* elf32-arm.c (arm_type_of_stub): Don't crash on local symbols in
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* unallocated */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1782 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1783 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1784
1785 return NULL;
1786 }
1787
1788 static reloc_howto_type *
1789 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1790 const char *r_name)
1791 {
1792 unsigned int i;
1793
1794 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1795 if (elf32_arm_howto_table_1[i].name != NULL
1796 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1797 return &elf32_arm_howto_table_1[i];
1798
1799 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1800 if (elf32_arm_howto_table_2[i].name != NULL
1801 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1802 return &elf32_arm_howto_table_2[i];
1803
1804 return NULL;
1805 }
1806
1807 /* Support for core dump NOTE sections. */
1808
1809 static bfd_boolean
1810 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1811 {
1812 int offset;
1813 size_t size;
1814
1815 switch (note->descsz)
1816 {
1817 default:
1818 return FALSE;
1819
1820 case 148: /* Linux/ARM 32-bit*/
1821 /* pr_cursig */
1822 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1823
1824 /* pr_pid */
1825 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1826
1827 /* pr_reg */
1828 offset = 72;
1829 size = 72;
1830
1831 break;
1832 }
1833
1834 /* Make a ".reg/999" section. */
1835 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1836 size, note->descpos + offset);
1837 }
1838
1839 static bfd_boolean
1840 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1841 {
1842 switch (note->descsz)
1843 {
1844 default:
1845 return FALSE;
1846
1847 case 124: /* Linux/ARM elf_prpsinfo */
1848 elf_tdata (abfd)->core_program
1849 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1850 elf_tdata (abfd)->core_command
1851 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1852 }
1853
1854 /* Note that for some reason, a spurious space is tacked
1855 onto the end of the args in some (at least one anyway)
1856 implementations, so strip it off if it exists. */
1857 {
1858 char *command = elf_tdata (abfd)->core_command;
1859 int n = strlen (command);
1860
1861 if (0 < n && command[n - 1] == ' ')
1862 command[n - 1] = '\0';
1863 }
1864
1865 return TRUE;
1866 }
1867
1868 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1869 #define TARGET_LITTLE_NAME "elf32-littlearm"
1870 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1871 #define TARGET_BIG_NAME "elf32-bigarm"
1872
1873 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1874 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1875
1876 typedef unsigned long int insn32;
1877 typedef unsigned short int insn16;
1878
1879 /* In lieu of proper flags, assume all EABIv4 or later objects are
1880 interworkable. */
1881 #define INTERWORK_FLAG(abfd) \
1882 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1883 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1884
1885 /* The linker script knows the section names for placement.
1886 The entry_names are used to do simple name mangling on the stubs.
1887 Given a function name, and its type, the stub can be found. The
1888 name can be changed. The only requirement is the %s be present. */
1889 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1890 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1891
1892 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1893 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1894
1895 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1896 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1897
1898 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1899 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1900
1901 #define STUB_ENTRY_NAME "__%s_veneer"
1902
1903 /* The name of the dynamic interpreter. This is put in the .interp
1904 section. */
1905 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1906
1907 #ifdef FOUR_WORD_PLT
1908
1909 /* The first entry in a procedure linkage table looks like
1910 this. It is set up so that any shared library function that is
1911 called before the relocation has been set up calls the dynamic
1912 linker first. */
1913 static const bfd_vma elf32_arm_plt0_entry [] =
1914 {
1915 0xe52de004, /* str lr, [sp, #-4]! */
1916 0xe59fe010, /* ldr lr, [pc, #16] */
1917 0xe08fe00e, /* add lr, pc, lr */
1918 0xe5bef008, /* ldr pc, [lr, #8]! */
1919 };
1920
1921 /* Subsequent entries in a procedure linkage table look like
1922 this. */
1923 static const bfd_vma elf32_arm_plt_entry [] =
1924 {
1925 0xe28fc600, /* add ip, pc, #NN */
1926 0xe28cca00, /* add ip, ip, #NN */
1927 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1928 0x00000000, /* unused */
1929 };
1930
1931 #else
1932
1933 /* The first entry in a procedure linkage table looks like
1934 this. It is set up so that any shared library function that is
1935 called before the relocation has been set up calls the dynamic
1936 linker first. */
1937 static const bfd_vma elf32_arm_plt0_entry [] =
1938 {
1939 0xe52de004, /* str lr, [sp, #-4]! */
1940 0xe59fe004, /* ldr lr, [pc, #4] */
1941 0xe08fe00e, /* add lr, pc, lr */
1942 0xe5bef008, /* ldr pc, [lr, #8]! */
1943 0x00000000, /* &GOT[0] - . */
1944 };
1945
1946 /* Subsequent entries in a procedure linkage table look like
1947 this. */
1948 static const bfd_vma elf32_arm_plt_entry [] =
1949 {
1950 0xe28fc600, /* add ip, pc, #0xNN00000 */
1951 0xe28cca00, /* add ip, ip, #0xNN000 */
1952 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1953 };
1954
1955 #endif
1956
1957 /* The format of the first entry in the procedure linkage table
1958 for a VxWorks executable. */
1959 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1960 {
1961 0xe52dc008, /* str ip,[sp,#-8]! */
1962 0xe59fc000, /* ldr ip,[pc] */
1963 0xe59cf008, /* ldr pc,[ip,#8] */
1964 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1965 };
1966
1967 /* The format of subsequent entries in a VxWorks executable. */
1968 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1969 {
1970 0xe59fc000, /* ldr ip,[pc] */
1971 0xe59cf000, /* ldr pc,[ip] */
1972 0x00000000, /* .long @got */
1973 0xe59fc000, /* ldr ip,[pc] */
1974 0xea000000, /* b _PLT */
1975 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1976 };
1977
1978 /* The format of entries in a VxWorks shared library. */
1979 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1980 {
1981 0xe59fc000, /* ldr ip,[pc] */
1982 0xe79cf009, /* ldr pc,[ip,r9] */
1983 0x00000000, /* .long @got */
1984 0xe59fc000, /* ldr ip,[pc] */
1985 0xe599f008, /* ldr pc,[r9,#8] */
1986 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1987 };
1988
1989 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1990 #define PLT_THUMB_STUB_SIZE 4
1991 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1992 {
1993 0x4778, /* bx pc */
1994 0x46c0 /* nop */
1995 };
1996
1997 /* The entries in a PLT when using a DLL-based target with multiple
1998 address spaces. */
1999 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2000 {
2001 0xe51ff004, /* ldr pc, [pc, #-4] */
2002 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2003 };
2004
2005 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2006 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2007 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2008 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2009 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2010 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2011
2012 static const bfd_vma arm_long_branch_stub[] =
2013 {
2014 0xe51ff004, /* ldr pc, [pc, #-4] */
2015 0x00000000, /* dcd R_ARM_ABS32(X) */
2016 };
2017
2018 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2019 {
2020 0xe59fc000, /* ldr ip, [pc, #0] */
2021 0xe12fff1c, /* bx ip */
2022 0x00000000, /* dcd R_ARM_ABS32(X) */
2023 };
2024
2025 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2026 {
2027 0x4e02b540, /* push {r6, lr} */
2028 /* ldr r6, [pc, #8] */
2029 0x473046fe, /* mov lr, pc */
2030 /* bx r6 */
2031 0xbf00bd40, /* pop {r6, pc} */
2032 /* nop */
2033 0x00000000, /* dcd R_ARM_ABS32(X) */
2034 };
2035
2036 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2037 {
2038 0x4e03b540, /* push {r6, lr} */
2039 /* ldr r6, [pc, #12] */
2040 0x473046fe, /* mov lr, pc */
2041 /* bx r6 */
2042 0xe8bd4040, /* pop {r6, pc} */
2043 0xe12fff1e, /* bx lr */
2044 0x00000000, /* dcd R_ARM_ABS32(X) */
2045 };
2046
2047 static const bfd_vma arm_pic_long_branch_stub[] =
2048 {
2049 0xe59fc000, /* ldr r12, [pc] */
2050 0xe08ff00c, /* add pc, pc, ip */
2051 0x00000000, /* dcd R_ARM_REL32(X) */
2052 };
2053
2054 /* Section name for stubs is the associated section name plus this
2055 string. */
2056 #define STUB_SUFFIX ".stub"
2057
2058 enum elf32_arm_stub_type
2059 {
2060 arm_stub_none,
2061 arm_stub_long_branch,
2062 arm_thumb_v4t_stub_long_branch,
2063 arm_thumb_thumb_stub_long_branch,
2064 arm_thumb_arm_v4t_stub_long_branch,
2065 arm_stub_pic_long_branch,
2066 };
2067
2068 struct elf32_arm_stub_hash_entry
2069 {
2070 /* Base hash table entry structure. */
2071 struct bfd_hash_entry root;
2072
2073 /* The stub section. */
2074 asection *stub_sec;
2075
2076 /* Offset within stub_sec of the beginning of this stub. */
2077 bfd_vma stub_offset;
2078
2079 /* Given the symbol's value and its section we can determine its final
2080 value when building the stubs (so the stub knows where to jump). */
2081 bfd_vma target_value;
2082 asection *target_section;
2083
2084 enum elf32_arm_stub_type stub_type;
2085
2086 /* The symbol table entry, if any, that this was derived from. */
2087 struct elf32_arm_link_hash_entry *h;
2088
2089 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2090 unsigned char st_type;
2091
2092 /* Where this stub is being called from, or, in the case of combined
2093 stub sections, the first input section in the group. */
2094 asection *id_sec;
2095
2096 /* The name for the local symbol at the start of this stub. The
2097 stub name in the hash table has to be unique; this does not, so
2098 it can be friendlier. */
2099 char *output_name;
2100 };
2101
2102 /* Used to build a map of a section. This is required for mixed-endian
2103 code/data. */
2104
2105 typedef struct elf32_elf_section_map
2106 {
2107 bfd_vma vma;
2108 char type;
2109 }
2110 elf32_arm_section_map;
2111
2112 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2113
2114 typedef enum
2115 {
2116 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2117 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2118 VFP11_ERRATUM_ARM_VENEER,
2119 VFP11_ERRATUM_THUMB_VENEER
2120 }
2121 elf32_vfp11_erratum_type;
2122
2123 typedef struct elf32_vfp11_erratum_list
2124 {
2125 struct elf32_vfp11_erratum_list *next;
2126 bfd_vma vma;
2127 union
2128 {
2129 struct
2130 {
2131 struct elf32_vfp11_erratum_list *veneer;
2132 unsigned int vfp_insn;
2133 } b;
2134 struct
2135 {
2136 struct elf32_vfp11_erratum_list *branch;
2137 unsigned int id;
2138 } v;
2139 } u;
2140 elf32_vfp11_erratum_type type;
2141 }
2142 elf32_vfp11_erratum_list;
2143
2144 typedef struct _arm_elf_section_data
2145 {
2146 struct bfd_elf_section_data elf;
2147 unsigned int mapcount;
2148 unsigned int mapsize;
2149 elf32_arm_section_map *map;
2150 unsigned int erratumcount;
2151 elf32_vfp11_erratum_list *erratumlist;
2152 }
2153 _arm_elf_section_data;
2154
2155 #define elf32_arm_section_data(sec) \
2156 ((_arm_elf_section_data *) elf_section_data (sec))
2157
2158 /* The size of the thread control block. */
2159 #define TCB_SIZE 8
2160
2161 struct elf_arm_obj_tdata
2162 {
2163 struct elf_obj_tdata root;
2164
2165 /* tls_type for each local got entry. */
2166 char *local_got_tls_type;
2167
2168 /* Zero to warn when linking objects with incompatible enum sizes. */
2169 int no_enum_size_warning;
2170 };
2171
2172 #define elf_arm_tdata(bfd) \
2173 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2174
2175 #define elf32_arm_local_got_tls_type(bfd) \
2176 (elf_arm_tdata (bfd)->local_got_tls_type)
2177
2178 #define is_arm_elf(bfd) \
2179 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2180 && elf_tdata (bfd) != NULL \
2181 && elf_object_id (bfd) == ARM_ELF_TDATA)
2182
2183 static bfd_boolean
2184 elf32_arm_mkobject (bfd *abfd)
2185 {
2186 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2187 ARM_ELF_TDATA);
2188 }
2189
2190 /* The ARM linker needs to keep track of the number of relocs that it
2191 decides to copy in check_relocs for each symbol. This is so that
2192 it can discard PC relative relocs if it doesn't need them when
2193 linking with -Bsymbolic. We store the information in a field
2194 extending the regular ELF linker hash table. */
2195
2196 /* This structure keeps track of the number of relocs we have copied
2197 for a given symbol. */
2198 struct elf32_arm_relocs_copied
2199 {
2200 /* Next section. */
2201 struct elf32_arm_relocs_copied * next;
2202 /* A section in dynobj. */
2203 asection * section;
2204 /* Number of relocs copied in this section. */
2205 bfd_size_type count;
2206 /* Number of PC-relative relocs copied in this section. */
2207 bfd_size_type pc_count;
2208 };
2209
2210 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2211
2212 /* Arm ELF linker hash entry. */
2213 struct elf32_arm_link_hash_entry
2214 {
2215 struct elf_link_hash_entry root;
2216
2217 /* Number of PC relative relocs copied for this symbol. */
2218 struct elf32_arm_relocs_copied * relocs_copied;
2219
2220 /* We reference count Thumb references to a PLT entry separately,
2221 so that we can emit the Thumb trampoline only if needed. */
2222 bfd_signed_vma plt_thumb_refcount;
2223
2224 /* Some references from Thumb code may be eliminated by BL->BLX
2225 conversion, so record them separately. */
2226 bfd_signed_vma plt_maybe_thumb_refcount;
2227
2228 /* Since PLT entries have variable size if the Thumb prologue is
2229 used, we need to record the index into .got.plt instead of
2230 recomputing it from the PLT offset. */
2231 bfd_signed_vma plt_got_offset;
2232
2233 #define GOT_UNKNOWN 0
2234 #define GOT_NORMAL 1
2235 #define GOT_TLS_GD 2
2236 #define GOT_TLS_IE 4
2237 unsigned char tls_type;
2238
2239 /* The symbol marking the real symbol location for exported thumb
2240 symbols with Arm stubs. */
2241 struct elf_link_hash_entry *export_glue;
2242
2243 /* A pointer to the most recently used stub hash entry against this
2244 symbol. */
2245 struct elf32_arm_stub_hash_entry *stub_cache;
2246 };
2247
2248 /* Traverse an arm ELF linker hash table. */
2249 #define elf32_arm_link_hash_traverse(table, func, info) \
2250 (elf_link_hash_traverse \
2251 (&(table)->root, \
2252 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2253 (info)))
2254
2255 /* Get the ARM elf linker hash table from a link_info structure. */
2256 #define elf32_arm_hash_table(info) \
2257 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2258
2259 #define arm_stub_hash_lookup(table, string, create, copy) \
2260 ((struct elf32_arm_stub_hash_entry *) \
2261 bfd_hash_lookup ((table), (string), (create), (copy)))
2262
2263 /* ARM ELF linker hash table. */
2264 struct elf32_arm_link_hash_table
2265 {
2266 /* The main hash table. */
2267 struct elf_link_hash_table root;
2268
2269 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2270 bfd_size_type thumb_glue_size;
2271
2272 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2273 bfd_size_type arm_glue_size;
2274
2275 /* The size in bytes of section containing the ARMv4 BX veneers. */
2276 bfd_size_type bx_glue_size;
2277
2278 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2279 veneer has been populated. */
2280 bfd_vma bx_glue_offset[15];
2281
2282 /* The size in bytes of the section containing glue for VFP11 erratum
2283 veneers. */
2284 bfd_size_type vfp11_erratum_glue_size;
2285
2286 /* An arbitrary input BFD chosen to hold the glue sections. */
2287 bfd * bfd_of_glue_owner;
2288
2289 /* Nonzero to output a BE8 image. */
2290 int byteswap_code;
2291
2292 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2293 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2294 int target1_is_rel;
2295
2296 /* The relocation to use for R_ARM_TARGET2 relocations. */
2297 int target2_reloc;
2298
2299 /* 0 = Ignore R_ARM_V4BX.
2300 1 = Convert BX to MOV PC.
2301 2 = Generate v4 interworing stubs. */
2302 int fix_v4bx;
2303
2304 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2305 int use_blx;
2306
2307 /* What sort of code sequences we should look for which may trigger the
2308 VFP11 denorm erratum. */
2309 bfd_arm_vfp11_fix vfp11_fix;
2310
2311 /* Global counter for the number of fixes we have emitted. */
2312 int num_vfp11_fixes;
2313
2314 /* Nonzero to force PIC branch veneers. */
2315 int pic_veneer;
2316
2317 /* The number of bytes in the initial entry in the PLT. */
2318 bfd_size_type plt_header_size;
2319
2320 /* The number of bytes in the subsequent PLT etries. */
2321 bfd_size_type plt_entry_size;
2322
2323 /* True if the target system is VxWorks. */
2324 int vxworks_p;
2325
2326 /* True if the target system is Symbian OS. */
2327 int symbian_p;
2328
2329 /* True if the target uses REL relocations. */
2330 int use_rel;
2331
2332 /* Short-cuts to get to dynamic linker sections. */
2333 asection *sgot;
2334 asection *sgotplt;
2335 asection *srelgot;
2336 asection *splt;
2337 asection *srelplt;
2338 asection *sdynbss;
2339 asection *srelbss;
2340
2341 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2342 asection *srelplt2;
2343
2344 /* Data for R_ARM_TLS_LDM32 relocations. */
2345 union
2346 {
2347 bfd_signed_vma refcount;
2348 bfd_vma offset;
2349 } tls_ldm_got;
2350
2351 /* Small local sym to section mapping cache. */
2352 struct sym_sec_cache sym_sec;
2353
2354 /* For convenience in allocate_dynrelocs. */
2355 bfd * obfd;
2356
2357 /* The stub hash table. */
2358 struct bfd_hash_table stub_hash_table;
2359
2360 /* Linker stub bfd. */
2361 bfd *stub_bfd;
2362
2363 /* Linker call-backs. */
2364 asection * (*add_stub_section) (const char *, asection *);
2365 void (*layout_sections_again) (void);
2366
2367 /* Array to keep track of which stub sections have been created, and
2368 information on stub grouping. */
2369 struct map_stub
2370 {
2371 /* This is the section to which stubs in the group will be
2372 attached. */
2373 asection *link_sec;
2374 /* The stub section. */
2375 asection *stub_sec;
2376 } *stub_group;
2377
2378 /* Assorted information used by elf32_arm_size_stubs. */
2379 unsigned int bfd_count;
2380 int top_index;
2381 asection **input_list;
2382 };
2383
2384 /* Create an entry in an ARM ELF linker hash table. */
2385
2386 static struct bfd_hash_entry *
2387 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2388 struct bfd_hash_table * table,
2389 const char * string)
2390 {
2391 struct elf32_arm_link_hash_entry * ret =
2392 (struct elf32_arm_link_hash_entry *) entry;
2393
2394 /* Allocate the structure if it has not already been allocated by a
2395 subclass. */
2396 if (ret == NULL)
2397 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2398 if (ret == NULL)
2399 return (struct bfd_hash_entry *) ret;
2400
2401 /* Call the allocation method of the superclass. */
2402 ret = ((struct elf32_arm_link_hash_entry *)
2403 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2404 table, string));
2405 if (ret != NULL)
2406 {
2407 ret->relocs_copied = NULL;
2408 ret->tls_type = GOT_UNKNOWN;
2409 ret->plt_thumb_refcount = 0;
2410 ret->plt_maybe_thumb_refcount = 0;
2411 ret->plt_got_offset = -1;
2412 ret->export_glue = NULL;
2413
2414 ret->stub_cache = NULL;
2415 }
2416
2417 return (struct bfd_hash_entry *) ret;
2418 }
2419
2420 /* Initialize an entry in the stub hash table. */
2421
2422 static struct bfd_hash_entry *
2423 stub_hash_newfunc (struct bfd_hash_entry *entry,
2424 struct bfd_hash_table *table,
2425 const char *string)
2426 {
2427 /* Allocate the structure if it has not already been allocated by a
2428 subclass. */
2429 if (entry == NULL)
2430 {
2431 entry = bfd_hash_allocate (table,
2432 sizeof (struct elf32_arm_stub_hash_entry));
2433 if (entry == NULL)
2434 return entry;
2435 }
2436
2437 /* Call the allocation method of the superclass. */
2438 entry = bfd_hash_newfunc (entry, table, string);
2439 if (entry != NULL)
2440 {
2441 struct elf32_arm_stub_hash_entry *eh;
2442
2443 /* Initialize the local fields. */
2444 eh = (struct elf32_arm_stub_hash_entry *) entry;
2445 eh->stub_sec = NULL;
2446 eh->stub_offset = 0;
2447 eh->target_value = 0;
2448 eh->target_section = NULL;
2449 eh->stub_type = arm_stub_none;
2450 eh->h = NULL;
2451 eh->id_sec = NULL;
2452 }
2453
2454 return entry;
2455 }
2456
2457 /* Return true if NAME is the name of the relocation section associated
2458 with S. */
2459
2460 static bfd_boolean
2461 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2462 const char *name, asection *s)
2463 {
2464 if (htab->use_rel)
2465 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2466 else
2467 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2468 }
2469
2470 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2471 shortcuts to them in our hash table. */
2472
2473 static bfd_boolean
2474 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2475 {
2476 struct elf32_arm_link_hash_table *htab;
2477
2478 htab = elf32_arm_hash_table (info);
2479 /* BPABI objects never have a GOT, or associated sections. */
2480 if (htab->symbian_p)
2481 return TRUE;
2482
2483 if (! _bfd_elf_create_got_section (dynobj, info))
2484 return FALSE;
2485
2486 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2487 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2488 if (!htab->sgot || !htab->sgotplt)
2489 abort ();
2490
2491 htab->srelgot = bfd_make_section_with_flags (dynobj,
2492 RELOC_SECTION (htab, ".got"),
2493 (SEC_ALLOC | SEC_LOAD
2494 | SEC_HAS_CONTENTS
2495 | SEC_IN_MEMORY
2496 | SEC_LINKER_CREATED
2497 | SEC_READONLY));
2498 if (htab->srelgot == NULL
2499 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2500 return FALSE;
2501 return TRUE;
2502 }
2503
2504 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2505 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2506 hash table. */
2507
2508 static bfd_boolean
2509 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2510 {
2511 struct elf32_arm_link_hash_table *htab;
2512
2513 htab = elf32_arm_hash_table (info);
2514 if (!htab->sgot && !create_got_section (dynobj, info))
2515 return FALSE;
2516
2517 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2518 return FALSE;
2519
2520 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2521 htab->srelplt = bfd_get_section_by_name (dynobj,
2522 RELOC_SECTION (htab, ".plt"));
2523 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2524 if (!info->shared)
2525 htab->srelbss = bfd_get_section_by_name (dynobj,
2526 RELOC_SECTION (htab, ".bss"));
2527
2528 if (htab->vxworks_p)
2529 {
2530 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2531 return FALSE;
2532
2533 if (info->shared)
2534 {
2535 htab->plt_header_size = 0;
2536 htab->plt_entry_size
2537 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2538 }
2539 else
2540 {
2541 htab->plt_header_size
2542 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2543 htab->plt_entry_size
2544 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2545 }
2546 }
2547
2548 if (!htab->splt
2549 || !htab->srelplt
2550 || !htab->sdynbss
2551 || (!info->shared && !htab->srelbss))
2552 abort ();
2553
2554 return TRUE;
2555 }
2556
2557 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2558
2559 static void
2560 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2561 struct elf_link_hash_entry *dir,
2562 struct elf_link_hash_entry *ind)
2563 {
2564 struct elf32_arm_link_hash_entry *edir, *eind;
2565
2566 edir = (struct elf32_arm_link_hash_entry *) dir;
2567 eind = (struct elf32_arm_link_hash_entry *) ind;
2568
2569 if (eind->relocs_copied != NULL)
2570 {
2571 if (edir->relocs_copied != NULL)
2572 {
2573 struct elf32_arm_relocs_copied **pp;
2574 struct elf32_arm_relocs_copied *p;
2575
2576 /* Add reloc counts against the indirect sym to the direct sym
2577 list. Merge any entries against the same section. */
2578 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2579 {
2580 struct elf32_arm_relocs_copied *q;
2581
2582 for (q = edir->relocs_copied; q != NULL; q = q->next)
2583 if (q->section == p->section)
2584 {
2585 q->pc_count += p->pc_count;
2586 q->count += p->count;
2587 *pp = p->next;
2588 break;
2589 }
2590 if (q == NULL)
2591 pp = &p->next;
2592 }
2593 *pp = edir->relocs_copied;
2594 }
2595
2596 edir->relocs_copied = eind->relocs_copied;
2597 eind->relocs_copied = NULL;
2598 }
2599
2600 if (ind->root.type == bfd_link_hash_indirect)
2601 {
2602 /* Copy over PLT info. */
2603 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2604 eind->plt_thumb_refcount = 0;
2605 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2606 eind->plt_maybe_thumb_refcount = 0;
2607
2608 if (dir->got.refcount <= 0)
2609 {
2610 edir->tls_type = eind->tls_type;
2611 eind->tls_type = GOT_UNKNOWN;
2612 }
2613 }
2614
2615 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2616 }
2617
2618 /* Create an ARM elf linker hash table. */
2619
2620 static struct bfd_link_hash_table *
2621 elf32_arm_link_hash_table_create (bfd *abfd)
2622 {
2623 struct elf32_arm_link_hash_table *ret;
2624 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2625
2626 ret = bfd_malloc (amt);
2627 if (ret == NULL)
2628 return NULL;
2629
2630 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2631 elf32_arm_link_hash_newfunc,
2632 sizeof (struct elf32_arm_link_hash_entry)))
2633 {
2634 free (ret);
2635 return NULL;
2636 }
2637
2638 ret->sgot = NULL;
2639 ret->sgotplt = NULL;
2640 ret->srelgot = NULL;
2641 ret->splt = NULL;
2642 ret->srelplt = NULL;
2643 ret->sdynbss = NULL;
2644 ret->srelbss = NULL;
2645 ret->srelplt2 = NULL;
2646 ret->thumb_glue_size = 0;
2647 ret->arm_glue_size = 0;
2648 ret->bx_glue_size = 0;
2649 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2650 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2651 ret->vfp11_erratum_glue_size = 0;
2652 ret->num_vfp11_fixes = 0;
2653 ret->bfd_of_glue_owner = NULL;
2654 ret->byteswap_code = 0;
2655 ret->target1_is_rel = 0;
2656 ret->target2_reloc = R_ARM_NONE;
2657 #ifdef FOUR_WORD_PLT
2658 ret->plt_header_size = 16;
2659 ret->plt_entry_size = 16;
2660 #else
2661 ret->plt_header_size = 20;
2662 ret->plt_entry_size = 12;
2663 #endif
2664 ret->fix_v4bx = 0;
2665 ret->use_blx = 0;
2666 ret->vxworks_p = 0;
2667 ret->symbian_p = 0;
2668 ret->use_rel = 1;
2669 ret->sym_sec.abfd = NULL;
2670 ret->obfd = abfd;
2671 ret->tls_ldm_got.refcount = 0;
2672
2673 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2674 sizeof (struct elf32_arm_stub_hash_entry)))
2675 {
2676 free (ret);
2677 return NULL;
2678 }
2679
2680 return &ret->root.root;
2681 }
2682
2683 /* Free the derived linker hash table. */
2684
2685 static void
2686 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2687 {
2688 struct elf32_arm_link_hash_table *ret
2689 = (struct elf32_arm_link_hash_table *) hash;
2690
2691 bfd_hash_table_free (&ret->stub_hash_table);
2692 _bfd_generic_link_hash_table_free (hash);
2693 }
2694
2695 /* Determine if we're dealing with a Thumb only architecture. */
2696
2697 static bfd_boolean
2698 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2699 {
2700 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2701 Tag_CPU_arch);
2702 int profile;
2703
2704 if (arch != TAG_CPU_ARCH_V7)
2705 return FALSE;
2706
2707 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2708 Tag_CPU_arch_profile);
2709
2710 return profile == 'M';
2711 }
2712
2713 /* Determine if we're dealing with a Thumb-2 object. */
2714
2715 static bfd_boolean
2716 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2717 {
2718 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2719 Tag_CPU_arch);
2720 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2721 }
2722
2723 static bfd_boolean
2724 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2725 {
2726 switch (stub_type)
2727 {
2728 case arm_thumb_thumb_stub_long_branch:
2729 case arm_thumb_arm_v4t_stub_long_branch:
2730 return TRUE;
2731 case arm_stub_none:
2732 BFD_FAIL ();
2733 return FALSE;
2734 break;
2735 default:
2736 return FALSE;
2737 }
2738 }
2739
2740 /* Determine the type of stub needed, if any, for a call. */
2741
2742 static enum elf32_arm_stub_type
2743 arm_type_of_stub (struct bfd_link_info *info,
2744 asection *input_sec,
2745 const Elf_Internal_Rela *rel,
2746 unsigned char st_type,
2747 struct elf32_arm_link_hash_entry *hash,
2748 bfd_vma destination)
2749 {
2750 bfd_vma location;
2751 bfd_signed_vma branch_offset;
2752 unsigned int r_type;
2753 struct elf32_arm_link_hash_table * globals;
2754 int thumb2;
2755 int thumb_only;
2756 enum elf32_arm_stub_type stub_type = arm_stub_none;
2757
2758 /* We don't know the actual type of destination in case it is of
2759 type STT_SECTION: give up */
2760 if (st_type == STT_SECTION)
2761 return stub_type;
2762
2763 globals = elf32_arm_hash_table (info);
2764
2765 thumb_only = using_thumb_only (globals);
2766
2767 thumb2 = using_thumb2 (globals);
2768
2769 /* Determine where the call point is. */
2770 location = (input_sec->output_offset
2771 + input_sec->output_section->vma
2772 + rel->r_offset);
2773
2774 branch_offset = (bfd_signed_vma)(destination - location);
2775
2776 r_type = ELF32_R_TYPE (rel->r_info);
2777
2778 /* If the call will go through a PLT entry then we do not need
2779 glue. */
2780 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2781 return stub_type;
2782
2783 if (r_type == R_ARM_THM_CALL)
2784 {
2785 if ((!thumb2
2786 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2787 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2788 || (thumb2
2789 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2790 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2791 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2792 {
2793 if (st_type == STT_ARM_TFUNC)
2794 {
2795 /* Thumb to thumb. */
2796 if (!thumb_only)
2797 {
2798 stub_type = (info->shared | globals->pic_veneer)
2799 ? ((globals->use_blx)
2800 ? arm_stub_pic_long_branch
2801 : arm_stub_none)
2802 : (globals->use_blx)
2803 ? arm_stub_long_branch
2804 : arm_stub_none;
2805 }
2806 else
2807 {
2808 stub_type = (info->shared | globals->pic_veneer)
2809 ? arm_stub_none
2810 : (globals->use_blx)
2811 ? arm_thumb_thumb_stub_long_branch
2812 : arm_stub_none;
2813 }
2814 }
2815 else
2816 {
2817 /* Thumb to arm. */
2818 stub_type = (info->shared | globals->pic_veneer)
2819 ? ((globals->use_blx)
2820 ? arm_stub_pic_long_branch
2821 : arm_stub_none)
2822 : (globals->use_blx)
2823 ? arm_stub_long_branch
2824 : arm_thumb_arm_v4t_stub_long_branch;
2825 }
2826 }
2827 }
2828 else if (r_type == R_ARM_CALL)
2829 {
2830 if (st_type == STT_ARM_TFUNC)
2831 {
2832 /* Arm to thumb. */
2833 /* We have an extra 2-bytes reach because of the mode change
2834 (bit 24 (H) of BLX encoding). */
2835 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2836 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2837 || !globals->use_blx)
2838 {
2839 stub_type = (info->shared | globals->pic_veneer)
2840 ? arm_stub_pic_long_branch
2841 : (globals->use_blx)
2842 ? arm_stub_long_branch
2843 : arm_thumb_v4t_stub_long_branch;
2844 }
2845 }
2846 else
2847 {
2848 /* Arm to arm. */
2849 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2850 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2851 {
2852 stub_type = (info->shared | globals->pic_veneer)
2853 ? arm_stub_pic_long_branch
2854 : arm_stub_long_branch;
2855 }
2856 }
2857 }
2858
2859 return stub_type;
2860 }
2861
2862 /* Build a name for an entry in the stub hash table. */
2863
2864 static char *
2865 elf32_arm_stub_name (const asection *input_section,
2866 const asection *sym_sec,
2867 const struct elf32_arm_link_hash_entry *hash,
2868 const Elf_Internal_Rela *rel)
2869 {
2870 char *stub_name;
2871 bfd_size_type len;
2872
2873 if (hash)
2874 {
2875 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2876 stub_name = bfd_malloc (len);
2877 if (stub_name != NULL)
2878 sprintf (stub_name, "%08x_%s+%x",
2879 input_section->id & 0xffffffff,
2880 hash->root.root.root.string,
2881 (int) rel->r_addend & 0xffffffff);
2882 }
2883 else
2884 {
2885 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2886 stub_name = bfd_malloc (len);
2887 if (stub_name != NULL)
2888 sprintf (stub_name, "%08x_%x:%x+%x",
2889 input_section->id & 0xffffffff,
2890 sym_sec->id & 0xffffffff,
2891 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2892 (int) rel->r_addend & 0xffffffff);
2893 }
2894
2895 return stub_name;
2896 }
2897
2898 /* Look up an entry in the stub hash. Stub entries are cached because
2899 creating the stub name takes a bit of time. */
2900
2901 static struct elf32_arm_stub_hash_entry *
2902 elf32_arm_get_stub_entry (const asection *input_section,
2903 const asection *sym_sec,
2904 struct elf_link_hash_entry *hash,
2905 const Elf_Internal_Rela *rel,
2906 struct elf32_arm_link_hash_table *htab)
2907 {
2908 struct elf32_arm_stub_hash_entry *stub_entry;
2909 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2910 const asection *id_sec;
2911
2912 if ((input_section->flags & SEC_CODE) == 0)
2913 return NULL;
2914
2915 /* If this input section is part of a group of sections sharing one
2916 stub section, then use the id of the first section in the group.
2917 Stub names need to include a section id, as there may well be
2918 more than one stub used to reach say, printf, and we need to
2919 distinguish between them. */
2920 id_sec = htab->stub_group[input_section->id].link_sec;
2921
2922 if (h != NULL && h->stub_cache != NULL
2923 && h->stub_cache->h == h
2924 && h->stub_cache->id_sec == id_sec)
2925 {
2926 stub_entry = h->stub_cache;
2927 }
2928 else
2929 {
2930 char *stub_name;
2931
2932 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2933 if (stub_name == NULL)
2934 return NULL;
2935
2936 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2937 stub_name, FALSE, FALSE);
2938 if (h != NULL)
2939 h->stub_cache = stub_entry;
2940
2941 free (stub_name);
2942 }
2943
2944 return stub_entry;
2945 }
2946
2947 /* Add a new stub entry to the stub hash. Not all fields of the new
2948 stub entry are initialised. */
2949
2950 static struct elf32_arm_stub_hash_entry *
2951 elf32_arm_add_stub (const char *stub_name,
2952 asection *section,
2953 struct elf32_arm_link_hash_table *htab)
2954 {
2955 asection *link_sec;
2956 asection *stub_sec;
2957 struct elf32_arm_stub_hash_entry *stub_entry;
2958
2959 link_sec = htab->stub_group[section->id].link_sec;
2960 stub_sec = htab->stub_group[section->id].stub_sec;
2961 if (stub_sec == NULL)
2962 {
2963 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2964 if (stub_sec == NULL)
2965 {
2966 size_t namelen;
2967 bfd_size_type len;
2968 char *s_name;
2969
2970 namelen = strlen (link_sec->name);
2971 len = namelen + sizeof (STUB_SUFFIX);
2972 s_name = bfd_alloc (htab->stub_bfd, len);
2973 if (s_name == NULL)
2974 return NULL;
2975
2976 memcpy (s_name, link_sec->name, namelen);
2977 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2978 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2979 if (stub_sec == NULL)
2980 return NULL;
2981 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2982 }
2983 htab->stub_group[section->id].stub_sec = stub_sec;
2984 }
2985
2986 /* Enter this entry into the linker stub hash table. */
2987 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2988 TRUE, FALSE);
2989 if (stub_entry == NULL)
2990 {
2991 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2992 section->owner,
2993 stub_name);
2994 return NULL;
2995 }
2996
2997 stub_entry->stub_sec = stub_sec;
2998 stub_entry->stub_offset = 0;
2999 stub_entry->id_sec = link_sec;
3000
3001 return stub_entry;
3002 }
3003
3004 /* Store an Arm insn into an output section not processed by
3005 elf32_arm_write_section. */
3006
3007 static void
3008 put_arm_insn (struct elf32_arm_link_hash_table *htab,
3009 bfd * output_bfd, bfd_vma val, void * ptr)
3010 {
3011 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3012 bfd_putl32 (val, ptr);
3013 else
3014 bfd_putb32 (val, ptr);
3015 }
3016
3017 /* Store a 16-bit Thumb insn into an output section not processed by
3018 elf32_arm_write_section. */
3019
3020 static void
3021 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
3022 bfd * output_bfd, bfd_vma val, void * ptr)
3023 {
3024 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3025 bfd_putl16 (val, ptr);
3026 else
3027 bfd_putb16 (val, ptr);
3028 }
3029
3030 static bfd_boolean
3031 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3032 void * in_arg)
3033 {
3034 struct elf32_arm_stub_hash_entry *stub_entry;
3035 struct bfd_link_info *info;
3036 struct elf32_arm_link_hash_table *htab;
3037 asection *stub_sec;
3038 bfd *stub_bfd;
3039 bfd_vma stub_addr;
3040 bfd_byte *loc;
3041 bfd_vma sym_value;
3042 int template_size;
3043 int size;
3044 const bfd_vma *template;
3045 int i;
3046 struct elf32_arm_link_hash_table * globals;
3047
3048 /* Massage our args to the form they really have. */
3049 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3050 info = (struct bfd_link_info *) in_arg;
3051
3052 globals = elf32_arm_hash_table (info);
3053
3054 htab = elf32_arm_hash_table (info);
3055 stub_sec = stub_entry->stub_sec;
3056
3057 /* Make a note of the offset within the stubs for this entry. */
3058 stub_entry->stub_offset = stub_sec->size;
3059 loc = stub_sec->contents + stub_entry->stub_offset;
3060
3061 stub_bfd = stub_sec->owner;
3062
3063 /* This is the address of the start of the stub. */
3064 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3065 + stub_entry->stub_offset;
3066
3067 /* This is the address of the stub destination. */
3068 sym_value = (stub_entry->target_value
3069 + stub_entry->target_section->output_offset
3070 + stub_entry->target_section->output_section->vma);
3071
3072 switch (stub_entry->stub_type)
3073 {
3074 case arm_stub_long_branch:
3075 template = arm_long_branch_stub;
3076 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3077 break;
3078 case arm_thumb_v4t_stub_long_branch:
3079 template = arm_thumb_v4t_long_branch_stub;
3080 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3081 break;
3082 case arm_thumb_thumb_stub_long_branch:
3083 template = arm_thumb_thumb_long_branch_stub;
3084 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3085 break;
3086 case arm_thumb_arm_v4t_stub_long_branch:
3087 template = arm_thumb_arm_v4t_long_branch_stub;
3088 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3089 break;
3090 case arm_stub_pic_long_branch:
3091 template = arm_pic_long_branch_stub;
3092 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3093 break;
3094 default:
3095 BFD_FAIL ();
3096 return FALSE;
3097 }
3098
3099 size = 0;
3100 for (i = 0; i < (template_size / 4); i++)
3101 {
3102 /* A 0 pattern is a placeholder, every other pattern is an
3103 instruction. */
3104 if (template[i] != 0)
3105 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3106 else
3107 bfd_put_32 (stub_bfd, template[i], loc + size);
3108
3109 size += 4;
3110 }
3111 stub_sec->size += size;
3112
3113 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3114 if (stub_entry->st_type == STT_ARM_TFUNC)
3115 sym_value |= 1;
3116
3117 switch (stub_entry->stub_type)
3118 {
3119 case arm_stub_long_branch:
3120 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3121 stub_bfd, stub_sec, stub_sec->contents,
3122 stub_entry->stub_offset + 4, sym_value, 0);
3123 break;
3124 case arm_thumb_v4t_stub_long_branch:
3125 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3126 stub_bfd, stub_sec, stub_sec->contents,
3127 stub_entry->stub_offset + 8, sym_value, 0);
3128 break;
3129 case arm_thumb_thumb_stub_long_branch:
3130 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3131 stub_bfd, stub_sec, stub_sec->contents,
3132 stub_entry->stub_offset + 12, sym_value, 0);
3133 break;
3134 case arm_thumb_arm_v4t_stub_long_branch:
3135 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3136 stub_bfd, stub_sec, stub_sec->contents,
3137 stub_entry->stub_offset + 16, sym_value, 0);
3138 break;
3139 case arm_stub_pic_long_branch:
3140 /* We want the value relative to the address 8 bytes from the
3141 start of the stub. */
3142 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_REL32),
3143 stub_bfd, stub_sec, stub_sec->contents,
3144 stub_entry->stub_offset + 8, sym_value, 0);
3145 break;
3146 default:
3147 break;
3148 }
3149
3150 return TRUE;
3151 }
3152
3153 /* As above, but don't actually build the stub. Just bump offset so
3154 we know stub section sizes. */
3155
3156 static bfd_boolean
3157 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3158 void * in_arg)
3159 {
3160 struct elf32_arm_stub_hash_entry *stub_entry;
3161 struct elf32_arm_link_hash_table *htab;
3162 const bfd_vma *template;
3163 int template_size;
3164 int size;
3165 int i;
3166
3167 /* Massage our args to the form they really have. */
3168 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3169 htab = (struct elf32_arm_link_hash_table *) in_arg;
3170
3171 switch (stub_entry->stub_type)
3172 {
3173 case arm_stub_long_branch:
3174 template = arm_long_branch_stub;
3175 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3176 break;
3177 case arm_thumb_v4t_stub_long_branch:
3178 template = arm_thumb_v4t_long_branch_stub;
3179 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3180 break;
3181 case arm_thumb_thumb_stub_long_branch:
3182 template = arm_thumb_thumb_long_branch_stub;
3183 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3184 break;
3185 case arm_thumb_arm_v4t_stub_long_branch:
3186 template = arm_thumb_arm_v4t_long_branch_stub;
3187 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3188 break;
3189 case arm_stub_pic_long_branch:
3190 template = arm_pic_long_branch_stub;
3191 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3192 break;
3193 default:
3194 BFD_FAIL ();
3195 return FALSE;
3196 break;
3197 }
3198
3199 size = 0;
3200 for (i = 0; i < (template_size / 4); i++)
3201 size += 4;
3202 size = (size + 7) & ~7;
3203 stub_entry->stub_sec->size += size;
3204 return TRUE;
3205 }
3206
3207 /* External entry points for sizing and building linker stubs. */
3208
3209 /* Set up various things so that we can make a list of input sections
3210 for each output section included in the link. Returns -1 on error,
3211 0 when no stubs will be needed, and 1 on success. */
3212
3213 int
3214 elf32_arm_setup_section_lists (bfd *output_bfd,
3215 struct bfd_link_info *info)
3216 {
3217 bfd *input_bfd;
3218 unsigned int bfd_count;
3219 int top_id, top_index;
3220 asection *section;
3221 asection **input_list, **list;
3222 bfd_size_type amt;
3223 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3224
3225 if (! is_elf_hash_table (htab))
3226 return 0;
3227
3228 /* Count the number of input BFDs and find the top input section id. */
3229 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3230 input_bfd != NULL;
3231 input_bfd = input_bfd->link_next)
3232 {
3233 bfd_count += 1;
3234 for (section = input_bfd->sections;
3235 section != NULL;
3236 section = section->next)
3237 {
3238 if (top_id < section->id)
3239 top_id = section->id;
3240 }
3241 }
3242 htab->bfd_count = bfd_count;
3243
3244 amt = sizeof (struct map_stub) * (top_id + 1);
3245 htab->stub_group = bfd_zmalloc (amt);
3246 if (htab->stub_group == NULL)
3247 return -1;
3248
3249 /* We can't use output_bfd->section_count here to find the top output
3250 section index as some sections may have been removed, and
3251 _bfd_strip_section_from_output doesn't renumber the indices. */
3252 for (section = output_bfd->sections, top_index = 0;
3253 section != NULL;
3254 section = section->next)
3255 {
3256 if (top_index < section->index)
3257 top_index = section->index;
3258 }
3259
3260 htab->top_index = top_index;
3261 amt = sizeof (asection *) * (top_index + 1);
3262 input_list = bfd_malloc (amt);
3263 htab->input_list = input_list;
3264 if (input_list == NULL)
3265 return -1;
3266
3267 /* For sections we aren't interested in, mark their entries with a
3268 value we can check later. */
3269 list = input_list + top_index;
3270 do
3271 *list = bfd_abs_section_ptr;
3272 while (list-- != input_list);
3273
3274 for (section = output_bfd->sections;
3275 section != NULL;
3276 section = section->next)
3277 {
3278 if ((section->flags & SEC_CODE) != 0)
3279 input_list[section->index] = NULL;
3280 }
3281
3282 return 1;
3283 }
3284
3285 /* The linker repeatedly calls this function for each input section,
3286 in the order that input sections are linked into output sections.
3287 Build lists of input sections to determine groupings between which
3288 we may insert linker stubs. */
3289
3290 void
3291 elf32_arm_next_input_section (struct bfd_link_info *info,
3292 asection *isec)
3293 {
3294 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3295
3296 if (isec->output_section->index <= htab->top_index)
3297 {
3298 asection **list = htab->input_list + isec->output_section->index;
3299
3300 if (*list != bfd_abs_section_ptr)
3301 {
3302 /* Steal the link_sec pointer for our list. */
3303 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3304 /* This happens to make the list in reverse order,
3305 which is what we want. */
3306 PREV_SEC (isec) = *list;
3307 *list = isec;
3308 }
3309 }
3310 }
3311
3312 /* See whether we can group stub sections together. Grouping stub
3313 sections may result in fewer stubs. More importantly, we need to
3314 put all .init* and .fini* stubs at the beginning of the .init or
3315 .fini output sections respectively, because glibc splits the
3316 _init and _fini functions into multiple parts. Putting a stub in
3317 the middle of a function is not a good idea. */
3318
3319 static void
3320 group_sections (struct elf32_arm_link_hash_table *htab,
3321 bfd_size_type stub_group_size,
3322 bfd_boolean stubs_always_before_branch)
3323 {
3324 asection **list = htab->input_list + htab->top_index;
3325
3326 do
3327 {
3328 asection *tail = *list;
3329
3330 if (tail == bfd_abs_section_ptr)
3331 continue;
3332
3333 while (tail != NULL)
3334 {
3335 asection *curr;
3336 asection *prev;
3337 bfd_size_type total;
3338
3339 curr = tail;
3340 total = tail->size;
3341 while ((prev = PREV_SEC (curr)) != NULL
3342 && ((total += curr->output_offset - prev->output_offset)
3343 < stub_group_size))
3344 curr = prev;
3345
3346 /* OK, the size from the start of CURR to the end is less
3347 than stub_group_size and thus can be handled by one stub
3348 section. (Or the tail section is itself larger than
3349 stub_group_size, in which case we may be toast.)
3350 We should really be keeping track of the total size of
3351 stubs added here, as stubs contribute to the final output
3352 section size. */
3353 do
3354 {
3355 prev = PREV_SEC (tail);
3356 /* Set up this stub group. */
3357 htab->stub_group[tail->id].link_sec = curr;
3358 }
3359 while (tail != curr && (tail = prev) != NULL);
3360
3361 /* But wait, there's more! Input sections up to stub_group_size
3362 bytes before the stub section can be handled by it too. */
3363 if (!stubs_always_before_branch)
3364 {
3365 total = 0;
3366 while (prev != NULL
3367 && ((total += tail->output_offset - prev->output_offset)
3368 < stub_group_size))
3369 {
3370 tail = prev;
3371 prev = PREV_SEC (tail);
3372 htab->stub_group[tail->id].link_sec = curr;
3373 }
3374 }
3375 tail = prev;
3376 }
3377 }
3378 while (list-- != htab->input_list);
3379
3380 free (htab->input_list);
3381 #undef PREV_SEC
3382 }
3383
3384 /* Determine and set the size of the stub section for a final link.
3385
3386 The basic idea here is to examine all the relocations looking for
3387 PC-relative calls to a target that is unreachable with a "bl"
3388 instruction. */
3389
3390 bfd_boolean
3391 elf32_arm_size_stubs (bfd *output_bfd,
3392 bfd *stub_bfd,
3393 struct bfd_link_info *info,
3394 bfd_signed_vma group_size,
3395 asection * (*add_stub_section) (const char *, asection *),
3396 void (*layout_sections_again) (void))
3397 {
3398 bfd_size_type stub_group_size;
3399 bfd_boolean stubs_always_before_branch;
3400 bfd_boolean stub_changed = 0;
3401 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3402
3403 /* Propagate mach to stub bfd, because it may not have been
3404 finalized when we created stub_bfd. */
3405 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3406 bfd_get_mach (output_bfd));
3407
3408 /* Stash our params away. */
3409 htab->stub_bfd = stub_bfd;
3410 htab->add_stub_section = add_stub_section;
3411 htab->layout_sections_again = layout_sections_again;
3412 stubs_always_before_branch = group_size < 0;
3413 if (group_size < 0)
3414 stub_group_size = -group_size;
3415 else
3416 stub_group_size = group_size;
3417
3418 if (stub_group_size == 1)
3419 {
3420 /* Default values. */
3421 /* Thumb branch range is +-4MB has to be used as the default
3422 maximum size (a given section can contain both ARM and Thumb
3423 code, so the worst case has to be taken into account).
3424
3425 This value is 24K less than that, which allows for 2025
3426 12-byte stubs. If we exceed that, then we will fail to link.
3427 The user will have to relink with an explicit group size
3428 option. */
3429 stub_group_size = 4170000;
3430 }
3431
3432 group_sections (htab, stub_group_size, stubs_always_before_branch);
3433
3434 while (1)
3435 {
3436 bfd *input_bfd;
3437 unsigned int bfd_indx;
3438 asection *stub_sec;
3439
3440 for (input_bfd = info->input_bfds, bfd_indx = 0;
3441 input_bfd != NULL;
3442 input_bfd = input_bfd->link_next, bfd_indx++)
3443 {
3444 Elf_Internal_Shdr *symtab_hdr;
3445 asection *section;
3446 Elf_Internal_Sym *local_syms = NULL;
3447
3448 /* We'll need the symbol table in a second. */
3449 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3450 if (symtab_hdr->sh_info == 0)
3451 continue;
3452
3453 /* Walk over each section attached to the input bfd. */
3454 for (section = input_bfd->sections;
3455 section != NULL;
3456 section = section->next)
3457 {
3458 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3459
3460 /* If there aren't any relocs, then there's nothing more
3461 to do. */
3462 if ((section->flags & SEC_RELOC) == 0
3463 || section->reloc_count == 0
3464 || (section->flags & SEC_CODE) == 0)
3465 continue;
3466
3467 /* If this section is a link-once section that will be
3468 discarded, then don't create any stubs. */
3469 if (section->output_section == NULL
3470 || section->output_section->owner != output_bfd)
3471 continue;
3472
3473 /* Get the relocs. */
3474 internal_relocs
3475 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3476 NULL, info->keep_memory);
3477 if (internal_relocs == NULL)
3478 goto error_ret_free_local;
3479
3480 /* Now examine each relocation. */
3481 irela = internal_relocs;
3482 irelaend = irela + section->reloc_count;
3483 for (; irela < irelaend; irela++)
3484 {
3485 unsigned int r_type, r_indx;
3486 enum elf32_arm_stub_type stub_type;
3487 struct elf32_arm_stub_hash_entry *stub_entry;
3488 asection *sym_sec;
3489 bfd_vma sym_value;
3490 bfd_vma destination;
3491 struct elf32_arm_link_hash_entry *hash;
3492 const char *sym_name;
3493 char *stub_name;
3494 const asection *id_sec;
3495 unsigned char st_type;
3496
3497 r_type = ELF32_R_TYPE (irela->r_info);
3498 r_indx = ELF32_R_SYM (irela->r_info);
3499
3500 if (r_type >= (unsigned int) R_ARM_max)
3501 {
3502 bfd_set_error (bfd_error_bad_value);
3503 error_ret_free_internal:
3504 if (elf_section_data (section)->relocs == NULL)
3505 free (internal_relocs);
3506 goto error_ret_free_local;
3507 }
3508
3509 /* Only look for stubs on call instructions. */
3510 if ((r_type != (unsigned int) R_ARM_CALL)
3511 && (r_type != (unsigned int) R_ARM_THM_CALL))
3512 continue;
3513
3514 /* Now determine the call target, its name, value,
3515 section. */
3516 sym_sec = NULL;
3517 sym_value = 0;
3518 destination = 0;
3519 hash = NULL;
3520 sym_name = NULL;
3521 if (r_indx < symtab_hdr->sh_info)
3522 {
3523 /* It's a local symbol. */
3524 Elf_Internal_Sym *sym;
3525 Elf_Internal_Shdr *hdr;
3526
3527 if (local_syms == NULL)
3528 {
3529 local_syms
3530 = (Elf_Internal_Sym *) symtab_hdr->contents;
3531 if (local_syms == NULL)
3532 local_syms
3533 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3534 symtab_hdr->sh_info, 0,
3535 NULL, NULL, NULL);
3536 if (local_syms == NULL)
3537 goto error_ret_free_internal;
3538 }
3539
3540 sym = local_syms + r_indx;
3541 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3542 sym_sec = hdr->bfd_section;
3543 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3544 sym_value = sym->st_value;
3545 destination = (sym_value + irela->r_addend
3546 + sym_sec->output_offset
3547 + sym_sec->output_section->vma);
3548 st_type = ELF_ST_TYPE (sym->st_info);
3549 sym_name
3550 = bfd_elf_string_from_elf_section (input_bfd,
3551 symtab_hdr->sh_link,
3552 sym->st_name);
3553 }
3554 else
3555 {
3556 /* It's an external symbol. */
3557 int e_indx;
3558
3559 e_indx = r_indx - symtab_hdr->sh_info;
3560 hash = ((struct elf32_arm_link_hash_entry *)
3561 elf_sym_hashes (input_bfd)[e_indx]);
3562
3563 while (hash->root.root.type == bfd_link_hash_indirect
3564 || hash->root.root.type == bfd_link_hash_warning)
3565 hash = ((struct elf32_arm_link_hash_entry *)
3566 hash->root.root.u.i.link);
3567
3568 if (hash->root.root.type == bfd_link_hash_defined
3569 || hash->root.root.type == bfd_link_hash_defweak)
3570 {
3571 sym_sec = hash->root.root.u.def.section;
3572 sym_value = hash->root.root.u.def.value;
3573 if (sym_sec->output_section != NULL)
3574 destination = (sym_value + irela->r_addend
3575 + sym_sec->output_offset
3576 + sym_sec->output_section->vma);
3577 }
3578 else if (hash->root.root.type == bfd_link_hash_undefweak
3579 || hash->root.root.type == bfd_link_hash_undefined)
3580 /* For a shared library, these will need a PLT stub,
3581 which is treated separately.
3582 For absolute code, they cannot be handled. */
3583 continue;
3584 else
3585 {
3586 bfd_set_error (bfd_error_bad_value);
3587 goto error_ret_free_internal;
3588 }
3589 st_type = ELF_ST_TYPE (hash->root.type);
3590 sym_name = hash->root.root.root.string;
3591 }
3592
3593 /* Determine what (if any) linker stub is needed. */
3594 stub_type = arm_type_of_stub (info, section, irela, st_type,
3595 hash, destination);
3596 if (stub_type == arm_stub_none)
3597 continue;
3598
3599 /* Support for grouping stub sections. */
3600 id_sec = htab->stub_group[section->id].link_sec;
3601
3602 /* Get the name of this stub. */
3603 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3604 if (!stub_name)
3605 goto error_ret_free_internal;
3606
3607 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3608 stub_name,
3609 FALSE, FALSE);
3610 if (stub_entry != NULL)
3611 {
3612 /* The proper stub has already been created. */
3613 free (stub_name);
3614 continue;
3615 }
3616
3617 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3618 if (stub_entry == NULL)
3619 {
3620 free (stub_name);
3621 goto error_ret_free_internal;
3622 }
3623
3624 stub_entry->target_value = sym_value;
3625 stub_entry->target_section = sym_sec;
3626 stub_entry->stub_type = stub_type;
3627 stub_entry->h = hash;
3628 stub_entry->st_type = st_type;
3629
3630 if (sym_name == NULL)
3631 sym_name = "unnamed";
3632 stub_entry->output_name
3633 = bfd_alloc (htab->stub_bfd,
3634 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3635 + strlen (sym_name));
3636 if (stub_entry->output_name == NULL)
3637 {
3638 free (stub_name);
3639 goto error_ret_free_internal;
3640 }
3641
3642 /* For historical reasons, use the existing names for
3643 ARM-to-Thumb and Thumb-to-ARM stubs. */
3644 if (r_type == (unsigned int) R_ARM_THM_CALL
3645 && st_type != STT_ARM_TFUNC)
3646 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3647 sym_name);
3648 else if (r_type == (unsigned int) R_ARM_CALL
3649 && st_type == STT_ARM_TFUNC)
3650 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3651 sym_name);
3652 else
3653 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3654 sym_name);
3655
3656 stub_changed = TRUE;
3657 }
3658
3659 /* We're done with the internal relocs, free them. */
3660 if (elf_section_data (section)->relocs == NULL)
3661 free (internal_relocs);
3662 }
3663 }
3664
3665 if (!stub_changed)
3666 break;
3667
3668 /* OK, we've added some stubs. Find out the new size of the
3669 stub sections. */
3670 for (stub_sec = htab->stub_bfd->sections;
3671 stub_sec != NULL;
3672 stub_sec = stub_sec->next)
3673 stub_sec->size = 0;
3674
3675 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3676
3677 /* Ask the linker to do its stuff. */
3678 (*htab->layout_sections_again) ();
3679 stub_changed = FALSE;
3680 }
3681
3682 return TRUE;
3683
3684 error_ret_free_local:
3685 return FALSE;
3686 }
3687
3688 /* Build all the stubs associated with the current output file. The
3689 stubs are kept in a hash table attached to the main linker hash
3690 table. We also set up the .plt entries for statically linked PIC
3691 functions here. This function is called via arm_elf_finish in the
3692 linker. */
3693
3694 bfd_boolean
3695 elf32_arm_build_stubs (struct bfd_link_info *info)
3696 {
3697 asection *stub_sec;
3698 struct bfd_hash_table *table;
3699 struct elf32_arm_link_hash_table *htab;
3700
3701 htab = elf32_arm_hash_table (info);
3702
3703 for (stub_sec = htab->stub_bfd->sections;
3704 stub_sec != NULL;
3705 stub_sec = stub_sec->next)
3706 {
3707 bfd_size_type size;
3708
3709 /* Ignore non-stub sections */
3710 if (!strstr (stub_sec->name, STUB_SUFFIX))
3711 continue;
3712
3713 /* Allocate memory to hold the linker stubs. */
3714 size = stub_sec->size;
3715 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3716 if (stub_sec->contents == NULL && size != 0)
3717 return FALSE;
3718 stub_sec->size = 0;
3719 }
3720
3721 /* Build the stubs as directed by the stub hash table. */
3722 table = &htab->stub_hash_table;
3723 bfd_hash_traverse (table, arm_build_one_stub, info);
3724
3725 return TRUE;
3726 }
3727
3728 /* Locate the Thumb encoded calling stub for NAME. */
3729
3730 static struct elf_link_hash_entry *
3731 find_thumb_glue (struct bfd_link_info *link_info,
3732 const char *name,
3733 char **error_message)
3734 {
3735 char *tmp_name;
3736 struct elf_link_hash_entry *hash;
3737 struct elf32_arm_link_hash_table *hash_table;
3738
3739 /* We need a pointer to the armelf specific hash table. */
3740 hash_table = elf32_arm_hash_table (link_info);
3741
3742 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3743 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3744
3745 BFD_ASSERT (tmp_name);
3746
3747 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3748
3749 hash = elf_link_hash_lookup
3750 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3751
3752 if (hash == NULL
3753 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3754 tmp_name, name) == -1)
3755 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3756
3757 free (tmp_name);
3758
3759 return hash;
3760 }
3761
3762 /* Locate the ARM encoded calling stub for NAME. */
3763
3764 static struct elf_link_hash_entry *
3765 find_arm_glue (struct bfd_link_info *link_info,
3766 const char *name,
3767 char **error_message)
3768 {
3769 char *tmp_name;
3770 struct elf_link_hash_entry *myh;
3771 struct elf32_arm_link_hash_table *hash_table;
3772
3773 /* We need a pointer to the elfarm specific hash table. */
3774 hash_table = elf32_arm_hash_table (link_info);
3775
3776 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3777 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3778
3779 BFD_ASSERT (tmp_name);
3780
3781 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3782
3783 myh = elf_link_hash_lookup
3784 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3785
3786 if (myh == NULL
3787 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3788 tmp_name, name) == -1)
3789 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3790
3791 free (tmp_name);
3792
3793 return myh;
3794 }
3795
3796 /* ARM->Thumb glue (static images):
3797
3798 .arm
3799 __func_from_arm:
3800 ldr r12, __func_addr
3801 bx r12
3802 __func_addr:
3803 .word func @ behave as if you saw a ARM_32 reloc.
3804
3805 (v5t static images)
3806 .arm
3807 __func_from_arm:
3808 ldr pc, __func_addr
3809 __func_addr:
3810 .word func @ behave as if you saw a ARM_32 reloc.
3811
3812 (relocatable images)
3813 .arm
3814 __func_from_arm:
3815 ldr r12, __func_offset
3816 add r12, r12, pc
3817 bx r12
3818 __func_offset:
3819 .word func - .
3820 */
3821
3822 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3823 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3824 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3825 static const insn32 a2t3_func_addr_insn = 0x00000001;
3826
3827 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3828 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3829 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3830
3831 #define ARM2THUMB_PIC_GLUE_SIZE 16
3832 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3833 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3834 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3835
3836 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3837
3838 .thumb .thumb
3839 .align 2 .align 2
3840 __func_from_thumb: __func_from_thumb:
3841 bx pc push {r6, lr}
3842 nop ldr r6, __func_addr
3843 .arm mov lr, pc
3844 __func_change_to_arm: bx r6
3845 b func .arm
3846 __func_back_to_thumb:
3847 ldmia r13! {r6, lr}
3848 bx lr
3849 __func_addr:
3850 .word func */
3851
3852 #define THUMB2ARM_GLUE_SIZE 8
3853 static const insn16 t2a1_bx_pc_insn = 0x4778;
3854 static const insn16 t2a2_noop_insn = 0x46c0;
3855 static const insn32 t2a3_b_insn = 0xea000000;
3856
3857 #define VFP11_ERRATUM_VENEER_SIZE 8
3858
3859 #define ARM_BX_VENEER_SIZE 12
3860 static const insn32 armbx1_tst_insn = 0xe3100001;
3861 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3862 static const insn32 armbx3_bx_insn = 0xe12fff10;
3863
3864 #ifndef ELFARM_NABI_C_INCLUDED
3865 bfd_boolean
3866 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3867 {
3868 asection * s;
3869 bfd_byte * foo;
3870 struct elf32_arm_link_hash_table * globals;
3871
3872 globals = elf32_arm_hash_table (info);
3873
3874 BFD_ASSERT (globals != NULL);
3875
3876 if (globals->arm_glue_size != 0)
3877 {
3878 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3879
3880 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3881 ARM2THUMB_GLUE_SECTION_NAME);
3882
3883 BFD_ASSERT (s != NULL);
3884
3885 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
3886
3887 BFD_ASSERT (s->size == globals->arm_glue_size);
3888 s->contents = foo;
3889 }
3890
3891 if (globals->thumb_glue_size != 0)
3892 {
3893 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3894
3895 s = bfd_get_section_by_name
3896 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
3897
3898 BFD_ASSERT (s != NULL);
3899
3900 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
3901
3902 BFD_ASSERT (s->size == globals->thumb_glue_size);
3903 s->contents = foo;
3904 }
3905
3906 if (globals->vfp11_erratum_glue_size != 0)
3907 {
3908 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3909
3910 s = bfd_get_section_by_name
3911 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
3912
3913 BFD_ASSERT (s != NULL);
3914
3915 foo = bfd_alloc (globals->bfd_of_glue_owner,
3916 globals->vfp11_erratum_glue_size);
3917
3918 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
3919 s->contents = foo;
3920 }
3921
3922 if (globals->bx_glue_size != 0)
3923 {
3924 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3925
3926 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3927 ARM_BX_GLUE_SECTION_NAME);
3928
3929 BFD_ASSERT (s != NULL);
3930
3931 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->bx_glue_size);
3932
3933 BFD_ASSERT (s->size == globals->bx_glue_size);
3934 s->contents = foo;
3935 }
3936
3937 return TRUE;
3938 }
3939
3940 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3941 returns the symbol identifying the stub. */
3942
3943 static struct elf_link_hash_entry *
3944 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3945 struct elf_link_hash_entry * h)
3946 {
3947 const char * name = h->root.root.string;
3948 asection * s;
3949 char * tmp_name;
3950 struct elf_link_hash_entry * myh;
3951 struct bfd_link_hash_entry * bh;
3952 struct elf32_arm_link_hash_table * globals;
3953 bfd_vma val;
3954 bfd_size_type size;
3955
3956 globals = elf32_arm_hash_table (link_info);
3957
3958 BFD_ASSERT (globals != NULL);
3959 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3960
3961 s = bfd_get_section_by_name
3962 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
3963
3964 BFD_ASSERT (s != NULL);
3965
3966 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3967
3968 BFD_ASSERT (tmp_name);
3969
3970 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3971
3972 myh = elf_link_hash_lookup
3973 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3974
3975 if (myh != NULL)
3976 {
3977 /* We've already seen this guy. */
3978 free (tmp_name);
3979 return myh;
3980 }
3981
3982 /* The only trick here is using hash_table->arm_glue_size as the value.
3983 Even though the section isn't allocated yet, this is where we will be
3984 putting it. The +1 on the value marks that the stub has not been
3985 output yet - not that it is a Thumb function. */
3986 bh = NULL;
3987 val = globals->arm_glue_size + 1;
3988 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
3989 tmp_name, BSF_GLOBAL, s, val,
3990 NULL, TRUE, FALSE, &bh);
3991
3992 myh = (struct elf_link_hash_entry *) bh;
3993 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3994 myh->forced_local = 1;
3995
3996 free (tmp_name);
3997
3998 if (link_info->shared || globals->root.is_relocatable_executable
3999 || globals->pic_veneer)
4000 size = ARM2THUMB_PIC_GLUE_SIZE;
4001 else if (globals->use_blx)
4002 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4003 else
4004 size = ARM2THUMB_STATIC_GLUE_SIZE;
4005
4006 s->size += size;
4007 globals->arm_glue_size += size;
4008
4009 return myh;
4010 }
4011
4012 static void
4013 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4014 struct elf_link_hash_entry *h)
4015 {
4016 const char *name = h->root.root.string;
4017 asection *s;
4018 char *tmp_name;
4019 struct elf_link_hash_entry *myh;
4020 struct bfd_link_hash_entry *bh;
4021 struct elf32_arm_link_hash_table *hash_table;
4022 bfd_vma val;
4023
4024 hash_table = elf32_arm_hash_table (link_info);
4025
4026 BFD_ASSERT (hash_table != NULL);
4027 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4028
4029 s = bfd_get_section_by_name
4030 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4031
4032 BFD_ASSERT (s != NULL);
4033
4034 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4035 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4036
4037 BFD_ASSERT (tmp_name);
4038
4039 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4040
4041 myh = elf_link_hash_lookup
4042 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4043
4044 if (myh != NULL)
4045 {
4046 /* We've already seen this guy. */
4047 free (tmp_name);
4048 return;
4049 }
4050
4051 /* The only trick here is using hash_table->thumb_glue_size as the value.
4052 Even though the section isn't allocated yet, this is where we will be
4053 putting it. The +1 on the value marks that the stub has not been
4054 output yet - not that it is a Thumb function. */
4055 bh = NULL;
4056 val = hash_table->thumb_glue_size + 1;
4057 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4058 tmp_name, BSF_GLOBAL, s, val,
4059 NULL, TRUE, FALSE, &bh);
4060
4061 /* If we mark it 'Thumb', the disassembler will do a better job. */
4062 myh = (struct elf_link_hash_entry *) bh;
4063 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4064 myh->forced_local = 1;
4065
4066 free (tmp_name);
4067
4068 #define CHANGE_TO_ARM "__%s_change_to_arm"
4069 #define BACK_FROM_ARM "__%s_back_from_arm"
4070
4071 /* Allocate another symbol to mark where we switch to Arm mode. */
4072 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4073 + strlen (CHANGE_TO_ARM) + 1);
4074
4075 BFD_ASSERT (tmp_name);
4076
4077 sprintf (tmp_name, CHANGE_TO_ARM, name);
4078
4079 bh = NULL;
4080 val = hash_table->thumb_glue_size + 4,
4081 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4082 tmp_name, BSF_LOCAL, s, val,
4083 NULL, TRUE, FALSE, &bh);
4084
4085 free (tmp_name);
4086
4087 s->size += THUMB2ARM_GLUE_SIZE;
4088 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4089
4090 return;
4091 }
4092
4093
4094 /* Allocate space for ARMv4 BX veneers. */
4095
4096 static void
4097 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4098 {
4099 asection * s;
4100 struct elf32_arm_link_hash_table *globals;
4101 char *tmp_name;
4102 struct elf_link_hash_entry *myh;
4103 struct bfd_link_hash_entry *bh;
4104 bfd_vma val;
4105
4106 /* BX PC does not need a veneer. */
4107 if (reg == 15)
4108 return;
4109
4110 globals = elf32_arm_hash_table (link_info);
4111
4112 BFD_ASSERT (globals != NULL);
4113 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4114
4115 /* Check if this veneer has already been allocated. */
4116 if (globals->bx_glue_offset[reg])
4117 return;
4118
4119 s = bfd_get_section_by_name
4120 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4121
4122 BFD_ASSERT (s != NULL);
4123
4124 /* Add symbol for veneer. */
4125 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4126
4127 BFD_ASSERT (tmp_name);
4128
4129 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4130
4131 myh = elf_link_hash_lookup
4132 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4133
4134 BFD_ASSERT (myh == NULL);
4135
4136 bh = NULL;
4137 val = globals->bx_glue_size;
4138 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4139 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4140 NULL, TRUE, FALSE, &bh);
4141
4142 myh = (struct elf_link_hash_entry *) bh;
4143 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4144 myh->forced_local = 1;
4145
4146 s->size += ARM_BX_VENEER_SIZE;
4147 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4148 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4149 }
4150
4151
4152 /* Add an entry to the code/data map for section SEC. */
4153
4154 static void
4155 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4156 {
4157 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4158 unsigned int newidx;
4159
4160 if (sec_data->map == NULL)
4161 {
4162 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4163 sec_data->mapcount = 0;
4164 sec_data->mapsize = 1;
4165 }
4166
4167 newidx = sec_data->mapcount++;
4168
4169 if (sec_data->mapcount > sec_data->mapsize)
4170 {
4171 sec_data->mapsize *= 2;
4172 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4173 * sizeof (elf32_arm_section_map));
4174 }
4175
4176 if (sec_data->map)
4177 {
4178 sec_data->map[newidx].vma = vma;
4179 sec_data->map[newidx].type = type;
4180 }
4181 }
4182
4183
4184 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4185 veneers are handled for now. */
4186
4187 static bfd_vma
4188 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4189 elf32_vfp11_erratum_list *branch,
4190 bfd *branch_bfd,
4191 asection *branch_sec,
4192 unsigned int offset)
4193 {
4194 asection *s;
4195 struct elf32_arm_link_hash_table *hash_table;
4196 char *tmp_name;
4197 struct elf_link_hash_entry *myh;
4198 struct bfd_link_hash_entry *bh;
4199 bfd_vma val;
4200 struct _arm_elf_section_data *sec_data;
4201 int errcount;
4202 elf32_vfp11_erratum_list *newerr;
4203
4204 hash_table = elf32_arm_hash_table (link_info);
4205
4206 BFD_ASSERT (hash_table != NULL);
4207 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4208
4209 s = bfd_get_section_by_name
4210 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4211
4212 sec_data = elf32_arm_section_data (s);
4213
4214 BFD_ASSERT (s != NULL);
4215
4216 tmp_name = bfd_malloc ((bfd_size_type) strlen
4217 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4218
4219 BFD_ASSERT (tmp_name);
4220
4221 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4222 hash_table->num_vfp11_fixes);
4223
4224 myh = elf_link_hash_lookup
4225 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4226
4227 BFD_ASSERT (myh == NULL);
4228
4229 bh = NULL;
4230 val = hash_table->vfp11_erratum_glue_size;
4231 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4232 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4233 NULL, TRUE, FALSE, &bh);
4234
4235 myh = (struct elf_link_hash_entry *) bh;
4236 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4237 myh->forced_local = 1;
4238
4239 /* Link veneer back to calling location. */
4240 errcount = ++(sec_data->erratumcount);
4241 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4242
4243 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4244 newerr->vma = -1;
4245 newerr->u.v.branch = branch;
4246 newerr->u.v.id = hash_table->num_vfp11_fixes;
4247 branch->u.b.veneer = newerr;
4248
4249 newerr->next = sec_data->erratumlist;
4250 sec_data->erratumlist = newerr;
4251
4252 /* A symbol for the return from the veneer. */
4253 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4254 hash_table->num_vfp11_fixes);
4255
4256 myh = elf_link_hash_lookup
4257 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4258
4259 if (myh != NULL)
4260 abort ();
4261
4262 bh = NULL;
4263 val = offset + 4;
4264 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4265 branch_sec, val, NULL, TRUE, FALSE, &bh);
4266
4267 myh = (struct elf_link_hash_entry *) bh;
4268 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4269 myh->forced_local = 1;
4270
4271 free (tmp_name);
4272
4273 /* Generate a mapping symbol for the veneer section, and explicitly add an
4274 entry for that symbol to the code/data map for the section. */
4275 if (hash_table->vfp11_erratum_glue_size == 0)
4276 {
4277 bh = NULL;
4278 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4279 ever requires this erratum fix. */
4280 _bfd_generic_link_add_one_symbol (link_info,
4281 hash_table->bfd_of_glue_owner, "$a",
4282 BSF_LOCAL, s, 0, NULL,
4283 TRUE, FALSE, &bh);
4284
4285 myh = (struct elf_link_hash_entry *) bh;
4286 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4287 myh->forced_local = 1;
4288
4289 /* The elf32_arm_init_maps function only cares about symbols from input
4290 BFDs. We must make a note of this generated mapping symbol
4291 ourselves so that code byteswapping works properly in
4292 elf32_arm_write_section. */
4293 elf32_arm_section_map_add (s, 'a', 0);
4294 }
4295
4296 s->size += VFP11_ERRATUM_VENEER_SIZE;
4297 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4298 hash_table->num_vfp11_fixes++;
4299
4300 /* The offset of the veneer. */
4301 return val;
4302 }
4303
4304 /* Add the glue sections to ABFD. This function is called from the
4305 linker scripts in ld/emultempl/{armelf}.em. */
4306
4307 bfd_boolean
4308 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4309 struct bfd_link_info *info)
4310 {
4311 flagword flags;
4312 asection *sec;
4313
4314 /* If we are only performing a partial
4315 link do not bother adding the glue. */
4316 if (info->relocatable)
4317 return TRUE;
4318
4319 /* linker stubs don't need glue */
4320 if (!strcmp (abfd->filename, "linker stubs"))
4321 return TRUE;
4322
4323 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
4324
4325 if (sec == NULL)
4326 {
4327 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
4328 will prevent elf_link_input_bfd() from processing the contents
4329 of this section. */
4330 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4331 | SEC_CODE | SEC_READONLY);
4332
4333 sec = bfd_make_section_with_flags (abfd,
4334 ARM2THUMB_GLUE_SECTION_NAME,
4335 flags);
4336
4337 if (sec == NULL
4338 || !bfd_set_section_alignment (abfd, sec, 2))
4339 return FALSE;
4340
4341 /* Set the gc mark to prevent the section from being removed by garbage
4342 collection, despite the fact that no relocs refer to this section. */
4343 sec->gc_mark = 1;
4344 }
4345
4346 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
4347
4348 if (sec == NULL)
4349 {
4350 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4351 | SEC_CODE | SEC_READONLY);
4352
4353 sec = bfd_make_section_with_flags (abfd,
4354 THUMB2ARM_GLUE_SECTION_NAME,
4355 flags);
4356
4357 if (sec == NULL
4358 || !bfd_set_section_alignment (abfd, sec, 2))
4359 return FALSE;
4360
4361 sec->gc_mark = 1;
4362 }
4363
4364 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
4365
4366 if (sec == NULL)
4367 {
4368 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4369 | SEC_CODE | SEC_READONLY);
4370
4371 sec = bfd_make_section_with_flags (abfd,
4372 VFP11_ERRATUM_VENEER_SECTION_NAME,
4373 flags);
4374
4375 if (sec == NULL
4376 || !bfd_set_section_alignment (abfd, sec, 2))
4377 return FALSE;
4378
4379 sec->gc_mark = 1;
4380 }
4381
4382 sec = bfd_get_section_by_name (abfd, ARM_BX_GLUE_SECTION_NAME);
4383
4384 if (sec == NULL)
4385 {
4386 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4387 | SEC_CODE | SEC_READONLY);
4388
4389 sec = bfd_make_section_with_flags (abfd,
4390 ARM_BX_GLUE_SECTION_NAME,
4391 flags);
4392
4393 if (sec == NULL
4394 || !bfd_set_section_alignment (abfd, sec, 2))
4395 return FALSE;
4396
4397 sec->gc_mark = 1;
4398 }
4399
4400 return TRUE;
4401 }
4402
4403 /* Select a BFD to be used to hold the sections used by the glue code.
4404 This function is called from the linker scripts in ld/emultempl/
4405 {armelf/pe}.em */
4406
4407 bfd_boolean
4408 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4409 {
4410 struct elf32_arm_link_hash_table *globals;
4411
4412 /* If we are only performing a partial link
4413 do not bother getting a bfd to hold the glue. */
4414 if (info->relocatable)
4415 return TRUE;
4416
4417 /* Make sure we don't attach the glue sections to a dynamic object. */
4418 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4419
4420 globals = elf32_arm_hash_table (info);
4421
4422 BFD_ASSERT (globals != NULL);
4423
4424 if (globals->bfd_of_glue_owner != NULL)
4425 return TRUE;
4426
4427 /* Save the bfd for later use. */
4428 globals->bfd_of_glue_owner = abfd;
4429
4430 return TRUE;
4431 }
4432
4433 static void
4434 check_use_blx (struct elf32_arm_link_hash_table *globals)
4435 {
4436 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4437 Tag_CPU_arch) > 2)
4438 globals->use_blx = 1;
4439 }
4440
4441 bfd_boolean
4442 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4443 struct bfd_link_info *link_info)
4444 {
4445 Elf_Internal_Shdr *symtab_hdr;
4446 Elf_Internal_Rela *internal_relocs = NULL;
4447 Elf_Internal_Rela *irel, *irelend;
4448 bfd_byte *contents = NULL;
4449
4450 asection *sec;
4451 struct elf32_arm_link_hash_table *globals;
4452
4453 /* If we are only performing a partial link do not bother
4454 to construct any glue. */
4455 if (link_info->relocatable)
4456 return TRUE;
4457
4458 /* Here we have a bfd that is to be included on the link. We have a
4459 hook to do reloc rummaging, before section sizes are nailed down. */
4460 globals = elf32_arm_hash_table (link_info);
4461
4462 BFD_ASSERT (globals != NULL);
4463
4464 check_use_blx (globals);
4465
4466 if (globals->byteswap_code && !bfd_big_endian (abfd))
4467 {
4468 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4469 abfd);
4470 return FALSE;
4471 }
4472
4473 /* PR 5398: If we have not decided to include any loadable sections in
4474 the output then we will not have a glue owner bfd. This is OK, it
4475 just means that there is nothing else for us to do here. */
4476 if (globals->bfd_of_glue_owner == NULL)
4477 return TRUE;
4478
4479 /* Rummage around all the relocs and map the glue vectors. */
4480 sec = abfd->sections;
4481
4482 if (sec == NULL)
4483 return TRUE;
4484
4485 for (; sec != NULL; sec = sec->next)
4486 {
4487 if (sec->reloc_count == 0)
4488 continue;
4489
4490 if ((sec->flags & SEC_EXCLUDE) != 0)
4491 continue;
4492
4493 symtab_hdr = & elf_symtab_hdr (abfd);
4494
4495 /* Load the relocs. */
4496 internal_relocs
4497 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4498
4499 if (internal_relocs == NULL)
4500 goto error_return;
4501
4502 irelend = internal_relocs + sec->reloc_count;
4503 for (irel = internal_relocs; irel < irelend; irel++)
4504 {
4505 long r_type;
4506 unsigned long r_index;
4507
4508 struct elf_link_hash_entry *h;
4509
4510 r_type = ELF32_R_TYPE (irel->r_info);
4511 r_index = ELF32_R_SYM (irel->r_info);
4512
4513 /* These are the only relocation types we care about. */
4514 if ( r_type != R_ARM_PC24
4515 && r_type != R_ARM_PLT32
4516 && r_type != R_ARM_JUMP24
4517 && r_type != R_ARM_THM_JUMP24
4518 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4519 continue;
4520
4521 /* Get the section contents if we haven't done so already. */
4522 if (contents == NULL)
4523 {
4524 /* Get cached copy if it exists. */
4525 if (elf_section_data (sec)->this_hdr.contents != NULL)
4526 contents = elf_section_data (sec)->this_hdr.contents;
4527 else
4528 {
4529 /* Go get them off disk. */
4530 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4531 goto error_return;
4532 }
4533 }
4534
4535 if (r_type == R_ARM_V4BX)
4536 {
4537 int reg;
4538
4539 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4540 record_arm_bx_glue (link_info, reg);
4541 continue;
4542 }
4543
4544 /* If the relocation is not against a symbol it cannot concern us. */
4545 h = NULL;
4546
4547 /* We don't care about local symbols. */
4548 if (r_index < symtab_hdr->sh_info)
4549 continue;
4550
4551 /* This is an external symbol. */
4552 r_index -= symtab_hdr->sh_info;
4553 h = (struct elf_link_hash_entry *)
4554 elf_sym_hashes (abfd)[r_index];
4555
4556 /* If the relocation is against a static symbol it must be within
4557 the current section and so cannot be a cross ARM/Thumb relocation. */
4558 if (h == NULL)
4559 continue;
4560
4561 /* If the call will go through a PLT entry then we do not need
4562 glue. */
4563 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4564 continue;
4565
4566 switch (r_type)
4567 {
4568 case R_ARM_PC24:
4569 case R_ARM_PLT32:
4570 case R_ARM_JUMP24:
4571 /* This one is a call from arm code. We need to look up
4572 the target of the call. If it is a thumb target, we
4573 insert glue. */
4574 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4575 && !(r_type == R_ARM_CALL && globals->use_blx))
4576 record_arm_to_thumb_glue (link_info, h);
4577 break;
4578
4579 case R_ARM_THM_JUMP24:
4580 /* This one is a call from thumb code. We look
4581 up the target of the call. If it is not a thumb
4582 target, we insert glue. */
4583 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4584 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4585 && h->root.type != bfd_link_hash_undefweak)
4586 record_thumb_to_arm_glue (link_info, h);
4587 break;
4588
4589 default:
4590 abort ();
4591 }
4592 }
4593
4594 if (contents != NULL
4595 && elf_section_data (sec)->this_hdr.contents != contents)
4596 free (contents);
4597 contents = NULL;
4598
4599 if (internal_relocs != NULL
4600 && elf_section_data (sec)->relocs != internal_relocs)
4601 free (internal_relocs);
4602 internal_relocs = NULL;
4603 }
4604
4605 return TRUE;
4606
4607 error_return:
4608 if (contents != NULL
4609 && elf_section_data (sec)->this_hdr.contents != contents)
4610 free (contents);
4611 if (internal_relocs != NULL
4612 && elf_section_data (sec)->relocs != internal_relocs)
4613 free (internal_relocs);
4614
4615 return FALSE;
4616 }
4617 #endif
4618
4619
4620 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4621
4622 void
4623 bfd_elf32_arm_init_maps (bfd *abfd)
4624 {
4625 Elf_Internal_Sym *isymbuf;
4626 Elf_Internal_Shdr *hdr;
4627 unsigned int i, localsyms;
4628
4629 if ((abfd->flags & DYNAMIC) != 0)
4630 return;
4631
4632 hdr = & elf_symtab_hdr (abfd);
4633 localsyms = hdr->sh_info;
4634
4635 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4636 should contain the number of local symbols, which should come before any
4637 global symbols. Mapping symbols are always local. */
4638 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4639 NULL);
4640
4641 /* No internal symbols read? Skip this BFD. */
4642 if (isymbuf == NULL)
4643 return;
4644
4645 for (i = 0; i < localsyms; i++)
4646 {
4647 Elf_Internal_Sym *isym = &isymbuf[i];
4648 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4649 const char *name;
4650
4651 if (sec != NULL
4652 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4653 {
4654 name = bfd_elf_string_from_elf_section (abfd,
4655 hdr->sh_link, isym->st_name);
4656
4657 if (bfd_is_arm_special_symbol_name (name,
4658 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4659 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4660 }
4661 }
4662 }
4663
4664
4665 void
4666 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4667 {
4668 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4669 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4670
4671 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4672 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4673 {
4674 switch (globals->vfp11_fix)
4675 {
4676 case BFD_ARM_VFP11_FIX_DEFAULT:
4677 case BFD_ARM_VFP11_FIX_NONE:
4678 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4679 break;
4680
4681 default:
4682 /* Give a warning, but do as the user requests anyway. */
4683 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4684 "workaround is not necessary for target architecture"), obfd);
4685 }
4686 }
4687 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4688 /* For earlier architectures, we might need the workaround, but do not
4689 enable it by default. If users is running with broken hardware, they
4690 must enable the erratum fix explicitly. */
4691 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4692 }
4693
4694
4695 enum bfd_arm_vfp11_pipe
4696 {
4697 VFP11_FMAC,
4698 VFP11_LS,
4699 VFP11_DS,
4700 VFP11_BAD
4701 };
4702
4703 /* Return a VFP register number. This is encoded as RX:X for single-precision
4704 registers, or X:RX for double-precision registers, where RX is the group of
4705 four bits in the instruction encoding and X is the single extension bit.
4706 RX and X fields are specified using their lowest (starting) bit. The return
4707 value is:
4708
4709 0...31: single-precision registers s0...s31
4710 32...63: double-precision registers d0...d31.
4711
4712 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4713 encounter VFP3 instructions, so we allow the full range for DP registers. */
4714
4715 static unsigned int
4716 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4717 unsigned int x)
4718 {
4719 if (is_double)
4720 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4721 else
4722 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4723 }
4724
4725 /* Set bits in *WMASK according to a register number REG as encoded by
4726 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4727
4728 static void
4729 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4730 {
4731 if (reg < 32)
4732 *wmask |= 1 << reg;
4733 else if (reg < 48)
4734 *wmask |= 3 << ((reg - 32) * 2);
4735 }
4736
4737 /* Return TRUE if WMASK overwrites anything in REGS. */
4738
4739 static bfd_boolean
4740 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4741 {
4742 int i;
4743
4744 for (i = 0; i < numregs; i++)
4745 {
4746 unsigned int reg = regs[i];
4747
4748 if (reg < 32 && (wmask & (1 << reg)) != 0)
4749 return TRUE;
4750
4751 reg -= 32;
4752
4753 if (reg >= 16)
4754 continue;
4755
4756 if ((wmask & (3 << (reg * 2))) != 0)
4757 return TRUE;
4758 }
4759
4760 return FALSE;
4761 }
4762
4763 /* In this function, we're interested in two things: finding input registers
4764 for VFP data-processing instructions, and finding the set of registers which
4765 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4766 hold the written set, so FLDM etc. are easy to deal with (we're only
4767 interested in 32 SP registers or 16 dp registers, due to the VFP version
4768 implemented by the chip in question). DP registers are marked by setting
4769 both SP registers in the write mask). */
4770
4771 static enum bfd_arm_vfp11_pipe
4772 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4773 int *numregs)
4774 {
4775 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4776 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4777
4778 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4779 {
4780 unsigned int pqrs;
4781 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4782 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4783
4784 pqrs = ((insn & 0x00800000) >> 20)
4785 | ((insn & 0x00300000) >> 19)
4786 | ((insn & 0x00000040) >> 6);
4787
4788 switch (pqrs)
4789 {
4790 case 0: /* fmac[sd]. */
4791 case 1: /* fnmac[sd]. */
4792 case 2: /* fmsc[sd]. */
4793 case 3: /* fnmsc[sd]. */
4794 pipe = VFP11_FMAC;
4795 bfd_arm_vfp11_write_mask (destmask, fd);
4796 regs[0] = fd;
4797 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4798 regs[2] = fm;
4799 *numregs = 3;
4800 break;
4801
4802 case 4: /* fmul[sd]. */
4803 case 5: /* fnmul[sd]. */
4804 case 6: /* fadd[sd]. */
4805 case 7: /* fsub[sd]. */
4806 pipe = VFP11_FMAC;
4807 goto vfp_binop;
4808
4809 case 8: /* fdiv[sd]. */
4810 pipe = VFP11_DS;
4811 vfp_binop:
4812 bfd_arm_vfp11_write_mask (destmask, fd);
4813 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4814 regs[1] = fm;
4815 *numregs = 2;
4816 break;
4817
4818 case 15: /* extended opcode. */
4819 {
4820 unsigned int extn = ((insn >> 15) & 0x1e)
4821 | ((insn >> 7) & 1);
4822
4823 switch (extn)
4824 {
4825 case 0: /* fcpy[sd]. */
4826 case 1: /* fabs[sd]. */
4827 case 2: /* fneg[sd]. */
4828 case 8: /* fcmp[sd]. */
4829 case 9: /* fcmpe[sd]. */
4830 case 10: /* fcmpz[sd]. */
4831 case 11: /* fcmpez[sd]. */
4832 case 16: /* fuito[sd]. */
4833 case 17: /* fsito[sd]. */
4834 case 24: /* ftoui[sd]. */
4835 case 25: /* ftouiz[sd]. */
4836 case 26: /* ftosi[sd]. */
4837 case 27: /* ftosiz[sd]. */
4838 /* These instructions will not bounce due to underflow. */
4839 *numregs = 0;
4840 pipe = VFP11_FMAC;
4841 break;
4842
4843 case 3: /* fsqrt[sd]. */
4844 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4845 registers to cause the erratum in previous instructions. */
4846 bfd_arm_vfp11_write_mask (destmask, fd);
4847 pipe = VFP11_DS;
4848 break;
4849
4850 case 15: /* fcvt{ds,sd}. */
4851 {
4852 int rnum = 0;
4853
4854 bfd_arm_vfp11_write_mask (destmask, fd);
4855
4856 /* Only FCVTSD can underflow. */
4857 if ((insn & 0x100) != 0)
4858 regs[rnum++] = fm;
4859
4860 *numregs = rnum;
4861
4862 pipe = VFP11_FMAC;
4863 }
4864 break;
4865
4866 default:
4867 return VFP11_BAD;
4868 }
4869 }
4870 break;
4871
4872 default:
4873 return VFP11_BAD;
4874 }
4875 }
4876 /* Two-register transfer. */
4877 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4878 {
4879 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4880
4881 if ((insn & 0x100000) == 0)
4882 {
4883 if (is_double)
4884 bfd_arm_vfp11_write_mask (destmask, fm);
4885 else
4886 {
4887 bfd_arm_vfp11_write_mask (destmask, fm);
4888 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4889 }
4890 }
4891
4892 pipe = VFP11_LS;
4893 }
4894 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4895 {
4896 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4897 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4898
4899 switch (puw)
4900 {
4901 case 0: /* Two-reg transfer. We should catch these above. */
4902 abort ();
4903
4904 case 2: /* fldm[sdx]. */
4905 case 3:
4906 case 5:
4907 {
4908 unsigned int i, offset = insn & 0xff;
4909
4910 if (is_double)
4911 offset >>= 1;
4912
4913 for (i = fd; i < fd + offset; i++)
4914 bfd_arm_vfp11_write_mask (destmask, i);
4915 }
4916 break;
4917
4918 case 4: /* fld[sd]. */
4919 case 6:
4920 bfd_arm_vfp11_write_mask (destmask, fd);
4921 break;
4922
4923 default:
4924 return VFP11_BAD;
4925 }
4926
4927 pipe = VFP11_LS;
4928 }
4929 /* Single-register transfer. Note L==0. */
4930 else if ((insn & 0x0f100e10) == 0x0e000a10)
4931 {
4932 unsigned int opcode = (insn >> 21) & 7;
4933 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4934
4935 switch (opcode)
4936 {
4937 case 0: /* fmsr/fmdlr. */
4938 case 1: /* fmdhr. */
4939 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4940 destination register. I don't know if this is exactly right,
4941 but it is the conservative choice. */
4942 bfd_arm_vfp11_write_mask (destmask, fn);
4943 break;
4944
4945 case 7: /* fmxr. */
4946 break;
4947 }
4948
4949 pipe = VFP11_LS;
4950 }
4951
4952 return pipe;
4953 }
4954
4955
4956 static int elf32_arm_compare_mapping (const void * a, const void * b);
4957
4958
4959 /* Look for potentially-troublesome code sequences which might trigger the
4960 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4961 (available from ARM) for details of the erratum. A short version is
4962 described in ld.texinfo. */
4963
4964 bfd_boolean
4965 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4966 {
4967 asection *sec;
4968 bfd_byte *contents = NULL;
4969 int state = 0;
4970 int regs[3], numregs = 0;
4971 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4972 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4973
4974 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4975 The states transition as follows:
4976
4977 0 -> 1 (vector) or 0 -> 2 (scalar)
4978 A VFP FMAC-pipeline instruction has been seen. Fill
4979 regs[0]..regs[numregs-1] with its input operands. Remember this
4980 instruction in 'first_fmac'.
4981
4982 1 -> 2
4983 Any instruction, except for a VFP instruction which overwrites
4984 regs[*].
4985
4986 1 -> 3 [ -> 0 ] or
4987 2 -> 3 [ -> 0 ]
4988 A VFP instruction has been seen which overwrites any of regs[*].
4989 We must make a veneer! Reset state to 0 before examining next
4990 instruction.
4991
4992 2 -> 0
4993 If we fail to match anything in state 2, reset to state 0 and reset
4994 the instruction pointer to the instruction after 'first_fmac'.
4995
4996 If the VFP11 vector mode is in use, there must be at least two unrelated
4997 instructions between anti-dependent VFP11 instructions to properly avoid
4998 triggering the erratum, hence the use of the extra state 1. */
4999
5000 /* If we are only performing a partial link do not bother
5001 to construct any glue. */
5002 if (link_info->relocatable)
5003 return TRUE;
5004
5005 /* Skip if this bfd does not correspond to an ELF image. */
5006 if (! is_arm_elf (abfd))
5007 return TRUE;
5008
5009 /* We should have chosen a fix type by the time we get here. */
5010 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5011
5012 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5013 return TRUE;
5014
5015 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5016 {
5017 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5018 struct _arm_elf_section_data *sec_data;
5019
5020 /* If we don't have executable progbits, we're not interested in this
5021 section. Also skip if section is to be excluded. */
5022 if (elf_section_type (sec) != SHT_PROGBITS
5023 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5024 || (sec->flags & SEC_EXCLUDE) != 0
5025 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5026 continue;
5027
5028 sec_data = elf32_arm_section_data (sec);
5029
5030 if (sec_data->mapcount == 0)
5031 continue;
5032
5033 if (elf_section_data (sec)->this_hdr.contents != NULL)
5034 contents = elf_section_data (sec)->this_hdr.contents;
5035 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5036 goto error_return;
5037
5038 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5039 elf32_arm_compare_mapping);
5040
5041 for (span = 0; span < sec_data->mapcount; span++)
5042 {
5043 unsigned int span_start = sec_data->map[span].vma;
5044 unsigned int span_end = (span == sec_data->mapcount - 1)
5045 ? sec->size : sec_data->map[span + 1].vma;
5046 char span_type = sec_data->map[span].type;
5047
5048 /* FIXME: Only ARM mode is supported at present. We may need to
5049 support Thumb-2 mode also at some point. */
5050 if (span_type != 'a')
5051 continue;
5052
5053 for (i = span_start; i < span_end;)
5054 {
5055 unsigned int next_i = i + 4;
5056 unsigned int insn = bfd_big_endian (abfd)
5057 ? (contents[i] << 24)
5058 | (contents[i + 1] << 16)
5059 | (contents[i + 2] << 8)
5060 | contents[i + 3]
5061 : (contents[i + 3] << 24)
5062 | (contents[i + 2] << 16)
5063 | (contents[i + 1] << 8)
5064 | contents[i];
5065 unsigned int writemask = 0;
5066 enum bfd_arm_vfp11_pipe pipe;
5067
5068 switch (state)
5069 {
5070 case 0:
5071 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5072 &numregs);
5073 /* I'm assuming the VFP11 erratum can trigger with denorm
5074 operands on either the FMAC or the DS pipeline. This might
5075 lead to slightly overenthusiastic veneer insertion. */
5076 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5077 {
5078 state = use_vector ? 1 : 2;
5079 first_fmac = i;
5080 veneer_of_insn = insn;
5081 }
5082 break;
5083
5084 case 1:
5085 {
5086 int other_regs[3], other_numregs;
5087 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5088 other_regs,
5089 &other_numregs);
5090 if (pipe != VFP11_BAD
5091 && bfd_arm_vfp11_antidependency (writemask, regs,
5092 numregs))
5093 state = 3;
5094 else
5095 state = 2;
5096 }
5097 break;
5098
5099 case 2:
5100 {
5101 int other_regs[3], other_numregs;
5102 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5103 other_regs,
5104 &other_numregs);
5105 if (pipe != VFP11_BAD
5106 && bfd_arm_vfp11_antidependency (writemask, regs,
5107 numregs))
5108 state = 3;
5109 else
5110 {
5111 state = 0;
5112 next_i = first_fmac + 4;
5113 }
5114 }
5115 break;
5116
5117 case 3:
5118 abort (); /* Should be unreachable. */
5119 }
5120
5121 if (state == 3)
5122 {
5123 elf32_vfp11_erratum_list *newerr
5124 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5125 int errcount;
5126
5127 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5128
5129 newerr->u.b.vfp_insn = veneer_of_insn;
5130
5131 switch (span_type)
5132 {
5133 case 'a':
5134 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5135 break;
5136
5137 default:
5138 abort ();
5139 }
5140
5141 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5142 first_fmac);
5143
5144 newerr->vma = -1;
5145
5146 newerr->next = sec_data->erratumlist;
5147 sec_data->erratumlist = newerr;
5148
5149 state = 0;
5150 }
5151
5152 i = next_i;
5153 }
5154 }
5155
5156 if (contents != NULL
5157 && elf_section_data (sec)->this_hdr.contents != contents)
5158 free (contents);
5159 contents = NULL;
5160 }
5161
5162 return TRUE;
5163
5164 error_return:
5165 if (contents != NULL
5166 && elf_section_data (sec)->this_hdr.contents != contents)
5167 free (contents);
5168
5169 return FALSE;
5170 }
5171
5172 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5173 after sections have been laid out, using specially-named symbols. */
5174
5175 void
5176 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5177 struct bfd_link_info *link_info)
5178 {
5179 asection *sec;
5180 struct elf32_arm_link_hash_table *globals;
5181 char *tmp_name;
5182
5183 if (link_info->relocatable)
5184 return;
5185
5186 /* Skip if this bfd does not correspond to an ELF image. */
5187 if (! is_arm_elf (abfd))
5188 return;
5189
5190 globals = elf32_arm_hash_table (link_info);
5191
5192 tmp_name = bfd_malloc ((bfd_size_type) strlen
5193 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5194
5195 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5196 {
5197 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5198 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5199
5200 for (; errnode != NULL; errnode = errnode->next)
5201 {
5202 struct elf_link_hash_entry *myh;
5203 bfd_vma vma;
5204
5205 switch (errnode->type)
5206 {
5207 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5208 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5209 /* Find veneer symbol. */
5210 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5211 errnode->u.b.veneer->u.v.id);
5212
5213 myh = elf_link_hash_lookup
5214 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5215
5216 if (myh == NULL)
5217 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5218 "`%s'"), abfd, tmp_name);
5219
5220 vma = myh->root.u.def.section->output_section->vma
5221 + myh->root.u.def.section->output_offset
5222 + myh->root.u.def.value;
5223
5224 errnode->u.b.veneer->vma = vma;
5225 break;
5226
5227 case VFP11_ERRATUM_ARM_VENEER:
5228 case VFP11_ERRATUM_THUMB_VENEER:
5229 /* Find return location. */
5230 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5231 errnode->u.v.id);
5232
5233 myh = elf_link_hash_lookup
5234 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5235
5236 if (myh == NULL)
5237 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5238 "`%s'"), abfd, tmp_name);
5239
5240 vma = myh->root.u.def.section->output_section->vma
5241 + myh->root.u.def.section->output_offset
5242 + myh->root.u.def.value;
5243
5244 errnode->u.v.branch->vma = vma;
5245 break;
5246
5247 default:
5248 abort ();
5249 }
5250 }
5251 }
5252
5253 free (tmp_name);
5254 }
5255
5256
5257 /* Set target relocation values needed during linking. */
5258
5259 void
5260 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5261 struct bfd_link_info *link_info,
5262 int target1_is_rel,
5263 char * target2_type,
5264 int fix_v4bx,
5265 int use_blx,
5266 bfd_arm_vfp11_fix vfp11_fix,
5267 int no_enum_warn, int pic_veneer)
5268 {
5269 struct elf32_arm_link_hash_table *globals;
5270
5271 globals = elf32_arm_hash_table (link_info);
5272
5273 globals->target1_is_rel = target1_is_rel;
5274 if (strcmp (target2_type, "rel") == 0)
5275 globals->target2_reloc = R_ARM_REL32;
5276 else if (strcmp (target2_type, "abs") == 0)
5277 globals->target2_reloc = R_ARM_ABS32;
5278 else if (strcmp (target2_type, "got-rel") == 0)
5279 globals->target2_reloc = R_ARM_GOT_PREL;
5280 else
5281 {
5282 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5283 target2_type);
5284 }
5285 globals->fix_v4bx = fix_v4bx;
5286 globals->use_blx |= use_blx;
5287 globals->vfp11_fix = vfp11_fix;
5288 globals->pic_veneer = pic_veneer;
5289
5290 BFD_ASSERT (is_arm_elf (output_bfd));
5291 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5292 }
5293
5294 /* Replace the target offset of a Thumb bl or b.w instruction. */
5295
5296 static void
5297 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5298 {
5299 bfd_vma upper;
5300 bfd_vma lower;
5301 int reloc_sign;
5302
5303 BFD_ASSERT ((offset & 1) == 0);
5304
5305 upper = bfd_get_16 (abfd, insn);
5306 lower = bfd_get_16 (abfd, insn + 2);
5307 reloc_sign = (offset < 0) ? 1 : 0;
5308 upper = (upper & ~(bfd_vma) 0x7ff)
5309 | ((offset >> 12) & 0x3ff)
5310 | (reloc_sign << 10);
5311 lower = (lower & ~(bfd_vma) 0x2fff)
5312 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5313 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5314 | ((offset >> 1) & 0x7ff);
5315 bfd_put_16 (abfd, upper, insn);
5316 bfd_put_16 (abfd, lower, insn + 2);
5317 }
5318
5319 /* Thumb code calling an ARM function. */
5320
5321 static int
5322 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5323 const char * name,
5324 bfd * input_bfd,
5325 bfd * output_bfd,
5326 asection * input_section,
5327 bfd_byte * hit_data,
5328 asection * sym_sec,
5329 bfd_vma offset,
5330 bfd_signed_vma addend,
5331 bfd_vma val,
5332 char **error_message)
5333 {
5334 asection * s = 0;
5335 bfd_vma my_offset;
5336 long int ret_offset;
5337 struct elf_link_hash_entry * myh;
5338 struct elf32_arm_link_hash_table * globals;
5339
5340 myh = find_thumb_glue (info, name, error_message);
5341 if (myh == NULL)
5342 return FALSE;
5343
5344 globals = elf32_arm_hash_table (info);
5345
5346 BFD_ASSERT (globals != NULL);
5347 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5348
5349 my_offset = myh->root.u.def.value;
5350
5351 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5352 THUMB2ARM_GLUE_SECTION_NAME);
5353
5354 BFD_ASSERT (s != NULL);
5355 BFD_ASSERT (s->contents != NULL);
5356 BFD_ASSERT (s->output_section != NULL);
5357
5358 if ((my_offset & 0x01) == 0x01)
5359 {
5360 if (sym_sec != NULL
5361 && sym_sec->owner != NULL
5362 && !INTERWORK_FLAG (sym_sec->owner))
5363 {
5364 (*_bfd_error_handler)
5365 (_("%B(%s): warning: interworking not enabled.\n"
5366 " first occurrence: %B: thumb call to arm"),
5367 sym_sec->owner, input_bfd, name);
5368
5369 return FALSE;
5370 }
5371
5372 --my_offset;
5373 myh->root.u.def.value = my_offset;
5374
5375 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5376 s->contents + my_offset);
5377
5378 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5379 s->contents + my_offset + 2);
5380
5381 ret_offset =
5382 /* Address of destination of the stub. */
5383 ((bfd_signed_vma) val)
5384 - ((bfd_signed_vma)
5385 /* Offset from the start of the current section
5386 to the start of the stubs. */
5387 (s->output_offset
5388 /* Offset of the start of this stub from the start of the stubs. */
5389 + my_offset
5390 /* Address of the start of the current section. */
5391 + s->output_section->vma)
5392 /* The branch instruction is 4 bytes into the stub. */
5393 + 4
5394 /* ARM branches work from the pc of the instruction + 8. */
5395 + 8);
5396
5397 put_arm_insn (globals, output_bfd,
5398 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5399 s->contents + my_offset + 4);
5400 }
5401
5402 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5403
5404 /* Now go back and fix up the original BL insn to point to here. */
5405 ret_offset =
5406 /* Address of where the stub is located. */
5407 (s->output_section->vma + s->output_offset + my_offset)
5408 /* Address of where the BL is located. */
5409 - (input_section->output_section->vma + input_section->output_offset
5410 + offset)
5411 /* Addend in the relocation. */
5412 - addend
5413 /* Biassing for PC-relative addressing. */
5414 - 8;
5415
5416 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5417
5418 return TRUE;
5419 }
5420
5421 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5422
5423 static struct elf_link_hash_entry *
5424 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5425 const char * name,
5426 bfd * input_bfd,
5427 bfd * output_bfd,
5428 asection * sym_sec,
5429 bfd_vma val,
5430 asection *s,
5431 char **error_message)
5432 {
5433 bfd_vma my_offset;
5434 long int ret_offset;
5435 struct elf_link_hash_entry * myh;
5436 struct elf32_arm_link_hash_table * globals;
5437
5438 myh = find_arm_glue (info, name, error_message);
5439 if (myh == NULL)
5440 return NULL;
5441
5442 globals = elf32_arm_hash_table (info);
5443
5444 BFD_ASSERT (globals != NULL);
5445 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5446
5447 my_offset = myh->root.u.def.value;
5448
5449 if ((my_offset & 0x01) == 0x01)
5450 {
5451 if (sym_sec != NULL
5452 && sym_sec->owner != NULL
5453 && !INTERWORK_FLAG (sym_sec->owner))
5454 {
5455 (*_bfd_error_handler)
5456 (_("%B(%s): warning: interworking not enabled.\n"
5457 " first occurrence: %B: arm call to thumb"),
5458 sym_sec->owner, input_bfd, name);
5459 }
5460
5461 --my_offset;
5462 myh->root.u.def.value = my_offset;
5463
5464 if (info->shared || globals->root.is_relocatable_executable
5465 || globals->pic_veneer)
5466 {
5467 /* For relocatable objects we can't use absolute addresses,
5468 so construct the address from a relative offset. */
5469 /* TODO: If the offset is small it's probably worth
5470 constructing the address with adds. */
5471 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5472 s->contents + my_offset);
5473 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5474 s->contents + my_offset + 4);
5475 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5476 s->contents + my_offset + 8);
5477 /* Adjust the offset by 4 for the position of the add,
5478 and 8 for the pipeline offset. */
5479 ret_offset = (val - (s->output_offset
5480 + s->output_section->vma
5481 + my_offset + 12))
5482 | 1;
5483 bfd_put_32 (output_bfd, ret_offset,
5484 s->contents + my_offset + 12);
5485 }
5486 else if (globals->use_blx)
5487 {
5488 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5489 s->contents + my_offset);
5490
5491 /* It's a thumb address. Add the low order bit. */
5492 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5493 s->contents + my_offset + 4);
5494 }
5495 else
5496 {
5497 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5498 s->contents + my_offset);
5499
5500 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5501 s->contents + my_offset + 4);
5502
5503 /* It's a thumb address. Add the low order bit. */
5504 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5505 s->contents + my_offset + 8);
5506 }
5507 }
5508
5509 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5510
5511 return myh;
5512 }
5513
5514 /* Arm code calling a Thumb function. */
5515
5516 static int
5517 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5518 const char * name,
5519 bfd * input_bfd,
5520 bfd * output_bfd,
5521 asection * input_section,
5522 bfd_byte * hit_data,
5523 asection * sym_sec,
5524 bfd_vma offset,
5525 bfd_signed_vma addend,
5526 bfd_vma val,
5527 char **error_message)
5528 {
5529 unsigned long int tmp;
5530 bfd_vma my_offset;
5531 asection * s;
5532 long int ret_offset;
5533 struct elf_link_hash_entry * myh;
5534 struct elf32_arm_link_hash_table * globals;
5535
5536 globals = elf32_arm_hash_table (info);
5537
5538 BFD_ASSERT (globals != NULL);
5539 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5540
5541 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5542 ARM2THUMB_GLUE_SECTION_NAME);
5543 BFD_ASSERT (s != NULL);
5544 BFD_ASSERT (s->contents != NULL);
5545 BFD_ASSERT (s->output_section != NULL);
5546
5547 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5548 sym_sec, val, s, error_message);
5549 if (!myh)
5550 return FALSE;
5551
5552 my_offset = myh->root.u.def.value;
5553 tmp = bfd_get_32 (input_bfd, hit_data);
5554 tmp = tmp & 0xFF000000;
5555
5556 /* Somehow these are both 4 too far, so subtract 8. */
5557 ret_offset = (s->output_offset
5558 + my_offset
5559 + s->output_section->vma
5560 - (input_section->output_offset
5561 + input_section->output_section->vma
5562 + offset + addend)
5563 - 8);
5564
5565 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5566
5567 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5568
5569 return TRUE;
5570 }
5571
5572 /* Populate Arm stub for an exported Thumb function. */
5573
5574 static bfd_boolean
5575 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5576 {
5577 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5578 asection * s;
5579 struct elf_link_hash_entry * myh;
5580 struct elf32_arm_link_hash_entry *eh;
5581 struct elf32_arm_link_hash_table * globals;
5582 asection *sec;
5583 bfd_vma val;
5584 char *error_message;
5585
5586 eh = elf32_arm_hash_entry (h);
5587 /* Allocate stubs for exported Thumb functions on v4t. */
5588 if (eh->export_glue == NULL)
5589 return TRUE;
5590
5591 globals = elf32_arm_hash_table (info);
5592
5593 BFD_ASSERT (globals != NULL);
5594 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5595
5596 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5597 ARM2THUMB_GLUE_SECTION_NAME);
5598 BFD_ASSERT (s != NULL);
5599 BFD_ASSERT (s->contents != NULL);
5600 BFD_ASSERT (s->output_section != NULL);
5601
5602 sec = eh->export_glue->root.u.def.section;
5603
5604 BFD_ASSERT (sec->output_section != NULL);
5605
5606 val = eh->export_glue->root.u.def.value + sec->output_offset
5607 + sec->output_section->vma;
5608 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5609 h->root.u.def.section->owner,
5610 globals->obfd, sec, val, s,
5611 &error_message);
5612 BFD_ASSERT (myh);
5613 return TRUE;
5614 }
5615
5616 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5617
5618 static bfd_vma
5619 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5620 {
5621 bfd_byte *p;
5622 bfd_vma glue_addr;
5623 asection *s;
5624 struct elf32_arm_link_hash_table *globals;
5625
5626 globals = elf32_arm_hash_table (info);
5627
5628 BFD_ASSERT (globals != NULL);
5629 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5630
5631 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5632 ARM_BX_GLUE_SECTION_NAME);
5633 BFD_ASSERT (s != NULL);
5634 BFD_ASSERT (s->contents != NULL);
5635 BFD_ASSERT (s->output_section != NULL);
5636
5637 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5638
5639 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5640
5641 if ((globals->bx_glue_offset[reg] & 1) == 0)
5642 {
5643 p = s->contents + glue_addr;
5644 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5645 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5646 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5647 globals->bx_glue_offset[reg] |= 1;
5648 }
5649
5650 return glue_addr + s->output_section->vma + s->output_offset;
5651 }
5652
5653 /* Generate Arm stubs for exported Thumb symbols. */
5654 static void
5655 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5656 struct bfd_link_info *link_info)
5657 {
5658 struct elf32_arm_link_hash_table * globals;
5659
5660 if (!link_info)
5661 return;
5662
5663 globals = elf32_arm_hash_table (link_info);
5664 /* If blx is available then exported Thumb symbols are OK and there is
5665 nothing to do. */
5666 if (globals->use_blx)
5667 return;
5668
5669 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5670 link_info);
5671 }
5672
5673 /* Some relocations map to different relocations depending on the
5674 target. Return the real relocation. */
5675 static int
5676 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5677 int r_type)
5678 {
5679 switch (r_type)
5680 {
5681 case R_ARM_TARGET1:
5682 if (globals->target1_is_rel)
5683 return R_ARM_REL32;
5684 else
5685 return R_ARM_ABS32;
5686
5687 case R_ARM_TARGET2:
5688 return globals->target2_reloc;
5689
5690 default:
5691 return r_type;
5692 }
5693 }
5694
5695 /* Return the base VMA address which should be subtracted from real addresses
5696 when resolving @dtpoff relocation.
5697 This is PT_TLS segment p_vaddr. */
5698
5699 static bfd_vma
5700 dtpoff_base (struct bfd_link_info *info)
5701 {
5702 /* If tls_sec is NULL, we should have signalled an error already. */
5703 if (elf_hash_table (info)->tls_sec == NULL)
5704 return 0;
5705 return elf_hash_table (info)->tls_sec->vma;
5706 }
5707
5708 /* Return the relocation value for @tpoff relocation
5709 if STT_TLS virtual address is ADDRESS. */
5710
5711 static bfd_vma
5712 tpoff (struct bfd_link_info *info, bfd_vma address)
5713 {
5714 struct elf_link_hash_table *htab = elf_hash_table (info);
5715 bfd_vma base;
5716
5717 /* If tls_sec is NULL, we should have signalled an error already. */
5718 if (htab->tls_sec == NULL)
5719 return 0;
5720 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5721 return address - htab->tls_sec->vma + base;
5722 }
5723
5724 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5725 VALUE is the relocation value. */
5726
5727 static bfd_reloc_status_type
5728 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5729 {
5730 if (value > 0xfff)
5731 return bfd_reloc_overflow;
5732
5733 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5734 bfd_put_32 (abfd, value, data);
5735 return bfd_reloc_ok;
5736 }
5737
5738 /* For a given value of n, calculate the value of G_n as required to
5739 deal with group relocations. We return it in the form of an
5740 encoded constant-and-rotation, together with the final residual. If n is
5741 specified as less than zero, then final_residual is filled with the
5742 input value and no further action is performed. */
5743
5744 static bfd_vma
5745 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5746 {
5747 int current_n;
5748 bfd_vma g_n;
5749 bfd_vma encoded_g_n = 0;
5750 bfd_vma residual = value; /* Also known as Y_n. */
5751
5752 for (current_n = 0; current_n <= n; current_n++)
5753 {
5754 int shift;
5755
5756 /* Calculate which part of the value to mask. */
5757 if (residual == 0)
5758 shift = 0;
5759 else
5760 {
5761 int msb;
5762
5763 /* Determine the most significant bit in the residual and
5764 align the resulting value to a 2-bit boundary. */
5765 for (msb = 30; msb >= 0; msb -= 2)
5766 if (residual & (3 << msb))
5767 break;
5768
5769 /* The desired shift is now (msb - 6), or zero, whichever
5770 is the greater. */
5771 shift = msb - 6;
5772 if (shift < 0)
5773 shift = 0;
5774 }
5775
5776 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5777 g_n = residual & (0xff << shift);
5778 encoded_g_n = (g_n >> shift)
5779 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5780
5781 /* Calculate the residual for the next time around. */
5782 residual &= ~g_n;
5783 }
5784
5785 *final_residual = residual;
5786
5787 return encoded_g_n;
5788 }
5789
5790 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5791 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5792
5793 static int
5794 identify_add_or_sub (bfd_vma insn)
5795 {
5796 int opcode = insn & 0x1e00000;
5797
5798 if (opcode == 1 << 23) /* ADD */
5799 return 1;
5800
5801 if (opcode == 1 << 22) /* SUB */
5802 return -1;
5803
5804 return 0;
5805 }
5806
5807 /* Perform a relocation as part of a final link. */
5808
5809 static bfd_reloc_status_type
5810 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5811 bfd * input_bfd,
5812 bfd * output_bfd,
5813 asection * input_section,
5814 bfd_byte * contents,
5815 Elf_Internal_Rela * rel,
5816 bfd_vma value,
5817 struct bfd_link_info * info,
5818 asection * sym_sec,
5819 const char * sym_name,
5820 int sym_flags,
5821 struct elf_link_hash_entry * h,
5822 bfd_boolean * unresolved_reloc_p,
5823 char **error_message)
5824 {
5825 unsigned long r_type = howto->type;
5826 unsigned long r_symndx;
5827 bfd_byte * hit_data = contents + rel->r_offset;
5828 bfd * dynobj = NULL;
5829 Elf_Internal_Shdr * symtab_hdr;
5830 struct elf_link_hash_entry ** sym_hashes;
5831 bfd_vma * local_got_offsets;
5832 asection * sgot = NULL;
5833 asection * splt = NULL;
5834 asection * sreloc = NULL;
5835 bfd_vma addend;
5836 bfd_signed_vma signed_addend;
5837 struct elf32_arm_link_hash_table * globals;
5838
5839 globals = elf32_arm_hash_table (info);
5840
5841 BFD_ASSERT (is_arm_elf (input_bfd));
5842
5843 /* Some relocation types map to different relocations depending on the
5844 target. We pick the right one here. */
5845 r_type = arm_real_reloc_type (globals, r_type);
5846 if (r_type != howto->type)
5847 howto = elf32_arm_howto_from_type (r_type);
5848
5849 /* If the start address has been set, then set the EF_ARM_HASENTRY
5850 flag. Setting this more than once is redundant, but the cost is
5851 not too high, and it keeps the code simple.
5852
5853 The test is done here, rather than somewhere else, because the
5854 start address is only set just before the final link commences.
5855
5856 Note - if the user deliberately sets a start address of 0, the
5857 flag will not be set. */
5858 if (bfd_get_start_address (output_bfd) != 0)
5859 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5860
5861 dynobj = elf_hash_table (info)->dynobj;
5862 if (dynobj)
5863 {
5864 sgot = bfd_get_section_by_name (dynobj, ".got");
5865 splt = bfd_get_section_by_name (dynobj, ".plt");
5866 }
5867 symtab_hdr = & elf_symtab_hdr (input_bfd);
5868 sym_hashes = elf_sym_hashes (input_bfd);
5869 local_got_offsets = elf_local_got_offsets (input_bfd);
5870 r_symndx = ELF32_R_SYM (rel->r_info);
5871
5872 if (globals->use_rel)
5873 {
5874 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5875
5876 if (addend & ((howto->src_mask + 1) >> 1))
5877 {
5878 signed_addend = -1;
5879 signed_addend &= ~ howto->src_mask;
5880 signed_addend |= addend;
5881 }
5882 else
5883 signed_addend = addend;
5884 }
5885 else
5886 addend = signed_addend = rel->r_addend;
5887
5888 switch (r_type)
5889 {
5890 case R_ARM_NONE:
5891 /* We don't need to find a value for this symbol. It's just a
5892 marker. */
5893 *unresolved_reloc_p = FALSE;
5894 return bfd_reloc_ok;
5895
5896 case R_ARM_ABS12:
5897 if (!globals->vxworks_p)
5898 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5899
5900 case R_ARM_PC24:
5901 case R_ARM_ABS32:
5902 case R_ARM_ABS32_NOI:
5903 case R_ARM_REL32:
5904 case R_ARM_REL32_NOI:
5905 case R_ARM_CALL:
5906 case R_ARM_JUMP24:
5907 case R_ARM_XPC25:
5908 case R_ARM_PREL31:
5909 case R_ARM_PLT32:
5910 /* Handle relocations which should use the PLT entry. ABS32/REL32
5911 will use the symbol's value, which may point to a PLT entry, but we
5912 don't need to handle that here. If we created a PLT entry, all
5913 branches in this object should go to it. */
5914 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5915 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5916 && h != NULL
5917 && splt != NULL
5918 && h->plt.offset != (bfd_vma) -1)
5919 {
5920 /* If we've created a .plt section, and assigned a PLT entry to
5921 this function, it should not be known to bind locally. If
5922 it were, we would have cleared the PLT entry. */
5923 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5924
5925 value = (splt->output_section->vma
5926 + splt->output_offset
5927 + h->plt.offset);
5928 *unresolved_reloc_p = FALSE;
5929 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5930 contents, rel->r_offset, value,
5931 rel->r_addend);
5932 }
5933
5934 /* When generating a shared object or relocatable executable, these
5935 relocations are copied into the output file to be resolved at
5936 run time. */
5937 if ((info->shared || globals->root.is_relocatable_executable)
5938 && (input_section->flags & SEC_ALLOC)
5939 && !(elf32_arm_hash_table (info)->vxworks_p
5940 && strcmp (input_section->output_section->name,
5941 ".tls_vars") == 0)
5942 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5943 || !SYMBOL_CALLS_LOCAL (info, h))
5944 && (h == NULL
5945 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5946 || h->root.type != bfd_link_hash_undefweak)
5947 && r_type != R_ARM_PC24
5948 && r_type != R_ARM_CALL
5949 && r_type != R_ARM_JUMP24
5950 && r_type != R_ARM_PREL31
5951 && r_type != R_ARM_PLT32)
5952 {
5953 Elf_Internal_Rela outrel;
5954 bfd_byte *loc;
5955 bfd_boolean skip, relocate;
5956
5957 *unresolved_reloc_p = FALSE;
5958
5959 if (sreloc == NULL)
5960 {
5961 const char * name;
5962
5963 name = (bfd_elf_string_from_elf_section
5964 (input_bfd,
5965 elf_elfheader (input_bfd)->e_shstrndx,
5966 elf_section_data (input_section)->rel_hdr.sh_name));
5967 if (name == NULL)
5968 return bfd_reloc_notsupported;
5969
5970 BFD_ASSERT (reloc_section_p (globals, name, input_section));
5971
5972 sreloc = bfd_get_section_by_name (dynobj, name);
5973 BFD_ASSERT (sreloc != NULL);
5974 }
5975
5976 skip = FALSE;
5977 relocate = FALSE;
5978
5979 outrel.r_addend = addend;
5980 outrel.r_offset =
5981 _bfd_elf_section_offset (output_bfd, info, input_section,
5982 rel->r_offset);
5983 if (outrel.r_offset == (bfd_vma) -1)
5984 skip = TRUE;
5985 else if (outrel.r_offset == (bfd_vma) -2)
5986 skip = TRUE, relocate = TRUE;
5987 outrel.r_offset += (input_section->output_section->vma
5988 + input_section->output_offset);
5989
5990 if (skip)
5991 memset (&outrel, 0, sizeof outrel);
5992 else if (h != NULL
5993 && h->dynindx != -1
5994 && (!info->shared
5995 || !info->symbolic
5996 || !h->def_regular))
5997 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
5998 else
5999 {
6000 int symbol;
6001
6002 /* This symbol is local, or marked to become local. */
6003 if (sym_flags == STT_ARM_TFUNC)
6004 value |= 1;
6005 if (globals->symbian_p)
6006 {
6007 asection *osec;
6008
6009 /* On Symbian OS, the data segment and text segement
6010 can be relocated independently. Therefore, we
6011 must indicate the segment to which this
6012 relocation is relative. The BPABI allows us to
6013 use any symbol in the right segment; we just use
6014 the section symbol as it is convenient. (We
6015 cannot use the symbol given by "h" directly as it
6016 will not appear in the dynamic symbol table.)
6017
6018 Note that the dynamic linker ignores the section
6019 symbol value, so we don't subtract osec->vma
6020 from the emitted reloc addend. */
6021 if (sym_sec)
6022 osec = sym_sec->output_section;
6023 else
6024 osec = input_section->output_section;
6025 symbol = elf_section_data (osec)->dynindx;
6026 if (symbol == 0)
6027 {
6028 struct elf_link_hash_table *htab = elf_hash_table (info);
6029
6030 if ((osec->flags & SEC_READONLY) == 0
6031 && htab->data_index_section != NULL)
6032 osec = htab->data_index_section;
6033 else
6034 osec = htab->text_index_section;
6035 symbol = elf_section_data (osec)->dynindx;
6036 }
6037 BFD_ASSERT (symbol != 0);
6038 }
6039 else
6040 /* On SVR4-ish systems, the dynamic loader cannot
6041 relocate the text and data segments independently,
6042 so the symbol does not matter. */
6043 symbol = 0;
6044 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6045 if (globals->use_rel)
6046 relocate = TRUE;
6047 else
6048 outrel.r_addend += value;
6049 }
6050
6051 loc = sreloc->contents;
6052 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6053 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6054
6055 /* If this reloc is against an external symbol, we do not want to
6056 fiddle with the addend. Otherwise, we need to include the symbol
6057 value so that it becomes an addend for the dynamic reloc. */
6058 if (! relocate)
6059 return bfd_reloc_ok;
6060
6061 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6062 contents, rel->r_offset, value,
6063 (bfd_vma) 0);
6064 }
6065 else switch (r_type)
6066 {
6067 case R_ARM_ABS12:
6068 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6069
6070 case R_ARM_XPC25: /* Arm BLX instruction. */
6071 case R_ARM_CALL:
6072 case R_ARM_JUMP24:
6073 case R_ARM_PC24: /* Arm B/BL instruction */
6074 case R_ARM_PLT32:
6075 {
6076 bfd_vma from;
6077 bfd_signed_vma branch_offset;
6078 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6079
6080 from = (input_section->output_section->vma
6081 + input_section->output_offset
6082 + rel->r_offset);
6083 branch_offset = (bfd_signed_vma)(value - from);
6084
6085 if (r_type == R_ARM_XPC25)
6086 {
6087 /* Check for Arm calling Arm function. */
6088 /* FIXME: Should we translate the instruction into a BL
6089 instruction instead ? */
6090 if (sym_flags != STT_ARM_TFUNC)
6091 (*_bfd_error_handler)
6092 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6093 input_bfd,
6094 h ? h->root.root.string : "(local)");
6095 }
6096 else if (r_type != R_ARM_CALL)
6097 {
6098 /* Check for Arm calling Thumb function. */
6099 if (sym_flags == STT_ARM_TFUNC)
6100 {
6101 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6102 output_bfd, input_section,
6103 hit_data, sym_sec, rel->r_offset,
6104 signed_addend, value,
6105 error_message))
6106 return bfd_reloc_ok;
6107 else
6108 return bfd_reloc_dangerous;
6109 }
6110 }
6111
6112 /* Check if a stub has to be inserted because the
6113 destination is too far or we are changing mode */
6114 if (r_type == R_ARM_CALL)
6115 {
6116 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6117 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6118 || sym_flags == STT_ARM_TFUNC)
6119 {
6120 /* The target is out of reach, so redirect the
6121 branch to the local stub for this function. */
6122
6123 stub_entry = elf32_arm_get_stub_entry (input_section,
6124 sym_sec, h,
6125 rel, globals);
6126 if (stub_entry != NULL)
6127 value = (stub_entry->stub_offset
6128 + stub_entry->stub_sec->output_offset
6129 + stub_entry->stub_sec->output_section->vma);
6130 }
6131 }
6132
6133 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6134 where:
6135 S is the address of the symbol in the relocation.
6136 P is address of the instruction being relocated.
6137 A is the addend (extracted from the instruction) in bytes.
6138
6139 S is held in 'value'.
6140 P is the base address of the section containing the
6141 instruction plus the offset of the reloc into that
6142 section, ie:
6143 (input_section->output_section->vma +
6144 input_section->output_offset +
6145 rel->r_offset).
6146 A is the addend, converted into bytes, ie:
6147 (signed_addend * 4)
6148
6149 Note: None of these operations have knowledge of the pipeline
6150 size of the processor, thus it is up to the assembler to
6151 encode this information into the addend. */
6152 value -= (input_section->output_section->vma
6153 + input_section->output_offset);
6154 value -= rel->r_offset;
6155 if (globals->use_rel)
6156 value += (signed_addend << howto->size);
6157 else
6158 /* RELA addends do not have to be adjusted by howto->size. */
6159 value += signed_addend;
6160
6161 signed_addend = value;
6162 signed_addend >>= howto->rightshift;
6163
6164 /* A branch to an undefined weak symbol is turned into a jump to
6165 the next instruction. */
6166 if (h && h->root.type == bfd_link_hash_undefweak)
6167 {
6168 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6169 | 0x0affffff;
6170 }
6171 else
6172 {
6173 /* Perform a signed range check. */
6174 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6175 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6176 return bfd_reloc_overflow;
6177
6178 addend = (value & 2);
6179
6180 value = (signed_addend & howto->dst_mask)
6181 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6182
6183 /* Set the H bit in the BLX instruction. */
6184 if (sym_flags == STT_ARM_TFUNC)
6185 {
6186 if (addend)
6187 value |= (1 << 24);
6188 else
6189 value &= ~(bfd_vma)(1 << 24);
6190 }
6191 if (r_type == R_ARM_CALL)
6192 {
6193 /* Select the correct instruction (BL or BLX). */
6194 /* Only if we are not handling a BL to a stub. In this
6195 case, mode switching is performed by the stub. */
6196 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6197 value |= (1 << 28);
6198 else
6199 {
6200 value &= ~(bfd_vma)(1 << 28);
6201 value |= (1 << 24);
6202 }
6203 }
6204 }
6205 }
6206 break;
6207
6208 case R_ARM_ABS32:
6209 value += addend;
6210 if (sym_flags == STT_ARM_TFUNC)
6211 value |= 1;
6212 break;
6213
6214 case R_ARM_ABS32_NOI:
6215 value += addend;
6216 break;
6217
6218 case R_ARM_REL32:
6219 value += addend;
6220 if (sym_flags == STT_ARM_TFUNC)
6221 value |= 1;
6222 value -= (input_section->output_section->vma
6223 + input_section->output_offset + rel->r_offset);
6224 break;
6225
6226 case R_ARM_REL32_NOI:
6227 value += addend;
6228 value -= (input_section->output_section->vma
6229 + input_section->output_offset + rel->r_offset);
6230 break;
6231
6232 case R_ARM_PREL31:
6233 value -= (input_section->output_section->vma
6234 + input_section->output_offset + rel->r_offset);
6235 value += signed_addend;
6236 if (! h || h->root.type != bfd_link_hash_undefweak)
6237 {
6238 /* Check for overflow */
6239 if ((value ^ (value >> 1)) & (1 << 30))
6240 return bfd_reloc_overflow;
6241 }
6242 value &= 0x7fffffff;
6243 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6244 if (sym_flags == STT_ARM_TFUNC)
6245 value |= 1;
6246 break;
6247 }
6248
6249 bfd_put_32 (input_bfd, value, hit_data);
6250 return bfd_reloc_ok;
6251
6252 case R_ARM_ABS8:
6253 value += addend;
6254 if ((long) value > 0x7f || (long) value < -0x80)
6255 return bfd_reloc_overflow;
6256
6257 bfd_put_8 (input_bfd, value, hit_data);
6258 return bfd_reloc_ok;
6259
6260 case R_ARM_ABS16:
6261 value += addend;
6262
6263 if ((long) value > 0x7fff || (long) value < -0x8000)
6264 return bfd_reloc_overflow;
6265
6266 bfd_put_16 (input_bfd, value, hit_data);
6267 return bfd_reloc_ok;
6268
6269 case R_ARM_THM_ABS5:
6270 /* Support ldr and str instructions for the thumb. */
6271 if (globals->use_rel)
6272 {
6273 /* Need to refetch addend. */
6274 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6275 /* ??? Need to determine shift amount from operand size. */
6276 addend >>= howto->rightshift;
6277 }
6278 value += addend;
6279
6280 /* ??? Isn't value unsigned? */
6281 if ((long) value > 0x1f || (long) value < -0x10)
6282 return bfd_reloc_overflow;
6283
6284 /* ??? Value needs to be properly shifted into place first. */
6285 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6286 bfd_put_16 (input_bfd, value, hit_data);
6287 return bfd_reloc_ok;
6288
6289 case R_ARM_THM_ALU_PREL_11_0:
6290 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6291 {
6292 bfd_vma insn;
6293 bfd_signed_vma relocation;
6294
6295 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6296 | bfd_get_16 (input_bfd, hit_data + 2);
6297
6298 if (globals->use_rel)
6299 {
6300 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6301 | ((insn & (1 << 26)) >> 15);
6302 if (insn & 0xf00000)
6303 signed_addend = -signed_addend;
6304 }
6305
6306 relocation = value + signed_addend;
6307 relocation -= (input_section->output_section->vma
6308 + input_section->output_offset
6309 + rel->r_offset);
6310
6311 value = abs (relocation);
6312
6313 if (value >= 0x1000)
6314 return bfd_reloc_overflow;
6315
6316 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6317 | ((value & 0x700) << 4)
6318 | ((value & 0x800) << 15);
6319 if (relocation < 0)
6320 insn |= 0xa00000;
6321
6322 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6323 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6324
6325 return bfd_reloc_ok;
6326 }
6327
6328 case R_ARM_THM_PC12:
6329 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6330 {
6331 bfd_vma insn;
6332 bfd_signed_vma relocation;
6333
6334 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6335 | bfd_get_16 (input_bfd, hit_data + 2);
6336
6337 if (globals->use_rel)
6338 {
6339 signed_addend = insn & 0xfff;
6340 if (!(insn & (1 << 23)))
6341 signed_addend = -signed_addend;
6342 }
6343
6344 relocation = value + signed_addend;
6345 relocation -= (input_section->output_section->vma
6346 + input_section->output_offset
6347 + rel->r_offset);
6348
6349 value = abs (relocation);
6350
6351 if (value >= 0x1000)
6352 return bfd_reloc_overflow;
6353
6354 insn = (insn & 0xff7ff000) | value;
6355 if (relocation >= 0)
6356 insn |= (1 << 23);
6357
6358 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6359 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6360
6361 return bfd_reloc_ok;
6362 }
6363
6364 case R_ARM_THM_XPC22:
6365 case R_ARM_THM_CALL:
6366 case R_ARM_THM_JUMP24:
6367 /* Thumb BL (branch long instruction). */
6368 {
6369 bfd_vma relocation;
6370 bfd_vma reloc_sign;
6371 bfd_boolean overflow = FALSE;
6372 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6373 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6374 bfd_signed_vma reloc_signed_max;
6375 bfd_signed_vma reloc_signed_min;
6376 bfd_vma check;
6377 bfd_signed_vma signed_check;
6378 int bitsize;
6379 int thumb2 = using_thumb2 (globals);
6380
6381 /* A branch to an undefined weak symbol is turned into a jump to
6382 the next instruction. */
6383 if (h && h->root.type == bfd_link_hash_undefweak)
6384 {
6385 bfd_put_16 (input_bfd, 0xe000, hit_data);
6386 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6387 return bfd_reloc_ok;
6388 }
6389
6390 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6391 with Thumb-1) involving the J1 and J2 bits. */
6392 if (globals->use_rel)
6393 {
6394 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6395 bfd_vma upper = upper_insn & 0x3ff;
6396 bfd_vma lower = lower_insn & 0x7ff;
6397 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6398 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6399 bfd_vma i1 = j1 ^ s ? 0 : 1;
6400 bfd_vma i2 = j2 ^ s ? 0 : 1;
6401
6402 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6403 /* Sign extend. */
6404 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6405
6406 signed_addend = addend;
6407 }
6408
6409 if (r_type == R_ARM_THM_XPC22)
6410 {
6411 /* Check for Thumb to Thumb call. */
6412 /* FIXME: Should we translate the instruction into a BL
6413 instruction instead ? */
6414 if (sym_flags == STT_ARM_TFUNC)
6415 (*_bfd_error_handler)
6416 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6417 input_bfd,
6418 h ? h->root.root.string : "(local)");
6419 }
6420 else
6421 {
6422 /* If it is not a call to Thumb, assume call to Arm.
6423 If it is a call relative to a section name, then it is not a
6424 function call at all, but rather a long jump. Calls through
6425 the PLT do not require stubs. */
6426 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6427 && (h == NULL || splt == NULL
6428 || h->plt.offset == (bfd_vma) -1))
6429 {
6430 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6431 {
6432 /* Convert BL to BLX. */
6433 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6434 }
6435 else if (r_type != R_ARM_THM_CALL) {
6436 if (elf32_thumb_to_arm_stub
6437 (info, sym_name, input_bfd, output_bfd, input_section,
6438 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6439 error_message))
6440 return bfd_reloc_ok;
6441 else
6442 return bfd_reloc_dangerous;
6443 }
6444 }
6445 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6446 && r_type == R_ARM_THM_CALL)
6447 {
6448 /* Make sure this is a BL. */
6449 lower_insn |= 0x1800;
6450 }
6451 }
6452
6453 /* Handle calls via the PLT. */
6454 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6455 {
6456 value = (splt->output_section->vma
6457 + splt->output_offset
6458 + h->plt.offset);
6459 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6460 {
6461 /* If the Thumb BLX instruction is available, convert the
6462 BL to a BLX instruction to call the ARM-mode PLT entry. */
6463 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6464 }
6465 else
6466 /* Target the Thumb stub before the ARM PLT entry. */
6467 value -= PLT_THUMB_STUB_SIZE;
6468 *unresolved_reloc_p = FALSE;
6469 }
6470
6471 if (r_type == R_ARM_THM_CALL)
6472 {
6473 /* Check if a stub has to be inserted because the destination
6474 is too far. */
6475 bfd_vma from;
6476 bfd_signed_vma branch_offset;
6477 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6478
6479 from = (input_section->output_section->vma
6480 + input_section->output_offset
6481 + rel->r_offset);
6482 branch_offset = (bfd_signed_vma)(value - from);
6483
6484 if ((!thumb2
6485 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6486 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6487 ||
6488 (thumb2
6489 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6490 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6491 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6492 {
6493 /* The target is out of reach or we are changing modes, so
6494 redirect the branch to the local stub for this
6495 function. */
6496 stub_entry = elf32_arm_get_stub_entry (input_section,
6497 sym_sec, h,
6498 rel, globals);
6499 if (stub_entry != NULL)
6500 value = (stub_entry->stub_offset
6501 + stub_entry->stub_sec->output_offset
6502 + stub_entry->stub_sec->output_section->vma);
6503
6504 /* If this call becomes a call to Arm, force BLX. */
6505 if (globals->use_blx)
6506 {
6507 if ((stub_entry
6508 && !arm_stub_is_thumb (stub_entry->stub_type))
6509 || (sym_flags != STT_ARM_TFUNC))
6510 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6511 }
6512 }
6513 }
6514
6515 relocation = value + signed_addend;
6516
6517 relocation -= (input_section->output_section->vma
6518 + input_section->output_offset
6519 + rel->r_offset);
6520
6521 check = relocation >> howto->rightshift;
6522
6523 /* If this is a signed value, the rightshift just dropped
6524 leading 1 bits (assuming twos complement). */
6525 if ((bfd_signed_vma) relocation >= 0)
6526 signed_check = check;
6527 else
6528 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6529
6530 /* Calculate the permissable maximum and minimum values for
6531 this relocation according to whether we're relocating for
6532 Thumb-2 or not. */
6533 bitsize = howto->bitsize;
6534 if (!thumb2)
6535 bitsize -= 2;
6536 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6537 reloc_signed_min = ~reloc_signed_max;
6538
6539 /* Assumes two's complement. */
6540 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6541 overflow = TRUE;
6542
6543 if ((lower_insn & 0x5000) == 0x4000)
6544 /* For a BLX instruction, make sure that the relocation is rounded up
6545 to a word boundary. This follows the semantics of the instruction
6546 which specifies that bit 1 of the target address will come from bit
6547 1 of the base address. */
6548 relocation = (relocation + 2) & ~ 3;
6549
6550 /* Put RELOCATION back into the insn. Assumes two's complement.
6551 We use the Thumb-2 encoding, which is safe even if dealing with
6552 a Thumb-1 instruction by virtue of our overflow check above. */
6553 reloc_sign = (signed_check < 0) ? 1 : 0;
6554 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6555 | ((relocation >> 12) & 0x3ff)
6556 | (reloc_sign << 10);
6557 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6558 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6559 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6560 | ((relocation >> 1) & 0x7ff);
6561
6562 /* Put the relocated value back in the object file: */
6563 bfd_put_16 (input_bfd, upper_insn, hit_data);
6564 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6565
6566 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6567 }
6568 break;
6569
6570 case R_ARM_THM_JUMP19:
6571 /* Thumb32 conditional branch instruction. */
6572 {
6573 bfd_vma relocation;
6574 bfd_boolean overflow = FALSE;
6575 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6576 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6577 bfd_signed_vma reloc_signed_max = 0xffffe;
6578 bfd_signed_vma reloc_signed_min = -0x100000;
6579 bfd_signed_vma signed_check;
6580
6581 /* Need to refetch the addend, reconstruct the top three bits,
6582 and squish the two 11 bit pieces together. */
6583 if (globals->use_rel)
6584 {
6585 bfd_vma S = (upper_insn & 0x0400) >> 10;
6586 bfd_vma upper = (upper_insn & 0x003f);
6587 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6588 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6589 bfd_vma lower = (lower_insn & 0x07ff);
6590
6591 upper |= J1 << 6;
6592 upper |= J2 << 7;
6593 upper |= (!S) << 8;
6594 upper -= 0x0100; /* Sign extend. */
6595
6596 addend = (upper << 12) | (lower << 1);
6597 signed_addend = addend;
6598 }
6599
6600 /* Handle calls via the PLT. */
6601 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6602 {
6603 value = (splt->output_section->vma
6604 + splt->output_offset
6605 + h->plt.offset);
6606 /* Target the Thumb stub before the ARM PLT entry. */
6607 value -= PLT_THUMB_STUB_SIZE;
6608 *unresolved_reloc_p = FALSE;
6609 }
6610
6611 /* ??? Should handle interworking? GCC might someday try to
6612 use this for tail calls. */
6613
6614 relocation = value + signed_addend;
6615 relocation -= (input_section->output_section->vma
6616 + input_section->output_offset
6617 + rel->r_offset);
6618 signed_check = (bfd_signed_vma) relocation;
6619
6620 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6621 overflow = TRUE;
6622
6623 /* Put RELOCATION back into the insn. */
6624 {
6625 bfd_vma S = (relocation & 0x00100000) >> 20;
6626 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6627 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6628 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6629 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6630
6631 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6632 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6633 }
6634
6635 /* Put the relocated value back in the object file: */
6636 bfd_put_16 (input_bfd, upper_insn, hit_data);
6637 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6638
6639 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6640 }
6641
6642 case R_ARM_THM_JUMP11:
6643 case R_ARM_THM_JUMP8:
6644 case R_ARM_THM_JUMP6:
6645 /* Thumb B (branch) instruction). */
6646 {
6647 bfd_signed_vma relocation;
6648 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6649 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6650 bfd_signed_vma signed_check;
6651
6652 /* CZB cannot jump backward. */
6653 if (r_type == R_ARM_THM_JUMP6)
6654 reloc_signed_min = 0;
6655
6656 if (globals->use_rel)
6657 {
6658 /* Need to refetch addend. */
6659 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6660 if (addend & ((howto->src_mask + 1) >> 1))
6661 {
6662 signed_addend = -1;
6663 signed_addend &= ~ howto->src_mask;
6664 signed_addend |= addend;
6665 }
6666 else
6667 signed_addend = addend;
6668 /* The value in the insn has been right shifted. We need to
6669 undo this, so that we can perform the address calculation
6670 in terms of bytes. */
6671 signed_addend <<= howto->rightshift;
6672 }
6673 relocation = value + signed_addend;
6674
6675 relocation -= (input_section->output_section->vma
6676 + input_section->output_offset
6677 + rel->r_offset);
6678
6679 relocation >>= howto->rightshift;
6680 signed_check = relocation;
6681
6682 if (r_type == R_ARM_THM_JUMP6)
6683 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6684 else
6685 relocation &= howto->dst_mask;
6686 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6687
6688 bfd_put_16 (input_bfd, relocation, hit_data);
6689
6690 /* Assumes two's complement. */
6691 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6692 return bfd_reloc_overflow;
6693
6694 return bfd_reloc_ok;
6695 }
6696
6697 case R_ARM_ALU_PCREL7_0:
6698 case R_ARM_ALU_PCREL15_8:
6699 case R_ARM_ALU_PCREL23_15:
6700 {
6701 bfd_vma insn;
6702 bfd_vma relocation;
6703
6704 insn = bfd_get_32 (input_bfd, hit_data);
6705 if (globals->use_rel)
6706 {
6707 /* Extract the addend. */
6708 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6709 signed_addend = addend;
6710 }
6711 relocation = value + signed_addend;
6712
6713 relocation -= (input_section->output_section->vma
6714 + input_section->output_offset
6715 + rel->r_offset);
6716 insn = (insn & ~0xfff)
6717 | ((howto->bitpos << 7) & 0xf00)
6718 | ((relocation >> howto->bitpos) & 0xff);
6719 bfd_put_32 (input_bfd, value, hit_data);
6720 }
6721 return bfd_reloc_ok;
6722
6723 case R_ARM_GNU_VTINHERIT:
6724 case R_ARM_GNU_VTENTRY:
6725 return bfd_reloc_ok;
6726
6727 case R_ARM_GOTOFF32:
6728 /* Relocation is relative to the start of the
6729 global offset table. */
6730
6731 BFD_ASSERT (sgot != NULL);
6732 if (sgot == NULL)
6733 return bfd_reloc_notsupported;
6734
6735 /* If we are addressing a Thumb function, we need to adjust the
6736 address by one, so that attempts to call the function pointer will
6737 correctly interpret it as Thumb code. */
6738 if (sym_flags == STT_ARM_TFUNC)
6739 value += 1;
6740
6741 /* Note that sgot->output_offset is not involved in this
6742 calculation. We always want the start of .got. If we
6743 define _GLOBAL_OFFSET_TABLE in a different way, as is
6744 permitted by the ABI, we might have to change this
6745 calculation. */
6746 value -= sgot->output_section->vma;
6747 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6748 contents, rel->r_offset, value,
6749 rel->r_addend);
6750
6751 case R_ARM_GOTPC:
6752 /* Use global offset table as symbol value. */
6753 BFD_ASSERT (sgot != NULL);
6754
6755 if (sgot == NULL)
6756 return bfd_reloc_notsupported;
6757
6758 *unresolved_reloc_p = FALSE;
6759 value = sgot->output_section->vma;
6760 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6761 contents, rel->r_offset, value,
6762 rel->r_addend);
6763
6764 case R_ARM_GOT32:
6765 case R_ARM_GOT_PREL:
6766 /* Relocation is to the entry for this symbol in the
6767 global offset table. */
6768 if (sgot == NULL)
6769 return bfd_reloc_notsupported;
6770
6771 if (h != NULL)
6772 {
6773 bfd_vma off;
6774 bfd_boolean dyn;
6775
6776 off = h->got.offset;
6777 BFD_ASSERT (off != (bfd_vma) -1);
6778 dyn = globals->root.dynamic_sections_created;
6779
6780 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6781 || (info->shared
6782 && SYMBOL_REFERENCES_LOCAL (info, h))
6783 || (ELF_ST_VISIBILITY (h->other)
6784 && h->root.type == bfd_link_hash_undefweak))
6785 {
6786 /* This is actually a static link, or it is a -Bsymbolic link
6787 and the symbol is defined locally. We must initialize this
6788 entry in the global offset table. Since the offset must
6789 always be a multiple of 4, we use the least significant bit
6790 to record whether we have initialized it already.
6791
6792 When doing a dynamic link, we create a .rel(a).got relocation
6793 entry to initialize the value. This is done in the
6794 finish_dynamic_symbol routine. */
6795 if ((off & 1) != 0)
6796 off &= ~1;
6797 else
6798 {
6799 /* If we are addressing a Thumb function, we need to
6800 adjust the address by one, so that attempts to
6801 call the function pointer will correctly
6802 interpret it as Thumb code. */
6803 if (sym_flags == STT_ARM_TFUNC)
6804 value |= 1;
6805
6806 bfd_put_32 (output_bfd, value, sgot->contents + off);
6807 h->got.offset |= 1;
6808 }
6809 }
6810 else
6811 *unresolved_reloc_p = FALSE;
6812
6813 value = sgot->output_offset + off;
6814 }
6815 else
6816 {
6817 bfd_vma off;
6818
6819 BFD_ASSERT (local_got_offsets != NULL &&
6820 local_got_offsets[r_symndx] != (bfd_vma) -1);
6821
6822 off = local_got_offsets[r_symndx];
6823
6824 /* The offset must always be a multiple of 4. We use the
6825 least significant bit to record whether we have already
6826 generated the necessary reloc. */
6827 if ((off & 1) != 0)
6828 off &= ~1;
6829 else
6830 {
6831 /* If we are addressing a Thumb function, we need to
6832 adjust the address by one, so that attempts to
6833 call the function pointer will correctly
6834 interpret it as Thumb code. */
6835 if (sym_flags == STT_ARM_TFUNC)
6836 value |= 1;
6837
6838 if (globals->use_rel)
6839 bfd_put_32 (output_bfd, value, sgot->contents + off);
6840
6841 if (info->shared)
6842 {
6843 asection * srelgot;
6844 Elf_Internal_Rela outrel;
6845 bfd_byte *loc;
6846
6847 srelgot = (bfd_get_section_by_name
6848 (dynobj, RELOC_SECTION (globals, ".got")));
6849 BFD_ASSERT (srelgot != NULL);
6850
6851 outrel.r_addend = addend + value;
6852 outrel.r_offset = (sgot->output_section->vma
6853 + sgot->output_offset
6854 + off);
6855 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6856 loc = srelgot->contents;
6857 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6858 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6859 }
6860
6861 local_got_offsets[r_symndx] |= 1;
6862 }
6863
6864 value = sgot->output_offset + off;
6865 }
6866 if (r_type != R_ARM_GOT32)
6867 value += sgot->output_section->vma;
6868
6869 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6870 contents, rel->r_offset, value,
6871 rel->r_addend);
6872
6873 case R_ARM_TLS_LDO32:
6874 value = value - dtpoff_base (info);
6875
6876 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6877 contents, rel->r_offset, value,
6878 rel->r_addend);
6879
6880 case R_ARM_TLS_LDM32:
6881 {
6882 bfd_vma off;
6883
6884 if (globals->sgot == NULL)
6885 abort ();
6886
6887 off = globals->tls_ldm_got.offset;
6888
6889 if ((off & 1) != 0)
6890 off &= ~1;
6891 else
6892 {
6893 /* If we don't know the module number, create a relocation
6894 for it. */
6895 if (info->shared)
6896 {
6897 Elf_Internal_Rela outrel;
6898 bfd_byte *loc;
6899
6900 if (globals->srelgot == NULL)
6901 abort ();
6902
6903 outrel.r_addend = 0;
6904 outrel.r_offset = (globals->sgot->output_section->vma
6905 + globals->sgot->output_offset + off);
6906 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6907
6908 if (globals->use_rel)
6909 bfd_put_32 (output_bfd, outrel.r_addend,
6910 globals->sgot->contents + off);
6911
6912 loc = globals->srelgot->contents;
6913 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6914 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6915 }
6916 else
6917 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6918
6919 globals->tls_ldm_got.offset |= 1;
6920 }
6921
6922 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6923 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6924
6925 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6926 contents, rel->r_offset, value,
6927 rel->r_addend);
6928 }
6929
6930 case R_ARM_TLS_GD32:
6931 case R_ARM_TLS_IE32:
6932 {
6933 bfd_vma off;
6934 int indx;
6935 char tls_type;
6936
6937 if (globals->sgot == NULL)
6938 abort ();
6939
6940 indx = 0;
6941 if (h != NULL)
6942 {
6943 bfd_boolean dyn;
6944 dyn = globals->root.dynamic_sections_created;
6945 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6946 && (!info->shared
6947 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6948 {
6949 *unresolved_reloc_p = FALSE;
6950 indx = h->dynindx;
6951 }
6952 off = h->got.offset;
6953 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6954 }
6955 else
6956 {
6957 if (local_got_offsets == NULL)
6958 abort ();
6959 off = local_got_offsets[r_symndx];
6960 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6961 }
6962
6963 if (tls_type == GOT_UNKNOWN)
6964 abort ();
6965
6966 if ((off & 1) != 0)
6967 off &= ~1;
6968 else
6969 {
6970 bfd_boolean need_relocs = FALSE;
6971 Elf_Internal_Rela outrel;
6972 bfd_byte *loc = NULL;
6973 int cur_off = off;
6974
6975 /* The GOT entries have not been initialized yet. Do it
6976 now, and emit any relocations. If both an IE GOT and a
6977 GD GOT are necessary, we emit the GD first. */
6978
6979 if ((info->shared || indx != 0)
6980 && (h == NULL
6981 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6982 || h->root.type != bfd_link_hash_undefweak))
6983 {
6984 need_relocs = TRUE;
6985 if (globals->srelgot == NULL)
6986 abort ();
6987 loc = globals->srelgot->contents;
6988 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6989 }
6990
6991 if (tls_type & GOT_TLS_GD)
6992 {
6993 if (need_relocs)
6994 {
6995 outrel.r_addend = 0;
6996 outrel.r_offset = (globals->sgot->output_section->vma
6997 + globals->sgot->output_offset
6998 + cur_off);
6999 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
7000
7001 if (globals->use_rel)
7002 bfd_put_32 (output_bfd, outrel.r_addend,
7003 globals->sgot->contents + cur_off);
7004
7005 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7006 globals->srelgot->reloc_count++;
7007 loc += RELOC_SIZE (globals);
7008
7009 if (indx == 0)
7010 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7011 globals->sgot->contents + cur_off + 4);
7012 else
7013 {
7014 outrel.r_addend = 0;
7015 outrel.r_info = ELF32_R_INFO (indx,
7016 R_ARM_TLS_DTPOFF32);
7017 outrel.r_offset += 4;
7018
7019 if (globals->use_rel)
7020 bfd_put_32 (output_bfd, outrel.r_addend,
7021 globals->sgot->contents + cur_off + 4);
7022
7023
7024 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7025 globals->srelgot->reloc_count++;
7026 loc += RELOC_SIZE (globals);
7027 }
7028 }
7029 else
7030 {
7031 /* If we are not emitting relocations for a
7032 general dynamic reference, then we must be in a
7033 static link or an executable link with the
7034 symbol binding locally. Mark it as belonging
7035 to module 1, the executable. */
7036 bfd_put_32 (output_bfd, 1,
7037 globals->sgot->contents + cur_off);
7038 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7039 globals->sgot->contents + cur_off + 4);
7040 }
7041
7042 cur_off += 8;
7043 }
7044
7045 if (tls_type & GOT_TLS_IE)
7046 {
7047 if (need_relocs)
7048 {
7049 if (indx == 0)
7050 outrel.r_addend = value - dtpoff_base (info);
7051 else
7052 outrel.r_addend = 0;
7053 outrel.r_offset = (globals->sgot->output_section->vma
7054 + globals->sgot->output_offset
7055 + cur_off);
7056 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7057
7058 if (globals->use_rel)
7059 bfd_put_32 (output_bfd, outrel.r_addend,
7060 globals->sgot->contents + cur_off);
7061
7062 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7063 globals->srelgot->reloc_count++;
7064 loc += RELOC_SIZE (globals);
7065 }
7066 else
7067 bfd_put_32 (output_bfd, tpoff (info, value),
7068 globals->sgot->contents + cur_off);
7069 cur_off += 4;
7070 }
7071
7072 if (h != NULL)
7073 h->got.offset |= 1;
7074 else
7075 local_got_offsets[r_symndx] |= 1;
7076 }
7077
7078 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7079 off += 8;
7080 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7081 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7082
7083 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7084 contents, rel->r_offset, value,
7085 rel->r_addend);
7086 }
7087
7088 case R_ARM_TLS_LE32:
7089 if (info->shared)
7090 {
7091 (*_bfd_error_handler)
7092 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7093 input_bfd, input_section,
7094 (long) rel->r_offset, howto->name);
7095 return FALSE;
7096 }
7097 else
7098 value = tpoff (info, value);
7099
7100 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7101 contents, rel->r_offset, value,
7102 rel->r_addend);
7103
7104 case R_ARM_V4BX:
7105 if (globals->fix_v4bx)
7106 {
7107 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7108
7109 /* Ensure that we have a BX instruction. */
7110 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7111
7112 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7113 {
7114 /* Branch to veneer. */
7115 bfd_vma glue_addr;
7116 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7117 glue_addr -= input_section->output_section->vma
7118 + input_section->output_offset
7119 + rel->r_offset + 8;
7120 insn = (insn & 0xf0000000) | 0x0a000000
7121 | ((glue_addr >> 2) & 0x00ffffff);
7122 }
7123 else
7124 {
7125 /* Preserve Rm (lowest four bits) and the condition code
7126 (highest four bits). Other bits encode MOV PC,Rm. */
7127 insn = (insn & 0xf000000f) | 0x01a0f000;
7128 }
7129
7130 bfd_put_32 (input_bfd, insn, hit_data);
7131 }
7132 return bfd_reloc_ok;
7133
7134 case R_ARM_MOVW_ABS_NC:
7135 case R_ARM_MOVT_ABS:
7136 case R_ARM_MOVW_PREL_NC:
7137 case R_ARM_MOVT_PREL:
7138 /* Until we properly support segment-base-relative addressing then
7139 we assume the segment base to be zero, as for the group relocations.
7140 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7141 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7142 case R_ARM_MOVW_BREL_NC:
7143 case R_ARM_MOVW_BREL:
7144 case R_ARM_MOVT_BREL:
7145 {
7146 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7147
7148 if (globals->use_rel)
7149 {
7150 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7151 signed_addend = (addend ^ 0x8000) - 0x8000;
7152 }
7153
7154 value += signed_addend;
7155
7156 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7157 value -= (input_section->output_section->vma
7158 + input_section->output_offset + rel->r_offset);
7159
7160 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7161 return bfd_reloc_overflow;
7162
7163 if (sym_flags == STT_ARM_TFUNC)
7164 value |= 1;
7165
7166 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7167 || r_type == R_ARM_MOVT_BREL)
7168 value >>= 16;
7169
7170 insn &= 0xfff0f000;
7171 insn |= value & 0xfff;
7172 insn |= (value & 0xf000) << 4;
7173 bfd_put_32 (input_bfd, insn, hit_data);
7174 }
7175 return bfd_reloc_ok;
7176
7177 case R_ARM_THM_MOVW_ABS_NC:
7178 case R_ARM_THM_MOVT_ABS:
7179 case R_ARM_THM_MOVW_PREL_NC:
7180 case R_ARM_THM_MOVT_PREL:
7181 /* Until we properly support segment-base-relative addressing then
7182 we assume the segment base to be zero, as for the above relocations.
7183 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7184 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7185 as R_ARM_THM_MOVT_ABS. */
7186 case R_ARM_THM_MOVW_BREL_NC:
7187 case R_ARM_THM_MOVW_BREL:
7188 case R_ARM_THM_MOVT_BREL:
7189 {
7190 bfd_vma insn;
7191
7192 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7193 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7194
7195 if (globals->use_rel)
7196 {
7197 addend = ((insn >> 4) & 0xf000)
7198 | ((insn >> 15) & 0x0800)
7199 | ((insn >> 4) & 0x0700)
7200 | (insn & 0x00ff);
7201 signed_addend = (addend ^ 0x8000) - 0x8000;
7202 }
7203
7204 value += signed_addend;
7205
7206 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7207 value -= (input_section->output_section->vma
7208 + input_section->output_offset + rel->r_offset);
7209
7210 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7211 return bfd_reloc_overflow;
7212
7213 if (sym_flags == STT_ARM_TFUNC)
7214 value |= 1;
7215
7216 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7217 || r_type == R_ARM_THM_MOVT_BREL)
7218 value >>= 16;
7219
7220 insn &= 0xfbf08f00;
7221 insn |= (value & 0xf000) << 4;
7222 insn |= (value & 0x0800) << 15;
7223 insn |= (value & 0x0700) << 4;
7224 insn |= (value & 0x00ff);
7225
7226 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7227 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7228 }
7229 return bfd_reloc_ok;
7230
7231 case R_ARM_ALU_PC_G0_NC:
7232 case R_ARM_ALU_PC_G1_NC:
7233 case R_ARM_ALU_PC_G0:
7234 case R_ARM_ALU_PC_G1:
7235 case R_ARM_ALU_PC_G2:
7236 case R_ARM_ALU_SB_G0_NC:
7237 case R_ARM_ALU_SB_G1_NC:
7238 case R_ARM_ALU_SB_G0:
7239 case R_ARM_ALU_SB_G1:
7240 case R_ARM_ALU_SB_G2:
7241 {
7242 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7243 bfd_vma pc = input_section->output_section->vma
7244 + input_section->output_offset + rel->r_offset;
7245 /* sb should be the origin of the *segment* containing the symbol.
7246 It is not clear how to obtain this OS-dependent value, so we
7247 make an arbitrary choice of zero. */
7248 bfd_vma sb = 0;
7249 bfd_vma residual;
7250 bfd_vma g_n;
7251 bfd_signed_vma signed_value;
7252 int group = 0;
7253
7254 /* Determine which group of bits to select. */
7255 switch (r_type)
7256 {
7257 case R_ARM_ALU_PC_G0_NC:
7258 case R_ARM_ALU_PC_G0:
7259 case R_ARM_ALU_SB_G0_NC:
7260 case R_ARM_ALU_SB_G0:
7261 group = 0;
7262 break;
7263
7264 case R_ARM_ALU_PC_G1_NC:
7265 case R_ARM_ALU_PC_G1:
7266 case R_ARM_ALU_SB_G1_NC:
7267 case R_ARM_ALU_SB_G1:
7268 group = 1;
7269 break;
7270
7271 case R_ARM_ALU_PC_G2:
7272 case R_ARM_ALU_SB_G2:
7273 group = 2;
7274 break;
7275
7276 default:
7277 abort ();
7278 }
7279
7280 /* If REL, extract the addend from the insn. If RELA, it will
7281 have already been fetched for us. */
7282 if (globals->use_rel)
7283 {
7284 int negative;
7285 bfd_vma constant = insn & 0xff;
7286 bfd_vma rotation = (insn & 0xf00) >> 8;
7287
7288 if (rotation == 0)
7289 signed_addend = constant;
7290 else
7291 {
7292 /* Compensate for the fact that in the instruction, the
7293 rotation is stored in multiples of 2 bits. */
7294 rotation *= 2;
7295
7296 /* Rotate "constant" right by "rotation" bits. */
7297 signed_addend = (constant >> rotation) |
7298 (constant << (8 * sizeof (bfd_vma) - rotation));
7299 }
7300
7301 /* Determine if the instruction is an ADD or a SUB.
7302 (For REL, this determines the sign of the addend.) */
7303 negative = identify_add_or_sub (insn);
7304 if (negative == 0)
7305 {
7306 (*_bfd_error_handler)
7307 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7308 input_bfd, input_section,
7309 (long) rel->r_offset, howto->name);
7310 return bfd_reloc_overflow;
7311 }
7312
7313 signed_addend *= negative;
7314 }
7315
7316 /* Compute the value (X) to go in the place. */
7317 if (r_type == R_ARM_ALU_PC_G0_NC
7318 || r_type == R_ARM_ALU_PC_G1_NC
7319 || r_type == R_ARM_ALU_PC_G0
7320 || r_type == R_ARM_ALU_PC_G1
7321 || r_type == R_ARM_ALU_PC_G2)
7322 /* PC relative. */
7323 signed_value = value - pc + signed_addend;
7324 else
7325 /* Section base relative. */
7326 signed_value = value - sb + signed_addend;
7327
7328 /* If the target symbol is a Thumb function, then set the
7329 Thumb bit in the address. */
7330 if (sym_flags == STT_ARM_TFUNC)
7331 signed_value |= 1;
7332
7333 /* Calculate the value of the relevant G_n, in encoded
7334 constant-with-rotation format. */
7335 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7336 &residual);
7337
7338 /* Check for overflow if required. */
7339 if ((r_type == R_ARM_ALU_PC_G0
7340 || r_type == R_ARM_ALU_PC_G1
7341 || r_type == R_ARM_ALU_PC_G2
7342 || r_type == R_ARM_ALU_SB_G0
7343 || r_type == R_ARM_ALU_SB_G1
7344 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7345 {
7346 (*_bfd_error_handler)
7347 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7348 input_bfd, input_section,
7349 (long) rel->r_offset, abs (signed_value), howto->name);
7350 return bfd_reloc_overflow;
7351 }
7352
7353 /* Mask out the value and the ADD/SUB part of the opcode; take care
7354 not to destroy the S bit. */
7355 insn &= 0xff1ff000;
7356
7357 /* Set the opcode according to whether the value to go in the
7358 place is negative. */
7359 if (signed_value < 0)
7360 insn |= 1 << 22;
7361 else
7362 insn |= 1 << 23;
7363
7364 /* Encode the offset. */
7365 insn |= g_n;
7366
7367 bfd_put_32 (input_bfd, insn, hit_data);
7368 }
7369 return bfd_reloc_ok;
7370
7371 case R_ARM_LDR_PC_G0:
7372 case R_ARM_LDR_PC_G1:
7373 case R_ARM_LDR_PC_G2:
7374 case R_ARM_LDR_SB_G0:
7375 case R_ARM_LDR_SB_G1:
7376 case R_ARM_LDR_SB_G2:
7377 {
7378 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7379 bfd_vma pc = input_section->output_section->vma
7380 + input_section->output_offset + rel->r_offset;
7381 bfd_vma sb = 0; /* See note above. */
7382 bfd_vma residual;
7383 bfd_signed_vma signed_value;
7384 int group = 0;
7385
7386 /* Determine which groups of bits to calculate. */
7387 switch (r_type)
7388 {
7389 case R_ARM_LDR_PC_G0:
7390 case R_ARM_LDR_SB_G0:
7391 group = 0;
7392 break;
7393
7394 case R_ARM_LDR_PC_G1:
7395 case R_ARM_LDR_SB_G1:
7396 group = 1;
7397 break;
7398
7399 case R_ARM_LDR_PC_G2:
7400 case R_ARM_LDR_SB_G2:
7401 group = 2;
7402 break;
7403
7404 default:
7405 abort ();
7406 }
7407
7408 /* If REL, extract the addend from the insn. If RELA, it will
7409 have already been fetched for us. */
7410 if (globals->use_rel)
7411 {
7412 int negative = (insn & (1 << 23)) ? 1 : -1;
7413 signed_addend = negative * (insn & 0xfff);
7414 }
7415
7416 /* Compute the value (X) to go in the place. */
7417 if (r_type == R_ARM_LDR_PC_G0
7418 || r_type == R_ARM_LDR_PC_G1
7419 || r_type == R_ARM_LDR_PC_G2)
7420 /* PC relative. */
7421 signed_value = value - pc + signed_addend;
7422 else
7423 /* Section base relative. */
7424 signed_value = value - sb + signed_addend;
7425
7426 /* Calculate the value of the relevant G_{n-1} to obtain
7427 the residual at that stage. */
7428 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7429
7430 /* Check for overflow. */
7431 if (residual >= 0x1000)
7432 {
7433 (*_bfd_error_handler)
7434 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7435 input_bfd, input_section,
7436 (long) rel->r_offset, abs (signed_value), howto->name);
7437 return bfd_reloc_overflow;
7438 }
7439
7440 /* Mask out the value and U bit. */
7441 insn &= 0xff7ff000;
7442
7443 /* Set the U bit if the value to go in the place is non-negative. */
7444 if (signed_value >= 0)
7445 insn |= 1 << 23;
7446
7447 /* Encode the offset. */
7448 insn |= residual;
7449
7450 bfd_put_32 (input_bfd, insn, hit_data);
7451 }
7452 return bfd_reloc_ok;
7453
7454 case R_ARM_LDRS_PC_G0:
7455 case R_ARM_LDRS_PC_G1:
7456 case R_ARM_LDRS_PC_G2:
7457 case R_ARM_LDRS_SB_G0:
7458 case R_ARM_LDRS_SB_G1:
7459 case R_ARM_LDRS_SB_G2:
7460 {
7461 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7462 bfd_vma pc = input_section->output_section->vma
7463 + input_section->output_offset + rel->r_offset;
7464 bfd_vma sb = 0; /* See note above. */
7465 bfd_vma residual;
7466 bfd_signed_vma signed_value;
7467 int group = 0;
7468
7469 /* Determine which groups of bits to calculate. */
7470 switch (r_type)
7471 {
7472 case R_ARM_LDRS_PC_G0:
7473 case R_ARM_LDRS_SB_G0:
7474 group = 0;
7475 break;
7476
7477 case R_ARM_LDRS_PC_G1:
7478 case R_ARM_LDRS_SB_G1:
7479 group = 1;
7480 break;
7481
7482 case R_ARM_LDRS_PC_G2:
7483 case R_ARM_LDRS_SB_G2:
7484 group = 2;
7485 break;
7486
7487 default:
7488 abort ();
7489 }
7490
7491 /* If REL, extract the addend from the insn. If RELA, it will
7492 have already been fetched for us. */
7493 if (globals->use_rel)
7494 {
7495 int negative = (insn & (1 << 23)) ? 1 : -1;
7496 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7497 }
7498
7499 /* Compute the value (X) to go in the place. */
7500 if (r_type == R_ARM_LDRS_PC_G0
7501 || r_type == R_ARM_LDRS_PC_G1
7502 || r_type == R_ARM_LDRS_PC_G2)
7503 /* PC relative. */
7504 signed_value = value - pc + signed_addend;
7505 else
7506 /* Section base relative. */
7507 signed_value = value - sb + signed_addend;
7508
7509 /* Calculate the value of the relevant G_{n-1} to obtain
7510 the residual at that stage. */
7511 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7512
7513 /* Check for overflow. */
7514 if (residual >= 0x100)
7515 {
7516 (*_bfd_error_handler)
7517 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7518 input_bfd, input_section,
7519 (long) rel->r_offset, abs (signed_value), howto->name);
7520 return bfd_reloc_overflow;
7521 }
7522
7523 /* Mask out the value and U bit. */
7524 insn &= 0xff7ff0f0;
7525
7526 /* Set the U bit if the value to go in the place is non-negative. */
7527 if (signed_value >= 0)
7528 insn |= 1 << 23;
7529
7530 /* Encode the offset. */
7531 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7532
7533 bfd_put_32 (input_bfd, insn, hit_data);
7534 }
7535 return bfd_reloc_ok;
7536
7537 case R_ARM_LDC_PC_G0:
7538 case R_ARM_LDC_PC_G1:
7539 case R_ARM_LDC_PC_G2:
7540 case R_ARM_LDC_SB_G0:
7541 case R_ARM_LDC_SB_G1:
7542 case R_ARM_LDC_SB_G2:
7543 {
7544 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7545 bfd_vma pc = input_section->output_section->vma
7546 + input_section->output_offset + rel->r_offset;
7547 bfd_vma sb = 0; /* See note above. */
7548 bfd_vma residual;
7549 bfd_signed_vma signed_value;
7550 int group = 0;
7551
7552 /* Determine which groups of bits to calculate. */
7553 switch (r_type)
7554 {
7555 case R_ARM_LDC_PC_G0:
7556 case R_ARM_LDC_SB_G0:
7557 group = 0;
7558 break;
7559
7560 case R_ARM_LDC_PC_G1:
7561 case R_ARM_LDC_SB_G1:
7562 group = 1;
7563 break;
7564
7565 case R_ARM_LDC_PC_G2:
7566 case R_ARM_LDC_SB_G2:
7567 group = 2;
7568 break;
7569
7570 default:
7571 abort ();
7572 }
7573
7574 /* If REL, extract the addend from the insn. If RELA, it will
7575 have already been fetched for us. */
7576 if (globals->use_rel)
7577 {
7578 int negative = (insn & (1 << 23)) ? 1 : -1;
7579 signed_addend = negative * ((insn & 0xff) << 2);
7580 }
7581
7582 /* Compute the value (X) to go in the place. */
7583 if (r_type == R_ARM_LDC_PC_G0
7584 || r_type == R_ARM_LDC_PC_G1
7585 || r_type == R_ARM_LDC_PC_G2)
7586 /* PC relative. */
7587 signed_value = value - pc + signed_addend;
7588 else
7589 /* Section base relative. */
7590 signed_value = value - sb + signed_addend;
7591
7592 /* Calculate the value of the relevant G_{n-1} to obtain
7593 the residual at that stage. */
7594 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7595
7596 /* Check for overflow. (The absolute value to go in the place must be
7597 divisible by four and, after having been divided by four, must
7598 fit in eight bits.) */
7599 if ((residual & 0x3) != 0 || residual >= 0x400)
7600 {
7601 (*_bfd_error_handler)
7602 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7603 input_bfd, input_section,
7604 (long) rel->r_offset, abs (signed_value), howto->name);
7605 return bfd_reloc_overflow;
7606 }
7607
7608 /* Mask out the value and U bit. */
7609 insn &= 0xff7fff00;
7610
7611 /* Set the U bit if the value to go in the place is non-negative. */
7612 if (signed_value >= 0)
7613 insn |= 1 << 23;
7614
7615 /* Encode the offset. */
7616 insn |= residual >> 2;
7617
7618 bfd_put_32 (input_bfd, insn, hit_data);
7619 }
7620 return bfd_reloc_ok;
7621
7622 default:
7623 return bfd_reloc_notsupported;
7624 }
7625 }
7626
7627 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7628 static void
7629 arm_add_to_rel (bfd * abfd,
7630 bfd_byte * address,
7631 reloc_howto_type * howto,
7632 bfd_signed_vma increment)
7633 {
7634 bfd_signed_vma addend;
7635
7636 if (howto->type == R_ARM_THM_CALL
7637 || howto->type == R_ARM_THM_JUMP24)
7638 {
7639 int upper_insn, lower_insn;
7640 int upper, lower;
7641
7642 upper_insn = bfd_get_16 (abfd, address);
7643 lower_insn = bfd_get_16 (abfd, address + 2);
7644 upper = upper_insn & 0x7ff;
7645 lower = lower_insn & 0x7ff;
7646
7647 addend = (upper << 12) | (lower << 1);
7648 addend += increment;
7649 addend >>= 1;
7650
7651 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7652 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7653
7654 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7655 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7656 }
7657 else
7658 {
7659 bfd_vma contents;
7660
7661 contents = bfd_get_32 (abfd, address);
7662
7663 /* Get the (signed) value from the instruction. */
7664 addend = contents & howto->src_mask;
7665 if (addend & ((howto->src_mask + 1) >> 1))
7666 {
7667 bfd_signed_vma mask;
7668
7669 mask = -1;
7670 mask &= ~ howto->src_mask;
7671 addend |= mask;
7672 }
7673
7674 /* Add in the increment, (which is a byte value). */
7675 switch (howto->type)
7676 {
7677 default:
7678 addend += increment;
7679 break;
7680
7681 case R_ARM_PC24:
7682 case R_ARM_PLT32:
7683 case R_ARM_CALL:
7684 case R_ARM_JUMP24:
7685 addend <<= howto->size;
7686 addend += increment;
7687
7688 /* Should we check for overflow here ? */
7689
7690 /* Drop any undesired bits. */
7691 addend >>= howto->rightshift;
7692 break;
7693 }
7694
7695 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7696
7697 bfd_put_32 (abfd, contents, address);
7698 }
7699 }
7700
7701 #define IS_ARM_TLS_RELOC(R_TYPE) \
7702 ((R_TYPE) == R_ARM_TLS_GD32 \
7703 || (R_TYPE) == R_ARM_TLS_LDO32 \
7704 || (R_TYPE) == R_ARM_TLS_LDM32 \
7705 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7706 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7707 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7708 || (R_TYPE) == R_ARM_TLS_LE32 \
7709 || (R_TYPE) == R_ARM_TLS_IE32)
7710
7711 /* Relocate an ARM ELF section. */
7712
7713 static bfd_boolean
7714 elf32_arm_relocate_section (bfd * output_bfd,
7715 struct bfd_link_info * info,
7716 bfd * input_bfd,
7717 asection * input_section,
7718 bfd_byte * contents,
7719 Elf_Internal_Rela * relocs,
7720 Elf_Internal_Sym * local_syms,
7721 asection ** local_sections)
7722 {
7723 Elf_Internal_Shdr *symtab_hdr;
7724 struct elf_link_hash_entry **sym_hashes;
7725 Elf_Internal_Rela *rel;
7726 Elf_Internal_Rela *relend;
7727 const char *name;
7728 struct elf32_arm_link_hash_table * globals;
7729
7730 globals = elf32_arm_hash_table (info);
7731
7732 symtab_hdr = & elf_symtab_hdr (input_bfd);
7733 sym_hashes = elf_sym_hashes (input_bfd);
7734
7735 rel = relocs;
7736 relend = relocs + input_section->reloc_count;
7737 for (; rel < relend; rel++)
7738 {
7739 int r_type;
7740 reloc_howto_type * howto;
7741 unsigned long r_symndx;
7742 Elf_Internal_Sym * sym;
7743 asection * sec;
7744 struct elf_link_hash_entry * h;
7745 bfd_vma relocation;
7746 bfd_reloc_status_type r;
7747 arelent bfd_reloc;
7748 char sym_type;
7749 bfd_boolean unresolved_reloc = FALSE;
7750 char *error_message = NULL;
7751
7752 r_symndx = ELF32_R_SYM (rel->r_info);
7753 r_type = ELF32_R_TYPE (rel->r_info);
7754 r_type = arm_real_reloc_type (globals, r_type);
7755
7756 if ( r_type == R_ARM_GNU_VTENTRY
7757 || r_type == R_ARM_GNU_VTINHERIT)
7758 continue;
7759
7760 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7761 howto = bfd_reloc.howto;
7762
7763 h = NULL;
7764 sym = NULL;
7765 sec = NULL;
7766
7767 if (r_symndx < symtab_hdr->sh_info)
7768 {
7769 sym = local_syms + r_symndx;
7770 sym_type = ELF32_ST_TYPE (sym->st_info);
7771 sec = local_sections[r_symndx];
7772 if (globals->use_rel)
7773 {
7774 relocation = (sec->output_section->vma
7775 + sec->output_offset
7776 + sym->st_value);
7777 if (!info->relocatable
7778 && (sec->flags & SEC_MERGE)
7779 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7780 {
7781 asection *msec;
7782 bfd_vma addend, value;
7783
7784 switch (r_type)
7785 {
7786 case R_ARM_MOVW_ABS_NC:
7787 case R_ARM_MOVT_ABS:
7788 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7789 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7790 addend = (addend ^ 0x8000) - 0x8000;
7791 break;
7792
7793 case R_ARM_THM_MOVW_ABS_NC:
7794 case R_ARM_THM_MOVT_ABS:
7795 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7796 << 16;
7797 value |= bfd_get_16 (input_bfd,
7798 contents + rel->r_offset + 2);
7799 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7800 | ((value & 0x04000000) >> 15);
7801 addend = (addend ^ 0x8000) - 0x8000;
7802 break;
7803
7804 default:
7805 if (howto->rightshift
7806 || (howto->src_mask & (howto->src_mask + 1)))
7807 {
7808 (*_bfd_error_handler)
7809 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7810 input_bfd, input_section,
7811 (long) rel->r_offset, howto->name);
7812 return FALSE;
7813 }
7814
7815 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7816
7817 /* Get the (signed) value from the instruction. */
7818 addend = value & howto->src_mask;
7819 if (addend & ((howto->src_mask + 1) >> 1))
7820 {
7821 bfd_signed_vma mask;
7822
7823 mask = -1;
7824 mask &= ~ howto->src_mask;
7825 addend |= mask;
7826 }
7827 break;
7828 }
7829
7830 msec = sec;
7831 addend =
7832 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7833 - relocation;
7834 addend += msec->output_section->vma + msec->output_offset;
7835
7836 /* Cases here must match those in the preceeding
7837 switch statement. */
7838 switch (r_type)
7839 {
7840 case R_ARM_MOVW_ABS_NC:
7841 case R_ARM_MOVT_ABS:
7842 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7843 | (addend & 0xfff);
7844 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7845 break;
7846
7847 case R_ARM_THM_MOVW_ABS_NC:
7848 case R_ARM_THM_MOVT_ABS:
7849 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7850 | (addend & 0xff) | ((addend & 0x0800) << 15);
7851 bfd_put_16 (input_bfd, value >> 16,
7852 contents + rel->r_offset);
7853 bfd_put_16 (input_bfd, value,
7854 contents + rel->r_offset + 2);
7855 break;
7856
7857 default:
7858 value = (value & ~ howto->dst_mask)
7859 | (addend & howto->dst_mask);
7860 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7861 break;
7862 }
7863 }
7864 }
7865 else
7866 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7867 }
7868 else
7869 {
7870 bfd_boolean warned;
7871
7872 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7873 r_symndx, symtab_hdr, sym_hashes,
7874 h, sec, relocation,
7875 unresolved_reloc, warned);
7876
7877 sym_type = h->type;
7878 }
7879
7880 if (sec != NULL && elf_discarded_section (sec))
7881 {
7882 /* For relocs against symbols from removed linkonce sections,
7883 or sections discarded by a linker script, we just want the
7884 section contents zeroed. Avoid any special processing. */
7885 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7886 rel->r_info = 0;
7887 rel->r_addend = 0;
7888 continue;
7889 }
7890
7891 if (info->relocatable)
7892 {
7893 /* This is a relocatable link. We don't have to change
7894 anything, unless the reloc is against a section symbol,
7895 in which case we have to adjust according to where the
7896 section symbol winds up in the output section. */
7897 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7898 {
7899 if (globals->use_rel)
7900 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7901 howto, (bfd_signed_vma) sec->output_offset);
7902 else
7903 rel->r_addend += sec->output_offset;
7904 }
7905 continue;
7906 }
7907
7908 if (h != NULL)
7909 name = h->root.root.string;
7910 else
7911 {
7912 name = (bfd_elf_string_from_elf_section
7913 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7914 if (name == NULL || *name == '\0')
7915 name = bfd_section_name (input_bfd, sec);
7916 }
7917
7918 if (r_symndx != 0
7919 && r_type != R_ARM_NONE
7920 && (h == NULL
7921 || h->root.type == bfd_link_hash_defined
7922 || h->root.type == bfd_link_hash_defweak)
7923 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7924 {
7925 (*_bfd_error_handler)
7926 ((sym_type == STT_TLS
7927 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7928 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7929 input_bfd,
7930 input_section,
7931 (long) rel->r_offset,
7932 howto->name,
7933 name);
7934 }
7935
7936 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7937 input_section, contents, rel,
7938 relocation, info, sec, name,
7939 (h ? ELF_ST_TYPE (h->type) :
7940 ELF_ST_TYPE (sym->st_info)), h,
7941 &unresolved_reloc, &error_message);
7942
7943 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7944 because such sections are not SEC_ALLOC and thus ld.so will
7945 not process them. */
7946 if (unresolved_reloc
7947 && !((input_section->flags & SEC_DEBUGGING) != 0
7948 && h->def_dynamic))
7949 {
7950 (*_bfd_error_handler)
7951 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7952 input_bfd,
7953 input_section,
7954 (long) rel->r_offset,
7955 howto->name,
7956 h->root.root.string);
7957 return FALSE;
7958 }
7959
7960 if (r != bfd_reloc_ok)
7961 {
7962 switch (r)
7963 {
7964 case bfd_reloc_overflow:
7965 /* If the overflowing reloc was to an undefined symbol,
7966 we have already printed one error message and there
7967 is no point complaining again. */
7968 if ((! h ||
7969 h->root.type != bfd_link_hash_undefined)
7970 && (!((*info->callbacks->reloc_overflow)
7971 (info, (h ? &h->root : NULL), name, howto->name,
7972 (bfd_vma) 0, input_bfd, input_section,
7973 rel->r_offset))))
7974 return FALSE;
7975 break;
7976
7977 case bfd_reloc_undefined:
7978 if (!((*info->callbacks->undefined_symbol)
7979 (info, name, input_bfd, input_section,
7980 rel->r_offset, TRUE)))
7981 return FALSE;
7982 break;
7983
7984 case bfd_reloc_outofrange:
7985 error_message = _("out of range");
7986 goto common_error;
7987
7988 case bfd_reloc_notsupported:
7989 error_message = _("unsupported relocation");
7990 goto common_error;
7991
7992 case bfd_reloc_dangerous:
7993 /* error_message should already be set. */
7994 goto common_error;
7995
7996 default:
7997 error_message = _("unknown error");
7998 /* fall through */
7999
8000 common_error:
8001 BFD_ASSERT (error_message != NULL);
8002 if (!((*info->callbacks->reloc_dangerous)
8003 (info, error_message, input_bfd, input_section,
8004 rel->r_offset)))
8005 return FALSE;
8006 break;
8007 }
8008 }
8009 }
8010
8011 return TRUE;
8012 }
8013
8014 /* Set the right machine number. */
8015
8016 static bfd_boolean
8017 elf32_arm_object_p (bfd *abfd)
8018 {
8019 unsigned int mach;
8020
8021 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8022
8023 if (mach != bfd_mach_arm_unknown)
8024 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8025
8026 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8027 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8028
8029 else
8030 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8031
8032 return TRUE;
8033 }
8034
8035 /* Function to keep ARM specific flags in the ELF header. */
8036
8037 static bfd_boolean
8038 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8039 {
8040 if (elf_flags_init (abfd)
8041 && elf_elfheader (abfd)->e_flags != flags)
8042 {
8043 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8044 {
8045 if (flags & EF_ARM_INTERWORK)
8046 (*_bfd_error_handler)
8047 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8048 abfd);
8049 else
8050 _bfd_error_handler
8051 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8052 abfd);
8053 }
8054 }
8055 else
8056 {
8057 elf_elfheader (abfd)->e_flags = flags;
8058 elf_flags_init (abfd) = TRUE;
8059 }
8060
8061 return TRUE;
8062 }
8063
8064 /* Copy backend specific data from one object module to another. */
8065
8066 static bfd_boolean
8067 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8068 {
8069 flagword in_flags;
8070 flagword out_flags;
8071
8072 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8073 return TRUE;
8074
8075 in_flags = elf_elfheader (ibfd)->e_flags;
8076 out_flags = elf_elfheader (obfd)->e_flags;
8077
8078 if (elf_flags_init (obfd)
8079 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8080 && in_flags != out_flags)
8081 {
8082 /* Cannot mix APCS26 and APCS32 code. */
8083 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8084 return FALSE;
8085
8086 /* Cannot mix float APCS and non-float APCS code. */
8087 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8088 return FALSE;
8089
8090 /* If the src and dest have different interworking flags
8091 then turn off the interworking bit. */
8092 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8093 {
8094 if (out_flags & EF_ARM_INTERWORK)
8095 _bfd_error_handler
8096 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8097 obfd, ibfd);
8098
8099 in_flags &= ~EF_ARM_INTERWORK;
8100 }
8101
8102 /* Likewise for PIC, though don't warn for this case. */
8103 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8104 in_flags &= ~EF_ARM_PIC;
8105 }
8106
8107 elf_elfheader (obfd)->e_flags = in_flags;
8108 elf_flags_init (obfd) = TRUE;
8109
8110 /* Also copy the EI_OSABI field. */
8111 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8112 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8113
8114 /* Copy object attributes. */
8115 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8116
8117 return TRUE;
8118 }
8119
8120 /* Values for Tag_ABI_PCS_R9_use. */
8121 enum
8122 {
8123 AEABI_R9_V6,
8124 AEABI_R9_SB,
8125 AEABI_R9_TLS,
8126 AEABI_R9_unused
8127 };
8128
8129 /* Values for Tag_ABI_PCS_RW_data. */
8130 enum
8131 {
8132 AEABI_PCS_RW_data_absolute,
8133 AEABI_PCS_RW_data_PCrel,
8134 AEABI_PCS_RW_data_SBrel,
8135 AEABI_PCS_RW_data_unused
8136 };
8137
8138 /* Values for Tag_ABI_enum_size. */
8139 enum
8140 {
8141 AEABI_enum_unused,
8142 AEABI_enum_short,
8143 AEABI_enum_wide,
8144 AEABI_enum_forced_wide
8145 };
8146
8147 /* Determine whether an object attribute tag takes an integer, a
8148 string or both. */
8149
8150 static int
8151 elf32_arm_obj_attrs_arg_type (int tag)
8152 {
8153 if (tag == Tag_compatibility)
8154 return 3;
8155 else if (tag == 4 || tag == 5)
8156 return 2;
8157 else if (tag < 32)
8158 return 1;
8159 else
8160 return (tag & 1) != 0 ? 2 : 1;
8161 }
8162
8163 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8164 are conflicting attributes. */
8165
8166 static bfd_boolean
8167 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8168 {
8169 obj_attribute *in_attr;
8170 obj_attribute *out_attr;
8171 obj_attribute_list *in_list;
8172 /* Some tags have 0 = don't care, 1 = strong requirement,
8173 2 = weak requirement. */
8174 static const int order_312[3] = {3, 1, 2};
8175 /* For use with Tag_VFP_arch. */
8176 static const int order_01243[5] = {0, 1, 2, 4, 3};
8177 int i;
8178
8179 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8180 {
8181 /* This is the first object. Copy the attributes. */
8182 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8183
8184 /* Use the Tag_null value to indicate the attributes have been
8185 initialized. */
8186 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8187
8188 return TRUE;
8189 }
8190
8191 in_attr = elf_known_obj_attributes_proc (ibfd);
8192 out_attr = elf_known_obj_attributes_proc (obfd);
8193 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8194 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8195 {
8196 /* Ignore mismatches if teh object doesn't use floating point. */
8197 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8198 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8199 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8200 {
8201 _bfd_error_handler
8202 (_("ERROR: %B uses VFP register arguments, %B does not"),
8203 ibfd, obfd);
8204 return FALSE;
8205 }
8206 }
8207
8208 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8209 {
8210 /* Merge this attribute with existing attributes. */
8211 switch (i)
8212 {
8213 case Tag_CPU_raw_name:
8214 case Tag_CPU_name:
8215 /* Use whichever has the greatest architecture requirements. We
8216 won't necessarily have both the above tags, so make sure input
8217 name is non-NULL. */
8218 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
8219 && in_attr[i].s)
8220 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
8221 break;
8222
8223 case Tag_ABI_optimization_goals:
8224 case Tag_ABI_FP_optimization_goals:
8225 /* Use the first value seen. */
8226 break;
8227
8228 case Tag_CPU_arch:
8229 case Tag_ARM_ISA_use:
8230 case Tag_THUMB_ISA_use:
8231 case Tag_WMMX_arch:
8232 case Tag_NEON_arch:
8233 /* ??? Do NEON and WMMX conflict? */
8234 case Tag_ABI_FP_rounding:
8235 case Tag_ABI_FP_denormal:
8236 case Tag_ABI_FP_exceptions:
8237 case Tag_ABI_FP_user_exceptions:
8238 case Tag_ABI_FP_number_model:
8239 case Tag_ABI_align8_preserved:
8240 case Tag_ABI_HardFP_use:
8241 /* Use the largest value specified. */
8242 if (in_attr[i].i > out_attr[i].i)
8243 out_attr[i].i = in_attr[i].i;
8244 break;
8245
8246 case Tag_CPU_arch_profile:
8247 /* Warn if conflicting architecture profiles used. */
8248 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
8249 {
8250 _bfd_error_handler
8251 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8252 ibfd, in_attr[i].i, out_attr[i].i);
8253 return FALSE;
8254 }
8255 if (in_attr[i].i)
8256 out_attr[i].i = in_attr[i].i;
8257 break;
8258 case Tag_VFP_arch:
8259 if (in_attr[i].i > 4 || out_attr[i].i > 4
8260 || order_01243[in_attr[i].i] > order_01243[out_attr[i].i])
8261 out_attr[i].i = in_attr[i].i;
8262 break;
8263 case Tag_PCS_config:
8264 if (out_attr[i].i == 0)
8265 out_attr[i].i = in_attr[i].i;
8266 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8267 {
8268 /* It's sometimes ok to mix different configs, so this is only
8269 a warning. */
8270 _bfd_error_handler
8271 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8272 }
8273 break;
8274 case Tag_ABI_PCS_R9_use:
8275 if (in_attr[i].i != out_attr[i].i
8276 && out_attr[i].i != AEABI_R9_unused
8277 && in_attr[i].i != AEABI_R9_unused)
8278 {
8279 _bfd_error_handler
8280 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8281 return FALSE;
8282 }
8283 if (out_attr[i].i == AEABI_R9_unused)
8284 out_attr[i].i = in_attr[i].i;
8285 break;
8286 case Tag_ABI_PCS_RW_data:
8287 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8288 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8289 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8290 {
8291 _bfd_error_handler
8292 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8293 ibfd);
8294 return FALSE;
8295 }
8296 /* Use the smallest value specified. */
8297 if (in_attr[i].i < out_attr[i].i)
8298 out_attr[i].i = in_attr[i].i;
8299 break;
8300 case Tag_ABI_PCS_RO_data:
8301 /* Use the smallest value specified. */
8302 if (in_attr[i].i < out_attr[i].i)
8303 out_attr[i].i = in_attr[i].i;
8304 break;
8305 case Tag_ABI_PCS_GOT_use:
8306 if (in_attr[i].i > 2 || out_attr[i].i > 2
8307 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8308 out_attr[i].i = in_attr[i].i;
8309 break;
8310 case Tag_ABI_PCS_wchar_t:
8311 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
8312 {
8313 _bfd_error_handler
8314 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
8315 return FALSE;
8316 }
8317 if (in_attr[i].i)
8318 out_attr[i].i = in_attr[i].i;
8319 break;
8320 case Tag_ABI_align8_needed:
8321 /* ??? Check against Tag_ABI_align8_preserved. */
8322 if (in_attr[i].i > 2 || out_attr[i].i > 2
8323 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8324 out_attr[i].i = in_attr[i].i;
8325 break;
8326 case Tag_ABI_enum_size:
8327 if (in_attr[i].i != AEABI_enum_unused)
8328 {
8329 if (out_attr[i].i == AEABI_enum_unused
8330 || out_attr[i].i == AEABI_enum_forced_wide)
8331 {
8332 /* The existing object is compatible with anything.
8333 Use whatever requirements the new object has. */
8334 out_attr[i].i = in_attr[i].i;
8335 }
8336 else if (in_attr[i].i != AEABI_enum_forced_wide
8337 && out_attr[i].i != in_attr[i].i
8338 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8339 {
8340 const char *aeabi_enum_names[] =
8341 { "", "variable-size", "32-bit", "" };
8342 _bfd_error_handler
8343 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8344 ibfd, aeabi_enum_names[in_attr[i].i],
8345 aeabi_enum_names[out_attr[i].i]);
8346 }
8347 }
8348 break;
8349 case Tag_ABI_VFP_args:
8350 /* Aready done. */
8351 break;
8352 case Tag_ABI_WMMX_args:
8353 if (in_attr[i].i != out_attr[i].i)
8354 {
8355 _bfd_error_handler
8356 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8357 ibfd, obfd);
8358 return FALSE;
8359 }
8360 break;
8361 default: /* All known attributes should be explicitly covered. */
8362 abort ();
8363 }
8364
8365 if (in_attr[i].type && !out_attr[i].type)
8366 switch (in_attr[i].type)
8367 {
8368 case 1:
8369 if (out_attr[i].i)
8370 out_attr[i].type = 1;
8371 break;
8372
8373 case 2:
8374 if (out_attr[i].s)
8375 out_attr[i].type = 2;
8376 break;
8377
8378 default:
8379 abort ();
8380 }
8381 }
8382
8383 /* Merge Tag_compatibility attributes and any common GNU ones. */
8384 _bfd_elf_merge_object_attributes (ibfd, obfd);
8385
8386 /* Check for any attributes not known on ARM. */
8387 in_list = elf_other_obj_attributes_proc (ibfd);
8388 while (in_list && in_list->tag == Tag_compatibility)
8389 in_list = in_list->next;
8390
8391 for (; in_list; in_list = in_list->next)
8392 {
8393 if ((in_list->tag & 128) < 64)
8394 {
8395 _bfd_error_handler
8396 (_("Warning: %B: Unknown EABI object attribute %d"),
8397 ibfd, in_list->tag);
8398 break;
8399 }
8400 }
8401 return TRUE;
8402 }
8403
8404
8405 /* Return TRUE if the two EABI versions are incompatible. */
8406
8407 static bfd_boolean
8408 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8409 {
8410 /* v4 and v5 are the same spec before and after it was released,
8411 so allow mixing them. */
8412 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8413 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8414 return TRUE;
8415
8416 return (iver == over);
8417 }
8418
8419 /* Merge backend specific data from an object file to the output
8420 object file when linking. */
8421
8422 static bfd_boolean
8423 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8424 {
8425 flagword out_flags;
8426 flagword in_flags;
8427 bfd_boolean flags_compatible = TRUE;
8428 asection *sec;
8429
8430 /* Check if we have the same endianess. */
8431 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8432 return FALSE;
8433
8434 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8435 return TRUE;
8436
8437 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8438 return FALSE;
8439
8440 /* The input BFD must have had its flags initialised. */
8441 /* The following seems bogus to me -- The flags are initialized in
8442 the assembler but I don't think an elf_flags_init field is
8443 written into the object. */
8444 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8445
8446 in_flags = elf_elfheader (ibfd)->e_flags;
8447 out_flags = elf_elfheader (obfd)->e_flags;
8448
8449 /* In theory there is no reason why we couldn't handle this. However
8450 in practice it isn't even close to working and there is no real
8451 reason to want it. */
8452 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
8453 && !(ibfd->flags & DYNAMIC)
8454 && (in_flags & EF_ARM_BE8))
8455 {
8456 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8457 ibfd);
8458 return FALSE;
8459 }
8460
8461 if (!elf_flags_init (obfd))
8462 {
8463 /* If the input is the default architecture and had the default
8464 flags then do not bother setting the flags for the output
8465 architecture, instead allow future merges to do this. If no
8466 future merges ever set these flags then they will retain their
8467 uninitialised values, which surprise surprise, correspond
8468 to the default values. */
8469 if (bfd_get_arch_info (ibfd)->the_default
8470 && elf_elfheader (ibfd)->e_flags == 0)
8471 return TRUE;
8472
8473 elf_flags_init (obfd) = TRUE;
8474 elf_elfheader (obfd)->e_flags = in_flags;
8475
8476 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8477 && bfd_get_arch_info (obfd)->the_default)
8478 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8479
8480 return TRUE;
8481 }
8482
8483 /* Determine what should happen if the input ARM architecture
8484 does not match the output ARM architecture. */
8485 if (! bfd_arm_merge_machines (ibfd, obfd))
8486 return FALSE;
8487
8488 /* Identical flags must be compatible. */
8489 if (in_flags == out_flags)
8490 return TRUE;
8491
8492 /* Check to see if the input BFD actually contains any sections. If
8493 not, its flags may not have been initialised either, but it
8494 cannot actually cause any incompatiblity. Do not short-circuit
8495 dynamic objects; their section list may be emptied by
8496 elf_link_add_object_symbols.
8497
8498 Also check to see if there are no code sections in the input.
8499 In this case there is no need to check for code specific flags.
8500 XXX - do we need to worry about floating-point format compatability
8501 in data sections ? */
8502 if (!(ibfd->flags & DYNAMIC))
8503 {
8504 bfd_boolean null_input_bfd = TRUE;
8505 bfd_boolean only_data_sections = TRUE;
8506
8507 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8508 {
8509 /* Ignore synthetic glue sections. */
8510 if (strcmp (sec->name, ".glue_7")
8511 && strcmp (sec->name, ".glue_7t"))
8512 {
8513 if ((bfd_get_section_flags (ibfd, sec)
8514 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8515 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8516 only_data_sections = FALSE;
8517
8518 null_input_bfd = FALSE;
8519 break;
8520 }
8521 }
8522
8523 if (null_input_bfd || only_data_sections)
8524 return TRUE;
8525 }
8526
8527 /* Complain about various flag mismatches. */
8528 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8529 EF_ARM_EABI_VERSION (out_flags)))
8530 {
8531 _bfd_error_handler
8532 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8533 ibfd, obfd,
8534 (in_flags & EF_ARM_EABIMASK) >> 24,
8535 (out_flags & EF_ARM_EABIMASK) >> 24);
8536 return FALSE;
8537 }
8538
8539 /* Not sure what needs to be checked for EABI versions >= 1. */
8540 /* VxWorks libraries do not use these flags. */
8541 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8542 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8543 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8544 {
8545 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8546 {
8547 _bfd_error_handler
8548 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8549 ibfd, obfd,
8550 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8551 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8552 flags_compatible = FALSE;
8553 }
8554
8555 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8556 {
8557 if (in_flags & EF_ARM_APCS_FLOAT)
8558 _bfd_error_handler
8559 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8560 ibfd, obfd);
8561 else
8562 _bfd_error_handler
8563 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8564 ibfd, obfd);
8565
8566 flags_compatible = FALSE;
8567 }
8568
8569 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
8570 {
8571 if (in_flags & EF_ARM_VFP_FLOAT)
8572 _bfd_error_handler
8573 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8574 ibfd, obfd);
8575 else
8576 _bfd_error_handler
8577 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8578 ibfd, obfd);
8579
8580 flags_compatible = FALSE;
8581 }
8582
8583 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
8584 {
8585 if (in_flags & EF_ARM_MAVERICK_FLOAT)
8586 _bfd_error_handler
8587 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8588 ibfd, obfd);
8589 else
8590 _bfd_error_handler
8591 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8592 ibfd, obfd);
8593
8594 flags_compatible = FALSE;
8595 }
8596
8597 #ifdef EF_ARM_SOFT_FLOAT
8598 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
8599 {
8600 /* We can allow interworking between code that is VFP format
8601 layout, and uses either soft float or integer regs for
8602 passing floating point arguments and results. We already
8603 know that the APCS_FLOAT flags match; similarly for VFP
8604 flags. */
8605 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
8606 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
8607 {
8608 if (in_flags & EF_ARM_SOFT_FLOAT)
8609 _bfd_error_handler
8610 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8611 ibfd, obfd);
8612 else
8613 _bfd_error_handler
8614 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8615 ibfd, obfd);
8616
8617 flags_compatible = FALSE;
8618 }
8619 }
8620 #endif
8621
8622 /* Interworking mismatch is only a warning. */
8623 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8624 {
8625 if (in_flags & EF_ARM_INTERWORK)
8626 {
8627 _bfd_error_handler
8628 (_("Warning: %B supports interworking, whereas %B does not"),
8629 ibfd, obfd);
8630 }
8631 else
8632 {
8633 _bfd_error_handler
8634 (_("Warning: %B does not support interworking, whereas %B does"),
8635 ibfd, obfd);
8636 }
8637 }
8638 }
8639
8640 return flags_compatible;
8641 }
8642
8643 /* Display the flags field. */
8644
8645 static bfd_boolean
8646 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
8647 {
8648 FILE * file = (FILE *) ptr;
8649 unsigned long flags;
8650
8651 BFD_ASSERT (abfd != NULL && ptr != NULL);
8652
8653 /* Print normal ELF private data. */
8654 _bfd_elf_print_private_bfd_data (abfd, ptr);
8655
8656 flags = elf_elfheader (abfd)->e_flags;
8657 /* Ignore init flag - it may not be set, despite the flags field
8658 containing valid data. */
8659
8660 /* xgettext:c-format */
8661 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
8662
8663 switch (EF_ARM_EABI_VERSION (flags))
8664 {
8665 case EF_ARM_EABI_UNKNOWN:
8666 /* The following flag bits are GNU extensions and not part of the
8667 official ARM ELF extended ABI. Hence they are only decoded if
8668 the EABI version is not set. */
8669 if (flags & EF_ARM_INTERWORK)
8670 fprintf (file, _(" [interworking enabled]"));
8671
8672 if (flags & EF_ARM_APCS_26)
8673 fprintf (file, " [APCS-26]");
8674 else
8675 fprintf (file, " [APCS-32]");
8676
8677 if (flags & EF_ARM_VFP_FLOAT)
8678 fprintf (file, _(" [VFP float format]"));
8679 else if (flags & EF_ARM_MAVERICK_FLOAT)
8680 fprintf (file, _(" [Maverick float format]"));
8681 else
8682 fprintf (file, _(" [FPA float format]"));
8683
8684 if (flags & EF_ARM_APCS_FLOAT)
8685 fprintf (file, _(" [floats passed in float registers]"));
8686
8687 if (flags & EF_ARM_PIC)
8688 fprintf (file, _(" [position independent]"));
8689
8690 if (flags & EF_ARM_NEW_ABI)
8691 fprintf (file, _(" [new ABI]"));
8692
8693 if (flags & EF_ARM_OLD_ABI)
8694 fprintf (file, _(" [old ABI]"));
8695
8696 if (flags & EF_ARM_SOFT_FLOAT)
8697 fprintf (file, _(" [software FP]"));
8698
8699 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
8700 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
8701 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
8702 | EF_ARM_MAVERICK_FLOAT);
8703 break;
8704
8705 case EF_ARM_EABI_VER1:
8706 fprintf (file, _(" [Version1 EABI]"));
8707
8708 if (flags & EF_ARM_SYMSARESORTED)
8709 fprintf (file, _(" [sorted symbol table]"));
8710 else
8711 fprintf (file, _(" [unsorted symbol table]"));
8712
8713 flags &= ~ EF_ARM_SYMSARESORTED;
8714 break;
8715
8716 case EF_ARM_EABI_VER2:
8717 fprintf (file, _(" [Version2 EABI]"));
8718
8719 if (flags & EF_ARM_SYMSARESORTED)
8720 fprintf (file, _(" [sorted symbol table]"));
8721 else
8722 fprintf (file, _(" [unsorted symbol table]"));
8723
8724 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
8725 fprintf (file, _(" [dynamic symbols use segment index]"));
8726
8727 if (flags & EF_ARM_MAPSYMSFIRST)
8728 fprintf (file, _(" [mapping symbols precede others]"));
8729
8730 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
8731 | EF_ARM_MAPSYMSFIRST);
8732 break;
8733
8734 case EF_ARM_EABI_VER3:
8735 fprintf (file, _(" [Version3 EABI]"));
8736 break;
8737
8738 case EF_ARM_EABI_VER4:
8739 fprintf (file, _(" [Version4 EABI]"));
8740 goto eabi;
8741
8742 case EF_ARM_EABI_VER5:
8743 fprintf (file, _(" [Version5 EABI]"));
8744 eabi:
8745 if (flags & EF_ARM_BE8)
8746 fprintf (file, _(" [BE8]"));
8747
8748 if (flags & EF_ARM_LE8)
8749 fprintf (file, _(" [LE8]"));
8750
8751 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
8752 break;
8753
8754 default:
8755 fprintf (file, _(" <EABI version unrecognised>"));
8756 break;
8757 }
8758
8759 flags &= ~ EF_ARM_EABIMASK;
8760
8761 if (flags & EF_ARM_RELEXEC)
8762 fprintf (file, _(" [relocatable executable]"));
8763
8764 if (flags & EF_ARM_HASENTRY)
8765 fprintf (file, _(" [has entry point]"));
8766
8767 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
8768
8769 if (flags)
8770 fprintf (file, _("<Unrecognised flag bits set>"));
8771
8772 fputc ('\n', file);
8773
8774 return TRUE;
8775 }
8776
8777 static int
8778 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
8779 {
8780 switch (ELF_ST_TYPE (elf_sym->st_info))
8781 {
8782 case STT_ARM_TFUNC:
8783 return ELF_ST_TYPE (elf_sym->st_info);
8784
8785 case STT_ARM_16BIT:
8786 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8787 This allows us to distinguish between data used by Thumb instructions
8788 and non-data (which is probably code) inside Thumb regions of an
8789 executable. */
8790 if (type != STT_OBJECT && type != STT_TLS)
8791 return ELF_ST_TYPE (elf_sym->st_info);
8792 break;
8793
8794 default:
8795 break;
8796 }
8797
8798 return type;
8799 }
8800
8801 static asection *
8802 elf32_arm_gc_mark_hook (asection *sec,
8803 struct bfd_link_info *info,
8804 Elf_Internal_Rela *rel,
8805 struct elf_link_hash_entry *h,
8806 Elf_Internal_Sym *sym)
8807 {
8808 if (h != NULL)
8809 switch (ELF32_R_TYPE (rel->r_info))
8810 {
8811 case R_ARM_GNU_VTINHERIT:
8812 case R_ARM_GNU_VTENTRY:
8813 return NULL;
8814 }
8815
8816 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
8817 }
8818
8819 /* Update the got entry reference counts for the section being removed. */
8820
8821 static bfd_boolean
8822 elf32_arm_gc_sweep_hook (bfd * abfd,
8823 struct bfd_link_info * info,
8824 asection * sec,
8825 const Elf_Internal_Rela * relocs)
8826 {
8827 Elf_Internal_Shdr *symtab_hdr;
8828 struct elf_link_hash_entry **sym_hashes;
8829 bfd_signed_vma *local_got_refcounts;
8830 const Elf_Internal_Rela *rel, *relend;
8831 struct elf32_arm_link_hash_table * globals;
8832
8833 if (info->relocatable)
8834 return TRUE;
8835
8836 globals = elf32_arm_hash_table (info);
8837
8838 elf_section_data (sec)->local_dynrel = NULL;
8839
8840 symtab_hdr = & elf_symtab_hdr (abfd);
8841 sym_hashes = elf_sym_hashes (abfd);
8842 local_got_refcounts = elf_local_got_refcounts (abfd);
8843
8844 check_use_blx (globals);
8845
8846 relend = relocs + sec->reloc_count;
8847 for (rel = relocs; rel < relend; rel++)
8848 {
8849 unsigned long r_symndx;
8850 struct elf_link_hash_entry *h = NULL;
8851 int r_type;
8852
8853 r_symndx = ELF32_R_SYM (rel->r_info);
8854 if (r_symndx >= symtab_hdr->sh_info)
8855 {
8856 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8857 while (h->root.type == bfd_link_hash_indirect
8858 || h->root.type == bfd_link_hash_warning)
8859 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8860 }
8861
8862 r_type = ELF32_R_TYPE (rel->r_info);
8863 r_type = arm_real_reloc_type (globals, r_type);
8864 switch (r_type)
8865 {
8866 case R_ARM_GOT32:
8867 case R_ARM_GOT_PREL:
8868 case R_ARM_TLS_GD32:
8869 case R_ARM_TLS_IE32:
8870 if (h != NULL)
8871 {
8872 if (h->got.refcount > 0)
8873 h->got.refcount -= 1;
8874 }
8875 else if (local_got_refcounts != NULL)
8876 {
8877 if (local_got_refcounts[r_symndx] > 0)
8878 local_got_refcounts[r_symndx] -= 1;
8879 }
8880 break;
8881
8882 case R_ARM_TLS_LDM32:
8883 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
8884 break;
8885
8886 case R_ARM_ABS32:
8887 case R_ARM_ABS32_NOI:
8888 case R_ARM_REL32:
8889 case R_ARM_REL32_NOI:
8890 case R_ARM_PC24:
8891 case R_ARM_PLT32:
8892 case R_ARM_CALL:
8893 case R_ARM_JUMP24:
8894 case R_ARM_PREL31:
8895 case R_ARM_THM_CALL:
8896 case R_ARM_THM_JUMP24:
8897 case R_ARM_THM_JUMP19:
8898 case R_ARM_MOVW_ABS_NC:
8899 case R_ARM_MOVT_ABS:
8900 case R_ARM_MOVW_PREL_NC:
8901 case R_ARM_MOVT_PREL:
8902 case R_ARM_THM_MOVW_ABS_NC:
8903 case R_ARM_THM_MOVT_ABS:
8904 case R_ARM_THM_MOVW_PREL_NC:
8905 case R_ARM_THM_MOVT_PREL:
8906 /* Should the interworking branches be here also? */
8907
8908 if (h != NULL)
8909 {
8910 struct elf32_arm_link_hash_entry *eh;
8911 struct elf32_arm_relocs_copied **pp;
8912 struct elf32_arm_relocs_copied *p;
8913
8914 eh = (struct elf32_arm_link_hash_entry *) h;
8915
8916 if (h->plt.refcount > 0)
8917 {
8918 h->plt.refcount -= 1;
8919 if (r_type == R_ARM_THM_CALL)
8920 eh->plt_maybe_thumb_refcount--;
8921
8922 if (r_type == R_ARM_THM_JUMP24
8923 || r_type == R_ARM_THM_JUMP19)
8924 eh->plt_thumb_refcount--;
8925 }
8926
8927 if (r_type == R_ARM_ABS32
8928 || r_type == R_ARM_REL32
8929 || r_type == R_ARM_ABS32_NOI
8930 || r_type == R_ARM_REL32_NOI)
8931 {
8932 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
8933 pp = &p->next)
8934 if (p->section == sec)
8935 {
8936 p->count -= 1;
8937 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
8938 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
8939 p->pc_count -= 1;
8940 if (p->count == 0)
8941 *pp = p->next;
8942 break;
8943 }
8944 }
8945 }
8946 break;
8947
8948 default:
8949 break;
8950 }
8951 }
8952
8953 return TRUE;
8954 }
8955
8956 /* Look through the relocs for a section during the first phase. */
8957
8958 static bfd_boolean
8959 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
8960 asection *sec, const Elf_Internal_Rela *relocs)
8961 {
8962 Elf_Internal_Shdr *symtab_hdr;
8963 struct elf_link_hash_entry **sym_hashes;
8964 const Elf_Internal_Rela *rel;
8965 const Elf_Internal_Rela *rel_end;
8966 bfd *dynobj;
8967 asection *sreloc;
8968 bfd_vma *local_got_offsets;
8969 struct elf32_arm_link_hash_table *htab;
8970 bfd_boolean needs_plt;
8971
8972 if (info->relocatable)
8973 return TRUE;
8974
8975 BFD_ASSERT (is_arm_elf (abfd));
8976
8977 htab = elf32_arm_hash_table (info);
8978 sreloc = NULL;
8979
8980 /* Create dynamic sections for relocatable executables so that we can
8981 copy relocations. */
8982 if (htab->root.is_relocatable_executable
8983 && ! htab->root.dynamic_sections_created)
8984 {
8985 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
8986 return FALSE;
8987 }
8988
8989 dynobj = elf_hash_table (info)->dynobj;
8990 local_got_offsets = elf_local_got_offsets (abfd);
8991
8992 symtab_hdr = & elf_symtab_hdr (abfd);
8993 sym_hashes = elf_sym_hashes (abfd);
8994
8995 rel_end = relocs + sec->reloc_count;
8996 for (rel = relocs; rel < rel_end; rel++)
8997 {
8998 struct elf_link_hash_entry *h;
8999 struct elf32_arm_link_hash_entry *eh;
9000 unsigned long r_symndx;
9001 int r_type;
9002
9003 r_symndx = ELF32_R_SYM (rel->r_info);
9004 r_type = ELF32_R_TYPE (rel->r_info);
9005 r_type = arm_real_reloc_type (htab, r_type);
9006
9007 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
9008 {
9009 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9010 r_symndx);
9011 return FALSE;
9012 }
9013
9014 if (r_symndx < symtab_hdr->sh_info)
9015 h = NULL;
9016 else
9017 {
9018 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9019 while (h->root.type == bfd_link_hash_indirect
9020 || h->root.type == bfd_link_hash_warning)
9021 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9022 }
9023
9024 eh = (struct elf32_arm_link_hash_entry *) h;
9025
9026 switch (r_type)
9027 {
9028 case R_ARM_GOT32:
9029 case R_ARM_GOT_PREL:
9030 case R_ARM_TLS_GD32:
9031 case R_ARM_TLS_IE32:
9032 /* This symbol requires a global offset table entry. */
9033 {
9034 int tls_type, old_tls_type;
9035
9036 switch (r_type)
9037 {
9038 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9039 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9040 default: tls_type = GOT_NORMAL; break;
9041 }
9042
9043 if (h != NULL)
9044 {
9045 h->got.refcount++;
9046 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9047 }
9048 else
9049 {
9050 bfd_signed_vma *local_got_refcounts;
9051
9052 /* This is a global offset table entry for a local symbol. */
9053 local_got_refcounts = elf_local_got_refcounts (abfd);
9054 if (local_got_refcounts == NULL)
9055 {
9056 bfd_size_type size;
9057
9058 size = symtab_hdr->sh_info;
9059 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9060 local_got_refcounts = bfd_zalloc (abfd, size);
9061 if (local_got_refcounts == NULL)
9062 return FALSE;
9063 elf_local_got_refcounts (abfd) = local_got_refcounts;
9064 elf32_arm_local_got_tls_type (abfd)
9065 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9066 }
9067 local_got_refcounts[r_symndx] += 1;
9068 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9069 }
9070
9071 /* We will already have issued an error message if there is a
9072 TLS / non-TLS mismatch, based on the symbol type. We don't
9073 support any linker relaxations. So just combine any TLS
9074 types needed. */
9075 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9076 && tls_type != GOT_NORMAL)
9077 tls_type |= old_tls_type;
9078
9079 if (old_tls_type != tls_type)
9080 {
9081 if (h != NULL)
9082 elf32_arm_hash_entry (h)->tls_type = tls_type;
9083 else
9084 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9085 }
9086 }
9087 /* Fall through */
9088
9089 case R_ARM_TLS_LDM32:
9090 if (r_type == R_ARM_TLS_LDM32)
9091 htab->tls_ldm_got.refcount++;
9092 /* Fall through */
9093
9094 case R_ARM_GOTOFF32:
9095 case R_ARM_GOTPC:
9096 if (htab->sgot == NULL)
9097 {
9098 if (htab->root.dynobj == NULL)
9099 htab->root.dynobj = abfd;
9100 if (!create_got_section (htab->root.dynobj, info))
9101 return FALSE;
9102 }
9103 break;
9104
9105 case R_ARM_ABS12:
9106 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9107 ldr __GOTT_INDEX__ offsets. */
9108 if (!htab->vxworks_p)
9109 break;
9110 /* Fall through */
9111
9112 case R_ARM_PC24:
9113 case R_ARM_PLT32:
9114 case R_ARM_CALL:
9115 case R_ARM_JUMP24:
9116 case R_ARM_PREL31:
9117 case R_ARM_THM_CALL:
9118 case R_ARM_THM_JUMP24:
9119 case R_ARM_THM_JUMP19:
9120 needs_plt = 1;
9121 goto normal_reloc;
9122
9123 case R_ARM_ABS32:
9124 case R_ARM_ABS32_NOI:
9125 case R_ARM_REL32:
9126 case R_ARM_REL32_NOI:
9127 case R_ARM_MOVW_ABS_NC:
9128 case R_ARM_MOVT_ABS:
9129 case R_ARM_MOVW_PREL_NC:
9130 case R_ARM_MOVT_PREL:
9131 case R_ARM_THM_MOVW_ABS_NC:
9132 case R_ARM_THM_MOVT_ABS:
9133 case R_ARM_THM_MOVW_PREL_NC:
9134 case R_ARM_THM_MOVT_PREL:
9135 needs_plt = 0;
9136 normal_reloc:
9137
9138 /* Should the interworking branches be listed here? */
9139 if (h != NULL)
9140 {
9141 /* If this reloc is in a read-only section, we might
9142 need a copy reloc. We can't check reliably at this
9143 stage whether the section is read-only, as input
9144 sections have not yet been mapped to output sections.
9145 Tentatively set the flag for now, and correct in
9146 adjust_dynamic_symbol. */
9147 if (!info->shared)
9148 h->non_got_ref = 1;
9149
9150 /* We may need a .plt entry if the function this reloc
9151 refers to is in a different object. We can't tell for
9152 sure yet, because something later might force the
9153 symbol local. */
9154 if (needs_plt)
9155 h->needs_plt = 1;
9156
9157 /* If we create a PLT entry, this relocation will reference
9158 it, even if it's an ABS32 relocation. */
9159 h->plt.refcount += 1;
9160
9161 /* It's too early to use htab->use_blx here, so we have to
9162 record possible blx references separately from
9163 relocs that definitely need a thumb stub. */
9164
9165 if (r_type == R_ARM_THM_CALL)
9166 eh->plt_maybe_thumb_refcount += 1;
9167
9168 if (r_type == R_ARM_THM_JUMP24
9169 || r_type == R_ARM_THM_JUMP19)
9170 eh->plt_thumb_refcount += 1;
9171 }
9172
9173 /* If we are creating a shared library or relocatable executable,
9174 and this is a reloc against a global symbol, or a non PC
9175 relative reloc against a local symbol, then we need to copy
9176 the reloc into the shared library. However, if we are linking
9177 with -Bsymbolic, we do not need to copy a reloc against a
9178 global symbol which is defined in an object we are
9179 including in the link (i.e., DEF_REGULAR is set). At
9180 this point we have not seen all the input files, so it is
9181 possible that DEF_REGULAR is not set now but will be set
9182 later (it is never cleared). We account for that
9183 possibility below by storing information in the
9184 relocs_copied field of the hash table entry. */
9185 if ((info->shared || htab->root.is_relocatable_executable)
9186 && (sec->flags & SEC_ALLOC) != 0
9187 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9188 || (h != NULL && ! h->needs_plt
9189 && (! info->symbolic || ! h->def_regular))))
9190 {
9191 struct elf32_arm_relocs_copied *p, **head;
9192
9193 /* When creating a shared object, we must copy these
9194 reloc types into the output file. We create a reloc
9195 section in dynobj and make room for this reloc. */
9196 if (sreloc == NULL)
9197 {
9198 const char * name;
9199
9200 name = (bfd_elf_string_from_elf_section
9201 (abfd,
9202 elf_elfheader (abfd)->e_shstrndx,
9203 elf_section_data (sec)->rel_hdr.sh_name));
9204 if (name == NULL)
9205 return FALSE;
9206
9207 BFD_ASSERT (reloc_section_p (htab, name, sec));
9208
9209 sreloc = bfd_get_section_by_name (dynobj, name);
9210 if (sreloc == NULL)
9211 {
9212 flagword flags;
9213
9214 flags = (SEC_HAS_CONTENTS | SEC_READONLY
9215 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
9216 if ((sec->flags & SEC_ALLOC) != 0
9217 /* BPABI objects never have dynamic
9218 relocations mapped. */
9219 && !htab->symbian_p)
9220 flags |= SEC_ALLOC | SEC_LOAD;
9221 sreloc = bfd_make_section_with_flags (dynobj,
9222 name,
9223 flags);
9224 if (sreloc == NULL
9225 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
9226 return FALSE;
9227 }
9228
9229 elf_section_data (sec)->sreloc = sreloc;
9230 }
9231
9232 /* If this is a global symbol, we count the number of
9233 relocations we need for this symbol. */
9234 if (h != NULL)
9235 {
9236 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9237 }
9238 else
9239 {
9240 /* Track dynamic relocs needed for local syms too.
9241 We really need local syms available to do this
9242 easily. Oh well. */
9243
9244 asection *s;
9245 void *vpp;
9246
9247 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9248 sec, r_symndx);
9249 if (s == NULL)
9250 return FALSE;
9251
9252 vpp = &elf_section_data (s)->local_dynrel;
9253 head = (struct elf32_arm_relocs_copied **) vpp;
9254 }
9255
9256 p = *head;
9257 if (p == NULL || p->section != sec)
9258 {
9259 bfd_size_type amt = sizeof *p;
9260
9261 p = bfd_alloc (htab->root.dynobj, amt);
9262 if (p == NULL)
9263 return FALSE;
9264 p->next = *head;
9265 *head = p;
9266 p->section = sec;
9267 p->count = 0;
9268 p->pc_count = 0;
9269 }
9270
9271 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9272 p->pc_count += 1;
9273 p->count += 1;
9274 }
9275 break;
9276
9277 /* This relocation describes the C++ object vtable hierarchy.
9278 Reconstruct it for later use during GC. */
9279 case R_ARM_GNU_VTINHERIT:
9280 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9281 return FALSE;
9282 break;
9283
9284 /* This relocation describes which C++ vtable entries are actually
9285 used. Record for later use during GC. */
9286 case R_ARM_GNU_VTENTRY:
9287 BFD_ASSERT (h != NULL);
9288 if (h != NULL
9289 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9290 return FALSE;
9291 break;
9292 }
9293 }
9294
9295 return TRUE;
9296 }
9297
9298 /* Unwinding tables are not referenced directly. This pass marks them as
9299 required if the corresponding code section is marked. */
9300
9301 static bfd_boolean
9302 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9303 elf_gc_mark_hook_fn gc_mark_hook)
9304 {
9305 bfd *sub;
9306 Elf_Internal_Shdr **elf_shdrp;
9307 bfd_boolean again;
9308
9309 /* Marking EH data may cause additional code sections to be marked,
9310 requiring multiple passes. */
9311 again = TRUE;
9312 while (again)
9313 {
9314 again = FALSE;
9315 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9316 {
9317 asection *o;
9318
9319 if (! is_arm_elf (sub))
9320 continue;
9321
9322 elf_shdrp = elf_elfsections (sub);
9323 for (o = sub->sections; o != NULL; o = o->next)
9324 {
9325 Elf_Internal_Shdr *hdr;
9326
9327 hdr = &elf_section_data (o)->this_hdr;
9328 if (hdr->sh_type == SHT_ARM_EXIDX
9329 && hdr->sh_link
9330 && hdr->sh_link < elf_numsections (sub)
9331 && !o->gc_mark
9332 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9333 {
9334 again = TRUE;
9335 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9336 return FALSE;
9337 }
9338 }
9339 }
9340 }
9341
9342 return TRUE;
9343 }
9344
9345 /* Treat mapping symbols as special target symbols. */
9346
9347 static bfd_boolean
9348 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9349 {
9350 return bfd_is_arm_special_symbol_name (sym->name,
9351 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9352 }
9353
9354 /* This is a copy of elf_find_function() from elf.c except that
9355 ARM mapping symbols are ignored when looking for function names
9356 and STT_ARM_TFUNC is considered to a function type. */
9357
9358 static bfd_boolean
9359 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9360 asection * section,
9361 asymbol ** symbols,
9362 bfd_vma offset,
9363 const char ** filename_ptr,
9364 const char ** functionname_ptr)
9365 {
9366 const char * filename = NULL;
9367 asymbol * func = NULL;
9368 bfd_vma low_func = 0;
9369 asymbol ** p;
9370
9371 for (p = symbols; *p != NULL; p++)
9372 {
9373 elf_symbol_type *q;
9374
9375 q = (elf_symbol_type *) *p;
9376
9377 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9378 {
9379 default:
9380 break;
9381 case STT_FILE:
9382 filename = bfd_asymbol_name (&q->symbol);
9383 break;
9384 case STT_FUNC:
9385 case STT_ARM_TFUNC:
9386 case STT_NOTYPE:
9387 /* Skip mapping symbols. */
9388 if ((q->symbol.flags & BSF_LOCAL)
9389 && bfd_is_arm_special_symbol_name (q->symbol.name,
9390 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9391 continue;
9392 /* Fall through. */
9393 if (bfd_get_section (&q->symbol) == section
9394 && q->symbol.value >= low_func
9395 && q->symbol.value <= offset)
9396 {
9397 func = (asymbol *) q;
9398 low_func = q->symbol.value;
9399 }
9400 break;
9401 }
9402 }
9403
9404 if (func == NULL)
9405 return FALSE;
9406
9407 if (filename_ptr)
9408 *filename_ptr = filename;
9409 if (functionname_ptr)
9410 *functionname_ptr = bfd_asymbol_name (func);
9411
9412 return TRUE;
9413 }
9414
9415
9416 /* Find the nearest line to a particular section and offset, for error
9417 reporting. This code is a duplicate of the code in elf.c, except
9418 that it uses arm_elf_find_function. */
9419
9420 static bfd_boolean
9421 elf32_arm_find_nearest_line (bfd * abfd,
9422 asection * section,
9423 asymbol ** symbols,
9424 bfd_vma offset,
9425 const char ** filename_ptr,
9426 const char ** functionname_ptr,
9427 unsigned int * line_ptr)
9428 {
9429 bfd_boolean found = FALSE;
9430
9431 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9432
9433 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9434 filename_ptr, functionname_ptr,
9435 line_ptr, 0,
9436 & elf_tdata (abfd)->dwarf2_find_line_info))
9437 {
9438 if (!*functionname_ptr)
9439 arm_elf_find_function (abfd, section, symbols, offset,
9440 *filename_ptr ? NULL : filename_ptr,
9441 functionname_ptr);
9442
9443 return TRUE;
9444 }
9445
9446 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9447 & found, filename_ptr,
9448 functionname_ptr, line_ptr,
9449 & elf_tdata (abfd)->line_info))
9450 return FALSE;
9451
9452 if (found && (*functionname_ptr || *line_ptr))
9453 return TRUE;
9454
9455 if (symbols == NULL)
9456 return FALSE;
9457
9458 if (! arm_elf_find_function (abfd, section, symbols, offset,
9459 filename_ptr, functionname_ptr))
9460 return FALSE;
9461
9462 *line_ptr = 0;
9463 return TRUE;
9464 }
9465
9466 static bfd_boolean
9467 elf32_arm_find_inliner_info (bfd * abfd,
9468 const char ** filename_ptr,
9469 const char ** functionname_ptr,
9470 unsigned int * line_ptr)
9471 {
9472 bfd_boolean found;
9473 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9474 functionname_ptr, line_ptr,
9475 & elf_tdata (abfd)->dwarf2_find_line_info);
9476 return found;
9477 }
9478
9479 /* Adjust a symbol defined by a dynamic object and referenced by a
9480 regular object. The current definition is in some section of the
9481 dynamic object, but we're not including those sections. We have to
9482 change the definition to something the rest of the link can
9483 understand. */
9484
9485 static bfd_boolean
9486 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9487 struct elf_link_hash_entry * h)
9488 {
9489 bfd * dynobj;
9490 asection * s;
9491 struct elf32_arm_link_hash_entry * eh;
9492 struct elf32_arm_link_hash_table *globals;
9493
9494 globals = elf32_arm_hash_table (info);
9495 dynobj = elf_hash_table (info)->dynobj;
9496
9497 /* Make sure we know what is going on here. */
9498 BFD_ASSERT (dynobj != NULL
9499 && (h->needs_plt
9500 || h->u.weakdef != NULL
9501 || (h->def_dynamic
9502 && h->ref_regular
9503 && !h->def_regular)));
9504
9505 eh = (struct elf32_arm_link_hash_entry *) h;
9506
9507 /* If this is a function, put it in the procedure linkage table. We
9508 will fill in the contents of the procedure linkage table later,
9509 when we know the address of the .got section. */
9510 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
9511 || h->needs_plt)
9512 {
9513 if (h->plt.refcount <= 0
9514 || SYMBOL_CALLS_LOCAL (info, h)
9515 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9516 && h->root.type == bfd_link_hash_undefweak))
9517 {
9518 /* This case can occur if we saw a PLT32 reloc in an input
9519 file, but the symbol was never referred to by a dynamic
9520 object, or if all references were garbage collected. In
9521 such a case, we don't actually need to build a procedure
9522 linkage table, and we can just do a PC24 reloc instead. */
9523 h->plt.offset = (bfd_vma) -1;
9524 eh->plt_thumb_refcount = 0;
9525 eh->plt_maybe_thumb_refcount = 0;
9526 h->needs_plt = 0;
9527 }
9528
9529 return TRUE;
9530 }
9531 else
9532 {
9533 /* It's possible that we incorrectly decided a .plt reloc was
9534 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9535 in check_relocs. We can't decide accurately between function
9536 and non-function syms in check-relocs; Objects loaded later in
9537 the link may change h->type. So fix it now. */
9538 h->plt.offset = (bfd_vma) -1;
9539 eh->plt_thumb_refcount = 0;
9540 eh->plt_maybe_thumb_refcount = 0;
9541 }
9542
9543 /* If this is a weak symbol, and there is a real definition, the
9544 processor independent code will have arranged for us to see the
9545 real definition first, and we can just use the same value. */
9546 if (h->u.weakdef != NULL)
9547 {
9548 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9549 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9550 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9551 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9552 return TRUE;
9553 }
9554
9555 /* If there are no non-GOT references, we do not need a copy
9556 relocation. */
9557 if (!h->non_got_ref)
9558 return TRUE;
9559
9560 /* This is a reference to a symbol defined by a dynamic object which
9561 is not a function. */
9562
9563 /* If we are creating a shared library, we must presume that the
9564 only references to the symbol are via the global offset table.
9565 For such cases we need not do anything here; the relocations will
9566 be handled correctly by relocate_section. Relocatable executables
9567 can reference data in shared objects directly, so we don't need to
9568 do anything here. */
9569 if (info->shared || globals->root.is_relocatable_executable)
9570 return TRUE;
9571
9572 if (h->size == 0)
9573 {
9574 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
9575 h->root.root.string);
9576 return TRUE;
9577 }
9578
9579 /* We must allocate the symbol in our .dynbss section, which will
9580 become part of the .bss section of the executable. There will be
9581 an entry for this symbol in the .dynsym section. The dynamic
9582 object will contain position independent code, so all references
9583 from the dynamic object to this symbol will go through the global
9584 offset table. The dynamic linker will use the .dynsym entry to
9585 determine the address it must put in the global offset table, so
9586 both the dynamic object and the regular object will refer to the
9587 same memory location for the variable. */
9588 s = bfd_get_section_by_name (dynobj, ".dynbss");
9589 BFD_ASSERT (s != NULL);
9590
9591 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9592 copy the initial value out of the dynamic object and into the
9593 runtime process image. We need to remember the offset into the
9594 .rel(a).bss section we are going to use. */
9595 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9596 {
9597 asection *srel;
9598
9599 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
9600 BFD_ASSERT (srel != NULL);
9601 srel->size += RELOC_SIZE (globals);
9602 h->needs_copy = 1;
9603 }
9604
9605 return _bfd_elf_adjust_dynamic_copy (h, s);
9606 }
9607
9608 /* Allocate space in .plt, .got and associated reloc sections for
9609 dynamic relocs. */
9610
9611 static bfd_boolean
9612 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
9613 {
9614 struct bfd_link_info *info;
9615 struct elf32_arm_link_hash_table *htab;
9616 struct elf32_arm_link_hash_entry *eh;
9617 struct elf32_arm_relocs_copied *p;
9618 bfd_signed_vma thumb_refs;
9619
9620 eh = (struct elf32_arm_link_hash_entry *) h;
9621
9622 if (h->root.type == bfd_link_hash_indirect)
9623 return TRUE;
9624
9625 if (h->root.type == bfd_link_hash_warning)
9626 /* When warning symbols are created, they **replace** the "real"
9627 entry in the hash table, thus we never get to see the real
9628 symbol in a hash traversal. So look at it now. */
9629 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9630
9631 info = (struct bfd_link_info *) inf;
9632 htab = elf32_arm_hash_table (info);
9633
9634 if (htab->root.dynamic_sections_created
9635 && h->plt.refcount > 0)
9636 {
9637 /* Make sure this symbol is output as a dynamic symbol.
9638 Undefined weak syms won't yet be marked as dynamic. */
9639 if (h->dynindx == -1
9640 && !h->forced_local)
9641 {
9642 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9643 return FALSE;
9644 }
9645
9646 if (info->shared
9647 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
9648 {
9649 asection *s = htab->splt;
9650
9651 /* If this is the first .plt entry, make room for the special
9652 first entry. */
9653 if (s->size == 0)
9654 s->size += htab->plt_header_size;
9655
9656 h->plt.offset = s->size;
9657
9658 /* If we will insert a Thumb trampoline before this PLT, leave room
9659 for it. */
9660 thumb_refs = eh->plt_thumb_refcount;
9661 if (!htab->use_blx)
9662 thumb_refs += eh->plt_maybe_thumb_refcount;
9663
9664 if (thumb_refs > 0)
9665 {
9666 h->plt.offset += PLT_THUMB_STUB_SIZE;
9667 s->size += PLT_THUMB_STUB_SIZE;
9668 }
9669
9670 /* If this symbol is not defined in a regular file, and we are
9671 not generating a shared library, then set the symbol to this
9672 location in the .plt. This is required to make function
9673 pointers compare as equal between the normal executable and
9674 the shared library. */
9675 if (! info->shared
9676 && !h->def_regular)
9677 {
9678 h->root.u.def.section = s;
9679 h->root.u.def.value = h->plt.offset;
9680
9681 /* Make sure the function is not marked as Thumb, in case
9682 it is the target of an ABS32 relocation, which will
9683 point to the PLT entry. */
9684 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
9685 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9686 }
9687
9688 /* Make room for this entry. */
9689 s->size += htab->plt_entry_size;
9690
9691 if (!htab->symbian_p)
9692 {
9693 /* We also need to make an entry in the .got.plt section, which
9694 will be placed in the .got section by the linker script. */
9695 eh->plt_got_offset = htab->sgotplt->size;
9696 htab->sgotplt->size += 4;
9697 }
9698
9699 /* We also need to make an entry in the .rel(a).plt section. */
9700 htab->srelplt->size += RELOC_SIZE (htab);
9701
9702 /* VxWorks executables have a second set of relocations for
9703 each PLT entry. They go in a separate relocation section,
9704 which is processed by the kernel loader. */
9705 if (htab->vxworks_p && !info->shared)
9706 {
9707 /* There is a relocation for the initial PLT entry:
9708 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9709 if (h->plt.offset == htab->plt_header_size)
9710 htab->srelplt2->size += RELOC_SIZE (htab);
9711
9712 /* There are two extra relocations for each subsequent
9713 PLT entry: an R_ARM_32 relocation for the GOT entry,
9714 and an R_ARM_32 relocation for the PLT entry. */
9715 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
9716 }
9717 }
9718 else
9719 {
9720 h->plt.offset = (bfd_vma) -1;
9721 h->needs_plt = 0;
9722 }
9723 }
9724 else
9725 {
9726 h->plt.offset = (bfd_vma) -1;
9727 h->needs_plt = 0;
9728 }
9729
9730 if (h->got.refcount > 0)
9731 {
9732 asection *s;
9733 bfd_boolean dyn;
9734 int tls_type = elf32_arm_hash_entry (h)->tls_type;
9735 int indx;
9736
9737 /* Make sure this symbol is output as a dynamic symbol.
9738 Undefined weak syms won't yet be marked as dynamic. */
9739 if (h->dynindx == -1
9740 && !h->forced_local)
9741 {
9742 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9743 return FALSE;
9744 }
9745
9746 if (!htab->symbian_p)
9747 {
9748 s = htab->sgot;
9749 h->got.offset = s->size;
9750
9751 if (tls_type == GOT_UNKNOWN)
9752 abort ();
9753
9754 if (tls_type == GOT_NORMAL)
9755 /* Non-TLS symbols need one GOT slot. */
9756 s->size += 4;
9757 else
9758 {
9759 if (tls_type & GOT_TLS_GD)
9760 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9761 s->size += 8;
9762 if (tls_type & GOT_TLS_IE)
9763 /* R_ARM_TLS_IE32 needs one GOT slot. */
9764 s->size += 4;
9765 }
9766
9767 dyn = htab->root.dynamic_sections_created;
9768
9769 indx = 0;
9770 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9771 && (!info->shared
9772 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9773 indx = h->dynindx;
9774
9775 if (tls_type != GOT_NORMAL
9776 && (info->shared || indx != 0)
9777 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9778 || h->root.type != bfd_link_hash_undefweak))
9779 {
9780 if (tls_type & GOT_TLS_IE)
9781 htab->srelgot->size += RELOC_SIZE (htab);
9782
9783 if (tls_type & GOT_TLS_GD)
9784 htab->srelgot->size += RELOC_SIZE (htab);
9785
9786 if ((tls_type & GOT_TLS_GD) && indx != 0)
9787 htab->srelgot->size += RELOC_SIZE (htab);
9788 }
9789 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9790 || h->root.type != bfd_link_hash_undefweak)
9791 && (info->shared
9792 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
9793 htab->srelgot->size += RELOC_SIZE (htab);
9794 }
9795 }
9796 else
9797 h->got.offset = (bfd_vma) -1;
9798
9799 /* Allocate stubs for exported Thumb functions on v4t. */
9800 if (!htab->use_blx && h->dynindx != -1
9801 && h->def_regular
9802 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
9803 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9804 {
9805 struct elf_link_hash_entry * th;
9806 struct bfd_link_hash_entry * bh;
9807 struct elf_link_hash_entry * myh;
9808 char name[1024];
9809 asection *s;
9810 bh = NULL;
9811 /* Create a new symbol to regist the real location of the function. */
9812 s = h->root.u.def.section;
9813 sprintf (name, "__real_%s", h->root.root.string);
9814 _bfd_generic_link_add_one_symbol (info, s->owner,
9815 name, BSF_GLOBAL, s,
9816 h->root.u.def.value,
9817 NULL, TRUE, FALSE, &bh);
9818
9819 myh = (struct elf_link_hash_entry *) bh;
9820 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
9821 myh->forced_local = 1;
9822 eh->export_glue = myh;
9823 th = record_arm_to_thumb_glue (info, h);
9824 /* Point the symbol at the stub. */
9825 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9826 h->root.u.def.section = th->root.u.def.section;
9827 h->root.u.def.value = th->root.u.def.value & ~1;
9828 }
9829
9830 if (eh->relocs_copied == NULL)
9831 return TRUE;
9832
9833 /* In the shared -Bsymbolic case, discard space allocated for
9834 dynamic pc-relative relocs against symbols which turn out to be
9835 defined in regular objects. For the normal shared case, discard
9836 space for pc-relative relocs that have become local due to symbol
9837 visibility changes. */
9838
9839 if (info->shared || htab->root.is_relocatable_executable)
9840 {
9841 /* The only relocs that use pc_count are R_ARM_REL32 and
9842 R_ARM_REL32_NOI, which will appear on something like
9843 ".long foo - .". We want calls to protected symbols to resolve
9844 directly to the function rather than going via the plt. If people
9845 want function pointer comparisons to work as expected then they
9846 should avoid writing assembly like ".long foo - .". */
9847 if (SYMBOL_CALLS_LOCAL (info, h))
9848 {
9849 struct elf32_arm_relocs_copied **pp;
9850
9851 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9852 {
9853 p->count -= p->pc_count;
9854 p->pc_count = 0;
9855 if (p->count == 0)
9856 *pp = p->next;
9857 else
9858 pp = &p->next;
9859 }
9860 }
9861
9862 if (elf32_arm_hash_table (info)->vxworks_p)
9863 {
9864 struct elf32_arm_relocs_copied **pp;
9865
9866 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9867 {
9868 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
9869 *pp = p->next;
9870 else
9871 pp = &p->next;
9872 }
9873 }
9874
9875 /* Also discard relocs on undefined weak syms with non-default
9876 visibility. */
9877 if (eh->relocs_copied != NULL
9878 && h->root.type == bfd_link_hash_undefweak)
9879 {
9880 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9881 eh->relocs_copied = NULL;
9882
9883 /* Make sure undefined weak symbols are output as a dynamic
9884 symbol in PIEs. */
9885 else if (h->dynindx == -1
9886 && !h->forced_local)
9887 {
9888 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9889 return FALSE;
9890 }
9891 }
9892
9893 else if (htab->root.is_relocatable_executable && h->dynindx == -1
9894 && h->root.type == bfd_link_hash_new)
9895 {
9896 /* Output absolute symbols so that we can create relocations
9897 against them. For normal symbols we output a relocation
9898 against the section that contains them. */
9899 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9900 return FALSE;
9901 }
9902
9903 }
9904 else
9905 {
9906 /* For the non-shared case, discard space for relocs against
9907 symbols which turn out to need copy relocs or are not
9908 dynamic. */
9909
9910 if (!h->non_got_ref
9911 && ((h->def_dynamic
9912 && !h->def_regular)
9913 || (htab->root.dynamic_sections_created
9914 && (h->root.type == bfd_link_hash_undefweak
9915 || h->root.type == bfd_link_hash_undefined))))
9916 {
9917 /* Make sure this symbol is output as a dynamic symbol.
9918 Undefined weak syms won't yet be marked as dynamic. */
9919 if (h->dynindx == -1
9920 && !h->forced_local)
9921 {
9922 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9923 return FALSE;
9924 }
9925
9926 /* If that succeeded, we know we'll be keeping all the
9927 relocs. */
9928 if (h->dynindx != -1)
9929 goto keep;
9930 }
9931
9932 eh->relocs_copied = NULL;
9933
9934 keep: ;
9935 }
9936
9937 /* Finally, allocate space. */
9938 for (p = eh->relocs_copied; p != NULL; p = p->next)
9939 {
9940 asection *sreloc = elf_section_data (p->section)->sreloc;
9941 sreloc->size += p->count * RELOC_SIZE (htab);
9942 }
9943
9944 return TRUE;
9945 }
9946
9947 /* Find any dynamic relocs that apply to read-only sections. */
9948
9949 static bfd_boolean
9950 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
9951 {
9952 struct elf32_arm_link_hash_entry *eh;
9953 struct elf32_arm_relocs_copied *p;
9954
9955 if (h->root.type == bfd_link_hash_warning)
9956 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9957
9958 eh = (struct elf32_arm_link_hash_entry *) h;
9959 for (p = eh->relocs_copied; p != NULL; p = p->next)
9960 {
9961 asection *s = p->section;
9962
9963 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9964 {
9965 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9966
9967 info->flags |= DF_TEXTREL;
9968
9969 /* Not an error, just cut short the traversal. */
9970 return FALSE;
9971 }
9972 }
9973 return TRUE;
9974 }
9975
9976 void
9977 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
9978 int byteswap_code)
9979 {
9980 struct elf32_arm_link_hash_table *globals;
9981
9982 globals = elf32_arm_hash_table (info);
9983 globals->byteswap_code = byteswap_code;
9984 }
9985
9986 /* Set the sizes of the dynamic sections. */
9987
9988 static bfd_boolean
9989 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
9990 struct bfd_link_info * info)
9991 {
9992 bfd * dynobj;
9993 asection * s;
9994 bfd_boolean plt;
9995 bfd_boolean relocs;
9996 bfd *ibfd;
9997 struct elf32_arm_link_hash_table *htab;
9998
9999 htab = elf32_arm_hash_table (info);
10000 dynobj = elf_hash_table (info)->dynobj;
10001 BFD_ASSERT (dynobj != NULL);
10002 check_use_blx (htab);
10003
10004 if (elf_hash_table (info)->dynamic_sections_created)
10005 {
10006 /* Set the contents of the .interp section to the interpreter. */
10007 if (info->executable)
10008 {
10009 s = bfd_get_section_by_name (dynobj, ".interp");
10010 BFD_ASSERT (s != NULL);
10011 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10012 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10013 }
10014 }
10015
10016 /* Set up .got offsets for local syms, and space for local dynamic
10017 relocs. */
10018 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10019 {
10020 bfd_signed_vma *local_got;
10021 bfd_signed_vma *end_local_got;
10022 char *local_tls_type;
10023 bfd_size_type locsymcount;
10024 Elf_Internal_Shdr *symtab_hdr;
10025 asection *srel;
10026 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10027
10028 if (! is_arm_elf (ibfd))
10029 continue;
10030
10031 for (s = ibfd->sections; s != NULL; s = s->next)
10032 {
10033 struct elf32_arm_relocs_copied *p;
10034
10035 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10036 {
10037 if (!bfd_is_abs_section (p->section)
10038 && bfd_is_abs_section (p->section->output_section))
10039 {
10040 /* Input section has been discarded, either because
10041 it is a copy of a linkonce section or due to
10042 linker script /DISCARD/, so we'll be discarding
10043 the relocs too. */
10044 }
10045 else if (is_vxworks
10046 && strcmp (p->section->output_section->name,
10047 ".tls_vars") == 0)
10048 {
10049 /* Relocations in vxworks .tls_vars sections are
10050 handled specially by the loader. */
10051 }
10052 else if (p->count != 0)
10053 {
10054 srel = elf_section_data (p->section)->sreloc;
10055 srel->size += p->count * RELOC_SIZE (htab);
10056 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10057 info->flags |= DF_TEXTREL;
10058 }
10059 }
10060 }
10061
10062 local_got = elf_local_got_refcounts (ibfd);
10063 if (!local_got)
10064 continue;
10065
10066 symtab_hdr = & elf_symtab_hdr (ibfd);
10067 locsymcount = symtab_hdr->sh_info;
10068 end_local_got = local_got + locsymcount;
10069 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10070 s = htab->sgot;
10071 srel = htab->srelgot;
10072 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10073 {
10074 if (*local_got > 0)
10075 {
10076 *local_got = s->size;
10077 if (*local_tls_type & GOT_TLS_GD)
10078 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10079 s->size += 8;
10080 if (*local_tls_type & GOT_TLS_IE)
10081 s->size += 4;
10082 if (*local_tls_type == GOT_NORMAL)
10083 s->size += 4;
10084
10085 if (info->shared || *local_tls_type == GOT_TLS_GD)
10086 srel->size += RELOC_SIZE (htab);
10087 }
10088 else
10089 *local_got = (bfd_vma) -1;
10090 }
10091 }
10092
10093 if (htab->tls_ldm_got.refcount > 0)
10094 {
10095 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10096 for R_ARM_TLS_LDM32 relocations. */
10097 htab->tls_ldm_got.offset = htab->sgot->size;
10098 htab->sgot->size += 8;
10099 if (info->shared)
10100 htab->srelgot->size += RELOC_SIZE (htab);
10101 }
10102 else
10103 htab->tls_ldm_got.offset = -1;
10104
10105 /* Allocate global sym .plt and .got entries, and space for global
10106 sym dynamic relocs. */
10107 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10108
10109 /* Here we rummage through the found bfds to collect glue information. */
10110 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10111 {
10112 if (! is_arm_elf (ibfd))
10113 continue;
10114
10115 /* Initialise mapping tables for code/data. */
10116 bfd_elf32_arm_init_maps (ibfd);
10117
10118 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10119 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10120 /* xgettext:c-format */
10121 _bfd_error_handler (_("Errors encountered processing file %s"),
10122 ibfd->filename);
10123 }
10124
10125 /* The check_relocs and adjust_dynamic_symbol entry points have
10126 determined the sizes of the various dynamic sections. Allocate
10127 memory for them. */
10128 plt = FALSE;
10129 relocs = FALSE;
10130 for (s = dynobj->sections; s != NULL; s = s->next)
10131 {
10132 const char * name;
10133
10134 if ((s->flags & SEC_LINKER_CREATED) == 0)
10135 continue;
10136
10137 /* It's OK to base decisions on the section name, because none
10138 of the dynobj section names depend upon the input files. */
10139 name = bfd_get_section_name (dynobj, s);
10140
10141 if (strcmp (name, ".plt") == 0)
10142 {
10143 /* Remember whether there is a PLT. */
10144 plt = s->size != 0;
10145 }
10146 else if (CONST_STRNEQ (name, ".rel"))
10147 {
10148 if (s->size != 0)
10149 {
10150 /* Remember whether there are any reloc sections other
10151 than .rel(a).plt and .rela.plt.unloaded. */
10152 if (s != htab->srelplt && s != htab->srelplt2)
10153 relocs = TRUE;
10154
10155 /* We use the reloc_count field as a counter if we need
10156 to copy relocs into the output file. */
10157 s->reloc_count = 0;
10158 }
10159 }
10160 else if (! CONST_STRNEQ (name, ".got")
10161 && strcmp (name, ".dynbss") != 0)
10162 {
10163 /* It's not one of our sections, so don't allocate space. */
10164 continue;
10165 }
10166
10167 if (s->size == 0)
10168 {
10169 /* If we don't need this section, strip it from the
10170 output file. This is mostly to handle .rel(a).bss and
10171 .rel(a).plt. We must create both sections in
10172 create_dynamic_sections, because they must be created
10173 before the linker maps input sections to output
10174 sections. The linker does that before
10175 adjust_dynamic_symbol is called, and it is that
10176 function which decides whether anything needs to go
10177 into these sections. */
10178 s->flags |= SEC_EXCLUDE;
10179 continue;
10180 }
10181
10182 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10183 continue;
10184
10185 /* Allocate memory for the section contents. */
10186 s->contents = bfd_zalloc (dynobj, s->size);
10187 if (s->contents == NULL)
10188 return FALSE;
10189 }
10190
10191 if (elf_hash_table (info)->dynamic_sections_created)
10192 {
10193 /* Add some entries to the .dynamic section. We fill in the
10194 values later, in elf32_arm_finish_dynamic_sections, but we
10195 must add the entries now so that we get the correct size for
10196 the .dynamic section. The DT_DEBUG entry is filled in by the
10197 dynamic linker and used by the debugger. */
10198 #define add_dynamic_entry(TAG, VAL) \
10199 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10200
10201 if (info->executable)
10202 {
10203 if (!add_dynamic_entry (DT_DEBUG, 0))
10204 return FALSE;
10205 }
10206
10207 if (plt)
10208 {
10209 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10210 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10211 || !add_dynamic_entry (DT_PLTREL,
10212 htab->use_rel ? DT_REL : DT_RELA)
10213 || !add_dynamic_entry (DT_JMPREL, 0))
10214 return FALSE;
10215 }
10216
10217 if (relocs)
10218 {
10219 if (htab->use_rel)
10220 {
10221 if (!add_dynamic_entry (DT_REL, 0)
10222 || !add_dynamic_entry (DT_RELSZ, 0)
10223 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10224 return FALSE;
10225 }
10226 else
10227 {
10228 if (!add_dynamic_entry (DT_RELA, 0)
10229 || !add_dynamic_entry (DT_RELASZ, 0)
10230 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10231 return FALSE;
10232 }
10233 }
10234
10235 /* If any dynamic relocs apply to a read-only section,
10236 then we need a DT_TEXTREL entry. */
10237 if ((info->flags & DF_TEXTREL) == 0)
10238 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
10239 (PTR) info);
10240
10241 if ((info->flags & DF_TEXTREL) != 0)
10242 {
10243 if (!add_dynamic_entry (DT_TEXTREL, 0))
10244 return FALSE;
10245 }
10246 if (htab->vxworks_p
10247 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10248 return FALSE;
10249 }
10250 #undef add_dynamic_entry
10251
10252 return TRUE;
10253 }
10254
10255 /* Finish up dynamic symbol handling. We set the contents of various
10256 dynamic sections here. */
10257
10258 static bfd_boolean
10259 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10260 struct bfd_link_info * info,
10261 struct elf_link_hash_entry * h,
10262 Elf_Internal_Sym * sym)
10263 {
10264 bfd * dynobj;
10265 struct elf32_arm_link_hash_table *htab;
10266 struct elf32_arm_link_hash_entry *eh;
10267
10268 dynobj = elf_hash_table (info)->dynobj;
10269 htab = elf32_arm_hash_table (info);
10270 eh = (struct elf32_arm_link_hash_entry *) h;
10271
10272 if (h->plt.offset != (bfd_vma) -1)
10273 {
10274 asection * splt;
10275 asection * srel;
10276 bfd_byte *loc;
10277 bfd_vma plt_index;
10278 Elf_Internal_Rela rel;
10279
10280 /* This symbol has an entry in the procedure linkage table. Set
10281 it up. */
10282
10283 BFD_ASSERT (h->dynindx != -1);
10284
10285 splt = bfd_get_section_by_name (dynobj, ".plt");
10286 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10287 BFD_ASSERT (splt != NULL && srel != NULL);
10288
10289 /* Fill in the entry in the procedure linkage table. */
10290 if (htab->symbian_p)
10291 {
10292 put_arm_insn (htab, output_bfd,
10293 elf32_arm_symbian_plt_entry[0],
10294 splt->contents + h->plt.offset);
10295 bfd_put_32 (output_bfd,
10296 elf32_arm_symbian_plt_entry[1],
10297 splt->contents + h->plt.offset + 4);
10298
10299 /* Fill in the entry in the .rel.plt section. */
10300 rel.r_offset = (splt->output_section->vma
10301 + splt->output_offset
10302 + h->plt.offset + 4);
10303 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10304
10305 /* Get the index in the procedure linkage table which
10306 corresponds to this symbol. This is the index of this symbol
10307 in all the symbols for which we are making plt entries. The
10308 first entry in the procedure linkage table is reserved. */
10309 plt_index = ((h->plt.offset - htab->plt_header_size)
10310 / htab->plt_entry_size);
10311 }
10312 else
10313 {
10314 bfd_vma got_offset, got_address, plt_address;
10315 bfd_vma got_displacement;
10316 asection * sgot;
10317 bfd_byte * ptr;
10318
10319 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10320 BFD_ASSERT (sgot != NULL);
10321
10322 /* Get the offset into the .got.plt table of the entry that
10323 corresponds to this function. */
10324 got_offset = eh->plt_got_offset;
10325
10326 /* Get the index in the procedure linkage table which
10327 corresponds to this symbol. This is the index of this symbol
10328 in all the symbols for which we are making plt entries. The
10329 first three entries in .got.plt are reserved; after that
10330 symbols appear in the same order as in .plt. */
10331 plt_index = (got_offset - 12) / 4;
10332
10333 /* Calculate the address of the GOT entry. */
10334 got_address = (sgot->output_section->vma
10335 + sgot->output_offset
10336 + got_offset);
10337
10338 /* ...and the address of the PLT entry. */
10339 plt_address = (splt->output_section->vma
10340 + splt->output_offset
10341 + h->plt.offset);
10342
10343 ptr = htab->splt->contents + h->plt.offset;
10344 if (htab->vxworks_p && info->shared)
10345 {
10346 unsigned int i;
10347 bfd_vma val;
10348
10349 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10350 {
10351 val = elf32_arm_vxworks_shared_plt_entry[i];
10352 if (i == 2)
10353 val |= got_address - sgot->output_section->vma;
10354 if (i == 5)
10355 val |= plt_index * RELOC_SIZE (htab);
10356 if (i == 2 || i == 5)
10357 bfd_put_32 (output_bfd, val, ptr);
10358 else
10359 put_arm_insn (htab, output_bfd, val, ptr);
10360 }
10361 }
10362 else if (htab->vxworks_p)
10363 {
10364 unsigned int i;
10365 bfd_vma val;
10366
10367 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10368 {
10369 val = elf32_arm_vxworks_exec_plt_entry[i];
10370 if (i == 2)
10371 val |= got_address;
10372 if (i == 4)
10373 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10374 if (i == 5)
10375 val |= plt_index * RELOC_SIZE (htab);
10376 if (i == 2 || i == 5)
10377 bfd_put_32 (output_bfd, val, ptr);
10378 else
10379 put_arm_insn (htab, output_bfd, val, ptr);
10380 }
10381
10382 loc = (htab->srelplt2->contents
10383 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10384
10385 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10386 referencing the GOT for this PLT entry. */
10387 rel.r_offset = plt_address + 8;
10388 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10389 rel.r_addend = got_offset;
10390 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10391 loc += RELOC_SIZE (htab);
10392
10393 /* Create the R_ARM_ABS32 relocation referencing the
10394 beginning of the PLT for this GOT entry. */
10395 rel.r_offset = got_address;
10396 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10397 rel.r_addend = 0;
10398 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10399 }
10400 else
10401 {
10402 bfd_signed_vma thumb_refs;
10403 /* Calculate the displacement between the PLT slot and the
10404 entry in the GOT. The eight-byte offset accounts for the
10405 value produced by adding to pc in the first instruction
10406 of the PLT stub. */
10407 got_displacement = got_address - (plt_address + 8);
10408
10409 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10410
10411 thumb_refs = eh->plt_thumb_refcount;
10412 if (!htab->use_blx)
10413 thumb_refs += eh->plt_maybe_thumb_refcount;
10414
10415 if (thumb_refs > 0)
10416 {
10417 put_thumb_insn (htab, output_bfd,
10418 elf32_arm_plt_thumb_stub[0], ptr - 4);
10419 put_thumb_insn (htab, output_bfd,
10420 elf32_arm_plt_thumb_stub[1], ptr - 2);
10421 }
10422
10423 put_arm_insn (htab, output_bfd,
10424 elf32_arm_plt_entry[0]
10425 | ((got_displacement & 0x0ff00000) >> 20),
10426 ptr + 0);
10427 put_arm_insn (htab, output_bfd,
10428 elf32_arm_plt_entry[1]
10429 | ((got_displacement & 0x000ff000) >> 12),
10430 ptr+ 4);
10431 put_arm_insn (htab, output_bfd,
10432 elf32_arm_plt_entry[2]
10433 | (got_displacement & 0x00000fff),
10434 ptr + 8);
10435 #ifdef FOUR_WORD_PLT
10436 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10437 #endif
10438 }
10439
10440 /* Fill in the entry in the global offset table. */
10441 bfd_put_32 (output_bfd,
10442 (splt->output_section->vma
10443 + splt->output_offset),
10444 sgot->contents + got_offset);
10445
10446 /* Fill in the entry in the .rel(a).plt section. */
10447 rel.r_addend = 0;
10448 rel.r_offset = got_address;
10449 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10450 }
10451
10452 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10453 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10454
10455 if (!h->def_regular)
10456 {
10457 /* Mark the symbol as undefined, rather than as defined in
10458 the .plt section. Leave the value alone. */
10459 sym->st_shndx = SHN_UNDEF;
10460 /* If the symbol is weak, we do need to clear the value.
10461 Otherwise, the PLT entry would provide a definition for
10462 the symbol even if the symbol wasn't defined anywhere,
10463 and so the symbol would never be NULL. */
10464 if (!h->ref_regular_nonweak)
10465 sym->st_value = 0;
10466 }
10467 }
10468
10469 if (h->got.offset != (bfd_vma) -1
10470 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10471 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10472 {
10473 asection * sgot;
10474 asection * srel;
10475 Elf_Internal_Rela rel;
10476 bfd_byte *loc;
10477 bfd_vma offset;
10478
10479 /* This symbol has an entry in the global offset table. Set it
10480 up. */
10481 sgot = bfd_get_section_by_name (dynobj, ".got");
10482 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10483 BFD_ASSERT (sgot != NULL && srel != NULL);
10484
10485 offset = (h->got.offset & ~(bfd_vma) 1);
10486 rel.r_addend = 0;
10487 rel.r_offset = (sgot->output_section->vma
10488 + sgot->output_offset
10489 + offset);
10490
10491 /* If this is a static link, or it is a -Bsymbolic link and the
10492 symbol is defined locally or was forced to be local because
10493 of a version file, we just want to emit a RELATIVE reloc.
10494 The entry in the global offset table will already have been
10495 initialized in the relocate_section function. */
10496 if (info->shared
10497 && SYMBOL_REFERENCES_LOCAL (info, h))
10498 {
10499 BFD_ASSERT ((h->got.offset & 1) != 0);
10500 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10501 if (!htab->use_rel)
10502 {
10503 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10504 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10505 }
10506 }
10507 else
10508 {
10509 BFD_ASSERT ((h->got.offset & 1) == 0);
10510 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10511 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10512 }
10513
10514 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10515 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10516 }
10517
10518 if (h->needs_copy)
10519 {
10520 asection * s;
10521 Elf_Internal_Rela rel;
10522 bfd_byte *loc;
10523
10524 /* This symbol needs a copy reloc. Set it up. */
10525 BFD_ASSERT (h->dynindx != -1
10526 && (h->root.type == bfd_link_hash_defined
10527 || h->root.type == bfd_link_hash_defweak));
10528
10529 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10530 RELOC_SECTION (htab, ".bss"));
10531 BFD_ASSERT (s != NULL);
10532
10533 rel.r_addend = 0;
10534 rel.r_offset = (h->root.u.def.value
10535 + h->root.u.def.section->output_section->vma
10536 + h->root.u.def.section->output_offset);
10537 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10538 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10539 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10540 }
10541
10542 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10543 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10544 to the ".got" section. */
10545 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10546 || (!htab->vxworks_p && h == htab->root.hgot))
10547 sym->st_shndx = SHN_ABS;
10548
10549 return TRUE;
10550 }
10551
10552 /* Finish up the dynamic sections. */
10553
10554 static bfd_boolean
10555 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10556 {
10557 bfd * dynobj;
10558 asection * sgot;
10559 asection * sdyn;
10560
10561 dynobj = elf_hash_table (info)->dynobj;
10562
10563 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10564 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10565 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10566
10567 if (elf_hash_table (info)->dynamic_sections_created)
10568 {
10569 asection *splt;
10570 Elf32_External_Dyn *dyncon, *dynconend;
10571 struct elf32_arm_link_hash_table *htab;
10572
10573 htab = elf32_arm_hash_table (info);
10574 splt = bfd_get_section_by_name (dynobj, ".plt");
10575 BFD_ASSERT (splt != NULL && sdyn != NULL);
10576
10577 dyncon = (Elf32_External_Dyn *) sdyn->contents;
10578 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
10579
10580 for (; dyncon < dynconend; dyncon++)
10581 {
10582 Elf_Internal_Dyn dyn;
10583 const char * name;
10584 asection * s;
10585
10586 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
10587
10588 switch (dyn.d_tag)
10589 {
10590 unsigned int type;
10591
10592 default:
10593 if (htab->vxworks_p
10594 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10595 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10596 break;
10597
10598 case DT_HASH:
10599 name = ".hash";
10600 goto get_vma_if_bpabi;
10601 case DT_STRTAB:
10602 name = ".dynstr";
10603 goto get_vma_if_bpabi;
10604 case DT_SYMTAB:
10605 name = ".dynsym";
10606 goto get_vma_if_bpabi;
10607 case DT_VERSYM:
10608 name = ".gnu.version";
10609 goto get_vma_if_bpabi;
10610 case DT_VERDEF:
10611 name = ".gnu.version_d";
10612 goto get_vma_if_bpabi;
10613 case DT_VERNEED:
10614 name = ".gnu.version_r";
10615 goto get_vma_if_bpabi;
10616
10617 case DT_PLTGOT:
10618 name = ".got";
10619 goto get_vma;
10620 case DT_JMPREL:
10621 name = RELOC_SECTION (htab, ".plt");
10622 get_vma:
10623 s = bfd_get_section_by_name (output_bfd, name);
10624 BFD_ASSERT (s != NULL);
10625 if (!htab->symbian_p)
10626 dyn.d_un.d_ptr = s->vma;
10627 else
10628 /* In the BPABI, tags in the PT_DYNAMIC section point
10629 at the file offset, not the memory address, for the
10630 convenience of the post linker. */
10631 dyn.d_un.d_ptr = s->filepos;
10632 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10633 break;
10634
10635 get_vma_if_bpabi:
10636 if (htab->symbian_p)
10637 goto get_vma;
10638 break;
10639
10640 case DT_PLTRELSZ:
10641 s = bfd_get_section_by_name (output_bfd,
10642 RELOC_SECTION (htab, ".plt"));
10643 BFD_ASSERT (s != NULL);
10644 dyn.d_un.d_val = s->size;
10645 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10646 break;
10647
10648 case DT_RELSZ:
10649 case DT_RELASZ:
10650 if (!htab->symbian_p)
10651 {
10652 /* My reading of the SVR4 ABI indicates that the
10653 procedure linkage table relocs (DT_JMPREL) should be
10654 included in the overall relocs (DT_REL). This is
10655 what Solaris does. However, UnixWare can not handle
10656 that case. Therefore, we override the DT_RELSZ entry
10657 here to make it not include the JMPREL relocs. Since
10658 the linker script arranges for .rel(a).plt to follow all
10659 other relocation sections, we don't have to worry
10660 about changing the DT_REL entry. */
10661 s = bfd_get_section_by_name (output_bfd,
10662 RELOC_SECTION (htab, ".plt"));
10663 if (s != NULL)
10664 dyn.d_un.d_val -= s->size;
10665 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10666 break;
10667 }
10668 /* Fall through */
10669
10670 case DT_REL:
10671 case DT_RELA:
10672 /* In the BPABI, the DT_REL tag must point at the file
10673 offset, not the VMA, of the first relocation
10674 section. So, we use code similar to that in
10675 elflink.c, but do not check for SHF_ALLOC on the
10676 relcoation section, since relocations sections are
10677 never allocated under the BPABI. The comments above
10678 about Unixware notwithstanding, we include all of the
10679 relocations here. */
10680 if (htab->symbian_p)
10681 {
10682 unsigned int i;
10683 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10684 ? SHT_REL : SHT_RELA);
10685 dyn.d_un.d_val = 0;
10686 for (i = 1; i < elf_numsections (output_bfd); i++)
10687 {
10688 Elf_Internal_Shdr *hdr
10689 = elf_elfsections (output_bfd)[i];
10690 if (hdr->sh_type == type)
10691 {
10692 if (dyn.d_tag == DT_RELSZ
10693 || dyn.d_tag == DT_RELASZ)
10694 dyn.d_un.d_val += hdr->sh_size;
10695 else if ((ufile_ptr) hdr->sh_offset
10696 <= dyn.d_un.d_val - 1)
10697 dyn.d_un.d_val = hdr->sh_offset;
10698 }
10699 }
10700 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10701 }
10702 break;
10703
10704 /* Set the bottom bit of DT_INIT/FINI if the
10705 corresponding function is Thumb. */
10706 case DT_INIT:
10707 name = info->init_function;
10708 goto get_sym;
10709 case DT_FINI:
10710 name = info->fini_function;
10711 get_sym:
10712 /* If it wasn't set by elf_bfd_final_link
10713 then there is nothing to adjust. */
10714 if (dyn.d_un.d_val != 0)
10715 {
10716 struct elf_link_hash_entry * eh;
10717
10718 eh = elf_link_hash_lookup (elf_hash_table (info), name,
10719 FALSE, FALSE, TRUE);
10720 if (eh != NULL
10721 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
10722 {
10723 dyn.d_un.d_val |= 1;
10724 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10725 }
10726 }
10727 break;
10728 }
10729 }
10730
10731 /* Fill in the first entry in the procedure linkage table. */
10732 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
10733 {
10734 const bfd_vma *plt0_entry;
10735 bfd_vma got_address, plt_address, got_displacement;
10736
10737 /* Calculate the addresses of the GOT and PLT. */
10738 got_address = sgot->output_section->vma + sgot->output_offset;
10739 plt_address = splt->output_section->vma + splt->output_offset;
10740
10741 if (htab->vxworks_p)
10742 {
10743 /* The VxWorks GOT is relocated by the dynamic linker.
10744 Therefore, we must emit relocations rather than simply
10745 computing the values now. */
10746 Elf_Internal_Rela rel;
10747
10748 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
10749 put_arm_insn (htab, output_bfd, plt0_entry[0],
10750 splt->contents + 0);
10751 put_arm_insn (htab, output_bfd, plt0_entry[1],
10752 splt->contents + 4);
10753 put_arm_insn (htab, output_bfd, plt0_entry[2],
10754 splt->contents + 8);
10755 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
10756
10757 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10758 rel.r_offset = plt_address + 12;
10759 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10760 rel.r_addend = 0;
10761 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
10762 htab->srelplt2->contents);
10763 }
10764 else
10765 {
10766 got_displacement = got_address - (plt_address + 16);
10767
10768 plt0_entry = elf32_arm_plt0_entry;
10769 put_arm_insn (htab, output_bfd, plt0_entry[0],
10770 splt->contents + 0);
10771 put_arm_insn (htab, output_bfd, plt0_entry[1],
10772 splt->contents + 4);
10773 put_arm_insn (htab, output_bfd, plt0_entry[2],
10774 splt->contents + 8);
10775 put_arm_insn (htab, output_bfd, plt0_entry[3],
10776 splt->contents + 12);
10777
10778 #ifdef FOUR_WORD_PLT
10779 /* The displacement value goes in the otherwise-unused
10780 last word of the second entry. */
10781 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
10782 #else
10783 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
10784 #endif
10785 }
10786 }
10787
10788 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10789 really seem like the right value. */
10790 if (splt->output_section->owner == output_bfd)
10791 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
10792
10793 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
10794 {
10795 /* Correct the .rel(a).plt.unloaded relocations. They will have
10796 incorrect symbol indexes. */
10797 int num_plts;
10798 unsigned char *p;
10799
10800 num_plts = ((htab->splt->size - htab->plt_header_size)
10801 / htab->plt_entry_size);
10802 p = htab->srelplt2->contents + RELOC_SIZE (htab);
10803
10804 for (; num_plts; num_plts--)
10805 {
10806 Elf_Internal_Rela rel;
10807
10808 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10809 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10810 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10811 p += RELOC_SIZE (htab);
10812
10813 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10814 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10815 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10816 p += RELOC_SIZE (htab);
10817 }
10818 }
10819 }
10820
10821 /* Fill in the first three entries in the global offset table. */
10822 if (sgot)
10823 {
10824 if (sgot->size > 0)
10825 {
10826 if (sdyn == NULL)
10827 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
10828 else
10829 bfd_put_32 (output_bfd,
10830 sdyn->output_section->vma + sdyn->output_offset,
10831 sgot->contents);
10832 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
10833 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
10834 }
10835
10836 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
10837 }
10838
10839 return TRUE;
10840 }
10841
10842 static void
10843 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10844 {
10845 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10846 struct elf32_arm_link_hash_table *globals;
10847
10848 i_ehdrp = elf_elfheader (abfd);
10849
10850 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
10851 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
10852 else
10853 i_ehdrp->e_ident[EI_OSABI] = 0;
10854 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
10855
10856 if (link_info)
10857 {
10858 globals = elf32_arm_hash_table (link_info);
10859 if (globals->byteswap_code)
10860 i_ehdrp->e_flags |= EF_ARM_BE8;
10861 }
10862 }
10863
10864 static enum elf_reloc_type_class
10865 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
10866 {
10867 switch ((int) ELF32_R_TYPE (rela->r_info))
10868 {
10869 case R_ARM_RELATIVE:
10870 return reloc_class_relative;
10871 case R_ARM_JUMP_SLOT:
10872 return reloc_class_plt;
10873 case R_ARM_COPY:
10874 return reloc_class_copy;
10875 default:
10876 return reloc_class_normal;
10877 }
10878 }
10879
10880 /* Set the right machine number for an Arm ELF file. */
10881
10882 static bfd_boolean
10883 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
10884 {
10885 if (hdr->sh_type == SHT_NOTE)
10886 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
10887
10888 return TRUE;
10889 }
10890
10891 static void
10892 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
10893 {
10894 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
10895 }
10896
10897 /* Return TRUE if this is an unwinding table entry. */
10898
10899 static bfd_boolean
10900 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
10901 {
10902 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
10903 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
10904 }
10905
10906
10907 /* Set the type and flags for an ARM section. We do this by
10908 the section name, which is a hack, but ought to work. */
10909
10910 static bfd_boolean
10911 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
10912 {
10913 const char * name;
10914
10915 name = bfd_get_section_name (abfd, sec);
10916
10917 if (is_arm_elf_unwind_section_name (abfd, name))
10918 {
10919 hdr->sh_type = SHT_ARM_EXIDX;
10920 hdr->sh_flags |= SHF_LINK_ORDER;
10921 }
10922 return TRUE;
10923 }
10924
10925 /* Handle an ARM specific section when reading an object file. This is
10926 called when bfd_section_from_shdr finds a section with an unknown
10927 type. */
10928
10929 static bfd_boolean
10930 elf32_arm_section_from_shdr (bfd *abfd,
10931 Elf_Internal_Shdr * hdr,
10932 const char *name,
10933 int shindex)
10934 {
10935 /* There ought to be a place to keep ELF backend specific flags, but
10936 at the moment there isn't one. We just keep track of the
10937 sections by their name, instead. Fortunately, the ABI gives
10938 names for all the ARM specific sections, so we will probably get
10939 away with this. */
10940 switch (hdr->sh_type)
10941 {
10942 case SHT_ARM_EXIDX:
10943 case SHT_ARM_PREEMPTMAP:
10944 case SHT_ARM_ATTRIBUTES:
10945 break;
10946
10947 default:
10948 return FALSE;
10949 }
10950
10951 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
10952 return FALSE;
10953
10954 return TRUE;
10955 }
10956
10957 /* A structure used to record a list of sections, independently
10958 of the next and prev fields in the asection structure. */
10959 typedef struct section_list
10960 {
10961 asection * sec;
10962 struct section_list * next;
10963 struct section_list * prev;
10964 }
10965 section_list;
10966
10967 /* Unfortunately we need to keep a list of sections for which
10968 an _arm_elf_section_data structure has been allocated. This
10969 is because it is possible for functions like elf32_arm_write_section
10970 to be called on a section which has had an elf_data_structure
10971 allocated for it (and so the used_by_bfd field is valid) but
10972 for which the ARM extended version of this structure - the
10973 _arm_elf_section_data structure - has not been allocated. */
10974 static section_list * sections_with_arm_elf_section_data = NULL;
10975
10976 static void
10977 record_section_with_arm_elf_section_data (asection * sec)
10978 {
10979 struct section_list * entry;
10980
10981 entry = bfd_malloc (sizeof (* entry));
10982 if (entry == NULL)
10983 return;
10984 entry->sec = sec;
10985 entry->next = sections_with_arm_elf_section_data;
10986 entry->prev = NULL;
10987 if (entry->next != NULL)
10988 entry->next->prev = entry;
10989 sections_with_arm_elf_section_data = entry;
10990 }
10991
10992 static struct section_list *
10993 find_arm_elf_section_entry (asection * sec)
10994 {
10995 struct section_list * entry;
10996 static struct section_list * last_entry = NULL;
10997
10998 /* This is a short cut for the typical case where the sections are added
10999 to the sections_with_arm_elf_section_data list in forward order and
11000 then looked up here in backwards order. This makes a real difference
11001 to the ld-srec/sec64k.exp linker test. */
11002 entry = sections_with_arm_elf_section_data;
11003 if (last_entry != NULL)
11004 {
11005 if (last_entry->sec == sec)
11006 entry = last_entry;
11007 else if (last_entry->next != NULL
11008 && last_entry->next->sec == sec)
11009 entry = last_entry->next;
11010 }
11011
11012 for (; entry; entry = entry->next)
11013 if (entry->sec == sec)
11014 break;
11015
11016 if (entry)
11017 /* Record the entry prior to this one - it is the entry we are most
11018 likely to want to locate next time. Also this way if we have been
11019 called from unrecord_section_with_arm_elf_section_data() we will not
11020 be caching a pointer that is about to be freed. */
11021 last_entry = entry->prev;
11022
11023 return entry;
11024 }
11025
11026 static _arm_elf_section_data *
11027 get_arm_elf_section_data (asection * sec)
11028 {
11029 struct section_list * entry;
11030
11031 entry = find_arm_elf_section_entry (sec);
11032
11033 if (entry)
11034 return elf32_arm_section_data (entry->sec);
11035 else
11036 return NULL;
11037 }
11038
11039 static void
11040 unrecord_section_with_arm_elf_section_data (asection * sec)
11041 {
11042 struct section_list * entry;
11043
11044 entry = find_arm_elf_section_entry (sec);
11045
11046 if (entry)
11047 {
11048 if (entry->prev != NULL)
11049 entry->prev->next = entry->next;
11050 if (entry->next != NULL)
11051 entry->next->prev = entry->prev;
11052 if (entry == sections_with_arm_elf_section_data)
11053 sections_with_arm_elf_section_data = entry->next;
11054 free (entry);
11055 }
11056 }
11057
11058
11059 typedef struct
11060 {
11061 void *finfo;
11062 struct bfd_link_info *info;
11063 asection *sec;
11064 int sec_shndx;
11065 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11066 asection *, struct elf_link_hash_entry *);
11067 } output_arch_syminfo;
11068
11069 enum map_symbol_type
11070 {
11071 ARM_MAP_ARM,
11072 ARM_MAP_THUMB,
11073 ARM_MAP_DATA
11074 };
11075
11076
11077 /* Output a single mapping symbol. */
11078
11079 static bfd_boolean
11080 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11081 enum map_symbol_type type,
11082 bfd_vma offset)
11083 {
11084 static const char *names[3] = {"$a", "$t", "$d"};
11085 struct elf32_arm_link_hash_table *htab;
11086 Elf_Internal_Sym sym;
11087
11088 htab = elf32_arm_hash_table (osi->info);
11089 sym.st_value = osi->sec->output_section->vma
11090 + osi->sec->output_offset
11091 + offset;
11092 sym.st_size = 0;
11093 sym.st_other = 0;
11094 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11095 sym.st_shndx = osi->sec_shndx;
11096 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11097 return FALSE;
11098 return TRUE;
11099 }
11100
11101
11102 /* Output mapping symbols for PLT entries associated with H. */
11103
11104 static bfd_boolean
11105 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11106 {
11107 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11108 struct elf32_arm_link_hash_table *htab;
11109 struct elf32_arm_link_hash_entry *eh;
11110 bfd_vma addr;
11111
11112 htab = elf32_arm_hash_table (osi->info);
11113
11114 if (h->root.type == bfd_link_hash_indirect)
11115 return TRUE;
11116
11117 if (h->root.type == bfd_link_hash_warning)
11118 /* When warning symbols are created, they **replace** the "real"
11119 entry in the hash table, thus we never get to see the real
11120 symbol in a hash traversal. So look at it now. */
11121 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11122
11123 if (h->plt.offset == (bfd_vma) -1)
11124 return TRUE;
11125
11126 eh = (struct elf32_arm_link_hash_entry *) h;
11127 addr = h->plt.offset;
11128 if (htab->symbian_p)
11129 {
11130 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11131 return FALSE;
11132 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11133 return FALSE;
11134 }
11135 else if (htab->vxworks_p)
11136 {
11137 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11138 return FALSE;
11139 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11140 return FALSE;
11141 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11142 return FALSE;
11143 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11144 return FALSE;
11145 }
11146 else
11147 {
11148 bfd_signed_vma thumb_refs;
11149
11150 thumb_refs = eh->plt_thumb_refcount;
11151 if (!htab->use_blx)
11152 thumb_refs += eh->plt_maybe_thumb_refcount;
11153
11154 if (thumb_refs > 0)
11155 {
11156 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11157 return FALSE;
11158 }
11159 #ifdef FOUR_WORD_PLT
11160 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11161 return FALSE;
11162 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11163 return FALSE;
11164 #else
11165 /* A three-word PLT with no Thumb thunk contains only Arm code,
11166 so only need to output a mapping symbol for the first PLT entry and
11167 entries with thumb thunks. */
11168 if (thumb_refs > 0 || addr == 20)
11169 {
11170 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11171 return FALSE;
11172 }
11173 #endif
11174 }
11175
11176 return TRUE;
11177 }
11178
11179 /* Output a single local symbol for a generated stub. */
11180
11181 static bfd_boolean
11182 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11183 bfd_vma offset, bfd_vma size)
11184 {
11185 struct elf32_arm_link_hash_table *htab;
11186 Elf_Internal_Sym sym;
11187
11188 htab = elf32_arm_hash_table (osi->info);
11189 sym.st_value = osi->sec->output_section->vma
11190 + osi->sec->output_offset
11191 + offset;
11192 sym.st_size = size;
11193 sym.st_other = 0;
11194 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11195 sym.st_shndx = osi->sec_shndx;
11196 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11197 return FALSE;
11198 return TRUE;
11199 }
11200
11201 static bfd_boolean
11202 arm_map_one_stub (struct bfd_hash_entry *gen_entry,
11203 PTR in_arg)
11204 {
11205 struct elf32_arm_stub_hash_entry *stub_entry;
11206 struct bfd_link_info *info;
11207 struct elf32_arm_link_hash_table *htab;
11208 asection *stub_sec;
11209 bfd_vma addr;
11210 char *stub_name;
11211
11212 /* Massage our args to the form they really have. */
11213 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11214
11215 output_arch_syminfo *osi = (output_arch_syminfo *) in_arg;
11216 info = osi->info;
11217
11218 htab = elf32_arm_hash_table (info);
11219 stub_sec = stub_entry->stub_sec;
11220
11221 /* Ensure this stub is attached to the current section being
11222 processed. */
11223 if (stub_sec != osi->sec)
11224 return TRUE;
11225
11226 addr = (bfd_vma) stub_entry->stub_offset;
11227 stub_name = stub_entry->output_name;
11228
11229 switch (stub_entry->stub_type)
11230 {
11231 case arm_stub_long_branch:
11232 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 8))
11233 return FALSE;
11234 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11235 return FALSE;
11236 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11237 return FALSE;
11238 break;
11239 case arm_thumb_v4t_stub_long_branch:
11240 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11241 return FALSE;
11242 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11243 return FALSE;
11244 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11245 return FALSE;
11246 break;
11247 case arm_thumb_thumb_stub_long_branch:
11248 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 16))
11249 return FALSE;
11250 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11251 return FALSE;
11252 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11253 return FALSE;
11254 break;
11255 case arm_thumb_arm_v4t_stub_long_branch:
11256 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 20))
11257 return FALSE;
11258 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11259 return FALSE;
11260 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 8))
11261 return FALSE;
11262 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
11263 return FALSE;
11264 break;
11265 case arm_stub_pic_long_branch:
11266 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11267 return FALSE;
11268 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11269 return FALSE;
11270 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11271 return FALSE;
11272 break;
11273 default:
11274 BFD_FAIL ();
11275 }
11276
11277 return TRUE;
11278 }
11279
11280 /* Output mapping symbols for linker generated sections. */
11281
11282 static bfd_boolean
11283 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11284 struct bfd_link_info *info,
11285 void *finfo,
11286 bfd_boolean (*func) (void *, const char *,
11287 Elf_Internal_Sym *,
11288 asection *,
11289 struct elf_link_hash_entry *))
11290 {
11291 output_arch_syminfo osi;
11292 struct elf32_arm_link_hash_table *htab;
11293 bfd_vma offset;
11294 bfd_size_type size;
11295
11296 htab = elf32_arm_hash_table (info);
11297 check_use_blx (htab);
11298
11299 osi.finfo = finfo;
11300 osi.info = info;
11301 osi.func = func;
11302
11303 /* ARM->Thumb glue. */
11304 if (htab->arm_glue_size > 0)
11305 {
11306 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11307 ARM2THUMB_GLUE_SECTION_NAME);
11308
11309 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11310 (output_bfd, osi.sec->output_section);
11311 if (info->shared || htab->root.is_relocatable_executable
11312 || htab->pic_veneer)
11313 size = ARM2THUMB_PIC_GLUE_SIZE;
11314 else if (htab->use_blx)
11315 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11316 else
11317 size = ARM2THUMB_STATIC_GLUE_SIZE;
11318
11319 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11320 {
11321 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11322 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11323 }
11324 }
11325
11326 /* Thumb->ARM glue. */
11327 if (htab->thumb_glue_size > 0)
11328 {
11329 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11330 THUMB2ARM_GLUE_SECTION_NAME);
11331
11332 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11333 (output_bfd, osi.sec->output_section);
11334 size = THUMB2ARM_GLUE_SIZE;
11335
11336 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11337 {
11338 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11339 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11340 }
11341 }
11342
11343 /* ARMv4 BX veneers. */
11344 if (htab->bx_glue_size > 0)
11345 {
11346 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11347 ARM_BX_GLUE_SECTION_NAME);
11348
11349 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11350 (output_bfd, osi.sec->output_section);
11351
11352 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
11353 }
11354
11355 /* Long calls stubs. */
11356 if (htab->stub_bfd && htab->stub_bfd->sections) {
11357 asection* stub_sec;
11358 for (stub_sec = htab->stub_bfd->sections;
11359 stub_sec != NULL;
11360 stub_sec = stub_sec->next) {
11361
11362 /* Ignore non-stub sections */
11363 if (!strstr(stub_sec->name, STUB_SUFFIX))
11364 continue;
11365
11366 osi.sec = stub_sec;
11367
11368 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11369 (output_bfd, osi.sec->output_section);
11370
11371 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
11372 }
11373 }
11374
11375 /* Finally, output mapping symbols for the PLT. */
11376 if (!htab->splt || htab->splt->size == 0)
11377 return TRUE;
11378
11379 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11380 htab->splt->output_section);
11381 osi.sec = htab->splt;
11382 /* Output mapping symbols for the plt header. SymbianOS does not have a
11383 plt header. */
11384 if (htab->vxworks_p)
11385 {
11386 /* VxWorks shared libraries have no PLT header. */
11387 if (!info->shared)
11388 {
11389 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11390 return FALSE;
11391 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
11392 return FALSE;
11393 }
11394 }
11395 else if (!htab->symbian_p)
11396 {
11397 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11398 return FALSE;
11399 #ifndef FOUR_WORD_PLT
11400 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
11401 return FALSE;
11402 #endif
11403 }
11404
11405 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11406 return TRUE;
11407 }
11408
11409 /* Allocate target specific section data. */
11410
11411 static bfd_boolean
11412 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11413 {
11414 if (!sec->used_by_bfd)
11415 {
11416 _arm_elf_section_data *sdata;
11417 bfd_size_type amt = sizeof (*sdata);
11418
11419 sdata = bfd_zalloc (abfd, amt);
11420 if (sdata == NULL)
11421 return FALSE;
11422 sec->used_by_bfd = sdata;
11423 }
11424
11425 record_section_with_arm_elf_section_data (sec);
11426
11427 return _bfd_elf_new_section_hook (abfd, sec);
11428 }
11429
11430
11431 /* Used to order a list of mapping symbols by address. */
11432
11433 static int
11434 elf32_arm_compare_mapping (const void * a, const void * b)
11435 {
11436 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11437 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11438
11439 if (amap->vma > bmap->vma)
11440 return 1;
11441 else if (amap->vma < bmap->vma)
11442 return -1;
11443 else if (amap->type > bmap->type)
11444 /* Ensure results do not depend on the host qsort for objects with
11445 multiple mapping symbols at the same address by sorting on type
11446 after vma. */
11447 return 1;
11448 else if (amap->type < bmap->type)
11449 return -1;
11450 else
11451 return 0;
11452 }
11453
11454
11455 /* Do code byteswapping. Return FALSE afterwards so that the section is
11456 written out as normal. */
11457
11458 static bfd_boolean
11459 elf32_arm_write_section (bfd *output_bfd,
11460 struct bfd_link_info *link_info, asection *sec,
11461 bfd_byte *contents)
11462 {
11463 int mapcount, errcount;
11464 _arm_elf_section_data *arm_data;
11465 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11466 elf32_arm_section_map *map;
11467 elf32_vfp11_erratum_list *errnode;
11468 bfd_vma ptr;
11469 bfd_vma end;
11470 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11471 bfd_byte tmp;
11472 int i;
11473
11474 /* If this section has not been allocated an _arm_elf_section_data
11475 structure then we cannot record anything. */
11476 arm_data = get_arm_elf_section_data (sec);
11477 if (arm_data == NULL)
11478 return FALSE;
11479
11480 mapcount = arm_data->mapcount;
11481 map = arm_data->map;
11482 errcount = arm_data->erratumcount;
11483
11484 if (errcount != 0)
11485 {
11486 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11487
11488 for (errnode = arm_data->erratumlist; errnode != 0;
11489 errnode = errnode->next)
11490 {
11491 bfd_vma index = errnode->vma - offset;
11492
11493 switch (errnode->type)
11494 {
11495 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11496 {
11497 bfd_vma branch_to_veneer;
11498 /* Original condition code of instruction, plus bit mask for
11499 ARM B instruction. */
11500 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11501 | 0x0a000000;
11502
11503 /* The instruction is before the label. */
11504 index -= 4;
11505
11506 /* Above offset included in -4 below. */
11507 branch_to_veneer = errnode->u.b.veneer->vma
11508 - errnode->vma - 4;
11509
11510 if ((signed) branch_to_veneer < -(1 << 25)
11511 || (signed) branch_to_veneer >= (1 << 25))
11512 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11513 "range"), output_bfd);
11514
11515 insn |= (branch_to_veneer >> 2) & 0xffffff;
11516 contents[endianflip ^ index] = insn & 0xff;
11517 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11518 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11519 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11520 }
11521 break;
11522
11523 case VFP11_ERRATUM_ARM_VENEER:
11524 {
11525 bfd_vma branch_from_veneer;
11526 unsigned int insn;
11527
11528 /* Take size of veneer into account. */
11529 branch_from_veneer = errnode->u.v.branch->vma
11530 - errnode->vma - 12;
11531
11532 if ((signed) branch_from_veneer < -(1 << 25)
11533 || (signed) branch_from_veneer >= (1 << 25))
11534 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11535 "range"), output_bfd);
11536
11537 /* Original instruction. */
11538 insn = errnode->u.v.branch->u.b.vfp_insn;
11539 contents[endianflip ^ index] = insn & 0xff;
11540 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11541 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11542 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11543
11544 /* Branch back to insn after original insn. */
11545 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11546 contents[endianflip ^ (index + 4)] = insn & 0xff;
11547 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11548 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11549 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11550 }
11551 break;
11552
11553 default:
11554 abort ();
11555 }
11556 }
11557 }
11558
11559 if (mapcount == 0)
11560 return FALSE;
11561
11562 if (globals->byteswap_code)
11563 {
11564 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
11565
11566 ptr = map[0].vma;
11567 for (i = 0; i < mapcount; i++)
11568 {
11569 if (i == mapcount - 1)
11570 end = sec->size;
11571 else
11572 end = map[i + 1].vma;
11573
11574 switch (map[i].type)
11575 {
11576 case 'a':
11577 /* Byte swap code words. */
11578 while (ptr + 3 < end)
11579 {
11580 tmp = contents[ptr];
11581 contents[ptr] = contents[ptr + 3];
11582 contents[ptr + 3] = tmp;
11583 tmp = contents[ptr + 1];
11584 contents[ptr + 1] = contents[ptr + 2];
11585 contents[ptr + 2] = tmp;
11586 ptr += 4;
11587 }
11588 break;
11589
11590 case 't':
11591 /* Byte swap code halfwords. */
11592 while (ptr + 1 < end)
11593 {
11594 tmp = contents[ptr];
11595 contents[ptr] = contents[ptr + 1];
11596 contents[ptr + 1] = tmp;
11597 ptr += 2;
11598 }
11599 break;
11600
11601 case 'd':
11602 /* Leave data alone. */
11603 break;
11604 }
11605 ptr = end;
11606 }
11607 }
11608
11609 free (map);
11610 arm_data->mapcount = 0;
11611 arm_data->mapsize = 0;
11612 arm_data->map = NULL;
11613 unrecord_section_with_arm_elf_section_data (sec);
11614
11615 return FALSE;
11616 }
11617
11618 static void
11619 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
11620 asection * sec,
11621 void * ignore ATTRIBUTE_UNUSED)
11622 {
11623 unrecord_section_with_arm_elf_section_data (sec);
11624 }
11625
11626 static bfd_boolean
11627 elf32_arm_close_and_cleanup (bfd * abfd)
11628 {
11629 if (abfd->sections)
11630 bfd_map_over_sections (abfd,
11631 unrecord_section_via_map_over_sections,
11632 NULL);
11633
11634 return _bfd_elf_close_and_cleanup (abfd);
11635 }
11636
11637 static bfd_boolean
11638 elf32_arm_bfd_free_cached_info (bfd * abfd)
11639 {
11640 if (abfd->sections)
11641 bfd_map_over_sections (abfd,
11642 unrecord_section_via_map_over_sections,
11643 NULL);
11644
11645 return _bfd_free_cached_info (abfd);
11646 }
11647
11648 /* Display STT_ARM_TFUNC symbols as functions. */
11649
11650 static void
11651 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
11652 asymbol *asym)
11653 {
11654 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
11655
11656 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
11657 elfsym->symbol.flags |= BSF_FUNCTION;
11658 }
11659
11660
11661 /* Mangle thumb function symbols as we read them in. */
11662
11663 static bfd_boolean
11664 elf32_arm_swap_symbol_in (bfd * abfd,
11665 const void *psrc,
11666 const void *pshn,
11667 Elf_Internal_Sym *dst)
11668 {
11669 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
11670 return FALSE;
11671
11672 /* New EABI objects mark thumb function symbols by setting the low bit of
11673 the address. Turn these into STT_ARM_TFUNC. */
11674 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
11675 && (dst->st_value & 1))
11676 {
11677 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
11678 dst->st_value &= ~(bfd_vma) 1;
11679 }
11680 return TRUE;
11681 }
11682
11683
11684 /* Mangle thumb function symbols as we write them out. */
11685
11686 static void
11687 elf32_arm_swap_symbol_out (bfd *abfd,
11688 const Elf_Internal_Sym *src,
11689 void *cdst,
11690 void *shndx)
11691 {
11692 Elf_Internal_Sym newsym;
11693
11694 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11695 of the address set, as per the new EABI. We do this unconditionally
11696 because objcopy does not set the elf header flags until after
11697 it writes out the symbol table. */
11698 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
11699 {
11700 newsym = *src;
11701 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
11702 if (newsym.st_shndx != SHN_UNDEF)
11703 {
11704 /* Do this only for defined symbols. At link type, the static
11705 linker will simulate the work of dynamic linker of resolving
11706 symbols and will carry over the thumbness of found symbols to
11707 the output symbol table. It's not clear how it happens, but
11708 the thumbness of undefined symbols can well be different at
11709 runtime, and writing '1' for them will be confusing for users
11710 and possibly for dynamic linker itself.
11711 */
11712 newsym.st_value |= 1;
11713 }
11714
11715 src = &newsym;
11716 }
11717 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
11718 }
11719
11720 /* Add the PT_ARM_EXIDX program header. */
11721
11722 static bfd_boolean
11723 elf32_arm_modify_segment_map (bfd *abfd,
11724 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11725 {
11726 struct elf_segment_map *m;
11727 asection *sec;
11728
11729 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11730 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11731 {
11732 /* If there is already a PT_ARM_EXIDX header, then we do not
11733 want to add another one. This situation arises when running
11734 "strip"; the input binary already has the header. */
11735 m = elf_tdata (abfd)->segment_map;
11736 while (m && m->p_type != PT_ARM_EXIDX)
11737 m = m->next;
11738 if (!m)
11739 {
11740 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
11741 if (m == NULL)
11742 return FALSE;
11743 m->p_type = PT_ARM_EXIDX;
11744 m->count = 1;
11745 m->sections[0] = sec;
11746
11747 m->next = elf_tdata (abfd)->segment_map;
11748 elf_tdata (abfd)->segment_map = m;
11749 }
11750 }
11751
11752 return TRUE;
11753 }
11754
11755 /* We may add a PT_ARM_EXIDX program header. */
11756
11757 static int
11758 elf32_arm_additional_program_headers (bfd *abfd,
11759 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11760 {
11761 asection *sec;
11762
11763 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11764 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11765 return 1;
11766 else
11767 return 0;
11768 }
11769
11770 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11771
11772 static bfd_boolean
11773 elf32_arm_is_function_type (unsigned int type)
11774 {
11775 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
11776 }
11777
11778 /* We use this to override swap_symbol_in and swap_symbol_out. */
11779 const struct elf_size_info elf32_arm_size_info =
11780 {
11781 sizeof (Elf32_External_Ehdr),
11782 sizeof (Elf32_External_Phdr),
11783 sizeof (Elf32_External_Shdr),
11784 sizeof (Elf32_External_Rel),
11785 sizeof (Elf32_External_Rela),
11786 sizeof (Elf32_External_Sym),
11787 sizeof (Elf32_External_Dyn),
11788 sizeof (Elf_External_Note),
11789 4,
11790 1,
11791 32, 2,
11792 ELFCLASS32, EV_CURRENT,
11793 bfd_elf32_write_out_phdrs,
11794 bfd_elf32_write_shdrs_and_ehdr,
11795 bfd_elf32_checksum_contents,
11796 bfd_elf32_write_relocs,
11797 elf32_arm_swap_symbol_in,
11798 elf32_arm_swap_symbol_out,
11799 bfd_elf32_slurp_reloc_table,
11800 bfd_elf32_slurp_symbol_table,
11801 bfd_elf32_swap_dyn_in,
11802 bfd_elf32_swap_dyn_out,
11803 bfd_elf32_swap_reloc_in,
11804 bfd_elf32_swap_reloc_out,
11805 bfd_elf32_swap_reloca_in,
11806 bfd_elf32_swap_reloca_out
11807 };
11808
11809 #define ELF_ARCH bfd_arch_arm
11810 #define ELF_MACHINE_CODE EM_ARM
11811 #ifdef __QNXTARGET__
11812 #define ELF_MAXPAGESIZE 0x1000
11813 #else
11814 #define ELF_MAXPAGESIZE 0x8000
11815 #endif
11816 #define ELF_MINPAGESIZE 0x1000
11817 #define ELF_COMMONPAGESIZE 0x1000
11818
11819 #define bfd_elf32_mkobject elf32_arm_mkobject
11820
11821 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11822 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11823 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11824 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11825 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11826 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11827 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11828 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11829 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11830 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11831 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11832 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11833 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11834 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11835
11836 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11837 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11838 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11839 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11840 #define elf_backend_check_relocs elf32_arm_check_relocs
11841 #define elf_backend_relocate_section elf32_arm_relocate_section
11842 #define elf_backend_write_section elf32_arm_write_section
11843 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11844 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11845 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11846 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11847 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11848 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11849 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11850 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11851 #define elf_backend_object_p elf32_arm_object_p
11852 #define elf_backend_section_flags elf32_arm_section_flags
11853 #define elf_backend_fake_sections elf32_arm_fake_sections
11854 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11855 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11856 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11857 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11858 #define elf_backend_size_info elf32_arm_size_info
11859 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11860 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11861 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11862 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11863 #define elf_backend_is_function_type elf32_arm_is_function_type
11864
11865 #define elf_backend_can_refcount 1
11866 #define elf_backend_can_gc_sections 1
11867 #define elf_backend_plt_readonly 1
11868 #define elf_backend_want_got_plt 1
11869 #define elf_backend_want_plt_sym 0
11870 #define elf_backend_may_use_rel_p 1
11871 #define elf_backend_may_use_rela_p 0
11872 #define elf_backend_default_use_rela_p 0
11873
11874 #define elf_backend_got_header_size 12
11875
11876 #undef elf_backend_obj_attrs_vendor
11877 #define elf_backend_obj_attrs_vendor "aeabi"
11878 #undef elf_backend_obj_attrs_section
11879 #define elf_backend_obj_attrs_section ".ARM.attributes"
11880 #undef elf_backend_obj_attrs_arg_type
11881 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11882 #undef elf_backend_obj_attrs_section_type
11883 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11884
11885 #include "elf32-target.h"
11886
11887 /* VxWorks Targets. */
11888
11889 #undef TARGET_LITTLE_SYM
11890 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11891 #undef TARGET_LITTLE_NAME
11892 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11893 #undef TARGET_BIG_SYM
11894 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11895 #undef TARGET_BIG_NAME
11896 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11897
11898 /* Like elf32_arm_link_hash_table_create -- but overrides
11899 appropriately for VxWorks. */
11900
11901 static struct bfd_link_hash_table *
11902 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
11903 {
11904 struct bfd_link_hash_table *ret;
11905
11906 ret = elf32_arm_link_hash_table_create (abfd);
11907 if (ret)
11908 {
11909 struct elf32_arm_link_hash_table *htab
11910 = (struct elf32_arm_link_hash_table *) ret;
11911 htab->use_rel = 0;
11912 htab->vxworks_p = 1;
11913 }
11914 return ret;
11915 }
11916
11917 static void
11918 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
11919 {
11920 elf32_arm_final_write_processing (abfd, linker);
11921 elf_vxworks_final_write_processing (abfd, linker);
11922 }
11923
11924 #undef elf32_bed
11925 #define elf32_bed elf32_arm_vxworks_bed
11926
11927 #undef bfd_elf32_bfd_link_hash_table_create
11928 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
11929 #undef elf_backend_add_symbol_hook
11930 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
11931 #undef elf_backend_final_write_processing
11932 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
11933 #undef elf_backend_emit_relocs
11934 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
11935
11936 #undef elf_backend_may_use_rel_p
11937 #define elf_backend_may_use_rel_p 0
11938 #undef elf_backend_may_use_rela_p
11939 #define elf_backend_may_use_rela_p 1
11940 #undef elf_backend_default_use_rela_p
11941 #define elf_backend_default_use_rela_p 1
11942 #undef elf_backend_want_plt_sym
11943 #define elf_backend_want_plt_sym 1
11944 #undef ELF_MAXPAGESIZE
11945 #define ELF_MAXPAGESIZE 0x1000
11946
11947 #include "elf32-target.h"
11948
11949
11950 /* Symbian OS Targets. */
11951
11952 #undef TARGET_LITTLE_SYM
11953 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
11954 #undef TARGET_LITTLE_NAME
11955 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
11956 #undef TARGET_BIG_SYM
11957 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
11958 #undef TARGET_BIG_NAME
11959 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
11960
11961 /* Like elf32_arm_link_hash_table_create -- but overrides
11962 appropriately for Symbian OS. */
11963
11964 static struct bfd_link_hash_table *
11965 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
11966 {
11967 struct bfd_link_hash_table *ret;
11968
11969 ret = elf32_arm_link_hash_table_create (abfd);
11970 if (ret)
11971 {
11972 struct elf32_arm_link_hash_table *htab
11973 = (struct elf32_arm_link_hash_table *)ret;
11974 /* There is no PLT header for Symbian OS. */
11975 htab->plt_header_size = 0;
11976 /* The PLT entries are each one instruction and one word. */
11977 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
11978 htab->symbian_p = 1;
11979 /* Symbian uses armv5t or above, so use_blx is always true. */
11980 htab->use_blx = 1;
11981 htab->root.is_relocatable_executable = 1;
11982 }
11983 return ret;
11984 }
11985
11986 static const struct bfd_elf_special_section
11987 elf32_arm_symbian_special_sections[] =
11988 {
11989 /* In a BPABI executable, the dynamic linking sections do not go in
11990 the loadable read-only segment. The post-linker may wish to
11991 refer to these sections, but they are not part of the final
11992 program image. */
11993 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
11994 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
11995 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
11996 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
11997 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
11998 /* These sections do not need to be writable as the SymbianOS
11999 postlinker will arrange things so that no dynamic relocation is
12000 required. */
12001 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12002 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12003 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12004 { NULL, 0, 0, 0, 0 }
12005 };
12006
12007 static void
12008 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12009 struct bfd_link_info *link_info)
12010 {
12011 /* BPABI objects are never loaded directly by an OS kernel; they are
12012 processed by a postlinker first, into an OS-specific format. If
12013 the D_PAGED bit is set on the file, BFD will align segments on
12014 page boundaries, so that an OS can directly map the file. With
12015 BPABI objects, that just results in wasted space. In addition,
12016 because we clear the D_PAGED bit, map_sections_to_segments will
12017 recognize that the program headers should not be mapped into any
12018 loadable segment. */
12019 abfd->flags &= ~D_PAGED;
12020 elf32_arm_begin_write_processing (abfd, link_info);
12021 }
12022
12023 static bfd_boolean
12024 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12025 struct bfd_link_info *info)
12026 {
12027 struct elf_segment_map *m;
12028 asection *dynsec;
12029
12030 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12031 segment. However, because the .dynamic section is not marked
12032 with SEC_LOAD, the generic ELF code will not create such a
12033 segment. */
12034 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12035 if (dynsec)
12036 {
12037 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12038 if (m->p_type == PT_DYNAMIC)
12039 break;
12040
12041 if (m == NULL)
12042 {
12043 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12044 m->next = elf_tdata (abfd)->segment_map;
12045 elf_tdata (abfd)->segment_map = m;
12046 }
12047 }
12048
12049 /* Also call the generic arm routine. */
12050 return elf32_arm_modify_segment_map (abfd, info);
12051 }
12052
12053 /* Return address for Ith PLT stub in section PLT, for relocation REL
12054 or (bfd_vma) -1 if it should not be included. */
12055
12056 static bfd_vma
12057 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12058 const arelent *rel ATTRIBUTE_UNUSED)
12059 {
12060 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12061 }
12062
12063
12064 #undef elf32_bed
12065 #define elf32_bed elf32_arm_symbian_bed
12066
12067 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12068 will process them and then discard them. */
12069 #undef ELF_DYNAMIC_SEC_FLAGS
12070 #define ELF_DYNAMIC_SEC_FLAGS \
12071 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12072
12073 #undef elf_backend_add_symbol_hook
12074 #undef elf_backend_emit_relocs
12075
12076 #undef bfd_elf32_bfd_link_hash_table_create
12077 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12078 #undef elf_backend_special_sections
12079 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12080 #undef elf_backend_begin_write_processing
12081 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12082 #undef elf_backend_final_write_processing
12083 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12084
12085 #undef elf_backend_modify_segment_map
12086 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12087
12088 /* There is no .got section for BPABI objects, and hence no header. */
12089 #undef elf_backend_got_header_size
12090 #define elf_backend_got_header_size 0
12091
12092 /* Similarly, there is no .got.plt section. */
12093 #undef elf_backend_want_got_plt
12094 #define elf_backend_want_got_plt 0
12095
12096 #undef elf_backend_plt_sym_val
12097 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12098
12099 #undef elf_backend_may_use_rel_p
12100 #define elf_backend_may_use_rel_p 1
12101 #undef elf_backend_may_use_rela_p
12102 #define elf_backend_may_use_rela_p 0
12103 #undef elf_backend_default_use_rela_p
12104 #define elf_backend_default_use_rela_p 0
12105 #undef elf_backend_want_plt_sym
12106 #define elf_backend_want_plt_sym 0
12107 #undef ELF_MAXPAGESIZE
12108 #define ELF_MAXPAGESIZE 0x8000
12109
12110 #include "elf32-target.h"
This page took 0.262775 seconds and 5 git commands to generate.