c81d7eab089cac8303c15bbf008e126a9debcb58
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* unallocated */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1782 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1783 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1784
1785 return NULL;
1786 }
1787
1788 static reloc_howto_type *
1789 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1790 const char *r_name)
1791 {
1792 unsigned int i;
1793
1794 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1795 if (elf32_arm_howto_table_1[i].name != NULL
1796 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1797 return &elf32_arm_howto_table_1[i];
1798
1799 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1800 if (elf32_arm_howto_table_2[i].name != NULL
1801 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1802 return &elf32_arm_howto_table_2[i];
1803
1804 return NULL;
1805 }
1806
1807 /* Support for core dump NOTE sections. */
1808
1809 static bfd_boolean
1810 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1811 {
1812 int offset;
1813 size_t size;
1814
1815 switch (note->descsz)
1816 {
1817 default:
1818 return FALSE;
1819
1820 case 148: /* Linux/ARM 32-bit*/
1821 /* pr_cursig */
1822 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1823
1824 /* pr_pid */
1825 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1826
1827 /* pr_reg */
1828 offset = 72;
1829 size = 72;
1830
1831 break;
1832 }
1833
1834 /* Make a ".reg/999" section. */
1835 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1836 size, note->descpos + offset);
1837 }
1838
1839 static bfd_boolean
1840 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1841 {
1842 switch (note->descsz)
1843 {
1844 default:
1845 return FALSE;
1846
1847 case 124: /* Linux/ARM elf_prpsinfo */
1848 elf_tdata (abfd)->core_program
1849 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1850 elf_tdata (abfd)->core_command
1851 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1852 }
1853
1854 /* Note that for some reason, a spurious space is tacked
1855 onto the end of the args in some (at least one anyway)
1856 implementations, so strip it off if it exists. */
1857 {
1858 char *command = elf_tdata (abfd)->core_command;
1859 int n = strlen (command);
1860
1861 if (0 < n && command[n - 1] == ' ')
1862 command[n - 1] = '\0';
1863 }
1864
1865 return TRUE;
1866 }
1867
1868 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1869 #define TARGET_LITTLE_NAME "elf32-littlearm"
1870 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1871 #define TARGET_BIG_NAME "elf32-bigarm"
1872
1873 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1874 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1875
1876 typedef unsigned long int insn32;
1877 typedef unsigned short int insn16;
1878
1879 /* In lieu of proper flags, assume all EABIv4 or later objects are
1880 interworkable. */
1881 #define INTERWORK_FLAG(abfd) \
1882 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1883 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1884
1885 /* The linker script knows the section names for placement.
1886 The entry_names are used to do simple name mangling on the stubs.
1887 Given a function name, and its type, the stub can be found. The
1888 name can be changed. The only requirement is the %s be present. */
1889 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1890 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1891
1892 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1893 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1894
1895 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1896 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1897
1898 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1899 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1900
1901 /* The name of the dynamic interpreter. This is put in the .interp
1902 section. */
1903 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1904
1905 #ifdef FOUR_WORD_PLT
1906
1907 /* The first entry in a procedure linkage table looks like
1908 this. It is set up so that any shared library function that is
1909 called before the relocation has been set up calls the dynamic
1910 linker first. */
1911 static const bfd_vma elf32_arm_plt0_entry [] =
1912 {
1913 0xe52de004, /* str lr, [sp, #-4]! */
1914 0xe59fe010, /* ldr lr, [pc, #16] */
1915 0xe08fe00e, /* add lr, pc, lr */
1916 0xe5bef008, /* ldr pc, [lr, #8]! */
1917 };
1918
1919 /* Subsequent entries in a procedure linkage table look like
1920 this. */
1921 static const bfd_vma elf32_arm_plt_entry [] =
1922 {
1923 0xe28fc600, /* add ip, pc, #NN */
1924 0xe28cca00, /* add ip, ip, #NN */
1925 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1926 0x00000000, /* unused */
1927 };
1928
1929 #else
1930
1931 /* The first entry in a procedure linkage table looks like
1932 this. It is set up so that any shared library function that is
1933 called before the relocation has been set up calls the dynamic
1934 linker first. */
1935 static const bfd_vma elf32_arm_plt0_entry [] =
1936 {
1937 0xe52de004, /* str lr, [sp, #-4]! */
1938 0xe59fe004, /* ldr lr, [pc, #4] */
1939 0xe08fe00e, /* add lr, pc, lr */
1940 0xe5bef008, /* ldr pc, [lr, #8]! */
1941 0x00000000, /* &GOT[0] - . */
1942 };
1943
1944 /* Subsequent entries in a procedure linkage table look like
1945 this. */
1946 static const bfd_vma elf32_arm_plt_entry [] =
1947 {
1948 0xe28fc600, /* add ip, pc, #0xNN00000 */
1949 0xe28cca00, /* add ip, ip, #0xNN000 */
1950 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1951 };
1952
1953 #endif
1954
1955 /* The format of the first entry in the procedure linkage table
1956 for a VxWorks executable. */
1957 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1958 {
1959 0xe52dc008, /* str ip,[sp,#-8]! */
1960 0xe59fc000, /* ldr ip,[pc] */
1961 0xe59cf008, /* ldr pc,[ip,#8] */
1962 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1963 };
1964
1965 /* The format of subsequent entries in a VxWorks executable. */
1966 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1967 {
1968 0xe59fc000, /* ldr ip,[pc] */
1969 0xe59cf000, /* ldr pc,[ip] */
1970 0x00000000, /* .long @got */
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xea000000, /* b _PLT */
1973 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1974 };
1975
1976 /* The format of entries in a VxWorks shared library. */
1977 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1978 {
1979 0xe59fc000, /* ldr ip,[pc] */
1980 0xe79cf009, /* ldr pc,[ip,r9] */
1981 0x00000000, /* .long @got */
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe599f008, /* ldr pc,[r9,#8] */
1984 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1985 };
1986
1987 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1988 #define PLT_THUMB_STUB_SIZE 4
1989 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1990 {
1991 0x4778, /* bx pc */
1992 0x46c0 /* nop */
1993 };
1994
1995 /* The entries in a PLT when using a DLL-based target with multiple
1996 address spaces. */
1997 static const bfd_vma elf32_arm_symbian_plt_entry [] =
1998 {
1999 0xe51ff004, /* ldr pc, [pc, #-4] */
2000 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2001 };
2002
2003 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2004 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2005 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2006 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2007 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2008 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2009
2010 static const bfd_vma arm_long_branch_stub[] =
2011 {
2012 0xe51ff004, /* ldr pc, [pc, #-4] */
2013 0x00000000, /* dcd R_ARM_ABS32(X) */
2014 };
2015
2016 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2017 {
2018 0xe59fc000, /* ldr ip, [pc, #0] */
2019 0xe12fff1c, /* bx ip */
2020 0x00000000, /* dcd R_ARM_ABS32(X) */
2021 };
2022
2023 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2024 {
2025 0x4e02b540, /* push {r6, lr} */
2026 /* ldr r6, [pc, #8] */
2027 0xe7fe46fe, /* mov lr, pc */
2028 /* b.n r6 */
2029 0xbf00bd40, /* pop {r6, pc} */
2030 /* nop */
2031 0x00000000, /* dcd R_ARM_ABS32(X) */
2032 };
2033
2034 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2035 {
2036 0x4e03b540, /* push {r6, lr} */
2037 /* ldr r6, [pc, #12] */
2038 0x473046fe, /* mov lr, pc */
2039 /* bx r6 */
2040 0xe8bd4040, /* pop {r6, pc} */
2041 0xe12fff1e, /* bx lr */
2042 0x00000000, /* dcd R_ARM_ABS32(X) */
2043 };
2044
2045 static const bfd_vma arm_pic_long_branch_stub[] =
2046 {
2047 0xe59fc000, /* ldr r12, [pc] */
2048 0xe08ff00c, /* add pc, pc, ip */
2049 0x00000000, /* dcd R_ARM_ABS32(X) */
2050 };
2051
2052 /* Section name for stubs is the associated section name plus this
2053 string. */
2054 #define STUB_SUFFIX ".stub"
2055
2056 enum elf32_arm_stub_type
2057 {
2058 arm_stub_none,
2059 arm_stub_long_branch,
2060 arm_thumb_v4t_stub_long_branch,
2061 arm_thumb_thumb_stub_long_branch,
2062 arm_thumb_arm_v4t_stub_long_branch,
2063 arm_stub_pic_long_branch,
2064 };
2065
2066 struct elf32_arm_stub_hash_entry
2067 {
2068 /* Base hash table entry structure. */
2069 struct bfd_hash_entry root;
2070
2071 /* The stub section. */
2072 asection *stub_sec;
2073
2074 /* Offset within stub_sec of the beginning of this stub. */
2075 bfd_vma stub_offset;
2076
2077 /* Given the symbol's value and its section we can determine its final
2078 value when building the stubs (so the stub knows where to jump). */
2079 bfd_vma target_value;
2080 asection *target_section;
2081
2082 enum elf32_arm_stub_type stub_type;
2083
2084 /* The symbol table entry, if any, that this was derived from. */
2085 struct elf32_arm_link_hash_entry *h;
2086
2087 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2088 unsigned char st_type;
2089
2090 /* Where this stub is being called from, or, in the case of combined
2091 stub sections, the first input section in the group. */
2092 asection *id_sec;
2093 };
2094
2095 /* Used to build a map of a section. This is required for mixed-endian
2096 code/data. */
2097
2098 typedef struct elf32_elf_section_map
2099 {
2100 bfd_vma vma;
2101 char type;
2102 }
2103 elf32_arm_section_map;
2104
2105 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2106
2107 typedef enum
2108 {
2109 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2110 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2111 VFP11_ERRATUM_ARM_VENEER,
2112 VFP11_ERRATUM_THUMB_VENEER
2113 }
2114 elf32_vfp11_erratum_type;
2115
2116 typedef struct elf32_vfp11_erratum_list
2117 {
2118 struct elf32_vfp11_erratum_list *next;
2119 bfd_vma vma;
2120 union
2121 {
2122 struct
2123 {
2124 struct elf32_vfp11_erratum_list *veneer;
2125 unsigned int vfp_insn;
2126 } b;
2127 struct
2128 {
2129 struct elf32_vfp11_erratum_list *branch;
2130 unsigned int id;
2131 } v;
2132 } u;
2133 elf32_vfp11_erratum_type type;
2134 }
2135 elf32_vfp11_erratum_list;
2136
2137 typedef struct _arm_elf_section_data
2138 {
2139 struct bfd_elf_section_data elf;
2140 unsigned int mapcount;
2141 unsigned int mapsize;
2142 elf32_arm_section_map *map;
2143 unsigned int erratumcount;
2144 elf32_vfp11_erratum_list *erratumlist;
2145 }
2146 _arm_elf_section_data;
2147
2148 #define elf32_arm_section_data(sec) \
2149 ((_arm_elf_section_data *) elf_section_data (sec))
2150
2151 /* The size of the thread control block. */
2152 #define TCB_SIZE 8
2153
2154 struct elf_arm_obj_tdata
2155 {
2156 struct elf_obj_tdata root;
2157
2158 /* tls_type for each local got entry. */
2159 char *local_got_tls_type;
2160
2161 /* Zero to warn when linking objects with incompatible enum sizes. */
2162 int no_enum_size_warning;
2163 };
2164
2165 #define elf_arm_tdata(bfd) \
2166 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2167
2168 #define elf32_arm_local_got_tls_type(bfd) \
2169 (elf_arm_tdata (bfd)->local_got_tls_type)
2170
2171 #define is_arm_elf(bfd) \
2172 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2173 && elf_tdata (bfd) != NULL \
2174 && elf_object_id (bfd) == ARM_ELF_TDATA)
2175
2176 static bfd_boolean
2177 elf32_arm_mkobject (bfd *abfd)
2178 {
2179 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2180 ARM_ELF_TDATA);
2181 }
2182
2183 /* The ARM linker needs to keep track of the number of relocs that it
2184 decides to copy in check_relocs for each symbol. This is so that
2185 it can discard PC relative relocs if it doesn't need them when
2186 linking with -Bsymbolic. We store the information in a field
2187 extending the regular ELF linker hash table. */
2188
2189 /* This structure keeps track of the number of relocs we have copied
2190 for a given symbol. */
2191 struct elf32_arm_relocs_copied
2192 {
2193 /* Next section. */
2194 struct elf32_arm_relocs_copied * next;
2195 /* A section in dynobj. */
2196 asection * section;
2197 /* Number of relocs copied in this section. */
2198 bfd_size_type count;
2199 /* Number of PC-relative relocs copied in this section. */
2200 bfd_size_type pc_count;
2201 };
2202
2203 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2204
2205 /* Arm ELF linker hash entry. */
2206 struct elf32_arm_link_hash_entry
2207 {
2208 struct elf_link_hash_entry root;
2209
2210 /* Number of PC relative relocs copied for this symbol. */
2211 struct elf32_arm_relocs_copied * relocs_copied;
2212
2213 /* We reference count Thumb references to a PLT entry separately,
2214 so that we can emit the Thumb trampoline only if needed. */
2215 bfd_signed_vma plt_thumb_refcount;
2216
2217 /* Some references from Thumb code may be eliminated by BL->BLX
2218 conversion, so record them separately. */
2219 bfd_signed_vma plt_maybe_thumb_refcount;
2220
2221 /* Since PLT entries have variable size if the Thumb prologue is
2222 used, we need to record the index into .got.plt instead of
2223 recomputing it from the PLT offset. */
2224 bfd_signed_vma plt_got_offset;
2225
2226 #define GOT_UNKNOWN 0
2227 #define GOT_NORMAL 1
2228 #define GOT_TLS_GD 2
2229 #define GOT_TLS_IE 4
2230 unsigned char tls_type;
2231
2232 /* The symbol marking the real symbol location for exported thumb
2233 symbols with Arm stubs. */
2234 struct elf_link_hash_entry *export_glue;
2235
2236 /* A pointer to the most recently used stub hash entry against this
2237 symbol. */
2238 struct elf32_arm_stub_hash_entry *stub_cache;
2239 };
2240
2241 /* Traverse an arm ELF linker hash table. */
2242 #define elf32_arm_link_hash_traverse(table, func, info) \
2243 (elf_link_hash_traverse \
2244 (&(table)->root, \
2245 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2246 (info)))
2247
2248 /* Get the ARM elf linker hash table from a link_info structure. */
2249 #define elf32_arm_hash_table(info) \
2250 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2251
2252 #define arm_stub_hash_lookup(table, string, create, copy) \
2253 ((struct elf32_arm_stub_hash_entry *) \
2254 bfd_hash_lookup ((table), (string), (create), (copy)))
2255
2256 /* ARM ELF linker hash table. */
2257 struct elf32_arm_link_hash_table
2258 {
2259 /* The main hash table. */
2260 struct elf_link_hash_table root;
2261
2262 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2263 bfd_size_type thumb_glue_size;
2264
2265 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2266 bfd_size_type arm_glue_size;
2267
2268 /* The size in bytes of section containing the ARMv4 BX veneers. */
2269 bfd_size_type bx_glue_size;
2270
2271 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2272 veneer has been populated. */
2273 bfd_vma bx_glue_offset[15];
2274
2275 /* The size in bytes of the section containing glue for VFP11 erratum
2276 veneers. */
2277 bfd_size_type vfp11_erratum_glue_size;
2278
2279 /* An arbitrary input BFD chosen to hold the glue sections. */
2280 bfd * bfd_of_glue_owner;
2281
2282 /* Nonzero to output a BE8 image. */
2283 int byteswap_code;
2284
2285 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2286 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2287 int target1_is_rel;
2288
2289 /* The relocation to use for R_ARM_TARGET2 relocations. */
2290 int target2_reloc;
2291
2292 /* 0 = Ignore R_ARM_V4BX.
2293 1 = Convert BX to MOV PC.
2294 2 = Generate v4 interworing stubs. */
2295 int fix_v4bx;
2296
2297 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2298 int use_blx;
2299
2300 /* What sort of code sequences we should look for which may trigger the
2301 VFP11 denorm erratum. */
2302 bfd_arm_vfp11_fix vfp11_fix;
2303
2304 /* Global counter for the number of fixes we have emitted. */
2305 int num_vfp11_fixes;
2306
2307 /* Nonzero to force PIC branch veneers. */
2308 int pic_veneer;
2309
2310 /* The number of bytes in the initial entry in the PLT. */
2311 bfd_size_type plt_header_size;
2312
2313 /* The number of bytes in the subsequent PLT etries. */
2314 bfd_size_type plt_entry_size;
2315
2316 /* True if the target system is VxWorks. */
2317 int vxworks_p;
2318
2319 /* True if the target system is Symbian OS. */
2320 int symbian_p;
2321
2322 /* True if the target uses REL relocations. */
2323 int use_rel;
2324
2325 /* Short-cuts to get to dynamic linker sections. */
2326 asection *sgot;
2327 asection *sgotplt;
2328 asection *srelgot;
2329 asection *splt;
2330 asection *srelplt;
2331 asection *sdynbss;
2332 asection *srelbss;
2333
2334 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2335 asection *srelplt2;
2336
2337 /* Data for R_ARM_TLS_LDM32 relocations. */
2338 union
2339 {
2340 bfd_signed_vma refcount;
2341 bfd_vma offset;
2342 } tls_ldm_got;
2343
2344 /* Small local sym to section mapping cache. */
2345 struct sym_sec_cache sym_sec;
2346
2347 /* For convenience in allocate_dynrelocs. */
2348 bfd * obfd;
2349
2350 /* The stub hash table. */
2351 struct bfd_hash_table stub_hash_table;
2352
2353 /* Linker stub bfd. */
2354 bfd *stub_bfd;
2355
2356 /* Linker call-backs. */
2357 asection * (*add_stub_section) (const char *, asection *);
2358 void (*layout_sections_again) (void);
2359
2360 /* Array to keep track of which stub sections have been created, and
2361 information on stub grouping. */
2362 struct map_stub
2363 {
2364 /* This is the section to which stubs in the group will be
2365 attached. */
2366 asection *link_sec;
2367 /* The stub section. */
2368 asection *stub_sec;
2369 } *stub_group;
2370
2371 /* Assorted information used by elf32_arm_size_stubs. */
2372 unsigned int bfd_count;
2373 int top_index;
2374 asection **input_list;
2375 };
2376
2377 /* Create an entry in an ARM ELF linker hash table. */
2378
2379 static struct bfd_hash_entry *
2380 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2381 struct bfd_hash_table * table,
2382 const char * string)
2383 {
2384 struct elf32_arm_link_hash_entry * ret =
2385 (struct elf32_arm_link_hash_entry *) entry;
2386
2387 /* Allocate the structure if it has not already been allocated by a
2388 subclass. */
2389 if (ret == NULL)
2390 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2391 if (ret == NULL)
2392 return (struct bfd_hash_entry *) ret;
2393
2394 /* Call the allocation method of the superclass. */
2395 ret = ((struct elf32_arm_link_hash_entry *)
2396 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2397 table, string));
2398 if (ret != NULL)
2399 {
2400 ret->relocs_copied = NULL;
2401 ret->tls_type = GOT_UNKNOWN;
2402 ret->plt_thumb_refcount = 0;
2403 ret->plt_maybe_thumb_refcount = 0;
2404 ret->plt_got_offset = -1;
2405 ret->export_glue = NULL;
2406
2407 ret->stub_cache = NULL;
2408 }
2409
2410 return (struct bfd_hash_entry *) ret;
2411 }
2412
2413 /* Initialize an entry in the stub hash table. */
2414
2415 static struct bfd_hash_entry *
2416 stub_hash_newfunc (struct bfd_hash_entry *entry,
2417 struct bfd_hash_table *table,
2418 const char *string)
2419 {
2420 /* Allocate the structure if it has not already been allocated by a
2421 subclass. */
2422 if (entry == NULL)
2423 {
2424 entry = bfd_hash_allocate (table,
2425 sizeof (struct elf32_arm_stub_hash_entry));
2426 if (entry == NULL)
2427 return entry;
2428 }
2429
2430 /* Call the allocation method of the superclass. */
2431 entry = bfd_hash_newfunc (entry, table, string);
2432 if (entry != NULL)
2433 {
2434 struct elf32_arm_stub_hash_entry *eh;
2435
2436 /* Initialize the local fields. */
2437 eh = (struct elf32_arm_stub_hash_entry *) entry;
2438 eh->stub_sec = NULL;
2439 eh->stub_offset = 0;
2440 eh->target_value = 0;
2441 eh->target_section = NULL;
2442 eh->stub_type = arm_stub_none;
2443 eh->h = NULL;
2444 eh->id_sec = NULL;
2445 }
2446
2447 return entry;
2448 }
2449
2450 /* Return true if NAME is the name of the relocation section associated
2451 with S. */
2452
2453 static bfd_boolean
2454 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2455 const char *name, asection *s)
2456 {
2457 if (htab->use_rel)
2458 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2459 else
2460 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2461 }
2462
2463 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2464 shortcuts to them in our hash table. */
2465
2466 static bfd_boolean
2467 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2468 {
2469 struct elf32_arm_link_hash_table *htab;
2470
2471 htab = elf32_arm_hash_table (info);
2472 /* BPABI objects never have a GOT, or associated sections. */
2473 if (htab->symbian_p)
2474 return TRUE;
2475
2476 if (! _bfd_elf_create_got_section (dynobj, info))
2477 return FALSE;
2478
2479 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2480 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2481 if (!htab->sgot || !htab->sgotplt)
2482 abort ();
2483
2484 htab->srelgot = bfd_make_section_with_flags (dynobj,
2485 RELOC_SECTION (htab, ".got"),
2486 (SEC_ALLOC | SEC_LOAD
2487 | SEC_HAS_CONTENTS
2488 | SEC_IN_MEMORY
2489 | SEC_LINKER_CREATED
2490 | SEC_READONLY));
2491 if (htab->srelgot == NULL
2492 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2493 return FALSE;
2494 return TRUE;
2495 }
2496
2497 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2498 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2499 hash table. */
2500
2501 static bfd_boolean
2502 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2503 {
2504 struct elf32_arm_link_hash_table *htab;
2505
2506 htab = elf32_arm_hash_table (info);
2507 if (!htab->sgot && !create_got_section (dynobj, info))
2508 return FALSE;
2509
2510 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2511 return FALSE;
2512
2513 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2514 htab->srelplt = bfd_get_section_by_name (dynobj,
2515 RELOC_SECTION (htab, ".plt"));
2516 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2517 if (!info->shared)
2518 htab->srelbss = bfd_get_section_by_name (dynobj,
2519 RELOC_SECTION (htab, ".bss"));
2520
2521 if (htab->vxworks_p)
2522 {
2523 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2524 return FALSE;
2525
2526 if (info->shared)
2527 {
2528 htab->plt_header_size = 0;
2529 htab->plt_entry_size
2530 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2531 }
2532 else
2533 {
2534 htab->plt_header_size
2535 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2536 htab->plt_entry_size
2537 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2538 }
2539 }
2540
2541 if (!htab->splt
2542 || !htab->srelplt
2543 || !htab->sdynbss
2544 || (!info->shared && !htab->srelbss))
2545 abort ();
2546
2547 return TRUE;
2548 }
2549
2550 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2551
2552 static void
2553 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2554 struct elf_link_hash_entry *dir,
2555 struct elf_link_hash_entry *ind)
2556 {
2557 struct elf32_arm_link_hash_entry *edir, *eind;
2558
2559 edir = (struct elf32_arm_link_hash_entry *) dir;
2560 eind = (struct elf32_arm_link_hash_entry *) ind;
2561
2562 if (eind->relocs_copied != NULL)
2563 {
2564 if (edir->relocs_copied != NULL)
2565 {
2566 struct elf32_arm_relocs_copied **pp;
2567 struct elf32_arm_relocs_copied *p;
2568
2569 /* Add reloc counts against the indirect sym to the direct sym
2570 list. Merge any entries against the same section. */
2571 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2572 {
2573 struct elf32_arm_relocs_copied *q;
2574
2575 for (q = edir->relocs_copied; q != NULL; q = q->next)
2576 if (q->section == p->section)
2577 {
2578 q->pc_count += p->pc_count;
2579 q->count += p->count;
2580 *pp = p->next;
2581 break;
2582 }
2583 if (q == NULL)
2584 pp = &p->next;
2585 }
2586 *pp = edir->relocs_copied;
2587 }
2588
2589 edir->relocs_copied = eind->relocs_copied;
2590 eind->relocs_copied = NULL;
2591 }
2592
2593 if (ind->root.type == bfd_link_hash_indirect)
2594 {
2595 /* Copy over PLT info. */
2596 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2597 eind->plt_thumb_refcount = 0;
2598 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2599 eind->plt_maybe_thumb_refcount = 0;
2600
2601 if (dir->got.refcount <= 0)
2602 {
2603 edir->tls_type = eind->tls_type;
2604 eind->tls_type = GOT_UNKNOWN;
2605 }
2606 }
2607
2608 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2609 }
2610
2611 /* Create an ARM elf linker hash table. */
2612
2613 static struct bfd_link_hash_table *
2614 elf32_arm_link_hash_table_create (bfd *abfd)
2615 {
2616 struct elf32_arm_link_hash_table *ret;
2617 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2618
2619 ret = bfd_malloc (amt);
2620 if (ret == NULL)
2621 return NULL;
2622
2623 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2624 elf32_arm_link_hash_newfunc,
2625 sizeof (struct elf32_arm_link_hash_entry)))
2626 {
2627 free (ret);
2628 return NULL;
2629 }
2630
2631 ret->sgot = NULL;
2632 ret->sgotplt = NULL;
2633 ret->srelgot = NULL;
2634 ret->splt = NULL;
2635 ret->srelplt = NULL;
2636 ret->sdynbss = NULL;
2637 ret->srelbss = NULL;
2638 ret->srelplt2 = NULL;
2639 ret->thumb_glue_size = 0;
2640 ret->arm_glue_size = 0;
2641 ret->bx_glue_size = 0;
2642 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2643 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2644 ret->vfp11_erratum_glue_size = 0;
2645 ret->num_vfp11_fixes = 0;
2646 ret->bfd_of_glue_owner = NULL;
2647 ret->byteswap_code = 0;
2648 ret->target1_is_rel = 0;
2649 ret->target2_reloc = R_ARM_NONE;
2650 #ifdef FOUR_WORD_PLT
2651 ret->plt_header_size = 16;
2652 ret->plt_entry_size = 16;
2653 #else
2654 ret->plt_header_size = 20;
2655 ret->plt_entry_size = 12;
2656 #endif
2657 ret->fix_v4bx = 0;
2658 ret->use_blx = 0;
2659 ret->vxworks_p = 0;
2660 ret->symbian_p = 0;
2661 ret->use_rel = 1;
2662 ret->sym_sec.abfd = NULL;
2663 ret->obfd = abfd;
2664 ret->tls_ldm_got.refcount = 0;
2665
2666 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2667 sizeof (struct elf32_arm_stub_hash_entry)))
2668 {
2669 free (ret);
2670 return NULL;
2671 }
2672
2673 return &ret->root.root;
2674 }
2675
2676 /* Free the derived linker hash table. */
2677
2678 static void
2679 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2680 {
2681 struct elf32_arm_link_hash_table *ret
2682 = (struct elf32_arm_link_hash_table *) hash;
2683
2684 bfd_hash_table_free (&ret->stub_hash_table);
2685 _bfd_generic_link_hash_table_free (hash);
2686 }
2687
2688 /* Determine if we're dealing with a Thumb only architecture. */
2689
2690 static bfd_boolean
2691 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2692 {
2693 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2694 Tag_CPU_arch);
2695 int profile;
2696
2697 if (arch != TAG_CPU_ARCH_V7)
2698 return FALSE;
2699
2700 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2701 Tag_CPU_arch_profile);
2702
2703 return profile == 'M';
2704 }
2705
2706 /* Determine if we're dealing with a Thumb-2 object. */
2707
2708 static bfd_boolean
2709 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2710 {
2711 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2712 Tag_CPU_arch);
2713 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2714 }
2715
2716 /* Determine the type of stub needed, if any, for a call. */
2717
2718 static enum elf32_arm_stub_type
2719 arm_type_of_stub (struct bfd_link_info *info,
2720 asection *input_sec,
2721 const Elf_Internal_Rela *rel,
2722 unsigned char st_type,
2723 struct elf32_arm_link_hash_entry *hash,
2724 bfd_vma destination)
2725 {
2726 bfd_vma location;
2727 bfd_signed_vma branch_offset;
2728 unsigned int r_type;
2729 struct elf32_arm_link_hash_table * globals;
2730 int thumb2;
2731 int thumb_only;
2732 enum elf32_arm_stub_type stub_type = arm_stub_none;
2733
2734 globals = elf32_arm_hash_table (info);
2735
2736 thumb_only = using_thumb_only (globals);
2737
2738 thumb2 = using_thumb2 (globals);
2739
2740 /* Determine where the call point is. */
2741 location = (input_sec->output_offset
2742 + input_sec->output_section->vma
2743 + rel->r_offset);
2744
2745 branch_offset = (bfd_signed_vma)(destination - location);
2746
2747 r_type = ELF32_R_TYPE (rel->r_info);
2748
2749 /* If the call will go through a PLT entry then we do not need
2750 glue. */
2751 if (globals->splt != NULL && hash->root.plt.offset != (bfd_vma) -1)
2752 return stub_type;
2753
2754 if (r_type == R_ARM_THM_CALL)
2755 {
2756 if ((!thumb2
2757 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2758 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2759 || (thumb2
2760 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2761 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2762 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2763 {
2764 if (st_type == STT_ARM_TFUNC)
2765 {
2766 /* Thumb to thumb. */
2767 if (!thumb_only)
2768 {
2769 stub_type = (info->shared | globals->pic_veneer)
2770 ? ((globals->use_blx)
2771 ? arm_stub_pic_long_branch
2772 : arm_stub_none)
2773 : (globals->use_blx)
2774 ? arm_stub_long_branch
2775 : arm_stub_none;
2776 }
2777 else
2778 {
2779 stub_type = (info->shared | globals->pic_veneer)
2780 ? arm_stub_none
2781 : (globals->use_blx)
2782 ? arm_thumb_thumb_stub_long_branch
2783 : arm_stub_none;
2784 }
2785 }
2786 else
2787 {
2788 /* Thumb to arm. */
2789 stub_type = (info->shared | globals->pic_veneer)
2790 ? ((globals->use_blx)
2791 ? arm_stub_pic_long_branch
2792 : arm_stub_none)
2793 : (globals->use_blx)
2794 ? arm_stub_long_branch
2795 : arm_thumb_arm_v4t_stub_long_branch;
2796 }
2797 }
2798 }
2799 else if (r_type == R_ARM_CALL)
2800 {
2801 if (st_type == STT_ARM_TFUNC)
2802 {
2803 /* Arm to thumb. */
2804 /* We have an extra 2-bytes reach because of the mode change
2805 (bit 24 (H) of BLX encoding). */
2806 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2807 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2808 || !globals->use_blx)
2809 {
2810 stub_type = (info->shared | globals->pic_veneer)
2811 ? arm_stub_pic_long_branch
2812 : (globals->use_blx)
2813 ? arm_stub_long_branch
2814 : arm_thumb_v4t_stub_long_branch;
2815 }
2816 }
2817 else
2818 {
2819 /* Arm to arm. */
2820 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2821 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2822 {
2823 stub_type = (info->shared | globals->pic_veneer)
2824 ? arm_stub_pic_long_branch
2825 : arm_stub_long_branch;
2826 }
2827 }
2828 }
2829
2830 return stub_type;
2831 }
2832
2833 /* Build a name for an entry in the stub hash table. */
2834
2835 static char *
2836 elf32_arm_stub_name (const asection *input_section,
2837 const asection *sym_sec,
2838 const struct elf32_arm_link_hash_entry *hash,
2839 const Elf_Internal_Rela *rel)
2840 {
2841 char *stub_name;
2842 bfd_size_type len;
2843
2844 if (hash)
2845 {
2846 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2847 stub_name = bfd_malloc (len);
2848 if (stub_name != NULL)
2849 sprintf (stub_name, "%08x_%s+%x",
2850 input_section->id & 0xffffffff,
2851 hash->root.root.root.string,
2852 (int) rel->r_addend & 0xffffffff);
2853 }
2854 else
2855 {
2856 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2857 stub_name = bfd_malloc (len);
2858 if (stub_name != NULL)
2859 sprintf (stub_name, "%08x_%x:%x+%x",
2860 input_section->id & 0xffffffff,
2861 sym_sec->id & 0xffffffff,
2862 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2863 (int) rel->r_addend & 0xffffffff);
2864 }
2865
2866 return stub_name;
2867 }
2868
2869 /* Look up an entry in the stub hash. Stub entries are cached because
2870 creating the stub name takes a bit of time. */
2871
2872 static struct elf32_arm_stub_hash_entry *
2873 elf32_arm_get_stub_entry (const asection *input_section,
2874 const asection *sym_sec,
2875 struct elf_link_hash_entry *hash,
2876 const Elf_Internal_Rela *rel,
2877 struct elf32_arm_link_hash_table *htab)
2878 {
2879 struct elf32_arm_stub_hash_entry *stub_entry;
2880 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2881 const asection *id_sec;
2882
2883 if ((input_section->flags & SEC_CODE) == 0)
2884 return NULL;
2885
2886 /* If this input section is part of a group of sections sharing one
2887 stub section, then use the id of the first section in the group.
2888 Stub names need to include a section id, as there may well be
2889 more than one stub used to reach say, printf, and we need to
2890 distinguish between them. */
2891 id_sec = htab->stub_group[input_section->id].link_sec;
2892
2893 if (h != NULL && h->stub_cache != NULL
2894 && h->stub_cache->h == h
2895 && h->stub_cache->id_sec == id_sec)
2896 {
2897 stub_entry = h->stub_cache;
2898 }
2899 else
2900 {
2901 char *stub_name;
2902
2903 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2904 if (stub_name == NULL)
2905 return NULL;
2906
2907 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2908 stub_name, FALSE, FALSE);
2909 if (h != NULL)
2910 h->stub_cache = stub_entry;
2911
2912 free (stub_name);
2913 }
2914
2915 return stub_entry;
2916 }
2917
2918 static void elf32_arm_stub_add_mapping_symbol (struct bfd_link_info * link_info,
2919 asection *stub_sec,
2920 char* name,
2921 bfd_vma val)
2922 {
2923 struct bfd_link_hash_entry * bh = NULL;
2924 struct elf_link_hash_entry * myh;
2925
2926 _bfd_generic_link_add_one_symbol (link_info,
2927 stub_sec->owner, name,
2928 BSF_LOCAL, stub_sec, stub_sec->size + val,
2929 NULL, TRUE, FALSE, &bh);
2930
2931 myh = (struct elf_link_hash_entry *) bh;
2932 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
2933 myh->forced_local = 1;
2934 }
2935
2936 /* Add a new stub entry to the stub hash. Not all fields of the new
2937 stub entry are initialised. */
2938
2939 static struct elf32_arm_stub_hash_entry *
2940 elf32_arm_add_stub (const char *stub_name,
2941 asection *section,
2942 struct elf32_arm_link_hash_table *htab,
2943 struct bfd_link_info * link_info,
2944 enum elf32_arm_stub_type stub_type)
2945 {
2946 asection *link_sec;
2947 asection *stub_sec;
2948 struct elf32_arm_stub_hash_entry *stub_entry;
2949
2950 link_sec = htab->stub_group[section->id].link_sec;
2951 stub_sec = htab->stub_group[section->id].stub_sec;
2952 if (stub_sec == NULL)
2953 {
2954 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2955 if (stub_sec == NULL)
2956 {
2957 size_t namelen;
2958 bfd_size_type len;
2959 char *s_name;
2960
2961 namelen = strlen (link_sec->name);
2962 len = namelen + sizeof (STUB_SUFFIX);
2963 s_name = bfd_alloc (htab->stub_bfd, len);
2964 if (s_name == NULL)
2965 return NULL;
2966
2967 memcpy (s_name, link_sec->name, namelen);
2968 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2969 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2970 if (stub_sec == NULL)
2971 return NULL;
2972 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2973 }
2974 htab->stub_group[section->id].stub_sec = stub_sec;
2975 }
2976
2977 /* Enter this entry into the linker stub hash table. */
2978 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2979 TRUE, FALSE);
2980 if (stub_entry == NULL)
2981 {
2982 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2983 section->owner,
2984 stub_name);
2985 return NULL;
2986 }
2987
2988 stub_entry->stub_sec = stub_sec;
2989 stub_entry->stub_offset = 0;
2990 stub_entry->id_sec = link_sec;
2991
2992 switch (stub_type)
2993 {
2994 case arm_stub_long_branch:
2995 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$a", 0);
2996 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$d", 4);
2997 break;
2998 case arm_thumb_v4t_stub_long_branch:
2999 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$a", 0);
3000 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$d", 8);
3001 break;
3002 case arm_thumb_thumb_stub_long_branch:
3003 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$t", 0);
3004 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$d", 12);
3005 break;
3006 case arm_thumb_arm_v4t_stub_long_branch:
3007 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$t", 0);
3008 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$a", 8);
3009 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$d", 16);
3010 break;
3011 case arm_stub_pic_long_branch:
3012 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$a", 0);
3013 elf32_arm_stub_add_mapping_symbol (link_info, stub_sec, "$d", 8);
3014 break;
3015 default:
3016 BFD_FAIL ();
3017 }
3018
3019 return stub_entry;
3020 }
3021
3022 /* Store an Arm insn into an output section not processed by
3023 elf32_arm_write_section. */
3024
3025 static void
3026 put_arm_insn (struct elf32_arm_link_hash_table *htab,
3027 bfd * output_bfd, bfd_vma val, void * ptr)
3028 {
3029 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3030 bfd_putl32 (val, ptr);
3031 else
3032 bfd_putb32 (val, ptr);
3033 }
3034
3035 /* Store a 16-bit Thumb insn into an output section not processed by
3036 elf32_arm_write_section. */
3037
3038 static void
3039 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
3040 bfd * output_bfd, bfd_vma val, void * ptr)
3041 {
3042 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3043 bfd_putl16 (val, ptr);
3044 else
3045 bfd_putb16 (val, ptr);
3046 }
3047
3048 static bfd_boolean
3049 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3050 void * in_arg)
3051 {
3052 struct elf32_arm_stub_hash_entry *stub_entry;
3053 struct bfd_link_info *info;
3054 struct elf32_arm_link_hash_table *htab;
3055 asection *stub_sec;
3056 bfd *stub_bfd;
3057 bfd_vma stub_addr;
3058 bfd_byte *loc;
3059 bfd_vma sym_value;
3060 int template_size;
3061 int size;
3062 const bfd_vma *template;
3063 int i;
3064 struct elf32_arm_link_hash_table * globals;
3065
3066 /* Massage our args to the form they really have. */
3067 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3068 info = (struct bfd_link_info *) in_arg;
3069
3070 globals = elf32_arm_hash_table (info);
3071
3072 htab = elf32_arm_hash_table (info);
3073 stub_sec = stub_entry->stub_sec;
3074
3075 /* Make a note of the offset within the stubs for this entry. */
3076 stub_entry->stub_offset = stub_sec->size;
3077 loc = stub_sec->contents + stub_entry->stub_offset;
3078
3079 stub_bfd = stub_sec->owner;
3080
3081 /* This is the address of the start of the stub. */
3082 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3083 + stub_entry->stub_offset;
3084
3085 /* This is the address of the stub destination. */
3086 sym_value = (stub_entry->target_value
3087 + stub_entry->target_section->output_offset
3088 + stub_entry->target_section->output_section->vma);
3089
3090 switch (stub_entry->stub_type)
3091 {
3092 case arm_stub_long_branch:
3093 template = arm_long_branch_stub;
3094 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3095 break;
3096 case arm_thumb_v4t_stub_long_branch:
3097 template = arm_thumb_v4t_long_branch_stub;
3098 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3099 break;
3100 case arm_thumb_thumb_stub_long_branch:
3101 template = arm_thumb_thumb_long_branch_stub;
3102 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3103 break;
3104 case arm_thumb_arm_v4t_stub_long_branch:
3105 template = arm_thumb_arm_v4t_long_branch_stub;
3106 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3107 break;
3108 case arm_stub_pic_long_branch:
3109 template = arm_pic_long_branch_stub;
3110 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3111 break;
3112 default:
3113 BFD_FAIL ();
3114 return FALSE;
3115 }
3116
3117 size = 0;
3118 for (i = 0; i < (template_size / 4); i++)
3119 {
3120 /* A 0 pattern is a placeholder, every other pattern is an
3121 instruction. */
3122 if (template[i] != 0)
3123 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3124 else
3125 bfd_put_32 (stub_bfd, template[i], loc + size);
3126
3127 size += 4;
3128 }
3129 stub_sec->size += size;
3130
3131 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3132 if (stub_entry->st_type == STT_ARM_TFUNC)
3133 sym_value |= 1;
3134
3135 switch (stub_entry->stub_type)
3136 {
3137 case arm_stub_long_branch:
3138 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3139 stub_bfd, stub_sec, stub_sec->contents + 4,
3140 stub_entry->stub_offset, sym_value, 0);
3141 break;
3142 case arm_thumb_v4t_stub_long_branch:
3143 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3144 stub_bfd, stub_sec, stub_sec->contents + 8,
3145 stub_entry->stub_offset, sym_value, 0);
3146 break;
3147 case arm_thumb_thumb_stub_long_branch:
3148 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3149 stub_bfd, stub_sec, stub_sec->contents + 12,
3150 stub_entry->stub_offset, sym_value, 0);
3151 break;
3152 case arm_thumb_arm_v4t_stub_long_branch:
3153 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3154 stub_bfd, stub_sec, stub_sec->contents + 20,
3155 stub_entry->stub_offset, sym_value, 0);
3156 break;
3157 case arm_stub_pic_long_branch:
3158 /* We want the value relative to the address 8 bytes from the
3159 start of the stub. */
3160 sym_value -= stub_addr + 8;
3161
3162 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3163 stub_bfd, stub_sec, stub_sec->contents + 8,
3164 stub_entry->stub_offset, sym_value, 0);
3165 break;
3166 default:
3167 break;
3168 }
3169
3170 return TRUE;
3171 }
3172
3173 /* As above, but don't actually build the stub. Just bump offset so
3174 we know stub section sizes. */
3175
3176 static bfd_boolean
3177 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3178 void * in_arg)
3179 {
3180 struct elf32_arm_stub_hash_entry *stub_entry;
3181 struct elf32_arm_link_hash_table *htab;
3182 const bfd_vma *template;
3183 int template_size;
3184 int size;
3185 int i;
3186
3187 /* Massage our args to the form they really have. */
3188 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3189 htab = (struct elf32_arm_link_hash_table *) in_arg;
3190
3191 switch (stub_entry->stub_type)
3192 {
3193 case arm_stub_long_branch:
3194 template = arm_long_branch_stub;
3195 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3196 break;
3197 case arm_thumb_v4t_stub_long_branch:
3198 template = arm_thumb_v4t_long_branch_stub;
3199 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3200 break;
3201 case arm_thumb_thumb_stub_long_branch:
3202 template = arm_thumb_thumb_long_branch_stub;
3203 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3204 break;
3205 case arm_thumb_arm_v4t_stub_long_branch:
3206 template = arm_thumb_arm_v4t_long_branch_stub;
3207 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3208 break;
3209 case arm_stub_pic_long_branch:
3210 template = arm_pic_long_branch_stub;
3211 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3212 break;
3213 default:
3214 BFD_FAIL ();
3215 return FALSE;
3216 break;
3217 }
3218
3219 size = 0;
3220 for (i = 0; i < (template_size / 4); i++)
3221 size += 4;
3222 size = (size + 7) & ~7;
3223 stub_entry->stub_sec->size += size;
3224 return TRUE;
3225 }
3226
3227 /* External entry points for sizing and building linker stubs. */
3228
3229 /* Set up various things so that we can make a list of input sections
3230 for each output section included in the link. Returns -1 on error,
3231 0 when no stubs will be needed, and 1 on success. */
3232
3233 int
3234 elf32_arm_setup_section_lists (bfd *output_bfd,
3235 struct bfd_link_info *info)
3236 {
3237 bfd *input_bfd;
3238 unsigned int bfd_count;
3239 int top_id, top_index;
3240 asection *section;
3241 asection **input_list, **list;
3242 bfd_size_type amt;
3243 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3244
3245 if (! is_elf_hash_table (htab))
3246 return 0;
3247
3248 /* Count the number of input BFDs and find the top input section id. */
3249 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3250 input_bfd != NULL;
3251 input_bfd = input_bfd->link_next)
3252 {
3253 bfd_count += 1;
3254 for (section = input_bfd->sections;
3255 section != NULL;
3256 section = section->next)
3257 {
3258 if (top_id < section->id)
3259 top_id = section->id;
3260 }
3261 }
3262 htab->bfd_count = bfd_count;
3263
3264 amt = sizeof (struct map_stub) * (top_id + 1);
3265 htab->stub_group = bfd_zmalloc (amt);
3266 if (htab->stub_group == NULL)
3267 return -1;
3268
3269 /* We can't use output_bfd->section_count here to find the top output
3270 section index as some sections may have been removed, and
3271 _bfd_strip_section_from_output doesn't renumber the indices. */
3272 for (section = output_bfd->sections, top_index = 0;
3273 section != NULL;
3274 section = section->next)
3275 {
3276 if (top_index < section->index)
3277 top_index = section->index;
3278 }
3279
3280 htab->top_index = top_index;
3281 amt = sizeof (asection *) * (top_index + 1);
3282 input_list = bfd_malloc (amt);
3283 htab->input_list = input_list;
3284 if (input_list == NULL)
3285 return -1;
3286
3287 /* For sections we aren't interested in, mark their entries with a
3288 value we can check later. */
3289 list = input_list + top_index;
3290 do
3291 *list = bfd_abs_section_ptr;
3292 while (list-- != input_list);
3293
3294 for (section = output_bfd->sections;
3295 section != NULL;
3296 section = section->next)
3297 {
3298 if ((section->flags & SEC_CODE) != 0)
3299 input_list[section->index] = NULL;
3300 }
3301
3302 return 1;
3303 }
3304
3305 /* The linker repeatedly calls this function for each input section,
3306 in the order that input sections are linked into output sections.
3307 Build lists of input sections to determine groupings between which
3308 we may insert linker stubs. */
3309
3310 void
3311 elf32_arm_next_input_section (struct bfd_link_info *info,
3312 asection *isec)
3313 {
3314 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3315
3316 if (isec->output_section->index <= htab->top_index)
3317 {
3318 asection **list = htab->input_list + isec->output_section->index;
3319
3320 if (*list != bfd_abs_section_ptr)
3321 {
3322 /* Steal the link_sec pointer for our list. */
3323 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3324 /* This happens to make the list in reverse order,
3325 which is what we want. */
3326 PREV_SEC (isec) = *list;
3327 *list = isec;
3328 }
3329 }
3330 }
3331
3332 /* See whether we can group stub sections together. Grouping stub
3333 sections may result in fewer stubs. More importantly, we need to
3334 put all .init* and .fini* stubs at the beginning of the .init or
3335 .fini output sections respectively, because glibc splits the
3336 _init and _fini functions into multiple parts. Putting a stub in
3337 the middle of a function is not a good idea. */
3338
3339 static void
3340 group_sections (struct elf32_arm_link_hash_table *htab,
3341 bfd_size_type stub_group_size,
3342 bfd_boolean stubs_always_before_branch)
3343 {
3344 asection **list = htab->input_list + htab->top_index;
3345
3346 do
3347 {
3348 asection *tail = *list;
3349
3350 if (tail == bfd_abs_section_ptr)
3351 continue;
3352
3353 while (tail != NULL)
3354 {
3355 asection *curr;
3356 asection *prev;
3357 bfd_size_type total;
3358
3359 curr = tail;
3360 total = tail->size;
3361 while ((prev = PREV_SEC (curr)) != NULL
3362 && ((total += curr->output_offset - prev->output_offset)
3363 < stub_group_size))
3364 curr = prev;
3365
3366 /* OK, the size from the start of CURR to the end is less
3367 than stub_group_size and thus can be handled by one stub
3368 section. (or the tail section is itself larger than
3369 stub_group_size, in which case we may be toast.)
3370 We should really be keeping track of the total size of
3371 stubs added here, as stubs contribute to the final output
3372 section size. */
3373 do
3374 {
3375 prev = PREV_SEC (tail);
3376 /* Set up this stub group. */
3377 htab->stub_group[tail->id].link_sec = curr;
3378 }
3379 while (tail != curr && (tail = prev) != NULL);
3380
3381 /* But wait, there's more! Input sections up to stub_group_size
3382 bytes before the stub section can be handled by it too. */
3383 if (!stubs_always_before_branch)
3384 {
3385 total = 0;
3386 while (prev != NULL
3387 && ((total += tail->output_offset - prev->output_offset)
3388 < stub_group_size))
3389 {
3390 tail = prev;
3391 prev = PREV_SEC (tail);
3392 htab->stub_group[tail->id].link_sec = curr;
3393 }
3394 }
3395 tail = prev;
3396 }
3397 }
3398 while (list-- != htab->input_list);
3399
3400 free (htab->input_list);
3401 #undef PREV_SEC
3402 }
3403
3404 /* Determine and set the size of the stub section for a final link.
3405
3406 The basic idea here is to examine all the relocations looking for
3407 PC-relative calls to a target that is unreachable with a "bl"
3408 instruction. */
3409
3410 bfd_boolean
3411 elf32_arm_size_stubs (bfd *output_bfd,
3412 bfd *stub_bfd,
3413 struct bfd_link_info *info,
3414 bfd_signed_vma group_size,
3415 asection * (*add_stub_section) (const char *, asection *),
3416 void (*layout_sections_again) (void))
3417 {
3418 bfd_size_type stub_group_size;
3419 bfd_boolean stubs_always_before_branch;
3420 bfd_boolean stub_changed = 0;
3421 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3422
3423 /* Propagate mach to stub bfd, because it may not have been
3424 finalized when we created stub_bfd. */
3425 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3426 bfd_get_mach (output_bfd));
3427
3428 /* Stash our params away. */
3429 htab->stub_bfd = stub_bfd;
3430 htab->add_stub_section = add_stub_section;
3431 htab->layout_sections_again = layout_sections_again;
3432 stubs_always_before_branch = group_size < 0;
3433 if (group_size < 0)
3434 stub_group_size = -group_size;
3435 else
3436 stub_group_size = group_size;
3437
3438 if (stub_group_size == 1)
3439 {
3440 /* Default values. */
3441 /* Thumb branch range is +-4MB has to be used as the default
3442 maximum size (a given section can contain both ARM and Thumb
3443 code, so the worst case has to be taken into account).
3444
3445 This value is 24K less than that, which allows for 2025
3446 12-byte stubs. If we exceed that, then we will fail to link.
3447 The user will have to relink with an explicit group size
3448 option. */
3449 stub_group_size = 4170000;
3450 }
3451
3452 group_sections (htab, stub_group_size, stubs_always_before_branch);
3453
3454 while (1)
3455 {
3456 bfd *input_bfd;
3457 unsigned int bfd_indx;
3458 asection *stub_sec;
3459
3460 for (input_bfd = info->input_bfds, bfd_indx = 0;
3461 input_bfd != NULL;
3462 input_bfd = input_bfd->link_next, bfd_indx++)
3463 {
3464 Elf_Internal_Shdr *symtab_hdr;
3465 asection *section;
3466 Elf_Internal_Sym *local_syms = NULL;
3467
3468 /* We'll need the symbol table in a second. */
3469 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3470 if (symtab_hdr->sh_info == 0)
3471 continue;
3472
3473 /* Walk over each section attached to the input bfd. */
3474 for (section = input_bfd->sections;
3475 section != NULL;
3476 section = section->next)
3477 {
3478 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3479
3480 /* If there aren't any relocs, then there's nothing more
3481 to do. */
3482 if ((section->flags & SEC_RELOC) == 0
3483 || section->reloc_count == 0
3484 || (section->flags & SEC_CODE) == 0)
3485 continue;
3486
3487 /* If this section is a link-once section that will be
3488 discarded, then don't create any stubs. */
3489 if (section->output_section == NULL
3490 || section->output_section->owner != output_bfd)
3491 continue;
3492
3493 /* Get the relocs. */
3494 internal_relocs
3495 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3496 NULL, info->keep_memory);
3497 if (internal_relocs == NULL)
3498 goto error_ret_free_local;
3499
3500 /* Now examine each relocation. */
3501 irela = internal_relocs;
3502 irelaend = irela + section->reloc_count;
3503 for (; irela < irelaend; irela++)
3504 {
3505 unsigned int r_type, r_indx;
3506 enum elf32_arm_stub_type stub_type;
3507 struct elf32_arm_stub_hash_entry *stub_entry;
3508 asection *sym_sec;
3509 bfd_vma sym_value;
3510 bfd_vma destination;
3511 struct elf32_arm_link_hash_entry *hash;
3512 char *stub_name;
3513 const asection *id_sec;
3514 unsigned char st_type;
3515
3516 r_type = ELF32_R_TYPE (irela->r_info);
3517 r_indx = ELF32_R_SYM (irela->r_info);
3518
3519 if (r_type >= (unsigned int) R_ARM_max)
3520 {
3521 bfd_set_error (bfd_error_bad_value);
3522 error_ret_free_internal:
3523 if (elf_section_data (section)->relocs == NULL)
3524 free (internal_relocs);
3525 goto error_ret_free_local;
3526 }
3527
3528 /* Only look for stubs on call instructions. */
3529 if ((r_type != (unsigned int) R_ARM_CALL)
3530 && (r_type != (unsigned int) R_ARM_THM_CALL))
3531 continue;
3532
3533 /* Now determine the call target, its name, value,
3534 section. */
3535 sym_sec = NULL;
3536 sym_value = 0;
3537 destination = 0;
3538 hash = NULL;
3539 if (r_indx < symtab_hdr->sh_info)
3540 {
3541 /* It's a local symbol. */
3542 Elf_Internal_Sym *sym;
3543 Elf_Internal_Shdr *hdr;
3544
3545 if (local_syms == NULL)
3546 {
3547 local_syms
3548 = (Elf_Internal_Sym *) symtab_hdr->contents;
3549 if (local_syms == NULL)
3550 local_syms
3551 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3552 symtab_hdr->sh_info, 0,
3553 NULL, NULL, NULL);
3554 if (local_syms == NULL)
3555 goto error_ret_free_internal;
3556 }
3557
3558 sym = local_syms + r_indx;
3559 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3560 sym_sec = hdr->bfd_section;
3561 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3562 sym_value = sym->st_value;
3563 destination = (sym_value + irela->r_addend
3564 + sym_sec->output_offset
3565 + sym_sec->output_section->vma);
3566 st_type = ELF_ST_TYPE (sym->st_info);
3567 }
3568 else
3569 {
3570 /* It's an external symbol. */
3571 int e_indx;
3572
3573 e_indx = r_indx - symtab_hdr->sh_info;
3574 hash = ((struct elf32_arm_link_hash_entry *)
3575 elf_sym_hashes (input_bfd)[e_indx]);
3576
3577 while (hash->root.root.type == bfd_link_hash_indirect
3578 || hash->root.root.type == bfd_link_hash_warning)
3579 hash = ((struct elf32_arm_link_hash_entry *)
3580 hash->root.root.u.i.link);
3581
3582 if (hash->root.root.type == bfd_link_hash_defined
3583 || hash->root.root.type == bfd_link_hash_defweak)
3584 {
3585 sym_sec = hash->root.root.u.def.section;
3586 sym_value = hash->root.root.u.def.value;
3587 if (sym_sec->output_section != NULL)
3588 destination = (sym_value + irela->r_addend
3589 + sym_sec->output_offset
3590 + sym_sec->output_section->vma);
3591 }
3592 else if (hash->root.root.type == bfd_link_hash_undefweak
3593 || hash->root.root.type == bfd_link_hash_undefined)
3594 /* For a shared library, these will need a PLT stub,
3595 which is treated separately.
3596 For absolute code, they cannot be handled. */
3597 continue;
3598 else
3599 {
3600 bfd_set_error (bfd_error_bad_value);
3601 goto error_ret_free_internal;
3602 }
3603 st_type = ELF_ST_TYPE (hash->root.type);
3604 }
3605
3606 /* Determine what (if any) linker stub is needed. */
3607 stub_type = arm_type_of_stub (info, section, irela, st_type,
3608 hash, destination);
3609 if (stub_type == arm_stub_none)
3610 continue;
3611
3612 /* Support for grouping stub sections. */
3613 id_sec = htab->stub_group[section->id].link_sec;
3614
3615 /* Get the name of this stub. */
3616 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3617 if (!stub_name)
3618 goto error_ret_free_internal;
3619
3620 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3621 stub_name,
3622 FALSE, FALSE);
3623 if (stub_entry != NULL)
3624 {
3625 /* The proper stub has already been created. */
3626 free (stub_name);
3627 continue;
3628 }
3629
3630 stub_entry = elf32_arm_add_stub (stub_name, section, htab, info, stub_type);
3631 if (stub_entry == NULL)
3632 {
3633 free (stub_name);
3634 goto error_ret_free_internal;
3635 }
3636
3637 stub_entry->target_value = sym_value;
3638 stub_entry->target_section = sym_sec;
3639 stub_entry->stub_type = stub_type;
3640 stub_entry->h = hash;
3641 stub_entry->st_type = st_type;
3642 stub_changed = TRUE;
3643 }
3644
3645 /* We're done with the internal relocs, free them. */
3646 if (elf_section_data (section)->relocs == NULL)
3647 free (internal_relocs);
3648 }
3649 }
3650
3651 if (!stub_changed)
3652 break;
3653
3654 /* OK, we've added some stubs. Find out the new size of the
3655 stub sections. */
3656 for (stub_sec = htab->stub_bfd->sections;
3657 stub_sec != NULL;
3658 stub_sec = stub_sec->next)
3659 stub_sec->size = 0;
3660
3661 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3662
3663 /* Ask the linker to do its stuff. */
3664 (*htab->layout_sections_again) ();
3665 stub_changed = FALSE;
3666 }
3667
3668 return TRUE;
3669
3670 error_ret_free_local:
3671 return FALSE;
3672 }
3673
3674 /* Build all the stubs associated with the current output file. The
3675 stubs are kept in a hash table attached to the main linker hash
3676 table. We also set up the .plt entries for statically linked PIC
3677 functions here. This function is called via arm_elf_finish in the
3678 linker. */
3679
3680 bfd_boolean
3681 elf32_arm_build_stubs (struct bfd_link_info *info)
3682 {
3683 asection *stub_sec;
3684 struct bfd_hash_table *table;
3685 struct elf32_arm_link_hash_table *htab;
3686
3687 htab = elf32_arm_hash_table (info);
3688
3689 for (stub_sec = htab->stub_bfd->sections;
3690 stub_sec != NULL;
3691 stub_sec = stub_sec->next)
3692 {
3693 bfd_size_type size;
3694
3695 /* Ignore non-stub sections */
3696 if (!strstr (stub_sec->name, STUB_SUFFIX))
3697 continue;
3698
3699 /* Allocate memory to hold the linker stubs. */
3700 size = stub_sec->size;
3701 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3702 if (stub_sec->contents == NULL && size != 0)
3703 return FALSE;
3704 stub_sec->size = 0;
3705 }
3706
3707 /* Build the stubs as directed by the stub hash table. */
3708 table = &htab->stub_hash_table;
3709 bfd_hash_traverse (table, arm_build_one_stub, info);
3710
3711 return TRUE;
3712 }
3713
3714 /* Locate the Thumb encoded calling stub for NAME. */
3715
3716 static struct elf_link_hash_entry *
3717 find_thumb_glue (struct bfd_link_info *link_info,
3718 const char *name,
3719 char **error_message)
3720 {
3721 char *tmp_name;
3722 struct elf_link_hash_entry *hash;
3723 struct elf32_arm_link_hash_table *hash_table;
3724
3725 /* We need a pointer to the armelf specific hash table. */
3726 hash_table = elf32_arm_hash_table (link_info);
3727
3728 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3729 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3730
3731 BFD_ASSERT (tmp_name);
3732
3733 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3734
3735 hash = elf_link_hash_lookup
3736 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3737
3738 if (hash == NULL
3739 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3740 tmp_name, name) == -1)
3741 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3742
3743 free (tmp_name);
3744
3745 return hash;
3746 }
3747
3748 /* Locate the ARM encoded calling stub for NAME. */
3749
3750 static struct elf_link_hash_entry *
3751 find_arm_glue (struct bfd_link_info *link_info,
3752 const char *name,
3753 char **error_message)
3754 {
3755 char *tmp_name;
3756 struct elf_link_hash_entry *myh;
3757 struct elf32_arm_link_hash_table *hash_table;
3758
3759 /* We need a pointer to the elfarm specific hash table. */
3760 hash_table = elf32_arm_hash_table (link_info);
3761
3762 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3763 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3764
3765 BFD_ASSERT (tmp_name);
3766
3767 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3768
3769 myh = elf_link_hash_lookup
3770 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3771
3772 if (myh == NULL
3773 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3774 tmp_name, name) == -1)
3775 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3776
3777 free (tmp_name);
3778
3779 return myh;
3780 }
3781
3782 /* ARM->Thumb glue (static images):
3783
3784 .arm
3785 __func_from_arm:
3786 ldr r12, __func_addr
3787 bx r12
3788 __func_addr:
3789 .word func @ behave as if you saw a ARM_32 reloc.
3790
3791 (v5t static images)
3792 .arm
3793 __func_from_arm:
3794 ldr pc, __func_addr
3795 __func_addr:
3796 .word func @ behave as if you saw a ARM_32 reloc.
3797
3798 (relocatable images)
3799 .arm
3800 __func_from_arm:
3801 ldr r12, __func_offset
3802 add r12, r12, pc
3803 bx r12
3804 __func_offset:
3805 .word func - .
3806 */
3807
3808 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3809 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3810 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3811 static const insn32 a2t3_func_addr_insn = 0x00000001;
3812
3813 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3814 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3815 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3816
3817 #define ARM2THUMB_PIC_GLUE_SIZE 16
3818 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3819 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3820 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3821
3822 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3823
3824 .thumb .thumb
3825 .align 2 .align 2
3826 __func_from_thumb: __func_from_thumb:
3827 bx pc push {r6, lr}
3828 nop ldr r6, __func_addr
3829 .arm mov lr, pc
3830 __func_change_to_arm: bx r6
3831 b func .arm
3832 __func_back_to_thumb:
3833 ldmia r13! {r6, lr}
3834 bx lr
3835 __func_addr:
3836 .word func */
3837
3838 #define THUMB2ARM_GLUE_SIZE 8
3839 static const insn16 t2a1_bx_pc_insn = 0x4778;
3840 static const insn16 t2a2_noop_insn = 0x46c0;
3841 static const insn32 t2a3_b_insn = 0xea000000;
3842
3843 #define VFP11_ERRATUM_VENEER_SIZE 8
3844
3845 #define ARM_BX_VENEER_SIZE 12
3846 static const insn32 armbx1_tst_insn = 0xe3100001;
3847 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3848 static const insn32 armbx3_bx_insn = 0xe12fff10;
3849
3850 #ifndef ELFARM_NABI_C_INCLUDED
3851 bfd_boolean
3852 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3853 {
3854 asection * s;
3855 bfd_byte * foo;
3856 struct elf32_arm_link_hash_table * globals;
3857
3858 globals = elf32_arm_hash_table (info);
3859
3860 BFD_ASSERT (globals != NULL);
3861
3862 if (globals->arm_glue_size != 0)
3863 {
3864 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3865
3866 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3867 ARM2THUMB_GLUE_SECTION_NAME);
3868
3869 BFD_ASSERT (s != NULL);
3870
3871 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
3872
3873 BFD_ASSERT (s->size == globals->arm_glue_size);
3874 s->contents = foo;
3875 }
3876
3877 if (globals->thumb_glue_size != 0)
3878 {
3879 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3880
3881 s = bfd_get_section_by_name
3882 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
3883
3884 BFD_ASSERT (s != NULL);
3885
3886 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
3887
3888 BFD_ASSERT (s->size == globals->thumb_glue_size);
3889 s->contents = foo;
3890 }
3891
3892 if (globals->vfp11_erratum_glue_size != 0)
3893 {
3894 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3895
3896 s = bfd_get_section_by_name
3897 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
3898
3899 BFD_ASSERT (s != NULL);
3900
3901 foo = bfd_alloc (globals->bfd_of_glue_owner,
3902 globals->vfp11_erratum_glue_size);
3903
3904 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
3905 s->contents = foo;
3906 }
3907
3908 if (globals->bx_glue_size != 0)
3909 {
3910 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3911
3912 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3913 ARM_BX_GLUE_SECTION_NAME);
3914
3915 BFD_ASSERT (s != NULL);
3916
3917 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->bx_glue_size);
3918
3919 BFD_ASSERT (s->size == globals->bx_glue_size);
3920 s->contents = foo;
3921 }
3922
3923 return TRUE;
3924 }
3925
3926 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3927 returns the symbol identifying the stub. */
3928
3929 static struct elf_link_hash_entry *
3930 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3931 struct elf_link_hash_entry * h)
3932 {
3933 const char * name = h->root.root.string;
3934 asection * s;
3935 char * tmp_name;
3936 struct elf_link_hash_entry * myh;
3937 struct bfd_link_hash_entry * bh;
3938 struct elf32_arm_link_hash_table * globals;
3939 bfd_vma val;
3940 bfd_size_type size;
3941
3942 globals = elf32_arm_hash_table (link_info);
3943
3944 BFD_ASSERT (globals != NULL);
3945 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3946
3947 s = bfd_get_section_by_name
3948 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
3949
3950 BFD_ASSERT (s != NULL);
3951
3952 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3953
3954 BFD_ASSERT (tmp_name);
3955
3956 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3957
3958 myh = elf_link_hash_lookup
3959 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3960
3961 if (myh != NULL)
3962 {
3963 /* We've already seen this guy. */
3964 free (tmp_name);
3965 return myh;
3966 }
3967
3968 /* The only trick here is using hash_table->arm_glue_size as the value.
3969 Even though the section isn't allocated yet, this is where we will be
3970 putting it. */
3971 bh = NULL;
3972 val = globals->arm_glue_size + 1;
3973 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
3974 tmp_name, BSF_GLOBAL, s, val,
3975 NULL, TRUE, FALSE, &bh);
3976
3977 myh = (struct elf_link_hash_entry *) bh;
3978 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3979 myh->forced_local = 1;
3980
3981 free (tmp_name);
3982
3983 if (link_info->shared || globals->root.is_relocatable_executable
3984 || globals->pic_veneer)
3985 size = ARM2THUMB_PIC_GLUE_SIZE;
3986 else if (globals->use_blx)
3987 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
3988 else
3989 size = ARM2THUMB_STATIC_GLUE_SIZE;
3990
3991 s->size += size;
3992 globals->arm_glue_size += size;
3993
3994 return myh;
3995 }
3996
3997 static void
3998 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
3999 struct elf_link_hash_entry *h)
4000 {
4001 const char *name = h->root.root.string;
4002 asection *s;
4003 char *tmp_name;
4004 struct elf_link_hash_entry *myh;
4005 struct bfd_link_hash_entry *bh;
4006 struct elf32_arm_link_hash_table *hash_table;
4007 bfd_vma val;
4008
4009 hash_table = elf32_arm_hash_table (link_info);
4010
4011 BFD_ASSERT (hash_table != NULL);
4012 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4013
4014 s = bfd_get_section_by_name
4015 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4016
4017 BFD_ASSERT (s != NULL);
4018
4019 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4020 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4021
4022 BFD_ASSERT (tmp_name);
4023
4024 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4025
4026 myh = elf_link_hash_lookup
4027 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4028
4029 if (myh != NULL)
4030 {
4031 /* We've already seen this guy. */
4032 free (tmp_name);
4033 return;
4034 }
4035
4036 bh = NULL;
4037 val = hash_table->thumb_glue_size + 1;
4038 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4039 tmp_name, BSF_GLOBAL, s, val,
4040 NULL, TRUE, FALSE, &bh);
4041
4042 /* If we mark it 'Thumb', the disassembler will do a better job. */
4043 myh = (struct elf_link_hash_entry *) bh;
4044 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4045 myh->forced_local = 1;
4046
4047 free (tmp_name);
4048
4049 #define CHANGE_TO_ARM "__%s_change_to_arm"
4050 #define BACK_FROM_ARM "__%s_back_from_arm"
4051
4052 /* Allocate another symbol to mark where we switch to Arm mode. */
4053 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4054 + strlen (CHANGE_TO_ARM) + 1);
4055
4056 BFD_ASSERT (tmp_name);
4057
4058 sprintf (tmp_name, CHANGE_TO_ARM, name);
4059
4060 bh = NULL;
4061 val = hash_table->thumb_glue_size + 4,
4062 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4063 tmp_name, BSF_LOCAL, s, val,
4064 NULL, TRUE, FALSE, &bh);
4065
4066 free (tmp_name);
4067
4068 s->size += THUMB2ARM_GLUE_SIZE;
4069 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4070
4071 return;
4072 }
4073
4074
4075 /* Allocate space for ARMv4 BX veneers. */
4076
4077 static void
4078 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4079 {
4080 asection * s;
4081 struct elf32_arm_link_hash_table *globals;
4082 char *tmp_name;
4083 struct elf_link_hash_entry *myh;
4084 struct bfd_link_hash_entry *bh;
4085 bfd_vma val;
4086
4087 /* BX PC does not need a veneer. */
4088 if (reg == 15)
4089 return;
4090
4091 globals = elf32_arm_hash_table (link_info);
4092
4093 BFD_ASSERT (globals != NULL);
4094 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4095
4096 /* Check if this veneer has already been allocated. */
4097 if (globals->bx_glue_offset[reg])
4098 return;
4099
4100 s = bfd_get_section_by_name
4101 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4102
4103 BFD_ASSERT (s != NULL);
4104
4105 /* Add symbol for veneer. */
4106 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4107
4108 BFD_ASSERT (tmp_name);
4109
4110 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4111
4112 myh = elf_link_hash_lookup
4113 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4114
4115 BFD_ASSERT (myh == NULL);
4116
4117 bh = NULL;
4118 val = globals->bx_glue_size;
4119 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4120 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4121 NULL, TRUE, FALSE, &bh);
4122
4123 myh = (struct elf_link_hash_entry *) bh;
4124 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4125 myh->forced_local = 1;
4126
4127 s->size += ARM_BX_VENEER_SIZE;
4128 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4129 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4130 }
4131
4132
4133 /* Add an entry to the code/data map for section SEC. */
4134
4135 static void
4136 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4137 {
4138 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4139 unsigned int newidx;
4140
4141 if (sec_data->map == NULL)
4142 {
4143 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4144 sec_data->mapcount = 0;
4145 sec_data->mapsize = 1;
4146 }
4147
4148 newidx = sec_data->mapcount++;
4149
4150 if (sec_data->mapcount > sec_data->mapsize)
4151 {
4152 sec_data->mapsize *= 2;
4153 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4154 * sizeof (elf32_arm_section_map));
4155 }
4156
4157 if (sec_data->map)
4158 {
4159 sec_data->map[newidx].vma = vma;
4160 sec_data->map[newidx].type = type;
4161 }
4162 }
4163
4164
4165 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4166 veneers are handled for now. */
4167
4168 static bfd_vma
4169 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4170 elf32_vfp11_erratum_list *branch,
4171 bfd *branch_bfd,
4172 asection *branch_sec,
4173 unsigned int offset)
4174 {
4175 asection *s;
4176 struct elf32_arm_link_hash_table *hash_table;
4177 char *tmp_name;
4178 struct elf_link_hash_entry *myh;
4179 struct bfd_link_hash_entry *bh;
4180 bfd_vma val;
4181 struct _arm_elf_section_data *sec_data;
4182 int errcount;
4183 elf32_vfp11_erratum_list *newerr;
4184
4185 hash_table = elf32_arm_hash_table (link_info);
4186
4187 BFD_ASSERT (hash_table != NULL);
4188 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4189
4190 s = bfd_get_section_by_name
4191 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4192
4193 sec_data = elf32_arm_section_data (s);
4194
4195 BFD_ASSERT (s != NULL);
4196
4197 tmp_name = bfd_malloc ((bfd_size_type) strlen
4198 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4199
4200 BFD_ASSERT (tmp_name);
4201
4202 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4203 hash_table->num_vfp11_fixes);
4204
4205 myh = elf_link_hash_lookup
4206 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4207
4208 BFD_ASSERT (myh == NULL);
4209
4210 bh = NULL;
4211 val = hash_table->vfp11_erratum_glue_size;
4212 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4213 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4214 NULL, TRUE, FALSE, &bh);
4215
4216 myh = (struct elf_link_hash_entry *) bh;
4217 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4218 myh->forced_local = 1;
4219
4220 /* Link veneer back to calling location. */
4221 errcount = ++(sec_data->erratumcount);
4222 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4223
4224 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4225 newerr->vma = -1;
4226 newerr->u.v.branch = branch;
4227 newerr->u.v.id = hash_table->num_vfp11_fixes;
4228 branch->u.b.veneer = newerr;
4229
4230 newerr->next = sec_data->erratumlist;
4231 sec_data->erratumlist = newerr;
4232
4233 /* A symbol for the return from the veneer. */
4234 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4235 hash_table->num_vfp11_fixes);
4236
4237 myh = elf_link_hash_lookup
4238 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4239
4240 if (myh != NULL)
4241 abort ();
4242
4243 bh = NULL;
4244 val = offset + 4;
4245 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4246 branch_sec, val, NULL, TRUE, FALSE, &bh);
4247
4248 myh = (struct elf_link_hash_entry *) bh;
4249 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4250 myh->forced_local = 1;
4251
4252 free (tmp_name);
4253
4254 /* Generate a mapping symbol for the veneer section, and explicitly add an
4255 entry for that symbol to the code/data map for the section. */
4256 if (hash_table->vfp11_erratum_glue_size == 0)
4257 {
4258 bh = NULL;
4259 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4260 ever requires this erratum fix. */
4261 _bfd_generic_link_add_one_symbol (link_info,
4262 hash_table->bfd_of_glue_owner, "$a",
4263 BSF_LOCAL, s, 0, NULL,
4264 TRUE, FALSE, &bh);
4265
4266 myh = (struct elf_link_hash_entry *) bh;
4267 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4268 myh->forced_local = 1;
4269
4270 /* The elf32_arm_init_maps function only cares about symbols from input
4271 BFDs. We must make a note of this generated mapping symbol
4272 ourselves so that code byteswapping works properly in
4273 elf32_arm_write_section. */
4274 elf32_arm_section_map_add (s, 'a', 0);
4275 }
4276
4277 s->size += VFP11_ERRATUM_VENEER_SIZE;
4278 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4279 hash_table->num_vfp11_fixes++;
4280
4281 /* The offset of the veneer. */
4282 return val;
4283 }
4284
4285 /* Add the glue sections to ABFD. This function is called from the
4286 linker scripts in ld/emultempl/{armelf}.em. */
4287
4288 bfd_boolean
4289 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4290 struct bfd_link_info *info)
4291 {
4292 flagword flags;
4293 asection *sec;
4294
4295 /* If we are only performing a partial
4296 link do not bother adding the glue. */
4297 if (info->relocatable)
4298 return TRUE;
4299
4300 /* linker stubs don't need glue */
4301 if (!strcmp (abfd->filename, "linker stubs"))
4302 return TRUE;
4303
4304 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
4305
4306 if (sec == NULL)
4307 {
4308 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
4309 will prevent elf_link_input_bfd() from processing the contents
4310 of this section. */
4311 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4312 | SEC_CODE | SEC_READONLY);
4313
4314 sec = bfd_make_section_with_flags (abfd,
4315 ARM2THUMB_GLUE_SECTION_NAME,
4316 flags);
4317
4318 if (sec == NULL
4319 || !bfd_set_section_alignment (abfd, sec, 2))
4320 return FALSE;
4321
4322 /* Set the gc mark to prevent the section from being removed by garbage
4323 collection, despite the fact that no relocs refer to this section. */
4324 sec->gc_mark = 1;
4325 }
4326
4327 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
4328
4329 if (sec == NULL)
4330 {
4331 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4332 | SEC_CODE | SEC_READONLY);
4333
4334 sec = bfd_make_section_with_flags (abfd,
4335 THUMB2ARM_GLUE_SECTION_NAME,
4336 flags);
4337
4338 if (sec == NULL
4339 || !bfd_set_section_alignment (abfd, sec, 2))
4340 return FALSE;
4341
4342 sec->gc_mark = 1;
4343 }
4344
4345 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
4346
4347 if (sec == NULL)
4348 {
4349 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4350 | SEC_CODE | SEC_READONLY);
4351
4352 sec = bfd_make_section_with_flags (abfd,
4353 VFP11_ERRATUM_VENEER_SECTION_NAME,
4354 flags);
4355
4356 if (sec == NULL
4357 || !bfd_set_section_alignment (abfd, sec, 2))
4358 return FALSE;
4359
4360 sec->gc_mark = 1;
4361 }
4362
4363 sec = bfd_get_section_by_name (abfd, ARM_BX_GLUE_SECTION_NAME);
4364
4365 if (sec == NULL)
4366 {
4367 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4368 | SEC_CODE | SEC_READONLY);
4369
4370 sec = bfd_make_section_with_flags (abfd,
4371 ARM_BX_GLUE_SECTION_NAME,
4372 flags);
4373
4374 if (sec == NULL
4375 || !bfd_set_section_alignment (abfd, sec, 2))
4376 return FALSE;
4377
4378 sec->gc_mark = 1;
4379 }
4380
4381 return TRUE;
4382 }
4383
4384 /* Select a BFD to be used to hold the sections used by the glue code.
4385 This function is called from the linker scripts in ld/emultempl/
4386 {armelf/pe}.em */
4387
4388 bfd_boolean
4389 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4390 {
4391 struct elf32_arm_link_hash_table *globals;
4392
4393 /* If we are only performing a partial link
4394 do not bother getting a bfd to hold the glue. */
4395 if (info->relocatable)
4396 return TRUE;
4397
4398 /* Make sure we don't attach the glue sections to a dynamic object. */
4399 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4400
4401 globals = elf32_arm_hash_table (info);
4402
4403 BFD_ASSERT (globals != NULL);
4404
4405 if (globals->bfd_of_glue_owner != NULL)
4406 return TRUE;
4407
4408 /* Save the bfd for later use. */
4409 globals->bfd_of_glue_owner = abfd;
4410
4411 return TRUE;
4412 }
4413
4414 static void
4415 check_use_blx (struct elf32_arm_link_hash_table *globals)
4416 {
4417 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4418 Tag_CPU_arch) > 2)
4419 globals->use_blx = 1;
4420 }
4421
4422 bfd_boolean
4423 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4424 struct bfd_link_info *link_info)
4425 {
4426 Elf_Internal_Shdr *symtab_hdr;
4427 Elf_Internal_Rela *internal_relocs = NULL;
4428 Elf_Internal_Rela *irel, *irelend;
4429 bfd_byte *contents = NULL;
4430
4431 asection *sec;
4432 struct elf32_arm_link_hash_table *globals;
4433
4434 /* If we are only performing a partial link do not bother
4435 to construct any glue. */
4436 if (link_info->relocatable)
4437 return TRUE;
4438
4439 /* Here we have a bfd that is to be included on the link. We have a
4440 hook to do reloc rummaging, before section sizes are nailed down. */
4441 globals = elf32_arm_hash_table (link_info);
4442
4443 BFD_ASSERT (globals != NULL);
4444
4445 check_use_blx (globals);
4446
4447 if (globals->byteswap_code && !bfd_big_endian (abfd))
4448 {
4449 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4450 abfd);
4451 return FALSE;
4452 }
4453
4454 /* PR 5398: If we have not decided to include any loadable sections in
4455 the output then we will not have a glue owner bfd. This is OK, it
4456 just means that there is nothing else for us to do here. */
4457 if (globals->bfd_of_glue_owner == NULL)
4458 return TRUE;
4459
4460 /* Rummage around all the relocs and map the glue vectors. */
4461 sec = abfd->sections;
4462
4463 if (sec == NULL)
4464 return TRUE;
4465
4466 for (; sec != NULL; sec = sec->next)
4467 {
4468 if (sec->reloc_count == 0)
4469 continue;
4470
4471 if ((sec->flags & SEC_EXCLUDE) != 0)
4472 continue;
4473
4474 symtab_hdr = & elf_symtab_hdr (abfd);
4475
4476 /* Load the relocs. */
4477 internal_relocs
4478 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4479
4480 if (internal_relocs == NULL)
4481 goto error_return;
4482
4483 irelend = internal_relocs + sec->reloc_count;
4484 for (irel = internal_relocs; irel < irelend; irel++)
4485 {
4486 long r_type;
4487 unsigned long r_index;
4488
4489 struct elf_link_hash_entry *h;
4490
4491 r_type = ELF32_R_TYPE (irel->r_info);
4492 r_index = ELF32_R_SYM (irel->r_info);
4493
4494 /* These are the only relocation types we care about. */
4495 if ( r_type != R_ARM_PC24
4496 && r_type != R_ARM_PLT32
4497 && r_type != R_ARM_JUMP24
4498 && r_type != R_ARM_THM_JUMP24
4499 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4500 continue;
4501
4502 /* Get the section contents if we haven't done so already. */
4503 if (contents == NULL)
4504 {
4505 /* Get cached copy if it exists. */
4506 if (elf_section_data (sec)->this_hdr.contents != NULL)
4507 contents = elf_section_data (sec)->this_hdr.contents;
4508 else
4509 {
4510 /* Go get them off disk. */
4511 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4512 goto error_return;
4513 }
4514 }
4515
4516 if (r_type == R_ARM_V4BX)
4517 {
4518 int reg;
4519
4520 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4521 record_arm_bx_glue (link_info, reg);
4522 continue;
4523 }
4524
4525 /* If the relocation is not against a symbol it cannot concern us. */
4526 h = NULL;
4527
4528 /* We don't care about local symbols. */
4529 if (r_index < symtab_hdr->sh_info)
4530 continue;
4531
4532 /* This is an external symbol. */
4533 r_index -= symtab_hdr->sh_info;
4534 h = (struct elf_link_hash_entry *)
4535 elf_sym_hashes (abfd)[r_index];
4536
4537 /* If the relocation is against a static symbol it must be within
4538 the current section and so cannot be a cross ARM/Thumb relocation. */
4539 if (h == NULL)
4540 continue;
4541
4542 /* If the call will go through a PLT entry then we do not need
4543 glue. */
4544 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4545 continue;
4546
4547 switch (r_type)
4548 {
4549 case R_ARM_PC24:
4550 case R_ARM_PLT32:
4551 case R_ARM_JUMP24:
4552 /* This one is a call from arm code. We need to look up
4553 the target of the call. If it is a thumb target, we
4554 insert glue. */
4555 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4556 && !(r_type == R_ARM_CALL && globals->use_blx))
4557 record_arm_to_thumb_glue (link_info, h);
4558 break;
4559
4560 case R_ARM_THM_JUMP24:
4561 /* This one is a call from thumb code. We look
4562 up the target of the call. If it is not a thumb
4563 target, we insert glue. */
4564 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4565 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4566 && h->root.type != bfd_link_hash_undefweak)
4567 record_thumb_to_arm_glue (link_info, h);
4568 break;
4569
4570 default:
4571 abort ();
4572 }
4573 }
4574
4575 if (contents != NULL
4576 && elf_section_data (sec)->this_hdr.contents != contents)
4577 free (contents);
4578 contents = NULL;
4579
4580 if (internal_relocs != NULL
4581 && elf_section_data (sec)->relocs != internal_relocs)
4582 free (internal_relocs);
4583 internal_relocs = NULL;
4584 }
4585
4586 return TRUE;
4587
4588 error_return:
4589 if (contents != NULL
4590 && elf_section_data (sec)->this_hdr.contents != contents)
4591 free (contents);
4592 if (internal_relocs != NULL
4593 && elf_section_data (sec)->relocs != internal_relocs)
4594 free (internal_relocs);
4595
4596 return FALSE;
4597 }
4598 #endif
4599
4600
4601 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4602
4603 void
4604 bfd_elf32_arm_init_maps (bfd *abfd)
4605 {
4606 Elf_Internal_Sym *isymbuf;
4607 Elf_Internal_Shdr *hdr;
4608 unsigned int i, localsyms;
4609
4610 if ((abfd->flags & DYNAMIC) != 0)
4611 return;
4612
4613 hdr = & elf_symtab_hdr (abfd);
4614 localsyms = hdr->sh_info;
4615
4616 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4617 should contain the number of local symbols, which should come before any
4618 global symbols. Mapping symbols are always local. */
4619 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4620 NULL);
4621
4622 /* No internal symbols read? Skip this BFD. */
4623 if (isymbuf == NULL)
4624 return;
4625
4626 for (i = 0; i < localsyms; i++)
4627 {
4628 Elf_Internal_Sym *isym = &isymbuf[i];
4629 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4630 const char *name;
4631
4632 if (sec != NULL
4633 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4634 {
4635 name = bfd_elf_string_from_elf_section (abfd,
4636 hdr->sh_link, isym->st_name);
4637
4638 if (bfd_is_arm_special_symbol_name (name,
4639 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4640 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4641 }
4642 }
4643 }
4644
4645
4646 void
4647 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4648 {
4649 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4650 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4651
4652 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4653 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4654 {
4655 switch (globals->vfp11_fix)
4656 {
4657 case BFD_ARM_VFP11_FIX_DEFAULT:
4658 case BFD_ARM_VFP11_FIX_NONE:
4659 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4660 break;
4661
4662 default:
4663 /* Give a warning, but do as the user requests anyway. */
4664 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4665 "workaround is not necessary for target architecture"), obfd);
4666 }
4667 }
4668 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4669 /* For earlier architectures, we might need the workaround, but do not
4670 enable it by default. If users is running with broken hardware, they
4671 must enable the erratum fix explicitly. */
4672 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4673 }
4674
4675
4676 enum bfd_arm_vfp11_pipe
4677 {
4678 VFP11_FMAC,
4679 VFP11_LS,
4680 VFP11_DS,
4681 VFP11_BAD
4682 };
4683
4684 /* Return a VFP register number. This is encoded as RX:X for single-precision
4685 registers, or X:RX for double-precision registers, where RX is the group of
4686 four bits in the instruction encoding and X is the single extension bit.
4687 RX and X fields are specified using their lowest (starting) bit. The return
4688 value is:
4689
4690 0...31: single-precision registers s0...s31
4691 32...63: double-precision registers d0...d31.
4692
4693 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4694 encounter VFP3 instructions, so we allow the full range for DP registers. */
4695
4696 static unsigned int
4697 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4698 unsigned int x)
4699 {
4700 if (is_double)
4701 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4702 else
4703 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4704 }
4705
4706 /* Set bits in *WMASK according to a register number REG as encoded by
4707 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4708
4709 static void
4710 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4711 {
4712 if (reg < 32)
4713 *wmask |= 1 << reg;
4714 else if (reg < 48)
4715 *wmask |= 3 << ((reg - 32) * 2);
4716 }
4717
4718 /* Return TRUE if WMASK overwrites anything in REGS. */
4719
4720 static bfd_boolean
4721 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4722 {
4723 int i;
4724
4725 for (i = 0; i < numregs; i++)
4726 {
4727 unsigned int reg = regs[i];
4728
4729 if (reg < 32 && (wmask & (1 << reg)) != 0)
4730 return TRUE;
4731
4732 reg -= 32;
4733
4734 if (reg >= 16)
4735 continue;
4736
4737 if ((wmask & (3 << (reg * 2))) != 0)
4738 return TRUE;
4739 }
4740
4741 return FALSE;
4742 }
4743
4744 /* In this function, we're interested in two things: finding input registers
4745 for VFP data-processing instructions, and finding the set of registers which
4746 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4747 hold the written set, so FLDM etc. are easy to deal with (we're only
4748 interested in 32 SP registers or 16 dp registers, due to the VFP version
4749 implemented by the chip in question). DP registers are marked by setting
4750 both SP registers in the write mask). */
4751
4752 static enum bfd_arm_vfp11_pipe
4753 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4754 int *numregs)
4755 {
4756 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4757 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4758
4759 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4760 {
4761 unsigned int pqrs;
4762 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4763 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4764
4765 pqrs = ((insn & 0x00800000) >> 20)
4766 | ((insn & 0x00300000) >> 19)
4767 | ((insn & 0x00000040) >> 6);
4768
4769 switch (pqrs)
4770 {
4771 case 0: /* fmac[sd]. */
4772 case 1: /* fnmac[sd]. */
4773 case 2: /* fmsc[sd]. */
4774 case 3: /* fnmsc[sd]. */
4775 pipe = VFP11_FMAC;
4776 bfd_arm_vfp11_write_mask (destmask, fd);
4777 regs[0] = fd;
4778 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4779 regs[2] = fm;
4780 *numregs = 3;
4781 break;
4782
4783 case 4: /* fmul[sd]. */
4784 case 5: /* fnmul[sd]. */
4785 case 6: /* fadd[sd]. */
4786 case 7: /* fsub[sd]. */
4787 pipe = VFP11_FMAC;
4788 goto vfp_binop;
4789
4790 case 8: /* fdiv[sd]. */
4791 pipe = VFP11_DS;
4792 vfp_binop:
4793 bfd_arm_vfp11_write_mask (destmask, fd);
4794 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4795 regs[1] = fm;
4796 *numregs = 2;
4797 break;
4798
4799 case 15: /* extended opcode. */
4800 {
4801 unsigned int extn = ((insn >> 15) & 0x1e)
4802 | ((insn >> 7) & 1);
4803
4804 switch (extn)
4805 {
4806 case 0: /* fcpy[sd]. */
4807 case 1: /* fabs[sd]. */
4808 case 2: /* fneg[sd]. */
4809 case 8: /* fcmp[sd]. */
4810 case 9: /* fcmpe[sd]. */
4811 case 10: /* fcmpz[sd]. */
4812 case 11: /* fcmpez[sd]. */
4813 case 16: /* fuito[sd]. */
4814 case 17: /* fsito[sd]. */
4815 case 24: /* ftoui[sd]. */
4816 case 25: /* ftouiz[sd]. */
4817 case 26: /* ftosi[sd]. */
4818 case 27: /* ftosiz[sd]. */
4819 /* These instructions will not bounce due to underflow. */
4820 *numregs = 0;
4821 pipe = VFP11_FMAC;
4822 break;
4823
4824 case 3: /* fsqrt[sd]. */
4825 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4826 registers to cause the erratum in previous instructions. */
4827 bfd_arm_vfp11_write_mask (destmask, fd);
4828 pipe = VFP11_DS;
4829 break;
4830
4831 case 15: /* fcvt{ds,sd}. */
4832 {
4833 int rnum = 0;
4834
4835 bfd_arm_vfp11_write_mask (destmask, fd);
4836
4837 /* Only FCVTSD can underflow. */
4838 if ((insn & 0x100) != 0)
4839 regs[rnum++] = fm;
4840
4841 *numregs = rnum;
4842
4843 pipe = VFP11_FMAC;
4844 }
4845 break;
4846
4847 default:
4848 return VFP11_BAD;
4849 }
4850 }
4851 break;
4852
4853 default:
4854 return VFP11_BAD;
4855 }
4856 }
4857 /* Two-register transfer. */
4858 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4859 {
4860 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4861
4862 if ((insn & 0x100000) == 0)
4863 {
4864 if (is_double)
4865 bfd_arm_vfp11_write_mask (destmask, fm);
4866 else
4867 {
4868 bfd_arm_vfp11_write_mask (destmask, fm);
4869 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4870 }
4871 }
4872
4873 pipe = VFP11_LS;
4874 }
4875 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4876 {
4877 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4878 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4879
4880 switch (puw)
4881 {
4882 case 0: /* Two-reg transfer. We should catch these above. */
4883 abort ();
4884
4885 case 2: /* fldm[sdx]. */
4886 case 3:
4887 case 5:
4888 {
4889 unsigned int i, offset = insn & 0xff;
4890
4891 if (is_double)
4892 offset >>= 1;
4893
4894 for (i = fd; i < fd + offset; i++)
4895 bfd_arm_vfp11_write_mask (destmask, i);
4896 }
4897 break;
4898
4899 case 4: /* fld[sd]. */
4900 case 6:
4901 bfd_arm_vfp11_write_mask (destmask, fd);
4902 break;
4903
4904 default:
4905 return VFP11_BAD;
4906 }
4907
4908 pipe = VFP11_LS;
4909 }
4910 /* Single-register transfer. Note L==0. */
4911 else if ((insn & 0x0f100e10) == 0x0e000a10)
4912 {
4913 unsigned int opcode = (insn >> 21) & 7;
4914 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4915
4916 switch (opcode)
4917 {
4918 case 0: /* fmsr/fmdlr. */
4919 case 1: /* fmdhr. */
4920 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4921 destination register. I don't know if this is exactly right,
4922 but it is the conservative choice. */
4923 bfd_arm_vfp11_write_mask (destmask, fn);
4924 break;
4925
4926 case 7: /* fmxr. */
4927 break;
4928 }
4929
4930 pipe = VFP11_LS;
4931 }
4932
4933 return pipe;
4934 }
4935
4936
4937 static int elf32_arm_compare_mapping (const void * a, const void * b);
4938
4939
4940 /* Look for potentially-troublesome code sequences which might trigger the
4941 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4942 (available from ARM) for details of the erratum. A short version is
4943 described in ld.texinfo. */
4944
4945 bfd_boolean
4946 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4947 {
4948 asection *sec;
4949 bfd_byte *contents = NULL;
4950 int state = 0;
4951 int regs[3], numregs = 0;
4952 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4953 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4954
4955 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4956 The states transition as follows:
4957
4958 0 -> 1 (vector) or 0 -> 2 (scalar)
4959 A VFP FMAC-pipeline instruction has been seen. Fill
4960 regs[0]..regs[numregs-1] with its input operands. Remember this
4961 instruction in 'first_fmac'.
4962
4963 1 -> 2
4964 Any instruction, except for a VFP instruction which overwrites
4965 regs[*].
4966
4967 1 -> 3 [ -> 0 ] or
4968 2 -> 3 [ -> 0 ]
4969 A VFP instruction has been seen which overwrites any of regs[*].
4970 We must make a veneer! Reset state to 0 before examining next
4971 instruction.
4972
4973 2 -> 0
4974 If we fail to match anything in state 2, reset to state 0 and reset
4975 the instruction pointer to the instruction after 'first_fmac'.
4976
4977 If the VFP11 vector mode is in use, there must be at least two unrelated
4978 instructions between anti-dependent VFP11 instructions to properly avoid
4979 triggering the erratum, hence the use of the extra state 1. */
4980
4981 /* If we are only performing a partial link do not bother
4982 to construct any glue. */
4983 if (link_info->relocatable)
4984 return TRUE;
4985
4986 /* Skip if this bfd does not correspond to an ELF image. */
4987 if (! is_arm_elf (abfd))
4988 return TRUE;
4989
4990 /* We should have chosen a fix type by the time we get here. */
4991 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
4992
4993 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
4994 return TRUE;
4995
4996 for (sec = abfd->sections; sec != NULL; sec = sec->next)
4997 {
4998 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
4999 struct _arm_elf_section_data *sec_data;
5000
5001 /* If we don't have executable progbits, we're not interested in this
5002 section. Also skip if section is to be excluded. */
5003 if (elf_section_type (sec) != SHT_PROGBITS
5004 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5005 || (sec->flags & SEC_EXCLUDE) != 0
5006 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5007 continue;
5008
5009 sec_data = elf32_arm_section_data (sec);
5010
5011 if (sec_data->mapcount == 0)
5012 continue;
5013
5014 if (elf_section_data (sec)->this_hdr.contents != NULL)
5015 contents = elf_section_data (sec)->this_hdr.contents;
5016 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5017 goto error_return;
5018
5019 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5020 elf32_arm_compare_mapping);
5021
5022 for (span = 0; span < sec_data->mapcount; span++)
5023 {
5024 unsigned int span_start = sec_data->map[span].vma;
5025 unsigned int span_end = (span == sec_data->mapcount - 1)
5026 ? sec->size : sec_data->map[span + 1].vma;
5027 char span_type = sec_data->map[span].type;
5028
5029 /* FIXME: Only ARM mode is supported at present. We may need to
5030 support Thumb-2 mode also at some point. */
5031 if (span_type != 'a')
5032 continue;
5033
5034 for (i = span_start; i < span_end;)
5035 {
5036 unsigned int next_i = i + 4;
5037 unsigned int insn = bfd_big_endian (abfd)
5038 ? (contents[i] << 24)
5039 | (contents[i + 1] << 16)
5040 | (contents[i + 2] << 8)
5041 | contents[i + 3]
5042 : (contents[i + 3] << 24)
5043 | (contents[i + 2] << 16)
5044 | (contents[i + 1] << 8)
5045 | contents[i];
5046 unsigned int writemask = 0;
5047 enum bfd_arm_vfp11_pipe pipe;
5048
5049 switch (state)
5050 {
5051 case 0:
5052 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5053 &numregs);
5054 /* I'm assuming the VFP11 erratum can trigger with denorm
5055 operands on either the FMAC or the DS pipeline. This might
5056 lead to slightly overenthusiastic veneer insertion. */
5057 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5058 {
5059 state = use_vector ? 1 : 2;
5060 first_fmac = i;
5061 veneer_of_insn = insn;
5062 }
5063 break;
5064
5065 case 1:
5066 {
5067 int other_regs[3], other_numregs;
5068 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5069 other_regs,
5070 &other_numregs);
5071 if (pipe != VFP11_BAD
5072 && bfd_arm_vfp11_antidependency (writemask, regs,
5073 numregs))
5074 state = 3;
5075 else
5076 state = 2;
5077 }
5078 break;
5079
5080 case 2:
5081 {
5082 int other_regs[3], other_numregs;
5083 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5084 other_regs,
5085 &other_numregs);
5086 if (pipe != VFP11_BAD
5087 && bfd_arm_vfp11_antidependency (writemask, regs,
5088 numregs))
5089 state = 3;
5090 else
5091 {
5092 state = 0;
5093 next_i = first_fmac + 4;
5094 }
5095 }
5096 break;
5097
5098 case 3:
5099 abort (); /* Should be unreachable. */
5100 }
5101
5102 if (state == 3)
5103 {
5104 elf32_vfp11_erratum_list *newerr
5105 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5106 int errcount;
5107
5108 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5109
5110 newerr->u.b.vfp_insn = veneer_of_insn;
5111
5112 switch (span_type)
5113 {
5114 case 'a':
5115 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5116 break;
5117
5118 default:
5119 abort ();
5120 }
5121
5122 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5123 first_fmac);
5124
5125 newerr->vma = -1;
5126
5127 newerr->next = sec_data->erratumlist;
5128 sec_data->erratumlist = newerr;
5129
5130 state = 0;
5131 }
5132
5133 i = next_i;
5134 }
5135 }
5136
5137 if (contents != NULL
5138 && elf_section_data (sec)->this_hdr.contents != contents)
5139 free (contents);
5140 contents = NULL;
5141 }
5142
5143 return TRUE;
5144
5145 error_return:
5146 if (contents != NULL
5147 && elf_section_data (sec)->this_hdr.contents != contents)
5148 free (contents);
5149
5150 return FALSE;
5151 }
5152
5153 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5154 after sections have been laid out, using specially-named symbols. */
5155
5156 void
5157 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5158 struct bfd_link_info *link_info)
5159 {
5160 asection *sec;
5161 struct elf32_arm_link_hash_table *globals;
5162 char *tmp_name;
5163
5164 if (link_info->relocatable)
5165 return;
5166
5167 /* Skip if this bfd does not correspond to an ELF image. */
5168 if (! is_arm_elf (abfd))
5169 return;
5170
5171 globals = elf32_arm_hash_table (link_info);
5172
5173 tmp_name = bfd_malloc ((bfd_size_type) strlen
5174 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5175
5176 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5177 {
5178 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5179 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5180
5181 for (; errnode != NULL; errnode = errnode->next)
5182 {
5183 struct elf_link_hash_entry *myh;
5184 bfd_vma vma;
5185
5186 switch (errnode->type)
5187 {
5188 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5189 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5190 /* Find veneer symbol. */
5191 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5192 errnode->u.b.veneer->u.v.id);
5193
5194 myh = elf_link_hash_lookup
5195 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5196
5197 if (myh == NULL)
5198 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5199 "`%s'"), abfd, tmp_name);
5200
5201 vma = myh->root.u.def.section->output_section->vma
5202 + myh->root.u.def.section->output_offset
5203 + myh->root.u.def.value;
5204
5205 errnode->u.b.veneer->vma = vma;
5206 break;
5207
5208 case VFP11_ERRATUM_ARM_VENEER:
5209 case VFP11_ERRATUM_THUMB_VENEER:
5210 /* Find return location. */
5211 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5212 errnode->u.v.id);
5213
5214 myh = elf_link_hash_lookup
5215 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5216
5217 if (myh == NULL)
5218 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5219 "`%s'"), abfd, tmp_name);
5220
5221 vma = myh->root.u.def.section->output_section->vma
5222 + myh->root.u.def.section->output_offset
5223 + myh->root.u.def.value;
5224
5225 errnode->u.v.branch->vma = vma;
5226 break;
5227
5228 default:
5229 abort ();
5230 }
5231 }
5232 }
5233
5234 free (tmp_name);
5235 }
5236
5237
5238 /* Set target relocation values needed during linking. */
5239
5240 void
5241 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5242 struct bfd_link_info *link_info,
5243 int target1_is_rel,
5244 char * target2_type,
5245 int fix_v4bx,
5246 int use_blx,
5247 bfd_arm_vfp11_fix vfp11_fix,
5248 int no_enum_warn, int pic_veneer)
5249 {
5250 struct elf32_arm_link_hash_table *globals;
5251
5252 globals = elf32_arm_hash_table (link_info);
5253
5254 globals->target1_is_rel = target1_is_rel;
5255 if (strcmp (target2_type, "rel") == 0)
5256 globals->target2_reloc = R_ARM_REL32;
5257 else if (strcmp (target2_type, "abs") == 0)
5258 globals->target2_reloc = R_ARM_ABS32;
5259 else if (strcmp (target2_type, "got-rel") == 0)
5260 globals->target2_reloc = R_ARM_GOT_PREL;
5261 else
5262 {
5263 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5264 target2_type);
5265 }
5266 globals->fix_v4bx = fix_v4bx;
5267 globals->use_blx |= use_blx;
5268 globals->vfp11_fix = vfp11_fix;
5269 globals->pic_veneer = pic_veneer;
5270
5271 BFD_ASSERT (is_arm_elf (output_bfd));
5272 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5273 }
5274
5275 /* Replace the target offset of a Thumb bl or b.w instruction. */
5276
5277 static void
5278 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5279 {
5280 bfd_vma upper;
5281 bfd_vma lower;
5282 int reloc_sign;
5283
5284 BFD_ASSERT ((offset & 1) == 0);
5285
5286 upper = bfd_get_16 (abfd, insn);
5287 lower = bfd_get_16 (abfd, insn + 2);
5288 reloc_sign = (offset < 0) ? 1 : 0;
5289 upper = (upper & ~(bfd_vma) 0x7ff)
5290 | ((offset >> 12) & 0x3ff)
5291 | (reloc_sign << 10);
5292 lower = (lower & ~(bfd_vma) 0x2fff)
5293 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5294 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5295 | ((offset >> 1) & 0x7ff);
5296 bfd_put_16 (abfd, upper, insn);
5297 bfd_put_16 (abfd, lower, insn + 2);
5298 }
5299
5300 /* Thumb code calling an ARM function. */
5301
5302 static int
5303 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5304 const char * name,
5305 bfd * input_bfd,
5306 bfd * output_bfd,
5307 asection * input_section,
5308 bfd_byte * hit_data,
5309 asection * sym_sec,
5310 bfd_vma offset,
5311 bfd_signed_vma addend,
5312 bfd_vma val,
5313 char **error_message)
5314 {
5315 asection * s = 0;
5316 bfd_vma my_offset;
5317 long int ret_offset;
5318 struct elf_link_hash_entry * myh;
5319 struct elf32_arm_link_hash_table * globals;
5320
5321 myh = find_thumb_glue (info, name, error_message);
5322 if (myh == NULL)
5323 return FALSE;
5324
5325 globals = elf32_arm_hash_table (info);
5326
5327 BFD_ASSERT (globals != NULL);
5328 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5329
5330 my_offset = myh->root.u.def.value;
5331
5332 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5333 THUMB2ARM_GLUE_SECTION_NAME);
5334
5335 BFD_ASSERT (s != NULL);
5336 BFD_ASSERT (s->contents != NULL);
5337 BFD_ASSERT (s->output_section != NULL);
5338
5339 if ((my_offset & 0x01) == 0x01)
5340 {
5341 if (sym_sec != NULL
5342 && sym_sec->owner != NULL
5343 && !INTERWORK_FLAG (sym_sec->owner))
5344 {
5345 (*_bfd_error_handler)
5346 (_("%B(%s): warning: interworking not enabled.\n"
5347 " first occurrence: %B: thumb call to arm"),
5348 sym_sec->owner, input_bfd, name);
5349
5350 return FALSE;
5351 }
5352
5353 --my_offset;
5354 myh->root.u.def.value = my_offset;
5355
5356 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5357 s->contents + my_offset);
5358
5359 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5360 s->contents + my_offset + 2);
5361
5362 ret_offset =
5363 /* Address of destination of the stub. */
5364 ((bfd_signed_vma) val)
5365 - ((bfd_signed_vma)
5366 /* Offset from the start of the current section
5367 to the start of the stubs. */
5368 (s->output_offset
5369 /* Offset of the start of this stub from the start of the stubs. */
5370 + my_offset
5371 /* Address of the start of the current section. */
5372 + s->output_section->vma)
5373 /* The branch instruction is 4 bytes into the stub. */
5374 + 4
5375 /* ARM branches work from the pc of the instruction + 8. */
5376 + 8);
5377
5378 put_arm_insn (globals, output_bfd,
5379 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5380 s->contents + my_offset + 4);
5381 }
5382
5383 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5384
5385 /* Now go back and fix up the original BL insn to point to here. */
5386 ret_offset =
5387 /* Address of where the stub is located. */
5388 (s->output_section->vma + s->output_offset + my_offset)
5389 /* Address of where the BL is located. */
5390 - (input_section->output_section->vma + input_section->output_offset
5391 + offset)
5392 /* Addend in the relocation. */
5393 - addend
5394 /* Biassing for PC-relative addressing. */
5395 - 8;
5396
5397 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5398
5399 return TRUE;
5400 }
5401
5402 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5403
5404 static struct elf_link_hash_entry *
5405 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5406 const char * name,
5407 bfd * input_bfd,
5408 bfd * output_bfd,
5409 asection * sym_sec,
5410 bfd_vma val,
5411 asection *s,
5412 char **error_message)
5413 {
5414 bfd_vma my_offset;
5415 long int ret_offset;
5416 struct elf_link_hash_entry * myh;
5417 struct elf32_arm_link_hash_table * globals;
5418
5419 myh = find_arm_glue (info, name, error_message);
5420 if (myh == NULL)
5421 return NULL;
5422
5423 globals = elf32_arm_hash_table (info);
5424
5425 BFD_ASSERT (globals != NULL);
5426 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5427
5428 my_offset = myh->root.u.def.value;
5429
5430 if ((my_offset & 0x01) == 0x01)
5431 {
5432 if (sym_sec != NULL
5433 && sym_sec->owner != NULL
5434 && !INTERWORK_FLAG (sym_sec->owner))
5435 {
5436 (*_bfd_error_handler)
5437 (_("%B(%s): warning: interworking not enabled.\n"
5438 " first occurrence: %B: arm call to thumb"),
5439 sym_sec->owner, input_bfd, name);
5440 }
5441
5442 --my_offset;
5443 myh->root.u.def.value = my_offset;
5444
5445 if (info->shared || globals->root.is_relocatable_executable
5446 || globals->pic_veneer)
5447 {
5448 /* For relocatable objects we can't use absolute addresses,
5449 so construct the address from a relative offset. */
5450 /* TODO: If the offset is small it's probably worth
5451 constructing the address with adds. */
5452 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5453 s->contents + my_offset);
5454 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5455 s->contents + my_offset + 4);
5456 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5457 s->contents + my_offset + 8);
5458 /* Adjust the offset by 4 for the position of the add,
5459 and 8 for the pipeline offset. */
5460 ret_offset = (val - (s->output_offset
5461 + s->output_section->vma
5462 + my_offset + 12))
5463 | 1;
5464 bfd_put_32 (output_bfd, ret_offset,
5465 s->contents + my_offset + 12);
5466 }
5467 else if (globals->use_blx)
5468 {
5469 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5470 s->contents + my_offset);
5471
5472 /* It's a thumb address. Add the low order bit. */
5473 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5474 s->contents + my_offset + 4);
5475 }
5476 else
5477 {
5478 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5479 s->contents + my_offset);
5480
5481 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5482 s->contents + my_offset + 4);
5483
5484 /* It's a thumb address. Add the low order bit. */
5485 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5486 s->contents + my_offset + 8);
5487 }
5488 }
5489
5490 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5491
5492 return myh;
5493 }
5494
5495 /* Arm code calling a Thumb function. */
5496
5497 static int
5498 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5499 const char * name,
5500 bfd * input_bfd,
5501 bfd * output_bfd,
5502 asection * input_section,
5503 bfd_byte * hit_data,
5504 asection * sym_sec,
5505 bfd_vma offset,
5506 bfd_signed_vma addend,
5507 bfd_vma val,
5508 char **error_message)
5509 {
5510 unsigned long int tmp;
5511 bfd_vma my_offset;
5512 asection * s;
5513 long int ret_offset;
5514 struct elf_link_hash_entry * myh;
5515 struct elf32_arm_link_hash_table * globals;
5516
5517 globals = elf32_arm_hash_table (info);
5518
5519 BFD_ASSERT (globals != NULL);
5520 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5521
5522 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5523 ARM2THUMB_GLUE_SECTION_NAME);
5524 BFD_ASSERT (s != NULL);
5525 BFD_ASSERT (s->contents != NULL);
5526 BFD_ASSERT (s->output_section != NULL);
5527
5528 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5529 sym_sec, val, s, error_message);
5530 if (!myh)
5531 return FALSE;
5532
5533 my_offset = myh->root.u.def.value;
5534 tmp = bfd_get_32 (input_bfd, hit_data);
5535 tmp = tmp & 0xFF000000;
5536
5537 /* Somehow these are both 4 too far, so subtract 8. */
5538 ret_offset = (s->output_offset
5539 + my_offset
5540 + s->output_section->vma
5541 - (input_section->output_offset
5542 + input_section->output_section->vma
5543 + offset + addend)
5544 - 8);
5545
5546 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5547
5548 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5549
5550 return TRUE;
5551 }
5552
5553 /* Populate Arm stub for an exported Thumb function. */
5554
5555 static bfd_boolean
5556 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5557 {
5558 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5559 asection * s;
5560 struct elf_link_hash_entry * myh;
5561 struct elf32_arm_link_hash_entry *eh;
5562 struct elf32_arm_link_hash_table * globals;
5563 asection *sec;
5564 bfd_vma val;
5565 char *error_message;
5566
5567 eh = elf32_arm_hash_entry (h);
5568 /* Allocate stubs for exported Thumb functions on v4t. */
5569 if (eh->export_glue == NULL)
5570 return TRUE;
5571
5572 globals = elf32_arm_hash_table (info);
5573
5574 BFD_ASSERT (globals != NULL);
5575 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5576
5577 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5578 ARM2THUMB_GLUE_SECTION_NAME);
5579 BFD_ASSERT (s != NULL);
5580 BFD_ASSERT (s->contents != NULL);
5581 BFD_ASSERT (s->output_section != NULL);
5582
5583 sec = eh->export_glue->root.u.def.section;
5584
5585 BFD_ASSERT (sec->output_section != NULL);
5586
5587 val = eh->export_glue->root.u.def.value + sec->output_offset
5588 + sec->output_section->vma;
5589 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5590 h->root.u.def.section->owner,
5591 globals->obfd, sec, val, s,
5592 &error_message);
5593 BFD_ASSERT (myh);
5594 return TRUE;
5595 }
5596
5597 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5598
5599 static bfd_vma
5600 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5601 {
5602 bfd_byte *p;
5603 bfd_vma glue_addr;
5604 asection *s;
5605 struct elf32_arm_link_hash_table *globals;
5606
5607 globals = elf32_arm_hash_table (info);
5608
5609 BFD_ASSERT (globals != NULL);
5610 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5611
5612 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5613 ARM_BX_GLUE_SECTION_NAME);
5614 BFD_ASSERT (s != NULL);
5615 BFD_ASSERT (s->contents != NULL);
5616 BFD_ASSERT (s->output_section != NULL);
5617
5618 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5619
5620 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5621
5622 if ((globals->bx_glue_offset[reg] & 1) == 0)
5623 {
5624 p = s->contents + glue_addr;
5625 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5626 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5627 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5628 globals->bx_glue_offset[reg] |= 1;
5629 }
5630
5631 return glue_addr + s->output_section->vma + s->output_offset;
5632 }
5633
5634 /* Generate Arm stubs for exported Thumb symbols. */
5635 static void
5636 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5637 struct bfd_link_info *link_info)
5638 {
5639 struct elf32_arm_link_hash_table * globals;
5640
5641 if (!link_info)
5642 return;
5643
5644 globals = elf32_arm_hash_table (link_info);
5645 /* If blx is available then exported Thumb symbols are OK and there is
5646 nothing to do. */
5647 if (globals->use_blx)
5648 return;
5649
5650 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5651 link_info);
5652 }
5653
5654 /* Some relocations map to different relocations depending on the
5655 target. Return the real relocation. */
5656 static int
5657 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5658 int r_type)
5659 {
5660 switch (r_type)
5661 {
5662 case R_ARM_TARGET1:
5663 if (globals->target1_is_rel)
5664 return R_ARM_REL32;
5665 else
5666 return R_ARM_ABS32;
5667
5668 case R_ARM_TARGET2:
5669 return globals->target2_reloc;
5670
5671 default:
5672 return r_type;
5673 }
5674 }
5675
5676 /* Return the base VMA address which should be subtracted from real addresses
5677 when resolving @dtpoff relocation.
5678 This is PT_TLS segment p_vaddr. */
5679
5680 static bfd_vma
5681 dtpoff_base (struct bfd_link_info *info)
5682 {
5683 /* If tls_sec is NULL, we should have signalled an error already. */
5684 if (elf_hash_table (info)->tls_sec == NULL)
5685 return 0;
5686 return elf_hash_table (info)->tls_sec->vma;
5687 }
5688
5689 /* Return the relocation value for @tpoff relocation
5690 if STT_TLS virtual address is ADDRESS. */
5691
5692 static bfd_vma
5693 tpoff (struct bfd_link_info *info, bfd_vma address)
5694 {
5695 struct elf_link_hash_table *htab = elf_hash_table (info);
5696 bfd_vma base;
5697
5698 /* If tls_sec is NULL, we should have signalled an error already. */
5699 if (htab->tls_sec == NULL)
5700 return 0;
5701 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5702 return address - htab->tls_sec->vma + base;
5703 }
5704
5705 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5706 VALUE is the relocation value. */
5707
5708 static bfd_reloc_status_type
5709 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5710 {
5711 if (value > 0xfff)
5712 return bfd_reloc_overflow;
5713
5714 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5715 bfd_put_32 (abfd, value, data);
5716 return bfd_reloc_ok;
5717 }
5718
5719 /* For a given value of n, calculate the value of G_n as required to
5720 deal with group relocations. We return it in the form of an
5721 encoded constant-and-rotation, together with the final residual. If n is
5722 specified as less than zero, then final_residual is filled with the
5723 input value and no further action is performed. */
5724
5725 static bfd_vma
5726 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5727 {
5728 int current_n;
5729 bfd_vma g_n;
5730 bfd_vma encoded_g_n = 0;
5731 bfd_vma residual = value; /* Also known as Y_n. */
5732
5733 for (current_n = 0; current_n <= n; current_n++)
5734 {
5735 int shift;
5736
5737 /* Calculate which part of the value to mask. */
5738 if (residual == 0)
5739 shift = 0;
5740 else
5741 {
5742 int msb;
5743
5744 /* Determine the most significant bit in the residual and
5745 align the resulting value to a 2-bit boundary. */
5746 for (msb = 30; msb >= 0; msb -= 2)
5747 if (residual & (3 << msb))
5748 break;
5749
5750 /* The desired shift is now (msb - 6), or zero, whichever
5751 is the greater. */
5752 shift = msb - 6;
5753 if (shift < 0)
5754 shift = 0;
5755 }
5756
5757 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5758 g_n = residual & (0xff << shift);
5759 encoded_g_n = (g_n >> shift)
5760 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5761
5762 /* Calculate the residual for the next time around. */
5763 residual &= ~g_n;
5764 }
5765
5766 *final_residual = residual;
5767
5768 return encoded_g_n;
5769 }
5770
5771 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5772 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5773
5774 static int
5775 identify_add_or_sub (bfd_vma insn)
5776 {
5777 int opcode = insn & 0x1e00000;
5778
5779 if (opcode == 1 << 23) /* ADD */
5780 return 1;
5781
5782 if (opcode == 1 << 22) /* SUB */
5783 return -1;
5784
5785 return 0;
5786 }
5787
5788 /* Perform a relocation as part of a final link. */
5789
5790 static bfd_reloc_status_type
5791 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5792 bfd * input_bfd,
5793 bfd * output_bfd,
5794 asection * input_section,
5795 bfd_byte * contents,
5796 Elf_Internal_Rela * rel,
5797 bfd_vma value,
5798 struct bfd_link_info * info,
5799 asection * sym_sec,
5800 const char * sym_name,
5801 int sym_flags,
5802 struct elf_link_hash_entry * h,
5803 bfd_boolean * unresolved_reloc_p,
5804 char **error_message)
5805 {
5806 unsigned long r_type = howto->type;
5807 unsigned long r_symndx;
5808 bfd_byte * hit_data = contents + rel->r_offset;
5809 bfd * dynobj = NULL;
5810 Elf_Internal_Shdr * symtab_hdr;
5811 struct elf_link_hash_entry ** sym_hashes;
5812 bfd_vma * local_got_offsets;
5813 asection * sgot = NULL;
5814 asection * splt = NULL;
5815 asection * sreloc = NULL;
5816 bfd_vma addend;
5817 bfd_signed_vma signed_addend;
5818 struct elf32_arm_link_hash_table * globals;
5819
5820 globals = elf32_arm_hash_table (info);
5821
5822 BFD_ASSERT (is_arm_elf (input_bfd));
5823
5824 /* Some relocation types map to different relocations depending on the
5825 target. We pick the right one here. */
5826 r_type = arm_real_reloc_type (globals, r_type);
5827 if (r_type != howto->type)
5828 howto = elf32_arm_howto_from_type (r_type);
5829
5830 /* If the start address has been set, then set the EF_ARM_HASENTRY
5831 flag. Setting this more than once is redundant, but the cost is
5832 not too high, and it keeps the code simple.
5833
5834 The test is done here, rather than somewhere else, because the
5835 start address is only set just before the final link commences.
5836
5837 Note - if the user deliberately sets a start address of 0, the
5838 flag will not be set. */
5839 if (bfd_get_start_address (output_bfd) != 0)
5840 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5841
5842 dynobj = elf_hash_table (info)->dynobj;
5843 if (dynobj)
5844 {
5845 sgot = bfd_get_section_by_name (dynobj, ".got");
5846 splt = bfd_get_section_by_name (dynobj, ".plt");
5847 }
5848 symtab_hdr = & elf_symtab_hdr (input_bfd);
5849 sym_hashes = elf_sym_hashes (input_bfd);
5850 local_got_offsets = elf_local_got_offsets (input_bfd);
5851 r_symndx = ELF32_R_SYM (rel->r_info);
5852
5853 if (globals->use_rel)
5854 {
5855 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5856
5857 if (addend & ((howto->src_mask + 1) >> 1))
5858 {
5859 signed_addend = -1;
5860 signed_addend &= ~ howto->src_mask;
5861 signed_addend |= addend;
5862 }
5863 else
5864 signed_addend = addend;
5865 }
5866 else
5867 addend = signed_addend = rel->r_addend;
5868
5869 switch (r_type)
5870 {
5871 case R_ARM_NONE:
5872 /* We don't need to find a value for this symbol. It's just a
5873 marker. */
5874 *unresolved_reloc_p = FALSE;
5875 return bfd_reloc_ok;
5876
5877 case R_ARM_ABS12:
5878 if (!globals->vxworks_p)
5879 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5880
5881 case R_ARM_PC24:
5882 case R_ARM_ABS32:
5883 case R_ARM_ABS32_NOI:
5884 case R_ARM_REL32:
5885 case R_ARM_REL32_NOI:
5886 case R_ARM_CALL:
5887 case R_ARM_JUMP24:
5888 case R_ARM_XPC25:
5889 case R_ARM_PREL31:
5890 case R_ARM_PLT32:
5891 /* Handle relocations which should use the PLT entry. ABS32/REL32
5892 will use the symbol's value, which may point to a PLT entry, but we
5893 don't need to handle that here. If we created a PLT entry, all
5894 branches in this object should go to it. */
5895 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5896 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5897 && h != NULL
5898 && splt != NULL
5899 && h->plt.offset != (bfd_vma) -1)
5900 {
5901 /* If we've created a .plt section, and assigned a PLT entry to
5902 this function, it should not be known to bind locally. If
5903 it were, we would have cleared the PLT entry. */
5904 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5905
5906 value = (splt->output_section->vma
5907 + splt->output_offset
5908 + h->plt.offset);
5909 *unresolved_reloc_p = FALSE;
5910 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5911 contents, rel->r_offset, value,
5912 rel->r_addend);
5913 }
5914
5915 /* When generating a shared object or relocatable executable, these
5916 relocations are copied into the output file to be resolved at
5917 run time. */
5918 if ((info->shared || globals->root.is_relocatable_executable)
5919 && (input_section->flags & SEC_ALLOC)
5920 && !(elf32_arm_hash_table (info)->vxworks_p
5921 && strcmp (input_section->output_section->name,
5922 ".tls_vars") == 0)
5923 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5924 || !SYMBOL_CALLS_LOCAL (info, h))
5925 && (h == NULL
5926 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5927 || h->root.type != bfd_link_hash_undefweak)
5928 && r_type != R_ARM_PC24
5929 && r_type != R_ARM_CALL
5930 && r_type != R_ARM_JUMP24
5931 && r_type != R_ARM_PREL31
5932 && r_type != R_ARM_PLT32)
5933 {
5934 Elf_Internal_Rela outrel;
5935 bfd_byte *loc;
5936 bfd_boolean skip, relocate;
5937
5938 *unresolved_reloc_p = FALSE;
5939
5940 if (sreloc == NULL)
5941 {
5942 const char * name;
5943
5944 name = (bfd_elf_string_from_elf_section
5945 (input_bfd,
5946 elf_elfheader (input_bfd)->e_shstrndx,
5947 elf_section_data (input_section)->rel_hdr.sh_name));
5948 if (name == NULL)
5949 return bfd_reloc_notsupported;
5950
5951 BFD_ASSERT (reloc_section_p (globals, name, input_section));
5952
5953 sreloc = bfd_get_section_by_name (dynobj, name);
5954 BFD_ASSERT (sreloc != NULL);
5955 }
5956
5957 skip = FALSE;
5958 relocate = FALSE;
5959
5960 outrel.r_addend = addend;
5961 outrel.r_offset =
5962 _bfd_elf_section_offset (output_bfd, info, input_section,
5963 rel->r_offset);
5964 if (outrel.r_offset == (bfd_vma) -1)
5965 skip = TRUE;
5966 else if (outrel.r_offset == (bfd_vma) -2)
5967 skip = TRUE, relocate = TRUE;
5968 outrel.r_offset += (input_section->output_section->vma
5969 + input_section->output_offset);
5970
5971 if (skip)
5972 memset (&outrel, 0, sizeof outrel);
5973 else if (h != NULL
5974 && h->dynindx != -1
5975 && (!info->shared
5976 || !info->symbolic
5977 || !h->def_regular))
5978 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
5979 else
5980 {
5981 int symbol;
5982
5983 /* This symbol is local, or marked to become local. */
5984 if (sym_flags == STT_ARM_TFUNC)
5985 value |= 1;
5986 if (globals->symbian_p)
5987 {
5988 asection *osec;
5989
5990 /* On Symbian OS, the data segment and text segement
5991 can be relocated independently. Therefore, we
5992 must indicate the segment to which this
5993 relocation is relative. The BPABI allows us to
5994 use any symbol in the right segment; we just use
5995 the section symbol as it is convenient. (We
5996 cannot use the symbol given by "h" directly as it
5997 will not appear in the dynamic symbol table.)
5998
5999 Note that the dynamic linker ignores the section
6000 symbol value, so we don't subtract osec->vma
6001 from the emitted reloc addend. */
6002 if (sym_sec)
6003 osec = sym_sec->output_section;
6004 else
6005 osec = input_section->output_section;
6006 symbol = elf_section_data (osec)->dynindx;
6007 if (symbol == 0)
6008 {
6009 struct elf_link_hash_table *htab = elf_hash_table (info);
6010
6011 if ((osec->flags & SEC_READONLY) == 0
6012 && htab->data_index_section != NULL)
6013 osec = htab->data_index_section;
6014 else
6015 osec = htab->text_index_section;
6016 symbol = elf_section_data (osec)->dynindx;
6017 }
6018 BFD_ASSERT (symbol != 0);
6019 }
6020 else
6021 /* On SVR4-ish systems, the dynamic loader cannot
6022 relocate the text and data segments independently,
6023 so the symbol does not matter. */
6024 symbol = 0;
6025 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6026 if (globals->use_rel)
6027 relocate = TRUE;
6028 else
6029 outrel.r_addend += value;
6030 }
6031
6032 loc = sreloc->contents;
6033 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6034 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6035
6036 /* If this reloc is against an external symbol, we do not want to
6037 fiddle with the addend. Otherwise, we need to include the symbol
6038 value so that it becomes an addend for the dynamic reloc. */
6039 if (! relocate)
6040 return bfd_reloc_ok;
6041
6042 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6043 contents, rel->r_offset, value,
6044 (bfd_vma) 0);
6045 }
6046 else switch (r_type)
6047 {
6048 case R_ARM_ABS12:
6049 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6050
6051 case R_ARM_XPC25: /* Arm BLX instruction. */
6052 case R_ARM_CALL:
6053 case R_ARM_JUMP24:
6054 case R_ARM_PC24: /* Arm B/BL instruction */
6055 case R_ARM_PLT32:
6056 {
6057 bfd_vma from;
6058 bfd_signed_vma branch_offset;
6059 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6060
6061 from = (input_section->output_section->vma
6062 + input_section->output_offset
6063 + rel->r_offset);
6064 branch_offset = (bfd_signed_vma)(value - from);
6065
6066 if (r_type == R_ARM_XPC25)
6067 {
6068 /* Check for Arm calling Arm function. */
6069 /* FIXME: Should we translate the instruction into a BL
6070 instruction instead ? */
6071 if (sym_flags != STT_ARM_TFUNC)
6072 (*_bfd_error_handler)
6073 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6074 input_bfd,
6075 h ? h->root.root.string : "(local)");
6076 }
6077 else if (r_type != R_ARM_CALL)
6078 {
6079 /* Check for Arm calling Thumb function. */
6080 if (sym_flags == STT_ARM_TFUNC)
6081 {
6082 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6083 output_bfd, input_section,
6084 hit_data, sym_sec, rel->r_offset,
6085 signed_addend, value,
6086 error_message))
6087 return bfd_reloc_ok;
6088 else
6089 return bfd_reloc_dangerous;
6090 }
6091 }
6092
6093 /* Check if a stub has to be inserted because the
6094 destination is too far or we are changing mode */
6095 if (r_type == R_ARM_CALL)
6096 {
6097 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6098 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6099 || sym_flags == STT_ARM_TFUNC)
6100 {
6101 /* The target is out of reach, so redirect the
6102 branch to the local stub for this function. */
6103
6104 stub_entry = elf32_arm_get_stub_entry (input_section,
6105 sym_sec, h,
6106 rel, globals);
6107 if (stub_entry != NULL)
6108 value = (stub_entry->stub_offset
6109 + stub_entry->stub_sec->output_offset
6110 + stub_entry->stub_sec->output_section->vma);
6111 }
6112 }
6113
6114 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6115 where:
6116 S is the address of the symbol in the relocation.
6117 P is address of the instruction being relocated.
6118 A is the addend (extracted from the instruction) in bytes.
6119
6120 S is held in 'value'.
6121 P is the base address of the section containing the
6122 instruction plus the offset of the reloc into that
6123 section, ie:
6124 (input_section->output_section->vma +
6125 input_section->output_offset +
6126 rel->r_offset).
6127 A is the addend, converted into bytes, ie:
6128 (signed_addend * 4)
6129
6130 Note: None of these operations have knowledge of the pipeline
6131 size of the processor, thus it is up to the assembler to
6132 encode this information into the addend. */
6133 value -= (input_section->output_section->vma
6134 + input_section->output_offset);
6135 value -= rel->r_offset;
6136 if (globals->use_rel)
6137 value += (signed_addend << howto->size);
6138 else
6139 /* RELA addends do not have to be adjusted by howto->size. */
6140 value += signed_addend;
6141
6142 signed_addend = value;
6143 signed_addend >>= howto->rightshift;
6144
6145 /* A branch to an undefined weak symbol is turned into a jump to
6146 the next instruction. */
6147 if (h && h->root.type == bfd_link_hash_undefweak)
6148 {
6149 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6150 | 0x0affffff;
6151 }
6152 else
6153 {
6154 /* Perform a signed range check. */
6155 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6156 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6157 return bfd_reloc_overflow;
6158
6159 addend = (value & 2);
6160
6161 value = (signed_addend & howto->dst_mask)
6162 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6163
6164 /* Set the H bit in the BLX instruction. */
6165 if (sym_flags == STT_ARM_TFUNC)
6166 {
6167 if (addend)
6168 value |= (1 << 24);
6169 else
6170 value &= ~(bfd_vma)(1 << 24);
6171 }
6172 if (r_type == R_ARM_CALL)
6173 {
6174 /* Select the correct instruction (BL or BLX). */
6175 /* Only if we are not handling a BL to a stub. In this
6176 case, mode switching is performed by the stub. */
6177 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6178 value |= (1 << 28);
6179 else
6180 {
6181 value &= ~(bfd_vma)(1 << 28);
6182 value |= (1 << 24);
6183 }
6184 }
6185 }
6186 }
6187 break;
6188
6189 case R_ARM_ABS32:
6190 value += addend;
6191 if (sym_flags == STT_ARM_TFUNC)
6192 value |= 1;
6193 break;
6194
6195 case R_ARM_ABS32_NOI:
6196 value += addend;
6197 break;
6198
6199 case R_ARM_REL32:
6200 value += addend;
6201 if (sym_flags == STT_ARM_TFUNC)
6202 value |= 1;
6203 value -= (input_section->output_section->vma
6204 + input_section->output_offset + rel->r_offset);
6205 break;
6206
6207 case R_ARM_REL32_NOI:
6208 value += addend;
6209 value -= (input_section->output_section->vma
6210 + input_section->output_offset + rel->r_offset);
6211 break;
6212
6213 case R_ARM_PREL31:
6214 value -= (input_section->output_section->vma
6215 + input_section->output_offset + rel->r_offset);
6216 value += signed_addend;
6217 if (! h || h->root.type != bfd_link_hash_undefweak)
6218 {
6219 /* Check for overflow */
6220 if ((value ^ (value >> 1)) & (1 << 30))
6221 return bfd_reloc_overflow;
6222 }
6223 value &= 0x7fffffff;
6224 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6225 if (sym_flags == STT_ARM_TFUNC)
6226 value |= 1;
6227 break;
6228 }
6229
6230 bfd_put_32 (input_bfd, value, hit_data);
6231 return bfd_reloc_ok;
6232
6233 case R_ARM_ABS8:
6234 value += addend;
6235 if ((long) value > 0x7f || (long) value < -0x80)
6236 return bfd_reloc_overflow;
6237
6238 bfd_put_8 (input_bfd, value, hit_data);
6239 return bfd_reloc_ok;
6240
6241 case R_ARM_ABS16:
6242 value += addend;
6243
6244 if ((long) value > 0x7fff || (long) value < -0x8000)
6245 return bfd_reloc_overflow;
6246
6247 bfd_put_16 (input_bfd, value, hit_data);
6248 return bfd_reloc_ok;
6249
6250 case R_ARM_THM_ABS5:
6251 /* Support ldr and str instructions for the thumb. */
6252 if (globals->use_rel)
6253 {
6254 /* Need to refetch addend. */
6255 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6256 /* ??? Need to determine shift amount from operand size. */
6257 addend >>= howto->rightshift;
6258 }
6259 value += addend;
6260
6261 /* ??? Isn't value unsigned? */
6262 if ((long) value > 0x1f || (long) value < -0x10)
6263 return bfd_reloc_overflow;
6264
6265 /* ??? Value needs to be properly shifted into place first. */
6266 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6267 bfd_put_16 (input_bfd, value, hit_data);
6268 return bfd_reloc_ok;
6269
6270 case R_ARM_THM_ALU_PREL_11_0:
6271 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6272 {
6273 bfd_vma insn;
6274 bfd_signed_vma relocation;
6275
6276 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6277 | bfd_get_16 (input_bfd, hit_data + 2);
6278
6279 if (globals->use_rel)
6280 {
6281 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6282 | ((insn & (1 << 26)) >> 15);
6283 if (insn & 0xf00000)
6284 signed_addend = -signed_addend;
6285 }
6286
6287 relocation = value + signed_addend;
6288 relocation -= (input_section->output_section->vma
6289 + input_section->output_offset
6290 + rel->r_offset);
6291
6292 value = abs (relocation);
6293
6294 if (value >= 0x1000)
6295 return bfd_reloc_overflow;
6296
6297 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6298 | ((value & 0x700) << 4)
6299 | ((value & 0x800) << 15);
6300 if (relocation < 0)
6301 insn |= 0xa00000;
6302
6303 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6304 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6305
6306 return bfd_reloc_ok;
6307 }
6308
6309 case R_ARM_THM_PC12:
6310 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6311 {
6312 bfd_vma insn;
6313 bfd_signed_vma relocation;
6314
6315 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6316 | bfd_get_16 (input_bfd, hit_data + 2);
6317
6318 if (globals->use_rel)
6319 {
6320 signed_addend = insn & 0xfff;
6321 if (!(insn & (1 << 23)))
6322 signed_addend = -signed_addend;
6323 }
6324
6325 relocation = value + signed_addend;
6326 relocation -= (input_section->output_section->vma
6327 + input_section->output_offset
6328 + rel->r_offset);
6329
6330 value = abs (relocation);
6331
6332 if (value >= 0x1000)
6333 return bfd_reloc_overflow;
6334
6335 insn = (insn & 0xff7ff000) | value;
6336 if (relocation >= 0)
6337 insn |= (1 << 23);
6338
6339 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6340 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6341
6342 return bfd_reloc_ok;
6343 }
6344
6345 case R_ARM_THM_XPC22:
6346 case R_ARM_THM_CALL:
6347 case R_ARM_THM_JUMP24:
6348 /* Thumb BL (branch long instruction). */
6349 {
6350 bfd_vma relocation;
6351 bfd_vma reloc_sign;
6352 bfd_boolean overflow = FALSE;
6353 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6354 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6355 bfd_signed_vma reloc_signed_max;
6356 bfd_signed_vma reloc_signed_min;
6357 bfd_vma check;
6358 bfd_signed_vma signed_check;
6359 int bitsize;
6360 int thumb2 = using_thumb2 (globals);
6361
6362 /* A branch to an undefined weak symbol is turned into a jump to
6363 the next instruction. */
6364 if (h && h->root.type == bfd_link_hash_undefweak)
6365 {
6366 bfd_put_16 (input_bfd, 0xe000, hit_data);
6367 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6368 return bfd_reloc_ok;
6369 }
6370
6371 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6372 with Thumb-1) involving the J1 and J2 bits. */
6373 if (globals->use_rel)
6374 {
6375 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6376 bfd_vma upper = upper_insn & 0x3ff;
6377 bfd_vma lower = lower_insn & 0x7ff;
6378 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6379 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6380 bfd_vma i1 = j1 ^ s ? 0 : 1;
6381 bfd_vma i2 = j2 ^ s ? 0 : 1;
6382
6383 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6384 /* Sign extend. */
6385 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6386
6387 signed_addend = addend;
6388 }
6389
6390 if (r_type == R_ARM_THM_XPC22)
6391 {
6392 /* Check for Thumb to Thumb call. */
6393 /* FIXME: Should we translate the instruction into a BL
6394 instruction instead ? */
6395 if (sym_flags == STT_ARM_TFUNC)
6396 (*_bfd_error_handler)
6397 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6398 input_bfd,
6399 h ? h->root.root.string : "(local)");
6400 }
6401 else
6402 {
6403 /* If it is not a call to Thumb, assume call to Arm.
6404 If it is a call relative to a section name, then it is not a
6405 function call at all, but rather a long jump. Calls through
6406 the PLT do not require stubs. */
6407 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6408 && (h == NULL || splt == NULL
6409 || h->plt.offset == (bfd_vma) -1))
6410 {
6411 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6412 {
6413 /* Convert BL to BLX. */
6414 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6415 }
6416 else if (elf32_thumb_to_arm_stub
6417 (info, sym_name, input_bfd, output_bfd, input_section,
6418 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6419 error_message))
6420 return bfd_reloc_ok;
6421 else
6422 return bfd_reloc_dangerous;
6423 }
6424 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6425 && r_type == R_ARM_THM_CALL)
6426 {
6427 /* Make sure this is a BL. */
6428 lower_insn |= 0x1800;
6429 }
6430 }
6431
6432 /* Handle calls via the PLT. */
6433 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6434 {
6435 value = (splt->output_section->vma
6436 + splt->output_offset
6437 + h->plt.offset);
6438 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6439 {
6440 /* If the Thumb BLX instruction is available, convert the
6441 BL to a BLX instruction to call the ARM-mode PLT entry. */
6442 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6443 }
6444 else
6445 /* Target the Thumb stub before the ARM PLT entry. */
6446 value -= PLT_THUMB_STUB_SIZE;
6447 *unresolved_reloc_p = FALSE;
6448 }
6449
6450 if (r_type == R_ARM_THM_CALL)
6451 {
6452 /* Check if a stub has to be inserted because the destination
6453 is too far. */
6454 bfd_vma from;
6455 bfd_signed_vma branch_offset;
6456 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6457
6458 from = (input_section->output_section->vma
6459 + input_section->output_offset
6460 + rel->r_offset);
6461 branch_offset = (bfd_signed_vma)(value - from);
6462
6463 if ((!thumb2
6464 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6465 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6466 ||
6467 (thumb2
6468 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6469 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET))))
6470 {
6471 /* The target is out of reach or we are changing modes, so
6472 redirect the branch to the local stub for this
6473 function. */
6474 stub_entry = elf32_arm_get_stub_entry (input_section,
6475 sym_sec, h,
6476 rel, globals);
6477 if (stub_entry != NULL)
6478 value = (stub_entry->stub_offset
6479 + stub_entry->stub_sec->output_offset
6480 + stub_entry->stub_sec->output_section->vma);
6481
6482 /* This call becomes a call to Arm for sure. Force BLX. */
6483 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6484 }
6485 }
6486
6487 relocation = value + signed_addend;
6488
6489 relocation -= (input_section->output_section->vma
6490 + input_section->output_offset
6491 + rel->r_offset);
6492
6493 check = relocation >> howto->rightshift;
6494
6495 /* If this is a signed value, the rightshift just dropped
6496 leading 1 bits (assuming twos complement). */
6497 if ((bfd_signed_vma) relocation >= 0)
6498 signed_check = check;
6499 else
6500 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6501
6502 /* Calculate the permissable maximum and minimum values for
6503 this relocation according to whether we're relocating for
6504 Thumb-2 or not. */
6505 bitsize = howto->bitsize;
6506 if (!thumb2)
6507 bitsize -= 2;
6508 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6509 reloc_signed_min = ~reloc_signed_max;
6510
6511 /* Assumes two's complement. */
6512 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6513 overflow = TRUE;
6514
6515 if ((lower_insn & 0x5000) == 0x4000)
6516 /* For a BLX instruction, make sure that the relocation is rounded up
6517 to a word boundary. This follows the semantics of the instruction
6518 which specifies that bit 1 of the target address will come from bit
6519 1 of the base address. */
6520 relocation = (relocation + 2) & ~ 3;
6521
6522 /* Put RELOCATION back into the insn. Assumes two's complement.
6523 We use the Thumb-2 encoding, which is safe even if dealing with
6524 a Thumb-1 instruction by virtue of our overflow check above. */
6525 reloc_sign = (signed_check < 0) ? 1 : 0;
6526 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6527 | ((relocation >> 12) & 0x3ff)
6528 | (reloc_sign << 10);
6529 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6530 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6531 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6532 | ((relocation >> 1) & 0x7ff);
6533
6534 /* Put the relocated value back in the object file: */
6535 bfd_put_16 (input_bfd, upper_insn, hit_data);
6536 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6537
6538 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6539 }
6540 break;
6541
6542 case R_ARM_THM_JUMP19:
6543 /* Thumb32 conditional branch instruction. */
6544 {
6545 bfd_vma relocation;
6546 bfd_boolean overflow = FALSE;
6547 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6548 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6549 bfd_signed_vma reloc_signed_max = 0xffffe;
6550 bfd_signed_vma reloc_signed_min = -0x100000;
6551 bfd_signed_vma signed_check;
6552
6553 /* Need to refetch the addend, reconstruct the top three bits,
6554 and squish the two 11 bit pieces together. */
6555 if (globals->use_rel)
6556 {
6557 bfd_vma S = (upper_insn & 0x0400) >> 10;
6558 bfd_vma upper = (upper_insn & 0x003f);
6559 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6560 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6561 bfd_vma lower = (lower_insn & 0x07ff);
6562
6563 upper |= J1 << 6;
6564 upper |= J2 << 7;
6565 upper |= (!S) << 8;
6566 upper -= 0x0100; /* Sign extend. */
6567
6568 addend = (upper << 12) | (lower << 1);
6569 signed_addend = addend;
6570 }
6571
6572 /* Handle calls via the PLT. */
6573 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6574 {
6575 value = (splt->output_section->vma
6576 + splt->output_offset
6577 + h->plt.offset);
6578 /* Target the Thumb stub before the ARM PLT entry. */
6579 value -= PLT_THUMB_STUB_SIZE;
6580 *unresolved_reloc_p = FALSE;
6581 }
6582
6583 /* ??? Should handle interworking? GCC might someday try to
6584 use this for tail calls. */
6585
6586 relocation = value + signed_addend;
6587 relocation -= (input_section->output_section->vma
6588 + input_section->output_offset
6589 + rel->r_offset);
6590 signed_check = (bfd_signed_vma) relocation;
6591
6592 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6593 overflow = TRUE;
6594
6595 /* Put RELOCATION back into the insn. */
6596 {
6597 bfd_vma S = (relocation & 0x00100000) >> 20;
6598 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6599 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6600 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6601 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6602
6603 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6604 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6605 }
6606
6607 /* Put the relocated value back in the object file: */
6608 bfd_put_16 (input_bfd, upper_insn, hit_data);
6609 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6610
6611 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6612 }
6613
6614 case R_ARM_THM_JUMP11:
6615 case R_ARM_THM_JUMP8:
6616 case R_ARM_THM_JUMP6:
6617 /* Thumb B (branch) instruction). */
6618 {
6619 bfd_signed_vma relocation;
6620 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6621 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6622 bfd_signed_vma signed_check;
6623
6624 /* CZB cannot jump backward. */
6625 if (r_type == R_ARM_THM_JUMP6)
6626 reloc_signed_min = 0;
6627
6628 if (globals->use_rel)
6629 {
6630 /* Need to refetch addend. */
6631 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6632 if (addend & ((howto->src_mask + 1) >> 1))
6633 {
6634 signed_addend = -1;
6635 signed_addend &= ~ howto->src_mask;
6636 signed_addend |= addend;
6637 }
6638 else
6639 signed_addend = addend;
6640 /* The value in the insn has been right shifted. We need to
6641 undo this, so that we can perform the address calculation
6642 in terms of bytes. */
6643 signed_addend <<= howto->rightshift;
6644 }
6645 relocation = value + signed_addend;
6646
6647 relocation -= (input_section->output_section->vma
6648 + input_section->output_offset
6649 + rel->r_offset);
6650
6651 relocation >>= howto->rightshift;
6652 signed_check = relocation;
6653
6654 if (r_type == R_ARM_THM_JUMP6)
6655 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6656 else
6657 relocation &= howto->dst_mask;
6658 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6659
6660 bfd_put_16 (input_bfd, relocation, hit_data);
6661
6662 /* Assumes two's complement. */
6663 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6664 return bfd_reloc_overflow;
6665
6666 return bfd_reloc_ok;
6667 }
6668
6669 case R_ARM_ALU_PCREL7_0:
6670 case R_ARM_ALU_PCREL15_8:
6671 case R_ARM_ALU_PCREL23_15:
6672 {
6673 bfd_vma insn;
6674 bfd_vma relocation;
6675
6676 insn = bfd_get_32 (input_bfd, hit_data);
6677 if (globals->use_rel)
6678 {
6679 /* Extract the addend. */
6680 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6681 signed_addend = addend;
6682 }
6683 relocation = value + signed_addend;
6684
6685 relocation -= (input_section->output_section->vma
6686 + input_section->output_offset
6687 + rel->r_offset);
6688 insn = (insn & ~0xfff)
6689 | ((howto->bitpos << 7) & 0xf00)
6690 | ((relocation >> howto->bitpos) & 0xff);
6691 bfd_put_32 (input_bfd, value, hit_data);
6692 }
6693 return bfd_reloc_ok;
6694
6695 case R_ARM_GNU_VTINHERIT:
6696 case R_ARM_GNU_VTENTRY:
6697 return bfd_reloc_ok;
6698
6699 case R_ARM_GOTOFF32:
6700 /* Relocation is relative to the start of the
6701 global offset table. */
6702
6703 BFD_ASSERT (sgot != NULL);
6704 if (sgot == NULL)
6705 return bfd_reloc_notsupported;
6706
6707 /* If we are addressing a Thumb function, we need to adjust the
6708 address by one, so that attempts to call the function pointer will
6709 correctly interpret it as Thumb code. */
6710 if (sym_flags == STT_ARM_TFUNC)
6711 value += 1;
6712
6713 /* Note that sgot->output_offset is not involved in this
6714 calculation. We always want the start of .got. If we
6715 define _GLOBAL_OFFSET_TABLE in a different way, as is
6716 permitted by the ABI, we might have to change this
6717 calculation. */
6718 value -= sgot->output_section->vma;
6719 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6720 contents, rel->r_offset, value,
6721 rel->r_addend);
6722
6723 case R_ARM_GOTPC:
6724 /* Use global offset table as symbol value. */
6725 BFD_ASSERT (sgot != NULL);
6726
6727 if (sgot == NULL)
6728 return bfd_reloc_notsupported;
6729
6730 *unresolved_reloc_p = FALSE;
6731 value = sgot->output_section->vma;
6732 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6733 contents, rel->r_offset, value,
6734 rel->r_addend);
6735
6736 case R_ARM_GOT32:
6737 case R_ARM_GOT_PREL:
6738 /* Relocation is to the entry for this symbol in the
6739 global offset table. */
6740 if (sgot == NULL)
6741 return bfd_reloc_notsupported;
6742
6743 if (h != NULL)
6744 {
6745 bfd_vma off;
6746 bfd_boolean dyn;
6747
6748 off = h->got.offset;
6749 BFD_ASSERT (off != (bfd_vma) -1);
6750 dyn = globals->root.dynamic_sections_created;
6751
6752 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6753 || (info->shared
6754 && SYMBOL_REFERENCES_LOCAL (info, h))
6755 || (ELF_ST_VISIBILITY (h->other)
6756 && h->root.type == bfd_link_hash_undefweak))
6757 {
6758 /* This is actually a static link, or it is a -Bsymbolic link
6759 and the symbol is defined locally. We must initialize this
6760 entry in the global offset table. Since the offset must
6761 always be a multiple of 4, we use the least significant bit
6762 to record whether we have initialized it already.
6763
6764 When doing a dynamic link, we create a .rel(a).got relocation
6765 entry to initialize the value. This is done in the
6766 finish_dynamic_symbol routine. */
6767 if ((off & 1) != 0)
6768 off &= ~1;
6769 else
6770 {
6771 /* If we are addressing a Thumb function, we need to
6772 adjust the address by one, so that attempts to
6773 call the function pointer will correctly
6774 interpret it as Thumb code. */
6775 if (sym_flags == STT_ARM_TFUNC)
6776 value |= 1;
6777
6778 bfd_put_32 (output_bfd, value, sgot->contents + off);
6779 h->got.offset |= 1;
6780 }
6781 }
6782 else
6783 *unresolved_reloc_p = FALSE;
6784
6785 value = sgot->output_offset + off;
6786 }
6787 else
6788 {
6789 bfd_vma off;
6790
6791 BFD_ASSERT (local_got_offsets != NULL &&
6792 local_got_offsets[r_symndx] != (bfd_vma) -1);
6793
6794 off = local_got_offsets[r_symndx];
6795
6796 /* The offset must always be a multiple of 4. We use the
6797 least significant bit to record whether we have already
6798 generated the necessary reloc. */
6799 if ((off & 1) != 0)
6800 off &= ~1;
6801 else
6802 {
6803 /* If we are addressing a Thumb function, we need to
6804 adjust the address by one, so that attempts to
6805 call the function pointer will correctly
6806 interpret it as Thumb code. */
6807 if (sym_flags == STT_ARM_TFUNC)
6808 value |= 1;
6809
6810 if (globals->use_rel)
6811 bfd_put_32 (output_bfd, value, sgot->contents + off);
6812
6813 if (info->shared)
6814 {
6815 asection * srelgot;
6816 Elf_Internal_Rela outrel;
6817 bfd_byte *loc;
6818
6819 srelgot = (bfd_get_section_by_name
6820 (dynobj, RELOC_SECTION (globals, ".got")));
6821 BFD_ASSERT (srelgot != NULL);
6822
6823 outrel.r_addend = addend + value;
6824 outrel.r_offset = (sgot->output_section->vma
6825 + sgot->output_offset
6826 + off);
6827 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6828 loc = srelgot->contents;
6829 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6830 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6831 }
6832
6833 local_got_offsets[r_symndx] |= 1;
6834 }
6835
6836 value = sgot->output_offset + off;
6837 }
6838 if (r_type != R_ARM_GOT32)
6839 value += sgot->output_section->vma;
6840
6841 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6842 contents, rel->r_offset, value,
6843 rel->r_addend);
6844
6845 case R_ARM_TLS_LDO32:
6846 value = value - dtpoff_base (info);
6847
6848 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6849 contents, rel->r_offset, value,
6850 rel->r_addend);
6851
6852 case R_ARM_TLS_LDM32:
6853 {
6854 bfd_vma off;
6855
6856 if (globals->sgot == NULL)
6857 abort ();
6858
6859 off = globals->tls_ldm_got.offset;
6860
6861 if ((off & 1) != 0)
6862 off &= ~1;
6863 else
6864 {
6865 /* If we don't know the module number, create a relocation
6866 for it. */
6867 if (info->shared)
6868 {
6869 Elf_Internal_Rela outrel;
6870 bfd_byte *loc;
6871
6872 if (globals->srelgot == NULL)
6873 abort ();
6874
6875 outrel.r_addend = 0;
6876 outrel.r_offset = (globals->sgot->output_section->vma
6877 + globals->sgot->output_offset + off);
6878 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6879
6880 if (globals->use_rel)
6881 bfd_put_32 (output_bfd, outrel.r_addend,
6882 globals->sgot->contents + off);
6883
6884 loc = globals->srelgot->contents;
6885 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6886 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6887 }
6888 else
6889 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6890
6891 globals->tls_ldm_got.offset |= 1;
6892 }
6893
6894 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6895 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6896
6897 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6898 contents, rel->r_offset, value,
6899 rel->r_addend);
6900 }
6901
6902 case R_ARM_TLS_GD32:
6903 case R_ARM_TLS_IE32:
6904 {
6905 bfd_vma off;
6906 int indx;
6907 char tls_type;
6908
6909 if (globals->sgot == NULL)
6910 abort ();
6911
6912 indx = 0;
6913 if (h != NULL)
6914 {
6915 bfd_boolean dyn;
6916 dyn = globals->root.dynamic_sections_created;
6917 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6918 && (!info->shared
6919 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6920 {
6921 *unresolved_reloc_p = FALSE;
6922 indx = h->dynindx;
6923 }
6924 off = h->got.offset;
6925 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6926 }
6927 else
6928 {
6929 if (local_got_offsets == NULL)
6930 abort ();
6931 off = local_got_offsets[r_symndx];
6932 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6933 }
6934
6935 if (tls_type == GOT_UNKNOWN)
6936 abort ();
6937
6938 if ((off & 1) != 0)
6939 off &= ~1;
6940 else
6941 {
6942 bfd_boolean need_relocs = FALSE;
6943 Elf_Internal_Rela outrel;
6944 bfd_byte *loc = NULL;
6945 int cur_off = off;
6946
6947 /* The GOT entries have not been initialized yet. Do it
6948 now, and emit any relocations. If both an IE GOT and a
6949 GD GOT are necessary, we emit the GD first. */
6950
6951 if ((info->shared || indx != 0)
6952 && (h == NULL
6953 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6954 || h->root.type != bfd_link_hash_undefweak))
6955 {
6956 need_relocs = TRUE;
6957 if (globals->srelgot == NULL)
6958 abort ();
6959 loc = globals->srelgot->contents;
6960 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6961 }
6962
6963 if (tls_type & GOT_TLS_GD)
6964 {
6965 if (need_relocs)
6966 {
6967 outrel.r_addend = 0;
6968 outrel.r_offset = (globals->sgot->output_section->vma
6969 + globals->sgot->output_offset
6970 + cur_off);
6971 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
6972
6973 if (globals->use_rel)
6974 bfd_put_32 (output_bfd, outrel.r_addend,
6975 globals->sgot->contents + cur_off);
6976
6977 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6978 globals->srelgot->reloc_count++;
6979 loc += RELOC_SIZE (globals);
6980
6981 if (indx == 0)
6982 bfd_put_32 (output_bfd, value - dtpoff_base (info),
6983 globals->sgot->contents + cur_off + 4);
6984 else
6985 {
6986 outrel.r_addend = 0;
6987 outrel.r_info = ELF32_R_INFO (indx,
6988 R_ARM_TLS_DTPOFF32);
6989 outrel.r_offset += 4;
6990
6991 if (globals->use_rel)
6992 bfd_put_32 (output_bfd, outrel.r_addend,
6993 globals->sgot->contents + cur_off + 4);
6994
6995
6996 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6997 globals->srelgot->reloc_count++;
6998 loc += RELOC_SIZE (globals);
6999 }
7000 }
7001 else
7002 {
7003 /* If we are not emitting relocations for a
7004 general dynamic reference, then we must be in a
7005 static link or an executable link with the
7006 symbol binding locally. Mark it as belonging
7007 to module 1, the executable. */
7008 bfd_put_32 (output_bfd, 1,
7009 globals->sgot->contents + cur_off);
7010 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7011 globals->sgot->contents + cur_off + 4);
7012 }
7013
7014 cur_off += 8;
7015 }
7016
7017 if (tls_type & GOT_TLS_IE)
7018 {
7019 if (need_relocs)
7020 {
7021 if (indx == 0)
7022 outrel.r_addend = value - dtpoff_base (info);
7023 else
7024 outrel.r_addend = 0;
7025 outrel.r_offset = (globals->sgot->output_section->vma
7026 + globals->sgot->output_offset
7027 + cur_off);
7028 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7029
7030 if (globals->use_rel)
7031 bfd_put_32 (output_bfd, outrel.r_addend,
7032 globals->sgot->contents + cur_off);
7033
7034 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7035 globals->srelgot->reloc_count++;
7036 loc += RELOC_SIZE (globals);
7037 }
7038 else
7039 bfd_put_32 (output_bfd, tpoff (info, value),
7040 globals->sgot->contents + cur_off);
7041 cur_off += 4;
7042 }
7043
7044 if (h != NULL)
7045 h->got.offset |= 1;
7046 else
7047 local_got_offsets[r_symndx] |= 1;
7048 }
7049
7050 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7051 off += 8;
7052 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7053 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7054
7055 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7056 contents, rel->r_offset, value,
7057 rel->r_addend);
7058 }
7059
7060 case R_ARM_TLS_LE32:
7061 if (info->shared)
7062 {
7063 (*_bfd_error_handler)
7064 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7065 input_bfd, input_section,
7066 (long) rel->r_offset, howto->name);
7067 return FALSE;
7068 }
7069 else
7070 value = tpoff (info, value);
7071
7072 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7073 contents, rel->r_offset, value,
7074 rel->r_addend);
7075
7076 case R_ARM_V4BX:
7077 if (globals->fix_v4bx)
7078 {
7079 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7080
7081 /* Ensure that we have a BX instruction. */
7082 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7083
7084 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7085 {
7086 /* Branch to veneer. */
7087 bfd_vma glue_addr;
7088 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7089 glue_addr -= input_section->output_section->vma
7090 + input_section->output_offset
7091 + rel->r_offset + 8;
7092 insn = (insn & 0xf0000000) | 0x0a000000
7093 | ((glue_addr >> 2) & 0x00ffffff);
7094 }
7095 else
7096 {
7097 /* Preserve Rm (lowest four bits) and the condition code
7098 (highest four bits). Other bits encode MOV PC,Rm. */
7099 insn = (insn & 0xf000000f) | 0x01a0f000;
7100 }
7101
7102 bfd_put_32 (input_bfd, insn, hit_data);
7103 }
7104 return bfd_reloc_ok;
7105
7106 case R_ARM_MOVW_ABS_NC:
7107 case R_ARM_MOVT_ABS:
7108 case R_ARM_MOVW_PREL_NC:
7109 case R_ARM_MOVT_PREL:
7110 /* Until we properly support segment-base-relative addressing then
7111 we assume the segment base to be zero, as for the group relocations.
7112 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7113 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7114 case R_ARM_MOVW_BREL_NC:
7115 case R_ARM_MOVW_BREL:
7116 case R_ARM_MOVT_BREL:
7117 {
7118 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7119
7120 if (globals->use_rel)
7121 {
7122 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7123 signed_addend = (addend ^ 0x8000) - 0x8000;
7124 }
7125
7126 value += signed_addend;
7127
7128 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7129 value -= (input_section->output_section->vma
7130 + input_section->output_offset + rel->r_offset);
7131
7132 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7133 return bfd_reloc_overflow;
7134
7135 if (sym_flags == STT_ARM_TFUNC)
7136 value |= 1;
7137
7138 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7139 || r_type == R_ARM_MOVT_BREL)
7140 value >>= 16;
7141
7142 insn &= 0xfff0f000;
7143 insn |= value & 0xfff;
7144 insn |= (value & 0xf000) << 4;
7145 bfd_put_32 (input_bfd, insn, hit_data);
7146 }
7147 return bfd_reloc_ok;
7148
7149 case R_ARM_THM_MOVW_ABS_NC:
7150 case R_ARM_THM_MOVT_ABS:
7151 case R_ARM_THM_MOVW_PREL_NC:
7152 case R_ARM_THM_MOVT_PREL:
7153 /* Until we properly support segment-base-relative addressing then
7154 we assume the segment base to be zero, as for the above relocations.
7155 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7156 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7157 as R_ARM_THM_MOVT_ABS. */
7158 case R_ARM_THM_MOVW_BREL_NC:
7159 case R_ARM_THM_MOVW_BREL:
7160 case R_ARM_THM_MOVT_BREL:
7161 {
7162 bfd_vma insn;
7163
7164 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7165 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7166
7167 if (globals->use_rel)
7168 {
7169 addend = ((insn >> 4) & 0xf000)
7170 | ((insn >> 15) & 0x0800)
7171 | ((insn >> 4) & 0x0700)
7172 | (insn & 0x00ff);
7173 signed_addend = (addend ^ 0x8000) - 0x8000;
7174 }
7175
7176 value += signed_addend;
7177
7178 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7179 value -= (input_section->output_section->vma
7180 + input_section->output_offset + rel->r_offset);
7181
7182 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7183 return bfd_reloc_overflow;
7184
7185 if (sym_flags == STT_ARM_TFUNC)
7186 value |= 1;
7187
7188 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7189 || r_type == R_ARM_THM_MOVT_BREL)
7190 value >>= 16;
7191
7192 insn &= 0xfbf08f00;
7193 insn |= (value & 0xf000) << 4;
7194 insn |= (value & 0x0800) << 15;
7195 insn |= (value & 0x0700) << 4;
7196 insn |= (value & 0x00ff);
7197
7198 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7199 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7200 }
7201 return bfd_reloc_ok;
7202
7203 case R_ARM_ALU_PC_G0_NC:
7204 case R_ARM_ALU_PC_G1_NC:
7205 case R_ARM_ALU_PC_G0:
7206 case R_ARM_ALU_PC_G1:
7207 case R_ARM_ALU_PC_G2:
7208 case R_ARM_ALU_SB_G0_NC:
7209 case R_ARM_ALU_SB_G1_NC:
7210 case R_ARM_ALU_SB_G0:
7211 case R_ARM_ALU_SB_G1:
7212 case R_ARM_ALU_SB_G2:
7213 {
7214 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7215 bfd_vma pc = input_section->output_section->vma
7216 + input_section->output_offset + rel->r_offset;
7217 /* sb should be the origin of the *segment* containing the symbol.
7218 It is not clear how to obtain this OS-dependent value, so we
7219 make an arbitrary choice of zero. */
7220 bfd_vma sb = 0;
7221 bfd_vma residual;
7222 bfd_vma g_n;
7223 bfd_signed_vma signed_value;
7224 int group = 0;
7225
7226 /* Determine which group of bits to select. */
7227 switch (r_type)
7228 {
7229 case R_ARM_ALU_PC_G0_NC:
7230 case R_ARM_ALU_PC_G0:
7231 case R_ARM_ALU_SB_G0_NC:
7232 case R_ARM_ALU_SB_G0:
7233 group = 0;
7234 break;
7235
7236 case R_ARM_ALU_PC_G1_NC:
7237 case R_ARM_ALU_PC_G1:
7238 case R_ARM_ALU_SB_G1_NC:
7239 case R_ARM_ALU_SB_G1:
7240 group = 1;
7241 break;
7242
7243 case R_ARM_ALU_PC_G2:
7244 case R_ARM_ALU_SB_G2:
7245 group = 2;
7246 break;
7247
7248 default:
7249 abort ();
7250 }
7251
7252 /* If REL, extract the addend from the insn. If RELA, it will
7253 have already been fetched for us. */
7254 if (globals->use_rel)
7255 {
7256 int negative;
7257 bfd_vma constant = insn & 0xff;
7258 bfd_vma rotation = (insn & 0xf00) >> 8;
7259
7260 if (rotation == 0)
7261 signed_addend = constant;
7262 else
7263 {
7264 /* Compensate for the fact that in the instruction, the
7265 rotation is stored in multiples of 2 bits. */
7266 rotation *= 2;
7267
7268 /* Rotate "constant" right by "rotation" bits. */
7269 signed_addend = (constant >> rotation) |
7270 (constant << (8 * sizeof (bfd_vma) - rotation));
7271 }
7272
7273 /* Determine if the instruction is an ADD or a SUB.
7274 (For REL, this determines the sign of the addend.) */
7275 negative = identify_add_or_sub (insn);
7276 if (negative == 0)
7277 {
7278 (*_bfd_error_handler)
7279 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7280 input_bfd, input_section,
7281 (long) rel->r_offset, howto->name);
7282 return bfd_reloc_overflow;
7283 }
7284
7285 signed_addend *= negative;
7286 }
7287
7288 /* Compute the value (X) to go in the place. */
7289 if (r_type == R_ARM_ALU_PC_G0_NC
7290 || r_type == R_ARM_ALU_PC_G1_NC
7291 || r_type == R_ARM_ALU_PC_G0
7292 || r_type == R_ARM_ALU_PC_G1
7293 || r_type == R_ARM_ALU_PC_G2)
7294 /* PC relative. */
7295 signed_value = value - pc + signed_addend;
7296 else
7297 /* Section base relative. */
7298 signed_value = value - sb + signed_addend;
7299
7300 /* If the target symbol is a Thumb function, then set the
7301 Thumb bit in the address. */
7302 if (sym_flags == STT_ARM_TFUNC)
7303 signed_value |= 1;
7304
7305 /* Calculate the value of the relevant G_n, in encoded
7306 constant-with-rotation format. */
7307 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7308 &residual);
7309
7310 /* Check for overflow if required. */
7311 if ((r_type == R_ARM_ALU_PC_G0
7312 || r_type == R_ARM_ALU_PC_G1
7313 || r_type == R_ARM_ALU_PC_G2
7314 || r_type == R_ARM_ALU_SB_G0
7315 || r_type == R_ARM_ALU_SB_G1
7316 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7317 {
7318 (*_bfd_error_handler)
7319 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7320 input_bfd, input_section,
7321 (long) rel->r_offset, abs (signed_value), howto->name);
7322 return bfd_reloc_overflow;
7323 }
7324
7325 /* Mask out the value and the ADD/SUB part of the opcode; take care
7326 not to destroy the S bit. */
7327 insn &= 0xff1ff000;
7328
7329 /* Set the opcode according to whether the value to go in the
7330 place is negative. */
7331 if (signed_value < 0)
7332 insn |= 1 << 22;
7333 else
7334 insn |= 1 << 23;
7335
7336 /* Encode the offset. */
7337 insn |= g_n;
7338
7339 bfd_put_32 (input_bfd, insn, hit_data);
7340 }
7341 return bfd_reloc_ok;
7342
7343 case R_ARM_LDR_PC_G0:
7344 case R_ARM_LDR_PC_G1:
7345 case R_ARM_LDR_PC_G2:
7346 case R_ARM_LDR_SB_G0:
7347 case R_ARM_LDR_SB_G1:
7348 case R_ARM_LDR_SB_G2:
7349 {
7350 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7351 bfd_vma pc = input_section->output_section->vma
7352 + input_section->output_offset + rel->r_offset;
7353 bfd_vma sb = 0; /* See note above. */
7354 bfd_vma residual;
7355 bfd_signed_vma signed_value;
7356 int group = 0;
7357
7358 /* Determine which groups of bits to calculate. */
7359 switch (r_type)
7360 {
7361 case R_ARM_LDR_PC_G0:
7362 case R_ARM_LDR_SB_G0:
7363 group = 0;
7364 break;
7365
7366 case R_ARM_LDR_PC_G1:
7367 case R_ARM_LDR_SB_G1:
7368 group = 1;
7369 break;
7370
7371 case R_ARM_LDR_PC_G2:
7372 case R_ARM_LDR_SB_G2:
7373 group = 2;
7374 break;
7375
7376 default:
7377 abort ();
7378 }
7379
7380 /* If REL, extract the addend from the insn. If RELA, it will
7381 have already been fetched for us. */
7382 if (globals->use_rel)
7383 {
7384 int negative = (insn & (1 << 23)) ? 1 : -1;
7385 signed_addend = negative * (insn & 0xfff);
7386 }
7387
7388 /* Compute the value (X) to go in the place. */
7389 if (r_type == R_ARM_LDR_PC_G0
7390 || r_type == R_ARM_LDR_PC_G1
7391 || r_type == R_ARM_LDR_PC_G2)
7392 /* PC relative. */
7393 signed_value = value - pc + signed_addend;
7394 else
7395 /* Section base relative. */
7396 signed_value = value - sb + signed_addend;
7397
7398 /* Calculate the value of the relevant G_{n-1} to obtain
7399 the residual at that stage. */
7400 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7401
7402 /* Check for overflow. */
7403 if (residual >= 0x1000)
7404 {
7405 (*_bfd_error_handler)
7406 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7407 input_bfd, input_section,
7408 (long) rel->r_offset, abs (signed_value), howto->name);
7409 return bfd_reloc_overflow;
7410 }
7411
7412 /* Mask out the value and U bit. */
7413 insn &= 0xff7ff000;
7414
7415 /* Set the U bit if the value to go in the place is non-negative. */
7416 if (signed_value >= 0)
7417 insn |= 1 << 23;
7418
7419 /* Encode the offset. */
7420 insn |= residual;
7421
7422 bfd_put_32 (input_bfd, insn, hit_data);
7423 }
7424 return bfd_reloc_ok;
7425
7426 case R_ARM_LDRS_PC_G0:
7427 case R_ARM_LDRS_PC_G1:
7428 case R_ARM_LDRS_PC_G2:
7429 case R_ARM_LDRS_SB_G0:
7430 case R_ARM_LDRS_SB_G1:
7431 case R_ARM_LDRS_SB_G2:
7432 {
7433 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7434 bfd_vma pc = input_section->output_section->vma
7435 + input_section->output_offset + rel->r_offset;
7436 bfd_vma sb = 0; /* See note above. */
7437 bfd_vma residual;
7438 bfd_signed_vma signed_value;
7439 int group = 0;
7440
7441 /* Determine which groups of bits to calculate. */
7442 switch (r_type)
7443 {
7444 case R_ARM_LDRS_PC_G0:
7445 case R_ARM_LDRS_SB_G0:
7446 group = 0;
7447 break;
7448
7449 case R_ARM_LDRS_PC_G1:
7450 case R_ARM_LDRS_SB_G1:
7451 group = 1;
7452 break;
7453
7454 case R_ARM_LDRS_PC_G2:
7455 case R_ARM_LDRS_SB_G2:
7456 group = 2;
7457 break;
7458
7459 default:
7460 abort ();
7461 }
7462
7463 /* If REL, extract the addend from the insn. If RELA, it will
7464 have already been fetched for us. */
7465 if (globals->use_rel)
7466 {
7467 int negative = (insn & (1 << 23)) ? 1 : -1;
7468 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7469 }
7470
7471 /* Compute the value (X) to go in the place. */
7472 if (r_type == R_ARM_LDRS_PC_G0
7473 || r_type == R_ARM_LDRS_PC_G1
7474 || r_type == R_ARM_LDRS_PC_G2)
7475 /* PC relative. */
7476 signed_value = value - pc + signed_addend;
7477 else
7478 /* Section base relative. */
7479 signed_value = value - sb + signed_addend;
7480
7481 /* Calculate the value of the relevant G_{n-1} to obtain
7482 the residual at that stage. */
7483 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7484
7485 /* Check for overflow. */
7486 if (residual >= 0x100)
7487 {
7488 (*_bfd_error_handler)
7489 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7490 input_bfd, input_section,
7491 (long) rel->r_offset, abs (signed_value), howto->name);
7492 return bfd_reloc_overflow;
7493 }
7494
7495 /* Mask out the value and U bit. */
7496 insn &= 0xff7ff0f0;
7497
7498 /* Set the U bit if the value to go in the place is non-negative. */
7499 if (signed_value >= 0)
7500 insn |= 1 << 23;
7501
7502 /* Encode the offset. */
7503 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7504
7505 bfd_put_32 (input_bfd, insn, hit_data);
7506 }
7507 return bfd_reloc_ok;
7508
7509 case R_ARM_LDC_PC_G0:
7510 case R_ARM_LDC_PC_G1:
7511 case R_ARM_LDC_PC_G2:
7512 case R_ARM_LDC_SB_G0:
7513 case R_ARM_LDC_SB_G1:
7514 case R_ARM_LDC_SB_G2:
7515 {
7516 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7517 bfd_vma pc = input_section->output_section->vma
7518 + input_section->output_offset + rel->r_offset;
7519 bfd_vma sb = 0; /* See note above. */
7520 bfd_vma residual;
7521 bfd_signed_vma signed_value;
7522 int group = 0;
7523
7524 /* Determine which groups of bits to calculate. */
7525 switch (r_type)
7526 {
7527 case R_ARM_LDC_PC_G0:
7528 case R_ARM_LDC_SB_G0:
7529 group = 0;
7530 break;
7531
7532 case R_ARM_LDC_PC_G1:
7533 case R_ARM_LDC_SB_G1:
7534 group = 1;
7535 break;
7536
7537 case R_ARM_LDC_PC_G2:
7538 case R_ARM_LDC_SB_G2:
7539 group = 2;
7540 break;
7541
7542 default:
7543 abort ();
7544 }
7545
7546 /* If REL, extract the addend from the insn. If RELA, it will
7547 have already been fetched for us. */
7548 if (globals->use_rel)
7549 {
7550 int negative = (insn & (1 << 23)) ? 1 : -1;
7551 signed_addend = negative * ((insn & 0xff) << 2);
7552 }
7553
7554 /* Compute the value (X) to go in the place. */
7555 if (r_type == R_ARM_LDC_PC_G0
7556 || r_type == R_ARM_LDC_PC_G1
7557 || r_type == R_ARM_LDC_PC_G2)
7558 /* PC relative. */
7559 signed_value = value - pc + signed_addend;
7560 else
7561 /* Section base relative. */
7562 signed_value = value - sb + signed_addend;
7563
7564 /* Calculate the value of the relevant G_{n-1} to obtain
7565 the residual at that stage. */
7566 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7567
7568 /* Check for overflow. (The absolute value to go in the place must be
7569 divisible by four and, after having been divided by four, must
7570 fit in eight bits.) */
7571 if ((residual & 0x3) != 0 || residual >= 0x400)
7572 {
7573 (*_bfd_error_handler)
7574 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7575 input_bfd, input_section,
7576 (long) rel->r_offset, abs (signed_value), howto->name);
7577 return bfd_reloc_overflow;
7578 }
7579
7580 /* Mask out the value and U bit. */
7581 insn &= 0xff7fff00;
7582
7583 /* Set the U bit if the value to go in the place is non-negative. */
7584 if (signed_value >= 0)
7585 insn |= 1 << 23;
7586
7587 /* Encode the offset. */
7588 insn |= residual >> 2;
7589
7590 bfd_put_32 (input_bfd, insn, hit_data);
7591 }
7592 return bfd_reloc_ok;
7593
7594 default:
7595 return bfd_reloc_notsupported;
7596 }
7597 }
7598
7599 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7600 static void
7601 arm_add_to_rel (bfd * abfd,
7602 bfd_byte * address,
7603 reloc_howto_type * howto,
7604 bfd_signed_vma increment)
7605 {
7606 bfd_signed_vma addend;
7607
7608 if (howto->type == R_ARM_THM_CALL
7609 || howto->type == R_ARM_THM_JUMP24)
7610 {
7611 int upper_insn, lower_insn;
7612 int upper, lower;
7613
7614 upper_insn = bfd_get_16 (abfd, address);
7615 lower_insn = bfd_get_16 (abfd, address + 2);
7616 upper = upper_insn & 0x7ff;
7617 lower = lower_insn & 0x7ff;
7618
7619 addend = (upper << 12) | (lower << 1);
7620 addend += increment;
7621 addend >>= 1;
7622
7623 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7624 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7625
7626 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7627 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7628 }
7629 else
7630 {
7631 bfd_vma contents;
7632
7633 contents = bfd_get_32 (abfd, address);
7634
7635 /* Get the (signed) value from the instruction. */
7636 addend = contents & howto->src_mask;
7637 if (addend & ((howto->src_mask + 1) >> 1))
7638 {
7639 bfd_signed_vma mask;
7640
7641 mask = -1;
7642 mask &= ~ howto->src_mask;
7643 addend |= mask;
7644 }
7645
7646 /* Add in the increment, (which is a byte value). */
7647 switch (howto->type)
7648 {
7649 default:
7650 addend += increment;
7651 break;
7652
7653 case R_ARM_PC24:
7654 case R_ARM_PLT32:
7655 case R_ARM_CALL:
7656 case R_ARM_JUMP24:
7657 addend <<= howto->size;
7658 addend += increment;
7659
7660 /* Should we check for overflow here ? */
7661
7662 /* Drop any undesired bits. */
7663 addend >>= howto->rightshift;
7664 break;
7665 }
7666
7667 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7668
7669 bfd_put_32 (abfd, contents, address);
7670 }
7671 }
7672
7673 #define IS_ARM_TLS_RELOC(R_TYPE) \
7674 ((R_TYPE) == R_ARM_TLS_GD32 \
7675 || (R_TYPE) == R_ARM_TLS_LDO32 \
7676 || (R_TYPE) == R_ARM_TLS_LDM32 \
7677 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7678 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7679 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7680 || (R_TYPE) == R_ARM_TLS_LE32 \
7681 || (R_TYPE) == R_ARM_TLS_IE32)
7682
7683 /* Relocate an ARM ELF section. */
7684
7685 static bfd_boolean
7686 elf32_arm_relocate_section (bfd * output_bfd,
7687 struct bfd_link_info * info,
7688 bfd * input_bfd,
7689 asection * input_section,
7690 bfd_byte * contents,
7691 Elf_Internal_Rela * relocs,
7692 Elf_Internal_Sym * local_syms,
7693 asection ** local_sections)
7694 {
7695 Elf_Internal_Shdr *symtab_hdr;
7696 struct elf_link_hash_entry **sym_hashes;
7697 Elf_Internal_Rela *rel;
7698 Elf_Internal_Rela *relend;
7699 const char *name;
7700 struct elf32_arm_link_hash_table * globals;
7701
7702 globals = elf32_arm_hash_table (info);
7703
7704 symtab_hdr = & elf_symtab_hdr (input_bfd);
7705 sym_hashes = elf_sym_hashes (input_bfd);
7706
7707 rel = relocs;
7708 relend = relocs + input_section->reloc_count;
7709 for (; rel < relend; rel++)
7710 {
7711 int r_type;
7712 reloc_howto_type * howto;
7713 unsigned long r_symndx;
7714 Elf_Internal_Sym * sym;
7715 asection * sec;
7716 struct elf_link_hash_entry * h;
7717 bfd_vma relocation;
7718 bfd_reloc_status_type r;
7719 arelent bfd_reloc;
7720 char sym_type;
7721 bfd_boolean unresolved_reloc = FALSE;
7722 char *error_message = NULL;
7723
7724 r_symndx = ELF32_R_SYM (rel->r_info);
7725 r_type = ELF32_R_TYPE (rel->r_info);
7726 r_type = arm_real_reloc_type (globals, r_type);
7727
7728 if ( r_type == R_ARM_GNU_VTENTRY
7729 || r_type == R_ARM_GNU_VTINHERIT)
7730 continue;
7731
7732 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7733 howto = bfd_reloc.howto;
7734
7735 h = NULL;
7736 sym = NULL;
7737 sec = NULL;
7738
7739 if (r_symndx < symtab_hdr->sh_info)
7740 {
7741 sym = local_syms + r_symndx;
7742 sym_type = ELF32_ST_TYPE (sym->st_info);
7743 sec = local_sections[r_symndx];
7744 if (globals->use_rel)
7745 {
7746 relocation = (sec->output_section->vma
7747 + sec->output_offset
7748 + sym->st_value);
7749 if (!info->relocatable
7750 && (sec->flags & SEC_MERGE)
7751 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7752 {
7753 asection *msec;
7754 bfd_vma addend, value;
7755
7756 switch (r_type)
7757 {
7758 case R_ARM_MOVW_ABS_NC:
7759 case R_ARM_MOVT_ABS:
7760 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7761 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7762 addend = (addend ^ 0x8000) - 0x8000;
7763 break;
7764
7765 case R_ARM_THM_MOVW_ABS_NC:
7766 case R_ARM_THM_MOVT_ABS:
7767 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7768 << 16;
7769 value |= bfd_get_16 (input_bfd,
7770 contents + rel->r_offset + 2);
7771 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7772 | ((value & 0x04000000) >> 15);
7773 addend = (addend ^ 0x8000) - 0x8000;
7774 break;
7775
7776 default:
7777 if (howto->rightshift
7778 || (howto->src_mask & (howto->src_mask + 1)))
7779 {
7780 (*_bfd_error_handler)
7781 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7782 input_bfd, input_section,
7783 (long) rel->r_offset, howto->name);
7784 return FALSE;
7785 }
7786
7787 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7788
7789 /* Get the (signed) value from the instruction. */
7790 addend = value & howto->src_mask;
7791 if (addend & ((howto->src_mask + 1) >> 1))
7792 {
7793 bfd_signed_vma mask;
7794
7795 mask = -1;
7796 mask &= ~ howto->src_mask;
7797 addend |= mask;
7798 }
7799 break;
7800 }
7801
7802 msec = sec;
7803 addend =
7804 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7805 - relocation;
7806 addend += msec->output_section->vma + msec->output_offset;
7807
7808 /* Cases here must match those in the preceeding
7809 switch statement. */
7810 switch (r_type)
7811 {
7812 case R_ARM_MOVW_ABS_NC:
7813 case R_ARM_MOVT_ABS:
7814 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7815 | (addend & 0xfff);
7816 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7817 break;
7818
7819 case R_ARM_THM_MOVW_ABS_NC:
7820 case R_ARM_THM_MOVT_ABS:
7821 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7822 | (addend & 0xff) | ((addend & 0x0800) << 15);
7823 bfd_put_16 (input_bfd, value >> 16,
7824 contents + rel->r_offset);
7825 bfd_put_16 (input_bfd, value,
7826 contents + rel->r_offset + 2);
7827 break;
7828
7829 default:
7830 value = (value & ~ howto->dst_mask)
7831 | (addend & howto->dst_mask);
7832 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7833 break;
7834 }
7835 }
7836 }
7837 else
7838 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7839 }
7840 else
7841 {
7842 bfd_boolean warned;
7843
7844 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7845 r_symndx, symtab_hdr, sym_hashes,
7846 h, sec, relocation,
7847 unresolved_reloc, warned);
7848
7849 sym_type = h->type;
7850 }
7851
7852 if (sec != NULL && elf_discarded_section (sec))
7853 {
7854 /* For relocs against symbols from removed linkonce sections,
7855 or sections discarded by a linker script, we just want the
7856 section contents zeroed. Avoid any special processing. */
7857 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7858 rel->r_info = 0;
7859 rel->r_addend = 0;
7860 continue;
7861 }
7862
7863 if (info->relocatable)
7864 {
7865 /* This is a relocatable link. We don't have to change
7866 anything, unless the reloc is against a section symbol,
7867 in which case we have to adjust according to where the
7868 section symbol winds up in the output section. */
7869 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7870 {
7871 if (globals->use_rel)
7872 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7873 howto, (bfd_signed_vma) sec->output_offset);
7874 else
7875 rel->r_addend += sec->output_offset;
7876 }
7877 continue;
7878 }
7879
7880 if (h != NULL)
7881 name = h->root.root.string;
7882 else
7883 {
7884 name = (bfd_elf_string_from_elf_section
7885 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7886 if (name == NULL || *name == '\0')
7887 name = bfd_section_name (input_bfd, sec);
7888 }
7889
7890 if (r_symndx != 0
7891 && r_type != R_ARM_NONE
7892 && (h == NULL
7893 || h->root.type == bfd_link_hash_defined
7894 || h->root.type == bfd_link_hash_defweak)
7895 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7896 {
7897 (*_bfd_error_handler)
7898 ((sym_type == STT_TLS
7899 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7900 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7901 input_bfd,
7902 input_section,
7903 (long) rel->r_offset,
7904 howto->name,
7905 name);
7906 }
7907
7908 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7909 input_section, contents, rel,
7910 relocation, info, sec, name,
7911 (h ? ELF_ST_TYPE (h->type) :
7912 ELF_ST_TYPE (sym->st_info)), h,
7913 &unresolved_reloc, &error_message);
7914
7915 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7916 because such sections are not SEC_ALLOC and thus ld.so will
7917 not process them. */
7918 if (unresolved_reloc
7919 && !((input_section->flags & SEC_DEBUGGING) != 0
7920 && h->def_dynamic))
7921 {
7922 (*_bfd_error_handler)
7923 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7924 input_bfd,
7925 input_section,
7926 (long) rel->r_offset,
7927 howto->name,
7928 h->root.root.string);
7929 return FALSE;
7930 }
7931
7932 if (r != bfd_reloc_ok)
7933 {
7934 switch (r)
7935 {
7936 case bfd_reloc_overflow:
7937 /* If the overflowing reloc was to an undefined symbol,
7938 we have already printed one error message and there
7939 is no point complaining again. */
7940 if ((! h ||
7941 h->root.type != bfd_link_hash_undefined)
7942 && (!((*info->callbacks->reloc_overflow)
7943 (info, (h ? &h->root : NULL), name, howto->name,
7944 (bfd_vma) 0, input_bfd, input_section,
7945 rel->r_offset))))
7946 return FALSE;
7947 break;
7948
7949 case bfd_reloc_undefined:
7950 if (!((*info->callbacks->undefined_symbol)
7951 (info, name, input_bfd, input_section,
7952 rel->r_offset, TRUE)))
7953 return FALSE;
7954 break;
7955
7956 case bfd_reloc_outofrange:
7957 error_message = _("out of range");
7958 goto common_error;
7959
7960 case bfd_reloc_notsupported:
7961 error_message = _("unsupported relocation");
7962 goto common_error;
7963
7964 case bfd_reloc_dangerous:
7965 /* error_message should already be set. */
7966 goto common_error;
7967
7968 default:
7969 error_message = _("unknown error");
7970 /* fall through */
7971
7972 common_error:
7973 BFD_ASSERT (error_message != NULL);
7974 if (!((*info->callbacks->reloc_dangerous)
7975 (info, error_message, input_bfd, input_section,
7976 rel->r_offset)))
7977 return FALSE;
7978 break;
7979 }
7980 }
7981 }
7982
7983 return TRUE;
7984 }
7985
7986 /* Set the right machine number. */
7987
7988 static bfd_boolean
7989 elf32_arm_object_p (bfd *abfd)
7990 {
7991 unsigned int mach;
7992
7993 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
7994
7995 if (mach != bfd_mach_arm_unknown)
7996 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
7997
7998 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
7999 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8000
8001 else
8002 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8003
8004 return TRUE;
8005 }
8006
8007 /* Function to keep ARM specific flags in the ELF header. */
8008
8009 static bfd_boolean
8010 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8011 {
8012 if (elf_flags_init (abfd)
8013 && elf_elfheader (abfd)->e_flags != flags)
8014 {
8015 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8016 {
8017 if (flags & EF_ARM_INTERWORK)
8018 (*_bfd_error_handler)
8019 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8020 abfd);
8021 else
8022 _bfd_error_handler
8023 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8024 abfd);
8025 }
8026 }
8027 else
8028 {
8029 elf_elfheader (abfd)->e_flags = flags;
8030 elf_flags_init (abfd) = TRUE;
8031 }
8032
8033 return TRUE;
8034 }
8035
8036 /* Copy backend specific data from one object module to another. */
8037
8038 static bfd_boolean
8039 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8040 {
8041 flagword in_flags;
8042 flagword out_flags;
8043
8044 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8045 return TRUE;
8046
8047 in_flags = elf_elfheader (ibfd)->e_flags;
8048 out_flags = elf_elfheader (obfd)->e_flags;
8049
8050 if (elf_flags_init (obfd)
8051 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8052 && in_flags != out_flags)
8053 {
8054 /* Cannot mix APCS26 and APCS32 code. */
8055 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8056 return FALSE;
8057
8058 /* Cannot mix float APCS and non-float APCS code. */
8059 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8060 return FALSE;
8061
8062 /* If the src and dest have different interworking flags
8063 then turn off the interworking bit. */
8064 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8065 {
8066 if (out_flags & EF_ARM_INTERWORK)
8067 _bfd_error_handler
8068 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8069 obfd, ibfd);
8070
8071 in_flags &= ~EF_ARM_INTERWORK;
8072 }
8073
8074 /* Likewise for PIC, though don't warn for this case. */
8075 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8076 in_flags &= ~EF_ARM_PIC;
8077 }
8078
8079 elf_elfheader (obfd)->e_flags = in_flags;
8080 elf_flags_init (obfd) = TRUE;
8081
8082 /* Also copy the EI_OSABI field. */
8083 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8084 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8085
8086 /* Copy object attributes. */
8087 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8088
8089 return TRUE;
8090 }
8091
8092 /* Values for Tag_ABI_PCS_R9_use. */
8093 enum
8094 {
8095 AEABI_R9_V6,
8096 AEABI_R9_SB,
8097 AEABI_R9_TLS,
8098 AEABI_R9_unused
8099 };
8100
8101 /* Values for Tag_ABI_PCS_RW_data. */
8102 enum
8103 {
8104 AEABI_PCS_RW_data_absolute,
8105 AEABI_PCS_RW_data_PCrel,
8106 AEABI_PCS_RW_data_SBrel,
8107 AEABI_PCS_RW_data_unused
8108 };
8109
8110 /* Values for Tag_ABI_enum_size. */
8111 enum
8112 {
8113 AEABI_enum_unused,
8114 AEABI_enum_short,
8115 AEABI_enum_wide,
8116 AEABI_enum_forced_wide
8117 };
8118
8119 /* Determine whether an object attribute tag takes an integer, a
8120 string or both. */
8121
8122 static int
8123 elf32_arm_obj_attrs_arg_type (int tag)
8124 {
8125 if (tag == Tag_compatibility)
8126 return 3;
8127 else if (tag == 4 || tag == 5)
8128 return 2;
8129 else if (tag < 32)
8130 return 1;
8131 else
8132 return (tag & 1) != 0 ? 2 : 1;
8133 }
8134
8135 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8136 are conflicting attributes. */
8137
8138 static bfd_boolean
8139 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8140 {
8141 obj_attribute *in_attr;
8142 obj_attribute *out_attr;
8143 obj_attribute_list *in_list;
8144 /* Some tags have 0 = don't care, 1 = strong requirement,
8145 2 = weak requirement. */
8146 static const int order_312[3] = {3, 1, 2};
8147 /* For use with Tag_VFP_arch. */
8148 static const int order_01243[5] = {0, 1, 2, 4, 3};
8149 int i;
8150
8151 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8152 {
8153 /* This is the first object. Copy the attributes. */
8154 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8155
8156 /* Use the Tag_null value to indicate the attributes have been
8157 initialized. */
8158 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8159
8160 return TRUE;
8161 }
8162
8163 in_attr = elf_known_obj_attributes_proc (ibfd);
8164 out_attr = elf_known_obj_attributes_proc (obfd);
8165 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8166 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8167 {
8168 /* Ignore mismatches if teh object doesn't use floating point. */
8169 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8170 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8171 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8172 {
8173 _bfd_error_handler
8174 (_("ERROR: %B uses VFP register arguments, %B does not"),
8175 ibfd, obfd);
8176 return FALSE;
8177 }
8178 }
8179
8180 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8181 {
8182 /* Merge this attribute with existing attributes. */
8183 switch (i)
8184 {
8185 case Tag_CPU_raw_name:
8186 case Tag_CPU_name:
8187 /* Use whichever has the greatest architecture requirements. We
8188 won't necessarily have both the above tags, so make sure input
8189 name is non-NULL. */
8190 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
8191 && in_attr[i].s)
8192 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
8193 break;
8194
8195 case Tag_ABI_optimization_goals:
8196 case Tag_ABI_FP_optimization_goals:
8197 /* Use the first value seen. */
8198 break;
8199
8200 case Tag_CPU_arch:
8201 case Tag_ARM_ISA_use:
8202 case Tag_THUMB_ISA_use:
8203 case Tag_WMMX_arch:
8204 case Tag_NEON_arch:
8205 /* ??? Do NEON and WMMX conflict? */
8206 case Tag_ABI_FP_rounding:
8207 case Tag_ABI_FP_denormal:
8208 case Tag_ABI_FP_exceptions:
8209 case Tag_ABI_FP_user_exceptions:
8210 case Tag_ABI_FP_number_model:
8211 case Tag_ABI_align8_preserved:
8212 case Tag_ABI_HardFP_use:
8213 /* Use the largest value specified. */
8214 if (in_attr[i].i > out_attr[i].i)
8215 out_attr[i].i = in_attr[i].i;
8216 break;
8217
8218 case Tag_CPU_arch_profile:
8219 /* Warn if conflicting architecture profiles used. */
8220 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
8221 {
8222 _bfd_error_handler
8223 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8224 ibfd, in_attr[i].i, out_attr[i].i);
8225 return FALSE;
8226 }
8227 if (in_attr[i].i)
8228 out_attr[i].i = in_attr[i].i;
8229 break;
8230 case Tag_VFP_arch:
8231 if (in_attr[i].i > 4 || out_attr[i].i > 4
8232 || order_01243[in_attr[i].i] > order_01243[out_attr[i].i])
8233 out_attr[i].i = in_attr[i].i;
8234 break;
8235 case Tag_PCS_config:
8236 if (out_attr[i].i == 0)
8237 out_attr[i].i = in_attr[i].i;
8238 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8239 {
8240 /* It's sometimes ok to mix different configs, so this is only
8241 a warning. */
8242 _bfd_error_handler
8243 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8244 }
8245 break;
8246 case Tag_ABI_PCS_R9_use:
8247 if (in_attr[i].i != out_attr[i].i
8248 && out_attr[i].i != AEABI_R9_unused
8249 && in_attr[i].i != AEABI_R9_unused)
8250 {
8251 _bfd_error_handler
8252 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8253 return FALSE;
8254 }
8255 if (out_attr[i].i == AEABI_R9_unused)
8256 out_attr[i].i = in_attr[i].i;
8257 break;
8258 case Tag_ABI_PCS_RW_data:
8259 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8260 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8261 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8262 {
8263 _bfd_error_handler
8264 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8265 ibfd);
8266 return FALSE;
8267 }
8268 /* Use the smallest value specified. */
8269 if (in_attr[i].i < out_attr[i].i)
8270 out_attr[i].i = in_attr[i].i;
8271 break;
8272 case Tag_ABI_PCS_RO_data:
8273 /* Use the smallest value specified. */
8274 if (in_attr[i].i < out_attr[i].i)
8275 out_attr[i].i = in_attr[i].i;
8276 break;
8277 case Tag_ABI_PCS_GOT_use:
8278 if (in_attr[i].i > 2 || out_attr[i].i > 2
8279 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8280 out_attr[i].i = in_attr[i].i;
8281 break;
8282 case Tag_ABI_PCS_wchar_t:
8283 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
8284 {
8285 _bfd_error_handler
8286 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
8287 return FALSE;
8288 }
8289 if (in_attr[i].i)
8290 out_attr[i].i = in_attr[i].i;
8291 break;
8292 case Tag_ABI_align8_needed:
8293 /* ??? Check against Tag_ABI_align8_preserved. */
8294 if (in_attr[i].i > 2 || out_attr[i].i > 2
8295 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8296 out_attr[i].i = in_attr[i].i;
8297 break;
8298 case Tag_ABI_enum_size:
8299 if (in_attr[i].i != AEABI_enum_unused)
8300 {
8301 if (out_attr[i].i == AEABI_enum_unused
8302 || out_attr[i].i == AEABI_enum_forced_wide)
8303 {
8304 /* The existing object is compatible with anything.
8305 Use whatever requirements the new object has. */
8306 out_attr[i].i = in_attr[i].i;
8307 }
8308 else if (in_attr[i].i != AEABI_enum_forced_wide
8309 && out_attr[i].i != in_attr[i].i
8310 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8311 {
8312 const char *aeabi_enum_names[] =
8313 { "", "variable-size", "32-bit", "" };
8314 _bfd_error_handler
8315 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8316 ibfd, aeabi_enum_names[in_attr[i].i],
8317 aeabi_enum_names[out_attr[i].i]);
8318 }
8319 }
8320 break;
8321 case Tag_ABI_VFP_args:
8322 /* Aready done. */
8323 break;
8324 case Tag_ABI_WMMX_args:
8325 if (in_attr[i].i != out_attr[i].i)
8326 {
8327 _bfd_error_handler
8328 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8329 ibfd, obfd);
8330 return FALSE;
8331 }
8332 break;
8333 default: /* All known attributes should be explicitly covered. */
8334 abort ();
8335 }
8336
8337 if (in_attr[i].type && !out_attr[i].type)
8338 switch (in_attr[i].type)
8339 {
8340 case 1:
8341 if (out_attr[i].i)
8342 out_attr[i].type = 1;
8343 break;
8344
8345 case 2:
8346 if (out_attr[i].s)
8347 out_attr[i].type = 2;
8348 break;
8349
8350 default:
8351 abort ();
8352 }
8353 }
8354
8355 /* Merge Tag_compatibility attributes and any common GNU ones. */
8356 _bfd_elf_merge_object_attributes (ibfd, obfd);
8357
8358 /* Check for any attributes not known on ARM. */
8359 in_list = elf_other_obj_attributes_proc (ibfd);
8360 while (in_list && in_list->tag == Tag_compatibility)
8361 in_list = in_list->next;
8362
8363 for (; in_list; in_list = in_list->next)
8364 {
8365 if ((in_list->tag & 128) < 64)
8366 {
8367 _bfd_error_handler
8368 (_("Warning: %B: Unknown EABI object attribute %d"),
8369 ibfd, in_list->tag);
8370 break;
8371 }
8372 }
8373 return TRUE;
8374 }
8375
8376
8377 /* Return TRUE if the two EABI versions are incompatible. */
8378
8379 static bfd_boolean
8380 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8381 {
8382 /* v4 and v5 are the same spec before and after it was released,
8383 so allow mixing them. */
8384 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8385 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8386 return TRUE;
8387
8388 return (iver == over);
8389 }
8390
8391 /* Merge backend specific data from an object file to the output
8392 object file when linking. */
8393
8394 static bfd_boolean
8395 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8396 {
8397 flagword out_flags;
8398 flagword in_flags;
8399 bfd_boolean flags_compatible = TRUE;
8400 asection *sec;
8401
8402 /* Check if we have the same endianess. */
8403 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8404 return FALSE;
8405
8406 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8407 return TRUE;
8408
8409 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8410 return FALSE;
8411
8412 /* The input BFD must have had its flags initialised. */
8413 /* The following seems bogus to me -- The flags are initialized in
8414 the assembler but I don't think an elf_flags_init field is
8415 written into the object. */
8416 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8417
8418 in_flags = elf_elfheader (ibfd)->e_flags;
8419 out_flags = elf_elfheader (obfd)->e_flags;
8420
8421 if (!elf_flags_init (obfd))
8422 {
8423 /* If the input is the default architecture and had the default
8424 flags then do not bother setting the flags for the output
8425 architecture, instead allow future merges to do this. If no
8426 future merges ever set these flags then they will retain their
8427 uninitialised values, which surprise surprise, correspond
8428 to the default values. */
8429 if (bfd_get_arch_info (ibfd)->the_default
8430 && elf_elfheader (ibfd)->e_flags == 0)
8431 return TRUE;
8432
8433 elf_flags_init (obfd) = TRUE;
8434 elf_elfheader (obfd)->e_flags = in_flags;
8435
8436 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8437 && bfd_get_arch_info (obfd)->the_default)
8438 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8439
8440 return TRUE;
8441 }
8442
8443 /* Determine what should happen if the input ARM architecture
8444 does not match the output ARM architecture. */
8445 if (! bfd_arm_merge_machines (ibfd, obfd))
8446 return FALSE;
8447
8448 /* Identical flags must be compatible. */
8449 if (in_flags == out_flags)
8450 return TRUE;
8451
8452 /* Check to see if the input BFD actually contains any sections. If
8453 not, its flags may not have been initialised either, but it
8454 cannot actually cause any incompatiblity. Do not short-circuit
8455 dynamic objects; their section list may be emptied by
8456 elf_link_add_object_symbols.
8457
8458 Also check to see if there are no code sections in the input.
8459 In this case there is no need to check for code specific flags.
8460 XXX - do we need to worry about floating-point format compatability
8461 in data sections ? */
8462 if (!(ibfd->flags & DYNAMIC))
8463 {
8464 bfd_boolean null_input_bfd = TRUE;
8465 bfd_boolean only_data_sections = TRUE;
8466
8467 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8468 {
8469 /* Ignore synthetic glue sections. */
8470 if (strcmp (sec->name, ".glue_7")
8471 && strcmp (sec->name, ".glue_7t"))
8472 {
8473 if ((bfd_get_section_flags (ibfd, sec)
8474 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8475 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8476 only_data_sections = FALSE;
8477
8478 null_input_bfd = FALSE;
8479 break;
8480 }
8481 }
8482
8483 if (null_input_bfd || only_data_sections)
8484 return TRUE;
8485 }
8486
8487 /* Complain about various flag mismatches. */
8488 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8489 EF_ARM_EABI_VERSION (out_flags)))
8490 {
8491 _bfd_error_handler
8492 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8493 ibfd, obfd,
8494 (in_flags & EF_ARM_EABIMASK) >> 24,
8495 (out_flags & EF_ARM_EABIMASK) >> 24);
8496 return FALSE;
8497 }
8498
8499 /* Not sure what needs to be checked for EABI versions >= 1. */
8500 /* VxWorks libraries do not use these flags. */
8501 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8502 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8503 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8504 {
8505 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8506 {
8507 _bfd_error_handler
8508 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8509 ibfd, obfd,
8510 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8511 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8512 flags_compatible = FALSE;
8513 }
8514
8515 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8516 {
8517 if (in_flags & EF_ARM_APCS_FLOAT)
8518 _bfd_error_handler
8519 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8520 ibfd, obfd);
8521 else
8522 _bfd_error_handler
8523 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8524 ibfd, obfd);
8525
8526 flags_compatible = FALSE;
8527 }
8528
8529 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
8530 {
8531 if (in_flags & EF_ARM_VFP_FLOAT)
8532 _bfd_error_handler
8533 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8534 ibfd, obfd);
8535 else
8536 _bfd_error_handler
8537 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8538 ibfd, obfd);
8539
8540 flags_compatible = FALSE;
8541 }
8542
8543 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
8544 {
8545 if (in_flags & EF_ARM_MAVERICK_FLOAT)
8546 _bfd_error_handler
8547 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8548 ibfd, obfd);
8549 else
8550 _bfd_error_handler
8551 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8552 ibfd, obfd);
8553
8554 flags_compatible = FALSE;
8555 }
8556
8557 #ifdef EF_ARM_SOFT_FLOAT
8558 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
8559 {
8560 /* We can allow interworking between code that is VFP format
8561 layout, and uses either soft float or integer regs for
8562 passing floating point arguments and results. We already
8563 know that the APCS_FLOAT flags match; similarly for VFP
8564 flags. */
8565 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
8566 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
8567 {
8568 if (in_flags & EF_ARM_SOFT_FLOAT)
8569 _bfd_error_handler
8570 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8571 ibfd, obfd);
8572 else
8573 _bfd_error_handler
8574 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8575 ibfd, obfd);
8576
8577 flags_compatible = FALSE;
8578 }
8579 }
8580 #endif
8581
8582 /* Interworking mismatch is only a warning. */
8583 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8584 {
8585 if (in_flags & EF_ARM_INTERWORK)
8586 {
8587 _bfd_error_handler
8588 (_("Warning: %B supports interworking, whereas %B does not"),
8589 ibfd, obfd);
8590 }
8591 else
8592 {
8593 _bfd_error_handler
8594 (_("Warning: %B does not support interworking, whereas %B does"),
8595 ibfd, obfd);
8596 }
8597 }
8598 }
8599
8600 return flags_compatible;
8601 }
8602
8603 /* Display the flags field. */
8604
8605 static bfd_boolean
8606 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
8607 {
8608 FILE * file = (FILE *) ptr;
8609 unsigned long flags;
8610
8611 BFD_ASSERT (abfd != NULL && ptr != NULL);
8612
8613 /* Print normal ELF private data. */
8614 _bfd_elf_print_private_bfd_data (abfd, ptr);
8615
8616 flags = elf_elfheader (abfd)->e_flags;
8617 /* Ignore init flag - it may not be set, despite the flags field
8618 containing valid data. */
8619
8620 /* xgettext:c-format */
8621 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
8622
8623 switch (EF_ARM_EABI_VERSION (flags))
8624 {
8625 case EF_ARM_EABI_UNKNOWN:
8626 /* The following flag bits are GNU extensions and not part of the
8627 official ARM ELF extended ABI. Hence they are only decoded if
8628 the EABI version is not set. */
8629 if (flags & EF_ARM_INTERWORK)
8630 fprintf (file, _(" [interworking enabled]"));
8631
8632 if (flags & EF_ARM_APCS_26)
8633 fprintf (file, " [APCS-26]");
8634 else
8635 fprintf (file, " [APCS-32]");
8636
8637 if (flags & EF_ARM_VFP_FLOAT)
8638 fprintf (file, _(" [VFP float format]"));
8639 else if (flags & EF_ARM_MAVERICK_FLOAT)
8640 fprintf (file, _(" [Maverick float format]"));
8641 else
8642 fprintf (file, _(" [FPA float format]"));
8643
8644 if (flags & EF_ARM_APCS_FLOAT)
8645 fprintf (file, _(" [floats passed in float registers]"));
8646
8647 if (flags & EF_ARM_PIC)
8648 fprintf (file, _(" [position independent]"));
8649
8650 if (flags & EF_ARM_NEW_ABI)
8651 fprintf (file, _(" [new ABI]"));
8652
8653 if (flags & EF_ARM_OLD_ABI)
8654 fprintf (file, _(" [old ABI]"));
8655
8656 if (flags & EF_ARM_SOFT_FLOAT)
8657 fprintf (file, _(" [software FP]"));
8658
8659 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
8660 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
8661 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
8662 | EF_ARM_MAVERICK_FLOAT);
8663 break;
8664
8665 case EF_ARM_EABI_VER1:
8666 fprintf (file, _(" [Version1 EABI]"));
8667
8668 if (flags & EF_ARM_SYMSARESORTED)
8669 fprintf (file, _(" [sorted symbol table]"));
8670 else
8671 fprintf (file, _(" [unsorted symbol table]"));
8672
8673 flags &= ~ EF_ARM_SYMSARESORTED;
8674 break;
8675
8676 case EF_ARM_EABI_VER2:
8677 fprintf (file, _(" [Version2 EABI]"));
8678
8679 if (flags & EF_ARM_SYMSARESORTED)
8680 fprintf (file, _(" [sorted symbol table]"));
8681 else
8682 fprintf (file, _(" [unsorted symbol table]"));
8683
8684 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
8685 fprintf (file, _(" [dynamic symbols use segment index]"));
8686
8687 if (flags & EF_ARM_MAPSYMSFIRST)
8688 fprintf (file, _(" [mapping symbols precede others]"));
8689
8690 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
8691 | EF_ARM_MAPSYMSFIRST);
8692 break;
8693
8694 case EF_ARM_EABI_VER3:
8695 fprintf (file, _(" [Version3 EABI]"));
8696 break;
8697
8698 case EF_ARM_EABI_VER4:
8699 fprintf (file, _(" [Version4 EABI]"));
8700 goto eabi;
8701
8702 case EF_ARM_EABI_VER5:
8703 fprintf (file, _(" [Version5 EABI]"));
8704 eabi:
8705 if (flags & EF_ARM_BE8)
8706 fprintf (file, _(" [BE8]"));
8707
8708 if (flags & EF_ARM_LE8)
8709 fprintf (file, _(" [LE8]"));
8710
8711 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
8712 break;
8713
8714 default:
8715 fprintf (file, _(" <EABI version unrecognised>"));
8716 break;
8717 }
8718
8719 flags &= ~ EF_ARM_EABIMASK;
8720
8721 if (flags & EF_ARM_RELEXEC)
8722 fprintf (file, _(" [relocatable executable]"));
8723
8724 if (flags & EF_ARM_HASENTRY)
8725 fprintf (file, _(" [has entry point]"));
8726
8727 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
8728
8729 if (flags)
8730 fprintf (file, _("<Unrecognised flag bits set>"));
8731
8732 fputc ('\n', file);
8733
8734 return TRUE;
8735 }
8736
8737 static int
8738 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
8739 {
8740 switch (ELF_ST_TYPE (elf_sym->st_info))
8741 {
8742 case STT_ARM_TFUNC:
8743 return ELF_ST_TYPE (elf_sym->st_info);
8744
8745 case STT_ARM_16BIT:
8746 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8747 This allows us to distinguish between data used by Thumb instructions
8748 and non-data (which is probably code) inside Thumb regions of an
8749 executable. */
8750 if (type != STT_OBJECT && type != STT_TLS)
8751 return ELF_ST_TYPE (elf_sym->st_info);
8752 break;
8753
8754 default:
8755 break;
8756 }
8757
8758 return type;
8759 }
8760
8761 static asection *
8762 elf32_arm_gc_mark_hook (asection *sec,
8763 struct bfd_link_info *info,
8764 Elf_Internal_Rela *rel,
8765 struct elf_link_hash_entry *h,
8766 Elf_Internal_Sym *sym)
8767 {
8768 if (h != NULL)
8769 switch (ELF32_R_TYPE (rel->r_info))
8770 {
8771 case R_ARM_GNU_VTINHERIT:
8772 case R_ARM_GNU_VTENTRY:
8773 return NULL;
8774 }
8775
8776 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
8777 }
8778
8779 /* Update the got entry reference counts for the section being removed. */
8780
8781 static bfd_boolean
8782 elf32_arm_gc_sweep_hook (bfd * abfd,
8783 struct bfd_link_info * info,
8784 asection * sec,
8785 const Elf_Internal_Rela * relocs)
8786 {
8787 Elf_Internal_Shdr *symtab_hdr;
8788 struct elf_link_hash_entry **sym_hashes;
8789 bfd_signed_vma *local_got_refcounts;
8790 const Elf_Internal_Rela *rel, *relend;
8791 struct elf32_arm_link_hash_table * globals;
8792
8793 if (info->relocatable)
8794 return TRUE;
8795
8796 globals = elf32_arm_hash_table (info);
8797
8798 elf_section_data (sec)->local_dynrel = NULL;
8799
8800 symtab_hdr = & elf_symtab_hdr (abfd);
8801 sym_hashes = elf_sym_hashes (abfd);
8802 local_got_refcounts = elf_local_got_refcounts (abfd);
8803
8804 check_use_blx (globals);
8805
8806 relend = relocs + sec->reloc_count;
8807 for (rel = relocs; rel < relend; rel++)
8808 {
8809 unsigned long r_symndx;
8810 struct elf_link_hash_entry *h = NULL;
8811 int r_type;
8812
8813 r_symndx = ELF32_R_SYM (rel->r_info);
8814 if (r_symndx >= symtab_hdr->sh_info)
8815 {
8816 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8817 while (h->root.type == bfd_link_hash_indirect
8818 || h->root.type == bfd_link_hash_warning)
8819 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8820 }
8821
8822 r_type = ELF32_R_TYPE (rel->r_info);
8823 r_type = arm_real_reloc_type (globals, r_type);
8824 switch (r_type)
8825 {
8826 case R_ARM_GOT32:
8827 case R_ARM_GOT_PREL:
8828 case R_ARM_TLS_GD32:
8829 case R_ARM_TLS_IE32:
8830 if (h != NULL)
8831 {
8832 if (h->got.refcount > 0)
8833 h->got.refcount -= 1;
8834 }
8835 else if (local_got_refcounts != NULL)
8836 {
8837 if (local_got_refcounts[r_symndx] > 0)
8838 local_got_refcounts[r_symndx] -= 1;
8839 }
8840 break;
8841
8842 case R_ARM_TLS_LDM32:
8843 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
8844 break;
8845
8846 case R_ARM_ABS32:
8847 case R_ARM_ABS32_NOI:
8848 case R_ARM_REL32:
8849 case R_ARM_REL32_NOI:
8850 case R_ARM_PC24:
8851 case R_ARM_PLT32:
8852 case R_ARM_CALL:
8853 case R_ARM_JUMP24:
8854 case R_ARM_PREL31:
8855 case R_ARM_THM_CALL:
8856 case R_ARM_THM_JUMP24:
8857 case R_ARM_THM_JUMP19:
8858 case R_ARM_MOVW_ABS_NC:
8859 case R_ARM_MOVT_ABS:
8860 case R_ARM_MOVW_PREL_NC:
8861 case R_ARM_MOVT_PREL:
8862 case R_ARM_THM_MOVW_ABS_NC:
8863 case R_ARM_THM_MOVT_ABS:
8864 case R_ARM_THM_MOVW_PREL_NC:
8865 case R_ARM_THM_MOVT_PREL:
8866 /* Should the interworking branches be here also? */
8867
8868 if (h != NULL)
8869 {
8870 struct elf32_arm_link_hash_entry *eh;
8871 struct elf32_arm_relocs_copied **pp;
8872 struct elf32_arm_relocs_copied *p;
8873
8874 eh = (struct elf32_arm_link_hash_entry *) h;
8875
8876 if (h->plt.refcount > 0)
8877 {
8878 h->plt.refcount -= 1;
8879 if (r_type == R_ARM_THM_CALL)
8880 eh->plt_maybe_thumb_refcount--;
8881
8882 if (r_type == R_ARM_THM_JUMP24
8883 || r_type == R_ARM_THM_JUMP19)
8884 eh->plt_thumb_refcount--;
8885 }
8886
8887 if (r_type == R_ARM_ABS32
8888 || r_type == R_ARM_REL32
8889 || r_type == R_ARM_ABS32_NOI
8890 || r_type == R_ARM_REL32_NOI)
8891 {
8892 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
8893 pp = &p->next)
8894 if (p->section == sec)
8895 {
8896 p->count -= 1;
8897 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
8898 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
8899 p->pc_count -= 1;
8900 if (p->count == 0)
8901 *pp = p->next;
8902 break;
8903 }
8904 }
8905 }
8906 break;
8907
8908 default:
8909 break;
8910 }
8911 }
8912
8913 return TRUE;
8914 }
8915
8916 /* Look through the relocs for a section during the first phase. */
8917
8918 static bfd_boolean
8919 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
8920 asection *sec, const Elf_Internal_Rela *relocs)
8921 {
8922 Elf_Internal_Shdr *symtab_hdr;
8923 struct elf_link_hash_entry **sym_hashes;
8924 const Elf_Internal_Rela *rel;
8925 const Elf_Internal_Rela *rel_end;
8926 bfd *dynobj;
8927 asection *sreloc;
8928 bfd_vma *local_got_offsets;
8929 struct elf32_arm_link_hash_table *htab;
8930 bfd_boolean needs_plt;
8931
8932 if (info->relocatable)
8933 return TRUE;
8934
8935 BFD_ASSERT (is_arm_elf (abfd));
8936
8937 htab = elf32_arm_hash_table (info);
8938 sreloc = NULL;
8939
8940 /* Create dynamic sections for relocatable executables so that we can
8941 copy relocations. */
8942 if (htab->root.is_relocatable_executable
8943 && ! htab->root.dynamic_sections_created)
8944 {
8945 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
8946 return FALSE;
8947 }
8948
8949 dynobj = elf_hash_table (info)->dynobj;
8950 local_got_offsets = elf_local_got_offsets (abfd);
8951
8952 symtab_hdr = & elf_symtab_hdr (abfd);
8953 sym_hashes = elf_sym_hashes (abfd);
8954
8955 rel_end = relocs + sec->reloc_count;
8956 for (rel = relocs; rel < rel_end; rel++)
8957 {
8958 struct elf_link_hash_entry *h;
8959 struct elf32_arm_link_hash_entry *eh;
8960 unsigned long r_symndx;
8961 int r_type;
8962
8963 r_symndx = ELF32_R_SYM (rel->r_info);
8964 r_type = ELF32_R_TYPE (rel->r_info);
8965 r_type = arm_real_reloc_type (htab, r_type);
8966
8967 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
8968 {
8969 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
8970 r_symndx);
8971 return FALSE;
8972 }
8973
8974 if (r_symndx < symtab_hdr->sh_info)
8975 h = NULL;
8976 else
8977 {
8978 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8979 while (h->root.type == bfd_link_hash_indirect
8980 || h->root.type == bfd_link_hash_warning)
8981 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8982 }
8983
8984 eh = (struct elf32_arm_link_hash_entry *) h;
8985
8986 switch (r_type)
8987 {
8988 case R_ARM_GOT32:
8989 case R_ARM_GOT_PREL:
8990 case R_ARM_TLS_GD32:
8991 case R_ARM_TLS_IE32:
8992 /* This symbol requires a global offset table entry. */
8993 {
8994 int tls_type, old_tls_type;
8995
8996 switch (r_type)
8997 {
8998 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
8999 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9000 default: tls_type = GOT_NORMAL; break;
9001 }
9002
9003 if (h != NULL)
9004 {
9005 h->got.refcount++;
9006 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9007 }
9008 else
9009 {
9010 bfd_signed_vma *local_got_refcounts;
9011
9012 /* This is a global offset table entry for a local symbol. */
9013 local_got_refcounts = elf_local_got_refcounts (abfd);
9014 if (local_got_refcounts == NULL)
9015 {
9016 bfd_size_type size;
9017
9018 size = symtab_hdr->sh_info;
9019 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9020 local_got_refcounts = bfd_zalloc (abfd, size);
9021 if (local_got_refcounts == NULL)
9022 return FALSE;
9023 elf_local_got_refcounts (abfd) = local_got_refcounts;
9024 elf32_arm_local_got_tls_type (abfd)
9025 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9026 }
9027 local_got_refcounts[r_symndx] += 1;
9028 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9029 }
9030
9031 /* We will already have issued an error message if there is a
9032 TLS / non-TLS mismatch, based on the symbol type. We don't
9033 support any linker relaxations. So just combine any TLS
9034 types needed. */
9035 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9036 && tls_type != GOT_NORMAL)
9037 tls_type |= old_tls_type;
9038
9039 if (old_tls_type != tls_type)
9040 {
9041 if (h != NULL)
9042 elf32_arm_hash_entry (h)->tls_type = tls_type;
9043 else
9044 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9045 }
9046 }
9047 /* Fall through */
9048
9049 case R_ARM_TLS_LDM32:
9050 if (r_type == R_ARM_TLS_LDM32)
9051 htab->tls_ldm_got.refcount++;
9052 /* Fall through */
9053
9054 case R_ARM_GOTOFF32:
9055 case R_ARM_GOTPC:
9056 if (htab->sgot == NULL)
9057 {
9058 if (htab->root.dynobj == NULL)
9059 htab->root.dynobj = abfd;
9060 if (!create_got_section (htab->root.dynobj, info))
9061 return FALSE;
9062 }
9063 break;
9064
9065 case R_ARM_ABS12:
9066 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9067 ldr __GOTT_INDEX__ offsets. */
9068 if (!htab->vxworks_p)
9069 break;
9070 /* Fall through */
9071
9072 case R_ARM_PC24:
9073 case R_ARM_PLT32:
9074 case R_ARM_CALL:
9075 case R_ARM_JUMP24:
9076 case R_ARM_PREL31:
9077 case R_ARM_THM_CALL:
9078 case R_ARM_THM_JUMP24:
9079 case R_ARM_THM_JUMP19:
9080 needs_plt = 1;
9081 goto normal_reloc;
9082
9083 case R_ARM_ABS32:
9084 case R_ARM_ABS32_NOI:
9085 case R_ARM_REL32:
9086 case R_ARM_REL32_NOI:
9087 case R_ARM_MOVW_ABS_NC:
9088 case R_ARM_MOVT_ABS:
9089 case R_ARM_MOVW_PREL_NC:
9090 case R_ARM_MOVT_PREL:
9091 case R_ARM_THM_MOVW_ABS_NC:
9092 case R_ARM_THM_MOVT_ABS:
9093 case R_ARM_THM_MOVW_PREL_NC:
9094 case R_ARM_THM_MOVT_PREL:
9095 needs_plt = 0;
9096 normal_reloc:
9097
9098 /* Should the interworking branches be listed here? */
9099 if (h != NULL)
9100 {
9101 /* If this reloc is in a read-only section, we might
9102 need a copy reloc. We can't check reliably at this
9103 stage whether the section is read-only, as input
9104 sections have not yet been mapped to output sections.
9105 Tentatively set the flag for now, and correct in
9106 adjust_dynamic_symbol. */
9107 if (!info->shared)
9108 h->non_got_ref = 1;
9109
9110 /* We may need a .plt entry if the function this reloc
9111 refers to is in a different object. We can't tell for
9112 sure yet, because something later might force the
9113 symbol local. */
9114 if (needs_plt)
9115 h->needs_plt = 1;
9116
9117 /* If we create a PLT entry, this relocation will reference
9118 it, even if it's an ABS32 relocation. */
9119 h->plt.refcount += 1;
9120
9121 /* It's too early to use htab->use_blx here, so we have to
9122 record possible blx references separately from
9123 relocs that definitely need a thumb stub. */
9124
9125 if (r_type == R_ARM_THM_CALL)
9126 eh->plt_maybe_thumb_refcount += 1;
9127
9128 if (r_type == R_ARM_THM_JUMP24
9129 || r_type == R_ARM_THM_JUMP19)
9130 eh->plt_thumb_refcount += 1;
9131 }
9132
9133 /* If we are creating a shared library or relocatable executable,
9134 and this is a reloc against a global symbol, or a non PC
9135 relative reloc against a local symbol, then we need to copy
9136 the reloc into the shared library. However, if we are linking
9137 with -Bsymbolic, we do not need to copy a reloc against a
9138 global symbol which is defined in an object we are
9139 including in the link (i.e., DEF_REGULAR is set). At
9140 this point we have not seen all the input files, so it is
9141 possible that DEF_REGULAR is not set now but will be set
9142 later (it is never cleared). We account for that
9143 possibility below by storing information in the
9144 relocs_copied field of the hash table entry. */
9145 if ((info->shared || htab->root.is_relocatable_executable)
9146 && (sec->flags & SEC_ALLOC) != 0
9147 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9148 || (h != NULL && ! h->needs_plt
9149 && (! info->symbolic || ! h->def_regular))))
9150 {
9151 struct elf32_arm_relocs_copied *p, **head;
9152
9153 /* When creating a shared object, we must copy these
9154 reloc types into the output file. We create a reloc
9155 section in dynobj and make room for this reloc. */
9156 if (sreloc == NULL)
9157 {
9158 const char * name;
9159
9160 name = (bfd_elf_string_from_elf_section
9161 (abfd,
9162 elf_elfheader (abfd)->e_shstrndx,
9163 elf_section_data (sec)->rel_hdr.sh_name));
9164 if (name == NULL)
9165 return FALSE;
9166
9167 BFD_ASSERT (reloc_section_p (htab, name, sec));
9168
9169 sreloc = bfd_get_section_by_name (dynobj, name);
9170 if (sreloc == NULL)
9171 {
9172 flagword flags;
9173
9174 flags = (SEC_HAS_CONTENTS | SEC_READONLY
9175 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
9176 if ((sec->flags & SEC_ALLOC) != 0
9177 /* BPABI objects never have dynamic
9178 relocations mapped. */
9179 && !htab->symbian_p)
9180 flags |= SEC_ALLOC | SEC_LOAD;
9181 sreloc = bfd_make_section_with_flags (dynobj,
9182 name,
9183 flags);
9184 if (sreloc == NULL
9185 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
9186 return FALSE;
9187 }
9188
9189 elf_section_data (sec)->sreloc = sreloc;
9190 }
9191
9192 /* If this is a global symbol, we count the number of
9193 relocations we need for this symbol. */
9194 if (h != NULL)
9195 {
9196 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9197 }
9198 else
9199 {
9200 /* Track dynamic relocs needed for local syms too.
9201 We really need local syms available to do this
9202 easily. Oh well. */
9203
9204 asection *s;
9205 void *vpp;
9206
9207 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9208 sec, r_symndx);
9209 if (s == NULL)
9210 return FALSE;
9211
9212 vpp = &elf_section_data (s)->local_dynrel;
9213 head = (struct elf32_arm_relocs_copied **) vpp;
9214 }
9215
9216 p = *head;
9217 if (p == NULL || p->section != sec)
9218 {
9219 bfd_size_type amt = sizeof *p;
9220
9221 p = bfd_alloc (htab->root.dynobj, amt);
9222 if (p == NULL)
9223 return FALSE;
9224 p->next = *head;
9225 *head = p;
9226 p->section = sec;
9227 p->count = 0;
9228 p->pc_count = 0;
9229 }
9230
9231 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9232 p->pc_count += 1;
9233 p->count += 1;
9234 }
9235 break;
9236
9237 /* This relocation describes the C++ object vtable hierarchy.
9238 Reconstruct it for later use during GC. */
9239 case R_ARM_GNU_VTINHERIT:
9240 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9241 return FALSE;
9242 break;
9243
9244 /* This relocation describes which C++ vtable entries are actually
9245 used. Record for later use during GC. */
9246 case R_ARM_GNU_VTENTRY:
9247 BFD_ASSERT (h != NULL);
9248 if (h != NULL
9249 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9250 return FALSE;
9251 break;
9252 }
9253 }
9254
9255 return TRUE;
9256 }
9257
9258 /* Unwinding tables are not referenced directly. This pass marks them as
9259 required if the corresponding code section is marked. */
9260
9261 static bfd_boolean
9262 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9263 elf_gc_mark_hook_fn gc_mark_hook)
9264 {
9265 bfd *sub;
9266 Elf_Internal_Shdr **elf_shdrp;
9267 bfd_boolean again;
9268
9269 /* Marking EH data may cause additional code sections to be marked,
9270 requiring multiple passes. */
9271 again = TRUE;
9272 while (again)
9273 {
9274 again = FALSE;
9275 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9276 {
9277 asection *o;
9278
9279 if (! is_arm_elf (sub))
9280 continue;
9281
9282 elf_shdrp = elf_elfsections (sub);
9283 for (o = sub->sections; o != NULL; o = o->next)
9284 {
9285 Elf_Internal_Shdr *hdr;
9286
9287 hdr = &elf_section_data (o)->this_hdr;
9288 if (hdr->sh_type == SHT_ARM_EXIDX
9289 && hdr->sh_link
9290 && hdr->sh_link < elf_numsections (sub)
9291 && !o->gc_mark
9292 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9293 {
9294 again = TRUE;
9295 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9296 return FALSE;
9297 }
9298 }
9299 }
9300 }
9301
9302 return TRUE;
9303 }
9304
9305 /* Treat mapping symbols as special target symbols. */
9306
9307 static bfd_boolean
9308 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9309 {
9310 return bfd_is_arm_special_symbol_name (sym->name,
9311 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9312 }
9313
9314 /* This is a copy of elf_find_function() from elf.c except that
9315 ARM mapping symbols are ignored when looking for function names
9316 and STT_ARM_TFUNC is considered to a function type. */
9317
9318 static bfd_boolean
9319 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9320 asection * section,
9321 asymbol ** symbols,
9322 bfd_vma offset,
9323 const char ** filename_ptr,
9324 const char ** functionname_ptr)
9325 {
9326 const char * filename = NULL;
9327 asymbol * func = NULL;
9328 bfd_vma low_func = 0;
9329 asymbol ** p;
9330
9331 for (p = symbols; *p != NULL; p++)
9332 {
9333 elf_symbol_type *q;
9334
9335 q = (elf_symbol_type *) *p;
9336
9337 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9338 {
9339 default:
9340 break;
9341 case STT_FILE:
9342 filename = bfd_asymbol_name (&q->symbol);
9343 break;
9344 case STT_FUNC:
9345 case STT_ARM_TFUNC:
9346 case STT_NOTYPE:
9347 /* Skip mapping symbols. */
9348 if ((q->symbol.flags & BSF_LOCAL)
9349 && bfd_is_arm_special_symbol_name (q->symbol.name,
9350 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9351 continue;
9352 /* Fall through. */
9353 if (bfd_get_section (&q->symbol) == section
9354 && q->symbol.value >= low_func
9355 && q->symbol.value <= offset)
9356 {
9357 func = (asymbol *) q;
9358 low_func = q->symbol.value;
9359 }
9360 break;
9361 }
9362 }
9363
9364 if (func == NULL)
9365 return FALSE;
9366
9367 if (filename_ptr)
9368 *filename_ptr = filename;
9369 if (functionname_ptr)
9370 *functionname_ptr = bfd_asymbol_name (func);
9371
9372 return TRUE;
9373 }
9374
9375
9376 /* Find the nearest line to a particular section and offset, for error
9377 reporting. This code is a duplicate of the code in elf.c, except
9378 that it uses arm_elf_find_function. */
9379
9380 static bfd_boolean
9381 elf32_arm_find_nearest_line (bfd * abfd,
9382 asection * section,
9383 asymbol ** symbols,
9384 bfd_vma offset,
9385 const char ** filename_ptr,
9386 const char ** functionname_ptr,
9387 unsigned int * line_ptr)
9388 {
9389 bfd_boolean found = FALSE;
9390
9391 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9392
9393 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9394 filename_ptr, functionname_ptr,
9395 line_ptr, 0,
9396 & elf_tdata (abfd)->dwarf2_find_line_info))
9397 {
9398 if (!*functionname_ptr)
9399 arm_elf_find_function (abfd, section, symbols, offset,
9400 *filename_ptr ? NULL : filename_ptr,
9401 functionname_ptr);
9402
9403 return TRUE;
9404 }
9405
9406 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9407 & found, filename_ptr,
9408 functionname_ptr, line_ptr,
9409 & elf_tdata (abfd)->line_info))
9410 return FALSE;
9411
9412 if (found && (*functionname_ptr || *line_ptr))
9413 return TRUE;
9414
9415 if (symbols == NULL)
9416 return FALSE;
9417
9418 if (! arm_elf_find_function (abfd, section, symbols, offset,
9419 filename_ptr, functionname_ptr))
9420 return FALSE;
9421
9422 *line_ptr = 0;
9423 return TRUE;
9424 }
9425
9426 static bfd_boolean
9427 elf32_arm_find_inliner_info (bfd * abfd,
9428 const char ** filename_ptr,
9429 const char ** functionname_ptr,
9430 unsigned int * line_ptr)
9431 {
9432 bfd_boolean found;
9433 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9434 functionname_ptr, line_ptr,
9435 & elf_tdata (abfd)->dwarf2_find_line_info);
9436 return found;
9437 }
9438
9439 /* Adjust a symbol defined by a dynamic object and referenced by a
9440 regular object. The current definition is in some section of the
9441 dynamic object, but we're not including those sections. We have to
9442 change the definition to something the rest of the link can
9443 understand. */
9444
9445 static bfd_boolean
9446 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9447 struct elf_link_hash_entry * h)
9448 {
9449 bfd * dynobj;
9450 asection * s;
9451 struct elf32_arm_link_hash_entry * eh;
9452 struct elf32_arm_link_hash_table *globals;
9453
9454 globals = elf32_arm_hash_table (info);
9455 dynobj = elf_hash_table (info)->dynobj;
9456
9457 /* Make sure we know what is going on here. */
9458 BFD_ASSERT (dynobj != NULL
9459 && (h->needs_plt
9460 || h->u.weakdef != NULL
9461 || (h->def_dynamic
9462 && h->ref_regular
9463 && !h->def_regular)));
9464
9465 eh = (struct elf32_arm_link_hash_entry *) h;
9466
9467 /* If this is a function, put it in the procedure linkage table. We
9468 will fill in the contents of the procedure linkage table later,
9469 when we know the address of the .got section. */
9470 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
9471 || h->needs_plt)
9472 {
9473 if (h->plt.refcount <= 0
9474 || SYMBOL_CALLS_LOCAL (info, h)
9475 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9476 && h->root.type == bfd_link_hash_undefweak))
9477 {
9478 /* This case can occur if we saw a PLT32 reloc in an input
9479 file, but the symbol was never referred to by a dynamic
9480 object, or if all references were garbage collected. In
9481 such a case, we don't actually need to build a procedure
9482 linkage table, and we can just do a PC24 reloc instead. */
9483 h->plt.offset = (bfd_vma) -1;
9484 eh->plt_thumb_refcount = 0;
9485 eh->plt_maybe_thumb_refcount = 0;
9486 h->needs_plt = 0;
9487 }
9488
9489 return TRUE;
9490 }
9491 else
9492 {
9493 /* It's possible that we incorrectly decided a .plt reloc was
9494 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9495 in check_relocs. We can't decide accurately between function
9496 and non-function syms in check-relocs; Objects loaded later in
9497 the link may change h->type. So fix it now. */
9498 h->plt.offset = (bfd_vma) -1;
9499 eh->plt_thumb_refcount = 0;
9500 eh->plt_maybe_thumb_refcount = 0;
9501 }
9502
9503 /* If this is a weak symbol, and there is a real definition, the
9504 processor independent code will have arranged for us to see the
9505 real definition first, and we can just use the same value. */
9506 if (h->u.weakdef != NULL)
9507 {
9508 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9509 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9510 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9511 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9512 return TRUE;
9513 }
9514
9515 /* If there are no non-GOT references, we do not need a copy
9516 relocation. */
9517 if (!h->non_got_ref)
9518 return TRUE;
9519
9520 /* This is a reference to a symbol defined by a dynamic object which
9521 is not a function. */
9522
9523 /* If we are creating a shared library, we must presume that the
9524 only references to the symbol are via the global offset table.
9525 For such cases we need not do anything here; the relocations will
9526 be handled correctly by relocate_section. Relocatable executables
9527 can reference data in shared objects directly, so we don't need to
9528 do anything here. */
9529 if (info->shared || globals->root.is_relocatable_executable)
9530 return TRUE;
9531
9532 if (h->size == 0)
9533 {
9534 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
9535 h->root.root.string);
9536 return TRUE;
9537 }
9538
9539 /* We must allocate the symbol in our .dynbss section, which will
9540 become part of the .bss section of the executable. There will be
9541 an entry for this symbol in the .dynsym section. The dynamic
9542 object will contain position independent code, so all references
9543 from the dynamic object to this symbol will go through the global
9544 offset table. The dynamic linker will use the .dynsym entry to
9545 determine the address it must put in the global offset table, so
9546 both the dynamic object and the regular object will refer to the
9547 same memory location for the variable. */
9548 s = bfd_get_section_by_name (dynobj, ".dynbss");
9549 BFD_ASSERT (s != NULL);
9550
9551 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9552 copy the initial value out of the dynamic object and into the
9553 runtime process image. We need to remember the offset into the
9554 .rel(a).bss section we are going to use. */
9555 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9556 {
9557 asection *srel;
9558
9559 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
9560 BFD_ASSERT (srel != NULL);
9561 srel->size += RELOC_SIZE (globals);
9562 h->needs_copy = 1;
9563 }
9564
9565 return _bfd_elf_adjust_dynamic_copy (h, s);
9566 }
9567
9568 /* Allocate space in .plt, .got and associated reloc sections for
9569 dynamic relocs. */
9570
9571 static bfd_boolean
9572 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
9573 {
9574 struct bfd_link_info *info;
9575 struct elf32_arm_link_hash_table *htab;
9576 struct elf32_arm_link_hash_entry *eh;
9577 struct elf32_arm_relocs_copied *p;
9578 bfd_signed_vma thumb_refs;
9579
9580 eh = (struct elf32_arm_link_hash_entry *) h;
9581
9582 if (h->root.type == bfd_link_hash_indirect)
9583 return TRUE;
9584
9585 if (h->root.type == bfd_link_hash_warning)
9586 /* When warning symbols are created, they **replace** the "real"
9587 entry in the hash table, thus we never get to see the real
9588 symbol in a hash traversal. So look at it now. */
9589 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9590
9591 info = (struct bfd_link_info *) inf;
9592 htab = elf32_arm_hash_table (info);
9593
9594 if (htab->root.dynamic_sections_created
9595 && h->plt.refcount > 0)
9596 {
9597 /* Make sure this symbol is output as a dynamic symbol.
9598 Undefined weak syms won't yet be marked as dynamic. */
9599 if (h->dynindx == -1
9600 && !h->forced_local)
9601 {
9602 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9603 return FALSE;
9604 }
9605
9606 if (info->shared
9607 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
9608 {
9609 asection *s = htab->splt;
9610
9611 /* If this is the first .plt entry, make room for the special
9612 first entry. */
9613 if (s->size == 0)
9614 s->size += htab->plt_header_size;
9615
9616 h->plt.offset = s->size;
9617
9618 /* If we will insert a Thumb trampoline before this PLT, leave room
9619 for it. */
9620 thumb_refs = eh->plt_thumb_refcount;
9621 if (!htab->use_blx)
9622 thumb_refs += eh->plt_maybe_thumb_refcount;
9623
9624 if (thumb_refs > 0)
9625 {
9626 h->plt.offset += PLT_THUMB_STUB_SIZE;
9627 s->size += PLT_THUMB_STUB_SIZE;
9628 }
9629
9630 /* If this symbol is not defined in a regular file, and we are
9631 not generating a shared library, then set the symbol to this
9632 location in the .plt. This is required to make function
9633 pointers compare as equal between the normal executable and
9634 the shared library. */
9635 if (! info->shared
9636 && !h->def_regular)
9637 {
9638 h->root.u.def.section = s;
9639 h->root.u.def.value = h->plt.offset;
9640
9641 /* Make sure the function is not marked as Thumb, in case
9642 it is the target of an ABS32 relocation, which will
9643 point to the PLT entry. */
9644 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
9645 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9646 }
9647
9648 /* Make room for this entry. */
9649 s->size += htab->plt_entry_size;
9650
9651 if (!htab->symbian_p)
9652 {
9653 /* We also need to make an entry in the .got.plt section, which
9654 will be placed in the .got section by the linker script. */
9655 eh->plt_got_offset = htab->sgotplt->size;
9656 htab->sgotplt->size += 4;
9657 }
9658
9659 /* We also need to make an entry in the .rel(a).plt section. */
9660 htab->srelplt->size += RELOC_SIZE (htab);
9661
9662 /* VxWorks executables have a second set of relocations for
9663 each PLT entry. They go in a separate relocation section,
9664 which is processed by the kernel loader. */
9665 if (htab->vxworks_p && !info->shared)
9666 {
9667 /* There is a relocation for the initial PLT entry:
9668 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9669 if (h->plt.offset == htab->plt_header_size)
9670 htab->srelplt2->size += RELOC_SIZE (htab);
9671
9672 /* There are two extra relocations for each subsequent
9673 PLT entry: an R_ARM_32 relocation for the GOT entry,
9674 and an R_ARM_32 relocation for the PLT entry. */
9675 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
9676 }
9677 }
9678 else
9679 {
9680 h->plt.offset = (bfd_vma) -1;
9681 h->needs_plt = 0;
9682 }
9683 }
9684 else
9685 {
9686 h->plt.offset = (bfd_vma) -1;
9687 h->needs_plt = 0;
9688 }
9689
9690 if (h->got.refcount > 0)
9691 {
9692 asection *s;
9693 bfd_boolean dyn;
9694 int tls_type = elf32_arm_hash_entry (h)->tls_type;
9695 int indx;
9696
9697 /* Make sure this symbol is output as a dynamic symbol.
9698 Undefined weak syms won't yet be marked as dynamic. */
9699 if (h->dynindx == -1
9700 && !h->forced_local)
9701 {
9702 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9703 return FALSE;
9704 }
9705
9706 if (!htab->symbian_p)
9707 {
9708 s = htab->sgot;
9709 h->got.offset = s->size;
9710
9711 if (tls_type == GOT_UNKNOWN)
9712 abort ();
9713
9714 if (tls_type == GOT_NORMAL)
9715 /* Non-TLS symbols need one GOT slot. */
9716 s->size += 4;
9717 else
9718 {
9719 if (tls_type & GOT_TLS_GD)
9720 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9721 s->size += 8;
9722 if (tls_type & GOT_TLS_IE)
9723 /* R_ARM_TLS_IE32 needs one GOT slot. */
9724 s->size += 4;
9725 }
9726
9727 dyn = htab->root.dynamic_sections_created;
9728
9729 indx = 0;
9730 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9731 && (!info->shared
9732 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9733 indx = h->dynindx;
9734
9735 if (tls_type != GOT_NORMAL
9736 && (info->shared || indx != 0)
9737 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9738 || h->root.type != bfd_link_hash_undefweak))
9739 {
9740 if (tls_type & GOT_TLS_IE)
9741 htab->srelgot->size += RELOC_SIZE (htab);
9742
9743 if (tls_type & GOT_TLS_GD)
9744 htab->srelgot->size += RELOC_SIZE (htab);
9745
9746 if ((tls_type & GOT_TLS_GD) && indx != 0)
9747 htab->srelgot->size += RELOC_SIZE (htab);
9748 }
9749 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9750 || h->root.type != bfd_link_hash_undefweak)
9751 && (info->shared
9752 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
9753 htab->srelgot->size += RELOC_SIZE (htab);
9754 }
9755 }
9756 else
9757 h->got.offset = (bfd_vma) -1;
9758
9759 /* Allocate stubs for exported Thumb functions on v4t. */
9760 if (!htab->use_blx && h->dynindx != -1
9761 && h->def_regular
9762 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
9763 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9764 {
9765 struct elf_link_hash_entry * th;
9766 struct bfd_link_hash_entry * bh;
9767 struct elf_link_hash_entry * myh;
9768 char name[1024];
9769 asection *s;
9770 bh = NULL;
9771 /* Create a new symbol to regist the real location of the function. */
9772 s = h->root.u.def.section;
9773 sprintf (name, "__real_%s", h->root.root.string);
9774 _bfd_generic_link_add_one_symbol (info, s->owner,
9775 name, BSF_GLOBAL, s,
9776 h->root.u.def.value,
9777 NULL, TRUE, FALSE, &bh);
9778
9779 myh = (struct elf_link_hash_entry *) bh;
9780 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
9781 myh->forced_local = 1;
9782 eh->export_glue = myh;
9783 th = record_arm_to_thumb_glue (info, h);
9784 /* Point the symbol at the stub. */
9785 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9786 h->root.u.def.section = th->root.u.def.section;
9787 h->root.u.def.value = th->root.u.def.value & ~1;
9788 }
9789
9790 if (eh->relocs_copied == NULL)
9791 return TRUE;
9792
9793 /* In the shared -Bsymbolic case, discard space allocated for
9794 dynamic pc-relative relocs against symbols which turn out to be
9795 defined in regular objects. For the normal shared case, discard
9796 space for pc-relative relocs that have become local due to symbol
9797 visibility changes. */
9798
9799 if (info->shared || htab->root.is_relocatable_executable)
9800 {
9801 /* The only relocs that use pc_count are R_ARM_REL32 and
9802 R_ARM_REL32_NOI, which will appear on something like
9803 ".long foo - .". We want calls to protected symbols to resolve
9804 directly to the function rather than going via the plt. If people
9805 want function pointer comparisons to work as expected then they
9806 should avoid writing assembly like ".long foo - .". */
9807 if (SYMBOL_CALLS_LOCAL (info, h))
9808 {
9809 struct elf32_arm_relocs_copied **pp;
9810
9811 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9812 {
9813 p->count -= p->pc_count;
9814 p->pc_count = 0;
9815 if (p->count == 0)
9816 *pp = p->next;
9817 else
9818 pp = &p->next;
9819 }
9820 }
9821
9822 if (elf32_arm_hash_table (info)->vxworks_p)
9823 {
9824 struct elf32_arm_relocs_copied **pp;
9825
9826 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9827 {
9828 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
9829 *pp = p->next;
9830 else
9831 pp = &p->next;
9832 }
9833 }
9834
9835 /* Also discard relocs on undefined weak syms with non-default
9836 visibility. */
9837 if (eh->relocs_copied != NULL
9838 && h->root.type == bfd_link_hash_undefweak)
9839 {
9840 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9841 eh->relocs_copied = NULL;
9842
9843 /* Make sure undefined weak symbols are output as a dynamic
9844 symbol in PIEs. */
9845 else if (h->dynindx == -1
9846 && !h->forced_local)
9847 {
9848 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9849 return FALSE;
9850 }
9851 }
9852
9853 else if (htab->root.is_relocatable_executable && h->dynindx == -1
9854 && h->root.type == bfd_link_hash_new)
9855 {
9856 /* Output absolute symbols so that we can create relocations
9857 against them. For normal symbols we output a relocation
9858 against the section that contains them. */
9859 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9860 return FALSE;
9861 }
9862
9863 }
9864 else
9865 {
9866 /* For the non-shared case, discard space for relocs against
9867 symbols which turn out to need copy relocs or are not
9868 dynamic. */
9869
9870 if (!h->non_got_ref
9871 && ((h->def_dynamic
9872 && !h->def_regular)
9873 || (htab->root.dynamic_sections_created
9874 && (h->root.type == bfd_link_hash_undefweak
9875 || h->root.type == bfd_link_hash_undefined))))
9876 {
9877 /* Make sure this symbol is output as a dynamic symbol.
9878 Undefined weak syms won't yet be marked as dynamic. */
9879 if (h->dynindx == -1
9880 && !h->forced_local)
9881 {
9882 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9883 return FALSE;
9884 }
9885
9886 /* If that succeeded, we know we'll be keeping all the
9887 relocs. */
9888 if (h->dynindx != -1)
9889 goto keep;
9890 }
9891
9892 eh->relocs_copied = NULL;
9893
9894 keep: ;
9895 }
9896
9897 /* Finally, allocate space. */
9898 for (p = eh->relocs_copied; p != NULL; p = p->next)
9899 {
9900 asection *sreloc = elf_section_data (p->section)->sreloc;
9901 sreloc->size += p->count * RELOC_SIZE (htab);
9902 }
9903
9904 return TRUE;
9905 }
9906
9907 /* Find any dynamic relocs that apply to read-only sections. */
9908
9909 static bfd_boolean
9910 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
9911 {
9912 struct elf32_arm_link_hash_entry *eh;
9913 struct elf32_arm_relocs_copied *p;
9914
9915 if (h->root.type == bfd_link_hash_warning)
9916 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9917
9918 eh = (struct elf32_arm_link_hash_entry *) h;
9919 for (p = eh->relocs_copied; p != NULL; p = p->next)
9920 {
9921 asection *s = p->section;
9922
9923 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9924 {
9925 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9926
9927 info->flags |= DF_TEXTREL;
9928
9929 /* Not an error, just cut short the traversal. */
9930 return FALSE;
9931 }
9932 }
9933 return TRUE;
9934 }
9935
9936 void
9937 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
9938 int byteswap_code)
9939 {
9940 struct elf32_arm_link_hash_table *globals;
9941
9942 globals = elf32_arm_hash_table (info);
9943 globals->byteswap_code = byteswap_code;
9944 }
9945
9946 /* Set the sizes of the dynamic sections. */
9947
9948 static bfd_boolean
9949 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
9950 struct bfd_link_info * info)
9951 {
9952 bfd * dynobj;
9953 asection * s;
9954 bfd_boolean plt;
9955 bfd_boolean relocs;
9956 bfd *ibfd;
9957 struct elf32_arm_link_hash_table *htab;
9958
9959 htab = elf32_arm_hash_table (info);
9960 dynobj = elf_hash_table (info)->dynobj;
9961 BFD_ASSERT (dynobj != NULL);
9962 check_use_blx (htab);
9963
9964 if (elf_hash_table (info)->dynamic_sections_created)
9965 {
9966 /* Set the contents of the .interp section to the interpreter. */
9967 if (info->executable)
9968 {
9969 s = bfd_get_section_by_name (dynobj, ".interp");
9970 BFD_ASSERT (s != NULL);
9971 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9972 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9973 }
9974 }
9975
9976 /* Set up .got offsets for local syms, and space for local dynamic
9977 relocs. */
9978 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9979 {
9980 bfd_signed_vma *local_got;
9981 bfd_signed_vma *end_local_got;
9982 char *local_tls_type;
9983 bfd_size_type locsymcount;
9984 Elf_Internal_Shdr *symtab_hdr;
9985 asection *srel;
9986 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
9987
9988 if (! is_arm_elf (ibfd))
9989 continue;
9990
9991 for (s = ibfd->sections; s != NULL; s = s->next)
9992 {
9993 struct elf32_arm_relocs_copied *p;
9994
9995 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9996 {
9997 if (!bfd_is_abs_section (p->section)
9998 && bfd_is_abs_section (p->section->output_section))
9999 {
10000 /* Input section has been discarded, either because
10001 it is a copy of a linkonce section or due to
10002 linker script /DISCARD/, so we'll be discarding
10003 the relocs too. */
10004 }
10005 else if (is_vxworks
10006 && strcmp (p->section->output_section->name,
10007 ".tls_vars") == 0)
10008 {
10009 /* Relocations in vxworks .tls_vars sections are
10010 handled specially by the loader. */
10011 }
10012 else if (p->count != 0)
10013 {
10014 srel = elf_section_data (p->section)->sreloc;
10015 srel->size += p->count * RELOC_SIZE (htab);
10016 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10017 info->flags |= DF_TEXTREL;
10018 }
10019 }
10020 }
10021
10022 local_got = elf_local_got_refcounts (ibfd);
10023 if (!local_got)
10024 continue;
10025
10026 symtab_hdr = & elf_symtab_hdr (ibfd);
10027 locsymcount = symtab_hdr->sh_info;
10028 end_local_got = local_got + locsymcount;
10029 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10030 s = htab->sgot;
10031 srel = htab->srelgot;
10032 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10033 {
10034 if (*local_got > 0)
10035 {
10036 *local_got = s->size;
10037 if (*local_tls_type & GOT_TLS_GD)
10038 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10039 s->size += 8;
10040 if (*local_tls_type & GOT_TLS_IE)
10041 s->size += 4;
10042 if (*local_tls_type == GOT_NORMAL)
10043 s->size += 4;
10044
10045 if (info->shared || *local_tls_type == GOT_TLS_GD)
10046 srel->size += RELOC_SIZE (htab);
10047 }
10048 else
10049 *local_got = (bfd_vma) -1;
10050 }
10051 }
10052
10053 if (htab->tls_ldm_got.refcount > 0)
10054 {
10055 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10056 for R_ARM_TLS_LDM32 relocations. */
10057 htab->tls_ldm_got.offset = htab->sgot->size;
10058 htab->sgot->size += 8;
10059 if (info->shared)
10060 htab->srelgot->size += RELOC_SIZE (htab);
10061 }
10062 else
10063 htab->tls_ldm_got.offset = -1;
10064
10065 /* Allocate global sym .plt and .got entries, and space for global
10066 sym dynamic relocs. */
10067 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10068
10069 /* Here we rummage through the found bfds to collect glue information. */
10070 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10071 {
10072 if (! is_arm_elf (ibfd))
10073 continue;
10074
10075 /* Initialise mapping tables for code/data. */
10076 bfd_elf32_arm_init_maps (ibfd);
10077
10078 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10079 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10080 /* xgettext:c-format */
10081 _bfd_error_handler (_("Errors encountered processing file %s"),
10082 ibfd->filename);
10083 }
10084
10085 /* The check_relocs and adjust_dynamic_symbol entry points have
10086 determined the sizes of the various dynamic sections. Allocate
10087 memory for them. */
10088 plt = FALSE;
10089 relocs = FALSE;
10090 for (s = dynobj->sections; s != NULL; s = s->next)
10091 {
10092 const char * name;
10093
10094 if ((s->flags & SEC_LINKER_CREATED) == 0)
10095 continue;
10096
10097 /* It's OK to base decisions on the section name, because none
10098 of the dynobj section names depend upon the input files. */
10099 name = bfd_get_section_name (dynobj, s);
10100
10101 if (strcmp (name, ".plt") == 0)
10102 {
10103 /* Remember whether there is a PLT. */
10104 plt = s->size != 0;
10105 }
10106 else if (CONST_STRNEQ (name, ".rel"))
10107 {
10108 if (s->size != 0)
10109 {
10110 /* Remember whether there are any reloc sections other
10111 than .rel(a).plt and .rela.plt.unloaded. */
10112 if (s != htab->srelplt && s != htab->srelplt2)
10113 relocs = TRUE;
10114
10115 /* We use the reloc_count field as a counter if we need
10116 to copy relocs into the output file. */
10117 s->reloc_count = 0;
10118 }
10119 }
10120 else if (! CONST_STRNEQ (name, ".got")
10121 && strcmp (name, ".dynbss") != 0)
10122 {
10123 /* It's not one of our sections, so don't allocate space. */
10124 continue;
10125 }
10126
10127 if (s->size == 0)
10128 {
10129 /* If we don't need this section, strip it from the
10130 output file. This is mostly to handle .rel(a).bss and
10131 .rel(a).plt. We must create both sections in
10132 create_dynamic_sections, because they must be created
10133 before the linker maps input sections to output
10134 sections. The linker does that before
10135 adjust_dynamic_symbol is called, and it is that
10136 function which decides whether anything needs to go
10137 into these sections. */
10138 s->flags |= SEC_EXCLUDE;
10139 continue;
10140 }
10141
10142 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10143 continue;
10144
10145 /* Allocate memory for the section contents. */
10146 s->contents = bfd_zalloc (dynobj, s->size);
10147 if (s->contents == NULL)
10148 return FALSE;
10149 }
10150
10151 if (elf_hash_table (info)->dynamic_sections_created)
10152 {
10153 /* Add some entries to the .dynamic section. We fill in the
10154 values later, in elf32_arm_finish_dynamic_sections, but we
10155 must add the entries now so that we get the correct size for
10156 the .dynamic section. The DT_DEBUG entry is filled in by the
10157 dynamic linker and used by the debugger. */
10158 #define add_dynamic_entry(TAG, VAL) \
10159 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10160
10161 if (info->executable)
10162 {
10163 if (!add_dynamic_entry (DT_DEBUG, 0))
10164 return FALSE;
10165 }
10166
10167 if (plt)
10168 {
10169 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10170 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10171 || !add_dynamic_entry (DT_PLTREL,
10172 htab->use_rel ? DT_REL : DT_RELA)
10173 || !add_dynamic_entry (DT_JMPREL, 0))
10174 return FALSE;
10175 }
10176
10177 if (relocs)
10178 {
10179 if (htab->use_rel)
10180 {
10181 if (!add_dynamic_entry (DT_REL, 0)
10182 || !add_dynamic_entry (DT_RELSZ, 0)
10183 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10184 return FALSE;
10185 }
10186 else
10187 {
10188 if (!add_dynamic_entry (DT_RELA, 0)
10189 || !add_dynamic_entry (DT_RELASZ, 0)
10190 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10191 return FALSE;
10192 }
10193 }
10194
10195 /* If any dynamic relocs apply to a read-only section,
10196 then we need a DT_TEXTREL entry. */
10197 if ((info->flags & DF_TEXTREL) == 0)
10198 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
10199 (PTR) info);
10200
10201 if ((info->flags & DF_TEXTREL) != 0)
10202 {
10203 if (!add_dynamic_entry (DT_TEXTREL, 0))
10204 return FALSE;
10205 }
10206 if (htab->vxworks_p
10207 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10208 return FALSE;
10209 }
10210 #undef add_dynamic_entry
10211
10212 return TRUE;
10213 }
10214
10215 /* Finish up dynamic symbol handling. We set the contents of various
10216 dynamic sections here. */
10217
10218 static bfd_boolean
10219 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10220 struct bfd_link_info * info,
10221 struct elf_link_hash_entry * h,
10222 Elf_Internal_Sym * sym)
10223 {
10224 bfd * dynobj;
10225 struct elf32_arm_link_hash_table *htab;
10226 struct elf32_arm_link_hash_entry *eh;
10227
10228 dynobj = elf_hash_table (info)->dynobj;
10229 htab = elf32_arm_hash_table (info);
10230 eh = (struct elf32_arm_link_hash_entry *) h;
10231
10232 if (h->plt.offset != (bfd_vma) -1)
10233 {
10234 asection * splt;
10235 asection * srel;
10236 bfd_byte *loc;
10237 bfd_vma plt_index;
10238 Elf_Internal_Rela rel;
10239
10240 /* This symbol has an entry in the procedure linkage table. Set
10241 it up. */
10242
10243 BFD_ASSERT (h->dynindx != -1);
10244
10245 splt = bfd_get_section_by_name (dynobj, ".plt");
10246 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10247 BFD_ASSERT (splt != NULL && srel != NULL);
10248
10249 /* Fill in the entry in the procedure linkage table. */
10250 if (htab->symbian_p)
10251 {
10252 put_arm_insn (htab, output_bfd,
10253 elf32_arm_symbian_plt_entry[0],
10254 splt->contents + h->plt.offset);
10255 bfd_put_32 (output_bfd,
10256 elf32_arm_symbian_plt_entry[1],
10257 splt->contents + h->plt.offset + 4);
10258
10259 /* Fill in the entry in the .rel.plt section. */
10260 rel.r_offset = (splt->output_section->vma
10261 + splt->output_offset
10262 + h->plt.offset + 4);
10263 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10264
10265 /* Get the index in the procedure linkage table which
10266 corresponds to this symbol. This is the index of this symbol
10267 in all the symbols for which we are making plt entries. The
10268 first entry in the procedure linkage table is reserved. */
10269 plt_index = ((h->plt.offset - htab->plt_header_size)
10270 / htab->plt_entry_size);
10271 }
10272 else
10273 {
10274 bfd_vma got_offset, got_address, plt_address;
10275 bfd_vma got_displacement;
10276 asection * sgot;
10277 bfd_byte * ptr;
10278
10279 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10280 BFD_ASSERT (sgot != NULL);
10281
10282 /* Get the offset into the .got.plt table of the entry that
10283 corresponds to this function. */
10284 got_offset = eh->plt_got_offset;
10285
10286 /* Get the index in the procedure linkage table which
10287 corresponds to this symbol. This is the index of this symbol
10288 in all the symbols for which we are making plt entries. The
10289 first three entries in .got.plt are reserved; after that
10290 symbols appear in the same order as in .plt. */
10291 plt_index = (got_offset - 12) / 4;
10292
10293 /* Calculate the address of the GOT entry. */
10294 got_address = (sgot->output_section->vma
10295 + sgot->output_offset
10296 + got_offset);
10297
10298 /* ...and the address of the PLT entry. */
10299 plt_address = (splt->output_section->vma
10300 + splt->output_offset
10301 + h->plt.offset);
10302
10303 ptr = htab->splt->contents + h->plt.offset;
10304 if (htab->vxworks_p && info->shared)
10305 {
10306 unsigned int i;
10307 bfd_vma val;
10308
10309 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10310 {
10311 val = elf32_arm_vxworks_shared_plt_entry[i];
10312 if (i == 2)
10313 val |= got_address - sgot->output_section->vma;
10314 if (i == 5)
10315 val |= plt_index * RELOC_SIZE (htab);
10316 if (i == 2 || i == 5)
10317 bfd_put_32 (output_bfd, val, ptr);
10318 else
10319 put_arm_insn (htab, output_bfd, val, ptr);
10320 }
10321 }
10322 else if (htab->vxworks_p)
10323 {
10324 unsigned int i;
10325 bfd_vma val;
10326
10327 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10328 {
10329 val = elf32_arm_vxworks_exec_plt_entry[i];
10330 if (i == 2)
10331 val |= got_address;
10332 if (i == 4)
10333 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10334 if (i == 5)
10335 val |= plt_index * RELOC_SIZE (htab);
10336 if (i == 2 || i == 5)
10337 bfd_put_32 (output_bfd, val, ptr);
10338 else
10339 put_arm_insn (htab, output_bfd, val, ptr);
10340 }
10341
10342 loc = (htab->srelplt2->contents
10343 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10344
10345 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10346 referencing the GOT for this PLT entry. */
10347 rel.r_offset = plt_address + 8;
10348 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10349 rel.r_addend = got_offset;
10350 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10351 loc += RELOC_SIZE (htab);
10352
10353 /* Create the R_ARM_ABS32 relocation referencing the
10354 beginning of the PLT for this GOT entry. */
10355 rel.r_offset = got_address;
10356 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10357 rel.r_addend = 0;
10358 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10359 }
10360 else
10361 {
10362 bfd_signed_vma thumb_refs;
10363 /* Calculate the displacement between the PLT slot and the
10364 entry in the GOT. The eight-byte offset accounts for the
10365 value produced by adding to pc in the first instruction
10366 of the PLT stub. */
10367 got_displacement = got_address - (plt_address + 8);
10368
10369 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10370
10371 thumb_refs = eh->plt_thumb_refcount;
10372 if (!htab->use_blx)
10373 thumb_refs += eh->plt_maybe_thumb_refcount;
10374
10375 if (thumb_refs > 0)
10376 {
10377 put_thumb_insn (htab, output_bfd,
10378 elf32_arm_plt_thumb_stub[0], ptr - 4);
10379 put_thumb_insn (htab, output_bfd,
10380 elf32_arm_plt_thumb_stub[1], ptr - 2);
10381 }
10382
10383 put_arm_insn (htab, output_bfd,
10384 elf32_arm_plt_entry[0]
10385 | ((got_displacement & 0x0ff00000) >> 20),
10386 ptr + 0);
10387 put_arm_insn (htab, output_bfd,
10388 elf32_arm_plt_entry[1]
10389 | ((got_displacement & 0x000ff000) >> 12),
10390 ptr+ 4);
10391 put_arm_insn (htab, output_bfd,
10392 elf32_arm_plt_entry[2]
10393 | (got_displacement & 0x00000fff),
10394 ptr + 8);
10395 #ifdef FOUR_WORD_PLT
10396 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10397 #endif
10398 }
10399
10400 /* Fill in the entry in the global offset table. */
10401 bfd_put_32 (output_bfd,
10402 (splt->output_section->vma
10403 + splt->output_offset),
10404 sgot->contents + got_offset);
10405
10406 /* Fill in the entry in the .rel(a).plt section. */
10407 rel.r_addend = 0;
10408 rel.r_offset = got_address;
10409 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10410 }
10411
10412 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10413 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10414
10415 if (!h->def_regular)
10416 {
10417 /* Mark the symbol as undefined, rather than as defined in
10418 the .plt section. Leave the value alone. */
10419 sym->st_shndx = SHN_UNDEF;
10420 /* If the symbol is weak, we do need to clear the value.
10421 Otherwise, the PLT entry would provide a definition for
10422 the symbol even if the symbol wasn't defined anywhere,
10423 and so the symbol would never be NULL. */
10424 if (!h->ref_regular_nonweak)
10425 sym->st_value = 0;
10426 }
10427 }
10428
10429 if (h->got.offset != (bfd_vma) -1
10430 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10431 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10432 {
10433 asection * sgot;
10434 asection * srel;
10435 Elf_Internal_Rela rel;
10436 bfd_byte *loc;
10437 bfd_vma offset;
10438
10439 /* This symbol has an entry in the global offset table. Set it
10440 up. */
10441 sgot = bfd_get_section_by_name (dynobj, ".got");
10442 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10443 BFD_ASSERT (sgot != NULL && srel != NULL);
10444
10445 offset = (h->got.offset & ~(bfd_vma) 1);
10446 rel.r_addend = 0;
10447 rel.r_offset = (sgot->output_section->vma
10448 + sgot->output_offset
10449 + offset);
10450
10451 /* If this is a static link, or it is a -Bsymbolic link and the
10452 symbol is defined locally or was forced to be local because
10453 of a version file, we just want to emit a RELATIVE reloc.
10454 The entry in the global offset table will already have been
10455 initialized in the relocate_section function. */
10456 if (info->shared
10457 && SYMBOL_REFERENCES_LOCAL (info, h))
10458 {
10459 BFD_ASSERT ((h->got.offset & 1) != 0);
10460 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10461 if (!htab->use_rel)
10462 {
10463 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10464 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10465 }
10466 }
10467 else
10468 {
10469 BFD_ASSERT ((h->got.offset & 1) == 0);
10470 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10471 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10472 }
10473
10474 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10475 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10476 }
10477
10478 if (h->needs_copy)
10479 {
10480 asection * s;
10481 Elf_Internal_Rela rel;
10482 bfd_byte *loc;
10483
10484 /* This symbol needs a copy reloc. Set it up. */
10485 BFD_ASSERT (h->dynindx != -1
10486 && (h->root.type == bfd_link_hash_defined
10487 || h->root.type == bfd_link_hash_defweak));
10488
10489 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10490 RELOC_SECTION (htab, ".bss"));
10491 BFD_ASSERT (s != NULL);
10492
10493 rel.r_addend = 0;
10494 rel.r_offset = (h->root.u.def.value
10495 + h->root.u.def.section->output_section->vma
10496 + h->root.u.def.section->output_offset);
10497 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10498 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10499 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10500 }
10501
10502 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10503 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10504 to the ".got" section. */
10505 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10506 || (!htab->vxworks_p && h == htab->root.hgot))
10507 sym->st_shndx = SHN_ABS;
10508
10509 return TRUE;
10510 }
10511
10512 /* Finish up the dynamic sections. */
10513
10514 static bfd_boolean
10515 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10516 {
10517 bfd * dynobj;
10518 asection * sgot;
10519 asection * sdyn;
10520
10521 dynobj = elf_hash_table (info)->dynobj;
10522
10523 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10524 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10525 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10526
10527 if (elf_hash_table (info)->dynamic_sections_created)
10528 {
10529 asection *splt;
10530 Elf32_External_Dyn *dyncon, *dynconend;
10531 struct elf32_arm_link_hash_table *htab;
10532
10533 htab = elf32_arm_hash_table (info);
10534 splt = bfd_get_section_by_name (dynobj, ".plt");
10535 BFD_ASSERT (splt != NULL && sdyn != NULL);
10536
10537 dyncon = (Elf32_External_Dyn *) sdyn->contents;
10538 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
10539
10540 for (; dyncon < dynconend; dyncon++)
10541 {
10542 Elf_Internal_Dyn dyn;
10543 const char * name;
10544 asection * s;
10545
10546 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
10547
10548 switch (dyn.d_tag)
10549 {
10550 unsigned int type;
10551
10552 default:
10553 if (htab->vxworks_p
10554 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10555 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10556 break;
10557
10558 case DT_HASH:
10559 name = ".hash";
10560 goto get_vma_if_bpabi;
10561 case DT_STRTAB:
10562 name = ".dynstr";
10563 goto get_vma_if_bpabi;
10564 case DT_SYMTAB:
10565 name = ".dynsym";
10566 goto get_vma_if_bpabi;
10567 case DT_VERSYM:
10568 name = ".gnu.version";
10569 goto get_vma_if_bpabi;
10570 case DT_VERDEF:
10571 name = ".gnu.version_d";
10572 goto get_vma_if_bpabi;
10573 case DT_VERNEED:
10574 name = ".gnu.version_r";
10575 goto get_vma_if_bpabi;
10576
10577 case DT_PLTGOT:
10578 name = ".got";
10579 goto get_vma;
10580 case DT_JMPREL:
10581 name = RELOC_SECTION (htab, ".plt");
10582 get_vma:
10583 s = bfd_get_section_by_name (output_bfd, name);
10584 BFD_ASSERT (s != NULL);
10585 if (!htab->symbian_p)
10586 dyn.d_un.d_ptr = s->vma;
10587 else
10588 /* In the BPABI, tags in the PT_DYNAMIC section point
10589 at the file offset, not the memory address, for the
10590 convenience of the post linker. */
10591 dyn.d_un.d_ptr = s->filepos;
10592 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10593 break;
10594
10595 get_vma_if_bpabi:
10596 if (htab->symbian_p)
10597 goto get_vma;
10598 break;
10599
10600 case DT_PLTRELSZ:
10601 s = bfd_get_section_by_name (output_bfd,
10602 RELOC_SECTION (htab, ".plt"));
10603 BFD_ASSERT (s != NULL);
10604 dyn.d_un.d_val = s->size;
10605 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10606 break;
10607
10608 case DT_RELSZ:
10609 case DT_RELASZ:
10610 if (!htab->symbian_p)
10611 {
10612 /* My reading of the SVR4 ABI indicates that the
10613 procedure linkage table relocs (DT_JMPREL) should be
10614 included in the overall relocs (DT_REL). This is
10615 what Solaris does. However, UnixWare can not handle
10616 that case. Therefore, we override the DT_RELSZ entry
10617 here to make it not include the JMPREL relocs. Since
10618 the linker script arranges for .rel(a).plt to follow all
10619 other relocation sections, we don't have to worry
10620 about changing the DT_REL entry. */
10621 s = bfd_get_section_by_name (output_bfd,
10622 RELOC_SECTION (htab, ".plt"));
10623 if (s != NULL)
10624 dyn.d_un.d_val -= s->size;
10625 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10626 break;
10627 }
10628 /* Fall through */
10629
10630 case DT_REL:
10631 case DT_RELA:
10632 /* In the BPABI, the DT_REL tag must point at the file
10633 offset, not the VMA, of the first relocation
10634 section. So, we use code similar to that in
10635 elflink.c, but do not check for SHF_ALLOC on the
10636 relcoation section, since relocations sections are
10637 never allocated under the BPABI. The comments above
10638 about Unixware notwithstanding, we include all of the
10639 relocations here. */
10640 if (htab->symbian_p)
10641 {
10642 unsigned int i;
10643 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10644 ? SHT_REL : SHT_RELA);
10645 dyn.d_un.d_val = 0;
10646 for (i = 1; i < elf_numsections (output_bfd); i++)
10647 {
10648 Elf_Internal_Shdr *hdr
10649 = elf_elfsections (output_bfd)[i];
10650 if (hdr->sh_type == type)
10651 {
10652 if (dyn.d_tag == DT_RELSZ
10653 || dyn.d_tag == DT_RELASZ)
10654 dyn.d_un.d_val += hdr->sh_size;
10655 else if ((ufile_ptr) hdr->sh_offset
10656 <= dyn.d_un.d_val - 1)
10657 dyn.d_un.d_val = hdr->sh_offset;
10658 }
10659 }
10660 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10661 }
10662 break;
10663
10664 /* Set the bottom bit of DT_INIT/FINI if the
10665 corresponding function is Thumb. */
10666 case DT_INIT:
10667 name = info->init_function;
10668 goto get_sym;
10669 case DT_FINI:
10670 name = info->fini_function;
10671 get_sym:
10672 /* If it wasn't set by elf_bfd_final_link
10673 then there is nothing to adjust. */
10674 if (dyn.d_un.d_val != 0)
10675 {
10676 struct elf_link_hash_entry * eh;
10677
10678 eh = elf_link_hash_lookup (elf_hash_table (info), name,
10679 FALSE, FALSE, TRUE);
10680 if (eh != NULL
10681 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
10682 {
10683 dyn.d_un.d_val |= 1;
10684 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10685 }
10686 }
10687 break;
10688 }
10689 }
10690
10691 /* Fill in the first entry in the procedure linkage table. */
10692 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
10693 {
10694 const bfd_vma *plt0_entry;
10695 bfd_vma got_address, plt_address, got_displacement;
10696
10697 /* Calculate the addresses of the GOT and PLT. */
10698 got_address = sgot->output_section->vma + sgot->output_offset;
10699 plt_address = splt->output_section->vma + splt->output_offset;
10700
10701 if (htab->vxworks_p)
10702 {
10703 /* The VxWorks GOT is relocated by the dynamic linker.
10704 Therefore, we must emit relocations rather than simply
10705 computing the values now. */
10706 Elf_Internal_Rela rel;
10707
10708 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
10709 put_arm_insn (htab, output_bfd, plt0_entry[0],
10710 splt->contents + 0);
10711 put_arm_insn (htab, output_bfd, plt0_entry[1],
10712 splt->contents + 4);
10713 put_arm_insn (htab, output_bfd, plt0_entry[2],
10714 splt->contents + 8);
10715 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
10716
10717 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10718 rel.r_offset = plt_address + 12;
10719 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10720 rel.r_addend = 0;
10721 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
10722 htab->srelplt2->contents);
10723 }
10724 else
10725 {
10726 got_displacement = got_address - (plt_address + 16);
10727
10728 plt0_entry = elf32_arm_plt0_entry;
10729 put_arm_insn (htab, output_bfd, plt0_entry[0],
10730 splt->contents + 0);
10731 put_arm_insn (htab, output_bfd, plt0_entry[1],
10732 splt->contents + 4);
10733 put_arm_insn (htab, output_bfd, plt0_entry[2],
10734 splt->contents + 8);
10735 put_arm_insn (htab, output_bfd, plt0_entry[3],
10736 splt->contents + 12);
10737
10738 #ifdef FOUR_WORD_PLT
10739 /* The displacement value goes in the otherwise-unused
10740 last word of the second entry. */
10741 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
10742 #else
10743 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
10744 #endif
10745 }
10746 }
10747
10748 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10749 really seem like the right value. */
10750 if (splt->output_section->owner == output_bfd)
10751 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
10752
10753 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
10754 {
10755 /* Correct the .rel(a).plt.unloaded relocations. They will have
10756 incorrect symbol indexes. */
10757 int num_plts;
10758 unsigned char *p;
10759
10760 num_plts = ((htab->splt->size - htab->plt_header_size)
10761 / htab->plt_entry_size);
10762 p = htab->srelplt2->contents + RELOC_SIZE (htab);
10763
10764 for (; num_plts; num_plts--)
10765 {
10766 Elf_Internal_Rela rel;
10767
10768 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10769 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10770 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10771 p += RELOC_SIZE (htab);
10772
10773 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10774 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10775 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10776 p += RELOC_SIZE (htab);
10777 }
10778 }
10779 }
10780
10781 /* Fill in the first three entries in the global offset table. */
10782 if (sgot)
10783 {
10784 if (sgot->size > 0)
10785 {
10786 if (sdyn == NULL)
10787 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
10788 else
10789 bfd_put_32 (output_bfd,
10790 sdyn->output_section->vma + sdyn->output_offset,
10791 sgot->contents);
10792 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
10793 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
10794 }
10795
10796 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
10797 }
10798
10799 return TRUE;
10800 }
10801
10802 static void
10803 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10804 {
10805 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10806 struct elf32_arm_link_hash_table *globals;
10807
10808 i_ehdrp = elf_elfheader (abfd);
10809
10810 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
10811 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
10812 else
10813 i_ehdrp->e_ident[EI_OSABI] = 0;
10814 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
10815
10816 if (link_info)
10817 {
10818 globals = elf32_arm_hash_table (link_info);
10819 if (globals->byteswap_code)
10820 i_ehdrp->e_flags |= EF_ARM_BE8;
10821 }
10822 }
10823
10824 static enum elf_reloc_type_class
10825 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
10826 {
10827 switch ((int) ELF32_R_TYPE (rela->r_info))
10828 {
10829 case R_ARM_RELATIVE:
10830 return reloc_class_relative;
10831 case R_ARM_JUMP_SLOT:
10832 return reloc_class_plt;
10833 case R_ARM_COPY:
10834 return reloc_class_copy;
10835 default:
10836 return reloc_class_normal;
10837 }
10838 }
10839
10840 /* Set the right machine number for an Arm ELF file. */
10841
10842 static bfd_boolean
10843 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
10844 {
10845 if (hdr->sh_type == SHT_NOTE)
10846 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
10847
10848 return TRUE;
10849 }
10850
10851 static void
10852 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
10853 {
10854 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
10855 }
10856
10857 /* Return TRUE if this is an unwinding table entry. */
10858
10859 static bfd_boolean
10860 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
10861 {
10862 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
10863 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
10864 }
10865
10866
10867 /* Set the type and flags for an ARM section. We do this by
10868 the section name, which is a hack, but ought to work. */
10869
10870 static bfd_boolean
10871 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
10872 {
10873 const char * name;
10874
10875 name = bfd_get_section_name (abfd, sec);
10876
10877 if (is_arm_elf_unwind_section_name (abfd, name))
10878 {
10879 hdr->sh_type = SHT_ARM_EXIDX;
10880 hdr->sh_flags |= SHF_LINK_ORDER;
10881 }
10882 return TRUE;
10883 }
10884
10885 /* Handle an ARM specific section when reading an object file. This is
10886 called when bfd_section_from_shdr finds a section with an unknown
10887 type. */
10888
10889 static bfd_boolean
10890 elf32_arm_section_from_shdr (bfd *abfd,
10891 Elf_Internal_Shdr * hdr,
10892 const char *name,
10893 int shindex)
10894 {
10895 /* There ought to be a place to keep ELF backend specific flags, but
10896 at the moment there isn't one. We just keep track of the
10897 sections by their name, instead. Fortunately, the ABI gives
10898 names for all the ARM specific sections, so we will probably get
10899 away with this. */
10900 switch (hdr->sh_type)
10901 {
10902 case SHT_ARM_EXIDX:
10903 case SHT_ARM_PREEMPTMAP:
10904 case SHT_ARM_ATTRIBUTES:
10905 break;
10906
10907 default:
10908 return FALSE;
10909 }
10910
10911 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
10912 return FALSE;
10913
10914 return TRUE;
10915 }
10916
10917 /* A structure used to record a list of sections, independently
10918 of the next and prev fields in the asection structure. */
10919 typedef struct section_list
10920 {
10921 asection * sec;
10922 struct section_list * next;
10923 struct section_list * prev;
10924 }
10925 section_list;
10926
10927 /* Unfortunately we need to keep a list of sections for which
10928 an _arm_elf_section_data structure has been allocated. This
10929 is because it is possible for functions like elf32_arm_write_section
10930 to be called on a section which has had an elf_data_structure
10931 allocated for it (and so the used_by_bfd field is valid) but
10932 for which the ARM extended version of this structure - the
10933 _arm_elf_section_data structure - has not been allocated. */
10934 static section_list * sections_with_arm_elf_section_data = NULL;
10935
10936 static void
10937 record_section_with_arm_elf_section_data (asection * sec)
10938 {
10939 struct section_list * entry;
10940
10941 entry = bfd_malloc (sizeof (* entry));
10942 if (entry == NULL)
10943 return;
10944 entry->sec = sec;
10945 entry->next = sections_with_arm_elf_section_data;
10946 entry->prev = NULL;
10947 if (entry->next != NULL)
10948 entry->next->prev = entry;
10949 sections_with_arm_elf_section_data = entry;
10950 }
10951
10952 static struct section_list *
10953 find_arm_elf_section_entry (asection * sec)
10954 {
10955 struct section_list * entry;
10956 static struct section_list * last_entry = NULL;
10957
10958 /* This is a short cut for the typical case where the sections are added
10959 to the sections_with_arm_elf_section_data list in forward order and
10960 then looked up here in backwards order. This makes a real difference
10961 to the ld-srec/sec64k.exp linker test. */
10962 entry = sections_with_arm_elf_section_data;
10963 if (last_entry != NULL)
10964 {
10965 if (last_entry->sec == sec)
10966 entry = last_entry;
10967 else if (last_entry->next != NULL
10968 && last_entry->next->sec == sec)
10969 entry = last_entry->next;
10970 }
10971
10972 for (; entry; entry = entry->next)
10973 if (entry->sec == sec)
10974 break;
10975
10976 if (entry)
10977 /* Record the entry prior to this one - it is the entry we are most
10978 likely to want to locate next time. Also this way if we have been
10979 called from unrecord_section_with_arm_elf_section_data() we will not
10980 be caching a pointer that is about to be freed. */
10981 last_entry = entry->prev;
10982
10983 return entry;
10984 }
10985
10986 static _arm_elf_section_data *
10987 get_arm_elf_section_data (asection * sec)
10988 {
10989 struct section_list * entry;
10990
10991 entry = find_arm_elf_section_entry (sec);
10992
10993 if (entry)
10994 return elf32_arm_section_data (entry->sec);
10995 else
10996 return NULL;
10997 }
10998
10999 static void
11000 unrecord_section_with_arm_elf_section_data (asection * sec)
11001 {
11002 struct section_list * entry;
11003
11004 entry = find_arm_elf_section_entry (sec);
11005
11006 if (entry)
11007 {
11008 if (entry->prev != NULL)
11009 entry->prev->next = entry->next;
11010 if (entry->next != NULL)
11011 entry->next->prev = entry->prev;
11012 if (entry == sections_with_arm_elf_section_data)
11013 sections_with_arm_elf_section_data = entry->next;
11014 free (entry);
11015 }
11016 }
11017
11018
11019 typedef struct
11020 {
11021 void *finfo;
11022 struct bfd_link_info *info;
11023 asection *sec;
11024 int sec_shndx;
11025 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11026 asection *, struct elf_link_hash_entry *);
11027 } output_arch_syminfo;
11028
11029 enum map_symbol_type
11030 {
11031 ARM_MAP_ARM,
11032 ARM_MAP_THUMB,
11033 ARM_MAP_DATA
11034 };
11035
11036
11037 /* Output a single PLT mapping symbol. */
11038
11039 static bfd_boolean
11040 elf32_arm_ouput_plt_map_sym (output_arch_syminfo *osi,
11041 enum map_symbol_type type,
11042 bfd_vma offset)
11043 {
11044 static const char *names[3] = {"$a", "$t", "$d"};
11045 struct elf32_arm_link_hash_table *htab;
11046 Elf_Internal_Sym sym;
11047
11048 htab = elf32_arm_hash_table (osi->info);
11049 sym.st_value = osi->sec->output_section->vma
11050 + osi->sec->output_offset
11051 + offset;
11052 sym.st_size = 0;
11053 sym.st_other = 0;
11054 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11055 sym.st_shndx = osi->sec_shndx;
11056 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11057 return FALSE;
11058 return TRUE;
11059 }
11060
11061
11062 /* Output mapping symbols for PLT entries associated with H. */
11063
11064 static bfd_boolean
11065 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11066 {
11067 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11068 struct elf32_arm_link_hash_table *htab;
11069 struct elf32_arm_link_hash_entry *eh;
11070 bfd_vma addr;
11071
11072 htab = elf32_arm_hash_table (osi->info);
11073
11074 if (h->root.type == bfd_link_hash_indirect)
11075 return TRUE;
11076
11077 if (h->root.type == bfd_link_hash_warning)
11078 /* When warning symbols are created, they **replace** the "real"
11079 entry in the hash table, thus we never get to see the real
11080 symbol in a hash traversal. So look at it now. */
11081 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11082
11083 if (h->plt.offset == (bfd_vma) -1)
11084 return TRUE;
11085
11086 eh = (struct elf32_arm_link_hash_entry *) h;
11087 addr = h->plt.offset;
11088 if (htab->symbian_p)
11089 {
11090 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11091 return FALSE;
11092 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
11093 return FALSE;
11094 }
11095 else if (htab->vxworks_p)
11096 {
11097 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11098 return FALSE;
11099 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
11100 return FALSE;
11101 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 12))
11102 return FALSE;
11103 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 20))
11104 return FALSE;
11105 }
11106 else
11107 {
11108 bfd_signed_vma thumb_refs;
11109
11110 thumb_refs = eh->plt_thumb_refcount;
11111 if (!htab->use_blx)
11112 thumb_refs += eh->plt_maybe_thumb_refcount;
11113
11114 if (thumb_refs > 0)
11115 {
11116 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11117 return FALSE;
11118 }
11119 #ifdef FOUR_WORD_PLT
11120 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11121 return FALSE;
11122 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
11123 return FALSE;
11124 #else
11125 /* A three-word PLT with no Thumb thunk contains only Arm code,
11126 so only need to output a mapping symbol for the first PLT entry and
11127 entries with thumb thunks. */
11128 if (thumb_refs > 0 || addr == 20)
11129 {
11130 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
11131 return FALSE;
11132 }
11133 #endif
11134 }
11135
11136 return TRUE;
11137 }
11138
11139
11140 /* Output mapping symbols for linker generated sections. */
11141
11142 static bfd_boolean
11143 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11144 struct bfd_link_info *info,
11145 void *finfo,
11146 bfd_boolean (*func) (void *, const char *,
11147 Elf_Internal_Sym *,
11148 asection *,
11149 struct elf_link_hash_entry *))
11150 {
11151 output_arch_syminfo osi;
11152 struct elf32_arm_link_hash_table *htab;
11153 bfd_vma offset;
11154 bfd_size_type size;
11155
11156 htab = elf32_arm_hash_table (info);
11157 check_use_blx (htab);
11158
11159 osi.finfo = finfo;
11160 osi.info = info;
11161 osi.func = func;
11162
11163 /* ARM->Thumb glue. */
11164 if (htab->arm_glue_size > 0)
11165 {
11166 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11167 ARM2THUMB_GLUE_SECTION_NAME);
11168
11169 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11170 (output_bfd, osi.sec->output_section);
11171 if (info->shared || htab->root.is_relocatable_executable
11172 || htab->pic_veneer)
11173 size = ARM2THUMB_PIC_GLUE_SIZE;
11174 else if (htab->use_blx)
11175 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11176 else
11177 size = ARM2THUMB_STATIC_GLUE_SIZE;
11178
11179 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11180 {
11181 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset);
11182 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11183 }
11184 }
11185
11186 /* Thumb->ARM glue. */
11187 if (htab->thumb_glue_size > 0)
11188 {
11189 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11190 THUMB2ARM_GLUE_SECTION_NAME);
11191
11192 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11193 (output_bfd, osi.sec->output_section);
11194 size = THUMB2ARM_GLUE_SIZE;
11195
11196 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11197 {
11198 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_THUMB, offset);
11199 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11200 }
11201 }
11202
11203 /* ARMv4 BX veneers. */
11204 if (htab->bx_glue_size > 0)
11205 {
11206 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11207 ARM_BX_GLUE_SECTION_NAME);
11208
11209 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11210 (output_bfd, osi.sec->output_section);
11211
11212 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0);
11213 }
11214
11215 /* Finally, output mapping symbols for the PLT. */
11216 if (!htab->splt || htab->splt->size == 0)
11217 return TRUE;
11218
11219 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11220 htab->splt->output_section);
11221 osi.sec = htab->splt;
11222 /* Output mapping symbols for the plt header. SymbianOS does not have a
11223 plt header. */
11224 if (htab->vxworks_p)
11225 {
11226 /* VxWorks shared libraries have no PLT header. */
11227 if (!info->shared)
11228 {
11229 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
11230 return FALSE;
11231 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 12))
11232 return FALSE;
11233 }
11234 }
11235 else if (!htab->symbian_p)
11236 {
11237 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
11238 return FALSE;
11239 #ifndef FOUR_WORD_PLT
11240 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 16))
11241 return FALSE;
11242 #endif
11243 }
11244
11245 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11246 return TRUE;
11247 }
11248
11249 /* Allocate target specific section data. */
11250
11251 static bfd_boolean
11252 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11253 {
11254 if (!sec->used_by_bfd)
11255 {
11256 _arm_elf_section_data *sdata;
11257 bfd_size_type amt = sizeof (*sdata);
11258
11259 sdata = bfd_zalloc (abfd, amt);
11260 if (sdata == NULL)
11261 return FALSE;
11262 sec->used_by_bfd = sdata;
11263 }
11264
11265 record_section_with_arm_elf_section_data (sec);
11266
11267 return _bfd_elf_new_section_hook (abfd, sec);
11268 }
11269
11270
11271 /* Used to order a list of mapping symbols by address. */
11272
11273 static int
11274 elf32_arm_compare_mapping (const void * a, const void * b)
11275 {
11276 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11277 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11278
11279 if (amap->vma > bmap->vma)
11280 return 1;
11281 else if (amap->vma < bmap->vma)
11282 return -1;
11283 else if (amap->type > bmap->type)
11284 /* Ensure results do not depend on the host qsort for objects with
11285 multiple mapping symbols at the same address by sorting on type
11286 after vma. */
11287 return 1;
11288 else if (amap->type < bmap->type)
11289 return -1;
11290 else
11291 return 0;
11292 }
11293
11294
11295 /* Do code byteswapping. Return FALSE afterwards so that the section is
11296 written out as normal. */
11297
11298 static bfd_boolean
11299 elf32_arm_write_section (bfd *output_bfd,
11300 struct bfd_link_info *link_info, asection *sec,
11301 bfd_byte *contents)
11302 {
11303 int mapcount, errcount;
11304 _arm_elf_section_data *arm_data;
11305 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11306 elf32_arm_section_map *map;
11307 elf32_vfp11_erratum_list *errnode;
11308 bfd_vma ptr;
11309 bfd_vma end;
11310 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11311 bfd_byte tmp;
11312 int i;
11313
11314 /* If this section has not been allocated an _arm_elf_section_data
11315 structure then we cannot record anything. */
11316 arm_data = get_arm_elf_section_data (sec);
11317 if (arm_data == NULL)
11318 return FALSE;
11319
11320 mapcount = arm_data->mapcount;
11321 map = arm_data->map;
11322 errcount = arm_data->erratumcount;
11323
11324 if (errcount != 0)
11325 {
11326 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11327
11328 for (errnode = arm_data->erratumlist; errnode != 0;
11329 errnode = errnode->next)
11330 {
11331 bfd_vma index = errnode->vma - offset;
11332
11333 switch (errnode->type)
11334 {
11335 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11336 {
11337 bfd_vma branch_to_veneer;
11338 /* Original condition code of instruction, plus bit mask for
11339 ARM B instruction. */
11340 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11341 | 0x0a000000;
11342
11343 /* The instruction is before the label. */
11344 index -= 4;
11345
11346 /* Above offset included in -4 below. */
11347 branch_to_veneer = errnode->u.b.veneer->vma
11348 - errnode->vma - 4;
11349
11350 if ((signed) branch_to_veneer < -(1 << 25)
11351 || (signed) branch_to_veneer >= (1 << 25))
11352 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11353 "range"), output_bfd);
11354
11355 insn |= (branch_to_veneer >> 2) & 0xffffff;
11356 contents[endianflip ^ index] = insn & 0xff;
11357 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11358 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11359 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11360 }
11361 break;
11362
11363 case VFP11_ERRATUM_ARM_VENEER:
11364 {
11365 bfd_vma branch_from_veneer;
11366 unsigned int insn;
11367
11368 /* Take size of veneer into account. */
11369 branch_from_veneer = errnode->u.v.branch->vma
11370 - errnode->vma - 12;
11371
11372 if ((signed) branch_from_veneer < -(1 << 25)
11373 || (signed) branch_from_veneer >= (1 << 25))
11374 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11375 "range"), output_bfd);
11376
11377 /* Original instruction. */
11378 insn = errnode->u.v.branch->u.b.vfp_insn;
11379 contents[endianflip ^ index] = insn & 0xff;
11380 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11381 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11382 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11383
11384 /* Branch back to insn after original insn. */
11385 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11386 contents[endianflip ^ (index + 4)] = insn & 0xff;
11387 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11388 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11389 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11390 }
11391 break;
11392
11393 default:
11394 abort ();
11395 }
11396 }
11397 }
11398
11399 if (mapcount == 0)
11400 return FALSE;
11401
11402 if (globals->byteswap_code)
11403 {
11404 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
11405
11406 ptr = map[0].vma;
11407 for (i = 0; i < mapcount; i++)
11408 {
11409 if (i == mapcount - 1)
11410 end = sec->size;
11411 else
11412 end = map[i + 1].vma;
11413
11414 switch (map[i].type)
11415 {
11416 case 'a':
11417 /* Byte swap code words. */
11418 while (ptr + 3 < end)
11419 {
11420 tmp = contents[ptr];
11421 contents[ptr] = contents[ptr + 3];
11422 contents[ptr + 3] = tmp;
11423 tmp = contents[ptr + 1];
11424 contents[ptr + 1] = contents[ptr + 2];
11425 contents[ptr + 2] = tmp;
11426 ptr += 4;
11427 }
11428 break;
11429
11430 case 't':
11431 /* Byte swap code halfwords. */
11432 while (ptr + 1 < end)
11433 {
11434 tmp = contents[ptr];
11435 contents[ptr] = contents[ptr + 1];
11436 contents[ptr + 1] = tmp;
11437 ptr += 2;
11438 }
11439 break;
11440
11441 case 'd':
11442 /* Leave data alone. */
11443 break;
11444 }
11445 ptr = end;
11446 }
11447 }
11448
11449 free (map);
11450 arm_data->mapcount = 0;
11451 arm_data->mapsize = 0;
11452 arm_data->map = NULL;
11453 unrecord_section_with_arm_elf_section_data (sec);
11454
11455 return FALSE;
11456 }
11457
11458 static void
11459 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
11460 asection * sec,
11461 void * ignore ATTRIBUTE_UNUSED)
11462 {
11463 unrecord_section_with_arm_elf_section_data (sec);
11464 }
11465
11466 static bfd_boolean
11467 elf32_arm_close_and_cleanup (bfd * abfd)
11468 {
11469 if (abfd->sections)
11470 bfd_map_over_sections (abfd,
11471 unrecord_section_via_map_over_sections,
11472 NULL);
11473
11474 return _bfd_elf_close_and_cleanup (abfd);
11475 }
11476
11477 static bfd_boolean
11478 elf32_arm_bfd_free_cached_info (bfd * abfd)
11479 {
11480 if (abfd->sections)
11481 bfd_map_over_sections (abfd,
11482 unrecord_section_via_map_over_sections,
11483 NULL);
11484
11485 return _bfd_free_cached_info (abfd);
11486 }
11487
11488 /* Display STT_ARM_TFUNC symbols as functions. */
11489
11490 static void
11491 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
11492 asymbol *asym)
11493 {
11494 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
11495
11496 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
11497 elfsym->symbol.flags |= BSF_FUNCTION;
11498 }
11499
11500
11501 /* Mangle thumb function symbols as we read them in. */
11502
11503 static bfd_boolean
11504 elf32_arm_swap_symbol_in (bfd * abfd,
11505 const void *psrc,
11506 const void *pshn,
11507 Elf_Internal_Sym *dst)
11508 {
11509 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
11510 return FALSE;
11511
11512 /* New EABI objects mark thumb function symbols by setting the low bit of
11513 the address. Turn these into STT_ARM_TFUNC. */
11514 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
11515 && (dst->st_value & 1))
11516 {
11517 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
11518 dst->st_value &= ~(bfd_vma) 1;
11519 }
11520 return TRUE;
11521 }
11522
11523
11524 /* Mangle thumb function symbols as we write them out. */
11525
11526 static void
11527 elf32_arm_swap_symbol_out (bfd *abfd,
11528 const Elf_Internal_Sym *src,
11529 void *cdst,
11530 void *shndx)
11531 {
11532 Elf_Internal_Sym newsym;
11533
11534 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11535 of the address set, as per the new EABI. We do this unconditionally
11536 because objcopy does not set the elf header flags until after
11537 it writes out the symbol table. */
11538 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
11539 {
11540 newsym = *src;
11541 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
11542 if (newsym.st_shndx != SHN_UNDEF)
11543 {
11544 /* Do this only for defined symbols. At link type, the static
11545 linker will simulate the work of dynamic linker of resolving
11546 symbols and will carry over the thumbness of found symbols to
11547 the output symbol table. It's not clear how it happens, but
11548 the thumbness of undefined symbols can well be different at
11549 runtime, and writing '1' for them will be confusing for users
11550 and possibly for dynamic linker itself.
11551 */
11552 newsym.st_value |= 1;
11553 }
11554
11555 src = &newsym;
11556 }
11557 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
11558 }
11559
11560 /* Add the PT_ARM_EXIDX program header. */
11561
11562 static bfd_boolean
11563 elf32_arm_modify_segment_map (bfd *abfd,
11564 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11565 {
11566 struct elf_segment_map *m;
11567 asection *sec;
11568
11569 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11570 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11571 {
11572 /* If there is already a PT_ARM_EXIDX header, then we do not
11573 want to add another one. This situation arises when running
11574 "strip"; the input binary already has the header. */
11575 m = elf_tdata (abfd)->segment_map;
11576 while (m && m->p_type != PT_ARM_EXIDX)
11577 m = m->next;
11578 if (!m)
11579 {
11580 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
11581 if (m == NULL)
11582 return FALSE;
11583 m->p_type = PT_ARM_EXIDX;
11584 m->count = 1;
11585 m->sections[0] = sec;
11586
11587 m->next = elf_tdata (abfd)->segment_map;
11588 elf_tdata (abfd)->segment_map = m;
11589 }
11590 }
11591
11592 return TRUE;
11593 }
11594
11595 /* We may add a PT_ARM_EXIDX program header. */
11596
11597 static int
11598 elf32_arm_additional_program_headers (bfd *abfd,
11599 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11600 {
11601 asection *sec;
11602
11603 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11604 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11605 return 1;
11606 else
11607 return 0;
11608 }
11609
11610 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11611
11612 static bfd_boolean
11613 elf32_arm_is_function_type (unsigned int type)
11614 {
11615 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
11616 }
11617
11618 /* We use this to override swap_symbol_in and swap_symbol_out. */
11619 const struct elf_size_info elf32_arm_size_info =
11620 {
11621 sizeof (Elf32_External_Ehdr),
11622 sizeof (Elf32_External_Phdr),
11623 sizeof (Elf32_External_Shdr),
11624 sizeof (Elf32_External_Rel),
11625 sizeof (Elf32_External_Rela),
11626 sizeof (Elf32_External_Sym),
11627 sizeof (Elf32_External_Dyn),
11628 sizeof (Elf_External_Note),
11629 4,
11630 1,
11631 32, 2,
11632 ELFCLASS32, EV_CURRENT,
11633 bfd_elf32_write_out_phdrs,
11634 bfd_elf32_write_shdrs_and_ehdr,
11635 bfd_elf32_checksum_contents,
11636 bfd_elf32_write_relocs,
11637 elf32_arm_swap_symbol_in,
11638 elf32_arm_swap_symbol_out,
11639 bfd_elf32_slurp_reloc_table,
11640 bfd_elf32_slurp_symbol_table,
11641 bfd_elf32_swap_dyn_in,
11642 bfd_elf32_swap_dyn_out,
11643 bfd_elf32_swap_reloc_in,
11644 bfd_elf32_swap_reloc_out,
11645 bfd_elf32_swap_reloca_in,
11646 bfd_elf32_swap_reloca_out
11647 };
11648
11649 #define ELF_ARCH bfd_arch_arm
11650 #define ELF_MACHINE_CODE EM_ARM
11651 #ifdef __QNXTARGET__
11652 #define ELF_MAXPAGESIZE 0x1000
11653 #else
11654 #define ELF_MAXPAGESIZE 0x8000
11655 #endif
11656 #define ELF_MINPAGESIZE 0x1000
11657 #define ELF_COMMONPAGESIZE 0x1000
11658
11659 #define bfd_elf32_mkobject elf32_arm_mkobject
11660
11661 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11662 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11663 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11664 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11665 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11666 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11667 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11668 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11669 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11670 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11671 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11672 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11673 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11674 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11675
11676 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11677 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11678 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11679 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11680 #define elf_backend_check_relocs elf32_arm_check_relocs
11681 #define elf_backend_relocate_section elf32_arm_relocate_section
11682 #define elf_backend_write_section elf32_arm_write_section
11683 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11684 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11685 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11686 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11687 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11688 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11689 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11690 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11691 #define elf_backend_object_p elf32_arm_object_p
11692 #define elf_backend_section_flags elf32_arm_section_flags
11693 #define elf_backend_fake_sections elf32_arm_fake_sections
11694 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11695 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11696 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11697 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11698 #define elf_backend_size_info elf32_arm_size_info
11699 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11700 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11701 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11702 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11703 #define elf_backend_is_function_type elf32_arm_is_function_type
11704
11705 #define elf_backend_can_refcount 1
11706 #define elf_backend_can_gc_sections 1
11707 #define elf_backend_plt_readonly 1
11708 #define elf_backend_want_got_plt 1
11709 #define elf_backend_want_plt_sym 0
11710 #define elf_backend_may_use_rel_p 1
11711 #define elf_backend_may_use_rela_p 0
11712 #define elf_backend_default_use_rela_p 0
11713
11714 #define elf_backend_got_header_size 12
11715
11716 #undef elf_backend_obj_attrs_vendor
11717 #define elf_backend_obj_attrs_vendor "aeabi"
11718 #undef elf_backend_obj_attrs_section
11719 #define elf_backend_obj_attrs_section ".ARM.attributes"
11720 #undef elf_backend_obj_attrs_arg_type
11721 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11722 #undef elf_backend_obj_attrs_section_type
11723 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11724
11725 #include "elf32-target.h"
11726
11727 /* VxWorks Targets. */
11728
11729 #undef TARGET_LITTLE_SYM
11730 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11731 #undef TARGET_LITTLE_NAME
11732 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11733 #undef TARGET_BIG_SYM
11734 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11735 #undef TARGET_BIG_NAME
11736 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11737
11738 /* Like elf32_arm_link_hash_table_create -- but overrides
11739 appropriately for VxWorks. */
11740
11741 static struct bfd_link_hash_table *
11742 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
11743 {
11744 struct bfd_link_hash_table *ret;
11745
11746 ret = elf32_arm_link_hash_table_create (abfd);
11747 if (ret)
11748 {
11749 struct elf32_arm_link_hash_table *htab
11750 = (struct elf32_arm_link_hash_table *) ret;
11751 htab->use_rel = 0;
11752 htab->vxworks_p = 1;
11753 }
11754 return ret;
11755 }
11756
11757 static void
11758 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
11759 {
11760 elf32_arm_final_write_processing (abfd, linker);
11761 elf_vxworks_final_write_processing (abfd, linker);
11762 }
11763
11764 #undef elf32_bed
11765 #define elf32_bed elf32_arm_vxworks_bed
11766
11767 #undef bfd_elf32_bfd_link_hash_table_create
11768 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
11769 #undef elf_backend_add_symbol_hook
11770 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
11771 #undef elf_backend_final_write_processing
11772 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
11773 #undef elf_backend_emit_relocs
11774 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
11775
11776 #undef elf_backend_may_use_rel_p
11777 #define elf_backend_may_use_rel_p 0
11778 #undef elf_backend_may_use_rela_p
11779 #define elf_backend_may_use_rela_p 1
11780 #undef elf_backend_default_use_rela_p
11781 #define elf_backend_default_use_rela_p 1
11782 #undef elf_backend_want_plt_sym
11783 #define elf_backend_want_plt_sym 1
11784 #undef ELF_MAXPAGESIZE
11785 #define ELF_MAXPAGESIZE 0x1000
11786
11787 #include "elf32-target.h"
11788
11789
11790 /* Symbian OS Targets. */
11791
11792 #undef TARGET_LITTLE_SYM
11793 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
11794 #undef TARGET_LITTLE_NAME
11795 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
11796 #undef TARGET_BIG_SYM
11797 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
11798 #undef TARGET_BIG_NAME
11799 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
11800
11801 /* Like elf32_arm_link_hash_table_create -- but overrides
11802 appropriately for Symbian OS. */
11803
11804 static struct bfd_link_hash_table *
11805 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
11806 {
11807 struct bfd_link_hash_table *ret;
11808
11809 ret = elf32_arm_link_hash_table_create (abfd);
11810 if (ret)
11811 {
11812 struct elf32_arm_link_hash_table *htab
11813 = (struct elf32_arm_link_hash_table *)ret;
11814 /* There is no PLT header for Symbian OS. */
11815 htab->plt_header_size = 0;
11816 /* The PLT entries are each one instruction and one word. */
11817 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
11818 htab->symbian_p = 1;
11819 /* Symbian uses armv5t or above, so use_blx is always true. */
11820 htab->use_blx = 1;
11821 htab->root.is_relocatable_executable = 1;
11822 }
11823 return ret;
11824 }
11825
11826 static const struct bfd_elf_special_section
11827 elf32_arm_symbian_special_sections[] =
11828 {
11829 /* In a BPABI executable, the dynamic linking sections do not go in
11830 the loadable read-only segment. The post-linker may wish to
11831 refer to these sections, but they are not part of the final
11832 program image. */
11833 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
11834 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
11835 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
11836 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
11837 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
11838 /* These sections do not need to be writable as the SymbianOS
11839 postlinker will arrange things so that no dynamic relocation is
11840 required. */
11841 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
11842 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
11843 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
11844 { NULL, 0, 0, 0, 0 }
11845 };
11846
11847 static void
11848 elf32_arm_symbian_begin_write_processing (bfd *abfd,
11849 struct bfd_link_info *link_info)
11850 {
11851 /* BPABI objects are never loaded directly by an OS kernel; they are
11852 processed by a postlinker first, into an OS-specific format. If
11853 the D_PAGED bit is set on the file, BFD will align segments on
11854 page boundaries, so that an OS can directly map the file. With
11855 BPABI objects, that just results in wasted space. In addition,
11856 because we clear the D_PAGED bit, map_sections_to_segments will
11857 recognize that the program headers should not be mapped into any
11858 loadable segment. */
11859 abfd->flags &= ~D_PAGED;
11860 elf32_arm_begin_write_processing (abfd, link_info);
11861 }
11862
11863 static bfd_boolean
11864 elf32_arm_symbian_modify_segment_map (bfd *abfd,
11865 struct bfd_link_info *info)
11866 {
11867 struct elf_segment_map *m;
11868 asection *dynsec;
11869
11870 /* BPABI shared libraries and executables should have a PT_DYNAMIC
11871 segment. However, because the .dynamic section is not marked
11872 with SEC_LOAD, the generic ELF code will not create such a
11873 segment. */
11874 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
11875 if (dynsec)
11876 {
11877 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11878 if (m->p_type == PT_DYNAMIC)
11879 break;
11880
11881 if (m == NULL)
11882 {
11883 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
11884 m->next = elf_tdata (abfd)->segment_map;
11885 elf_tdata (abfd)->segment_map = m;
11886 }
11887 }
11888
11889 /* Also call the generic arm routine. */
11890 return elf32_arm_modify_segment_map (abfd, info);
11891 }
11892
11893 /* Return address for Ith PLT stub in section PLT, for relocation REL
11894 or (bfd_vma) -1 if it should not be included. */
11895
11896 static bfd_vma
11897 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
11898 const arelent *rel ATTRIBUTE_UNUSED)
11899 {
11900 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
11901 }
11902
11903
11904 #undef elf32_bed
11905 #define elf32_bed elf32_arm_symbian_bed
11906
11907 /* The dynamic sections are not allocated on SymbianOS; the postlinker
11908 will process them and then discard them. */
11909 #undef ELF_DYNAMIC_SEC_FLAGS
11910 #define ELF_DYNAMIC_SEC_FLAGS \
11911 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
11912
11913 #undef elf_backend_add_symbol_hook
11914 #undef elf_backend_emit_relocs
11915
11916 #undef bfd_elf32_bfd_link_hash_table_create
11917 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
11918 #undef elf_backend_special_sections
11919 #define elf_backend_special_sections elf32_arm_symbian_special_sections
11920 #undef elf_backend_begin_write_processing
11921 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
11922 #undef elf_backend_final_write_processing
11923 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11924
11925 #undef elf_backend_modify_segment_map
11926 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
11927
11928 /* There is no .got section for BPABI objects, and hence no header. */
11929 #undef elf_backend_got_header_size
11930 #define elf_backend_got_header_size 0
11931
11932 /* Similarly, there is no .got.plt section. */
11933 #undef elf_backend_want_got_plt
11934 #define elf_backend_want_got_plt 0
11935
11936 #undef elf_backend_plt_sym_val
11937 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
11938
11939 #undef elf_backend_may_use_rel_p
11940 #define elf_backend_may_use_rel_p 1
11941 #undef elf_backend_may_use_rela_p
11942 #define elf_backend_may_use_rela_p 0
11943 #undef elf_backend_default_use_rela_p
11944 #define elf_backend_default_use_rela_p 0
11945 #undef elf_backend_want_plt_sym
11946 #define elf_backend_want_plt_sym 0
11947 #undef ELF_MAXPAGESIZE
11948 #define ELF_MAXPAGESIZE 0x8000
11949
11950 #include "elf32-target.h"
This page took 0.284217 seconds and 4 git commands to generate.