2009-01-19 Andrew Stubbs <ams@codesourcery.com>
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation. */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* Unallocated. */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781
1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1785
1786 return NULL;
1787 }
1788
1789 static reloc_howto_type *
1790 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806 }
1807
1808 /* Support for core dump NOTE sections. */
1809
1810 static bfd_boolean
1811 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1812 {
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
1821 case 148: /* Linux/ARM 32-bit. */
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838 }
1839
1840 static bfd_boolean
1841 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 {
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1873
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
1877 typedef unsigned long int insn32;
1878 typedef unsigned short int insn16;
1879
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1903
1904 /* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
1908 #ifdef FOUR_WORD_PLT
1909
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1913 linker first. */
1914 static const bfd_vma elf32_arm_plt0_entry [] =
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922 /* Subsequent entries in a procedure linkage table look like
1923 this. */
1924 static const bfd_vma elf32_arm_plt_entry [] =
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932 #else
1933
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
1938 static const bfd_vma elf32_arm_plt0_entry [] =
1939 {
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1945 };
1946
1947 /* Subsequent entries in a procedure linkage table look like
1948 this. */
1949 static const bfd_vma elf32_arm_plt_entry [] =
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956 #endif
1957
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
1998 /* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
2000 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2001 {
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
2013 static const bfd_vma arm_long_branch_stub[] =
2014 {
2015 0xe51ff004, /* ldr pc, [pc, #-4] */
2016 0x00000000, /* dcd R_ARM_ABS32(X) */
2017 };
2018
2019 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2020 {
2021 0xe59fc000, /* ldr ip, [pc, #0] */
2022 0xe12fff1c, /* bx ip */
2023 0x00000000, /* dcd R_ARM_ABS32(X) */
2024 };
2025
2026 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2027 {
2028 0x4e02b540, /* push {r6, lr} */
2029 /* ldr r6, [pc, #8] */
2030 0x473046fe, /* mov lr, pc */
2031 /* bx r6 */
2032 0xbf00bd40, /* pop {r6, pc} */
2033 /* nop */
2034 0x00000000, /* dcd R_ARM_ABS32(X) */
2035 };
2036
2037 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2038 {
2039 0x4e03b540, /* push {r6, lr} */
2040 /* ldr r6, [pc, #12] */
2041 0x473046fe, /* mov lr, pc */
2042 /* bx r6 */
2043 0xe8bd4040, /* pop {r6, pc} */
2044 0xe12fff1e, /* bx lr */
2045 0x00000000, /* dcd R_ARM_ABS32(X) */
2046 };
2047
2048 static const bfd_vma arm_thumb_arm_v4t_short_branch_stub[] =
2049 {
2050 0x46c04778, /* bx pc */
2051 /* nop */
2052 0xea000000, /* b (X) */
2053 };
2054
2055 static const bfd_vma arm_pic_long_branch_stub[] =
2056 {
2057 0xe59fc000, /* ldr r12, [pc] */
2058 0xe08ff00c, /* add pc, pc, ip */
2059 0x00000000, /* dcd R_ARM_REL32(X) */
2060 };
2061
2062 /* Section name for stubs is the associated section name plus this
2063 string. */
2064 #define STUB_SUFFIX ".stub"
2065
2066 enum elf32_arm_stub_type
2067 {
2068 arm_stub_none,
2069 arm_stub_long_branch,
2070 arm_thumb_v4t_stub_long_branch,
2071 arm_thumb_thumb_stub_long_branch,
2072 arm_thumb_arm_v4t_stub_long_branch,
2073 arm_thumb_arm_v4t_stub_short_branch,
2074 arm_stub_pic_long_branch,
2075 };
2076
2077 struct elf32_arm_stub_hash_entry
2078 {
2079 /* Base hash table entry structure. */
2080 struct bfd_hash_entry root;
2081
2082 /* The stub section. */
2083 asection *stub_sec;
2084
2085 /* Offset within stub_sec of the beginning of this stub. */
2086 bfd_vma stub_offset;
2087
2088 /* Given the symbol's value and its section we can determine its final
2089 value when building the stubs (so the stub knows where to jump). */
2090 bfd_vma target_value;
2091 asection *target_section;
2092
2093 enum elf32_arm_stub_type stub_type;
2094
2095 /* The symbol table entry, if any, that this was derived from. */
2096 struct elf32_arm_link_hash_entry *h;
2097
2098 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2099 unsigned char st_type;
2100
2101 /* Where this stub is being called from, or, in the case of combined
2102 stub sections, the first input section in the group. */
2103 asection *id_sec;
2104
2105 /* The name for the local symbol at the start of this stub. The
2106 stub name in the hash table has to be unique; this does not, so
2107 it can be friendlier. */
2108 char *output_name;
2109 };
2110
2111 /* Used to build a map of a section. This is required for mixed-endian
2112 code/data. */
2113
2114 typedef struct elf32_elf_section_map
2115 {
2116 bfd_vma vma;
2117 char type;
2118 }
2119 elf32_arm_section_map;
2120
2121 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2122
2123 typedef enum
2124 {
2125 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2126 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2127 VFP11_ERRATUM_ARM_VENEER,
2128 VFP11_ERRATUM_THUMB_VENEER
2129 }
2130 elf32_vfp11_erratum_type;
2131
2132 typedef struct elf32_vfp11_erratum_list
2133 {
2134 struct elf32_vfp11_erratum_list *next;
2135 bfd_vma vma;
2136 union
2137 {
2138 struct
2139 {
2140 struct elf32_vfp11_erratum_list *veneer;
2141 unsigned int vfp_insn;
2142 } b;
2143 struct
2144 {
2145 struct elf32_vfp11_erratum_list *branch;
2146 unsigned int id;
2147 } v;
2148 } u;
2149 elf32_vfp11_erratum_type type;
2150 }
2151 elf32_vfp11_erratum_list;
2152
2153 typedef struct _arm_elf_section_data
2154 {
2155 struct bfd_elf_section_data elf;
2156 unsigned int mapcount;
2157 unsigned int mapsize;
2158 elf32_arm_section_map *map;
2159 unsigned int erratumcount;
2160 elf32_vfp11_erratum_list *erratumlist;
2161 }
2162 _arm_elf_section_data;
2163
2164 #define elf32_arm_section_data(sec) \
2165 ((_arm_elf_section_data *) elf_section_data (sec))
2166
2167 /* The size of the thread control block. */
2168 #define TCB_SIZE 8
2169
2170 struct elf_arm_obj_tdata
2171 {
2172 struct elf_obj_tdata root;
2173
2174 /* tls_type for each local got entry. */
2175 char *local_got_tls_type;
2176
2177 /* Zero to warn when linking objects with incompatible enum sizes. */
2178 int no_enum_size_warning;
2179
2180 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2181 int no_wchar_size_warning;
2182 };
2183
2184 #define elf_arm_tdata(bfd) \
2185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2186
2187 #define elf32_arm_local_got_tls_type(bfd) \
2188 (elf_arm_tdata (bfd)->local_got_tls_type)
2189
2190 #define is_arm_elf(bfd) \
2191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2192 && elf_tdata (bfd) != NULL \
2193 && elf_object_id (bfd) == ARM_ELF_TDATA)
2194
2195 static bfd_boolean
2196 elf32_arm_mkobject (bfd *abfd)
2197 {
2198 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2199 ARM_ELF_TDATA);
2200 }
2201
2202 /* The ARM linker needs to keep track of the number of relocs that it
2203 decides to copy in check_relocs for each symbol. This is so that
2204 it can discard PC relative relocs if it doesn't need them when
2205 linking with -Bsymbolic. We store the information in a field
2206 extending the regular ELF linker hash table. */
2207
2208 /* This structure keeps track of the number of relocs we have copied
2209 for a given symbol. */
2210 struct elf32_arm_relocs_copied
2211 {
2212 /* Next section. */
2213 struct elf32_arm_relocs_copied * next;
2214 /* A section in dynobj. */
2215 asection * section;
2216 /* Number of relocs copied in this section. */
2217 bfd_size_type count;
2218 /* Number of PC-relative relocs copied in this section. */
2219 bfd_size_type pc_count;
2220 };
2221
2222 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2223
2224 /* Arm ELF linker hash entry. */
2225 struct elf32_arm_link_hash_entry
2226 {
2227 struct elf_link_hash_entry root;
2228
2229 /* Number of PC relative relocs copied for this symbol. */
2230 struct elf32_arm_relocs_copied * relocs_copied;
2231
2232 /* We reference count Thumb references to a PLT entry separately,
2233 so that we can emit the Thumb trampoline only if needed. */
2234 bfd_signed_vma plt_thumb_refcount;
2235
2236 /* Some references from Thumb code may be eliminated by BL->BLX
2237 conversion, so record them separately. */
2238 bfd_signed_vma plt_maybe_thumb_refcount;
2239
2240 /* Since PLT entries have variable size if the Thumb prologue is
2241 used, we need to record the index into .got.plt instead of
2242 recomputing it from the PLT offset. */
2243 bfd_signed_vma plt_got_offset;
2244
2245 #define GOT_UNKNOWN 0
2246 #define GOT_NORMAL 1
2247 #define GOT_TLS_GD 2
2248 #define GOT_TLS_IE 4
2249 unsigned char tls_type;
2250
2251 /* The symbol marking the real symbol location for exported thumb
2252 symbols with Arm stubs. */
2253 struct elf_link_hash_entry *export_glue;
2254
2255 /* A pointer to the most recently used stub hash entry against this
2256 symbol. */
2257 struct elf32_arm_stub_hash_entry *stub_cache;
2258 };
2259
2260 /* Traverse an arm ELF linker hash table. */
2261 #define elf32_arm_link_hash_traverse(table, func, info) \
2262 (elf_link_hash_traverse \
2263 (&(table)->root, \
2264 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2265 (info)))
2266
2267 /* Get the ARM elf linker hash table from a link_info structure. */
2268 #define elf32_arm_hash_table(info) \
2269 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2270
2271 #define arm_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf32_arm_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2274
2275 /* ARM ELF linker hash table. */
2276 struct elf32_arm_link_hash_table
2277 {
2278 /* The main hash table. */
2279 struct elf_link_hash_table root;
2280
2281 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2282 bfd_size_type thumb_glue_size;
2283
2284 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2285 bfd_size_type arm_glue_size;
2286
2287 /* The size in bytes of section containing the ARMv4 BX veneers. */
2288 bfd_size_type bx_glue_size;
2289
2290 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2291 veneer has been populated. */
2292 bfd_vma bx_glue_offset[15];
2293
2294 /* The size in bytes of the section containing glue for VFP11 erratum
2295 veneers. */
2296 bfd_size_type vfp11_erratum_glue_size;
2297
2298 /* An arbitrary input BFD chosen to hold the glue sections. */
2299 bfd * bfd_of_glue_owner;
2300
2301 /* Nonzero to output a BE8 image. */
2302 int byteswap_code;
2303
2304 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2305 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2306 int target1_is_rel;
2307
2308 /* The relocation to use for R_ARM_TARGET2 relocations. */
2309 int target2_reloc;
2310
2311 /* 0 = Ignore R_ARM_V4BX.
2312 1 = Convert BX to MOV PC.
2313 2 = Generate v4 interworing stubs. */
2314 int fix_v4bx;
2315
2316 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2317 int use_blx;
2318
2319 /* What sort of code sequences we should look for which may trigger the
2320 VFP11 denorm erratum. */
2321 bfd_arm_vfp11_fix vfp11_fix;
2322
2323 /* Global counter for the number of fixes we have emitted. */
2324 int num_vfp11_fixes;
2325
2326 /* Nonzero to force PIC branch veneers. */
2327 int pic_veneer;
2328
2329 /* The number of bytes in the initial entry in the PLT. */
2330 bfd_size_type plt_header_size;
2331
2332 /* The number of bytes in the subsequent PLT etries. */
2333 bfd_size_type plt_entry_size;
2334
2335 /* True if the target system is VxWorks. */
2336 int vxworks_p;
2337
2338 /* True if the target system is Symbian OS. */
2339 int symbian_p;
2340
2341 /* True if the target uses REL relocations. */
2342 int use_rel;
2343
2344 /* Short-cuts to get to dynamic linker sections. */
2345 asection *sgot;
2346 asection *sgotplt;
2347 asection *srelgot;
2348 asection *splt;
2349 asection *srelplt;
2350 asection *sdynbss;
2351 asection *srelbss;
2352
2353 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2354 asection *srelplt2;
2355
2356 /* Data for R_ARM_TLS_LDM32 relocations. */
2357 union
2358 {
2359 bfd_signed_vma refcount;
2360 bfd_vma offset;
2361 } tls_ldm_got;
2362
2363 /* Small local sym to section mapping cache. */
2364 struct sym_sec_cache sym_sec;
2365
2366 /* For convenience in allocate_dynrelocs. */
2367 bfd * obfd;
2368
2369 /* The stub hash table. */
2370 struct bfd_hash_table stub_hash_table;
2371
2372 /* Linker stub bfd. */
2373 bfd *stub_bfd;
2374
2375 /* Linker call-backs. */
2376 asection * (*add_stub_section) (const char *, asection *);
2377 void (*layout_sections_again) (void);
2378
2379 /* Array to keep track of which stub sections have been created, and
2380 information on stub grouping. */
2381 struct map_stub
2382 {
2383 /* This is the section to which stubs in the group will be
2384 attached. */
2385 asection *link_sec;
2386 /* The stub section. */
2387 asection *stub_sec;
2388 } *stub_group;
2389
2390 /* Assorted information used by elf32_arm_size_stubs. */
2391 unsigned int bfd_count;
2392 int top_index;
2393 asection **input_list;
2394 };
2395
2396 /* Create an entry in an ARM ELF linker hash table. */
2397
2398 static struct bfd_hash_entry *
2399 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2400 struct bfd_hash_table * table,
2401 const char * string)
2402 {
2403 struct elf32_arm_link_hash_entry * ret =
2404 (struct elf32_arm_link_hash_entry *) entry;
2405
2406 /* Allocate the structure if it has not already been allocated by a
2407 subclass. */
2408 if (ret == NULL)
2409 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2410 if (ret == NULL)
2411 return (struct bfd_hash_entry *) ret;
2412
2413 /* Call the allocation method of the superclass. */
2414 ret = ((struct elf32_arm_link_hash_entry *)
2415 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2416 table, string));
2417 if (ret != NULL)
2418 {
2419 ret->relocs_copied = NULL;
2420 ret->tls_type = GOT_UNKNOWN;
2421 ret->plt_thumb_refcount = 0;
2422 ret->plt_maybe_thumb_refcount = 0;
2423 ret->plt_got_offset = -1;
2424 ret->export_glue = NULL;
2425
2426 ret->stub_cache = NULL;
2427 }
2428
2429 return (struct bfd_hash_entry *) ret;
2430 }
2431
2432 /* Initialize an entry in the stub hash table. */
2433
2434 static struct bfd_hash_entry *
2435 stub_hash_newfunc (struct bfd_hash_entry *entry,
2436 struct bfd_hash_table *table,
2437 const char *string)
2438 {
2439 /* Allocate the structure if it has not already been allocated by a
2440 subclass. */
2441 if (entry == NULL)
2442 {
2443 entry = bfd_hash_allocate (table,
2444 sizeof (struct elf32_arm_stub_hash_entry));
2445 if (entry == NULL)
2446 return entry;
2447 }
2448
2449 /* Call the allocation method of the superclass. */
2450 entry = bfd_hash_newfunc (entry, table, string);
2451 if (entry != NULL)
2452 {
2453 struct elf32_arm_stub_hash_entry *eh;
2454
2455 /* Initialize the local fields. */
2456 eh = (struct elf32_arm_stub_hash_entry *) entry;
2457 eh->stub_sec = NULL;
2458 eh->stub_offset = 0;
2459 eh->target_value = 0;
2460 eh->target_section = NULL;
2461 eh->stub_type = arm_stub_none;
2462 eh->h = NULL;
2463 eh->id_sec = NULL;
2464 }
2465
2466 return entry;
2467 }
2468
2469 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2470 shortcuts to them in our hash table. */
2471
2472 static bfd_boolean
2473 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2474 {
2475 struct elf32_arm_link_hash_table *htab;
2476
2477 htab = elf32_arm_hash_table (info);
2478 /* BPABI objects never have a GOT, or associated sections. */
2479 if (htab->symbian_p)
2480 return TRUE;
2481
2482 if (! _bfd_elf_create_got_section (dynobj, info))
2483 return FALSE;
2484
2485 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2486 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2487 if (!htab->sgot || !htab->sgotplt)
2488 abort ();
2489
2490 htab->srelgot = bfd_make_section_with_flags (dynobj,
2491 RELOC_SECTION (htab, ".got"),
2492 (SEC_ALLOC | SEC_LOAD
2493 | SEC_HAS_CONTENTS
2494 | SEC_IN_MEMORY
2495 | SEC_LINKER_CREATED
2496 | SEC_READONLY));
2497 if (htab->srelgot == NULL
2498 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2499 return FALSE;
2500 return TRUE;
2501 }
2502
2503 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2504 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2505 hash table. */
2506
2507 static bfd_boolean
2508 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2509 {
2510 struct elf32_arm_link_hash_table *htab;
2511
2512 htab = elf32_arm_hash_table (info);
2513 if (!htab->sgot && !create_got_section (dynobj, info))
2514 return FALSE;
2515
2516 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2517 return FALSE;
2518
2519 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2520 htab->srelplt = bfd_get_section_by_name (dynobj,
2521 RELOC_SECTION (htab, ".plt"));
2522 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2523 if (!info->shared)
2524 htab->srelbss = bfd_get_section_by_name (dynobj,
2525 RELOC_SECTION (htab, ".bss"));
2526
2527 if (htab->vxworks_p)
2528 {
2529 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2530 return FALSE;
2531
2532 if (info->shared)
2533 {
2534 htab->plt_header_size = 0;
2535 htab->plt_entry_size
2536 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2537 }
2538 else
2539 {
2540 htab->plt_header_size
2541 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2542 htab->plt_entry_size
2543 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2544 }
2545 }
2546
2547 if (!htab->splt
2548 || !htab->srelplt
2549 || !htab->sdynbss
2550 || (!info->shared && !htab->srelbss))
2551 abort ();
2552
2553 return TRUE;
2554 }
2555
2556 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2557
2558 static void
2559 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2560 struct elf_link_hash_entry *dir,
2561 struct elf_link_hash_entry *ind)
2562 {
2563 struct elf32_arm_link_hash_entry *edir, *eind;
2564
2565 edir = (struct elf32_arm_link_hash_entry *) dir;
2566 eind = (struct elf32_arm_link_hash_entry *) ind;
2567
2568 if (eind->relocs_copied != NULL)
2569 {
2570 if (edir->relocs_copied != NULL)
2571 {
2572 struct elf32_arm_relocs_copied **pp;
2573 struct elf32_arm_relocs_copied *p;
2574
2575 /* Add reloc counts against the indirect sym to the direct sym
2576 list. Merge any entries against the same section. */
2577 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2578 {
2579 struct elf32_arm_relocs_copied *q;
2580
2581 for (q = edir->relocs_copied; q != NULL; q = q->next)
2582 if (q->section == p->section)
2583 {
2584 q->pc_count += p->pc_count;
2585 q->count += p->count;
2586 *pp = p->next;
2587 break;
2588 }
2589 if (q == NULL)
2590 pp = &p->next;
2591 }
2592 *pp = edir->relocs_copied;
2593 }
2594
2595 edir->relocs_copied = eind->relocs_copied;
2596 eind->relocs_copied = NULL;
2597 }
2598
2599 if (ind->root.type == bfd_link_hash_indirect)
2600 {
2601 /* Copy over PLT info. */
2602 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2603 eind->plt_thumb_refcount = 0;
2604 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2605 eind->plt_maybe_thumb_refcount = 0;
2606
2607 if (dir->got.refcount <= 0)
2608 {
2609 edir->tls_type = eind->tls_type;
2610 eind->tls_type = GOT_UNKNOWN;
2611 }
2612 }
2613
2614 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2615 }
2616
2617 /* Create an ARM elf linker hash table. */
2618
2619 static struct bfd_link_hash_table *
2620 elf32_arm_link_hash_table_create (bfd *abfd)
2621 {
2622 struct elf32_arm_link_hash_table *ret;
2623 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2624
2625 ret = bfd_malloc (amt);
2626 if (ret == NULL)
2627 return NULL;
2628
2629 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2630 elf32_arm_link_hash_newfunc,
2631 sizeof (struct elf32_arm_link_hash_entry)))
2632 {
2633 free (ret);
2634 return NULL;
2635 }
2636
2637 ret->sgot = NULL;
2638 ret->sgotplt = NULL;
2639 ret->srelgot = NULL;
2640 ret->splt = NULL;
2641 ret->srelplt = NULL;
2642 ret->sdynbss = NULL;
2643 ret->srelbss = NULL;
2644 ret->srelplt2 = NULL;
2645 ret->thumb_glue_size = 0;
2646 ret->arm_glue_size = 0;
2647 ret->bx_glue_size = 0;
2648 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2649 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2650 ret->vfp11_erratum_glue_size = 0;
2651 ret->num_vfp11_fixes = 0;
2652 ret->bfd_of_glue_owner = NULL;
2653 ret->byteswap_code = 0;
2654 ret->target1_is_rel = 0;
2655 ret->target2_reloc = R_ARM_NONE;
2656 #ifdef FOUR_WORD_PLT
2657 ret->plt_header_size = 16;
2658 ret->plt_entry_size = 16;
2659 #else
2660 ret->plt_header_size = 20;
2661 ret->plt_entry_size = 12;
2662 #endif
2663 ret->fix_v4bx = 0;
2664 ret->use_blx = 0;
2665 ret->vxworks_p = 0;
2666 ret->symbian_p = 0;
2667 ret->use_rel = 1;
2668 ret->sym_sec.abfd = NULL;
2669 ret->obfd = abfd;
2670 ret->tls_ldm_got.refcount = 0;
2671 ret->stub_bfd = NULL;
2672 ret->add_stub_section = NULL;
2673 ret->layout_sections_again = NULL;
2674 ret->stub_group = NULL;
2675 ret->bfd_count = 0;
2676 ret->top_index = 0;
2677 ret->input_list = NULL;
2678
2679 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2680 sizeof (struct elf32_arm_stub_hash_entry)))
2681 {
2682 free (ret);
2683 return NULL;
2684 }
2685
2686 return &ret->root.root;
2687 }
2688
2689 /* Free the derived linker hash table. */
2690
2691 static void
2692 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2693 {
2694 struct elf32_arm_link_hash_table *ret
2695 = (struct elf32_arm_link_hash_table *) hash;
2696
2697 bfd_hash_table_free (&ret->stub_hash_table);
2698 _bfd_generic_link_hash_table_free (hash);
2699 }
2700
2701 /* Determine if we're dealing with a Thumb only architecture. */
2702
2703 static bfd_boolean
2704 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2705 {
2706 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2707 Tag_CPU_arch);
2708 int profile;
2709
2710 if (arch != TAG_CPU_ARCH_V7)
2711 return FALSE;
2712
2713 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2714 Tag_CPU_arch_profile);
2715
2716 return profile == 'M';
2717 }
2718
2719 /* Determine if we're dealing with a Thumb-2 object. */
2720
2721 static bfd_boolean
2722 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2723 {
2724 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2725 Tag_CPU_arch);
2726 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2727 }
2728
2729 static bfd_boolean
2730 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2731 {
2732 switch (stub_type)
2733 {
2734 case arm_thumb_thumb_stub_long_branch:
2735 case arm_thumb_arm_v4t_stub_long_branch:
2736 case arm_thumb_arm_v4t_stub_short_branch:
2737 return TRUE;
2738 case arm_stub_none:
2739 BFD_FAIL ();
2740 return FALSE;
2741 break;
2742 default:
2743 return FALSE;
2744 }
2745 }
2746
2747 /* Determine the type of stub needed, if any, for a call. */
2748
2749 static enum elf32_arm_stub_type
2750 arm_type_of_stub (struct bfd_link_info *info,
2751 asection *input_sec,
2752 const Elf_Internal_Rela *rel,
2753 unsigned char st_type,
2754 struct elf32_arm_link_hash_entry *hash,
2755 bfd_vma destination,
2756 asection *sym_sec,
2757 bfd *input_bfd,
2758 const char *name)
2759 {
2760 bfd_vma location;
2761 bfd_signed_vma branch_offset;
2762 unsigned int r_type;
2763 struct elf32_arm_link_hash_table * globals;
2764 int thumb2;
2765 int thumb_only;
2766 enum elf32_arm_stub_type stub_type = arm_stub_none;
2767
2768 /* We don't know the actual type of destination in case it is of
2769 type STT_SECTION: give up. */
2770 if (st_type == STT_SECTION)
2771 return stub_type;
2772
2773 globals = elf32_arm_hash_table (info);
2774
2775 thumb_only = using_thumb_only (globals);
2776
2777 thumb2 = using_thumb2 (globals);
2778
2779 /* Determine where the call point is. */
2780 location = (input_sec->output_offset
2781 + input_sec->output_section->vma
2782 + rel->r_offset);
2783
2784 branch_offset = (bfd_signed_vma)(destination - location);
2785
2786 r_type = ELF32_R_TYPE (rel->r_info);
2787
2788 /* If the call will go through a PLT entry then we do not need
2789 glue. */
2790 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2791 return stub_type;
2792
2793 if (r_type == R_ARM_THM_CALL)
2794 {
2795 if ((!thumb2
2796 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2797 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2798 || (thumb2
2799 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2800 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2801 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2802 {
2803 if (st_type == STT_ARM_TFUNC)
2804 {
2805 /* Thumb to thumb. */
2806 if (!thumb_only)
2807 {
2808 stub_type = (info->shared | globals->pic_veneer)
2809 ? ((globals->use_blx)
2810 ? arm_stub_pic_long_branch
2811 : arm_stub_none)
2812 : (globals->use_blx)
2813 ? arm_stub_long_branch
2814 : arm_stub_none;
2815 }
2816 else
2817 {
2818 stub_type = (info->shared | globals->pic_veneer)
2819 ? arm_stub_none
2820 : (globals->use_blx)
2821 ? arm_thumb_thumb_stub_long_branch
2822 : arm_stub_none;
2823 }
2824 }
2825 else
2826 {
2827 /* Thumb to arm. */
2828 if (sym_sec != NULL
2829 && sym_sec->owner != NULL
2830 && !INTERWORK_FLAG (sym_sec->owner))
2831 {
2832 (*_bfd_error_handler)
2833 (_("%B(%s): warning: interworking not enabled.\n"
2834 " first occurrence: %B: Thumb call to ARM"),
2835 sym_sec->owner, input_bfd, name);
2836 }
2837
2838 stub_type = (info->shared | globals->pic_veneer)
2839 ? ((globals->use_blx)
2840 ? arm_stub_pic_long_branch
2841 : arm_stub_none)
2842 : (globals->use_blx)
2843 ? arm_stub_long_branch
2844 : arm_thumb_arm_v4t_stub_long_branch;
2845
2846 /* Handle v4t short branches. */
2847 if ((stub_type == arm_thumb_arm_v4t_stub_long_branch)
2848 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2849 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2850 stub_type = arm_thumb_arm_v4t_stub_short_branch;
2851 }
2852 }
2853 }
2854 else if (r_type == R_ARM_CALL)
2855 {
2856 if (st_type == STT_ARM_TFUNC)
2857 {
2858 /* Arm to thumb. */
2859
2860 if (sym_sec != NULL
2861 && sym_sec->owner != NULL
2862 && !INTERWORK_FLAG (sym_sec->owner))
2863 {
2864 (*_bfd_error_handler)
2865 (_("%B(%s): warning: interworking not enabled.\n"
2866 " first occurrence: %B: Thumb call to ARM"),
2867 sym_sec->owner, input_bfd, name);
2868 }
2869
2870 /* We have an extra 2-bytes reach because of
2871 the mode change (bit 24 (H) of BLX encoding). */
2872 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2873 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2874 || !globals->use_blx)
2875 {
2876 stub_type = (info->shared | globals->pic_veneer)
2877 ? arm_stub_pic_long_branch
2878 : (globals->use_blx)
2879 ? arm_stub_long_branch
2880 : arm_thumb_v4t_stub_long_branch;
2881 }
2882 }
2883 else
2884 {
2885 /* Arm to arm. */
2886 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2887 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2888 {
2889 stub_type = (info->shared | globals->pic_veneer)
2890 ? arm_stub_pic_long_branch
2891 : arm_stub_long_branch;
2892 }
2893 }
2894 }
2895
2896 return stub_type;
2897 }
2898
2899 /* Build a name for an entry in the stub hash table. */
2900
2901 static char *
2902 elf32_arm_stub_name (const asection *input_section,
2903 const asection *sym_sec,
2904 const struct elf32_arm_link_hash_entry *hash,
2905 const Elf_Internal_Rela *rel)
2906 {
2907 char *stub_name;
2908 bfd_size_type len;
2909
2910 if (hash)
2911 {
2912 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2913 stub_name = bfd_malloc (len);
2914 if (stub_name != NULL)
2915 sprintf (stub_name, "%08x_%s+%x",
2916 input_section->id & 0xffffffff,
2917 hash->root.root.root.string,
2918 (int) rel->r_addend & 0xffffffff);
2919 }
2920 else
2921 {
2922 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2923 stub_name = bfd_malloc (len);
2924 if (stub_name != NULL)
2925 sprintf (stub_name, "%08x_%x:%x+%x",
2926 input_section->id & 0xffffffff,
2927 sym_sec->id & 0xffffffff,
2928 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2929 (int) rel->r_addend & 0xffffffff);
2930 }
2931
2932 return stub_name;
2933 }
2934
2935 /* Look up an entry in the stub hash. Stub entries are cached because
2936 creating the stub name takes a bit of time. */
2937
2938 static struct elf32_arm_stub_hash_entry *
2939 elf32_arm_get_stub_entry (const asection *input_section,
2940 const asection *sym_sec,
2941 struct elf_link_hash_entry *hash,
2942 const Elf_Internal_Rela *rel,
2943 struct elf32_arm_link_hash_table *htab)
2944 {
2945 struct elf32_arm_stub_hash_entry *stub_entry;
2946 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2947 const asection *id_sec;
2948
2949 if ((input_section->flags & SEC_CODE) == 0)
2950 return NULL;
2951
2952 /* If this input section is part of a group of sections sharing one
2953 stub section, then use the id of the first section in the group.
2954 Stub names need to include a section id, as there may well be
2955 more than one stub used to reach say, printf, and we need to
2956 distinguish between them. */
2957 id_sec = htab->stub_group[input_section->id].link_sec;
2958
2959 if (h != NULL && h->stub_cache != NULL
2960 && h->stub_cache->h == h
2961 && h->stub_cache->id_sec == id_sec)
2962 {
2963 stub_entry = h->stub_cache;
2964 }
2965 else
2966 {
2967 char *stub_name;
2968
2969 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2970 if (stub_name == NULL)
2971 return NULL;
2972
2973 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2974 stub_name, FALSE, FALSE);
2975 if (h != NULL)
2976 h->stub_cache = stub_entry;
2977
2978 free (stub_name);
2979 }
2980
2981 return stub_entry;
2982 }
2983
2984 /* Add a new stub entry to the stub hash. Not all fields of the new
2985 stub entry are initialised. */
2986
2987 static struct elf32_arm_stub_hash_entry *
2988 elf32_arm_add_stub (const char *stub_name,
2989 asection *section,
2990 struct elf32_arm_link_hash_table *htab)
2991 {
2992 asection *link_sec;
2993 asection *stub_sec;
2994 struct elf32_arm_stub_hash_entry *stub_entry;
2995
2996 link_sec = htab->stub_group[section->id].link_sec;
2997 stub_sec = htab->stub_group[section->id].stub_sec;
2998 if (stub_sec == NULL)
2999 {
3000 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3001 if (stub_sec == NULL)
3002 {
3003 size_t namelen;
3004 bfd_size_type len;
3005 char *s_name;
3006
3007 namelen = strlen (link_sec->name);
3008 len = namelen + sizeof (STUB_SUFFIX);
3009 s_name = bfd_alloc (htab->stub_bfd, len);
3010 if (s_name == NULL)
3011 return NULL;
3012
3013 memcpy (s_name, link_sec->name, namelen);
3014 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3015 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3016 if (stub_sec == NULL)
3017 return NULL;
3018 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3019 }
3020 htab->stub_group[section->id].stub_sec = stub_sec;
3021 }
3022
3023 /* Enter this entry into the linker stub hash table. */
3024 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3025 TRUE, FALSE);
3026 if (stub_entry == NULL)
3027 {
3028 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3029 section->owner,
3030 stub_name);
3031 return NULL;
3032 }
3033
3034 stub_entry->stub_sec = stub_sec;
3035 stub_entry->stub_offset = 0;
3036 stub_entry->id_sec = link_sec;
3037
3038 return stub_entry;
3039 }
3040
3041 /* Store an Arm insn into an output section not processed by
3042 elf32_arm_write_section. */
3043
3044 static void
3045 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3046 bfd * output_bfd, bfd_vma val, void * ptr)
3047 {
3048 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3049 bfd_putl32 (val, ptr);
3050 else
3051 bfd_putb32 (val, ptr);
3052 }
3053
3054 /* Store a 16-bit Thumb insn into an output section not processed by
3055 elf32_arm_write_section. */
3056
3057 static void
3058 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3059 bfd * output_bfd, bfd_vma val, void * ptr)
3060 {
3061 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3062 bfd_putl16 (val, ptr);
3063 else
3064 bfd_putb16 (val, ptr);
3065 }
3066
3067 static bfd_boolean
3068 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3069 void * in_arg)
3070 {
3071 struct elf32_arm_stub_hash_entry *stub_entry;
3072 struct bfd_link_info *info;
3073 struct elf32_arm_link_hash_table *htab;
3074 asection *stub_sec;
3075 bfd *stub_bfd;
3076 bfd_vma stub_addr;
3077 bfd_byte *loc;
3078 bfd_vma sym_value;
3079 int template_size;
3080 int size;
3081 const bfd_vma *template;
3082 int i;
3083 struct elf32_arm_link_hash_table * globals;
3084
3085 /* Massage our args to the form they really have. */
3086 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3087 info = (struct bfd_link_info *) in_arg;
3088
3089 globals = elf32_arm_hash_table (info);
3090
3091 htab = elf32_arm_hash_table (info);
3092 stub_sec = stub_entry->stub_sec;
3093
3094 /* Make a note of the offset within the stubs for this entry. */
3095 stub_entry->stub_offset = stub_sec->size;
3096 loc = stub_sec->contents + stub_entry->stub_offset;
3097
3098 stub_bfd = stub_sec->owner;
3099
3100 /* This is the address of the start of the stub. */
3101 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3102 + stub_entry->stub_offset;
3103
3104 /* This is the address of the stub destination. */
3105 sym_value = (stub_entry->target_value
3106 + stub_entry->target_section->output_offset
3107 + stub_entry->target_section->output_section->vma);
3108
3109 switch (stub_entry->stub_type)
3110 {
3111 case arm_stub_long_branch:
3112 template = arm_long_branch_stub;
3113 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3114 break;
3115 case arm_thumb_v4t_stub_long_branch:
3116 template = arm_thumb_v4t_long_branch_stub;
3117 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3118 break;
3119 case arm_thumb_thumb_stub_long_branch:
3120 template = arm_thumb_thumb_long_branch_stub;
3121 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3122 break;
3123 case arm_thumb_arm_v4t_stub_long_branch:
3124 template = arm_thumb_arm_v4t_long_branch_stub;
3125 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3126 break;
3127 case arm_thumb_arm_v4t_stub_short_branch:
3128 template = arm_thumb_arm_v4t_short_branch_stub;
3129 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3130 break;
3131 case arm_stub_pic_long_branch:
3132 template = arm_pic_long_branch_stub;
3133 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3134 break;
3135 default:
3136 BFD_FAIL ();
3137 return FALSE;
3138 }
3139
3140 size = 0;
3141 for (i = 0; i < (template_size / 4); i++)
3142 {
3143 /* A 0 pattern is a placeholder, every other pattern is an
3144 instruction. */
3145 if (template[i] != 0)
3146 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3147 else
3148 bfd_put_32 (stub_bfd, template[i], loc + size);
3149
3150 size += 4;
3151 }
3152 stub_sec->size += size;
3153
3154 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3155 if (stub_entry->st_type == STT_ARM_TFUNC)
3156 sym_value |= 1;
3157
3158 switch (stub_entry->stub_type)
3159 {
3160 case arm_stub_long_branch:
3161 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3162 stub_bfd, stub_sec, stub_sec->contents,
3163 stub_entry->stub_offset + 4, sym_value, 0);
3164 break;
3165 case arm_thumb_v4t_stub_long_branch:
3166 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3167 stub_bfd, stub_sec, stub_sec->contents,
3168 stub_entry->stub_offset + 8, sym_value, 0);
3169 break;
3170 case arm_thumb_thumb_stub_long_branch:
3171 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3172 stub_bfd, stub_sec, stub_sec->contents,
3173 stub_entry->stub_offset + 12, sym_value, 0);
3174 break;
3175 case arm_thumb_arm_v4t_stub_long_branch:
3176 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3177 stub_bfd, stub_sec, stub_sec->contents,
3178 stub_entry->stub_offset + 16, sym_value, 0);
3179 break;
3180 case arm_thumb_arm_v4t_stub_short_branch:
3181 {
3182 long int rel_offset;
3183 static const insn32 t2a3_b_insn = 0xea000000;
3184
3185 rel_offset = sym_value - (stub_addr + 8 + 4);
3186
3187 put_arm_insn (globals, stub_bfd,
3188 (bfd_vma) t2a3_b_insn | ((rel_offset >> 2) & 0x00FFFFFF),
3189 loc + 4);
3190 }
3191 break;
3192
3193 case arm_stub_pic_long_branch:
3194 /* We want the value relative to the address 8 bytes from the
3195 start of the stub. */
3196 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_REL32),
3197 stub_bfd, stub_sec, stub_sec->contents,
3198 stub_entry->stub_offset + 8, sym_value, 0);
3199 break;
3200 default:
3201 break;
3202 }
3203
3204 return TRUE;
3205 }
3206
3207 /* As above, but don't actually build the stub. Just bump offset so
3208 we know stub section sizes. */
3209
3210 static bfd_boolean
3211 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3212 void * in_arg)
3213 {
3214 struct elf32_arm_stub_hash_entry *stub_entry;
3215 struct elf32_arm_link_hash_table *htab;
3216 const bfd_vma *template;
3217 int template_size;
3218 int size;
3219 int i;
3220
3221 /* Massage our args to the form they really have. */
3222 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3223 htab = (struct elf32_arm_link_hash_table *) in_arg;
3224
3225 switch (stub_entry->stub_type)
3226 {
3227 case arm_stub_long_branch:
3228 template = arm_long_branch_stub;
3229 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3230 break;
3231 case arm_thumb_v4t_stub_long_branch:
3232 template = arm_thumb_v4t_long_branch_stub;
3233 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3234 break;
3235 case arm_thumb_thumb_stub_long_branch:
3236 template = arm_thumb_thumb_long_branch_stub;
3237 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3238 break;
3239 case arm_thumb_arm_v4t_stub_long_branch:
3240 template = arm_thumb_arm_v4t_long_branch_stub;
3241 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3242 break;
3243 case arm_thumb_arm_v4t_stub_short_branch:
3244 template = arm_thumb_arm_v4t_short_branch_stub;
3245 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3246 break;
3247 case arm_stub_pic_long_branch:
3248 template = arm_pic_long_branch_stub;
3249 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3250 break;
3251 default:
3252 BFD_FAIL ();
3253 return FALSE;
3254 break;
3255 }
3256
3257 size = 0;
3258 for (i = 0; i < (template_size / 4); i++)
3259 size += 4;
3260 size = (size + 7) & ~7;
3261 stub_entry->stub_sec->size += size;
3262 return TRUE;
3263 }
3264
3265 /* External entry points for sizing and building linker stubs. */
3266
3267 /* Set up various things so that we can make a list of input sections
3268 for each output section included in the link. Returns -1 on error,
3269 0 when no stubs will be needed, and 1 on success. */
3270
3271 int
3272 elf32_arm_setup_section_lists (bfd *output_bfd,
3273 struct bfd_link_info *info)
3274 {
3275 bfd *input_bfd;
3276 unsigned int bfd_count;
3277 int top_id, top_index;
3278 asection *section;
3279 asection **input_list, **list;
3280 bfd_size_type amt;
3281 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3282
3283 if (! is_elf_hash_table (htab))
3284 return 0;
3285
3286 /* Count the number of input BFDs and find the top input section id. */
3287 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3288 input_bfd != NULL;
3289 input_bfd = input_bfd->link_next)
3290 {
3291 bfd_count += 1;
3292 for (section = input_bfd->sections;
3293 section != NULL;
3294 section = section->next)
3295 {
3296 if (top_id < section->id)
3297 top_id = section->id;
3298 }
3299 }
3300 htab->bfd_count = bfd_count;
3301
3302 amt = sizeof (struct map_stub) * (top_id + 1);
3303 htab->stub_group = bfd_zmalloc (amt);
3304 if (htab->stub_group == NULL)
3305 return -1;
3306
3307 /* We can't use output_bfd->section_count here to find the top output
3308 section index as some sections may have been removed, and
3309 _bfd_strip_section_from_output doesn't renumber the indices. */
3310 for (section = output_bfd->sections, top_index = 0;
3311 section != NULL;
3312 section = section->next)
3313 {
3314 if (top_index < section->index)
3315 top_index = section->index;
3316 }
3317
3318 htab->top_index = top_index;
3319 amt = sizeof (asection *) * (top_index + 1);
3320 input_list = bfd_malloc (amt);
3321 htab->input_list = input_list;
3322 if (input_list == NULL)
3323 return -1;
3324
3325 /* For sections we aren't interested in, mark their entries with a
3326 value we can check later. */
3327 list = input_list + top_index;
3328 do
3329 *list = bfd_abs_section_ptr;
3330 while (list-- != input_list);
3331
3332 for (section = output_bfd->sections;
3333 section != NULL;
3334 section = section->next)
3335 {
3336 if ((section->flags & SEC_CODE) != 0)
3337 input_list[section->index] = NULL;
3338 }
3339
3340 return 1;
3341 }
3342
3343 /* The linker repeatedly calls this function for each input section,
3344 in the order that input sections are linked into output sections.
3345 Build lists of input sections to determine groupings between which
3346 we may insert linker stubs. */
3347
3348 void
3349 elf32_arm_next_input_section (struct bfd_link_info *info,
3350 asection *isec)
3351 {
3352 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3353
3354 if (isec->output_section->index <= htab->top_index)
3355 {
3356 asection **list = htab->input_list + isec->output_section->index;
3357
3358 if (*list != bfd_abs_section_ptr)
3359 {
3360 /* Steal the link_sec pointer for our list. */
3361 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3362 /* This happens to make the list in reverse order,
3363 which is what we want. */
3364 PREV_SEC (isec) = *list;
3365 *list = isec;
3366 }
3367 }
3368 }
3369
3370 /* See whether we can group stub sections together. Grouping stub
3371 sections may result in fewer stubs. More importantly, we need to
3372 put all .init* and .fini* stubs at the beginning of the .init or
3373 .fini output sections respectively, because glibc splits the
3374 _init and _fini functions into multiple parts. Putting a stub in
3375 the middle of a function is not a good idea. */
3376
3377 static void
3378 group_sections (struct elf32_arm_link_hash_table *htab,
3379 bfd_size_type stub_group_size,
3380 bfd_boolean stubs_always_before_branch)
3381 {
3382 asection **list = htab->input_list + htab->top_index;
3383
3384 do
3385 {
3386 asection *tail = *list;
3387
3388 if (tail == bfd_abs_section_ptr)
3389 continue;
3390
3391 while (tail != NULL)
3392 {
3393 asection *curr;
3394 asection *prev;
3395 bfd_size_type total;
3396
3397 curr = tail;
3398 total = tail->size;
3399 while ((prev = PREV_SEC (curr)) != NULL
3400 && ((total += curr->output_offset - prev->output_offset)
3401 < stub_group_size))
3402 curr = prev;
3403
3404 /* OK, the size from the start of CURR to the end is less
3405 than stub_group_size and thus can be handled by one stub
3406 section. (Or the tail section is itself larger than
3407 stub_group_size, in which case we may be toast.)
3408 We should really be keeping track of the total size of
3409 stubs added here, as stubs contribute to the final output
3410 section size. */
3411 do
3412 {
3413 prev = PREV_SEC (tail);
3414 /* Set up this stub group. */
3415 htab->stub_group[tail->id].link_sec = curr;
3416 }
3417 while (tail != curr && (tail = prev) != NULL);
3418
3419 /* But wait, there's more! Input sections up to stub_group_size
3420 bytes before the stub section can be handled by it too. */
3421 if (!stubs_always_before_branch)
3422 {
3423 total = 0;
3424 while (prev != NULL
3425 && ((total += tail->output_offset - prev->output_offset)
3426 < stub_group_size))
3427 {
3428 tail = prev;
3429 prev = PREV_SEC (tail);
3430 htab->stub_group[tail->id].link_sec = curr;
3431 }
3432 }
3433 tail = prev;
3434 }
3435 }
3436 while (list-- != htab->input_list);
3437
3438 free (htab->input_list);
3439 #undef PREV_SEC
3440 }
3441
3442 /* Determine and set the size of the stub section for a final link.
3443
3444 The basic idea here is to examine all the relocations looking for
3445 PC-relative calls to a target that is unreachable with a "bl"
3446 instruction. */
3447
3448 bfd_boolean
3449 elf32_arm_size_stubs (bfd *output_bfd,
3450 bfd *stub_bfd,
3451 struct bfd_link_info *info,
3452 bfd_signed_vma group_size,
3453 asection * (*add_stub_section) (const char *, asection *),
3454 void (*layout_sections_again) (void))
3455 {
3456 bfd_size_type stub_group_size;
3457 bfd_boolean stubs_always_before_branch;
3458 bfd_boolean stub_changed = 0;
3459 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3460
3461 /* Propagate mach to stub bfd, because it may not have been
3462 finalized when we created stub_bfd. */
3463 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3464 bfd_get_mach (output_bfd));
3465
3466 /* Stash our params away. */
3467 htab->stub_bfd = stub_bfd;
3468 htab->add_stub_section = add_stub_section;
3469 htab->layout_sections_again = layout_sections_again;
3470 stubs_always_before_branch = group_size < 0;
3471 if (group_size < 0)
3472 stub_group_size = -group_size;
3473 else
3474 stub_group_size = group_size;
3475
3476 if (stub_group_size == 1)
3477 {
3478 /* Default values. */
3479 /* Thumb branch range is +-4MB has to be used as the default
3480 maximum size (a given section can contain both ARM and Thumb
3481 code, so the worst case has to be taken into account).
3482
3483 This value is 24K less than that, which allows for 2025
3484 12-byte stubs. If we exceed that, then we will fail to link.
3485 The user will have to relink with an explicit group size
3486 option. */
3487 stub_group_size = 4170000;
3488 }
3489
3490 group_sections (htab, stub_group_size, stubs_always_before_branch);
3491
3492 while (1)
3493 {
3494 bfd *input_bfd;
3495 unsigned int bfd_indx;
3496 asection *stub_sec;
3497
3498 for (input_bfd = info->input_bfds, bfd_indx = 0;
3499 input_bfd != NULL;
3500 input_bfd = input_bfd->link_next, bfd_indx++)
3501 {
3502 Elf_Internal_Shdr *symtab_hdr;
3503 asection *section;
3504 Elf_Internal_Sym *local_syms = NULL;
3505
3506 /* We'll need the symbol table in a second. */
3507 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3508 if (symtab_hdr->sh_info == 0)
3509 continue;
3510
3511 /* Walk over each section attached to the input bfd. */
3512 for (section = input_bfd->sections;
3513 section != NULL;
3514 section = section->next)
3515 {
3516 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3517
3518 /* If there aren't any relocs, then there's nothing more
3519 to do. */
3520 if ((section->flags & SEC_RELOC) == 0
3521 || section->reloc_count == 0
3522 || (section->flags & SEC_CODE) == 0)
3523 continue;
3524
3525 /* If this section is a link-once section that will be
3526 discarded, then don't create any stubs. */
3527 if (section->output_section == NULL
3528 || section->output_section->owner != output_bfd)
3529 continue;
3530
3531 /* Get the relocs. */
3532 internal_relocs
3533 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3534 NULL, info->keep_memory);
3535 if (internal_relocs == NULL)
3536 goto error_ret_free_local;
3537
3538 /* Now examine each relocation. */
3539 irela = internal_relocs;
3540 irelaend = irela + section->reloc_count;
3541 for (; irela < irelaend; irela++)
3542 {
3543 unsigned int r_type, r_indx;
3544 enum elf32_arm_stub_type stub_type;
3545 struct elf32_arm_stub_hash_entry *stub_entry;
3546 asection *sym_sec;
3547 bfd_vma sym_value;
3548 bfd_vma destination;
3549 struct elf32_arm_link_hash_entry *hash;
3550 const char *sym_name;
3551 char *stub_name;
3552 const asection *id_sec;
3553 unsigned char st_type;
3554
3555 r_type = ELF32_R_TYPE (irela->r_info);
3556 r_indx = ELF32_R_SYM (irela->r_info);
3557
3558 if (r_type >= (unsigned int) R_ARM_max)
3559 {
3560 bfd_set_error (bfd_error_bad_value);
3561 error_ret_free_internal:
3562 if (elf_section_data (section)->relocs == NULL)
3563 free (internal_relocs);
3564 goto error_ret_free_local;
3565 }
3566
3567 /* Only look for stubs on call instructions. */
3568 if ((r_type != (unsigned int) R_ARM_CALL)
3569 && (r_type != (unsigned int) R_ARM_THM_CALL))
3570 continue;
3571
3572 /* Now determine the call target, its name, value,
3573 section. */
3574 sym_sec = NULL;
3575 sym_value = 0;
3576 destination = 0;
3577 hash = NULL;
3578 sym_name = NULL;
3579 if (r_indx < symtab_hdr->sh_info)
3580 {
3581 /* It's a local symbol. */
3582 Elf_Internal_Sym *sym;
3583 Elf_Internal_Shdr *hdr;
3584
3585 if (local_syms == NULL)
3586 {
3587 local_syms
3588 = (Elf_Internal_Sym *) symtab_hdr->contents;
3589 if (local_syms == NULL)
3590 local_syms
3591 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3592 symtab_hdr->sh_info, 0,
3593 NULL, NULL, NULL);
3594 if (local_syms == NULL)
3595 goto error_ret_free_internal;
3596 }
3597
3598 sym = local_syms + r_indx;
3599 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3600 sym_sec = hdr->bfd_section;
3601 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3602 sym_value = sym->st_value;
3603 destination = (sym_value + irela->r_addend
3604 + sym_sec->output_offset
3605 + sym_sec->output_section->vma);
3606 st_type = ELF_ST_TYPE (sym->st_info);
3607 sym_name
3608 = bfd_elf_string_from_elf_section (input_bfd,
3609 symtab_hdr->sh_link,
3610 sym->st_name);
3611 }
3612 else
3613 {
3614 /* It's an external symbol. */
3615 int e_indx;
3616
3617 e_indx = r_indx - symtab_hdr->sh_info;
3618 hash = ((struct elf32_arm_link_hash_entry *)
3619 elf_sym_hashes (input_bfd)[e_indx]);
3620
3621 while (hash->root.root.type == bfd_link_hash_indirect
3622 || hash->root.root.type == bfd_link_hash_warning)
3623 hash = ((struct elf32_arm_link_hash_entry *)
3624 hash->root.root.u.i.link);
3625
3626 if (hash->root.root.type == bfd_link_hash_defined
3627 || hash->root.root.type == bfd_link_hash_defweak)
3628 {
3629 sym_sec = hash->root.root.u.def.section;
3630 sym_value = hash->root.root.u.def.value;
3631 if (sym_sec->output_section != NULL)
3632 destination = (sym_value + irela->r_addend
3633 + sym_sec->output_offset
3634 + sym_sec->output_section->vma);
3635 }
3636 else if (hash->root.root.type == bfd_link_hash_undefweak
3637 || hash->root.root.type == bfd_link_hash_undefined)
3638 /* For a shared library, these will need a PLT stub,
3639 which is treated separately.
3640 For absolute code, they cannot be handled. */
3641 continue;
3642 else
3643 {
3644 bfd_set_error (bfd_error_bad_value);
3645 goto error_ret_free_internal;
3646 }
3647 st_type = ELF_ST_TYPE (hash->root.type);
3648 sym_name = hash->root.root.root.string;
3649 }
3650
3651 /* Determine what (if any) linker stub is needed. */
3652 stub_type = arm_type_of_stub (info, section, irela, st_type,
3653 hash, destination, sym_sec,
3654 input_bfd, sym_name);
3655 if (stub_type == arm_stub_none)
3656 continue;
3657
3658 /* Support for grouping stub sections. */
3659 id_sec = htab->stub_group[section->id].link_sec;
3660
3661 /* Get the name of this stub. */
3662 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3663 if (!stub_name)
3664 goto error_ret_free_internal;
3665
3666 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3667 stub_name,
3668 FALSE, FALSE);
3669 if (stub_entry != NULL)
3670 {
3671 /* The proper stub has already been created. */
3672 free (stub_name);
3673 continue;
3674 }
3675
3676 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3677 if (stub_entry == NULL)
3678 {
3679 free (stub_name);
3680 goto error_ret_free_internal;
3681 }
3682
3683 stub_entry->target_value = sym_value;
3684 stub_entry->target_section = sym_sec;
3685 stub_entry->stub_type = stub_type;
3686 stub_entry->h = hash;
3687 stub_entry->st_type = st_type;
3688
3689 if (sym_name == NULL)
3690 sym_name = "unnamed";
3691 stub_entry->output_name
3692 = bfd_alloc (htab->stub_bfd,
3693 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3694 + strlen (sym_name));
3695 if (stub_entry->output_name == NULL)
3696 {
3697 free (stub_name);
3698 goto error_ret_free_internal;
3699 }
3700
3701 /* For historical reasons, use the existing names for
3702 ARM-to-Thumb and Thumb-to-ARM stubs. */
3703 if (r_type == (unsigned int) R_ARM_THM_CALL
3704 && st_type != STT_ARM_TFUNC)
3705 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3706 sym_name);
3707 else if (r_type == (unsigned int) R_ARM_CALL
3708 && st_type == STT_ARM_TFUNC)
3709 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3710 sym_name);
3711 else
3712 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3713 sym_name);
3714
3715 stub_changed = TRUE;
3716 }
3717
3718 /* We're done with the internal relocs, free them. */
3719 if (elf_section_data (section)->relocs == NULL)
3720 free (internal_relocs);
3721 }
3722 }
3723
3724 if (!stub_changed)
3725 break;
3726
3727 /* OK, we've added some stubs. Find out the new size of the
3728 stub sections. */
3729 for (stub_sec = htab->stub_bfd->sections;
3730 stub_sec != NULL;
3731 stub_sec = stub_sec->next)
3732 stub_sec->size = 0;
3733
3734 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3735
3736 /* Ask the linker to do its stuff. */
3737 (*htab->layout_sections_again) ();
3738 stub_changed = FALSE;
3739 }
3740
3741 return TRUE;
3742
3743 error_ret_free_local:
3744 return FALSE;
3745 }
3746
3747 /* Build all the stubs associated with the current output file. The
3748 stubs are kept in a hash table attached to the main linker hash
3749 table. We also set up the .plt entries for statically linked PIC
3750 functions here. This function is called via arm_elf_finish in the
3751 linker. */
3752
3753 bfd_boolean
3754 elf32_arm_build_stubs (struct bfd_link_info *info)
3755 {
3756 asection *stub_sec;
3757 struct bfd_hash_table *table;
3758 struct elf32_arm_link_hash_table *htab;
3759
3760 htab = elf32_arm_hash_table (info);
3761
3762 for (stub_sec = htab->stub_bfd->sections;
3763 stub_sec != NULL;
3764 stub_sec = stub_sec->next)
3765 {
3766 bfd_size_type size;
3767
3768 /* Ignore non-stub sections. */
3769 if (!strstr (stub_sec->name, STUB_SUFFIX))
3770 continue;
3771
3772 /* Allocate memory to hold the linker stubs. */
3773 size = stub_sec->size;
3774 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3775 if (stub_sec->contents == NULL && size != 0)
3776 return FALSE;
3777 stub_sec->size = 0;
3778 }
3779
3780 /* Build the stubs as directed by the stub hash table. */
3781 table = &htab->stub_hash_table;
3782 bfd_hash_traverse (table, arm_build_one_stub, info);
3783
3784 return TRUE;
3785 }
3786
3787 /* Locate the Thumb encoded calling stub for NAME. */
3788
3789 static struct elf_link_hash_entry *
3790 find_thumb_glue (struct bfd_link_info *link_info,
3791 const char *name,
3792 char **error_message)
3793 {
3794 char *tmp_name;
3795 struct elf_link_hash_entry *hash;
3796 struct elf32_arm_link_hash_table *hash_table;
3797
3798 /* We need a pointer to the armelf specific hash table. */
3799 hash_table = elf32_arm_hash_table (link_info);
3800
3801 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3802 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3803
3804 BFD_ASSERT (tmp_name);
3805
3806 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3807
3808 hash = elf_link_hash_lookup
3809 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3810
3811 if (hash == NULL
3812 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3813 tmp_name, name) == -1)
3814 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3815
3816 free (tmp_name);
3817
3818 return hash;
3819 }
3820
3821 /* Locate the ARM encoded calling stub for NAME. */
3822
3823 static struct elf_link_hash_entry *
3824 find_arm_glue (struct bfd_link_info *link_info,
3825 const char *name,
3826 char **error_message)
3827 {
3828 char *tmp_name;
3829 struct elf_link_hash_entry *myh;
3830 struct elf32_arm_link_hash_table *hash_table;
3831
3832 /* We need a pointer to the elfarm specific hash table. */
3833 hash_table = elf32_arm_hash_table (link_info);
3834
3835 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3836 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3837
3838 BFD_ASSERT (tmp_name);
3839
3840 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3841
3842 myh = elf_link_hash_lookup
3843 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3844
3845 if (myh == NULL
3846 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3847 tmp_name, name) == -1)
3848 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3849
3850 free (tmp_name);
3851
3852 return myh;
3853 }
3854
3855 /* ARM->Thumb glue (static images):
3856
3857 .arm
3858 __func_from_arm:
3859 ldr r12, __func_addr
3860 bx r12
3861 __func_addr:
3862 .word func @ behave as if you saw a ARM_32 reloc.
3863
3864 (v5t static images)
3865 .arm
3866 __func_from_arm:
3867 ldr pc, __func_addr
3868 __func_addr:
3869 .word func @ behave as if you saw a ARM_32 reloc.
3870
3871 (relocatable images)
3872 .arm
3873 __func_from_arm:
3874 ldr r12, __func_offset
3875 add r12, r12, pc
3876 bx r12
3877 __func_offset:
3878 .word func - . */
3879
3880 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3881 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3882 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3883 static const insn32 a2t3_func_addr_insn = 0x00000001;
3884
3885 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3886 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3887 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3888
3889 #define ARM2THUMB_PIC_GLUE_SIZE 16
3890 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3891 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3892 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3893
3894 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3895
3896 .thumb .thumb
3897 .align 2 .align 2
3898 __func_from_thumb: __func_from_thumb:
3899 bx pc push {r6, lr}
3900 nop ldr r6, __func_addr
3901 .arm mov lr, pc
3902 b func bx r6
3903 .arm
3904 ;; back_to_thumb
3905 ldmia r13! {r6, lr}
3906 bx lr
3907 __func_addr:
3908 .word func */
3909
3910 #define THUMB2ARM_GLUE_SIZE 8
3911 static const insn16 t2a1_bx_pc_insn = 0x4778;
3912 static const insn16 t2a2_noop_insn = 0x46c0;
3913 static const insn32 t2a3_b_insn = 0xea000000;
3914
3915 #define VFP11_ERRATUM_VENEER_SIZE 8
3916
3917 #define ARM_BX_VENEER_SIZE 12
3918 static const insn32 armbx1_tst_insn = 0xe3100001;
3919 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3920 static const insn32 armbx3_bx_insn = 0xe12fff10;
3921
3922 #ifndef ELFARM_NABI_C_INCLUDED
3923 static void
3924 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
3925 {
3926 asection * s;
3927 bfd_byte * contents;
3928
3929 if (size == 0)
3930 return;
3931
3932 BFD_ASSERT (abfd != NULL);
3933
3934 s = bfd_get_section_by_name (abfd, name);
3935 BFD_ASSERT (s != NULL);
3936
3937 contents = bfd_alloc (abfd, size);
3938
3939 BFD_ASSERT (s->size == size);
3940 s->contents = contents;
3941 }
3942
3943 bfd_boolean
3944 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3945 {
3946 struct elf32_arm_link_hash_table * globals;
3947
3948 globals = elf32_arm_hash_table (info);
3949 BFD_ASSERT (globals != NULL);
3950
3951 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3952 globals->arm_glue_size,
3953 ARM2THUMB_GLUE_SECTION_NAME);
3954
3955 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3956 globals->thumb_glue_size,
3957 THUMB2ARM_GLUE_SECTION_NAME);
3958
3959 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3960 globals->vfp11_erratum_glue_size,
3961 VFP11_ERRATUM_VENEER_SECTION_NAME);
3962
3963 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3964 globals->bx_glue_size,
3965 ARM_BX_GLUE_SECTION_NAME);
3966
3967 return TRUE;
3968 }
3969
3970 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3971 returns the symbol identifying the stub. */
3972
3973 static struct elf_link_hash_entry *
3974 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3975 struct elf_link_hash_entry * h)
3976 {
3977 const char * name = h->root.root.string;
3978 asection * s;
3979 char * tmp_name;
3980 struct elf_link_hash_entry * myh;
3981 struct bfd_link_hash_entry * bh;
3982 struct elf32_arm_link_hash_table * globals;
3983 bfd_vma val;
3984 bfd_size_type size;
3985
3986 globals = elf32_arm_hash_table (link_info);
3987
3988 BFD_ASSERT (globals != NULL);
3989 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3990
3991 s = bfd_get_section_by_name
3992 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
3993
3994 BFD_ASSERT (s != NULL);
3995
3996 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3997
3998 BFD_ASSERT (tmp_name);
3999
4000 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4001
4002 myh = elf_link_hash_lookup
4003 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4004
4005 if (myh != NULL)
4006 {
4007 /* We've already seen this guy. */
4008 free (tmp_name);
4009 return myh;
4010 }
4011
4012 /* The only trick here is using hash_table->arm_glue_size as the value.
4013 Even though the section isn't allocated yet, this is where we will be
4014 putting it. The +1 on the value marks that the stub has not been
4015 output yet - not that it is a Thumb function. */
4016 bh = NULL;
4017 val = globals->arm_glue_size + 1;
4018 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4019 tmp_name, BSF_GLOBAL, s, val,
4020 NULL, TRUE, FALSE, &bh);
4021
4022 myh = (struct elf_link_hash_entry *) bh;
4023 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4024 myh->forced_local = 1;
4025
4026 free (tmp_name);
4027
4028 if (link_info->shared || globals->root.is_relocatable_executable
4029 || globals->pic_veneer)
4030 size = ARM2THUMB_PIC_GLUE_SIZE;
4031 else if (globals->use_blx)
4032 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4033 else
4034 size = ARM2THUMB_STATIC_GLUE_SIZE;
4035
4036 s->size += size;
4037 globals->arm_glue_size += size;
4038
4039 return myh;
4040 }
4041
4042 static void
4043 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4044 struct elf_link_hash_entry *h)
4045 {
4046 const char *name = h->root.root.string;
4047 asection *s;
4048 char *tmp_name;
4049 struct elf_link_hash_entry *myh;
4050 struct bfd_link_hash_entry *bh;
4051 struct elf32_arm_link_hash_table *hash_table;
4052 bfd_vma val;
4053
4054 hash_table = elf32_arm_hash_table (link_info);
4055
4056 BFD_ASSERT (hash_table != NULL);
4057 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4058
4059 s = bfd_get_section_by_name
4060 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4061
4062 BFD_ASSERT (s != NULL);
4063
4064 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4065 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4066
4067 BFD_ASSERT (tmp_name);
4068
4069 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4070
4071 myh = elf_link_hash_lookup
4072 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4073
4074 if (myh != NULL)
4075 {
4076 /* We've already seen this guy. */
4077 free (tmp_name);
4078 return;
4079 }
4080
4081 /* The only trick here is using hash_table->thumb_glue_size as the value.
4082 Even though the section isn't allocated yet, this is where we will be
4083 putting it. The +1 on the value marks that the stub has not been
4084 output yet - not that it is a Thumb function. */
4085 bh = NULL;
4086 val = hash_table->thumb_glue_size + 1;
4087 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4088 tmp_name, BSF_GLOBAL, s, val,
4089 NULL, TRUE, FALSE, &bh);
4090
4091 /* If we mark it 'Thumb', the disassembler will do a better job. */
4092 myh = (struct elf_link_hash_entry *) bh;
4093 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4094 myh->forced_local = 1;
4095
4096 free (tmp_name);
4097
4098 #define CHANGE_TO_ARM "__%s_change_to_arm"
4099 #define BACK_FROM_ARM "__%s_back_from_arm"
4100
4101 /* Allocate another symbol to mark where we switch to Arm mode. */
4102 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4103 + strlen (CHANGE_TO_ARM) + 1);
4104
4105 BFD_ASSERT (tmp_name);
4106
4107 sprintf (tmp_name, CHANGE_TO_ARM, name);
4108
4109 bh = NULL;
4110 val = hash_table->thumb_glue_size + 4,
4111 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4112 tmp_name, BSF_LOCAL, s, val,
4113 NULL, TRUE, FALSE, &bh);
4114
4115 free (tmp_name);
4116
4117 s->size += THUMB2ARM_GLUE_SIZE;
4118 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4119 }
4120
4121
4122 /* Allocate space for ARMv4 BX veneers. */
4123
4124 static void
4125 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4126 {
4127 asection * s;
4128 struct elf32_arm_link_hash_table *globals;
4129 char *tmp_name;
4130 struct elf_link_hash_entry *myh;
4131 struct bfd_link_hash_entry *bh;
4132 bfd_vma val;
4133
4134 /* BX PC does not need a veneer. */
4135 if (reg == 15)
4136 return;
4137
4138 globals = elf32_arm_hash_table (link_info);
4139
4140 BFD_ASSERT (globals != NULL);
4141 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4142
4143 /* Check if this veneer has already been allocated. */
4144 if (globals->bx_glue_offset[reg])
4145 return;
4146
4147 s = bfd_get_section_by_name
4148 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4149
4150 BFD_ASSERT (s != NULL);
4151
4152 /* Add symbol for veneer. */
4153 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4154
4155 BFD_ASSERT (tmp_name);
4156
4157 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4158
4159 myh = elf_link_hash_lookup
4160 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4161
4162 BFD_ASSERT (myh == NULL);
4163
4164 bh = NULL;
4165 val = globals->bx_glue_size;
4166 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4167 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4168 NULL, TRUE, FALSE, &bh);
4169
4170 myh = (struct elf_link_hash_entry *) bh;
4171 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4172 myh->forced_local = 1;
4173
4174 s->size += ARM_BX_VENEER_SIZE;
4175 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4176 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4177 }
4178
4179
4180 /* Add an entry to the code/data map for section SEC. */
4181
4182 static void
4183 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4184 {
4185 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4186 unsigned int newidx;
4187
4188 if (sec_data->map == NULL)
4189 {
4190 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4191 sec_data->mapcount = 0;
4192 sec_data->mapsize = 1;
4193 }
4194
4195 newidx = sec_data->mapcount++;
4196
4197 if (sec_data->mapcount > sec_data->mapsize)
4198 {
4199 sec_data->mapsize *= 2;
4200 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4201 * sizeof (elf32_arm_section_map));
4202 }
4203
4204 if (sec_data->map)
4205 {
4206 sec_data->map[newidx].vma = vma;
4207 sec_data->map[newidx].type = type;
4208 }
4209 }
4210
4211
4212 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4213 veneers are handled for now. */
4214
4215 static bfd_vma
4216 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4217 elf32_vfp11_erratum_list *branch,
4218 bfd *branch_bfd,
4219 asection *branch_sec,
4220 unsigned int offset)
4221 {
4222 asection *s;
4223 struct elf32_arm_link_hash_table *hash_table;
4224 char *tmp_name;
4225 struct elf_link_hash_entry *myh;
4226 struct bfd_link_hash_entry *bh;
4227 bfd_vma val;
4228 struct _arm_elf_section_data *sec_data;
4229 int errcount;
4230 elf32_vfp11_erratum_list *newerr;
4231
4232 hash_table = elf32_arm_hash_table (link_info);
4233
4234 BFD_ASSERT (hash_table != NULL);
4235 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4236
4237 s = bfd_get_section_by_name
4238 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4239
4240 sec_data = elf32_arm_section_data (s);
4241
4242 BFD_ASSERT (s != NULL);
4243
4244 tmp_name = bfd_malloc ((bfd_size_type) strlen
4245 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4246
4247 BFD_ASSERT (tmp_name);
4248
4249 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4250 hash_table->num_vfp11_fixes);
4251
4252 myh = elf_link_hash_lookup
4253 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4254
4255 BFD_ASSERT (myh == NULL);
4256
4257 bh = NULL;
4258 val = hash_table->vfp11_erratum_glue_size;
4259 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4260 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4261 NULL, TRUE, FALSE, &bh);
4262
4263 myh = (struct elf_link_hash_entry *) bh;
4264 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4265 myh->forced_local = 1;
4266
4267 /* Link veneer back to calling location. */
4268 errcount = ++(sec_data->erratumcount);
4269 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4270
4271 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4272 newerr->vma = -1;
4273 newerr->u.v.branch = branch;
4274 newerr->u.v.id = hash_table->num_vfp11_fixes;
4275 branch->u.b.veneer = newerr;
4276
4277 newerr->next = sec_data->erratumlist;
4278 sec_data->erratumlist = newerr;
4279
4280 /* A symbol for the return from the veneer. */
4281 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4282 hash_table->num_vfp11_fixes);
4283
4284 myh = elf_link_hash_lookup
4285 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4286
4287 if (myh != NULL)
4288 abort ();
4289
4290 bh = NULL;
4291 val = offset + 4;
4292 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4293 branch_sec, val, NULL, TRUE, FALSE, &bh);
4294
4295 myh = (struct elf_link_hash_entry *) bh;
4296 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4297 myh->forced_local = 1;
4298
4299 free (tmp_name);
4300
4301 /* Generate a mapping symbol for the veneer section, and explicitly add an
4302 entry for that symbol to the code/data map for the section. */
4303 if (hash_table->vfp11_erratum_glue_size == 0)
4304 {
4305 bh = NULL;
4306 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4307 ever requires this erratum fix. */
4308 _bfd_generic_link_add_one_symbol (link_info,
4309 hash_table->bfd_of_glue_owner, "$a",
4310 BSF_LOCAL, s, 0, NULL,
4311 TRUE, FALSE, &bh);
4312
4313 myh = (struct elf_link_hash_entry *) bh;
4314 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4315 myh->forced_local = 1;
4316
4317 /* The elf32_arm_init_maps function only cares about symbols from input
4318 BFDs. We must make a note of this generated mapping symbol
4319 ourselves so that code byteswapping works properly in
4320 elf32_arm_write_section. */
4321 elf32_arm_section_map_add (s, 'a', 0);
4322 }
4323
4324 s->size += VFP11_ERRATUM_VENEER_SIZE;
4325 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4326 hash_table->num_vfp11_fixes++;
4327
4328 /* The offset of the veneer. */
4329 return val;
4330 }
4331
4332 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4333 would prevent elf_link_input_bfd() from processing the contents
4334 of the section. */
4335 #define ARM_GLUE_SECTION_FLAGS \
4336 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4337
4338 /* Create a fake section for use by the ARM backend of the linker. */
4339
4340 static bfd_boolean
4341 arm_make_glue_section (bfd * abfd, const char * name)
4342 {
4343 asection * sec;
4344
4345 sec = bfd_get_section_by_name (abfd, name);
4346 if (sec != NULL)
4347 /* Already made. */
4348 return TRUE;
4349
4350 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4351
4352 if (sec == NULL
4353 || !bfd_set_section_alignment (abfd, sec, 2))
4354 return FALSE;
4355
4356 /* Set the gc mark to prevent the section from being removed by garbage
4357 collection, despite the fact that no relocs refer to this section. */
4358 sec->gc_mark = 1;
4359
4360 return TRUE;
4361 }
4362
4363 /* Add the glue sections to ABFD. This function is called from the
4364 linker scripts in ld/emultempl/{armelf}.em. */
4365
4366 bfd_boolean
4367 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4368 struct bfd_link_info *info)
4369 {
4370 /* If we are only performing a partial
4371 link do not bother adding the glue. */
4372 if (info->relocatable)
4373 return TRUE;
4374
4375 /* Linker stubs don't need glue. */
4376 if (!strcmp (abfd->filename, "linker stubs"))
4377 return TRUE;
4378
4379 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4380 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4381 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4382 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
4383 }
4384
4385 /* Select a BFD to be used to hold the sections used by the glue code.
4386 This function is called from the linker scripts in ld/emultempl/
4387 {armelf/pe}.em. */
4388
4389 bfd_boolean
4390 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4391 {
4392 struct elf32_arm_link_hash_table *globals;
4393
4394 /* If we are only performing a partial link
4395 do not bother getting a bfd to hold the glue. */
4396 if (info->relocatable)
4397 return TRUE;
4398
4399 /* Make sure we don't attach the glue sections to a dynamic object. */
4400 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4401
4402 globals = elf32_arm_hash_table (info);
4403
4404 BFD_ASSERT (globals != NULL);
4405
4406 if (globals->bfd_of_glue_owner != NULL)
4407 return TRUE;
4408
4409 /* Save the bfd for later use. */
4410 globals->bfd_of_glue_owner = abfd;
4411
4412 return TRUE;
4413 }
4414
4415 static void
4416 check_use_blx (struct elf32_arm_link_hash_table *globals)
4417 {
4418 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4419 Tag_CPU_arch) > 2)
4420 globals->use_blx = 1;
4421 }
4422
4423 bfd_boolean
4424 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4425 struct bfd_link_info *link_info)
4426 {
4427 Elf_Internal_Shdr *symtab_hdr;
4428 Elf_Internal_Rela *internal_relocs = NULL;
4429 Elf_Internal_Rela *irel, *irelend;
4430 bfd_byte *contents = NULL;
4431
4432 asection *sec;
4433 struct elf32_arm_link_hash_table *globals;
4434
4435 /* If we are only performing a partial link do not bother
4436 to construct any glue. */
4437 if (link_info->relocatable)
4438 return TRUE;
4439
4440 /* Here we have a bfd that is to be included on the link. We have a
4441 hook to do reloc rummaging, before section sizes are nailed down. */
4442 globals = elf32_arm_hash_table (link_info);
4443
4444 BFD_ASSERT (globals != NULL);
4445
4446 check_use_blx (globals);
4447
4448 if (globals->byteswap_code && !bfd_big_endian (abfd))
4449 {
4450 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4451 abfd);
4452 return FALSE;
4453 }
4454
4455 /* PR 5398: If we have not decided to include any loadable sections in
4456 the output then we will not have a glue owner bfd. This is OK, it
4457 just means that there is nothing else for us to do here. */
4458 if (globals->bfd_of_glue_owner == NULL)
4459 return TRUE;
4460
4461 /* Rummage around all the relocs and map the glue vectors. */
4462 sec = abfd->sections;
4463
4464 if (sec == NULL)
4465 return TRUE;
4466
4467 for (; sec != NULL; sec = sec->next)
4468 {
4469 if (sec->reloc_count == 0)
4470 continue;
4471
4472 if ((sec->flags & SEC_EXCLUDE) != 0)
4473 continue;
4474
4475 symtab_hdr = & elf_symtab_hdr (abfd);
4476
4477 /* Load the relocs. */
4478 internal_relocs
4479 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4480
4481 if (internal_relocs == NULL)
4482 goto error_return;
4483
4484 irelend = internal_relocs + sec->reloc_count;
4485 for (irel = internal_relocs; irel < irelend; irel++)
4486 {
4487 long r_type;
4488 unsigned long r_index;
4489
4490 struct elf_link_hash_entry *h;
4491
4492 r_type = ELF32_R_TYPE (irel->r_info);
4493 r_index = ELF32_R_SYM (irel->r_info);
4494
4495 /* These are the only relocation types we care about. */
4496 if ( r_type != R_ARM_PC24
4497 && r_type != R_ARM_PLT32
4498 && r_type != R_ARM_JUMP24
4499 && r_type != R_ARM_THM_JUMP24
4500 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4501 continue;
4502
4503 /* Get the section contents if we haven't done so already. */
4504 if (contents == NULL)
4505 {
4506 /* Get cached copy if it exists. */
4507 if (elf_section_data (sec)->this_hdr.contents != NULL)
4508 contents = elf_section_data (sec)->this_hdr.contents;
4509 else
4510 {
4511 /* Go get them off disk. */
4512 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4513 goto error_return;
4514 }
4515 }
4516
4517 if (r_type == R_ARM_V4BX)
4518 {
4519 int reg;
4520
4521 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4522 record_arm_bx_glue (link_info, reg);
4523 continue;
4524 }
4525
4526 /* If the relocation is not against a symbol it cannot concern us. */
4527 h = NULL;
4528
4529 /* We don't care about local symbols. */
4530 if (r_index < symtab_hdr->sh_info)
4531 continue;
4532
4533 /* This is an external symbol. */
4534 r_index -= symtab_hdr->sh_info;
4535 h = (struct elf_link_hash_entry *)
4536 elf_sym_hashes (abfd)[r_index];
4537
4538 /* If the relocation is against a static symbol it must be within
4539 the current section and so cannot be a cross ARM/Thumb relocation. */
4540 if (h == NULL)
4541 continue;
4542
4543 /* If the call will go through a PLT entry then we do not need
4544 glue. */
4545 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4546 continue;
4547
4548 switch (r_type)
4549 {
4550 case R_ARM_PC24:
4551 case R_ARM_PLT32:
4552 case R_ARM_JUMP24:
4553 /* This one is a call from arm code. We need to look up
4554 the target of the call. If it is a thumb target, we
4555 insert glue. */
4556 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4557 && !(r_type == R_ARM_CALL && globals->use_blx))
4558 record_arm_to_thumb_glue (link_info, h);
4559 break;
4560
4561 case R_ARM_THM_JUMP24:
4562 /* This one is a call from thumb code. We look
4563 up the target of the call. If it is not a thumb
4564 target, we insert glue. */
4565 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4566 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4567 && h->root.type != bfd_link_hash_undefweak)
4568 record_thumb_to_arm_glue (link_info, h);
4569 break;
4570
4571 default:
4572 abort ();
4573 }
4574 }
4575
4576 if (contents != NULL
4577 && elf_section_data (sec)->this_hdr.contents != contents)
4578 free (contents);
4579 contents = NULL;
4580
4581 if (internal_relocs != NULL
4582 && elf_section_data (sec)->relocs != internal_relocs)
4583 free (internal_relocs);
4584 internal_relocs = NULL;
4585 }
4586
4587 return TRUE;
4588
4589 error_return:
4590 if (contents != NULL
4591 && elf_section_data (sec)->this_hdr.contents != contents)
4592 free (contents);
4593 if (internal_relocs != NULL
4594 && elf_section_data (sec)->relocs != internal_relocs)
4595 free (internal_relocs);
4596
4597 return FALSE;
4598 }
4599 #endif
4600
4601
4602 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4603
4604 void
4605 bfd_elf32_arm_init_maps (bfd *abfd)
4606 {
4607 Elf_Internal_Sym *isymbuf;
4608 Elf_Internal_Shdr *hdr;
4609 unsigned int i, localsyms;
4610
4611 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
4612 if (! is_arm_elf (abfd))
4613 return;
4614
4615 if ((abfd->flags & DYNAMIC) != 0)
4616 return;
4617
4618 hdr = & elf_symtab_hdr (abfd);
4619 localsyms = hdr->sh_info;
4620
4621 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4622 should contain the number of local symbols, which should come before any
4623 global symbols. Mapping symbols are always local. */
4624 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4625 NULL);
4626
4627 /* No internal symbols read? Skip this BFD. */
4628 if (isymbuf == NULL)
4629 return;
4630
4631 for (i = 0; i < localsyms; i++)
4632 {
4633 Elf_Internal_Sym *isym = &isymbuf[i];
4634 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4635 const char *name;
4636
4637 if (sec != NULL
4638 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4639 {
4640 name = bfd_elf_string_from_elf_section (abfd,
4641 hdr->sh_link, isym->st_name);
4642
4643 if (bfd_is_arm_special_symbol_name (name,
4644 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4645 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4646 }
4647 }
4648 }
4649
4650
4651 void
4652 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4653 {
4654 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4655 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4656
4657 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4658 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4659 {
4660 switch (globals->vfp11_fix)
4661 {
4662 case BFD_ARM_VFP11_FIX_DEFAULT:
4663 case BFD_ARM_VFP11_FIX_NONE:
4664 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4665 break;
4666
4667 default:
4668 /* Give a warning, but do as the user requests anyway. */
4669 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4670 "workaround is not necessary for target architecture"), obfd);
4671 }
4672 }
4673 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4674 /* For earlier architectures, we might need the workaround, but do not
4675 enable it by default. If users is running with broken hardware, they
4676 must enable the erratum fix explicitly. */
4677 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4678 }
4679
4680
4681 enum bfd_arm_vfp11_pipe
4682 {
4683 VFP11_FMAC,
4684 VFP11_LS,
4685 VFP11_DS,
4686 VFP11_BAD
4687 };
4688
4689 /* Return a VFP register number. This is encoded as RX:X for single-precision
4690 registers, or X:RX for double-precision registers, where RX is the group of
4691 four bits in the instruction encoding and X is the single extension bit.
4692 RX and X fields are specified using their lowest (starting) bit. The return
4693 value is:
4694
4695 0...31: single-precision registers s0...s31
4696 32...63: double-precision registers d0...d31.
4697
4698 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4699 encounter VFP3 instructions, so we allow the full range for DP registers. */
4700
4701 static unsigned int
4702 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4703 unsigned int x)
4704 {
4705 if (is_double)
4706 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4707 else
4708 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4709 }
4710
4711 /* Set bits in *WMASK according to a register number REG as encoded by
4712 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4713
4714 static void
4715 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4716 {
4717 if (reg < 32)
4718 *wmask |= 1 << reg;
4719 else if (reg < 48)
4720 *wmask |= 3 << ((reg - 32) * 2);
4721 }
4722
4723 /* Return TRUE if WMASK overwrites anything in REGS. */
4724
4725 static bfd_boolean
4726 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4727 {
4728 int i;
4729
4730 for (i = 0; i < numregs; i++)
4731 {
4732 unsigned int reg = regs[i];
4733
4734 if (reg < 32 && (wmask & (1 << reg)) != 0)
4735 return TRUE;
4736
4737 reg -= 32;
4738
4739 if (reg >= 16)
4740 continue;
4741
4742 if ((wmask & (3 << (reg * 2))) != 0)
4743 return TRUE;
4744 }
4745
4746 return FALSE;
4747 }
4748
4749 /* In this function, we're interested in two things: finding input registers
4750 for VFP data-processing instructions, and finding the set of registers which
4751 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4752 hold the written set, so FLDM etc. are easy to deal with (we're only
4753 interested in 32 SP registers or 16 dp registers, due to the VFP version
4754 implemented by the chip in question). DP registers are marked by setting
4755 both SP registers in the write mask). */
4756
4757 static enum bfd_arm_vfp11_pipe
4758 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4759 int *numregs)
4760 {
4761 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4762 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4763
4764 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4765 {
4766 unsigned int pqrs;
4767 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4768 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4769
4770 pqrs = ((insn & 0x00800000) >> 20)
4771 | ((insn & 0x00300000) >> 19)
4772 | ((insn & 0x00000040) >> 6);
4773
4774 switch (pqrs)
4775 {
4776 case 0: /* fmac[sd]. */
4777 case 1: /* fnmac[sd]. */
4778 case 2: /* fmsc[sd]. */
4779 case 3: /* fnmsc[sd]. */
4780 pipe = VFP11_FMAC;
4781 bfd_arm_vfp11_write_mask (destmask, fd);
4782 regs[0] = fd;
4783 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4784 regs[2] = fm;
4785 *numregs = 3;
4786 break;
4787
4788 case 4: /* fmul[sd]. */
4789 case 5: /* fnmul[sd]. */
4790 case 6: /* fadd[sd]. */
4791 case 7: /* fsub[sd]. */
4792 pipe = VFP11_FMAC;
4793 goto vfp_binop;
4794
4795 case 8: /* fdiv[sd]. */
4796 pipe = VFP11_DS;
4797 vfp_binop:
4798 bfd_arm_vfp11_write_mask (destmask, fd);
4799 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4800 regs[1] = fm;
4801 *numregs = 2;
4802 break;
4803
4804 case 15: /* extended opcode. */
4805 {
4806 unsigned int extn = ((insn >> 15) & 0x1e)
4807 | ((insn >> 7) & 1);
4808
4809 switch (extn)
4810 {
4811 case 0: /* fcpy[sd]. */
4812 case 1: /* fabs[sd]. */
4813 case 2: /* fneg[sd]. */
4814 case 8: /* fcmp[sd]. */
4815 case 9: /* fcmpe[sd]. */
4816 case 10: /* fcmpz[sd]. */
4817 case 11: /* fcmpez[sd]. */
4818 case 16: /* fuito[sd]. */
4819 case 17: /* fsito[sd]. */
4820 case 24: /* ftoui[sd]. */
4821 case 25: /* ftouiz[sd]. */
4822 case 26: /* ftosi[sd]. */
4823 case 27: /* ftosiz[sd]. */
4824 /* These instructions will not bounce due to underflow. */
4825 *numregs = 0;
4826 pipe = VFP11_FMAC;
4827 break;
4828
4829 case 3: /* fsqrt[sd]. */
4830 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4831 registers to cause the erratum in previous instructions. */
4832 bfd_arm_vfp11_write_mask (destmask, fd);
4833 pipe = VFP11_DS;
4834 break;
4835
4836 case 15: /* fcvt{ds,sd}. */
4837 {
4838 int rnum = 0;
4839
4840 bfd_arm_vfp11_write_mask (destmask, fd);
4841
4842 /* Only FCVTSD can underflow. */
4843 if ((insn & 0x100) != 0)
4844 regs[rnum++] = fm;
4845
4846 *numregs = rnum;
4847
4848 pipe = VFP11_FMAC;
4849 }
4850 break;
4851
4852 default:
4853 return VFP11_BAD;
4854 }
4855 }
4856 break;
4857
4858 default:
4859 return VFP11_BAD;
4860 }
4861 }
4862 /* Two-register transfer. */
4863 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4864 {
4865 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4866
4867 if ((insn & 0x100000) == 0)
4868 {
4869 if (is_double)
4870 bfd_arm_vfp11_write_mask (destmask, fm);
4871 else
4872 {
4873 bfd_arm_vfp11_write_mask (destmask, fm);
4874 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4875 }
4876 }
4877
4878 pipe = VFP11_LS;
4879 }
4880 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4881 {
4882 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4883 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4884
4885 switch (puw)
4886 {
4887 case 0: /* Two-reg transfer. We should catch these above. */
4888 abort ();
4889
4890 case 2: /* fldm[sdx]. */
4891 case 3:
4892 case 5:
4893 {
4894 unsigned int i, offset = insn & 0xff;
4895
4896 if (is_double)
4897 offset >>= 1;
4898
4899 for (i = fd; i < fd + offset; i++)
4900 bfd_arm_vfp11_write_mask (destmask, i);
4901 }
4902 break;
4903
4904 case 4: /* fld[sd]. */
4905 case 6:
4906 bfd_arm_vfp11_write_mask (destmask, fd);
4907 break;
4908
4909 default:
4910 return VFP11_BAD;
4911 }
4912
4913 pipe = VFP11_LS;
4914 }
4915 /* Single-register transfer. Note L==0. */
4916 else if ((insn & 0x0f100e10) == 0x0e000a10)
4917 {
4918 unsigned int opcode = (insn >> 21) & 7;
4919 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4920
4921 switch (opcode)
4922 {
4923 case 0: /* fmsr/fmdlr. */
4924 case 1: /* fmdhr. */
4925 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4926 destination register. I don't know if this is exactly right,
4927 but it is the conservative choice. */
4928 bfd_arm_vfp11_write_mask (destmask, fn);
4929 break;
4930
4931 case 7: /* fmxr. */
4932 break;
4933 }
4934
4935 pipe = VFP11_LS;
4936 }
4937
4938 return pipe;
4939 }
4940
4941
4942 static int elf32_arm_compare_mapping (const void * a, const void * b);
4943
4944
4945 /* Look for potentially-troublesome code sequences which might trigger the
4946 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4947 (available from ARM) for details of the erratum. A short version is
4948 described in ld.texinfo. */
4949
4950 bfd_boolean
4951 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4952 {
4953 asection *sec;
4954 bfd_byte *contents = NULL;
4955 int state = 0;
4956 int regs[3], numregs = 0;
4957 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4958 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4959
4960 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4961 The states transition as follows:
4962
4963 0 -> 1 (vector) or 0 -> 2 (scalar)
4964 A VFP FMAC-pipeline instruction has been seen. Fill
4965 regs[0]..regs[numregs-1] with its input operands. Remember this
4966 instruction in 'first_fmac'.
4967
4968 1 -> 2
4969 Any instruction, except for a VFP instruction which overwrites
4970 regs[*].
4971
4972 1 -> 3 [ -> 0 ] or
4973 2 -> 3 [ -> 0 ]
4974 A VFP instruction has been seen which overwrites any of regs[*].
4975 We must make a veneer! Reset state to 0 before examining next
4976 instruction.
4977
4978 2 -> 0
4979 If we fail to match anything in state 2, reset to state 0 and reset
4980 the instruction pointer to the instruction after 'first_fmac'.
4981
4982 If the VFP11 vector mode is in use, there must be at least two unrelated
4983 instructions between anti-dependent VFP11 instructions to properly avoid
4984 triggering the erratum, hence the use of the extra state 1. */
4985
4986 /* If we are only performing a partial link do not bother
4987 to construct any glue. */
4988 if (link_info->relocatable)
4989 return TRUE;
4990
4991 /* Skip if this bfd does not correspond to an ELF image. */
4992 if (! is_arm_elf (abfd))
4993 return TRUE;
4994
4995 /* We should have chosen a fix type by the time we get here. */
4996 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
4997
4998 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
4999 return TRUE;
5000
5001 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5002 {
5003 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5004 struct _arm_elf_section_data *sec_data;
5005
5006 /* If we don't have executable progbits, we're not interested in this
5007 section. Also skip if section is to be excluded. */
5008 if (elf_section_type (sec) != SHT_PROGBITS
5009 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5010 || (sec->flags & SEC_EXCLUDE) != 0
5011 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5012 continue;
5013
5014 sec_data = elf32_arm_section_data (sec);
5015
5016 if (sec_data->mapcount == 0)
5017 continue;
5018
5019 if (elf_section_data (sec)->this_hdr.contents != NULL)
5020 contents = elf_section_data (sec)->this_hdr.contents;
5021 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5022 goto error_return;
5023
5024 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5025 elf32_arm_compare_mapping);
5026
5027 for (span = 0; span < sec_data->mapcount; span++)
5028 {
5029 unsigned int span_start = sec_data->map[span].vma;
5030 unsigned int span_end = (span == sec_data->mapcount - 1)
5031 ? sec->size : sec_data->map[span + 1].vma;
5032 char span_type = sec_data->map[span].type;
5033
5034 /* FIXME: Only ARM mode is supported at present. We may need to
5035 support Thumb-2 mode also at some point. */
5036 if (span_type != 'a')
5037 continue;
5038
5039 for (i = span_start; i < span_end;)
5040 {
5041 unsigned int next_i = i + 4;
5042 unsigned int insn = bfd_big_endian (abfd)
5043 ? (contents[i] << 24)
5044 | (contents[i + 1] << 16)
5045 | (contents[i + 2] << 8)
5046 | contents[i + 3]
5047 : (contents[i + 3] << 24)
5048 | (contents[i + 2] << 16)
5049 | (contents[i + 1] << 8)
5050 | contents[i];
5051 unsigned int writemask = 0;
5052 enum bfd_arm_vfp11_pipe pipe;
5053
5054 switch (state)
5055 {
5056 case 0:
5057 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5058 &numregs);
5059 /* I'm assuming the VFP11 erratum can trigger with denorm
5060 operands on either the FMAC or the DS pipeline. This might
5061 lead to slightly overenthusiastic veneer insertion. */
5062 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5063 {
5064 state = use_vector ? 1 : 2;
5065 first_fmac = i;
5066 veneer_of_insn = insn;
5067 }
5068 break;
5069
5070 case 1:
5071 {
5072 int other_regs[3], other_numregs;
5073 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5074 other_regs,
5075 &other_numregs);
5076 if (pipe != VFP11_BAD
5077 && bfd_arm_vfp11_antidependency (writemask, regs,
5078 numregs))
5079 state = 3;
5080 else
5081 state = 2;
5082 }
5083 break;
5084
5085 case 2:
5086 {
5087 int other_regs[3], other_numregs;
5088 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5089 other_regs,
5090 &other_numregs);
5091 if (pipe != VFP11_BAD
5092 && bfd_arm_vfp11_antidependency (writemask, regs,
5093 numregs))
5094 state = 3;
5095 else
5096 {
5097 state = 0;
5098 next_i = first_fmac + 4;
5099 }
5100 }
5101 break;
5102
5103 case 3:
5104 abort (); /* Should be unreachable. */
5105 }
5106
5107 if (state == 3)
5108 {
5109 elf32_vfp11_erratum_list *newerr
5110 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5111 int errcount;
5112
5113 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5114
5115 newerr->u.b.vfp_insn = veneer_of_insn;
5116
5117 switch (span_type)
5118 {
5119 case 'a':
5120 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5121 break;
5122
5123 default:
5124 abort ();
5125 }
5126
5127 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5128 first_fmac);
5129
5130 newerr->vma = -1;
5131
5132 newerr->next = sec_data->erratumlist;
5133 sec_data->erratumlist = newerr;
5134
5135 state = 0;
5136 }
5137
5138 i = next_i;
5139 }
5140 }
5141
5142 if (contents != NULL
5143 && elf_section_data (sec)->this_hdr.contents != contents)
5144 free (contents);
5145 contents = NULL;
5146 }
5147
5148 return TRUE;
5149
5150 error_return:
5151 if (contents != NULL
5152 && elf_section_data (sec)->this_hdr.contents != contents)
5153 free (contents);
5154
5155 return FALSE;
5156 }
5157
5158 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5159 after sections have been laid out, using specially-named symbols. */
5160
5161 void
5162 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5163 struct bfd_link_info *link_info)
5164 {
5165 asection *sec;
5166 struct elf32_arm_link_hash_table *globals;
5167 char *tmp_name;
5168
5169 if (link_info->relocatable)
5170 return;
5171
5172 /* Skip if this bfd does not correspond to an ELF image. */
5173 if (! is_arm_elf (abfd))
5174 return;
5175
5176 globals = elf32_arm_hash_table (link_info);
5177
5178 tmp_name = bfd_malloc ((bfd_size_type) strlen
5179 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5180
5181 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5182 {
5183 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5184 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5185
5186 for (; errnode != NULL; errnode = errnode->next)
5187 {
5188 struct elf_link_hash_entry *myh;
5189 bfd_vma vma;
5190
5191 switch (errnode->type)
5192 {
5193 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5194 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5195 /* Find veneer symbol. */
5196 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5197 errnode->u.b.veneer->u.v.id);
5198
5199 myh = elf_link_hash_lookup
5200 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5201
5202 if (myh == NULL)
5203 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5204 "`%s'"), abfd, tmp_name);
5205
5206 vma = myh->root.u.def.section->output_section->vma
5207 + myh->root.u.def.section->output_offset
5208 + myh->root.u.def.value;
5209
5210 errnode->u.b.veneer->vma = vma;
5211 break;
5212
5213 case VFP11_ERRATUM_ARM_VENEER:
5214 case VFP11_ERRATUM_THUMB_VENEER:
5215 /* Find return location. */
5216 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5217 errnode->u.v.id);
5218
5219 myh = elf_link_hash_lookup
5220 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5221
5222 if (myh == NULL)
5223 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5224 "`%s'"), abfd, tmp_name);
5225
5226 vma = myh->root.u.def.section->output_section->vma
5227 + myh->root.u.def.section->output_offset
5228 + myh->root.u.def.value;
5229
5230 errnode->u.v.branch->vma = vma;
5231 break;
5232
5233 default:
5234 abort ();
5235 }
5236 }
5237 }
5238
5239 free (tmp_name);
5240 }
5241
5242
5243 /* Set target relocation values needed during linking. */
5244
5245 void
5246 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5247 struct bfd_link_info *link_info,
5248 int target1_is_rel,
5249 char * target2_type,
5250 int fix_v4bx,
5251 int use_blx,
5252 bfd_arm_vfp11_fix vfp11_fix,
5253 int no_enum_warn, int no_wchar_warn,
5254 int pic_veneer)
5255 {
5256 struct elf32_arm_link_hash_table *globals;
5257
5258 globals = elf32_arm_hash_table (link_info);
5259
5260 globals->target1_is_rel = target1_is_rel;
5261 if (strcmp (target2_type, "rel") == 0)
5262 globals->target2_reloc = R_ARM_REL32;
5263 else if (strcmp (target2_type, "abs") == 0)
5264 globals->target2_reloc = R_ARM_ABS32;
5265 else if (strcmp (target2_type, "got-rel") == 0)
5266 globals->target2_reloc = R_ARM_GOT_PREL;
5267 else
5268 {
5269 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5270 target2_type);
5271 }
5272 globals->fix_v4bx = fix_v4bx;
5273 globals->use_blx |= use_blx;
5274 globals->vfp11_fix = vfp11_fix;
5275 globals->pic_veneer = pic_veneer;
5276
5277 BFD_ASSERT (is_arm_elf (output_bfd));
5278 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5279 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
5280 }
5281
5282 /* Replace the target offset of a Thumb bl or b.w instruction. */
5283
5284 static void
5285 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5286 {
5287 bfd_vma upper;
5288 bfd_vma lower;
5289 int reloc_sign;
5290
5291 BFD_ASSERT ((offset & 1) == 0);
5292
5293 upper = bfd_get_16 (abfd, insn);
5294 lower = bfd_get_16 (abfd, insn + 2);
5295 reloc_sign = (offset < 0) ? 1 : 0;
5296 upper = (upper & ~(bfd_vma) 0x7ff)
5297 | ((offset >> 12) & 0x3ff)
5298 | (reloc_sign << 10);
5299 lower = (lower & ~(bfd_vma) 0x2fff)
5300 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5301 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5302 | ((offset >> 1) & 0x7ff);
5303 bfd_put_16 (abfd, upper, insn);
5304 bfd_put_16 (abfd, lower, insn + 2);
5305 }
5306
5307 /* Thumb code calling an ARM function. */
5308
5309 static int
5310 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5311 const char * name,
5312 bfd * input_bfd,
5313 bfd * output_bfd,
5314 asection * input_section,
5315 bfd_byte * hit_data,
5316 asection * sym_sec,
5317 bfd_vma offset,
5318 bfd_signed_vma addend,
5319 bfd_vma val,
5320 char **error_message)
5321 {
5322 asection * s = 0;
5323 bfd_vma my_offset;
5324 long int ret_offset;
5325 struct elf_link_hash_entry * myh;
5326 struct elf32_arm_link_hash_table * globals;
5327
5328 myh = find_thumb_glue (info, name, error_message);
5329 if (myh == NULL)
5330 return FALSE;
5331
5332 globals = elf32_arm_hash_table (info);
5333
5334 BFD_ASSERT (globals != NULL);
5335 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5336
5337 my_offset = myh->root.u.def.value;
5338
5339 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5340 THUMB2ARM_GLUE_SECTION_NAME);
5341
5342 BFD_ASSERT (s != NULL);
5343 BFD_ASSERT (s->contents != NULL);
5344 BFD_ASSERT (s->output_section != NULL);
5345
5346 if ((my_offset & 0x01) == 0x01)
5347 {
5348 if (sym_sec != NULL
5349 && sym_sec->owner != NULL
5350 && !INTERWORK_FLAG (sym_sec->owner))
5351 {
5352 (*_bfd_error_handler)
5353 (_("%B(%s): warning: interworking not enabled.\n"
5354 " first occurrence: %B: thumb call to arm"),
5355 sym_sec->owner, input_bfd, name);
5356
5357 return FALSE;
5358 }
5359
5360 --my_offset;
5361 myh->root.u.def.value = my_offset;
5362
5363 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5364 s->contents + my_offset);
5365
5366 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5367 s->contents + my_offset + 2);
5368
5369 ret_offset =
5370 /* Address of destination of the stub. */
5371 ((bfd_signed_vma) val)
5372 - ((bfd_signed_vma)
5373 /* Offset from the start of the current section
5374 to the start of the stubs. */
5375 (s->output_offset
5376 /* Offset of the start of this stub from the start of the stubs. */
5377 + my_offset
5378 /* Address of the start of the current section. */
5379 + s->output_section->vma)
5380 /* The branch instruction is 4 bytes into the stub. */
5381 + 4
5382 /* ARM branches work from the pc of the instruction + 8. */
5383 + 8);
5384
5385 put_arm_insn (globals, output_bfd,
5386 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5387 s->contents + my_offset + 4);
5388 }
5389
5390 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5391
5392 /* Now go back and fix up the original BL insn to point to here. */
5393 ret_offset =
5394 /* Address of where the stub is located. */
5395 (s->output_section->vma + s->output_offset + my_offset)
5396 /* Address of where the BL is located. */
5397 - (input_section->output_section->vma + input_section->output_offset
5398 + offset)
5399 /* Addend in the relocation. */
5400 - addend
5401 /* Biassing for PC-relative addressing. */
5402 - 8;
5403
5404 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5405
5406 return TRUE;
5407 }
5408
5409 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5410
5411 static struct elf_link_hash_entry *
5412 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5413 const char * name,
5414 bfd * input_bfd,
5415 bfd * output_bfd,
5416 asection * sym_sec,
5417 bfd_vma val,
5418 asection * s,
5419 char ** error_message)
5420 {
5421 bfd_vma my_offset;
5422 long int ret_offset;
5423 struct elf_link_hash_entry * myh;
5424 struct elf32_arm_link_hash_table * globals;
5425
5426 myh = find_arm_glue (info, name, error_message);
5427 if (myh == NULL)
5428 return NULL;
5429
5430 globals = elf32_arm_hash_table (info);
5431
5432 BFD_ASSERT (globals != NULL);
5433 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5434
5435 my_offset = myh->root.u.def.value;
5436
5437 if ((my_offset & 0x01) == 0x01)
5438 {
5439 if (sym_sec != NULL
5440 && sym_sec->owner != NULL
5441 && !INTERWORK_FLAG (sym_sec->owner))
5442 {
5443 (*_bfd_error_handler)
5444 (_("%B(%s): warning: interworking not enabled.\n"
5445 " first occurrence: %B: arm call to thumb"),
5446 sym_sec->owner, input_bfd, name);
5447 }
5448
5449 --my_offset;
5450 myh->root.u.def.value = my_offset;
5451
5452 if (info->shared || globals->root.is_relocatable_executable
5453 || globals->pic_veneer)
5454 {
5455 /* For relocatable objects we can't use absolute addresses,
5456 so construct the address from a relative offset. */
5457 /* TODO: If the offset is small it's probably worth
5458 constructing the address with adds. */
5459 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5460 s->contents + my_offset);
5461 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5462 s->contents + my_offset + 4);
5463 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5464 s->contents + my_offset + 8);
5465 /* Adjust the offset by 4 for the position of the add,
5466 and 8 for the pipeline offset. */
5467 ret_offset = (val - (s->output_offset
5468 + s->output_section->vma
5469 + my_offset + 12))
5470 | 1;
5471 bfd_put_32 (output_bfd, ret_offset,
5472 s->contents + my_offset + 12);
5473 }
5474 else if (globals->use_blx)
5475 {
5476 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5477 s->contents + my_offset);
5478
5479 /* It's a thumb address. Add the low order bit. */
5480 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5481 s->contents + my_offset + 4);
5482 }
5483 else
5484 {
5485 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5486 s->contents + my_offset);
5487
5488 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5489 s->contents + my_offset + 4);
5490
5491 /* It's a thumb address. Add the low order bit. */
5492 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5493 s->contents + my_offset + 8);
5494
5495 my_offset += 12;
5496 }
5497 }
5498
5499 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5500
5501 return myh;
5502 }
5503
5504 /* Arm code calling a Thumb function. */
5505
5506 static int
5507 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5508 const char * name,
5509 bfd * input_bfd,
5510 bfd * output_bfd,
5511 asection * input_section,
5512 bfd_byte * hit_data,
5513 asection * sym_sec,
5514 bfd_vma offset,
5515 bfd_signed_vma addend,
5516 bfd_vma val,
5517 char **error_message)
5518 {
5519 unsigned long int tmp;
5520 bfd_vma my_offset;
5521 asection * s;
5522 long int ret_offset;
5523 struct elf_link_hash_entry * myh;
5524 struct elf32_arm_link_hash_table * globals;
5525
5526 globals = elf32_arm_hash_table (info);
5527
5528 BFD_ASSERT (globals != NULL);
5529 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5530
5531 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5532 ARM2THUMB_GLUE_SECTION_NAME);
5533 BFD_ASSERT (s != NULL);
5534 BFD_ASSERT (s->contents != NULL);
5535 BFD_ASSERT (s->output_section != NULL);
5536
5537 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5538 sym_sec, val, s, error_message);
5539 if (!myh)
5540 return FALSE;
5541
5542 my_offset = myh->root.u.def.value;
5543 tmp = bfd_get_32 (input_bfd, hit_data);
5544 tmp = tmp & 0xFF000000;
5545
5546 /* Somehow these are both 4 too far, so subtract 8. */
5547 ret_offset = (s->output_offset
5548 + my_offset
5549 + s->output_section->vma
5550 - (input_section->output_offset
5551 + input_section->output_section->vma
5552 + offset + addend)
5553 - 8);
5554
5555 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5556
5557 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5558
5559 return TRUE;
5560 }
5561
5562 /* Populate Arm stub for an exported Thumb function. */
5563
5564 static bfd_boolean
5565 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5566 {
5567 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5568 asection * s;
5569 struct elf_link_hash_entry * myh;
5570 struct elf32_arm_link_hash_entry *eh;
5571 struct elf32_arm_link_hash_table * globals;
5572 asection *sec;
5573 bfd_vma val;
5574 char *error_message;
5575
5576 eh = elf32_arm_hash_entry (h);
5577 /* Allocate stubs for exported Thumb functions on v4t. */
5578 if (eh->export_glue == NULL)
5579 return TRUE;
5580
5581 globals = elf32_arm_hash_table (info);
5582
5583 BFD_ASSERT (globals != NULL);
5584 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5585
5586 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5587 ARM2THUMB_GLUE_SECTION_NAME);
5588 BFD_ASSERT (s != NULL);
5589 BFD_ASSERT (s->contents != NULL);
5590 BFD_ASSERT (s->output_section != NULL);
5591
5592 sec = eh->export_glue->root.u.def.section;
5593
5594 BFD_ASSERT (sec->output_section != NULL);
5595
5596 val = eh->export_glue->root.u.def.value + sec->output_offset
5597 + sec->output_section->vma;
5598
5599 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5600 h->root.u.def.section->owner,
5601 globals->obfd, sec, val, s,
5602 &error_message);
5603 BFD_ASSERT (myh);
5604 return TRUE;
5605 }
5606
5607 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5608
5609 static bfd_vma
5610 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5611 {
5612 bfd_byte *p;
5613 bfd_vma glue_addr;
5614 asection *s;
5615 struct elf32_arm_link_hash_table *globals;
5616
5617 globals = elf32_arm_hash_table (info);
5618
5619 BFD_ASSERT (globals != NULL);
5620 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5621
5622 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5623 ARM_BX_GLUE_SECTION_NAME);
5624 BFD_ASSERT (s != NULL);
5625 BFD_ASSERT (s->contents != NULL);
5626 BFD_ASSERT (s->output_section != NULL);
5627
5628 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5629
5630 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5631
5632 if ((globals->bx_glue_offset[reg] & 1) == 0)
5633 {
5634 p = s->contents + glue_addr;
5635 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5636 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5637 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5638 globals->bx_glue_offset[reg] |= 1;
5639 }
5640
5641 return glue_addr + s->output_section->vma + s->output_offset;
5642 }
5643
5644 /* Generate Arm stubs for exported Thumb symbols. */
5645 static void
5646 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5647 struct bfd_link_info *link_info)
5648 {
5649 struct elf32_arm_link_hash_table * globals;
5650
5651 if (link_info == NULL)
5652 /* Ignore this if we are not called by the ELF backend linker. */
5653 return;
5654
5655 globals = elf32_arm_hash_table (link_info);
5656 /* If blx is available then exported Thumb symbols are OK and there is
5657 nothing to do. */
5658 if (globals->use_blx)
5659 return;
5660
5661 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5662 link_info);
5663 }
5664
5665 /* Some relocations map to different relocations depending on the
5666 target. Return the real relocation. */
5667
5668 static int
5669 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5670 int r_type)
5671 {
5672 switch (r_type)
5673 {
5674 case R_ARM_TARGET1:
5675 if (globals->target1_is_rel)
5676 return R_ARM_REL32;
5677 else
5678 return R_ARM_ABS32;
5679
5680 case R_ARM_TARGET2:
5681 return globals->target2_reloc;
5682
5683 default:
5684 return r_type;
5685 }
5686 }
5687
5688 /* Return the base VMA address which should be subtracted from real addresses
5689 when resolving @dtpoff relocation.
5690 This is PT_TLS segment p_vaddr. */
5691
5692 static bfd_vma
5693 dtpoff_base (struct bfd_link_info *info)
5694 {
5695 /* If tls_sec is NULL, we should have signalled an error already. */
5696 if (elf_hash_table (info)->tls_sec == NULL)
5697 return 0;
5698 return elf_hash_table (info)->tls_sec->vma;
5699 }
5700
5701 /* Return the relocation value for @tpoff relocation
5702 if STT_TLS virtual address is ADDRESS. */
5703
5704 static bfd_vma
5705 tpoff (struct bfd_link_info *info, bfd_vma address)
5706 {
5707 struct elf_link_hash_table *htab = elf_hash_table (info);
5708 bfd_vma base;
5709
5710 /* If tls_sec is NULL, we should have signalled an error already. */
5711 if (htab->tls_sec == NULL)
5712 return 0;
5713 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5714 return address - htab->tls_sec->vma + base;
5715 }
5716
5717 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5718 VALUE is the relocation value. */
5719
5720 static bfd_reloc_status_type
5721 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5722 {
5723 if (value > 0xfff)
5724 return bfd_reloc_overflow;
5725
5726 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5727 bfd_put_32 (abfd, value, data);
5728 return bfd_reloc_ok;
5729 }
5730
5731 /* For a given value of n, calculate the value of G_n as required to
5732 deal with group relocations. We return it in the form of an
5733 encoded constant-and-rotation, together with the final residual. If n is
5734 specified as less than zero, then final_residual is filled with the
5735 input value and no further action is performed. */
5736
5737 static bfd_vma
5738 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5739 {
5740 int current_n;
5741 bfd_vma g_n;
5742 bfd_vma encoded_g_n = 0;
5743 bfd_vma residual = value; /* Also known as Y_n. */
5744
5745 for (current_n = 0; current_n <= n; current_n++)
5746 {
5747 int shift;
5748
5749 /* Calculate which part of the value to mask. */
5750 if (residual == 0)
5751 shift = 0;
5752 else
5753 {
5754 int msb;
5755
5756 /* Determine the most significant bit in the residual and
5757 align the resulting value to a 2-bit boundary. */
5758 for (msb = 30; msb >= 0; msb -= 2)
5759 if (residual & (3 << msb))
5760 break;
5761
5762 /* The desired shift is now (msb - 6), or zero, whichever
5763 is the greater. */
5764 shift = msb - 6;
5765 if (shift < 0)
5766 shift = 0;
5767 }
5768
5769 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5770 g_n = residual & (0xff << shift);
5771 encoded_g_n = (g_n >> shift)
5772 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5773
5774 /* Calculate the residual for the next time around. */
5775 residual &= ~g_n;
5776 }
5777
5778 *final_residual = residual;
5779
5780 return encoded_g_n;
5781 }
5782
5783 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5784 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5785
5786 static int
5787 identify_add_or_sub (bfd_vma insn)
5788 {
5789 int opcode = insn & 0x1e00000;
5790
5791 if (opcode == 1 << 23) /* ADD */
5792 return 1;
5793
5794 if (opcode == 1 << 22) /* SUB */
5795 return -1;
5796
5797 return 0;
5798 }
5799
5800 /* Perform a relocation as part of a final link. */
5801
5802 static bfd_reloc_status_type
5803 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5804 bfd * input_bfd,
5805 bfd * output_bfd,
5806 asection * input_section,
5807 bfd_byte * contents,
5808 Elf_Internal_Rela * rel,
5809 bfd_vma value,
5810 struct bfd_link_info * info,
5811 asection * sym_sec,
5812 const char * sym_name,
5813 int sym_flags,
5814 struct elf_link_hash_entry * h,
5815 bfd_boolean * unresolved_reloc_p,
5816 char ** error_message)
5817 {
5818 unsigned long r_type = howto->type;
5819 unsigned long r_symndx;
5820 bfd_byte * hit_data = contents + rel->r_offset;
5821 bfd * dynobj = NULL;
5822 Elf_Internal_Shdr * symtab_hdr;
5823 struct elf_link_hash_entry ** sym_hashes;
5824 bfd_vma * local_got_offsets;
5825 asection * sgot = NULL;
5826 asection * splt = NULL;
5827 asection * sreloc = NULL;
5828 bfd_vma addend;
5829 bfd_signed_vma signed_addend;
5830 struct elf32_arm_link_hash_table * globals;
5831
5832 globals = elf32_arm_hash_table (info);
5833
5834 BFD_ASSERT (is_arm_elf (input_bfd));
5835
5836 /* Some relocation types map to different relocations depending on the
5837 target. We pick the right one here. */
5838 r_type = arm_real_reloc_type (globals, r_type);
5839 if (r_type != howto->type)
5840 howto = elf32_arm_howto_from_type (r_type);
5841
5842 /* If the start address has been set, then set the EF_ARM_HASENTRY
5843 flag. Setting this more than once is redundant, but the cost is
5844 not too high, and it keeps the code simple.
5845
5846 The test is done here, rather than somewhere else, because the
5847 start address is only set just before the final link commences.
5848
5849 Note - if the user deliberately sets a start address of 0, the
5850 flag will not be set. */
5851 if (bfd_get_start_address (output_bfd) != 0)
5852 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5853
5854 dynobj = elf_hash_table (info)->dynobj;
5855 if (dynobj)
5856 {
5857 sgot = bfd_get_section_by_name (dynobj, ".got");
5858 splt = bfd_get_section_by_name (dynobj, ".plt");
5859 }
5860 symtab_hdr = & elf_symtab_hdr (input_bfd);
5861 sym_hashes = elf_sym_hashes (input_bfd);
5862 local_got_offsets = elf_local_got_offsets (input_bfd);
5863 r_symndx = ELF32_R_SYM (rel->r_info);
5864
5865 if (globals->use_rel)
5866 {
5867 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5868
5869 if (addend & ((howto->src_mask + 1) >> 1))
5870 {
5871 signed_addend = -1;
5872 signed_addend &= ~ howto->src_mask;
5873 signed_addend |= addend;
5874 }
5875 else
5876 signed_addend = addend;
5877 }
5878 else
5879 addend = signed_addend = rel->r_addend;
5880
5881 switch (r_type)
5882 {
5883 case R_ARM_NONE:
5884 /* We don't need to find a value for this symbol. It's just a
5885 marker. */
5886 *unresolved_reloc_p = FALSE;
5887 return bfd_reloc_ok;
5888
5889 case R_ARM_ABS12:
5890 if (!globals->vxworks_p)
5891 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5892
5893 case R_ARM_PC24:
5894 case R_ARM_ABS32:
5895 case R_ARM_ABS32_NOI:
5896 case R_ARM_REL32:
5897 case R_ARM_REL32_NOI:
5898 case R_ARM_CALL:
5899 case R_ARM_JUMP24:
5900 case R_ARM_XPC25:
5901 case R_ARM_PREL31:
5902 case R_ARM_PLT32:
5903 /* Handle relocations which should use the PLT entry. ABS32/REL32
5904 will use the symbol's value, which may point to a PLT entry, but we
5905 don't need to handle that here. If we created a PLT entry, all
5906 branches in this object should go to it. */
5907 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5908 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5909 && h != NULL
5910 && splt != NULL
5911 && h->plt.offset != (bfd_vma) -1)
5912 {
5913 /* If we've created a .plt section, and assigned a PLT entry to
5914 this function, it should not be known to bind locally. If
5915 it were, we would have cleared the PLT entry. */
5916 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5917
5918 value = (splt->output_section->vma
5919 + splt->output_offset
5920 + h->plt.offset);
5921 *unresolved_reloc_p = FALSE;
5922 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5923 contents, rel->r_offset, value,
5924 rel->r_addend);
5925 }
5926
5927 /* When generating a shared object or relocatable executable, these
5928 relocations are copied into the output file to be resolved at
5929 run time. */
5930 if ((info->shared || globals->root.is_relocatable_executable)
5931 && (input_section->flags & SEC_ALLOC)
5932 && !(elf32_arm_hash_table (info)->vxworks_p
5933 && strcmp (input_section->output_section->name,
5934 ".tls_vars") == 0)
5935 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5936 || !SYMBOL_CALLS_LOCAL (info, h))
5937 && (h == NULL
5938 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5939 || h->root.type != bfd_link_hash_undefweak)
5940 && r_type != R_ARM_PC24
5941 && r_type != R_ARM_CALL
5942 && r_type != R_ARM_JUMP24
5943 && r_type != R_ARM_PREL31
5944 && r_type != R_ARM_PLT32)
5945 {
5946 Elf_Internal_Rela outrel;
5947 bfd_byte *loc;
5948 bfd_boolean skip, relocate;
5949
5950 *unresolved_reloc_p = FALSE;
5951
5952 if (sreloc == NULL)
5953 {
5954 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
5955 ! globals->use_rel);
5956
5957 if (sreloc == NULL)
5958 return bfd_reloc_notsupported;
5959 }
5960
5961 skip = FALSE;
5962 relocate = FALSE;
5963
5964 outrel.r_addend = addend;
5965 outrel.r_offset =
5966 _bfd_elf_section_offset (output_bfd, info, input_section,
5967 rel->r_offset);
5968 if (outrel.r_offset == (bfd_vma) -1)
5969 skip = TRUE;
5970 else if (outrel.r_offset == (bfd_vma) -2)
5971 skip = TRUE, relocate = TRUE;
5972 outrel.r_offset += (input_section->output_section->vma
5973 + input_section->output_offset);
5974
5975 if (skip)
5976 memset (&outrel, 0, sizeof outrel);
5977 else if (h != NULL
5978 && h->dynindx != -1
5979 && (!info->shared
5980 || !info->symbolic
5981 || !h->def_regular))
5982 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
5983 else
5984 {
5985 int symbol;
5986
5987 /* This symbol is local, or marked to become local. */
5988 if (sym_flags == STT_ARM_TFUNC)
5989 value |= 1;
5990 if (globals->symbian_p)
5991 {
5992 asection *osec;
5993
5994 /* On Symbian OS, the data segment and text segement
5995 can be relocated independently. Therefore, we
5996 must indicate the segment to which this
5997 relocation is relative. The BPABI allows us to
5998 use any symbol in the right segment; we just use
5999 the section symbol as it is convenient. (We
6000 cannot use the symbol given by "h" directly as it
6001 will not appear in the dynamic symbol table.)
6002
6003 Note that the dynamic linker ignores the section
6004 symbol value, so we don't subtract osec->vma
6005 from the emitted reloc addend. */
6006 if (sym_sec)
6007 osec = sym_sec->output_section;
6008 else
6009 osec = input_section->output_section;
6010 symbol = elf_section_data (osec)->dynindx;
6011 if (symbol == 0)
6012 {
6013 struct elf_link_hash_table *htab = elf_hash_table (info);
6014
6015 if ((osec->flags & SEC_READONLY) == 0
6016 && htab->data_index_section != NULL)
6017 osec = htab->data_index_section;
6018 else
6019 osec = htab->text_index_section;
6020 symbol = elf_section_data (osec)->dynindx;
6021 }
6022 BFD_ASSERT (symbol != 0);
6023 }
6024 else
6025 /* On SVR4-ish systems, the dynamic loader cannot
6026 relocate the text and data segments independently,
6027 so the symbol does not matter. */
6028 symbol = 0;
6029 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6030 if (globals->use_rel)
6031 relocate = TRUE;
6032 else
6033 outrel.r_addend += value;
6034 }
6035
6036 loc = sreloc->contents;
6037 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6038 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6039
6040 /* If this reloc is against an external symbol, we do not want to
6041 fiddle with the addend. Otherwise, we need to include the symbol
6042 value so that it becomes an addend for the dynamic reloc. */
6043 if (! relocate)
6044 return bfd_reloc_ok;
6045
6046 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6047 contents, rel->r_offset, value,
6048 (bfd_vma) 0);
6049 }
6050 else switch (r_type)
6051 {
6052 case R_ARM_ABS12:
6053 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6054
6055 case R_ARM_XPC25: /* Arm BLX instruction. */
6056 case R_ARM_CALL:
6057 case R_ARM_JUMP24:
6058 case R_ARM_PC24: /* Arm B/BL instruction. */
6059 case R_ARM_PLT32:
6060 {
6061 bfd_vma from;
6062 bfd_signed_vma branch_offset;
6063 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6064
6065 from = (input_section->output_section->vma
6066 + input_section->output_offset
6067 + rel->r_offset);
6068 branch_offset = (bfd_signed_vma)(value - from);
6069
6070 if (r_type == R_ARM_XPC25)
6071 {
6072 /* Check for Arm calling Arm function. */
6073 /* FIXME: Should we translate the instruction into a BL
6074 instruction instead ? */
6075 if (sym_flags != STT_ARM_TFUNC)
6076 (*_bfd_error_handler)
6077 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6078 input_bfd,
6079 h ? h->root.root.string : "(local)");
6080 }
6081 else if (r_type != R_ARM_CALL)
6082 {
6083 /* Check for Arm calling Thumb function. */
6084 if (sym_flags == STT_ARM_TFUNC)
6085 {
6086 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6087 output_bfd, input_section,
6088 hit_data, sym_sec, rel->r_offset,
6089 signed_addend, value,
6090 error_message))
6091 return bfd_reloc_ok;
6092 else
6093 return bfd_reloc_dangerous;
6094 }
6095 }
6096
6097 /* Check if a stub has to be inserted because the
6098 destination is too far or we are changing mode. */
6099 if (r_type == R_ARM_CALL)
6100 {
6101 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6102 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6103 || sym_flags == STT_ARM_TFUNC)
6104 {
6105 /* The target is out of reach, so redirect the
6106 branch to the local stub for this function. */
6107
6108 stub_entry = elf32_arm_get_stub_entry (input_section,
6109 sym_sec, h,
6110 rel, globals);
6111 if (stub_entry != NULL)
6112 value = (stub_entry->stub_offset
6113 + stub_entry->stub_sec->output_offset
6114 + stub_entry->stub_sec->output_section->vma);
6115 }
6116 }
6117
6118 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6119 where:
6120 S is the address of the symbol in the relocation.
6121 P is address of the instruction being relocated.
6122 A is the addend (extracted from the instruction) in bytes.
6123
6124 S is held in 'value'.
6125 P is the base address of the section containing the
6126 instruction plus the offset of the reloc into that
6127 section, ie:
6128 (input_section->output_section->vma +
6129 input_section->output_offset +
6130 rel->r_offset).
6131 A is the addend, converted into bytes, ie:
6132 (signed_addend * 4)
6133
6134 Note: None of these operations have knowledge of the pipeline
6135 size of the processor, thus it is up to the assembler to
6136 encode this information into the addend. */
6137 value -= (input_section->output_section->vma
6138 + input_section->output_offset);
6139 value -= rel->r_offset;
6140 if (globals->use_rel)
6141 value += (signed_addend << howto->size);
6142 else
6143 /* RELA addends do not have to be adjusted by howto->size. */
6144 value += signed_addend;
6145
6146 signed_addend = value;
6147 signed_addend >>= howto->rightshift;
6148
6149 /* A branch to an undefined weak symbol is turned into a jump to
6150 the next instruction. */
6151 if (h && h->root.type == bfd_link_hash_undefweak)
6152 {
6153 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6154 | 0x0affffff;
6155 }
6156 else
6157 {
6158 /* Perform a signed range check. */
6159 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6160 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6161 return bfd_reloc_overflow;
6162
6163 addend = (value & 2);
6164
6165 value = (signed_addend & howto->dst_mask)
6166 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6167
6168 /* Set the H bit in the BLX instruction. */
6169 if (sym_flags == STT_ARM_TFUNC)
6170 {
6171 if (addend)
6172 value |= (1 << 24);
6173 else
6174 value &= ~(bfd_vma)(1 << 24);
6175 }
6176 if (r_type == R_ARM_CALL)
6177 {
6178 /* Select the correct instruction (BL or BLX). */
6179 /* Only if we are not handling a BL to a stub. In this
6180 case, mode switching is performed by the stub. */
6181 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6182 value |= (1 << 28);
6183 else
6184 {
6185 value &= ~(bfd_vma)(1 << 28);
6186 value |= (1 << 24);
6187 }
6188 }
6189 }
6190 }
6191 break;
6192
6193 case R_ARM_ABS32:
6194 value += addend;
6195 if (sym_flags == STT_ARM_TFUNC)
6196 value |= 1;
6197 break;
6198
6199 case R_ARM_ABS32_NOI:
6200 value += addend;
6201 break;
6202
6203 case R_ARM_REL32:
6204 value += addend;
6205 if (sym_flags == STT_ARM_TFUNC)
6206 value |= 1;
6207 value -= (input_section->output_section->vma
6208 + input_section->output_offset + rel->r_offset);
6209 break;
6210
6211 case R_ARM_REL32_NOI:
6212 value += addend;
6213 value -= (input_section->output_section->vma
6214 + input_section->output_offset + rel->r_offset);
6215 break;
6216
6217 case R_ARM_PREL31:
6218 value -= (input_section->output_section->vma
6219 + input_section->output_offset + rel->r_offset);
6220 value += signed_addend;
6221 if (! h || h->root.type != bfd_link_hash_undefweak)
6222 {
6223 /* Check for overflow. */
6224 if ((value ^ (value >> 1)) & (1 << 30))
6225 return bfd_reloc_overflow;
6226 }
6227 value &= 0x7fffffff;
6228 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6229 if (sym_flags == STT_ARM_TFUNC)
6230 value |= 1;
6231 break;
6232 }
6233
6234 bfd_put_32 (input_bfd, value, hit_data);
6235 return bfd_reloc_ok;
6236
6237 case R_ARM_ABS8:
6238 value += addend;
6239 if ((long) value > 0x7f || (long) value < -0x80)
6240 return bfd_reloc_overflow;
6241
6242 bfd_put_8 (input_bfd, value, hit_data);
6243 return bfd_reloc_ok;
6244
6245 case R_ARM_ABS16:
6246 value += addend;
6247
6248 if ((long) value > 0x7fff || (long) value < -0x8000)
6249 return bfd_reloc_overflow;
6250
6251 bfd_put_16 (input_bfd, value, hit_data);
6252 return bfd_reloc_ok;
6253
6254 case R_ARM_THM_ABS5:
6255 /* Support ldr and str instructions for the thumb. */
6256 if (globals->use_rel)
6257 {
6258 /* Need to refetch addend. */
6259 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6260 /* ??? Need to determine shift amount from operand size. */
6261 addend >>= howto->rightshift;
6262 }
6263 value += addend;
6264
6265 /* ??? Isn't value unsigned? */
6266 if ((long) value > 0x1f || (long) value < -0x10)
6267 return bfd_reloc_overflow;
6268
6269 /* ??? Value needs to be properly shifted into place first. */
6270 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6271 bfd_put_16 (input_bfd, value, hit_data);
6272 return bfd_reloc_ok;
6273
6274 case R_ARM_THM_ALU_PREL_11_0:
6275 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6276 {
6277 bfd_vma insn;
6278 bfd_signed_vma relocation;
6279
6280 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6281 | bfd_get_16 (input_bfd, hit_data + 2);
6282
6283 if (globals->use_rel)
6284 {
6285 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6286 | ((insn & (1 << 26)) >> 15);
6287 if (insn & 0xf00000)
6288 signed_addend = -signed_addend;
6289 }
6290
6291 relocation = value + signed_addend;
6292 relocation -= (input_section->output_section->vma
6293 + input_section->output_offset
6294 + rel->r_offset);
6295
6296 value = abs (relocation);
6297
6298 if (value >= 0x1000)
6299 return bfd_reloc_overflow;
6300
6301 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6302 | ((value & 0x700) << 4)
6303 | ((value & 0x800) << 15);
6304 if (relocation < 0)
6305 insn |= 0xa00000;
6306
6307 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6308 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6309
6310 return bfd_reloc_ok;
6311 }
6312
6313 case R_ARM_THM_PC12:
6314 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6315 {
6316 bfd_vma insn;
6317 bfd_signed_vma relocation;
6318
6319 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6320 | bfd_get_16 (input_bfd, hit_data + 2);
6321
6322 if (globals->use_rel)
6323 {
6324 signed_addend = insn & 0xfff;
6325 if (!(insn & (1 << 23)))
6326 signed_addend = -signed_addend;
6327 }
6328
6329 relocation = value + signed_addend;
6330 relocation -= (input_section->output_section->vma
6331 + input_section->output_offset
6332 + rel->r_offset);
6333
6334 value = abs (relocation);
6335
6336 if (value >= 0x1000)
6337 return bfd_reloc_overflow;
6338
6339 insn = (insn & 0xff7ff000) | value;
6340 if (relocation >= 0)
6341 insn |= (1 << 23);
6342
6343 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6344 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6345
6346 return bfd_reloc_ok;
6347 }
6348
6349 case R_ARM_THM_XPC22:
6350 case R_ARM_THM_CALL:
6351 case R_ARM_THM_JUMP24:
6352 /* Thumb BL (branch long instruction). */
6353 {
6354 bfd_vma relocation;
6355 bfd_vma reloc_sign;
6356 bfd_boolean overflow = FALSE;
6357 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6358 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6359 bfd_signed_vma reloc_signed_max;
6360 bfd_signed_vma reloc_signed_min;
6361 bfd_vma check;
6362 bfd_signed_vma signed_check;
6363 int bitsize;
6364 int thumb2 = using_thumb2 (globals);
6365
6366 /* A branch to an undefined weak symbol is turned into a jump to
6367 the next instruction unless a PLT entry will be created. */
6368 if (h && h->root.type == bfd_link_hash_undefweak
6369 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
6370 {
6371 bfd_put_16 (input_bfd, 0xe000, hit_data);
6372 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6373 return bfd_reloc_ok;
6374 }
6375
6376 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6377 with Thumb-1) involving the J1 and J2 bits. */
6378 if (globals->use_rel)
6379 {
6380 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6381 bfd_vma upper = upper_insn & 0x3ff;
6382 bfd_vma lower = lower_insn & 0x7ff;
6383 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6384 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6385 bfd_vma i1 = j1 ^ s ? 0 : 1;
6386 bfd_vma i2 = j2 ^ s ? 0 : 1;
6387
6388 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6389 /* Sign extend. */
6390 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6391
6392 signed_addend = addend;
6393 }
6394
6395 if (r_type == R_ARM_THM_XPC22)
6396 {
6397 /* Check for Thumb to Thumb call. */
6398 /* FIXME: Should we translate the instruction into a BL
6399 instruction instead ? */
6400 if (sym_flags == STT_ARM_TFUNC)
6401 (*_bfd_error_handler)
6402 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6403 input_bfd,
6404 h ? h->root.root.string : "(local)");
6405 }
6406 else
6407 {
6408 /* If it is not a call to Thumb, assume call to Arm.
6409 If it is a call relative to a section name, then it is not a
6410 function call at all, but rather a long jump. Calls through
6411 the PLT do not require stubs. */
6412 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6413 && (h == NULL || splt == NULL
6414 || h->plt.offset == (bfd_vma) -1))
6415 {
6416 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6417 {
6418 /* Convert BL to BLX. */
6419 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6420 }
6421 else if (r_type != R_ARM_THM_CALL)
6422 {
6423 if (elf32_thumb_to_arm_stub
6424 (info, sym_name, input_bfd, output_bfd, input_section,
6425 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6426 error_message))
6427 return bfd_reloc_ok;
6428 else
6429 return bfd_reloc_dangerous;
6430 }
6431 }
6432 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6433 && r_type == R_ARM_THM_CALL)
6434 {
6435 /* Make sure this is a BL. */
6436 lower_insn |= 0x1800;
6437 }
6438 }
6439
6440 /* Handle calls via the PLT. */
6441 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6442 {
6443 value = (splt->output_section->vma
6444 + splt->output_offset
6445 + h->plt.offset);
6446 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6447 {
6448 /* If the Thumb BLX instruction is available, convert the
6449 BL to a BLX instruction to call the ARM-mode PLT entry. */
6450 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6451 }
6452 else
6453 /* Target the Thumb stub before the ARM PLT entry. */
6454 value -= PLT_THUMB_STUB_SIZE;
6455 *unresolved_reloc_p = FALSE;
6456 }
6457
6458 if (r_type == R_ARM_THM_CALL)
6459 {
6460 /* Check if a stub has to be inserted because the destination
6461 is too far. */
6462 bfd_vma from;
6463 bfd_signed_vma branch_offset;
6464 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6465
6466 from = (input_section->output_section->vma
6467 + input_section->output_offset
6468 + rel->r_offset);
6469 branch_offset = (bfd_signed_vma)(value - from);
6470
6471 if ((!thumb2
6472 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6473 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6474 ||
6475 (thumb2
6476 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6477 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6478 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6479 {
6480 /* The target is out of reach or we are changing modes, so
6481 redirect the branch to the local stub for this
6482 function. */
6483 stub_entry = elf32_arm_get_stub_entry (input_section,
6484 sym_sec, h,
6485 rel, globals);
6486 if (stub_entry != NULL)
6487 value = (stub_entry->stub_offset
6488 + stub_entry->stub_sec->output_offset
6489 + stub_entry->stub_sec->output_section->vma);
6490
6491 /* If this call becomes a call to Arm, force BLX. */
6492 if (globals->use_blx)
6493 {
6494 if ((stub_entry
6495 && !arm_stub_is_thumb (stub_entry->stub_type))
6496 || (sym_flags != STT_ARM_TFUNC))
6497 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6498 }
6499 }
6500 }
6501
6502 relocation = value + signed_addend;
6503
6504 relocation -= (input_section->output_section->vma
6505 + input_section->output_offset
6506 + rel->r_offset);
6507
6508 check = relocation >> howto->rightshift;
6509
6510 /* If this is a signed value, the rightshift just dropped
6511 leading 1 bits (assuming twos complement). */
6512 if ((bfd_signed_vma) relocation >= 0)
6513 signed_check = check;
6514 else
6515 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6516
6517 /* Calculate the permissable maximum and minimum values for
6518 this relocation according to whether we're relocating for
6519 Thumb-2 or not. */
6520 bitsize = howto->bitsize;
6521 if (!thumb2)
6522 bitsize -= 2;
6523 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6524 reloc_signed_min = ~reloc_signed_max;
6525
6526 /* Assumes two's complement. */
6527 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6528 overflow = TRUE;
6529
6530 if ((lower_insn & 0x5000) == 0x4000)
6531 /* For a BLX instruction, make sure that the relocation is rounded up
6532 to a word boundary. This follows the semantics of the instruction
6533 which specifies that bit 1 of the target address will come from bit
6534 1 of the base address. */
6535 relocation = (relocation + 2) & ~ 3;
6536
6537 /* Put RELOCATION back into the insn. Assumes two's complement.
6538 We use the Thumb-2 encoding, which is safe even if dealing with
6539 a Thumb-1 instruction by virtue of our overflow check above. */
6540 reloc_sign = (signed_check < 0) ? 1 : 0;
6541 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6542 | ((relocation >> 12) & 0x3ff)
6543 | (reloc_sign << 10);
6544 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6545 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6546 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6547 | ((relocation >> 1) & 0x7ff);
6548
6549 /* Put the relocated value back in the object file: */
6550 bfd_put_16 (input_bfd, upper_insn, hit_data);
6551 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6552
6553 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6554 }
6555 break;
6556
6557 case R_ARM_THM_JUMP19:
6558 /* Thumb32 conditional branch instruction. */
6559 {
6560 bfd_vma relocation;
6561 bfd_boolean overflow = FALSE;
6562 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6563 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6564 bfd_signed_vma reloc_signed_max = 0xffffe;
6565 bfd_signed_vma reloc_signed_min = -0x100000;
6566 bfd_signed_vma signed_check;
6567
6568 /* Need to refetch the addend, reconstruct the top three bits,
6569 and squish the two 11 bit pieces together. */
6570 if (globals->use_rel)
6571 {
6572 bfd_vma S = (upper_insn & 0x0400) >> 10;
6573 bfd_vma upper = (upper_insn & 0x003f);
6574 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6575 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6576 bfd_vma lower = (lower_insn & 0x07ff);
6577
6578 upper |= J1 << 6;
6579 upper |= J2 << 7;
6580 upper |= (!S) << 8;
6581 upper -= 0x0100; /* Sign extend. */
6582
6583 addend = (upper << 12) | (lower << 1);
6584 signed_addend = addend;
6585 }
6586
6587 /* Handle calls via the PLT. */
6588 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6589 {
6590 value = (splt->output_section->vma
6591 + splt->output_offset
6592 + h->plt.offset);
6593 /* Target the Thumb stub before the ARM PLT entry. */
6594 value -= PLT_THUMB_STUB_SIZE;
6595 *unresolved_reloc_p = FALSE;
6596 }
6597
6598 /* ??? Should handle interworking? GCC might someday try to
6599 use this for tail calls. */
6600
6601 relocation = value + signed_addend;
6602 relocation -= (input_section->output_section->vma
6603 + input_section->output_offset
6604 + rel->r_offset);
6605 signed_check = (bfd_signed_vma) relocation;
6606
6607 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6608 overflow = TRUE;
6609
6610 /* Put RELOCATION back into the insn. */
6611 {
6612 bfd_vma S = (relocation & 0x00100000) >> 20;
6613 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6614 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6615 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6616 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6617
6618 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6619 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6620 }
6621
6622 /* Put the relocated value back in the object file: */
6623 bfd_put_16 (input_bfd, upper_insn, hit_data);
6624 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6625
6626 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6627 }
6628
6629 case R_ARM_THM_JUMP11:
6630 case R_ARM_THM_JUMP8:
6631 case R_ARM_THM_JUMP6:
6632 /* Thumb B (branch) instruction). */
6633 {
6634 bfd_signed_vma relocation;
6635 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6636 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6637 bfd_signed_vma signed_check;
6638
6639 /* CZB cannot jump backward. */
6640 if (r_type == R_ARM_THM_JUMP6)
6641 reloc_signed_min = 0;
6642
6643 if (globals->use_rel)
6644 {
6645 /* Need to refetch addend. */
6646 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6647 if (addend & ((howto->src_mask + 1) >> 1))
6648 {
6649 signed_addend = -1;
6650 signed_addend &= ~ howto->src_mask;
6651 signed_addend |= addend;
6652 }
6653 else
6654 signed_addend = addend;
6655 /* The value in the insn has been right shifted. We need to
6656 undo this, so that we can perform the address calculation
6657 in terms of bytes. */
6658 signed_addend <<= howto->rightshift;
6659 }
6660 relocation = value + signed_addend;
6661
6662 relocation -= (input_section->output_section->vma
6663 + input_section->output_offset
6664 + rel->r_offset);
6665
6666 relocation >>= howto->rightshift;
6667 signed_check = relocation;
6668
6669 if (r_type == R_ARM_THM_JUMP6)
6670 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6671 else
6672 relocation &= howto->dst_mask;
6673 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6674
6675 bfd_put_16 (input_bfd, relocation, hit_data);
6676
6677 /* Assumes two's complement. */
6678 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6679 return bfd_reloc_overflow;
6680
6681 return bfd_reloc_ok;
6682 }
6683
6684 case R_ARM_ALU_PCREL7_0:
6685 case R_ARM_ALU_PCREL15_8:
6686 case R_ARM_ALU_PCREL23_15:
6687 {
6688 bfd_vma insn;
6689 bfd_vma relocation;
6690
6691 insn = bfd_get_32 (input_bfd, hit_data);
6692 if (globals->use_rel)
6693 {
6694 /* Extract the addend. */
6695 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6696 signed_addend = addend;
6697 }
6698 relocation = value + signed_addend;
6699
6700 relocation -= (input_section->output_section->vma
6701 + input_section->output_offset
6702 + rel->r_offset);
6703 insn = (insn & ~0xfff)
6704 | ((howto->bitpos << 7) & 0xf00)
6705 | ((relocation >> howto->bitpos) & 0xff);
6706 bfd_put_32 (input_bfd, value, hit_data);
6707 }
6708 return bfd_reloc_ok;
6709
6710 case R_ARM_GNU_VTINHERIT:
6711 case R_ARM_GNU_VTENTRY:
6712 return bfd_reloc_ok;
6713
6714 case R_ARM_GOTOFF32:
6715 /* Relocation is relative to the start of the
6716 global offset table. */
6717
6718 BFD_ASSERT (sgot != NULL);
6719 if (sgot == NULL)
6720 return bfd_reloc_notsupported;
6721
6722 /* If we are addressing a Thumb function, we need to adjust the
6723 address by one, so that attempts to call the function pointer will
6724 correctly interpret it as Thumb code. */
6725 if (sym_flags == STT_ARM_TFUNC)
6726 value += 1;
6727
6728 /* Note that sgot->output_offset is not involved in this
6729 calculation. We always want the start of .got. If we
6730 define _GLOBAL_OFFSET_TABLE in a different way, as is
6731 permitted by the ABI, we might have to change this
6732 calculation. */
6733 value -= sgot->output_section->vma;
6734 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6735 contents, rel->r_offset, value,
6736 rel->r_addend);
6737
6738 case R_ARM_GOTPC:
6739 /* Use global offset table as symbol value. */
6740 BFD_ASSERT (sgot != NULL);
6741
6742 if (sgot == NULL)
6743 return bfd_reloc_notsupported;
6744
6745 *unresolved_reloc_p = FALSE;
6746 value = sgot->output_section->vma;
6747 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6748 contents, rel->r_offset, value,
6749 rel->r_addend);
6750
6751 case R_ARM_GOT32:
6752 case R_ARM_GOT_PREL:
6753 /* Relocation is to the entry for this symbol in the
6754 global offset table. */
6755 if (sgot == NULL)
6756 return bfd_reloc_notsupported;
6757
6758 if (h != NULL)
6759 {
6760 bfd_vma off;
6761 bfd_boolean dyn;
6762
6763 off = h->got.offset;
6764 BFD_ASSERT (off != (bfd_vma) -1);
6765 dyn = globals->root.dynamic_sections_created;
6766
6767 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6768 || (info->shared
6769 && SYMBOL_REFERENCES_LOCAL (info, h))
6770 || (ELF_ST_VISIBILITY (h->other)
6771 && h->root.type == bfd_link_hash_undefweak))
6772 {
6773 /* This is actually a static link, or it is a -Bsymbolic link
6774 and the symbol is defined locally. We must initialize this
6775 entry in the global offset table. Since the offset must
6776 always be a multiple of 4, we use the least significant bit
6777 to record whether we have initialized it already.
6778
6779 When doing a dynamic link, we create a .rel(a).got relocation
6780 entry to initialize the value. This is done in the
6781 finish_dynamic_symbol routine. */
6782 if ((off & 1) != 0)
6783 off &= ~1;
6784 else
6785 {
6786 /* If we are addressing a Thumb function, we need to
6787 adjust the address by one, so that attempts to
6788 call the function pointer will correctly
6789 interpret it as Thumb code. */
6790 if (sym_flags == STT_ARM_TFUNC)
6791 value |= 1;
6792
6793 bfd_put_32 (output_bfd, value, sgot->contents + off);
6794 h->got.offset |= 1;
6795 }
6796 }
6797 else
6798 *unresolved_reloc_p = FALSE;
6799
6800 value = sgot->output_offset + off;
6801 }
6802 else
6803 {
6804 bfd_vma off;
6805
6806 BFD_ASSERT (local_got_offsets != NULL &&
6807 local_got_offsets[r_symndx] != (bfd_vma) -1);
6808
6809 off = local_got_offsets[r_symndx];
6810
6811 /* The offset must always be a multiple of 4. We use the
6812 least significant bit to record whether we have already
6813 generated the necessary reloc. */
6814 if ((off & 1) != 0)
6815 off &= ~1;
6816 else
6817 {
6818 /* If we are addressing a Thumb function, we need to
6819 adjust the address by one, so that attempts to
6820 call the function pointer will correctly
6821 interpret it as Thumb code. */
6822 if (sym_flags == STT_ARM_TFUNC)
6823 value |= 1;
6824
6825 if (globals->use_rel)
6826 bfd_put_32 (output_bfd, value, sgot->contents + off);
6827
6828 if (info->shared)
6829 {
6830 asection * srelgot;
6831 Elf_Internal_Rela outrel;
6832 bfd_byte *loc;
6833
6834 srelgot = (bfd_get_section_by_name
6835 (dynobj, RELOC_SECTION (globals, ".got")));
6836 BFD_ASSERT (srelgot != NULL);
6837
6838 outrel.r_addend = addend + value;
6839 outrel.r_offset = (sgot->output_section->vma
6840 + sgot->output_offset
6841 + off);
6842 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6843 loc = srelgot->contents;
6844 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6845 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6846 }
6847
6848 local_got_offsets[r_symndx] |= 1;
6849 }
6850
6851 value = sgot->output_offset + off;
6852 }
6853 if (r_type != R_ARM_GOT32)
6854 value += sgot->output_section->vma;
6855
6856 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6857 contents, rel->r_offset, value,
6858 rel->r_addend);
6859
6860 case R_ARM_TLS_LDO32:
6861 value = value - dtpoff_base (info);
6862
6863 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6864 contents, rel->r_offset, value,
6865 rel->r_addend);
6866
6867 case R_ARM_TLS_LDM32:
6868 {
6869 bfd_vma off;
6870
6871 if (globals->sgot == NULL)
6872 abort ();
6873
6874 off = globals->tls_ldm_got.offset;
6875
6876 if ((off & 1) != 0)
6877 off &= ~1;
6878 else
6879 {
6880 /* If we don't know the module number, create a relocation
6881 for it. */
6882 if (info->shared)
6883 {
6884 Elf_Internal_Rela outrel;
6885 bfd_byte *loc;
6886
6887 if (globals->srelgot == NULL)
6888 abort ();
6889
6890 outrel.r_addend = 0;
6891 outrel.r_offset = (globals->sgot->output_section->vma
6892 + globals->sgot->output_offset + off);
6893 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6894
6895 if (globals->use_rel)
6896 bfd_put_32 (output_bfd, outrel.r_addend,
6897 globals->sgot->contents + off);
6898
6899 loc = globals->srelgot->contents;
6900 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6901 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6902 }
6903 else
6904 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6905
6906 globals->tls_ldm_got.offset |= 1;
6907 }
6908
6909 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6910 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6911
6912 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6913 contents, rel->r_offset, value,
6914 rel->r_addend);
6915 }
6916
6917 case R_ARM_TLS_GD32:
6918 case R_ARM_TLS_IE32:
6919 {
6920 bfd_vma off;
6921 int indx;
6922 char tls_type;
6923
6924 if (globals->sgot == NULL)
6925 abort ();
6926
6927 indx = 0;
6928 if (h != NULL)
6929 {
6930 bfd_boolean dyn;
6931 dyn = globals->root.dynamic_sections_created;
6932 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6933 && (!info->shared
6934 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6935 {
6936 *unresolved_reloc_p = FALSE;
6937 indx = h->dynindx;
6938 }
6939 off = h->got.offset;
6940 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6941 }
6942 else
6943 {
6944 if (local_got_offsets == NULL)
6945 abort ();
6946 off = local_got_offsets[r_symndx];
6947 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6948 }
6949
6950 if (tls_type == GOT_UNKNOWN)
6951 abort ();
6952
6953 if ((off & 1) != 0)
6954 off &= ~1;
6955 else
6956 {
6957 bfd_boolean need_relocs = FALSE;
6958 Elf_Internal_Rela outrel;
6959 bfd_byte *loc = NULL;
6960 int cur_off = off;
6961
6962 /* The GOT entries have not been initialized yet. Do it
6963 now, and emit any relocations. If both an IE GOT and a
6964 GD GOT are necessary, we emit the GD first. */
6965
6966 if ((info->shared || indx != 0)
6967 && (h == NULL
6968 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6969 || h->root.type != bfd_link_hash_undefweak))
6970 {
6971 need_relocs = TRUE;
6972 if (globals->srelgot == NULL)
6973 abort ();
6974 loc = globals->srelgot->contents;
6975 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6976 }
6977
6978 if (tls_type & GOT_TLS_GD)
6979 {
6980 if (need_relocs)
6981 {
6982 outrel.r_addend = 0;
6983 outrel.r_offset = (globals->sgot->output_section->vma
6984 + globals->sgot->output_offset
6985 + cur_off);
6986 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
6987
6988 if (globals->use_rel)
6989 bfd_put_32 (output_bfd, outrel.r_addend,
6990 globals->sgot->contents + cur_off);
6991
6992 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6993 globals->srelgot->reloc_count++;
6994 loc += RELOC_SIZE (globals);
6995
6996 if (indx == 0)
6997 bfd_put_32 (output_bfd, value - dtpoff_base (info),
6998 globals->sgot->contents + cur_off + 4);
6999 else
7000 {
7001 outrel.r_addend = 0;
7002 outrel.r_info = ELF32_R_INFO (indx,
7003 R_ARM_TLS_DTPOFF32);
7004 outrel.r_offset += 4;
7005
7006 if (globals->use_rel)
7007 bfd_put_32 (output_bfd, outrel.r_addend,
7008 globals->sgot->contents + cur_off + 4);
7009
7010
7011 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7012 globals->srelgot->reloc_count++;
7013 loc += RELOC_SIZE (globals);
7014 }
7015 }
7016 else
7017 {
7018 /* If we are not emitting relocations for a
7019 general dynamic reference, then we must be in a
7020 static link or an executable link with the
7021 symbol binding locally. Mark it as belonging
7022 to module 1, the executable. */
7023 bfd_put_32 (output_bfd, 1,
7024 globals->sgot->contents + cur_off);
7025 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7026 globals->sgot->contents + cur_off + 4);
7027 }
7028
7029 cur_off += 8;
7030 }
7031
7032 if (tls_type & GOT_TLS_IE)
7033 {
7034 if (need_relocs)
7035 {
7036 if (indx == 0)
7037 outrel.r_addend = value - dtpoff_base (info);
7038 else
7039 outrel.r_addend = 0;
7040 outrel.r_offset = (globals->sgot->output_section->vma
7041 + globals->sgot->output_offset
7042 + cur_off);
7043 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7044
7045 if (globals->use_rel)
7046 bfd_put_32 (output_bfd, outrel.r_addend,
7047 globals->sgot->contents + cur_off);
7048
7049 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7050 globals->srelgot->reloc_count++;
7051 loc += RELOC_SIZE (globals);
7052 }
7053 else
7054 bfd_put_32 (output_bfd, tpoff (info, value),
7055 globals->sgot->contents + cur_off);
7056 cur_off += 4;
7057 }
7058
7059 if (h != NULL)
7060 h->got.offset |= 1;
7061 else
7062 local_got_offsets[r_symndx] |= 1;
7063 }
7064
7065 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7066 off += 8;
7067 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7068 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7069
7070 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7071 contents, rel->r_offset, value,
7072 rel->r_addend);
7073 }
7074
7075 case R_ARM_TLS_LE32:
7076 if (info->shared)
7077 {
7078 (*_bfd_error_handler)
7079 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7080 input_bfd, input_section,
7081 (long) rel->r_offset, howto->name);
7082 return FALSE;
7083 }
7084 else
7085 value = tpoff (info, value);
7086
7087 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7088 contents, rel->r_offset, value,
7089 rel->r_addend);
7090
7091 case R_ARM_V4BX:
7092 if (globals->fix_v4bx)
7093 {
7094 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7095
7096 /* Ensure that we have a BX instruction. */
7097 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7098
7099 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7100 {
7101 /* Branch to veneer. */
7102 bfd_vma glue_addr;
7103 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7104 glue_addr -= input_section->output_section->vma
7105 + input_section->output_offset
7106 + rel->r_offset + 8;
7107 insn = (insn & 0xf0000000) | 0x0a000000
7108 | ((glue_addr >> 2) & 0x00ffffff);
7109 }
7110 else
7111 {
7112 /* Preserve Rm (lowest four bits) and the condition code
7113 (highest four bits). Other bits encode MOV PC,Rm. */
7114 insn = (insn & 0xf000000f) | 0x01a0f000;
7115 }
7116
7117 bfd_put_32 (input_bfd, insn, hit_data);
7118 }
7119 return bfd_reloc_ok;
7120
7121 case R_ARM_MOVW_ABS_NC:
7122 case R_ARM_MOVT_ABS:
7123 case R_ARM_MOVW_PREL_NC:
7124 case R_ARM_MOVT_PREL:
7125 /* Until we properly support segment-base-relative addressing then
7126 we assume the segment base to be zero, as for the group relocations.
7127 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7128 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7129 case R_ARM_MOVW_BREL_NC:
7130 case R_ARM_MOVW_BREL:
7131 case R_ARM_MOVT_BREL:
7132 {
7133 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7134
7135 if (globals->use_rel)
7136 {
7137 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7138 signed_addend = (addend ^ 0x8000) - 0x8000;
7139 }
7140
7141 value += signed_addend;
7142
7143 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7144 value -= (input_section->output_section->vma
7145 + input_section->output_offset + rel->r_offset);
7146
7147 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7148 return bfd_reloc_overflow;
7149
7150 if (sym_flags == STT_ARM_TFUNC)
7151 value |= 1;
7152
7153 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7154 || r_type == R_ARM_MOVT_BREL)
7155 value >>= 16;
7156
7157 insn &= 0xfff0f000;
7158 insn |= value & 0xfff;
7159 insn |= (value & 0xf000) << 4;
7160 bfd_put_32 (input_bfd, insn, hit_data);
7161 }
7162 return bfd_reloc_ok;
7163
7164 case R_ARM_THM_MOVW_ABS_NC:
7165 case R_ARM_THM_MOVT_ABS:
7166 case R_ARM_THM_MOVW_PREL_NC:
7167 case R_ARM_THM_MOVT_PREL:
7168 /* Until we properly support segment-base-relative addressing then
7169 we assume the segment base to be zero, as for the above relocations.
7170 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7171 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7172 as R_ARM_THM_MOVT_ABS. */
7173 case R_ARM_THM_MOVW_BREL_NC:
7174 case R_ARM_THM_MOVW_BREL:
7175 case R_ARM_THM_MOVT_BREL:
7176 {
7177 bfd_vma insn;
7178
7179 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7180 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7181
7182 if (globals->use_rel)
7183 {
7184 addend = ((insn >> 4) & 0xf000)
7185 | ((insn >> 15) & 0x0800)
7186 | ((insn >> 4) & 0x0700)
7187 | (insn & 0x00ff);
7188 signed_addend = (addend ^ 0x8000) - 0x8000;
7189 }
7190
7191 value += signed_addend;
7192
7193 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7194 value -= (input_section->output_section->vma
7195 + input_section->output_offset + rel->r_offset);
7196
7197 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7198 return bfd_reloc_overflow;
7199
7200 if (sym_flags == STT_ARM_TFUNC)
7201 value |= 1;
7202
7203 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7204 || r_type == R_ARM_THM_MOVT_BREL)
7205 value >>= 16;
7206
7207 insn &= 0xfbf08f00;
7208 insn |= (value & 0xf000) << 4;
7209 insn |= (value & 0x0800) << 15;
7210 insn |= (value & 0x0700) << 4;
7211 insn |= (value & 0x00ff);
7212
7213 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7214 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7215 }
7216 return bfd_reloc_ok;
7217
7218 case R_ARM_ALU_PC_G0_NC:
7219 case R_ARM_ALU_PC_G1_NC:
7220 case R_ARM_ALU_PC_G0:
7221 case R_ARM_ALU_PC_G1:
7222 case R_ARM_ALU_PC_G2:
7223 case R_ARM_ALU_SB_G0_NC:
7224 case R_ARM_ALU_SB_G1_NC:
7225 case R_ARM_ALU_SB_G0:
7226 case R_ARM_ALU_SB_G1:
7227 case R_ARM_ALU_SB_G2:
7228 {
7229 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7230 bfd_vma pc = input_section->output_section->vma
7231 + input_section->output_offset + rel->r_offset;
7232 /* sb should be the origin of the *segment* containing the symbol.
7233 It is not clear how to obtain this OS-dependent value, so we
7234 make an arbitrary choice of zero. */
7235 bfd_vma sb = 0;
7236 bfd_vma residual;
7237 bfd_vma g_n;
7238 bfd_signed_vma signed_value;
7239 int group = 0;
7240
7241 /* Determine which group of bits to select. */
7242 switch (r_type)
7243 {
7244 case R_ARM_ALU_PC_G0_NC:
7245 case R_ARM_ALU_PC_G0:
7246 case R_ARM_ALU_SB_G0_NC:
7247 case R_ARM_ALU_SB_G0:
7248 group = 0;
7249 break;
7250
7251 case R_ARM_ALU_PC_G1_NC:
7252 case R_ARM_ALU_PC_G1:
7253 case R_ARM_ALU_SB_G1_NC:
7254 case R_ARM_ALU_SB_G1:
7255 group = 1;
7256 break;
7257
7258 case R_ARM_ALU_PC_G2:
7259 case R_ARM_ALU_SB_G2:
7260 group = 2;
7261 break;
7262
7263 default:
7264 abort ();
7265 }
7266
7267 /* If REL, extract the addend from the insn. If RELA, it will
7268 have already been fetched for us. */
7269 if (globals->use_rel)
7270 {
7271 int negative;
7272 bfd_vma constant = insn & 0xff;
7273 bfd_vma rotation = (insn & 0xf00) >> 8;
7274
7275 if (rotation == 0)
7276 signed_addend = constant;
7277 else
7278 {
7279 /* Compensate for the fact that in the instruction, the
7280 rotation is stored in multiples of 2 bits. */
7281 rotation *= 2;
7282
7283 /* Rotate "constant" right by "rotation" bits. */
7284 signed_addend = (constant >> rotation) |
7285 (constant << (8 * sizeof (bfd_vma) - rotation));
7286 }
7287
7288 /* Determine if the instruction is an ADD or a SUB.
7289 (For REL, this determines the sign of the addend.) */
7290 negative = identify_add_or_sub (insn);
7291 if (negative == 0)
7292 {
7293 (*_bfd_error_handler)
7294 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7295 input_bfd, input_section,
7296 (long) rel->r_offset, howto->name);
7297 return bfd_reloc_overflow;
7298 }
7299
7300 signed_addend *= negative;
7301 }
7302
7303 /* Compute the value (X) to go in the place. */
7304 if (r_type == R_ARM_ALU_PC_G0_NC
7305 || r_type == R_ARM_ALU_PC_G1_NC
7306 || r_type == R_ARM_ALU_PC_G0
7307 || r_type == R_ARM_ALU_PC_G1
7308 || r_type == R_ARM_ALU_PC_G2)
7309 /* PC relative. */
7310 signed_value = value - pc + signed_addend;
7311 else
7312 /* Section base relative. */
7313 signed_value = value - sb + signed_addend;
7314
7315 /* If the target symbol is a Thumb function, then set the
7316 Thumb bit in the address. */
7317 if (sym_flags == STT_ARM_TFUNC)
7318 signed_value |= 1;
7319
7320 /* Calculate the value of the relevant G_n, in encoded
7321 constant-with-rotation format. */
7322 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7323 &residual);
7324
7325 /* Check for overflow if required. */
7326 if ((r_type == R_ARM_ALU_PC_G0
7327 || r_type == R_ARM_ALU_PC_G1
7328 || r_type == R_ARM_ALU_PC_G2
7329 || r_type == R_ARM_ALU_SB_G0
7330 || r_type == R_ARM_ALU_SB_G1
7331 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7332 {
7333 (*_bfd_error_handler)
7334 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7335 input_bfd, input_section,
7336 (long) rel->r_offset, abs (signed_value), howto->name);
7337 return bfd_reloc_overflow;
7338 }
7339
7340 /* Mask out the value and the ADD/SUB part of the opcode; take care
7341 not to destroy the S bit. */
7342 insn &= 0xff1ff000;
7343
7344 /* Set the opcode according to whether the value to go in the
7345 place is negative. */
7346 if (signed_value < 0)
7347 insn |= 1 << 22;
7348 else
7349 insn |= 1 << 23;
7350
7351 /* Encode the offset. */
7352 insn |= g_n;
7353
7354 bfd_put_32 (input_bfd, insn, hit_data);
7355 }
7356 return bfd_reloc_ok;
7357
7358 case R_ARM_LDR_PC_G0:
7359 case R_ARM_LDR_PC_G1:
7360 case R_ARM_LDR_PC_G2:
7361 case R_ARM_LDR_SB_G0:
7362 case R_ARM_LDR_SB_G1:
7363 case R_ARM_LDR_SB_G2:
7364 {
7365 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7366 bfd_vma pc = input_section->output_section->vma
7367 + input_section->output_offset + rel->r_offset;
7368 bfd_vma sb = 0; /* See note above. */
7369 bfd_vma residual;
7370 bfd_signed_vma signed_value;
7371 int group = 0;
7372
7373 /* Determine which groups of bits to calculate. */
7374 switch (r_type)
7375 {
7376 case R_ARM_LDR_PC_G0:
7377 case R_ARM_LDR_SB_G0:
7378 group = 0;
7379 break;
7380
7381 case R_ARM_LDR_PC_G1:
7382 case R_ARM_LDR_SB_G1:
7383 group = 1;
7384 break;
7385
7386 case R_ARM_LDR_PC_G2:
7387 case R_ARM_LDR_SB_G2:
7388 group = 2;
7389 break;
7390
7391 default:
7392 abort ();
7393 }
7394
7395 /* If REL, extract the addend from the insn. If RELA, it will
7396 have already been fetched for us. */
7397 if (globals->use_rel)
7398 {
7399 int negative = (insn & (1 << 23)) ? 1 : -1;
7400 signed_addend = negative * (insn & 0xfff);
7401 }
7402
7403 /* Compute the value (X) to go in the place. */
7404 if (r_type == R_ARM_LDR_PC_G0
7405 || r_type == R_ARM_LDR_PC_G1
7406 || r_type == R_ARM_LDR_PC_G2)
7407 /* PC relative. */
7408 signed_value = value - pc + signed_addend;
7409 else
7410 /* Section base relative. */
7411 signed_value = value - sb + signed_addend;
7412
7413 /* Calculate the value of the relevant G_{n-1} to obtain
7414 the residual at that stage. */
7415 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7416
7417 /* Check for overflow. */
7418 if (residual >= 0x1000)
7419 {
7420 (*_bfd_error_handler)
7421 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7422 input_bfd, input_section,
7423 (long) rel->r_offset, abs (signed_value), howto->name);
7424 return bfd_reloc_overflow;
7425 }
7426
7427 /* Mask out the value and U bit. */
7428 insn &= 0xff7ff000;
7429
7430 /* Set the U bit if the value to go in the place is non-negative. */
7431 if (signed_value >= 0)
7432 insn |= 1 << 23;
7433
7434 /* Encode the offset. */
7435 insn |= residual;
7436
7437 bfd_put_32 (input_bfd, insn, hit_data);
7438 }
7439 return bfd_reloc_ok;
7440
7441 case R_ARM_LDRS_PC_G0:
7442 case R_ARM_LDRS_PC_G1:
7443 case R_ARM_LDRS_PC_G2:
7444 case R_ARM_LDRS_SB_G0:
7445 case R_ARM_LDRS_SB_G1:
7446 case R_ARM_LDRS_SB_G2:
7447 {
7448 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7449 bfd_vma pc = input_section->output_section->vma
7450 + input_section->output_offset + rel->r_offset;
7451 bfd_vma sb = 0; /* See note above. */
7452 bfd_vma residual;
7453 bfd_signed_vma signed_value;
7454 int group = 0;
7455
7456 /* Determine which groups of bits to calculate. */
7457 switch (r_type)
7458 {
7459 case R_ARM_LDRS_PC_G0:
7460 case R_ARM_LDRS_SB_G0:
7461 group = 0;
7462 break;
7463
7464 case R_ARM_LDRS_PC_G1:
7465 case R_ARM_LDRS_SB_G1:
7466 group = 1;
7467 break;
7468
7469 case R_ARM_LDRS_PC_G2:
7470 case R_ARM_LDRS_SB_G2:
7471 group = 2;
7472 break;
7473
7474 default:
7475 abort ();
7476 }
7477
7478 /* If REL, extract the addend from the insn. If RELA, it will
7479 have already been fetched for us. */
7480 if (globals->use_rel)
7481 {
7482 int negative = (insn & (1 << 23)) ? 1 : -1;
7483 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7484 }
7485
7486 /* Compute the value (X) to go in the place. */
7487 if (r_type == R_ARM_LDRS_PC_G0
7488 || r_type == R_ARM_LDRS_PC_G1
7489 || r_type == R_ARM_LDRS_PC_G2)
7490 /* PC relative. */
7491 signed_value = value - pc + signed_addend;
7492 else
7493 /* Section base relative. */
7494 signed_value = value - sb + signed_addend;
7495
7496 /* Calculate the value of the relevant G_{n-1} to obtain
7497 the residual at that stage. */
7498 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7499
7500 /* Check for overflow. */
7501 if (residual >= 0x100)
7502 {
7503 (*_bfd_error_handler)
7504 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7505 input_bfd, input_section,
7506 (long) rel->r_offset, abs (signed_value), howto->name);
7507 return bfd_reloc_overflow;
7508 }
7509
7510 /* Mask out the value and U bit. */
7511 insn &= 0xff7ff0f0;
7512
7513 /* Set the U bit if the value to go in the place is non-negative. */
7514 if (signed_value >= 0)
7515 insn |= 1 << 23;
7516
7517 /* Encode the offset. */
7518 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7519
7520 bfd_put_32 (input_bfd, insn, hit_data);
7521 }
7522 return bfd_reloc_ok;
7523
7524 case R_ARM_LDC_PC_G0:
7525 case R_ARM_LDC_PC_G1:
7526 case R_ARM_LDC_PC_G2:
7527 case R_ARM_LDC_SB_G0:
7528 case R_ARM_LDC_SB_G1:
7529 case R_ARM_LDC_SB_G2:
7530 {
7531 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7532 bfd_vma pc = input_section->output_section->vma
7533 + input_section->output_offset + rel->r_offset;
7534 bfd_vma sb = 0; /* See note above. */
7535 bfd_vma residual;
7536 bfd_signed_vma signed_value;
7537 int group = 0;
7538
7539 /* Determine which groups of bits to calculate. */
7540 switch (r_type)
7541 {
7542 case R_ARM_LDC_PC_G0:
7543 case R_ARM_LDC_SB_G0:
7544 group = 0;
7545 break;
7546
7547 case R_ARM_LDC_PC_G1:
7548 case R_ARM_LDC_SB_G1:
7549 group = 1;
7550 break;
7551
7552 case R_ARM_LDC_PC_G2:
7553 case R_ARM_LDC_SB_G2:
7554 group = 2;
7555 break;
7556
7557 default:
7558 abort ();
7559 }
7560
7561 /* If REL, extract the addend from the insn. If RELA, it will
7562 have already been fetched for us. */
7563 if (globals->use_rel)
7564 {
7565 int negative = (insn & (1 << 23)) ? 1 : -1;
7566 signed_addend = negative * ((insn & 0xff) << 2);
7567 }
7568
7569 /* Compute the value (X) to go in the place. */
7570 if (r_type == R_ARM_LDC_PC_G0
7571 || r_type == R_ARM_LDC_PC_G1
7572 || r_type == R_ARM_LDC_PC_G2)
7573 /* PC relative. */
7574 signed_value = value - pc + signed_addend;
7575 else
7576 /* Section base relative. */
7577 signed_value = value - sb + signed_addend;
7578
7579 /* Calculate the value of the relevant G_{n-1} to obtain
7580 the residual at that stage. */
7581 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7582
7583 /* Check for overflow. (The absolute value to go in the place must be
7584 divisible by four and, after having been divided by four, must
7585 fit in eight bits.) */
7586 if ((residual & 0x3) != 0 || residual >= 0x400)
7587 {
7588 (*_bfd_error_handler)
7589 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7590 input_bfd, input_section,
7591 (long) rel->r_offset, abs (signed_value), howto->name);
7592 return bfd_reloc_overflow;
7593 }
7594
7595 /* Mask out the value and U bit. */
7596 insn &= 0xff7fff00;
7597
7598 /* Set the U bit if the value to go in the place is non-negative. */
7599 if (signed_value >= 0)
7600 insn |= 1 << 23;
7601
7602 /* Encode the offset. */
7603 insn |= residual >> 2;
7604
7605 bfd_put_32 (input_bfd, insn, hit_data);
7606 }
7607 return bfd_reloc_ok;
7608
7609 default:
7610 return bfd_reloc_notsupported;
7611 }
7612 }
7613
7614 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7615 static void
7616 arm_add_to_rel (bfd * abfd,
7617 bfd_byte * address,
7618 reloc_howto_type * howto,
7619 bfd_signed_vma increment)
7620 {
7621 bfd_signed_vma addend;
7622
7623 if (howto->type == R_ARM_THM_CALL
7624 || howto->type == R_ARM_THM_JUMP24)
7625 {
7626 int upper_insn, lower_insn;
7627 int upper, lower;
7628
7629 upper_insn = bfd_get_16 (abfd, address);
7630 lower_insn = bfd_get_16 (abfd, address + 2);
7631 upper = upper_insn & 0x7ff;
7632 lower = lower_insn & 0x7ff;
7633
7634 addend = (upper << 12) | (lower << 1);
7635 addend += increment;
7636 addend >>= 1;
7637
7638 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7639 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7640
7641 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7642 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7643 }
7644 else
7645 {
7646 bfd_vma contents;
7647
7648 contents = bfd_get_32 (abfd, address);
7649
7650 /* Get the (signed) value from the instruction. */
7651 addend = contents & howto->src_mask;
7652 if (addend & ((howto->src_mask + 1) >> 1))
7653 {
7654 bfd_signed_vma mask;
7655
7656 mask = -1;
7657 mask &= ~ howto->src_mask;
7658 addend |= mask;
7659 }
7660
7661 /* Add in the increment, (which is a byte value). */
7662 switch (howto->type)
7663 {
7664 default:
7665 addend += increment;
7666 break;
7667
7668 case R_ARM_PC24:
7669 case R_ARM_PLT32:
7670 case R_ARM_CALL:
7671 case R_ARM_JUMP24:
7672 addend <<= howto->size;
7673 addend += increment;
7674
7675 /* Should we check for overflow here ? */
7676
7677 /* Drop any undesired bits. */
7678 addend >>= howto->rightshift;
7679 break;
7680 }
7681
7682 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7683
7684 bfd_put_32 (abfd, contents, address);
7685 }
7686 }
7687
7688 #define IS_ARM_TLS_RELOC(R_TYPE) \
7689 ((R_TYPE) == R_ARM_TLS_GD32 \
7690 || (R_TYPE) == R_ARM_TLS_LDO32 \
7691 || (R_TYPE) == R_ARM_TLS_LDM32 \
7692 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7693 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7694 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7695 || (R_TYPE) == R_ARM_TLS_LE32 \
7696 || (R_TYPE) == R_ARM_TLS_IE32)
7697
7698 /* Relocate an ARM ELF section. */
7699
7700 static bfd_boolean
7701 elf32_arm_relocate_section (bfd * output_bfd,
7702 struct bfd_link_info * info,
7703 bfd * input_bfd,
7704 asection * input_section,
7705 bfd_byte * contents,
7706 Elf_Internal_Rela * relocs,
7707 Elf_Internal_Sym * local_syms,
7708 asection ** local_sections)
7709 {
7710 Elf_Internal_Shdr *symtab_hdr;
7711 struct elf_link_hash_entry **sym_hashes;
7712 Elf_Internal_Rela *rel;
7713 Elf_Internal_Rela *relend;
7714 const char *name;
7715 struct elf32_arm_link_hash_table * globals;
7716
7717 globals = elf32_arm_hash_table (info);
7718
7719 symtab_hdr = & elf_symtab_hdr (input_bfd);
7720 sym_hashes = elf_sym_hashes (input_bfd);
7721
7722 rel = relocs;
7723 relend = relocs + input_section->reloc_count;
7724 for (; rel < relend; rel++)
7725 {
7726 int r_type;
7727 reloc_howto_type * howto;
7728 unsigned long r_symndx;
7729 Elf_Internal_Sym * sym;
7730 asection * sec;
7731 struct elf_link_hash_entry * h;
7732 bfd_vma relocation;
7733 bfd_reloc_status_type r;
7734 arelent bfd_reloc;
7735 char sym_type;
7736 bfd_boolean unresolved_reloc = FALSE;
7737 char *error_message = NULL;
7738
7739 r_symndx = ELF32_R_SYM (rel->r_info);
7740 r_type = ELF32_R_TYPE (rel->r_info);
7741 r_type = arm_real_reloc_type (globals, r_type);
7742
7743 if ( r_type == R_ARM_GNU_VTENTRY
7744 || r_type == R_ARM_GNU_VTINHERIT)
7745 continue;
7746
7747 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7748 howto = bfd_reloc.howto;
7749
7750 h = NULL;
7751 sym = NULL;
7752 sec = NULL;
7753
7754 if (r_symndx < symtab_hdr->sh_info)
7755 {
7756 sym = local_syms + r_symndx;
7757 sym_type = ELF32_ST_TYPE (sym->st_info);
7758 sec = local_sections[r_symndx];
7759 if (globals->use_rel)
7760 {
7761 relocation = (sec->output_section->vma
7762 + sec->output_offset
7763 + sym->st_value);
7764 if (!info->relocatable
7765 && (sec->flags & SEC_MERGE)
7766 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7767 {
7768 asection *msec;
7769 bfd_vma addend, value;
7770
7771 switch (r_type)
7772 {
7773 case R_ARM_MOVW_ABS_NC:
7774 case R_ARM_MOVT_ABS:
7775 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7776 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7777 addend = (addend ^ 0x8000) - 0x8000;
7778 break;
7779
7780 case R_ARM_THM_MOVW_ABS_NC:
7781 case R_ARM_THM_MOVT_ABS:
7782 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7783 << 16;
7784 value |= bfd_get_16 (input_bfd,
7785 contents + rel->r_offset + 2);
7786 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7787 | ((value & 0x04000000) >> 15);
7788 addend = (addend ^ 0x8000) - 0x8000;
7789 break;
7790
7791 default:
7792 if (howto->rightshift
7793 || (howto->src_mask & (howto->src_mask + 1)))
7794 {
7795 (*_bfd_error_handler)
7796 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7797 input_bfd, input_section,
7798 (long) rel->r_offset, howto->name);
7799 return FALSE;
7800 }
7801
7802 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7803
7804 /* Get the (signed) value from the instruction. */
7805 addend = value & howto->src_mask;
7806 if (addend & ((howto->src_mask + 1) >> 1))
7807 {
7808 bfd_signed_vma mask;
7809
7810 mask = -1;
7811 mask &= ~ howto->src_mask;
7812 addend |= mask;
7813 }
7814 break;
7815 }
7816
7817 msec = sec;
7818 addend =
7819 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7820 - relocation;
7821 addend += msec->output_section->vma + msec->output_offset;
7822
7823 /* Cases here must match those in the preceeding
7824 switch statement. */
7825 switch (r_type)
7826 {
7827 case R_ARM_MOVW_ABS_NC:
7828 case R_ARM_MOVT_ABS:
7829 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7830 | (addend & 0xfff);
7831 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7832 break;
7833
7834 case R_ARM_THM_MOVW_ABS_NC:
7835 case R_ARM_THM_MOVT_ABS:
7836 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7837 | (addend & 0xff) | ((addend & 0x0800) << 15);
7838 bfd_put_16 (input_bfd, value >> 16,
7839 contents + rel->r_offset);
7840 bfd_put_16 (input_bfd, value,
7841 contents + rel->r_offset + 2);
7842 break;
7843
7844 default:
7845 value = (value & ~ howto->dst_mask)
7846 | (addend & howto->dst_mask);
7847 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7848 break;
7849 }
7850 }
7851 }
7852 else
7853 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7854 }
7855 else
7856 {
7857 bfd_boolean warned;
7858
7859 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7860 r_symndx, symtab_hdr, sym_hashes,
7861 h, sec, relocation,
7862 unresolved_reloc, warned);
7863
7864 sym_type = h->type;
7865 }
7866
7867 if (sec != NULL && elf_discarded_section (sec))
7868 {
7869 /* For relocs against symbols from removed linkonce sections,
7870 or sections discarded by a linker script, we just want the
7871 section contents zeroed. Avoid any special processing. */
7872 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7873 rel->r_info = 0;
7874 rel->r_addend = 0;
7875 continue;
7876 }
7877
7878 if (info->relocatable)
7879 {
7880 /* This is a relocatable link. We don't have to change
7881 anything, unless the reloc is against a section symbol,
7882 in which case we have to adjust according to where the
7883 section symbol winds up in the output section. */
7884 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7885 {
7886 if (globals->use_rel)
7887 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7888 howto, (bfd_signed_vma) sec->output_offset);
7889 else
7890 rel->r_addend += sec->output_offset;
7891 }
7892 continue;
7893 }
7894
7895 if (h != NULL)
7896 name = h->root.root.string;
7897 else
7898 {
7899 name = (bfd_elf_string_from_elf_section
7900 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7901 if (name == NULL || *name == '\0')
7902 name = bfd_section_name (input_bfd, sec);
7903 }
7904
7905 if (r_symndx != 0
7906 && r_type != R_ARM_NONE
7907 && (h == NULL
7908 || h->root.type == bfd_link_hash_defined
7909 || h->root.type == bfd_link_hash_defweak)
7910 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7911 {
7912 (*_bfd_error_handler)
7913 ((sym_type == STT_TLS
7914 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7915 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7916 input_bfd,
7917 input_section,
7918 (long) rel->r_offset,
7919 howto->name,
7920 name);
7921 }
7922
7923 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7924 input_section, contents, rel,
7925 relocation, info, sec, name,
7926 (h ? ELF_ST_TYPE (h->type) :
7927 ELF_ST_TYPE (sym->st_info)), h,
7928 &unresolved_reloc, &error_message);
7929
7930 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7931 because such sections are not SEC_ALLOC and thus ld.so will
7932 not process them. */
7933 if (unresolved_reloc
7934 && !((input_section->flags & SEC_DEBUGGING) != 0
7935 && h->def_dynamic))
7936 {
7937 (*_bfd_error_handler)
7938 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7939 input_bfd,
7940 input_section,
7941 (long) rel->r_offset,
7942 howto->name,
7943 h->root.root.string);
7944 return FALSE;
7945 }
7946
7947 if (r != bfd_reloc_ok)
7948 {
7949 switch (r)
7950 {
7951 case bfd_reloc_overflow:
7952 /* If the overflowing reloc was to an undefined symbol,
7953 we have already printed one error message and there
7954 is no point complaining again. */
7955 if ((! h ||
7956 h->root.type != bfd_link_hash_undefined)
7957 && (!((*info->callbacks->reloc_overflow)
7958 (info, (h ? &h->root : NULL), name, howto->name,
7959 (bfd_vma) 0, input_bfd, input_section,
7960 rel->r_offset))))
7961 return FALSE;
7962 break;
7963
7964 case bfd_reloc_undefined:
7965 if (!((*info->callbacks->undefined_symbol)
7966 (info, name, input_bfd, input_section,
7967 rel->r_offset, TRUE)))
7968 return FALSE;
7969 break;
7970
7971 case bfd_reloc_outofrange:
7972 error_message = _("out of range");
7973 goto common_error;
7974
7975 case bfd_reloc_notsupported:
7976 error_message = _("unsupported relocation");
7977 goto common_error;
7978
7979 case bfd_reloc_dangerous:
7980 /* error_message should already be set. */
7981 goto common_error;
7982
7983 default:
7984 error_message = _("unknown error");
7985 /* Fall through. */
7986
7987 common_error:
7988 BFD_ASSERT (error_message != NULL);
7989 if (!((*info->callbacks->reloc_dangerous)
7990 (info, error_message, input_bfd, input_section,
7991 rel->r_offset)))
7992 return FALSE;
7993 break;
7994 }
7995 }
7996 }
7997
7998 return TRUE;
7999 }
8000
8001 /* Set the right machine number. */
8002
8003 static bfd_boolean
8004 elf32_arm_object_p (bfd *abfd)
8005 {
8006 unsigned int mach;
8007
8008 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8009
8010 if (mach != bfd_mach_arm_unknown)
8011 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8012
8013 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8014 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8015
8016 else
8017 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8018
8019 return TRUE;
8020 }
8021
8022 /* Function to keep ARM specific flags in the ELF header. */
8023
8024 static bfd_boolean
8025 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8026 {
8027 if (elf_flags_init (abfd)
8028 && elf_elfheader (abfd)->e_flags != flags)
8029 {
8030 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8031 {
8032 if (flags & EF_ARM_INTERWORK)
8033 (*_bfd_error_handler)
8034 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8035 abfd);
8036 else
8037 _bfd_error_handler
8038 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8039 abfd);
8040 }
8041 }
8042 else
8043 {
8044 elf_elfheader (abfd)->e_flags = flags;
8045 elf_flags_init (abfd) = TRUE;
8046 }
8047
8048 return TRUE;
8049 }
8050
8051 /* Copy backend specific data from one object module to another. */
8052
8053 static bfd_boolean
8054 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8055 {
8056 flagword in_flags;
8057 flagword out_flags;
8058
8059 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8060 return TRUE;
8061
8062 in_flags = elf_elfheader (ibfd)->e_flags;
8063 out_flags = elf_elfheader (obfd)->e_flags;
8064
8065 if (elf_flags_init (obfd)
8066 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8067 && in_flags != out_flags)
8068 {
8069 /* Cannot mix APCS26 and APCS32 code. */
8070 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8071 return FALSE;
8072
8073 /* Cannot mix float APCS and non-float APCS code. */
8074 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8075 return FALSE;
8076
8077 /* If the src and dest have different interworking flags
8078 then turn off the interworking bit. */
8079 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8080 {
8081 if (out_flags & EF_ARM_INTERWORK)
8082 _bfd_error_handler
8083 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8084 obfd, ibfd);
8085
8086 in_flags &= ~EF_ARM_INTERWORK;
8087 }
8088
8089 /* Likewise for PIC, though don't warn for this case. */
8090 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8091 in_flags &= ~EF_ARM_PIC;
8092 }
8093
8094 elf_elfheader (obfd)->e_flags = in_flags;
8095 elf_flags_init (obfd) = TRUE;
8096
8097 /* Also copy the EI_OSABI field. */
8098 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8099 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8100
8101 /* Copy object attributes. */
8102 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8103
8104 return TRUE;
8105 }
8106
8107 /* Values for Tag_ABI_PCS_R9_use. */
8108 enum
8109 {
8110 AEABI_R9_V6,
8111 AEABI_R9_SB,
8112 AEABI_R9_TLS,
8113 AEABI_R9_unused
8114 };
8115
8116 /* Values for Tag_ABI_PCS_RW_data. */
8117 enum
8118 {
8119 AEABI_PCS_RW_data_absolute,
8120 AEABI_PCS_RW_data_PCrel,
8121 AEABI_PCS_RW_data_SBrel,
8122 AEABI_PCS_RW_data_unused
8123 };
8124
8125 /* Values for Tag_ABI_enum_size. */
8126 enum
8127 {
8128 AEABI_enum_unused,
8129 AEABI_enum_short,
8130 AEABI_enum_wide,
8131 AEABI_enum_forced_wide
8132 };
8133
8134 /* Determine whether an object attribute tag takes an integer, a
8135 string or both. */
8136
8137 static int
8138 elf32_arm_obj_attrs_arg_type (int tag)
8139 {
8140 if (tag == Tag_compatibility)
8141 return 3;
8142 else if (tag == Tag_nodefaults)
8143 return 5;
8144 else if (tag == 4 || tag == 5)
8145 return 2;
8146 else if (tag < 32)
8147 return 1;
8148 else
8149 return (tag & 1) != 0 ? 2 : 1;
8150 }
8151
8152 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
8153 Returns -1 if no architecture could be read. */
8154
8155 static int
8156 get_secondary_compatible_arch (bfd *abfd)
8157 {
8158 obj_attribute *attr =
8159 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8160
8161 /* Note: the tag and its argument below are uleb128 values, though
8162 currently-defined values fit in one byte for each. */
8163 if (attr->s
8164 && attr->s[0] == Tag_CPU_arch
8165 && (attr->s[1] & 128) != 128
8166 && attr->s[2] == 0)
8167 return attr->s[1];
8168
8169 /* This tag is "safely ignorable", so don't complain if it looks funny. */
8170 return -1;
8171 }
8172
8173 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
8174 The tag is removed if ARCH is -1. */
8175
8176 static void
8177 set_secondary_compatible_arch (bfd *abfd, int arch)
8178 {
8179 obj_attribute *attr =
8180 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8181
8182 if (arch == -1)
8183 {
8184 attr->s = NULL;
8185 return;
8186 }
8187
8188 /* Note: the tag and its argument below are uleb128 values, though
8189 currently-defined values fit in one byte for each. */
8190 if (!attr->s)
8191 attr->s = bfd_alloc (abfd, 3);
8192 attr->s[0] = Tag_CPU_arch;
8193 attr->s[1] = arch;
8194 attr->s[2] = '\0';
8195 }
8196
8197 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
8198 into account. */
8199
8200 static int
8201 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
8202 int newtag, int secondary_compat)
8203 {
8204 #define T(X) TAG_CPU_ARCH_##X
8205 int tagl, tagh, result;
8206 const int v6t2[] =
8207 {
8208 T(V6T2), /* PRE_V4. */
8209 T(V6T2), /* V4. */
8210 T(V6T2), /* V4T. */
8211 T(V6T2), /* V5T. */
8212 T(V6T2), /* V5TE. */
8213 T(V6T2), /* V5TEJ. */
8214 T(V6T2), /* V6. */
8215 T(V7), /* V6KZ. */
8216 T(V6T2) /* V6T2. */
8217 };
8218 const int v6k[] =
8219 {
8220 T(V6K), /* PRE_V4. */
8221 T(V6K), /* V4. */
8222 T(V6K), /* V4T. */
8223 T(V6K), /* V5T. */
8224 T(V6K), /* V5TE. */
8225 T(V6K), /* V5TEJ. */
8226 T(V6K), /* V6. */
8227 T(V6KZ), /* V6KZ. */
8228 T(V7), /* V6T2. */
8229 T(V6K) /* V6K. */
8230 };
8231 const int v7[] =
8232 {
8233 T(V7), /* PRE_V4. */
8234 T(V7), /* V4. */
8235 T(V7), /* V4T. */
8236 T(V7), /* V5T. */
8237 T(V7), /* V5TE. */
8238 T(V7), /* V5TEJ. */
8239 T(V7), /* V6. */
8240 T(V7), /* V6KZ. */
8241 T(V7), /* V6T2. */
8242 T(V7), /* V6K. */
8243 T(V7) /* V7. */
8244 };
8245 const int v6_m[] =
8246 {
8247 -1, /* PRE_V4. */
8248 -1, /* V4. */
8249 T(V6K), /* V4T. */
8250 T(V6K), /* V5T. */
8251 T(V6K), /* V5TE. */
8252 T(V6K), /* V5TEJ. */
8253 T(V6K), /* V6. */
8254 T(V6KZ), /* V6KZ. */
8255 T(V7), /* V6T2. */
8256 T(V6K), /* V6K. */
8257 T(V7), /* V7. */
8258 T(V6_M) /* V6_M. */
8259 };
8260 const int v6s_m[] =
8261 {
8262 -1, /* PRE_V4. */
8263 -1, /* V4. */
8264 T(V6K), /* V4T. */
8265 T(V6K), /* V5T. */
8266 T(V6K), /* V5TE. */
8267 T(V6K), /* V5TEJ. */
8268 T(V6K), /* V6. */
8269 T(V6KZ), /* V6KZ. */
8270 T(V7), /* V6T2. */
8271 T(V6K), /* V6K. */
8272 T(V7), /* V7. */
8273 T(V6S_M), /* V6_M. */
8274 T(V6S_M) /* V6S_M. */
8275 };
8276 const int v4t_plus_v6_m[] =
8277 {
8278 -1, /* PRE_V4. */
8279 -1, /* V4. */
8280 T(V4T), /* V4T. */
8281 T(V5T), /* V5T. */
8282 T(V5TE), /* V5TE. */
8283 T(V5TEJ), /* V5TEJ. */
8284 T(V6), /* V6. */
8285 T(V6KZ), /* V6KZ. */
8286 T(V6T2), /* V6T2. */
8287 T(V6K), /* V6K. */
8288 T(V7), /* V7. */
8289 T(V6_M), /* V6_M. */
8290 T(V6S_M), /* V6S_M. */
8291 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
8292 };
8293 const int *comb[] =
8294 {
8295 v6t2,
8296 v6k,
8297 v7,
8298 v6_m,
8299 v6s_m,
8300 /* Pseudo-architecture. */
8301 v4t_plus_v6_m
8302 };
8303
8304 /* Check we've not got a higher architecture than we know about. */
8305
8306 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
8307 {
8308 _bfd_error_handler (_("ERROR: %B: Unknown CPU architecture"), ibfd);
8309 return -1;
8310 }
8311
8312 /* Override old tag if we have a Tag_also_compatible_with on the output. */
8313
8314 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
8315 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
8316 oldtag = T(V4T_PLUS_V6_M);
8317
8318 /* And override the new tag if we have a Tag_also_compatible_with on the
8319 input. */
8320
8321 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
8322 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
8323 newtag = T(V4T_PLUS_V6_M);
8324
8325 tagl = (oldtag < newtag) ? oldtag : newtag;
8326 result = tagh = (oldtag > newtag) ? oldtag : newtag;
8327
8328 /* Architectures before V6KZ add features monotonically. */
8329 if (tagh <= TAG_CPU_ARCH_V6KZ)
8330 return result;
8331
8332 result = comb[tagh - T(V6T2)][tagl];
8333
8334 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
8335 as the canonical version. */
8336 if (result == T(V4T_PLUS_V6_M))
8337 {
8338 result = T(V4T);
8339 *secondary_compat_out = T(V6_M);
8340 }
8341 else
8342 *secondary_compat_out = -1;
8343
8344 if (result == -1)
8345 {
8346 _bfd_error_handler (_("ERROR: %B: Conflicting CPU architectures %d/%d"),
8347 ibfd, oldtag, newtag);
8348 return -1;
8349 }
8350
8351 return result;
8352 #undef T
8353 }
8354
8355 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8356 are conflicting attributes. */
8357
8358 static bfd_boolean
8359 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8360 {
8361 obj_attribute *in_attr;
8362 obj_attribute *out_attr;
8363 obj_attribute_list *in_list;
8364 obj_attribute_list *out_list;
8365 obj_attribute_list **out_listp;
8366 /* Some tags have 0 = don't care, 1 = strong requirement,
8367 2 = weak requirement. */
8368 static const int order_021[3] = {0, 2, 1};
8369 /* For use with Tag_VFP_arch. */
8370 static const int order_01243[5] = {0, 1, 2, 4, 3};
8371 int i;
8372 bfd_boolean result = TRUE;
8373
8374 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8375 {
8376 /* This is the first object. Copy the attributes. */
8377 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8378
8379 /* Use the Tag_null value to indicate the attributes have been
8380 initialized. */
8381 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8382
8383 return TRUE;
8384 }
8385
8386 in_attr = elf_known_obj_attributes_proc (ibfd);
8387 out_attr = elf_known_obj_attributes_proc (obfd);
8388 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8389 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8390 {
8391 /* Ignore mismatches if the object doesn't use floating point. */
8392 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8393 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8394 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8395 {
8396 _bfd_error_handler
8397 (_("ERROR: %B uses VFP register arguments, %B does not"),
8398 ibfd, obfd);
8399 result = FALSE;
8400 }
8401 }
8402
8403 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8404 {
8405 /* Merge this attribute with existing attributes. */
8406 switch (i)
8407 {
8408 case Tag_CPU_raw_name:
8409 case Tag_CPU_name:
8410 /* These are merged after Tag_CPU_arch. */
8411 break;
8412
8413 case Tag_ABI_optimization_goals:
8414 case Tag_ABI_FP_optimization_goals:
8415 /* Use the first value seen. */
8416 break;
8417
8418 case Tag_CPU_arch:
8419 {
8420 int secondary_compat = -1, secondary_compat_out = -1;
8421 unsigned int saved_out_attr = out_attr[i].i;
8422 static const char *name_table[] = {
8423 /* These aren't real CPU names, but we can't guess
8424 that from the architecture version alone. */
8425 "Pre v4",
8426 "ARM v4",
8427 "ARM v4T",
8428 "ARM v5T",
8429 "ARM v5TE",
8430 "ARM v5TEJ",
8431 "ARM v6",
8432 "ARM v6KZ",
8433 "ARM v6T2",
8434 "ARM v6K",
8435 "ARM v7",
8436 "ARM v6-M",
8437 "ARM v6S-M"
8438 };
8439
8440 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
8441 secondary_compat = get_secondary_compatible_arch (ibfd);
8442 secondary_compat_out = get_secondary_compatible_arch (obfd);
8443 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
8444 &secondary_compat_out,
8445 in_attr[i].i,
8446 secondary_compat);
8447 set_secondary_compatible_arch (obfd, secondary_compat_out);
8448
8449 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
8450 if (out_attr[i].i == saved_out_attr)
8451 ; /* Leave the names alone. */
8452 else if (out_attr[i].i == in_attr[i].i)
8453 {
8454 /* The output architecture has been changed to match the
8455 input architecture. Use the input names. */
8456 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
8457 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
8458 : NULL;
8459 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
8460 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
8461 : NULL;
8462 }
8463 else
8464 {
8465 out_attr[Tag_CPU_name].s = NULL;
8466 out_attr[Tag_CPU_raw_name].s = NULL;
8467 }
8468
8469 /* If we still don't have a value for Tag_CPU_name,
8470 make one up now. Tag_CPU_raw_name remains blank. */
8471 if (out_attr[Tag_CPU_name].s == NULL
8472 && out_attr[i].i < ARRAY_SIZE (name_table))
8473 out_attr[Tag_CPU_name].s =
8474 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
8475 }
8476 break;
8477
8478 case Tag_ARM_ISA_use:
8479 case Tag_THUMB_ISA_use:
8480 case Tag_WMMX_arch:
8481 case Tag_Advanced_SIMD_arch:
8482 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
8483 case Tag_ABI_FP_rounding:
8484 case Tag_ABI_FP_exceptions:
8485 case Tag_ABI_FP_user_exceptions:
8486 case Tag_ABI_FP_number_model:
8487 case Tag_VFP_HP_extension:
8488 case Tag_CPU_unaligned_access:
8489 case Tag_T2EE_use:
8490 case Tag_Virtualization_use:
8491 case Tag_MPextension_use:
8492 /* Use the largest value specified. */
8493 if (in_attr[i].i > out_attr[i].i)
8494 out_attr[i].i = in_attr[i].i;
8495 break;
8496
8497 case Tag_ABI_align8_preserved:
8498 case Tag_ABI_PCS_RO_data:
8499 /* Use the smallest value specified. */
8500 if (in_attr[i].i < out_attr[i].i)
8501 out_attr[i].i = in_attr[i].i;
8502 break;
8503
8504 case Tag_ABI_align8_needed:
8505 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
8506 && (in_attr[Tag_ABI_align8_preserved].i == 0
8507 || out_attr[Tag_ABI_align8_preserved].i == 0))
8508 {
8509 /* This error message should be enabled once all non-conformant
8510 binaries in the toolchain have had the attributes set
8511 properly.
8512 _bfd_error_handler
8513 (_("ERROR: %B: 8-byte data alignment conflicts with %B"),
8514 obfd, ibfd);
8515 result = FALSE; */
8516 }
8517 /* Fall through. */
8518 case Tag_ABI_FP_denormal:
8519 case Tag_ABI_PCS_GOT_use:
8520 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
8521 value if greater than 2 (for future-proofing). */
8522 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
8523 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
8524 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
8525 out_attr[i].i = in_attr[i].i;
8526 break;
8527
8528
8529 case Tag_CPU_arch_profile:
8530 if (out_attr[i].i != in_attr[i].i)
8531 {
8532 /* 0 will merge with anything.
8533 'A' and 'S' merge to 'A'.
8534 'R' and 'S' merge to 'R'.
8535 'M' and 'A|R|S' is an error. */
8536 if (out_attr[i].i == 0
8537 || (out_attr[i].i == 'S'
8538 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
8539 out_attr[i].i = in_attr[i].i;
8540 else if (in_attr[i].i == 0
8541 || (in_attr[i].i == 'S'
8542 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
8543 ; /* Do nothing. */
8544 else
8545 {
8546 _bfd_error_handler
8547 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8548 ibfd,
8549 in_attr[i].i ? in_attr[i].i : '0',
8550 out_attr[i].i ? out_attr[i].i : '0');
8551 result = FALSE;
8552 }
8553 }
8554 break;
8555 case Tag_VFP_arch:
8556 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
8557 largest value if greater than 4 (for future-proofing). */
8558 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
8559 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
8560 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
8561 out_attr[i].i = in_attr[i].i;
8562 break;
8563 case Tag_PCS_config:
8564 if (out_attr[i].i == 0)
8565 out_attr[i].i = in_attr[i].i;
8566 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8567 {
8568 /* It's sometimes ok to mix different configs, so this is only
8569 a warning. */
8570 _bfd_error_handler
8571 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8572 }
8573 break;
8574 case Tag_ABI_PCS_R9_use:
8575 if (in_attr[i].i != out_attr[i].i
8576 && out_attr[i].i != AEABI_R9_unused
8577 && in_attr[i].i != AEABI_R9_unused)
8578 {
8579 _bfd_error_handler
8580 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8581 result = FALSE;
8582 }
8583 if (out_attr[i].i == AEABI_R9_unused)
8584 out_attr[i].i = in_attr[i].i;
8585 break;
8586 case Tag_ABI_PCS_RW_data:
8587 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8588 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8589 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8590 {
8591 _bfd_error_handler
8592 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8593 ibfd);
8594 result = FALSE;
8595 }
8596 /* Use the smallest value specified. */
8597 if (in_attr[i].i < out_attr[i].i)
8598 out_attr[i].i = in_attr[i].i;
8599 break;
8600 case Tag_ABI_PCS_wchar_t:
8601 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8602 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
8603 {
8604 _bfd_error_handler
8605 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8606 ibfd, in_attr[i].i, out_attr[i].i);
8607 }
8608 else if (in_attr[i].i && !out_attr[i].i)
8609 out_attr[i].i = in_attr[i].i;
8610 break;
8611 case Tag_ABI_enum_size:
8612 if (in_attr[i].i != AEABI_enum_unused)
8613 {
8614 if (out_attr[i].i == AEABI_enum_unused
8615 || out_attr[i].i == AEABI_enum_forced_wide)
8616 {
8617 /* The existing object is compatible with anything.
8618 Use whatever requirements the new object has. */
8619 out_attr[i].i = in_attr[i].i;
8620 }
8621 else if (in_attr[i].i != AEABI_enum_forced_wide
8622 && out_attr[i].i != in_attr[i].i
8623 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8624 {
8625 static const char *aeabi_enum_names[] =
8626 { "", "variable-size", "32-bit", "" };
8627 const char *in_name =
8628 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8629 ? aeabi_enum_names[in_attr[i].i]
8630 : "<unknown>";
8631 const char *out_name =
8632 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8633 ? aeabi_enum_names[out_attr[i].i]
8634 : "<unknown>";
8635 _bfd_error_handler
8636 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8637 ibfd, in_name, out_name);
8638 }
8639 }
8640 break;
8641 case Tag_ABI_VFP_args:
8642 /* Aready done. */
8643 break;
8644 case Tag_ABI_WMMX_args:
8645 if (in_attr[i].i != out_attr[i].i)
8646 {
8647 _bfd_error_handler
8648 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8649 ibfd, obfd);
8650 result = FALSE;
8651 }
8652 break;
8653 case Tag_compatibility:
8654 /* Merged in target-independent code. */
8655 break;
8656 case Tag_ABI_HardFP_use:
8657 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
8658 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
8659 || (in_attr[i].i == 2 && out_attr[i].i == 1))
8660 out_attr[i].i = 3;
8661 else if (in_attr[i].i > out_attr[i].i)
8662 out_attr[i].i = in_attr[i].i;
8663 break;
8664 case Tag_ABI_FP_16bit_format:
8665 if (in_attr[i].i != 0 && out_attr[i].i != 0)
8666 {
8667 if (in_attr[i].i != out_attr[i].i)
8668 {
8669 _bfd_error_handler
8670 (_("ERROR: fp16 format mismatch between %B and %B"),
8671 ibfd, obfd);
8672 result = FALSE;
8673 }
8674 }
8675 if (in_attr[i].i != 0)
8676 out_attr[i].i = in_attr[i].i;
8677 break;
8678
8679 case Tag_nodefaults:
8680 /* This tag is set if it exists, but the value is unused (and is
8681 typically zero). We don't actually need to do anything here -
8682 the merge happens automatically when the type flags are merged
8683 below. */
8684 break;
8685 case Tag_also_compatible_with:
8686 /* Already done in Tag_CPU_arch. */
8687 break;
8688 case Tag_conformance:
8689 /* Keep the attribute if it matches. Throw it away otherwise.
8690 No attribute means no claim to conform. */
8691 if (!in_attr[i].s || !out_attr[i].s
8692 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
8693 out_attr[i].s = NULL;
8694 break;
8695
8696 default:
8697 {
8698 bfd *err_bfd = NULL;
8699
8700 /* The "known_obj_attributes" table does contain some undefined
8701 attributes. Ensure that there are unused. */
8702 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
8703 err_bfd = obfd;
8704 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
8705 err_bfd = ibfd;
8706
8707 if (err_bfd != NULL)
8708 {
8709 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8710 if ((i & 127) < 64)
8711 {
8712 _bfd_error_handler
8713 (_("%B: Unknown mandatory EABI object attribute %d"),
8714 err_bfd, i);
8715 bfd_set_error (bfd_error_bad_value);
8716 result = FALSE;
8717 }
8718 else
8719 {
8720 _bfd_error_handler
8721 (_("Warning: %B: Unknown EABI object attribute %d"),
8722 err_bfd, i);
8723 }
8724 }
8725
8726 /* Only pass on attributes that match in both inputs. */
8727 if (in_attr[i].i != out_attr[i].i
8728 || in_attr[i].s != out_attr[i].s
8729 || (in_attr[i].s != NULL && out_attr[i].s != NULL
8730 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
8731 {
8732 out_attr[i].i = 0;
8733 out_attr[i].s = NULL;
8734 }
8735 }
8736 }
8737
8738 /* If out_attr was copied from in_attr then it won't have a type yet. */
8739 if (in_attr[i].type && !out_attr[i].type)
8740 out_attr[i].type = in_attr[i].type;
8741 }
8742
8743 /* Merge Tag_compatibility attributes and any common GNU ones. */
8744 _bfd_elf_merge_object_attributes (ibfd, obfd);
8745
8746 /* Check for any attributes not known on ARM. */
8747 in_list = elf_other_obj_attributes_proc (ibfd);
8748 out_listp = &elf_other_obj_attributes_proc (obfd);
8749 out_list = *out_listp;
8750
8751 for (; in_list || out_list; )
8752 {
8753 bfd *err_bfd = NULL;
8754 int err_tag = 0;
8755
8756 /* The tags for each list are in numerical order. */
8757 /* If the tags are equal, then merge. */
8758 if (out_list && (!in_list || in_list->tag > out_list->tag))
8759 {
8760 /* This attribute only exists in obfd. We can't merge, and we don't
8761 know what the tag means, so delete it. */
8762 err_bfd = obfd;
8763 err_tag = out_list->tag;
8764 *out_listp = out_list->next;
8765 out_list = *out_listp;
8766 }
8767 else if (in_list && (!out_list || in_list->tag < out_list->tag))
8768 {
8769 /* This attribute only exists in ibfd. We can't merge, and we don't
8770 know what the tag means, so ignore it. */
8771 err_bfd = ibfd;
8772 err_tag = in_list->tag;
8773 in_list = in_list->next;
8774 }
8775 else /* The tags are equal. */
8776 {
8777 /* As present, all attributes in the list are unknown, and
8778 therefore can't be merged meaningfully. */
8779 err_bfd = obfd;
8780 err_tag = out_list->tag;
8781
8782 /* Only pass on attributes that match in both inputs. */
8783 if (in_list->attr.i != out_list->attr.i
8784 || in_list->attr.s != out_list->attr.s
8785 || (in_list->attr.s && out_list->attr.s
8786 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
8787 {
8788 /* No match. Delete the attribute. */
8789 *out_listp = out_list->next;
8790 out_list = *out_listp;
8791 }
8792 else
8793 {
8794 /* Matched. Keep the attribute and move to the next. */
8795 out_list = out_list->next;
8796 in_list = in_list->next;
8797 }
8798 }
8799
8800 if (err_bfd)
8801 {
8802 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8803 if ((err_tag & 127) < 64)
8804 {
8805 _bfd_error_handler
8806 (_("%B: Unknown mandatory EABI object attribute %d"),
8807 err_bfd, err_tag);
8808 bfd_set_error (bfd_error_bad_value);
8809 result = FALSE;
8810 }
8811 else
8812 {
8813 _bfd_error_handler
8814 (_("Warning: %B: Unknown EABI object attribute %d"),
8815 err_bfd, err_tag);
8816 }
8817 }
8818 }
8819 return result;
8820 }
8821
8822
8823 /* Return TRUE if the two EABI versions are incompatible. */
8824
8825 static bfd_boolean
8826 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8827 {
8828 /* v4 and v5 are the same spec before and after it was released,
8829 so allow mixing them. */
8830 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8831 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8832 return TRUE;
8833
8834 return (iver == over);
8835 }
8836
8837 /* Merge backend specific data from an object file to the output
8838 object file when linking. */
8839
8840 static bfd_boolean
8841 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8842 {
8843 flagword out_flags;
8844 flagword in_flags;
8845 bfd_boolean flags_compatible = TRUE;
8846 asection *sec;
8847
8848 /* Check if we have the same endianess. */
8849 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8850 return FALSE;
8851
8852 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8853 return TRUE;
8854
8855 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8856 return FALSE;
8857
8858 /* The input BFD must have had its flags initialised. */
8859 /* The following seems bogus to me -- The flags are initialized in
8860 the assembler but I don't think an elf_flags_init field is
8861 written into the object. */
8862 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8863
8864 in_flags = elf_elfheader (ibfd)->e_flags;
8865 out_flags = elf_elfheader (obfd)->e_flags;
8866
8867 /* In theory there is no reason why we couldn't handle this. However
8868 in practice it isn't even close to working and there is no real
8869 reason to want it. */
8870 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
8871 && !(ibfd->flags & DYNAMIC)
8872 && (in_flags & EF_ARM_BE8))
8873 {
8874 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8875 ibfd);
8876 return FALSE;
8877 }
8878
8879 if (!elf_flags_init (obfd))
8880 {
8881 /* If the input is the default architecture and had the default
8882 flags then do not bother setting the flags for the output
8883 architecture, instead allow future merges to do this. If no
8884 future merges ever set these flags then they will retain their
8885 uninitialised values, which surprise surprise, correspond
8886 to the default values. */
8887 if (bfd_get_arch_info (ibfd)->the_default
8888 && elf_elfheader (ibfd)->e_flags == 0)
8889 return TRUE;
8890
8891 elf_flags_init (obfd) = TRUE;
8892 elf_elfheader (obfd)->e_flags = in_flags;
8893
8894 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8895 && bfd_get_arch_info (obfd)->the_default)
8896 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8897
8898 return TRUE;
8899 }
8900
8901 /* Determine what should happen if the input ARM architecture
8902 does not match the output ARM architecture. */
8903 if (! bfd_arm_merge_machines (ibfd, obfd))
8904 return FALSE;
8905
8906 /* Identical flags must be compatible. */
8907 if (in_flags == out_flags)
8908 return TRUE;
8909
8910 /* Check to see if the input BFD actually contains any sections. If
8911 not, its flags may not have been initialised either, but it
8912 cannot actually cause any incompatiblity. Do not short-circuit
8913 dynamic objects; their section list may be emptied by
8914 elf_link_add_object_symbols.
8915
8916 Also check to see if there are no code sections in the input.
8917 In this case there is no need to check for code specific flags.
8918 XXX - do we need to worry about floating-point format compatability
8919 in data sections ? */
8920 if (!(ibfd->flags & DYNAMIC))
8921 {
8922 bfd_boolean null_input_bfd = TRUE;
8923 bfd_boolean only_data_sections = TRUE;
8924
8925 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8926 {
8927 /* Ignore synthetic glue sections. */
8928 if (strcmp (sec->name, ".glue_7")
8929 && strcmp (sec->name, ".glue_7t"))
8930 {
8931 if ((bfd_get_section_flags (ibfd, sec)
8932 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8933 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8934 only_data_sections = FALSE;
8935
8936 null_input_bfd = FALSE;
8937 break;
8938 }
8939 }
8940
8941 if (null_input_bfd || only_data_sections)
8942 return TRUE;
8943 }
8944
8945 /* Complain about various flag mismatches. */
8946 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8947 EF_ARM_EABI_VERSION (out_flags)))
8948 {
8949 _bfd_error_handler
8950 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8951 ibfd, obfd,
8952 (in_flags & EF_ARM_EABIMASK) >> 24,
8953 (out_flags & EF_ARM_EABIMASK) >> 24);
8954 return FALSE;
8955 }
8956
8957 /* Not sure what needs to be checked for EABI versions >= 1. */
8958 /* VxWorks libraries do not use these flags. */
8959 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8960 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8961 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8962 {
8963 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8964 {
8965 _bfd_error_handler
8966 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8967 ibfd, obfd,
8968 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8969 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8970 flags_compatible = FALSE;
8971 }
8972
8973 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8974 {
8975 if (in_flags & EF_ARM_APCS_FLOAT)
8976 _bfd_error_handler
8977 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8978 ibfd, obfd);
8979 else
8980 _bfd_error_handler
8981 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8982 ibfd, obfd);
8983
8984 flags_compatible = FALSE;
8985 }
8986
8987 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
8988 {
8989 if (in_flags & EF_ARM_VFP_FLOAT)
8990 _bfd_error_handler
8991 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8992 ibfd, obfd);
8993 else
8994 _bfd_error_handler
8995 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8996 ibfd, obfd);
8997
8998 flags_compatible = FALSE;
8999 }
9000
9001 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
9002 {
9003 if (in_flags & EF_ARM_MAVERICK_FLOAT)
9004 _bfd_error_handler
9005 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
9006 ibfd, obfd);
9007 else
9008 _bfd_error_handler
9009 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
9010 ibfd, obfd);
9011
9012 flags_compatible = FALSE;
9013 }
9014
9015 #ifdef EF_ARM_SOFT_FLOAT
9016 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
9017 {
9018 /* We can allow interworking between code that is VFP format
9019 layout, and uses either soft float or integer regs for
9020 passing floating point arguments and results. We already
9021 know that the APCS_FLOAT flags match; similarly for VFP
9022 flags. */
9023 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
9024 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
9025 {
9026 if (in_flags & EF_ARM_SOFT_FLOAT)
9027 _bfd_error_handler
9028 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
9029 ibfd, obfd);
9030 else
9031 _bfd_error_handler
9032 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
9033 ibfd, obfd);
9034
9035 flags_compatible = FALSE;
9036 }
9037 }
9038 #endif
9039
9040 /* Interworking mismatch is only a warning. */
9041 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9042 {
9043 if (in_flags & EF_ARM_INTERWORK)
9044 {
9045 _bfd_error_handler
9046 (_("Warning: %B supports interworking, whereas %B does not"),
9047 ibfd, obfd);
9048 }
9049 else
9050 {
9051 _bfd_error_handler
9052 (_("Warning: %B does not support interworking, whereas %B does"),
9053 ibfd, obfd);
9054 }
9055 }
9056 }
9057
9058 return flags_compatible;
9059 }
9060
9061 /* Display the flags field. */
9062
9063 static bfd_boolean
9064 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
9065 {
9066 FILE * file = (FILE *) ptr;
9067 unsigned long flags;
9068
9069 BFD_ASSERT (abfd != NULL && ptr != NULL);
9070
9071 /* Print normal ELF private data. */
9072 _bfd_elf_print_private_bfd_data (abfd, ptr);
9073
9074 flags = elf_elfheader (abfd)->e_flags;
9075 /* Ignore init flag - it may not be set, despite the flags field
9076 containing valid data. */
9077
9078 /* xgettext:c-format */
9079 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9080
9081 switch (EF_ARM_EABI_VERSION (flags))
9082 {
9083 case EF_ARM_EABI_UNKNOWN:
9084 /* The following flag bits are GNU extensions and not part of the
9085 official ARM ELF extended ABI. Hence they are only decoded if
9086 the EABI version is not set. */
9087 if (flags & EF_ARM_INTERWORK)
9088 fprintf (file, _(" [interworking enabled]"));
9089
9090 if (flags & EF_ARM_APCS_26)
9091 fprintf (file, " [APCS-26]");
9092 else
9093 fprintf (file, " [APCS-32]");
9094
9095 if (flags & EF_ARM_VFP_FLOAT)
9096 fprintf (file, _(" [VFP float format]"));
9097 else if (flags & EF_ARM_MAVERICK_FLOAT)
9098 fprintf (file, _(" [Maverick float format]"));
9099 else
9100 fprintf (file, _(" [FPA float format]"));
9101
9102 if (flags & EF_ARM_APCS_FLOAT)
9103 fprintf (file, _(" [floats passed in float registers]"));
9104
9105 if (flags & EF_ARM_PIC)
9106 fprintf (file, _(" [position independent]"));
9107
9108 if (flags & EF_ARM_NEW_ABI)
9109 fprintf (file, _(" [new ABI]"));
9110
9111 if (flags & EF_ARM_OLD_ABI)
9112 fprintf (file, _(" [old ABI]"));
9113
9114 if (flags & EF_ARM_SOFT_FLOAT)
9115 fprintf (file, _(" [software FP]"));
9116
9117 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
9118 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
9119 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
9120 | EF_ARM_MAVERICK_FLOAT);
9121 break;
9122
9123 case EF_ARM_EABI_VER1:
9124 fprintf (file, _(" [Version1 EABI]"));
9125
9126 if (flags & EF_ARM_SYMSARESORTED)
9127 fprintf (file, _(" [sorted symbol table]"));
9128 else
9129 fprintf (file, _(" [unsorted symbol table]"));
9130
9131 flags &= ~ EF_ARM_SYMSARESORTED;
9132 break;
9133
9134 case EF_ARM_EABI_VER2:
9135 fprintf (file, _(" [Version2 EABI]"));
9136
9137 if (flags & EF_ARM_SYMSARESORTED)
9138 fprintf (file, _(" [sorted symbol table]"));
9139 else
9140 fprintf (file, _(" [unsorted symbol table]"));
9141
9142 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
9143 fprintf (file, _(" [dynamic symbols use segment index]"));
9144
9145 if (flags & EF_ARM_MAPSYMSFIRST)
9146 fprintf (file, _(" [mapping symbols precede others]"));
9147
9148 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
9149 | EF_ARM_MAPSYMSFIRST);
9150 break;
9151
9152 case EF_ARM_EABI_VER3:
9153 fprintf (file, _(" [Version3 EABI]"));
9154 break;
9155
9156 case EF_ARM_EABI_VER4:
9157 fprintf (file, _(" [Version4 EABI]"));
9158 goto eabi;
9159
9160 case EF_ARM_EABI_VER5:
9161 fprintf (file, _(" [Version5 EABI]"));
9162 eabi:
9163 if (flags & EF_ARM_BE8)
9164 fprintf (file, _(" [BE8]"));
9165
9166 if (flags & EF_ARM_LE8)
9167 fprintf (file, _(" [LE8]"));
9168
9169 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
9170 break;
9171
9172 default:
9173 fprintf (file, _(" <EABI version unrecognised>"));
9174 break;
9175 }
9176
9177 flags &= ~ EF_ARM_EABIMASK;
9178
9179 if (flags & EF_ARM_RELEXEC)
9180 fprintf (file, _(" [relocatable executable]"));
9181
9182 if (flags & EF_ARM_HASENTRY)
9183 fprintf (file, _(" [has entry point]"));
9184
9185 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
9186
9187 if (flags)
9188 fprintf (file, _("<Unrecognised flag bits set>"));
9189
9190 fputc ('\n', file);
9191
9192 return TRUE;
9193 }
9194
9195 static int
9196 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
9197 {
9198 switch (ELF_ST_TYPE (elf_sym->st_info))
9199 {
9200 case STT_ARM_TFUNC:
9201 return ELF_ST_TYPE (elf_sym->st_info);
9202
9203 case STT_ARM_16BIT:
9204 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
9205 This allows us to distinguish between data used by Thumb instructions
9206 and non-data (which is probably code) inside Thumb regions of an
9207 executable. */
9208 if (type != STT_OBJECT && type != STT_TLS)
9209 return ELF_ST_TYPE (elf_sym->st_info);
9210 break;
9211
9212 default:
9213 break;
9214 }
9215
9216 return type;
9217 }
9218
9219 static asection *
9220 elf32_arm_gc_mark_hook (asection *sec,
9221 struct bfd_link_info *info,
9222 Elf_Internal_Rela *rel,
9223 struct elf_link_hash_entry *h,
9224 Elf_Internal_Sym *sym)
9225 {
9226 if (h != NULL)
9227 switch (ELF32_R_TYPE (rel->r_info))
9228 {
9229 case R_ARM_GNU_VTINHERIT:
9230 case R_ARM_GNU_VTENTRY:
9231 return NULL;
9232 }
9233
9234 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9235 }
9236
9237 /* Update the got entry reference counts for the section being removed. */
9238
9239 static bfd_boolean
9240 elf32_arm_gc_sweep_hook (bfd * abfd,
9241 struct bfd_link_info * info,
9242 asection * sec,
9243 const Elf_Internal_Rela * relocs)
9244 {
9245 Elf_Internal_Shdr *symtab_hdr;
9246 struct elf_link_hash_entry **sym_hashes;
9247 bfd_signed_vma *local_got_refcounts;
9248 const Elf_Internal_Rela *rel, *relend;
9249 struct elf32_arm_link_hash_table * globals;
9250
9251 if (info->relocatable)
9252 return TRUE;
9253
9254 globals = elf32_arm_hash_table (info);
9255
9256 elf_section_data (sec)->local_dynrel = NULL;
9257
9258 symtab_hdr = & elf_symtab_hdr (abfd);
9259 sym_hashes = elf_sym_hashes (abfd);
9260 local_got_refcounts = elf_local_got_refcounts (abfd);
9261
9262 check_use_blx (globals);
9263
9264 relend = relocs + sec->reloc_count;
9265 for (rel = relocs; rel < relend; rel++)
9266 {
9267 unsigned long r_symndx;
9268 struct elf_link_hash_entry *h = NULL;
9269 int r_type;
9270
9271 r_symndx = ELF32_R_SYM (rel->r_info);
9272 if (r_symndx >= symtab_hdr->sh_info)
9273 {
9274 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9275 while (h->root.type == bfd_link_hash_indirect
9276 || h->root.type == bfd_link_hash_warning)
9277 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9278 }
9279
9280 r_type = ELF32_R_TYPE (rel->r_info);
9281 r_type = arm_real_reloc_type (globals, r_type);
9282 switch (r_type)
9283 {
9284 case R_ARM_GOT32:
9285 case R_ARM_GOT_PREL:
9286 case R_ARM_TLS_GD32:
9287 case R_ARM_TLS_IE32:
9288 if (h != NULL)
9289 {
9290 if (h->got.refcount > 0)
9291 h->got.refcount -= 1;
9292 }
9293 else if (local_got_refcounts != NULL)
9294 {
9295 if (local_got_refcounts[r_symndx] > 0)
9296 local_got_refcounts[r_symndx] -= 1;
9297 }
9298 break;
9299
9300 case R_ARM_TLS_LDM32:
9301 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
9302 break;
9303
9304 case R_ARM_ABS32:
9305 case R_ARM_ABS32_NOI:
9306 case R_ARM_REL32:
9307 case R_ARM_REL32_NOI:
9308 case R_ARM_PC24:
9309 case R_ARM_PLT32:
9310 case R_ARM_CALL:
9311 case R_ARM_JUMP24:
9312 case R_ARM_PREL31:
9313 case R_ARM_THM_CALL:
9314 case R_ARM_THM_JUMP24:
9315 case R_ARM_THM_JUMP19:
9316 case R_ARM_MOVW_ABS_NC:
9317 case R_ARM_MOVT_ABS:
9318 case R_ARM_MOVW_PREL_NC:
9319 case R_ARM_MOVT_PREL:
9320 case R_ARM_THM_MOVW_ABS_NC:
9321 case R_ARM_THM_MOVT_ABS:
9322 case R_ARM_THM_MOVW_PREL_NC:
9323 case R_ARM_THM_MOVT_PREL:
9324 /* Should the interworking branches be here also? */
9325
9326 if (h != NULL)
9327 {
9328 struct elf32_arm_link_hash_entry *eh;
9329 struct elf32_arm_relocs_copied **pp;
9330 struct elf32_arm_relocs_copied *p;
9331
9332 eh = (struct elf32_arm_link_hash_entry *) h;
9333
9334 if (h->plt.refcount > 0)
9335 {
9336 h->plt.refcount -= 1;
9337 if (r_type == R_ARM_THM_CALL)
9338 eh->plt_maybe_thumb_refcount--;
9339
9340 if (r_type == R_ARM_THM_JUMP24
9341 || r_type == R_ARM_THM_JUMP19)
9342 eh->plt_thumb_refcount--;
9343 }
9344
9345 if (r_type == R_ARM_ABS32
9346 || r_type == R_ARM_REL32
9347 || r_type == R_ARM_ABS32_NOI
9348 || r_type == R_ARM_REL32_NOI)
9349 {
9350 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
9351 pp = &p->next)
9352 if (p->section == sec)
9353 {
9354 p->count -= 1;
9355 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9356 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
9357 p->pc_count -= 1;
9358 if (p->count == 0)
9359 *pp = p->next;
9360 break;
9361 }
9362 }
9363 }
9364 break;
9365
9366 default:
9367 break;
9368 }
9369 }
9370
9371 return TRUE;
9372 }
9373
9374 /* Look through the relocs for a section during the first phase. */
9375
9376 static bfd_boolean
9377 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9378 asection *sec, const Elf_Internal_Rela *relocs)
9379 {
9380 Elf_Internal_Shdr *symtab_hdr;
9381 struct elf_link_hash_entry **sym_hashes;
9382 const Elf_Internal_Rela *rel;
9383 const Elf_Internal_Rela *rel_end;
9384 bfd *dynobj;
9385 asection *sreloc;
9386 bfd_vma *local_got_offsets;
9387 struct elf32_arm_link_hash_table *htab;
9388 bfd_boolean needs_plt;
9389
9390 if (info->relocatable)
9391 return TRUE;
9392
9393 BFD_ASSERT (is_arm_elf (abfd));
9394
9395 htab = elf32_arm_hash_table (info);
9396 sreloc = NULL;
9397
9398 /* Create dynamic sections for relocatable executables so that we can
9399 copy relocations. */
9400 if (htab->root.is_relocatable_executable
9401 && ! htab->root.dynamic_sections_created)
9402 {
9403 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9404 return FALSE;
9405 }
9406
9407 dynobj = elf_hash_table (info)->dynobj;
9408 local_got_offsets = elf_local_got_offsets (abfd);
9409
9410 symtab_hdr = & elf_symtab_hdr (abfd);
9411 sym_hashes = elf_sym_hashes (abfd);
9412
9413 rel_end = relocs + sec->reloc_count;
9414 for (rel = relocs; rel < rel_end; rel++)
9415 {
9416 struct elf_link_hash_entry *h;
9417 struct elf32_arm_link_hash_entry *eh;
9418 unsigned long r_symndx;
9419 int r_type;
9420
9421 r_symndx = ELF32_R_SYM (rel->r_info);
9422 r_type = ELF32_R_TYPE (rel->r_info);
9423 r_type = arm_real_reloc_type (htab, r_type);
9424
9425 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
9426 {
9427 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9428 r_symndx);
9429 return FALSE;
9430 }
9431
9432 if (r_symndx < symtab_hdr->sh_info)
9433 h = NULL;
9434 else
9435 {
9436 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9437 while (h->root.type == bfd_link_hash_indirect
9438 || h->root.type == bfd_link_hash_warning)
9439 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9440 }
9441
9442 eh = (struct elf32_arm_link_hash_entry *) h;
9443
9444 switch (r_type)
9445 {
9446 case R_ARM_GOT32:
9447 case R_ARM_GOT_PREL:
9448 case R_ARM_TLS_GD32:
9449 case R_ARM_TLS_IE32:
9450 /* This symbol requires a global offset table entry. */
9451 {
9452 int tls_type, old_tls_type;
9453
9454 switch (r_type)
9455 {
9456 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9457 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9458 default: tls_type = GOT_NORMAL; break;
9459 }
9460
9461 if (h != NULL)
9462 {
9463 h->got.refcount++;
9464 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9465 }
9466 else
9467 {
9468 bfd_signed_vma *local_got_refcounts;
9469
9470 /* This is a global offset table entry for a local symbol. */
9471 local_got_refcounts = elf_local_got_refcounts (abfd);
9472 if (local_got_refcounts == NULL)
9473 {
9474 bfd_size_type size;
9475
9476 size = symtab_hdr->sh_info;
9477 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9478 local_got_refcounts = bfd_zalloc (abfd, size);
9479 if (local_got_refcounts == NULL)
9480 return FALSE;
9481 elf_local_got_refcounts (abfd) = local_got_refcounts;
9482 elf32_arm_local_got_tls_type (abfd)
9483 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9484 }
9485 local_got_refcounts[r_symndx] += 1;
9486 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9487 }
9488
9489 /* We will already have issued an error message if there is a
9490 TLS / non-TLS mismatch, based on the symbol type. We don't
9491 support any linker relaxations. So just combine any TLS
9492 types needed. */
9493 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9494 && tls_type != GOT_NORMAL)
9495 tls_type |= old_tls_type;
9496
9497 if (old_tls_type != tls_type)
9498 {
9499 if (h != NULL)
9500 elf32_arm_hash_entry (h)->tls_type = tls_type;
9501 else
9502 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9503 }
9504 }
9505 /* Fall through. */
9506
9507 case R_ARM_TLS_LDM32:
9508 if (r_type == R_ARM_TLS_LDM32)
9509 htab->tls_ldm_got.refcount++;
9510 /* Fall through. */
9511
9512 case R_ARM_GOTOFF32:
9513 case R_ARM_GOTPC:
9514 if (htab->sgot == NULL)
9515 {
9516 if (htab->root.dynobj == NULL)
9517 htab->root.dynobj = abfd;
9518 if (!create_got_section (htab->root.dynobj, info))
9519 return FALSE;
9520 }
9521 break;
9522
9523 case R_ARM_ABS12:
9524 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9525 ldr __GOTT_INDEX__ offsets. */
9526 if (!htab->vxworks_p)
9527 break;
9528 /* Fall through. */
9529
9530 case R_ARM_PC24:
9531 case R_ARM_PLT32:
9532 case R_ARM_CALL:
9533 case R_ARM_JUMP24:
9534 case R_ARM_PREL31:
9535 case R_ARM_THM_CALL:
9536 case R_ARM_THM_JUMP24:
9537 case R_ARM_THM_JUMP19:
9538 needs_plt = 1;
9539 goto normal_reloc;
9540
9541 case R_ARM_ABS32:
9542 case R_ARM_ABS32_NOI:
9543 case R_ARM_REL32:
9544 case R_ARM_REL32_NOI:
9545 case R_ARM_MOVW_ABS_NC:
9546 case R_ARM_MOVT_ABS:
9547 case R_ARM_MOVW_PREL_NC:
9548 case R_ARM_MOVT_PREL:
9549 case R_ARM_THM_MOVW_ABS_NC:
9550 case R_ARM_THM_MOVT_ABS:
9551 case R_ARM_THM_MOVW_PREL_NC:
9552 case R_ARM_THM_MOVT_PREL:
9553 needs_plt = 0;
9554 normal_reloc:
9555
9556 /* Should the interworking branches be listed here? */
9557 if (h != NULL)
9558 {
9559 /* If this reloc is in a read-only section, we might
9560 need a copy reloc. We can't check reliably at this
9561 stage whether the section is read-only, as input
9562 sections have not yet been mapped to output sections.
9563 Tentatively set the flag for now, and correct in
9564 adjust_dynamic_symbol. */
9565 if (!info->shared)
9566 h->non_got_ref = 1;
9567
9568 /* We may need a .plt entry if the function this reloc
9569 refers to is in a different object. We can't tell for
9570 sure yet, because something later might force the
9571 symbol local. */
9572 if (needs_plt)
9573 h->needs_plt = 1;
9574
9575 /* If we create a PLT entry, this relocation will reference
9576 it, even if it's an ABS32 relocation. */
9577 h->plt.refcount += 1;
9578
9579 /* It's too early to use htab->use_blx here, so we have to
9580 record possible blx references separately from
9581 relocs that definitely need a thumb stub. */
9582
9583 if (r_type == R_ARM_THM_CALL)
9584 eh->plt_maybe_thumb_refcount += 1;
9585
9586 if (r_type == R_ARM_THM_JUMP24
9587 || r_type == R_ARM_THM_JUMP19)
9588 eh->plt_thumb_refcount += 1;
9589 }
9590
9591 /* If we are creating a shared library or relocatable executable,
9592 and this is a reloc against a global symbol, or a non PC
9593 relative reloc against a local symbol, then we need to copy
9594 the reloc into the shared library. However, if we are linking
9595 with -Bsymbolic, we do not need to copy a reloc against a
9596 global symbol which is defined in an object we are
9597 including in the link (i.e., DEF_REGULAR is set). At
9598 this point we have not seen all the input files, so it is
9599 possible that DEF_REGULAR is not set now but will be set
9600 later (it is never cleared). We account for that
9601 possibility below by storing information in the
9602 relocs_copied field of the hash table entry. */
9603 if ((info->shared || htab->root.is_relocatable_executable)
9604 && (sec->flags & SEC_ALLOC) != 0
9605 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9606 || (h != NULL && ! h->needs_plt
9607 && (! info->symbolic || ! h->def_regular))))
9608 {
9609 struct elf32_arm_relocs_copied *p, **head;
9610
9611 /* When creating a shared object, we must copy these
9612 reloc types into the output file. We create a reloc
9613 section in dynobj and make room for this reloc. */
9614 if (sreloc == NULL)
9615 {
9616 sreloc = _bfd_elf_make_dynamic_reloc_section
9617 (sec, dynobj, 2, abfd, ! htab->use_rel);
9618
9619 if (sreloc == NULL)
9620 return FALSE;
9621
9622 /* BPABI objects never have dynamic relocations mapped. */
9623 if (! htab->symbian_p)
9624 {
9625 flagword flags;
9626
9627 flags = bfd_get_section_flags (dynobj, sreloc);
9628 flags &= ~(SEC_LOAD | SEC_ALLOC);
9629 bfd_set_section_flags (dynobj, sreloc, flags);
9630 }
9631 }
9632
9633 /* If this is a global symbol, we count the number of
9634 relocations we need for this symbol. */
9635 if (h != NULL)
9636 {
9637 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9638 }
9639 else
9640 {
9641 /* Track dynamic relocs needed for local syms too.
9642 We really need local syms available to do this
9643 easily. Oh well. */
9644
9645 asection *s;
9646 void *vpp;
9647
9648 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9649 sec, r_symndx);
9650 if (s == NULL)
9651 return FALSE;
9652
9653 vpp = &elf_section_data (s)->local_dynrel;
9654 head = (struct elf32_arm_relocs_copied **) vpp;
9655 }
9656
9657 p = *head;
9658 if (p == NULL || p->section != sec)
9659 {
9660 bfd_size_type amt = sizeof *p;
9661
9662 p = bfd_alloc (htab->root.dynobj, amt);
9663 if (p == NULL)
9664 return FALSE;
9665 p->next = *head;
9666 *head = p;
9667 p->section = sec;
9668 p->count = 0;
9669 p->pc_count = 0;
9670 }
9671
9672 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9673 p->pc_count += 1;
9674 p->count += 1;
9675 }
9676 break;
9677
9678 /* This relocation describes the C++ object vtable hierarchy.
9679 Reconstruct it for later use during GC. */
9680 case R_ARM_GNU_VTINHERIT:
9681 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9682 return FALSE;
9683 break;
9684
9685 /* This relocation describes which C++ vtable entries are actually
9686 used. Record for later use during GC. */
9687 case R_ARM_GNU_VTENTRY:
9688 BFD_ASSERT (h != NULL);
9689 if (h != NULL
9690 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9691 return FALSE;
9692 break;
9693 }
9694 }
9695
9696 return TRUE;
9697 }
9698
9699 /* Unwinding tables are not referenced directly. This pass marks them as
9700 required if the corresponding code section is marked. */
9701
9702 static bfd_boolean
9703 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9704 elf_gc_mark_hook_fn gc_mark_hook)
9705 {
9706 bfd *sub;
9707 Elf_Internal_Shdr **elf_shdrp;
9708 bfd_boolean again;
9709
9710 /* Marking EH data may cause additional code sections to be marked,
9711 requiring multiple passes. */
9712 again = TRUE;
9713 while (again)
9714 {
9715 again = FALSE;
9716 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9717 {
9718 asection *o;
9719
9720 if (! is_arm_elf (sub))
9721 continue;
9722
9723 elf_shdrp = elf_elfsections (sub);
9724 for (o = sub->sections; o != NULL; o = o->next)
9725 {
9726 Elf_Internal_Shdr *hdr;
9727
9728 hdr = &elf_section_data (o)->this_hdr;
9729 if (hdr->sh_type == SHT_ARM_EXIDX
9730 && hdr->sh_link
9731 && hdr->sh_link < elf_numsections (sub)
9732 && !o->gc_mark
9733 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9734 {
9735 again = TRUE;
9736 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9737 return FALSE;
9738 }
9739 }
9740 }
9741 }
9742
9743 return TRUE;
9744 }
9745
9746 /* Treat mapping symbols as special target symbols. */
9747
9748 static bfd_boolean
9749 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9750 {
9751 return bfd_is_arm_special_symbol_name (sym->name,
9752 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9753 }
9754
9755 /* This is a copy of elf_find_function() from elf.c except that
9756 ARM mapping symbols are ignored when looking for function names
9757 and STT_ARM_TFUNC is considered to a function type. */
9758
9759 static bfd_boolean
9760 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9761 asection * section,
9762 asymbol ** symbols,
9763 bfd_vma offset,
9764 const char ** filename_ptr,
9765 const char ** functionname_ptr)
9766 {
9767 const char * filename = NULL;
9768 asymbol * func = NULL;
9769 bfd_vma low_func = 0;
9770 asymbol ** p;
9771
9772 for (p = symbols; *p != NULL; p++)
9773 {
9774 elf_symbol_type *q;
9775
9776 q = (elf_symbol_type *) *p;
9777
9778 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9779 {
9780 default:
9781 break;
9782 case STT_FILE:
9783 filename = bfd_asymbol_name (&q->symbol);
9784 break;
9785 case STT_FUNC:
9786 case STT_ARM_TFUNC:
9787 case STT_NOTYPE:
9788 /* Skip mapping symbols. */
9789 if ((q->symbol.flags & BSF_LOCAL)
9790 && bfd_is_arm_special_symbol_name (q->symbol.name,
9791 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9792 continue;
9793 /* Fall through. */
9794 if (bfd_get_section (&q->symbol) == section
9795 && q->symbol.value >= low_func
9796 && q->symbol.value <= offset)
9797 {
9798 func = (asymbol *) q;
9799 low_func = q->symbol.value;
9800 }
9801 break;
9802 }
9803 }
9804
9805 if (func == NULL)
9806 return FALSE;
9807
9808 if (filename_ptr)
9809 *filename_ptr = filename;
9810 if (functionname_ptr)
9811 *functionname_ptr = bfd_asymbol_name (func);
9812
9813 return TRUE;
9814 }
9815
9816
9817 /* Find the nearest line to a particular section and offset, for error
9818 reporting. This code is a duplicate of the code in elf.c, except
9819 that it uses arm_elf_find_function. */
9820
9821 static bfd_boolean
9822 elf32_arm_find_nearest_line (bfd * abfd,
9823 asection * section,
9824 asymbol ** symbols,
9825 bfd_vma offset,
9826 const char ** filename_ptr,
9827 const char ** functionname_ptr,
9828 unsigned int * line_ptr)
9829 {
9830 bfd_boolean found = FALSE;
9831
9832 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9833
9834 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9835 filename_ptr, functionname_ptr,
9836 line_ptr, 0,
9837 & elf_tdata (abfd)->dwarf2_find_line_info))
9838 {
9839 if (!*functionname_ptr)
9840 arm_elf_find_function (abfd, section, symbols, offset,
9841 *filename_ptr ? NULL : filename_ptr,
9842 functionname_ptr);
9843
9844 return TRUE;
9845 }
9846
9847 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9848 & found, filename_ptr,
9849 functionname_ptr, line_ptr,
9850 & elf_tdata (abfd)->line_info))
9851 return FALSE;
9852
9853 if (found && (*functionname_ptr || *line_ptr))
9854 return TRUE;
9855
9856 if (symbols == NULL)
9857 return FALSE;
9858
9859 if (! arm_elf_find_function (abfd, section, symbols, offset,
9860 filename_ptr, functionname_ptr))
9861 return FALSE;
9862
9863 *line_ptr = 0;
9864 return TRUE;
9865 }
9866
9867 static bfd_boolean
9868 elf32_arm_find_inliner_info (bfd * abfd,
9869 const char ** filename_ptr,
9870 const char ** functionname_ptr,
9871 unsigned int * line_ptr)
9872 {
9873 bfd_boolean found;
9874 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9875 functionname_ptr, line_ptr,
9876 & elf_tdata (abfd)->dwarf2_find_line_info);
9877 return found;
9878 }
9879
9880 /* Adjust a symbol defined by a dynamic object and referenced by a
9881 regular object. The current definition is in some section of the
9882 dynamic object, but we're not including those sections. We have to
9883 change the definition to something the rest of the link can
9884 understand. */
9885
9886 static bfd_boolean
9887 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9888 struct elf_link_hash_entry * h)
9889 {
9890 bfd * dynobj;
9891 asection * s;
9892 struct elf32_arm_link_hash_entry * eh;
9893 struct elf32_arm_link_hash_table *globals;
9894
9895 globals = elf32_arm_hash_table (info);
9896 dynobj = elf_hash_table (info)->dynobj;
9897
9898 /* Make sure we know what is going on here. */
9899 BFD_ASSERT (dynobj != NULL
9900 && (h->needs_plt
9901 || h->u.weakdef != NULL
9902 || (h->def_dynamic
9903 && h->ref_regular
9904 && !h->def_regular)));
9905
9906 eh = (struct elf32_arm_link_hash_entry *) h;
9907
9908 /* If this is a function, put it in the procedure linkage table. We
9909 will fill in the contents of the procedure linkage table later,
9910 when we know the address of the .got section. */
9911 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
9912 || h->needs_plt)
9913 {
9914 if (h->plt.refcount <= 0
9915 || SYMBOL_CALLS_LOCAL (info, h)
9916 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9917 && h->root.type == bfd_link_hash_undefweak))
9918 {
9919 /* This case can occur if we saw a PLT32 reloc in an input
9920 file, but the symbol was never referred to by a dynamic
9921 object, or if all references were garbage collected. In
9922 such a case, we don't actually need to build a procedure
9923 linkage table, and we can just do a PC24 reloc instead. */
9924 h->plt.offset = (bfd_vma) -1;
9925 eh->plt_thumb_refcount = 0;
9926 eh->plt_maybe_thumb_refcount = 0;
9927 h->needs_plt = 0;
9928 }
9929
9930 return TRUE;
9931 }
9932 else
9933 {
9934 /* It's possible that we incorrectly decided a .plt reloc was
9935 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9936 in check_relocs. We can't decide accurately between function
9937 and non-function syms in check-relocs; Objects loaded later in
9938 the link may change h->type. So fix it now. */
9939 h->plt.offset = (bfd_vma) -1;
9940 eh->plt_thumb_refcount = 0;
9941 eh->plt_maybe_thumb_refcount = 0;
9942 }
9943
9944 /* If this is a weak symbol, and there is a real definition, the
9945 processor independent code will have arranged for us to see the
9946 real definition first, and we can just use the same value. */
9947 if (h->u.weakdef != NULL)
9948 {
9949 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9950 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9951 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9952 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9953 return TRUE;
9954 }
9955
9956 /* If there are no non-GOT references, we do not need a copy
9957 relocation. */
9958 if (!h->non_got_ref)
9959 return TRUE;
9960
9961 /* This is a reference to a symbol defined by a dynamic object which
9962 is not a function. */
9963
9964 /* If we are creating a shared library, we must presume that the
9965 only references to the symbol are via the global offset table.
9966 For such cases we need not do anything here; the relocations will
9967 be handled correctly by relocate_section. Relocatable executables
9968 can reference data in shared objects directly, so we don't need to
9969 do anything here. */
9970 if (info->shared || globals->root.is_relocatable_executable)
9971 return TRUE;
9972
9973 if (h->size == 0)
9974 {
9975 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
9976 h->root.root.string);
9977 return TRUE;
9978 }
9979
9980 /* We must allocate the symbol in our .dynbss section, which will
9981 become part of the .bss section of the executable. There will be
9982 an entry for this symbol in the .dynsym section. The dynamic
9983 object will contain position independent code, so all references
9984 from the dynamic object to this symbol will go through the global
9985 offset table. The dynamic linker will use the .dynsym entry to
9986 determine the address it must put in the global offset table, so
9987 both the dynamic object and the regular object will refer to the
9988 same memory location for the variable. */
9989 s = bfd_get_section_by_name (dynobj, ".dynbss");
9990 BFD_ASSERT (s != NULL);
9991
9992 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9993 copy the initial value out of the dynamic object and into the
9994 runtime process image. We need to remember the offset into the
9995 .rel(a).bss section we are going to use. */
9996 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9997 {
9998 asection *srel;
9999
10000 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
10001 BFD_ASSERT (srel != NULL);
10002 srel->size += RELOC_SIZE (globals);
10003 h->needs_copy = 1;
10004 }
10005
10006 return _bfd_elf_adjust_dynamic_copy (h, s);
10007 }
10008
10009 /* Allocate space in .plt, .got and associated reloc sections for
10010 dynamic relocs. */
10011
10012 static bfd_boolean
10013 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
10014 {
10015 struct bfd_link_info *info;
10016 struct elf32_arm_link_hash_table *htab;
10017 struct elf32_arm_link_hash_entry *eh;
10018 struct elf32_arm_relocs_copied *p;
10019 bfd_signed_vma thumb_refs;
10020
10021 eh = (struct elf32_arm_link_hash_entry *) h;
10022
10023 if (h->root.type == bfd_link_hash_indirect)
10024 return TRUE;
10025
10026 if (h->root.type == bfd_link_hash_warning)
10027 /* When warning symbols are created, they **replace** the "real"
10028 entry in the hash table, thus we never get to see the real
10029 symbol in a hash traversal. So look at it now. */
10030 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10031
10032 info = (struct bfd_link_info *) inf;
10033 htab = elf32_arm_hash_table (info);
10034
10035 if (htab->root.dynamic_sections_created
10036 && h->plt.refcount > 0)
10037 {
10038 /* Make sure this symbol is output as a dynamic symbol.
10039 Undefined weak syms won't yet be marked as dynamic. */
10040 if (h->dynindx == -1
10041 && !h->forced_local)
10042 {
10043 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10044 return FALSE;
10045 }
10046
10047 if (info->shared
10048 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
10049 {
10050 asection *s = htab->splt;
10051
10052 /* If this is the first .plt entry, make room for the special
10053 first entry. */
10054 if (s->size == 0)
10055 s->size += htab->plt_header_size;
10056
10057 h->plt.offset = s->size;
10058
10059 /* If we will insert a Thumb trampoline before this PLT, leave room
10060 for it. */
10061 thumb_refs = eh->plt_thumb_refcount;
10062 if (!htab->use_blx)
10063 thumb_refs += eh->plt_maybe_thumb_refcount;
10064
10065 if (thumb_refs > 0)
10066 {
10067 h->plt.offset += PLT_THUMB_STUB_SIZE;
10068 s->size += PLT_THUMB_STUB_SIZE;
10069 }
10070
10071 /* If this symbol is not defined in a regular file, and we are
10072 not generating a shared library, then set the symbol to this
10073 location in the .plt. This is required to make function
10074 pointers compare as equal between the normal executable and
10075 the shared library. */
10076 if (! info->shared
10077 && !h->def_regular)
10078 {
10079 h->root.u.def.section = s;
10080 h->root.u.def.value = h->plt.offset;
10081
10082 /* Make sure the function is not marked as Thumb, in case
10083 it is the target of an ABS32 relocation, which will
10084 point to the PLT entry. */
10085 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
10086 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10087 }
10088
10089 /* Make room for this entry. */
10090 s->size += htab->plt_entry_size;
10091
10092 if (!htab->symbian_p)
10093 {
10094 /* We also need to make an entry in the .got.plt section, which
10095 will be placed in the .got section by the linker script. */
10096 eh->plt_got_offset = htab->sgotplt->size;
10097 htab->sgotplt->size += 4;
10098 }
10099
10100 /* We also need to make an entry in the .rel(a).plt section. */
10101 htab->srelplt->size += RELOC_SIZE (htab);
10102
10103 /* VxWorks executables have a second set of relocations for
10104 each PLT entry. They go in a separate relocation section,
10105 which is processed by the kernel loader. */
10106 if (htab->vxworks_p && !info->shared)
10107 {
10108 /* There is a relocation for the initial PLT entry:
10109 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
10110 if (h->plt.offset == htab->plt_header_size)
10111 htab->srelplt2->size += RELOC_SIZE (htab);
10112
10113 /* There are two extra relocations for each subsequent
10114 PLT entry: an R_ARM_32 relocation for the GOT entry,
10115 and an R_ARM_32 relocation for the PLT entry. */
10116 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
10117 }
10118 }
10119 else
10120 {
10121 h->plt.offset = (bfd_vma) -1;
10122 h->needs_plt = 0;
10123 }
10124 }
10125 else
10126 {
10127 h->plt.offset = (bfd_vma) -1;
10128 h->needs_plt = 0;
10129 }
10130
10131 if (h->got.refcount > 0)
10132 {
10133 asection *s;
10134 bfd_boolean dyn;
10135 int tls_type = elf32_arm_hash_entry (h)->tls_type;
10136 int indx;
10137
10138 /* Make sure this symbol is output as a dynamic symbol.
10139 Undefined weak syms won't yet be marked as dynamic. */
10140 if (h->dynindx == -1
10141 && !h->forced_local)
10142 {
10143 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10144 return FALSE;
10145 }
10146
10147 if (!htab->symbian_p)
10148 {
10149 s = htab->sgot;
10150 h->got.offset = s->size;
10151
10152 if (tls_type == GOT_UNKNOWN)
10153 abort ();
10154
10155 if (tls_type == GOT_NORMAL)
10156 /* Non-TLS symbols need one GOT slot. */
10157 s->size += 4;
10158 else
10159 {
10160 if (tls_type & GOT_TLS_GD)
10161 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
10162 s->size += 8;
10163 if (tls_type & GOT_TLS_IE)
10164 /* R_ARM_TLS_IE32 needs one GOT slot. */
10165 s->size += 4;
10166 }
10167
10168 dyn = htab->root.dynamic_sections_created;
10169
10170 indx = 0;
10171 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
10172 && (!info->shared
10173 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10174 indx = h->dynindx;
10175
10176 if (tls_type != GOT_NORMAL
10177 && (info->shared || indx != 0)
10178 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10179 || h->root.type != bfd_link_hash_undefweak))
10180 {
10181 if (tls_type & GOT_TLS_IE)
10182 htab->srelgot->size += RELOC_SIZE (htab);
10183
10184 if (tls_type & GOT_TLS_GD)
10185 htab->srelgot->size += RELOC_SIZE (htab);
10186
10187 if ((tls_type & GOT_TLS_GD) && indx != 0)
10188 htab->srelgot->size += RELOC_SIZE (htab);
10189 }
10190 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10191 || h->root.type != bfd_link_hash_undefweak)
10192 && (info->shared
10193 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
10194 htab->srelgot->size += RELOC_SIZE (htab);
10195 }
10196 }
10197 else
10198 h->got.offset = (bfd_vma) -1;
10199
10200 /* Allocate stubs for exported Thumb functions on v4t. */
10201 if (!htab->use_blx && h->dynindx != -1
10202 && h->def_regular
10203 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
10204 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
10205 {
10206 struct elf_link_hash_entry * th;
10207 struct bfd_link_hash_entry * bh;
10208 struct elf_link_hash_entry * myh;
10209 char name[1024];
10210 asection *s;
10211 bh = NULL;
10212 /* Create a new symbol to regist the real location of the function. */
10213 s = h->root.u.def.section;
10214 sprintf (name, "__real_%s", h->root.root.string);
10215 _bfd_generic_link_add_one_symbol (info, s->owner,
10216 name, BSF_GLOBAL, s,
10217 h->root.u.def.value,
10218 NULL, TRUE, FALSE, &bh);
10219
10220 myh = (struct elf_link_hash_entry *) bh;
10221 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
10222 myh->forced_local = 1;
10223 eh->export_glue = myh;
10224 th = record_arm_to_thumb_glue (info, h);
10225 /* Point the symbol at the stub. */
10226 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10227 h->root.u.def.section = th->root.u.def.section;
10228 h->root.u.def.value = th->root.u.def.value & ~1;
10229 }
10230
10231 if (eh->relocs_copied == NULL)
10232 return TRUE;
10233
10234 /* In the shared -Bsymbolic case, discard space allocated for
10235 dynamic pc-relative relocs against symbols which turn out to be
10236 defined in regular objects. For the normal shared case, discard
10237 space for pc-relative relocs that have become local due to symbol
10238 visibility changes. */
10239
10240 if (info->shared || htab->root.is_relocatable_executable)
10241 {
10242 /* The only relocs that use pc_count are R_ARM_REL32 and
10243 R_ARM_REL32_NOI, which will appear on something like
10244 ".long foo - .". We want calls to protected symbols to resolve
10245 directly to the function rather than going via the plt. If people
10246 want function pointer comparisons to work as expected then they
10247 should avoid writing assembly like ".long foo - .". */
10248 if (SYMBOL_CALLS_LOCAL (info, h))
10249 {
10250 struct elf32_arm_relocs_copied **pp;
10251
10252 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10253 {
10254 p->count -= p->pc_count;
10255 p->pc_count = 0;
10256 if (p->count == 0)
10257 *pp = p->next;
10258 else
10259 pp = &p->next;
10260 }
10261 }
10262
10263 if (elf32_arm_hash_table (info)->vxworks_p)
10264 {
10265 struct elf32_arm_relocs_copied **pp;
10266
10267 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10268 {
10269 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
10270 *pp = p->next;
10271 else
10272 pp = &p->next;
10273 }
10274 }
10275
10276 /* Also discard relocs on undefined weak syms with non-default
10277 visibility. */
10278 if (eh->relocs_copied != NULL
10279 && h->root.type == bfd_link_hash_undefweak)
10280 {
10281 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
10282 eh->relocs_copied = NULL;
10283
10284 /* Make sure undefined weak symbols are output as a dynamic
10285 symbol in PIEs. */
10286 else if (h->dynindx == -1
10287 && !h->forced_local)
10288 {
10289 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10290 return FALSE;
10291 }
10292 }
10293
10294 else if (htab->root.is_relocatable_executable && h->dynindx == -1
10295 && h->root.type == bfd_link_hash_new)
10296 {
10297 /* Output absolute symbols so that we can create relocations
10298 against them. For normal symbols we output a relocation
10299 against the section that contains them. */
10300 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10301 return FALSE;
10302 }
10303
10304 }
10305 else
10306 {
10307 /* For the non-shared case, discard space for relocs against
10308 symbols which turn out to need copy relocs or are not
10309 dynamic. */
10310
10311 if (!h->non_got_ref
10312 && ((h->def_dynamic
10313 && !h->def_regular)
10314 || (htab->root.dynamic_sections_created
10315 && (h->root.type == bfd_link_hash_undefweak
10316 || h->root.type == bfd_link_hash_undefined))))
10317 {
10318 /* Make sure this symbol is output as a dynamic symbol.
10319 Undefined weak syms won't yet be marked as dynamic. */
10320 if (h->dynindx == -1
10321 && !h->forced_local)
10322 {
10323 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10324 return FALSE;
10325 }
10326
10327 /* If that succeeded, we know we'll be keeping all the
10328 relocs. */
10329 if (h->dynindx != -1)
10330 goto keep;
10331 }
10332
10333 eh->relocs_copied = NULL;
10334
10335 keep: ;
10336 }
10337
10338 /* Finally, allocate space. */
10339 for (p = eh->relocs_copied; p != NULL; p = p->next)
10340 {
10341 asection *sreloc = elf_section_data (p->section)->sreloc;
10342 sreloc->size += p->count * RELOC_SIZE (htab);
10343 }
10344
10345 return TRUE;
10346 }
10347
10348 /* Find any dynamic relocs that apply to read-only sections. */
10349
10350 static bfd_boolean
10351 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
10352 {
10353 struct elf32_arm_link_hash_entry * eh;
10354 struct elf32_arm_relocs_copied * p;
10355
10356 if (h->root.type == bfd_link_hash_warning)
10357 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10358
10359 eh = (struct elf32_arm_link_hash_entry *) h;
10360 for (p = eh->relocs_copied; p != NULL; p = p->next)
10361 {
10362 asection *s = p->section;
10363
10364 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10365 {
10366 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10367
10368 info->flags |= DF_TEXTREL;
10369
10370 /* Not an error, just cut short the traversal. */
10371 return FALSE;
10372 }
10373 }
10374 return TRUE;
10375 }
10376
10377 void
10378 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10379 int byteswap_code)
10380 {
10381 struct elf32_arm_link_hash_table *globals;
10382
10383 globals = elf32_arm_hash_table (info);
10384 globals->byteswap_code = byteswap_code;
10385 }
10386
10387 /* Set the sizes of the dynamic sections. */
10388
10389 static bfd_boolean
10390 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10391 struct bfd_link_info * info)
10392 {
10393 bfd * dynobj;
10394 asection * s;
10395 bfd_boolean plt;
10396 bfd_boolean relocs;
10397 bfd *ibfd;
10398 struct elf32_arm_link_hash_table *htab;
10399
10400 htab = elf32_arm_hash_table (info);
10401 dynobj = elf_hash_table (info)->dynobj;
10402 BFD_ASSERT (dynobj != NULL);
10403 check_use_blx (htab);
10404
10405 if (elf_hash_table (info)->dynamic_sections_created)
10406 {
10407 /* Set the contents of the .interp section to the interpreter. */
10408 if (info->executable)
10409 {
10410 s = bfd_get_section_by_name (dynobj, ".interp");
10411 BFD_ASSERT (s != NULL);
10412 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10413 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10414 }
10415 }
10416
10417 /* Set up .got offsets for local syms, and space for local dynamic
10418 relocs. */
10419 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10420 {
10421 bfd_signed_vma *local_got;
10422 bfd_signed_vma *end_local_got;
10423 char *local_tls_type;
10424 bfd_size_type locsymcount;
10425 Elf_Internal_Shdr *symtab_hdr;
10426 asection *srel;
10427 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10428
10429 if (! is_arm_elf (ibfd))
10430 continue;
10431
10432 for (s = ibfd->sections; s != NULL; s = s->next)
10433 {
10434 struct elf32_arm_relocs_copied *p;
10435
10436 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10437 {
10438 if (!bfd_is_abs_section (p->section)
10439 && bfd_is_abs_section (p->section->output_section))
10440 {
10441 /* Input section has been discarded, either because
10442 it is a copy of a linkonce section or due to
10443 linker script /DISCARD/, so we'll be discarding
10444 the relocs too. */
10445 }
10446 else if (is_vxworks
10447 && strcmp (p->section->output_section->name,
10448 ".tls_vars") == 0)
10449 {
10450 /* Relocations in vxworks .tls_vars sections are
10451 handled specially by the loader. */
10452 }
10453 else if (p->count != 0)
10454 {
10455 srel = elf_section_data (p->section)->sreloc;
10456 srel->size += p->count * RELOC_SIZE (htab);
10457 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10458 info->flags |= DF_TEXTREL;
10459 }
10460 }
10461 }
10462
10463 local_got = elf_local_got_refcounts (ibfd);
10464 if (!local_got)
10465 continue;
10466
10467 symtab_hdr = & elf_symtab_hdr (ibfd);
10468 locsymcount = symtab_hdr->sh_info;
10469 end_local_got = local_got + locsymcount;
10470 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10471 s = htab->sgot;
10472 srel = htab->srelgot;
10473 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10474 {
10475 if (*local_got > 0)
10476 {
10477 *local_got = s->size;
10478 if (*local_tls_type & GOT_TLS_GD)
10479 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10480 s->size += 8;
10481 if (*local_tls_type & GOT_TLS_IE)
10482 s->size += 4;
10483 if (*local_tls_type == GOT_NORMAL)
10484 s->size += 4;
10485
10486 if (info->shared || *local_tls_type == GOT_TLS_GD)
10487 srel->size += RELOC_SIZE (htab);
10488 }
10489 else
10490 *local_got = (bfd_vma) -1;
10491 }
10492 }
10493
10494 if (htab->tls_ldm_got.refcount > 0)
10495 {
10496 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10497 for R_ARM_TLS_LDM32 relocations. */
10498 htab->tls_ldm_got.offset = htab->sgot->size;
10499 htab->sgot->size += 8;
10500 if (info->shared)
10501 htab->srelgot->size += RELOC_SIZE (htab);
10502 }
10503 else
10504 htab->tls_ldm_got.offset = -1;
10505
10506 /* Allocate global sym .plt and .got entries, and space for global
10507 sym dynamic relocs. */
10508 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10509
10510 /* Here we rummage through the found bfds to collect glue information. */
10511 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10512 {
10513 if (! is_arm_elf (ibfd))
10514 continue;
10515
10516 /* Initialise mapping tables for code/data. */
10517 bfd_elf32_arm_init_maps (ibfd);
10518
10519 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10520 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10521 /* xgettext:c-format */
10522 _bfd_error_handler (_("Errors encountered processing file %s"),
10523 ibfd->filename);
10524 }
10525
10526 /* The check_relocs and adjust_dynamic_symbol entry points have
10527 determined the sizes of the various dynamic sections. Allocate
10528 memory for them. */
10529 plt = FALSE;
10530 relocs = FALSE;
10531 for (s = dynobj->sections; s != NULL; s = s->next)
10532 {
10533 const char * name;
10534
10535 if ((s->flags & SEC_LINKER_CREATED) == 0)
10536 continue;
10537
10538 /* It's OK to base decisions on the section name, because none
10539 of the dynobj section names depend upon the input files. */
10540 name = bfd_get_section_name (dynobj, s);
10541
10542 if (strcmp (name, ".plt") == 0)
10543 {
10544 /* Remember whether there is a PLT. */
10545 plt = s->size != 0;
10546 }
10547 else if (CONST_STRNEQ (name, ".rel"))
10548 {
10549 if (s->size != 0)
10550 {
10551 /* Remember whether there are any reloc sections other
10552 than .rel(a).plt and .rela.plt.unloaded. */
10553 if (s != htab->srelplt && s != htab->srelplt2)
10554 relocs = TRUE;
10555
10556 /* We use the reloc_count field as a counter if we need
10557 to copy relocs into the output file. */
10558 s->reloc_count = 0;
10559 }
10560 }
10561 else if (! CONST_STRNEQ (name, ".got")
10562 && strcmp (name, ".dynbss") != 0)
10563 {
10564 /* It's not one of our sections, so don't allocate space. */
10565 continue;
10566 }
10567
10568 if (s->size == 0)
10569 {
10570 /* If we don't need this section, strip it from the
10571 output file. This is mostly to handle .rel(a).bss and
10572 .rel(a).plt. We must create both sections in
10573 create_dynamic_sections, because they must be created
10574 before the linker maps input sections to output
10575 sections. The linker does that before
10576 adjust_dynamic_symbol is called, and it is that
10577 function which decides whether anything needs to go
10578 into these sections. */
10579 s->flags |= SEC_EXCLUDE;
10580 continue;
10581 }
10582
10583 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10584 continue;
10585
10586 /* Allocate memory for the section contents. */
10587 s->contents = bfd_zalloc (dynobj, s->size);
10588 if (s->contents == NULL)
10589 return FALSE;
10590 }
10591
10592 if (elf_hash_table (info)->dynamic_sections_created)
10593 {
10594 /* Add some entries to the .dynamic section. We fill in the
10595 values later, in elf32_arm_finish_dynamic_sections, but we
10596 must add the entries now so that we get the correct size for
10597 the .dynamic section. The DT_DEBUG entry is filled in by the
10598 dynamic linker and used by the debugger. */
10599 #define add_dynamic_entry(TAG, VAL) \
10600 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10601
10602 if (info->executable)
10603 {
10604 if (!add_dynamic_entry (DT_DEBUG, 0))
10605 return FALSE;
10606 }
10607
10608 if (plt)
10609 {
10610 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10611 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10612 || !add_dynamic_entry (DT_PLTREL,
10613 htab->use_rel ? DT_REL : DT_RELA)
10614 || !add_dynamic_entry (DT_JMPREL, 0))
10615 return FALSE;
10616 }
10617
10618 if (relocs)
10619 {
10620 if (htab->use_rel)
10621 {
10622 if (!add_dynamic_entry (DT_REL, 0)
10623 || !add_dynamic_entry (DT_RELSZ, 0)
10624 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10625 return FALSE;
10626 }
10627 else
10628 {
10629 if (!add_dynamic_entry (DT_RELA, 0)
10630 || !add_dynamic_entry (DT_RELASZ, 0)
10631 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10632 return FALSE;
10633 }
10634 }
10635
10636 /* If any dynamic relocs apply to a read-only section,
10637 then we need a DT_TEXTREL entry. */
10638 if ((info->flags & DF_TEXTREL) == 0)
10639 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10640 info);
10641
10642 if ((info->flags & DF_TEXTREL) != 0)
10643 {
10644 if (!add_dynamic_entry (DT_TEXTREL, 0))
10645 return FALSE;
10646 }
10647 if (htab->vxworks_p
10648 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10649 return FALSE;
10650 }
10651 #undef add_dynamic_entry
10652
10653 return TRUE;
10654 }
10655
10656 /* Finish up dynamic symbol handling. We set the contents of various
10657 dynamic sections here. */
10658
10659 static bfd_boolean
10660 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10661 struct bfd_link_info * info,
10662 struct elf_link_hash_entry * h,
10663 Elf_Internal_Sym * sym)
10664 {
10665 bfd * dynobj;
10666 struct elf32_arm_link_hash_table *htab;
10667 struct elf32_arm_link_hash_entry *eh;
10668
10669 dynobj = elf_hash_table (info)->dynobj;
10670 htab = elf32_arm_hash_table (info);
10671 eh = (struct elf32_arm_link_hash_entry *) h;
10672
10673 if (h->plt.offset != (bfd_vma) -1)
10674 {
10675 asection * splt;
10676 asection * srel;
10677 bfd_byte *loc;
10678 bfd_vma plt_index;
10679 Elf_Internal_Rela rel;
10680
10681 /* This symbol has an entry in the procedure linkage table. Set
10682 it up. */
10683
10684 BFD_ASSERT (h->dynindx != -1);
10685
10686 splt = bfd_get_section_by_name (dynobj, ".plt");
10687 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10688 BFD_ASSERT (splt != NULL && srel != NULL);
10689
10690 /* Fill in the entry in the procedure linkage table. */
10691 if (htab->symbian_p)
10692 {
10693 put_arm_insn (htab, output_bfd,
10694 elf32_arm_symbian_plt_entry[0],
10695 splt->contents + h->plt.offset);
10696 bfd_put_32 (output_bfd,
10697 elf32_arm_symbian_plt_entry[1],
10698 splt->contents + h->plt.offset + 4);
10699
10700 /* Fill in the entry in the .rel.plt section. */
10701 rel.r_offset = (splt->output_section->vma
10702 + splt->output_offset
10703 + h->plt.offset + 4);
10704 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10705
10706 /* Get the index in the procedure linkage table which
10707 corresponds to this symbol. This is the index of this symbol
10708 in all the symbols for which we are making plt entries. The
10709 first entry in the procedure linkage table is reserved. */
10710 plt_index = ((h->plt.offset - htab->plt_header_size)
10711 / htab->plt_entry_size);
10712 }
10713 else
10714 {
10715 bfd_vma got_offset, got_address, plt_address;
10716 bfd_vma got_displacement;
10717 asection * sgot;
10718 bfd_byte * ptr;
10719
10720 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10721 BFD_ASSERT (sgot != NULL);
10722
10723 /* Get the offset into the .got.plt table of the entry that
10724 corresponds to this function. */
10725 got_offset = eh->plt_got_offset;
10726
10727 /* Get the index in the procedure linkage table which
10728 corresponds to this symbol. This is the index of this symbol
10729 in all the symbols for which we are making plt entries. The
10730 first three entries in .got.plt are reserved; after that
10731 symbols appear in the same order as in .plt. */
10732 plt_index = (got_offset - 12) / 4;
10733
10734 /* Calculate the address of the GOT entry. */
10735 got_address = (sgot->output_section->vma
10736 + sgot->output_offset
10737 + got_offset);
10738
10739 /* ...and the address of the PLT entry. */
10740 plt_address = (splt->output_section->vma
10741 + splt->output_offset
10742 + h->plt.offset);
10743
10744 ptr = htab->splt->contents + h->plt.offset;
10745 if (htab->vxworks_p && info->shared)
10746 {
10747 unsigned int i;
10748 bfd_vma val;
10749
10750 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10751 {
10752 val = elf32_arm_vxworks_shared_plt_entry[i];
10753 if (i == 2)
10754 val |= got_address - sgot->output_section->vma;
10755 if (i == 5)
10756 val |= plt_index * RELOC_SIZE (htab);
10757 if (i == 2 || i == 5)
10758 bfd_put_32 (output_bfd, val, ptr);
10759 else
10760 put_arm_insn (htab, output_bfd, val, ptr);
10761 }
10762 }
10763 else if (htab->vxworks_p)
10764 {
10765 unsigned int i;
10766 bfd_vma val;
10767
10768 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10769 {
10770 val = elf32_arm_vxworks_exec_plt_entry[i];
10771 if (i == 2)
10772 val |= got_address;
10773 if (i == 4)
10774 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10775 if (i == 5)
10776 val |= plt_index * RELOC_SIZE (htab);
10777 if (i == 2 || i == 5)
10778 bfd_put_32 (output_bfd, val, ptr);
10779 else
10780 put_arm_insn (htab, output_bfd, val, ptr);
10781 }
10782
10783 loc = (htab->srelplt2->contents
10784 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10785
10786 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10787 referencing the GOT for this PLT entry. */
10788 rel.r_offset = plt_address + 8;
10789 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10790 rel.r_addend = got_offset;
10791 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10792 loc += RELOC_SIZE (htab);
10793
10794 /* Create the R_ARM_ABS32 relocation referencing the
10795 beginning of the PLT for this GOT entry. */
10796 rel.r_offset = got_address;
10797 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10798 rel.r_addend = 0;
10799 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10800 }
10801 else
10802 {
10803 bfd_signed_vma thumb_refs;
10804 /* Calculate the displacement between the PLT slot and the
10805 entry in the GOT. The eight-byte offset accounts for the
10806 value produced by adding to pc in the first instruction
10807 of the PLT stub. */
10808 got_displacement = got_address - (plt_address + 8);
10809
10810 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10811
10812 thumb_refs = eh->plt_thumb_refcount;
10813 if (!htab->use_blx)
10814 thumb_refs += eh->plt_maybe_thumb_refcount;
10815
10816 if (thumb_refs > 0)
10817 {
10818 put_thumb_insn (htab, output_bfd,
10819 elf32_arm_plt_thumb_stub[0], ptr - 4);
10820 put_thumb_insn (htab, output_bfd,
10821 elf32_arm_plt_thumb_stub[1], ptr - 2);
10822 }
10823
10824 put_arm_insn (htab, output_bfd,
10825 elf32_arm_plt_entry[0]
10826 | ((got_displacement & 0x0ff00000) >> 20),
10827 ptr + 0);
10828 put_arm_insn (htab, output_bfd,
10829 elf32_arm_plt_entry[1]
10830 | ((got_displacement & 0x000ff000) >> 12),
10831 ptr+ 4);
10832 put_arm_insn (htab, output_bfd,
10833 elf32_arm_plt_entry[2]
10834 | (got_displacement & 0x00000fff),
10835 ptr + 8);
10836 #ifdef FOUR_WORD_PLT
10837 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10838 #endif
10839 }
10840
10841 /* Fill in the entry in the global offset table. */
10842 bfd_put_32 (output_bfd,
10843 (splt->output_section->vma
10844 + splt->output_offset),
10845 sgot->contents + got_offset);
10846
10847 /* Fill in the entry in the .rel(a).plt section. */
10848 rel.r_addend = 0;
10849 rel.r_offset = got_address;
10850 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10851 }
10852
10853 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10854 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10855
10856 if (!h->def_regular)
10857 {
10858 /* Mark the symbol as undefined, rather than as defined in
10859 the .plt section. Leave the value alone. */
10860 sym->st_shndx = SHN_UNDEF;
10861 /* If the symbol is weak, we do need to clear the value.
10862 Otherwise, the PLT entry would provide a definition for
10863 the symbol even if the symbol wasn't defined anywhere,
10864 and so the symbol would never be NULL. */
10865 if (!h->ref_regular_nonweak)
10866 sym->st_value = 0;
10867 }
10868 }
10869
10870 if (h->got.offset != (bfd_vma) -1
10871 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10872 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10873 {
10874 asection * sgot;
10875 asection * srel;
10876 Elf_Internal_Rela rel;
10877 bfd_byte *loc;
10878 bfd_vma offset;
10879
10880 /* This symbol has an entry in the global offset table. Set it
10881 up. */
10882 sgot = bfd_get_section_by_name (dynobj, ".got");
10883 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10884 BFD_ASSERT (sgot != NULL && srel != NULL);
10885
10886 offset = (h->got.offset & ~(bfd_vma) 1);
10887 rel.r_addend = 0;
10888 rel.r_offset = (sgot->output_section->vma
10889 + sgot->output_offset
10890 + offset);
10891
10892 /* If this is a static link, or it is a -Bsymbolic link and the
10893 symbol is defined locally or was forced to be local because
10894 of a version file, we just want to emit a RELATIVE reloc.
10895 The entry in the global offset table will already have been
10896 initialized in the relocate_section function. */
10897 if (info->shared
10898 && SYMBOL_REFERENCES_LOCAL (info, h))
10899 {
10900 BFD_ASSERT ((h->got.offset & 1) != 0);
10901 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10902 if (!htab->use_rel)
10903 {
10904 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10905 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10906 }
10907 }
10908 else
10909 {
10910 BFD_ASSERT ((h->got.offset & 1) == 0);
10911 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10912 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10913 }
10914
10915 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10916 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10917 }
10918
10919 if (h->needs_copy)
10920 {
10921 asection * s;
10922 Elf_Internal_Rela rel;
10923 bfd_byte *loc;
10924
10925 /* This symbol needs a copy reloc. Set it up. */
10926 BFD_ASSERT (h->dynindx != -1
10927 && (h->root.type == bfd_link_hash_defined
10928 || h->root.type == bfd_link_hash_defweak));
10929
10930 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10931 RELOC_SECTION (htab, ".bss"));
10932 BFD_ASSERT (s != NULL);
10933
10934 rel.r_addend = 0;
10935 rel.r_offset = (h->root.u.def.value
10936 + h->root.u.def.section->output_section->vma
10937 + h->root.u.def.section->output_offset);
10938 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10939 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10940 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10941 }
10942
10943 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10944 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10945 to the ".got" section. */
10946 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10947 || (!htab->vxworks_p && h == htab->root.hgot))
10948 sym->st_shndx = SHN_ABS;
10949
10950 return TRUE;
10951 }
10952
10953 /* Finish up the dynamic sections. */
10954
10955 static bfd_boolean
10956 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10957 {
10958 bfd * dynobj;
10959 asection * sgot;
10960 asection * sdyn;
10961
10962 dynobj = elf_hash_table (info)->dynobj;
10963
10964 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10965 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10966 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10967
10968 if (elf_hash_table (info)->dynamic_sections_created)
10969 {
10970 asection *splt;
10971 Elf32_External_Dyn *dyncon, *dynconend;
10972 struct elf32_arm_link_hash_table *htab;
10973
10974 htab = elf32_arm_hash_table (info);
10975 splt = bfd_get_section_by_name (dynobj, ".plt");
10976 BFD_ASSERT (splt != NULL && sdyn != NULL);
10977
10978 dyncon = (Elf32_External_Dyn *) sdyn->contents;
10979 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
10980
10981 for (; dyncon < dynconend; dyncon++)
10982 {
10983 Elf_Internal_Dyn dyn;
10984 const char * name;
10985 asection * s;
10986
10987 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
10988
10989 switch (dyn.d_tag)
10990 {
10991 unsigned int type;
10992
10993 default:
10994 if (htab->vxworks_p
10995 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10996 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10997 break;
10998
10999 case DT_HASH:
11000 name = ".hash";
11001 goto get_vma_if_bpabi;
11002 case DT_STRTAB:
11003 name = ".dynstr";
11004 goto get_vma_if_bpabi;
11005 case DT_SYMTAB:
11006 name = ".dynsym";
11007 goto get_vma_if_bpabi;
11008 case DT_VERSYM:
11009 name = ".gnu.version";
11010 goto get_vma_if_bpabi;
11011 case DT_VERDEF:
11012 name = ".gnu.version_d";
11013 goto get_vma_if_bpabi;
11014 case DT_VERNEED:
11015 name = ".gnu.version_r";
11016 goto get_vma_if_bpabi;
11017
11018 case DT_PLTGOT:
11019 name = ".got";
11020 goto get_vma;
11021 case DT_JMPREL:
11022 name = RELOC_SECTION (htab, ".plt");
11023 get_vma:
11024 s = bfd_get_section_by_name (output_bfd, name);
11025 BFD_ASSERT (s != NULL);
11026 if (!htab->symbian_p)
11027 dyn.d_un.d_ptr = s->vma;
11028 else
11029 /* In the BPABI, tags in the PT_DYNAMIC section point
11030 at the file offset, not the memory address, for the
11031 convenience of the post linker. */
11032 dyn.d_un.d_ptr = s->filepos;
11033 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11034 break;
11035
11036 get_vma_if_bpabi:
11037 if (htab->symbian_p)
11038 goto get_vma;
11039 break;
11040
11041 case DT_PLTRELSZ:
11042 s = bfd_get_section_by_name (output_bfd,
11043 RELOC_SECTION (htab, ".plt"));
11044 BFD_ASSERT (s != NULL);
11045 dyn.d_un.d_val = s->size;
11046 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11047 break;
11048
11049 case DT_RELSZ:
11050 case DT_RELASZ:
11051 if (!htab->symbian_p)
11052 {
11053 /* My reading of the SVR4 ABI indicates that the
11054 procedure linkage table relocs (DT_JMPREL) should be
11055 included in the overall relocs (DT_REL). This is
11056 what Solaris does. However, UnixWare can not handle
11057 that case. Therefore, we override the DT_RELSZ entry
11058 here to make it not include the JMPREL relocs. Since
11059 the linker script arranges for .rel(a).plt to follow all
11060 other relocation sections, we don't have to worry
11061 about changing the DT_REL entry. */
11062 s = bfd_get_section_by_name (output_bfd,
11063 RELOC_SECTION (htab, ".plt"));
11064 if (s != NULL)
11065 dyn.d_un.d_val -= s->size;
11066 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11067 break;
11068 }
11069 /* Fall through. */
11070
11071 case DT_REL:
11072 case DT_RELA:
11073 /* In the BPABI, the DT_REL tag must point at the file
11074 offset, not the VMA, of the first relocation
11075 section. So, we use code similar to that in
11076 elflink.c, but do not check for SHF_ALLOC on the
11077 relcoation section, since relocations sections are
11078 never allocated under the BPABI. The comments above
11079 about Unixware notwithstanding, we include all of the
11080 relocations here. */
11081 if (htab->symbian_p)
11082 {
11083 unsigned int i;
11084 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11085 ? SHT_REL : SHT_RELA);
11086 dyn.d_un.d_val = 0;
11087 for (i = 1; i < elf_numsections (output_bfd); i++)
11088 {
11089 Elf_Internal_Shdr *hdr
11090 = elf_elfsections (output_bfd)[i];
11091 if (hdr->sh_type == type)
11092 {
11093 if (dyn.d_tag == DT_RELSZ
11094 || dyn.d_tag == DT_RELASZ)
11095 dyn.d_un.d_val += hdr->sh_size;
11096 else if ((ufile_ptr) hdr->sh_offset
11097 <= dyn.d_un.d_val - 1)
11098 dyn.d_un.d_val = hdr->sh_offset;
11099 }
11100 }
11101 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11102 }
11103 break;
11104
11105 /* Set the bottom bit of DT_INIT/FINI if the
11106 corresponding function is Thumb. */
11107 case DT_INIT:
11108 name = info->init_function;
11109 goto get_sym;
11110 case DT_FINI:
11111 name = info->fini_function;
11112 get_sym:
11113 /* If it wasn't set by elf_bfd_final_link
11114 then there is nothing to adjust. */
11115 if (dyn.d_un.d_val != 0)
11116 {
11117 struct elf_link_hash_entry * eh;
11118
11119 eh = elf_link_hash_lookup (elf_hash_table (info), name,
11120 FALSE, FALSE, TRUE);
11121 if (eh != NULL
11122 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
11123 {
11124 dyn.d_un.d_val |= 1;
11125 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11126 }
11127 }
11128 break;
11129 }
11130 }
11131
11132 /* Fill in the first entry in the procedure linkage table. */
11133 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
11134 {
11135 const bfd_vma *plt0_entry;
11136 bfd_vma got_address, plt_address, got_displacement;
11137
11138 /* Calculate the addresses of the GOT and PLT. */
11139 got_address = sgot->output_section->vma + sgot->output_offset;
11140 plt_address = splt->output_section->vma + splt->output_offset;
11141
11142 if (htab->vxworks_p)
11143 {
11144 /* The VxWorks GOT is relocated by the dynamic linker.
11145 Therefore, we must emit relocations rather than simply
11146 computing the values now. */
11147 Elf_Internal_Rela rel;
11148
11149 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
11150 put_arm_insn (htab, output_bfd, plt0_entry[0],
11151 splt->contents + 0);
11152 put_arm_insn (htab, output_bfd, plt0_entry[1],
11153 splt->contents + 4);
11154 put_arm_insn (htab, output_bfd, plt0_entry[2],
11155 splt->contents + 8);
11156 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
11157
11158 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
11159 rel.r_offset = plt_address + 12;
11160 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11161 rel.r_addend = 0;
11162 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
11163 htab->srelplt2->contents);
11164 }
11165 else
11166 {
11167 got_displacement = got_address - (plt_address + 16);
11168
11169 plt0_entry = elf32_arm_plt0_entry;
11170 put_arm_insn (htab, output_bfd, plt0_entry[0],
11171 splt->contents + 0);
11172 put_arm_insn (htab, output_bfd, plt0_entry[1],
11173 splt->contents + 4);
11174 put_arm_insn (htab, output_bfd, plt0_entry[2],
11175 splt->contents + 8);
11176 put_arm_insn (htab, output_bfd, plt0_entry[3],
11177 splt->contents + 12);
11178
11179 #ifdef FOUR_WORD_PLT
11180 /* The displacement value goes in the otherwise-unused
11181 last word of the second entry. */
11182 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
11183 #else
11184 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
11185 #endif
11186 }
11187 }
11188
11189 /* UnixWare sets the entsize of .plt to 4, although that doesn't
11190 really seem like the right value. */
11191 if (splt->output_section->owner == output_bfd)
11192 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
11193
11194 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
11195 {
11196 /* Correct the .rel(a).plt.unloaded relocations. They will have
11197 incorrect symbol indexes. */
11198 int num_plts;
11199 unsigned char *p;
11200
11201 num_plts = ((htab->splt->size - htab->plt_header_size)
11202 / htab->plt_entry_size);
11203 p = htab->srelplt2->contents + RELOC_SIZE (htab);
11204
11205 for (; num_plts; num_plts--)
11206 {
11207 Elf_Internal_Rela rel;
11208
11209 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11210 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11211 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11212 p += RELOC_SIZE (htab);
11213
11214 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11215 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11216 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11217 p += RELOC_SIZE (htab);
11218 }
11219 }
11220 }
11221
11222 /* Fill in the first three entries in the global offset table. */
11223 if (sgot)
11224 {
11225 if (sgot->size > 0)
11226 {
11227 if (sdyn == NULL)
11228 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
11229 else
11230 bfd_put_32 (output_bfd,
11231 sdyn->output_section->vma + sdyn->output_offset,
11232 sgot->contents);
11233 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
11234 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
11235 }
11236
11237 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
11238 }
11239
11240 return TRUE;
11241 }
11242
11243 static void
11244 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11245 {
11246 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11247 struct elf32_arm_link_hash_table *globals;
11248
11249 i_ehdrp = elf_elfheader (abfd);
11250
11251 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
11252 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
11253 else
11254 i_ehdrp->e_ident[EI_OSABI] = 0;
11255 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
11256
11257 if (link_info)
11258 {
11259 globals = elf32_arm_hash_table (link_info);
11260 if (globals->byteswap_code)
11261 i_ehdrp->e_flags |= EF_ARM_BE8;
11262 }
11263 }
11264
11265 static enum elf_reloc_type_class
11266 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
11267 {
11268 switch ((int) ELF32_R_TYPE (rela->r_info))
11269 {
11270 case R_ARM_RELATIVE:
11271 return reloc_class_relative;
11272 case R_ARM_JUMP_SLOT:
11273 return reloc_class_plt;
11274 case R_ARM_COPY:
11275 return reloc_class_copy;
11276 default:
11277 return reloc_class_normal;
11278 }
11279 }
11280
11281 /* Set the right machine number for an Arm ELF file. */
11282
11283 static bfd_boolean
11284 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
11285 {
11286 if (hdr->sh_type == SHT_NOTE)
11287 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
11288
11289 return TRUE;
11290 }
11291
11292 static void
11293 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
11294 {
11295 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
11296 }
11297
11298 /* Return TRUE if this is an unwinding table entry. */
11299
11300 static bfd_boolean
11301 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
11302 {
11303 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
11304 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
11305 }
11306
11307
11308 /* Set the type and flags for an ARM section. We do this by
11309 the section name, which is a hack, but ought to work. */
11310
11311 static bfd_boolean
11312 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
11313 {
11314 const char * name;
11315
11316 name = bfd_get_section_name (abfd, sec);
11317
11318 if (is_arm_elf_unwind_section_name (abfd, name))
11319 {
11320 hdr->sh_type = SHT_ARM_EXIDX;
11321 hdr->sh_flags |= SHF_LINK_ORDER;
11322 }
11323 return TRUE;
11324 }
11325
11326 /* Handle an ARM specific section when reading an object file. This is
11327 called when bfd_section_from_shdr finds a section with an unknown
11328 type. */
11329
11330 static bfd_boolean
11331 elf32_arm_section_from_shdr (bfd *abfd,
11332 Elf_Internal_Shdr * hdr,
11333 const char *name,
11334 int shindex)
11335 {
11336 /* There ought to be a place to keep ELF backend specific flags, but
11337 at the moment there isn't one. We just keep track of the
11338 sections by their name, instead. Fortunately, the ABI gives
11339 names for all the ARM specific sections, so we will probably get
11340 away with this. */
11341 switch (hdr->sh_type)
11342 {
11343 case SHT_ARM_EXIDX:
11344 case SHT_ARM_PREEMPTMAP:
11345 case SHT_ARM_ATTRIBUTES:
11346 break;
11347
11348 default:
11349 return FALSE;
11350 }
11351
11352 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
11353 return FALSE;
11354
11355 return TRUE;
11356 }
11357
11358 /* A structure used to record a list of sections, independently
11359 of the next and prev fields in the asection structure. */
11360 typedef struct section_list
11361 {
11362 asection * sec;
11363 struct section_list * next;
11364 struct section_list * prev;
11365 }
11366 section_list;
11367
11368 /* Unfortunately we need to keep a list of sections for which
11369 an _arm_elf_section_data structure has been allocated. This
11370 is because it is possible for functions like elf32_arm_write_section
11371 to be called on a section which has had an elf_data_structure
11372 allocated for it (and so the used_by_bfd field is valid) but
11373 for which the ARM extended version of this structure - the
11374 _arm_elf_section_data structure - has not been allocated. */
11375 static section_list * sections_with_arm_elf_section_data = NULL;
11376
11377 static void
11378 record_section_with_arm_elf_section_data (asection * sec)
11379 {
11380 struct section_list * entry;
11381
11382 entry = bfd_malloc (sizeof (* entry));
11383 if (entry == NULL)
11384 return;
11385 entry->sec = sec;
11386 entry->next = sections_with_arm_elf_section_data;
11387 entry->prev = NULL;
11388 if (entry->next != NULL)
11389 entry->next->prev = entry;
11390 sections_with_arm_elf_section_data = entry;
11391 }
11392
11393 static struct section_list *
11394 find_arm_elf_section_entry (asection * sec)
11395 {
11396 struct section_list * entry;
11397 static struct section_list * last_entry = NULL;
11398
11399 /* This is a short cut for the typical case where the sections are added
11400 to the sections_with_arm_elf_section_data list in forward order and
11401 then looked up here in backwards order. This makes a real difference
11402 to the ld-srec/sec64k.exp linker test. */
11403 entry = sections_with_arm_elf_section_data;
11404 if (last_entry != NULL)
11405 {
11406 if (last_entry->sec == sec)
11407 entry = last_entry;
11408 else if (last_entry->next != NULL
11409 && last_entry->next->sec == sec)
11410 entry = last_entry->next;
11411 }
11412
11413 for (; entry; entry = entry->next)
11414 if (entry->sec == sec)
11415 break;
11416
11417 if (entry)
11418 /* Record the entry prior to this one - it is the entry we are most
11419 likely to want to locate next time. Also this way if we have been
11420 called from unrecord_section_with_arm_elf_section_data() we will not
11421 be caching a pointer that is about to be freed. */
11422 last_entry = entry->prev;
11423
11424 return entry;
11425 }
11426
11427 static _arm_elf_section_data *
11428 get_arm_elf_section_data (asection * sec)
11429 {
11430 struct section_list * entry;
11431
11432 entry = find_arm_elf_section_entry (sec);
11433
11434 if (entry)
11435 return elf32_arm_section_data (entry->sec);
11436 else
11437 return NULL;
11438 }
11439
11440 static void
11441 unrecord_section_with_arm_elf_section_data (asection * sec)
11442 {
11443 struct section_list * entry;
11444
11445 entry = find_arm_elf_section_entry (sec);
11446
11447 if (entry)
11448 {
11449 if (entry->prev != NULL)
11450 entry->prev->next = entry->next;
11451 if (entry->next != NULL)
11452 entry->next->prev = entry->prev;
11453 if (entry == sections_with_arm_elf_section_data)
11454 sections_with_arm_elf_section_data = entry->next;
11455 free (entry);
11456 }
11457 }
11458
11459
11460 typedef struct
11461 {
11462 void *finfo;
11463 struct bfd_link_info *info;
11464 asection *sec;
11465 int sec_shndx;
11466 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11467 asection *, struct elf_link_hash_entry *);
11468 } output_arch_syminfo;
11469
11470 enum map_symbol_type
11471 {
11472 ARM_MAP_ARM,
11473 ARM_MAP_THUMB,
11474 ARM_MAP_DATA
11475 };
11476
11477
11478 /* Output a single mapping symbol. */
11479
11480 static bfd_boolean
11481 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11482 enum map_symbol_type type,
11483 bfd_vma offset)
11484 {
11485 static const char *names[3] = {"$a", "$t", "$d"};
11486 struct elf32_arm_link_hash_table *htab;
11487 Elf_Internal_Sym sym;
11488
11489 htab = elf32_arm_hash_table (osi->info);
11490 sym.st_value = osi->sec->output_section->vma
11491 + osi->sec->output_offset
11492 + offset;
11493 sym.st_size = 0;
11494 sym.st_other = 0;
11495 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11496 sym.st_shndx = osi->sec_shndx;
11497 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11498 return FALSE;
11499 return TRUE;
11500 }
11501
11502
11503 /* Output mapping symbols for PLT entries associated with H. */
11504
11505 static bfd_boolean
11506 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11507 {
11508 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11509 struct elf32_arm_link_hash_table *htab;
11510 struct elf32_arm_link_hash_entry *eh;
11511 bfd_vma addr;
11512
11513 htab = elf32_arm_hash_table (osi->info);
11514
11515 if (h->root.type == bfd_link_hash_indirect)
11516 return TRUE;
11517
11518 if (h->root.type == bfd_link_hash_warning)
11519 /* When warning symbols are created, they **replace** the "real"
11520 entry in the hash table, thus we never get to see the real
11521 symbol in a hash traversal. So look at it now. */
11522 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11523
11524 if (h->plt.offset == (bfd_vma) -1)
11525 return TRUE;
11526
11527 eh = (struct elf32_arm_link_hash_entry *) h;
11528 addr = h->plt.offset;
11529 if (htab->symbian_p)
11530 {
11531 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11532 return FALSE;
11533 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11534 return FALSE;
11535 }
11536 else if (htab->vxworks_p)
11537 {
11538 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11539 return FALSE;
11540 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11541 return FALSE;
11542 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11543 return FALSE;
11544 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11545 return FALSE;
11546 }
11547 else
11548 {
11549 bfd_signed_vma thumb_refs;
11550
11551 thumb_refs = eh->plt_thumb_refcount;
11552 if (!htab->use_blx)
11553 thumb_refs += eh->plt_maybe_thumb_refcount;
11554
11555 if (thumb_refs > 0)
11556 {
11557 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11558 return FALSE;
11559 }
11560 #ifdef FOUR_WORD_PLT
11561 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11562 return FALSE;
11563 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11564 return FALSE;
11565 #else
11566 /* A three-word PLT with no Thumb thunk contains only Arm code,
11567 so only need to output a mapping symbol for the first PLT entry and
11568 entries with thumb thunks. */
11569 if (thumb_refs > 0 || addr == 20)
11570 {
11571 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11572 return FALSE;
11573 }
11574 #endif
11575 }
11576
11577 return TRUE;
11578 }
11579
11580 /* Output a single local symbol for a generated stub. */
11581
11582 static bfd_boolean
11583 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11584 bfd_vma offset, bfd_vma size)
11585 {
11586 struct elf32_arm_link_hash_table *htab;
11587 Elf_Internal_Sym sym;
11588
11589 htab = elf32_arm_hash_table (osi->info);
11590 sym.st_value = osi->sec->output_section->vma
11591 + osi->sec->output_offset
11592 + offset;
11593 sym.st_size = size;
11594 sym.st_other = 0;
11595 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11596 sym.st_shndx = osi->sec_shndx;
11597 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11598 return FALSE;
11599 return TRUE;
11600 }
11601
11602 static bfd_boolean
11603 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11604 void * in_arg)
11605 {
11606 struct elf32_arm_stub_hash_entry *stub_entry;
11607 struct bfd_link_info *info;
11608 struct elf32_arm_link_hash_table *htab;
11609 asection *stub_sec;
11610 bfd_vma addr;
11611 char *stub_name;
11612 output_arch_syminfo *osi;
11613
11614 /* Massage our args to the form they really have. */
11615 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11616 osi = (output_arch_syminfo *) in_arg;
11617
11618 info = osi->info;
11619
11620 htab = elf32_arm_hash_table (info);
11621 stub_sec = stub_entry->stub_sec;
11622
11623 /* Ensure this stub is attached to the current section being
11624 processed. */
11625 if (stub_sec != osi->sec)
11626 return TRUE;
11627
11628 addr = (bfd_vma) stub_entry->stub_offset;
11629 stub_name = stub_entry->output_name;
11630
11631 switch (stub_entry->stub_type)
11632 {
11633 case arm_stub_long_branch:
11634 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 8))
11635 return FALSE;
11636 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11637 return FALSE;
11638 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11639 return FALSE;
11640 break;
11641 case arm_thumb_v4t_stub_long_branch:
11642 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11643 return FALSE;
11644 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11645 return FALSE;
11646 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11647 return FALSE;
11648 break;
11649 case arm_thumb_thumb_stub_long_branch:
11650 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 16))
11651 return FALSE;
11652 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11653 return FALSE;
11654 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11655 return FALSE;
11656 break;
11657 case arm_thumb_arm_v4t_stub_long_branch:
11658 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 20))
11659 return FALSE;
11660 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11661 return FALSE;
11662 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 8))
11663 return FALSE;
11664 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
11665 return FALSE;
11666 break;
11667 case arm_thumb_arm_v4t_stub_short_branch:
11668 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 8))
11669 return FALSE;
11670 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 4))
11671 return FALSE;
11672 break;
11673 case arm_stub_pic_long_branch:
11674 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11675 return FALSE;
11676 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11677 return FALSE;
11678 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11679 return FALSE;
11680 break;
11681 default:
11682 BFD_FAIL ();
11683 }
11684
11685 return TRUE;
11686 }
11687
11688 /* Output mapping symbols for linker generated sections. */
11689
11690 static bfd_boolean
11691 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11692 struct bfd_link_info *info,
11693 void *finfo,
11694 bfd_boolean (*func) (void *, const char *,
11695 Elf_Internal_Sym *,
11696 asection *,
11697 struct elf_link_hash_entry *))
11698 {
11699 output_arch_syminfo osi;
11700 struct elf32_arm_link_hash_table *htab;
11701 bfd_vma offset;
11702 bfd_size_type size;
11703
11704 htab = elf32_arm_hash_table (info);
11705 check_use_blx (htab);
11706
11707 osi.finfo = finfo;
11708 osi.info = info;
11709 osi.func = func;
11710
11711 /* ARM->Thumb glue. */
11712 if (htab->arm_glue_size > 0)
11713 {
11714 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11715 ARM2THUMB_GLUE_SECTION_NAME);
11716
11717 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11718 (output_bfd, osi.sec->output_section);
11719 if (info->shared || htab->root.is_relocatable_executable
11720 || htab->pic_veneer)
11721 size = ARM2THUMB_PIC_GLUE_SIZE;
11722 else if (htab->use_blx)
11723 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11724 else
11725 size = ARM2THUMB_STATIC_GLUE_SIZE;
11726
11727 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11728 {
11729 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11730 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11731 }
11732 }
11733
11734 /* Thumb->ARM glue. */
11735 if (htab->thumb_glue_size > 0)
11736 {
11737 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11738 THUMB2ARM_GLUE_SECTION_NAME);
11739
11740 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11741 (output_bfd, osi.sec->output_section);
11742 size = THUMB2ARM_GLUE_SIZE;
11743
11744 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11745 {
11746 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11747 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11748 }
11749 }
11750
11751 /* ARMv4 BX veneers. */
11752 if (htab->bx_glue_size > 0)
11753 {
11754 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11755 ARM_BX_GLUE_SECTION_NAME);
11756
11757 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11758 (output_bfd, osi.sec->output_section);
11759
11760 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
11761 }
11762
11763 /* Long calls stubs. */
11764 if (htab->stub_bfd && htab->stub_bfd->sections)
11765 {
11766 asection* stub_sec;
11767
11768 for (stub_sec = htab->stub_bfd->sections;
11769 stub_sec != NULL;
11770 stub_sec = stub_sec->next)
11771 {
11772 /* Ignore non-stub sections. */
11773 if (!strstr (stub_sec->name, STUB_SUFFIX))
11774 continue;
11775
11776 osi.sec = stub_sec;
11777
11778 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11779 (output_bfd, osi.sec->output_section);
11780
11781 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
11782 }
11783 }
11784
11785 /* Finally, output mapping symbols for the PLT. */
11786 if (!htab->splt || htab->splt->size == 0)
11787 return TRUE;
11788
11789 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11790 htab->splt->output_section);
11791 osi.sec = htab->splt;
11792 /* Output mapping symbols for the plt header. SymbianOS does not have a
11793 plt header. */
11794 if (htab->vxworks_p)
11795 {
11796 /* VxWorks shared libraries have no PLT header. */
11797 if (!info->shared)
11798 {
11799 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11800 return FALSE;
11801 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
11802 return FALSE;
11803 }
11804 }
11805 else if (!htab->symbian_p)
11806 {
11807 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11808 return FALSE;
11809 #ifndef FOUR_WORD_PLT
11810 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
11811 return FALSE;
11812 #endif
11813 }
11814
11815 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11816 return TRUE;
11817 }
11818
11819 /* Allocate target specific section data. */
11820
11821 static bfd_boolean
11822 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11823 {
11824 if (!sec->used_by_bfd)
11825 {
11826 _arm_elf_section_data *sdata;
11827 bfd_size_type amt = sizeof (*sdata);
11828
11829 sdata = bfd_zalloc (abfd, amt);
11830 if (sdata == NULL)
11831 return FALSE;
11832 sec->used_by_bfd = sdata;
11833 }
11834
11835 record_section_with_arm_elf_section_data (sec);
11836
11837 return _bfd_elf_new_section_hook (abfd, sec);
11838 }
11839
11840
11841 /* Used to order a list of mapping symbols by address. */
11842
11843 static int
11844 elf32_arm_compare_mapping (const void * a, const void * b)
11845 {
11846 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11847 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11848
11849 if (amap->vma > bmap->vma)
11850 return 1;
11851 else if (amap->vma < bmap->vma)
11852 return -1;
11853 else if (amap->type > bmap->type)
11854 /* Ensure results do not depend on the host qsort for objects with
11855 multiple mapping symbols at the same address by sorting on type
11856 after vma. */
11857 return 1;
11858 else if (amap->type < bmap->type)
11859 return -1;
11860 else
11861 return 0;
11862 }
11863
11864
11865 /* Do code byteswapping. Return FALSE afterwards so that the section is
11866 written out as normal. */
11867
11868 static bfd_boolean
11869 elf32_arm_write_section (bfd *output_bfd,
11870 struct bfd_link_info *link_info,
11871 asection *sec,
11872 bfd_byte *contents)
11873 {
11874 int mapcount, errcount;
11875 _arm_elf_section_data *arm_data;
11876 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11877 elf32_arm_section_map *map;
11878 elf32_vfp11_erratum_list *errnode;
11879 bfd_vma ptr;
11880 bfd_vma end;
11881 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11882 bfd_byte tmp;
11883 int i;
11884
11885 /* If this section has not been allocated an _arm_elf_section_data
11886 structure then we cannot record anything. */
11887 arm_data = get_arm_elf_section_data (sec);
11888 if (arm_data == NULL)
11889 return FALSE;
11890
11891 mapcount = arm_data->mapcount;
11892 map = arm_data->map;
11893 errcount = arm_data->erratumcount;
11894
11895 if (errcount != 0)
11896 {
11897 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11898
11899 for (errnode = arm_data->erratumlist; errnode != 0;
11900 errnode = errnode->next)
11901 {
11902 bfd_vma index = errnode->vma - offset;
11903
11904 switch (errnode->type)
11905 {
11906 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11907 {
11908 bfd_vma branch_to_veneer;
11909 /* Original condition code of instruction, plus bit mask for
11910 ARM B instruction. */
11911 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11912 | 0x0a000000;
11913
11914 /* The instruction is before the label. */
11915 index -= 4;
11916
11917 /* Above offset included in -4 below. */
11918 branch_to_veneer = errnode->u.b.veneer->vma
11919 - errnode->vma - 4;
11920
11921 if ((signed) branch_to_veneer < -(1 << 25)
11922 || (signed) branch_to_veneer >= (1 << 25))
11923 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11924 "range"), output_bfd);
11925
11926 insn |= (branch_to_veneer >> 2) & 0xffffff;
11927 contents[endianflip ^ index] = insn & 0xff;
11928 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11929 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11930 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11931 }
11932 break;
11933
11934 case VFP11_ERRATUM_ARM_VENEER:
11935 {
11936 bfd_vma branch_from_veneer;
11937 unsigned int insn;
11938
11939 /* Take size of veneer into account. */
11940 branch_from_veneer = errnode->u.v.branch->vma
11941 - errnode->vma - 12;
11942
11943 if ((signed) branch_from_veneer < -(1 << 25)
11944 || (signed) branch_from_veneer >= (1 << 25))
11945 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11946 "range"), output_bfd);
11947
11948 /* Original instruction. */
11949 insn = errnode->u.v.branch->u.b.vfp_insn;
11950 contents[endianflip ^ index] = insn & 0xff;
11951 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11952 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11953 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11954
11955 /* Branch back to insn after original insn. */
11956 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11957 contents[endianflip ^ (index + 4)] = insn & 0xff;
11958 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11959 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11960 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11961 }
11962 break;
11963
11964 default:
11965 abort ();
11966 }
11967 }
11968 }
11969
11970 if (mapcount == 0)
11971 return FALSE;
11972
11973 if (globals->byteswap_code)
11974 {
11975 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
11976
11977 ptr = map[0].vma;
11978 for (i = 0; i < mapcount; i++)
11979 {
11980 if (i == mapcount - 1)
11981 end = sec->size;
11982 else
11983 end = map[i + 1].vma;
11984
11985 switch (map[i].type)
11986 {
11987 case 'a':
11988 /* Byte swap code words. */
11989 while (ptr + 3 < end)
11990 {
11991 tmp = contents[ptr];
11992 contents[ptr] = contents[ptr + 3];
11993 contents[ptr + 3] = tmp;
11994 tmp = contents[ptr + 1];
11995 contents[ptr + 1] = contents[ptr + 2];
11996 contents[ptr + 2] = tmp;
11997 ptr += 4;
11998 }
11999 break;
12000
12001 case 't':
12002 /* Byte swap code halfwords. */
12003 while (ptr + 1 < end)
12004 {
12005 tmp = contents[ptr];
12006 contents[ptr] = contents[ptr + 1];
12007 contents[ptr + 1] = tmp;
12008 ptr += 2;
12009 }
12010 break;
12011
12012 case 'd':
12013 /* Leave data alone. */
12014 break;
12015 }
12016 ptr = end;
12017 }
12018 }
12019
12020 free (map);
12021 arm_data->mapcount = 0;
12022 arm_data->mapsize = 0;
12023 arm_data->map = NULL;
12024 unrecord_section_with_arm_elf_section_data (sec);
12025
12026 return FALSE;
12027 }
12028
12029 static void
12030 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
12031 asection * sec,
12032 void * ignore ATTRIBUTE_UNUSED)
12033 {
12034 unrecord_section_with_arm_elf_section_data (sec);
12035 }
12036
12037 static bfd_boolean
12038 elf32_arm_close_and_cleanup (bfd * abfd)
12039 {
12040 if (abfd->sections)
12041 bfd_map_over_sections (abfd,
12042 unrecord_section_via_map_over_sections,
12043 NULL);
12044
12045 return _bfd_elf_close_and_cleanup (abfd);
12046 }
12047
12048 static bfd_boolean
12049 elf32_arm_bfd_free_cached_info (bfd * abfd)
12050 {
12051 if (abfd->sections)
12052 bfd_map_over_sections (abfd,
12053 unrecord_section_via_map_over_sections,
12054 NULL);
12055
12056 return _bfd_free_cached_info (abfd);
12057 }
12058
12059 /* Display STT_ARM_TFUNC symbols as functions. */
12060
12061 static void
12062 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
12063 asymbol *asym)
12064 {
12065 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
12066
12067 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
12068 elfsym->symbol.flags |= BSF_FUNCTION;
12069 }
12070
12071
12072 /* Mangle thumb function symbols as we read them in. */
12073
12074 static bfd_boolean
12075 elf32_arm_swap_symbol_in (bfd * abfd,
12076 const void *psrc,
12077 const void *pshn,
12078 Elf_Internal_Sym *dst)
12079 {
12080 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
12081 return FALSE;
12082
12083 /* New EABI objects mark thumb function symbols by setting the low bit of
12084 the address. Turn these into STT_ARM_TFUNC. */
12085 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
12086 && (dst->st_value & 1))
12087 {
12088 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
12089 dst->st_value &= ~(bfd_vma) 1;
12090 }
12091 return TRUE;
12092 }
12093
12094
12095 /* Mangle thumb function symbols as we write them out. */
12096
12097 static void
12098 elf32_arm_swap_symbol_out (bfd *abfd,
12099 const Elf_Internal_Sym *src,
12100 void *cdst,
12101 void *shndx)
12102 {
12103 Elf_Internal_Sym newsym;
12104
12105 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
12106 of the address set, as per the new EABI. We do this unconditionally
12107 because objcopy does not set the elf header flags until after
12108 it writes out the symbol table. */
12109 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
12110 {
12111 newsym = *src;
12112 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
12113 if (newsym.st_shndx != SHN_UNDEF)
12114 {
12115 /* Do this only for defined symbols. At link type, the static
12116 linker will simulate the work of dynamic linker of resolving
12117 symbols and will carry over the thumbness of found symbols to
12118 the output symbol table. It's not clear how it happens, but
12119 the thumbness of undefined symbols can well be different at
12120 runtime, and writing '1' for them will be confusing for users
12121 and possibly for dynamic linker itself.
12122 */
12123 newsym.st_value |= 1;
12124 }
12125
12126 src = &newsym;
12127 }
12128 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
12129 }
12130
12131 /* Add the PT_ARM_EXIDX program header. */
12132
12133 static bfd_boolean
12134 elf32_arm_modify_segment_map (bfd *abfd,
12135 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12136 {
12137 struct elf_segment_map *m;
12138 asection *sec;
12139
12140 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12141 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12142 {
12143 /* If there is already a PT_ARM_EXIDX header, then we do not
12144 want to add another one. This situation arises when running
12145 "strip"; the input binary already has the header. */
12146 m = elf_tdata (abfd)->segment_map;
12147 while (m && m->p_type != PT_ARM_EXIDX)
12148 m = m->next;
12149 if (!m)
12150 {
12151 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
12152 if (m == NULL)
12153 return FALSE;
12154 m->p_type = PT_ARM_EXIDX;
12155 m->count = 1;
12156 m->sections[0] = sec;
12157
12158 m->next = elf_tdata (abfd)->segment_map;
12159 elf_tdata (abfd)->segment_map = m;
12160 }
12161 }
12162
12163 return TRUE;
12164 }
12165
12166 /* We may add a PT_ARM_EXIDX program header. */
12167
12168 static int
12169 elf32_arm_additional_program_headers (bfd *abfd,
12170 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12171 {
12172 asection *sec;
12173
12174 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12175 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12176 return 1;
12177 else
12178 return 0;
12179 }
12180
12181 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
12182
12183 static bfd_boolean
12184 elf32_arm_is_function_type (unsigned int type)
12185 {
12186 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
12187 }
12188
12189 /* We use this to override swap_symbol_in and swap_symbol_out. */
12190 const struct elf_size_info elf32_arm_size_info =
12191 {
12192 sizeof (Elf32_External_Ehdr),
12193 sizeof (Elf32_External_Phdr),
12194 sizeof (Elf32_External_Shdr),
12195 sizeof (Elf32_External_Rel),
12196 sizeof (Elf32_External_Rela),
12197 sizeof (Elf32_External_Sym),
12198 sizeof (Elf32_External_Dyn),
12199 sizeof (Elf_External_Note),
12200 4,
12201 1,
12202 32, 2,
12203 ELFCLASS32, EV_CURRENT,
12204 bfd_elf32_write_out_phdrs,
12205 bfd_elf32_write_shdrs_and_ehdr,
12206 bfd_elf32_checksum_contents,
12207 bfd_elf32_write_relocs,
12208 elf32_arm_swap_symbol_in,
12209 elf32_arm_swap_symbol_out,
12210 bfd_elf32_slurp_reloc_table,
12211 bfd_elf32_slurp_symbol_table,
12212 bfd_elf32_swap_dyn_in,
12213 bfd_elf32_swap_dyn_out,
12214 bfd_elf32_swap_reloc_in,
12215 bfd_elf32_swap_reloc_out,
12216 bfd_elf32_swap_reloca_in,
12217 bfd_elf32_swap_reloca_out
12218 };
12219
12220 #define ELF_ARCH bfd_arch_arm
12221 #define ELF_MACHINE_CODE EM_ARM
12222 #ifdef __QNXTARGET__
12223 #define ELF_MAXPAGESIZE 0x1000
12224 #else
12225 #define ELF_MAXPAGESIZE 0x8000
12226 #endif
12227 #define ELF_MINPAGESIZE 0x1000
12228 #define ELF_COMMONPAGESIZE 0x1000
12229
12230 #define bfd_elf32_mkobject elf32_arm_mkobject
12231
12232 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
12233 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
12234 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
12235 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
12236 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
12237 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
12238 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
12239 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
12240 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
12241 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
12242 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
12243 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
12244 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
12245 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
12246
12247 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
12248 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
12249 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
12250 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
12251 #define elf_backend_check_relocs elf32_arm_check_relocs
12252 #define elf_backend_relocate_section elf32_arm_relocate_section
12253 #define elf_backend_write_section elf32_arm_write_section
12254 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
12255 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
12256 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
12257 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
12258 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
12259 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
12260 #define elf_backend_post_process_headers elf32_arm_post_process_headers
12261 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
12262 #define elf_backend_object_p elf32_arm_object_p
12263 #define elf_backend_section_flags elf32_arm_section_flags
12264 #define elf_backend_fake_sections elf32_arm_fake_sections
12265 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
12266 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12267 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
12268 #define elf_backend_symbol_processing elf32_arm_symbol_processing
12269 #define elf_backend_size_info elf32_arm_size_info
12270 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
12271 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
12272 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
12273 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
12274 #define elf_backend_is_function_type elf32_arm_is_function_type
12275
12276 #define elf_backend_can_refcount 1
12277 #define elf_backend_can_gc_sections 1
12278 #define elf_backend_plt_readonly 1
12279 #define elf_backend_want_got_plt 1
12280 #define elf_backend_want_plt_sym 0
12281 #define elf_backend_may_use_rel_p 1
12282 #define elf_backend_may_use_rela_p 0
12283 #define elf_backend_default_use_rela_p 0
12284
12285 #define elf_backend_got_header_size 12
12286
12287 #undef elf_backend_obj_attrs_vendor
12288 #define elf_backend_obj_attrs_vendor "aeabi"
12289 #undef elf_backend_obj_attrs_section
12290 #define elf_backend_obj_attrs_section ".ARM.attributes"
12291 #undef elf_backend_obj_attrs_arg_type
12292 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
12293 #undef elf_backend_obj_attrs_section_type
12294 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
12295
12296 #include "elf32-target.h"
12297
12298 /* VxWorks Targets. */
12299
12300 #undef TARGET_LITTLE_SYM
12301 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
12302 #undef TARGET_LITTLE_NAME
12303 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
12304 #undef TARGET_BIG_SYM
12305 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
12306 #undef TARGET_BIG_NAME
12307 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
12308
12309 /* Like elf32_arm_link_hash_table_create -- but overrides
12310 appropriately for VxWorks. */
12311
12312 static struct bfd_link_hash_table *
12313 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
12314 {
12315 struct bfd_link_hash_table *ret;
12316
12317 ret = elf32_arm_link_hash_table_create (abfd);
12318 if (ret)
12319 {
12320 struct elf32_arm_link_hash_table *htab
12321 = (struct elf32_arm_link_hash_table *) ret;
12322 htab->use_rel = 0;
12323 htab->vxworks_p = 1;
12324 }
12325 return ret;
12326 }
12327
12328 static void
12329 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
12330 {
12331 elf32_arm_final_write_processing (abfd, linker);
12332 elf_vxworks_final_write_processing (abfd, linker);
12333 }
12334
12335 #undef elf32_bed
12336 #define elf32_bed elf32_arm_vxworks_bed
12337
12338 #undef bfd_elf32_bfd_link_hash_table_create
12339 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
12340 #undef elf_backend_add_symbol_hook
12341 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
12342 #undef elf_backend_final_write_processing
12343 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
12344 #undef elf_backend_emit_relocs
12345 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
12346
12347 #undef elf_backend_may_use_rel_p
12348 #define elf_backend_may_use_rel_p 0
12349 #undef elf_backend_may_use_rela_p
12350 #define elf_backend_may_use_rela_p 1
12351 #undef elf_backend_default_use_rela_p
12352 #define elf_backend_default_use_rela_p 1
12353 #undef elf_backend_want_plt_sym
12354 #define elf_backend_want_plt_sym 1
12355 #undef ELF_MAXPAGESIZE
12356 #define ELF_MAXPAGESIZE 0x1000
12357
12358 #include "elf32-target.h"
12359
12360
12361 /* Symbian OS Targets. */
12362
12363 #undef TARGET_LITTLE_SYM
12364 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
12365 #undef TARGET_LITTLE_NAME
12366 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
12367 #undef TARGET_BIG_SYM
12368 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
12369 #undef TARGET_BIG_NAME
12370 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
12371
12372 /* Like elf32_arm_link_hash_table_create -- but overrides
12373 appropriately for Symbian OS. */
12374
12375 static struct bfd_link_hash_table *
12376 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
12377 {
12378 struct bfd_link_hash_table *ret;
12379
12380 ret = elf32_arm_link_hash_table_create (abfd);
12381 if (ret)
12382 {
12383 struct elf32_arm_link_hash_table *htab
12384 = (struct elf32_arm_link_hash_table *)ret;
12385 /* There is no PLT header for Symbian OS. */
12386 htab->plt_header_size = 0;
12387 /* The PLT entries are each one instruction and one word. */
12388 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
12389 htab->symbian_p = 1;
12390 /* Symbian uses armv5t or above, so use_blx is always true. */
12391 htab->use_blx = 1;
12392 htab->root.is_relocatable_executable = 1;
12393 }
12394 return ret;
12395 }
12396
12397 static const struct bfd_elf_special_section
12398 elf32_arm_symbian_special_sections[] =
12399 {
12400 /* In a BPABI executable, the dynamic linking sections do not go in
12401 the loadable read-only segment. The post-linker may wish to
12402 refer to these sections, but they are not part of the final
12403 program image. */
12404 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12405 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12406 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12407 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12408 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
12409 /* These sections do not need to be writable as the SymbianOS
12410 postlinker will arrange things so that no dynamic relocation is
12411 required. */
12412 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12413 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12414 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12415 { NULL, 0, 0, 0, 0 }
12416 };
12417
12418 static void
12419 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12420 struct bfd_link_info *link_info)
12421 {
12422 /* BPABI objects are never loaded directly by an OS kernel; they are
12423 processed by a postlinker first, into an OS-specific format. If
12424 the D_PAGED bit is set on the file, BFD will align segments on
12425 page boundaries, so that an OS can directly map the file. With
12426 BPABI objects, that just results in wasted space. In addition,
12427 because we clear the D_PAGED bit, map_sections_to_segments will
12428 recognize that the program headers should not be mapped into any
12429 loadable segment. */
12430 abfd->flags &= ~D_PAGED;
12431 elf32_arm_begin_write_processing (abfd, link_info);
12432 }
12433
12434 static bfd_boolean
12435 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12436 struct bfd_link_info *info)
12437 {
12438 struct elf_segment_map *m;
12439 asection *dynsec;
12440
12441 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12442 segment. However, because the .dynamic section is not marked
12443 with SEC_LOAD, the generic ELF code will not create such a
12444 segment. */
12445 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12446 if (dynsec)
12447 {
12448 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12449 if (m->p_type == PT_DYNAMIC)
12450 break;
12451
12452 if (m == NULL)
12453 {
12454 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12455 m->next = elf_tdata (abfd)->segment_map;
12456 elf_tdata (abfd)->segment_map = m;
12457 }
12458 }
12459
12460 /* Also call the generic arm routine. */
12461 return elf32_arm_modify_segment_map (abfd, info);
12462 }
12463
12464 /* Return address for Ith PLT stub in section PLT, for relocation REL
12465 or (bfd_vma) -1 if it should not be included. */
12466
12467 static bfd_vma
12468 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12469 const arelent *rel ATTRIBUTE_UNUSED)
12470 {
12471 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12472 }
12473
12474
12475 #undef elf32_bed
12476 #define elf32_bed elf32_arm_symbian_bed
12477
12478 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12479 will process them and then discard them. */
12480 #undef ELF_DYNAMIC_SEC_FLAGS
12481 #define ELF_DYNAMIC_SEC_FLAGS \
12482 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12483
12484 #undef elf_backend_add_symbol_hook
12485 #undef elf_backend_emit_relocs
12486
12487 #undef bfd_elf32_bfd_link_hash_table_create
12488 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12489 #undef elf_backend_special_sections
12490 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12491 #undef elf_backend_begin_write_processing
12492 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12493 #undef elf_backend_final_write_processing
12494 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12495
12496 #undef elf_backend_modify_segment_map
12497 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12498
12499 /* There is no .got section for BPABI objects, and hence no header. */
12500 #undef elf_backend_got_header_size
12501 #define elf_backend_got_header_size 0
12502
12503 /* Similarly, there is no .got.plt section. */
12504 #undef elf_backend_want_got_plt
12505 #define elf_backend_want_got_plt 0
12506
12507 #undef elf_backend_plt_sym_val
12508 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12509
12510 #undef elf_backend_may_use_rel_p
12511 #define elf_backend_may_use_rel_p 1
12512 #undef elf_backend_may_use_rela_p
12513 #define elf_backend_may_use_rela_p 0
12514 #undef elf_backend_default_use_rela_p
12515 #define elf_backend_default_use_rela_p 0
12516 #undef elf_backend_want_plt_sym
12517 #define elf_backend_want_plt_sym 0
12518 #undef ELF_MAXPAGESIZE
12519 #define ELF_MAXPAGESIZE 0x8000
12520
12521 #include "elf32-target.h"
This page took 0.30776 seconds and 5 git commands to generate.