* Add reloc counts against the indirect sym to the direct sym
3481 list. Merge any entries against the same section. */
3482 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
3484 struct elf_dyn_relocs
*q
;
3486 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
3487 if (q
->sec
== p
->sec
)
3489 q
->pc_count
+= p
->pc_count
;
3490 q
->count
+= p
->count
;
3497 *pp
= edir
->dyn_relocs
;
3500 edir
->dyn_relocs
= eind
->dyn_relocs
;
3501 eind
->dyn_relocs
= NULL
;
3504 if (ind
->root
.type
== bfd_link_hash_indirect
)
3506 /* Copy over PLT info. */
3507 edir
->plt
.thumb_refcount
+= eind
->plt
.thumb_refcount
;
3508 eind
->plt
.thumb_refcount
= 0;
3509 edir
->plt
.maybe_thumb_refcount
+= eind
->plt
.maybe_thumb_refcount
;
3510 eind
->plt
.maybe_thumb_refcount
= 0;
3511 edir
->plt
.noncall_refcount
+= eind
->plt
.noncall_refcount
;
3512 eind
->plt
.noncall_refcount
= 0;
3514 /* We should only allocate a function to .iplt once the final
3515 symbol information is known. */
3516 BFD_ASSERT (!eind
->is_iplt
);
3518 if (dir
->got
.refcount
<= 0)
3520 edir
->tls_type
= eind
->tls_type
;
3521 eind
->tls_type
= GOT_UNKNOWN
;
3525 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
3528 /* Destroy an ARM elf linker hash table. */
3531 elf32_arm_link_hash_table_free (bfd
*obfd
)
3533 struct elf32_arm_link_hash_table
*ret
3534 = (struct elf32_arm_link_hash_table
*) obfd
->link
.hash
;
3536 bfd_hash_table_free (&ret
->stub_hash_table
);
3537 _bfd_elf_link_hash_table_free (obfd
);
3540 /* Create an ARM elf linker hash table. */
3542 static struct bfd_link_hash_table
*
3543 elf32_arm_link_hash_table_create (bfd
*abfd
)
3545 struct elf32_arm_link_hash_table
*ret
;
3546 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
3548 ret
= (struct elf32_arm_link_hash_table
*) bfd_zmalloc (amt
);
3552 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
3553 elf32_arm_link_hash_newfunc
,
3554 sizeof (struct elf32_arm_link_hash_entry
),
3561 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
3562 #ifdef FOUR_WORD_PLT
3563 ret
->plt_header_size
= 16;
3564 ret
->plt_entry_size
= 16;
3566 ret
->plt_header_size
= 20;
3567 ret
->plt_entry_size
= elf32_arm_use_long_plt_entry
? 16 : 12;
3572 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
3573 sizeof (struct elf32_arm_stub_hash_entry
)))
3575 _bfd_elf_link_hash_table_free (abfd
);
3578 ret
->root
.root
.hash_table_free
= elf32_arm_link_hash_table_free
;
3580 return &ret
->root
.root
;
3583 /* Determine what kind of NOPs are available. */
3586 arch_has_arm_nop (struct elf32_arm_link_hash_table
*globals
)
3588 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3590 return arch
== TAG_CPU_ARCH_V6T2
3591 || arch
== TAG_CPU_ARCH_V6K
3592 || arch
== TAG_CPU_ARCH_V7
3593 || arch
== TAG_CPU_ARCH_V7E_M
;
3597 arch_has_thumb2_nop (struct elf32_arm_link_hash_table
*globals
)
3599 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3601 return (arch
== TAG_CPU_ARCH_V6T2
|| arch
== TAG_CPU_ARCH_V7
3602 || arch
== TAG_CPU_ARCH_V7E_M
);
3606 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
3610 case arm_stub_long_branch_thumb_only
:
3611 case arm_stub_long_branch_v4t_thumb_arm
:
3612 case arm_stub_short_branch_v4t_thumb_arm
:
3613 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3614 case arm_stub_long_branch_v4t_thumb_tls_pic
:
3615 case arm_stub_long_branch_thumb_only_pic
:
3626 /* Determine the type of stub needed, if any, for a call. */
3628 static enum elf32_arm_stub_type
3629 arm_type_of_stub (struct bfd_link_info
*info
,
3630 asection
*input_sec
,
3631 const Elf_Internal_Rela
*rel
,
3632 unsigned char st_type
,
3633 enum arm_st_branch_type
*actual_branch_type
,
3634 struct elf32_arm_link_hash_entry
*hash
,
3635 bfd_vma destination
,
3641 bfd_signed_vma branch_offset
;
3642 unsigned int r_type
;
3643 struct elf32_arm_link_hash_table
* globals
;
3646 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3648 enum arm_st_branch_type branch_type
= *actual_branch_type
;
3649 union gotplt_union
*root_plt
;
3650 struct arm_plt_info
*arm_plt
;
3652 if (branch_type
== ST_BRANCH_LONG
)
3655 globals
= elf32_arm_hash_table (info
);
3656 if (globals
== NULL
)
3659 thumb_only
= using_thumb_only (globals
);
3661 thumb2
= using_thumb2 (globals
);
3663 /* Determine where the call point is. */
3664 location
= (input_sec
->output_offset
3665 + input_sec
->output_section
->vma
3668 r_type
= ELF32_R_TYPE (rel
->r_info
);
3670 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3671 are considering a function call relocation. */
3672 if (thumb_only
&& (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
3673 || r_type
== R_ARM_THM_JUMP19
)
3674 && branch_type
== ST_BRANCH_TO_ARM
)
3675 branch_type
= ST_BRANCH_TO_THUMB
;
3677 /* For TLS call relocs, it is the caller's responsibility to provide
3678 the address of the appropriate trampoline. */
3679 if (r_type
!= R_ARM_TLS_CALL
3680 && r_type
!= R_ARM_THM_TLS_CALL
3681 && elf32_arm_get_plt_info (input_bfd
, hash
, ELF32_R_SYM (rel
->r_info
),
3682 &root_plt
, &arm_plt
)
3683 && root_plt
->offset
!= (bfd_vma
) -1)
3687 if (hash
== NULL
|| hash
->is_iplt
)
3688 splt
= globals
->root
.iplt
;
3690 splt
= globals
->root
.splt
;
3695 /* Note when dealing with PLT entries: the main PLT stub is in
3696 ARM mode, so if the branch is in Thumb mode, another
3697 Thumb->ARM stub will be inserted later just before the ARM
3698 PLT stub. We don't take this extra distance into account
3699 here, because if a long branch stub is needed, we'll add a
3700 Thumb->Arm one and branch directly to the ARM PLT entry
3701 because it avoids spreading offset corrections in several
3704 destination
= (splt
->output_section
->vma
3705 + splt
->output_offset
3706 + root_plt
->offset
);
3708 branch_type
= ST_BRANCH_TO_ARM
;
3711 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3712 BFD_ASSERT (st_type
!= STT_GNU_IFUNC
);
3714 branch_offset
= (bfd_signed_vma
)(destination
- location
);
3716 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
3717 || r_type
== R_ARM_THM_TLS_CALL
|| r_type
== R_ARM_THM_JUMP19
)
3719 /* Handle cases where:
3720 - this call goes too far (different Thumb/Thumb2 max
3722 - it's a Thumb->Arm call and blx is not available, or it's a
3723 Thumb->Arm branch (not bl). A stub is needed in this case,
3724 but only if this call is not through a PLT entry. Indeed,
3725 PLT stubs handle mode switching already.
3728 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
3729 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
3731 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
3732 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
3734 && (branch_offset
> THM2_MAX_FWD_COND_BRANCH_OFFSET
3735 || (branch_offset
< THM2_MAX_BWD_COND_BRANCH_OFFSET
))
3736 && (r_type
== R_ARM_THM_JUMP19
))
3737 || (branch_type
== ST_BRANCH_TO_ARM
3738 && (((r_type
== R_ARM_THM_CALL
3739 || r_type
== R_ARM_THM_TLS_CALL
) && !globals
->use_blx
)
3740 || (r_type
== R_ARM_THM_JUMP24
)
3741 || (r_type
== R_ARM_THM_JUMP19
))
3744 if (branch_type
== ST_BRANCH_TO_THUMB
)
3746 /* Thumb to thumb. */
3749 stub_type
= (bfd_link_pic (info
) | globals
->pic_veneer
)
3751 ? ((globals
->use_blx
3752 && (r_type
== R_ARM_THM_CALL
))
3753 /* V5T and above. Stub starts with ARM code, so
3754 we must be able to switch mode before
3755 reaching it, which is only possible for 'bl'
3756 (ie R_ARM_THM_CALL relocation). */
3757 ? arm_stub_long_branch_any_thumb_pic
3758 /* On V4T, use Thumb code only. */
3759 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
3761 /* non-PIC stubs. */
3762 : ((globals
->use_blx
3763 && (r_type
== R_ARM_THM_CALL
))
3764 /* V5T and above. */
3765 ? arm_stub_long_branch_any_any
3767 : arm_stub_long_branch_v4t_thumb_thumb
);
3771 stub_type
= (bfd_link_pic (info
) | globals
->pic_veneer
)
3773 ? arm_stub_long_branch_thumb_only_pic
3775 : arm_stub_long_branch_thumb_only
;
3782 && sym_sec
->owner
!= NULL
3783 && !INTERWORK_FLAG (sym_sec
->owner
))
3785 (*_bfd_error_handler
)
3786 (_("%B(%s): warning: interworking not enabled.\n"
3787 " first occurrence: %B: Thumb call to ARM"),
3788 sym_sec
->owner
, input_bfd
, name
);
3792 (bfd_link_pic (info
) | globals
->pic_veneer
)
3794 ? (r_type
== R_ARM_THM_TLS_CALL
3795 /* TLS PIC stubs. */
3796 ? (globals
->use_blx
? arm_stub_long_branch_any_tls_pic
3797 : arm_stub_long_branch_v4t_thumb_tls_pic
)
3798 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3799 /* V5T PIC and above. */
3800 ? arm_stub_long_branch_any_arm_pic
3802 : arm_stub_long_branch_v4t_thumb_arm_pic
))
3804 /* non-PIC stubs. */
3805 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3806 /* V5T and above. */
3807 ? arm_stub_long_branch_any_any
3809 : arm_stub_long_branch_v4t_thumb_arm
);
3811 /* Handle v4t short branches. */
3812 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
3813 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
3814 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
3815 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
3819 else if (r_type
== R_ARM_CALL
3820 || r_type
== R_ARM_JUMP24
3821 || r_type
== R_ARM_PLT32
3822 || r_type
== R_ARM_TLS_CALL
)
3824 if (branch_type
== ST_BRANCH_TO_THUMB
)
3829 && sym_sec
->owner
!= NULL
3830 && !INTERWORK_FLAG (sym_sec
->owner
))
3832 (*_bfd_error_handler
)
3833 (_("%B(%s): warning: interworking not enabled.\n"
3834 " first occurrence: %B: ARM call to Thumb"),
3835 sym_sec
->owner
, input_bfd
, name
);
3838 /* We have an extra 2-bytes reach because of
3839 the mode change (bit 24 (H) of BLX encoding). */
3840 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
3841 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
3842 || (r_type
== R_ARM_CALL
&& !globals
->use_blx
)
3843 || (r_type
== R_ARM_JUMP24
)
3844 || (r_type
== R_ARM_PLT32
))
3846 stub_type
= (bfd_link_pic (info
) | globals
->pic_veneer
)
3848 ? ((globals
->use_blx
)
3849 /* V5T and above. */
3850 ? arm_stub_long_branch_any_thumb_pic
3852 : arm_stub_long_branch_v4t_arm_thumb_pic
)
3854 /* non-PIC stubs. */
3855 : ((globals
->use_blx
)
3856 /* V5T and above. */
3857 ? arm_stub_long_branch_any_any
3859 : arm_stub_long_branch_v4t_arm_thumb
);
3865 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
3866 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
3869 (bfd_link_pic (info
) | globals
->pic_veneer
)
3871 ? (r_type
== R_ARM_TLS_CALL
3873 ? arm_stub_long_branch_any_tls_pic
3875 ? arm_stub_long_branch_arm_nacl_pic
3876 : arm_stub_long_branch_any_arm_pic
))
3877 /* non-PIC stubs. */
3879 ? arm_stub_long_branch_arm_nacl
3880 : arm_stub_long_branch_any_any
);
3885 /* If a stub is needed, record the actual destination type. */
3886 if (stub_type
!= arm_stub_none
)
3887 *actual_branch_type
= branch_type
;
3892 /* Build a name for an entry in the stub hash table. */
3895 elf32_arm_stub_name (const asection
*input_section
,
3896 const asection
*sym_sec
,
3897 const struct elf32_arm_link_hash_entry
*hash
,
3898 const Elf_Internal_Rela
*rel
,
3899 enum elf32_arm_stub_type stub_type
)
3906 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1 + 2 + 1;
3907 stub_name
= (char *) bfd_malloc (len
);
3908 if (stub_name
!= NULL
)
3909 sprintf (stub_name
, "%08x_%s+%x_%d",
3910 input_section
->id
& 0xffffffff,
3911 hash
->root
.root
.root
.string
,
3912 (int) rel
->r_addend
& 0xffffffff,
3917 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3918 stub_name
= (char *) bfd_malloc (len
);
3919 if (stub_name
!= NULL
)
3920 sprintf (stub_name
, "%08x_%x:%x+%x_%d",
3921 input_section
->id
& 0xffffffff,
3922 sym_sec
->id
& 0xffffffff,
3923 ELF32_R_TYPE (rel
->r_info
) == R_ARM_TLS_CALL
3924 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_THM_TLS_CALL
3925 ? 0 : (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
3926 (int) rel
->r_addend
& 0xffffffff,
3933 /* Look up an entry in the stub hash. Stub entries are cached because
3934 creating the stub name takes a bit of time. */
3936 static struct elf32_arm_stub_hash_entry
*
3937 elf32_arm_get_stub_entry (const asection
*input_section
,
3938 const asection
*sym_sec
,
3939 struct elf_link_hash_entry
*hash
,
3940 const Elf_Internal_Rela
*rel
,
3941 struct elf32_arm_link_hash_table
*htab
,
3942 enum elf32_arm_stub_type stub_type
)
3944 struct elf32_arm_stub_hash_entry
*stub_entry
;
3945 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
3946 const asection
*id_sec
;
3948 if ((input_section
->flags
& SEC_CODE
) == 0)
3951 /* If this input section is part of a group of sections sharing one
3952 stub section, then use the id of the first section in the group.
3953 Stub names need to include a section id, as there may well be
3954 more than one stub used to reach say, printf, and we need to
3955 distinguish between them. */
3956 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3958 if (h
!= NULL
&& h
->stub_cache
!= NULL
3959 && h
->stub_cache
->h
== h
3960 && h
->stub_cache
->id_sec
== id_sec
3961 && h
->stub_cache
->stub_type
== stub_type
)
3963 stub_entry
= h
->stub_cache
;
3969 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
, stub_type
);
3970 if (stub_name
== NULL
)
3973 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3974 stub_name
, FALSE
, FALSE
);
3976 h
->stub_cache
= stub_entry
;
3984 /* Find or create a stub section. Returns a pointer to the stub section, and
3985 the section to which the stub section will be attached (in *LINK_SEC_P).
3986 LINK_SEC_P may be NULL. */
3989 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
3990 struct elf32_arm_link_hash_table
*htab
)
3995 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3996 BFD_ASSERT (link_sec
!= NULL
);
3997 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3999 if (stub_sec
== NULL
)
4001 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
4002 if (stub_sec
== NULL
)
4008 namelen
= strlen (link_sec
->name
);
4009 len
= namelen
+ sizeof (STUB_SUFFIX
);
4010 s_name
= (char *) bfd_alloc (htab
->stub_bfd
, len
);
4014 memcpy (s_name
, link_sec
->name
, namelen
);
4015 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
4016 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
,
4017 htab
->nacl_p
? 4 : 3);
4018 if (stub_sec
== NULL
)
4020 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
4022 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
4026 *link_sec_p
= link_sec
;
4031 /* Add a new stub entry to the stub hash. Not all fields of the new
4032 stub entry are initialised. */
4034 static struct elf32_arm_stub_hash_entry
*
4035 elf32_arm_add_stub (const char *stub_name
,
4037 struct elf32_arm_link_hash_table
*htab
)
4041 struct elf32_arm_stub_hash_entry
*stub_entry
;
4043 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
);
4044 if (stub_sec
== NULL
)
4047 /* Enter this entry into the linker stub hash table. */
4048 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
4050 if (stub_entry
== NULL
)
4052 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
4058 stub_entry
->stub_sec
= stub_sec
;
4059 stub_entry
->stub_offset
= 0;
4060 stub_entry
->id_sec
= link_sec
;
4065 /* Store an Arm insn into an output section not processed by
4066 elf32_arm_write_section. */
4069 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
4070 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
4072 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
4073 bfd_putl32 (val
, ptr
);
4075 bfd_putb32 (val
, ptr
);
4078 /* Store a 16-bit Thumb insn into an output section not processed by
4079 elf32_arm_write_section. */
4082 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
4083 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
4085 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
4086 bfd_putl16 (val
, ptr
);
4088 bfd_putb16 (val
, ptr
);
4091 /* If it's possible to change R_TYPE to a more efficient access
4092 model, return the new reloc type. */
4095 elf32_arm_tls_transition (struct bfd_link_info
*info
, int r_type
,
4096 struct elf_link_hash_entry
*h
)
4098 int is_local
= (h
== NULL
);
4100 if (bfd_link_pic (info
)
4101 || (h
&& h
->root
.type
== bfd_link_hash_undefweak
))
4104 /* We do not support relaxations for Old TLS models. */
4107 case R_ARM_TLS_GOTDESC
:
4108 case R_ARM_TLS_CALL
:
4109 case R_ARM_THM_TLS_CALL
:
4110 case R_ARM_TLS_DESCSEQ
:
4111 case R_ARM_THM_TLS_DESCSEQ
:
4112 return is_local
? R_ARM_TLS_LE32
: R_ARM_TLS_IE32
;
4118 static bfd_reloc_status_type elf32_arm_final_link_relocate
4119 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
4120 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
4121 const char *, unsigned char, enum arm_st_branch_type
,
4122 struct elf_link_hash_entry
*, bfd_boolean
*, char **);
4125 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type
)
4129 case arm_stub_a8_veneer_b_cond
:
4130 case arm_stub_a8_veneer_b
:
4131 case arm_stub_a8_veneer_bl
:
4134 case arm_stub_long_branch_any_any
:
4135 case arm_stub_long_branch_v4t_arm_thumb
:
4136 case arm_stub_long_branch_thumb_only
:
4137 case arm_stub_long_branch_v4t_thumb_thumb
:
4138 case arm_stub_long_branch_v4t_thumb_arm
:
4139 case arm_stub_short_branch_v4t_thumb_arm
:
4140 case arm_stub_long_branch_any_arm_pic
:
4141 case arm_stub_long_branch_any_thumb_pic
:
4142 case arm_stub_long_branch_v4t_thumb_thumb_pic
:
4143 case arm_stub_long_branch_v4t_arm_thumb_pic
:
4144 case arm_stub_long_branch_v4t_thumb_arm_pic
:
4145 case arm_stub_long_branch_thumb_only_pic
:
4146 case arm_stub_long_branch_any_tls_pic
:
4147 case arm_stub_long_branch_v4t_thumb_tls_pic
:
4148 case arm_stub_a8_veneer_blx
:
4151 case arm_stub_long_branch_arm_nacl
:
4152 case arm_stub_long_branch_arm_nacl_pic
:
4156 abort (); /* Should be unreachable. */
4161 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
4165 struct elf32_arm_stub_hash_entry
*stub_entry
;
4166 struct elf32_arm_link_hash_table
*globals
;
4167 struct bfd_link_info
*info
;
4174 const insn_sequence
*template_sequence
;
4176 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
4177 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
4180 /* Massage our args to the form they really have. */
4181 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
4182 info
= (struct bfd_link_info
*) in_arg
;
4184 globals
= elf32_arm_hash_table (info
);
4185 if (globals
== NULL
)
4188 stub_sec
= stub_entry
->stub_sec
;
4190 if ((globals
->fix_cortex_a8
< 0)
4191 != (arm_stub_required_alignment (stub_entry
->stub_type
) == 2))
4192 /* We have to do less-strictly-aligned fixes last. */
4195 /* Make a note of the offset within the stubs for this entry. */
4196 stub_entry
->stub_offset
= stub_sec
->size
;
4197 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
4199 stub_bfd
= stub_sec
->owner
;
4201 /* This is the address of the stub destination. */
4202 sym_value
= (stub_entry
->target_value
4203 + stub_entry
->target_section
->output_offset
4204 + stub_entry
->target_section
->output_section
->vma
);
4206 template_sequence
= stub_entry
->stub_template
;
4207 template_size
= stub_entry
->stub_template_size
;
4210 for (i
= 0; i
< template_size
; i
++)
4212 switch (template_sequence
[i
].type
)
4216 bfd_vma data
= (bfd_vma
) template_sequence
[i
].data
;
4217 if (template_sequence
[i
].reloc_addend
!= 0)
4219 /* We've borrowed the reloc_addend field to mean we should
4220 insert a condition code into this (Thumb-1 branch)
4221 instruction. See THUMB16_BCOND_INSN. */
4222 BFD_ASSERT ((data
& 0xff00) == 0xd000);
4223 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
4225 bfd_put_16 (stub_bfd
, data
, loc
+ size
);
4231 bfd_put_16 (stub_bfd
,
4232 (template_sequence
[i
].data
>> 16) & 0xffff,
4234 bfd_put_16 (stub_bfd
, template_sequence
[i
].data
& 0xffff,
4236 if (template_sequence
[i
].r_type
!= R_ARM_NONE
)
4238 stub_reloc_idx
[nrelocs
] = i
;
4239 stub_reloc_offset
[nrelocs
++] = size
;
4245 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
,
4247 /* Handle cases where the target is encoded within the
4249 if (template_sequence
[i
].r_type
== R_ARM_JUMP24
)
4251 stub_reloc_idx
[nrelocs
] = i
;
4252 stub_reloc_offset
[nrelocs
++] = size
;
4258 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
, loc
+ size
);
4259 stub_reloc_idx
[nrelocs
] = i
;
4260 stub_reloc_offset
[nrelocs
++] = size
;
4270 stub_sec
->size
+= size
;
4272 /* Stub size has already been computed in arm_size_one_stub. Check
4274 BFD_ASSERT (size
== stub_entry
->stub_size
);
4276 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4277 if (stub_entry
->branch_type
== ST_BRANCH_TO_THUMB
)
4280 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4282 BFD_ASSERT (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
);
4284 for (i
= 0; i
< nrelocs
; i
++)
4285 if (template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP24
4286 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP19
4287 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_CALL
4288 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_XPC22
)
4290 Elf_Internal_Rela rel
;
4291 bfd_boolean unresolved_reloc
;
4292 char *error_message
;
4293 enum arm_st_branch_type branch_type
4294 = (template_sequence
[stub_reloc_idx
[i
]].r_type
!= R_ARM_THM_XPC22
4295 ? ST_BRANCH_TO_THUMB
: ST_BRANCH_TO_ARM
);
4296 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
;
4298 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
4299 rel
.r_info
= ELF32_R_INFO (0,
4300 template_sequence
[stub_reloc_idx
[i
]].r_type
);
4301 rel
.r_addend
= template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
4303 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
4304 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4305 template should refer back to the instruction after the original
4307 points_to
= sym_value
;
4309 /* There may be unintended consequences if this is not true. */
4310 BFD_ASSERT (stub_entry
->h
== NULL
);
4312 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4313 properly. We should probably use this function unconditionally,
4314 rather than only for certain relocations listed in the enclosing
4315 conditional, for the sake of consistency. */
4316 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4317 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
4318 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
4319 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
4320 branch_type
, (struct elf_link_hash_entry
*) stub_entry
->h
,
4321 &unresolved_reloc
, &error_message
);
4325 Elf_Internal_Rela rel
;
4326 bfd_boolean unresolved_reloc
;
4327 char *error_message
;
4328 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
4329 + template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
4331 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
4332 rel
.r_info
= ELF32_R_INFO (0,
4333 template_sequence
[stub_reloc_idx
[i
]].r_type
);
4336 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4337 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
4338 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
4339 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
4340 stub_entry
->branch_type
,
4341 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
4349 /* Calculate the template, template size and instruction size for a stub.
4350 Return value is the instruction size. */
4353 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
4354 const insn_sequence
**stub_template
,
4355 int *stub_template_size
)
4357 const insn_sequence
*template_sequence
= NULL
;
4358 int template_size
= 0, i
;
4361 template_sequence
= stub_definitions
[stub_type
].template_sequence
;
4363 *stub_template
= template_sequence
;
4365 template_size
= stub_definitions
[stub_type
].template_size
;
4366 if (stub_template_size
)
4367 *stub_template_size
= template_size
;
4370 for (i
= 0; i
< template_size
; i
++)
4372 switch (template_sequence
[i
].type
)
4393 /* As above, but don't actually build the stub. Just bump offset so
4394 we know stub section sizes. */
4397 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
4398 void *in_arg ATTRIBUTE_UNUSED
)
4400 struct elf32_arm_stub_hash_entry
*stub_entry
;
4401 const insn_sequence
*template_sequence
;
4402 int template_size
, size
;
4404 /* Massage our args to the form they really have. */
4405 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
4407 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
4408 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
4410 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template_sequence
,
4413 stub_entry
->stub_size
= size
;
4414 stub_entry
->stub_template
= template_sequence
;
4415 stub_entry
->stub_template_size
= template_size
;
4417 size
= (size
+ 7) & ~7;
4418 stub_entry
->stub_sec
->size
+= size
;
4423 /* External entry points for sizing and building linker stubs. */
4425 /* Set up various things so that we can make a list of input sections
4426 for each output section included in the link. Returns -1 on error,
4427 0 when no stubs will be needed, and 1 on success. */
4430 elf32_arm_setup_section_lists (bfd
*output_bfd
,
4431 struct bfd_link_info
*info
)
4434 unsigned int bfd_count
;
4435 unsigned int top_id
, top_index
;
4437 asection
**input_list
, **list
;
4439 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4443 if (! is_elf_hash_table (htab
))
4446 /* Count the number of input BFDs and find the top input section id. */
4447 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
4449 input_bfd
= input_bfd
->link
.next
)
4452 for (section
= input_bfd
->sections
;
4454 section
= section
->next
)
4456 if (top_id
< section
->id
)
4457 top_id
= section
->id
;
4460 htab
->bfd_count
= bfd_count
;
4462 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
4463 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
4464 if (htab
->stub_group
== NULL
)
4466 htab
->top_id
= top_id
;
4468 /* We can't use output_bfd->section_count here to find the top output
4469 section index as some sections may have been removed, and
4470 _bfd_strip_section_from_output doesn't renumber the indices. */
4471 for (section
= output_bfd
->sections
, top_index
= 0;
4473 section
= section
->next
)
4475 if (top_index
< section
->index
)
4476 top_index
= section
->index
;
4479 htab
->top_index
= top_index
;
4480 amt
= sizeof (asection
*) * (top_index
+ 1);
4481 input_list
= (asection
**) bfd_malloc (amt
);
4482 htab
->input_list
= input_list
;
4483 if (input_list
== NULL
)
4486 /* For sections we aren't interested in, mark their entries with a
4487 value we can check later. */
4488 list
= input_list
+ top_index
;
4490 *list
= bfd_abs_section_ptr
;
4491 while (list
-- != input_list
);
4493 for (section
= output_bfd
->sections
;
4495 section
= section
->next
)
4497 if ((section
->flags
& SEC_CODE
) != 0)
4498 input_list
[section
->index
] = NULL
;
4504 /* The linker repeatedly calls this function for each input section,
4505 in the order that input sections are linked into output sections.
4506 Build lists of input sections to determine groupings between which
4507 we may insert linker stubs. */
4510 elf32_arm_next_input_section (struct bfd_link_info
*info
,
4513 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4518 if (isec
->output_section
->index
<= htab
->top_index
)
4520 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
4522 if (*list
!= bfd_abs_section_ptr
&& (isec
->flags
& SEC_CODE
) != 0)
4524 /* Steal the link_sec pointer for our list. */
4525 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4526 /* This happens to make the list in reverse order,
4527 which we reverse later. */
4528 PREV_SEC (isec
) = *list
;
4534 /* See whether we can group stub sections together. Grouping stub
4535 sections may result in fewer stubs. More importantly, we need to
4536 put all .init* and .fini* stubs at the end of the .init or
4537 .fini output sections respectively, because glibc splits the
4538 _init and _fini functions into multiple parts. Putting a stub in
4539 the middle of a function is not a good idea. */
4542 group_sections (struct elf32_arm_link_hash_table
*htab
,
4543 bfd_size_type stub_group_size
,
4544 bfd_boolean stubs_always_after_branch
)
4546 asection
**list
= htab
->input_list
;
4550 asection
*tail
= *list
;
4553 if (tail
== bfd_abs_section_ptr
)
4556 /* Reverse the list: we must avoid placing stubs at the
4557 beginning of the section because the beginning of the text
4558 section may be required for an interrupt vector in bare metal
4560 #define NEXT_SEC PREV_SEC
4562 while (tail
!= NULL
)
4564 /* Pop from tail. */
4565 asection
*item
= tail
;
4566 tail
= PREV_SEC (item
);
4569 NEXT_SEC (item
) = head
;
4573 while (head
!= NULL
)
4577 bfd_vma stub_group_start
= head
->output_offset
;
4578 bfd_vma end_of_next
;
4581 while (NEXT_SEC (curr
) != NULL
)
4583 next
= NEXT_SEC (curr
);
4584 end_of_next
= next
->output_offset
+ next
->size
;
4585 if (end_of_next
- stub_group_start
>= stub_group_size
)
4586 /* End of NEXT is too far from start, so stop. */
4588 /* Add NEXT to the group. */
4592 /* OK, the size from the start to the start of CURR is less
4593 than stub_group_size and thus can be handled by one stub
4594 section. (Or the head section is itself larger than
4595 stub_group_size, in which case we may be toast.)
4596 We should really be keeping track of the total size of
4597 stubs added here, as stubs contribute to the final output
4601 next
= NEXT_SEC (head
);
4602 /* Set up this stub group. */
4603 htab
->stub_group
[head
->id
].link_sec
= curr
;
4605 while (head
!= curr
&& (head
= next
) != NULL
);
4607 /* But wait, there's more! Input sections up to stub_group_size
4608 bytes after the stub section can be handled by it too. */
4609 if (!stubs_always_after_branch
)
4611 stub_group_start
= curr
->output_offset
+ curr
->size
;
4613 while (next
!= NULL
)
4615 end_of_next
= next
->output_offset
+ next
->size
;
4616 if (end_of_next
- stub_group_start
>= stub_group_size
)
4617 /* End of NEXT is too far from stubs, so stop. */
4619 /* Add NEXT to the stub group. */
4621 next
= NEXT_SEC (head
);
4622 htab
->stub_group
[head
->id
].link_sec
= curr
;
4628 while (list
++ != htab
->input_list
+ htab
->top_index
);
4630 free (htab
->input_list
);
4635 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4639 a8_reloc_compare (const void *a
, const void *b
)
4641 const struct a8_erratum_reloc
*ra
= (const struct a8_erratum_reloc
*) a
;
4642 const struct a8_erratum_reloc
*rb
= (const struct a8_erratum_reloc
*) b
;
4644 if (ra
->from
< rb
->from
)
4646 else if (ra
->from
> rb
->from
)
4652 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
4653 const char *, char **);
4655 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4656 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4657 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4661 cortex_a8_erratum_scan (bfd
*input_bfd
,
4662 struct bfd_link_info
*info
,
4663 struct a8_erratum_fix
**a8_fixes_p
,
4664 unsigned int *num_a8_fixes_p
,
4665 unsigned int *a8_fix_table_size_p
,
4666 struct a8_erratum_reloc
*a8_relocs
,
4667 unsigned int num_a8_relocs
,
4668 unsigned prev_num_a8_fixes
,
4669 bfd_boolean
*stub_changed_p
)
4672 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4673 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
4674 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
4675 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
4680 for (section
= input_bfd
->sections
;
4682 section
= section
->next
)
4684 bfd_byte
*contents
= NULL
;
4685 struct _arm_elf_section_data
*sec_data
;
4689 if (elf_section_type (section
) != SHT_PROGBITS
4690 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
4691 || (section
->flags
& SEC_EXCLUDE
) != 0
4692 || (section
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
4693 || (section
->output_section
== bfd_abs_section_ptr
))
4696 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
4698 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
4699 contents
= elf_section_data (section
)->this_hdr
.contents
;
4700 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
4703 sec_data
= elf32_arm_section_data (section
);
4705 for (span
= 0; span
< sec_data
->mapcount
; span
++)
4707 unsigned int span_start
= sec_data
->map
[span
].vma
;
4708 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
4709 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
4711 char span_type
= sec_data
->map
[span
].type
;
4712 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
4714 if (span_type
!= 't')
4717 /* Span is entirely within a single 4KB region: skip scanning. */
4718 if (((base_vma
+ span_start
) & ~0xfff)
4719 == ((base_vma
+ span_end
) & ~0xfff))
4722 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4724 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4725 * The branch target is in the same 4KB region as the
4726 first half of the branch.
4727 * The instruction before the branch is a 32-bit
4728 length non-branch instruction. */
4729 for (i
= span_start
; i
< span_end
;)
4731 unsigned int insn
= bfd_getl16 (&contents
[i
]);
4732 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
4733 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
4735 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
4740 /* Load the rest of the insn (in manual-friendly order). */
4741 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
4743 /* Encoding T4: B<c>.W. */
4744 is_b
= (insn
& 0xf800d000) == 0xf0009000;
4745 /* Encoding T1: BL<c>.W. */
4746 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
4747 /* Encoding T2: BLX<c>.W. */
4748 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
4749 /* Encoding T3: B<c>.W (not permitted in IT block). */
4750 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
4751 && (insn
& 0x07f00000) != 0x03800000;
4754 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
4756 if (((base_vma
+ i
) & 0xfff) == 0xffe
4760 && ! last_was_branch
)
4762 bfd_signed_vma offset
= 0;
4763 bfd_boolean force_target_arm
= FALSE
;
4764 bfd_boolean force_target_thumb
= FALSE
;
4766 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
4767 struct a8_erratum_reloc key
, *found
;
4768 bfd_boolean use_plt
= FALSE
;
4770 key
.from
= base_vma
+ i
;
4771 found
= (struct a8_erratum_reloc
*)
4772 bsearch (&key
, a8_relocs
, num_a8_relocs
,
4773 sizeof (struct a8_erratum_reloc
),
4778 char *error_message
= NULL
;
4779 struct elf_link_hash_entry
*entry
;
4781 /* We don't care about the error returned from this
4782 function, only if there is glue or not. */
4783 entry
= find_thumb_glue (info
, found
->sym_name
,
4787 found
->non_a8_stub
= TRUE
;
4789 /* Keep a simpler condition, for the sake of clarity. */
4790 if (htab
->root
.splt
!= NULL
&& found
->hash
!= NULL
4791 && found
->hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4794 if (found
->r_type
== R_ARM_THM_CALL
)
4796 if (found
->branch_type
== ST_BRANCH_TO_ARM
4798 force_target_arm
= TRUE
;
4800 force_target_thumb
= TRUE
;
4804 /* Check if we have an offending branch instruction. */
4806 if (found
&& found
->non_a8_stub
)
4807 /* We've already made a stub for this instruction, e.g.
4808 it's a long branch or a Thumb->ARM stub. Assume that
4809 stub will suffice to work around the A8 erratum (see
4810 setting of always_after_branch above). */
4814 offset
= (insn
& 0x7ff) << 1;
4815 offset
|= (insn
& 0x3f0000) >> 4;
4816 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
4817 offset
|= (insn
& 0x800) ? 0x80000 : 0;
4818 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
4819 if (offset
& 0x100000)
4820 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
4821 stub_type
= arm_stub_a8_veneer_b_cond
;
4823 else if (is_b
|| is_bl
|| is_blx
)
4825 int s
= (insn
& 0x4000000) != 0;
4826 int j1
= (insn
& 0x2000) != 0;
4827 int j2
= (insn
& 0x800) != 0;
4831 offset
= (insn
& 0x7ff) << 1;
4832 offset
|= (insn
& 0x3ff0000) >> 4;
4836 if (offset
& 0x1000000)
4837 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
4840 offset
&= ~ ((bfd_signed_vma
) 3);
4842 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
4843 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
4846 if (stub_type
!= arm_stub_none
)
4848 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
4850 /* The original instruction is a BL, but the target is
4851 an ARM instruction. If we were not making a stub,
4852 the BL would have been converted to a BLX. Use the
4853 BLX stub instead in that case. */
4854 if (htab
->use_blx
&& force_target_arm
4855 && stub_type
== arm_stub_a8_veneer_bl
)
4857 stub_type
= arm_stub_a8_veneer_blx
;
4861 /* Conversely, if the original instruction was
4862 BLX but the target is Thumb mode, use the BL
4864 else if (force_target_thumb
4865 && stub_type
== arm_stub_a8_veneer_blx
)
4867 stub_type
= arm_stub_a8_veneer_bl
;
4873 pc_for_insn
&= ~ ((bfd_vma
) 3);
4875 /* If we found a relocation, use the proper destination,
4876 not the offset in the (unrelocated) instruction.
4877 Note this is always done if we switched the stub type
4881 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
4883 /* If the stub will use a Thumb-mode branch to a
4884 PLT target, redirect it to the preceding Thumb
4886 if (stub_type
!= arm_stub_a8_veneer_blx
&& use_plt
)
4887 offset
-= PLT_THUMB_STUB_SIZE
;
4889 target
= pc_for_insn
+ offset
;
4891 /* The BLX stub is ARM-mode code. Adjust the offset to
4892 take the different PC value (+8 instead of +4) into
4894 if (stub_type
== arm_stub_a8_veneer_blx
)
4897 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
4899 char *stub_name
= NULL
;
4901 if (num_a8_fixes
== a8_fix_table_size
)
4903 a8_fix_table_size
*= 2;
4904 a8_fixes
= (struct a8_erratum_fix
*)
4905 bfd_realloc (a8_fixes
,
4906 sizeof (struct a8_erratum_fix
)
4907 * a8_fix_table_size
);
4910 if (num_a8_fixes
< prev_num_a8_fixes
)
4912 /* If we're doing a subsequent scan,
4913 check if we've found the same fix as
4914 before, and try and reuse the stub
4916 stub_name
= a8_fixes
[num_a8_fixes
].stub_name
;
4917 if ((a8_fixes
[num_a8_fixes
].section
!= section
)
4918 || (a8_fixes
[num_a8_fixes
].offset
!= i
))
4922 *stub_changed_p
= TRUE
;
4928 stub_name
= (char *) bfd_malloc (8 + 1 + 8 + 1);
4929 if (stub_name
!= NULL
)
4930 sprintf (stub_name
, "%x:%x", section
->id
, i
);
4933 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
4934 a8_fixes
[num_a8_fixes
].section
= section
;
4935 a8_fixes
[num_a8_fixes
].offset
= i
;
4936 a8_fixes
[num_a8_fixes
].addend
= offset
;
4937 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
4938 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
4939 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
4940 a8_fixes
[num_a8_fixes
].branch_type
=
4941 is_blx
? ST_BRANCH_TO_ARM
: ST_BRANCH_TO_THUMB
;
4948 i
+= insn_32bit
? 4 : 2;
4949 last_was_32bit
= insn_32bit
;
4950 last_was_branch
= is_32bit_branch
;
4954 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4958 *a8_fixes_p
= a8_fixes
;
4959 *num_a8_fixes_p
= num_a8_fixes
;
4960 *a8_fix_table_size_p
= a8_fix_table_size
;
4965 /* Determine and set the size of the stub section for a final link.
4967 The basic idea here is to examine all the relocations looking for
4968 PC-relative calls to a target that is unreachable with a "bl"
4972 elf32_arm_size_stubs (bfd
*output_bfd
,
4974 struct bfd_link_info
*info
,
4975 bfd_signed_vma group_size
,
4976 asection
* (*add_stub_section
) (const char *, asection
*,
4978 void (*layout_sections_again
) (void))
4980 bfd_size_type stub_group_size
;
4981 bfd_boolean stubs_always_after_branch
;
4982 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4983 struct a8_erratum_fix
*a8_fixes
= NULL
;
4984 unsigned int num_a8_fixes
= 0, a8_fix_table_size
= 10;
4985 struct a8_erratum_reloc
*a8_relocs
= NULL
;
4986 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
4991 if (htab
->fix_cortex_a8
)
4993 a8_fixes
= (struct a8_erratum_fix
*)
4994 bfd_zmalloc (sizeof (struct a8_erratum_fix
) * a8_fix_table_size
);
4995 a8_relocs
= (struct a8_erratum_reloc
*)
4996 bfd_zmalloc (sizeof (struct a8_erratum_reloc
) * a8_reloc_table_size
);
4999 /* Propagate mach to stub bfd, because it may not have been
5000 finalized when we created stub_bfd. */
5001 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
5002 bfd_get_mach (output_bfd
));
5004 /* Stash our params away. */
5005 htab
->stub_bfd
= stub_bfd
;
5006 htab
->add_stub_section
= add_stub_section
;
5007 htab
->layout_sections_again
= layout_sections_again
;
5008 stubs_always_after_branch
= group_size
< 0;
5010 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
5011 as the first half of a 32-bit branch straddling two 4K pages. This is a
5012 crude way of enforcing that. */
5013 if (htab
->fix_cortex_a8
)
5014 stubs_always_after_branch
= 1;
5017 stub_group_size
= -group_size
;
5019 stub_group_size
= group_size
;
5021 if (stub_group_size
== 1)
5023 /* Default values. */
5024 /* Thumb branch range is +-4MB has to be used as the default
5025 maximum size (a given section can contain both ARM and Thumb
5026 code, so the worst case has to be taken into account).
5028 This value is 24K less than that, which allows for 2025
5029 12-byte stubs. If we exceed that, then we will fail to link.
5030 The user will have to relink with an explicit group size
5032 stub_group_size
= 4170000;
5035 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
5037 /* If we're applying the cortex A8 fix, we need to determine the
5038 program header size now, because we cannot change it later --
5039 that could alter section placements. Notice the A8 erratum fix
5040 ends up requiring the section addresses to remain unchanged
5041 modulo the page size. That's something we cannot represent
5042 inside BFD, and we don't want to force the section alignment to
5043 be the page size. */
5044 if (htab
->fix_cortex_a8
)
5045 (*htab
->layout_sections_again
) ();
5050 unsigned int bfd_indx
;
5052 bfd_boolean stub_changed
= FALSE
;
5053 unsigned prev_num_a8_fixes
= num_a8_fixes
;
5056 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
5058 input_bfd
= input_bfd
->link
.next
, bfd_indx
++)
5060 Elf_Internal_Shdr
*symtab_hdr
;
5062 Elf_Internal_Sym
*local_syms
= NULL
;
5064 if (!is_arm_elf (input_bfd
))
5069 /* We'll need the symbol table in a second. */
5070 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5071 if (symtab_hdr
->sh_info
== 0)
5074 /* Walk over each section attached to the input bfd. */
5075 for (section
= input_bfd
->sections
;
5077 section
= section
->next
)
5079 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
5081 /* If there aren't any relocs, then there's nothing more
5083 if ((section
->flags
& SEC_RELOC
) == 0
5084 || section
->reloc_count
== 0
5085 || (section
->flags
& SEC_CODE
) == 0)
5088 /* If this section is a link-once section that will be
5089 discarded, then don't create any stubs. */
5090 if (section
->output_section
== NULL
5091 || section
->output_section
->owner
!= output_bfd
)
5094 /* Get the relocs. */
5096 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
5097 NULL
, info
->keep_memory
);
5098 if (internal_relocs
== NULL
)
5099 goto error_ret_free_local
;
5101 /* Now examine each relocation. */
5102 irela
= internal_relocs
;
5103 irelaend
= irela
+ section
->reloc_count
;
5104 for (; irela
< irelaend
; irela
++)
5106 unsigned int r_type
, r_indx
;
5107 enum elf32_arm_stub_type stub_type
;
5108 struct elf32_arm_stub_hash_entry
*stub_entry
;
5111 bfd_vma destination
;
5112 struct elf32_arm_link_hash_entry
*hash
;
5113 const char *sym_name
;
5115 const asection
*id_sec
;
5116 unsigned char st_type
;
5117 enum arm_st_branch_type branch_type
;
5118 bfd_boolean created_stub
= FALSE
;
5120 r_type
= ELF32_R_TYPE (irela
->r_info
);
5121 r_indx
= ELF32_R_SYM (irela
->r_info
);
5123 if (r_type
>= (unsigned int) R_ARM_max
)
5125 bfd_set_error (bfd_error_bad_value
);
5126 error_ret_free_internal
:
5127 if (elf_section_data (section
)->relocs
== NULL
)
5128 free (internal_relocs
);
5129 goto error_ret_free_local
;
5133 if (r_indx
>= symtab_hdr
->sh_info
)
5134 hash
= elf32_arm_hash_entry
5135 (elf_sym_hashes (input_bfd
)
5136 [r_indx
- symtab_hdr
->sh_info
]);
5138 /* Only look for stubs on branch instructions, or
5139 non-relaxed TLSCALL */
5140 if ((r_type
!= (unsigned int) R_ARM_CALL
)
5141 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
5142 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
5143 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
5144 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
5145 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
5146 && (r_type
!= (unsigned int) R_ARM_PLT32
)
5147 && !((r_type
== (unsigned int) R_ARM_TLS_CALL
5148 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
5149 && r_type
== elf32_arm_tls_transition
5150 (info
, r_type
, &hash
->root
)
5151 && ((hash
? hash
->tls_type
5152 : (elf32_arm_local_got_tls_type
5153 (input_bfd
)[r_indx
]))
5154 & GOT_TLS_GDESC
) != 0))
5157 /* Now determine the call target, its name, value,
5164 if (r_type
== (unsigned int) R_ARM_TLS_CALL
5165 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
5167 /* A non-relaxed TLS call. The target is the
5168 plt-resident trampoline and nothing to do
5170 BFD_ASSERT (htab
->tls_trampoline
> 0);
5171 sym_sec
= htab
->root
.splt
;
5172 sym_value
= htab
->tls_trampoline
;
5175 branch_type
= ST_BRANCH_TO_ARM
;
5179 /* It's a local symbol. */
5180 Elf_Internal_Sym
*sym
;
5182 if (local_syms
== NULL
)
5185 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
5186 if (local_syms
== NULL
)
5188 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
5189 symtab_hdr
->sh_info
, 0,
5191 if (local_syms
== NULL
)
5192 goto error_ret_free_internal
;
5195 sym
= local_syms
+ r_indx
;
5196 if (sym
->st_shndx
== SHN_UNDEF
)
5197 sym_sec
= bfd_und_section_ptr
;
5198 else if (sym
->st_shndx
== SHN_ABS
)
5199 sym_sec
= bfd_abs_section_ptr
;
5200 else if (sym
->st_shndx
== SHN_COMMON
)
5201 sym_sec
= bfd_com_section_ptr
;
5204 bfd_section_from_elf_index (input_bfd
, sym
->st_shndx
);
5207 /* This is an undefined symbol. It can never
5211 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
5212 sym_value
= sym
->st_value
;
5213 destination
= (sym_value
+ irela
->r_addend
5214 + sym_sec
->output_offset
5215 + sym_sec
->output_section
->vma
);
5216 st_type
= ELF_ST_TYPE (sym
->st_info
);
5217 branch_type
= ARM_SYM_BRANCH_TYPE (sym
);
5219 = bfd_elf_string_from_elf_section (input_bfd
,
5220 symtab_hdr
->sh_link
,
5225 /* It's an external symbol. */
5226 while (hash
->root
.root
.type
== bfd_link_hash_indirect
5227 || hash
->root
.root
.type
== bfd_link_hash_warning
)
5228 hash
= ((struct elf32_arm_link_hash_entry
*)
5229 hash
->root
.root
.u
.i
.link
);
5231 if (hash
->root
.root
.type
== bfd_link_hash_defined
5232 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
5234 sym_sec
= hash
->root
.root
.u
.def
.section
;
5235 sym_value
= hash
->root
.root
.u
.def
.value
;
5237 struct elf32_arm_link_hash_table
*globals
=
5238 elf32_arm_hash_table (info
);
5240 /* For a destination in a shared library,
5241 use the PLT stub as target address to
5242 decide whether a branch stub is
5245 && globals
->root
.splt
!= NULL
5247 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5249 sym_sec
= globals
->root
.splt
;
5250 sym_value
= hash
->root
.plt
.offset
;
5251 if (sym_sec
->output_section
!= NULL
)
5252 destination
= (sym_value
5253 + sym_sec
->output_offset
5254 + sym_sec
->output_section
->vma
);
5256 else if (sym_sec
->output_section
!= NULL
)
5257 destination
= (sym_value
+ irela
->r_addend
5258 + sym_sec
->output_offset
5259 + sym_sec
->output_section
->vma
);
5261 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
5262 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
5264 /* For a shared library, use the PLT stub as
5265 target address to decide whether a long
5266 branch stub is needed.
5267 For absolute code, they cannot be handled. */
5268 struct elf32_arm_link_hash_table
*globals
=
5269 elf32_arm_hash_table (info
);
5272 && globals
->root
.splt
!= NULL
5274 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5276 sym_sec
= globals
->root
.splt
;
5277 sym_value
= hash
->root
.plt
.offset
;
5278 if (sym_sec
->output_section
!= NULL
)
5279 destination
= (sym_value
5280 + sym_sec
->output_offset
5281 + sym_sec
->output_section
->vma
);
5288 bfd_set_error (bfd_error_bad_value
);
5289 goto error_ret_free_internal
;
5291 st_type
= hash
->root
.type
;
5292 branch_type
= hash
->root
.target_internal
;
5293 sym_name
= hash
->root
.root
.root
.string
;
5298 /* Determine what (if any) linker stub is needed. */
5299 stub_type
= arm_type_of_stub (info
, section
, irela
,
5300 st_type
, &branch_type
,
5301 hash
, destination
, sym_sec
,
5302 input_bfd
, sym_name
);
5303 if (stub_type
== arm_stub_none
)
5306 /* Support for grouping stub sections. */
5307 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
5309 /* Get the name of this stub. */
5310 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
,
5313 goto error_ret_free_internal
;
5315 /* We've either created a stub for this reloc already,
5316 or we are about to. */
5317 created_stub
= TRUE
;
5319 stub_entry
= arm_stub_hash_lookup
5320 (&htab
->stub_hash_table
, stub_name
,
5322 if (stub_entry
!= NULL
)
5324 /* The proper stub has already been created. */
5326 stub_entry
->target_value
= sym_value
;
5330 stub_entry
= elf32_arm_add_stub (stub_name
, section
,
5332 if (stub_entry
== NULL
)
5335 goto error_ret_free_internal
;
5338 stub_entry
->target_value
= sym_value
;
5339 stub_entry
->target_section
= sym_sec
;
5340 stub_entry
->stub_type
= stub_type
;
5341 stub_entry
->h
= hash
;
5342 stub_entry
->branch_type
= branch_type
;
5344 if (sym_name
== NULL
)
5345 sym_name
= "unnamed";
5346 stub_entry
->output_name
= (char *)
5347 bfd_alloc (htab
->stub_bfd
,
5348 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
5349 + strlen (sym_name
));
5350 if (stub_entry
->output_name
== NULL
)
5353 goto error_ret_free_internal
;
5356 /* For historical reasons, use the existing names for
5357 ARM-to-Thumb and Thumb-to-ARM stubs. */
5358 if ((r_type
== (unsigned int) R_ARM_THM_CALL
5359 || r_type
== (unsigned int) R_ARM_THM_JUMP24
5360 || r_type
== (unsigned int) R_ARM_THM_JUMP19
)
5361 && branch_type
== ST_BRANCH_TO_ARM
)
5362 sprintf (stub_entry
->output_name
,
5363 THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
5364 else if ((r_type
== (unsigned int) R_ARM_CALL
5365 || r_type
== (unsigned int) R_ARM_JUMP24
)
5366 && branch_type
== ST_BRANCH_TO_THUMB
)
5367 sprintf (stub_entry
->output_name
,
5368 ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
5370 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
5373 stub_changed
= TRUE
;
5377 /* Look for relocations which might trigger Cortex-A8
5379 if (htab
->fix_cortex_a8
5380 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
5381 || r_type
== (unsigned int) R_ARM_THM_JUMP19
5382 || r_type
== (unsigned int) R_ARM_THM_CALL
5383 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
5385 bfd_vma from
= section
->output_section
->vma
5386 + section
->output_offset
5389 if ((from
& 0xfff) == 0xffe)
5391 /* Found a candidate. Note we haven't checked the
5392 destination is within 4K here: if we do so (and
5393 don't create an entry in a8_relocs) we can't tell
5394 that a branch should have been relocated when
5396 if (num_a8_relocs
== a8_reloc_table_size
)
5398 a8_reloc_table_size
*= 2;
5399 a8_relocs
= (struct a8_erratum_reloc
*)
5400 bfd_realloc (a8_relocs
,
5401 sizeof (struct a8_erratum_reloc
)
5402 * a8_reloc_table_size
);
5405 a8_relocs
[num_a8_relocs
].from
= from
;
5406 a8_relocs
[num_a8_relocs
].destination
= destination
;
5407 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
5408 a8_relocs
[num_a8_relocs
].branch_type
= branch_type
;
5409 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
5410 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
5411 a8_relocs
[num_a8_relocs
].hash
= hash
;
5418 /* We're done with the internal relocs, free them. */
5419 if (elf_section_data (section
)->relocs
== NULL
)
5420 free (internal_relocs
);
5423 if (htab
->fix_cortex_a8
)
5425 /* Sort relocs which might apply to Cortex-A8 erratum. */
5426 qsort (a8_relocs
, num_a8_relocs
,
5427 sizeof (struct a8_erratum_reloc
),
5430 /* Scan for branches which might trigger Cortex-A8 erratum. */
5431 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
5432 &num_a8_fixes
, &a8_fix_table_size
,
5433 a8_relocs
, num_a8_relocs
,
5434 prev_num_a8_fixes
, &stub_changed
)
5436 goto error_ret_free_local
;
5440 if (prev_num_a8_fixes
!= num_a8_fixes
)
5441 stub_changed
= TRUE
;
5446 /* OK, we've added some stubs. Find out the new size of the
5448 for (stub_sec
= htab
->stub_bfd
->sections
;
5450 stub_sec
= stub_sec
->next
)
5452 /* Ignore non-stub sections. */
5453 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5459 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
5461 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5462 if (htab
->fix_cortex_a8
)
5463 for (i
= 0; i
< num_a8_fixes
; i
++)
5465 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
5466 a8_fixes
[i
].section
, htab
);
5468 if (stub_sec
== NULL
)
5469 goto error_ret_free_local
;
5472 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
5477 /* Ask the linker to do its stuff. */
5478 (*htab
->layout_sections_again
) ();
5481 /* Add stubs for Cortex-A8 erratum fixes now. */
5482 if (htab
->fix_cortex_a8
)
5484 for (i
= 0; i
< num_a8_fixes
; i
++)
5486 struct elf32_arm_stub_hash_entry
*stub_entry
;
5487 char *stub_name
= a8_fixes
[i
].stub_name
;
5488 asection
*section
= a8_fixes
[i
].section
;
5489 unsigned int section_id
= a8_fixes
[i
].section
->id
;
5490 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
5491 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
5492 const insn_sequence
*template_sequence
;
5493 int template_size
, size
= 0;
5495 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
5497 if (stub_entry
== NULL
)
5499 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
5505 stub_entry
->stub_sec
= stub_sec
;
5506 stub_entry
->stub_offset
= 0;
5507 stub_entry
->id_sec
= link_sec
;
5508 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
5509 stub_entry
->target_section
= a8_fixes
[i
].section
;
5510 stub_entry
->target_value
= a8_fixes
[i
].offset
;
5511 stub_entry
->target_addend
= a8_fixes
[i
].addend
;
5512 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
5513 stub_entry
->branch_type
= a8_fixes
[i
].branch_type
;
5515 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
,
5519 stub_entry
->stub_size
= size
;
5520 stub_entry
->stub_template
= template_sequence
;
5521 stub_entry
->stub_template_size
= template_size
;
5524 /* Stash the Cortex-A8 erratum fix array for use later in
5525 elf32_arm_write_section(). */
5526 htab
->a8_erratum_fixes
= a8_fixes
;
5527 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
5531 htab
->a8_erratum_fixes
= NULL
;
5532 htab
->num_a8_erratum_fixes
= 0;
5536 error_ret_free_local
:
5540 /* Build all the stubs associated with the current output file. The
5541 stubs are kept in a hash table attached to the main linker hash
5542 table. We also set up the .plt entries for statically linked PIC
5543 functions here. This function is called via arm_elf_finish in the
5547 elf32_arm_build_stubs (struct bfd_link_info
*info
)
5550 struct bfd_hash_table
*table
;
5551 struct elf32_arm_link_hash_table
*htab
;
5553 htab
= elf32_arm_hash_table (info
);
5557 for (stub_sec
= htab
->stub_bfd
->sections
;
5559 stub_sec
= stub_sec
->next
)
5563 /* Ignore non-stub sections. */
5564 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5567 /* Allocate memory to hold the linker stubs. */
5568 size
= stub_sec
->size
;
5569 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
5570 if (stub_sec
->contents
== NULL
&& size
!= 0)
5575 /* Build the stubs as directed by the stub hash table. */
5576 table
= &htab
->stub_hash_table
;
5577 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5578 if (htab
->fix_cortex_a8
)
5580 /* Place the cortex a8 stubs last. */
5581 htab
->fix_cortex_a8
= -1;
5582 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5588 /* Locate the Thumb encoded calling stub for NAME. */
5590 static struct elf_link_hash_entry
*
5591 find_thumb_glue (struct bfd_link_info
*link_info
,
5593 char **error_message
)
5596 struct elf_link_hash_entry
*hash
;
5597 struct elf32_arm_link_hash_table
*hash_table
;
5599 /* We need a pointer to the armelf specific hash table. */
5600 hash_table
= elf32_arm_hash_table (link_info
);
5601 if (hash_table
== NULL
)
5604 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5605 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
5607 BFD_ASSERT (tmp_name
);
5609 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
5611 hash
= elf_link_hash_lookup
5612 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5615 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
5616 tmp_name
, name
) == -1)
5617 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5624 /* Locate the ARM encoded calling stub for NAME. */
5626 static struct elf_link_hash_entry
*
5627 find_arm_glue (struct bfd_link_info
*link_info
,
5629 char **error_message
)
5632 struct elf_link_hash_entry
*myh
;
5633 struct elf32_arm_link_hash_table
*hash_table
;
5635 /* We need a pointer to the elfarm specific hash table. */
5636 hash_table
= elf32_arm_hash_table (link_info
);
5637 if (hash_table
== NULL
)
5640 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5641 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5643 BFD_ASSERT (tmp_name
);
5645 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5647 myh
= elf_link_hash_lookup
5648 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5651 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
5652 tmp_name
, name
) == -1)
5653 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5660 /* ARM->Thumb glue (static images):
5664 ldr r12, __func_addr
5667 .word func @ behave as if you saw a ARM_32 reloc.
5674 .word func @ behave as if you saw a ARM_32 reloc.
5676 (relocatable images)
5679 ldr r12, __func_offset
5685 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5686 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
5687 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
5688 static const insn32 a2t3_func_addr_insn
= 0x00000001;
5690 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5691 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
5692 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
5694 #define ARM2THUMB_PIC_GLUE_SIZE 16
5695 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
5696 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
5697 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
5699 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5703 __func_from_thumb: __func_from_thumb:
5705 nop ldr r6, __func_addr
5715 #define THUMB2ARM_GLUE_SIZE 8
5716 static const insn16 t2a1_bx_pc_insn
= 0x4778;
5717 static const insn16 t2a2_noop_insn
= 0x46c0;
5718 static const insn32 t2a3_b_insn
= 0xea000000;
5720 #define VFP11_ERRATUM_VENEER_SIZE 8
5722 #define ARM_BX_VENEER_SIZE 12
5723 static const insn32 armbx1_tst_insn
= 0xe3100001;
5724 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
5725 static const insn32 armbx3_bx_insn
= 0xe12fff10;
5727 #ifndef ELFARM_NABI_C_INCLUDED
5729 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
5732 bfd_byte
* contents
;
5736 /* Do not include empty glue sections in the output. */
5739 s
= bfd_get_linker_section (abfd
, name
);
5741 s
->flags
|= SEC_EXCLUDE
;
5746 BFD_ASSERT (abfd
!= NULL
);
5748 s
= bfd_get_linker_section (abfd
, name
);
5749 BFD_ASSERT (s
!= NULL
);
5751 contents
= (bfd_byte
*) bfd_alloc (abfd
, size
);
5753 BFD_ASSERT (s
->size
== size
);
5754 s
->contents
= contents
;
5758 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
5760 struct elf32_arm_link_hash_table
* globals
;
5762 globals
= elf32_arm_hash_table (info
);
5763 BFD_ASSERT (globals
!= NULL
);
5765 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5766 globals
->arm_glue_size
,
5767 ARM2THUMB_GLUE_SECTION_NAME
);
5769 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5770 globals
->thumb_glue_size
,
5771 THUMB2ARM_GLUE_SECTION_NAME
);
5773 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5774 globals
->vfp11_erratum_glue_size
,
5775 VFP11_ERRATUM_VENEER_SECTION_NAME
);
5777 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5778 globals
->bx_glue_size
,
5779 ARM_BX_GLUE_SECTION_NAME
);
5784 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5785 returns the symbol identifying the stub. */
5787 static struct elf_link_hash_entry
*
5788 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
5789 struct elf_link_hash_entry
* h
)
5791 const char * name
= h
->root
.root
.string
;
5794 struct elf_link_hash_entry
* myh
;
5795 struct bfd_link_hash_entry
* bh
;
5796 struct elf32_arm_link_hash_table
* globals
;
5800 globals
= elf32_arm_hash_table (link_info
);
5801 BFD_ASSERT (globals
!= NULL
);
5802 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5804 s
= bfd_get_linker_section
5805 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
5807 BFD_ASSERT (s
!= NULL
);
5809 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5810 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5812 BFD_ASSERT (tmp_name
);
5814 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5816 myh
= elf_link_hash_lookup
5817 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5821 /* We've already seen this guy. */
5826 /* The only trick here is using hash_table->arm_glue_size as the value.
5827 Even though the section isn't allocated yet, this is where we will be
5828 putting it. The +1 on the value marks that the stub has not been
5829 output yet - not that it is a Thumb function. */
5831 val
= globals
->arm_glue_size
+ 1;
5832 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5833 tmp_name
, BSF_GLOBAL
, s
, val
,
5834 NULL
, TRUE
, FALSE
, &bh
);
5836 myh
= (struct elf_link_hash_entry
*) bh
;
5837 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5838 myh
->forced_local
= 1;
5842 if (bfd_link_pic (link_info
)
5843 || globals
->root
.is_relocatable_executable
5844 || globals
->pic_veneer
)
5845 size
= ARM2THUMB_PIC_GLUE_SIZE
;
5846 else if (globals
->use_blx
)
5847 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
5849 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
5852 globals
->arm_glue_size
+= size
;
5857 /* Allocate space for ARMv4 BX veneers. */
5860 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
5863 struct elf32_arm_link_hash_table
*globals
;
5865 struct elf_link_hash_entry
*myh
;
5866 struct bfd_link_hash_entry
*bh
;
5869 /* BX PC does not need a veneer. */
5873 globals
= elf32_arm_hash_table (link_info
);
5874 BFD_ASSERT (globals
!= NULL
);
5875 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5877 /* Check if this veneer has already been allocated. */
5878 if (globals
->bx_glue_offset
[reg
])
5881 s
= bfd_get_linker_section
5882 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
5884 BFD_ASSERT (s
!= NULL
);
5886 /* Add symbol for veneer. */
5888 bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
5890 BFD_ASSERT (tmp_name
);
5892 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
5894 myh
= elf_link_hash_lookup
5895 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5897 BFD_ASSERT (myh
== NULL
);
5900 val
= globals
->bx_glue_size
;
5901 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5902 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5903 NULL
, TRUE
, FALSE
, &bh
);
5905 myh
= (struct elf_link_hash_entry
*) bh
;
5906 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5907 myh
->forced_local
= 1;
5909 s
->size
+= ARM_BX_VENEER_SIZE
;
5910 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
5911 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
5915 /* Add an entry to the code/data map for section SEC. */
5918 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
5920 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5921 unsigned int newidx
;
5923 if (sec_data
->map
== NULL
)
5925 sec_data
->map
= (elf32_arm_section_map
*)
5926 bfd_malloc (sizeof (elf32_arm_section_map
));
5927 sec_data
->mapcount
= 0;
5928 sec_data
->mapsize
= 1;
5931 newidx
= sec_data
->mapcount
++;
5933 if (sec_data
->mapcount
> sec_data
->mapsize
)
5935 sec_data
->mapsize
*= 2;
5936 sec_data
->map
= (elf32_arm_section_map
*)
5937 bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
5938 * sizeof (elf32_arm_section_map
));
5943 sec_data
->map
[newidx
].vma
= vma
;
5944 sec_data
->map
[newidx
].type
= type
;
5949 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5950 veneers are handled for now. */
5953 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
5954 elf32_vfp11_erratum_list
*branch
,
5956 asection
*branch_sec
,
5957 unsigned int offset
)
5960 struct elf32_arm_link_hash_table
*hash_table
;
5962 struct elf_link_hash_entry
*myh
;
5963 struct bfd_link_hash_entry
*bh
;
5965 struct _arm_elf_section_data
*sec_data
;
5966 elf32_vfp11_erratum_list
*newerr
;
5968 hash_table
= elf32_arm_hash_table (link_info
);
5969 BFD_ASSERT (hash_table
!= NULL
);
5970 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
5972 s
= bfd_get_linker_section
5973 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
5975 sec_data
= elf32_arm_section_data (s
);
5977 BFD_ASSERT (s
!= NULL
);
5979 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
5980 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5982 BFD_ASSERT (tmp_name
);
5984 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5985 hash_table
->num_vfp11_fixes
);
5987 myh
= elf_link_hash_lookup
5988 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5990 BFD_ASSERT (myh
== NULL
);
5993 val
= hash_table
->vfp11_erratum_glue_size
;
5994 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
5995 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5996 NULL
, TRUE
, FALSE
, &bh
);
5998 myh
= (struct elf_link_hash_entry
*) bh
;
5999 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
6000 myh
->forced_local
= 1;
6002 /* Link veneer back to calling location. */
6003 sec_data
->erratumcount
+= 1;
6004 newerr
= (elf32_vfp11_erratum_list
*)
6005 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
6007 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
6009 newerr
->u
.v
.branch
= branch
;
6010 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
6011 branch
->u
.b
.veneer
= newerr
;
6013 newerr
->next
= sec_data
->erratumlist
;
6014 sec_data
->erratumlist
= newerr
;
6016 /* A symbol for the return from the veneer. */
6017 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6018 hash_table
->num_vfp11_fixes
);
6020 myh
= elf_link_hash_lookup
6021 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
6028 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
6029 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
6031 myh
= (struct elf_link_hash_entry
*) bh
;
6032 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
6033 myh
->forced_local
= 1;
6037 /* Generate a mapping symbol for the veneer section, and explicitly add an
6038 entry for that symbol to the code/data map for the section. */
6039 if (hash_table
->vfp11_erratum_glue_size
== 0)
6042 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
6043 ever requires this erratum fix. */
6044 _bfd_generic_link_add_one_symbol (link_info
,
6045 hash_table
->bfd_of_glue_owner
, "$a",
6046 BSF_LOCAL
, s
, 0, NULL
,
6049 myh
= (struct elf_link_hash_entry
*) bh
;
6050 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
6051 myh
->forced_local
= 1;
6053 /* The elf32_arm_init_maps function only cares about symbols from input
6054 BFDs. We must make a note of this generated mapping symbol
6055 ourselves so that code byteswapping works properly in
6056 elf32_arm_write_section. */
6057 elf32_arm_section_map_add (s
, 'a', 0);
6060 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
6061 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
6062 hash_table
->num_vfp11_fixes
++;
6064 /* The offset of the veneer. */
6068 #define ARM_GLUE_SECTION_FLAGS \
6069 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6070 | SEC_READONLY | SEC_LINKER_CREATED)
6072 /* Create a fake section for use by the ARM backend of the linker. */
6075 arm_make_glue_section (bfd
* abfd
, const char * name
)
6079 sec
= bfd_get_linker_section (abfd
, name
);
6084 sec
= bfd_make_section_anyway_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
6087 || !bfd_set_section_alignment (abfd
, sec
, 2))
6090 /* Set the gc mark to prevent the section from being removed by garbage
6091 collection, despite the fact that no relocs refer to this section. */
6097 /* Set size of .plt entries. This function is called from the
6098 linker scripts in ld/emultempl/{armelf}.em. */
6101 bfd_elf32_arm_use_long_plt (void)
6103 elf32_arm_use_long_plt_entry
= TRUE
;
6106 /* Add the glue sections to ABFD. This function is called from the
6107 linker scripts in ld/emultempl/{armelf}.em. */
6110 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
6111 struct bfd_link_info
*info
)
6113 /* If we are only performing a partial
6114 link do not bother adding the glue. */
6115 if (bfd_link_relocatable (info
))
6118 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
6119 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
6120 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
6121 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
6124 /* Select a BFD to be used to hold the sections used by the glue code.
6125 This function is called from the linker scripts in ld/emultempl/
6129 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
6131 struct elf32_arm_link_hash_table
*globals
;
6133 /* If we are only performing a partial link
6134 do not bother getting a bfd to hold the glue. */
6135 if (bfd_link_relocatable (info
))
6138 /* Make sure we don't attach the glue sections to a dynamic object. */
6139 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
6141 globals
= elf32_arm_hash_table (info
);
6142 BFD_ASSERT (globals
!= NULL
);
6144 if (globals
->bfd_of_glue_owner
!= NULL
)
6147 /* Save the bfd for later use. */
6148 globals
->bfd_of_glue_owner
= abfd
;
6154 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
6158 cpu_arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
6161 if (globals
->fix_arm1176
)
6163 if (cpu_arch
== TAG_CPU_ARCH_V6T2
|| cpu_arch
> TAG_CPU_ARCH_V6K
)
6164 globals
->use_blx
= 1;
6168 if (cpu_arch
> TAG_CPU_ARCH_V4T
)
6169 globals
->use_blx
= 1;
6174 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
6175 struct bfd_link_info
*link_info
)
6177 Elf_Internal_Shdr
*symtab_hdr
;
6178 Elf_Internal_Rela
*internal_relocs
= NULL
;
6179 Elf_Internal_Rela
*irel
, *irelend
;
6180 bfd_byte
*contents
= NULL
;
6183 struct elf32_arm_link_hash_table
*globals
;
6185 /* If we are only performing a partial link do not bother
6186 to construct any glue. */
6187 if (bfd_link_relocatable (link_info
))
6190 /* Here we have a bfd that is to be included on the link. We have a
6191 hook to do reloc rummaging, before section sizes are nailed down. */
6192 globals
= elf32_arm_hash_table (link_info
);
6193 BFD_ASSERT (globals
!= NULL
);
6195 check_use_blx (globals
);
6197 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
6199 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6204 /* PR 5398: If we have not decided to include any loadable sections in
6205 the output then we will not have a glue owner bfd. This is OK, it
6206 just means that there is nothing else for us to do here. */
6207 if (globals
->bfd_of_glue_owner
== NULL
)
6210 /* Rummage around all the relocs and map the glue vectors. */
6211 sec
= abfd
->sections
;
6216 for (; sec
!= NULL
; sec
= sec
->next
)
6218 if (sec
->reloc_count
== 0)
6221 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
6224 symtab_hdr
= & elf_symtab_hdr (abfd
);
6226 /* Load the relocs. */
6228 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
6230 if (internal_relocs
== NULL
)
6233 irelend
= internal_relocs
+ sec
->reloc_count
;
6234 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
6237 unsigned long r_index
;
6239 struct elf_link_hash_entry
*h
;
6241 r_type
= ELF32_R_TYPE (irel
->r_info
);
6242 r_index
= ELF32_R_SYM (irel
->r_info
);
6244 /* These are the only relocation types we care about. */
6245 if ( r_type
!= R_ARM_PC24
6246 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
6249 /* Get the section contents if we haven't done so already. */
6250 if (contents
== NULL
)
6252 /* Get cached copy if it exists. */
6253 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6254 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6257 /* Go get them off disk. */
6258 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6263 if (r_type
== R_ARM_V4BX
)
6267 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
6268 record_arm_bx_glue (link_info
, reg
);
6272 /* If the relocation is not against a symbol it cannot concern us. */
6275 /* We don't care about local symbols. */
6276 if (r_index
< symtab_hdr
->sh_info
)
6279 /* This is an external symbol. */
6280 r_index
-= symtab_hdr
->sh_info
;
6281 h
= (struct elf_link_hash_entry
*)
6282 elf_sym_hashes (abfd
)[r_index
];
6284 /* If the relocation is against a static symbol it must be within
6285 the current section and so cannot be a cross ARM/Thumb relocation. */
6289 /* If the call will go through a PLT entry then we do not need
6291 if (globals
->root
.splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6297 /* This one is a call from arm code. We need to look up
6298 the target of the call. If it is a thumb target, we
6300 if (h
->target_internal
== ST_BRANCH_TO_THUMB
)
6301 record_arm_to_thumb_glue (link_info
, h
);
6309 if (contents
!= NULL
6310 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6314 if (internal_relocs
!= NULL
6315 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6316 free (internal_relocs
);
6317 internal_relocs
= NULL
;
6323 if (contents
!= NULL
6324 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6326 if (internal_relocs
!= NULL
6327 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6328 free (internal_relocs
);
6335 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6338 bfd_elf32_arm_init_maps (bfd
*abfd
)
6340 Elf_Internal_Sym
*isymbuf
;
6341 Elf_Internal_Shdr
*hdr
;
6342 unsigned int i
, localsyms
;
6344 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6345 if (! is_arm_elf (abfd
))
6348 if ((abfd
->flags
& DYNAMIC
) != 0)
6351 hdr
= & elf_symtab_hdr (abfd
);
6352 localsyms
= hdr
->sh_info
;
6354 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6355 should contain the number of local symbols, which should come before any
6356 global symbols. Mapping symbols are always local. */
6357 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
6360 /* No internal symbols read? Skip this BFD. */
6361 if (isymbuf
== NULL
)
6364 for (i
= 0; i
< localsyms
; i
++)
6366 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
6367 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
6371 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
6373 name
= bfd_elf_string_from_elf_section (abfd
,
6374 hdr
->sh_link
, isym
->st_name
);
6376 if (bfd_is_arm_special_symbol_name (name
,
6377 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
6378 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
6384 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6385 say what they wanted. */
6388 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
6390 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6391 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
6393 if (globals
== NULL
)
6396 if (globals
->fix_cortex_a8
== -1)
6398 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6399 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
6400 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
6401 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
6402 globals
->fix_cortex_a8
= 1;
6404 globals
->fix_cortex_a8
= 0;
6410 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
6412 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6413 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
6415 if (globals
== NULL
)
6417 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6418 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
6420 switch (globals
->vfp11_fix
)
6422 case BFD_ARM_VFP11_FIX_DEFAULT
:
6423 case BFD_ARM_VFP11_FIX_NONE
:
6424 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
6428 /* Give a warning, but do as the user requests anyway. */
6429 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
6430 "workaround is not necessary for target architecture"), obfd
);
6433 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
6434 /* For earlier architectures, we might need the workaround, but do not
6435 enable it by default. If users is running with broken hardware, they
6436 must enable the erratum fix explicitly. */
6437 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
6441 enum bfd_arm_vfp11_pipe
6449 /* Return a VFP register number. This is encoded as RX:X for single-precision
6450 registers, or X:RX for double-precision registers, where RX is the group of
6451 four bits in the instruction encoding and X is the single extension bit.
6452 RX and X fields are specified using their lowest (starting) bit. The return
6455 0...31: single-precision registers s0...s31
6456 32...63: double-precision registers d0...d31.
6458 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6459 encounter VFP3 instructions, so we allow the full range for DP registers. */
6462 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
6466 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
6468 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
6471 /* Set bits in *WMASK according to a register number REG as encoded by
6472 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6475 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
6480 *wmask
|= 3 << ((reg
- 32) * 2);
6483 /* Return TRUE if WMASK overwrites anything in REGS. */
6486 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
6490 for (i
= 0; i
< numregs
; i
++)
6492 unsigned int reg
= regs
[i
];
6494 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
6502 if ((wmask
& (3 << (reg
* 2))) != 0)
6509 /* In this function, we're interested in two things: finding input registers
6510 for VFP data-processing instructions, and finding the set of registers which
6511 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6512 hold the written set, so FLDM etc. are easy to deal with (we're only
6513 interested in 32 SP registers or 16 dp registers, due to the VFP version
6514 implemented by the chip in question). DP registers are marked by setting
6515 both SP registers in the write mask). */
6517 static enum bfd_arm_vfp11_pipe
6518 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
6521 enum bfd_arm_vfp11_pipe vpipe
= VFP11_BAD
;
6522 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
6524 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6527 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6528 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6530 pqrs
= ((insn
& 0x00800000) >> 20)
6531 | ((insn
& 0x00300000) >> 19)
6532 | ((insn
& 0x00000040) >> 6);
6536 case 0: /* fmac[sd]. */
6537 case 1: /* fnmac[sd]. */
6538 case 2: /* fmsc[sd]. */
6539 case 3: /* fnmsc[sd]. */
6541 bfd_arm_vfp11_write_mask (destmask
, fd
);
6543 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6548 case 4: /* fmul[sd]. */
6549 case 5: /* fnmul[sd]. */
6550 case 6: /* fadd[sd]. */
6551 case 7: /* fsub[sd]. */
6555 case 8: /* fdiv[sd]. */
6558 bfd_arm_vfp11_write_mask (destmask
, fd
);
6559 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6564 case 15: /* extended opcode. */
6566 unsigned int extn
= ((insn
>> 15) & 0x1e)
6567 | ((insn
>> 7) & 1);
6571 case 0: /* fcpy[sd]. */
6572 case 1: /* fabs[sd]. */
6573 case 2: /* fneg[sd]. */
6574 case 8: /* fcmp[sd]. */
6575 case 9: /* fcmpe[sd]. */
6576 case 10: /* fcmpz[sd]. */
6577 case 11: /* fcmpez[sd]. */
6578 case 16: /* fuito[sd]. */
6579 case 17: /* fsito[sd]. */
6580 case 24: /* ftoui[sd]. */
6581 case 25: /* ftouiz[sd]. */
6582 case 26: /* ftosi[sd]. */
6583 case 27: /* ftosiz[sd]. */
6584 /* These instructions will not bounce due to underflow. */
6589 case 3: /* fsqrt[sd]. */
6590 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6591 registers to cause the erratum in previous instructions. */
6592 bfd_arm_vfp11_write_mask (destmask
, fd
);
6596 case 15: /* fcvt{ds,sd}. */
6600 bfd_arm_vfp11_write_mask (destmask
, fd
);
6602 /* Only FCVTSD can underflow. */
6603 if ((insn
& 0x100) != 0)
6622 /* Two-register transfer. */
6623 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
6625 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6627 if ((insn
& 0x100000) == 0)
6630 bfd_arm_vfp11_write_mask (destmask
, fm
);
6633 bfd_arm_vfp11_write_mask (destmask
, fm
);
6634 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
6640 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
6642 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6643 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
6647 case 0: /* Two-reg transfer. We should catch these above. */
6650 case 2: /* fldm[sdx]. */
6654 unsigned int i
, offset
= insn
& 0xff;
6659 for (i
= fd
; i
< fd
+ offset
; i
++)
6660 bfd_arm_vfp11_write_mask (destmask
, i
);
6664 case 4: /* fld[sd]. */
6666 bfd_arm_vfp11_write_mask (destmask
, fd
);
6675 /* Single-register transfer. Note L==0. */
6676 else if ((insn
& 0x0f100e10) == 0x0e000a10)
6678 unsigned int opcode
= (insn
>> 21) & 7;
6679 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
6683 case 0: /* fmsr/fmdlr. */
6684 case 1: /* fmdhr. */
6685 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6686 destination register. I don't know if this is exactly right,
6687 but it is the conservative choice. */
6688 bfd_arm_vfp11_write_mask (destmask
, fn
);
6702 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
6705 /* Look for potentially-troublesome code sequences which might trigger the
6706 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6707 (available from ARM) for details of the erratum. A short version is
6708 described in ld.texinfo. */
6711 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
6714 bfd_byte
*contents
= NULL
;
6716 int regs
[3], numregs
= 0;
6717 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6718 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
6720 if (globals
== NULL
)
6723 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6724 The states transition as follows:
6726 0 -> 1 (vector) or 0 -> 2 (scalar)
6727 A VFP FMAC-pipeline instruction has been seen. Fill
6728 regs[0]..regs[numregs-1] with its input operands. Remember this
6729 instruction in 'first_fmac'.
6732 Any instruction, except for a VFP instruction which overwrites
6737 A VFP instruction has been seen which overwrites any of regs[*].
6738 We must make a veneer! Reset state to 0 before examining next
6742 If we fail to match anything in state 2, reset to state 0 and reset
6743 the instruction pointer to the instruction after 'first_fmac'.
6745 If the VFP11 vector mode is in use, there must be at least two unrelated
6746 instructions between anti-dependent VFP11 instructions to properly avoid
6747 triggering the erratum, hence the use of the extra state 1. */
6749 /* If we are only performing a partial link do not bother
6750 to construct any glue. */
6751 if (bfd_link_relocatable (link_info
))
6754 /* Skip if this bfd does not correspond to an ELF image. */
6755 if (! is_arm_elf (abfd
))
6758 /* We should have chosen a fix type by the time we get here. */
6759 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
6761 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
6764 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6765 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
6768 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6770 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
6771 struct _arm_elf_section_data
*sec_data
;
6773 /* If we don't have executable progbits, we're not interested in this
6774 section. Also skip if section is to be excluded. */
6775 if (elf_section_type (sec
) != SHT_PROGBITS
6776 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
6777 || (sec
->flags
& SEC_EXCLUDE
) != 0
6778 || sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
6779 || sec
->output_section
== bfd_abs_section_ptr
6780 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
6783 sec_data
= elf32_arm_section_data (sec
);
6785 if (sec_data
->mapcount
== 0)
6788 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6789 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6790 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6793 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
6794 elf32_arm_compare_mapping
);
6796 for (span
= 0; span
< sec_data
->mapcount
; span
++)
6798 unsigned int span_start
= sec_data
->map
[span
].vma
;
6799 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
6800 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
6801 char span_type
= sec_data
->map
[span
].type
;
6803 /* FIXME: Only ARM mode is supported at present. We may need to
6804 support Thumb-2 mode also at some point. */
6805 if (span_type
!= 'a')
6808 for (i
= span_start
; i
< span_end
;)
6810 unsigned int next_i
= i
+ 4;
6811 unsigned int insn
= bfd_big_endian (abfd
)
6812 ? (contents
[i
] << 24)
6813 | (contents
[i
+ 1] << 16)
6814 | (contents
[i
+ 2] << 8)
6816 : (contents
[i
+ 3] << 24)
6817 | (contents
[i
+ 2] << 16)
6818 | (contents
[i
+ 1] << 8)
6820 unsigned int writemask
= 0;
6821 enum bfd_arm_vfp11_pipe vpipe
;
6826 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
6828 /* I'm assuming the VFP11 erratum can trigger with denorm
6829 operands on either the FMAC or the DS pipeline. This might
6830 lead to slightly overenthusiastic veneer insertion. */
6831 if (vpipe
== VFP11_FMAC
|| vpipe
== VFP11_DS
)
6833 state
= use_vector
? 1 : 2;
6835 veneer_of_insn
= insn
;
6841 int other_regs
[3], other_numregs
;
6842 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6845 if (vpipe
!= VFP11_BAD
6846 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6856 int other_regs
[3], other_numregs
;
6857 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6860 if (vpipe
!= VFP11_BAD
6861 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6867 next_i
= first_fmac
+ 4;
6873 abort (); /* Should be unreachable. */
6878 elf32_vfp11_erratum_list
*newerr
=(elf32_vfp11_erratum_list
*)
6879 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
6881 elf32_arm_section_data (sec
)->erratumcount
+= 1;
6883 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
6888 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
6895 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
6900 newerr
->next
= sec_data
->erratumlist
;
6901 sec_data
->erratumlist
= newerr
;
6910 if (contents
!= NULL
6911 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6919 if (contents
!= NULL
6920 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6926 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6927 after sections have been laid out, using specially-named symbols. */
6930 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
6931 struct bfd_link_info
*link_info
)
6934 struct elf32_arm_link_hash_table
*globals
;
6937 if (bfd_link_relocatable (link_info
))
6940 /* Skip if this bfd does not correspond to an ELF image. */
6941 if (! is_arm_elf (abfd
))
6944 globals
= elf32_arm_hash_table (link_info
);
6945 if (globals
== NULL
)
6948 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
6949 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
6951 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6953 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
6954 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
6956 for (; errnode
!= NULL
; errnode
= errnode
->next
)
6958 struct elf_link_hash_entry
*myh
;
6961 switch (errnode
->type
)
6963 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
6964 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
6965 /* Find veneer symbol. */
6966 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
6967 errnode
->u
.b
.veneer
->u
.v
.id
);
6969 myh
= elf_link_hash_lookup
6970 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6973 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6974 "`%s'"), abfd
, tmp_name
);
6976 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6977 + myh
->root
.u
.def
.section
->output_offset
6978 + myh
->root
.u
.def
.value
;
6980 errnode
->u
.b
.veneer
->vma
= vma
;
6983 case VFP11_ERRATUM_ARM_VENEER
:
6984 case VFP11_ERRATUM_THUMB_VENEER
:
6985 /* Find return location. */
6986 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6989 myh
= elf_link_hash_lookup
6990 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6993 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6994 "`%s'"), abfd
, tmp_name
);
6996 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6997 + myh
->root
.u
.def
.section
->output_offset
6998 + myh
->root
.u
.def
.value
;
7000 errnode
->u
.v
.branch
->vma
= vma
;
7013 /* Set target relocation values needed during linking. */
7016 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
7017 struct bfd_link_info
*link_info
,
7019 char * target2_type
,
7022 bfd_arm_vfp11_fix vfp11_fix
,
7023 int no_enum_warn
, int no_wchar_warn
,
7024 int pic_veneer
, int fix_cortex_a8
,
7027 struct elf32_arm_link_hash_table
*globals
;
7029 globals
= elf32_arm_hash_table (link_info
);
7030 if (globals
== NULL
)
7033 globals
->target1_is_rel
= target1_is_rel
;
7034 if (strcmp (target2_type
, "rel") == 0)
7035 globals
->target2_reloc
= R_ARM_REL32
;
7036 else if (strcmp (target2_type
, "abs") == 0)
7037 globals
->target2_reloc
= R_ARM_ABS32
;
7038 else if (strcmp (target2_type
, "got-rel") == 0)
7039 globals
->target2_reloc
= R_ARM_GOT_PREL
;
7042 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
7045 globals
->fix_v4bx
= fix_v4bx
;
7046 globals
->use_blx
|= use_blx
;
7047 globals
->vfp11_fix
= vfp11_fix
;
7048 globals
->pic_veneer
= pic_veneer
;
7049 globals
->fix_cortex_a8
= fix_cortex_a8
;
7050 globals
->fix_arm1176
= fix_arm1176
;
7052 BFD_ASSERT (is_arm_elf (output_bfd
));
7053 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
7054 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
7057 /* Replace the target offset of a Thumb bl or b.w instruction. */
7060 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
7066 BFD_ASSERT ((offset
& 1) == 0);
7068 upper
= bfd_get_16 (abfd
, insn
);
7069 lower
= bfd_get_16 (abfd
, insn
+ 2);
7070 reloc_sign
= (offset
< 0) ? 1 : 0;
7071 upper
= (upper
& ~(bfd_vma
) 0x7ff)
7072 | ((offset
>> 12) & 0x3ff)
7073 | (reloc_sign
<< 10);
7074 lower
= (lower
& ~(bfd_vma
) 0x2fff)
7075 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
7076 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
7077 | ((offset
>> 1) & 0x7ff);
7078 bfd_put_16 (abfd
, upper
, insn
);
7079 bfd_put_16 (abfd
, lower
, insn
+ 2);
7082 /* Thumb code calling an ARM function. */
7085 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
7089 asection
* input_section
,
7090 bfd_byte
* hit_data
,
7093 bfd_signed_vma addend
,
7095 char **error_message
)
7099 long int ret_offset
;
7100 struct elf_link_hash_entry
* myh
;
7101 struct elf32_arm_link_hash_table
* globals
;
7103 myh
= find_thumb_glue (info
, name
, error_message
);
7107 globals
= elf32_arm_hash_table (info
);
7108 BFD_ASSERT (globals
!= NULL
);
7109 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7111 my_offset
= myh
->root
.u
.def
.value
;
7113 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
7114 THUMB2ARM_GLUE_SECTION_NAME
);
7116 BFD_ASSERT (s
!= NULL
);
7117 BFD_ASSERT (s
->contents
!= NULL
);
7118 BFD_ASSERT (s
->output_section
!= NULL
);
7120 if ((my_offset
& 0x01) == 0x01)
7123 && sym_sec
->owner
!= NULL
7124 && !INTERWORK_FLAG (sym_sec
->owner
))
7126 (*_bfd_error_handler
)
7127 (_("%B(%s): warning: interworking not enabled.\n"
7128 " first occurrence: %B: Thumb call to ARM"),
7129 sym_sec
->owner
, input_bfd
, name
);
7135 myh
->root
.u
.def
.value
= my_offset
;
7137 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
7138 s
->contents
+ my_offset
);
7140 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
7141 s
->contents
+ my_offset
+ 2);
7144 /* Address of destination of the stub. */
7145 ((bfd_signed_vma
) val
)
7147 /* Offset from the start of the current section
7148 to the start of the stubs. */
7150 /* Offset of the start of this stub from the start of the stubs. */
7152 /* Address of the start of the current section. */
7153 + s
->output_section
->vma
)
7154 /* The branch instruction is 4 bytes into the stub. */
7156 /* ARM branches work from the pc of the instruction + 8. */
7159 put_arm_insn (globals
, output_bfd
,
7160 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
7161 s
->contents
+ my_offset
+ 4);
7164 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
7166 /* Now go back and fix up the original BL insn to point to here. */
7168 /* Address of where the stub is located. */
7169 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
7170 /* Address of where the BL is located. */
7171 - (input_section
->output_section
->vma
+ input_section
->output_offset
7173 /* Addend in the relocation. */
7175 /* Biassing for PC-relative addressing. */
7178 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
7183 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7185 static struct elf_link_hash_entry
*
7186 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
7193 char ** error_message
)
7196 long int ret_offset
;
7197 struct elf_link_hash_entry
* myh
;
7198 struct elf32_arm_link_hash_table
* globals
;
7200 myh
= find_arm_glue (info
, name
, error_message
);
7204 globals
= elf32_arm_hash_table (info
);
7205 BFD_ASSERT (globals
!= NULL
);
7206 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7208 my_offset
= myh
->root
.u
.def
.value
;
7210 if ((my_offset
& 0x01) == 0x01)
7213 && sym_sec
->owner
!= NULL
7214 && !INTERWORK_FLAG (sym_sec
->owner
))
7216 (*_bfd_error_handler
)
7217 (_("%B(%s): warning: interworking not enabled.\n"
7218 " first occurrence: %B: arm call to thumb"),
7219 sym_sec
->owner
, input_bfd
, name
);
7223 myh
->root
.u
.def
.value
= my_offset
;
7225 if (bfd_link_pic (info
)
7226 || globals
->root
.is_relocatable_executable
7227 || globals
->pic_veneer
)
7229 /* For relocatable objects we can't use absolute addresses,
7230 so construct the address from a relative offset. */
7231 /* TODO: If the offset is small it's probably worth
7232 constructing the address with adds. */
7233 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
7234 s
->contents
+ my_offset
);
7235 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
7236 s
->contents
+ my_offset
+ 4);
7237 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
7238 s
->contents
+ my_offset
+ 8);
7239 /* Adjust the offset by 4 for the position of the add,
7240 and 8 for the pipeline offset. */
7241 ret_offset
= (val
- (s
->output_offset
7242 + s
->output_section
->vma
7245 bfd_put_32 (output_bfd
, ret_offset
,
7246 s
->contents
+ my_offset
+ 12);
7248 else if (globals
->use_blx
)
7250 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
7251 s
->contents
+ my_offset
);
7253 /* It's a thumb address. Add the low order bit. */
7254 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
7255 s
->contents
+ my_offset
+ 4);
7259 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
7260 s
->contents
+ my_offset
);
7262 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
7263 s
->contents
+ my_offset
+ 4);
7265 /* It's a thumb address. Add the low order bit. */
7266 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
7267 s
->contents
+ my_offset
+ 8);
7273 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
7278 /* Arm code calling a Thumb function. */
7281 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
7285 asection
* input_section
,
7286 bfd_byte
* hit_data
,
7289 bfd_signed_vma addend
,
7291 char **error_message
)
7293 unsigned long int tmp
;
7296 long int ret_offset
;
7297 struct elf_link_hash_entry
* myh
;
7298 struct elf32_arm_link_hash_table
* globals
;
7300 globals
= elf32_arm_hash_table (info
);
7301 BFD_ASSERT (globals
!= NULL
);
7302 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7304 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
7305 ARM2THUMB_GLUE_SECTION_NAME
);
7306 BFD_ASSERT (s
!= NULL
);
7307 BFD_ASSERT (s
->contents
!= NULL
);
7308 BFD_ASSERT (s
->output_section
!= NULL
);
7310 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
7311 sym_sec
, val
, s
, error_message
);
7315 my_offset
= myh
->root
.u
.def
.value
;
7316 tmp
= bfd_get_32 (input_bfd
, hit_data
);
7317 tmp
= tmp
& 0xFF000000;
7319 /* Somehow these are both 4 too far, so subtract 8. */
7320 ret_offset
= (s
->output_offset
7322 + s
->output_section
->vma
7323 - (input_section
->output_offset
7324 + input_section
->output_section
->vma
7328 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
7330 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
7335 /* Populate Arm stub for an exported Thumb function. */
7338 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
7340 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
7342 struct elf_link_hash_entry
* myh
;
7343 struct elf32_arm_link_hash_entry
*eh
;
7344 struct elf32_arm_link_hash_table
* globals
;
7347 char *error_message
;
7349 eh
= elf32_arm_hash_entry (h
);
7350 /* Allocate stubs for exported Thumb functions on v4t. */
7351 if (eh
->export_glue
== NULL
)
7354 globals
= elf32_arm_hash_table (info
);
7355 BFD_ASSERT (globals
!= NULL
);
7356 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7358 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
7359 ARM2THUMB_GLUE_SECTION_NAME
);
7360 BFD_ASSERT (s
!= NULL
);
7361 BFD_ASSERT (s
->contents
!= NULL
);
7362 BFD_ASSERT (s
->output_section
!= NULL
);
7364 sec
= eh
->export_glue
->root
.u
.def
.section
;
7366 BFD_ASSERT (sec
->output_section
!= NULL
);
7368 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
7369 + sec
->output_section
->vma
;
7371 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
7372 h
->root
.u
.def
.section
->owner
,
7373 globals
->obfd
, sec
, val
, s
,
7379 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7382 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
7387 struct elf32_arm_link_hash_table
*globals
;
7389 globals
= elf32_arm_hash_table (info
);
7390 BFD_ASSERT (globals
!= NULL
);
7391 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7393 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
7394 ARM_BX_GLUE_SECTION_NAME
);
7395 BFD_ASSERT (s
!= NULL
);
7396 BFD_ASSERT (s
->contents
!= NULL
);
7397 BFD_ASSERT (s
->output_section
!= NULL
);
7399 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
7401 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
7403 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
7405 p
= s
->contents
+ glue_addr
;
7406 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
7407 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
7408 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
7409 globals
->bx_glue_offset
[reg
] |= 1;
7412 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
7415 /* Generate Arm stubs for exported Thumb symbols. */
7417 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
7418 struct bfd_link_info
*link_info
)
7420 struct elf32_arm_link_hash_table
* globals
;
7422 if (link_info
== NULL
)
7423 /* Ignore this if we are not called by the ELF backend linker. */
7426 globals
= elf32_arm_hash_table (link_info
);
7427 if (globals
== NULL
)
7430 /* If blx is available then exported Thumb symbols are OK and there is
7432 if (globals
->use_blx
)
7435 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
7439 /* Reserve space for COUNT dynamic relocations in relocation selection
7443 elf32_arm_allocate_dynrelocs (struct bfd_link_info
*info
, asection
*sreloc
,
7444 bfd_size_type count
)
7446 struct elf32_arm_link_hash_table
*htab
;
7448 htab
= elf32_arm_hash_table (info
);
7449 BFD_ASSERT (htab
->root
.dynamic_sections_created
);
7452 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
7455 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7456 dynamic, the relocations should go in SRELOC, otherwise they should
7457 go in the special .rel.iplt section. */
7460 elf32_arm_allocate_irelocs (struct bfd_link_info
*info
, asection
*sreloc
,
7461 bfd_size_type count
)
7463 struct elf32_arm_link_hash_table
*htab
;
7465 htab
= elf32_arm_hash_table (info
);
7466 if (!htab
->root
.dynamic_sections_created
)
7467 htab
->root
.irelplt
->size
+= RELOC_SIZE (htab
) * count
;
7470 BFD_ASSERT (sreloc
!= NULL
);
7471 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
7475 /* Add relocation REL to the end of relocation section SRELOC. */
7478 elf32_arm_add_dynreloc (bfd
*output_bfd
, struct bfd_link_info
*info
,
7479 asection
*sreloc
, Elf_Internal_Rela
*rel
)
7482 struct elf32_arm_link_hash_table
*htab
;
7484 htab
= elf32_arm_hash_table (info
);
7485 if (!htab
->root
.dynamic_sections_created
7486 && ELF32_R_TYPE (rel
->r_info
) == R_ARM_IRELATIVE
)
7487 sreloc
= htab
->root
.irelplt
;
7490 loc
= sreloc
->contents
;
7491 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (htab
);
7492 if (sreloc
->reloc_count
* RELOC_SIZE (htab
) > sreloc
->size
)
7494 SWAP_RELOC_OUT (htab
) (output_bfd
, rel
, loc
);
7497 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7498 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7502 elf32_arm_allocate_plt_entry (struct bfd_link_info
*info
,
7503 bfd_boolean is_iplt_entry
,
7504 union gotplt_union
*root_plt
,
7505 struct arm_plt_info
*arm_plt
)
7507 struct elf32_arm_link_hash_table
*htab
;
7511 htab
= elf32_arm_hash_table (info
);
7515 splt
= htab
->root
.iplt
;
7516 sgotplt
= htab
->root
.igotplt
;
7518 /* NaCl uses a special first entry in .iplt too. */
7519 if (htab
->nacl_p
&& splt
->size
== 0)
7520 splt
->size
+= htab
->plt_header_size
;
7522 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7523 elf32_arm_allocate_irelocs (info
, htab
->root
.irelplt
, 1);
7527 splt
= htab
->root
.splt
;
7528 sgotplt
= htab
->root
.sgotplt
;
7530 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7531 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
7533 /* If this is the first .plt entry, make room for the special
7535 if (splt
->size
== 0)
7536 splt
->size
+= htab
->plt_header_size
;
7538 htab
->next_tls_desc_index
++;
7541 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7542 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
7543 splt
->size
+= PLT_THUMB_STUB_SIZE
;
7544 root_plt
->offset
= splt
->size
;
7545 splt
->size
+= htab
->plt_entry_size
;
7547 if (!htab
->symbian_p
)
7549 /* We also need to make an entry in the .got.plt section, which
7550 will be placed in the .got section by the linker script. */
7552 arm_plt
->got_offset
= sgotplt
->size
;
7554 arm_plt
->got_offset
= sgotplt
->size
- 8 * htab
->num_tls_desc
;
7560 arm_movw_immediate (bfd_vma value
)
7562 return (value
& 0x00000fff) | ((value
& 0x0000f000) << 4);
7566 arm_movt_immediate (bfd_vma value
)
7568 return ((value
& 0x0fff0000) >> 16) | ((value
& 0xf0000000) >> 12);
7571 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7572 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7573 Otherwise, DYNINDX is the index of the symbol in the dynamic
7574 symbol table and SYM_VALUE is undefined.
7576 ROOT_PLT points to the offset of the PLT entry from the start of its
7577 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7578 bookkeeping information.
7580 Returns FALSE if there was a problem. */
7583 elf32_arm_populate_plt_entry (bfd
*output_bfd
, struct bfd_link_info
*info
,
7584 union gotplt_union
*root_plt
,
7585 struct arm_plt_info
*arm_plt
,
7586 int dynindx
, bfd_vma sym_value
)
7588 struct elf32_arm_link_hash_table
*htab
;
7594 Elf_Internal_Rela rel
;
7595 bfd_vma plt_header_size
;
7596 bfd_vma got_header_size
;
7598 htab
= elf32_arm_hash_table (info
);
7600 /* Pick the appropriate sections and sizes. */
7603 splt
= htab
->root
.iplt
;
7604 sgot
= htab
->root
.igotplt
;
7605 srel
= htab
->root
.irelplt
;
7607 /* There are no reserved entries in .igot.plt, and no special
7608 first entry in .iplt. */
7609 got_header_size
= 0;
7610 plt_header_size
= 0;
7614 splt
= htab
->root
.splt
;
7615 sgot
= htab
->root
.sgotplt
;
7616 srel
= htab
->root
.srelplt
;
7618 got_header_size
= get_elf_backend_data (output_bfd
)->got_header_size
;
7619 plt_header_size
= htab
->plt_header_size
;
7621 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
7623 /* Fill in the entry in the procedure linkage table. */
7624 if (htab
->symbian_p
)
7626 BFD_ASSERT (dynindx
>= 0);
7627 put_arm_insn (htab
, output_bfd
,
7628 elf32_arm_symbian_plt_entry
[0],
7629 splt
->contents
+ root_plt
->offset
);
7630 bfd_put_32 (output_bfd
,
7631 elf32_arm_symbian_plt_entry
[1],
7632 splt
->contents
+ root_plt
->offset
+ 4);
7634 /* Fill in the entry in the .rel.plt section. */
7635 rel
.r_offset
= (splt
->output_section
->vma
7636 + splt
->output_offset
7637 + root_plt
->offset
+ 4);
7638 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_GLOB_DAT
);
7640 /* Get the index in the procedure linkage table which
7641 corresponds to this symbol. This is the index of this symbol
7642 in all the symbols for which we are making plt entries. The
7643 first entry in the procedure linkage table is reserved. */
7644 plt_index
= ((root_plt
->offset
- plt_header_size
)
7645 / htab
->plt_entry_size
);
7649 bfd_vma got_offset
, got_address
, plt_address
;
7650 bfd_vma got_displacement
, initial_got_entry
;
7653 BFD_ASSERT (sgot
!= NULL
);
7655 /* Get the offset into the .(i)got.plt table of the entry that
7656 corresponds to this function. */
7657 got_offset
= (arm_plt
->got_offset
& -2);
7659 /* Get the index in the procedure linkage table which
7660 corresponds to this symbol. This is the index of this symbol
7661 in all the symbols for which we are making plt entries.
7662 After the reserved .got.plt entries, all symbols appear in
7663 the same order as in .plt. */
7664 plt_index
= (got_offset
- got_header_size
) / 4;
7666 /* Calculate the address of the GOT entry. */
7667 got_address
= (sgot
->output_section
->vma
7668 + sgot
->output_offset
7671 /* ...and the address of the PLT entry. */
7672 plt_address
= (splt
->output_section
->vma
7673 + splt
->output_offset
7674 + root_plt
->offset
);
7676 ptr
= splt
->contents
+ root_plt
->offset
;
7677 if (htab
->vxworks_p
&& bfd_link_pic (info
))
7682 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
7684 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
7686 val
|= got_address
- sgot
->output_section
->vma
;
7688 val
|= plt_index
* RELOC_SIZE (htab
);
7689 if (i
== 2 || i
== 5)
7690 bfd_put_32 (output_bfd
, val
, ptr
);
7692 put_arm_insn (htab
, output_bfd
, val
, ptr
);
7695 else if (htab
->vxworks_p
)
7700 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
7702 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
7706 val
|= 0xffffff & -((root_plt
->offset
+ i
* 4 + 8) >> 2);
7708 val
|= plt_index
* RELOC_SIZE (htab
);
7709 if (i
== 2 || i
== 5)
7710 bfd_put_32 (output_bfd
, val
, ptr
);
7712 put_arm_insn (htab
, output_bfd
, val
, ptr
);
7715 loc
= (htab
->srelplt2
->contents
7716 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
7718 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7719 referencing the GOT for this PLT entry. */
7720 rel
.r_offset
= plt_address
+ 8;
7721 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
7722 rel
.r_addend
= got_offset
;
7723 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7724 loc
+= RELOC_SIZE (htab
);
7726 /* Create the R_ARM_ABS32 relocation referencing the
7727 beginning of the PLT for this GOT entry. */
7728 rel
.r_offset
= got_address
;
7729 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
7731 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7733 else if (htab
->nacl_p
)
7735 /* Calculate the displacement between the PLT slot and the
7736 common tail that's part of the special initial PLT slot. */
7737 int32_t tail_displacement
7738 = ((splt
->output_section
->vma
+ splt
->output_offset
7739 + ARM_NACL_PLT_TAIL_OFFSET
)
7740 - (plt_address
+ htab
->plt_entry_size
+ 4));
7741 BFD_ASSERT ((tail_displacement
& 3) == 0);
7742 tail_displacement
>>= 2;
7744 BFD_ASSERT ((tail_displacement
& 0xff000000) == 0
7745 || (-tail_displacement
& 0xff000000) == 0);
7747 /* Calculate the displacement between the PLT slot and the entry
7748 in the GOT. The offset accounts for the value produced by
7749 adding to pc in the penultimate instruction of the PLT stub. */
7750 got_displacement
= (got_address
7751 - (plt_address
+ htab
->plt_entry_size
));
7753 /* NaCl does not support interworking at all. */
7754 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
));
7756 put_arm_insn (htab
, output_bfd
,
7757 elf32_arm_nacl_plt_entry
[0]
7758 | arm_movw_immediate (got_displacement
),
7760 put_arm_insn (htab
, output_bfd
,
7761 elf32_arm_nacl_plt_entry
[1]
7762 | arm_movt_immediate (got_displacement
),
7764 put_arm_insn (htab
, output_bfd
,
7765 elf32_arm_nacl_plt_entry
[2],
7767 put_arm_insn (htab
, output_bfd
,
7768 elf32_arm_nacl_plt_entry
[3]
7769 | (tail_displacement
& 0x00ffffff),
7772 else if (using_thumb_only (htab
))
7774 /* PR ld/16017: Generate thumb only PLT entries. */
7775 if (!using_thumb2 (htab
))
7777 /* FIXME: We ought to be able to generate thumb-1 PLT
7779 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
7784 /* Calculate the displacement between the PLT slot and the entry in
7785 the GOT. The 12-byte offset accounts for the value produced by
7786 adding to pc in the 3rd instruction of the PLT stub. */
7787 got_displacement
= got_address
- (plt_address
+ 12);
7789 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
7790 instead of 'put_thumb_insn'. */
7791 put_arm_insn (htab
, output_bfd
,
7792 elf32_thumb2_plt_entry
[0]
7793 | ((got_displacement
& 0x000000ff) << 16)
7794 | ((got_displacement
& 0x00000700) << 20)
7795 | ((got_displacement
& 0x00000800) >> 1)
7796 | ((got_displacement
& 0x0000f000) >> 12),
7798 put_arm_insn (htab
, output_bfd
,
7799 elf32_thumb2_plt_entry
[1]
7800 | ((got_displacement
& 0x00ff0000) )
7801 | ((got_displacement
& 0x07000000) << 4)
7802 | ((got_displacement
& 0x08000000) >> 17)
7803 | ((got_displacement
& 0xf0000000) >> 28),
7805 put_arm_insn (htab
, output_bfd
,
7806 elf32_thumb2_plt_entry
[2],
7808 put_arm_insn (htab
, output_bfd
,
7809 elf32_thumb2_plt_entry
[3],
7814 /* Calculate the displacement between the PLT slot and the
7815 entry in the GOT. The eight-byte offset accounts for the
7816 value produced by adding to pc in the first instruction
7818 got_displacement
= got_address
- (plt_address
+ 8);
7820 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
7822 put_thumb_insn (htab
, output_bfd
,
7823 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
7824 put_thumb_insn (htab
, output_bfd
,
7825 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
7828 if (!elf32_arm_use_long_plt_entry
)
7830 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
7832 put_arm_insn (htab
, output_bfd
,
7833 elf32_arm_plt_entry_short
[0]
7834 | ((got_displacement
& 0x0ff00000) >> 20),
7836 put_arm_insn (htab
, output_bfd
,
7837 elf32_arm_plt_entry_short
[1]
7838 | ((got_displacement
& 0x000ff000) >> 12),
7840 put_arm_insn (htab
, output_bfd
,
7841 elf32_arm_plt_entry_short
[2]
7842 | (got_displacement
& 0x00000fff),
7844 #ifdef FOUR_WORD_PLT
7845 bfd_put_32 (output_bfd
, elf32_arm_plt_entry_short
[3], ptr
+ 12);
7850 put_arm_insn (htab
, output_bfd
,
7851 elf32_arm_plt_entry_long
[0]
7852 | ((got_displacement
& 0xf0000000) >> 28),
7854 put_arm_insn (htab
, output_bfd
,
7855 elf32_arm_plt_entry_long
[1]
7856 | ((got_displacement
& 0x0ff00000) >> 20),
7858 put_arm_insn (htab
, output_bfd
,
7859 elf32_arm_plt_entry_long
[2]
7860 | ((got_displacement
& 0x000ff000) >> 12),
7862 put_arm_insn (htab
, output_bfd
,
7863 elf32_arm_plt_entry_long
[3]
7864 | (got_displacement
& 0x00000fff),
7869 /* Fill in the entry in the .rel(a).(i)plt section. */
7870 rel
.r_offset
= got_address
;
7874 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7875 The dynamic linker or static executable then calls SYM_VALUE
7876 to determine the correct run-time value of the .igot.plt entry. */
7877 rel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
7878 initial_got_entry
= sym_value
;
7882 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_JUMP_SLOT
);
7883 initial_got_entry
= (splt
->output_section
->vma
7884 + splt
->output_offset
);
7887 /* Fill in the entry in the global offset table. */
7888 bfd_put_32 (output_bfd
, initial_got_entry
,
7889 sgot
->contents
+ got_offset
);
7893 elf32_arm_add_dynreloc (output_bfd
, info
, srel
, &rel
);
7896 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
7897 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7903 /* Some relocations map to different relocations depending on the
7904 target. Return the real relocation. */
7907 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
7913 if (globals
->target1_is_rel
)
7919 return globals
->target2_reloc
;
7926 /* Return the base VMA address which should be subtracted from real addresses
7927 when resolving @dtpoff relocation.
7928 This is PT_TLS segment p_vaddr. */
7931 dtpoff_base (struct bfd_link_info
*info
)
7933 /* If tls_sec is NULL, we should have signalled an error already. */
7934 if (elf_hash_table (info
)->tls_sec
== NULL
)
7936 return elf_hash_table (info
)->tls_sec
->vma
;
7939 /* Return the relocation value for @tpoff relocation
7940 if STT_TLS virtual address is ADDRESS. */
7943 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
7945 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
7948 /* If tls_sec is NULL, we should have signalled an error already. */
7949 if (htab
->tls_sec
== NULL
)
7951 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
7952 return address
- htab
->tls_sec
->vma
+ base
;
7955 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7956 VALUE is the relocation value. */
7958 static bfd_reloc_status_type
7959 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
7962 return bfd_reloc_overflow
;
7964 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
7965 bfd_put_32 (abfd
, value
, data
);
7966 return bfd_reloc_ok
;
7969 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7970 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7971 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7973 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7974 is to then call final_link_relocate. Return other values in the
7977 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7978 the pre-relaxed code. It would be nice if the relocs were updated
7979 to match the optimization. */
7981 static bfd_reloc_status_type
7982 elf32_arm_tls_relax (struct elf32_arm_link_hash_table
*globals
,
7983 bfd
*input_bfd
, asection
*input_sec
, bfd_byte
*contents
,
7984 Elf_Internal_Rela
*rel
, unsigned long is_local
)
7988 switch (ELF32_R_TYPE (rel
->r_info
))
7991 return bfd_reloc_notsupported
;
7993 case R_ARM_TLS_GOTDESC
:
7998 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8000 insn
-= 5; /* THUMB */
8002 insn
-= 8; /* ARM */
8004 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
8005 return bfd_reloc_continue
;
8007 case R_ARM_THM_TLS_DESCSEQ
:
8009 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
);
8010 if ((insn
& 0xff78) == 0x4478) /* add rx, pc */
8014 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
8016 else if ((insn
& 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
8020 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
8023 bfd_put_16 (input_bfd
, insn
& 0xf83f, contents
+ rel
->r_offset
);
8025 else if ((insn
& 0xff87) == 0x4780) /* blx rx */
8029 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
8032 bfd_put_16 (input_bfd
, 0x4600 | (insn
& 0x78),
8033 contents
+ rel
->r_offset
);
8037 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
8038 /* It's a 32 bit instruction, fetch the rest of it for
8039 error generation. */
8041 | bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
+ 2);
8042 (*_bfd_error_handler
)
8043 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
8044 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
8045 return bfd_reloc_notsupported
;
8049 case R_ARM_TLS_DESCSEQ
:
8051 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8052 if ((insn
& 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
8056 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xffff),
8057 contents
+ rel
->r_offset
);
8059 else if ((insn
& 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
8063 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
8066 bfd_put_32 (input_bfd
, insn
& 0xfffff000,
8067 contents
+ rel
->r_offset
);
8069 else if ((insn
& 0xfffffff0) == 0xe12fff30) /* blx rx */
8073 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
8076 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xf),
8077 contents
+ rel
->r_offset
);
8081 (*_bfd_error_handler
)
8082 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
8083 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
8084 return bfd_reloc_notsupported
;
8088 case R_ARM_TLS_CALL
:
8089 /* GD->IE relaxation, turn the instruction into 'nop' or
8090 'ldr r0, [pc,r0]' */
8091 insn
= is_local
? 0xe1a00000 : 0xe79f0000;
8092 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
8095 case R_ARM_THM_TLS_CALL
:
8096 /* GD->IE relaxation. */
8098 /* add r0,pc; ldr r0, [r0] */
8100 else if (arch_has_thumb2_nop (globals
))
8107 bfd_put_16 (input_bfd
, insn
>> 16, contents
+ rel
->r_offset
);
8108 bfd_put_16 (input_bfd
, insn
& 0xffff, contents
+ rel
->r_offset
+ 2);
8111 return bfd_reloc_ok
;
8114 /* For a given value of n, calculate the value of G_n as required to
8115 deal with group relocations. We return it in the form of an
8116 encoded constant-and-rotation, together with the final residual. If n is
8117 specified as less than zero, then final_residual is filled with the
8118 input value and no further action is performed. */
8121 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
8125 bfd_vma encoded_g_n
= 0;
8126 bfd_vma residual
= value
; /* Also known as Y_n. */
8128 for (current_n
= 0; current_n
<= n
; current_n
++)
8132 /* Calculate which part of the value to mask. */
8139 /* Determine the most significant bit in the residual and
8140 align the resulting value to a 2-bit boundary. */
8141 for (msb
= 30; msb
>= 0; msb
-= 2)
8142 if (residual
& (3 << msb
))
8145 /* The desired shift is now (msb - 6), or zero, whichever
8152 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8153 g_n
= residual
& (0xff << shift
);
8154 encoded_g_n
= (g_n
>> shift
)
8155 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
8157 /* Calculate the residual for the next time around. */
8161 *final_residual
= residual
;
8166 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
8167 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
8170 identify_add_or_sub (bfd_vma insn
)
8172 int opcode
= insn
& 0x1e00000;
8174 if (opcode
== 1 << 23) /* ADD */
8177 if (opcode
== 1 << 22) /* SUB */
8183 /* Perform a relocation as part of a final link. */
8185 static bfd_reloc_status_type
8186 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
8189 asection
* input_section
,
8190 bfd_byte
* contents
,
8191 Elf_Internal_Rela
* rel
,
8193 struct bfd_link_info
* info
,
8195 const char * sym_name
,
8196 unsigned char st_type
,
8197 enum arm_st_branch_type branch_type
,
8198 struct elf_link_hash_entry
* h
,
8199 bfd_boolean
* unresolved_reloc_p
,
8200 char ** error_message
)
8202 unsigned long r_type
= howto
->type
;
8203 unsigned long r_symndx
;
8204 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
8205 bfd_vma
* local_got_offsets
;
8206 bfd_vma
* local_tlsdesc_gotents
;
8209 asection
* sreloc
= NULL
;
8212 bfd_signed_vma signed_addend
;
8213 unsigned char dynreloc_st_type
;
8214 bfd_vma dynreloc_value
;
8215 struct elf32_arm_link_hash_table
* globals
;
8216 struct elf32_arm_link_hash_entry
*eh
;
8217 union gotplt_union
*root_plt
;
8218 struct arm_plt_info
*arm_plt
;
8220 bfd_vma gotplt_offset
;
8221 bfd_boolean has_iplt_entry
;
8223 globals
= elf32_arm_hash_table (info
);
8224 if (globals
== NULL
)
8225 return bfd_reloc_notsupported
;
8227 BFD_ASSERT (is_arm_elf (input_bfd
));
8229 /* Some relocation types map to different relocations depending on the
8230 target. We pick the right one here. */
8231 r_type
= arm_real_reloc_type (globals
, r_type
);
8233 /* It is possible to have linker relaxations on some TLS access
8234 models. Update our information here. */
8235 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
8237 if (r_type
!= howto
->type
)
8238 howto
= elf32_arm_howto_from_type (r_type
);
8240 eh
= (struct elf32_arm_link_hash_entry
*) h
;
8241 sgot
= globals
->root
.sgot
;
8242 local_got_offsets
= elf_local_got_offsets (input_bfd
);
8243 local_tlsdesc_gotents
= elf32_arm_local_tlsdesc_gotent (input_bfd
);
8245 if (globals
->root
.dynamic_sections_created
)
8246 srelgot
= globals
->root
.srelgot
;
8250 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8252 if (globals
->use_rel
)
8254 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
8256 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8259 signed_addend
&= ~ howto
->src_mask
;
8260 signed_addend
|= addend
;
8263 signed_addend
= addend
;
8266 addend
= signed_addend
= rel
->r_addend
;
8268 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8269 are resolving a function call relocation. */
8270 if (using_thumb_only (globals
)
8271 && (r_type
== R_ARM_THM_CALL
8272 || r_type
== R_ARM_THM_JUMP24
)
8273 && branch_type
== ST_BRANCH_TO_ARM
)
8274 branch_type
= ST_BRANCH_TO_THUMB
;
8276 /* Record the symbol information that should be used in dynamic
8278 dynreloc_st_type
= st_type
;
8279 dynreloc_value
= value
;
8280 if (branch_type
== ST_BRANCH_TO_THUMB
)
8281 dynreloc_value
|= 1;
8283 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8284 VALUE appropriately for relocations that we resolve at link time. */
8285 has_iplt_entry
= FALSE
;
8286 if (elf32_arm_get_plt_info (input_bfd
, eh
, r_symndx
, &root_plt
, &arm_plt
)
8287 && root_plt
->offset
!= (bfd_vma
) -1)
8289 plt_offset
= root_plt
->offset
;
8290 gotplt_offset
= arm_plt
->got_offset
;
8292 if (h
== NULL
|| eh
->is_iplt
)
8294 has_iplt_entry
= TRUE
;
8295 splt
= globals
->root
.iplt
;
8297 /* Populate .iplt entries here, because not all of them will
8298 be seen by finish_dynamic_symbol. The lower bit is set if
8299 we have already populated the entry. */
8304 if (elf32_arm_populate_plt_entry (output_bfd
, info
, root_plt
, arm_plt
,
8305 -1, dynreloc_value
))
8306 root_plt
->offset
|= 1;
8308 return bfd_reloc_notsupported
;
8311 /* Static relocations always resolve to the .iplt entry. */
8313 value
= (splt
->output_section
->vma
8314 + splt
->output_offset
8316 branch_type
= ST_BRANCH_TO_ARM
;
8318 /* If there are non-call relocations that resolve to the .iplt
8319 entry, then all dynamic ones must too. */
8320 if (arm_plt
->noncall_refcount
!= 0)
8322 dynreloc_st_type
= st_type
;
8323 dynreloc_value
= value
;
8327 /* We populate the .plt entry in finish_dynamic_symbol. */
8328 splt
= globals
->root
.splt
;
8333 plt_offset
= (bfd_vma
) -1;
8334 gotplt_offset
= (bfd_vma
) -1;
8340 /* We don't need to find a value for this symbol. It's just a
8342 *unresolved_reloc_p
= FALSE
;
8343 return bfd_reloc_ok
;
8346 if (!globals
->vxworks_p
)
8347 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
8351 case R_ARM_ABS32_NOI
:
8353 case R_ARM_REL32_NOI
:
8359 /* Handle relocations which should use the PLT entry. ABS32/REL32
8360 will use the symbol's value, which may point to a PLT entry, but we
8361 don't need to handle that here. If we created a PLT entry, all
8362 branches in this object should go to it, except if the PLT is too
8363 far away, in which case a long branch stub should be inserted. */
8364 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
8365 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
8366 && r_type
!= R_ARM_CALL
8367 && r_type
!= R_ARM_JUMP24
8368 && r_type
!= R_ARM_PLT32
)
8369 && plt_offset
!= (bfd_vma
) -1)
8371 /* If we've created a .plt section, and assigned a PLT entry
8372 to this function, it must either be a STT_GNU_IFUNC reference
8373 or not be known to bind locally. In other cases, we should
8374 have cleared the PLT entry by now. */
8375 BFD_ASSERT (has_iplt_entry
|| !SYMBOL_CALLS_LOCAL (info
, h
));
8377 value
= (splt
->output_section
->vma
8378 + splt
->output_offset
8380 *unresolved_reloc_p
= FALSE
;
8381 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8382 contents
, rel
->r_offset
, value
,
8386 /* When generating a shared object or relocatable executable, these
8387 relocations are copied into the output file to be resolved at
8389 if ((bfd_link_pic (info
)
8390 || globals
->root
.is_relocatable_executable
)
8391 && (input_section
->flags
& SEC_ALLOC
)
8392 && !(globals
->vxworks_p
8393 && strcmp (input_section
->output_section
->name
,
8395 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
8396 || !SYMBOL_CALLS_LOCAL (info
, h
))
8397 && !(input_bfd
== globals
->stub_bfd
8398 && strstr (input_section
->name
, STUB_SUFFIX
))
8400 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8401 || h
->root
.type
!= bfd_link_hash_undefweak
)
8402 && r_type
!= R_ARM_PC24
8403 && r_type
!= R_ARM_CALL
8404 && r_type
!= R_ARM_JUMP24
8405 && r_type
!= R_ARM_PREL31
8406 && r_type
!= R_ARM_PLT32
)
8408 Elf_Internal_Rela outrel
;
8409 bfd_boolean skip
, relocate
;
8411 if ((r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
8414 char *v
= _("shared object");
8416 if (bfd_link_executable (info
))
8417 v
= _("PIE executable");
8419 (*_bfd_error_handler
)
8420 (_("%B: relocation %s against external or undefined symbol `%s'"
8421 " can not be used when making a %s; recompile with -fPIC"), input_bfd
,
8422 elf32_arm_howto_table_1
[r_type
].name
, h
->root
.root
.string
, v
);
8423 return bfd_reloc_notsupported
;
8426 *unresolved_reloc_p
= FALSE
;
8428 if (sreloc
== NULL
&& globals
->root
.dynamic_sections_created
)
8430 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
8431 ! globals
->use_rel
);
8434 return bfd_reloc_notsupported
;
8440 outrel
.r_addend
= addend
;
8442 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
8444 if (outrel
.r_offset
== (bfd_vma
) -1)
8446 else if (outrel
.r_offset
== (bfd_vma
) -2)
8447 skip
= TRUE
, relocate
= TRUE
;
8448 outrel
.r_offset
+= (input_section
->output_section
->vma
8449 + input_section
->output_offset
);
8452 memset (&outrel
, 0, sizeof outrel
);
8455 && (!bfd_link_pic (info
)
8456 || !SYMBOLIC_BIND (info
, h
)
8457 || !h
->def_regular
))
8458 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
8463 /* This symbol is local, or marked to become local. */
8464 BFD_ASSERT (r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
);
8465 if (globals
->symbian_p
)
8469 /* On Symbian OS, the data segment and text segement
8470 can be relocated independently. Therefore, we
8471 must indicate the segment to which this
8472 relocation is relative. The BPABI allows us to
8473 use any symbol in the right segment; we just use
8474 the section symbol as it is convenient. (We
8475 cannot use the symbol given by "h" directly as it
8476 will not appear in the dynamic symbol table.)
8478 Note that the dynamic linker ignores the section
8479 symbol value, so we don't subtract osec->vma
8480 from the emitted reloc addend. */
8482 osec
= sym_sec
->output_section
;
8484 osec
= input_section
->output_section
;
8485 symbol
= elf_section_data (osec
)->dynindx
;
8488 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
8490 if ((osec
->flags
& SEC_READONLY
) == 0
8491 && htab
->data_index_section
!= NULL
)
8492 osec
= htab
->data_index_section
;
8494 osec
= htab
->text_index_section
;
8495 symbol
= elf_section_data (osec
)->dynindx
;
8497 BFD_ASSERT (symbol
!= 0);
8500 /* On SVR4-ish systems, the dynamic loader cannot
8501 relocate the text and data segments independently,
8502 so the symbol does not matter. */
8504 if (dynreloc_st_type
== STT_GNU_IFUNC
)
8505 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8506 to the .iplt entry. Instead, every non-call reference
8507 must use an R_ARM_IRELATIVE relocation to obtain the
8508 correct run-time address. */
8509 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_IRELATIVE
);
8511 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
8512 if (globals
->use_rel
)
8515 outrel
.r_addend
+= dynreloc_value
;
8518 elf32_arm_add_dynreloc (output_bfd
, info
, sreloc
, &outrel
);
8520 /* If this reloc is against an external symbol, we do not want to
8521 fiddle with the addend. Otherwise, we need to include the symbol
8522 value so that it becomes an addend for the dynamic reloc. */
8524 return bfd_reloc_ok
;
8526 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8527 contents
, rel
->r_offset
,
8528 dynreloc_value
, (bfd_vma
) 0);
8530 else switch (r_type
)
8533 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
8535 case R_ARM_XPC25
: /* Arm BLX instruction. */
8538 case R_ARM_PC24
: /* Arm B/BL instruction. */
8541 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
8543 if (r_type
== R_ARM_XPC25
)
8545 /* Check for Arm calling Arm function. */
8546 /* FIXME: Should we translate the instruction into a BL
8547 instruction instead ? */
8548 if (branch_type
!= ST_BRANCH_TO_THUMB
)
8549 (*_bfd_error_handler
)
8550 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8552 h
? h
->root
.root
.string
: "(local)");
8554 else if (r_type
== R_ARM_PC24
)
8556 /* Check for Arm calling Thumb function. */
8557 if (branch_type
== ST_BRANCH_TO_THUMB
)
8559 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
8560 output_bfd
, input_section
,
8561 hit_data
, sym_sec
, rel
->r_offset
,
8562 signed_addend
, value
,
8564 return bfd_reloc_ok
;
8566 return bfd_reloc_dangerous
;
8570 /* Check if a stub has to be inserted because the
8571 destination is too far or we are changing mode. */
8572 if ( r_type
== R_ARM_CALL
8573 || r_type
== R_ARM_JUMP24
8574 || r_type
== R_ARM_PLT32
)
8576 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
8577 struct elf32_arm_link_hash_entry
*hash
;
8579 hash
= (struct elf32_arm_link_hash_entry
*) h
;
8580 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
8581 st_type
, &branch_type
,
8582 hash
, value
, sym_sec
,
8583 input_bfd
, sym_name
);
8585 if (stub_type
!= arm_stub_none
)
8587 /* The target is out of reach, so redirect the
8588 branch to the local stub for this function. */
8589 stub_entry
= elf32_arm_get_stub_entry (input_section
,
8594 if (stub_entry
!= NULL
)
8595 value
= (stub_entry
->stub_offset
8596 + stub_entry
->stub_sec
->output_offset
8597 + stub_entry
->stub_sec
->output_section
->vma
);
8599 if (plt_offset
!= (bfd_vma
) -1)
8600 *unresolved_reloc_p
= FALSE
;
8605 /* If the call goes through a PLT entry, make sure to
8606 check distance to the right destination address. */
8607 if (plt_offset
!= (bfd_vma
) -1)
8609 value
= (splt
->output_section
->vma
8610 + splt
->output_offset
8612 *unresolved_reloc_p
= FALSE
;
8613 /* The PLT entry is in ARM mode, regardless of the
8615 branch_type
= ST_BRANCH_TO_ARM
;
8620 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8622 S is the address of the symbol in the relocation.
8623 P is address of the instruction being relocated.
8624 A is the addend (extracted from the instruction) in bytes.
8626 S is held in 'value'.
8627 P is the base address of the section containing the
8628 instruction plus the offset of the reloc into that
8630 (input_section->output_section->vma +
8631 input_section->output_offset +
8633 A is the addend, converted into bytes, ie:
8636 Note: None of these operations have knowledge of the pipeline
8637 size of the processor, thus it is up to the assembler to
8638 encode this information into the addend. */
8639 value
-= (input_section
->output_section
->vma
8640 + input_section
->output_offset
);
8641 value
-= rel
->r_offset
;
8642 if (globals
->use_rel
)
8643 value
+= (signed_addend
<< howto
->size
);
8645 /* RELA addends do not have to be adjusted by howto->size. */
8646 value
+= signed_addend
;
8648 signed_addend
= value
;
8649 signed_addend
>>= howto
->rightshift
;
8651 /* A branch to an undefined weak symbol is turned into a jump to
8652 the next instruction unless a PLT entry will be created.
8653 Do the same for local undefined symbols (but not for STN_UNDEF).
8654 The jump to the next instruction is optimized as a NOP depending
8655 on the architecture. */
8656 if (h
? (h
->root
.type
== bfd_link_hash_undefweak
8657 && plt_offset
== (bfd_vma
) -1)
8658 : r_symndx
!= STN_UNDEF
&& bfd_is_und_section (sym_sec
))
8660 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000);
8662 if (arch_has_arm_nop (globals
))
8663 value
|= 0x0320f000;
8665 value
|= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8669 /* Perform a signed range check. */
8670 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
8671 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
8672 return bfd_reloc_overflow
;
8674 addend
= (value
& 2);
8676 value
= (signed_addend
& howto
->dst_mask
)
8677 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
8679 if (r_type
== R_ARM_CALL
)
8681 /* Set the H bit in the BLX instruction. */
8682 if (branch_type
== ST_BRANCH_TO_THUMB
)
8687 value
&= ~(bfd_vma
)(1 << 24);
8690 /* Select the correct instruction (BL or BLX). */
8691 /* Only if we are not handling a BL to a stub. In this
8692 case, mode switching is performed by the stub. */
8693 if (branch_type
== ST_BRANCH_TO_THUMB
&& !stub_entry
)
8695 else if (stub_entry
|| branch_type
!= ST_BRANCH_UNKNOWN
)
8697 value
&= ~(bfd_vma
)(1 << 28);
8707 if (branch_type
== ST_BRANCH_TO_THUMB
)
8711 case R_ARM_ABS32_NOI
:
8717 if (branch_type
== ST_BRANCH_TO_THUMB
)
8719 value
-= (input_section
->output_section
->vma
8720 + input_section
->output_offset
+ rel
->r_offset
);
8723 case R_ARM_REL32_NOI
:
8725 value
-= (input_section
->output_section
->vma
8726 + input_section
->output_offset
+ rel
->r_offset
);
8730 value
-= (input_section
->output_section
->vma
8731 + input_section
->output_offset
+ rel
->r_offset
);
8732 value
+= signed_addend
;
8733 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
8735 /* Check for overflow. */
8736 if ((value
^ (value
>> 1)) & (1 << 30))
8737 return bfd_reloc_overflow
;
8739 value
&= 0x7fffffff;
8740 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
8741 if (branch_type
== ST_BRANCH_TO_THUMB
)
8746 bfd_put_32 (input_bfd
, value
, hit_data
);
8747 return bfd_reloc_ok
;
8750 /* PR 16202: Refectch the addend using the correct size. */
8751 if (globals
->use_rel
)
8752 addend
= bfd_get_8 (input_bfd
, hit_data
);
8755 /* There is no way to tell whether the user intended to use a signed or
8756 unsigned addend. When checking for overflow we accept either,
8757 as specified by the AAELF. */
8758 if ((long) value
> 0xff || (long) value
< -0x80)
8759 return bfd_reloc_overflow
;
8761 bfd_put_8 (input_bfd
, value
, hit_data
);
8762 return bfd_reloc_ok
;
8765 /* PR 16202: Refectch the addend using the correct size. */
8766 if (globals
->use_rel
)
8767 addend
= bfd_get_16 (input_bfd
, hit_data
);
8770 /* See comment for R_ARM_ABS8. */
8771 if ((long) value
> 0xffff || (long) value
< -0x8000)
8772 return bfd_reloc_overflow
;
8774 bfd_put_16 (input_bfd
, value
, hit_data
);
8775 return bfd_reloc_ok
;
8777 case R_ARM_THM_ABS5
:
8778 /* Support ldr and str instructions for the thumb. */
8779 if (globals
->use_rel
)
8781 /* Need to refetch addend. */
8782 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
8783 /* ??? Need to determine shift amount from operand size. */
8784 addend
>>= howto
->rightshift
;
8788 /* ??? Isn't value unsigned? */
8789 if ((long) value
> 0x1f || (long) value
< -0x10)
8790 return bfd_reloc_overflow
;
8792 /* ??? Value needs to be properly shifted into place first. */
8793 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
8794 bfd_put_16 (input_bfd
, value
, hit_data
);
8795 return bfd_reloc_ok
;
8797 case R_ARM_THM_ALU_PREL_11_0
:
8798 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8801 bfd_signed_vma relocation
;
8803 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
8804 | bfd_get_16 (input_bfd
, hit_data
+ 2);
8806 if (globals
->use_rel
)
8808 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
8809 | ((insn
& (1 << 26)) >> 15);
8810 if (insn
& 0xf00000)
8811 signed_addend
= -signed_addend
;
8814 relocation
= value
+ signed_addend
;
8815 relocation
-= Pa (input_section
->output_section
->vma
8816 + input_section
->output_offset
8821 if (value
>= 0x1000)
8822 return bfd_reloc_overflow
;
8824 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
8825 | ((value
& 0x700) << 4)
8826 | ((value
& 0x800) << 15);
8830 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8831 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8833 return bfd_reloc_ok
;
8837 /* PR 10073: This reloc is not generated by the GNU toolchain,
8838 but it is supported for compatibility with third party libraries
8839 generated by other compilers, specifically the ARM/IAR. */
8842 bfd_signed_vma relocation
;
8844 insn
= bfd_get_16 (input_bfd
, hit_data
);
8846 if (globals
->use_rel
)
8847 addend
= ((((insn
& 0x00ff) << 2) + 4) & 0x3ff) -4;
8849 relocation
= value
+ addend
;
8850 relocation
-= Pa (input_section
->output_section
->vma
8851 + input_section
->output_offset
8856 /* We do not check for overflow of this reloc. Although strictly
8857 speaking this is incorrect, it appears to be necessary in order
8858 to work with IAR generated relocs. Since GCC and GAS do not
8859 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8860 a problem for them. */
8863 insn
= (insn
& 0xff00) | (value
>> 2);
8865 bfd_put_16 (input_bfd
, insn
, hit_data
);
8867 return bfd_reloc_ok
;
8870 case R_ARM_THM_PC12
:
8871 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8874 bfd_signed_vma relocation
;
8876 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
8877 | bfd_get_16 (input_bfd
, hit_data
+ 2);
8879 if (globals
->use_rel
)
8881 signed_addend
= insn
& 0xfff;
8882 if (!(insn
& (1 << 23)))
8883 signed_addend
= -signed_addend
;
8886 relocation
= value
+ signed_addend
;
8887 relocation
-= Pa (input_section
->output_section
->vma
8888 + input_section
->output_offset
8893 if (value
>= 0x1000)
8894 return bfd_reloc_overflow
;
8896 insn
= (insn
& 0xff7ff000) | value
;
8897 if (relocation
>= 0)
8900 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8901 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8903 return bfd_reloc_ok
;
8906 case R_ARM_THM_XPC22
:
8907 case R_ARM_THM_CALL
:
8908 case R_ARM_THM_JUMP24
:
8909 /* Thumb BL (branch long instruction). */
8913 bfd_boolean overflow
= FALSE
;
8914 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
8915 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
8916 bfd_signed_vma reloc_signed_max
;
8917 bfd_signed_vma reloc_signed_min
;
8919 bfd_signed_vma signed_check
;
8921 const int thumb2
= using_thumb2 (globals
);
8923 /* A branch to an undefined weak symbol is turned into a jump to
8924 the next instruction unless a PLT entry will be created.
8925 The jump to the next instruction is optimized as a NOP.W for
8926 Thumb-2 enabled architectures. */
8927 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
8928 && plt_offset
== (bfd_vma
) -1)
8930 if (arch_has_thumb2_nop (globals
))
8932 bfd_put_16 (input_bfd
, 0xf3af, hit_data
);
8933 bfd_put_16 (input_bfd
, 0x8000, hit_data
+ 2);
8937 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
8938 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
8940 return bfd_reloc_ok
;
8943 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8944 with Thumb-1) involving the J1 and J2 bits. */
8945 if (globals
->use_rel
)
8947 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
8948 bfd_vma upper
= upper_insn
& 0x3ff;
8949 bfd_vma lower
= lower_insn
& 0x7ff;
8950 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
8951 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
8952 bfd_vma i1
= j1
^ s
? 0 : 1;
8953 bfd_vma i2
= j2
^ s
? 0 : 1;
8955 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
8957 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
8959 signed_addend
= addend
;
8962 if (r_type
== R_ARM_THM_XPC22
)
8964 /* Check for Thumb to Thumb call. */
8965 /* FIXME: Should we translate the instruction into a BL
8966 instruction instead ? */
8967 if (branch_type
== ST_BRANCH_TO_THUMB
)
8968 (*_bfd_error_handler
)
8969 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8971 h
? h
->root
.root
.string
: "(local)");
8975 /* If it is not a call to Thumb, assume call to Arm.
8976 If it is a call relative to a section name, then it is not a
8977 function call at all, but rather a long jump. Calls through
8978 the PLT do not require stubs. */
8979 if (branch_type
== ST_BRANCH_TO_ARM
&& plt_offset
== (bfd_vma
) -1)
8981 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
8983 /* Convert BL to BLX. */
8984 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8986 else if (( r_type
!= R_ARM_THM_CALL
)
8987 && (r_type
!= R_ARM_THM_JUMP24
))
8989 if (elf32_thumb_to_arm_stub
8990 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
8991 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
8993 return bfd_reloc_ok
;
8995 return bfd_reloc_dangerous
;
8998 else if (branch_type
== ST_BRANCH_TO_THUMB
9000 && r_type
== R_ARM_THM_CALL
)
9002 /* Make sure this is a BL. */
9003 lower_insn
|= 0x1800;
9007 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
9008 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
9010 /* Check if a stub has to be inserted because the destination
9012 struct elf32_arm_stub_hash_entry
*stub_entry
;
9013 struct elf32_arm_link_hash_entry
*hash
;
9015 hash
= (struct elf32_arm_link_hash_entry
*) h
;
9017 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
9018 st_type
, &branch_type
,
9019 hash
, value
, sym_sec
,
9020 input_bfd
, sym_name
);
9022 if (stub_type
!= arm_stub_none
)
9024 /* The target is out of reach or we are changing modes, so
9025 redirect the branch to the local stub for this
9027 stub_entry
= elf32_arm_get_stub_entry (input_section
,
9031 if (stub_entry
!= NULL
)
9033 value
= (stub_entry
->stub_offset
9034 + stub_entry
->stub_sec
->output_offset
9035 + stub_entry
->stub_sec
->output_section
->vma
);
9037 if (plt_offset
!= (bfd_vma
) -1)
9038 *unresolved_reloc_p
= FALSE
;
9041 /* If this call becomes a call to Arm, force BLX. */
9042 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
9045 && !arm_stub_is_thumb (stub_entry
->stub_type
))
9046 || branch_type
!= ST_BRANCH_TO_THUMB
)
9047 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
9052 /* Handle calls via the PLT. */
9053 if (stub_type
== arm_stub_none
&& plt_offset
!= (bfd_vma
) -1)
9055 value
= (splt
->output_section
->vma
9056 + splt
->output_offset
9059 if (globals
->use_blx
9060 && r_type
== R_ARM_THM_CALL
9061 && ! using_thumb_only (globals
))
9063 /* If the Thumb BLX instruction is available, convert
9064 the BL to a BLX instruction to call the ARM-mode
9066 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
9067 branch_type
= ST_BRANCH_TO_ARM
;
9071 if (! using_thumb_only (globals
))
9072 /* Target the Thumb stub before the ARM PLT entry. */
9073 value
-= PLT_THUMB_STUB_SIZE
;
9074 branch_type
= ST_BRANCH_TO_THUMB
;
9076 *unresolved_reloc_p
= FALSE
;
9079 relocation
= value
+ signed_addend
;
9081 relocation
-= (input_section
->output_section
->vma
9082 + input_section
->output_offset
9085 check
= relocation
>> howto
->rightshift
;
9087 /* If this is a signed value, the rightshift just dropped
9088 leading 1 bits (assuming twos complement). */
9089 if ((bfd_signed_vma
) relocation
>= 0)
9090 signed_check
= check
;
9092 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
9094 /* Calculate the permissable maximum and minimum values for
9095 this relocation according to whether we're relocating for
9097 bitsize
= howto
->bitsize
;
9100 reloc_signed_max
= (1 << (bitsize
- 1)) - 1;
9101 reloc_signed_min
= ~reloc_signed_max
;
9103 /* Assumes two's complement. */
9104 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
9107 if ((lower_insn
& 0x5000) == 0x4000)
9108 /* For a BLX instruction, make sure that the relocation is rounded up
9109 to a word boundary. This follows the semantics of the instruction
9110 which specifies that bit 1 of the target address will come from bit
9111 1 of the base address. */
9112 relocation
= (relocation
+ 2) & ~ 3;
9114 /* Put RELOCATION back into the insn. Assumes two's complement.
9115 We use the Thumb-2 encoding, which is safe even if dealing with
9116 a Thumb-1 instruction by virtue of our overflow check above. */
9117 reloc_sign
= (signed_check
< 0) ? 1 : 0;
9118 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
9119 | ((relocation
>> 12) & 0x3ff)
9120 | (reloc_sign
<< 10);
9121 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
9122 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
9123 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
9124 | ((relocation
>> 1) & 0x7ff);
9126 /* Put the relocated value back in the object file: */
9127 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
9128 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
9130 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
9134 case R_ARM_THM_JUMP19
:
9135 /* Thumb32 conditional branch instruction. */
9138 bfd_boolean overflow
= FALSE
;
9139 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
9140 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
9141 bfd_signed_vma reloc_signed_max
= 0xffffe;
9142 bfd_signed_vma reloc_signed_min
= -0x100000;
9143 bfd_signed_vma signed_check
;
9144 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
9145 struct elf32_arm_stub_hash_entry
*stub_entry
;
9146 struct elf32_arm_link_hash_entry
*hash
;
9148 /* Need to refetch the addend, reconstruct the top three bits,
9149 and squish the two 11 bit pieces together. */
9150 if (globals
->use_rel
)
9152 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
9153 bfd_vma upper
= (upper_insn
& 0x003f);
9154 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
9155 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
9156 bfd_vma lower
= (lower_insn
& 0x07ff);
9161 upper
-= 0x0100; /* Sign extend. */
9163 addend
= (upper
<< 12) | (lower
<< 1);
9164 signed_addend
= addend
;
9167 /* Handle calls via the PLT. */
9168 if (plt_offset
!= (bfd_vma
) -1)
9170 value
= (splt
->output_section
->vma
9171 + splt
->output_offset
9173 /* Target the Thumb stub before the ARM PLT entry. */
9174 value
-= PLT_THUMB_STUB_SIZE
;
9175 *unresolved_reloc_p
= FALSE
;
9178 hash
= (struct elf32_arm_link_hash_entry
*)h
;
9180 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
9181 st_type
, &branch_type
,
9182 hash
, value
, sym_sec
,
9183 input_bfd
, sym_name
);
9184 if (stub_type
!= arm_stub_none
)
9186 stub_entry
= elf32_arm_get_stub_entry (input_section
,
9190 if (stub_entry
!= NULL
)
9192 value
= (stub_entry
->stub_offset
9193 + stub_entry
->stub_sec
->output_offset
9194 + stub_entry
->stub_sec
->output_section
->vma
);
9198 relocation
= value
+ signed_addend
;
9199 relocation
-= (input_section
->output_section
->vma
9200 + input_section
->output_offset
9202 signed_check
= (bfd_signed_vma
) relocation
;
9204 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
9207 /* Put RELOCATION back into the insn. */
9209 bfd_vma S
= (relocation
& 0x00100000) >> 20;
9210 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
9211 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
9212 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
9213 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
9215 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
9216 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
9219 /* Put the relocated value back in the object file: */
9220 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
9221 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
9223 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
9226 case R_ARM_THM_JUMP11
:
9227 case R_ARM_THM_JUMP8
:
9228 case R_ARM_THM_JUMP6
:
9229 /* Thumb B (branch) instruction). */
9231 bfd_signed_vma relocation
;
9232 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
9233 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
9234 bfd_signed_vma signed_check
;
9236 /* CZB cannot jump backward. */
9237 if (r_type
== R_ARM_THM_JUMP6
)
9238 reloc_signed_min
= 0;
9240 if (globals
->use_rel
)
9242 /* Need to refetch addend. */
9243 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
9244 if (addend
& ((howto
->src_mask
+ 1) >> 1))
9247 signed_addend
&= ~ howto
->src_mask
;
9248 signed_addend
|= addend
;
9251 signed_addend
= addend
;
9252 /* The value in the insn has been right shifted. We need to
9253 undo this, so that we can perform the address calculation
9254 in terms of bytes. */
9255 signed_addend
<<= howto
->rightshift
;
9257 relocation
= value
+ signed_addend
;
9259 relocation
-= (input_section
->output_section
->vma
9260 + input_section
->output_offset
9263 relocation
>>= howto
->rightshift
;
9264 signed_check
= relocation
;
9266 if (r_type
== R_ARM_THM_JUMP6
)
9267 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
9269 relocation
&= howto
->dst_mask
;
9270 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
9272 bfd_put_16 (input_bfd
, relocation
, hit_data
);
9274 /* Assumes two's complement. */
9275 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
9276 return bfd_reloc_overflow
;
9278 return bfd_reloc_ok
;
9281 case R_ARM_ALU_PCREL7_0
:
9282 case R_ARM_ALU_PCREL15_8
:
9283 case R_ARM_ALU_PCREL23_15
:
9288 insn
= bfd_get_32 (input_bfd
, hit_data
);
9289 if (globals
->use_rel
)
9291 /* Extract the addend. */
9292 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
9293 signed_addend
= addend
;
9295 relocation
= value
+ signed_addend
;
9297 relocation
-= (input_section
->output_section
->vma
9298 + input_section
->output_offset
9300 insn
= (insn
& ~0xfff)
9301 | ((howto
->bitpos
<< 7) & 0xf00)
9302 | ((relocation
>> howto
->bitpos
) & 0xff);
9303 bfd_put_32 (input_bfd
, value
, hit_data
);
9305 return bfd_reloc_ok
;
9307 case R_ARM_GNU_VTINHERIT
:
9308 case R_ARM_GNU_VTENTRY
:
9309 return bfd_reloc_ok
;
9311 case R_ARM_GOTOFF32
:
9312 /* Relocation is relative to the start of the
9313 global offset table. */
9315 BFD_ASSERT (sgot
!= NULL
);
9317 return bfd_reloc_notsupported
;
9319 /* If we are addressing a Thumb function, we need to adjust the
9320 address by one, so that attempts to call the function pointer will
9321 correctly interpret it as Thumb code. */
9322 if (branch_type
== ST_BRANCH_TO_THUMB
)
9325 /* Note that sgot->output_offset is not involved in this
9326 calculation. We always want the start of .got. If we
9327 define _GLOBAL_OFFSET_TABLE in a different way, as is
9328 permitted by the ABI, we might have to change this
9330 value
-= sgot
->output_section
->vma
;
9331 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9332 contents
, rel
->r_offset
, value
,
9336 /* Use global offset table as symbol value. */
9337 BFD_ASSERT (sgot
!= NULL
);
9340 return bfd_reloc_notsupported
;
9342 *unresolved_reloc_p
= FALSE
;
9343 value
= sgot
->output_section
->vma
;
9344 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9345 contents
, rel
->r_offset
, value
,
9349 case R_ARM_GOT_PREL
:
9350 /* Relocation is to the entry for this symbol in the
9351 global offset table. */
9353 return bfd_reloc_notsupported
;
9355 if (dynreloc_st_type
== STT_GNU_IFUNC
9356 && plt_offset
!= (bfd_vma
) -1
9357 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, h
)))
9359 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9360 symbol, and the relocation resolves directly to the runtime
9361 target rather than to the .iplt entry. This means that any
9362 .got entry would be the same value as the .igot.plt entry,
9363 so there's no point creating both. */
9364 sgot
= globals
->root
.igotplt
;
9365 value
= sgot
->output_offset
+ gotplt_offset
;
9371 off
= h
->got
.offset
;
9372 BFD_ASSERT (off
!= (bfd_vma
) -1);
9375 /* We have already processsed one GOT relocation against
9378 if (globals
->root
.dynamic_sections_created
9379 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
9380 *unresolved_reloc_p
= FALSE
;
9384 Elf_Internal_Rela outrel
;
9386 if (h
->dynindx
!= -1 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
9388 /* If the symbol doesn't resolve locally in a static
9389 object, we have an undefined reference. If the
9390 symbol doesn't resolve locally in a dynamic object,
9391 it should be resolved by the dynamic linker. */
9392 if (globals
->root
.dynamic_sections_created
)
9394 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
9395 *unresolved_reloc_p
= FALSE
;
9399 outrel
.r_addend
= 0;
9403 if (dynreloc_st_type
== STT_GNU_IFUNC
)
9404 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
9405 else if (bfd_link_pic (info
) &&
9406 (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
9407 || h
->root
.type
!= bfd_link_hash_undefweak
))
9408 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
9411 outrel
.r_addend
= dynreloc_value
;
9414 /* The GOT entry is initialized to zero by default.
9415 See if we should install a different value. */
9416 if (outrel
.r_addend
!= 0
9417 && (outrel
.r_info
== 0 || globals
->use_rel
))
9419 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9420 sgot
->contents
+ off
);
9421 outrel
.r_addend
= 0;
9424 if (outrel
.r_info
!= 0)
9426 outrel
.r_offset
= (sgot
->output_section
->vma
9427 + sgot
->output_offset
9429 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9433 value
= sgot
->output_offset
+ off
;
9439 BFD_ASSERT (local_got_offsets
!= NULL
&&
9440 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
9442 off
= local_got_offsets
[r_symndx
];
9444 /* The offset must always be a multiple of 4. We use the
9445 least significant bit to record whether we have already
9446 generated the necessary reloc. */
9451 if (globals
->use_rel
)
9452 bfd_put_32 (output_bfd
, dynreloc_value
, sgot
->contents
+ off
);
9454 if (bfd_link_pic (info
) || dynreloc_st_type
== STT_GNU_IFUNC
)
9456 Elf_Internal_Rela outrel
;
9458 outrel
.r_addend
= addend
+ dynreloc_value
;
9459 outrel
.r_offset
= (sgot
->output_section
->vma
9460 + sgot
->output_offset
9462 if (dynreloc_st_type
== STT_GNU_IFUNC
)
9463 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
9465 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
9466 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9469 local_got_offsets
[r_symndx
] |= 1;
9472 value
= sgot
->output_offset
+ off
;
9474 if (r_type
!= R_ARM_GOT32
)
9475 value
+= sgot
->output_section
->vma
;
9477 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9478 contents
, rel
->r_offset
, value
,
9481 case R_ARM_TLS_LDO32
:
9482 value
= value
- dtpoff_base (info
);
9484 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9485 contents
, rel
->r_offset
, value
,
9488 case R_ARM_TLS_LDM32
:
9495 off
= globals
->tls_ldm_got
.offset
;
9501 /* If we don't know the module number, create a relocation
9503 if (bfd_link_pic (info
))
9505 Elf_Internal_Rela outrel
;
9507 if (srelgot
== NULL
)
9510 outrel
.r_addend
= 0;
9511 outrel
.r_offset
= (sgot
->output_section
->vma
9512 + sgot
->output_offset
+ off
);
9513 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
9515 if (globals
->use_rel
)
9516 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9517 sgot
->contents
+ off
);
9519 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9522 bfd_put_32 (output_bfd
, 1, sgot
->contents
+ off
);
9524 globals
->tls_ldm_got
.offset
|= 1;
9527 value
= sgot
->output_section
->vma
+ sgot
->output_offset
+ off
9528 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
9530 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9531 contents
, rel
->r_offset
, value
,
9535 case R_ARM_TLS_CALL
:
9536 case R_ARM_THM_TLS_CALL
:
9537 case R_ARM_TLS_GD32
:
9538 case R_ARM_TLS_IE32
:
9539 case R_ARM_TLS_GOTDESC
:
9540 case R_ARM_TLS_DESCSEQ
:
9541 case R_ARM_THM_TLS_DESCSEQ
:
9543 bfd_vma off
, offplt
;
9547 BFD_ASSERT (sgot
!= NULL
);
9552 dyn
= globals
->root
.dynamic_sections_created
;
9553 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
,
9554 bfd_link_pic (info
),
9556 && (!bfd_link_pic (info
)
9557 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
9559 *unresolved_reloc_p
= FALSE
;
9562 off
= h
->got
.offset
;
9563 offplt
= elf32_arm_hash_entry (h
)->tlsdesc_got
;
9564 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
9568 BFD_ASSERT (local_got_offsets
!= NULL
);
9569 off
= local_got_offsets
[r_symndx
];
9570 offplt
= local_tlsdesc_gotents
[r_symndx
];
9571 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
9574 /* Linker relaxations happens from one of the
9575 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9576 if (ELF32_R_TYPE(rel
->r_info
) != r_type
)
9577 tls_type
= GOT_TLS_IE
;
9579 BFD_ASSERT (tls_type
!= GOT_UNKNOWN
);
9585 bfd_boolean need_relocs
= FALSE
;
9586 Elf_Internal_Rela outrel
;
9589 /* The GOT entries have not been initialized yet. Do it
9590 now, and emit any relocations. If both an IE GOT and a
9591 GD GOT are necessary, we emit the GD first. */
9593 if ((bfd_link_pic (info
) || indx
!= 0)
9595 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
9596 || h
->root
.type
!= bfd_link_hash_undefweak
))
9599 BFD_ASSERT (srelgot
!= NULL
);
9602 if (tls_type
& GOT_TLS_GDESC
)
9606 /* We should have relaxed, unless this is an undefined
9608 BFD_ASSERT ((h
&& (h
->root
.type
== bfd_link_hash_undefweak
))
9609 || bfd_link_pic (info
));
9610 BFD_ASSERT (globals
->sgotplt_jump_table_size
+ offplt
+ 8
9611 <= globals
->root
.sgotplt
->size
);
9613 outrel
.r_addend
= 0;
9614 outrel
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
9615 + globals
->root
.sgotplt
->output_offset
9617 + globals
->sgotplt_jump_table_size
);
9619 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DESC
);
9620 sreloc
= globals
->root
.srelplt
;
9621 loc
= sreloc
->contents
;
9622 loc
+= globals
->next_tls_desc_index
++ * RELOC_SIZE (globals
);
9623 BFD_ASSERT (loc
+ RELOC_SIZE (globals
)
9624 <= sreloc
->contents
+ sreloc
->size
);
9626 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
9628 /* For globals, the first word in the relocation gets
9629 the relocation index and the top bit set, or zero,
9630 if we're binding now. For locals, it gets the
9631 symbol's offset in the tls section. */
9632 bfd_put_32 (output_bfd
,
9633 !h
? value
- elf_hash_table (info
)->tls_sec
->vma
9634 : info
->flags
& DF_BIND_NOW
? 0
9635 : 0x80000000 | ELF32_R_SYM (outrel
.r_info
),
9636 globals
->root
.sgotplt
->contents
+ offplt
9637 + globals
->sgotplt_jump_table_size
);
9639 /* Second word in the relocation is always zero. */
9640 bfd_put_32 (output_bfd
, 0,
9641 globals
->root
.sgotplt
->contents
+ offplt
9642 + globals
->sgotplt_jump_table_size
+ 4);
9644 if (tls_type
& GOT_TLS_GD
)
9648 outrel
.r_addend
= 0;
9649 outrel
.r_offset
= (sgot
->output_section
->vma
9650 + sgot
->output_offset
9652 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
9654 if (globals
->use_rel
)
9655 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9656 sgot
->contents
+ cur_off
);
9658 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9661 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
9662 sgot
->contents
+ cur_off
+ 4);
9665 outrel
.r_addend
= 0;
9666 outrel
.r_info
= ELF32_R_INFO (indx
,
9667 R_ARM_TLS_DTPOFF32
);
9668 outrel
.r_offset
+= 4;
9670 if (globals
->use_rel
)
9671 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9672 sgot
->contents
+ cur_off
+ 4);
9674 elf32_arm_add_dynreloc (output_bfd
, info
,
9680 /* If we are not emitting relocations for a
9681 general dynamic reference, then we must be in a
9682 static link or an executable link with the
9683 symbol binding locally. Mark it as belonging
9684 to module 1, the executable. */
9685 bfd_put_32 (output_bfd
, 1,
9686 sgot
->contents
+ cur_off
);
9687 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
9688 sgot
->contents
+ cur_off
+ 4);
9694 if (tls_type
& GOT_TLS_IE
)
9699 outrel
.r_addend
= value
- dtpoff_base (info
);
9701 outrel
.r_addend
= 0;
9702 outrel
.r_offset
= (sgot
->output_section
->vma
9703 + sgot
->output_offset
9705 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
9707 if (globals
->use_rel
)
9708 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9709 sgot
->contents
+ cur_off
);
9711 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9714 bfd_put_32 (output_bfd
, tpoff (info
, value
),
9715 sgot
->contents
+ cur_off
);
9722 local_got_offsets
[r_symndx
] |= 1;
9725 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
9727 else if (tls_type
& GOT_TLS_GDESC
)
9730 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
9731 || ELF32_R_TYPE(rel
->r_info
) == R_ARM_THM_TLS_CALL
)
9733 bfd_signed_vma offset
;
9734 /* TLS stubs are arm mode. The original symbol is a
9735 data object, so branch_type is bogus. */
9736 branch_type
= ST_BRANCH_TO_ARM
;
9737 enum elf32_arm_stub_type stub_type
9738 = arm_type_of_stub (info
, input_section
, rel
,
9739 st_type
, &branch_type
,
9740 (struct elf32_arm_link_hash_entry
*)h
,
9741 globals
->tls_trampoline
, globals
->root
.splt
,
9742 input_bfd
, sym_name
);
9744 if (stub_type
!= arm_stub_none
)
9746 struct elf32_arm_stub_hash_entry
*stub_entry
9747 = elf32_arm_get_stub_entry
9748 (input_section
, globals
->root
.splt
, 0, rel
,
9749 globals
, stub_type
);
9750 offset
= (stub_entry
->stub_offset
9751 + stub_entry
->stub_sec
->output_offset
9752 + stub_entry
->stub_sec
->output_section
->vma
);
9755 offset
= (globals
->root
.splt
->output_section
->vma
9756 + globals
->root
.splt
->output_offset
9757 + globals
->tls_trampoline
);
9759 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
)
9763 offset
-= (input_section
->output_section
->vma
9764 + input_section
->output_offset
9765 + rel
->r_offset
+ 8);
9769 value
= inst
| (globals
->use_blx
? 0xfa000000 : 0xeb000000);
9773 /* Thumb blx encodes the offset in a complicated
9775 unsigned upper_insn
, lower_insn
;
9778 offset
-= (input_section
->output_section
->vma
9779 + input_section
->output_offset
9780 + rel
->r_offset
+ 4);
9782 if (stub_type
!= arm_stub_none
9783 && arm_stub_is_thumb (stub_type
))
9785 lower_insn
= 0xd000;
9789 lower_insn
= 0xc000;
9790 /* Round up the offset to a word boundary. */
9791 offset
= (offset
+ 2) & ~2;
9795 upper_insn
= (0xf000
9796 | ((offset
>> 12) & 0x3ff)
9798 lower_insn
|= (((!((offset
>> 23) & 1)) ^ neg
) << 13)
9799 | (((!((offset
>> 22) & 1)) ^ neg
) << 11)
9800 | ((offset
>> 1) & 0x7ff);
9801 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
9802 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
9803 return bfd_reloc_ok
;
9806 /* These relocations needs special care, as besides the fact
9807 they point somewhere in .gotplt, the addend must be
9808 adjusted accordingly depending on the type of instruction
9810 else if ((r_type
== R_ARM_TLS_GOTDESC
) && (tls_type
& GOT_TLS_GDESC
))
9812 unsigned long data
, insn
;
9815 data
= bfd_get_32 (input_bfd
, hit_data
);
9821 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
- data
);
9822 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
9824 | bfd_get_16 (input_bfd
,
9825 contents
+ rel
->r_offset
- data
+ 2);
9826 if ((insn
& 0xf800c000) == 0xf000c000)
9829 else if ((insn
& 0xffffff00) == 0x4400)
9834 (*_bfd_error_handler
)
9835 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9836 input_bfd
, input_section
,
9837 (unsigned long)rel
->r_offset
, insn
);
9838 return bfd_reloc_notsupported
;
9843 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
- data
);
9848 case 0xfa: /* blx */
9852 case 0xe0: /* add */
9857 (*_bfd_error_handler
)
9858 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9859 input_bfd
, input_section
,
9860 (unsigned long)rel
->r_offset
, insn
);
9861 return bfd_reloc_notsupported
;
9865 value
+= ((globals
->root
.sgotplt
->output_section
->vma
9866 + globals
->root
.sgotplt
->output_offset
+ off
)
9867 - (input_section
->output_section
->vma
9868 + input_section
->output_offset
9870 + globals
->sgotplt_jump_table_size
);
9873 value
= ((globals
->root
.sgot
->output_section
->vma
9874 + globals
->root
.sgot
->output_offset
+ off
)
9875 - (input_section
->output_section
->vma
9876 + input_section
->output_offset
+ rel
->r_offset
));
9878 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9879 contents
, rel
->r_offset
, value
,
9883 case R_ARM_TLS_LE32
:
9884 if (bfd_link_dll (info
))
9886 (*_bfd_error_handler
)
9887 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9888 input_bfd
, input_section
,
9889 (long) rel
->r_offset
, howto
->name
);
9890 return bfd_reloc_notsupported
;
9893 value
= tpoff (info
, value
);
9895 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9896 contents
, rel
->r_offset
, value
,
9900 if (globals
->fix_v4bx
)
9902 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9904 /* Ensure that we have a BX instruction. */
9905 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
9907 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
9909 /* Branch to veneer. */
9911 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
9912 glue_addr
-= input_section
->output_section
->vma
9913 + input_section
->output_offset
9914 + rel
->r_offset
+ 8;
9915 insn
= (insn
& 0xf0000000) | 0x0a000000
9916 | ((glue_addr
>> 2) & 0x00ffffff);
9920 /* Preserve Rm (lowest four bits) and the condition code
9921 (highest four bits). Other bits encode MOV PC,Rm. */
9922 insn
= (insn
& 0xf000000f) | 0x01a0f000;
9925 bfd_put_32 (input_bfd
, insn
, hit_data
);
9927 return bfd_reloc_ok
;
9929 case R_ARM_MOVW_ABS_NC
:
9930 case R_ARM_MOVT_ABS
:
9931 case R_ARM_MOVW_PREL_NC
:
9932 case R_ARM_MOVT_PREL
:
9933 /* Until we properly support segment-base-relative addressing then
9934 we assume the segment base to be zero, as for the group relocations.
9935 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9936 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9937 case R_ARM_MOVW_BREL_NC
:
9938 case R_ARM_MOVW_BREL
:
9939 case R_ARM_MOVT_BREL
:
9941 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9943 if (globals
->use_rel
)
9945 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
9946 signed_addend
= (addend
^ 0x8000) - 0x8000;
9949 value
+= signed_addend
;
9951 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
9952 value
-= (input_section
->output_section
->vma
9953 + input_section
->output_offset
+ rel
->r_offset
);
9955 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
9956 return bfd_reloc_overflow
;
9958 if (branch_type
== ST_BRANCH_TO_THUMB
)
9961 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
9962 || r_type
== R_ARM_MOVT_BREL
)
9966 insn
|= value
& 0xfff;
9967 insn
|= (value
& 0xf000) << 4;
9968 bfd_put_32 (input_bfd
, insn
, hit_data
);
9970 return bfd_reloc_ok
;
9972 case R_ARM_THM_MOVW_ABS_NC
:
9973 case R_ARM_THM_MOVT_ABS
:
9974 case R_ARM_THM_MOVW_PREL_NC
:
9975 case R_ARM_THM_MOVT_PREL
:
9976 /* Until we properly support segment-base-relative addressing then
9977 we assume the segment base to be zero, as for the above relocations.
9978 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9979 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9980 as R_ARM_THM_MOVT_ABS. */
9981 case R_ARM_THM_MOVW_BREL_NC
:
9982 case R_ARM_THM_MOVW_BREL
:
9983 case R_ARM_THM_MOVT_BREL
:
9987 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
9988 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
9990 if (globals
->use_rel
)
9992 addend
= ((insn
>> 4) & 0xf000)
9993 | ((insn
>> 15) & 0x0800)
9994 | ((insn
>> 4) & 0x0700)
9996 signed_addend
= (addend
^ 0x8000) - 0x8000;
9999 value
+= signed_addend
;
10001 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
10002 value
-= (input_section
->output_section
->vma
10003 + input_section
->output_offset
+ rel
->r_offset
);
10005 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
10006 return bfd_reloc_overflow
;
10008 if (branch_type
== ST_BRANCH_TO_THUMB
)
10011 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
10012 || r_type
== R_ARM_THM_MOVT_BREL
)
10015 insn
&= 0xfbf08f00;
10016 insn
|= (value
& 0xf000) << 4;
10017 insn
|= (value
& 0x0800) << 15;
10018 insn
|= (value
& 0x0700) << 4;
10019 insn
|= (value
& 0x00ff);
10021 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
10022 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
10024 return bfd_reloc_ok
;
10026 case R_ARM_ALU_PC_G0_NC
:
10027 case R_ARM_ALU_PC_G1_NC
:
10028 case R_ARM_ALU_PC_G0
:
10029 case R_ARM_ALU_PC_G1
:
10030 case R_ARM_ALU_PC_G2
:
10031 case R_ARM_ALU_SB_G0_NC
:
10032 case R_ARM_ALU_SB_G1_NC
:
10033 case R_ARM_ALU_SB_G0
:
10034 case R_ARM_ALU_SB_G1
:
10035 case R_ARM_ALU_SB_G2
:
10037 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
10038 bfd_vma pc
= input_section
->output_section
->vma
10039 + input_section
->output_offset
+ rel
->r_offset
;
10040 /* sb is the origin of the *segment* containing the symbol. */
10041 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
10044 bfd_signed_vma signed_value
;
10047 /* Determine which group of bits to select. */
10050 case R_ARM_ALU_PC_G0_NC
:
10051 case R_ARM_ALU_PC_G0
:
10052 case R_ARM_ALU_SB_G0_NC
:
10053 case R_ARM_ALU_SB_G0
:
10057 case R_ARM_ALU_PC_G1_NC
:
10058 case R_ARM_ALU_PC_G1
:
10059 case R_ARM_ALU_SB_G1_NC
:
10060 case R_ARM_ALU_SB_G1
:
10064 case R_ARM_ALU_PC_G2
:
10065 case R_ARM_ALU_SB_G2
:
10073 /* If REL, extract the addend from the insn. If RELA, it will
10074 have already been fetched for us. */
10075 if (globals
->use_rel
)
10078 bfd_vma constant
= insn
& 0xff;
10079 bfd_vma rotation
= (insn
& 0xf00) >> 8;
10082 signed_addend
= constant
;
10085 /* Compensate for the fact that in the instruction, the
10086 rotation is stored in multiples of 2 bits. */
10089 /* Rotate "constant" right by "rotation" bits. */
10090 signed_addend
= (constant
>> rotation
) |
10091 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
10094 /* Determine if the instruction is an ADD or a SUB.
10095 (For REL, this determines the sign of the addend.) */
10096 negative
= identify_add_or_sub (insn
);
10099 (*_bfd_error_handler
)
10100 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
10101 input_bfd
, input_section
,
10102 (long) rel
->r_offset
, howto
->name
);
10103 return bfd_reloc_overflow
;
10106 signed_addend
*= negative
;
10109 /* Compute the value (X) to go in the place. */
10110 if (r_type
== R_ARM_ALU_PC_G0_NC
10111 || r_type
== R_ARM_ALU_PC_G1_NC
10112 || r_type
== R_ARM_ALU_PC_G0
10113 || r_type
== R_ARM_ALU_PC_G1
10114 || r_type
== R_ARM_ALU_PC_G2
)
10116 signed_value
= value
- pc
+ signed_addend
;
10118 /* Section base relative. */
10119 signed_value
= value
- sb
+ signed_addend
;
10121 /* If the target symbol is a Thumb function, then set the
10122 Thumb bit in the address. */
10123 if (branch_type
== ST_BRANCH_TO_THUMB
)
10126 /* Calculate the value of the relevant G_n, in encoded
10127 constant-with-rotation format. */
10128 g_n
= calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
10131 /* Check for overflow if required. */
10132 if ((r_type
== R_ARM_ALU_PC_G0
10133 || r_type
== R_ARM_ALU_PC_G1
10134 || r_type
== R_ARM_ALU_PC_G2
10135 || r_type
== R_ARM_ALU_SB_G0
10136 || r_type
== R_ARM_ALU_SB_G1
10137 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
10139 (*_bfd_error_handler
)
10140 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10141 input_bfd
, input_section
,
10142 (long) rel
->r_offset
, signed_value
< 0 ? - signed_value
: signed_value
,
10144 return bfd_reloc_overflow
;
10147 /* Mask out the value and the ADD/SUB part of the opcode; take care
10148 not to destroy the S bit. */
10149 insn
&= 0xff1ff000;
10151 /* Set the opcode according to whether the value to go in the
10152 place is negative. */
10153 if (signed_value
< 0)
10158 /* Encode the offset. */
10161 bfd_put_32 (input_bfd
, insn
, hit_data
);
10163 return bfd_reloc_ok
;
10165 case R_ARM_LDR_PC_G0
:
10166 case R_ARM_LDR_PC_G1
:
10167 case R_ARM_LDR_PC_G2
:
10168 case R_ARM_LDR_SB_G0
:
10169 case R_ARM_LDR_SB_G1
:
10170 case R_ARM_LDR_SB_G2
:
10172 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
10173 bfd_vma pc
= input_section
->output_section
->vma
10174 + input_section
->output_offset
+ rel
->r_offset
;
10175 /* sb is the origin of the *segment* containing the symbol. */
10176 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
10178 bfd_signed_vma signed_value
;
10181 /* Determine which groups of bits to calculate. */
10184 case R_ARM_LDR_PC_G0
:
10185 case R_ARM_LDR_SB_G0
:
10189 case R_ARM_LDR_PC_G1
:
10190 case R_ARM_LDR_SB_G1
:
10194 case R_ARM_LDR_PC_G2
:
10195 case R_ARM_LDR_SB_G2
:
10203 /* If REL, extract the addend from the insn. If RELA, it will
10204 have already been fetched for us. */
10205 if (globals
->use_rel
)
10207 int negative
= (insn
& (1 << 23)) ? 1 : -1;
10208 signed_addend
= negative
* (insn
& 0xfff);
10211 /* Compute the value (X) to go in the place. */
10212 if (r_type
== R_ARM_LDR_PC_G0
10213 || r_type
== R_ARM_LDR_PC_G1
10214 || r_type
== R_ARM_LDR_PC_G2
)
10216 signed_value
= value
- pc
+ signed_addend
;
10218 /* Section base relative. */
10219 signed_value
= value
- sb
+ signed_addend
;
10221 /* Calculate the value of the relevant G_{n-1} to obtain
10222 the residual at that stage. */
10223 calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
10224 group
- 1, &residual
);
10226 /* Check for overflow. */
10227 if (residual
>= 0x1000)
10229 (*_bfd_error_handler
)
10230 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10231 input_bfd
, input_section
,
10232 (long) rel
->r_offset
, labs (signed_value
), howto
->name
);
10233 return bfd_reloc_overflow
;
10236 /* Mask out the value and U bit. */
10237 insn
&= 0xff7ff000;
10239 /* Set the U bit if the value to go in the place is non-negative. */
10240 if (signed_value
>= 0)
10243 /* Encode the offset. */
10246 bfd_put_32 (input_bfd
, insn
, hit_data
);
10248 return bfd_reloc_ok
;
10250 case R_ARM_LDRS_PC_G0
:
10251 case R_ARM_LDRS_PC_G1
:
10252 case R_ARM_LDRS_PC_G2
:
10253 case R_ARM_LDRS_SB_G0
:
10254 case R_ARM_LDRS_SB_G1
:
10255 case R_ARM_LDRS_SB_G2
:
10257 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
10258 bfd_vma pc
= input_section
->output_section
->vma
10259 + input_section
->output_offset
+ rel
->r_offset
;
10260 /* sb is the origin of the *segment* containing the symbol. */
10261 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
10263 bfd_signed_vma signed_value
;
10266 /* Determine which groups of bits to calculate. */
10269 case R_ARM_LDRS_PC_G0
:
10270 case R_ARM_LDRS_SB_G0
:
10274 case R_ARM_LDRS_PC_G1
:
10275 case R_ARM_LDRS_SB_G1
:
10279 case R_ARM_LDRS_PC_G2
:
10280 case R_ARM_LDRS_SB_G2
:
10288 /* If REL, extract the addend from the insn. If RELA, it will
10289 have already been fetched for us. */
10290 if (globals
->use_rel
)
10292 int negative
= (insn
& (1 << 23)) ? 1 : -1;
10293 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
10296 /* Compute the value (X) to go in the place. */
10297 if (r_type
== R_ARM_LDRS_PC_G0
10298 || r_type
== R_ARM_LDRS_PC_G1
10299 || r_type
== R_ARM_LDRS_PC_G2
)
10301 signed_value
= value
- pc
+ signed_addend
;
10303 /* Section base relative. */
10304 signed_value
= value
- sb
+ signed_addend
;
10306 /* Calculate the value of the relevant G_{n-1} to obtain
10307 the residual at that stage. */
10308 calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
10309 group
- 1, &residual
);
10311 /* Check for overflow. */
10312 if (residual
>= 0x100)
10314 (*_bfd_error_handler
)
10315 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10316 input_bfd
, input_section
,
10317 (long) rel
->r_offset
, labs (signed_value
), howto
->name
);
10318 return bfd_reloc_overflow
;
10321 /* Mask out the value and U bit. */
10322 insn
&= 0xff7ff0f0;
10324 /* Set the U bit if the value to go in the place is non-negative. */
10325 if (signed_value
>= 0)
10328 /* Encode the offset. */
10329 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
10331 bfd_put_32 (input_bfd
, insn
, hit_data
);
10333 return bfd_reloc_ok
;
10335 case R_ARM_LDC_PC_G0
:
10336 case R_ARM_LDC_PC_G1
:
10337 case R_ARM_LDC_PC_G2
:
10338 case R_ARM_LDC_SB_G0
:
10339 case R_ARM_LDC_SB_G1
:
10340 case R_ARM_LDC_SB_G2
:
10342 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
10343 bfd_vma pc
= input_section
->output_section
->vma
10344 + input_section
->output_offset
+ rel
->r_offset
;
10345 /* sb is the origin of the *segment* containing the symbol. */
10346 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
10348 bfd_signed_vma signed_value
;
10351 /* Determine which groups of bits to calculate. */
10354 case R_ARM_LDC_PC_G0
:
10355 case R_ARM_LDC_SB_G0
:
10359 case R_ARM_LDC_PC_G1
:
10360 case R_ARM_LDC_SB_G1
:
10364 case R_ARM_LDC_PC_G2
:
10365 case R_ARM_LDC_SB_G2
:
10373 /* If REL, extract the addend from the insn. If RELA, it will
10374 have already been fetched for us. */
10375 if (globals
->use_rel
)
10377 int negative
= (insn
& (1 << 23)) ? 1 : -1;
10378 signed_addend
= negative
* ((insn
& 0xff) << 2);
10381 /* Compute the value (X) to go in the place. */
10382 if (r_type
== R_ARM_LDC_PC_G0
10383 || r_type
== R_ARM_LDC_PC_G1
10384 || r_type
== R_ARM_LDC_PC_G2
)
10386 signed_value
= value
- pc
+ signed_addend
;
10388 /* Section base relative. */
10389 signed_value
= value
- sb
+ signed_addend
;
10391 /* Calculate the value of the relevant G_{n-1} to obtain
10392 the residual at that stage. */
10393 calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
10394 group
- 1, &residual
);
10396 /* Check for overflow. (The absolute value to go in the place must be
10397 divisible by four and, after having been divided by four, must
10398 fit in eight bits.) */
10399 if ((residual
& 0x3) != 0 || residual
>= 0x400)
10401 (*_bfd_error_handler
)
10402 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10403 input_bfd
, input_section
,
10404 (long) rel
->r_offset
, labs (signed_value
), howto
->name
);
10405 return bfd_reloc_overflow
;
10408 /* Mask out the value and U bit. */
10409 insn
&= 0xff7fff00;
10411 /* Set the U bit if the value to go in the place is non-negative. */
10412 if (signed_value
>= 0)
10415 /* Encode the offset. */
10416 insn
|= residual
>> 2;
10418 bfd_put_32 (input_bfd
, insn
, hit_data
);
10420 return bfd_reloc_ok
;
10423 return bfd_reloc_notsupported
;
10427 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10429 arm_add_to_rel (bfd
* abfd
,
10430 bfd_byte
* address
,
10431 reloc_howto_type
* howto
,
10432 bfd_signed_vma increment
)
10434 bfd_signed_vma addend
;
10436 if (howto
->type
== R_ARM_THM_CALL
10437 || howto
->type
== R_ARM_THM_JUMP24
)
10439 int upper_insn
, lower_insn
;
10442 upper_insn
= bfd_get_16 (abfd
, address
);
10443 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
10444 upper
= upper_insn
& 0x7ff;
10445 lower
= lower_insn
& 0x7ff;
10447 addend
= (upper
<< 12) | (lower
<< 1);
10448 addend
+= increment
;
10451 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
10452 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
10454 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
10455 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
10461 contents
= bfd_get_32 (abfd
, address
);
10463 /* Get the (signed) value from the instruction. */
10464 addend
= contents
& howto
->src_mask
;
10465 if (addend
& ((howto
->src_mask
+ 1) >> 1))
10467 bfd_signed_vma mask
;
10470 mask
&= ~ howto
->src_mask
;
10474 /* Add in the increment, (which is a byte value). */
10475 switch (howto
->type
)
10478 addend
+= increment
;
10485 addend
<<= howto
->size
;
10486 addend
+= increment
;
10488 /* Should we check for overflow here ? */
10490 /* Drop any undesired bits. */
10491 addend
>>= howto
->rightshift
;
10495 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
10497 bfd_put_32 (abfd
, contents
, address
);
10501 #define IS_ARM_TLS_RELOC(R_TYPE) \
10502 ((R_TYPE) == R_ARM_TLS_GD32 \
10503 || (R_TYPE) == R_ARM_TLS_LDO32 \
10504 || (R_TYPE) == R_ARM_TLS_LDM32 \
10505 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10506 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10507 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10508 || (R_TYPE) == R_ARM_TLS_LE32 \
10509 || (R_TYPE) == R_ARM_TLS_IE32 \
10510 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10512 /* Specific set of relocations for the gnu tls dialect. */
10513 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10514 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10515 || (R_TYPE) == R_ARM_TLS_CALL \
10516 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10517 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10518 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10520 /* Relocate an ARM ELF section. */
10523 elf32_arm_relocate_section (bfd
* output_bfd
,
10524 struct bfd_link_info
* info
,
10526 asection
* input_section
,
10527 bfd_byte
* contents
,
10528 Elf_Internal_Rela
* relocs
,
10529 Elf_Internal_Sym
* local_syms
,
10530 asection
** local_sections
)
10532 Elf_Internal_Shdr
*symtab_hdr
;
10533 struct elf_link_hash_entry
**sym_hashes
;
10534 Elf_Internal_Rela
*rel
;
10535 Elf_Internal_Rela
*relend
;
10537 struct elf32_arm_link_hash_table
* globals
;
10539 globals
= elf32_arm_hash_table (info
);
10540 if (globals
== NULL
)
10543 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
10544 sym_hashes
= elf_sym_hashes (input_bfd
);
10547 relend
= relocs
+ input_section
->reloc_count
;
10548 for (; rel
< relend
; rel
++)
10551 reloc_howto_type
* howto
;
10552 unsigned long r_symndx
;
10553 Elf_Internal_Sym
* sym
;
10555 struct elf_link_hash_entry
* h
;
10556 bfd_vma relocation
;
10557 bfd_reloc_status_type r
;
10560 bfd_boolean unresolved_reloc
= FALSE
;
10561 char *error_message
= NULL
;
10563 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10564 r_type
= ELF32_R_TYPE (rel
->r_info
);
10565 r_type
= arm_real_reloc_type (globals
, r_type
);
10567 if ( r_type
== R_ARM_GNU_VTENTRY
10568 || r_type
== R_ARM_GNU_VTINHERIT
)
10571 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
10572 howto
= bfd_reloc
.howto
;
10578 if (r_symndx
< symtab_hdr
->sh_info
)
10580 sym
= local_syms
+ r_symndx
;
10581 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
10582 sec
= local_sections
[r_symndx
];
10584 /* An object file might have a reference to a local
10585 undefined symbol. This is a daft object file, but we
10586 should at least do something about it. V4BX & NONE
10587 relocations do not use the symbol and are explicitly
10588 allowed to use the undefined symbol, so allow those.
10589 Likewise for relocations against STN_UNDEF. */
10590 if (r_type
!= R_ARM_V4BX
10591 && r_type
!= R_ARM_NONE
10592 && r_symndx
!= STN_UNDEF
10593 && bfd_is_und_section (sec
)
10594 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
10596 if (!info
->callbacks
->undefined_symbol
10597 (info
, bfd_elf_string_from_elf_section
10598 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
10599 input_bfd
, input_section
,
10600 rel
->r_offset
, TRUE
))
10604 if (globals
->use_rel
)
10606 relocation
= (sec
->output_section
->vma
10607 + sec
->output_offset
10609 if (!bfd_link_relocatable (info
)
10610 && (sec
->flags
& SEC_MERGE
)
10611 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10614 bfd_vma addend
, value
;
10618 case R_ARM_MOVW_ABS_NC
:
10619 case R_ARM_MOVT_ABS
:
10620 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10621 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
10622 addend
= (addend
^ 0x8000) - 0x8000;
10625 case R_ARM_THM_MOVW_ABS_NC
:
10626 case R_ARM_THM_MOVT_ABS
:
10627 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
10629 value
|= bfd_get_16 (input_bfd
,
10630 contents
+ rel
->r_offset
+ 2);
10631 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
10632 | ((value
& 0x04000000) >> 15);
10633 addend
= (addend
^ 0x8000) - 0x8000;
10637 if (howto
->rightshift
10638 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
10640 (*_bfd_error_handler
)
10641 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10642 input_bfd
, input_section
,
10643 (long) rel
->r_offset
, howto
->name
);
10647 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10649 /* Get the (signed) value from the instruction. */
10650 addend
= value
& howto
->src_mask
;
10651 if (addend
& ((howto
->src_mask
+ 1) >> 1))
10653 bfd_signed_vma mask
;
10656 mask
&= ~ howto
->src_mask
;
10664 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
10666 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
10668 /* Cases here must match those in the preceding
10669 switch statement. */
10672 case R_ARM_MOVW_ABS_NC
:
10673 case R_ARM_MOVT_ABS
:
10674 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
10675 | (addend
& 0xfff);
10676 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
10679 case R_ARM_THM_MOVW_ABS_NC
:
10680 case R_ARM_THM_MOVT_ABS
:
10681 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
10682 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
10683 bfd_put_16 (input_bfd
, value
>> 16,
10684 contents
+ rel
->r_offset
);
10685 bfd_put_16 (input_bfd
, value
,
10686 contents
+ rel
->r_offset
+ 2);
10690 value
= (value
& ~ howto
->dst_mask
)
10691 | (addend
& howto
->dst_mask
);
10692 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
10698 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
10702 bfd_boolean warned
, ignored
;
10704 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
10705 r_symndx
, symtab_hdr
, sym_hashes
,
10706 h
, sec
, relocation
,
10707 unresolved_reloc
, warned
, ignored
);
10709 sym_type
= h
->type
;
10712 if (sec
!= NULL
&& discarded_section (sec
))
10713 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
10714 rel
, 1, relend
, howto
, 0, contents
);
10716 if (bfd_link_relocatable (info
))
10718 /* This is a relocatable link. We don't have to change
10719 anything, unless the reloc is against a section symbol,
10720 in which case we have to adjust according to where the
10721 section symbol winds up in the output section. */
10722 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10724 if (globals
->use_rel
)
10725 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
10726 howto
, (bfd_signed_vma
) sec
->output_offset
);
10728 rel
->r_addend
+= sec
->output_offset
;
10734 name
= h
->root
.root
.string
;
10737 name
= (bfd_elf_string_from_elf_section
10738 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
10739 if (name
== NULL
|| *name
== '\0')
10740 name
= bfd_section_name (input_bfd
, sec
);
10743 if (r_symndx
!= STN_UNDEF
10744 && r_type
!= R_ARM_NONE
10746 || h
->root
.type
== bfd_link_hash_defined
10747 || h
->root
.type
== bfd_link_hash_defweak
)
10748 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
10750 (*_bfd_error_handler
)
10751 ((sym_type
== STT_TLS
10752 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10753 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10756 (long) rel
->r_offset
,
10761 /* We call elf32_arm_final_link_relocate unless we're completely
10762 done, i.e., the relaxation produced the final output we want,
10763 and we won't let anybody mess with it. Also, we have to do
10764 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10765 both in relaxed and non-relaxed cases. */
10766 if ((elf32_arm_tls_transition (info
, r_type
, h
) != (unsigned)r_type
)
10767 || (IS_ARM_TLS_GNU_RELOC (r_type
)
10768 && !((h
? elf32_arm_hash_entry (h
)->tls_type
:
10769 elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
])
10772 r
= elf32_arm_tls_relax (globals
, input_bfd
, input_section
,
10773 contents
, rel
, h
== NULL
);
10774 /* This may have been marked unresolved because it came from
10775 a shared library. But we've just dealt with that. */
10776 unresolved_reloc
= 0;
10779 r
= bfd_reloc_continue
;
10781 if (r
== bfd_reloc_continue
)
10782 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
10783 input_section
, contents
, rel
,
10784 relocation
, info
, sec
, name
, sym_type
,
10785 (h
? h
->target_internal
10786 : ARM_SYM_BRANCH_TYPE (sym
)), h
,
10787 &unresolved_reloc
, &error_message
);
10789 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10790 because such sections are not SEC_ALLOC and thus ld.so will
10791 not process them. */
10792 if (unresolved_reloc
10793 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
10795 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
10796 rel
->r_offset
) != (bfd_vma
) -1)
10798 (*_bfd_error_handler
)
10799 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10802 (long) rel
->r_offset
,
10804 h
->root
.root
.string
);
10808 if (r
!= bfd_reloc_ok
)
10812 case bfd_reloc_overflow
:
10813 /* If the overflowing reloc was to an undefined symbol,
10814 we have already printed one error message and there
10815 is no point complaining again. */
10817 h
->root
.type
!= bfd_link_hash_undefined
)
10818 && (!((*info
->callbacks
->reloc_overflow
)
10819 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
10820 (bfd_vma
) 0, input_bfd
, input_section
,
10825 case bfd_reloc_undefined
:
10826 if (!((*info
->callbacks
->undefined_symbol
)
10827 (info
, name
, input_bfd
, input_section
,
10828 rel
->r_offset
, TRUE
)))
10832 case bfd_reloc_outofrange
:
10833 error_message
= _("out of range");
10836 case bfd_reloc_notsupported
:
10837 error_message
= _("unsupported relocation");
10840 case bfd_reloc_dangerous
:
10841 /* error_message should already be set. */
10845 error_message
= _("unknown error");
10846 /* Fall through. */
10849 BFD_ASSERT (error_message
!= NULL
);
10850 if (!((*info
->callbacks
->reloc_dangerous
)
10851 (info
, error_message
, input_bfd
, input_section
,
10862 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10863 adds the edit to the start of the list. (The list must be built in order of
10864 ascending TINDEX: the function's callers are primarily responsible for
10865 maintaining that condition). */
10868 add_unwind_table_edit (arm_unwind_table_edit
**head
,
10869 arm_unwind_table_edit
**tail
,
10870 arm_unwind_edit_type type
,
10871 asection
*linked_section
,
10872 unsigned int tindex
)
10874 arm_unwind_table_edit
*new_edit
= (arm_unwind_table_edit
*)
10875 xmalloc (sizeof (arm_unwind_table_edit
));
10877 new_edit
->type
= type
;
10878 new_edit
->linked_section
= linked_section
;
10879 new_edit
->index
= tindex
;
10883 new_edit
->next
= NULL
;
10886 (*tail
)->next
= new_edit
;
10888 (*tail
) = new_edit
;
10891 (*head
) = new_edit
;
10895 new_edit
->next
= *head
;
10904 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
10906 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10908 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
10912 if (!exidx_sec
->rawsize
)
10913 exidx_sec
->rawsize
= exidx_sec
->size
;
10915 bfd_set_section_size (exidx_sec
->owner
, exidx_sec
, exidx_sec
->size
+ adjust
);
10916 out_sec
= exidx_sec
->output_section
;
10917 /* Adjust size of output section. */
10918 bfd_set_section_size (out_sec
->owner
, out_sec
, out_sec
->size
+adjust
);
10921 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10923 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
10925 struct _arm_elf_section_data
*exidx_arm_data
;
10927 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
10928 add_unwind_table_edit (
10929 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
10930 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
10931 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
10933 adjust_exidx_size(exidx_sec
, 8);
10936 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10937 made to those tables, such that:
10939 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10940 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10941 codes which have been inlined into the index).
10943 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10945 The edits are applied when the tables are written
10946 (in elf32_arm_write_section). */
10949 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
10950 unsigned int num_text_sections
,
10951 struct bfd_link_info
*info
,
10952 bfd_boolean merge_exidx_entries
)
10955 unsigned int last_second_word
= 0, i
;
10956 asection
*last_exidx_sec
= NULL
;
10957 asection
*last_text_sec
= NULL
;
10958 int last_unwind_type
= -1;
10960 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10962 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link
.next
)
10966 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
10968 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
10969 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
10971 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
10974 if (elf_sec
->linked_to
)
10976 Elf_Internal_Shdr
*linked_hdr
10977 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
10978 struct _arm_elf_section_data
*linked_sec_arm_data
10979 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
10981 if (linked_sec_arm_data
== NULL
)
10984 /* Link this .ARM.exidx section back from the text section it
10986 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
10991 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10992 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10993 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10995 for (i
= 0; i
< num_text_sections
; i
++)
10997 asection
*sec
= text_section_order
[i
];
10998 asection
*exidx_sec
;
10999 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
11000 struct _arm_elf_section_data
*exidx_arm_data
;
11001 bfd_byte
*contents
= NULL
;
11002 int deleted_exidx_bytes
= 0;
11004 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
11005 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
11006 Elf_Internal_Shdr
*hdr
;
11009 if (arm_data
== NULL
)
11012 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
11013 if (exidx_sec
== NULL
)
11015 /* Section has no unwind data. */
11016 if (last_unwind_type
== 0 || !last_exidx_sec
)
11019 /* Ignore zero sized sections. */
11020 if (sec
->size
== 0)
11023 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
11024 last_unwind_type
= 0;
11028 /* Skip /DISCARD/ sections. */
11029 if (bfd_is_abs_section (exidx_sec
->output_section
))
11032 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
11033 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
11036 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
11037 if (exidx_arm_data
== NULL
)
11040 ibfd
= exidx_sec
->owner
;
11042 if (hdr
->contents
!= NULL
)
11043 contents
= hdr
->contents
;
11044 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
11048 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
11050 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
11054 /* An EXIDX_CANTUNWIND entry. */
11055 if (second_word
== 1)
11057 if (last_unwind_type
== 0)
11061 /* Inlined unwinding data. Merge if equal to previous. */
11062 else if ((second_word
& 0x80000000) != 0)
11064 if (merge_exidx_entries
11065 && last_second_word
== second_word
&& last_unwind_type
== 1)
11068 last_second_word
= second_word
;
11070 /* Normal table entry. In theory we could merge these too,
11071 but duplicate entries are likely to be much less common. */
11077 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
11078 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
11080 deleted_exidx_bytes
+= 8;
11083 last_unwind_type
= unwind_type
;
11086 /* Free contents if we allocated it ourselves. */
11087 if (contents
!= hdr
->contents
)
11090 /* Record edits to be applied later (in elf32_arm_write_section). */
11091 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
11092 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
11094 if (deleted_exidx_bytes
> 0)
11095 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
11097 last_exidx_sec
= exidx_sec
;
11098 last_text_sec
= sec
;
11101 /* Add terminating CANTUNWIND entry. */
11102 if (last_exidx_sec
&& last_unwind_type
!= 0)
11103 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
11109 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
11110 bfd
*ibfd
, const char *name
)
11112 asection
*sec
, *osec
;
11114 sec
= bfd_get_linker_section (ibfd
, name
);
11115 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
11118 osec
= sec
->output_section
;
11119 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
11122 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
11123 sec
->output_offset
, sec
->size
))
11130 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11132 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
11133 asection
*sec
, *osec
;
11135 if (globals
== NULL
)
11138 /* Invoke the regular ELF backend linker to do all the work. */
11139 if (!bfd_elf_final_link (abfd
, info
))
11142 /* Process stub sections (eg BE8 encoding, ...). */
11143 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
11145 for (i
=0; i
<htab
->top_id
; i
++)
11147 sec
= htab
->stub_group
[i
].stub_sec
;
11148 /* Only process it once, in its link_sec slot. */
11149 if (sec
&& i
== htab
->stub_group
[i
].link_sec
->id
)
11151 osec
= sec
->output_section
;
11152 elf32_arm_write_section (abfd
, info
, sec
, sec
->contents
);
11153 if (! bfd_set_section_contents (abfd
, osec
, sec
->contents
,
11154 sec
->output_offset
, sec
->size
))
11159 /* Write out any glue sections now that we have created all the
11161 if (globals
->bfd_of_glue_owner
!= NULL
)
11163 if (! elf32_arm_output_glue_section (info
, abfd
,
11164 globals
->bfd_of_glue_owner
,
11165 ARM2THUMB_GLUE_SECTION_NAME
))
11168 if (! elf32_arm_output_glue_section (info
, abfd
,
11169 globals
->bfd_of_glue_owner
,
11170 THUMB2ARM_GLUE_SECTION_NAME
))
11173 if (! elf32_arm_output_glue_section (info
, abfd
,
11174 globals
->bfd_of_glue_owner
,
11175 VFP11_ERRATUM_VENEER_SECTION_NAME
))
11178 if (! elf32_arm_output_glue_section (info
, abfd
,
11179 globals
->bfd_of_glue_owner
,
11180 ARM_BX_GLUE_SECTION_NAME
))
11187 /* Return a best guess for the machine number based on the attributes. */
11189 static unsigned int
11190 bfd_arm_get_mach_from_attributes (bfd
* abfd
)
11192 int arch
= bfd_elf_get_obj_attr_int (abfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
11196 case TAG_CPU_ARCH_V4
: return bfd_mach_arm_4
;
11197 case TAG_CPU_ARCH_V4T
: return bfd_mach_arm_4T
;
11198 case TAG_CPU_ARCH_V5T
: return bfd_mach_arm_5T
;
11200 case TAG_CPU_ARCH_V5TE
:
11204 BFD_ASSERT (Tag_CPU_name
< NUM_KNOWN_OBJ_ATTRIBUTES
);
11205 name
= elf_known_obj_attributes (abfd
) [OBJ_ATTR_PROC
][Tag_CPU_name
].s
;
11209 if (strcmp (name
, "IWMMXT2") == 0)
11210 return bfd_mach_arm_iWMMXt2
;
11212 if (strcmp (name
, "IWMMXT") == 0)
11213 return bfd_mach_arm_iWMMXt
;
11215 if (strcmp (name
, "XSCALE") == 0)
11219 BFD_ASSERT (Tag_WMMX_arch
< NUM_KNOWN_OBJ_ATTRIBUTES
);
11220 wmmx
= elf_known_obj_attributes (abfd
) [OBJ_ATTR_PROC
][Tag_WMMX_arch
].i
;
11223 case 1: return bfd_mach_arm_iWMMXt
;
11224 case 2: return bfd_mach_arm_iWMMXt2
;
11225 default: return bfd_mach_arm_XScale
;
11230 return bfd_mach_arm_5TE
;
11234 return bfd_mach_arm_unknown
;
11238 /* Set the right machine number. */
11241 elf32_arm_object_p (bfd
*abfd
)
11245 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
11247 if (mach
== bfd_mach_arm_unknown
)
11249 if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
11250 mach
= bfd_mach_arm_ep9312
;
11252 mach
= bfd_arm_get_mach_from_attributes (abfd
);
11255 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
11259 /* Function to keep ARM specific flags in the ELF header. */
11262 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
11264 if (elf_flags_init (abfd
)
11265 && elf_elfheader (abfd
)->e_flags
!= flags
)
11267 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
11269 if (flags
& EF_ARM_INTERWORK
)
11270 (*_bfd_error_handler
)
11271 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11275 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11281 elf_elfheader (abfd
)->e_flags
= flags
;
11282 elf_flags_init (abfd
) = TRUE
;
11288 /* Copy backend specific data from one object module to another. */
11291 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
11294 flagword out_flags
;
11296 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
11299 in_flags
= elf_elfheader (ibfd
)->e_flags
;
11300 out_flags
= elf_elfheader (obfd
)->e_flags
;
11302 if (elf_flags_init (obfd
)
11303 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
11304 && in_flags
!= out_flags
)
11306 /* Cannot mix APCS26 and APCS32 code. */
11307 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
11310 /* Cannot mix float APCS and non-float APCS code. */
11311 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
11314 /* If the src and dest have different interworking flags
11315 then turn off the interworking bit. */
11316 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
11318 if (out_flags
& EF_ARM_INTERWORK
)
11320 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11323 in_flags
&= ~EF_ARM_INTERWORK
;
11326 /* Likewise for PIC, though don't warn for this case. */
11327 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
11328 in_flags
&= ~EF_ARM_PIC
;
11331 elf_elfheader (obfd
)->e_flags
= in_flags
;
11332 elf_flags_init (obfd
) = TRUE
;
11334 return _bfd_elf_copy_private_bfd_data (ibfd
, obfd
);
11337 /* Values for Tag_ABI_PCS_R9_use. */
11346 /* Values for Tag_ABI_PCS_RW_data. */
11349 AEABI_PCS_RW_data_absolute
,
11350 AEABI_PCS_RW_data_PCrel
,
11351 AEABI_PCS_RW_data_SBrel
,
11352 AEABI_PCS_RW_data_unused
11355 /* Values for Tag_ABI_enum_size. */
11361 AEABI_enum_forced_wide
11364 /* Determine whether an object attribute tag takes an integer, a
11368 elf32_arm_obj_attrs_arg_type (int tag
)
11370 if (tag
== Tag_compatibility
)
11371 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
11372 else if (tag
== Tag_nodefaults
)
11373 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
11374 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
11375 return ATTR_TYPE_FLAG_STR_VAL
;
11377 return ATTR_TYPE_FLAG_INT_VAL
;
11379 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
11382 /* The ABI defines that Tag_conformance should be emitted first, and that
11383 Tag_nodefaults should be second (if either is defined). This sets those
11384 two positions, and bumps up the position of all the remaining tags to
11387 elf32_arm_obj_attrs_order (int num
)
11389 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
)
11390 return Tag_conformance
;
11391 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
+ 1)
11392 return Tag_nodefaults
;
11393 if ((num
- 2) < Tag_nodefaults
)
11395 if ((num
- 1) < Tag_conformance
)
11400 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
11402 elf32_arm_obj_attrs_handle_unknown (bfd
*abfd
, int tag
)
11404 if ((tag
& 127) < 64)
11407 (_("%B: Unknown mandatory EABI object attribute %d"),
11409 bfd_set_error (bfd_error_bad_value
);
11415 (_("Warning: %B: Unknown EABI object attribute %d"),
11421 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
11422 Returns -1 if no architecture could be read. */
11425 get_secondary_compatible_arch (bfd
*abfd
)
11427 obj_attribute
*attr
=
11428 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
11430 /* Note: the tag and its argument below are uleb128 values, though
11431 currently-defined values fit in one byte for each. */
11433 && attr
->s
[0] == Tag_CPU_arch
11434 && (attr
->s
[1] & 128) != 128
11435 && attr
->s
[2] == 0)
11438 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11442 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11443 The tag is removed if ARCH is -1. */
11446 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
11448 obj_attribute
*attr
=
11449 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
11457 /* Note: the tag and its argument below are uleb128 values, though
11458 currently-defined values fit in one byte for each. */
11460 attr
->s
= (char *) bfd_alloc (abfd
, 3);
11461 attr
->s
[0] = Tag_CPU_arch
;
11466 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11470 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
11471 int newtag
, int secondary_compat
)
11473 #define T(X) TAG_CPU_ARCH_##X
11474 int tagl
, tagh
, result
;
11477 T(V6T2
), /* PRE_V4. */
11479 T(V6T2
), /* V4T. */
11480 T(V6T2
), /* V5T. */
11481 T(V6T2
), /* V5TE. */
11482 T(V6T2
), /* V5TEJ. */
11485 T(V6T2
) /* V6T2. */
11489 T(V6K
), /* PRE_V4. */
11493 T(V6K
), /* V5TE. */
11494 T(V6K
), /* V5TEJ. */
11496 T(V6KZ
), /* V6KZ. */
11502 T(V7
), /* PRE_V4. */
11507 T(V7
), /* V5TEJ. */
11520 T(V6K
), /* V5TE. */
11521 T(V6K
), /* V5TEJ. */
11523 T(V6KZ
), /* V6KZ. */
11527 T(V6_M
) /* V6_M. */
11529 const int v6s_m
[] =
11535 T(V6K
), /* V5TE. */
11536 T(V6K
), /* V5TEJ. */
11538 T(V6KZ
), /* V6KZ. */
11542 T(V6S_M
), /* V6_M. */
11543 T(V6S_M
) /* V6S_M. */
11545 const int v7e_m
[] =
11549 T(V7E_M
), /* V4T. */
11550 T(V7E_M
), /* V5T. */
11551 T(V7E_M
), /* V5TE. */
11552 T(V7E_M
), /* V5TEJ. */
11553 T(V7E_M
), /* V6. */
11554 T(V7E_M
), /* V6KZ. */
11555 T(V7E_M
), /* V6T2. */
11556 T(V7E_M
), /* V6K. */
11557 T(V7E_M
), /* V7. */
11558 T(V7E_M
), /* V6_M. */
11559 T(V7E_M
), /* V6S_M. */
11560 T(V7E_M
) /* V7E_M. */
11564 T(V8
), /* PRE_V4. */
11569 T(V8
), /* V5TEJ. */
11576 T(V8
), /* V6S_M. */
11577 T(V8
), /* V7E_M. */
11580 const int v4t_plus_v6_m
[] =
11586 T(V5TE
), /* V5TE. */
11587 T(V5TEJ
), /* V5TEJ. */
11589 T(V6KZ
), /* V6KZ. */
11590 T(V6T2
), /* V6T2. */
11593 T(V6_M
), /* V6_M. */
11594 T(V6S_M
), /* V6S_M. */
11595 T(V7E_M
), /* V7E_M. */
11597 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
11599 const int *comb
[] =
11608 /* Pseudo-architecture. */
11612 /* Check we've not got a higher architecture than we know about. */
11614 if (oldtag
> MAX_TAG_CPU_ARCH
|| newtag
> MAX_TAG_CPU_ARCH
)
11616 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd
);
11620 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11622 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
11623 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
11624 oldtag
= T(V4T_PLUS_V6_M
);
11626 /* And override the new tag if we have a Tag_also_compatible_with on the
11629 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
11630 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
11631 newtag
= T(V4T_PLUS_V6_M
);
11633 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
11634 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
11636 /* Architectures before V6KZ add features monotonically. */
11637 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
11640 result
= comb
[tagh
- T(V6T2
)][tagl
];
11642 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11643 as the canonical version. */
11644 if (result
== T(V4T_PLUS_V6_M
))
11647 *secondary_compat_out
= T(V6_M
);
11650 *secondary_compat_out
= -1;
11654 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11655 ibfd
, oldtag
, newtag
);
11663 /* Query attributes object to see if integer divide instructions may be
11664 present in an object. */
11666 elf32_arm_attributes_accept_div (const obj_attribute
*attr
)
11668 int arch
= attr
[Tag_CPU_arch
].i
;
11669 int profile
= attr
[Tag_CPU_arch_profile
].i
;
11671 switch (attr
[Tag_DIV_use
].i
)
11674 /* Integer divide allowed if instruction contained in archetecture. */
11675 if (arch
== TAG_CPU_ARCH_V7
&& (profile
== 'R' || profile
== 'M'))
11677 else if (arch
>= TAG_CPU_ARCH_V7E_M
)
11683 /* Integer divide explicitly prohibited. */
11687 /* Unrecognised case - treat as allowing divide everywhere. */
11689 /* Integer divide allowed in ARM state. */
11694 /* Query attributes object to see if integer divide instructions are
11695 forbidden to be in the object. This is not the inverse of
11696 elf32_arm_attributes_accept_div. */
11698 elf32_arm_attributes_forbid_div (const obj_attribute
*attr
)
11700 return attr
[Tag_DIV_use
].i
== 1;
11703 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11704 are conflicting attributes. */
11707 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
11709 obj_attribute
*in_attr
;
11710 obj_attribute
*out_attr
;
11711 /* Some tags have 0 = don't care, 1 = strong requirement,
11712 2 = weak requirement. */
11713 static const int order_021
[3] = {0, 2, 1};
11715 bfd_boolean result
= TRUE
;
11716 const char *sec_name
= get_elf_backend_data (ibfd
)->obj_attrs_section
;
11718 /* Skip the linker stubs file. This preserves previous behavior
11719 of accepting unknown attributes in the first input file - but
11721 if (ibfd
->flags
& BFD_LINKER_CREATED
)
11724 /* Skip any input that hasn't attribute section.
11725 This enables to link object files without attribute section with
11727 if (bfd_get_section_by_name (ibfd
, sec_name
) == NULL
)
11730 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
11732 /* This is the first object. Copy the attributes. */
11733 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
11735 out_attr
= elf_known_obj_attributes_proc (obfd
);
11737 /* Use the Tag_null value to indicate the attributes have been
11741 /* We do not output objects with Tag_MPextension_use_legacy - we move
11742 the attribute's value to Tag_MPextension_use. */
11743 if (out_attr
[Tag_MPextension_use_legacy
].i
!= 0)
11745 if (out_attr
[Tag_MPextension_use
].i
!= 0
11746 && out_attr
[Tag_MPextension_use_legacy
].i
11747 != out_attr
[Tag_MPextension_use
].i
)
11750 (_("Error: %B has both the current and legacy "
11751 "Tag_MPextension_use attributes"), ibfd
);
11755 out_attr
[Tag_MPextension_use
] =
11756 out_attr
[Tag_MPextension_use_legacy
];
11757 out_attr
[Tag_MPextension_use_legacy
].type
= 0;
11758 out_attr
[Tag_MPextension_use_legacy
].i
= 0;
11764 in_attr
= elf_known_obj_attributes_proc (ibfd
);
11765 out_attr
= elf_known_obj_attributes_proc (obfd
);
11766 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11767 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
11769 /* Ignore mismatches if the object doesn't use floating point or is
11770 floating point ABI independent. */
11771 if (out_attr
[Tag_ABI_FP_number_model
].i
== AEABI_FP_number_model_none
11772 || (in_attr
[Tag_ABI_FP_number_model
].i
!= AEABI_FP_number_model_none
11773 && out_attr
[Tag_ABI_VFP_args
].i
== AEABI_VFP_args_compatible
))
11774 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
11775 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= AEABI_FP_number_model_none
11776 && in_attr
[Tag_ABI_VFP_args
].i
!= AEABI_VFP_args_compatible
)
11779 (_("error: %B uses VFP register arguments, %B does not"),
11780 in_attr
[Tag_ABI_VFP_args
].i
? ibfd
: obfd
,
11781 in_attr
[Tag_ABI_VFP_args
].i
? obfd
: ibfd
);
11786 for (i
= LEAST_KNOWN_OBJ_ATTRIBUTE
; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
11788 /* Merge this attribute with existing attributes. */
11791 case Tag_CPU_raw_name
:
11793 /* These are merged after Tag_CPU_arch. */
11796 case Tag_ABI_optimization_goals
:
11797 case Tag_ABI_FP_optimization_goals
:
11798 /* Use the first value seen. */
11803 int secondary_compat
= -1, secondary_compat_out
= -1;
11804 unsigned int saved_out_attr
= out_attr
[i
].i
;
11806 static const char *name_table
[] =
11808 /* These aren't real CPU names, but we can't guess
11809 that from the architecture version alone. */
11826 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11827 secondary_compat
= get_secondary_compatible_arch (ibfd
);
11828 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
11829 arch_attr
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
11830 &secondary_compat_out
,
11834 /* Return with error if failed to merge. */
11835 if (arch_attr
== -1)
11838 out_attr
[i
].i
= arch_attr
;
11840 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
11842 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11843 if (out_attr
[i
].i
== saved_out_attr
)
11844 ; /* Leave the names alone. */
11845 else if (out_attr
[i
].i
== in_attr
[i
].i
)
11847 /* The output architecture has been changed to match the
11848 input architecture. Use the input names. */
11849 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
11850 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
11852 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
11853 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
11858 out_attr
[Tag_CPU_name
].s
= NULL
;
11859 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
11862 /* If we still don't have a value for Tag_CPU_name,
11863 make one up now. Tag_CPU_raw_name remains blank. */
11864 if (out_attr
[Tag_CPU_name
].s
== NULL
11865 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
11866 out_attr
[Tag_CPU_name
].s
=
11867 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
11871 case Tag_ARM_ISA_use
:
11872 case Tag_THUMB_ISA_use
:
11873 case Tag_WMMX_arch
:
11874 case Tag_Advanced_SIMD_arch
:
11875 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11876 case Tag_ABI_FP_rounding
:
11877 case Tag_ABI_FP_exceptions
:
11878 case Tag_ABI_FP_user_exceptions
:
11879 case Tag_ABI_FP_number_model
:
11880 case Tag_FP_HP_extension
:
11881 case Tag_CPU_unaligned_access
:
11883 case Tag_MPextension_use
:
11884 /* Use the largest value specified. */
11885 if (in_attr
[i
].i
> out_attr
[i
].i
)
11886 out_attr
[i
].i
= in_attr
[i
].i
;
11889 case Tag_ABI_align_preserved
:
11890 case Tag_ABI_PCS_RO_data
:
11891 /* Use the smallest value specified. */
11892 if (in_attr
[i
].i
< out_attr
[i
].i
)
11893 out_attr
[i
].i
= in_attr
[i
].i
;
11896 case Tag_ABI_align_needed
:
11897 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
11898 && (in_attr
[Tag_ABI_align_preserved
].i
== 0
11899 || out_attr
[Tag_ABI_align_preserved
].i
== 0))
11901 /* This error message should be enabled once all non-conformant
11902 binaries in the toolchain have had the attributes set
11905 (_("error: %B: 8-byte data alignment conflicts with %B"),
11909 /* Fall through. */
11910 case Tag_ABI_FP_denormal
:
11911 case Tag_ABI_PCS_GOT_use
:
11912 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11913 value if greater than 2 (for future-proofing). */
11914 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
11915 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
11916 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
11917 out_attr
[i
].i
= in_attr
[i
].i
;
11920 case Tag_Virtualization_use
:
11921 /* The virtualization tag effectively stores two bits of
11922 information: the intended use of TrustZone (in bit 0), and the
11923 intended use of Virtualization (in bit 1). */
11924 if (out_attr
[i
].i
== 0)
11925 out_attr
[i
].i
= in_attr
[i
].i
;
11926 else if (in_attr
[i
].i
!= 0
11927 && in_attr
[i
].i
!= out_attr
[i
].i
)
11929 if (in_attr
[i
].i
<= 3 && out_attr
[i
].i
<= 3)
11934 (_("error: %B: unable to merge virtualization attributes "
11942 case Tag_CPU_arch_profile
:
11943 if (out_attr
[i
].i
!= in_attr
[i
].i
)
11945 /* 0 will merge with anything.
11946 'A' and 'S' merge to 'A'.
11947 'R' and 'S' merge to 'R'.
11948 'M' and 'A|R|S' is an error. */
11949 if (out_attr
[i
].i
== 0
11950 || (out_attr
[i
].i
== 'S'
11951 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
11952 out_attr
[i
].i
= in_attr
[i
].i
;
11953 else if (in_attr
[i
].i
== 0
11954 || (in_attr
[i
].i
== 'S'
11955 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
11956 ; /* Do nothing. */
11960 (_("error: %B: Conflicting architecture profiles %c/%c"),
11962 in_attr
[i
].i
? in_attr
[i
].i
: '0',
11963 out_attr
[i
].i
? out_attr
[i
].i
: '0');
11970 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11971 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11972 when it's 0. It might mean absence of FP hardware if
11973 Tag_FP_arch is zero. */
11975 #define VFP_VERSION_COUNT 9
11976 static const struct
11980 } vfp_versions
[VFP_VERSION_COUNT
] =
11996 /* If the output has no requirement about FP hardware,
11997 follow the requirement of the input. */
11998 if (out_attr
[i
].i
== 0)
12000 BFD_ASSERT (out_attr
[Tag_ABI_HardFP_use
].i
== 0);
12001 out_attr
[i
].i
= in_attr
[i
].i
;
12002 out_attr
[Tag_ABI_HardFP_use
].i
12003 = in_attr
[Tag_ABI_HardFP_use
].i
;
12006 /* If the input has no requirement about FP hardware, do
12008 else if (in_attr
[i
].i
== 0)
12010 BFD_ASSERT (in_attr
[Tag_ABI_HardFP_use
].i
== 0);
12014 /* Both the input and the output have nonzero Tag_FP_arch.
12015 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
12017 /* If both the input and the output have zero Tag_ABI_HardFP_use,
12019 if (in_attr
[Tag_ABI_HardFP_use
].i
== 0
12020 && out_attr
[Tag_ABI_HardFP_use
].i
== 0)
12022 /* If the input and the output have different Tag_ABI_HardFP_use,
12023 the combination of them is 0 (implied by Tag_FP_arch). */
12024 else if (in_attr
[Tag_ABI_HardFP_use
].i
12025 != out_attr
[Tag_ABI_HardFP_use
].i
)
12026 out_attr
[Tag_ABI_HardFP_use
].i
= 0;
12028 /* Now we can handle Tag_FP_arch. */
12030 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
12031 pick the biggest. */
12032 if (in_attr
[i
].i
>= VFP_VERSION_COUNT
12033 && in_attr
[i
].i
> out_attr
[i
].i
)
12035 out_attr
[i
] = in_attr
[i
];
12038 /* The output uses the superset of input features
12039 (ISA version) and registers. */
12040 ver
= vfp_versions
[in_attr
[i
].i
].ver
;
12041 if (ver
< vfp_versions
[out_attr
[i
].i
].ver
)
12042 ver
= vfp_versions
[out_attr
[i
].i
].ver
;
12043 regs
= vfp_versions
[in_attr
[i
].i
].regs
;
12044 if (regs
< vfp_versions
[out_attr
[i
].i
].regs
)
12045 regs
= vfp_versions
[out_attr
[i
].i
].regs
;
12046 /* This assumes all possible supersets are also a valid
12048 for (newval
= VFP_VERSION_COUNT
- 1; newval
> 0; newval
--)
12050 if (regs
== vfp_versions
[newval
].regs
12051 && ver
== vfp_versions
[newval
].ver
)
12054 out_attr
[i
].i
= newval
;
12057 case Tag_PCS_config
:
12058 if (out_attr
[i
].i
== 0)
12059 out_attr
[i
].i
= in_attr
[i
].i
;
12060 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= in_attr
[i
].i
)
12062 /* It's sometimes ok to mix different configs, so this is only
12065 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
12068 case Tag_ABI_PCS_R9_use
:
12069 if (in_attr
[i
].i
!= out_attr
[i
].i
12070 && out_attr
[i
].i
!= AEABI_R9_unused
12071 && in_attr
[i
].i
!= AEABI_R9_unused
)
12074 (_("error: %B: Conflicting use of R9"), ibfd
);
12077 if (out_attr
[i
].i
== AEABI_R9_unused
)
12078 out_attr
[i
].i
= in_attr
[i
].i
;
12080 case Tag_ABI_PCS_RW_data
:
12081 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
12082 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
12083 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
12086 (_("error: %B: SB relative addressing conflicts with use of R9"),
12090 /* Use the smallest value specified. */
12091 if (in_attr
[i
].i
< out_attr
[i
].i
)
12092 out_attr
[i
].i
= in_attr
[i
].i
;
12094 case Tag_ABI_PCS_wchar_t
:
12095 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
12096 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
12099 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
12100 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
12102 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
12103 out_attr
[i
].i
= in_attr
[i
].i
;
12105 case Tag_ABI_enum_size
:
12106 if (in_attr
[i
].i
!= AEABI_enum_unused
)
12108 if (out_attr
[i
].i
== AEABI_enum_unused
12109 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
12111 /* The existing object is compatible with anything.
12112 Use whatever requirements the new object has. */
12113 out_attr
[i
].i
= in_attr
[i
].i
;
12115 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
12116 && out_attr
[i
].i
!= in_attr
[i
].i
12117 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
12119 static const char *aeabi_enum_names
[] =
12120 { "", "variable-size", "32-bit", "" };
12121 const char *in_name
=
12122 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
12123 ? aeabi_enum_names
[in_attr
[i
].i
]
12125 const char *out_name
=
12126 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
12127 ? aeabi_enum_names
[out_attr
[i
].i
]
12130 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
12131 ibfd
, in_name
, out_name
);
12135 case Tag_ABI_VFP_args
:
12138 case Tag_ABI_WMMX_args
:
12139 if (in_attr
[i
].i
!= out_attr
[i
].i
)
12142 (_("error: %B uses iWMMXt register arguments, %B does not"),
12147 case Tag_compatibility
:
12148 /* Merged in target-independent code. */
12150 case Tag_ABI_HardFP_use
:
12151 /* This is handled along with Tag_FP_arch. */
12153 case Tag_ABI_FP_16bit_format
:
12154 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
12156 if (in_attr
[i
].i
!= out_attr
[i
].i
)
12159 (_("error: fp16 format mismatch between %B and %B"),
12164 if (in_attr
[i
].i
!= 0)
12165 out_attr
[i
].i
= in_attr
[i
].i
;
12169 /* A value of zero on input means that the divide instruction may
12170 be used if available in the base architecture as specified via
12171 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
12172 the user did not want divide instructions. A value of 2
12173 explicitly means that divide instructions were allowed in ARM
12174 and Thumb state. */
12175 if (in_attr
[i
].i
== out_attr
[i
].i
)
12176 /* Do nothing. */ ;
12177 else if (elf32_arm_attributes_forbid_div (in_attr
)
12178 && !elf32_arm_attributes_accept_div (out_attr
))
12180 else if (elf32_arm_attributes_forbid_div (out_attr
)
12181 && elf32_arm_attributes_accept_div (in_attr
))
12182 out_attr
[i
].i
= in_attr
[i
].i
;
12183 else if (in_attr
[i
].i
== 2)
12184 out_attr
[i
].i
= in_attr
[i
].i
;
12187 case Tag_MPextension_use_legacy
:
12188 /* We don't output objects with Tag_MPextension_use_legacy - we
12189 move the value to Tag_MPextension_use. */
12190 if (in_attr
[i
].i
!= 0 && in_attr
[Tag_MPextension_use
].i
!= 0)
12192 if (in_attr
[Tag_MPextension_use
].i
!= in_attr
[i
].i
)
12195 (_("%B has has both the current and legacy "
12196 "Tag_MPextension_use attributes"),
12202 if (in_attr
[i
].i
> out_attr
[Tag_MPextension_use
].i
)
12203 out_attr
[Tag_MPextension_use
] = in_attr
[i
];
12207 case Tag_nodefaults
:
12208 /* This tag is set if it exists, but the value is unused (and is
12209 typically zero). We don't actually need to do anything here -
12210 the merge happens automatically when the type flags are merged
12213 case Tag_also_compatible_with
:
12214 /* Already done in Tag_CPU_arch. */
12216 case Tag_conformance
:
12217 /* Keep the attribute if it matches. Throw it away otherwise.
12218 No attribute means no claim to conform. */
12219 if (!in_attr
[i
].s
|| !out_attr
[i
].s
12220 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
12221 out_attr
[i
].s
= NULL
;
12226 = result
&& _bfd_elf_merge_unknown_attribute_low (ibfd
, obfd
, i
);
12229 /* If out_attr was copied from in_attr then it won't have a type yet. */
12230 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
12231 out_attr
[i
].type
= in_attr
[i
].type
;
12234 /* Merge Tag_compatibility attributes and any common GNU ones. */
12235 if (!_bfd_elf_merge_object_attributes (ibfd
, obfd
))
12238 /* Check for any attributes not known on ARM. */
12239 result
&= _bfd_elf_merge_unknown_attribute_list (ibfd
, obfd
);
12245 /* Return TRUE if the two EABI versions are incompatible. */
12248 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
12250 /* v4 and v5 are the same spec before and after it was released,
12251 so allow mixing them. */
12252 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
12253 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
12256 return (iver
== over
);
12259 /* Merge backend specific data from an object file to the output
12260 object file when linking. */
12263 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
);
12265 /* Display the flags field. */
12268 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
12270 FILE * file
= (FILE *) ptr
;
12271 unsigned long flags
;
12273 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
12275 /* Print normal ELF private data. */
12276 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
12278 flags
= elf_elfheader (abfd
)->e_flags
;
12279 /* Ignore init flag - it may not be set, despite the flags field
12280 containing valid data. */
12282 /* xgettext:c-format */
12283 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
12285 switch (EF_ARM_EABI_VERSION (flags
))
12287 case EF_ARM_EABI_UNKNOWN
:
12288 /* The following flag bits are GNU extensions and not part of the
12289 official ARM ELF extended ABI. Hence they are only decoded if
12290 the EABI version is not set. */
12291 if (flags
& EF_ARM_INTERWORK
)
12292 fprintf (file
, _(" [interworking enabled]"));
12294 if (flags
& EF_ARM_APCS_26
)
12295 fprintf (file
, " [APCS-26]");
12297 fprintf (file
, " [APCS-32]");
12299 if (flags
& EF_ARM_VFP_FLOAT
)
12300 fprintf (file
, _(" [VFP float format]"));
12301 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
12302 fprintf (file
, _(" [Maverick float format]"));
12304 fprintf (file
, _(" [FPA float format]"));
12306 if (flags
& EF_ARM_APCS_FLOAT
)
12307 fprintf (file
, _(" [floats passed in float registers]"));
12309 if (flags
& EF_ARM_PIC
)
12310 fprintf (file
, _(" [position independent]"));
12312 if (flags
& EF_ARM_NEW_ABI
)
12313 fprintf (file
, _(" [new ABI]"));
12315 if (flags
& EF_ARM_OLD_ABI
)
12316 fprintf (file
, _(" [old ABI]"));
12318 if (flags
& EF_ARM_SOFT_FLOAT
)
12319 fprintf (file
, _(" [software FP]"));
12321 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
12322 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
12323 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
12324 | EF_ARM_MAVERICK_FLOAT
);
12327 case EF_ARM_EABI_VER1
:
12328 fprintf (file
, _(" [Version1 EABI]"));
12330 if (flags
& EF_ARM_SYMSARESORTED
)
12331 fprintf (file
, _(" [sorted symbol table]"));
12333 fprintf (file
, _(" [unsorted symbol table]"));
12335 flags
&= ~ EF_ARM_SYMSARESORTED
;
12338 case EF_ARM_EABI_VER2
:
12339 fprintf (file
, _(" [Version2 EABI]"));
12341 if (flags
& EF_ARM_SYMSARESORTED
)
12342 fprintf (file
, _(" [sorted symbol table]"));
12344 fprintf (file
, _(" [unsorted symbol table]"));
12346 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
12347 fprintf (file
, _(" [dynamic symbols use segment index]"));
12349 if (flags
& EF_ARM_MAPSYMSFIRST
)
12350 fprintf (file
, _(" [mapping symbols precede others]"));
12352 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
12353 | EF_ARM_MAPSYMSFIRST
);
12356 case EF_ARM_EABI_VER3
:
12357 fprintf (file
, _(" [Version3 EABI]"));
12360 case EF_ARM_EABI_VER4
:
12361 fprintf (file
, _(" [Version4 EABI]"));
12364 case EF_ARM_EABI_VER5
:
12365 fprintf (file
, _(" [Version5 EABI]"));
12367 if (flags
& EF_ARM_ABI_FLOAT_SOFT
)
12368 fprintf (file
, _(" [soft-float ABI]"));
12370 if (flags
& EF_ARM_ABI_FLOAT_HARD
)
12371 fprintf (file
, _(" [hard-float ABI]"));
12373 flags
&= ~(EF_ARM_ABI_FLOAT_SOFT
| EF_ARM_ABI_FLOAT_HARD
);
12376 if (flags
& EF_ARM_BE8
)
12377 fprintf (file
, _(" [BE8]"));
12379 if (flags
& EF_ARM_LE8
)
12380 fprintf (file
, _(" [LE8]"));
12382 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
12386 fprintf (file
, _(" <EABI version unrecognised>"));
12390 flags
&= ~ EF_ARM_EABIMASK
;
12392 if (flags
& EF_ARM_RELEXEC
)
12393 fprintf (file
, _(" [relocatable executable]"));
12395 flags
&= ~EF_ARM_RELEXEC
;
12398 fprintf (file
, _("<Unrecognised flag bits set>"));
12400 fputc ('\n', file
);
12406 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
12408 switch (ELF_ST_TYPE (elf_sym
->st_info
))
12410 case STT_ARM_TFUNC
:
12411 return ELF_ST_TYPE (elf_sym
->st_info
);
12413 case STT_ARM_16BIT
:
12414 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12415 This allows us to distinguish between data used by Thumb instructions
12416 and non-data (which is probably code) inside Thumb regions of an
12418 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
12419 return ELF_ST_TYPE (elf_sym
->st_info
);
12430 elf32_arm_gc_mark_hook (asection
*sec
,
12431 struct bfd_link_info
*info
,
12432 Elf_Internal_Rela
*rel
,
12433 struct elf_link_hash_entry
*h
,
12434 Elf_Internal_Sym
*sym
)
12437 switch (ELF32_R_TYPE (rel
->r_info
))
12439 case R_ARM_GNU_VTINHERIT
:
12440 case R_ARM_GNU_VTENTRY
:
12444 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
12447 /* Update the got entry reference counts for the section being removed. */
12450 elf32_arm_gc_sweep_hook (bfd
* abfd
,
12451 struct bfd_link_info
* info
,
12453 const Elf_Internal_Rela
* relocs
)
12455 Elf_Internal_Shdr
*symtab_hdr
;
12456 struct elf_link_hash_entry
**sym_hashes
;
12457 bfd_signed_vma
*local_got_refcounts
;
12458 const Elf_Internal_Rela
*rel
, *relend
;
12459 struct elf32_arm_link_hash_table
* globals
;
12461 if (bfd_link_relocatable (info
))
12464 globals
= elf32_arm_hash_table (info
);
12465 if (globals
== NULL
)
12468 elf_section_data (sec
)->local_dynrel
= NULL
;
12470 symtab_hdr
= & elf_symtab_hdr (abfd
);
12471 sym_hashes
= elf_sym_hashes (abfd
);
12472 local_got_refcounts
= elf_local_got_refcounts (abfd
);
12474 check_use_blx (globals
);
12476 relend
= relocs
+ sec
->reloc_count
;
12477 for (rel
= relocs
; rel
< relend
; rel
++)
12479 unsigned long r_symndx
;
12480 struct elf_link_hash_entry
*h
= NULL
;
12481 struct elf32_arm_link_hash_entry
*eh
;
12483 bfd_boolean call_reloc_p
;
12484 bfd_boolean may_become_dynamic_p
;
12485 bfd_boolean may_need_local_target_p
;
12486 union gotplt_union
*root_plt
;
12487 struct arm_plt_info
*arm_plt
;
12489 r_symndx
= ELF32_R_SYM (rel
->r_info
);
12490 if (r_symndx
>= symtab_hdr
->sh_info
)
12492 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
12493 while (h
->root
.type
== bfd_link_hash_indirect
12494 || h
->root
.type
== bfd_link_hash_warning
)
12495 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12497 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12499 call_reloc_p
= FALSE
;
12500 may_become_dynamic_p
= FALSE
;
12501 may_need_local_target_p
= FALSE
;
12503 r_type
= ELF32_R_TYPE (rel
->r_info
);
12504 r_type
= arm_real_reloc_type (globals
, r_type
);
12508 case R_ARM_GOT_PREL
:
12509 case R_ARM_TLS_GD32
:
12510 case R_ARM_TLS_IE32
:
12513 if (h
->got
.refcount
> 0)
12514 h
->got
.refcount
-= 1;
12516 else if (local_got_refcounts
!= NULL
)
12518 if (local_got_refcounts
[r_symndx
] > 0)
12519 local_got_refcounts
[r_symndx
] -= 1;
12523 case R_ARM_TLS_LDM32
:
12524 globals
->tls_ldm_got
.refcount
-= 1;
12532 case R_ARM_THM_CALL
:
12533 case R_ARM_THM_JUMP24
:
12534 case R_ARM_THM_JUMP19
:
12535 call_reloc_p
= TRUE
;
12536 may_need_local_target_p
= TRUE
;
12540 if (!globals
->vxworks_p
)
12542 may_need_local_target_p
= TRUE
;
12545 /* Fall through. */
12547 case R_ARM_ABS32_NOI
:
12549 case R_ARM_REL32_NOI
:
12550 case R_ARM_MOVW_ABS_NC
:
12551 case R_ARM_MOVT_ABS
:
12552 case R_ARM_MOVW_PREL_NC
:
12553 case R_ARM_MOVT_PREL
:
12554 case R_ARM_THM_MOVW_ABS_NC
:
12555 case R_ARM_THM_MOVT_ABS
:
12556 case R_ARM_THM_MOVW_PREL_NC
:
12557 case R_ARM_THM_MOVT_PREL
:
12558 /* Should the interworking branches be here also? */
12559 if ((bfd_link_pic (info
) || globals
->root
.is_relocatable_executable
)
12560 && (sec
->flags
& SEC_ALLOC
) != 0)
12563 && elf32_arm_howto_from_type (r_type
)->pc_relative
)
12565 call_reloc_p
= TRUE
;
12566 may_need_local_target_p
= TRUE
;
12569 may_become_dynamic_p
= TRUE
;
12572 may_need_local_target_p
= TRUE
;
12579 if (may_need_local_target_p
12580 && elf32_arm_get_plt_info (abfd
, eh
, r_symndx
, &root_plt
, &arm_plt
))
12582 /* If PLT refcount book-keeping is wrong and too low, we'll
12583 see a zero value (going to -1) for the root PLT reference
12585 if (root_plt
->refcount
>= 0)
12587 BFD_ASSERT (root_plt
->refcount
!= 0);
12588 root_plt
->refcount
-= 1;
12591 /* A value of -1 means the symbol has become local, forced
12592 or seeing a hidden definition. Any other negative value
12594 BFD_ASSERT (root_plt
->refcount
== -1);
12597 arm_plt
->noncall_refcount
--;
12599 if (r_type
== R_ARM_THM_CALL
)
12600 arm_plt
->maybe_thumb_refcount
--;
12602 if (r_type
== R_ARM_THM_JUMP24
12603 || r_type
== R_ARM_THM_JUMP19
)
12604 arm_plt
->thumb_refcount
--;
12607 if (may_become_dynamic_p
)
12609 struct elf_dyn_relocs
**pp
;
12610 struct elf_dyn_relocs
*p
;
12613 pp
= &(eh
->dyn_relocs
);
12616 Elf_Internal_Sym
*isym
;
12618 isym
= bfd_sym_from_r_symndx (&globals
->sym_cache
,
12622 pp
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
12626 for (; (p
= *pp
) != NULL
; pp
= &p
->next
)
12629 /* Everything must go for SEC. */
12639 /* Look through the relocs for a section during the first phase. */
12642 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
12643 asection
*sec
, const Elf_Internal_Rela
*relocs
)
12645 Elf_Internal_Shdr
*symtab_hdr
;
12646 struct elf_link_hash_entry
**sym_hashes
;
12647 const Elf_Internal_Rela
*rel
;
12648 const Elf_Internal_Rela
*rel_end
;
12651 struct elf32_arm_link_hash_table
*htab
;
12652 bfd_boolean call_reloc_p
;
12653 bfd_boolean may_become_dynamic_p
;
12654 bfd_boolean may_need_local_target_p
;
12655 unsigned long nsyms
;
12657 if (bfd_link_relocatable (info
))
12660 BFD_ASSERT (is_arm_elf (abfd
));
12662 htab
= elf32_arm_hash_table (info
);
12668 /* Create dynamic sections for relocatable executables so that we can
12669 copy relocations. */
12670 if (htab
->root
.is_relocatable_executable
12671 && ! htab
->root
.dynamic_sections_created
)
12673 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
12677 if (htab
->root
.dynobj
== NULL
)
12678 htab
->root
.dynobj
= abfd
;
12679 if (!create_ifunc_sections (info
))
12682 dynobj
= htab
->root
.dynobj
;
12684 symtab_hdr
= & elf_symtab_hdr (abfd
);
12685 sym_hashes
= elf_sym_hashes (abfd
);
12686 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
12688 rel_end
= relocs
+ sec
->reloc_count
;
12689 for (rel
= relocs
; rel
< rel_end
; rel
++)
12691 Elf_Internal_Sym
*isym
;
12692 struct elf_link_hash_entry
*h
;
12693 struct elf32_arm_link_hash_entry
*eh
;
12694 unsigned long r_symndx
;
12697 r_symndx
= ELF32_R_SYM (rel
->r_info
);
12698 r_type
= ELF32_R_TYPE (rel
->r_info
);
12699 r_type
= arm_real_reloc_type (htab
, r_type
);
12701 if (r_symndx
>= nsyms
12702 /* PR 9934: It is possible to have relocations that do not
12703 refer to symbols, thus it is also possible to have an
12704 object file containing relocations but no symbol table. */
12705 && (r_symndx
> STN_UNDEF
|| nsyms
> 0))
12707 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
12716 if (r_symndx
< symtab_hdr
->sh_info
)
12718 /* A local symbol. */
12719 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
12726 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
12727 while (h
->root
.type
== bfd_link_hash_indirect
12728 || h
->root
.type
== bfd_link_hash_warning
)
12729 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12731 /* PR15323, ref flags aren't set for references in the
12733 h
->root
.non_ir_ref
= 1;
12737 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12739 call_reloc_p
= FALSE
;
12740 may_become_dynamic_p
= FALSE
;
12741 may_need_local_target_p
= FALSE
;
12743 /* Could be done earlier, if h were already available. */
12744 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
12748 case R_ARM_GOT_PREL
:
12749 case R_ARM_TLS_GD32
:
12750 case R_ARM_TLS_IE32
:
12751 case R_ARM_TLS_GOTDESC
:
12752 case R_ARM_TLS_DESCSEQ
:
12753 case R_ARM_THM_TLS_DESCSEQ
:
12754 case R_ARM_TLS_CALL
:
12755 case R_ARM_THM_TLS_CALL
:
12756 /* This symbol requires a global offset table entry. */
12758 int tls_type
, old_tls_type
;
12762 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
12764 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
12766 case R_ARM_TLS_GOTDESC
:
12767 case R_ARM_TLS_CALL
: case R_ARM_THM_TLS_CALL
:
12768 case R_ARM_TLS_DESCSEQ
: case R_ARM_THM_TLS_DESCSEQ
:
12769 tls_type
= GOT_TLS_GDESC
; break;
12771 default: tls_type
= GOT_NORMAL
; break;
12774 if (!bfd_link_executable (info
) && (tls_type
& GOT_TLS_IE
))
12775 info
->flags
|= DF_STATIC_TLS
;
12780 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
12784 /* This is a global offset table entry for a local symbol. */
12785 if (!elf32_arm_allocate_local_sym_info (abfd
))
12787 elf_local_got_refcounts (abfd
)[r_symndx
] += 1;
12788 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
12791 /* If a variable is accessed with both tls methods, two
12792 slots may be created. */
12793 if (GOT_TLS_GD_ANY_P (old_tls_type
)
12794 && GOT_TLS_GD_ANY_P (tls_type
))
12795 tls_type
|= old_tls_type
;
12797 /* We will already have issued an error message if there
12798 is a TLS/non-TLS mismatch, based on the symbol
12799 type. So just combine any TLS types needed. */
12800 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
12801 && tls_type
!= GOT_NORMAL
)
12802 tls_type
|= old_tls_type
;
12804 /* If the symbol is accessed in both IE and GDESC
12805 method, we're able to relax. Turn off the GDESC flag,
12806 without messing up with any other kind of tls types
12807 that may be involved. */
12808 if ((tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GDESC
))
12809 tls_type
&= ~GOT_TLS_GDESC
;
12811 if (old_tls_type
!= tls_type
)
12814 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
12816 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
12819 /* Fall through. */
12821 case R_ARM_TLS_LDM32
:
12822 if (r_type
== R_ARM_TLS_LDM32
)
12823 htab
->tls_ldm_got
.refcount
++;
12824 /* Fall through. */
12826 case R_ARM_GOTOFF32
:
12828 if (htab
->root
.sgot
== NULL
12829 && !create_got_section (htab
->root
.dynobj
, info
))
12838 case R_ARM_THM_CALL
:
12839 case R_ARM_THM_JUMP24
:
12840 case R_ARM_THM_JUMP19
:
12841 call_reloc_p
= TRUE
;
12842 may_need_local_target_p
= TRUE
;
12846 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12847 ldr __GOTT_INDEX__ offsets. */
12848 if (!htab
->vxworks_p
)
12850 may_need_local_target_p
= TRUE
;
12853 /* Fall through. */
12855 case R_ARM_MOVW_ABS_NC
:
12856 case R_ARM_MOVT_ABS
:
12857 case R_ARM_THM_MOVW_ABS_NC
:
12858 case R_ARM_THM_MOVT_ABS
:
12859 if (bfd_link_pic (info
))
12861 (*_bfd_error_handler
)
12862 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12863 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
12864 (h
) ? h
->root
.root
.string
: "a local symbol");
12865 bfd_set_error (bfd_error_bad_value
);
12869 /* Fall through. */
12871 case R_ARM_ABS32_NOI
:
12872 if (h
!= NULL
&& bfd_link_executable (info
))
12874 h
->pointer_equality_needed
= 1;
12876 /* Fall through. */
12878 case R_ARM_REL32_NOI
:
12879 case R_ARM_MOVW_PREL_NC
:
12880 case R_ARM_MOVT_PREL
:
12881 case R_ARM_THM_MOVW_PREL_NC
:
12882 case R_ARM_THM_MOVT_PREL
:
12884 /* Should the interworking branches be listed here? */
12885 if ((bfd_link_pic (info
) || htab
->root
.is_relocatable_executable
)
12886 && (sec
->flags
& SEC_ALLOC
) != 0)
12889 && elf32_arm_howto_from_type (r_type
)->pc_relative
)
12891 /* In shared libraries and relocatable executables,
12892 we treat local relative references as calls;
12893 see the related SYMBOL_CALLS_LOCAL code in
12894 allocate_dynrelocs. */
12895 call_reloc_p
= TRUE
;
12896 may_need_local_target_p
= TRUE
;
12899 /* We are creating a shared library or relocatable
12900 executable, and this is a reloc against a global symbol,
12901 or a non-PC-relative reloc against a local symbol.
12902 We may need to copy the reloc into the output. */
12903 may_become_dynamic_p
= TRUE
;
12906 may_need_local_target_p
= TRUE
;
12909 /* This relocation describes the C++ object vtable hierarchy.
12910 Reconstruct it for later use during GC. */
12911 case R_ARM_GNU_VTINHERIT
:
12912 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
12916 /* This relocation describes which C++ vtable entries are actually
12917 used. Record for later use during GC. */
12918 case R_ARM_GNU_VTENTRY
:
12919 BFD_ASSERT (h
!= NULL
);
12921 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
12929 /* We may need a .plt entry if the function this reloc
12930 refers to is in a different object, regardless of the
12931 symbol's type. We can't tell for sure yet, because
12932 something later might force the symbol local. */
12934 else if (may_need_local_target_p
)
12935 /* If this reloc is in a read-only section, we might
12936 need a copy reloc. We can't check reliably at this
12937 stage whether the section is read-only, as input
12938 sections have not yet been mapped to output sections.
12939 Tentatively set the flag for now, and correct in
12940 adjust_dynamic_symbol. */
12941 h
->non_got_ref
= 1;
12944 if (may_need_local_target_p
12945 && (h
!= NULL
|| ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
))
12947 union gotplt_union
*root_plt
;
12948 struct arm_plt_info
*arm_plt
;
12949 struct arm_local_iplt_info
*local_iplt
;
12953 root_plt
= &h
->plt
;
12954 arm_plt
= &eh
->plt
;
12958 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
12959 if (local_iplt
== NULL
)
12961 root_plt
= &local_iplt
->root
;
12962 arm_plt
= &local_iplt
->arm
;
12965 /* If the symbol is a function that doesn't bind locally,
12966 this relocation will need a PLT entry. */
12967 if (root_plt
->refcount
!= -1)
12968 root_plt
->refcount
+= 1;
12971 arm_plt
->noncall_refcount
++;
12973 /* It's too early to use htab->use_blx here, so we have to
12974 record possible blx references separately from
12975 relocs that definitely need a thumb stub. */
12977 if (r_type
== R_ARM_THM_CALL
)
12978 arm_plt
->maybe_thumb_refcount
+= 1;
12980 if (r_type
== R_ARM_THM_JUMP24
12981 || r_type
== R_ARM_THM_JUMP19
)
12982 arm_plt
->thumb_refcount
+= 1;
12985 if (may_become_dynamic_p
)
12987 struct elf_dyn_relocs
*p
, **head
;
12989 /* Create a reloc section in dynobj. */
12990 if (sreloc
== NULL
)
12992 sreloc
= _bfd_elf_make_dynamic_reloc_section
12993 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
12995 if (sreloc
== NULL
)
12998 /* BPABI objects never have dynamic relocations mapped. */
12999 if (htab
->symbian_p
)
13003 flags
= bfd_get_section_flags (dynobj
, sreloc
);
13004 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
13005 bfd_set_section_flags (dynobj
, sreloc
, flags
);
13009 /* If this is a global symbol, count the number of
13010 relocations we need for this symbol. */
13012 head
= &((struct elf32_arm_link_hash_entry
*) h
)->dyn_relocs
;
13015 head
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
13021 if (p
== NULL
|| p
->sec
!= sec
)
13023 bfd_size_type amt
= sizeof *p
;
13025 p
= (struct elf_dyn_relocs
*) bfd_alloc (htab
->root
.dynobj
, amt
);
13035 if (elf32_arm_howto_from_type (r_type
)->pc_relative
)
13044 /* Unwinding tables are not referenced directly. This pass marks them as
13045 required if the corresponding code section is marked. */
13048 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
13049 elf_gc_mark_hook_fn gc_mark_hook
)
13052 Elf_Internal_Shdr
**elf_shdrp
;
13055 _bfd_elf_gc_mark_extra_sections (info
, gc_mark_hook
);
13057 /* Marking EH data may cause additional code sections to be marked,
13058 requiring multiple passes. */
13063 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
13067 if (! is_arm_elf (sub
))
13070 elf_shdrp
= elf_elfsections (sub
);
13071 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
13073 Elf_Internal_Shdr
*hdr
;
13075 hdr
= &elf_section_data (o
)->this_hdr
;
13076 if (hdr
->sh_type
== SHT_ARM_EXIDX
13078 && hdr
->sh_link
< elf_numsections (sub
)
13080 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
13083 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
13093 /* Treat mapping symbols as special target symbols. */
13096 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
13098 return bfd_is_arm_special_symbol_name (sym
->name
,
13099 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
13102 /* This is a copy of elf_find_function() from elf.c except that
13103 ARM mapping symbols are ignored when looking for function names
13104 and STT_ARM_TFUNC is considered to a function type. */
13107 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
13108 asymbol
** symbols
,
13109 asection
* section
,
13111 const char ** filename_ptr
,
13112 const char ** functionname_ptr
)
13114 const char * filename
= NULL
;
13115 asymbol
* func
= NULL
;
13116 bfd_vma low_func
= 0;
13119 for (p
= symbols
; *p
!= NULL
; p
++)
13121 elf_symbol_type
*q
;
13123 q
= (elf_symbol_type
*) *p
;
13125 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
13130 filename
= bfd_asymbol_name (&q
->symbol
);
13133 case STT_ARM_TFUNC
:
13135 /* Skip mapping symbols. */
13136 if ((q
->symbol
.flags
& BSF_LOCAL
)
13137 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
13138 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
13140 /* Fall through. */
13141 if (bfd_get_section (&q
->symbol
) == section
13142 && q
->symbol
.value
>= low_func
13143 && q
->symbol
.value
<= offset
)
13145 func
= (asymbol
*) q
;
13146 low_func
= q
->symbol
.value
;
13156 *filename_ptr
= filename
;
13157 if (functionname_ptr
)
13158 *functionname_ptr
= bfd_asymbol_name (func
);
13164 /* Find the nearest line to a particular section and offset, for error
13165 reporting. This code is a duplicate of the code in elf.c, except
13166 that it uses arm_elf_find_function. */
13169 elf32_arm_find_nearest_line (bfd
* abfd
,
13170 asymbol
** symbols
,
13171 asection
* section
,
13173 const char ** filename_ptr
,
13174 const char ** functionname_ptr
,
13175 unsigned int * line_ptr
,
13176 unsigned int * discriminator_ptr
)
13178 bfd_boolean found
= FALSE
;
13180 if (_bfd_dwarf2_find_nearest_line (abfd
, symbols
, NULL
, section
, offset
,
13181 filename_ptr
, functionname_ptr
,
13182 line_ptr
, discriminator_ptr
,
13183 dwarf_debug_sections
, 0,
13184 & elf_tdata (abfd
)->dwarf2_find_line_info
))
13186 if (!*functionname_ptr
)
13187 arm_elf_find_function (abfd
, symbols
, section
, offset
,
13188 *filename_ptr
? NULL
: filename_ptr
,
13194 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
13197 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
13198 & found
, filename_ptr
,
13199 functionname_ptr
, line_ptr
,
13200 & elf_tdata (abfd
)->line_info
))
13203 if (found
&& (*functionname_ptr
|| *line_ptr
))
13206 if (symbols
== NULL
)
13209 if (! arm_elf_find_function (abfd
, symbols
, section
, offset
,
13210 filename_ptr
, functionname_ptr
))
13218 elf32_arm_find_inliner_info (bfd
* abfd
,
13219 const char ** filename_ptr
,
13220 const char ** functionname_ptr
,
13221 unsigned int * line_ptr
)
13224 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
13225 functionname_ptr
, line_ptr
,
13226 & elf_tdata (abfd
)->dwarf2_find_line_info
);
13230 /* Adjust a symbol defined by a dynamic object and referenced by a
13231 regular object. The current definition is in some section of the
13232 dynamic object, but we're not including those sections. We have to
13233 change the definition to something the rest of the link can
13237 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
13238 struct elf_link_hash_entry
* h
)
13242 struct elf32_arm_link_hash_entry
* eh
;
13243 struct elf32_arm_link_hash_table
*globals
;
13245 globals
= elf32_arm_hash_table (info
);
13246 if (globals
== NULL
)
13249 dynobj
= elf_hash_table (info
)->dynobj
;
13251 /* Make sure we know what is going on here. */
13252 BFD_ASSERT (dynobj
!= NULL
13254 || h
->type
== STT_GNU_IFUNC
13255 || h
->u
.weakdef
!= NULL
13258 && !h
->def_regular
)));
13260 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13262 /* If this is a function, put it in the procedure linkage table. We
13263 will fill in the contents of the procedure linkage table later,
13264 when we know the address of the .got section. */
13265 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
13267 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
13268 symbol binds locally. */
13269 if (h
->plt
.refcount
<= 0
13270 || (h
->type
!= STT_GNU_IFUNC
13271 && (SYMBOL_CALLS_LOCAL (info
, h
)
13272 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
13273 && h
->root
.type
== bfd_link_hash_undefweak
))))
13275 /* This case can occur if we saw a PLT32 reloc in an input
13276 file, but the symbol was never referred to by a dynamic
13277 object, or if all references were garbage collected. In
13278 such a case, we don't actually need to build a procedure
13279 linkage table, and we can just do a PC24 reloc instead. */
13280 h
->plt
.offset
= (bfd_vma
) -1;
13281 eh
->plt
.thumb_refcount
= 0;
13282 eh
->plt
.maybe_thumb_refcount
= 0;
13283 eh
->plt
.noncall_refcount
= 0;
13291 /* It's possible that we incorrectly decided a .plt reloc was
13292 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13293 in check_relocs. We can't decide accurately between function
13294 and non-function syms in check-relocs; Objects loaded later in
13295 the link may change h->type. So fix it now. */
13296 h
->plt
.offset
= (bfd_vma
) -1;
13297 eh
->plt
.thumb_refcount
= 0;
13298 eh
->plt
.maybe_thumb_refcount
= 0;
13299 eh
->plt
.noncall_refcount
= 0;
13302 /* If this is a weak symbol, and there is a real definition, the
13303 processor independent code will have arranged for us to see the
13304 real definition first, and we can just use the same value. */
13305 if (h
->u
.weakdef
!= NULL
)
13307 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
13308 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
13309 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
13310 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
13314 /* If there are no non-GOT references, we do not need a copy
13316 if (!h
->non_got_ref
)
13319 /* This is a reference to a symbol defined by a dynamic object which
13320 is not a function. */
13322 /* If we are creating a shared library, we must presume that the
13323 only references to the symbol are via the global offset table.
13324 For such cases we need not do anything here; the relocations will
13325 be handled correctly by relocate_section. Relocatable executables
13326 can reference data in shared objects directly, so we don't need to
13327 do anything here. */
13328 if (bfd_link_pic (info
) || globals
->root
.is_relocatable_executable
)
13331 /* We must allocate the symbol in our .dynbss section, which will
13332 become part of the .bss section of the executable. There will be
13333 an entry for this symbol in the .dynsym section. The dynamic
13334 object will contain position independent code, so all references
13335 from the dynamic object to this symbol will go through the global
13336 offset table. The dynamic linker will use the .dynsym entry to
13337 determine the address it must put in the global offset table, so
13338 both the dynamic object and the regular object will refer to the
13339 same memory location for the variable. */
13340 s
= bfd_get_linker_section (dynobj
, ".dynbss");
13341 BFD_ASSERT (s
!= NULL
);
13343 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13344 copy the initial value out of the dynamic object and into the
13345 runtime process image. We need to remember the offset into the
13346 .rel(a).bss section we are going to use. */
13347 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0 && h
->size
!= 0)
13351 srel
= bfd_get_linker_section (dynobj
, RELOC_SECTION (globals
, ".bss"));
13352 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
13356 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
13359 /* Allocate space in .plt, .got and associated reloc sections for
13363 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry
*h
, void * inf
)
13365 struct bfd_link_info
*info
;
13366 struct elf32_arm_link_hash_table
*htab
;
13367 struct elf32_arm_link_hash_entry
*eh
;
13368 struct elf_dyn_relocs
*p
;
13370 if (h
->root
.type
== bfd_link_hash_indirect
)
13373 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13375 info
= (struct bfd_link_info
*) inf
;
13376 htab
= elf32_arm_hash_table (info
);
13380 if ((htab
->root
.dynamic_sections_created
|| h
->type
== STT_GNU_IFUNC
)
13381 && h
->plt
.refcount
> 0)
13383 /* Make sure this symbol is output as a dynamic symbol.
13384 Undefined weak syms won't yet be marked as dynamic. */
13385 if (h
->dynindx
== -1
13386 && !h
->forced_local
)
13388 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13392 /* If the call in the PLT entry binds locally, the associated
13393 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13394 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13395 than the .plt section. */
13396 if (h
->type
== STT_GNU_IFUNC
&& SYMBOL_CALLS_LOCAL (info
, h
))
13399 if (eh
->plt
.noncall_refcount
== 0
13400 && SYMBOL_REFERENCES_LOCAL (info
, h
))
13401 /* All non-call references can be resolved directly.
13402 This means that they can (and in some cases, must)
13403 resolve directly to the run-time target, rather than
13404 to the PLT. That in turns means that any .got entry
13405 would be equal to the .igot.plt entry, so there's
13406 no point having both. */
13407 h
->got
.refcount
= 0;
13410 if (bfd_link_pic (info
)
13412 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
13414 elf32_arm_allocate_plt_entry (info
, eh
->is_iplt
, &h
->plt
, &eh
->plt
);
13416 /* If this symbol is not defined in a regular file, and we are
13417 not generating a shared library, then set the symbol to this
13418 location in the .plt. This is required to make function
13419 pointers compare as equal between the normal executable and
13420 the shared library. */
13421 if (! bfd_link_pic (info
)
13422 && !h
->def_regular
)
13424 h
->root
.u
.def
.section
= htab
->root
.splt
;
13425 h
->root
.u
.def
.value
= h
->plt
.offset
;
13427 /* Make sure the function is not marked as Thumb, in case
13428 it is the target of an ABS32 relocation, which will
13429 point to the PLT entry. */
13430 h
->target_internal
= ST_BRANCH_TO_ARM
;
13433 /* VxWorks executables have a second set of relocations for
13434 each PLT entry. They go in a separate relocation section,
13435 which is processed by the kernel loader. */
13436 if (htab
->vxworks_p
&& !bfd_link_pic (info
))
13438 /* There is a relocation for the initial PLT entry:
13439 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13440 if (h
->plt
.offset
== htab
->plt_header_size
)
13441 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 1);
13443 /* There are two extra relocations for each subsequent
13444 PLT entry: an R_ARM_32 relocation for the GOT entry,
13445 and an R_ARM_32 relocation for the PLT entry. */
13446 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 2);
13451 h
->plt
.offset
= (bfd_vma
) -1;
13457 h
->plt
.offset
= (bfd_vma
) -1;
13461 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13462 eh
->tlsdesc_got
= (bfd_vma
) -1;
13464 if (h
->got
.refcount
> 0)
13468 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
13471 /* Make sure this symbol is output as a dynamic symbol.
13472 Undefined weak syms won't yet be marked as dynamic. */
13473 if (h
->dynindx
== -1
13474 && !h
->forced_local
)
13476 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13480 if (!htab
->symbian_p
)
13482 s
= htab
->root
.sgot
;
13483 h
->got
.offset
= s
->size
;
13485 if (tls_type
== GOT_UNKNOWN
)
13488 if (tls_type
== GOT_NORMAL
)
13489 /* Non-TLS symbols need one GOT slot. */
13493 if (tls_type
& GOT_TLS_GDESC
)
13495 /* R_ARM_TLS_DESC needs 2 GOT slots. */
13497 = (htab
->root
.sgotplt
->size
13498 - elf32_arm_compute_jump_table_size (htab
));
13499 htab
->root
.sgotplt
->size
+= 8;
13500 h
->got
.offset
= (bfd_vma
) -2;
13501 /* plt.got_offset needs to know there's a TLS_DESC
13502 reloc in the middle of .got.plt. */
13503 htab
->num_tls_desc
++;
13506 if (tls_type
& GOT_TLS_GD
)
13508 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13509 the symbol is both GD and GDESC, got.offset may
13510 have been overwritten. */
13511 h
->got
.offset
= s
->size
;
13515 if (tls_type
& GOT_TLS_IE
)
13516 /* R_ARM_TLS_IE32 needs one GOT slot. */
13520 dyn
= htab
->root
.dynamic_sections_created
;
13523 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
,
13524 bfd_link_pic (info
),
13526 && (!bfd_link_pic (info
)
13527 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
13530 if (tls_type
!= GOT_NORMAL
13531 && (bfd_link_pic (info
) || indx
!= 0)
13532 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
13533 || h
->root
.type
!= bfd_link_hash_undefweak
))
13535 if (tls_type
& GOT_TLS_IE
)
13536 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13538 if (tls_type
& GOT_TLS_GD
)
13539 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13541 if (tls_type
& GOT_TLS_GDESC
)
13543 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
13544 /* GDESC needs a trampoline to jump to. */
13545 htab
->tls_trampoline
= -1;
13548 /* Only GD needs it. GDESC just emits one relocation per
13550 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
13551 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13553 else if (indx
!= -1 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
13555 if (htab
->root
.dynamic_sections_created
)
13556 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13557 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13559 else if (h
->type
== STT_GNU_IFUNC
13560 && eh
->plt
.noncall_refcount
== 0)
13561 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13562 they all resolve dynamically instead. Reserve room for the
13563 GOT entry's R_ARM_IRELATIVE relocation. */
13564 elf32_arm_allocate_irelocs (info
, htab
->root
.srelgot
, 1);
13565 else if (bfd_link_pic (info
)
13566 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
13567 || h
->root
.type
!= bfd_link_hash_undefweak
))
13568 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13569 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13573 h
->got
.offset
= (bfd_vma
) -1;
13575 /* Allocate stubs for exported Thumb functions on v4t. */
13576 if (!htab
->use_blx
&& h
->dynindx
!= -1
13578 && h
->target_internal
== ST_BRANCH_TO_THUMB
13579 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
13581 struct elf_link_hash_entry
* th
;
13582 struct bfd_link_hash_entry
* bh
;
13583 struct elf_link_hash_entry
* myh
;
13587 /* Create a new symbol to regist the real location of the function. */
13588 s
= h
->root
.u
.def
.section
;
13589 sprintf (name
, "__real_%s", h
->root
.root
.string
);
13590 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
13591 name
, BSF_GLOBAL
, s
,
13592 h
->root
.u
.def
.value
,
13593 NULL
, TRUE
, FALSE
, &bh
);
13595 myh
= (struct elf_link_hash_entry
*) bh
;
13596 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
13597 myh
->forced_local
= 1;
13598 myh
->target_internal
= ST_BRANCH_TO_THUMB
;
13599 eh
->export_glue
= myh
;
13600 th
= record_arm_to_thumb_glue (info
, h
);
13601 /* Point the symbol at the stub. */
13602 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
13603 h
->target_internal
= ST_BRANCH_TO_ARM
;
13604 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
13605 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
13608 if (eh
->dyn_relocs
== NULL
)
13611 /* In the shared -Bsymbolic case, discard space allocated for
13612 dynamic pc-relative relocs against symbols which turn out to be
13613 defined in regular objects. For the normal shared case, discard
13614 space for pc-relative relocs that have become local due to symbol
13615 visibility changes. */
13617 if (bfd_link_pic (info
) || htab
->root
.is_relocatable_executable
)
13619 /* Relocs that use pc_count are PC-relative forms, which will appear
13620 on something like ".long foo - ." or "movw REG, foo - .". We want
13621 calls to protected symbols to resolve directly to the function
13622 rather than going via the plt. If people want function pointer
13623 comparisons to work as expected then they should avoid writing
13624 assembly like ".long foo - .". */
13625 if (SYMBOL_CALLS_LOCAL (info
, h
))
13627 struct elf_dyn_relocs
**pp
;
13629 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
13631 p
->count
-= p
->pc_count
;
13640 if (htab
->vxworks_p
)
13642 struct elf_dyn_relocs
**pp
;
13644 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
13646 if (strcmp (p
->sec
->output_section
->name
, ".tls_vars") == 0)
13653 /* Also discard relocs on undefined weak syms with non-default
13655 if (eh
->dyn_relocs
!= NULL
13656 && h
->root
.type
== bfd_link_hash_undefweak
)
13658 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
13659 eh
->dyn_relocs
= NULL
;
13661 /* Make sure undefined weak symbols are output as a dynamic
13663 else if (h
->dynindx
== -1
13664 && !h
->forced_local
)
13666 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13671 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
13672 && h
->root
.type
== bfd_link_hash_new
)
13674 /* Output absolute symbols so that we can create relocations
13675 against them. For normal symbols we output a relocation
13676 against the section that contains them. */
13677 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13684 /* For the non-shared case, discard space for relocs against
13685 symbols which turn out to need copy relocs or are not
13688 if (!h
->non_got_ref
13689 && ((h
->def_dynamic
13690 && !h
->def_regular
)
13691 || (htab
->root
.dynamic_sections_created
13692 && (h
->root
.type
== bfd_link_hash_undefweak
13693 || h
->root
.type
== bfd_link_hash_undefined
))))
13695 /* Make sure this symbol is output as a dynamic symbol.
13696 Undefined weak syms won't yet be marked as dynamic. */
13697 if (h
->dynindx
== -1
13698 && !h
->forced_local
)
13700 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13704 /* If that succeeded, we know we'll be keeping all the
13706 if (h
->dynindx
!= -1)
13710 eh
->dyn_relocs
= NULL
;
13715 /* Finally, allocate space. */
13716 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13718 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
13719 if (h
->type
== STT_GNU_IFUNC
13720 && eh
->plt
.noncall_refcount
== 0
13721 && SYMBOL_REFERENCES_LOCAL (info
, h
))
13722 elf32_arm_allocate_irelocs (info
, sreloc
, p
->count
);
13724 elf32_arm_allocate_dynrelocs (info
, sreloc
, p
->count
);
13730 /* Find any dynamic relocs that apply to read-only sections. */
13733 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
13735 struct elf32_arm_link_hash_entry
* eh
;
13736 struct elf_dyn_relocs
* p
;
13738 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13739 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13741 asection
*s
= p
->sec
;
13743 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
13745 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
13747 info
->flags
|= DF_TEXTREL
;
13749 /* Not an error, just cut short the traversal. */
13757 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
13760 struct elf32_arm_link_hash_table
*globals
;
13762 globals
= elf32_arm_hash_table (info
);
13763 if (globals
== NULL
)
13766 globals
->byteswap_code
= byteswap_code
;
13769 /* Set the sizes of the dynamic sections. */
13772 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
13773 struct bfd_link_info
* info
)
13778 bfd_boolean relocs
;
13780 struct elf32_arm_link_hash_table
*htab
;
13782 htab
= elf32_arm_hash_table (info
);
13786 dynobj
= elf_hash_table (info
)->dynobj
;
13787 BFD_ASSERT (dynobj
!= NULL
);
13788 check_use_blx (htab
);
13790 if (elf_hash_table (info
)->dynamic_sections_created
)
13792 /* Set the contents of the .interp section to the interpreter. */
13793 if (bfd_link_executable (info
) && !info
->nointerp
)
13795 s
= bfd_get_linker_section (dynobj
, ".interp");
13796 BFD_ASSERT (s
!= NULL
);
13797 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
13798 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
13802 /* Set up .got offsets for local syms, and space for local dynamic
13804 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
13806 bfd_signed_vma
*local_got
;
13807 bfd_signed_vma
*end_local_got
;
13808 struct arm_local_iplt_info
**local_iplt_ptr
, *local_iplt
;
13809 char *local_tls_type
;
13810 bfd_vma
*local_tlsdesc_gotent
;
13811 bfd_size_type locsymcount
;
13812 Elf_Internal_Shdr
*symtab_hdr
;
13814 bfd_boolean is_vxworks
= htab
->vxworks_p
;
13815 unsigned int symndx
;
13817 if (! is_arm_elf (ibfd
))
13820 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
13822 struct elf_dyn_relocs
*p
;
13824 for (p
= (struct elf_dyn_relocs
*)
13825 elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
13827 if (!bfd_is_abs_section (p
->sec
)
13828 && bfd_is_abs_section (p
->sec
->output_section
))
13830 /* Input section has been discarded, either because
13831 it is a copy of a linkonce section or due to
13832 linker script /DISCARD/, so we'll be discarding
13835 else if (is_vxworks
13836 && strcmp (p
->sec
->output_section
->name
,
13839 /* Relocations in vxworks .tls_vars sections are
13840 handled specially by the loader. */
13842 else if (p
->count
!= 0)
13844 srel
= elf_section_data (p
->sec
)->sreloc
;
13845 elf32_arm_allocate_dynrelocs (info
, srel
, p
->count
);
13846 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
13847 info
->flags
|= DF_TEXTREL
;
13852 local_got
= elf_local_got_refcounts (ibfd
);
13856 symtab_hdr
= & elf_symtab_hdr (ibfd
);
13857 locsymcount
= symtab_hdr
->sh_info
;
13858 end_local_got
= local_got
+ locsymcount
;
13859 local_iplt_ptr
= elf32_arm_local_iplt (ibfd
);
13860 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
13861 local_tlsdesc_gotent
= elf32_arm_local_tlsdesc_gotent (ibfd
);
13863 s
= htab
->root
.sgot
;
13864 srel
= htab
->root
.srelgot
;
13865 for (; local_got
< end_local_got
;
13866 ++local_got
, ++local_iplt_ptr
, ++local_tls_type
,
13867 ++local_tlsdesc_gotent
, ++symndx
)
13869 *local_tlsdesc_gotent
= (bfd_vma
) -1;
13870 local_iplt
= *local_iplt_ptr
;
13871 if (local_iplt
!= NULL
)
13873 struct elf_dyn_relocs
*p
;
13875 if (local_iplt
->root
.refcount
> 0)
13877 elf32_arm_allocate_plt_entry (info
, TRUE
,
13880 if (local_iplt
->arm
.noncall_refcount
== 0)
13881 /* All references to the PLT are calls, so all
13882 non-call references can resolve directly to the
13883 run-time target. This means that the .got entry
13884 would be the same as the .igot.plt entry, so there's
13885 no point creating both. */
13890 BFD_ASSERT (local_iplt
->arm
.noncall_refcount
== 0);
13891 local_iplt
->root
.offset
= (bfd_vma
) -1;
13894 for (p
= local_iplt
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13898 psrel
= elf_section_data (p
->sec
)->sreloc
;
13899 if (local_iplt
->arm
.noncall_refcount
== 0)
13900 elf32_arm_allocate_irelocs (info
, psrel
, p
->count
);
13902 elf32_arm_allocate_dynrelocs (info
, psrel
, p
->count
);
13905 if (*local_got
> 0)
13907 Elf_Internal_Sym
*isym
;
13909 *local_got
= s
->size
;
13910 if (*local_tls_type
& GOT_TLS_GD
)
13911 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13913 if (*local_tls_type
& GOT_TLS_GDESC
)
13915 *local_tlsdesc_gotent
= htab
->root
.sgotplt
->size
13916 - elf32_arm_compute_jump_table_size (htab
);
13917 htab
->root
.sgotplt
->size
+= 8;
13918 *local_got
= (bfd_vma
) -2;
13919 /* plt.got_offset needs to know there's a TLS_DESC
13920 reloc in the middle of .got.plt. */
13921 htab
->num_tls_desc
++;
13923 if (*local_tls_type
& GOT_TLS_IE
)
13926 if (*local_tls_type
& GOT_NORMAL
)
13928 /* If the symbol is both GD and GDESC, *local_got
13929 may have been overwritten. */
13930 *local_got
= s
->size
;
13934 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
, ibfd
, symndx
);
13938 /* If all references to an STT_GNU_IFUNC PLT are calls,
13939 then all non-call references, including this GOT entry,
13940 resolve directly to the run-time target. */
13941 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
13942 && (local_iplt
== NULL
13943 || local_iplt
->arm
.noncall_refcount
== 0))
13944 elf32_arm_allocate_irelocs (info
, srel
, 1);
13945 else if (bfd_link_pic (info
) || output_bfd
->flags
& DYNAMIC
)
13947 if ((bfd_link_pic (info
) && !(*local_tls_type
& GOT_TLS_GDESC
))
13948 || *local_tls_type
& GOT_TLS_GD
)
13949 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
13951 if (bfd_link_pic (info
) && *local_tls_type
& GOT_TLS_GDESC
)
13953 elf32_arm_allocate_dynrelocs (info
,
13954 htab
->root
.srelplt
, 1);
13955 htab
->tls_trampoline
= -1;
13960 *local_got
= (bfd_vma
) -1;
13964 if (htab
->tls_ldm_got
.refcount
> 0)
13966 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13967 for R_ARM_TLS_LDM32 relocations. */
13968 htab
->tls_ldm_got
.offset
= htab
->root
.sgot
->size
;
13969 htab
->root
.sgot
->size
+= 8;
13970 if (bfd_link_pic (info
))
13971 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13974 htab
->tls_ldm_got
.offset
= -1;
13976 /* Allocate global sym .plt and .got entries, and space for global
13977 sym dynamic relocs. */
13978 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs_for_symbol
, info
);
13980 /* Here we rummage through the found bfds to collect glue information. */
13981 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
13983 if (! is_arm_elf (ibfd
))
13986 /* Initialise mapping tables for code/data. */
13987 bfd_elf32_arm_init_maps (ibfd
);
13989 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
13990 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
13991 /* xgettext:c-format */
13992 _bfd_error_handler (_("Errors encountered processing file %s"),
13996 /* Allocate space for the glue sections now that we've sized them. */
13997 bfd_elf32_arm_allocate_interworking_sections (info
);
13999 /* For every jump slot reserved in the sgotplt, reloc_count is
14000 incremented. However, when we reserve space for TLS descriptors,
14001 it's not incremented, so in order to compute the space reserved
14002 for them, it suffices to multiply the reloc count by the jump
14004 if (htab
->root
.srelplt
)
14005 htab
->sgotplt_jump_table_size
= elf32_arm_compute_jump_table_size(htab
);
14007 if (htab
->tls_trampoline
)
14009 if (htab
->root
.splt
->size
== 0)
14010 htab
->root
.splt
->size
+= htab
->plt_header_size
;
14012 htab
->tls_trampoline
= htab
->root
.splt
->size
;
14013 htab
->root
.splt
->size
+= htab
->plt_entry_size
;
14015 /* If we're not using lazy TLS relocations, don't generate the
14016 PLT and GOT entries they require. */
14017 if (!(info
->flags
& DF_BIND_NOW
))
14019 htab
->dt_tlsdesc_got
= htab
->root
.sgot
->size
;
14020 htab
->root
.sgot
->size
+= 4;
14022 htab
->dt_tlsdesc_plt
= htab
->root
.splt
->size
;
14023 htab
->root
.splt
->size
+= 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline
);
14027 /* The check_relocs and adjust_dynamic_symbol entry points have
14028 determined the sizes of the various dynamic sections. Allocate
14029 memory for them. */
14032 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
14036 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
14039 /* It's OK to base decisions on the section name, because none
14040 of the dynobj section names depend upon the input files. */
14041 name
= bfd_get_section_name (dynobj
, s
);
14043 if (s
== htab
->root
.splt
)
14045 /* Remember whether there is a PLT. */
14046 plt
= s
->size
!= 0;
14048 else if (CONST_STRNEQ (name
, ".rel"))
14052 /* Remember whether there are any reloc sections other
14053 than .rel(a).plt and .rela.plt.unloaded. */
14054 if (s
!= htab
->root
.srelplt
&& s
!= htab
->srelplt2
)
14057 /* We use the reloc_count field as a counter if we need
14058 to copy relocs into the output file. */
14059 s
->reloc_count
= 0;
14062 else if (s
!= htab
->root
.sgot
14063 && s
!= htab
->root
.sgotplt
14064 && s
!= htab
->root
.iplt
14065 && s
!= htab
->root
.igotplt
14066 && s
!= htab
->sdynbss
)
14068 /* It's not one of our sections, so don't allocate space. */
14074 /* If we don't need this section, strip it from the
14075 output file. This is mostly to handle .rel(a).bss and
14076 .rel(a).plt. We must create both sections in
14077 create_dynamic_sections, because they must be created
14078 before the linker maps input sections to output
14079 sections. The linker does that before
14080 adjust_dynamic_symbol is called, and it is that
14081 function which decides whether anything needs to go
14082 into these sections. */
14083 s
->flags
|= SEC_EXCLUDE
;
14087 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
14090 /* Allocate memory for the section contents. */
14091 s
->contents
= (unsigned char *) bfd_zalloc (dynobj
, s
->size
);
14092 if (s
->contents
== NULL
)
14096 if (elf_hash_table (info
)->dynamic_sections_created
)
14098 /* Add some entries to the .dynamic section. We fill in the
14099 values later, in elf32_arm_finish_dynamic_sections, but we
14100 must add the entries now so that we get the correct size for
14101 the .dynamic section. The DT_DEBUG entry is filled in by the
14102 dynamic linker and used by the debugger. */
14103 #define add_dynamic_entry(TAG, VAL) \
14104 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
14106 if (bfd_link_executable (info
))
14108 if (!add_dynamic_entry (DT_DEBUG
, 0))
14114 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
14115 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
14116 || !add_dynamic_entry (DT_PLTREL
,
14117 htab
->use_rel
? DT_REL
: DT_RELA
)
14118 || !add_dynamic_entry (DT_JMPREL
, 0))
14121 if (htab
->dt_tlsdesc_plt
&&
14122 (!add_dynamic_entry (DT_TLSDESC_PLT
,0)
14123 || !add_dynamic_entry (DT_TLSDESC_GOT
,0)))
14131 if (!add_dynamic_entry (DT_REL
, 0)
14132 || !add_dynamic_entry (DT_RELSZ
, 0)
14133 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
14138 if (!add_dynamic_entry (DT_RELA
, 0)
14139 || !add_dynamic_entry (DT_RELASZ
, 0)
14140 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
14145 /* If any dynamic relocs apply to a read-only section,
14146 then we need a DT_TEXTREL entry. */
14147 if ((info
->flags
& DF_TEXTREL
) == 0)
14148 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
14151 if ((info
->flags
& DF_TEXTREL
) != 0)
14153 if (!add_dynamic_entry (DT_TEXTREL
, 0))
14156 if (htab
->vxworks_p
14157 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
14160 #undef add_dynamic_entry
14165 /* Size sections even though they're not dynamic. We use it to setup
14166 _TLS_MODULE_BASE_, if needed. */
14169 elf32_arm_always_size_sections (bfd
*output_bfd
,
14170 struct bfd_link_info
*info
)
14174 if (bfd_link_relocatable (info
))
14177 tls_sec
= elf_hash_table (info
)->tls_sec
;
14181 struct elf_link_hash_entry
*tlsbase
;
14183 tlsbase
= elf_link_hash_lookup
14184 (elf_hash_table (info
), "_TLS_MODULE_BASE_", TRUE
, TRUE
, FALSE
);
14188 struct bfd_link_hash_entry
*bh
= NULL
;
14189 const struct elf_backend_data
*bed
14190 = get_elf_backend_data (output_bfd
);
14192 if (!(_bfd_generic_link_add_one_symbol
14193 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
14194 tls_sec
, 0, NULL
, FALSE
,
14195 bed
->collect
, &bh
)))
14198 tlsbase
->type
= STT_TLS
;
14199 tlsbase
= (struct elf_link_hash_entry
*)bh
;
14200 tlsbase
->def_regular
= 1;
14201 tlsbase
->other
= STV_HIDDEN
;
14202 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
14208 /* Finish up dynamic symbol handling. We set the contents of various
14209 dynamic sections here. */
14212 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
14213 struct bfd_link_info
* info
,
14214 struct elf_link_hash_entry
* h
,
14215 Elf_Internal_Sym
* sym
)
14217 struct elf32_arm_link_hash_table
*htab
;
14218 struct elf32_arm_link_hash_entry
*eh
;
14220 htab
= elf32_arm_hash_table (info
);
14224 eh
= (struct elf32_arm_link_hash_entry
*) h
;
14226 if (h
->plt
.offset
!= (bfd_vma
) -1)
14230 BFD_ASSERT (h
->dynindx
!= -1);
14231 if (! elf32_arm_populate_plt_entry (output_bfd
, info
, &h
->plt
, &eh
->plt
,
14236 if (!h
->def_regular
)
14238 /* Mark the symbol as undefined, rather than as defined in
14239 the .plt section. */
14240 sym
->st_shndx
= SHN_UNDEF
;
14241 /* If the symbol is weak we need to clear the value.
14242 Otherwise, the PLT entry would provide a definition for
14243 the symbol even if the symbol wasn't defined anywhere,
14244 and so the symbol would never be NULL. Leave the value if
14245 there were any relocations where pointer equality matters
14246 (this is a clue for the dynamic linker, to make function
14247 pointer comparisons work between an application and shared
14249 if (!h
->ref_regular_nonweak
|| !h
->pointer_equality_needed
)
14252 else if (eh
->is_iplt
&& eh
->plt
.noncall_refcount
!= 0)
14254 /* At least one non-call relocation references this .iplt entry,
14255 so the .iplt entry is the function's canonical address. */
14256 sym
->st_info
= ELF_ST_INFO (ELF_ST_BIND (sym
->st_info
), STT_FUNC
);
14257 sym
->st_target_internal
= ST_BRANCH_TO_ARM
;
14258 sym
->st_shndx
= (_bfd_elf_section_from_bfd_section
14259 (output_bfd
, htab
->root
.iplt
->output_section
));
14260 sym
->st_value
= (h
->plt
.offset
14261 + htab
->root
.iplt
->output_section
->vma
14262 + htab
->root
.iplt
->output_offset
);
14269 Elf_Internal_Rela rel
;
14271 /* This symbol needs a copy reloc. Set it up. */
14272 BFD_ASSERT (h
->dynindx
!= -1
14273 && (h
->root
.type
== bfd_link_hash_defined
14274 || h
->root
.type
== bfd_link_hash_defweak
));
14277 BFD_ASSERT (s
!= NULL
);
14280 rel
.r_offset
= (h
->root
.u
.def
.value
14281 + h
->root
.u
.def
.section
->output_section
->vma
14282 + h
->root
.u
.def
.section
->output_offset
);
14283 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
14284 elf32_arm_add_dynreloc (output_bfd
, info
, s
, &rel
);
14287 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
14288 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14289 to the ".got" section. */
14290 if (h
== htab
->root
.hdynamic
14291 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
14292 sym
->st_shndx
= SHN_ABS
;
14298 arm_put_trampoline (struct elf32_arm_link_hash_table
*htab
, bfd
*output_bfd
,
14300 const unsigned long *template, unsigned count
)
14304 for (ix
= 0; ix
!= count
; ix
++)
14306 unsigned long insn
= template[ix
];
14308 /* Emit mov pc,rx if bx is not permitted. */
14309 if (htab
->fix_v4bx
== 1 && (insn
& 0x0ffffff0) == 0x012fff10)
14310 insn
= (insn
& 0xf000000f) | 0x01a0f000;
14311 put_arm_insn (htab
, output_bfd
, insn
, (char *)contents
+ ix
*4);
14315 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
14316 other variants, NaCl needs this entry in a static executable's
14317 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
14318 zero. For .iplt really only the last bundle is useful, and .iplt
14319 could have a shorter first entry, with each individual PLT entry's
14320 relative branch calculated differently so it targets the last
14321 bundle instead of the instruction before it (labelled .Lplt_tail
14322 above). But it's simpler to keep the size and layout of PLT0
14323 consistent with the dynamic case, at the cost of some dead code at
14324 the start of .iplt and the one dead store to the stack at the start
14327 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table
*htab
, bfd
*output_bfd
,
14328 asection
*plt
, bfd_vma got_displacement
)
14332 put_arm_insn (htab
, output_bfd
,
14333 elf32_arm_nacl_plt0_entry
[0]
14334 | arm_movw_immediate (got_displacement
),
14335 plt
->contents
+ 0);
14336 put_arm_insn (htab
, output_bfd
,
14337 elf32_arm_nacl_plt0_entry
[1]
14338 | arm_movt_immediate (got_displacement
),
14339 plt
->contents
+ 4);
14341 for (i
= 2; i
< ARRAY_SIZE (elf32_arm_nacl_plt0_entry
); ++i
)
14342 put_arm_insn (htab
, output_bfd
,
14343 elf32_arm_nacl_plt0_entry
[i
],
14344 plt
->contents
+ (i
* 4));
14347 /* Finish up the dynamic sections. */
14350 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
14355 struct elf32_arm_link_hash_table
*htab
;
14357 htab
= elf32_arm_hash_table (info
);
14361 dynobj
= elf_hash_table (info
)->dynobj
;
14363 sgot
= htab
->root
.sgotplt
;
14364 /* A broken linker script might have discarded the dynamic sections.
14365 Catch this here so that we do not seg-fault later on. */
14366 if (sgot
!= NULL
&& bfd_is_abs_section (sgot
->output_section
))
14368 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
14370 if (elf_hash_table (info
)->dynamic_sections_created
)
14373 Elf32_External_Dyn
*dyncon
, *dynconend
;
14375 splt
= htab
->root
.splt
;
14376 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
14377 BFD_ASSERT (htab
->symbian_p
|| sgot
!= NULL
);
14379 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
14380 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
14382 for (; dyncon
< dynconend
; dyncon
++)
14384 Elf_Internal_Dyn dyn
;
14388 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
14395 if (htab
->vxworks_p
14396 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
14397 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14402 goto get_vma_if_bpabi
;
14405 goto get_vma_if_bpabi
;
14408 goto get_vma_if_bpabi
;
14410 name
= ".gnu.version";
14411 goto get_vma_if_bpabi
;
14413 name
= ".gnu.version_d";
14414 goto get_vma_if_bpabi
;
14416 name
= ".gnu.version_r";
14417 goto get_vma_if_bpabi
;
14423 name
= RELOC_SECTION (htab
, ".plt");
14425 s
= bfd_get_section_by_name (output_bfd
, name
);
14428 /* PR ld/14397: Issue an error message if a required section is missing. */
14429 (*_bfd_error_handler
)
14430 (_("error: required section '%s' not found in the linker script"), name
);
14431 bfd_set_error (bfd_error_invalid_operation
);
14434 if (!htab
->symbian_p
)
14435 dyn
.d_un
.d_ptr
= s
->vma
;
14437 /* In the BPABI, tags in the PT_DYNAMIC section point
14438 at the file offset, not the memory address, for the
14439 convenience of the post linker. */
14440 dyn
.d_un
.d_ptr
= s
->filepos
;
14441 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14445 if (htab
->symbian_p
)
14450 s
= htab
->root
.srelplt
;
14451 BFD_ASSERT (s
!= NULL
);
14452 dyn
.d_un
.d_val
= s
->size
;
14453 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14458 if (!htab
->symbian_p
)
14460 /* My reading of the SVR4 ABI indicates that the
14461 procedure linkage table relocs (DT_JMPREL) should be
14462 included in the overall relocs (DT_REL). This is
14463 what Solaris does. However, UnixWare can not handle
14464 that case. Therefore, we override the DT_RELSZ entry
14465 here to make it not include the JMPREL relocs. Since
14466 the linker script arranges for .rel(a).plt to follow all
14467 other relocation sections, we don't have to worry
14468 about changing the DT_REL entry. */
14469 s
= htab
->root
.srelplt
;
14471 dyn
.d_un
.d_val
-= s
->size
;
14472 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14475 /* Fall through. */
14479 /* In the BPABI, the DT_REL tag must point at the file
14480 offset, not the VMA, of the first relocation
14481 section. So, we use code similar to that in
14482 elflink.c, but do not check for SHF_ALLOC on the
14483 relcoation section, since relocations sections are
14484 never allocated under the BPABI. The comments above
14485 about Unixware notwithstanding, we include all of the
14486 relocations here. */
14487 if (htab
->symbian_p
)
14490 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
14491 ? SHT_REL
: SHT_RELA
);
14492 dyn
.d_un
.d_val
= 0;
14493 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
14495 Elf_Internal_Shdr
*hdr
14496 = elf_elfsections (output_bfd
)[i
];
14497 if (hdr
->sh_type
== type
)
14499 if (dyn
.d_tag
== DT_RELSZ
14500 || dyn
.d_tag
== DT_RELASZ
)
14501 dyn
.d_un
.d_val
+= hdr
->sh_size
;
14502 else if ((ufile_ptr
) hdr
->sh_offset
14503 <= dyn
.d_un
.d_val
- 1)
14504 dyn
.d_un
.d_val
= hdr
->sh_offset
;
14507 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14511 case DT_TLSDESC_PLT
:
14512 s
= htab
->root
.splt
;
14513 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
14514 + htab
->dt_tlsdesc_plt
);
14515 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14518 case DT_TLSDESC_GOT
:
14519 s
= htab
->root
.sgot
;
14520 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
14521 + htab
->dt_tlsdesc_got
);
14522 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14525 /* Set the bottom bit of DT_INIT/FINI if the
14526 corresponding function is Thumb. */
14528 name
= info
->init_function
;
14531 name
= info
->fini_function
;
14533 /* If it wasn't set by elf_bfd_final_link
14534 then there is nothing to adjust. */
14535 if (dyn
.d_un
.d_val
!= 0)
14537 struct elf_link_hash_entry
* eh
;
14539 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
14540 FALSE
, FALSE
, TRUE
);
14541 if (eh
!= NULL
&& eh
->target_internal
== ST_BRANCH_TO_THUMB
)
14543 dyn
.d_un
.d_val
|= 1;
14544 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14551 /* Fill in the first entry in the procedure linkage table. */
14552 if (splt
->size
> 0 && htab
->plt_header_size
)
14554 const bfd_vma
*plt0_entry
;
14555 bfd_vma got_address
, plt_address
, got_displacement
;
14557 /* Calculate the addresses of the GOT and PLT. */
14558 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
14559 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
14561 if (htab
->vxworks_p
)
14563 /* The VxWorks GOT is relocated by the dynamic linker.
14564 Therefore, we must emit relocations rather than simply
14565 computing the values now. */
14566 Elf_Internal_Rela rel
;
14568 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
14569 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
14570 splt
->contents
+ 0);
14571 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
14572 splt
->contents
+ 4);
14573 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
14574 splt
->contents
+ 8);
14575 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
14577 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
14578 rel
.r_offset
= plt_address
+ 12;
14579 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
14581 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
14582 htab
->srelplt2
->contents
);
14584 else if (htab
->nacl_p
)
14585 arm_nacl_put_plt0 (htab
, output_bfd
, splt
,
14586 got_address
+ 8 - (plt_address
+ 16));
14587 else if (using_thumb_only (htab
))
14589 got_displacement
= got_address
- (plt_address
+ 12);
14591 plt0_entry
= elf32_thumb2_plt0_entry
;
14592 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
14593 splt
->contents
+ 0);
14594 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
14595 splt
->contents
+ 4);
14596 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
14597 splt
->contents
+ 8);
14599 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 12);
14603 got_displacement
= got_address
- (plt_address
+ 16);
14605 plt0_entry
= elf32_arm_plt0_entry
;
14606 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
14607 splt
->contents
+ 0);
14608 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
14609 splt
->contents
+ 4);
14610 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
14611 splt
->contents
+ 8);
14612 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
14613 splt
->contents
+ 12);
14615 #ifdef FOUR_WORD_PLT
14616 /* The displacement value goes in the otherwise-unused
14617 last word of the second entry. */
14618 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
14620 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
14625 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14626 really seem like the right value. */
14627 if (splt
->output_section
->owner
== output_bfd
)
14628 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
14630 if (htab
->dt_tlsdesc_plt
)
14632 bfd_vma got_address
14633 = sgot
->output_section
->vma
+ sgot
->output_offset
;
14634 bfd_vma gotplt_address
= (htab
->root
.sgot
->output_section
->vma
14635 + htab
->root
.sgot
->output_offset
);
14636 bfd_vma plt_address
14637 = splt
->output_section
->vma
+ splt
->output_offset
;
14639 arm_put_trampoline (htab
, output_bfd
,
14640 splt
->contents
+ htab
->dt_tlsdesc_plt
,
14641 dl_tlsdesc_lazy_trampoline
, 6);
14643 bfd_put_32 (output_bfd
,
14644 gotplt_address
+ htab
->dt_tlsdesc_got
14645 - (plt_address
+ htab
->dt_tlsdesc_plt
)
14646 - dl_tlsdesc_lazy_trampoline
[6],
14647 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24);
14648 bfd_put_32 (output_bfd
,
14649 got_address
- (plt_address
+ htab
->dt_tlsdesc_plt
)
14650 - dl_tlsdesc_lazy_trampoline
[7],
14651 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24 + 4);
14654 if (htab
->tls_trampoline
)
14656 arm_put_trampoline (htab
, output_bfd
,
14657 splt
->contents
+ htab
->tls_trampoline
,
14658 tls_trampoline
, 3);
14659 #ifdef FOUR_WORD_PLT
14660 bfd_put_32 (output_bfd
, 0x00000000,
14661 splt
->contents
+ htab
->tls_trampoline
+ 12);
14665 if (htab
->vxworks_p
14666 && !bfd_link_pic (info
)
14667 && htab
->root
.splt
->size
> 0)
14669 /* Correct the .rel(a).plt.unloaded relocations. They will have
14670 incorrect symbol indexes. */
14674 num_plts
= ((htab
->root
.splt
->size
- htab
->plt_header_size
)
14675 / htab
->plt_entry_size
);
14676 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
14678 for (; num_plts
; num_plts
--)
14680 Elf_Internal_Rela rel
;
14682 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
14683 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
14684 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
14685 p
+= RELOC_SIZE (htab
);
14687 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
14688 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
14689 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
14690 p
+= RELOC_SIZE (htab
);
14695 if (htab
->nacl_p
&& htab
->root
.iplt
!= NULL
&& htab
->root
.iplt
->size
> 0)
14696 /* NaCl uses a special first entry in .iplt too. */
14697 arm_nacl_put_plt0 (htab
, output_bfd
, htab
->root
.iplt
, 0);
14699 /* Fill in the first three entries in the global offset table. */
14702 if (sgot
->size
> 0)
14705 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
14707 bfd_put_32 (output_bfd
,
14708 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
14710 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
14711 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
14714 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
14721 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
14723 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
14724 struct elf32_arm_link_hash_table
*globals
;
14726 i_ehdrp
= elf_elfheader (abfd
);
14728 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
14729 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
14731 _bfd_elf_post_process_headers (abfd
, link_info
);
14732 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
14736 globals
= elf32_arm_hash_table (link_info
);
14737 if (globals
!= NULL
&& globals
->byteswap_code
)
14738 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
14741 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_VER5
14742 && ((i_ehdrp
->e_type
== ET_DYN
) || (i_ehdrp
->e_type
== ET_EXEC
)))
14744 int abi
= bfd_elf_get_obj_attr_int (abfd
, OBJ_ATTR_PROC
, Tag_ABI_VFP_args
);
14745 if (abi
== AEABI_VFP_args_vfp
)
14746 i_ehdrp
->e_flags
|= EF_ARM_ABI_FLOAT_HARD
;
14748 i_ehdrp
->e_flags
|= EF_ARM_ABI_FLOAT_SOFT
;
14752 static enum elf_reloc_type_class
14753 elf32_arm_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
14754 const asection
*rel_sec ATTRIBUTE_UNUSED
,
14755 const Elf_Internal_Rela
*rela
)
14757 switch ((int) ELF32_R_TYPE (rela
->r_info
))
14759 case R_ARM_RELATIVE
:
14760 return reloc_class_relative
;
14761 case R_ARM_JUMP_SLOT
:
14762 return reloc_class_plt
;
14764 return reloc_class_copy
;
14766 return reloc_class_normal
;
14771 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
14773 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
14776 /* Return TRUE if this is an unwinding table entry. */
14779 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
14781 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
14782 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
14786 /* Set the type and flags for an ARM section. We do this by
14787 the section name, which is a hack, but ought to work. */
14790 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
14794 name
= bfd_get_section_name (abfd
, sec
);
14796 if (is_arm_elf_unwind_section_name (abfd
, name
))
14798 hdr
->sh_type
= SHT_ARM_EXIDX
;
14799 hdr
->sh_flags
|= SHF_LINK_ORDER
;
14804 /* Handle an ARM specific section when reading an object file. This is
14805 called when bfd_section_from_shdr finds a section with an unknown
14809 elf32_arm_section_from_shdr (bfd
*abfd
,
14810 Elf_Internal_Shdr
* hdr
,
14814 /* There ought to be a place to keep ELF backend specific flags, but
14815 at the moment there isn't one. We just keep track of the
14816 sections by their name, instead. Fortunately, the ABI gives
14817 names for all the ARM specific sections, so we will probably get
14819 switch (hdr
->sh_type
)
14821 case SHT_ARM_EXIDX
:
14822 case SHT_ARM_PREEMPTMAP
:
14823 case SHT_ARM_ATTRIBUTES
:
14830 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
14836 static _arm_elf_section_data
*
14837 get_arm_elf_section_data (asection
* sec
)
14839 if (sec
&& sec
->owner
&& is_arm_elf (sec
->owner
))
14840 return elf32_arm_section_data (sec
);
14848 struct bfd_link_info
*info
;
14851 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
14852 asection
*, struct elf_link_hash_entry
*);
14853 } output_arch_syminfo
;
14855 enum map_symbol_type
14863 /* Output a single mapping symbol. */
14866 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
14867 enum map_symbol_type type
,
14870 static const char *names
[3] = {"$a", "$t", "$d"};
14871 Elf_Internal_Sym sym
;
14873 sym
.st_value
= osi
->sec
->output_section
->vma
14874 + osi
->sec
->output_offset
14878 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
14879 sym
.st_shndx
= osi
->sec_shndx
;
14880 sym
.st_target_internal
= 0;
14881 elf32_arm_section_map_add (osi
->sec
, names
[type
][1], offset
);
14882 return osi
->func (osi
->flaginfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
14885 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14886 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14889 elf32_arm_output_plt_map_1 (output_arch_syminfo
*osi
,
14890 bfd_boolean is_iplt_entry_p
,
14891 union gotplt_union
*root_plt
,
14892 struct arm_plt_info
*arm_plt
)
14894 struct elf32_arm_link_hash_table
*htab
;
14895 bfd_vma addr
, plt_header_size
;
14897 if (root_plt
->offset
== (bfd_vma
) -1)
14900 htab
= elf32_arm_hash_table (osi
->info
);
14904 if (is_iplt_entry_p
)
14906 osi
->sec
= htab
->root
.iplt
;
14907 plt_header_size
= 0;
14911 osi
->sec
= htab
->root
.splt
;
14912 plt_header_size
= htab
->plt_header_size
;
14914 osi
->sec_shndx
= (_bfd_elf_section_from_bfd_section
14915 (osi
->info
->output_bfd
, osi
->sec
->output_section
));
14917 addr
= root_plt
->offset
& -2;
14918 if (htab
->symbian_p
)
14920 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14922 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
14925 else if (htab
->vxworks_p
)
14927 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14929 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
14931 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
14933 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
14936 else if (htab
->nacl_p
)
14938 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14941 else if (using_thumb_only (htab
))
14943 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
))
14948 bfd_boolean thumb_stub_p
;
14950 thumb_stub_p
= elf32_arm_plt_needs_thumb_stub_p (osi
->info
, arm_plt
);
14953 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
14956 #ifdef FOUR_WORD_PLT
14957 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14959 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
14962 /* A three-word PLT with no Thumb thunk contains only Arm code,
14963 so only need to output a mapping symbol for the first PLT entry and
14964 entries with thumb thunks. */
14965 if (thumb_stub_p
|| addr
== plt_header_size
)
14967 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14976 /* Output mapping symbols for PLT entries associated with H. */
14979 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
14981 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
14982 struct elf32_arm_link_hash_entry
*eh
;
14984 if (h
->root
.type
== bfd_link_hash_indirect
)
14987 if (h
->root
.type
== bfd_link_hash_warning
)
14988 /* When warning symbols are created, they **replace** the "real"
14989 entry in the hash table, thus we never get to see the real
14990 symbol in a hash traversal. So look at it now. */
14991 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
14993 eh
= (struct elf32_arm_link_hash_entry
*) h
;
14994 return elf32_arm_output_plt_map_1 (osi
, SYMBOL_CALLS_LOCAL (osi
->info
, h
),
14995 &h
->plt
, &eh
->plt
);
14998 /* Output a single local symbol for a generated stub. */
15001 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
15002 bfd_vma offset
, bfd_vma size
)
15004 Elf_Internal_Sym sym
;
15006 sym
.st_value
= osi
->sec
->output_section
->vma
15007 + osi
->sec
->output_offset
15009 sym
.st_size
= size
;
15011 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
15012 sym
.st_shndx
= osi
->sec_shndx
;
15013 sym
.st_target_internal
= 0;
15014 return osi
->func (osi
->flaginfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
15018 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
15021 struct elf32_arm_stub_hash_entry
*stub_entry
;
15022 asection
*stub_sec
;
15025 output_arch_syminfo
*osi
;
15026 const insn_sequence
*template_sequence
;
15027 enum stub_insn_type prev_type
;
15030 enum map_symbol_type sym_type
;
15032 /* Massage our args to the form they really have. */
15033 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
15034 osi
= (output_arch_syminfo
*) in_arg
;
15036 stub_sec
= stub_entry
->stub_sec
;
15038 /* Ensure this stub is attached to the current section being
15040 if (stub_sec
!= osi
->sec
)
15043 addr
= (bfd_vma
) stub_entry
->stub_offset
;
15044 stub_name
= stub_entry
->output_name
;
15046 template_sequence
= stub_entry
->stub_template
;
15047 switch (template_sequence
[0].type
)
15050 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, stub_entry
->stub_size
))
15055 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
15056 stub_entry
->stub_size
))
15064 prev_type
= DATA_TYPE
;
15066 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
15068 switch (template_sequence
[i
].type
)
15071 sym_type
= ARM_MAP_ARM
;
15076 sym_type
= ARM_MAP_THUMB
;
15080 sym_type
= ARM_MAP_DATA
;
15088 if (template_sequence
[i
].type
!= prev_type
)
15090 prev_type
= template_sequence
[i
].type
;
15091 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
15095 switch (template_sequence
[i
].type
)
15119 /* Output mapping symbols for linker generated sections,
15120 and for those data-only sections that do not have a
15124 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
15125 struct bfd_link_info
*info
,
15127 int (*func
) (void *, const char *,
15128 Elf_Internal_Sym
*,
15130 struct elf_link_hash_entry
*))
15132 output_arch_syminfo osi
;
15133 struct elf32_arm_link_hash_table
*htab
;
15135 bfd_size_type size
;
15138 htab
= elf32_arm_hash_table (info
);
15142 check_use_blx (htab
);
15144 osi
.flaginfo
= flaginfo
;
15148 /* Add a $d mapping symbol to data-only sections that
15149 don't have any mapping symbol. This may result in (harmless) redundant
15150 mapping symbols. */
15151 for (input_bfd
= info
->input_bfds
;
15153 input_bfd
= input_bfd
->link
.next
)
15155 if ((input_bfd
->flags
& (BFD_LINKER_CREATED
| HAS_SYMS
)) == HAS_SYMS
)
15156 for (osi
.sec
= input_bfd
->sections
;
15158 osi
.sec
= osi
.sec
->next
)
15160 if (osi
.sec
->output_section
!= NULL
15161 && ((osi
.sec
->output_section
->flags
& (SEC_ALLOC
| SEC_CODE
))
15163 && (osi
.sec
->flags
& (SEC_HAS_CONTENTS
| SEC_LINKER_CREATED
))
15164 == SEC_HAS_CONTENTS
15165 && get_arm_elf_section_data (osi
.sec
) != NULL
15166 && get_arm_elf_section_data (osi
.sec
)->mapcount
== 0
15167 && osi
.sec
->size
> 0
15168 && (osi
.sec
->flags
& SEC_EXCLUDE
) == 0)
15170 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
15171 (output_bfd
, osi
.sec
->output_section
);
15172 if (osi
.sec_shndx
!= (int)SHN_BAD
)
15173 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 0);
15178 /* ARM->Thumb glue. */
15179 if (htab
->arm_glue_size
> 0)
15181 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
15182 ARM2THUMB_GLUE_SECTION_NAME
);
15184 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
15185 (output_bfd
, osi
.sec
->output_section
);
15186 if (bfd_link_pic (info
) || htab
->root
.is_relocatable_executable
15187 || htab
->pic_veneer
)
15188 size
= ARM2THUMB_PIC_GLUE_SIZE
;
15189 else if (htab
->use_blx
)
15190 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
15192 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
15194 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
15196 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
15197 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
15201 /* Thumb->ARM glue. */
15202 if (htab
->thumb_glue_size
> 0)
15204 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
15205 THUMB2ARM_GLUE_SECTION_NAME
);
15207 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
15208 (output_bfd
, osi
.sec
->output_section
);
15209 size
= THUMB2ARM_GLUE_SIZE
;
15211 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
15213 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
15214 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
15218 /* ARMv4 BX veneers. */
15219 if (htab
->bx_glue_size
> 0)
15221 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
15222 ARM_BX_GLUE_SECTION_NAME
);
15224 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
15225 (output_bfd
, osi
.sec
->output_section
);
15227 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
15230 /* Long calls stubs. */
15231 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
15233 asection
* stub_sec
;
15235 for (stub_sec
= htab
->stub_bfd
->sections
;
15237 stub_sec
= stub_sec
->next
)
15239 /* Ignore non-stub sections. */
15240 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
15243 osi
.sec
= stub_sec
;
15245 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
15246 (output_bfd
, osi
.sec
->output_section
);
15248 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
15252 /* Finally, output mapping symbols for the PLT. */
15253 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
15255 osi
.sec
= htab
->root
.splt
;
15256 osi
.sec_shndx
= (_bfd_elf_section_from_bfd_section
15257 (output_bfd
, osi
.sec
->output_section
));
15259 /* Output mapping symbols for the plt header. SymbianOS does not have a
15261 if (htab
->vxworks_p
)
15263 /* VxWorks shared libraries have no PLT header. */
15264 if (!bfd_link_pic (info
))
15266 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
15268 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
15272 else if (htab
->nacl_p
)
15274 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
15277 else if (using_thumb_only (htab
))
15279 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, 0))
15281 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
15283 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, 16))
15286 else if (!htab
->symbian_p
)
15288 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
15290 #ifndef FOUR_WORD_PLT
15291 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
15296 if (htab
->nacl_p
&& htab
->root
.iplt
&& htab
->root
.iplt
->size
> 0)
15298 /* NaCl uses a special first entry in .iplt too. */
15299 osi
.sec
= htab
->root
.iplt
;
15300 osi
.sec_shndx
= (_bfd_elf_section_from_bfd_section
15301 (output_bfd
, osi
.sec
->output_section
));
15302 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
15305 if ((htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
15306 || (htab
->root
.iplt
&& htab
->root
.iplt
->size
> 0))
15308 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, &osi
);
15309 for (input_bfd
= info
->input_bfds
;
15311 input_bfd
= input_bfd
->link
.next
)
15313 struct arm_local_iplt_info
**local_iplt
;
15314 unsigned int i
, num_syms
;
15316 local_iplt
= elf32_arm_local_iplt (input_bfd
);
15317 if (local_iplt
!= NULL
)
15319 num_syms
= elf_symtab_hdr (input_bfd
).sh_info
;
15320 for (i
= 0; i
< num_syms
; i
++)
15321 if (local_iplt
[i
] != NULL
15322 && !elf32_arm_output_plt_map_1 (&osi
, TRUE
,
15323 &local_iplt
[i
]->root
,
15324 &local_iplt
[i
]->arm
))
15329 if (htab
->dt_tlsdesc_plt
!= 0)
15331 /* Mapping symbols for the lazy tls trampoline. */
15332 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->dt_tlsdesc_plt
))
15335 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
15336 htab
->dt_tlsdesc_plt
+ 24))
15339 if (htab
->tls_trampoline
!= 0)
15341 /* Mapping symbols for the tls trampoline. */
15342 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->tls_trampoline
))
15344 #ifdef FOUR_WORD_PLT
15345 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
15346 htab
->tls_trampoline
+ 12))
15354 /* Allocate target specific section data. */
15357 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
15359 if (!sec
->used_by_bfd
)
15361 _arm_elf_section_data
*sdata
;
15362 bfd_size_type amt
= sizeof (*sdata
);
15364 sdata
= (_arm_elf_section_data
*) bfd_zalloc (abfd
, amt
);
15367 sec
->used_by_bfd
= sdata
;
15370 return _bfd_elf_new_section_hook (abfd
, sec
);
15374 /* Used to order a list of mapping symbols by address. */
15377 elf32_arm_compare_mapping (const void * a
, const void * b
)
15379 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
15380 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
15382 if (amap
->vma
> bmap
->vma
)
15384 else if (amap
->vma
< bmap
->vma
)
15386 else if (amap
->type
> bmap
->type
)
15387 /* Ensure results do not depend on the host qsort for objects with
15388 multiple mapping symbols at the same address by sorting on type
15391 else if (amap
->type
< bmap
->type
)
15397 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15399 static unsigned long
15400 offset_prel31 (unsigned long addr
, bfd_vma offset
)
15402 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
15405 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15409 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
15411 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
15412 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
15414 /* High bit of first word is supposed to be zero. */
15415 if ((first_word
& 0x80000000ul
) == 0)
15416 first_word
= offset_prel31 (first_word
, offset
);
15418 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15419 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15420 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
15421 second_word
= offset_prel31 (second_word
, offset
);
15423 bfd_put_32 (output_bfd
, first_word
, to
);
15424 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
15427 /* Data for make_branch_to_a8_stub(). */
15429 struct a8_branch_to_stub_data
15431 asection
*writing_section
;
15432 bfd_byte
*contents
;
15436 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
15437 places for a particular section. */
15440 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
15443 struct elf32_arm_stub_hash_entry
*stub_entry
;
15444 struct a8_branch_to_stub_data
*data
;
15445 bfd_byte
*contents
;
15446 unsigned long branch_insn
;
15447 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
15448 bfd_signed_vma branch_offset
;
15450 unsigned int target
;
15452 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
15453 data
= (struct a8_branch_to_stub_data
*) in_arg
;
15455 if (stub_entry
->target_section
!= data
->writing_section
15456 || stub_entry
->stub_type
< arm_stub_a8_veneer_lwm
)
15459 contents
= data
->contents
;
15461 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
15462 + stub_entry
->target_section
->output_offset
15463 + stub_entry
->target_value
;
15465 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
15466 + stub_entry
->stub_sec
->output_offset
15467 + stub_entry
->stub_offset
;
15469 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
15470 veneered_insn_loc
&= ~3u;
15472 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
15474 abfd
= stub_entry
->target_section
->owner
;
15475 target
= stub_entry
->target_value
;
15477 /* We attempt to avoid this condition by setting stubs_always_after_branch
15478 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15479 This check is just to be on the safe side... */
15480 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
15482 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub is "
15483 "allocated in unsafe location"), abfd
);
15487 switch (stub_entry
->stub_type
)
15489 case arm_stub_a8_veneer_b
:
15490 case arm_stub_a8_veneer_b_cond
:
15491 branch_insn
= 0xf0009000;
15494 case arm_stub_a8_veneer_blx
:
15495 branch_insn
= 0xf000e800;
15498 case arm_stub_a8_veneer_bl
:
15500 unsigned int i1
, j1
, i2
, j2
, s
;
15502 branch_insn
= 0xf000d000;
15505 if (branch_offset
< -16777216 || branch_offset
> 16777214)
15507 /* There's not much we can do apart from complain if this
15509 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub out "
15510 "of range (input file too large)"), abfd
);
15514 /* i1 = not(j1 eor s), so:
15516 j1 = (not i1) eor s. */
15518 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
15519 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
15520 i2
= (branch_offset
>> 22) & 1;
15521 i1
= (branch_offset
>> 23) & 1;
15522 s
= (branch_offset
>> 24) & 1;
15525 branch_insn
|= j2
<< 11;
15526 branch_insn
|= j1
<< 13;
15527 branch_insn
|= s
<< 26;
15536 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[target
]);
15537 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[target
+ 2]);
15542 /* Do code byteswapping. Return FALSE afterwards so that the section is
15543 written out as normal. */
15546 elf32_arm_write_section (bfd
*output_bfd
,
15547 struct bfd_link_info
*link_info
,
15549 bfd_byte
*contents
)
15551 unsigned int mapcount
, errcount
;
15552 _arm_elf_section_data
*arm_data
;
15553 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
15554 elf32_arm_section_map
*map
;
15555 elf32_vfp11_erratum_list
*errnode
;
15558 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
15562 if (globals
== NULL
)
15565 /* If this section has not been allocated an _arm_elf_section_data
15566 structure then we cannot record anything. */
15567 arm_data
= get_arm_elf_section_data (sec
);
15568 if (arm_data
== NULL
)
15571 mapcount
= arm_data
->mapcount
;
15572 map
= arm_data
->map
;
15573 errcount
= arm_data
->erratumcount
;
15577 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
15579 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
15580 errnode
= errnode
->next
)
15582 bfd_vma target
= errnode
->vma
- offset
;
15584 switch (errnode
->type
)
15586 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
15588 bfd_vma branch_to_veneer
;
15589 /* Original condition code of instruction, plus bit mask for
15590 ARM B instruction. */
15591 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
15594 /* The instruction is before the label. */
15597 /* Above offset included in -4 below. */
15598 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
15599 - errnode
->vma
- 4;
15601 if ((signed) branch_to_veneer
< -(1 << 25)
15602 || (signed) branch_to_veneer
>= (1 << 25))
15603 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
15604 "range"), output_bfd
);
15606 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
15607 contents
[endianflip
^ target
] = insn
& 0xff;
15608 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
15609 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
15610 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
15614 case VFP11_ERRATUM_ARM_VENEER
:
15616 bfd_vma branch_from_veneer
;
15619 /* Take size of veneer into account. */
15620 branch_from_veneer
= errnode
->u
.v
.branch
->vma
15621 - errnode
->vma
- 12;
15623 if ((signed) branch_from_veneer
< -(1 << 25)
15624 || (signed) branch_from_veneer
>= (1 << 25))
15625 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
15626 "range"), output_bfd
);
15628 /* Original instruction. */
15629 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
15630 contents
[endianflip
^ target
] = insn
& 0xff;
15631 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
15632 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
15633 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
15635 /* Branch back to insn after original insn. */
15636 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
15637 contents
[endianflip
^ (target
+ 4)] = insn
& 0xff;
15638 contents
[endianflip
^ (target
+ 5)] = (insn
>> 8) & 0xff;
15639 contents
[endianflip
^ (target
+ 6)] = (insn
>> 16) & 0xff;
15640 contents
[endianflip
^ (target
+ 7)] = (insn
>> 24) & 0xff;
15650 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
15652 arm_unwind_table_edit
*edit_node
15653 = arm_data
->u
.exidx
.unwind_edit_list
;
15654 /* Now, sec->size is the size of the section we will write. The original
15655 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15656 markers) was sec->rawsize. (This isn't the case if we perform no
15657 edits, then rawsize will be zero and we should use size). */
15658 bfd_byte
*edited_contents
= (bfd_byte
*) bfd_malloc (sec
->size
);
15659 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
15660 unsigned int in_index
, out_index
;
15661 bfd_vma add_to_offsets
= 0;
15663 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
15667 unsigned int edit_index
= edit_node
->index
;
15669 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
15671 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
15672 contents
+ in_index
* 8, add_to_offsets
);
15676 else if (in_index
== edit_index
15677 || (in_index
* 8 >= input_size
15678 && edit_index
== UINT_MAX
))
15680 switch (edit_node
->type
)
15682 case DELETE_EXIDX_ENTRY
:
15684 add_to_offsets
+= 8;
15687 case INSERT_EXIDX_CANTUNWIND_AT_END
:
15689 asection
*text_sec
= edit_node
->linked_section
;
15690 bfd_vma text_offset
= text_sec
->output_section
->vma
15691 + text_sec
->output_offset
15693 bfd_vma exidx_offset
= offset
+ out_index
* 8;
15694 unsigned long prel31_offset
;
15696 /* Note: this is meant to be equivalent to an
15697 R_ARM_PREL31 relocation. These synthetic
15698 EXIDX_CANTUNWIND markers are not relocated by the
15699 usual BFD method. */
15700 prel31_offset
= (text_offset
- exidx_offset
)
15703 /* First address we can't unwind. */
15704 bfd_put_32 (output_bfd
, prel31_offset
,
15705 &edited_contents
[out_index
* 8]);
15707 /* Code for EXIDX_CANTUNWIND. */
15708 bfd_put_32 (output_bfd
, 0x1,
15709 &edited_contents
[out_index
* 8 + 4]);
15712 add_to_offsets
-= 8;
15717 edit_node
= edit_node
->next
;
15722 /* No more edits, copy remaining entries verbatim. */
15723 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
15724 contents
+ in_index
* 8, add_to_offsets
);
15730 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
15731 bfd_set_section_contents (output_bfd
, sec
->output_section
,
15733 (file_ptr
) sec
->output_offset
, sec
->size
);
15738 /* Fix code to point to Cortex-A8 erratum stubs. */
15739 if (globals
->fix_cortex_a8
)
15741 struct a8_branch_to_stub_data data
;
15743 data
.writing_section
= sec
;
15744 data
.contents
= contents
;
15746 bfd_hash_traverse (&globals
->stub_hash_table
, make_branch_to_a8_stub
,
15753 if (globals
->byteswap_code
)
15755 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
15758 for (i
= 0; i
< mapcount
; i
++)
15760 if (i
== mapcount
- 1)
15763 end
= map
[i
+ 1].vma
;
15765 switch (map
[i
].type
)
15768 /* Byte swap code words. */
15769 while (ptr
+ 3 < end
)
15771 tmp
= contents
[ptr
];
15772 contents
[ptr
] = contents
[ptr
+ 3];
15773 contents
[ptr
+ 3] = tmp
;
15774 tmp
= contents
[ptr
+ 1];
15775 contents
[ptr
+ 1] = contents
[ptr
+ 2];
15776 contents
[ptr
+ 2] = tmp
;
15782 /* Byte swap code halfwords. */
15783 while (ptr
+ 1 < end
)
15785 tmp
= contents
[ptr
];
15786 contents
[ptr
] = contents
[ptr
+ 1];
15787 contents
[ptr
+ 1] = tmp
;
15793 /* Leave data alone. */
15801 arm_data
->mapcount
= -1;
15802 arm_data
->mapsize
= 0;
15803 arm_data
->map
= NULL
;
15808 /* Mangle thumb function symbols as we read them in. */
15811 elf32_arm_swap_symbol_in (bfd
* abfd
,
15814 Elf_Internal_Sym
*dst
)
15816 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
15819 /* New EABI objects mark thumb function symbols by setting the low bit of
15821 if (ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
15822 || ELF_ST_TYPE (dst
->st_info
) == STT_GNU_IFUNC
)
15824 if (dst
->st_value
& 1)
15826 dst
->st_value
&= ~(bfd_vma
) 1;
15827 dst
->st_target_internal
= ST_BRANCH_TO_THUMB
;
15830 dst
->st_target_internal
= ST_BRANCH_TO_ARM
;
15832 else if (ELF_ST_TYPE (dst
->st_info
) == STT_ARM_TFUNC
)
15834 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_FUNC
);
15835 dst
->st_target_internal
= ST_BRANCH_TO_THUMB
;
15837 else if (ELF_ST_TYPE (dst
->st_info
) == STT_SECTION
)
15838 dst
->st_target_internal
= ST_BRANCH_LONG
;
15840 dst
->st_target_internal
= ST_BRANCH_UNKNOWN
;
15846 /* Mangle thumb function symbols as we write them out. */
15849 elf32_arm_swap_symbol_out (bfd
*abfd
,
15850 const Elf_Internal_Sym
*src
,
15854 Elf_Internal_Sym newsym
;
15856 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15857 of the address set, as per the new EABI. We do this unconditionally
15858 because objcopy does not set the elf header flags until after
15859 it writes out the symbol table. */
15860 if (src
->st_target_internal
== ST_BRANCH_TO_THUMB
)
15863 if (ELF_ST_TYPE (src
->st_info
) != STT_GNU_IFUNC
)
15864 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
15865 if (newsym
.st_shndx
!= SHN_UNDEF
)
15867 /* Do this only for defined symbols. At link type, the static
15868 linker will simulate the work of dynamic linker of resolving
15869 symbols and will carry over the thumbness of found symbols to
15870 the output symbol table. It's not clear how it happens, but
15871 the thumbness of undefined symbols can well be different at
15872 runtime, and writing '1' for them will be confusing for users
15873 and possibly for dynamic linker itself.
15875 newsym
.st_value
|= 1;
15880 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
15883 /* Add the PT_ARM_EXIDX program header. */
15886 elf32_arm_modify_segment_map (bfd
*abfd
,
15887 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
15889 struct elf_segment_map
*m
;
15892 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
15893 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
15895 /* If there is already a PT_ARM_EXIDX header, then we do not
15896 want to add another one. This situation arises when running
15897 "strip"; the input binary already has the header. */
15898 m
= elf_seg_map (abfd
);
15899 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
15903 m
= (struct elf_segment_map
*)
15904 bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
15907 m
->p_type
= PT_ARM_EXIDX
;
15909 m
->sections
[0] = sec
;
15911 m
->next
= elf_seg_map (abfd
);
15912 elf_seg_map (abfd
) = m
;
15919 /* We may add a PT_ARM_EXIDX program header. */
15922 elf32_arm_additional_program_headers (bfd
*abfd
,
15923 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
15927 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
15928 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
15934 /* Hook called by the linker routine which adds symbols from an object
15938 elf32_arm_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
15939 Elf_Internal_Sym
*sym
, const char **namep
,
15940 flagword
*flagsp
, asection
**secp
, bfd_vma
*valp
)
15942 if ((ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
15943 || ELF_ST_BIND (sym
->st_info
) == STB_GNU_UNIQUE
)
15944 && (abfd
->flags
& DYNAMIC
) == 0
15945 && bfd_get_flavour (info
->output_bfd
) == bfd_target_elf_flavour
)
15946 elf_tdata (info
->output_bfd
)->has_gnu_symbols
= elf_gnu_symbol_any
;
15948 if (elf32_arm_hash_table (info
) == NULL
)
15951 if (elf32_arm_hash_table (info
)->vxworks_p
15952 && !elf_vxworks_add_symbol_hook (abfd
, info
, sym
, namep
,
15953 flagsp
, secp
, valp
))
15959 /* We use this to override swap_symbol_in and swap_symbol_out. */
15960 const struct elf_size_info elf32_arm_size_info
=
15962 sizeof (Elf32_External_Ehdr
),
15963 sizeof (Elf32_External_Phdr
),
15964 sizeof (Elf32_External_Shdr
),
15965 sizeof (Elf32_External_Rel
),
15966 sizeof (Elf32_External_Rela
),
15967 sizeof (Elf32_External_Sym
),
15968 sizeof (Elf32_External_Dyn
),
15969 sizeof (Elf_External_Note
),
15973 ELFCLASS32
, EV_CURRENT
,
15974 bfd_elf32_write_out_phdrs
,
15975 bfd_elf32_write_shdrs_and_ehdr
,
15976 bfd_elf32_checksum_contents
,
15977 bfd_elf32_write_relocs
,
15978 elf32_arm_swap_symbol_in
,
15979 elf32_arm_swap_symbol_out
,
15980 bfd_elf32_slurp_reloc_table
,
15981 bfd_elf32_slurp_symbol_table
,
15982 bfd_elf32_swap_dyn_in
,
15983 bfd_elf32_swap_dyn_out
,
15984 bfd_elf32_swap_reloc_in
,
15985 bfd_elf32_swap_reloc_out
,
15986 bfd_elf32_swap_reloca_in
,
15987 bfd_elf32_swap_reloca_out
15991 read_code32 (const bfd
*abfd
, const bfd_byte
*addr
)
15993 /* V7 BE8 code is always little endian. */
15994 if ((elf_elfheader (abfd
)->e_flags
& EF_ARM_BE8
) != 0)
15995 return bfd_getl32 (addr
);
15997 return bfd_get_32 (abfd
, addr
);
16001 read_code16 (const bfd
*abfd
, const bfd_byte
*addr
)
16003 /* V7 BE8 code is always little endian. */
16004 if ((elf_elfheader (abfd
)->e_flags
& EF_ARM_BE8
) != 0)
16005 return bfd_getl16 (addr
);
16007 return bfd_get_16 (abfd
, addr
);
16010 /* Return size of plt0 entry starting at ADDR
16011 or (bfd_vma) -1 if size can not be determined. */
16014 elf32_arm_plt0_size (const bfd
*abfd
, const bfd_byte
*addr
)
16016 bfd_vma first_word
;
16019 first_word
= read_code32 (abfd
, addr
);
16021 if (first_word
== elf32_arm_plt0_entry
[0])
16022 plt0_size
= 4 * ARRAY_SIZE (elf32_arm_plt0_entry
);
16023 else if (first_word
== elf32_thumb2_plt0_entry
[0])
16024 plt0_size
= 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry
);
16026 /* We don't yet handle this PLT format. */
16027 return (bfd_vma
) -1;
16032 /* Return size of plt entry starting at offset OFFSET
16033 of plt section located at address START
16034 or (bfd_vma) -1 if size can not be determined. */
16037 elf32_arm_plt_size (const bfd
*abfd
, const bfd_byte
*start
, bfd_vma offset
)
16039 bfd_vma first_insn
;
16040 bfd_vma plt_size
= 0;
16041 const bfd_byte
*addr
= start
+ offset
;
16043 /* PLT entry size if fixed on Thumb-only platforms. */
16044 if (read_code32 (abfd
, start
) == elf32_thumb2_plt0_entry
[0])
16045 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry
);
16047 /* Respect Thumb stub if necessary. */
16048 if (read_code16 (abfd
, addr
) == elf32_arm_plt_thumb_stub
[0])
16050 plt_size
+= 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub
);
16053 /* Strip immediate from first add. */
16054 first_insn
= read_code32 (abfd
, addr
+ plt_size
) & 0xffffff00;
16056 #ifdef FOUR_WORD_PLT
16057 if (first_insn
== elf32_arm_plt_entry
[0])
16058 plt_size
+= 4 * ARRAY_SIZE (elf32_arm_plt_entry
);
16060 if (first_insn
== elf32_arm_plt_entry_long
[0])
16061 plt_size
+= 4 * ARRAY_SIZE (elf32_arm_plt_entry_long
);
16062 else if (first_insn
== elf32_arm_plt_entry_short
[0])
16063 plt_size
+= 4 * ARRAY_SIZE (elf32_arm_plt_entry_short
);
16066 /* We don't yet handle this PLT format. */
16067 return (bfd_vma
) -1;
16072 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
16075 elf32_arm_get_synthetic_symtab (bfd
*abfd
,
16076 long symcount ATTRIBUTE_UNUSED
,
16077 asymbol
**syms ATTRIBUTE_UNUSED
,
16087 Elf_Internal_Shdr
*hdr
;
16095 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
16098 if (dynsymcount
<= 0)
16101 relplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
16102 if (relplt
== NULL
)
16105 hdr
= &elf_section_data (relplt
)->this_hdr
;
16106 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
16107 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
16110 plt
= bfd_get_section_by_name (abfd
, ".plt");
16114 if (!elf32_arm_size_info
.slurp_reloc_table (abfd
, relplt
, dynsyms
, TRUE
))
16117 data
= plt
->contents
;
16120 if (!bfd_get_full_section_contents(abfd
, (asection
*) plt
, &data
) || data
== NULL
)
16122 bfd_cache_section_contents((asection
*) plt
, data
);
16125 count
= relplt
->size
/ hdr
->sh_entsize
;
16126 size
= count
* sizeof (asymbol
);
16127 p
= relplt
->relocation
;
16128 for (i
= 0; i
< count
; i
++, p
+= elf32_arm_size_info
.int_rels_per_ext_rel
)
16130 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
16131 if (p
->addend
!= 0)
16132 size
+= sizeof ("+0x") - 1 + 8;
16135 s
= *ret
= (asymbol
*) bfd_malloc (size
);
16139 offset
= elf32_arm_plt0_size (abfd
, data
);
16140 if (offset
== (bfd_vma
) -1)
16143 names
= (char *) (s
+ count
);
16144 p
= relplt
->relocation
;
16146 for (i
= 0; i
< count
; i
++, p
+= elf32_arm_size_info
.int_rels_per_ext_rel
)
16150 bfd_vma plt_size
= elf32_arm_plt_size (abfd
, data
, offset
);
16151 if (plt_size
== (bfd_vma
) -1)
16154 *s
= **p
->sym_ptr_ptr
;
16155 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16156 we are defining a symbol, ensure one of them is set. */
16157 if ((s
->flags
& BSF_LOCAL
) == 0)
16158 s
->flags
|= BSF_GLOBAL
;
16159 s
->flags
|= BSF_SYNTHETIC
;
16164 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
16165 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
16167 if (p
->addend
!= 0)
16171 memcpy (names
, "+0x", sizeof ("+0x") - 1);
16172 names
+= sizeof ("+0x") - 1;
16173 bfd_sprintf_vma (abfd
, buf
, p
->addend
);
16174 for (a
= buf
; *a
== '0'; ++a
)
16177 memcpy (names
, a
, len
);
16180 memcpy (names
, "@plt", sizeof ("@plt"));
16181 names
+= sizeof ("@plt");
16183 offset
+= plt_size
;
16189 #define ELF_ARCH bfd_arch_arm
16190 #define ELF_TARGET_ID ARM_ELF_DATA
16191 #define ELF_MACHINE_CODE EM_ARM
16192 #ifdef __QNXTARGET__
16193 #define ELF_MAXPAGESIZE 0x1000
16195 #define ELF_MAXPAGESIZE 0x10000
16197 #define ELF_MINPAGESIZE 0x1000
16198 #define ELF_COMMONPAGESIZE 0x1000
16200 #define bfd_elf32_mkobject elf32_arm_mkobject
16202 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
16203 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
16204 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
16205 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
16206 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
16207 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
16208 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
16209 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
16210 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
16211 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
16212 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
16213 #define bfd_elf32_bfd_final_link elf32_arm_final_link
16214 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
16216 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
16217 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
16218 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
16219 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
16220 #define elf_backend_check_relocs elf32_arm_check_relocs
16221 #define elf_backend_relocate_section elf32_arm_relocate_section
16222 #define elf_backend_write_section elf32_arm_write_section
16223 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
16224 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
16225 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
16226 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
16227 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
16228 #define elf_backend_always_size_sections elf32_arm_always_size_sections
16229 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
16230 #define elf_backend_post_process_headers elf32_arm_post_process_headers
16231 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
16232 #define elf_backend_object_p elf32_arm_object_p
16233 #define elf_backend_fake_sections elf32_arm_fake_sections
16234 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
16235 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16236 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
16237 #define elf_backend_size_info elf32_arm_size_info
16238 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
16239 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
16240 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
16241 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
16242 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
16244 #define elf_backend_can_refcount 1
16245 #define elf_backend_can_gc_sections 1
16246 #define elf_backend_plt_readonly 1
16247 #define elf_backend_want_got_plt 1
16248 #define elf_backend_want_plt_sym 0
16249 #define elf_backend_may_use_rel_p 1
16250 #define elf_backend_may_use_rela_p 0
16251 #define elf_backend_default_use_rela_p 0
16253 #define elf_backend_got_header_size 12
16254 #define elf_backend_extern_protected_data 1
16256 #undef elf_backend_obj_attrs_vendor
16257 #define elf_backend_obj_attrs_vendor "aeabi"
16258 #undef elf_backend_obj_attrs_section
16259 #define elf_backend_obj_attrs_section ".ARM.attributes"
16260 #undef elf_backend_obj_attrs_arg_type
16261 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
16262 #undef elf_backend_obj_attrs_section_type
16263 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
16264 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
16265 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
16267 #include "elf32-target.h"
16269 /* Native Client targets. */
16271 #undef TARGET_LITTLE_SYM
16272 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
16273 #undef TARGET_LITTLE_NAME
16274 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
16275 #undef TARGET_BIG_SYM
16276 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
16277 #undef TARGET_BIG_NAME
16278 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
16280 /* Like elf32_arm_link_hash_table_create -- but overrides
16281 appropriately for NaCl. */
16283 static struct bfd_link_hash_table
*
16284 elf32_arm_nacl_link_hash_table_create (bfd
*abfd
)
16286 struct bfd_link_hash_table
*ret
;
16288 ret
= elf32_arm_link_hash_table_create (abfd
);
16291 struct elf32_arm_link_hash_table
*htab
16292 = (struct elf32_arm_link_hash_table
*) ret
;
16296 htab
->plt_header_size
= 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry
);
16297 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry
);
16302 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
16303 really need to use elf32_arm_modify_segment_map. But we do it
16304 anyway just to reduce gratuitous differences with the stock ARM backend. */
16307 elf32_arm_nacl_modify_segment_map (bfd
*abfd
, struct bfd_link_info
*info
)
16309 return (elf32_arm_modify_segment_map (abfd
, info
)
16310 && nacl_modify_segment_map (abfd
, info
));
16314 elf32_arm_nacl_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
16316 elf32_arm_final_write_processing (abfd
, linker
);
16317 nacl_final_write_processing (abfd
, linker
);
16321 elf32_arm_nacl_plt_sym_val (bfd_vma i
, const asection
*plt
,
16322 const arelent
*rel ATTRIBUTE_UNUSED
)
16325 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry
) +
16326 i
* ARRAY_SIZE (elf32_arm_nacl_plt_entry
));
16330 #define elf32_bed elf32_arm_nacl_bed
16331 #undef bfd_elf32_bfd_link_hash_table_create
16332 #define bfd_elf32_bfd_link_hash_table_create \
16333 elf32_arm_nacl_link_hash_table_create
16334 #undef elf_backend_plt_alignment
16335 #define elf_backend_plt_alignment 4
16336 #undef elf_backend_modify_segment_map
16337 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
16338 #undef elf_backend_modify_program_headers
16339 #define elf_backend_modify_program_headers nacl_modify_program_headers
16340 #undef elf_backend_final_write_processing
16341 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
16342 #undef bfd_elf32_get_synthetic_symtab
16343 #undef elf_backend_plt_sym_val
16344 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
16346 #undef ELF_MINPAGESIZE
16347 #undef ELF_COMMONPAGESIZE
16350 #include "elf32-target.h"
16352 /* Reset to defaults. */
16353 #undef elf_backend_plt_alignment
16354 #undef elf_backend_modify_segment_map
16355 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
16356 #undef elf_backend_modify_program_headers
16357 #undef elf_backend_final_write_processing
16358 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16359 #undef ELF_MINPAGESIZE
16360 #define ELF_MINPAGESIZE 0x1000
16361 #undef ELF_COMMONPAGESIZE
16362 #define ELF_COMMONPAGESIZE 0x1000
16365 /* VxWorks Targets. */
16367 #undef TARGET_LITTLE_SYM
16368 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
16369 #undef TARGET_LITTLE_NAME
16370 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
16371 #undef TARGET_BIG_SYM
16372 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
16373 #undef TARGET_BIG_NAME
16374 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
16376 /* Like elf32_arm_link_hash_table_create -- but overrides
16377 appropriately for VxWorks. */
16379 static struct bfd_link_hash_table
*
16380 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
16382 struct bfd_link_hash_table
*ret
;
16384 ret
= elf32_arm_link_hash_table_create (abfd
);
16387 struct elf32_arm_link_hash_table
*htab
16388 = (struct elf32_arm_link_hash_table
*) ret
;
16390 htab
->vxworks_p
= 1;
16396 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
16398 elf32_arm_final_write_processing (abfd
, linker
);
16399 elf_vxworks_final_write_processing (abfd
, linker
);
16403 #define elf32_bed elf32_arm_vxworks_bed
16405 #undef bfd_elf32_bfd_link_hash_table_create
16406 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
16407 #undef elf_backend_final_write_processing
16408 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
16409 #undef elf_backend_emit_relocs
16410 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
16412 #undef elf_backend_may_use_rel_p
16413 #define elf_backend_may_use_rel_p 0
16414 #undef elf_backend_may_use_rela_p
16415 #define elf_backend_may_use_rela_p 1
16416 #undef elf_backend_default_use_rela_p
16417 #define elf_backend_default_use_rela_p 1
16418 #undef elf_backend_want_plt_sym
16419 #define elf_backend_want_plt_sym 1
16420 #undef ELF_MAXPAGESIZE
16421 #define ELF_MAXPAGESIZE 0x1000
16423 #include "elf32-target.h"
16426 /* Merge backend specific data from an object file to the output
16427 object file when linking. */
16430 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
16432 flagword out_flags
;
16434 bfd_boolean flags_compatible
= TRUE
;
16437 /* Check if we have the same endianness. */
16438 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
16441 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
16444 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
16447 /* The input BFD must have had its flags initialised. */
16448 /* The following seems bogus to me -- The flags are initialized in
16449 the assembler but I don't think an elf_flags_init field is
16450 written into the object. */
16451 /* BFD_ASSERT (elf_flags_init (ibfd)); */
16453 in_flags
= elf_elfheader (ibfd
)->e_flags
;
16454 out_flags
= elf_elfheader (obfd
)->e_flags
;
16456 /* In theory there is no reason why we couldn't handle this. However
16457 in practice it isn't even close to working and there is no real
16458 reason to want it. */
16459 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
16460 && !(ibfd
->flags
& DYNAMIC
)
16461 && (in_flags
& EF_ARM_BE8
))
16463 _bfd_error_handler (_("error: %B is already in final BE8 format"),
16468 if (!elf_flags_init (obfd
))
16470 /* If the input is the default architecture and had the default
16471 flags then do not bother setting the flags for the output
16472 architecture, instead allow future merges to do this. If no
16473 future merges ever set these flags then they will retain their
16474 uninitialised values, which surprise surprise, correspond
16475 to the default values. */
16476 if (bfd_get_arch_info (ibfd
)->the_default
16477 && elf_elfheader (ibfd
)->e_flags
== 0)
16480 elf_flags_init (obfd
) = TRUE
;
16481 elf_elfheader (obfd
)->e_flags
= in_flags
;
16483 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
16484 && bfd_get_arch_info (obfd
)->the_default
)
16485 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
16490 /* Determine what should happen if the input ARM architecture
16491 does not match the output ARM architecture. */
16492 if (! bfd_arm_merge_machines (ibfd
, obfd
))
16495 /* Identical flags must be compatible. */
16496 if (in_flags
== out_flags
)
16499 /* Check to see if the input BFD actually contains any sections. If
16500 not, its flags may not have been initialised either, but it
16501 cannot actually cause any incompatiblity. Do not short-circuit
16502 dynamic objects; their section list may be emptied by
16503 elf_link_add_object_symbols.
16505 Also check to see if there are no code sections in the input.
16506 In this case there is no need to check for code specific flags.
16507 XXX - do we need to worry about floating-point format compatability
16508 in data sections ? */
16509 if (!(ibfd
->flags
& DYNAMIC
))
16511 bfd_boolean null_input_bfd
= TRUE
;
16512 bfd_boolean only_data_sections
= TRUE
;
16514 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
16516 /* Ignore synthetic glue sections. */
16517 if (strcmp (sec
->name
, ".glue_7")
16518 && strcmp (sec
->name
, ".glue_7t"))
16520 if ((bfd_get_section_flags (ibfd
, sec
)
16521 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
16522 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
16523 only_data_sections
= FALSE
;
16525 null_input_bfd
= FALSE
;
16530 if (null_input_bfd
|| only_data_sections
)
16534 /* Complain about various flag mismatches. */
16535 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
16536 EF_ARM_EABI_VERSION (out_flags
)))
16539 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
16541 (in_flags
& EF_ARM_EABIMASK
) >> 24,
16542 (out_flags
& EF_ARM_EABIMASK
) >> 24);
16546 /* Not sure what needs to be checked for EABI versions >= 1. */
16547 /* VxWorks libraries do not use these flags. */
16548 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
16549 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
16550 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
16552 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
16555 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
16557 in_flags
& EF_ARM_APCS_26
? 26 : 32,
16558 out_flags
& EF_ARM_APCS_26
? 26 : 32);
16559 flags_compatible
= FALSE
;
16562 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
16564 if (in_flags
& EF_ARM_APCS_FLOAT
)
16566 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
16570 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
16573 flags_compatible
= FALSE
;
16576 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
16578 if (in_flags
& EF_ARM_VFP_FLOAT
)
16580 (_("error: %B uses VFP instructions, whereas %B does not"),
16584 (_("error: %B uses FPA instructions, whereas %B does not"),
16587 flags_compatible
= FALSE
;
16590 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
16592 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
16594 (_("error: %B uses Maverick instructions, whereas %B does not"),
16598 (_("error: %B does not use Maverick instructions, whereas %B does"),
16601 flags_compatible
= FALSE
;
16604 #ifdef EF_ARM_SOFT_FLOAT
16605 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
16607 /* We can allow interworking between code that is VFP format
16608 layout, and uses either soft float or integer regs for
16609 passing floating point arguments and results. We already
16610 know that the APCS_FLOAT flags match; similarly for VFP
16612 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
16613 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
16615 if (in_flags
& EF_ARM_SOFT_FLOAT
)
16617 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16621 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16624 flags_compatible
= FALSE
;
16629 /* Interworking mismatch is only a warning. */
16630 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
16632 if (in_flags
& EF_ARM_INTERWORK
)
16635 (_("Warning: %B supports interworking, whereas %B does not"),
16641 (_("Warning: %B does not support interworking, whereas %B does"),
16647 return flags_compatible
;
16651 /* Symbian OS Targets. */
16653 #undef TARGET_LITTLE_SYM
16654 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
16655 #undef TARGET_LITTLE_NAME
16656 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
16657 #undef TARGET_BIG_SYM
16658 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
16659 #undef TARGET_BIG_NAME
16660 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
16662 /* Like elf32_arm_link_hash_table_create -- but overrides
16663 appropriately for Symbian OS. */
16665 static struct bfd_link_hash_table
*
16666 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
16668 struct bfd_link_hash_table
*ret
;
16670 ret
= elf32_arm_link_hash_table_create (abfd
);
16673 struct elf32_arm_link_hash_table
*htab
16674 = (struct elf32_arm_link_hash_table
*)ret
;
16675 /* There is no PLT header for Symbian OS. */
16676 htab
->plt_header_size
= 0;
16677 /* The PLT entries are each one instruction and one word. */
16678 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
16679 htab
->symbian_p
= 1;
16680 /* Symbian uses armv5t or above, so use_blx is always true. */
16682 htab
->root
.is_relocatable_executable
= 1;
16687 static const struct bfd_elf_special_section
16688 elf32_arm_symbian_special_sections
[] =
16690 /* In a BPABI executable, the dynamic linking sections do not go in
16691 the loadable read-only segment. The post-linker may wish to
16692 refer to these sections, but they are not part of the final
16694 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
16695 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
16696 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
16697 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
16698 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
16699 /* These sections do not need to be writable as the SymbianOS
16700 postlinker will arrange things so that no dynamic relocation is
16702 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
16703 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
16704 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
16705 { NULL
, 0, 0, 0, 0 }
16709 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
16710 struct bfd_link_info
*link_info
)
16712 /* BPABI objects are never loaded directly by an OS kernel; they are
16713 processed by a postlinker first, into an OS-specific format. If
16714 the D_PAGED bit is set on the file, BFD will align segments on
16715 page boundaries, so that an OS can directly map the file. With
16716 BPABI objects, that just results in wasted space. In addition,
16717 because we clear the D_PAGED bit, map_sections_to_segments will
16718 recognize that the program headers should not be mapped into any
16719 loadable segment. */
16720 abfd
->flags
&= ~D_PAGED
;
16721 elf32_arm_begin_write_processing (abfd
, link_info
);
16725 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
16726 struct bfd_link_info
*info
)
16728 struct elf_segment_map
*m
;
16731 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16732 segment. However, because the .dynamic section is not marked
16733 with SEC_LOAD, the generic ELF code will not create such a
16735 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
16738 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
16739 if (m
->p_type
== PT_DYNAMIC
)
16744 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
16745 m
->next
= elf_seg_map (abfd
);
16746 elf_seg_map (abfd
) = m
;
16750 /* Also call the generic arm routine. */
16751 return elf32_arm_modify_segment_map (abfd
, info
);
16754 /* Return address for Ith PLT stub in section PLT, for relocation REL
16755 or (bfd_vma) -1 if it should not be included. */
16758 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
16759 const arelent
*rel ATTRIBUTE_UNUSED
)
16761 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
16766 #define elf32_bed elf32_arm_symbian_bed
16768 /* The dynamic sections are not allocated on SymbianOS; the postlinker
16769 will process them and then discard them. */
16770 #undef ELF_DYNAMIC_SEC_FLAGS
16771 #define ELF_DYNAMIC_SEC_FLAGS \
16772 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16774 #undef elf_backend_emit_relocs
16776 #undef bfd_elf32_bfd_link_hash_table_create
16777 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16778 #undef elf_backend_special_sections
16779 #define elf_backend_special_sections elf32_arm_symbian_special_sections
16780 #undef elf_backend_begin_write_processing
16781 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16782 #undef elf_backend_final_write_processing
16783 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16785 #undef elf_backend_modify_segment_map
16786 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16788 /* There is no .got section for BPABI objects, and hence no header. */
16789 #undef elf_backend_got_header_size
16790 #define elf_backend_got_header_size 0
16792 /* Similarly, there is no .got.plt section. */
16793 #undef elf_backend_want_got_plt
16794 #define elf_backend_want_got_plt 0
16796 #undef elf_backend_plt_sym_val
16797 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16799 #undef elf_backend_may_use_rel_p
16800 #define elf_backend_may_use_rel_p 1
16801 #undef elf_backend_may_use_rela_p
16802 #define elf_backend_may_use_rela_p 0
16803 #undef elf_backend_default_use_rela_p
16804 #define elf_backend_default_use_rela_p 0
16805 #undef elf_backend_want_plt_sym
16806 #define elf_backend_want_plt_sym 0
16807 #undef ELF_MAXPAGESIZE
16808 #define ELF_MAXPAGESIZE 0x8000
16810 #include "elf32-target.h"