* elf32-arm.c (STUB_ENTRY_NAME): Define.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* unallocated */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1782 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1783 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1784
1785 return NULL;
1786 }
1787
1788 static reloc_howto_type *
1789 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1790 const char *r_name)
1791 {
1792 unsigned int i;
1793
1794 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1795 if (elf32_arm_howto_table_1[i].name != NULL
1796 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1797 return &elf32_arm_howto_table_1[i];
1798
1799 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1800 if (elf32_arm_howto_table_2[i].name != NULL
1801 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1802 return &elf32_arm_howto_table_2[i];
1803
1804 return NULL;
1805 }
1806
1807 /* Support for core dump NOTE sections. */
1808
1809 static bfd_boolean
1810 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1811 {
1812 int offset;
1813 size_t size;
1814
1815 switch (note->descsz)
1816 {
1817 default:
1818 return FALSE;
1819
1820 case 148: /* Linux/ARM 32-bit*/
1821 /* pr_cursig */
1822 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1823
1824 /* pr_pid */
1825 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1826
1827 /* pr_reg */
1828 offset = 72;
1829 size = 72;
1830
1831 break;
1832 }
1833
1834 /* Make a ".reg/999" section. */
1835 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1836 size, note->descpos + offset);
1837 }
1838
1839 static bfd_boolean
1840 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1841 {
1842 switch (note->descsz)
1843 {
1844 default:
1845 return FALSE;
1846
1847 case 124: /* Linux/ARM elf_prpsinfo */
1848 elf_tdata (abfd)->core_program
1849 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1850 elf_tdata (abfd)->core_command
1851 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1852 }
1853
1854 /* Note that for some reason, a spurious space is tacked
1855 onto the end of the args in some (at least one anyway)
1856 implementations, so strip it off if it exists. */
1857 {
1858 char *command = elf_tdata (abfd)->core_command;
1859 int n = strlen (command);
1860
1861 if (0 < n && command[n - 1] == ' ')
1862 command[n - 1] = '\0';
1863 }
1864
1865 return TRUE;
1866 }
1867
1868 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1869 #define TARGET_LITTLE_NAME "elf32-littlearm"
1870 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1871 #define TARGET_BIG_NAME "elf32-bigarm"
1872
1873 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1874 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1875
1876 typedef unsigned long int insn32;
1877 typedef unsigned short int insn16;
1878
1879 /* In lieu of proper flags, assume all EABIv4 or later objects are
1880 interworkable. */
1881 #define INTERWORK_FLAG(abfd) \
1882 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1883 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1884
1885 /* The linker script knows the section names for placement.
1886 The entry_names are used to do simple name mangling on the stubs.
1887 Given a function name, and its type, the stub can be found. The
1888 name can be changed. The only requirement is the %s be present. */
1889 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1890 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1891
1892 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1893 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1894
1895 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1896 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1897
1898 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1899 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1900
1901 #define STUB_ENTRY_NAME "__%s_veneer"
1902
1903 /* The name of the dynamic interpreter. This is put in the .interp
1904 section. */
1905 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1906
1907 #ifdef FOUR_WORD_PLT
1908
1909 /* The first entry in a procedure linkage table looks like
1910 this. It is set up so that any shared library function that is
1911 called before the relocation has been set up calls the dynamic
1912 linker first. */
1913 static const bfd_vma elf32_arm_plt0_entry [] =
1914 {
1915 0xe52de004, /* str lr, [sp, #-4]! */
1916 0xe59fe010, /* ldr lr, [pc, #16] */
1917 0xe08fe00e, /* add lr, pc, lr */
1918 0xe5bef008, /* ldr pc, [lr, #8]! */
1919 };
1920
1921 /* Subsequent entries in a procedure linkage table look like
1922 this. */
1923 static const bfd_vma elf32_arm_plt_entry [] =
1924 {
1925 0xe28fc600, /* add ip, pc, #NN */
1926 0xe28cca00, /* add ip, ip, #NN */
1927 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1928 0x00000000, /* unused */
1929 };
1930
1931 #else
1932
1933 /* The first entry in a procedure linkage table looks like
1934 this. It is set up so that any shared library function that is
1935 called before the relocation has been set up calls the dynamic
1936 linker first. */
1937 static const bfd_vma elf32_arm_plt0_entry [] =
1938 {
1939 0xe52de004, /* str lr, [sp, #-4]! */
1940 0xe59fe004, /* ldr lr, [pc, #4] */
1941 0xe08fe00e, /* add lr, pc, lr */
1942 0xe5bef008, /* ldr pc, [lr, #8]! */
1943 0x00000000, /* &GOT[0] - . */
1944 };
1945
1946 /* Subsequent entries in a procedure linkage table look like
1947 this. */
1948 static const bfd_vma elf32_arm_plt_entry [] =
1949 {
1950 0xe28fc600, /* add ip, pc, #0xNN00000 */
1951 0xe28cca00, /* add ip, ip, #0xNN000 */
1952 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1953 };
1954
1955 #endif
1956
1957 /* The format of the first entry in the procedure linkage table
1958 for a VxWorks executable. */
1959 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1960 {
1961 0xe52dc008, /* str ip,[sp,#-8]! */
1962 0xe59fc000, /* ldr ip,[pc] */
1963 0xe59cf008, /* ldr pc,[ip,#8] */
1964 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1965 };
1966
1967 /* The format of subsequent entries in a VxWorks executable. */
1968 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1969 {
1970 0xe59fc000, /* ldr ip,[pc] */
1971 0xe59cf000, /* ldr pc,[ip] */
1972 0x00000000, /* .long @got */
1973 0xe59fc000, /* ldr ip,[pc] */
1974 0xea000000, /* b _PLT */
1975 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1976 };
1977
1978 /* The format of entries in a VxWorks shared library. */
1979 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1980 {
1981 0xe59fc000, /* ldr ip,[pc] */
1982 0xe79cf009, /* ldr pc,[ip,r9] */
1983 0x00000000, /* .long @got */
1984 0xe59fc000, /* ldr ip,[pc] */
1985 0xe599f008, /* ldr pc,[r9,#8] */
1986 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1987 };
1988
1989 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1990 #define PLT_THUMB_STUB_SIZE 4
1991 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1992 {
1993 0x4778, /* bx pc */
1994 0x46c0 /* nop */
1995 };
1996
1997 /* The entries in a PLT when using a DLL-based target with multiple
1998 address spaces. */
1999 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2000 {
2001 0xe51ff004, /* ldr pc, [pc, #-4] */
2002 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2003 };
2004
2005 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2006 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2007 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2008 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2009 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2010 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2011
2012 static const bfd_vma arm_long_branch_stub[] =
2013 {
2014 0xe51ff004, /* ldr pc, [pc, #-4] */
2015 0x00000000, /* dcd R_ARM_ABS32(X) */
2016 };
2017
2018 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2019 {
2020 0xe59fc000, /* ldr ip, [pc, #0] */
2021 0xe12fff1c, /* bx ip */
2022 0x00000000, /* dcd R_ARM_ABS32(X) */
2023 };
2024
2025 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2026 {
2027 0x4e02b540, /* push {r6, lr} */
2028 /* ldr r6, [pc, #8] */
2029 0x473046fe, /* mov lr, pc */
2030 /* bx r6 */
2031 0xbf00bd40, /* pop {r6, pc} */
2032 /* nop */
2033 0x00000000, /* dcd R_ARM_ABS32(X) */
2034 };
2035
2036 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2037 {
2038 0x4e03b540, /* push {r6, lr} */
2039 /* ldr r6, [pc, #12] */
2040 0x473046fe, /* mov lr, pc */
2041 /* bx r6 */
2042 0xe8bd4040, /* pop {r6, pc} */
2043 0xe12fff1e, /* bx lr */
2044 0x00000000, /* dcd R_ARM_ABS32(X) */
2045 };
2046
2047 static const bfd_vma arm_pic_long_branch_stub[] =
2048 {
2049 0xe59fc000, /* ldr r12, [pc] */
2050 0xe08ff00c, /* add pc, pc, ip */
2051 0x00000000, /* dcd R_ARM_REL32(X) */
2052 };
2053
2054 /* Section name for stubs is the associated section name plus this
2055 string. */
2056 #define STUB_SUFFIX ".stub"
2057
2058 enum elf32_arm_stub_type
2059 {
2060 arm_stub_none,
2061 arm_stub_long_branch,
2062 arm_thumb_v4t_stub_long_branch,
2063 arm_thumb_thumb_stub_long_branch,
2064 arm_thumb_arm_v4t_stub_long_branch,
2065 arm_stub_pic_long_branch,
2066 };
2067
2068 struct elf32_arm_stub_hash_entry
2069 {
2070 /* Base hash table entry structure. */
2071 struct bfd_hash_entry root;
2072
2073 /* The stub section. */
2074 asection *stub_sec;
2075
2076 /* Offset within stub_sec of the beginning of this stub. */
2077 bfd_vma stub_offset;
2078
2079 /* Given the symbol's value and its section we can determine its final
2080 value when building the stubs (so the stub knows where to jump). */
2081 bfd_vma target_value;
2082 asection *target_section;
2083
2084 enum elf32_arm_stub_type stub_type;
2085
2086 /* The symbol table entry, if any, that this was derived from. */
2087 struct elf32_arm_link_hash_entry *h;
2088
2089 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2090 unsigned char st_type;
2091
2092 /* Where this stub is being called from, or, in the case of combined
2093 stub sections, the first input section in the group. */
2094 asection *id_sec;
2095
2096 /* The name for the local symbol at the start of this stub. The
2097 stub name in the hash table has to be unique; this does not, so
2098 it can be friendlier. */
2099 char *output_name;
2100 };
2101
2102 /* Used to build a map of a section. This is required for mixed-endian
2103 code/data. */
2104
2105 typedef struct elf32_elf_section_map
2106 {
2107 bfd_vma vma;
2108 char type;
2109 }
2110 elf32_arm_section_map;
2111
2112 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2113
2114 typedef enum
2115 {
2116 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2117 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2118 VFP11_ERRATUM_ARM_VENEER,
2119 VFP11_ERRATUM_THUMB_VENEER
2120 }
2121 elf32_vfp11_erratum_type;
2122
2123 typedef struct elf32_vfp11_erratum_list
2124 {
2125 struct elf32_vfp11_erratum_list *next;
2126 bfd_vma vma;
2127 union
2128 {
2129 struct
2130 {
2131 struct elf32_vfp11_erratum_list *veneer;
2132 unsigned int vfp_insn;
2133 } b;
2134 struct
2135 {
2136 struct elf32_vfp11_erratum_list *branch;
2137 unsigned int id;
2138 } v;
2139 } u;
2140 elf32_vfp11_erratum_type type;
2141 }
2142 elf32_vfp11_erratum_list;
2143
2144 typedef struct _arm_elf_section_data
2145 {
2146 struct bfd_elf_section_data elf;
2147 unsigned int mapcount;
2148 unsigned int mapsize;
2149 elf32_arm_section_map *map;
2150 unsigned int erratumcount;
2151 elf32_vfp11_erratum_list *erratumlist;
2152 }
2153 _arm_elf_section_data;
2154
2155 #define elf32_arm_section_data(sec) \
2156 ((_arm_elf_section_data *) elf_section_data (sec))
2157
2158 /* The size of the thread control block. */
2159 #define TCB_SIZE 8
2160
2161 struct elf_arm_obj_tdata
2162 {
2163 struct elf_obj_tdata root;
2164
2165 /* tls_type for each local got entry. */
2166 char *local_got_tls_type;
2167
2168 /* Zero to warn when linking objects with incompatible enum sizes. */
2169 int no_enum_size_warning;
2170 };
2171
2172 #define elf_arm_tdata(bfd) \
2173 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2174
2175 #define elf32_arm_local_got_tls_type(bfd) \
2176 (elf_arm_tdata (bfd)->local_got_tls_type)
2177
2178 #define is_arm_elf(bfd) \
2179 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2180 && elf_tdata (bfd) != NULL \
2181 && elf_object_id (bfd) == ARM_ELF_TDATA)
2182
2183 static bfd_boolean
2184 elf32_arm_mkobject (bfd *abfd)
2185 {
2186 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2187 ARM_ELF_TDATA);
2188 }
2189
2190 /* The ARM linker needs to keep track of the number of relocs that it
2191 decides to copy in check_relocs for each symbol. This is so that
2192 it can discard PC relative relocs if it doesn't need them when
2193 linking with -Bsymbolic. We store the information in a field
2194 extending the regular ELF linker hash table. */
2195
2196 /* This structure keeps track of the number of relocs we have copied
2197 for a given symbol. */
2198 struct elf32_arm_relocs_copied
2199 {
2200 /* Next section. */
2201 struct elf32_arm_relocs_copied * next;
2202 /* A section in dynobj. */
2203 asection * section;
2204 /* Number of relocs copied in this section. */
2205 bfd_size_type count;
2206 /* Number of PC-relative relocs copied in this section. */
2207 bfd_size_type pc_count;
2208 };
2209
2210 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2211
2212 /* Arm ELF linker hash entry. */
2213 struct elf32_arm_link_hash_entry
2214 {
2215 struct elf_link_hash_entry root;
2216
2217 /* Number of PC relative relocs copied for this symbol. */
2218 struct elf32_arm_relocs_copied * relocs_copied;
2219
2220 /* We reference count Thumb references to a PLT entry separately,
2221 so that we can emit the Thumb trampoline only if needed. */
2222 bfd_signed_vma plt_thumb_refcount;
2223
2224 /* Some references from Thumb code may be eliminated by BL->BLX
2225 conversion, so record them separately. */
2226 bfd_signed_vma plt_maybe_thumb_refcount;
2227
2228 /* Since PLT entries have variable size if the Thumb prologue is
2229 used, we need to record the index into .got.plt instead of
2230 recomputing it from the PLT offset. */
2231 bfd_signed_vma plt_got_offset;
2232
2233 #define GOT_UNKNOWN 0
2234 #define GOT_NORMAL 1
2235 #define GOT_TLS_GD 2
2236 #define GOT_TLS_IE 4
2237 unsigned char tls_type;
2238
2239 /* The symbol marking the real symbol location for exported thumb
2240 symbols with Arm stubs. */
2241 struct elf_link_hash_entry *export_glue;
2242
2243 /* A pointer to the most recently used stub hash entry against this
2244 symbol. */
2245 struct elf32_arm_stub_hash_entry *stub_cache;
2246 };
2247
2248 /* Traverse an arm ELF linker hash table. */
2249 #define elf32_arm_link_hash_traverse(table, func, info) \
2250 (elf_link_hash_traverse \
2251 (&(table)->root, \
2252 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2253 (info)))
2254
2255 /* Get the ARM elf linker hash table from a link_info structure. */
2256 #define elf32_arm_hash_table(info) \
2257 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2258
2259 #define arm_stub_hash_lookup(table, string, create, copy) \
2260 ((struct elf32_arm_stub_hash_entry *) \
2261 bfd_hash_lookup ((table), (string), (create), (copy)))
2262
2263 /* ARM ELF linker hash table. */
2264 struct elf32_arm_link_hash_table
2265 {
2266 /* The main hash table. */
2267 struct elf_link_hash_table root;
2268
2269 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2270 bfd_size_type thumb_glue_size;
2271
2272 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2273 bfd_size_type arm_glue_size;
2274
2275 /* The size in bytes of section containing the ARMv4 BX veneers. */
2276 bfd_size_type bx_glue_size;
2277
2278 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2279 veneer has been populated. */
2280 bfd_vma bx_glue_offset[15];
2281
2282 /* The size in bytes of the section containing glue for VFP11 erratum
2283 veneers. */
2284 bfd_size_type vfp11_erratum_glue_size;
2285
2286 /* An arbitrary input BFD chosen to hold the glue sections. */
2287 bfd * bfd_of_glue_owner;
2288
2289 /* Nonzero to output a BE8 image. */
2290 int byteswap_code;
2291
2292 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2293 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2294 int target1_is_rel;
2295
2296 /* The relocation to use for R_ARM_TARGET2 relocations. */
2297 int target2_reloc;
2298
2299 /* 0 = Ignore R_ARM_V4BX.
2300 1 = Convert BX to MOV PC.
2301 2 = Generate v4 interworing stubs. */
2302 int fix_v4bx;
2303
2304 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2305 int use_blx;
2306
2307 /* What sort of code sequences we should look for which may trigger the
2308 VFP11 denorm erratum. */
2309 bfd_arm_vfp11_fix vfp11_fix;
2310
2311 /* Global counter for the number of fixes we have emitted. */
2312 int num_vfp11_fixes;
2313
2314 /* Nonzero to force PIC branch veneers. */
2315 int pic_veneer;
2316
2317 /* The number of bytes in the initial entry in the PLT. */
2318 bfd_size_type plt_header_size;
2319
2320 /* The number of bytes in the subsequent PLT etries. */
2321 bfd_size_type plt_entry_size;
2322
2323 /* True if the target system is VxWorks. */
2324 int vxworks_p;
2325
2326 /* True if the target system is Symbian OS. */
2327 int symbian_p;
2328
2329 /* True if the target uses REL relocations. */
2330 int use_rel;
2331
2332 /* Short-cuts to get to dynamic linker sections. */
2333 asection *sgot;
2334 asection *sgotplt;
2335 asection *srelgot;
2336 asection *splt;
2337 asection *srelplt;
2338 asection *sdynbss;
2339 asection *srelbss;
2340
2341 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2342 asection *srelplt2;
2343
2344 /* Data for R_ARM_TLS_LDM32 relocations. */
2345 union
2346 {
2347 bfd_signed_vma refcount;
2348 bfd_vma offset;
2349 } tls_ldm_got;
2350
2351 /* Small local sym to section mapping cache. */
2352 struct sym_sec_cache sym_sec;
2353
2354 /* For convenience in allocate_dynrelocs. */
2355 bfd * obfd;
2356
2357 /* The stub hash table. */
2358 struct bfd_hash_table stub_hash_table;
2359
2360 /* Linker stub bfd. */
2361 bfd *stub_bfd;
2362
2363 /* Linker call-backs. */
2364 asection * (*add_stub_section) (const char *, asection *);
2365 void (*layout_sections_again) (void);
2366
2367 /* Array to keep track of which stub sections have been created, and
2368 information on stub grouping. */
2369 struct map_stub
2370 {
2371 /* This is the section to which stubs in the group will be
2372 attached. */
2373 asection *link_sec;
2374 /* The stub section. */
2375 asection *stub_sec;
2376 } *stub_group;
2377
2378 /* Assorted information used by elf32_arm_size_stubs. */
2379 unsigned int bfd_count;
2380 int top_index;
2381 asection **input_list;
2382 };
2383
2384 /* Create an entry in an ARM ELF linker hash table. */
2385
2386 static struct bfd_hash_entry *
2387 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2388 struct bfd_hash_table * table,
2389 const char * string)
2390 {
2391 struct elf32_arm_link_hash_entry * ret =
2392 (struct elf32_arm_link_hash_entry *) entry;
2393
2394 /* Allocate the structure if it has not already been allocated by a
2395 subclass. */
2396 if (ret == NULL)
2397 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2398 if (ret == NULL)
2399 return (struct bfd_hash_entry *) ret;
2400
2401 /* Call the allocation method of the superclass. */
2402 ret = ((struct elf32_arm_link_hash_entry *)
2403 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2404 table, string));
2405 if (ret != NULL)
2406 {
2407 ret->relocs_copied = NULL;
2408 ret->tls_type = GOT_UNKNOWN;
2409 ret->plt_thumb_refcount = 0;
2410 ret->plt_maybe_thumb_refcount = 0;
2411 ret->plt_got_offset = -1;
2412 ret->export_glue = NULL;
2413
2414 ret->stub_cache = NULL;
2415 }
2416
2417 return (struct bfd_hash_entry *) ret;
2418 }
2419
2420 /* Initialize an entry in the stub hash table. */
2421
2422 static struct bfd_hash_entry *
2423 stub_hash_newfunc (struct bfd_hash_entry *entry,
2424 struct bfd_hash_table *table,
2425 const char *string)
2426 {
2427 /* Allocate the structure if it has not already been allocated by a
2428 subclass. */
2429 if (entry == NULL)
2430 {
2431 entry = bfd_hash_allocate (table,
2432 sizeof (struct elf32_arm_stub_hash_entry));
2433 if (entry == NULL)
2434 return entry;
2435 }
2436
2437 /* Call the allocation method of the superclass. */
2438 entry = bfd_hash_newfunc (entry, table, string);
2439 if (entry != NULL)
2440 {
2441 struct elf32_arm_stub_hash_entry *eh;
2442
2443 /* Initialize the local fields. */
2444 eh = (struct elf32_arm_stub_hash_entry *) entry;
2445 eh->stub_sec = NULL;
2446 eh->stub_offset = 0;
2447 eh->target_value = 0;
2448 eh->target_section = NULL;
2449 eh->stub_type = arm_stub_none;
2450 eh->h = NULL;
2451 eh->id_sec = NULL;
2452 }
2453
2454 return entry;
2455 }
2456
2457 /* Return true if NAME is the name of the relocation section associated
2458 with S. */
2459
2460 static bfd_boolean
2461 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2462 const char *name, asection *s)
2463 {
2464 if (htab->use_rel)
2465 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2466 else
2467 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2468 }
2469
2470 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2471 shortcuts to them in our hash table. */
2472
2473 static bfd_boolean
2474 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2475 {
2476 struct elf32_arm_link_hash_table *htab;
2477
2478 htab = elf32_arm_hash_table (info);
2479 /* BPABI objects never have a GOT, or associated sections. */
2480 if (htab->symbian_p)
2481 return TRUE;
2482
2483 if (! _bfd_elf_create_got_section (dynobj, info))
2484 return FALSE;
2485
2486 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2487 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2488 if (!htab->sgot || !htab->sgotplt)
2489 abort ();
2490
2491 htab->srelgot = bfd_make_section_with_flags (dynobj,
2492 RELOC_SECTION (htab, ".got"),
2493 (SEC_ALLOC | SEC_LOAD
2494 | SEC_HAS_CONTENTS
2495 | SEC_IN_MEMORY
2496 | SEC_LINKER_CREATED
2497 | SEC_READONLY));
2498 if (htab->srelgot == NULL
2499 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2500 return FALSE;
2501 return TRUE;
2502 }
2503
2504 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2505 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2506 hash table. */
2507
2508 static bfd_boolean
2509 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2510 {
2511 struct elf32_arm_link_hash_table *htab;
2512
2513 htab = elf32_arm_hash_table (info);
2514 if (!htab->sgot && !create_got_section (dynobj, info))
2515 return FALSE;
2516
2517 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2518 return FALSE;
2519
2520 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2521 htab->srelplt = bfd_get_section_by_name (dynobj,
2522 RELOC_SECTION (htab, ".plt"));
2523 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2524 if (!info->shared)
2525 htab->srelbss = bfd_get_section_by_name (dynobj,
2526 RELOC_SECTION (htab, ".bss"));
2527
2528 if (htab->vxworks_p)
2529 {
2530 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2531 return FALSE;
2532
2533 if (info->shared)
2534 {
2535 htab->plt_header_size = 0;
2536 htab->plt_entry_size
2537 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2538 }
2539 else
2540 {
2541 htab->plt_header_size
2542 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2543 htab->plt_entry_size
2544 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2545 }
2546 }
2547
2548 if (!htab->splt
2549 || !htab->srelplt
2550 || !htab->sdynbss
2551 || (!info->shared && !htab->srelbss))
2552 abort ();
2553
2554 return TRUE;
2555 }
2556
2557 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2558
2559 static void
2560 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2561 struct elf_link_hash_entry *dir,
2562 struct elf_link_hash_entry *ind)
2563 {
2564 struct elf32_arm_link_hash_entry *edir, *eind;
2565
2566 edir = (struct elf32_arm_link_hash_entry *) dir;
2567 eind = (struct elf32_arm_link_hash_entry *) ind;
2568
2569 if (eind->relocs_copied != NULL)
2570 {
2571 if (edir->relocs_copied != NULL)
2572 {
2573 struct elf32_arm_relocs_copied **pp;
2574 struct elf32_arm_relocs_copied *p;
2575
2576 /* Add reloc counts against the indirect sym to the direct sym
2577 list. Merge any entries against the same section. */
2578 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2579 {
2580 struct elf32_arm_relocs_copied *q;
2581
2582 for (q = edir->relocs_copied; q != NULL; q = q->next)
2583 if (q->section == p->section)
2584 {
2585 q->pc_count += p->pc_count;
2586 q->count += p->count;
2587 *pp = p->next;
2588 break;
2589 }
2590 if (q == NULL)
2591 pp = &p->next;
2592 }
2593 *pp = edir->relocs_copied;
2594 }
2595
2596 edir->relocs_copied = eind->relocs_copied;
2597 eind->relocs_copied = NULL;
2598 }
2599
2600 if (ind->root.type == bfd_link_hash_indirect)
2601 {
2602 /* Copy over PLT info. */
2603 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2604 eind->plt_thumb_refcount = 0;
2605 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2606 eind->plt_maybe_thumb_refcount = 0;
2607
2608 if (dir->got.refcount <= 0)
2609 {
2610 edir->tls_type = eind->tls_type;
2611 eind->tls_type = GOT_UNKNOWN;
2612 }
2613 }
2614
2615 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2616 }
2617
2618 /* Create an ARM elf linker hash table. */
2619
2620 static struct bfd_link_hash_table *
2621 elf32_arm_link_hash_table_create (bfd *abfd)
2622 {
2623 struct elf32_arm_link_hash_table *ret;
2624 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2625
2626 ret = bfd_malloc (amt);
2627 if (ret == NULL)
2628 return NULL;
2629
2630 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2631 elf32_arm_link_hash_newfunc,
2632 sizeof (struct elf32_arm_link_hash_entry)))
2633 {
2634 free (ret);
2635 return NULL;
2636 }
2637
2638 ret->sgot = NULL;
2639 ret->sgotplt = NULL;
2640 ret->srelgot = NULL;
2641 ret->splt = NULL;
2642 ret->srelplt = NULL;
2643 ret->sdynbss = NULL;
2644 ret->srelbss = NULL;
2645 ret->srelplt2 = NULL;
2646 ret->thumb_glue_size = 0;
2647 ret->arm_glue_size = 0;
2648 ret->bx_glue_size = 0;
2649 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2650 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2651 ret->vfp11_erratum_glue_size = 0;
2652 ret->num_vfp11_fixes = 0;
2653 ret->bfd_of_glue_owner = NULL;
2654 ret->byteswap_code = 0;
2655 ret->target1_is_rel = 0;
2656 ret->target2_reloc = R_ARM_NONE;
2657 #ifdef FOUR_WORD_PLT
2658 ret->plt_header_size = 16;
2659 ret->plt_entry_size = 16;
2660 #else
2661 ret->plt_header_size = 20;
2662 ret->plt_entry_size = 12;
2663 #endif
2664 ret->fix_v4bx = 0;
2665 ret->use_blx = 0;
2666 ret->vxworks_p = 0;
2667 ret->symbian_p = 0;
2668 ret->use_rel = 1;
2669 ret->sym_sec.abfd = NULL;
2670 ret->obfd = abfd;
2671 ret->tls_ldm_got.refcount = 0;
2672
2673 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2674 sizeof (struct elf32_arm_stub_hash_entry)))
2675 {
2676 free (ret);
2677 return NULL;
2678 }
2679
2680 return &ret->root.root;
2681 }
2682
2683 /* Free the derived linker hash table. */
2684
2685 static void
2686 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2687 {
2688 struct elf32_arm_link_hash_table *ret
2689 = (struct elf32_arm_link_hash_table *) hash;
2690
2691 bfd_hash_table_free (&ret->stub_hash_table);
2692 _bfd_generic_link_hash_table_free (hash);
2693 }
2694
2695 /* Determine if we're dealing with a Thumb only architecture. */
2696
2697 static bfd_boolean
2698 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2699 {
2700 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2701 Tag_CPU_arch);
2702 int profile;
2703
2704 if (arch != TAG_CPU_ARCH_V7)
2705 return FALSE;
2706
2707 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2708 Tag_CPU_arch_profile);
2709
2710 return profile == 'M';
2711 }
2712
2713 /* Determine if we're dealing with a Thumb-2 object. */
2714
2715 static bfd_boolean
2716 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2717 {
2718 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2719 Tag_CPU_arch);
2720 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2721 }
2722
2723 static bfd_boolean
2724 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2725 {
2726 switch (stub_type)
2727 {
2728 case arm_thumb_thumb_stub_long_branch:
2729 case arm_thumb_arm_v4t_stub_long_branch:
2730 return TRUE;
2731 case arm_stub_none:
2732 BFD_FAIL ();
2733 return FALSE;
2734 break;
2735 default:
2736 return FALSE;
2737 }
2738 }
2739
2740 /* Determine the type of stub needed, if any, for a call. */
2741
2742 static enum elf32_arm_stub_type
2743 arm_type_of_stub (struct bfd_link_info *info,
2744 asection *input_sec,
2745 const Elf_Internal_Rela *rel,
2746 unsigned char st_type,
2747 struct elf32_arm_link_hash_entry *hash,
2748 bfd_vma destination)
2749 {
2750 bfd_vma location;
2751 bfd_signed_vma branch_offset;
2752 unsigned int r_type;
2753 struct elf32_arm_link_hash_table * globals;
2754 int thumb2;
2755 int thumb_only;
2756 enum elf32_arm_stub_type stub_type = arm_stub_none;
2757
2758 /* We don't know the actual type of destination in case it is of
2759 type STT_SECTION: give up */
2760 if (st_type == STT_SECTION)
2761 return stub_type;
2762
2763 globals = elf32_arm_hash_table (info);
2764
2765 thumb_only = using_thumb_only (globals);
2766
2767 thumb2 = using_thumb2 (globals);
2768
2769 /* Determine where the call point is. */
2770 location = (input_sec->output_offset
2771 + input_sec->output_section->vma
2772 + rel->r_offset);
2773
2774 branch_offset = (bfd_signed_vma)(destination - location);
2775
2776 r_type = ELF32_R_TYPE (rel->r_info);
2777
2778 /* If the call will go through a PLT entry then we do not need
2779 glue. */
2780 if (globals->splt != NULL && hash->root.plt.offset != (bfd_vma) -1)
2781 return stub_type;
2782
2783 if (r_type == R_ARM_THM_CALL)
2784 {
2785 if ((!thumb2
2786 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2787 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2788 || (thumb2
2789 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2790 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2791 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2792 {
2793 if (st_type == STT_ARM_TFUNC)
2794 {
2795 /* Thumb to thumb. */
2796 if (!thumb_only)
2797 {
2798 stub_type = (info->shared | globals->pic_veneer)
2799 ? ((globals->use_blx)
2800 ? arm_stub_pic_long_branch
2801 : arm_stub_none)
2802 : (globals->use_blx)
2803 ? arm_stub_long_branch
2804 : arm_stub_none;
2805 }
2806 else
2807 {
2808 stub_type = (info->shared | globals->pic_veneer)
2809 ? arm_stub_none
2810 : (globals->use_blx)
2811 ? arm_thumb_thumb_stub_long_branch
2812 : arm_stub_none;
2813 }
2814 }
2815 else
2816 {
2817 /* Thumb to arm. */
2818 stub_type = (info->shared | globals->pic_veneer)
2819 ? ((globals->use_blx)
2820 ? arm_stub_pic_long_branch
2821 : arm_stub_none)
2822 : (globals->use_blx)
2823 ? arm_stub_long_branch
2824 : arm_thumb_arm_v4t_stub_long_branch;
2825 }
2826 }
2827 }
2828 else if (r_type == R_ARM_CALL)
2829 {
2830 if (st_type == STT_ARM_TFUNC)
2831 {
2832 /* Arm to thumb. */
2833 /* We have an extra 2-bytes reach because of the mode change
2834 (bit 24 (H) of BLX encoding). */
2835 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2836 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2837 || !globals->use_blx)
2838 {
2839 stub_type = (info->shared | globals->pic_veneer)
2840 ? arm_stub_pic_long_branch
2841 : (globals->use_blx)
2842 ? arm_stub_long_branch
2843 : arm_thumb_v4t_stub_long_branch;
2844 }
2845 }
2846 else
2847 {
2848 /* Arm to arm. */
2849 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2850 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2851 {
2852 stub_type = (info->shared | globals->pic_veneer)
2853 ? arm_stub_pic_long_branch
2854 : arm_stub_long_branch;
2855 }
2856 }
2857 }
2858
2859 return stub_type;
2860 }
2861
2862 /* Build a name for an entry in the stub hash table. */
2863
2864 static char *
2865 elf32_arm_stub_name (const asection *input_section,
2866 const asection *sym_sec,
2867 const struct elf32_arm_link_hash_entry *hash,
2868 const Elf_Internal_Rela *rel)
2869 {
2870 char *stub_name;
2871 bfd_size_type len;
2872
2873 if (hash)
2874 {
2875 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2876 stub_name = bfd_malloc (len);
2877 if (stub_name != NULL)
2878 sprintf (stub_name, "%08x_%s+%x",
2879 input_section->id & 0xffffffff,
2880 hash->root.root.root.string,
2881 (int) rel->r_addend & 0xffffffff);
2882 }
2883 else
2884 {
2885 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2886 stub_name = bfd_malloc (len);
2887 if (stub_name != NULL)
2888 sprintf (stub_name, "%08x_%x:%x+%x",
2889 input_section->id & 0xffffffff,
2890 sym_sec->id & 0xffffffff,
2891 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2892 (int) rel->r_addend & 0xffffffff);
2893 }
2894
2895 return stub_name;
2896 }
2897
2898 /* Look up an entry in the stub hash. Stub entries are cached because
2899 creating the stub name takes a bit of time. */
2900
2901 static struct elf32_arm_stub_hash_entry *
2902 elf32_arm_get_stub_entry (const asection *input_section,
2903 const asection *sym_sec,
2904 struct elf_link_hash_entry *hash,
2905 const Elf_Internal_Rela *rel,
2906 struct elf32_arm_link_hash_table *htab)
2907 {
2908 struct elf32_arm_stub_hash_entry *stub_entry;
2909 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2910 const asection *id_sec;
2911
2912 if ((input_section->flags & SEC_CODE) == 0)
2913 return NULL;
2914
2915 /* If this input section is part of a group of sections sharing one
2916 stub section, then use the id of the first section in the group.
2917 Stub names need to include a section id, as there may well be
2918 more than one stub used to reach say, printf, and we need to
2919 distinguish between them. */
2920 id_sec = htab->stub_group[input_section->id].link_sec;
2921
2922 if (h != NULL && h->stub_cache != NULL
2923 && h->stub_cache->h == h
2924 && h->stub_cache->id_sec == id_sec)
2925 {
2926 stub_entry = h->stub_cache;
2927 }
2928 else
2929 {
2930 char *stub_name;
2931
2932 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2933 if (stub_name == NULL)
2934 return NULL;
2935
2936 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2937 stub_name, FALSE, FALSE);
2938 if (h != NULL)
2939 h->stub_cache = stub_entry;
2940
2941 free (stub_name);
2942 }
2943
2944 return stub_entry;
2945 }
2946
2947 /* Add a new stub entry to the stub hash. Not all fields of the new
2948 stub entry are initialised. */
2949
2950 static struct elf32_arm_stub_hash_entry *
2951 elf32_arm_add_stub (const char *stub_name,
2952 asection *section,
2953 struct elf32_arm_link_hash_table *htab)
2954 {
2955 asection *link_sec;
2956 asection *stub_sec;
2957 struct elf32_arm_stub_hash_entry *stub_entry;
2958
2959 link_sec = htab->stub_group[section->id].link_sec;
2960 stub_sec = htab->stub_group[section->id].stub_sec;
2961 if (stub_sec == NULL)
2962 {
2963 stub_sec = htab->stub_group[link_sec->id].stub_sec;
2964 if (stub_sec == NULL)
2965 {
2966 size_t namelen;
2967 bfd_size_type len;
2968 char *s_name;
2969
2970 namelen = strlen (link_sec->name);
2971 len = namelen + sizeof (STUB_SUFFIX);
2972 s_name = bfd_alloc (htab->stub_bfd, len);
2973 if (s_name == NULL)
2974 return NULL;
2975
2976 memcpy (s_name, link_sec->name, namelen);
2977 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2978 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
2979 if (stub_sec == NULL)
2980 return NULL;
2981 htab->stub_group[link_sec->id].stub_sec = stub_sec;
2982 }
2983 htab->stub_group[section->id].stub_sec = stub_sec;
2984 }
2985
2986 /* Enter this entry into the linker stub hash table. */
2987 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2988 TRUE, FALSE);
2989 if (stub_entry == NULL)
2990 {
2991 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2992 section->owner,
2993 stub_name);
2994 return NULL;
2995 }
2996
2997 stub_entry->stub_sec = stub_sec;
2998 stub_entry->stub_offset = 0;
2999 stub_entry->id_sec = link_sec;
3000
3001 return stub_entry;
3002 }
3003
3004 /* Store an Arm insn into an output section not processed by
3005 elf32_arm_write_section. */
3006
3007 static void
3008 put_arm_insn (struct elf32_arm_link_hash_table *htab,
3009 bfd * output_bfd, bfd_vma val, void * ptr)
3010 {
3011 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3012 bfd_putl32 (val, ptr);
3013 else
3014 bfd_putb32 (val, ptr);
3015 }
3016
3017 /* Store a 16-bit Thumb insn into an output section not processed by
3018 elf32_arm_write_section. */
3019
3020 static void
3021 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
3022 bfd * output_bfd, bfd_vma val, void * ptr)
3023 {
3024 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3025 bfd_putl16 (val, ptr);
3026 else
3027 bfd_putb16 (val, ptr);
3028 }
3029
3030 static bfd_boolean
3031 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3032 void * in_arg)
3033 {
3034 struct elf32_arm_stub_hash_entry *stub_entry;
3035 struct bfd_link_info *info;
3036 struct elf32_arm_link_hash_table *htab;
3037 asection *stub_sec;
3038 bfd *stub_bfd;
3039 bfd_vma stub_addr;
3040 bfd_byte *loc;
3041 bfd_vma sym_value;
3042 int template_size;
3043 int size;
3044 const bfd_vma *template;
3045 int i;
3046 struct elf32_arm_link_hash_table * globals;
3047
3048 /* Massage our args to the form they really have. */
3049 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3050 info = (struct bfd_link_info *) in_arg;
3051
3052 globals = elf32_arm_hash_table (info);
3053
3054 htab = elf32_arm_hash_table (info);
3055 stub_sec = stub_entry->stub_sec;
3056
3057 /* Make a note of the offset within the stubs for this entry. */
3058 stub_entry->stub_offset = stub_sec->size;
3059 loc = stub_sec->contents + stub_entry->stub_offset;
3060
3061 stub_bfd = stub_sec->owner;
3062
3063 /* This is the address of the start of the stub. */
3064 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3065 + stub_entry->stub_offset;
3066
3067 /* This is the address of the stub destination. */
3068 sym_value = (stub_entry->target_value
3069 + stub_entry->target_section->output_offset
3070 + stub_entry->target_section->output_section->vma);
3071
3072 switch (stub_entry->stub_type)
3073 {
3074 case arm_stub_long_branch:
3075 template = arm_long_branch_stub;
3076 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3077 break;
3078 case arm_thumb_v4t_stub_long_branch:
3079 template = arm_thumb_v4t_long_branch_stub;
3080 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3081 break;
3082 case arm_thumb_thumb_stub_long_branch:
3083 template = arm_thumb_thumb_long_branch_stub;
3084 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3085 break;
3086 case arm_thumb_arm_v4t_stub_long_branch:
3087 template = arm_thumb_arm_v4t_long_branch_stub;
3088 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3089 break;
3090 case arm_stub_pic_long_branch:
3091 template = arm_pic_long_branch_stub;
3092 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3093 break;
3094 default:
3095 BFD_FAIL ();
3096 return FALSE;
3097 }
3098
3099 size = 0;
3100 for (i = 0; i < (template_size / 4); i++)
3101 {
3102 /* A 0 pattern is a placeholder, every other pattern is an
3103 instruction. */
3104 if (template[i] != 0)
3105 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3106 else
3107 bfd_put_32 (stub_bfd, template[i], loc + size);
3108
3109 size += 4;
3110 }
3111 stub_sec->size += size;
3112
3113 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3114 if (stub_entry->st_type == STT_ARM_TFUNC)
3115 sym_value |= 1;
3116
3117 switch (stub_entry->stub_type)
3118 {
3119 case arm_stub_long_branch:
3120 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3121 stub_bfd, stub_sec, stub_sec->contents,
3122 stub_entry->stub_offset + 4, sym_value, 0);
3123 break;
3124 case arm_thumb_v4t_stub_long_branch:
3125 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3126 stub_bfd, stub_sec, stub_sec->contents,
3127 stub_entry->stub_offset + 8, sym_value, 0);
3128 break;
3129 case arm_thumb_thumb_stub_long_branch:
3130 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3131 stub_bfd, stub_sec, stub_sec->contents,
3132 stub_entry->stub_offset + 12, sym_value, 0);
3133 break;
3134 case arm_thumb_arm_v4t_stub_long_branch:
3135 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3136 stub_bfd, stub_sec, stub_sec->contents,
3137 stub_entry->stub_offset + 16, sym_value, 0);
3138 break;
3139 case arm_stub_pic_long_branch:
3140 /* We want the value relative to the address 8 bytes from the
3141 start of the stub. */
3142 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_REL32),
3143 stub_bfd, stub_sec, stub_sec->contents,
3144 stub_entry->stub_offset + 8, sym_value, 0);
3145 break;
3146 default:
3147 break;
3148 }
3149
3150 return TRUE;
3151 }
3152
3153 /* As above, but don't actually build the stub. Just bump offset so
3154 we know stub section sizes. */
3155
3156 static bfd_boolean
3157 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3158 void * in_arg)
3159 {
3160 struct elf32_arm_stub_hash_entry *stub_entry;
3161 struct elf32_arm_link_hash_table *htab;
3162 const bfd_vma *template;
3163 int template_size;
3164 int size;
3165 int i;
3166
3167 /* Massage our args to the form they really have. */
3168 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3169 htab = (struct elf32_arm_link_hash_table *) in_arg;
3170
3171 switch (stub_entry->stub_type)
3172 {
3173 case arm_stub_long_branch:
3174 template = arm_long_branch_stub;
3175 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3176 break;
3177 case arm_thumb_v4t_stub_long_branch:
3178 template = arm_thumb_v4t_long_branch_stub;
3179 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3180 break;
3181 case arm_thumb_thumb_stub_long_branch:
3182 template = arm_thumb_thumb_long_branch_stub;
3183 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3184 break;
3185 case arm_thumb_arm_v4t_stub_long_branch:
3186 template = arm_thumb_arm_v4t_long_branch_stub;
3187 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3188 break;
3189 case arm_stub_pic_long_branch:
3190 template = arm_pic_long_branch_stub;
3191 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3192 break;
3193 default:
3194 BFD_FAIL ();
3195 return FALSE;
3196 break;
3197 }
3198
3199 size = 0;
3200 for (i = 0; i < (template_size / 4); i++)
3201 size += 4;
3202 size = (size + 7) & ~7;
3203 stub_entry->stub_sec->size += size;
3204 return TRUE;
3205 }
3206
3207 /* External entry points for sizing and building linker stubs. */
3208
3209 /* Set up various things so that we can make a list of input sections
3210 for each output section included in the link. Returns -1 on error,
3211 0 when no stubs will be needed, and 1 on success. */
3212
3213 int
3214 elf32_arm_setup_section_lists (bfd *output_bfd,
3215 struct bfd_link_info *info)
3216 {
3217 bfd *input_bfd;
3218 unsigned int bfd_count;
3219 int top_id, top_index;
3220 asection *section;
3221 asection **input_list, **list;
3222 bfd_size_type amt;
3223 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3224
3225 if (! is_elf_hash_table (htab))
3226 return 0;
3227
3228 /* Count the number of input BFDs and find the top input section id. */
3229 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3230 input_bfd != NULL;
3231 input_bfd = input_bfd->link_next)
3232 {
3233 bfd_count += 1;
3234 for (section = input_bfd->sections;
3235 section != NULL;
3236 section = section->next)
3237 {
3238 if (top_id < section->id)
3239 top_id = section->id;
3240 }
3241 }
3242 htab->bfd_count = bfd_count;
3243
3244 amt = sizeof (struct map_stub) * (top_id + 1);
3245 htab->stub_group = bfd_zmalloc (amt);
3246 if (htab->stub_group == NULL)
3247 return -1;
3248
3249 /* We can't use output_bfd->section_count here to find the top output
3250 section index as some sections may have been removed, and
3251 _bfd_strip_section_from_output doesn't renumber the indices. */
3252 for (section = output_bfd->sections, top_index = 0;
3253 section != NULL;
3254 section = section->next)
3255 {
3256 if (top_index < section->index)
3257 top_index = section->index;
3258 }
3259
3260 htab->top_index = top_index;
3261 amt = sizeof (asection *) * (top_index + 1);
3262 input_list = bfd_malloc (amt);
3263 htab->input_list = input_list;
3264 if (input_list == NULL)
3265 return -1;
3266
3267 /* For sections we aren't interested in, mark their entries with a
3268 value we can check later. */
3269 list = input_list + top_index;
3270 do
3271 *list = bfd_abs_section_ptr;
3272 while (list-- != input_list);
3273
3274 for (section = output_bfd->sections;
3275 section != NULL;
3276 section = section->next)
3277 {
3278 if ((section->flags & SEC_CODE) != 0)
3279 input_list[section->index] = NULL;
3280 }
3281
3282 return 1;
3283 }
3284
3285 /* The linker repeatedly calls this function for each input section,
3286 in the order that input sections are linked into output sections.
3287 Build lists of input sections to determine groupings between which
3288 we may insert linker stubs. */
3289
3290 void
3291 elf32_arm_next_input_section (struct bfd_link_info *info,
3292 asection *isec)
3293 {
3294 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3295
3296 if (isec->output_section->index <= htab->top_index)
3297 {
3298 asection **list = htab->input_list + isec->output_section->index;
3299
3300 if (*list != bfd_abs_section_ptr)
3301 {
3302 /* Steal the link_sec pointer for our list. */
3303 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3304 /* This happens to make the list in reverse order,
3305 which is what we want. */
3306 PREV_SEC (isec) = *list;
3307 *list = isec;
3308 }
3309 }
3310 }
3311
3312 /* See whether we can group stub sections together. Grouping stub
3313 sections may result in fewer stubs. More importantly, we need to
3314 put all .init* and .fini* stubs at the beginning of the .init or
3315 .fini output sections respectively, because glibc splits the
3316 _init and _fini functions into multiple parts. Putting a stub in
3317 the middle of a function is not a good idea. */
3318
3319 static void
3320 group_sections (struct elf32_arm_link_hash_table *htab,
3321 bfd_size_type stub_group_size,
3322 bfd_boolean stubs_always_before_branch)
3323 {
3324 asection **list = htab->input_list + htab->top_index;
3325
3326 do
3327 {
3328 asection *tail = *list;
3329
3330 if (tail == bfd_abs_section_ptr)
3331 continue;
3332
3333 while (tail != NULL)
3334 {
3335 asection *curr;
3336 asection *prev;
3337 bfd_size_type total;
3338
3339 curr = tail;
3340 total = tail->size;
3341 while ((prev = PREV_SEC (curr)) != NULL
3342 && ((total += curr->output_offset - prev->output_offset)
3343 < stub_group_size))
3344 curr = prev;
3345
3346 /* OK, the size from the start of CURR to the end is less
3347 than stub_group_size and thus can be handled by one stub
3348 section. (Or the tail section is itself larger than
3349 stub_group_size, in which case we may be toast.)
3350 We should really be keeping track of the total size of
3351 stubs added here, as stubs contribute to the final output
3352 section size. */
3353 do
3354 {
3355 prev = PREV_SEC (tail);
3356 /* Set up this stub group. */
3357 htab->stub_group[tail->id].link_sec = curr;
3358 }
3359 while (tail != curr && (tail = prev) != NULL);
3360
3361 /* But wait, there's more! Input sections up to stub_group_size
3362 bytes before the stub section can be handled by it too. */
3363 if (!stubs_always_before_branch)
3364 {
3365 total = 0;
3366 while (prev != NULL
3367 && ((total += tail->output_offset - prev->output_offset)
3368 < stub_group_size))
3369 {
3370 tail = prev;
3371 prev = PREV_SEC (tail);
3372 htab->stub_group[tail->id].link_sec = curr;
3373 }
3374 }
3375 tail = prev;
3376 }
3377 }
3378 while (list-- != htab->input_list);
3379
3380 free (htab->input_list);
3381 #undef PREV_SEC
3382 }
3383
3384 /* Determine and set the size of the stub section for a final link.
3385
3386 The basic idea here is to examine all the relocations looking for
3387 PC-relative calls to a target that is unreachable with a "bl"
3388 instruction. */
3389
3390 bfd_boolean
3391 elf32_arm_size_stubs (bfd *output_bfd,
3392 bfd *stub_bfd,
3393 struct bfd_link_info *info,
3394 bfd_signed_vma group_size,
3395 asection * (*add_stub_section) (const char *, asection *),
3396 void (*layout_sections_again) (void))
3397 {
3398 bfd_size_type stub_group_size;
3399 bfd_boolean stubs_always_before_branch;
3400 bfd_boolean stub_changed = 0;
3401 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3402
3403 /* Propagate mach to stub bfd, because it may not have been
3404 finalized when we created stub_bfd. */
3405 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3406 bfd_get_mach (output_bfd));
3407
3408 /* Stash our params away. */
3409 htab->stub_bfd = stub_bfd;
3410 htab->add_stub_section = add_stub_section;
3411 htab->layout_sections_again = layout_sections_again;
3412 stubs_always_before_branch = group_size < 0;
3413 if (group_size < 0)
3414 stub_group_size = -group_size;
3415 else
3416 stub_group_size = group_size;
3417
3418 if (stub_group_size == 1)
3419 {
3420 /* Default values. */
3421 /* Thumb branch range is +-4MB has to be used as the default
3422 maximum size (a given section can contain both ARM and Thumb
3423 code, so the worst case has to be taken into account).
3424
3425 This value is 24K less than that, which allows for 2025
3426 12-byte stubs. If we exceed that, then we will fail to link.
3427 The user will have to relink with an explicit group size
3428 option. */
3429 stub_group_size = 4170000;
3430 }
3431
3432 group_sections (htab, stub_group_size, stubs_always_before_branch);
3433
3434 while (1)
3435 {
3436 bfd *input_bfd;
3437 unsigned int bfd_indx;
3438 asection *stub_sec;
3439
3440 for (input_bfd = info->input_bfds, bfd_indx = 0;
3441 input_bfd != NULL;
3442 input_bfd = input_bfd->link_next, bfd_indx++)
3443 {
3444 Elf_Internal_Shdr *symtab_hdr;
3445 asection *section;
3446 Elf_Internal_Sym *local_syms = NULL;
3447
3448 /* We'll need the symbol table in a second. */
3449 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3450 if (symtab_hdr->sh_info == 0)
3451 continue;
3452
3453 /* Walk over each section attached to the input bfd. */
3454 for (section = input_bfd->sections;
3455 section != NULL;
3456 section = section->next)
3457 {
3458 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3459
3460 /* If there aren't any relocs, then there's nothing more
3461 to do. */
3462 if ((section->flags & SEC_RELOC) == 0
3463 || section->reloc_count == 0
3464 || (section->flags & SEC_CODE) == 0)
3465 continue;
3466
3467 /* If this section is a link-once section that will be
3468 discarded, then don't create any stubs. */
3469 if (section->output_section == NULL
3470 || section->output_section->owner != output_bfd)
3471 continue;
3472
3473 /* Get the relocs. */
3474 internal_relocs
3475 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3476 NULL, info->keep_memory);
3477 if (internal_relocs == NULL)
3478 goto error_ret_free_local;
3479
3480 /* Now examine each relocation. */
3481 irela = internal_relocs;
3482 irelaend = irela + section->reloc_count;
3483 for (; irela < irelaend; irela++)
3484 {
3485 unsigned int r_type, r_indx;
3486 enum elf32_arm_stub_type stub_type;
3487 struct elf32_arm_stub_hash_entry *stub_entry;
3488 asection *sym_sec;
3489 bfd_vma sym_value;
3490 bfd_vma destination;
3491 struct elf32_arm_link_hash_entry *hash;
3492 const char *sym_name;
3493 char *stub_name;
3494 const asection *id_sec;
3495 unsigned char st_type;
3496
3497 r_type = ELF32_R_TYPE (irela->r_info);
3498 r_indx = ELF32_R_SYM (irela->r_info);
3499
3500 if (r_type >= (unsigned int) R_ARM_max)
3501 {
3502 bfd_set_error (bfd_error_bad_value);
3503 error_ret_free_internal:
3504 if (elf_section_data (section)->relocs == NULL)
3505 free (internal_relocs);
3506 goto error_ret_free_local;
3507 }
3508
3509 /* Only look for stubs on call instructions. */
3510 if ((r_type != (unsigned int) R_ARM_CALL)
3511 && (r_type != (unsigned int) R_ARM_THM_CALL))
3512 continue;
3513
3514 /* Now determine the call target, its name, value,
3515 section. */
3516 sym_sec = NULL;
3517 sym_value = 0;
3518 destination = 0;
3519 hash = NULL;
3520 sym_name = NULL;
3521 if (r_indx < symtab_hdr->sh_info)
3522 {
3523 /* It's a local symbol. */
3524 Elf_Internal_Sym *sym;
3525 Elf_Internal_Shdr *hdr;
3526
3527 if (local_syms == NULL)
3528 {
3529 local_syms
3530 = (Elf_Internal_Sym *) symtab_hdr->contents;
3531 if (local_syms == NULL)
3532 local_syms
3533 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3534 symtab_hdr->sh_info, 0,
3535 NULL, NULL, NULL);
3536 if (local_syms == NULL)
3537 goto error_ret_free_internal;
3538 }
3539
3540 sym = local_syms + r_indx;
3541 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3542 sym_sec = hdr->bfd_section;
3543 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3544 sym_value = sym->st_value;
3545 destination = (sym_value + irela->r_addend
3546 + sym_sec->output_offset
3547 + sym_sec->output_section->vma);
3548 st_type = ELF_ST_TYPE (sym->st_info);
3549 sym_name
3550 = bfd_elf_string_from_elf_section (input_bfd,
3551 symtab_hdr->sh_link,
3552 sym->st_name);
3553 }
3554 else
3555 {
3556 /* It's an external symbol. */
3557 int e_indx;
3558
3559 e_indx = r_indx - symtab_hdr->sh_info;
3560 hash = ((struct elf32_arm_link_hash_entry *)
3561 elf_sym_hashes (input_bfd)[e_indx]);
3562
3563 while (hash->root.root.type == bfd_link_hash_indirect
3564 || hash->root.root.type == bfd_link_hash_warning)
3565 hash = ((struct elf32_arm_link_hash_entry *)
3566 hash->root.root.u.i.link);
3567
3568 if (hash->root.root.type == bfd_link_hash_defined
3569 || hash->root.root.type == bfd_link_hash_defweak)
3570 {
3571 sym_sec = hash->root.root.u.def.section;
3572 sym_value = hash->root.root.u.def.value;
3573 if (sym_sec->output_section != NULL)
3574 destination = (sym_value + irela->r_addend
3575 + sym_sec->output_offset
3576 + sym_sec->output_section->vma);
3577 }
3578 else if (hash->root.root.type == bfd_link_hash_undefweak
3579 || hash->root.root.type == bfd_link_hash_undefined)
3580 /* For a shared library, these will need a PLT stub,
3581 which is treated separately.
3582 For absolute code, they cannot be handled. */
3583 continue;
3584 else
3585 {
3586 bfd_set_error (bfd_error_bad_value);
3587 goto error_ret_free_internal;
3588 }
3589 st_type = ELF_ST_TYPE (hash->root.type);
3590 sym_name = hash->root.root.root.string;
3591 }
3592
3593 /* Determine what (if any) linker stub is needed. */
3594 stub_type = arm_type_of_stub (info, section, irela, st_type,
3595 hash, destination);
3596 if (stub_type == arm_stub_none)
3597 continue;
3598
3599 /* Support for grouping stub sections. */
3600 id_sec = htab->stub_group[section->id].link_sec;
3601
3602 /* Get the name of this stub. */
3603 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3604 if (!stub_name)
3605 goto error_ret_free_internal;
3606
3607 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3608 stub_name,
3609 FALSE, FALSE);
3610 if (stub_entry != NULL)
3611 {
3612 /* The proper stub has already been created. */
3613 free (stub_name);
3614 continue;
3615 }
3616
3617 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3618 if (stub_entry == NULL)
3619 {
3620 free (stub_name);
3621 goto error_ret_free_internal;
3622 }
3623
3624 stub_entry->target_value = sym_value;
3625 stub_entry->target_section = sym_sec;
3626 stub_entry->stub_type = stub_type;
3627 stub_entry->h = hash;
3628 stub_entry->st_type = st_type;
3629
3630 if (sym_name == NULL)
3631 sym_name = "unnamed";
3632 stub_entry->output_name
3633 = bfd_alloc (htab->stub_bfd,
3634 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3635 + strlen (sym_name));
3636 if (stub_entry->output_name == NULL)
3637 {
3638 free (stub_name);
3639 goto error_ret_free_internal;
3640 }
3641
3642 /* For historical reasons, use the existing names for
3643 ARM-to-Thumb and Thumb-to-ARM stubs. */
3644 if (r_type == (unsigned int) R_ARM_THM_CALL
3645 && st_type != STT_ARM_TFUNC)
3646 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3647 sym_name);
3648 else if (r_type == (unsigned int) R_ARM_CALL
3649 && st_type == STT_ARM_TFUNC)
3650 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3651 sym_name);
3652 else
3653 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3654 sym_name);
3655
3656 stub_changed = TRUE;
3657 }
3658
3659 /* We're done with the internal relocs, free them. */
3660 if (elf_section_data (section)->relocs == NULL)
3661 free (internal_relocs);
3662 }
3663 }
3664
3665 if (!stub_changed)
3666 break;
3667
3668 /* OK, we've added some stubs. Find out the new size of the
3669 stub sections. */
3670 for (stub_sec = htab->stub_bfd->sections;
3671 stub_sec != NULL;
3672 stub_sec = stub_sec->next)
3673 stub_sec->size = 0;
3674
3675 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3676
3677 /* Ask the linker to do its stuff. */
3678 (*htab->layout_sections_again) ();
3679 stub_changed = FALSE;
3680 }
3681
3682 return TRUE;
3683
3684 error_ret_free_local:
3685 return FALSE;
3686 }
3687
3688 /* Build all the stubs associated with the current output file. The
3689 stubs are kept in a hash table attached to the main linker hash
3690 table. We also set up the .plt entries for statically linked PIC
3691 functions here. This function is called via arm_elf_finish in the
3692 linker. */
3693
3694 bfd_boolean
3695 elf32_arm_build_stubs (struct bfd_link_info *info)
3696 {
3697 asection *stub_sec;
3698 struct bfd_hash_table *table;
3699 struct elf32_arm_link_hash_table *htab;
3700
3701 htab = elf32_arm_hash_table (info);
3702
3703 for (stub_sec = htab->stub_bfd->sections;
3704 stub_sec != NULL;
3705 stub_sec = stub_sec->next)
3706 {
3707 bfd_size_type size;
3708
3709 /* Ignore non-stub sections */
3710 if (!strstr (stub_sec->name, STUB_SUFFIX))
3711 continue;
3712
3713 /* Allocate memory to hold the linker stubs. */
3714 size = stub_sec->size;
3715 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3716 if (stub_sec->contents == NULL && size != 0)
3717 return FALSE;
3718 stub_sec->size = 0;
3719 }
3720
3721 /* Build the stubs as directed by the stub hash table. */
3722 table = &htab->stub_hash_table;
3723 bfd_hash_traverse (table, arm_build_one_stub, info);
3724
3725 return TRUE;
3726 }
3727
3728 /* Locate the Thumb encoded calling stub for NAME. */
3729
3730 static struct elf_link_hash_entry *
3731 find_thumb_glue (struct bfd_link_info *link_info,
3732 const char *name,
3733 char **error_message)
3734 {
3735 char *tmp_name;
3736 struct elf_link_hash_entry *hash;
3737 struct elf32_arm_link_hash_table *hash_table;
3738
3739 /* We need a pointer to the armelf specific hash table. */
3740 hash_table = elf32_arm_hash_table (link_info);
3741
3742 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3743 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3744
3745 BFD_ASSERT (tmp_name);
3746
3747 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3748
3749 hash = elf_link_hash_lookup
3750 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3751
3752 if (hash == NULL
3753 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3754 tmp_name, name) == -1)
3755 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3756
3757 free (tmp_name);
3758
3759 return hash;
3760 }
3761
3762 /* Locate the ARM encoded calling stub for NAME. */
3763
3764 static struct elf_link_hash_entry *
3765 find_arm_glue (struct bfd_link_info *link_info,
3766 const char *name,
3767 char **error_message)
3768 {
3769 char *tmp_name;
3770 struct elf_link_hash_entry *myh;
3771 struct elf32_arm_link_hash_table *hash_table;
3772
3773 /* We need a pointer to the elfarm specific hash table. */
3774 hash_table = elf32_arm_hash_table (link_info);
3775
3776 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3777 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3778
3779 BFD_ASSERT (tmp_name);
3780
3781 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3782
3783 myh = elf_link_hash_lookup
3784 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3785
3786 if (myh == NULL
3787 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3788 tmp_name, name) == -1)
3789 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3790
3791 free (tmp_name);
3792
3793 return myh;
3794 }
3795
3796 /* ARM->Thumb glue (static images):
3797
3798 .arm
3799 __func_from_arm:
3800 ldr r12, __func_addr
3801 bx r12
3802 __func_addr:
3803 .word func @ behave as if you saw a ARM_32 reloc.
3804
3805 (v5t static images)
3806 .arm
3807 __func_from_arm:
3808 ldr pc, __func_addr
3809 __func_addr:
3810 .word func @ behave as if you saw a ARM_32 reloc.
3811
3812 (relocatable images)
3813 .arm
3814 __func_from_arm:
3815 ldr r12, __func_offset
3816 add r12, r12, pc
3817 bx r12
3818 __func_offset:
3819 .word func - .
3820 */
3821
3822 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3823 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3824 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3825 static const insn32 a2t3_func_addr_insn = 0x00000001;
3826
3827 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3828 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3829 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3830
3831 #define ARM2THUMB_PIC_GLUE_SIZE 16
3832 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3833 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3834 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3835
3836 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3837
3838 .thumb .thumb
3839 .align 2 .align 2
3840 __func_from_thumb: __func_from_thumb:
3841 bx pc push {r6, lr}
3842 nop ldr r6, __func_addr
3843 .arm mov lr, pc
3844 __func_change_to_arm: bx r6
3845 b func .arm
3846 __func_back_to_thumb:
3847 ldmia r13! {r6, lr}
3848 bx lr
3849 __func_addr:
3850 .word func */
3851
3852 #define THUMB2ARM_GLUE_SIZE 8
3853 static const insn16 t2a1_bx_pc_insn = 0x4778;
3854 static const insn16 t2a2_noop_insn = 0x46c0;
3855 static const insn32 t2a3_b_insn = 0xea000000;
3856
3857 #define VFP11_ERRATUM_VENEER_SIZE 8
3858
3859 #define ARM_BX_VENEER_SIZE 12
3860 static const insn32 armbx1_tst_insn = 0xe3100001;
3861 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3862 static const insn32 armbx3_bx_insn = 0xe12fff10;
3863
3864 #ifndef ELFARM_NABI_C_INCLUDED
3865 bfd_boolean
3866 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3867 {
3868 asection * s;
3869 bfd_byte * foo;
3870 struct elf32_arm_link_hash_table * globals;
3871
3872 globals = elf32_arm_hash_table (info);
3873
3874 BFD_ASSERT (globals != NULL);
3875
3876 if (globals->arm_glue_size != 0)
3877 {
3878 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3879
3880 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3881 ARM2THUMB_GLUE_SECTION_NAME);
3882
3883 BFD_ASSERT (s != NULL);
3884
3885 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
3886
3887 BFD_ASSERT (s->size == globals->arm_glue_size);
3888 s->contents = foo;
3889 }
3890
3891 if (globals->thumb_glue_size != 0)
3892 {
3893 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3894
3895 s = bfd_get_section_by_name
3896 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
3897
3898 BFD_ASSERT (s != NULL);
3899
3900 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
3901
3902 BFD_ASSERT (s->size == globals->thumb_glue_size);
3903 s->contents = foo;
3904 }
3905
3906 if (globals->vfp11_erratum_glue_size != 0)
3907 {
3908 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3909
3910 s = bfd_get_section_by_name
3911 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
3912
3913 BFD_ASSERT (s != NULL);
3914
3915 foo = bfd_alloc (globals->bfd_of_glue_owner,
3916 globals->vfp11_erratum_glue_size);
3917
3918 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
3919 s->contents = foo;
3920 }
3921
3922 if (globals->bx_glue_size != 0)
3923 {
3924 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3925
3926 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
3927 ARM_BX_GLUE_SECTION_NAME);
3928
3929 BFD_ASSERT (s != NULL);
3930
3931 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->bx_glue_size);
3932
3933 BFD_ASSERT (s->size == globals->bx_glue_size);
3934 s->contents = foo;
3935 }
3936
3937 return TRUE;
3938 }
3939
3940 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3941 returns the symbol identifying the stub. */
3942
3943 static struct elf_link_hash_entry *
3944 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3945 struct elf_link_hash_entry * h)
3946 {
3947 const char * name = h->root.root.string;
3948 asection * s;
3949 char * tmp_name;
3950 struct elf_link_hash_entry * myh;
3951 struct bfd_link_hash_entry * bh;
3952 struct elf32_arm_link_hash_table * globals;
3953 bfd_vma val;
3954 bfd_size_type size;
3955
3956 globals = elf32_arm_hash_table (link_info);
3957
3958 BFD_ASSERT (globals != NULL);
3959 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3960
3961 s = bfd_get_section_by_name
3962 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
3963
3964 BFD_ASSERT (s != NULL);
3965
3966 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3967
3968 BFD_ASSERT (tmp_name);
3969
3970 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3971
3972 myh = elf_link_hash_lookup
3973 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3974
3975 if (myh != NULL)
3976 {
3977 /* We've already seen this guy. */
3978 free (tmp_name);
3979 return myh;
3980 }
3981
3982 /* The only trick here is using hash_table->arm_glue_size as the value.
3983 Even though the section isn't allocated yet, this is where we will be
3984 putting it. */
3985 bh = NULL;
3986 val = globals->arm_glue_size + 1;
3987 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
3988 tmp_name, BSF_GLOBAL, s, val,
3989 NULL, TRUE, FALSE, &bh);
3990
3991 myh = (struct elf_link_hash_entry *) bh;
3992 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3993 myh->forced_local = 1;
3994
3995 free (tmp_name);
3996
3997 if (link_info->shared || globals->root.is_relocatable_executable
3998 || globals->pic_veneer)
3999 size = ARM2THUMB_PIC_GLUE_SIZE;
4000 else if (globals->use_blx)
4001 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4002 else
4003 size = ARM2THUMB_STATIC_GLUE_SIZE;
4004
4005 s->size += size;
4006 globals->arm_glue_size += size;
4007
4008 return myh;
4009 }
4010
4011 static void
4012 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4013 struct elf_link_hash_entry *h)
4014 {
4015 const char *name = h->root.root.string;
4016 asection *s;
4017 char *tmp_name;
4018 struct elf_link_hash_entry *myh;
4019 struct bfd_link_hash_entry *bh;
4020 struct elf32_arm_link_hash_table *hash_table;
4021 bfd_vma val;
4022
4023 hash_table = elf32_arm_hash_table (link_info);
4024
4025 BFD_ASSERT (hash_table != NULL);
4026 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4027
4028 s = bfd_get_section_by_name
4029 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4030
4031 BFD_ASSERT (s != NULL);
4032
4033 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4034 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4035
4036 BFD_ASSERT (tmp_name);
4037
4038 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4039
4040 myh = elf_link_hash_lookup
4041 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4042
4043 if (myh != NULL)
4044 {
4045 /* We've already seen this guy. */
4046 free (tmp_name);
4047 return;
4048 }
4049
4050 bh = NULL;
4051 val = hash_table->thumb_glue_size + 1;
4052 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4053 tmp_name, BSF_GLOBAL, s, val,
4054 NULL, TRUE, FALSE, &bh);
4055
4056 /* If we mark it 'Thumb', the disassembler will do a better job. */
4057 myh = (struct elf_link_hash_entry *) bh;
4058 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4059 myh->forced_local = 1;
4060
4061 free (tmp_name);
4062
4063 #define CHANGE_TO_ARM "__%s_change_to_arm"
4064 #define BACK_FROM_ARM "__%s_back_from_arm"
4065
4066 /* Allocate another symbol to mark where we switch to Arm mode. */
4067 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4068 + strlen (CHANGE_TO_ARM) + 1);
4069
4070 BFD_ASSERT (tmp_name);
4071
4072 sprintf (tmp_name, CHANGE_TO_ARM, name);
4073
4074 bh = NULL;
4075 val = hash_table->thumb_glue_size + 4,
4076 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4077 tmp_name, BSF_LOCAL, s, val,
4078 NULL, TRUE, FALSE, &bh);
4079
4080 free (tmp_name);
4081
4082 s->size += THUMB2ARM_GLUE_SIZE;
4083 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4084
4085 return;
4086 }
4087
4088
4089 /* Allocate space for ARMv4 BX veneers. */
4090
4091 static void
4092 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4093 {
4094 asection * s;
4095 struct elf32_arm_link_hash_table *globals;
4096 char *tmp_name;
4097 struct elf_link_hash_entry *myh;
4098 struct bfd_link_hash_entry *bh;
4099 bfd_vma val;
4100
4101 /* BX PC does not need a veneer. */
4102 if (reg == 15)
4103 return;
4104
4105 globals = elf32_arm_hash_table (link_info);
4106
4107 BFD_ASSERT (globals != NULL);
4108 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4109
4110 /* Check if this veneer has already been allocated. */
4111 if (globals->bx_glue_offset[reg])
4112 return;
4113
4114 s = bfd_get_section_by_name
4115 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4116
4117 BFD_ASSERT (s != NULL);
4118
4119 /* Add symbol for veneer. */
4120 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4121
4122 BFD_ASSERT (tmp_name);
4123
4124 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4125
4126 myh = elf_link_hash_lookup
4127 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4128
4129 BFD_ASSERT (myh == NULL);
4130
4131 bh = NULL;
4132 val = globals->bx_glue_size;
4133 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4134 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4135 NULL, TRUE, FALSE, &bh);
4136
4137 myh = (struct elf_link_hash_entry *) bh;
4138 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4139 myh->forced_local = 1;
4140
4141 s->size += ARM_BX_VENEER_SIZE;
4142 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4143 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4144 }
4145
4146
4147 /* Add an entry to the code/data map for section SEC. */
4148
4149 static void
4150 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4151 {
4152 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4153 unsigned int newidx;
4154
4155 if (sec_data->map == NULL)
4156 {
4157 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4158 sec_data->mapcount = 0;
4159 sec_data->mapsize = 1;
4160 }
4161
4162 newidx = sec_data->mapcount++;
4163
4164 if (sec_data->mapcount > sec_data->mapsize)
4165 {
4166 sec_data->mapsize *= 2;
4167 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4168 * sizeof (elf32_arm_section_map));
4169 }
4170
4171 if (sec_data->map)
4172 {
4173 sec_data->map[newidx].vma = vma;
4174 sec_data->map[newidx].type = type;
4175 }
4176 }
4177
4178
4179 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4180 veneers are handled for now. */
4181
4182 static bfd_vma
4183 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4184 elf32_vfp11_erratum_list *branch,
4185 bfd *branch_bfd,
4186 asection *branch_sec,
4187 unsigned int offset)
4188 {
4189 asection *s;
4190 struct elf32_arm_link_hash_table *hash_table;
4191 char *tmp_name;
4192 struct elf_link_hash_entry *myh;
4193 struct bfd_link_hash_entry *bh;
4194 bfd_vma val;
4195 struct _arm_elf_section_data *sec_data;
4196 int errcount;
4197 elf32_vfp11_erratum_list *newerr;
4198
4199 hash_table = elf32_arm_hash_table (link_info);
4200
4201 BFD_ASSERT (hash_table != NULL);
4202 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4203
4204 s = bfd_get_section_by_name
4205 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4206
4207 sec_data = elf32_arm_section_data (s);
4208
4209 BFD_ASSERT (s != NULL);
4210
4211 tmp_name = bfd_malloc ((bfd_size_type) strlen
4212 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4213
4214 BFD_ASSERT (tmp_name);
4215
4216 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4217 hash_table->num_vfp11_fixes);
4218
4219 myh = elf_link_hash_lookup
4220 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4221
4222 BFD_ASSERT (myh == NULL);
4223
4224 bh = NULL;
4225 val = hash_table->vfp11_erratum_glue_size;
4226 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4227 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4228 NULL, TRUE, FALSE, &bh);
4229
4230 myh = (struct elf_link_hash_entry *) bh;
4231 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4232 myh->forced_local = 1;
4233
4234 /* Link veneer back to calling location. */
4235 errcount = ++(sec_data->erratumcount);
4236 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4237
4238 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4239 newerr->vma = -1;
4240 newerr->u.v.branch = branch;
4241 newerr->u.v.id = hash_table->num_vfp11_fixes;
4242 branch->u.b.veneer = newerr;
4243
4244 newerr->next = sec_data->erratumlist;
4245 sec_data->erratumlist = newerr;
4246
4247 /* A symbol for the return from the veneer. */
4248 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4249 hash_table->num_vfp11_fixes);
4250
4251 myh = elf_link_hash_lookup
4252 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4253
4254 if (myh != NULL)
4255 abort ();
4256
4257 bh = NULL;
4258 val = offset + 4;
4259 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4260 branch_sec, val, NULL, TRUE, FALSE, &bh);
4261
4262 myh = (struct elf_link_hash_entry *) bh;
4263 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4264 myh->forced_local = 1;
4265
4266 free (tmp_name);
4267
4268 /* Generate a mapping symbol for the veneer section, and explicitly add an
4269 entry for that symbol to the code/data map for the section. */
4270 if (hash_table->vfp11_erratum_glue_size == 0)
4271 {
4272 bh = NULL;
4273 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4274 ever requires this erratum fix. */
4275 _bfd_generic_link_add_one_symbol (link_info,
4276 hash_table->bfd_of_glue_owner, "$a",
4277 BSF_LOCAL, s, 0, NULL,
4278 TRUE, FALSE, &bh);
4279
4280 myh = (struct elf_link_hash_entry *) bh;
4281 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4282 myh->forced_local = 1;
4283
4284 /* The elf32_arm_init_maps function only cares about symbols from input
4285 BFDs. We must make a note of this generated mapping symbol
4286 ourselves so that code byteswapping works properly in
4287 elf32_arm_write_section. */
4288 elf32_arm_section_map_add (s, 'a', 0);
4289 }
4290
4291 s->size += VFP11_ERRATUM_VENEER_SIZE;
4292 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4293 hash_table->num_vfp11_fixes++;
4294
4295 /* The offset of the veneer. */
4296 return val;
4297 }
4298
4299 /* Add the glue sections to ABFD. This function is called from the
4300 linker scripts in ld/emultempl/{armelf}.em. */
4301
4302 bfd_boolean
4303 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4304 struct bfd_link_info *info)
4305 {
4306 flagword flags;
4307 asection *sec;
4308
4309 /* If we are only performing a partial
4310 link do not bother adding the glue. */
4311 if (info->relocatable)
4312 return TRUE;
4313
4314 /* linker stubs don't need glue */
4315 if (!strcmp (abfd->filename, "linker stubs"))
4316 return TRUE;
4317
4318 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
4319
4320 if (sec == NULL)
4321 {
4322 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
4323 will prevent elf_link_input_bfd() from processing the contents
4324 of this section. */
4325 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4326 | SEC_CODE | SEC_READONLY);
4327
4328 sec = bfd_make_section_with_flags (abfd,
4329 ARM2THUMB_GLUE_SECTION_NAME,
4330 flags);
4331
4332 if (sec == NULL
4333 || !bfd_set_section_alignment (abfd, sec, 2))
4334 return FALSE;
4335
4336 /* Set the gc mark to prevent the section from being removed by garbage
4337 collection, despite the fact that no relocs refer to this section. */
4338 sec->gc_mark = 1;
4339 }
4340
4341 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
4342
4343 if (sec == NULL)
4344 {
4345 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4346 | SEC_CODE | SEC_READONLY);
4347
4348 sec = bfd_make_section_with_flags (abfd,
4349 THUMB2ARM_GLUE_SECTION_NAME,
4350 flags);
4351
4352 if (sec == NULL
4353 || !bfd_set_section_alignment (abfd, sec, 2))
4354 return FALSE;
4355
4356 sec->gc_mark = 1;
4357 }
4358
4359 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
4360
4361 if (sec == NULL)
4362 {
4363 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4364 | SEC_CODE | SEC_READONLY);
4365
4366 sec = bfd_make_section_with_flags (abfd,
4367 VFP11_ERRATUM_VENEER_SECTION_NAME,
4368 flags);
4369
4370 if (sec == NULL
4371 || !bfd_set_section_alignment (abfd, sec, 2))
4372 return FALSE;
4373
4374 sec->gc_mark = 1;
4375 }
4376
4377 sec = bfd_get_section_by_name (abfd, ARM_BX_GLUE_SECTION_NAME);
4378
4379 if (sec == NULL)
4380 {
4381 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4382 | SEC_CODE | SEC_READONLY);
4383
4384 sec = bfd_make_section_with_flags (abfd,
4385 ARM_BX_GLUE_SECTION_NAME,
4386 flags);
4387
4388 if (sec == NULL
4389 || !bfd_set_section_alignment (abfd, sec, 2))
4390 return FALSE;
4391
4392 sec->gc_mark = 1;
4393 }
4394
4395 return TRUE;
4396 }
4397
4398 /* Select a BFD to be used to hold the sections used by the glue code.
4399 This function is called from the linker scripts in ld/emultempl/
4400 {armelf/pe}.em */
4401
4402 bfd_boolean
4403 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4404 {
4405 struct elf32_arm_link_hash_table *globals;
4406
4407 /* If we are only performing a partial link
4408 do not bother getting a bfd to hold the glue. */
4409 if (info->relocatable)
4410 return TRUE;
4411
4412 /* Make sure we don't attach the glue sections to a dynamic object. */
4413 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4414
4415 globals = elf32_arm_hash_table (info);
4416
4417 BFD_ASSERT (globals != NULL);
4418
4419 if (globals->bfd_of_glue_owner != NULL)
4420 return TRUE;
4421
4422 /* Save the bfd for later use. */
4423 globals->bfd_of_glue_owner = abfd;
4424
4425 return TRUE;
4426 }
4427
4428 static void
4429 check_use_blx (struct elf32_arm_link_hash_table *globals)
4430 {
4431 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4432 Tag_CPU_arch) > 2)
4433 globals->use_blx = 1;
4434 }
4435
4436 bfd_boolean
4437 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4438 struct bfd_link_info *link_info)
4439 {
4440 Elf_Internal_Shdr *symtab_hdr;
4441 Elf_Internal_Rela *internal_relocs = NULL;
4442 Elf_Internal_Rela *irel, *irelend;
4443 bfd_byte *contents = NULL;
4444
4445 asection *sec;
4446 struct elf32_arm_link_hash_table *globals;
4447
4448 /* If we are only performing a partial link do not bother
4449 to construct any glue. */
4450 if (link_info->relocatable)
4451 return TRUE;
4452
4453 /* Here we have a bfd that is to be included on the link. We have a
4454 hook to do reloc rummaging, before section sizes are nailed down. */
4455 globals = elf32_arm_hash_table (link_info);
4456
4457 BFD_ASSERT (globals != NULL);
4458
4459 check_use_blx (globals);
4460
4461 if (globals->byteswap_code && !bfd_big_endian (abfd))
4462 {
4463 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4464 abfd);
4465 return FALSE;
4466 }
4467
4468 /* PR 5398: If we have not decided to include any loadable sections in
4469 the output then we will not have a glue owner bfd. This is OK, it
4470 just means that there is nothing else for us to do here. */
4471 if (globals->bfd_of_glue_owner == NULL)
4472 return TRUE;
4473
4474 /* Rummage around all the relocs and map the glue vectors. */
4475 sec = abfd->sections;
4476
4477 if (sec == NULL)
4478 return TRUE;
4479
4480 for (; sec != NULL; sec = sec->next)
4481 {
4482 if (sec->reloc_count == 0)
4483 continue;
4484
4485 if ((sec->flags & SEC_EXCLUDE) != 0)
4486 continue;
4487
4488 symtab_hdr = & elf_symtab_hdr (abfd);
4489
4490 /* Load the relocs. */
4491 internal_relocs
4492 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4493
4494 if (internal_relocs == NULL)
4495 goto error_return;
4496
4497 irelend = internal_relocs + sec->reloc_count;
4498 for (irel = internal_relocs; irel < irelend; irel++)
4499 {
4500 long r_type;
4501 unsigned long r_index;
4502
4503 struct elf_link_hash_entry *h;
4504
4505 r_type = ELF32_R_TYPE (irel->r_info);
4506 r_index = ELF32_R_SYM (irel->r_info);
4507
4508 /* These are the only relocation types we care about. */
4509 if ( r_type != R_ARM_PC24
4510 && r_type != R_ARM_PLT32
4511 && r_type != R_ARM_JUMP24
4512 && r_type != R_ARM_THM_JUMP24
4513 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4514 continue;
4515
4516 /* Get the section contents if we haven't done so already. */
4517 if (contents == NULL)
4518 {
4519 /* Get cached copy if it exists. */
4520 if (elf_section_data (sec)->this_hdr.contents != NULL)
4521 contents = elf_section_data (sec)->this_hdr.contents;
4522 else
4523 {
4524 /* Go get them off disk. */
4525 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4526 goto error_return;
4527 }
4528 }
4529
4530 if (r_type == R_ARM_V4BX)
4531 {
4532 int reg;
4533
4534 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4535 record_arm_bx_glue (link_info, reg);
4536 continue;
4537 }
4538
4539 /* If the relocation is not against a symbol it cannot concern us. */
4540 h = NULL;
4541
4542 /* We don't care about local symbols. */
4543 if (r_index < symtab_hdr->sh_info)
4544 continue;
4545
4546 /* This is an external symbol. */
4547 r_index -= symtab_hdr->sh_info;
4548 h = (struct elf_link_hash_entry *)
4549 elf_sym_hashes (abfd)[r_index];
4550
4551 /* If the relocation is against a static symbol it must be within
4552 the current section and so cannot be a cross ARM/Thumb relocation. */
4553 if (h == NULL)
4554 continue;
4555
4556 /* If the call will go through a PLT entry then we do not need
4557 glue. */
4558 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4559 continue;
4560
4561 switch (r_type)
4562 {
4563 case R_ARM_PC24:
4564 case R_ARM_PLT32:
4565 case R_ARM_JUMP24:
4566 /* This one is a call from arm code. We need to look up
4567 the target of the call. If it is a thumb target, we
4568 insert glue. */
4569 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4570 && !(r_type == R_ARM_CALL && globals->use_blx))
4571 record_arm_to_thumb_glue (link_info, h);
4572 break;
4573
4574 case R_ARM_THM_JUMP24:
4575 /* This one is a call from thumb code. We look
4576 up the target of the call. If it is not a thumb
4577 target, we insert glue. */
4578 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4579 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4580 && h->root.type != bfd_link_hash_undefweak)
4581 record_thumb_to_arm_glue (link_info, h);
4582 break;
4583
4584 default:
4585 abort ();
4586 }
4587 }
4588
4589 if (contents != NULL
4590 && elf_section_data (sec)->this_hdr.contents != contents)
4591 free (contents);
4592 contents = NULL;
4593
4594 if (internal_relocs != NULL
4595 && elf_section_data (sec)->relocs != internal_relocs)
4596 free (internal_relocs);
4597 internal_relocs = NULL;
4598 }
4599
4600 return TRUE;
4601
4602 error_return:
4603 if (contents != NULL
4604 && elf_section_data (sec)->this_hdr.contents != contents)
4605 free (contents);
4606 if (internal_relocs != NULL
4607 && elf_section_data (sec)->relocs != internal_relocs)
4608 free (internal_relocs);
4609
4610 return FALSE;
4611 }
4612 #endif
4613
4614
4615 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4616
4617 void
4618 bfd_elf32_arm_init_maps (bfd *abfd)
4619 {
4620 Elf_Internal_Sym *isymbuf;
4621 Elf_Internal_Shdr *hdr;
4622 unsigned int i, localsyms;
4623
4624 if ((abfd->flags & DYNAMIC) != 0)
4625 return;
4626
4627 hdr = & elf_symtab_hdr (abfd);
4628 localsyms = hdr->sh_info;
4629
4630 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4631 should contain the number of local symbols, which should come before any
4632 global symbols. Mapping symbols are always local. */
4633 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4634 NULL);
4635
4636 /* No internal symbols read? Skip this BFD. */
4637 if (isymbuf == NULL)
4638 return;
4639
4640 for (i = 0; i < localsyms; i++)
4641 {
4642 Elf_Internal_Sym *isym = &isymbuf[i];
4643 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4644 const char *name;
4645
4646 if (sec != NULL
4647 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4648 {
4649 name = bfd_elf_string_from_elf_section (abfd,
4650 hdr->sh_link, isym->st_name);
4651
4652 if (bfd_is_arm_special_symbol_name (name,
4653 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4654 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4655 }
4656 }
4657 }
4658
4659
4660 void
4661 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4662 {
4663 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4664 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4665
4666 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4667 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4668 {
4669 switch (globals->vfp11_fix)
4670 {
4671 case BFD_ARM_VFP11_FIX_DEFAULT:
4672 case BFD_ARM_VFP11_FIX_NONE:
4673 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4674 break;
4675
4676 default:
4677 /* Give a warning, but do as the user requests anyway. */
4678 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4679 "workaround is not necessary for target architecture"), obfd);
4680 }
4681 }
4682 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4683 /* For earlier architectures, we might need the workaround, but do not
4684 enable it by default. If users is running with broken hardware, they
4685 must enable the erratum fix explicitly. */
4686 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4687 }
4688
4689
4690 enum bfd_arm_vfp11_pipe
4691 {
4692 VFP11_FMAC,
4693 VFP11_LS,
4694 VFP11_DS,
4695 VFP11_BAD
4696 };
4697
4698 /* Return a VFP register number. This is encoded as RX:X for single-precision
4699 registers, or X:RX for double-precision registers, where RX is the group of
4700 four bits in the instruction encoding and X is the single extension bit.
4701 RX and X fields are specified using their lowest (starting) bit. The return
4702 value is:
4703
4704 0...31: single-precision registers s0...s31
4705 32...63: double-precision registers d0...d31.
4706
4707 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4708 encounter VFP3 instructions, so we allow the full range for DP registers. */
4709
4710 static unsigned int
4711 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4712 unsigned int x)
4713 {
4714 if (is_double)
4715 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4716 else
4717 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4718 }
4719
4720 /* Set bits in *WMASK according to a register number REG as encoded by
4721 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4722
4723 static void
4724 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4725 {
4726 if (reg < 32)
4727 *wmask |= 1 << reg;
4728 else if (reg < 48)
4729 *wmask |= 3 << ((reg - 32) * 2);
4730 }
4731
4732 /* Return TRUE if WMASK overwrites anything in REGS. */
4733
4734 static bfd_boolean
4735 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4736 {
4737 int i;
4738
4739 for (i = 0; i < numregs; i++)
4740 {
4741 unsigned int reg = regs[i];
4742
4743 if (reg < 32 && (wmask & (1 << reg)) != 0)
4744 return TRUE;
4745
4746 reg -= 32;
4747
4748 if (reg >= 16)
4749 continue;
4750
4751 if ((wmask & (3 << (reg * 2))) != 0)
4752 return TRUE;
4753 }
4754
4755 return FALSE;
4756 }
4757
4758 /* In this function, we're interested in two things: finding input registers
4759 for VFP data-processing instructions, and finding the set of registers which
4760 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4761 hold the written set, so FLDM etc. are easy to deal with (we're only
4762 interested in 32 SP registers or 16 dp registers, due to the VFP version
4763 implemented by the chip in question). DP registers are marked by setting
4764 both SP registers in the write mask). */
4765
4766 static enum bfd_arm_vfp11_pipe
4767 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4768 int *numregs)
4769 {
4770 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4771 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4772
4773 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4774 {
4775 unsigned int pqrs;
4776 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4777 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4778
4779 pqrs = ((insn & 0x00800000) >> 20)
4780 | ((insn & 0x00300000) >> 19)
4781 | ((insn & 0x00000040) >> 6);
4782
4783 switch (pqrs)
4784 {
4785 case 0: /* fmac[sd]. */
4786 case 1: /* fnmac[sd]. */
4787 case 2: /* fmsc[sd]. */
4788 case 3: /* fnmsc[sd]. */
4789 pipe = VFP11_FMAC;
4790 bfd_arm_vfp11_write_mask (destmask, fd);
4791 regs[0] = fd;
4792 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4793 regs[2] = fm;
4794 *numregs = 3;
4795 break;
4796
4797 case 4: /* fmul[sd]. */
4798 case 5: /* fnmul[sd]. */
4799 case 6: /* fadd[sd]. */
4800 case 7: /* fsub[sd]. */
4801 pipe = VFP11_FMAC;
4802 goto vfp_binop;
4803
4804 case 8: /* fdiv[sd]. */
4805 pipe = VFP11_DS;
4806 vfp_binop:
4807 bfd_arm_vfp11_write_mask (destmask, fd);
4808 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4809 regs[1] = fm;
4810 *numregs = 2;
4811 break;
4812
4813 case 15: /* extended opcode. */
4814 {
4815 unsigned int extn = ((insn >> 15) & 0x1e)
4816 | ((insn >> 7) & 1);
4817
4818 switch (extn)
4819 {
4820 case 0: /* fcpy[sd]. */
4821 case 1: /* fabs[sd]. */
4822 case 2: /* fneg[sd]. */
4823 case 8: /* fcmp[sd]. */
4824 case 9: /* fcmpe[sd]. */
4825 case 10: /* fcmpz[sd]. */
4826 case 11: /* fcmpez[sd]. */
4827 case 16: /* fuito[sd]. */
4828 case 17: /* fsito[sd]. */
4829 case 24: /* ftoui[sd]. */
4830 case 25: /* ftouiz[sd]. */
4831 case 26: /* ftosi[sd]. */
4832 case 27: /* ftosiz[sd]. */
4833 /* These instructions will not bounce due to underflow. */
4834 *numregs = 0;
4835 pipe = VFP11_FMAC;
4836 break;
4837
4838 case 3: /* fsqrt[sd]. */
4839 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4840 registers to cause the erratum in previous instructions. */
4841 bfd_arm_vfp11_write_mask (destmask, fd);
4842 pipe = VFP11_DS;
4843 break;
4844
4845 case 15: /* fcvt{ds,sd}. */
4846 {
4847 int rnum = 0;
4848
4849 bfd_arm_vfp11_write_mask (destmask, fd);
4850
4851 /* Only FCVTSD can underflow. */
4852 if ((insn & 0x100) != 0)
4853 regs[rnum++] = fm;
4854
4855 *numregs = rnum;
4856
4857 pipe = VFP11_FMAC;
4858 }
4859 break;
4860
4861 default:
4862 return VFP11_BAD;
4863 }
4864 }
4865 break;
4866
4867 default:
4868 return VFP11_BAD;
4869 }
4870 }
4871 /* Two-register transfer. */
4872 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4873 {
4874 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4875
4876 if ((insn & 0x100000) == 0)
4877 {
4878 if (is_double)
4879 bfd_arm_vfp11_write_mask (destmask, fm);
4880 else
4881 {
4882 bfd_arm_vfp11_write_mask (destmask, fm);
4883 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4884 }
4885 }
4886
4887 pipe = VFP11_LS;
4888 }
4889 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4890 {
4891 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4892 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4893
4894 switch (puw)
4895 {
4896 case 0: /* Two-reg transfer. We should catch these above. */
4897 abort ();
4898
4899 case 2: /* fldm[sdx]. */
4900 case 3:
4901 case 5:
4902 {
4903 unsigned int i, offset = insn & 0xff;
4904
4905 if (is_double)
4906 offset >>= 1;
4907
4908 for (i = fd; i < fd + offset; i++)
4909 bfd_arm_vfp11_write_mask (destmask, i);
4910 }
4911 break;
4912
4913 case 4: /* fld[sd]. */
4914 case 6:
4915 bfd_arm_vfp11_write_mask (destmask, fd);
4916 break;
4917
4918 default:
4919 return VFP11_BAD;
4920 }
4921
4922 pipe = VFP11_LS;
4923 }
4924 /* Single-register transfer. Note L==0. */
4925 else if ((insn & 0x0f100e10) == 0x0e000a10)
4926 {
4927 unsigned int opcode = (insn >> 21) & 7;
4928 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4929
4930 switch (opcode)
4931 {
4932 case 0: /* fmsr/fmdlr. */
4933 case 1: /* fmdhr. */
4934 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4935 destination register. I don't know if this is exactly right,
4936 but it is the conservative choice. */
4937 bfd_arm_vfp11_write_mask (destmask, fn);
4938 break;
4939
4940 case 7: /* fmxr. */
4941 break;
4942 }
4943
4944 pipe = VFP11_LS;
4945 }
4946
4947 return pipe;
4948 }
4949
4950
4951 static int elf32_arm_compare_mapping (const void * a, const void * b);
4952
4953
4954 /* Look for potentially-troublesome code sequences which might trigger the
4955 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4956 (available from ARM) for details of the erratum. A short version is
4957 described in ld.texinfo. */
4958
4959 bfd_boolean
4960 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4961 {
4962 asection *sec;
4963 bfd_byte *contents = NULL;
4964 int state = 0;
4965 int regs[3], numregs = 0;
4966 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4967 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4968
4969 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4970 The states transition as follows:
4971
4972 0 -> 1 (vector) or 0 -> 2 (scalar)
4973 A VFP FMAC-pipeline instruction has been seen. Fill
4974 regs[0]..regs[numregs-1] with its input operands. Remember this
4975 instruction in 'first_fmac'.
4976
4977 1 -> 2
4978 Any instruction, except for a VFP instruction which overwrites
4979 regs[*].
4980
4981 1 -> 3 [ -> 0 ] or
4982 2 -> 3 [ -> 0 ]
4983 A VFP instruction has been seen which overwrites any of regs[*].
4984 We must make a veneer! Reset state to 0 before examining next
4985 instruction.
4986
4987 2 -> 0
4988 If we fail to match anything in state 2, reset to state 0 and reset
4989 the instruction pointer to the instruction after 'first_fmac'.
4990
4991 If the VFP11 vector mode is in use, there must be at least two unrelated
4992 instructions between anti-dependent VFP11 instructions to properly avoid
4993 triggering the erratum, hence the use of the extra state 1. */
4994
4995 /* If we are only performing a partial link do not bother
4996 to construct any glue. */
4997 if (link_info->relocatable)
4998 return TRUE;
4999
5000 /* Skip if this bfd does not correspond to an ELF image. */
5001 if (! is_arm_elf (abfd))
5002 return TRUE;
5003
5004 /* We should have chosen a fix type by the time we get here. */
5005 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5006
5007 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5008 return TRUE;
5009
5010 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5011 {
5012 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5013 struct _arm_elf_section_data *sec_data;
5014
5015 /* If we don't have executable progbits, we're not interested in this
5016 section. Also skip if section is to be excluded. */
5017 if (elf_section_type (sec) != SHT_PROGBITS
5018 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5019 || (sec->flags & SEC_EXCLUDE) != 0
5020 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5021 continue;
5022
5023 sec_data = elf32_arm_section_data (sec);
5024
5025 if (sec_data->mapcount == 0)
5026 continue;
5027
5028 if (elf_section_data (sec)->this_hdr.contents != NULL)
5029 contents = elf_section_data (sec)->this_hdr.contents;
5030 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5031 goto error_return;
5032
5033 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5034 elf32_arm_compare_mapping);
5035
5036 for (span = 0; span < sec_data->mapcount; span++)
5037 {
5038 unsigned int span_start = sec_data->map[span].vma;
5039 unsigned int span_end = (span == sec_data->mapcount - 1)
5040 ? sec->size : sec_data->map[span + 1].vma;
5041 char span_type = sec_data->map[span].type;
5042
5043 /* FIXME: Only ARM mode is supported at present. We may need to
5044 support Thumb-2 mode also at some point. */
5045 if (span_type != 'a')
5046 continue;
5047
5048 for (i = span_start; i < span_end;)
5049 {
5050 unsigned int next_i = i + 4;
5051 unsigned int insn = bfd_big_endian (abfd)
5052 ? (contents[i] << 24)
5053 | (contents[i + 1] << 16)
5054 | (contents[i + 2] << 8)
5055 | contents[i + 3]
5056 : (contents[i + 3] << 24)
5057 | (contents[i + 2] << 16)
5058 | (contents[i + 1] << 8)
5059 | contents[i];
5060 unsigned int writemask = 0;
5061 enum bfd_arm_vfp11_pipe pipe;
5062
5063 switch (state)
5064 {
5065 case 0:
5066 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5067 &numregs);
5068 /* I'm assuming the VFP11 erratum can trigger with denorm
5069 operands on either the FMAC or the DS pipeline. This might
5070 lead to slightly overenthusiastic veneer insertion. */
5071 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5072 {
5073 state = use_vector ? 1 : 2;
5074 first_fmac = i;
5075 veneer_of_insn = insn;
5076 }
5077 break;
5078
5079 case 1:
5080 {
5081 int other_regs[3], other_numregs;
5082 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5083 other_regs,
5084 &other_numregs);
5085 if (pipe != VFP11_BAD
5086 && bfd_arm_vfp11_antidependency (writemask, regs,
5087 numregs))
5088 state = 3;
5089 else
5090 state = 2;
5091 }
5092 break;
5093
5094 case 2:
5095 {
5096 int other_regs[3], other_numregs;
5097 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5098 other_regs,
5099 &other_numregs);
5100 if (pipe != VFP11_BAD
5101 && bfd_arm_vfp11_antidependency (writemask, regs,
5102 numregs))
5103 state = 3;
5104 else
5105 {
5106 state = 0;
5107 next_i = first_fmac + 4;
5108 }
5109 }
5110 break;
5111
5112 case 3:
5113 abort (); /* Should be unreachable. */
5114 }
5115
5116 if (state == 3)
5117 {
5118 elf32_vfp11_erratum_list *newerr
5119 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5120 int errcount;
5121
5122 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5123
5124 newerr->u.b.vfp_insn = veneer_of_insn;
5125
5126 switch (span_type)
5127 {
5128 case 'a':
5129 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5130 break;
5131
5132 default:
5133 abort ();
5134 }
5135
5136 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5137 first_fmac);
5138
5139 newerr->vma = -1;
5140
5141 newerr->next = sec_data->erratumlist;
5142 sec_data->erratumlist = newerr;
5143
5144 state = 0;
5145 }
5146
5147 i = next_i;
5148 }
5149 }
5150
5151 if (contents != NULL
5152 && elf_section_data (sec)->this_hdr.contents != contents)
5153 free (contents);
5154 contents = NULL;
5155 }
5156
5157 return TRUE;
5158
5159 error_return:
5160 if (contents != NULL
5161 && elf_section_data (sec)->this_hdr.contents != contents)
5162 free (contents);
5163
5164 return FALSE;
5165 }
5166
5167 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5168 after sections have been laid out, using specially-named symbols. */
5169
5170 void
5171 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5172 struct bfd_link_info *link_info)
5173 {
5174 asection *sec;
5175 struct elf32_arm_link_hash_table *globals;
5176 char *tmp_name;
5177
5178 if (link_info->relocatable)
5179 return;
5180
5181 /* Skip if this bfd does not correspond to an ELF image. */
5182 if (! is_arm_elf (abfd))
5183 return;
5184
5185 globals = elf32_arm_hash_table (link_info);
5186
5187 tmp_name = bfd_malloc ((bfd_size_type) strlen
5188 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5189
5190 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5191 {
5192 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5193 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5194
5195 for (; errnode != NULL; errnode = errnode->next)
5196 {
5197 struct elf_link_hash_entry *myh;
5198 bfd_vma vma;
5199
5200 switch (errnode->type)
5201 {
5202 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5203 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5204 /* Find veneer symbol. */
5205 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5206 errnode->u.b.veneer->u.v.id);
5207
5208 myh = elf_link_hash_lookup
5209 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5210
5211 if (myh == NULL)
5212 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5213 "`%s'"), abfd, tmp_name);
5214
5215 vma = myh->root.u.def.section->output_section->vma
5216 + myh->root.u.def.section->output_offset
5217 + myh->root.u.def.value;
5218
5219 errnode->u.b.veneer->vma = vma;
5220 break;
5221
5222 case VFP11_ERRATUM_ARM_VENEER:
5223 case VFP11_ERRATUM_THUMB_VENEER:
5224 /* Find return location. */
5225 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5226 errnode->u.v.id);
5227
5228 myh = elf_link_hash_lookup
5229 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5230
5231 if (myh == NULL)
5232 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5233 "`%s'"), abfd, tmp_name);
5234
5235 vma = myh->root.u.def.section->output_section->vma
5236 + myh->root.u.def.section->output_offset
5237 + myh->root.u.def.value;
5238
5239 errnode->u.v.branch->vma = vma;
5240 break;
5241
5242 default:
5243 abort ();
5244 }
5245 }
5246 }
5247
5248 free (tmp_name);
5249 }
5250
5251
5252 /* Set target relocation values needed during linking. */
5253
5254 void
5255 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5256 struct bfd_link_info *link_info,
5257 int target1_is_rel,
5258 char * target2_type,
5259 int fix_v4bx,
5260 int use_blx,
5261 bfd_arm_vfp11_fix vfp11_fix,
5262 int no_enum_warn, int pic_veneer)
5263 {
5264 struct elf32_arm_link_hash_table *globals;
5265
5266 globals = elf32_arm_hash_table (link_info);
5267
5268 globals->target1_is_rel = target1_is_rel;
5269 if (strcmp (target2_type, "rel") == 0)
5270 globals->target2_reloc = R_ARM_REL32;
5271 else if (strcmp (target2_type, "abs") == 0)
5272 globals->target2_reloc = R_ARM_ABS32;
5273 else if (strcmp (target2_type, "got-rel") == 0)
5274 globals->target2_reloc = R_ARM_GOT_PREL;
5275 else
5276 {
5277 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5278 target2_type);
5279 }
5280 globals->fix_v4bx = fix_v4bx;
5281 globals->use_blx |= use_blx;
5282 globals->vfp11_fix = vfp11_fix;
5283 globals->pic_veneer = pic_veneer;
5284
5285 BFD_ASSERT (is_arm_elf (output_bfd));
5286 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5287 }
5288
5289 /* Replace the target offset of a Thumb bl or b.w instruction. */
5290
5291 static void
5292 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5293 {
5294 bfd_vma upper;
5295 bfd_vma lower;
5296 int reloc_sign;
5297
5298 BFD_ASSERT ((offset & 1) == 0);
5299
5300 upper = bfd_get_16 (abfd, insn);
5301 lower = bfd_get_16 (abfd, insn + 2);
5302 reloc_sign = (offset < 0) ? 1 : 0;
5303 upper = (upper & ~(bfd_vma) 0x7ff)
5304 | ((offset >> 12) & 0x3ff)
5305 | (reloc_sign << 10);
5306 lower = (lower & ~(bfd_vma) 0x2fff)
5307 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5308 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5309 | ((offset >> 1) & 0x7ff);
5310 bfd_put_16 (abfd, upper, insn);
5311 bfd_put_16 (abfd, lower, insn + 2);
5312 }
5313
5314 /* Thumb code calling an ARM function. */
5315
5316 static int
5317 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5318 const char * name,
5319 bfd * input_bfd,
5320 bfd * output_bfd,
5321 asection * input_section,
5322 bfd_byte * hit_data,
5323 asection * sym_sec,
5324 bfd_vma offset,
5325 bfd_signed_vma addend,
5326 bfd_vma val,
5327 char **error_message)
5328 {
5329 asection * s = 0;
5330 bfd_vma my_offset;
5331 long int ret_offset;
5332 struct elf_link_hash_entry * myh;
5333 struct elf32_arm_link_hash_table * globals;
5334
5335 myh = find_thumb_glue (info, name, error_message);
5336 if (myh == NULL)
5337 return FALSE;
5338
5339 globals = elf32_arm_hash_table (info);
5340
5341 BFD_ASSERT (globals != NULL);
5342 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5343
5344 my_offset = myh->root.u.def.value;
5345
5346 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5347 THUMB2ARM_GLUE_SECTION_NAME);
5348
5349 BFD_ASSERT (s != NULL);
5350 BFD_ASSERT (s->contents != NULL);
5351 BFD_ASSERT (s->output_section != NULL);
5352
5353 if ((my_offset & 0x01) == 0x01)
5354 {
5355 if (sym_sec != NULL
5356 && sym_sec->owner != NULL
5357 && !INTERWORK_FLAG (sym_sec->owner))
5358 {
5359 (*_bfd_error_handler)
5360 (_("%B(%s): warning: interworking not enabled.\n"
5361 " first occurrence: %B: thumb call to arm"),
5362 sym_sec->owner, input_bfd, name);
5363
5364 return FALSE;
5365 }
5366
5367 --my_offset;
5368 myh->root.u.def.value = my_offset;
5369
5370 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5371 s->contents + my_offset);
5372
5373 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5374 s->contents + my_offset + 2);
5375
5376 ret_offset =
5377 /* Address of destination of the stub. */
5378 ((bfd_signed_vma) val)
5379 - ((bfd_signed_vma)
5380 /* Offset from the start of the current section
5381 to the start of the stubs. */
5382 (s->output_offset
5383 /* Offset of the start of this stub from the start of the stubs. */
5384 + my_offset
5385 /* Address of the start of the current section. */
5386 + s->output_section->vma)
5387 /* The branch instruction is 4 bytes into the stub. */
5388 + 4
5389 /* ARM branches work from the pc of the instruction + 8. */
5390 + 8);
5391
5392 put_arm_insn (globals, output_bfd,
5393 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5394 s->contents + my_offset + 4);
5395 }
5396
5397 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5398
5399 /* Now go back and fix up the original BL insn to point to here. */
5400 ret_offset =
5401 /* Address of where the stub is located. */
5402 (s->output_section->vma + s->output_offset + my_offset)
5403 /* Address of where the BL is located. */
5404 - (input_section->output_section->vma + input_section->output_offset
5405 + offset)
5406 /* Addend in the relocation. */
5407 - addend
5408 /* Biassing for PC-relative addressing. */
5409 - 8;
5410
5411 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5412
5413 return TRUE;
5414 }
5415
5416 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5417
5418 static struct elf_link_hash_entry *
5419 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5420 const char * name,
5421 bfd * input_bfd,
5422 bfd * output_bfd,
5423 asection * sym_sec,
5424 bfd_vma val,
5425 asection *s,
5426 char **error_message)
5427 {
5428 bfd_vma my_offset;
5429 long int ret_offset;
5430 struct elf_link_hash_entry * myh;
5431 struct elf32_arm_link_hash_table * globals;
5432
5433 myh = find_arm_glue (info, name, error_message);
5434 if (myh == NULL)
5435 return NULL;
5436
5437 globals = elf32_arm_hash_table (info);
5438
5439 BFD_ASSERT (globals != NULL);
5440 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5441
5442 my_offset = myh->root.u.def.value;
5443
5444 if ((my_offset & 0x01) == 0x01)
5445 {
5446 if (sym_sec != NULL
5447 && sym_sec->owner != NULL
5448 && !INTERWORK_FLAG (sym_sec->owner))
5449 {
5450 (*_bfd_error_handler)
5451 (_("%B(%s): warning: interworking not enabled.\n"
5452 " first occurrence: %B: arm call to thumb"),
5453 sym_sec->owner, input_bfd, name);
5454 }
5455
5456 --my_offset;
5457 myh->root.u.def.value = my_offset;
5458
5459 if (info->shared || globals->root.is_relocatable_executable
5460 || globals->pic_veneer)
5461 {
5462 /* For relocatable objects we can't use absolute addresses,
5463 so construct the address from a relative offset. */
5464 /* TODO: If the offset is small it's probably worth
5465 constructing the address with adds. */
5466 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5467 s->contents + my_offset);
5468 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5469 s->contents + my_offset + 4);
5470 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5471 s->contents + my_offset + 8);
5472 /* Adjust the offset by 4 for the position of the add,
5473 and 8 for the pipeline offset. */
5474 ret_offset = (val - (s->output_offset
5475 + s->output_section->vma
5476 + my_offset + 12))
5477 | 1;
5478 bfd_put_32 (output_bfd, ret_offset,
5479 s->contents + my_offset + 12);
5480 }
5481 else if (globals->use_blx)
5482 {
5483 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5484 s->contents + my_offset);
5485
5486 /* It's a thumb address. Add the low order bit. */
5487 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5488 s->contents + my_offset + 4);
5489 }
5490 else
5491 {
5492 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5493 s->contents + my_offset);
5494
5495 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5496 s->contents + my_offset + 4);
5497
5498 /* It's a thumb address. Add the low order bit. */
5499 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5500 s->contents + my_offset + 8);
5501 }
5502 }
5503
5504 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5505
5506 return myh;
5507 }
5508
5509 /* Arm code calling a Thumb function. */
5510
5511 static int
5512 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5513 const char * name,
5514 bfd * input_bfd,
5515 bfd * output_bfd,
5516 asection * input_section,
5517 bfd_byte * hit_data,
5518 asection * sym_sec,
5519 bfd_vma offset,
5520 bfd_signed_vma addend,
5521 bfd_vma val,
5522 char **error_message)
5523 {
5524 unsigned long int tmp;
5525 bfd_vma my_offset;
5526 asection * s;
5527 long int ret_offset;
5528 struct elf_link_hash_entry * myh;
5529 struct elf32_arm_link_hash_table * globals;
5530
5531 globals = elf32_arm_hash_table (info);
5532
5533 BFD_ASSERT (globals != NULL);
5534 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5535
5536 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5537 ARM2THUMB_GLUE_SECTION_NAME);
5538 BFD_ASSERT (s != NULL);
5539 BFD_ASSERT (s->contents != NULL);
5540 BFD_ASSERT (s->output_section != NULL);
5541
5542 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5543 sym_sec, val, s, error_message);
5544 if (!myh)
5545 return FALSE;
5546
5547 my_offset = myh->root.u.def.value;
5548 tmp = bfd_get_32 (input_bfd, hit_data);
5549 tmp = tmp & 0xFF000000;
5550
5551 /* Somehow these are both 4 too far, so subtract 8. */
5552 ret_offset = (s->output_offset
5553 + my_offset
5554 + s->output_section->vma
5555 - (input_section->output_offset
5556 + input_section->output_section->vma
5557 + offset + addend)
5558 - 8);
5559
5560 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5561
5562 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5563
5564 return TRUE;
5565 }
5566
5567 /* Populate Arm stub for an exported Thumb function. */
5568
5569 static bfd_boolean
5570 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5571 {
5572 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5573 asection * s;
5574 struct elf_link_hash_entry * myh;
5575 struct elf32_arm_link_hash_entry *eh;
5576 struct elf32_arm_link_hash_table * globals;
5577 asection *sec;
5578 bfd_vma val;
5579 char *error_message;
5580
5581 eh = elf32_arm_hash_entry (h);
5582 /* Allocate stubs for exported Thumb functions on v4t. */
5583 if (eh->export_glue == NULL)
5584 return TRUE;
5585
5586 globals = elf32_arm_hash_table (info);
5587
5588 BFD_ASSERT (globals != NULL);
5589 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5590
5591 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5592 ARM2THUMB_GLUE_SECTION_NAME);
5593 BFD_ASSERT (s != NULL);
5594 BFD_ASSERT (s->contents != NULL);
5595 BFD_ASSERT (s->output_section != NULL);
5596
5597 sec = eh->export_glue->root.u.def.section;
5598
5599 BFD_ASSERT (sec->output_section != NULL);
5600
5601 val = eh->export_glue->root.u.def.value + sec->output_offset
5602 + sec->output_section->vma;
5603 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5604 h->root.u.def.section->owner,
5605 globals->obfd, sec, val, s,
5606 &error_message);
5607 BFD_ASSERT (myh);
5608 return TRUE;
5609 }
5610
5611 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5612
5613 static bfd_vma
5614 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5615 {
5616 bfd_byte *p;
5617 bfd_vma glue_addr;
5618 asection *s;
5619 struct elf32_arm_link_hash_table *globals;
5620
5621 globals = elf32_arm_hash_table (info);
5622
5623 BFD_ASSERT (globals != NULL);
5624 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5625
5626 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5627 ARM_BX_GLUE_SECTION_NAME);
5628 BFD_ASSERT (s != NULL);
5629 BFD_ASSERT (s->contents != NULL);
5630 BFD_ASSERT (s->output_section != NULL);
5631
5632 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5633
5634 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5635
5636 if ((globals->bx_glue_offset[reg] & 1) == 0)
5637 {
5638 p = s->contents + glue_addr;
5639 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5640 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5641 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5642 globals->bx_glue_offset[reg] |= 1;
5643 }
5644
5645 return glue_addr + s->output_section->vma + s->output_offset;
5646 }
5647
5648 /* Generate Arm stubs for exported Thumb symbols. */
5649 static void
5650 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5651 struct bfd_link_info *link_info)
5652 {
5653 struct elf32_arm_link_hash_table * globals;
5654
5655 if (!link_info)
5656 return;
5657
5658 globals = elf32_arm_hash_table (link_info);
5659 /* If blx is available then exported Thumb symbols are OK and there is
5660 nothing to do. */
5661 if (globals->use_blx)
5662 return;
5663
5664 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5665 link_info);
5666 }
5667
5668 /* Some relocations map to different relocations depending on the
5669 target. Return the real relocation. */
5670 static int
5671 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5672 int r_type)
5673 {
5674 switch (r_type)
5675 {
5676 case R_ARM_TARGET1:
5677 if (globals->target1_is_rel)
5678 return R_ARM_REL32;
5679 else
5680 return R_ARM_ABS32;
5681
5682 case R_ARM_TARGET2:
5683 return globals->target2_reloc;
5684
5685 default:
5686 return r_type;
5687 }
5688 }
5689
5690 /* Return the base VMA address which should be subtracted from real addresses
5691 when resolving @dtpoff relocation.
5692 This is PT_TLS segment p_vaddr. */
5693
5694 static bfd_vma
5695 dtpoff_base (struct bfd_link_info *info)
5696 {
5697 /* If tls_sec is NULL, we should have signalled an error already. */
5698 if (elf_hash_table (info)->tls_sec == NULL)
5699 return 0;
5700 return elf_hash_table (info)->tls_sec->vma;
5701 }
5702
5703 /* Return the relocation value for @tpoff relocation
5704 if STT_TLS virtual address is ADDRESS. */
5705
5706 static bfd_vma
5707 tpoff (struct bfd_link_info *info, bfd_vma address)
5708 {
5709 struct elf_link_hash_table *htab = elf_hash_table (info);
5710 bfd_vma base;
5711
5712 /* If tls_sec is NULL, we should have signalled an error already. */
5713 if (htab->tls_sec == NULL)
5714 return 0;
5715 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5716 return address - htab->tls_sec->vma + base;
5717 }
5718
5719 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5720 VALUE is the relocation value. */
5721
5722 static bfd_reloc_status_type
5723 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5724 {
5725 if (value > 0xfff)
5726 return bfd_reloc_overflow;
5727
5728 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5729 bfd_put_32 (abfd, value, data);
5730 return bfd_reloc_ok;
5731 }
5732
5733 /* For a given value of n, calculate the value of G_n as required to
5734 deal with group relocations. We return it in the form of an
5735 encoded constant-and-rotation, together with the final residual. If n is
5736 specified as less than zero, then final_residual is filled with the
5737 input value and no further action is performed. */
5738
5739 static bfd_vma
5740 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5741 {
5742 int current_n;
5743 bfd_vma g_n;
5744 bfd_vma encoded_g_n = 0;
5745 bfd_vma residual = value; /* Also known as Y_n. */
5746
5747 for (current_n = 0; current_n <= n; current_n++)
5748 {
5749 int shift;
5750
5751 /* Calculate which part of the value to mask. */
5752 if (residual == 0)
5753 shift = 0;
5754 else
5755 {
5756 int msb;
5757
5758 /* Determine the most significant bit in the residual and
5759 align the resulting value to a 2-bit boundary. */
5760 for (msb = 30; msb >= 0; msb -= 2)
5761 if (residual & (3 << msb))
5762 break;
5763
5764 /* The desired shift is now (msb - 6), or zero, whichever
5765 is the greater. */
5766 shift = msb - 6;
5767 if (shift < 0)
5768 shift = 0;
5769 }
5770
5771 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5772 g_n = residual & (0xff << shift);
5773 encoded_g_n = (g_n >> shift)
5774 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5775
5776 /* Calculate the residual for the next time around. */
5777 residual &= ~g_n;
5778 }
5779
5780 *final_residual = residual;
5781
5782 return encoded_g_n;
5783 }
5784
5785 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5786 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5787
5788 static int
5789 identify_add_or_sub (bfd_vma insn)
5790 {
5791 int opcode = insn & 0x1e00000;
5792
5793 if (opcode == 1 << 23) /* ADD */
5794 return 1;
5795
5796 if (opcode == 1 << 22) /* SUB */
5797 return -1;
5798
5799 return 0;
5800 }
5801
5802 /* Perform a relocation as part of a final link. */
5803
5804 static bfd_reloc_status_type
5805 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5806 bfd * input_bfd,
5807 bfd * output_bfd,
5808 asection * input_section,
5809 bfd_byte * contents,
5810 Elf_Internal_Rela * rel,
5811 bfd_vma value,
5812 struct bfd_link_info * info,
5813 asection * sym_sec,
5814 const char * sym_name,
5815 int sym_flags,
5816 struct elf_link_hash_entry * h,
5817 bfd_boolean * unresolved_reloc_p,
5818 char **error_message)
5819 {
5820 unsigned long r_type = howto->type;
5821 unsigned long r_symndx;
5822 bfd_byte * hit_data = contents + rel->r_offset;
5823 bfd * dynobj = NULL;
5824 Elf_Internal_Shdr * symtab_hdr;
5825 struct elf_link_hash_entry ** sym_hashes;
5826 bfd_vma * local_got_offsets;
5827 asection * sgot = NULL;
5828 asection * splt = NULL;
5829 asection * sreloc = NULL;
5830 bfd_vma addend;
5831 bfd_signed_vma signed_addend;
5832 struct elf32_arm_link_hash_table * globals;
5833
5834 globals = elf32_arm_hash_table (info);
5835
5836 BFD_ASSERT (is_arm_elf (input_bfd));
5837
5838 /* Some relocation types map to different relocations depending on the
5839 target. We pick the right one here. */
5840 r_type = arm_real_reloc_type (globals, r_type);
5841 if (r_type != howto->type)
5842 howto = elf32_arm_howto_from_type (r_type);
5843
5844 /* If the start address has been set, then set the EF_ARM_HASENTRY
5845 flag. Setting this more than once is redundant, but the cost is
5846 not too high, and it keeps the code simple.
5847
5848 The test is done here, rather than somewhere else, because the
5849 start address is only set just before the final link commences.
5850
5851 Note - if the user deliberately sets a start address of 0, the
5852 flag will not be set. */
5853 if (bfd_get_start_address (output_bfd) != 0)
5854 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5855
5856 dynobj = elf_hash_table (info)->dynobj;
5857 if (dynobj)
5858 {
5859 sgot = bfd_get_section_by_name (dynobj, ".got");
5860 splt = bfd_get_section_by_name (dynobj, ".plt");
5861 }
5862 symtab_hdr = & elf_symtab_hdr (input_bfd);
5863 sym_hashes = elf_sym_hashes (input_bfd);
5864 local_got_offsets = elf_local_got_offsets (input_bfd);
5865 r_symndx = ELF32_R_SYM (rel->r_info);
5866
5867 if (globals->use_rel)
5868 {
5869 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5870
5871 if (addend & ((howto->src_mask + 1) >> 1))
5872 {
5873 signed_addend = -1;
5874 signed_addend &= ~ howto->src_mask;
5875 signed_addend |= addend;
5876 }
5877 else
5878 signed_addend = addend;
5879 }
5880 else
5881 addend = signed_addend = rel->r_addend;
5882
5883 switch (r_type)
5884 {
5885 case R_ARM_NONE:
5886 /* We don't need to find a value for this symbol. It's just a
5887 marker. */
5888 *unresolved_reloc_p = FALSE;
5889 return bfd_reloc_ok;
5890
5891 case R_ARM_ABS12:
5892 if (!globals->vxworks_p)
5893 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5894
5895 case R_ARM_PC24:
5896 case R_ARM_ABS32:
5897 case R_ARM_ABS32_NOI:
5898 case R_ARM_REL32:
5899 case R_ARM_REL32_NOI:
5900 case R_ARM_CALL:
5901 case R_ARM_JUMP24:
5902 case R_ARM_XPC25:
5903 case R_ARM_PREL31:
5904 case R_ARM_PLT32:
5905 /* Handle relocations which should use the PLT entry. ABS32/REL32
5906 will use the symbol's value, which may point to a PLT entry, but we
5907 don't need to handle that here. If we created a PLT entry, all
5908 branches in this object should go to it. */
5909 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5910 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5911 && h != NULL
5912 && splt != NULL
5913 && h->plt.offset != (bfd_vma) -1)
5914 {
5915 /* If we've created a .plt section, and assigned a PLT entry to
5916 this function, it should not be known to bind locally. If
5917 it were, we would have cleared the PLT entry. */
5918 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5919
5920 value = (splt->output_section->vma
5921 + splt->output_offset
5922 + h->plt.offset);
5923 *unresolved_reloc_p = FALSE;
5924 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5925 contents, rel->r_offset, value,
5926 rel->r_addend);
5927 }
5928
5929 /* When generating a shared object or relocatable executable, these
5930 relocations are copied into the output file to be resolved at
5931 run time. */
5932 if ((info->shared || globals->root.is_relocatable_executable)
5933 && (input_section->flags & SEC_ALLOC)
5934 && !(elf32_arm_hash_table (info)->vxworks_p
5935 && strcmp (input_section->output_section->name,
5936 ".tls_vars") == 0)
5937 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5938 || !SYMBOL_CALLS_LOCAL (info, h))
5939 && (h == NULL
5940 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5941 || h->root.type != bfd_link_hash_undefweak)
5942 && r_type != R_ARM_PC24
5943 && r_type != R_ARM_CALL
5944 && r_type != R_ARM_JUMP24
5945 && r_type != R_ARM_PREL31
5946 && r_type != R_ARM_PLT32)
5947 {
5948 Elf_Internal_Rela outrel;
5949 bfd_byte *loc;
5950 bfd_boolean skip, relocate;
5951
5952 *unresolved_reloc_p = FALSE;
5953
5954 if (sreloc == NULL)
5955 {
5956 const char * name;
5957
5958 name = (bfd_elf_string_from_elf_section
5959 (input_bfd,
5960 elf_elfheader (input_bfd)->e_shstrndx,
5961 elf_section_data (input_section)->rel_hdr.sh_name));
5962 if (name == NULL)
5963 return bfd_reloc_notsupported;
5964
5965 BFD_ASSERT (reloc_section_p (globals, name, input_section));
5966
5967 sreloc = bfd_get_section_by_name (dynobj, name);
5968 BFD_ASSERT (sreloc != NULL);
5969 }
5970
5971 skip = FALSE;
5972 relocate = FALSE;
5973
5974 outrel.r_addend = addend;
5975 outrel.r_offset =
5976 _bfd_elf_section_offset (output_bfd, info, input_section,
5977 rel->r_offset);
5978 if (outrel.r_offset == (bfd_vma) -1)
5979 skip = TRUE;
5980 else if (outrel.r_offset == (bfd_vma) -2)
5981 skip = TRUE, relocate = TRUE;
5982 outrel.r_offset += (input_section->output_section->vma
5983 + input_section->output_offset);
5984
5985 if (skip)
5986 memset (&outrel, 0, sizeof outrel);
5987 else if (h != NULL
5988 && h->dynindx != -1
5989 && (!info->shared
5990 || !info->symbolic
5991 || !h->def_regular))
5992 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
5993 else
5994 {
5995 int symbol;
5996
5997 /* This symbol is local, or marked to become local. */
5998 if (sym_flags == STT_ARM_TFUNC)
5999 value |= 1;
6000 if (globals->symbian_p)
6001 {
6002 asection *osec;
6003
6004 /* On Symbian OS, the data segment and text segement
6005 can be relocated independently. Therefore, we
6006 must indicate the segment to which this
6007 relocation is relative. The BPABI allows us to
6008 use any symbol in the right segment; we just use
6009 the section symbol as it is convenient. (We
6010 cannot use the symbol given by "h" directly as it
6011 will not appear in the dynamic symbol table.)
6012
6013 Note that the dynamic linker ignores the section
6014 symbol value, so we don't subtract osec->vma
6015 from the emitted reloc addend. */
6016 if (sym_sec)
6017 osec = sym_sec->output_section;
6018 else
6019 osec = input_section->output_section;
6020 symbol = elf_section_data (osec)->dynindx;
6021 if (symbol == 0)
6022 {
6023 struct elf_link_hash_table *htab = elf_hash_table (info);
6024
6025 if ((osec->flags & SEC_READONLY) == 0
6026 && htab->data_index_section != NULL)
6027 osec = htab->data_index_section;
6028 else
6029 osec = htab->text_index_section;
6030 symbol = elf_section_data (osec)->dynindx;
6031 }
6032 BFD_ASSERT (symbol != 0);
6033 }
6034 else
6035 /* On SVR4-ish systems, the dynamic loader cannot
6036 relocate the text and data segments independently,
6037 so the symbol does not matter. */
6038 symbol = 0;
6039 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6040 if (globals->use_rel)
6041 relocate = TRUE;
6042 else
6043 outrel.r_addend += value;
6044 }
6045
6046 loc = sreloc->contents;
6047 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6048 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6049
6050 /* If this reloc is against an external symbol, we do not want to
6051 fiddle with the addend. Otherwise, we need to include the symbol
6052 value so that it becomes an addend for the dynamic reloc. */
6053 if (! relocate)
6054 return bfd_reloc_ok;
6055
6056 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6057 contents, rel->r_offset, value,
6058 (bfd_vma) 0);
6059 }
6060 else switch (r_type)
6061 {
6062 case R_ARM_ABS12:
6063 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6064
6065 case R_ARM_XPC25: /* Arm BLX instruction. */
6066 case R_ARM_CALL:
6067 case R_ARM_JUMP24:
6068 case R_ARM_PC24: /* Arm B/BL instruction */
6069 case R_ARM_PLT32:
6070 {
6071 bfd_vma from;
6072 bfd_signed_vma branch_offset;
6073 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6074
6075 from = (input_section->output_section->vma
6076 + input_section->output_offset
6077 + rel->r_offset);
6078 branch_offset = (bfd_signed_vma)(value - from);
6079
6080 if (r_type == R_ARM_XPC25)
6081 {
6082 /* Check for Arm calling Arm function. */
6083 /* FIXME: Should we translate the instruction into a BL
6084 instruction instead ? */
6085 if (sym_flags != STT_ARM_TFUNC)
6086 (*_bfd_error_handler)
6087 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6088 input_bfd,
6089 h ? h->root.root.string : "(local)");
6090 }
6091 else if (r_type != R_ARM_CALL)
6092 {
6093 /* Check for Arm calling Thumb function. */
6094 if (sym_flags == STT_ARM_TFUNC)
6095 {
6096 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6097 output_bfd, input_section,
6098 hit_data, sym_sec, rel->r_offset,
6099 signed_addend, value,
6100 error_message))
6101 return bfd_reloc_ok;
6102 else
6103 return bfd_reloc_dangerous;
6104 }
6105 }
6106
6107 /* Check if a stub has to be inserted because the
6108 destination is too far or we are changing mode */
6109 if (r_type == R_ARM_CALL)
6110 {
6111 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6112 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6113 || sym_flags == STT_ARM_TFUNC)
6114 {
6115 /* The target is out of reach, so redirect the
6116 branch to the local stub for this function. */
6117
6118 stub_entry = elf32_arm_get_stub_entry (input_section,
6119 sym_sec, h,
6120 rel, globals);
6121 if (stub_entry != NULL)
6122 value = (stub_entry->stub_offset
6123 + stub_entry->stub_sec->output_offset
6124 + stub_entry->stub_sec->output_section->vma);
6125 }
6126 }
6127
6128 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6129 where:
6130 S is the address of the symbol in the relocation.
6131 P is address of the instruction being relocated.
6132 A is the addend (extracted from the instruction) in bytes.
6133
6134 S is held in 'value'.
6135 P is the base address of the section containing the
6136 instruction plus the offset of the reloc into that
6137 section, ie:
6138 (input_section->output_section->vma +
6139 input_section->output_offset +
6140 rel->r_offset).
6141 A is the addend, converted into bytes, ie:
6142 (signed_addend * 4)
6143
6144 Note: None of these operations have knowledge of the pipeline
6145 size of the processor, thus it is up to the assembler to
6146 encode this information into the addend. */
6147 value -= (input_section->output_section->vma
6148 + input_section->output_offset);
6149 value -= rel->r_offset;
6150 if (globals->use_rel)
6151 value += (signed_addend << howto->size);
6152 else
6153 /* RELA addends do not have to be adjusted by howto->size. */
6154 value += signed_addend;
6155
6156 signed_addend = value;
6157 signed_addend >>= howto->rightshift;
6158
6159 /* A branch to an undefined weak symbol is turned into a jump to
6160 the next instruction. */
6161 if (h && h->root.type == bfd_link_hash_undefweak)
6162 {
6163 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6164 | 0x0affffff;
6165 }
6166 else
6167 {
6168 /* Perform a signed range check. */
6169 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6170 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6171 return bfd_reloc_overflow;
6172
6173 addend = (value & 2);
6174
6175 value = (signed_addend & howto->dst_mask)
6176 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6177
6178 /* Set the H bit in the BLX instruction. */
6179 if (sym_flags == STT_ARM_TFUNC)
6180 {
6181 if (addend)
6182 value |= (1 << 24);
6183 else
6184 value &= ~(bfd_vma)(1 << 24);
6185 }
6186 if (r_type == R_ARM_CALL)
6187 {
6188 /* Select the correct instruction (BL or BLX). */
6189 /* Only if we are not handling a BL to a stub. In this
6190 case, mode switching is performed by the stub. */
6191 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6192 value |= (1 << 28);
6193 else
6194 {
6195 value &= ~(bfd_vma)(1 << 28);
6196 value |= (1 << 24);
6197 }
6198 }
6199 }
6200 }
6201 break;
6202
6203 case R_ARM_ABS32:
6204 value += addend;
6205 if (sym_flags == STT_ARM_TFUNC)
6206 value |= 1;
6207 break;
6208
6209 case R_ARM_ABS32_NOI:
6210 value += addend;
6211 break;
6212
6213 case R_ARM_REL32:
6214 value += addend;
6215 if (sym_flags == STT_ARM_TFUNC)
6216 value |= 1;
6217 value -= (input_section->output_section->vma
6218 + input_section->output_offset + rel->r_offset);
6219 break;
6220
6221 case R_ARM_REL32_NOI:
6222 value += addend;
6223 value -= (input_section->output_section->vma
6224 + input_section->output_offset + rel->r_offset);
6225 break;
6226
6227 case R_ARM_PREL31:
6228 value -= (input_section->output_section->vma
6229 + input_section->output_offset + rel->r_offset);
6230 value += signed_addend;
6231 if (! h || h->root.type != bfd_link_hash_undefweak)
6232 {
6233 /* Check for overflow */
6234 if ((value ^ (value >> 1)) & (1 << 30))
6235 return bfd_reloc_overflow;
6236 }
6237 value &= 0x7fffffff;
6238 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6239 if (sym_flags == STT_ARM_TFUNC)
6240 value |= 1;
6241 break;
6242 }
6243
6244 bfd_put_32 (input_bfd, value, hit_data);
6245 return bfd_reloc_ok;
6246
6247 case R_ARM_ABS8:
6248 value += addend;
6249 if ((long) value > 0x7f || (long) value < -0x80)
6250 return bfd_reloc_overflow;
6251
6252 bfd_put_8 (input_bfd, value, hit_data);
6253 return bfd_reloc_ok;
6254
6255 case R_ARM_ABS16:
6256 value += addend;
6257
6258 if ((long) value > 0x7fff || (long) value < -0x8000)
6259 return bfd_reloc_overflow;
6260
6261 bfd_put_16 (input_bfd, value, hit_data);
6262 return bfd_reloc_ok;
6263
6264 case R_ARM_THM_ABS5:
6265 /* Support ldr and str instructions for the thumb. */
6266 if (globals->use_rel)
6267 {
6268 /* Need to refetch addend. */
6269 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6270 /* ??? Need to determine shift amount from operand size. */
6271 addend >>= howto->rightshift;
6272 }
6273 value += addend;
6274
6275 /* ??? Isn't value unsigned? */
6276 if ((long) value > 0x1f || (long) value < -0x10)
6277 return bfd_reloc_overflow;
6278
6279 /* ??? Value needs to be properly shifted into place first. */
6280 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6281 bfd_put_16 (input_bfd, value, hit_data);
6282 return bfd_reloc_ok;
6283
6284 case R_ARM_THM_ALU_PREL_11_0:
6285 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6286 {
6287 bfd_vma insn;
6288 bfd_signed_vma relocation;
6289
6290 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6291 | bfd_get_16 (input_bfd, hit_data + 2);
6292
6293 if (globals->use_rel)
6294 {
6295 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6296 | ((insn & (1 << 26)) >> 15);
6297 if (insn & 0xf00000)
6298 signed_addend = -signed_addend;
6299 }
6300
6301 relocation = value + signed_addend;
6302 relocation -= (input_section->output_section->vma
6303 + input_section->output_offset
6304 + rel->r_offset);
6305
6306 value = abs (relocation);
6307
6308 if (value >= 0x1000)
6309 return bfd_reloc_overflow;
6310
6311 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6312 | ((value & 0x700) << 4)
6313 | ((value & 0x800) << 15);
6314 if (relocation < 0)
6315 insn |= 0xa00000;
6316
6317 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6318 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6319
6320 return bfd_reloc_ok;
6321 }
6322
6323 case R_ARM_THM_PC12:
6324 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6325 {
6326 bfd_vma insn;
6327 bfd_signed_vma relocation;
6328
6329 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6330 | bfd_get_16 (input_bfd, hit_data + 2);
6331
6332 if (globals->use_rel)
6333 {
6334 signed_addend = insn & 0xfff;
6335 if (!(insn & (1 << 23)))
6336 signed_addend = -signed_addend;
6337 }
6338
6339 relocation = value + signed_addend;
6340 relocation -= (input_section->output_section->vma
6341 + input_section->output_offset
6342 + rel->r_offset);
6343
6344 value = abs (relocation);
6345
6346 if (value >= 0x1000)
6347 return bfd_reloc_overflow;
6348
6349 insn = (insn & 0xff7ff000) | value;
6350 if (relocation >= 0)
6351 insn |= (1 << 23);
6352
6353 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6354 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6355
6356 return bfd_reloc_ok;
6357 }
6358
6359 case R_ARM_THM_XPC22:
6360 case R_ARM_THM_CALL:
6361 case R_ARM_THM_JUMP24:
6362 /* Thumb BL (branch long instruction). */
6363 {
6364 bfd_vma relocation;
6365 bfd_vma reloc_sign;
6366 bfd_boolean overflow = FALSE;
6367 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6368 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6369 bfd_signed_vma reloc_signed_max;
6370 bfd_signed_vma reloc_signed_min;
6371 bfd_vma check;
6372 bfd_signed_vma signed_check;
6373 int bitsize;
6374 int thumb2 = using_thumb2 (globals);
6375
6376 /* A branch to an undefined weak symbol is turned into a jump to
6377 the next instruction. */
6378 if (h && h->root.type == bfd_link_hash_undefweak)
6379 {
6380 bfd_put_16 (input_bfd, 0xe000, hit_data);
6381 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6382 return bfd_reloc_ok;
6383 }
6384
6385 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6386 with Thumb-1) involving the J1 and J2 bits. */
6387 if (globals->use_rel)
6388 {
6389 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6390 bfd_vma upper = upper_insn & 0x3ff;
6391 bfd_vma lower = lower_insn & 0x7ff;
6392 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6393 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6394 bfd_vma i1 = j1 ^ s ? 0 : 1;
6395 bfd_vma i2 = j2 ^ s ? 0 : 1;
6396
6397 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6398 /* Sign extend. */
6399 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6400
6401 signed_addend = addend;
6402 }
6403
6404 if (r_type == R_ARM_THM_XPC22)
6405 {
6406 /* Check for Thumb to Thumb call. */
6407 /* FIXME: Should we translate the instruction into a BL
6408 instruction instead ? */
6409 if (sym_flags == STT_ARM_TFUNC)
6410 (*_bfd_error_handler)
6411 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6412 input_bfd,
6413 h ? h->root.root.string : "(local)");
6414 }
6415 else
6416 {
6417 /* If it is not a call to Thumb, assume call to Arm.
6418 If it is a call relative to a section name, then it is not a
6419 function call at all, but rather a long jump. Calls through
6420 the PLT do not require stubs. */
6421 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6422 && (h == NULL || splt == NULL
6423 || h->plt.offset == (bfd_vma) -1))
6424 {
6425 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6426 {
6427 /* Convert BL to BLX. */
6428 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6429 }
6430 else if (r_type != R_ARM_THM_CALL) {
6431 if (elf32_thumb_to_arm_stub
6432 (info, sym_name, input_bfd, output_bfd, input_section,
6433 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6434 error_message))
6435 return bfd_reloc_ok;
6436 else
6437 return bfd_reloc_dangerous;
6438 }
6439 }
6440 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6441 && r_type == R_ARM_THM_CALL)
6442 {
6443 /* Make sure this is a BL. */
6444 lower_insn |= 0x1800;
6445 }
6446 }
6447
6448 /* Handle calls via the PLT. */
6449 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6450 {
6451 value = (splt->output_section->vma
6452 + splt->output_offset
6453 + h->plt.offset);
6454 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6455 {
6456 /* If the Thumb BLX instruction is available, convert the
6457 BL to a BLX instruction to call the ARM-mode PLT entry. */
6458 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6459 }
6460 else
6461 /* Target the Thumb stub before the ARM PLT entry. */
6462 value -= PLT_THUMB_STUB_SIZE;
6463 *unresolved_reloc_p = FALSE;
6464 }
6465
6466 if (r_type == R_ARM_THM_CALL)
6467 {
6468 /* Check if a stub has to be inserted because the destination
6469 is too far. */
6470 bfd_vma from;
6471 bfd_signed_vma branch_offset;
6472 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6473
6474 from = (input_section->output_section->vma
6475 + input_section->output_offset
6476 + rel->r_offset);
6477 branch_offset = (bfd_signed_vma)(value - from);
6478
6479 if ((!thumb2
6480 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6481 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6482 ||
6483 (thumb2
6484 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6485 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6486 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6487 {
6488 /* The target is out of reach or we are changing modes, so
6489 redirect the branch to the local stub for this
6490 function. */
6491 stub_entry = elf32_arm_get_stub_entry (input_section,
6492 sym_sec, h,
6493 rel, globals);
6494 if (stub_entry != NULL)
6495 value = (stub_entry->stub_offset
6496 + stub_entry->stub_sec->output_offset
6497 + stub_entry->stub_sec->output_section->vma);
6498
6499 /* If this call becomes a call to Arm, force BLX. */
6500 if (globals->use_blx)
6501 {
6502 if ((stub_entry
6503 && !arm_stub_is_thumb (stub_entry->stub_type))
6504 || (sym_flags != STT_ARM_TFUNC))
6505 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6506 }
6507 }
6508 }
6509
6510 relocation = value + signed_addend;
6511
6512 relocation -= (input_section->output_section->vma
6513 + input_section->output_offset
6514 + rel->r_offset);
6515
6516 check = relocation >> howto->rightshift;
6517
6518 /* If this is a signed value, the rightshift just dropped
6519 leading 1 bits (assuming twos complement). */
6520 if ((bfd_signed_vma) relocation >= 0)
6521 signed_check = check;
6522 else
6523 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6524
6525 /* Calculate the permissable maximum and minimum values for
6526 this relocation according to whether we're relocating for
6527 Thumb-2 or not. */
6528 bitsize = howto->bitsize;
6529 if (!thumb2)
6530 bitsize -= 2;
6531 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6532 reloc_signed_min = ~reloc_signed_max;
6533
6534 /* Assumes two's complement. */
6535 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6536 overflow = TRUE;
6537
6538 if ((lower_insn & 0x5000) == 0x4000)
6539 /* For a BLX instruction, make sure that the relocation is rounded up
6540 to a word boundary. This follows the semantics of the instruction
6541 which specifies that bit 1 of the target address will come from bit
6542 1 of the base address. */
6543 relocation = (relocation + 2) & ~ 3;
6544
6545 /* Put RELOCATION back into the insn. Assumes two's complement.
6546 We use the Thumb-2 encoding, which is safe even if dealing with
6547 a Thumb-1 instruction by virtue of our overflow check above. */
6548 reloc_sign = (signed_check < 0) ? 1 : 0;
6549 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6550 | ((relocation >> 12) & 0x3ff)
6551 | (reloc_sign << 10);
6552 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6553 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6554 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6555 | ((relocation >> 1) & 0x7ff);
6556
6557 /* Put the relocated value back in the object file: */
6558 bfd_put_16 (input_bfd, upper_insn, hit_data);
6559 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6560
6561 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6562 }
6563 break;
6564
6565 case R_ARM_THM_JUMP19:
6566 /* Thumb32 conditional branch instruction. */
6567 {
6568 bfd_vma relocation;
6569 bfd_boolean overflow = FALSE;
6570 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6571 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6572 bfd_signed_vma reloc_signed_max = 0xffffe;
6573 bfd_signed_vma reloc_signed_min = -0x100000;
6574 bfd_signed_vma signed_check;
6575
6576 /* Need to refetch the addend, reconstruct the top three bits,
6577 and squish the two 11 bit pieces together. */
6578 if (globals->use_rel)
6579 {
6580 bfd_vma S = (upper_insn & 0x0400) >> 10;
6581 bfd_vma upper = (upper_insn & 0x003f);
6582 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6583 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6584 bfd_vma lower = (lower_insn & 0x07ff);
6585
6586 upper |= J1 << 6;
6587 upper |= J2 << 7;
6588 upper |= (!S) << 8;
6589 upper -= 0x0100; /* Sign extend. */
6590
6591 addend = (upper << 12) | (lower << 1);
6592 signed_addend = addend;
6593 }
6594
6595 /* Handle calls via the PLT. */
6596 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6597 {
6598 value = (splt->output_section->vma
6599 + splt->output_offset
6600 + h->plt.offset);
6601 /* Target the Thumb stub before the ARM PLT entry. */
6602 value -= PLT_THUMB_STUB_SIZE;
6603 *unresolved_reloc_p = FALSE;
6604 }
6605
6606 /* ??? Should handle interworking? GCC might someday try to
6607 use this for tail calls. */
6608
6609 relocation = value + signed_addend;
6610 relocation -= (input_section->output_section->vma
6611 + input_section->output_offset
6612 + rel->r_offset);
6613 signed_check = (bfd_signed_vma) relocation;
6614
6615 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6616 overflow = TRUE;
6617
6618 /* Put RELOCATION back into the insn. */
6619 {
6620 bfd_vma S = (relocation & 0x00100000) >> 20;
6621 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6622 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6623 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6624 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6625
6626 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6627 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6628 }
6629
6630 /* Put the relocated value back in the object file: */
6631 bfd_put_16 (input_bfd, upper_insn, hit_data);
6632 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6633
6634 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6635 }
6636
6637 case R_ARM_THM_JUMP11:
6638 case R_ARM_THM_JUMP8:
6639 case R_ARM_THM_JUMP6:
6640 /* Thumb B (branch) instruction). */
6641 {
6642 bfd_signed_vma relocation;
6643 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6644 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6645 bfd_signed_vma signed_check;
6646
6647 /* CZB cannot jump backward. */
6648 if (r_type == R_ARM_THM_JUMP6)
6649 reloc_signed_min = 0;
6650
6651 if (globals->use_rel)
6652 {
6653 /* Need to refetch addend. */
6654 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6655 if (addend & ((howto->src_mask + 1) >> 1))
6656 {
6657 signed_addend = -1;
6658 signed_addend &= ~ howto->src_mask;
6659 signed_addend |= addend;
6660 }
6661 else
6662 signed_addend = addend;
6663 /* The value in the insn has been right shifted. We need to
6664 undo this, so that we can perform the address calculation
6665 in terms of bytes. */
6666 signed_addend <<= howto->rightshift;
6667 }
6668 relocation = value + signed_addend;
6669
6670 relocation -= (input_section->output_section->vma
6671 + input_section->output_offset
6672 + rel->r_offset);
6673
6674 relocation >>= howto->rightshift;
6675 signed_check = relocation;
6676
6677 if (r_type == R_ARM_THM_JUMP6)
6678 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6679 else
6680 relocation &= howto->dst_mask;
6681 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6682
6683 bfd_put_16 (input_bfd, relocation, hit_data);
6684
6685 /* Assumes two's complement. */
6686 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6687 return bfd_reloc_overflow;
6688
6689 return bfd_reloc_ok;
6690 }
6691
6692 case R_ARM_ALU_PCREL7_0:
6693 case R_ARM_ALU_PCREL15_8:
6694 case R_ARM_ALU_PCREL23_15:
6695 {
6696 bfd_vma insn;
6697 bfd_vma relocation;
6698
6699 insn = bfd_get_32 (input_bfd, hit_data);
6700 if (globals->use_rel)
6701 {
6702 /* Extract the addend. */
6703 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6704 signed_addend = addend;
6705 }
6706 relocation = value + signed_addend;
6707
6708 relocation -= (input_section->output_section->vma
6709 + input_section->output_offset
6710 + rel->r_offset);
6711 insn = (insn & ~0xfff)
6712 | ((howto->bitpos << 7) & 0xf00)
6713 | ((relocation >> howto->bitpos) & 0xff);
6714 bfd_put_32 (input_bfd, value, hit_data);
6715 }
6716 return bfd_reloc_ok;
6717
6718 case R_ARM_GNU_VTINHERIT:
6719 case R_ARM_GNU_VTENTRY:
6720 return bfd_reloc_ok;
6721
6722 case R_ARM_GOTOFF32:
6723 /* Relocation is relative to the start of the
6724 global offset table. */
6725
6726 BFD_ASSERT (sgot != NULL);
6727 if (sgot == NULL)
6728 return bfd_reloc_notsupported;
6729
6730 /* If we are addressing a Thumb function, we need to adjust the
6731 address by one, so that attempts to call the function pointer will
6732 correctly interpret it as Thumb code. */
6733 if (sym_flags == STT_ARM_TFUNC)
6734 value += 1;
6735
6736 /* Note that sgot->output_offset is not involved in this
6737 calculation. We always want the start of .got. If we
6738 define _GLOBAL_OFFSET_TABLE in a different way, as is
6739 permitted by the ABI, we might have to change this
6740 calculation. */
6741 value -= sgot->output_section->vma;
6742 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6743 contents, rel->r_offset, value,
6744 rel->r_addend);
6745
6746 case R_ARM_GOTPC:
6747 /* Use global offset table as symbol value. */
6748 BFD_ASSERT (sgot != NULL);
6749
6750 if (sgot == NULL)
6751 return bfd_reloc_notsupported;
6752
6753 *unresolved_reloc_p = FALSE;
6754 value = sgot->output_section->vma;
6755 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6756 contents, rel->r_offset, value,
6757 rel->r_addend);
6758
6759 case R_ARM_GOT32:
6760 case R_ARM_GOT_PREL:
6761 /* Relocation is to the entry for this symbol in the
6762 global offset table. */
6763 if (sgot == NULL)
6764 return bfd_reloc_notsupported;
6765
6766 if (h != NULL)
6767 {
6768 bfd_vma off;
6769 bfd_boolean dyn;
6770
6771 off = h->got.offset;
6772 BFD_ASSERT (off != (bfd_vma) -1);
6773 dyn = globals->root.dynamic_sections_created;
6774
6775 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6776 || (info->shared
6777 && SYMBOL_REFERENCES_LOCAL (info, h))
6778 || (ELF_ST_VISIBILITY (h->other)
6779 && h->root.type == bfd_link_hash_undefweak))
6780 {
6781 /* This is actually a static link, or it is a -Bsymbolic link
6782 and the symbol is defined locally. We must initialize this
6783 entry in the global offset table. Since the offset must
6784 always be a multiple of 4, we use the least significant bit
6785 to record whether we have initialized it already.
6786
6787 When doing a dynamic link, we create a .rel(a).got relocation
6788 entry to initialize the value. This is done in the
6789 finish_dynamic_symbol routine. */
6790 if ((off & 1) != 0)
6791 off &= ~1;
6792 else
6793 {
6794 /* If we are addressing a Thumb function, we need to
6795 adjust the address by one, so that attempts to
6796 call the function pointer will correctly
6797 interpret it as Thumb code. */
6798 if (sym_flags == STT_ARM_TFUNC)
6799 value |= 1;
6800
6801 bfd_put_32 (output_bfd, value, sgot->contents + off);
6802 h->got.offset |= 1;
6803 }
6804 }
6805 else
6806 *unresolved_reloc_p = FALSE;
6807
6808 value = sgot->output_offset + off;
6809 }
6810 else
6811 {
6812 bfd_vma off;
6813
6814 BFD_ASSERT (local_got_offsets != NULL &&
6815 local_got_offsets[r_symndx] != (bfd_vma) -1);
6816
6817 off = local_got_offsets[r_symndx];
6818
6819 /* The offset must always be a multiple of 4. We use the
6820 least significant bit to record whether we have already
6821 generated the necessary reloc. */
6822 if ((off & 1) != 0)
6823 off &= ~1;
6824 else
6825 {
6826 /* If we are addressing a Thumb function, we need to
6827 adjust the address by one, so that attempts to
6828 call the function pointer will correctly
6829 interpret it as Thumb code. */
6830 if (sym_flags == STT_ARM_TFUNC)
6831 value |= 1;
6832
6833 if (globals->use_rel)
6834 bfd_put_32 (output_bfd, value, sgot->contents + off);
6835
6836 if (info->shared)
6837 {
6838 asection * srelgot;
6839 Elf_Internal_Rela outrel;
6840 bfd_byte *loc;
6841
6842 srelgot = (bfd_get_section_by_name
6843 (dynobj, RELOC_SECTION (globals, ".got")));
6844 BFD_ASSERT (srelgot != NULL);
6845
6846 outrel.r_addend = addend + value;
6847 outrel.r_offset = (sgot->output_section->vma
6848 + sgot->output_offset
6849 + off);
6850 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6851 loc = srelgot->contents;
6852 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6853 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6854 }
6855
6856 local_got_offsets[r_symndx] |= 1;
6857 }
6858
6859 value = sgot->output_offset + off;
6860 }
6861 if (r_type != R_ARM_GOT32)
6862 value += sgot->output_section->vma;
6863
6864 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6865 contents, rel->r_offset, value,
6866 rel->r_addend);
6867
6868 case R_ARM_TLS_LDO32:
6869 value = value - dtpoff_base (info);
6870
6871 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6872 contents, rel->r_offset, value,
6873 rel->r_addend);
6874
6875 case R_ARM_TLS_LDM32:
6876 {
6877 bfd_vma off;
6878
6879 if (globals->sgot == NULL)
6880 abort ();
6881
6882 off = globals->tls_ldm_got.offset;
6883
6884 if ((off & 1) != 0)
6885 off &= ~1;
6886 else
6887 {
6888 /* If we don't know the module number, create a relocation
6889 for it. */
6890 if (info->shared)
6891 {
6892 Elf_Internal_Rela outrel;
6893 bfd_byte *loc;
6894
6895 if (globals->srelgot == NULL)
6896 abort ();
6897
6898 outrel.r_addend = 0;
6899 outrel.r_offset = (globals->sgot->output_section->vma
6900 + globals->sgot->output_offset + off);
6901 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6902
6903 if (globals->use_rel)
6904 bfd_put_32 (output_bfd, outrel.r_addend,
6905 globals->sgot->contents + off);
6906
6907 loc = globals->srelgot->contents;
6908 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6909 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6910 }
6911 else
6912 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6913
6914 globals->tls_ldm_got.offset |= 1;
6915 }
6916
6917 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6918 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6919
6920 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6921 contents, rel->r_offset, value,
6922 rel->r_addend);
6923 }
6924
6925 case R_ARM_TLS_GD32:
6926 case R_ARM_TLS_IE32:
6927 {
6928 bfd_vma off;
6929 int indx;
6930 char tls_type;
6931
6932 if (globals->sgot == NULL)
6933 abort ();
6934
6935 indx = 0;
6936 if (h != NULL)
6937 {
6938 bfd_boolean dyn;
6939 dyn = globals->root.dynamic_sections_created;
6940 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6941 && (!info->shared
6942 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6943 {
6944 *unresolved_reloc_p = FALSE;
6945 indx = h->dynindx;
6946 }
6947 off = h->got.offset;
6948 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6949 }
6950 else
6951 {
6952 if (local_got_offsets == NULL)
6953 abort ();
6954 off = local_got_offsets[r_symndx];
6955 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6956 }
6957
6958 if (tls_type == GOT_UNKNOWN)
6959 abort ();
6960
6961 if ((off & 1) != 0)
6962 off &= ~1;
6963 else
6964 {
6965 bfd_boolean need_relocs = FALSE;
6966 Elf_Internal_Rela outrel;
6967 bfd_byte *loc = NULL;
6968 int cur_off = off;
6969
6970 /* The GOT entries have not been initialized yet. Do it
6971 now, and emit any relocations. If both an IE GOT and a
6972 GD GOT are necessary, we emit the GD first. */
6973
6974 if ((info->shared || indx != 0)
6975 && (h == NULL
6976 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6977 || h->root.type != bfd_link_hash_undefweak))
6978 {
6979 need_relocs = TRUE;
6980 if (globals->srelgot == NULL)
6981 abort ();
6982 loc = globals->srelgot->contents;
6983 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6984 }
6985
6986 if (tls_type & GOT_TLS_GD)
6987 {
6988 if (need_relocs)
6989 {
6990 outrel.r_addend = 0;
6991 outrel.r_offset = (globals->sgot->output_section->vma
6992 + globals->sgot->output_offset
6993 + cur_off);
6994 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
6995
6996 if (globals->use_rel)
6997 bfd_put_32 (output_bfd, outrel.r_addend,
6998 globals->sgot->contents + cur_off);
6999
7000 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7001 globals->srelgot->reloc_count++;
7002 loc += RELOC_SIZE (globals);
7003
7004 if (indx == 0)
7005 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7006 globals->sgot->contents + cur_off + 4);
7007 else
7008 {
7009 outrel.r_addend = 0;
7010 outrel.r_info = ELF32_R_INFO (indx,
7011 R_ARM_TLS_DTPOFF32);
7012 outrel.r_offset += 4;
7013
7014 if (globals->use_rel)
7015 bfd_put_32 (output_bfd, outrel.r_addend,
7016 globals->sgot->contents + cur_off + 4);
7017
7018
7019 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7020 globals->srelgot->reloc_count++;
7021 loc += RELOC_SIZE (globals);
7022 }
7023 }
7024 else
7025 {
7026 /* If we are not emitting relocations for a
7027 general dynamic reference, then we must be in a
7028 static link or an executable link with the
7029 symbol binding locally. Mark it as belonging
7030 to module 1, the executable. */
7031 bfd_put_32 (output_bfd, 1,
7032 globals->sgot->contents + cur_off);
7033 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7034 globals->sgot->contents + cur_off + 4);
7035 }
7036
7037 cur_off += 8;
7038 }
7039
7040 if (tls_type & GOT_TLS_IE)
7041 {
7042 if (need_relocs)
7043 {
7044 if (indx == 0)
7045 outrel.r_addend = value - dtpoff_base (info);
7046 else
7047 outrel.r_addend = 0;
7048 outrel.r_offset = (globals->sgot->output_section->vma
7049 + globals->sgot->output_offset
7050 + cur_off);
7051 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7052
7053 if (globals->use_rel)
7054 bfd_put_32 (output_bfd, outrel.r_addend,
7055 globals->sgot->contents + cur_off);
7056
7057 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7058 globals->srelgot->reloc_count++;
7059 loc += RELOC_SIZE (globals);
7060 }
7061 else
7062 bfd_put_32 (output_bfd, tpoff (info, value),
7063 globals->sgot->contents + cur_off);
7064 cur_off += 4;
7065 }
7066
7067 if (h != NULL)
7068 h->got.offset |= 1;
7069 else
7070 local_got_offsets[r_symndx] |= 1;
7071 }
7072
7073 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7074 off += 8;
7075 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7076 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7077
7078 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7079 contents, rel->r_offset, value,
7080 rel->r_addend);
7081 }
7082
7083 case R_ARM_TLS_LE32:
7084 if (info->shared)
7085 {
7086 (*_bfd_error_handler)
7087 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7088 input_bfd, input_section,
7089 (long) rel->r_offset, howto->name);
7090 return FALSE;
7091 }
7092 else
7093 value = tpoff (info, value);
7094
7095 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7096 contents, rel->r_offset, value,
7097 rel->r_addend);
7098
7099 case R_ARM_V4BX:
7100 if (globals->fix_v4bx)
7101 {
7102 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7103
7104 /* Ensure that we have a BX instruction. */
7105 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7106
7107 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7108 {
7109 /* Branch to veneer. */
7110 bfd_vma glue_addr;
7111 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7112 glue_addr -= input_section->output_section->vma
7113 + input_section->output_offset
7114 + rel->r_offset + 8;
7115 insn = (insn & 0xf0000000) | 0x0a000000
7116 | ((glue_addr >> 2) & 0x00ffffff);
7117 }
7118 else
7119 {
7120 /* Preserve Rm (lowest four bits) and the condition code
7121 (highest four bits). Other bits encode MOV PC,Rm. */
7122 insn = (insn & 0xf000000f) | 0x01a0f000;
7123 }
7124
7125 bfd_put_32 (input_bfd, insn, hit_data);
7126 }
7127 return bfd_reloc_ok;
7128
7129 case R_ARM_MOVW_ABS_NC:
7130 case R_ARM_MOVT_ABS:
7131 case R_ARM_MOVW_PREL_NC:
7132 case R_ARM_MOVT_PREL:
7133 /* Until we properly support segment-base-relative addressing then
7134 we assume the segment base to be zero, as for the group relocations.
7135 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7136 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7137 case R_ARM_MOVW_BREL_NC:
7138 case R_ARM_MOVW_BREL:
7139 case R_ARM_MOVT_BREL:
7140 {
7141 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7142
7143 if (globals->use_rel)
7144 {
7145 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7146 signed_addend = (addend ^ 0x8000) - 0x8000;
7147 }
7148
7149 value += signed_addend;
7150
7151 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7152 value -= (input_section->output_section->vma
7153 + input_section->output_offset + rel->r_offset);
7154
7155 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7156 return bfd_reloc_overflow;
7157
7158 if (sym_flags == STT_ARM_TFUNC)
7159 value |= 1;
7160
7161 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7162 || r_type == R_ARM_MOVT_BREL)
7163 value >>= 16;
7164
7165 insn &= 0xfff0f000;
7166 insn |= value & 0xfff;
7167 insn |= (value & 0xf000) << 4;
7168 bfd_put_32 (input_bfd, insn, hit_data);
7169 }
7170 return bfd_reloc_ok;
7171
7172 case R_ARM_THM_MOVW_ABS_NC:
7173 case R_ARM_THM_MOVT_ABS:
7174 case R_ARM_THM_MOVW_PREL_NC:
7175 case R_ARM_THM_MOVT_PREL:
7176 /* Until we properly support segment-base-relative addressing then
7177 we assume the segment base to be zero, as for the above relocations.
7178 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7179 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7180 as R_ARM_THM_MOVT_ABS. */
7181 case R_ARM_THM_MOVW_BREL_NC:
7182 case R_ARM_THM_MOVW_BREL:
7183 case R_ARM_THM_MOVT_BREL:
7184 {
7185 bfd_vma insn;
7186
7187 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7188 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7189
7190 if (globals->use_rel)
7191 {
7192 addend = ((insn >> 4) & 0xf000)
7193 | ((insn >> 15) & 0x0800)
7194 | ((insn >> 4) & 0x0700)
7195 | (insn & 0x00ff);
7196 signed_addend = (addend ^ 0x8000) - 0x8000;
7197 }
7198
7199 value += signed_addend;
7200
7201 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7202 value -= (input_section->output_section->vma
7203 + input_section->output_offset + rel->r_offset);
7204
7205 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7206 return bfd_reloc_overflow;
7207
7208 if (sym_flags == STT_ARM_TFUNC)
7209 value |= 1;
7210
7211 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7212 || r_type == R_ARM_THM_MOVT_BREL)
7213 value >>= 16;
7214
7215 insn &= 0xfbf08f00;
7216 insn |= (value & 0xf000) << 4;
7217 insn |= (value & 0x0800) << 15;
7218 insn |= (value & 0x0700) << 4;
7219 insn |= (value & 0x00ff);
7220
7221 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7222 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7223 }
7224 return bfd_reloc_ok;
7225
7226 case R_ARM_ALU_PC_G0_NC:
7227 case R_ARM_ALU_PC_G1_NC:
7228 case R_ARM_ALU_PC_G0:
7229 case R_ARM_ALU_PC_G1:
7230 case R_ARM_ALU_PC_G2:
7231 case R_ARM_ALU_SB_G0_NC:
7232 case R_ARM_ALU_SB_G1_NC:
7233 case R_ARM_ALU_SB_G0:
7234 case R_ARM_ALU_SB_G1:
7235 case R_ARM_ALU_SB_G2:
7236 {
7237 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7238 bfd_vma pc = input_section->output_section->vma
7239 + input_section->output_offset + rel->r_offset;
7240 /* sb should be the origin of the *segment* containing the symbol.
7241 It is not clear how to obtain this OS-dependent value, so we
7242 make an arbitrary choice of zero. */
7243 bfd_vma sb = 0;
7244 bfd_vma residual;
7245 bfd_vma g_n;
7246 bfd_signed_vma signed_value;
7247 int group = 0;
7248
7249 /* Determine which group of bits to select. */
7250 switch (r_type)
7251 {
7252 case R_ARM_ALU_PC_G0_NC:
7253 case R_ARM_ALU_PC_G0:
7254 case R_ARM_ALU_SB_G0_NC:
7255 case R_ARM_ALU_SB_G0:
7256 group = 0;
7257 break;
7258
7259 case R_ARM_ALU_PC_G1_NC:
7260 case R_ARM_ALU_PC_G1:
7261 case R_ARM_ALU_SB_G1_NC:
7262 case R_ARM_ALU_SB_G1:
7263 group = 1;
7264 break;
7265
7266 case R_ARM_ALU_PC_G2:
7267 case R_ARM_ALU_SB_G2:
7268 group = 2;
7269 break;
7270
7271 default:
7272 abort ();
7273 }
7274
7275 /* If REL, extract the addend from the insn. If RELA, it will
7276 have already been fetched for us. */
7277 if (globals->use_rel)
7278 {
7279 int negative;
7280 bfd_vma constant = insn & 0xff;
7281 bfd_vma rotation = (insn & 0xf00) >> 8;
7282
7283 if (rotation == 0)
7284 signed_addend = constant;
7285 else
7286 {
7287 /* Compensate for the fact that in the instruction, the
7288 rotation is stored in multiples of 2 bits. */
7289 rotation *= 2;
7290
7291 /* Rotate "constant" right by "rotation" bits. */
7292 signed_addend = (constant >> rotation) |
7293 (constant << (8 * sizeof (bfd_vma) - rotation));
7294 }
7295
7296 /* Determine if the instruction is an ADD or a SUB.
7297 (For REL, this determines the sign of the addend.) */
7298 negative = identify_add_or_sub (insn);
7299 if (negative == 0)
7300 {
7301 (*_bfd_error_handler)
7302 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7303 input_bfd, input_section,
7304 (long) rel->r_offset, howto->name);
7305 return bfd_reloc_overflow;
7306 }
7307
7308 signed_addend *= negative;
7309 }
7310
7311 /* Compute the value (X) to go in the place. */
7312 if (r_type == R_ARM_ALU_PC_G0_NC
7313 || r_type == R_ARM_ALU_PC_G1_NC
7314 || r_type == R_ARM_ALU_PC_G0
7315 || r_type == R_ARM_ALU_PC_G1
7316 || r_type == R_ARM_ALU_PC_G2)
7317 /* PC relative. */
7318 signed_value = value - pc + signed_addend;
7319 else
7320 /* Section base relative. */
7321 signed_value = value - sb + signed_addend;
7322
7323 /* If the target symbol is a Thumb function, then set the
7324 Thumb bit in the address. */
7325 if (sym_flags == STT_ARM_TFUNC)
7326 signed_value |= 1;
7327
7328 /* Calculate the value of the relevant G_n, in encoded
7329 constant-with-rotation format. */
7330 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7331 &residual);
7332
7333 /* Check for overflow if required. */
7334 if ((r_type == R_ARM_ALU_PC_G0
7335 || r_type == R_ARM_ALU_PC_G1
7336 || r_type == R_ARM_ALU_PC_G2
7337 || r_type == R_ARM_ALU_SB_G0
7338 || r_type == R_ARM_ALU_SB_G1
7339 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7340 {
7341 (*_bfd_error_handler)
7342 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7343 input_bfd, input_section,
7344 (long) rel->r_offset, abs (signed_value), howto->name);
7345 return bfd_reloc_overflow;
7346 }
7347
7348 /* Mask out the value and the ADD/SUB part of the opcode; take care
7349 not to destroy the S bit. */
7350 insn &= 0xff1ff000;
7351
7352 /* Set the opcode according to whether the value to go in the
7353 place is negative. */
7354 if (signed_value < 0)
7355 insn |= 1 << 22;
7356 else
7357 insn |= 1 << 23;
7358
7359 /* Encode the offset. */
7360 insn |= g_n;
7361
7362 bfd_put_32 (input_bfd, insn, hit_data);
7363 }
7364 return bfd_reloc_ok;
7365
7366 case R_ARM_LDR_PC_G0:
7367 case R_ARM_LDR_PC_G1:
7368 case R_ARM_LDR_PC_G2:
7369 case R_ARM_LDR_SB_G0:
7370 case R_ARM_LDR_SB_G1:
7371 case R_ARM_LDR_SB_G2:
7372 {
7373 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7374 bfd_vma pc = input_section->output_section->vma
7375 + input_section->output_offset + rel->r_offset;
7376 bfd_vma sb = 0; /* See note above. */
7377 bfd_vma residual;
7378 bfd_signed_vma signed_value;
7379 int group = 0;
7380
7381 /* Determine which groups of bits to calculate. */
7382 switch (r_type)
7383 {
7384 case R_ARM_LDR_PC_G0:
7385 case R_ARM_LDR_SB_G0:
7386 group = 0;
7387 break;
7388
7389 case R_ARM_LDR_PC_G1:
7390 case R_ARM_LDR_SB_G1:
7391 group = 1;
7392 break;
7393
7394 case R_ARM_LDR_PC_G2:
7395 case R_ARM_LDR_SB_G2:
7396 group = 2;
7397 break;
7398
7399 default:
7400 abort ();
7401 }
7402
7403 /* If REL, extract the addend from the insn. If RELA, it will
7404 have already been fetched for us. */
7405 if (globals->use_rel)
7406 {
7407 int negative = (insn & (1 << 23)) ? 1 : -1;
7408 signed_addend = negative * (insn & 0xfff);
7409 }
7410
7411 /* Compute the value (X) to go in the place. */
7412 if (r_type == R_ARM_LDR_PC_G0
7413 || r_type == R_ARM_LDR_PC_G1
7414 || r_type == R_ARM_LDR_PC_G2)
7415 /* PC relative. */
7416 signed_value = value - pc + signed_addend;
7417 else
7418 /* Section base relative. */
7419 signed_value = value - sb + signed_addend;
7420
7421 /* Calculate the value of the relevant G_{n-1} to obtain
7422 the residual at that stage. */
7423 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7424
7425 /* Check for overflow. */
7426 if (residual >= 0x1000)
7427 {
7428 (*_bfd_error_handler)
7429 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7430 input_bfd, input_section,
7431 (long) rel->r_offset, abs (signed_value), howto->name);
7432 return bfd_reloc_overflow;
7433 }
7434
7435 /* Mask out the value and U bit. */
7436 insn &= 0xff7ff000;
7437
7438 /* Set the U bit if the value to go in the place is non-negative. */
7439 if (signed_value >= 0)
7440 insn |= 1 << 23;
7441
7442 /* Encode the offset. */
7443 insn |= residual;
7444
7445 bfd_put_32 (input_bfd, insn, hit_data);
7446 }
7447 return bfd_reloc_ok;
7448
7449 case R_ARM_LDRS_PC_G0:
7450 case R_ARM_LDRS_PC_G1:
7451 case R_ARM_LDRS_PC_G2:
7452 case R_ARM_LDRS_SB_G0:
7453 case R_ARM_LDRS_SB_G1:
7454 case R_ARM_LDRS_SB_G2:
7455 {
7456 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7457 bfd_vma pc = input_section->output_section->vma
7458 + input_section->output_offset + rel->r_offset;
7459 bfd_vma sb = 0; /* See note above. */
7460 bfd_vma residual;
7461 bfd_signed_vma signed_value;
7462 int group = 0;
7463
7464 /* Determine which groups of bits to calculate. */
7465 switch (r_type)
7466 {
7467 case R_ARM_LDRS_PC_G0:
7468 case R_ARM_LDRS_SB_G0:
7469 group = 0;
7470 break;
7471
7472 case R_ARM_LDRS_PC_G1:
7473 case R_ARM_LDRS_SB_G1:
7474 group = 1;
7475 break;
7476
7477 case R_ARM_LDRS_PC_G2:
7478 case R_ARM_LDRS_SB_G2:
7479 group = 2;
7480 break;
7481
7482 default:
7483 abort ();
7484 }
7485
7486 /* If REL, extract the addend from the insn. If RELA, it will
7487 have already been fetched for us. */
7488 if (globals->use_rel)
7489 {
7490 int negative = (insn & (1 << 23)) ? 1 : -1;
7491 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7492 }
7493
7494 /* Compute the value (X) to go in the place. */
7495 if (r_type == R_ARM_LDRS_PC_G0
7496 || r_type == R_ARM_LDRS_PC_G1
7497 || r_type == R_ARM_LDRS_PC_G2)
7498 /* PC relative. */
7499 signed_value = value - pc + signed_addend;
7500 else
7501 /* Section base relative. */
7502 signed_value = value - sb + signed_addend;
7503
7504 /* Calculate the value of the relevant G_{n-1} to obtain
7505 the residual at that stage. */
7506 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7507
7508 /* Check for overflow. */
7509 if (residual >= 0x100)
7510 {
7511 (*_bfd_error_handler)
7512 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7513 input_bfd, input_section,
7514 (long) rel->r_offset, abs (signed_value), howto->name);
7515 return bfd_reloc_overflow;
7516 }
7517
7518 /* Mask out the value and U bit. */
7519 insn &= 0xff7ff0f0;
7520
7521 /* Set the U bit if the value to go in the place is non-negative. */
7522 if (signed_value >= 0)
7523 insn |= 1 << 23;
7524
7525 /* Encode the offset. */
7526 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7527
7528 bfd_put_32 (input_bfd, insn, hit_data);
7529 }
7530 return bfd_reloc_ok;
7531
7532 case R_ARM_LDC_PC_G0:
7533 case R_ARM_LDC_PC_G1:
7534 case R_ARM_LDC_PC_G2:
7535 case R_ARM_LDC_SB_G0:
7536 case R_ARM_LDC_SB_G1:
7537 case R_ARM_LDC_SB_G2:
7538 {
7539 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7540 bfd_vma pc = input_section->output_section->vma
7541 + input_section->output_offset + rel->r_offset;
7542 bfd_vma sb = 0; /* See note above. */
7543 bfd_vma residual;
7544 bfd_signed_vma signed_value;
7545 int group = 0;
7546
7547 /* Determine which groups of bits to calculate. */
7548 switch (r_type)
7549 {
7550 case R_ARM_LDC_PC_G0:
7551 case R_ARM_LDC_SB_G0:
7552 group = 0;
7553 break;
7554
7555 case R_ARM_LDC_PC_G1:
7556 case R_ARM_LDC_SB_G1:
7557 group = 1;
7558 break;
7559
7560 case R_ARM_LDC_PC_G2:
7561 case R_ARM_LDC_SB_G2:
7562 group = 2;
7563 break;
7564
7565 default:
7566 abort ();
7567 }
7568
7569 /* If REL, extract the addend from the insn. If RELA, it will
7570 have already been fetched for us. */
7571 if (globals->use_rel)
7572 {
7573 int negative = (insn & (1 << 23)) ? 1 : -1;
7574 signed_addend = negative * ((insn & 0xff) << 2);
7575 }
7576
7577 /* Compute the value (X) to go in the place. */
7578 if (r_type == R_ARM_LDC_PC_G0
7579 || r_type == R_ARM_LDC_PC_G1
7580 || r_type == R_ARM_LDC_PC_G2)
7581 /* PC relative. */
7582 signed_value = value - pc + signed_addend;
7583 else
7584 /* Section base relative. */
7585 signed_value = value - sb + signed_addend;
7586
7587 /* Calculate the value of the relevant G_{n-1} to obtain
7588 the residual at that stage. */
7589 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7590
7591 /* Check for overflow. (The absolute value to go in the place must be
7592 divisible by four and, after having been divided by four, must
7593 fit in eight bits.) */
7594 if ((residual & 0x3) != 0 || residual >= 0x400)
7595 {
7596 (*_bfd_error_handler)
7597 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7598 input_bfd, input_section,
7599 (long) rel->r_offset, abs (signed_value), howto->name);
7600 return bfd_reloc_overflow;
7601 }
7602
7603 /* Mask out the value and U bit. */
7604 insn &= 0xff7fff00;
7605
7606 /* Set the U bit if the value to go in the place is non-negative. */
7607 if (signed_value >= 0)
7608 insn |= 1 << 23;
7609
7610 /* Encode the offset. */
7611 insn |= residual >> 2;
7612
7613 bfd_put_32 (input_bfd, insn, hit_data);
7614 }
7615 return bfd_reloc_ok;
7616
7617 default:
7618 return bfd_reloc_notsupported;
7619 }
7620 }
7621
7622 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7623 static void
7624 arm_add_to_rel (bfd * abfd,
7625 bfd_byte * address,
7626 reloc_howto_type * howto,
7627 bfd_signed_vma increment)
7628 {
7629 bfd_signed_vma addend;
7630
7631 if (howto->type == R_ARM_THM_CALL
7632 || howto->type == R_ARM_THM_JUMP24)
7633 {
7634 int upper_insn, lower_insn;
7635 int upper, lower;
7636
7637 upper_insn = bfd_get_16 (abfd, address);
7638 lower_insn = bfd_get_16 (abfd, address + 2);
7639 upper = upper_insn & 0x7ff;
7640 lower = lower_insn & 0x7ff;
7641
7642 addend = (upper << 12) | (lower << 1);
7643 addend += increment;
7644 addend >>= 1;
7645
7646 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7647 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7648
7649 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7650 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7651 }
7652 else
7653 {
7654 bfd_vma contents;
7655
7656 contents = bfd_get_32 (abfd, address);
7657
7658 /* Get the (signed) value from the instruction. */
7659 addend = contents & howto->src_mask;
7660 if (addend & ((howto->src_mask + 1) >> 1))
7661 {
7662 bfd_signed_vma mask;
7663
7664 mask = -1;
7665 mask &= ~ howto->src_mask;
7666 addend |= mask;
7667 }
7668
7669 /* Add in the increment, (which is a byte value). */
7670 switch (howto->type)
7671 {
7672 default:
7673 addend += increment;
7674 break;
7675
7676 case R_ARM_PC24:
7677 case R_ARM_PLT32:
7678 case R_ARM_CALL:
7679 case R_ARM_JUMP24:
7680 addend <<= howto->size;
7681 addend += increment;
7682
7683 /* Should we check for overflow here ? */
7684
7685 /* Drop any undesired bits. */
7686 addend >>= howto->rightshift;
7687 break;
7688 }
7689
7690 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7691
7692 bfd_put_32 (abfd, contents, address);
7693 }
7694 }
7695
7696 #define IS_ARM_TLS_RELOC(R_TYPE) \
7697 ((R_TYPE) == R_ARM_TLS_GD32 \
7698 || (R_TYPE) == R_ARM_TLS_LDO32 \
7699 || (R_TYPE) == R_ARM_TLS_LDM32 \
7700 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7701 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7702 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7703 || (R_TYPE) == R_ARM_TLS_LE32 \
7704 || (R_TYPE) == R_ARM_TLS_IE32)
7705
7706 /* Relocate an ARM ELF section. */
7707
7708 static bfd_boolean
7709 elf32_arm_relocate_section (bfd * output_bfd,
7710 struct bfd_link_info * info,
7711 bfd * input_bfd,
7712 asection * input_section,
7713 bfd_byte * contents,
7714 Elf_Internal_Rela * relocs,
7715 Elf_Internal_Sym * local_syms,
7716 asection ** local_sections)
7717 {
7718 Elf_Internal_Shdr *symtab_hdr;
7719 struct elf_link_hash_entry **sym_hashes;
7720 Elf_Internal_Rela *rel;
7721 Elf_Internal_Rela *relend;
7722 const char *name;
7723 struct elf32_arm_link_hash_table * globals;
7724
7725 globals = elf32_arm_hash_table (info);
7726
7727 symtab_hdr = & elf_symtab_hdr (input_bfd);
7728 sym_hashes = elf_sym_hashes (input_bfd);
7729
7730 rel = relocs;
7731 relend = relocs + input_section->reloc_count;
7732 for (; rel < relend; rel++)
7733 {
7734 int r_type;
7735 reloc_howto_type * howto;
7736 unsigned long r_symndx;
7737 Elf_Internal_Sym * sym;
7738 asection * sec;
7739 struct elf_link_hash_entry * h;
7740 bfd_vma relocation;
7741 bfd_reloc_status_type r;
7742 arelent bfd_reloc;
7743 char sym_type;
7744 bfd_boolean unresolved_reloc = FALSE;
7745 char *error_message = NULL;
7746
7747 r_symndx = ELF32_R_SYM (rel->r_info);
7748 r_type = ELF32_R_TYPE (rel->r_info);
7749 r_type = arm_real_reloc_type (globals, r_type);
7750
7751 if ( r_type == R_ARM_GNU_VTENTRY
7752 || r_type == R_ARM_GNU_VTINHERIT)
7753 continue;
7754
7755 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7756 howto = bfd_reloc.howto;
7757
7758 h = NULL;
7759 sym = NULL;
7760 sec = NULL;
7761
7762 if (r_symndx < symtab_hdr->sh_info)
7763 {
7764 sym = local_syms + r_symndx;
7765 sym_type = ELF32_ST_TYPE (sym->st_info);
7766 sec = local_sections[r_symndx];
7767 if (globals->use_rel)
7768 {
7769 relocation = (sec->output_section->vma
7770 + sec->output_offset
7771 + sym->st_value);
7772 if (!info->relocatable
7773 && (sec->flags & SEC_MERGE)
7774 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7775 {
7776 asection *msec;
7777 bfd_vma addend, value;
7778
7779 switch (r_type)
7780 {
7781 case R_ARM_MOVW_ABS_NC:
7782 case R_ARM_MOVT_ABS:
7783 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7784 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7785 addend = (addend ^ 0x8000) - 0x8000;
7786 break;
7787
7788 case R_ARM_THM_MOVW_ABS_NC:
7789 case R_ARM_THM_MOVT_ABS:
7790 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7791 << 16;
7792 value |= bfd_get_16 (input_bfd,
7793 contents + rel->r_offset + 2);
7794 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7795 | ((value & 0x04000000) >> 15);
7796 addend = (addend ^ 0x8000) - 0x8000;
7797 break;
7798
7799 default:
7800 if (howto->rightshift
7801 || (howto->src_mask & (howto->src_mask + 1)))
7802 {
7803 (*_bfd_error_handler)
7804 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7805 input_bfd, input_section,
7806 (long) rel->r_offset, howto->name);
7807 return FALSE;
7808 }
7809
7810 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7811
7812 /* Get the (signed) value from the instruction. */
7813 addend = value & howto->src_mask;
7814 if (addend & ((howto->src_mask + 1) >> 1))
7815 {
7816 bfd_signed_vma mask;
7817
7818 mask = -1;
7819 mask &= ~ howto->src_mask;
7820 addend |= mask;
7821 }
7822 break;
7823 }
7824
7825 msec = sec;
7826 addend =
7827 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7828 - relocation;
7829 addend += msec->output_section->vma + msec->output_offset;
7830
7831 /* Cases here must match those in the preceeding
7832 switch statement. */
7833 switch (r_type)
7834 {
7835 case R_ARM_MOVW_ABS_NC:
7836 case R_ARM_MOVT_ABS:
7837 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7838 | (addend & 0xfff);
7839 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7840 break;
7841
7842 case R_ARM_THM_MOVW_ABS_NC:
7843 case R_ARM_THM_MOVT_ABS:
7844 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7845 | (addend & 0xff) | ((addend & 0x0800) << 15);
7846 bfd_put_16 (input_bfd, value >> 16,
7847 contents + rel->r_offset);
7848 bfd_put_16 (input_bfd, value,
7849 contents + rel->r_offset + 2);
7850 break;
7851
7852 default:
7853 value = (value & ~ howto->dst_mask)
7854 | (addend & howto->dst_mask);
7855 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7856 break;
7857 }
7858 }
7859 }
7860 else
7861 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7862 }
7863 else
7864 {
7865 bfd_boolean warned;
7866
7867 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7868 r_symndx, symtab_hdr, sym_hashes,
7869 h, sec, relocation,
7870 unresolved_reloc, warned);
7871
7872 sym_type = h->type;
7873 }
7874
7875 if (sec != NULL && elf_discarded_section (sec))
7876 {
7877 /* For relocs against symbols from removed linkonce sections,
7878 or sections discarded by a linker script, we just want the
7879 section contents zeroed. Avoid any special processing. */
7880 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7881 rel->r_info = 0;
7882 rel->r_addend = 0;
7883 continue;
7884 }
7885
7886 if (info->relocatable)
7887 {
7888 /* This is a relocatable link. We don't have to change
7889 anything, unless the reloc is against a section symbol,
7890 in which case we have to adjust according to where the
7891 section symbol winds up in the output section. */
7892 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7893 {
7894 if (globals->use_rel)
7895 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7896 howto, (bfd_signed_vma) sec->output_offset);
7897 else
7898 rel->r_addend += sec->output_offset;
7899 }
7900 continue;
7901 }
7902
7903 if (h != NULL)
7904 name = h->root.root.string;
7905 else
7906 {
7907 name = (bfd_elf_string_from_elf_section
7908 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7909 if (name == NULL || *name == '\0')
7910 name = bfd_section_name (input_bfd, sec);
7911 }
7912
7913 if (r_symndx != 0
7914 && r_type != R_ARM_NONE
7915 && (h == NULL
7916 || h->root.type == bfd_link_hash_defined
7917 || h->root.type == bfd_link_hash_defweak)
7918 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7919 {
7920 (*_bfd_error_handler)
7921 ((sym_type == STT_TLS
7922 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7923 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7924 input_bfd,
7925 input_section,
7926 (long) rel->r_offset,
7927 howto->name,
7928 name);
7929 }
7930
7931 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7932 input_section, contents, rel,
7933 relocation, info, sec, name,
7934 (h ? ELF_ST_TYPE (h->type) :
7935 ELF_ST_TYPE (sym->st_info)), h,
7936 &unresolved_reloc, &error_message);
7937
7938 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7939 because such sections are not SEC_ALLOC and thus ld.so will
7940 not process them. */
7941 if (unresolved_reloc
7942 && !((input_section->flags & SEC_DEBUGGING) != 0
7943 && h->def_dynamic))
7944 {
7945 (*_bfd_error_handler)
7946 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7947 input_bfd,
7948 input_section,
7949 (long) rel->r_offset,
7950 howto->name,
7951 h->root.root.string);
7952 return FALSE;
7953 }
7954
7955 if (r != bfd_reloc_ok)
7956 {
7957 switch (r)
7958 {
7959 case bfd_reloc_overflow:
7960 /* If the overflowing reloc was to an undefined symbol,
7961 we have already printed one error message and there
7962 is no point complaining again. */
7963 if ((! h ||
7964 h->root.type != bfd_link_hash_undefined)
7965 && (!((*info->callbacks->reloc_overflow)
7966 (info, (h ? &h->root : NULL), name, howto->name,
7967 (bfd_vma) 0, input_bfd, input_section,
7968 rel->r_offset))))
7969 return FALSE;
7970 break;
7971
7972 case bfd_reloc_undefined:
7973 if (!((*info->callbacks->undefined_symbol)
7974 (info, name, input_bfd, input_section,
7975 rel->r_offset, TRUE)))
7976 return FALSE;
7977 break;
7978
7979 case bfd_reloc_outofrange:
7980 error_message = _("out of range");
7981 goto common_error;
7982
7983 case bfd_reloc_notsupported:
7984 error_message = _("unsupported relocation");
7985 goto common_error;
7986
7987 case bfd_reloc_dangerous:
7988 /* error_message should already be set. */
7989 goto common_error;
7990
7991 default:
7992 error_message = _("unknown error");
7993 /* fall through */
7994
7995 common_error:
7996 BFD_ASSERT (error_message != NULL);
7997 if (!((*info->callbacks->reloc_dangerous)
7998 (info, error_message, input_bfd, input_section,
7999 rel->r_offset)))
8000 return FALSE;
8001 break;
8002 }
8003 }
8004 }
8005
8006 return TRUE;
8007 }
8008
8009 /* Set the right machine number. */
8010
8011 static bfd_boolean
8012 elf32_arm_object_p (bfd *abfd)
8013 {
8014 unsigned int mach;
8015
8016 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8017
8018 if (mach != bfd_mach_arm_unknown)
8019 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8020
8021 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8022 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8023
8024 else
8025 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8026
8027 return TRUE;
8028 }
8029
8030 /* Function to keep ARM specific flags in the ELF header. */
8031
8032 static bfd_boolean
8033 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8034 {
8035 if (elf_flags_init (abfd)
8036 && elf_elfheader (abfd)->e_flags != flags)
8037 {
8038 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8039 {
8040 if (flags & EF_ARM_INTERWORK)
8041 (*_bfd_error_handler)
8042 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8043 abfd);
8044 else
8045 _bfd_error_handler
8046 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8047 abfd);
8048 }
8049 }
8050 else
8051 {
8052 elf_elfheader (abfd)->e_flags = flags;
8053 elf_flags_init (abfd) = TRUE;
8054 }
8055
8056 return TRUE;
8057 }
8058
8059 /* Copy backend specific data from one object module to another. */
8060
8061 static bfd_boolean
8062 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8063 {
8064 flagword in_flags;
8065 flagword out_flags;
8066
8067 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8068 return TRUE;
8069
8070 in_flags = elf_elfheader (ibfd)->e_flags;
8071 out_flags = elf_elfheader (obfd)->e_flags;
8072
8073 if (elf_flags_init (obfd)
8074 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8075 && in_flags != out_flags)
8076 {
8077 /* Cannot mix APCS26 and APCS32 code. */
8078 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8079 return FALSE;
8080
8081 /* Cannot mix float APCS and non-float APCS code. */
8082 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8083 return FALSE;
8084
8085 /* If the src and dest have different interworking flags
8086 then turn off the interworking bit. */
8087 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8088 {
8089 if (out_flags & EF_ARM_INTERWORK)
8090 _bfd_error_handler
8091 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8092 obfd, ibfd);
8093
8094 in_flags &= ~EF_ARM_INTERWORK;
8095 }
8096
8097 /* Likewise for PIC, though don't warn for this case. */
8098 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8099 in_flags &= ~EF_ARM_PIC;
8100 }
8101
8102 elf_elfheader (obfd)->e_flags = in_flags;
8103 elf_flags_init (obfd) = TRUE;
8104
8105 /* Also copy the EI_OSABI field. */
8106 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8107 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8108
8109 /* Copy object attributes. */
8110 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8111
8112 return TRUE;
8113 }
8114
8115 /* Values for Tag_ABI_PCS_R9_use. */
8116 enum
8117 {
8118 AEABI_R9_V6,
8119 AEABI_R9_SB,
8120 AEABI_R9_TLS,
8121 AEABI_R9_unused
8122 };
8123
8124 /* Values for Tag_ABI_PCS_RW_data. */
8125 enum
8126 {
8127 AEABI_PCS_RW_data_absolute,
8128 AEABI_PCS_RW_data_PCrel,
8129 AEABI_PCS_RW_data_SBrel,
8130 AEABI_PCS_RW_data_unused
8131 };
8132
8133 /* Values for Tag_ABI_enum_size. */
8134 enum
8135 {
8136 AEABI_enum_unused,
8137 AEABI_enum_short,
8138 AEABI_enum_wide,
8139 AEABI_enum_forced_wide
8140 };
8141
8142 /* Determine whether an object attribute tag takes an integer, a
8143 string or both. */
8144
8145 static int
8146 elf32_arm_obj_attrs_arg_type (int tag)
8147 {
8148 if (tag == Tag_compatibility)
8149 return 3;
8150 else if (tag == 4 || tag == 5)
8151 return 2;
8152 else if (tag < 32)
8153 return 1;
8154 else
8155 return (tag & 1) != 0 ? 2 : 1;
8156 }
8157
8158 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8159 are conflicting attributes. */
8160
8161 static bfd_boolean
8162 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8163 {
8164 obj_attribute *in_attr;
8165 obj_attribute *out_attr;
8166 obj_attribute_list *in_list;
8167 /* Some tags have 0 = don't care, 1 = strong requirement,
8168 2 = weak requirement. */
8169 static const int order_312[3] = {3, 1, 2};
8170 /* For use with Tag_VFP_arch. */
8171 static const int order_01243[5] = {0, 1, 2, 4, 3};
8172 int i;
8173
8174 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8175 {
8176 /* This is the first object. Copy the attributes. */
8177 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8178
8179 /* Use the Tag_null value to indicate the attributes have been
8180 initialized. */
8181 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8182
8183 return TRUE;
8184 }
8185
8186 in_attr = elf_known_obj_attributes_proc (ibfd);
8187 out_attr = elf_known_obj_attributes_proc (obfd);
8188 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8189 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8190 {
8191 /* Ignore mismatches if teh object doesn't use floating point. */
8192 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8193 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8194 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8195 {
8196 _bfd_error_handler
8197 (_("ERROR: %B uses VFP register arguments, %B does not"),
8198 ibfd, obfd);
8199 return FALSE;
8200 }
8201 }
8202
8203 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8204 {
8205 /* Merge this attribute with existing attributes. */
8206 switch (i)
8207 {
8208 case Tag_CPU_raw_name:
8209 case Tag_CPU_name:
8210 /* Use whichever has the greatest architecture requirements. We
8211 won't necessarily have both the above tags, so make sure input
8212 name is non-NULL. */
8213 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
8214 && in_attr[i].s)
8215 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
8216 break;
8217
8218 case Tag_ABI_optimization_goals:
8219 case Tag_ABI_FP_optimization_goals:
8220 /* Use the first value seen. */
8221 break;
8222
8223 case Tag_CPU_arch:
8224 case Tag_ARM_ISA_use:
8225 case Tag_THUMB_ISA_use:
8226 case Tag_WMMX_arch:
8227 case Tag_NEON_arch:
8228 /* ??? Do NEON and WMMX conflict? */
8229 case Tag_ABI_FP_rounding:
8230 case Tag_ABI_FP_denormal:
8231 case Tag_ABI_FP_exceptions:
8232 case Tag_ABI_FP_user_exceptions:
8233 case Tag_ABI_FP_number_model:
8234 case Tag_ABI_align8_preserved:
8235 case Tag_ABI_HardFP_use:
8236 /* Use the largest value specified. */
8237 if (in_attr[i].i > out_attr[i].i)
8238 out_attr[i].i = in_attr[i].i;
8239 break;
8240
8241 case Tag_CPU_arch_profile:
8242 /* Warn if conflicting architecture profiles used. */
8243 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
8244 {
8245 _bfd_error_handler
8246 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8247 ibfd, in_attr[i].i, out_attr[i].i);
8248 return FALSE;
8249 }
8250 if (in_attr[i].i)
8251 out_attr[i].i = in_attr[i].i;
8252 break;
8253 case Tag_VFP_arch:
8254 if (in_attr[i].i > 4 || out_attr[i].i > 4
8255 || order_01243[in_attr[i].i] > order_01243[out_attr[i].i])
8256 out_attr[i].i = in_attr[i].i;
8257 break;
8258 case Tag_PCS_config:
8259 if (out_attr[i].i == 0)
8260 out_attr[i].i = in_attr[i].i;
8261 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8262 {
8263 /* It's sometimes ok to mix different configs, so this is only
8264 a warning. */
8265 _bfd_error_handler
8266 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8267 }
8268 break;
8269 case Tag_ABI_PCS_R9_use:
8270 if (in_attr[i].i != out_attr[i].i
8271 && out_attr[i].i != AEABI_R9_unused
8272 && in_attr[i].i != AEABI_R9_unused)
8273 {
8274 _bfd_error_handler
8275 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8276 return FALSE;
8277 }
8278 if (out_attr[i].i == AEABI_R9_unused)
8279 out_attr[i].i = in_attr[i].i;
8280 break;
8281 case Tag_ABI_PCS_RW_data:
8282 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8283 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8284 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8285 {
8286 _bfd_error_handler
8287 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8288 ibfd);
8289 return FALSE;
8290 }
8291 /* Use the smallest value specified. */
8292 if (in_attr[i].i < out_attr[i].i)
8293 out_attr[i].i = in_attr[i].i;
8294 break;
8295 case Tag_ABI_PCS_RO_data:
8296 /* Use the smallest value specified. */
8297 if (in_attr[i].i < out_attr[i].i)
8298 out_attr[i].i = in_attr[i].i;
8299 break;
8300 case Tag_ABI_PCS_GOT_use:
8301 if (in_attr[i].i > 2 || out_attr[i].i > 2
8302 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8303 out_attr[i].i = in_attr[i].i;
8304 break;
8305 case Tag_ABI_PCS_wchar_t:
8306 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
8307 {
8308 _bfd_error_handler
8309 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
8310 return FALSE;
8311 }
8312 if (in_attr[i].i)
8313 out_attr[i].i = in_attr[i].i;
8314 break;
8315 case Tag_ABI_align8_needed:
8316 /* ??? Check against Tag_ABI_align8_preserved. */
8317 if (in_attr[i].i > 2 || out_attr[i].i > 2
8318 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8319 out_attr[i].i = in_attr[i].i;
8320 break;
8321 case Tag_ABI_enum_size:
8322 if (in_attr[i].i != AEABI_enum_unused)
8323 {
8324 if (out_attr[i].i == AEABI_enum_unused
8325 || out_attr[i].i == AEABI_enum_forced_wide)
8326 {
8327 /* The existing object is compatible with anything.
8328 Use whatever requirements the new object has. */
8329 out_attr[i].i = in_attr[i].i;
8330 }
8331 else if (in_attr[i].i != AEABI_enum_forced_wide
8332 && out_attr[i].i != in_attr[i].i
8333 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8334 {
8335 const char *aeabi_enum_names[] =
8336 { "", "variable-size", "32-bit", "" };
8337 _bfd_error_handler
8338 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8339 ibfd, aeabi_enum_names[in_attr[i].i],
8340 aeabi_enum_names[out_attr[i].i]);
8341 }
8342 }
8343 break;
8344 case Tag_ABI_VFP_args:
8345 /* Aready done. */
8346 break;
8347 case Tag_ABI_WMMX_args:
8348 if (in_attr[i].i != out_attr[i].i)
8349 {
8350 _bfd_error_handler
8351 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8352 ibfd, obfd);
8353 return FALSE;
8354 }
8355 break;
8356 default: /* All known attributes should be explicitly covered. */
8357 abort ();
8358 }
8359
8360 if (in_attr[i].type && !out_attr[i].type)
8361 switch (in_attr[i].type)
8362 {
8363 case 1:
8364 if (out_attr[i].i)
8365 out_attr[i].type = 1;
8366 break;
8367
8368 case 2:
8369 if (out_attr[i].s)
8370 out_attr[i].type = 2;
8371 break;
8372
8373 default:
8374 abort ();
8375 }
8376 }
8377
8378 /* Merge Tag_compatibility attributes and any common GNU ones. */
8379 _bfd_elf_merge_object_attributes (ibfd, obfd);
8380
8381 /* Check for any attributes not known on ARM. */
8382 in_list = elf_other_obj_attributes_proc (ibfd);
8383 while (in_list && in_list->tag == Tag_compatibility)
8384 in_list = in_list->next;
8385
8386 for (; in_list; in_list = in_list->next)
8387 {
8388 if ((in_list->tag & 128) < 64)
8389 {
8390 _bfd_error_handler
8391 (_("Warning: %B: Unknown EABI object attribute %d"),
8392 ibfd, in_list->tag);
8393 break;
8394 }
8395 }
8396 return TRUE;
8397 }
8398
8399
8400 /* Return TRUE if the two EABI versions are incompatible. */
8401
8402 static bfd_boolean
8403 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8404 {
8405 /* v4 and v5 are the same spec before and after it was released,
8406 so allow mixing them. */
8407 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8408 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8409 return TRUE;
8410
8411 return (iver == over);
8412 }
8413
8414 /* Merge backend specific data from an object file to the output
8415 object file when linking. */
8416
8417 static bfd_boolean
8418 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8419 {
8420 flagword out_flags;
8421 flagword in_flags;
8422 bfd_boolean flags_compatible = TRUE;
8423 asection *sec;
8424
8425 /* Check if we have the same endianess. */
8426 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8427 return FALSE;
8428
8429 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8430 return TRUE;
8431
8432 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8433 return FALSE;
8434
8435 /* The input BFD must have had its flags initialised. */
8436 /* The following seems bogus to me -- The flags are initialized in
8437 the assembler but I don't think an elf_flags_init field is
8438 written into the object. */
8439 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8440
8441 in_flags = elf_elfheader (ibfd)->e_flags;
8442 out_flags = elf_elfheader (obfd)->e_flags;
8443
8444 /* In theory there is no reason why we couldn't handle this. However
8445 in practice it isn't even close to working and there is no real
8446 reason to want it. */
8447 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
8448 && !(ibfd->flags & DYNAMIC)
8449 && (in_flags & EF_ARM_BE8))
8450 {
8451 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8452 ibfd);
8453 return FALSE;
8454 }
8455
8456 if (!elf_flags_init (obfd))
8457 {
8458 /* If the input is the default architecture and had the default
8459 flags then do not bother setting the flags for the output
8460 architecture, instead allow future merges to do this. If no
8461 future merges ever set these flags then they will retain their
8462 uninitialised values, which surprise surprise, correspond
8463 to the default values. */
8464 if (bfd_get_arch_info (ibfd)->the_default
8465 && elf_elfheader (ibfd)->e_flags == 0)
8466 return TRUE;
8467
8468 elf_flags_init (obfd) = TRUE;
8469 elf_elfheader (obfd)->e_flags = in_flags;
8470
8471 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8472 && bfd_get_arch_info (obfd)->the_default)
8473 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8474
8475 return TRUE;
8476 }
8477
8478 /* Determine what should happen if the input ARM architecture
8479 does not match the output ARM architecture. */
8480 if (! bfd_arm_merge_machines (ibfd, obfd))
8481 return FALSE;
8482
8483 /* Identical flags must be compatible. */
8484 if (in_flags == out_flags)
8485 return TRUE;
8486
8487 /* Check to see if the input BFD actually contains any sections. If
8488 not, its flags may not have been initialised either, but it
8489 cannot actually cause any incompatiblity. Do not short-circuit
8490 dynamic objects; their section list may be emptied by
8491 elf_link_add_object_symbols.
8492
8493 Also check to see if there are no code sections in the input.
8494 In this case there is no need to check for code specific flags.
8495 XXX - do we need to worry about floating-point format compatability
8496 in data sections ? */
8497 if (!(ibfd->flags & DYNAMIC))
8498 {
8499 bfd_boolean null_input_bfd = TRUE;
8500 bfd_boolean only_data_sections = TRUE;
8501
8502 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8503 {
8504 /* Ignore synthetic glue sections. */
8505 if (strcmp (sec->name, ".glue_7")
8506 && strcmp (sec->name, ".glue_7t"))
8507 {
8508 if ((bfd_get_section_flags (ibfd, sec)
8509 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8510 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8511 only_data_sections = FALSE;
8512
8513 null_input_bfd = FALSE;
8514 break;
8515 }
8516 }
8517
8518 if (null_input_bfd || only_data_sections)
8519 return TRUE;
8520 }
8521
8522 /* Complain about various flag mismatches. */
8523 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8524 EF_ARM_EABI_VERSION (out_flags)))
8525 {
8526 _bfd_error_handler
8527 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8528 ibfd, obfd,
8529 (in_flags & EF_ARM_EABIMASK) >> 24,
8530 (out_flags & EF_ARM_EABIMASK) >> 24);
8531 return FALSE;
8532 }
8533
8534 /* Not sure what needs to be checked for EABI versions >= 1. */
8535 /* VxWorks libraries do not use these flags. */
8536 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8537 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8538 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8539 {
8540 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8541 {
8542 _bfd_error_handler
8543 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8544 ibfd, obfd,
8545 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8546 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8547 flags_compatible = FALSE;
8548 }
8549
8550 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8551 {
8552 if (in_flags & EF_ARM_APCS_FLOAT)
8553 _bfd_error_handler
8554 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8555 ibfd, obfd);
8556 else
8557 _bfd_error_handler
8558 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8559 ibfd, obfd);
8560
8561 flags_compatible = FALSE;
8562 }
8563
8564 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
8565 {
8566 if (in_flags & EF_ARM_VFP_FLOAT)
8567 _bfd_error_handler
8568 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8569 ibfd, obfd);
8570 else
8571 _bfd_error_handler
8572 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8573 ibfd, obfd);
8574
8575 flags_compatible = FALSE;
8576 }
8577
8578 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
8579 {
8580 if (in_flags & EF_ARM_MAVERICK_FLOAT)
8581 _bfd_error_handler
8582 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8583 ibfd, obfd);
8584 else
8585 _bfd_error_handler
8586 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8587 ibfd, obfd);
8588
8589 flags_compatible = FALSE;
8590 }
8591
8592 #ifdef EF_ARM_SOFT_FLOAT
8593 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
8594 {
8595 /* We can allow interworking between code that is VFP format
8596 layout, and uses either soft float or integer regs for
8597 passing floating point arguments and results. We already
8598 know that the APCS_FLOAT flags match; similarly for VFP
8599 flags. */
8600 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
8601 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
8602 {
8603 if (in_flags & EF_ARM_SOFT_FLOAT)
8604 _bfd_error_handler
8605 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8606 ibfd, obfd);
8607 else
8608 _bfd_error_handler
8609 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8610 ibfd, obfd);
8611
8612 flags_compatible = FALSE;
8613 }
8614 }
8615 #endif
8616
8617 /* Interworking mismatch is only a warning. */
8618 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8619 {
8620 if (in_flags & EF_ARM_INTERWORK)
8621 {
8622 _bfd_error_handler
8623 (_("Warning: %B supports interworking, whereas %B does not"),
8624 ibfd, obfd);
8625 }
8626 else
8627 {
8628 _bfd_error_handler
8629 (_("Warning: %B does not support interworking, whereas %B does"),
8630 ibfd, obfd);
8631 }
8632 }
8633 }
8634
8635 return flags_compatible;
8636 }
8637
8638 /* Display the flags field. */
8639
8640 static bfd_boolean
8641 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
8642 {
8643 FILE * file = (FILE *) ptr;
8644 unsigned long flags;
8645
8646 BFD_ASSERT (abfd != NULL && ptr != NULL);
8647
8648 /* Print normal ELF private data. */
8649 _bfd_elf_print_private_bfd_data (abfd, ptr);
8650
8651 flags = elf_elfheader (abfd)->e_flags;
8652 /* Ignore init flag - it may not be set, despite the flags field
8653 containing valid data. */
8654
8655 /* xgettext:c-format */
8656 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
8657
8658 switch (EF_ARM_EABI_VERSION (flags))
8659 {
8660 case EF_ARM_EABI_UNKNOWN:
8661 /* The following flag bits are GNU extensions and not part of the
8662 official ARM ELF extended ABI. Hence they are only decoded if
8663 the EABI version is not set. */
8664 if (flags & EF_ARM_INTERWORK)
8665 fprintf (file, _(" [interworking enabled]"));
8666
8667 if (flags & EF_ARM_APCS_26)
8668 fprintf (file, " [APCS-26]");
8669 else
8670 fprintf (file, " [APCS-32]");
8671
8672 if (flags & EF_ARM_VFP_FLOAT)
8673 fprintf (file, _(" [VFP float format]"));
8674 else if (flags & EF_ARM_MAVERICK_FLOAT)
8675 fprintf (file, _(" [Maverick float format]"));
8676 else
8677 fprintf (file, _(" [FPA float format]"));
8678
8679 if (flags & EF_ARM_APCS_FLOAT)
8680 fprintf (file, _(" [floats passed in float registers]"));
8681
8682 if (flags & EF_ARM_PIC)
8683 fprintf (file, _(" [position independent]"));
8684
8685 if (flags & EF_ARM_NEW_ABI)
8686 fprintf (file, _(" [new ABI]"));
8687
8688 if (flags & EF_ARM_OLD_ABI)
8689 fprintf (file, _(" [old ABI]"));
8690
8691 if (flags & EF_ARM_SOFT_FLOAT)
8692 fprintf (file, _(" [software FP]"));
8693
8694 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
8695 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
8696 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
8697 | EF_ARM_MAVERICK_FLOAT);
8698 break;
8699
8700 case EF_ARM_EABI_VER1:
8701 fprintf (file, _(" [Version1 EABI]"));
8702
8703 if (flags & EF_ARM_SYMSARESORTED)
8704 fprintf (file, _(" [sorted symbol table]"));
8705 else
8706 fprintf (file, _(" [unsorted symbol table]"));
8707
8708 flags &= ~ EF_ARM_SYMSARESORTED;
8709 break;
8710
8711 case EF_ARM_EABI_VER2:
8712 fprintf (file, _(" [Version2 EABI]"));
8713
8714 if (flags & EF_ARM_SYMSARESORTED)
8715 fprintf (file, _(" [sorted symbol table]"));
8716 else
8717 fprintf (file, _(" [unsorted symbol table]"));
8718
8719 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
8720 fprintf (file, _(" [dynamic symbols use segment index]"));
8721
8722 if (flags & EF_ARM_MAPSYMSFIRST)
8723 fprintf (file, _(" [mapping symbols precede others]"));
8724
8725 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
8726 | EF_ARM_MAPSYMSFIRST);
8727 break;
8728
8729 case EF_ARM_EABI_VER3:
8730 fprintf (file, _(" [Version3 EABI]"));
8731 break;
8732
8733 case EF_ARM_EABI_VER4:
8734 fprintf (file, _(" [Version4 EABI]"));
8735 goto eabi;
8736
8737 case EF_ARM_EABI_VER5:
8738 fprintf (file, _(" [Version5 EABI]"));
8739 eabi:
8740 if (flags & EF_ARM_BE8)
8741 fprintf (file, _(" [BE8]"));
8742
8743 if (flags & EF_ARM_LE8)
8744 fprintf (file, _(" [LE8]"));
8745
8746 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
8747 break;
8748
8749 default:
8750 fprintf (file, _(" <EABI version unrecognised>"));
8751 break;
8752 }
8753
8754 flags &= ~ EF_ARM_EABIMASK;
8755
8756 if (flags & EF_ARM_RELEXEC)
8757 fprintf (file, _(" [relocatable executable]"));
8758
8759 if (flags & EF_ARM_HASENTRY)
8760 fprintf (file, _(" [has entry point]"));
8761
8762 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
8763
8764 if (flags)
8765 fprintf (file, _("<Unrecognised flag bits set>"));
8766
8767 fputc ('\n', file);
8768
8769 return TRUE;
8770 }
8771
8772 static int
8773 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
8774 {
8775 switch (ELF_ST_TYPE (elf_sym->st_info))
8776 {
8777 case STT_ARM_TFUNC:
8778 return ELF_ST_TYPE (elf_sym->st_info);
8779
8780 case STT_ARM_16BIT:
8781 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8782 This allows us to distinguish between data used by Thumb instructions
8783 and non-data (which is probably code) inside Thumb regions of an
8784 executable. */
8785 if (type != STT_OBJECT && type != STT_TLS)
8786 return ELF_ST_TYPE (elf_sym->st_info);
8787 break;
8788
8789 default:
8790 break;
8791 }
8792
8793 return type;
8794 }
8795
8796 static asection *
8797 elf32_arm_gc_mark_hook (asection *sec,
8798 struct bfd_link_info *info,
8799 Elf_Internal_Rela *rel,
8800 struct elf_link_hash_entry *h,
8801 Elf_Internal_Sym *sym)
8802 {
8803 if (h != NULL)
8804 switch (ELF32_R_TYPE (rel->r_info))
8805 {
8806 case R_ARM_GNU_VTINHERIT:
8807 case R_ARM_GNU_VTENTRY:
8808 return NULL;
8809 }
8810
8811 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
8812 }
8813
8814 /* Update the got entry reference counts for the section being removed. */
8815
8816 static bfd_boolean
8817 elf32_arm_gc_sweep_hook (bfd * abfd,
8818 struct bfd_link_info * info,
8819 asection * sec,
8820 const Elf_Internal_Rela * relocs)
8821 {
8822 Elf_Internal_Shdr *symtab_hdr;
8823 struct elf_link_hash_entry **sym_hashes;
8824 bfd_signed_vma *local_got_refcounts;
8825 const Elf_Internal_Rela *rel, *relend;
8826 struct elf32_arm_link_hash_table * globals;
8827
8828 if (info->relocatable)
8829 return TRUE;
8830
8831 globals = elf32_arm_hash_table (info);
8832
8833 elf_section_data (sec)->local_dynrel = NULL;
8834
8835 symtab_hdr = & elf_symtab_hdr (abfd);
8836 sym_hashes = elf_sym_hashes (abfd);
8837 local_got_refcounts = elf_local_got_refcounts (abfd);
8838
8839 check_use_blx (globals);
8840
8841 relend = relocs + sec->reloc_count;
8842 for (rel = relocs; rel < relend; rel++)
8843 {
8844 unsigned long r_symndx;
8845 struct elf_link_hash_entry *h = NULL;
8846 int r_type;
8847
8848 r_symndx = ELF32_R_SYM (rel->r_info);
8849 if (r_symndx >= symtab_hdr->sh_info)
8850 {
8851 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8852 while (h->root.type == bfd_link_hash_indirect
8853 || h->root.type == bfd_link_hash_warning)
8854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8855 }
8856
8857 r_type = ELF32_R_TYPE (rel->r_info);
8858 r_type = arm_real_reloc_type (globals, r_type);
8859 switch (r_type)
8860 {
8861 case R_ARM_GOT32:
8862 case R_ARM_GOT_PREL:
8863 case R_ARM_TLS_GD32:
8864 case R_ARM_TLS_IE32:
8865 if (h != NULL)
8866 {
8867 if (h->got.refcount > 0)
8868 h->got.refcount -= 1;
8869 }
8870 else if (local_got_refcounts != NULL)
8871 {
8872 if (local_got_refcounts[r_symndx] > 0)
8873 local_got_refcounts[r_symndx] -= 1;
8874 }
8875 break;
8876
8877 case R_ARM_TLS_LDM32:
8878 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
8879 break;
8880
8881 case R_ARM_ABS32:
8882 case R_ARM_ABS32_NOI:
8883 case R_ARM_REL32:
8884 case R_ARM_REL32_NOI:
8885 case R_ARM_PC24:
8886 case R_ARM_PLT32:
8887 case R_ARM_CALL:
8888 case R_ARM_JUMP24:
8889 case R_ARM_PREL31:
8890 case R_ARM_THM_CALL:
8891 case R_ARM_THM_JUMP24:
8892 case R_ARM_THM_JUMP19:
8893 case R_ARM_MOVW_ABS_NC:
8894 case R_ARM_MOVT_ABS:
8895 case R_ARM_MOVW_PREL_NC:
8896 case R_ARM_MOVT_PREL:
8897 case R_ARM_THM_MOVW_ABS_NC:
8898 case R_ARM_THM_MOVT_ABS:
8899 case R_ARM_THM_MOVW_PREL_NC:
8900 case R_ARM_THM_MOVT_PREL:
8901 /* Should the interworking branches be here also? */
8902
8903 if (h != NULL)
8904 {
8905 struct elf32_arm_link_hash_entry *eh;
8906 struct elf32_arm_relocs_copied **pp;
8907 struct elf32_arm_relocs_copied *p;
8908
8909 eh = (struct elf32_arm_link_hash_entry *) h;
8910
8911 if (h->plt.refcount > 0)
8912 {
8913 h->plt.refcount -= 1;
8914 if (r_type == R_ARM_THM_CALL)
8915 eh->plt_maybe_thumb_refcount--;
8916
8917 if (r_type == R_ARM_THM_JUMP24
8918 || r_type == R_ARM_THM_JUMP19)
8919 eh->plt_thumb_refcount--;
8920 }
8921
8922 if (r_type == R_ARM_ABS32
8923 || r_type == R_ARM_REL32
8924 || r_type == R_ARM_ABS32_NOI
8925 || r_type == R_ARM_REL32_NOI)
8926 {
8927 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
8928 pp = &p->next)
8929 if (p->section == sec)
8930 {
8931 p->count -= 1;
8932 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
8933 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
8934 p->pc_count -= 1;
8935 if (p->count == 0)
8936 *pp = p->next;
8937 break;
8938 }
8939 }
8940 }
8941 break;
8942
8943 default:
8944 break;
8945 }
8946 }
8947
8948 return TRUE;
8949 }
8950
8951 /* Look through the relocs for a section during the first phase. */
8952
8953 static bfd_boolean
8954 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
8955 asection *sec, const Elf_Internal_Rela *relocs)
8956 {
8957 Elf_Internal_Shdr *symtab_hdr;
8958 struct elf_link_hash_entry **sym_hashes;
8959 const Elf_Internal_Rela *rel;
8960 const Elf_Internal_Rela *rel_end;
8961 bfd *dynobj;
8962 asection *sreloc;
8963 bfd_vma *local_got_offsets;
8964 struct elf32_arm_link_hash_table *htab;
8965 bfd_boolean needs_plt;
8966
8967 if (info->relocatable)
8968 return TRUE;
8969
8970 BFD_ASSERT (is_arm_elf (abfd));
8971
8972 htab = elf32_arm_hash_table (info);
8973 sreloc = NULL;
8974
8975 /* Create dynamic sections for relocatable executables so that we can
8976 copy relocations. */
8977 if (htab->root.is_relocatable_executable
8978 && ! htab->root.dynamic_sections_created)
8979 {
8980 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
8981 return FALSE;
8982 }
8983
8984 dynobj = elf_hash_table (info)->dynobj;
8985 local_got_offsets = elf_local_got_offsets (abfd);
8986
8987 symtab_hdr = & elf_symtab_hdr (abfd);
8988 sym_hashes = elf_sym_hashes (abfd);
8989
8990 rel_end = relocs + sec->reloc_count;
8991 for (rel = relocs; rel < rel_end; rel++)
8992 {
8993 struct elf_link_hash_entry *h;
8994 struct elf32_arm_link_hash_entry *eh;
8995 unsigned long r_symndx;
8996 int r_type;
8997
8998 r_symndx = ELF32_R_SYM (rel->r_info);
8999 r_type = ELF32_R_TYPE (rel->r_info);
9000 r_type = arm_real_reloc_type (htab, r_type);
9001
9002 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
9003 {
9004 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9005 r_symndx);
9006 return FALSE;
9007 }
9008
9009 if (r_symndx < symtab_hdr->sh_info)
9010 h = NULL;
9011 else
9012 {
9013 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9014 while (h->root.type == bfd_link_hash_indirect
9015 || h->root.type == bfd_link_hash_warning)
9016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9017 }
9018
9019 eh = (struct elf32_arm_link_hash_entry *) h;
9020
9021 switch (r_type)
9022 {
9023 case R_ARM_GOT32:
9024 case R_ARM_GOT_PREL:
9025 case R_ARM_TLS_GD32:
9026 case R_ARM_TLS_IE32:
9027 /* This symbol requires a global offset table entry. */
9028 {
9029 int tls_type, old_tls_type;
9030
9031 switch (r_type)
9032 {
9033 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9034 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9035 default: tls_type = GOT_NORMAL; break;
9036 }
9037
9038 if (h != NULL)
9039 {
9040 h->got.refcount++;
9041 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9042 }
9043 else
9044 {
9045 bfd_signed_vma *local_got_refcounts;
9046
9047 /* This is a global offset table entry for a local symbol. */
9048 local_got_refcounts = elf_local_got_refcounts (abfd);
9049 if (local_got_refcounts == NULL)
9050 {
9051 bfd_size_type size;
9052
9053 size = symtab_hdr->sh_info;
9054 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9055 local_got_refcounts = bfd_zalloc (abfd, size);
9056 if (local_got_refcounts == NULL)
9057 return FALSE;
9058 elf_local_got_refcounts (abfd) = local_got_refcounts;
9059 elf32_arm_local_got_tls_type (abfd)
9060 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9061 }
9062 local_got_refcounts[r_symndx] += 1;
9063 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9064 }
9065
9066 /* We will already have issued an error message if there is a
9067 TLS / non-TLS mismatch, based on the symbol type. We don't
9068 support any linker relaxations. So just combine any TLS
9069 types needed. */
9070 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9071 && tls_type != GOT_NORMAL)
9072 tls_type |= old_tls_type;
9073
9074 if (old_tls_type != tls_type)
9075 {
9076 if (h != NULL)
9077 elf32_arm_hash_entry (h)->tls_type = tls_type;
9078 else
9079 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9080 }
9081 }
9082 /* Fall through */
9083
9084 case R_ARM_TLS_LDM32:
9085 if (r_type == R_ARM_TLS_LDM32)
9086 htab->tls_ldm_got.refcount++;
9087 /* Fall through */
9088
9089 case R_ARM_GOTOFF32:
9090 case R_ARM_GOTPC:
9091 if (htab->sgot == NULL)
9092 {
9093 if (htab->root.dynobj == NULL)
9094 htab->root.dynobj = abfd;
9095 if (!create_got_section (htab->root.dynobj, info))
9096 return FALSE;
9097 }
9098 break;
9099
9100 case R_ARM_ABS12:
9101 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9102 ldr __GOTT_INDEX__ offsets. */
9103 if (!htab->vxworks_p)
9104 break;
9105 /* Fall through */
9106
9107 case R_ARM_PC24:
9108 case R_ARM_PLT32:
9109 case R_ARM_CALL:
9110 case R_ARM_JUMP24:
9111 case R_ARM_PREL31:
9112 case R_ARM_THM_CALL:
9113 case R_ARM_THM_JUMP24:
9114 case R_ARM_THM_JUMP19:
9115 needs_plt = 1;
9116 goto normal_reloc;
9117
9118 case R_ARM_ABS32:
9119 case R_ARM_ABS32_NOI:
9120 case R_ARM_REL32:
9121 case R_ARM_REL32_NOI:
9122 case R_ARM_MOVW_ABS_NC:
9123 case R_ARM_MOVT_ABS:
9124 case R_ARM_MOVW_PREL_NC:
9125 case R_ARM_MOVT_PREL:
9126 case R_ARM_THM_MOVW_ABS_NC:
9127 case R_ARM_THM_MOVT_ABS:
9128 case R_ARM_THM_MOVW_PREL_NC:
9129 case R_ARM_THM_MOVT_PREL:
9130 needs_plt = 0;
9131 normal_reloc:
9132
9133 /* Should the interworking branches be listed here? */
9134 if (h != NULL)
9135 {
9136 /* If this reloc is in a read-only section, we might
9137 need a copy reloc. We can't check reliably at this
9138 stage whether the section is read-only, as input
9139 sections have not yet been mapped to output sections.
9140 Tentatively set the flag for now, and correct in
9141 adjust_dynamic_symbol. */
9142 if (!info->shared)
9143 h->non_got_ref = 1;
9144
9145 /* We may need a .plt entry if the function this reloc
9146 refers to is in a different object. We can't tell for
9147 sure yet, because something later might force the
9148 symbol local. */
9149 if (needs_plt)
9150 h->needs_plt = 1;
9151
9152 /* If we create a PLT entry, this relocation will reference
9153 it, even if it's an ABS32 relocation. */
9154 h->plt.refcount += 1;
9155
9156 /* It's too early to use htab->use_blx here, so we have to
9157 record possible blx references separately from
9158 relocs that definitely need a thumb stub. */
9159
9160 if (r_type == R_ARM_THM_CALL)
9161 eh->plt_maybe_thumb_refcount += 1;
9162
9163 if (r_type == R_ARM_THM_JUMP24
9164 || r_type == R_ARM_THM_JUMP19)
9165 eh->plt_thumb_refcount += 1;
9166 }
9167
9168 /* If we are creating a shared library or relocatable executable,
9169 and this is a reloc against a global symbol, or a non PC
9170 relative reloc against a local symbol, then we need to copy
9171 the reloc into the shared library. However, if we are linking
9172 with -Bsymbolic, we do not need to copy a reloc against a
9173 global symbol which is defined in an object we are
9174 including in the link (i.e., DEF_REGULAR is set). At
9175 this point we have not seen all the input files, so it is
9176 possible that DEF_REGULAR is not set now but will be set
9177 later (it is never cleared). We account for that
9178 possibility below by storing information in the
9179 relocs_copied field of the hash table entry. */
9180 if ((info->shared || htab->root.is_relocatable_executable)
9181 && (sec->flags & SEC_ALLOC) != 0
9182 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9183 || (h != NULL && ! h->needs_plt
9184 && (! info->symbolic || ! h->def_regular))))
9185 {
9186 struct elf32_arm_relocs_copied *p, **head;
9187
9188 /* When creating a shared object, we must copy these
9189 reloc types into the output file. We create a reloc
9190 section in dynobj and make room for this reloc. */
9191 if (sreloc == NULL)
9192 {
9193 const char * name;
9194
9195 name = (bfd_elf_string_from_elf_section
9196 (abfd,
9197 elf_elfheader (abfd)->e_shstrndx,
9198 elf_section_data (sec)->rel_hdr.sh_name));
9199 if (name == NULL)
9200 return FALSE;
9201
9202 BFD_ASSERT (reloc_section_p (htab, name, sec));
9203
9204 sreloc = bfd_get_section_by_name (dynobj, name);
9205 if (sreloc == NULL)
9206 {
9207 flagword flags;
9208
9209 flags = (SEC_HAS_CONTENTS | SEC_READONLY
9210 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
9211 if ((sec->flags & SEC_ALLOC) != 0
9212 /* BPABI objects never have dynamic
9213 relocations mapped. */
9214 && !htab->symbian_p)
9215 flags |= SEC_ALLOC | SEC_LOAD;
9216 sreloc = bfd_make_section_with_flags (dynobj,
9217 name,
9218 flags);
9219 if (sreloc == NULL
9220 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
9221 return FALSE;
9222 }
9223
9224 elf_section_data (sec)->sreloc = sreloc;
9225 }
9226
9227 /* If this is a global symbol, we count the number of
9228 relocations we need for this symbol. */
9229 if (h != NULL)
9230 {
9231 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9232 }
9233 else
9234 {
9235 /* Track dynamic relocs needed for local syms too.
9236 We really need local syms available to do this
9237 easily. Oh well. */
9238
9239 asection *s;
9240 void *vpp;
9241
9242 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9243 sec, r_symndx);
9244 if (s == NULL)
9245 return FALSE;
9246
9247 vpp = &elf_section_data (s)->local_dynrel;
9248 head = (struct elf32_arm_relocs_copied **) vpp;
9249 }
9250
9251 p = *head;
9252 if (p == NULL || p->section != sec)
9253 {
9254 bfd_size_type amt = sizeof *p;
9255
9256 p = bfd_alloc (htab->root.dynobj, amt);
9257 if (p == NULL)
9258 return FALSE;
9259 p->next = *head;
9260 *head = p;
9261 p->section = sec;
9262 p->count = 0;
9263 p->pc_count = 0;
9264 }
9265
9266 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9267 p->pc_count += 1;
9268 p->count += 1;
9269 }
9270 break;
9271
9272 /* This relocation describes the C++ object vtable hierarchy.
9273 Reconstruct it for later use during GC. */
9274 case R_ARM_GNU_VTINHERIT:
9275 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9276 return FALSE;
9277 break;
9278
9279 /* This relocation describes which C++ vtable entries are actually
9280 used. Record for later use during GC. */
9281 case R_ARM_GNU_VTENTRY:
9282 BFD_ASSERT (h != NULL);
9283 if (h != NULL
9284 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9285 return FALSE;
9286 break;
9287 }
9288 }
9289
9290 return TRUE;
9291 }
9292
9293 /* Unwinding tables are not referenced directly. This pass marks them as
9294 required if the corresponding code section is marked. */
9295
9296 static bfd_boolean
9297 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9298 elf_gc_mark_hook_fn gc_mark_hook)
9299 {
9300 bfd *sub;
9301 Elf_Internal_Shdr **elf_shdrp;
9302 bfd_boolean again;
9303
9304 /* Marking EH data may cause additional code sections to be marked,
9305 requiring multiple passes. */
9306 again = TRUE;
9307 while (again)
9308 {
9309 again = FALSE;
9310 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9311 {
9312 asection *o;
9313
9314 if (! is_arm_elf (sub))
9315 continue;
9316
9317 elf_shdrp = elf_elfsections (sub);
9318 for (o = sub->sections; o != NULL; o = o->next)
9319 {
9320 Elf_Internal_Shdr *hdr;
9321
9322 hdr = &elf_section_data (o)->this_hdr;
9323 if (hdr->sh_type == SHT_ARM_EXIDX
9324 && hdr->sh_link
9325 && hdr->sh_link < elf_numsections (sub)
9326 && !o->gc_mark
9327 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9328 {
9329 again = TRUE;
9330 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9331 return FALSE;
9332 }
9333 }
9334 }
9335 }
9336
9337 return TRUE;
9338 }
9339
9340 /* Treat mapping symbols as special target symbols. */
9341
9342 static bfd_boolean
9343 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9344 {
9345 return bfd_is_arm_special_symbol_name (sym->name,
9346 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9347 }
9348
9349 /* This is a copy of elf_find_function() from elf.c except that
9350 ARM mapping symbols are ignored when looking for function names
9351 and STT_ARM_TFUNC is considered to a function type. */
9352
9353 static bfd_boolean
9354 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9355 asection * section,
9356 asymbol ** symbols,
9357 bfd_vma offset,
9358 const char ** filename_ptr,
9359 const char ** functionname_ptr)
9360 {
9361 const char * filename = NULL;
9362 asymbol * func = NULL;
9363 bfd_vma low_func = 0;
9364 asymbol ** p;
9365
9366 for (p = symbols; *p != NULL; p++)
9367 {
9368 elf_symbol_type *q;
9369
9370 q = (elf_symbol_type *) *p;
9371
9372 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9373 {
9374 default:
9375 break;
9376 case STT_FILE:
9377 filename = bfd_asymbol_name (&q->symbol);
9378 break;
9379 case STT_FUNC:
9380 case STT_ARM_TFUNC:
9381 case STT_NOTYPE:
9382 /* Skip mapping symbols. */
9383 if ((q->symbol.flags & BSF_LOCAL)
9384 && bfd_is_arm_special_symbol_name (q->symbol.name,
9385 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9386 continue;
9387 /* Fall through. */
9388 if (bfd_get_section (&q->symbol) == section
9389 && q->symbol.value >= low_func
9390 && q->symbol.value <= offset)
9391 {
9392 func = (asymbol *) q;
9393 low_func = q->symbol.value;
9394 }
9395 break;
9396 }
9397 }
9398
9399 if (func == NULL)
9400 return FALSE;
9401
9402 if (filename_ptr)
9403 *filename_ptr = filename;
9404 if (functionname_ptr)
9405 *functionname_ptr = bfd_asymbol_name (func);
9406
9407 return TRUE;
9408 }
9409
9410
9411 /* Find the nearest line to a particular section and offset, for error
9412 reporting. This code is a duplicate of the code in elf.c, except
9413 that it uses arm_elf_find_function. */
9414
9415 static bfd_boolean
9416 elf32_arm_find_nearest_line (bfd * abfd,
9417 asection * section,
9418 asymbol ** symbols,
9419 bfd_vma offset,
9420 const char ** filename_ptr,
9421 const char ** functionname_ptr,
9422 unsigned int * line_ptr)
9423 {
9424 bfd_boolean found = FALSE;
9425
9426 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9427
9428 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9429 filename_ptr, functionname_ptr,
9430 line_ptr, 0,
9431 & elf_tdata (abfd)->dwarf2_find_line_info))
9432 {
9433 if (!*functionname_ptr)
9434 arm_elf_find_function (abfd, section, symbols, offset,
9435 *filename_ptr ? NULL : filename_ptr,
9436 functionname_ptr);
9437
9438 return TRUE;
9439 }
9440
9441 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9442 & found, filename_ptr,
9443 functionname_ptr, line_ptr,
9444 & elf_tdata (abfd)->line_info))
9445 return FALSE;
9446
9447 if (found && (*functionname_ptr || *line_ptr))
9448 return TRUE;
9449
9450 if (symbols == NULL)
9451 return FALSE;
9452
9453 if (! arm_elf_find_function (abfd, section, symbols, offset,
9454 filename_ptr, functionname_ptr))
9455 return FALSE;
9456
9457 *line_ptr = 0;
9458 return TRUE;
9459 }
9460
9461 static bfd_boolean
9462 elf32_arm_find_inliner_info (bfd * abfd,
9463 const char ** filename_ptr,
9464 const char ** functionname_ptr,
9465 unsigned int * line_ptr)
9466 {
9467 bfd_boolean found;
9468 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9469 functionname_ptr, line_ptr,
9470 & elf_tdata (abfd)->dwarf2_find_line_info);
9471 return found;
9472 }
9473
9474 /* Adjust a symbol defined by a dynamic object and referenced by a
9475 regular object. The current definition is in some section of the
9476 dynamic object, but we're not including those sections. We have to
9477 change the definition to something the rest of the link can
9478 understand. */
9479
9480 static bfd_boolean
9481 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9482 struct elf_link_hash_entry * h)
9483 {
9484 bfd * dynobj;
9485 asection * s;
9486 struct elf32_arm_link_hash_entry * eh;
9487 struct elf32_arm_link_hash_table *globals;
9488
9489 globals = elf32_arm_hash_table (info);
9490 dynobj = elf_hash_table (info)->dynobj;
9491
9492 /* Make sure we know what is going on here. */
9493 BFD_ASSERT (dynobj != NULL
9494 && (h->needs_plt
9495 || h->u.weakdef != NULL
9496 || (h->def_dynamic
9497 && h->ref_regular
9498 && !h->def_regular)));
9499
9500 eh = (struct elf32_arm_link_hash_entry *) h;
9501
9502 /* If this is a function, put it in the procedure linkage table. We
9503 will fill in the contents of the procedure linkage table later,
9504 when we know the address of the .got section. */
9505 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
9506 || h->needs_plt)
9507 {
9508 if (h->plt.refcount <= 0
9509 || SYMBOL_CALLS_LOCAL (info, h)
9510 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9511 && h->root.type == bfd_link_hash_undefweak))
9512 {
9513 /* This case can occur if we saw a PLT32 reloc in an input
9514 file, but the symbol was never referred to by a dynamic
9515 object, or if all references were garbage collected. In
9516 such a case, we don't actually need to build a procedure
9517 linkage table, and we can just do a PC24 reloc instead. */
9518 h->plt.offset = (bfd_vma) -1;
9519 eh->plt_thumb_refcount = 0;
9520 eh->plt_maybe_thumb_refcount = 0;
9521 h->needs_plt = 0;
9522 }
9523
9524 return TRUE;
9525 }
9526 else
9527 {
9528 /* It's possible that we incorrectly decided a .plt reloc was
9529 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9530 in check_relocs. We can't decide accurately between function
9531 and non-function syms in check-relocs; Objects loaded later in
9532 the link may change h->type. So fix it now. */
9533 h->plt.offset = (bfd_vma) -1;
9534 eh->plt_thumb_refcount = 0;
9535 eh->plt_maybe_thumb_refcount = 0;
9536 }
9537
9538 /* If this is a weak symbol, and there is a real definition, the
9539 processor independent code will have arranged for us to see the
9540 real definition first, and we can just use the same value. */
9541 if (h->u.weakdef != NULL)
9542 {
9543 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9544 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9545 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9546 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9547 return TRUE;
9548 }
9549
9550 /* If there are no non-GOT references, we do not need a copy
9551 relocation. */
9552 if (!h->non_got_ref)
9553 return TRUE;
9554
9555 /* This is a reference to a symbol defined by a dynamic object which
9556 is not a function. */
9557
9558 /* If we are creating a shared library, we must presume that the
9559 only references to the symbol are via the global offset table.
9560 For such cases we need not do anything here; the relocations will
9561 be handled correctly by relocate_section. Relocatable executables
9562 can reference data in shared objects directly, so we don't need to
9563 do anything here. */
9564 if (info->shared || globals->root.is_relocatable_executable)
9565 return TRUE;
9566
9567 if (h->size == 0)
9568 {
9569 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
9570 h->root.root.string);
9571 return TRUE;
9572 }
9573
9574 /* We must allocate the symbol in our .dynbss section, which will
9575 become part of the .bss section of the executable. There will be
9576 an entry for this symbol in the .dynsym section. The dynamic
9577 object will contain position independent code, so all references
9578 from the dynamic object to this symbol will go through the global
9579 offset table. The dynamic linker will use the .dynsym entry to
9580 determine the address it must put in the global offset table, so
9581 both the dynamic object and the regular object will refer to the
9582 same memory location for the variable. */
9583 s = bfd_get_section_by_name (dynobj, ".dynbss");
9584 BFD_ASSERT (s != NULL);
9585
9586 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9587 copy the initial value out of the dynamic object and into the
9588 runtime process image. We need to remember the offset into the
9589 .rel(a).bss section we are going to use. */
9590 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9591 {
9592 asection *srel;
9593
9594 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
9595 BFD_ASSERT (srel != NULL);
9596 srel->size += RELOC_SIZE (globals);
9597 h->needs_copy = 1;
9598 }
9599
9600 return _bfd_elf_adjust_dynamic_copy (h, s);
9601 }
9602
9603 /* Allocate space in .plt, .got and associated reloc sections for
9604 dynamic relocs. */
9605
9606 static bfd_boolean
9607 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
9608 {
9609 struct bfd_link_info *info;
9610 struct elf32_arm_link_hash_table *htab;
9611 struct elf32_arm_link_hash_entry *eh;
9612 struct elf32_arm_relocs_copied *p;
9613 bfd_signed_vma thumb_refs;
9614
9615 eh = (struct elf32_arm_link_hash_entry *) h;
9616
9617 if (h->root.type == bfd_link_hash_indirect)
9618 return TRUE;
9619
9620 if (h->root.type == bfd_link_hash_warning)
9621 /* When warning symbols are created, they **replace** the "real"
9622 entry in the hash table, thus we never get to see the real
9623 symbol in a hash traversal. So look at it now. */
9624 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9625
9626 info = (struct bfd_link_info *) inf;
9627 htab = elf32_arm_hash_table (info);
9628
9629 if (htab->root.dynamic_sections_created
9630 && h->plt.refcount > 0)
9631 {
9632 /* Make sure this symbol is output as a dynamic symbol.
9633 Undefined weak syms won't yet be marked as dynamic. */
9634 if (h->dynindx == -1
9635 && !h->forced_local)
9636 {
9637 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9638 return FALSE;
9639 }
9640
9641 if (info->shared
9642 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
9643 {
9644 asection *s = htab->splt;
9645
9646 /* If this is the first .plt entry, make room for the special
9647 first entry. */
9648 if (s->size == 0)
9649 s->size += htab->plt_header_size;
9650
9651 h->plt.offset = s->size;
9652
9653 /* If we will insert a Thumb trampoline before this PLT, leave room
9654 for it. */
9655 thumb_refs = eh->plt_thumb_refcount;
9656 if (!htab->use_blx)
9657 thumb_refs += eh->plt_maybe_thumb_refcount;
9658
9659 if (thumb_refs > 0)
9660 {
9661 h->plt.offset += PLT_THUMB_STUB_SIZE;
9662 s->size += PLT_THUMB_STUB_SIZE;
9663 }
9664
9665 /* If this symbol is not defined in a regular file, and we are
9666 not generating a shared library, then set the symbol to this
9667 location in the .plt. This is required to make function
9668 pointers compare as equal between the normal executable and
9669 the shared library. */
9670 if (! info->shared
9671 && !h->def_regular)
9672 {
9673 h->root.u.def.section = s;
9674 h->root.u.def.value = h->plt.offset;
9675
9676 /* Make sure the function is not marked as Thumb, in case
9677 it is the target of an ABS32 relocation, which will
9678 point to the PLT entry. */
9679 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
9680 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9681 }
9682
9683 /* Make room for this entry. */
9684 s->size += htab->plt_entry_size;
9685
9686 if (!htab->symbian_p)
9687 {
9688 /* We also need to make an entry in the .got.plt section, which
9689 will be placed in the .got section by the linker script. */
9690 eh->plt_got_offset = htab->sgotplt->size;
9691 htab->sgotplt->size += 4;
9692 }
9693
9694 /* We also need to make an entry in the .rel(a).plt section. */
9695 htab->srelplt->size += RELOC_SIZE (htab);
9696
9697 /* VxWorks executables have a second set of relocations for
9698 each PLT entry. They go in a separate relocation section,
9699 which is processed by the kernel loader. */
9700 if (htab->vxworks_p && !info->shared)
9701 {
9702 /* There is a relocation for the initial PLT entry:
9703 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9704 if (h->plt.offset == htab->plt_header_size)
9705 htab->srelplt2->size += RELOC_SIZE (htab);
9706
9707 /* There are two extra relocations for each subsequent
9708 PLT entry: an R_ARM_32 relocation for the GOT entry,
9709 and an R_ARM_32 relocation for the PLT entry. */
9710 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
9711 }
9712 }
9713 else
9714 {
9715 h->plt.offset = (bfd_vma) -1;
9716 h->needs_plt = 0;
9717 }
9718 }
9719 else
9720 {
9721 h->plt.offset = (bfd_vma) -1;
9722 h->needs_plt = 0;
9723 }
9724
9725 if (h->got.refcount > 0)
9726 {
9727 asection *s;
9728 bfd_boolean dyn;
9729 int tls_type = elf32_arm_hash_entry (h)->tls_type;
9730 int indx;
9731
9732 /* Make sure this symbol is output as a dynamic symbol.
9733 Undefined weak syms won't yet be marked as dynamic. */
9734 if (h->dynindx == -1
9735 && !h->forced_local)
9736 {
9737 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9738 return FALSE;
9739 }
9740
9741 if (!htab->symbian_p)
9742 {
9743 s = htab->sgot;
9744 h->got.offset = s->size;
9745
9746 if (tls_type == GOT_UNKNOWN)
9747 abort ();
9748
9749 if (tls_type == GOT_NORMAL)
9750 /* Non-TLS symbols need one GOT slot. */
9751 s->size += 4;
9752 else
9753 {
9754 if (tls_type & GOT_TLS_GD)
9755 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9756 s->size += 8;
9757 if (tls_type & GOT_TLS_IE)
9758 /* R_ARM_TLS_IE32 needs one GOT slot. */
9759 s->size += 4;
9760 }
9761
9762 dyn = htab->root.dynamic_sections_created;
9763
9764 indx = 0;
9765 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9766 && (!info->shared
9767 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9768 indx = h->dynindx;
9769
9770 if (tls_type != GOT_NORMAL
9771 && (info->shared || indx != 0)
9772 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9773 || h->root.type != bfd_link_hash_undefweak))
9774 {
9775 if (tls_type & GOT_TLS_IE)
9776 htab->srelgot->size += RELOC_SIZE (htab);
9777
9778 if (tls_type & GOT_TLS_GD)
9779 htab->srelgot->size += RELOC_SIZE (htab);
9780
9781 if ((tls_type & GOT_TLS_GD) && indx != 0)
9782 htab->srelgot->size += RELOC_SIZE (htab);
9783 }
9784 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9785 || h->root.type != bfd_link_hash_undefweak)
9786 && (info->shared
9787 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
9788 htab->srelgot->size += RELOC_SIZE (htab);
9789 }
9790 }
9791 else
9792 h->got.offset = (bfd_vma) -1;
9793
9794 /* Allocate stubs for exported Thumb functions on v4t. */
9795 if (!htab->use_blx && h->dynindx != -1
9796 && h->def_regular
9797 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
9798 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9799 {
9800 struct elf_link_hash_entry * th;
9801 struct bfd_link_hash_entry * bh;
9802 struct elf_link_hash_entry * myh;
9803 char name[1024];
9804 asection *s;
9805 bh = NULL;
9806 /* Create a new symbol to regist the real location of the function. */
9807 s = h->root.u.def.section;
9808 sprintf (name, "__real_%s", h->root.root.string);
9809 _bfd_generic_link_add_one_symbol (info, s->owner,
9810 name, BSF_GLOBAL, s,
9811 h->root.u.def.value,
9812 NULL, TRUE, FALSE, &bh);
9813
9814 myh = (struct elf_link_hash_entry *) bh;
9815 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
9816 myh->forced_local = 1;
9817 eh->export_glue = myh;
9818 th = record_arm_to_thumb_glue (info, h);
9819 /* Point the symbol at the stub. */
9820 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9821 h->root.u.def.section = th->root.u.def.section;
9822 h->root.u.def.value = th->root.u.def.value & ~1;
9823 }
9824
9825 if (eh->relocs_copied == NULL)
9826 return TRUE;
9827
9828 /* In the shared -Bsymbolic case, discard space allocated for
9829 dynamic pc-relative relocs against symbols which turn out to be
9830 defined in regular objects. For the normal shared case, discard
9831 space for pc-relative relocs that have become local due to symbol
9832 visibility changes. */
9833
9834 if (info->shared || htab->root.is_relocatable_executable)
9835 {
9836 /* The only relocs that use pc_count are R_ARM_REL32 and
9837 R_ARM_REL32_NOI, which will appear on something like
9838 ".long foo - .". We want calls to protected symbols to resolve
9839 directly to the function rather than going via the plt. If people
9840 want function pointer comparisons to work as expected then they
9841 should avoid writing assembly like ".long foo - .". */
9842 if (SYMBOL_CALLS_LOCAL (info, h))
9843 {
9844 struct elf32_arm_relocs_copied **pp;
9845
9846 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9847 {
9848 p->count -= p->pc_count;
9849 p->pc_count = 0;
9850 if (p->count == 0)
9851 *pp = p->next;
9852 else
9853 pp = &p->next;
9854 }
9855 }
9856
9857 if (elf32_arm_hash_table (info)->vxworks_p)
9858 {
9859 struct elf32_arm_relocs_copied **pp;
9860
9861 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9862 {
9863 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
9864 *pp = p->next;
9865 else
9866 pp = &p->next;
9867 }
9868 }
9869
9870 /* Also discard relocs on undefined weak syms with non-default
9871 visibility. */
9872 if (eh->relocs_copied != NULL
9873 && h->root.type == bfd_link_hash_undefweak)
9874 {
9875 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9876 eh->relocs_copied = NULL;
9877
9878 /* Make sure undefined weak symbols are output as a dynamic
9879 symbol in PIEs. */
9880 else if (h->dynindx == -1
9881 && !h->forced_local)
9882 {
9883 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9884 return FALSE;
9885 }
9886 }
9887
9888 else if (htab->root.is_relocatable_executable && h->dynindx == -1
9889 && h->root.type == bfd_link_hash_new)
9890 {
9891 /* Output absolute symbols so that we can create relocations
9892 against them. For normal symbols we output a relocation
9893 against the section that contains them. */
9894 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9895 return FALSE;
9896 }
9897
9898 }
9899 else
9900 {
9901 /* For the non-shared case, discard space for relocs against
9902 symbols which turn out to need copy relocs or are not
9903 dynamic. */
9904
9905 if (!h->non_got_ref
9906 && ((h->def_dynamic
9907 && !h->def_regular)
9908 || (htab->root.dynamic_sections_created
9909 && (h->root.type == bfd_link_hash_undefweak
9910 || h->root.type == bfd_link_hash_undefined))))
9911 {
9912 /* Make sure this symbol is output as a dynamic symbol.
9913 Undefined weak syms won't yet be marked as dynamic. */
9914 if (h->dynindx == -1
9915 && !h->forced_local)
9916 {
9917 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9918 return FALSE;
9919 }
9920
9921 /* If that succeeded, we know we'll be keeping all the
9922 relocs. */
9923 if (h->dynindx != -1)
9924 goto keep;
9925 }
9926
9927 eh->relocs_copied = NULL;
9928
9929 keep: ;
9930 }
9931
9932 /* Finally, allocate space. */
9933 for (p = eh->relocs_copied; p != NULL; p = p->next)
9934 {
9935 asection *sreloc = elf_section_data (p->section)->sreloc;
9936 sreloc->size += p->count * RELOC_SIZE (htab);
9937 }
9938
9939 return TRUE;
9940 }
9941
9942 /* Find any dynamic relocs that apply to read-only sections. */
9943
9944 static bfd_boolean
9945 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
9946 {
9947 struct elf32_arm_link_hash_entry *eh;
9948 struct elf32_arm_relocs_copied *p;
9949
9950 if (h->root.type == bfd_link_hash_warning)
9951 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9952
9953 eh = (struct elf32_arm_link_hash_entry *) h;
9954 for (p = eh->relocs_copied; p != NULL; p = p->next)
9955 {
9956 asection *s = p->section;
9957
9958 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9959 {
9960 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9961
9962 info->flags |= DF_TEXTREL;
9963
9964 /* Not an error, just cut short the traversal. */
9965 return FALSE;
9966 }
9967 }
9968 return TRUE;
9969 }
9970
9971 void
9972 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
9973 int byteswap_code)
9974 {
9975 struct elf32_arm_link_hash_table *globals;
9976
9977 globals = elf32_arm_hash_table (info);
9978 globals->byteswap_code = byteswap_code;
9979 }
9980
9981 /* Set the sizes of the dynamic sections. */
9982
9983 static bfd_boolean
9984 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
9985 struct bfd_link_info * info)
9986 {
9987 bfd * dynobj;
9988 asection * s;
9989 bfd_boolean plt;
9990 bfd_boolean relocs;
9991 bfd *ibfd;
9992 struct elf32_arm_link_hash_table *htab;
9993
9994 htab = elf32_arm_hash_table (info);
9995 dynobj = elf_hash_table (info)->dynobj;
9996 BFD_ASSERT (dynobj != NULL);
9997 check_use_blx (htab);
9998
9999 if (elf_hash_table (info)->dynamic_sections_created)
10000 {
10001 /* Set the contents of the .interp section to the interpreter. */
10002 if (info->executable)
10003 {
10004 s = bfd_get_section_by_name (dynobj, ".interp");
10005 BFD_ASSERT (s != NULL);
10006 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10007 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10008 }
10009 }
10010
10011 /* Set up .got offsets for local syms, and space for local dynamic
10012 relocs. */
10013 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10014 {
10015 bfd_signed_vma *local_got;
10016 bfd_signed_vma *end_local_got;
10017 char *local_tls_type;
10018 bfd_size_type locsymcount;
10019 Elf_Internal_Shdr *symtab_hdr;
10020 asection *srel;
10021 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10022
10023 if (! is_arm_elf (ibfd))
10024 continue;
10025
10026 for (s = ibfd->sections; s != NULL; s = s->next)
10027 {
10028 struct elf32_arm_relocs_copied *p;
10029
10030 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10031 {
10032 if (!bfd_is_abs_section (p->section)
10033 && bfd_is_abs_section (p->section->output_section))
10034 {
10035 /* Input section has been discarded, either because
10036 it is a copy of a linkonce section or due to
10037 linker script /DISCARD/, so we'll be discarding
10038 the relocs too. */
10039 }
10040 else if (is_vxworks
10041 && strcmp (p->section->output_section->name,
10042 ".tls_vars") == 0)
10043 {
10044 /* Relocations in vxworks .tls_vars sections are
10045 handled specially by the loader. */
10046 }
10047 else if (p->count != 0)
10048 {
10049 srel = elf_section_data (p->section)->sreloc;
10050 srel->size += p->count * RELOC_SIZE (htab);
10051 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10052 info->flags |= DF_TEXTREL;
10053 }
10054 }
10055 }
10056
10057 local_got = elf_local_got_refcounts (ibfd);
10058 if (!local_got)
10059 continue;
10060
10061 symtab_hdr = & elf_symtab_hdr (ibfd);
10062 locsymcount = symtab_hdr->sh_info;
10063 end_local_got = local_got + locsymcount;
10064 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10065 s = htab->sgot;
10066 srel = htab->srelgot;
10067 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10068 {
10069 if (*local_got > 0)
10070 {
10071 *local_got = s->size;
10072 if (*local_tls_type & GOT_TLS_GD)
10073 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10074 s->size += 8;
10075 if (*local_tls_type & GOT_TLS_IE)
10076 s->size += 4;
10077 if (*local_tls_type == GOT_NORMAL)
10078 s->size += 4;
10079
10080 if (info->shared || *local_tls_type == GOT_TLS_GD)
10081 srel->size += RELOC_SIZE (htab);
10082 }
10083 else
10084 *local_got = (bfd_vma) -1;
10085 }
10086 }
10087
10088 if (htab->tls_ldm_got.refcount > 0)
10089 {
10090 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10091 for R_ARM_TLS_LDM32 relocations. */
10092 htab->tls_ldm_got.offset = htab->sgot->size;
10093 htab->sgot->size += 8;
10094 if (info->shared)
10095 htab->srelgot->size += RELOC_SIZE (htab);
10096 }
10097 else
10098 htab->tls_ldm_got.offset = -1;
10099
10100 /* Allocate global sym .plt and .got entries, and space for global
10101 sym dynamic relocs. */
10102 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10103
10104 /* Here we rummage through the found bfds to collect glue information. */
10105 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10106 {
10107 if (! is_arm_elf (ibfd))
10108 continue;
10109
10110 /* Initialise mapping tables for code/data. */
10111 bfd_elf32_arm_init_maps (ibfd);
10112
10113 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10114 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10115 /* xgettext:c-format */
10116 _bfd_error_handler (_("Errors encountered processing file %s"),
10117 ibfd->filename);
10118 }
10119
10120 /* The check_relocs and adjust_dynamic_symbol entry points have
10121 determined the sizes of the various dynamic sections. Allocate
10122 memory for them. */
10123 plt = FALSE;
10124 relocs = FALSE;
10125 for (s = dynobj->sections; s != NULL; s = s->next)
10126 {
10127 const char * name;
10128
10129 if ((s->flags & SEC_LINKER_CREATED) == 0)
10130 continue;
10131
10132 /* It's OK to base decisions on the section name, because none
10133 of the dynobj section names depend upon the input files. */
10134 name = bfd_get_section_name (dynobj, s);
10135
10136 if (strcmp (name, ".plt") == 0)
10137 {
10138 /* Remember whether there is a PLT. */
10139 plt = s->size != 0;
10140 }
10141 else if (CONST_STRNEQ (name, ".rel"))
10142 {
10143 if (s->size != 0)
10144 {
10145 /* Remember whether there are any reloc sections other
10146 than .rel(a).plt and .rela.plt.unloaded. */
10147 if (s != htab->srelplt && s != htab->srelplt2)
10148 relocs = TRUE;
10149
10150 /* We use the reloc_count field as a counter if we need
10151 to copy relocs into the output file. */
10152 s->reloc_count = 0;
10153 }
10154 }
10155 else if (! CONST_STRNEQ (name, ".got")
10156 && strcmp (name, ".dynbss") != 0)
10157 {
10158 /* It's not one of our sections, so don't allocate space. */
10159 continue;
10160 }
10161
10162 if (s->size == 0)
10163 {
10164 /* If we don't need this section, strip it from the
10165 output file. This is mostly to handle .rel(a).bss and
10166 .rel(a).plt. We must create both sections in
10167 create_dynamic_sections, because they must be created
10168 before the linker maps input sections to output
10169 sections. The linker does that before
10170 adjust_dynamic_symbol is called, and it is that
10171 function which decides whether anything needs to go
10172 into these sections. */
10173 s->flags |= SEC_EXCLUDE;
10174 continue;
10175 }
10176
10177 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10178 continue;
10179
10180 /* Allocate memory for the section contents. */
10181 s->contents = bfd_zalloc (dynobj, s->size);
10182 if (s->contents == NULL)
10183 return FALSE;
10184 }
10185
10186 if (elf_hash_table (info)->dynamic_sections_created)
10187 {
10188 /* Add some entries to the .dynamic section. We fill in the
10189 values later, in elf32_arm_finish_dynamic_sections, but we
10190 must add the entries now so that we get the correct size for
10191 the .dynamic section. The DT_DEBUG entry is filled in by the
10192 dynamic linker and used by the debugger. */
10193 #define add_dynamic_entry(TAG, VAL) \
10194 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10195
10196 if (info->executable)
10197 {
10198 if (!add_dynamic_entry (DT_DEBUG, 0))
10199 return FALSE;
10200 }
10201
10202 if (plt)
10203 {
10204 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10205 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10206 || !add_dynamic_entry (DT_PLTREL,
10207 htab->use_rel ? DT_REL : DT_RELA)
10208 || !add_dynamic_entry (DT_JMPREL, 0))
10209 return FALSE;
10210 }
10211
10212 if (relocs)
10213 {
10214 if (htab->use_rel)
10215 {
10216 if (!add_dynamic_entry (DT_REL, 0)
10217 || !add_dynamic_entry (DT_RELSZ, 0)
10218 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10219 return FALSE;
10220 }
10221 else
10222 {
10223 if (!add_dynamic_entry (DT_RELA, 0)
10224 || !add_dynamic_entry (DT_RELASZ, 0)
10225 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10226 return FALSE;
10227 }
10228 }
10229
10230 /* If any dynamic relocs apply to a read-only section,
10231 then we need a DT_TEXTREL entry. */
10232 if ((info->flags & DF_TEXTREL) == 0)
10233 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
10234 (PTR) info);
10235
10236 if ((info->flags & DF_TEXTREL) != 0)
10237 {
10238 if (!add_dynamic_entry (DT_TEXTREL, 0))
10239 return FALSE;
10240 }
10241 if (htab->vxworks_p
10242 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10243 return FALSE;
10244 }
10245 #undef add_dynamic_entry
10246
10247 return TRUE;
10248 }
10249
10250 /* Finish up dynamic symbol handling. We set the contents of various
10251 dynamic sections here. */
10252
10253 static bfd_boolean
10254 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10255 struct bfd_link_info * info,
10256 struct elf_link_hash_entry * h,
10257 Elf_Internal_Sym * sym)
10258 {
10259 bfd * dynobj;
10260 struct elf32_arm_link_hash_table *htab;
10261 struct elf32_arm_link_hash_entry *eh;
10262
10263 dynobj = elf_hash_table (info)->dynobj;
10264 htab = elf32_arm_hash_table (info);
10265 eh = (struct elf32_arm_link_hash_entry *) h;
10266
10267 if (h->plt.offset != (bfd_vma) -1)
10268 {
10269 asection * splt;
10270 asection * srel;
10271 bfd_byte *loc;
10272 bfd_vma plt_index;
10273 Elf_Internal_Rela rel;
10274
10275 /* This symbol has an entry in the procedure linkage table. Set
10276 it up. */
10277
10278 BFD_ASSERT (h->dynindx != -1);
10279
10280 splt = bfd_get_section_by_name (dynobj, ".plt");
10281 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10282 BFD_ASSERT (splt != NULL && srel != NULL);
10283
10284 /* Fill in the entry in the procedure linkage table. */
10285 if (htab->symbian_p)
10286 {
10287 put_arm_insn (htab, output_bfd,
10288 elf32_arm_symbian_plt_entry[0],
10289 splt->contents + h->plt.offset);
10290 bfd_put_32 (output_bfd,
10291 elf32_arm_symbian_plt_entry[1],
10292 splt->contents + h->plt.offset + 4);
10293
10294 /* Fill in the entry in the .rel.plt section. */
10295 rel.r_offset = (splt->output_section->vma
10296 + splt->output_offset
10297 + h->plt.offset + 4);
10298 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10299
10300 /* Get the index in the procedure linkage table which
10301 corresponds to this symbol. This is the index of this symbol
10302 in all the symbols for which we are making plt entries. The
10303 first entry in the procedure linkage table is reserved. */
10304 plt_index = ((h->plt.offset - htab->plt_header_size)
10305 / htab->plt_entry_size);
10306 }
10307 else
10308 {
10309 bfd_vma got_offset, got_address, plt_address;
10310 bfd_vma got_displacement;
10311 asection * sgot;
10312 bfd_byte * ptr;
10313
10314 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10315 BFD_ASSERT (sgot != NULL);
10316
10317 /* Get the offset into the .got.plt table of the entry that
10318 corresponds to this function. */
10319 got_offset = eh->plt_got_offset;
10320
10321 /* Get the index in the procedure linkage table which
10322 corresponds to this symbol. This is the index of this symbol
10323 in all the symbols for which we are making plt entries. The
10324 first three entries in .got.plt are reserved; after that
10325 symbols appear in the same order as in .plt. */
10326 plt_index = (got_offset - 12) / 4;
10327
10328 /* Calculate the address of the GOT entry. */
10329 got_address = (sgot->output_section->vma
10330 + sgot->output_offset
10331 + got_offset);
10332
10333 /* ...and the address of the PLT entry. */
10334 plt_address = (splt->output_section->vma
10335 + splt->output_offset
10336 + h->plt.offset);
10337
10338 ptr = htab->splt->contents + h->plt.offset;
10339 if (htab->vxworks_p && info->shared)
10340 {
10341 unsigned int i;
10342 bfd_vma val;
10343
10344 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10345 {
10346 val = elf32_arm_vxworks_shared_plt_entry[i];
10347 if (i == 2)
10348 val |= got_address - sgot->output_section->vma;
10349 if (i == 5)
10350 val |= plt_index * RELOC_SIZE (htab);
10351 if (i == 2 || i == 5)
10352 bfd_put_32 (output_bfd, val, ptr);
10353 else
10354 put_arm_insn (htab, output_bfd, val, ptr);
10355 }
10356 }
10357 else if (htab->vxworks_p)
10358 {
10359 unsigned int i;
10360 bfd_vma val;
10361
10362 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10363 {
10364 val = elf32_arm_vxworks_exec_plt_entry[i];
10365 if (i == 2)
10366 val |= got_address;
10367 if (i == 4)
10368 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10369 if (i == 5)
10370 val |= plt_index * RELOC_SIZE (htab);
10371 if (i == 2 || i == 5)
10372 bfd_put_32 (output_bfd, val, ptr);
10373 else
10374 put_arm_insn (htab, output_bfd, val, ptr);
10375 }
10376
10377 loc = (htab->srelplt2->contents
10378 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10379
10380 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10381 referencing the GOT for this PLT entry. */
10382 rel.r_offset = plt_address + 8;
10383 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10384 rel.r_addend = got_offset;
10385 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10386 loc += RELOC_SIZE (htab);
10387
10388 /* Create the R_ARM_ABS32 relocation referencing the
10389 beginning of the PLT for this GOT entry. */
10390 rel.r_offset = got_address;
10391 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10392 rel.r_addend = 0;
10393 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10394 }
10395 else
10396 {
10397 bfd_signed_vma thumb_refs;
10398 /* Calculate the displacement between the PLT slot and the
10399 entry in the GOT. The eight-byte offset accounts for the
10400 value produced by adding to pc in the first instruction
10401 of the PLT stub. */
10402 got_displacement = got_address - (plt_address + 8);
10403
10404 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10405
10406 thumb_refs = eh->plt_thumb_refcount;
10407 if (!htab->use_blx)
10408 thumb_refs += eh->plt_maybe_thumb_refcount;
10409
10410 if (thumb_refs > 0)
10411 {
10412 put_thumb_insn (htab, output_bfd,
10413 elf32_arm_plt_thumb_stub[0], ptr - 4);
10414 put_thumb_insn (htab, output_bfd,
10415 elf32_arm_plt_thumb_stub[1], ptr - 2);
10416 }
10417
10418 put_arm_insn (htab, output_bfd,
10419 elf32_arm_plt_entry[0]
10420 | ((got_displacement & 0x0ff00000) >> 20),
10421 ptr + 0);
10422 put_arm_insn (htab, output_bfd,
10423 elf32_arm_plt_entry[1]
10424 | ((got_displacement & 0x000ff000) >> 12),
10425 ptr+ 4);
10426 put_arm_insn (htab, output_bfd,
10427 elf32_arm_plt_entry[2]
10428 | (got_displacement & 0x00000fff),
10429 ptr + 8);
10430 #ifdef FOUR_WORD_PLT
10431 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10432 #endif
10433 }
10434
10435 /* Fill in the entry in the global offset table. */
10436 bfd_put_32 (output_bfd,
10437 (splt->output_section->vma
10438 + splt->output_offset),
10439 sgot->contents + got_offset);
10440
10441 /* Fill in the entry in the .rel(a).plt section. */
10442 rel.r_addend = 0;
10443 rel.r_offset = got_address;
10444 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10445 }
10446
10447 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10448 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10449
10450 if (!h->def_regular)
10451 {
10452 /* Mark the symbol as undefined, rather than as defined in
10453 the .plt section. Leave the value alone. */
10454 sym->st_shndx = SHN_UNDEF;
10455 /* If the symbol is weak, we do need to clear the value.
10456 Otherwise, the PLT entry would provide a definition for
10457 the symbol even if the symbol wasn't defined anywhere,
10458 and so the symbol would never be NULL. */
10459 if (!h->ref_regular_nonweak)
10460 sym->st_value = 0;
10461 }
10462 }
10463
10464 if (h->got.offset != (bfd_vma) -1
10465 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10466 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10467 {
10468 asection * sgot;
10469 asection * srel;
10470 Elf_Internal_Rela rel;
10471 bfd_byte *loc;
10472 bfd_vma offset;
10473
10474 /* This symbol has an entry in the global offset table. Set it
10475 up. */
10476 sgot = bfd_get_section_by_name (dynobj, ".got");
10477 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10478 BFD_ASSERT (sgot != NULL && srel != NULL);
10479
10480 offset = (h->got.offset & ~(bfd_vma) 1);
10481 rel.r_addend = 0;
10482 rel.r_offset = (sgot->output_section->vma
10483 + sgot->output_offset
10484 + offset);
10485
10486 /* If this is a static link, or it is a -Bsymbolic link and the
10487 symbol is defined locally or was forced to be local because
10488 of a version file, we just want to emit a RELATIVE reloc.
10489 The entry in the global offset table will already have been
10490 initialized in the relocate_section function. */
10491 if (info->shared
10492 && SYMBOL_REFERENCES_LOCAL (info, h))
10493 {
10494 BFD_ASSERT ((h->got.offset & 1) != 0);
10495 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10496 if (!htab->use_rel)
10497 {
10498 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10499 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10500 }
10501 }
10502 else
10503 {
10504 BFD_ASSERT ((h->got.offset & 1) == 0);
10505 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10506 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10507 }
10508
10509 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10510 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10511 }
10512
10513 if (h->needs_copy)
10514 {
10515 asection * s;
10516 Elf_Internal_Rela rel;
10517 bfd_byte *loc;
10518
10519 /* This symbol needs a copy reloc. Set it up. */
10520 BFD_ASSERT (h->dynindx != -1
10521 && (h->root.type == bfd_link_hash_defined
10522 || h->root.type == bfd_link_hash_defweak));
10523
10524 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10525 RELOC_SECTION (htab, ".bss"));
10526 BFD_ASSERT (s != NULL);
10527
10528 rel.r_addend = 0;
10529 rel.r_offset = (h->root.u.def.value
10530 + h->root.u.def.section->output_section->vma
10531 + h->root.u.def.section->output_offset);
10532 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10533 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10534 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10535 }
10536
10537 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10538 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10539 to the ".got" section. */
10540 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10541 || (!htab->vxworks_p && h == htab->root.hgot))
10542 sym->st_shndx = SHN_ABS;
10543
10544 return TRUE;
10545 }
10546
10547 /* Finish up the dynamic sections. */
10548
10549 static bfd_boolean
10550 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10551 {
10552 bfd * dynobj;
10553 asection * sgot;
10554 asection * sdyn;
10555
10556 dynobj = elf_hash_table (info)->dynobj;
10557
10558 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10559 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10560 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10561
10562 if (elf_hash_table (info)->dynamic_sections_created)
10563 {
10564 asection *splt;
10565 Elf32_External_Dyn *dyncon, *dynconend;
10566 struct elf32_arm_link_hash_table *htab;
10567
10568 htab = elf32_arm_hash_table (info);
10569 splt = bfd_get_section_by_name (dynobj, ".plt");
10570 BFD_ASSERT (splt != NULL && sdyn != NULL);
10571
10572 dyncon = (Elf32_External_Dyn *) sdyn->contents;
10573 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
10574
10575 for (; dyncon < dynconend; dyncon++)
10576 {
10577 Elf_Internal_Dyn dyn;
10578 const char * name;
10579 asection * s;
10580
10581 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
10582
10583 switch (dyn.d_tag)
10584 {
10585 unsigned int type;
10586
10587 default:
10588 if (htab->vxworks_p
10589 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10590 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10591 break;
10592
10593 case DT_HASH:
10594 name = ".hash";
10595 goto get_vma_if_bpabi;
10596 case DT_STRTAB:
10597 name = ".dynstr";
10598 goto get_vma_if_bpabi;
10599 case DT_SYMTAB:
10600 name = ".dynsym";
10601 goto get_vma_if_bpabi;
10602 case DT_VERSYM:
10603 name = ".gnu.version";
10604 goto get_vma_if_bpabi;
10605 case DT_VERDEF:
10606 name = ".gnu.version_d";
10607 goto get_vma_if_bpabi;
10608 case DT_VERNEED:
10609 name = ".gnu.version_r";
10610 goto get_vma_if_bpabi;
10611
10612 case DT_PLTGOT:
10613 name = ".got";
10614 goto get_vma;
10615 case DT_JMPREL:
10616 name = RELOC_SECTION (htab, ".plt");
10617 get_vma:
10618 s = bfd_get_section_by_name (output_bfd, name);
10619 BFD_ASSERT (s != NULL);
10620 if (!htab->symbian_p)
10621 dyn.d_un.d_ptr = s->vma;
10622 else
10623 /* In the BPABI, tags in the PT_DYNAMIC section point
10624 at the file offset, not the memory address, for the
10625 convenience of the post linker. */
10626 dyn.d_un.d_ptr = s->filepos;
10627 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10628 break;
10629
10630 get_vma_if_bpabi:
10631 if (htab->symbian_p)
10632 goto get_vma;
10633 break;
10634
10635 case DT_PLTRELSZ:
10636 s = bfd_get_section_by_name (output_bfd,
10637 RELOC_SECTION (htab, ".plt"));
10638 BFD_ASSERT (s != NULL);
10639 dyn.d_un.d_val = s->size;
10640 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10641 break;
10642
10643 case DT_RELSZ:
10644 case DT_RELASZ:
10645 if (!htab->symbian_p)
10646 {
10647 /* My reading of the SVR4 ABI indicates that the
10648 procedure linkage table relocs (DT_JMPREL) should be
10649 included in the overall relocs (DT_REL). This is
10650 what Solaris does. However, UnixWare can not handle
10651 that case. Therefore, we override the DT_RELSZ entry
10652 here to make it not include the JMPREL relocs. Since
10653 the linker script arranges for .rel(a).plt to follow all
10654 other relocation sections, we don't have to worry
10655 about changing the DT_REL entry. */
10656 s = bfd_get_section_by_name (output_bfd,
10657 RELOC_SECTION (htab, ".plt"));
10658 if (s != NULL)
10659 dyn.d_un.d_val -= s->size;
10660 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10661 break;
10662 }
10663 /* Fall through */
10664
10665 case DT_REL:
10666 case DT_RELA:
10667 /* In the BPABI, the DT_REL tag must point at the file
10668 offset, not the VMA, of the first relocation
10669 section. So, we use code similar to that in
10670 elflink.c, but do not check for SHF_ALLOC on the
10671 relcoation section, since relocations sections are
10672 never allocated under the BPABI. The comments above
10673 about Unixware notwithstanding, we include all of the
10674 relocations here. */
10675 if (htab->symbian_p)
10676 {
10677 unsigned int i;
10678 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10679 ? SHT_REL : SHT_RELA);
10680 dyn.d_un.d_val = 0;
10681 for (i = 1; i < elf_numsections (output_bfd); i++)
10682 {
10683 Elf_Internal_Shdr *hdr
10684 = elf_elfsections (output_bfd)[i];
10685 if (hdr->sh_type == type)
10686 {
10687 if (dyn.d_tag == DT_RELSZ
10688 || dyn.d_tag == DT_RELASZ)
10689 dyn.d_un.d_val += hdr->sh_size;
10690 else if ((ufile_ptr) hdr->sh_offset
10691 <= dyn.d_un.d_val - 1)
10692 dyn.d_un.d_val = hdr->sh_offset;
10693 }
10694 }
10695 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10696 }
10697 break;
10698
10699 /* Set the bottom bit of DT_INIT/FINI if the
10700 corresponding function is Thumb. */
10701 case DT_INIT:
10702 name = info->init_function;
10703 goto get_sym;
10704 case DT_FINI:
10705 name = info->fini_function;
10706 get_sym:
10707 /* If it wasn't set by elf_bfd_final_link
10708 then there is nothing to adjust. */
10709 if (dyn.d_un.d_val != 0)
10710 {
10711 struct elf_link_hash_entry * eh;
10712
10713 eh = elf_link_hash_lookup (elf_hash_table (info), name,
10714 FALSE, FALSE, TRUE);
10715 if (eh != NULL
10716 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
10717 {
10718 dyn.d_un.d_val |= 1;
10719 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10720 }
10721 }
10722 break;
10723 }
10724 }
10725
10726 /* Fill in the first entry in the procedure linkage table. */
10727 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
10728 {
10729 const bfd_vma *plt0_entry;
10730 bfd_vma got_address, plt_address, got_displacement;
10731
10732 /* Calculate the addresses of the GOT and PLT. */
10733 got_address = sgot->output_section->vma + sgot->output_offset;
10734 plt_address = splt->output_section->vma + splt->output_offset;
10735
10736 if (htab->vxworks_p)
10737 {
10738 /* The VxWorks GOT is relocated by the dynamic linker.
10739 Therefore, we must emit relocations rather than simply
10740 computing the values now. */
10741 Elf_Internal_Rela rel;
10742
10743 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
10744 put_arm_insn (htab, output_bfd, plt0_entry[0],
10745 splt->contents + 0);
10746 put_arm_insn (htab, output_bfd, plt0_entry[1],
10747 splt->contents + 4);
10748 put_arm_insn (htab, output_bfd, plt0_entry[2],
10749 splt->contents + 8);
10750 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
10751
10752 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10753 rel.r_offset = plt_address + 12;
10754 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10755 rel.r_addend = 0;
10756 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
10757 htab->srelplt2->contents);
10758 }
10759 else
10760 {
10761 got_displacement = got_address - (plt_address + 16);
10762
10763 plt0_entry = elf32_arm_plt0_entry;
10764 put_arm_insn (htab, output_bfd, plt0_entry[0],
10765 splt->contents + 0);
10766 put_arm_insn (htab, output_bfd, plt0_entry[1],
10767 splt->contents + 4);
10768 put_arm_insn (htab, output_bfd, plt0_entry[2],
10769 splt->contents + 8);
10770 put_arm_insn (htab, output_bfd, plt0_entry[3],
10771 splt->contents + 12);
10772
10773 #ifdef FOUR_WORD_PLT
10774 /* The displacement value goes in the otherwise-unused
10775 last word of the second entry. */
10776 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
10777 #else
10778 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
10779 #endif
10780 }
10781 }
10782
10783 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10784 really seem like the right value. */
10785 if (splt->output_section->owner == output_bfd)
10786 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
10787
10788 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
10789 {
10790 /* Correct the .rel(a).plt.unloaded relocations. They will have
10791 incorrect symbol indexes. */
10792 int num_plts;
10793 unsigned char *p;
10794
10795 num_plts = ((htab->splt->size - htab->plt_header_size)
10796 / htab->plt_entry_size);
10797 p = htab->srelplt2->contents + RELOC_SIZE (htab);
10798
10799 for (; num_plts; num_plts--)
10800 {
10801 Elf_Internal_Rela rel;
10802
10803 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10804 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10805 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10806 p += RELOC_SIZE (htab);
10807
10808 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10809 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10810 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10811 p += RELOC_SIZE (htab);
10812 }
10813 }
10814 }
10815
10816 /* Fill in the first three entries in the global offset table. */
10817 if (sgot)
10818 {
10819 if (sgot->size > 0)
10820 {
10821 if (sdyn == NULL)
10822 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
10823 else
10824 bfd_put_32 (output_bfd,
10825 sdyn->output_section->vma + sdyn->output_offset,
10826 sgot->contents);
10827 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
10828 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
10829 }
10830
10831 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
10832 }
10833
10834 return TRUE;
10835 }
10836
10837 static void
10838 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10839 {
10840 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10841 struct elf32_arm_link_hash_table *globals;
10842
10843 i_ehdrp = elf_elfheader (abfd);
10844
10845 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
10846 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
10847 else
10848 i_ehdrp->e_ident[EI_OSABI] = 0;
10849 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
10850
10851 if (link_info)
10852 {
10853 globals = elf32_arm_hash_table (link_info);
10854 if (globals->byteswap_code)
10855 i_ehdrp->e_flags |= EF_ARM_BE8;
10856 }
10857 }
10858
10859 static enum elf_reloc_type_class
10860 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
10861 {
10862 switch ((int) ELF32_R_TYPE (rela->r_info))
10863 {
10864 case R_ARM_RELATIVE:
10865 return reloc_class_relative;
10866 case R_ARM_JUMP_SLOT:
10867 return reloc_class_plt;
10868 case R_ARM_COPY:
10869 return reloc_class_copy;
10870 default:
10871 return reloc_class_normal;
10872 }
10873 }
10874
10875 /* Set the right machine number for an Arm ELF file. */
10876
10877 static bfd_boolean
10878 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
10879 {
10880 if (hdr->sh_type == SHT_NOTE)
10881 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
10882
10883 return TRUE;
10884 }
10885
10886 static void
10887 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
10888 {
10889 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
10890 }
10891
10892 /* Return TRUE if this is an unwinding table entry. */
10893
10894 static bfd_boolean
10895 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
10896 {
10897 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
10898 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
10899 }
10900
10901
10902 /* Set the type and flags for an ARM section. We do this by
10903 the section name, which is a hack, but ought to work. */
10904
10905 static bfd_boolean
10906 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
10907 {
10908 const char * name;
10909
10910 name = bfd_get_section_name (abfd, sec);
10911
10912 if (is_arm_elf_unwind_section_name (abfd, name))
10913 {
10914 hdr->sh_type = SHT_ARM_EXIDX;
10915 hdr->sh_flags |= SHF_LINK_ORDER;
10916 }
10917 return TRUE;
10918 }
10919
10920 /* Handle an ARM specific section when reading an object file. This is
10921 called when bfd_section_from_shdr finds a section with an unknown
10922 type. */
10923
10924 static bfd_boolean
10925 elf32_arm_section_from_shdr (bfd *abfd,
10926 Elf_Internal_Shdr * hdr,
10927 const char *name,
10928 int shindex)
10929 {
10930 /* There ought to be a place to keep ELF backend specific flags, but
10931 at the moment there isn't one. We just keep track of the
10932 sections by their name, instead. Fortunately, the ABI gives
10933 names for all the ARM specific sections, so we will probably get
10934 away with this. */
10935 switch (hdr->sh_type)
10936 {
10937 case SHT_ARM_EXIDX:
10938 case SHT_ARM_PREEMPTMAP:
10939 case SHT_ARM_ATTRIBUTES:
10940 break;
10941
10942 default:
10943 return FALSE;
10944 }
10945
10946 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
10947 return FALSE;
10948
10949 return TRUE;
10950 }
10951
10952 /* A structure used to record a list of sections, independently
10953 of the next and prev fields in the asection structure. */
10954 typedef struct section_list
10955 {
10956 asection * sec;
10957 struct section_list * next;
10958 struct section_list * prev;
10959 }
10960 section_list;
10961
10962 /* Unfortunately we need to keep a list of sections for which
10963 an _arm_elf_section_data structure has been allocated. This
10964 is because it is possible for functions like elf32_arm_write_section
10965 to be called on a section which has had an elf_data_structure
10966 allocated for it (and so the used_by_bfd field is valid) but
10967 for which the ARM extended version of this structure - the
10968 _arm_elf_section_data structure - has not been allocated. */
10969 static section_list * sections_with_arm_elf_section_data = NULL;
10970
10971 static void
10972 record_section_with_arm_elf_section_data (asection * sec)
10973 {
10974 struct section_list * entry;
10975
10976 entry = bfd_malloc (sizeof (* entry));
10977 if (entry == NULL)
10978 return;
10979 entry->sec = sec;
10980 entry->next = sections_with_arm_elf_section_data;
10981 entry->prev = NULL;
10982 if (entry->next != NULL)
10983 entry->next->prev = entry;
10984 sections_with_arm_elf_section_data = entry;
10985 }
10986
10987 static struct section_list *
10988 find_arm_elf_section_entry (asection * sec)
10989 {
10990 struct section_list * entry;
10991 static struct section_list * last_entry = NULL;
10992
10993 /* This is a short cut for the typical case where the sections are added
10994 to the sections_with_arm_elf_section_data list in forward order and
10995 then looked up here in backwards order. This makes a real difference
10996 to the ld-srec/sec64k.exp linker test. */
10997 entry = sections_with_arm_elf_section_data;
10998 if (last_entry != NULL)
10999 {
11000 if (last_entry->sec == sec)
11001 entry = last_entry;
11002 else if (last_entry->next != NULL
11003 && last_entry->next->sec == sec)
11004 entry = last_entry->next;
11005 }
11006
11007 for (; entry; entry = entry->next)
11008 if (entry->sec == sec)
11009 break;
11010
11011 if (entry)
11012 /* Record the entry prior to this one - it is the entry we are most
11013 likely to want to locate next time. Also this way if we have been
11014 called from unrecord_section_with_arm_elf_section_data() we will not
11015 be caching a pointer that is about to be freed. */
11016 last_entry = entry->prev;
11017
11018 return entry;
11019 }
11020
11021 static _arm_elf_section_data *
11022 get_arm_elf_section_data (asection * sec)
11023 {
11024 struct section_list * entry;
11025
11026 entry = find_arm_elf_section_entry (sec);
11027
11028 if (entry)
11029 return elf32_arm_section_data (entry->sec);
11030 else
11031 return NULL;
11032 }
11033
11034 static void
11035 unrecord_section_with_arm_elf_section_data (asection * sec)
11036 {
11037 struct section_list * entry;
11038
11039 entry = find_arm_elf_section_entry (sec);
11040
11041 if (entry)
11042 {
11043 if (entry->prev != NULL)
11044 entry->prev->next = entry->next;
11045 if (entry->next != NULL)
11046 entry->next->prev = entry->prev;
11047 if (entry == sections_with_arm_elf_section_data)
11048 sections_with_arm_elf_section_data = entry->next;
11049 free (entry);
11050 }
11051 }
11052
11053
11054 typedef struct
11055 {
11056 void *finfo;
11057 struct bfd_link_info *info;
11058 asection *sec;
11059 int sec_shndx;
11060 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11061 asection *, struct elf_link_hash_entry *);
11062 } output_arch_syminfo;
11063
11064 enum map_symbol_type
11065 {
11066 ARM_MAP_ARM,
11067 ARM_MAP_THUMB,
11068 ARM_MAP_DATA
11069 };
11070
11071
11072 /* Output a single mapping symbol. */
11073
11074 static bfd_boolean
11075 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11076 enum map_symbol_type type,
11077 bfd_vma offset)
11078 {
11079 static const char *names[3] = {"$a", "$t", "$d"};
11080 struct elf32_arm_link_hash_table *htab;
11081 Elf_Internal_Sym sym;
11082
11083 htab = elf32_arm_hash_table (osi->info);
11084 sym.st_value = osi->sec->output_section->vma
11085 + osi->sec->output_offset
11086 + offset;
11087 sym.st_size = 0;
11088 sym.st_other = 0;
11089 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11090 sym.st_shndx = osi->sec_shndx;
11091 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11092 return FALSE;
11093 return TRUE;
11094 }
11095
11096
11097 /* Output mapping symbols for PLT entries associated with H. */
11098
11099 static bfd_boolean
11100 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11101 {
11102 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11103 struct elf32_arm_link_hash_table *htab;
11104 struct elf32_arm_link_hash_entry *eh;
11105 bfd_vma addr;
11106
11107 htab = elf32_arm_hash_table (osi->info);
11108
11109 if (h->root.type == bfd_link_hash_indirect)
11110 return TRUE;
11111
11112 if (h->root.type == bfd_link_hash_warning)
11113 /* When warning symbols are created, they **replace** the "real"
11114 entry in the hash table, thus we never get to see the real
11115 symbol in a hash traversal. So look at it now. */
11116 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11117
11118 if (h->plt.offset == (bfd_vma) -1)
11119 return TRUE;
11120
11121 eh = (struct elf32_arm_link_hash_entry *) h;
11122 addr = h->plt.offset;
11123 if (htab->symbian_p)
11124 {
11125 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11126 return FALSE;
11127 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11128 return FALSE;
11129 }
11130 else if (htab->vxworks_p)
11131 {
11132 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11133 return FALSE;
11134 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11135 return FALSE;
11136 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11137 return FALSE;
11138 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11139 return FALSE;
11140 }
11141 else
11142 {
11143 bfd_signed_vma thumb_refs;
11144
11145 thumb_refs = eh->plt_thumb_refcount;
11146 if (!htab->use_blx)
11147 thumb_refs += eh->plt_maybe_thumb_refcount;
11148
11149 if (thumb_refs > 0)
11150 {
11151 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11152 return FALSE;
11153 }
11154 #ifdef FOUR_WORD_PLT
11155 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11156 return FALSE;
11157 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11158 return FALSE;
11159 #else
11160 /* A three-word PLT with no Thumb thunk contains only Arm code,
11161 so only need to output a mapping symbol for the first PLT entry and
11162 entries with thumb thunks. */
11163 if (thumb_refs > 0 || addr == 20)
11164 {
11165 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11166 return FALSE;
11167 }
11168 #endif
11169 }
11170
11171 return TRUE;
11172 }
11173
11174 /* Output a single local symbol for a generated stub. */
11175
11176 static bfd_boolean
11177 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11178 bfd_vma offset, bfd_vma size)
11179 {
11180 struct elf32_arm_link_hash_table *htab;
11181 Elf_Internal_Sym sym;
11182
11183 htab = elf32_arm_hash_table (osi->info);
11184 sym.st_value = osi->sec->output_section->vma
11185 + osi->sec->output_offset
11186 + offset;
11187 sym.st_size = size;
11188 sym.st_other = 0;
11189 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11190 sym.st_shndx = osi->sec_shndx;
11191 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11192 return FALSE;
11193 return TRUE;
11194 }
11195
11196 static bfd_boolean
11197 arm_map_one_stub (struct bfd_hash_entry *gen_entry,
11198 PTR in_arg)
11199 {
11200 struct elf32_arm_stub_hash_entry *stub_entry;
11201 struct bfd_link_info *info;
11202 struct elf32_arm_link_hash_table *htab;
11203 asection *stub_sec;
11204 bfd_vma addr;
11205 char *stub_name;
11206
11207 /* Massage our args to the form they really have. */
11208 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11209
11210 output_arch_syminfo *osi = (output_arch_syminfo *) in_arg;
11211 info = osi->info;
11212
11213 htab = elf32_arm_hash_table (info);
11214 stub_sec = stub_entry->stub_sec;
11215
11216 /* Ensure this stub is attached to the current section being
11217 processed. */
11218 if (stub_sec != osi->sec)
11219 return TRUE;
11220
11221 addr = (bfd_vma) stub_entry->stub_offset;
11222 stub_name = stub_entry->output_name;
11223
11224 switch (stub_entry->stub_type)
11225 {
11226 case arm_stub_long_branch:
11227 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 8))
11228 return FALSE;
11229 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11230 return FALSE;
11231 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11232 return FALSE;
11233 break;
11234 case arm_thumb_v4t_stub_long_branch:
11235 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11236 return FALSE;
11237 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11238 return FALSE;
11239 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11240 return FALSE;
11241 break;
11242 case arm_thumb_thumb_stub_long_branch:
11243 if (!elf32_arm_output_stub_sym (osi, stub_name, addr + 1, 16))
11244 return FALSE;
11245 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11246 return FALSE;
11247 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11248 return FALSE;
11249 break;
11250 case arm_thumb_arm_v4t_stub_long_branch:
11251 if (!elf32_arm_output_stub_sym (osi, stub_name, addr + 1, 20))
11252 return FALSE;
11253 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11254 return FALSE;
11255 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 8))
11256 return FALSE;
11257 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
11258 return FALSE;
11259 break;
11260 case arm_stub_pic_long_branch:
11261 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11262 return FALSE;
11263 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11264 return FALSE;
11265 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11266 return FALSE;
11267 break;
11268 default:
11269 BFD_FAIL ();
11270 }
11271
11272 return TRUE;
11273 }
11274
11275 /* Output mapping symbols for linker generated sections. */
11276
11277 static bfd_boolean
11278 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11279 struct bfd_link_info *info,
11280 void *finfo,
11281 bfd_boolean (*func) (void *, const char *,
11282 Elf_Internal_Sym *,
11283 asection *,
11284 struct elf_link_hash_entry *))
11285 {
11286 output_arch_syminfo osi;
11287 struct elf32_arm_link_hash_table *htab;
11288 bfd_vma offset;
11289 bfd_size_type size;
11290
11291 htab = elf32_arm_hash_table (info);
11292 check_use_blx (htab);
11293
11294 osi.finfo = finfo;
11295 osi.info = info;
11296 osi.func = func;
11297
11298 /* ARM->Thumb glue. */
11299 if (htab->arm_glue_size > 0)
11300 {
11301 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11302 ARM2THUMB_GLUE_SECTION_NAME);
11303
11304 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11305 (output_bfd, osi.sec->output_section);
11306 if (info->shared || htab->root.is_relocatable_executable
11307 || htab->pic_veneer)
11308 size = ARM2THUMB_PIC_GLUE_SIZE;
11309 else if (htab->use_blx)
11310 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11311 else
11312 size = ARM2THUMB_STATIC_GLUE_SIZE;
11313
11314 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11315 {
11316 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11317 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11318 }
11319 }
11320
11321 /* Thumb->ARM glue. */
11322 if (htab->thumb_glue_size > 0)
11323 {
11324 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11325 THUMB2ARM_GLUE_SECTION_NAME);
11326
11327 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11328 (output_bfd, osi.sec->output_section);
11329 size = THUMB2ARM_GLUE_SIZE;
11330
11331 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11332 {
11333 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11334 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11335 }
11336 }
11337
11338 /* ARMv4 BX veneers. */
11339 if (htab->bx_glue_size > 0)
11340 {
11341 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11342 ARM_BX_GLUE_SECTION_NAME);
11343
11344 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11345 (output_bfd, osi.sec->output_section);
11346
11347 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
11348 }
11349
11350 /* Long calls stubs. */
11351 if (htab->stub_bfd && htab->stub_bfd->sections) {
11352 asection* stub_sec;
11353 for (stub_sec = htab->stub_bfd->sections;
11354 stub_sec != NULL;
11355 stub_sec = stub_sec->next) {
11356
11357 /* Ignore non-stub sections */
11358 if (!strstr(stub_sec->name, STUB_SUFFIX))
11359 continue;
11360
11361 osi.sec = stub_sec;
11362
11363 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11364 (output_bfd, osi.sec->output_section);
11365
11366 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
11367 }
11368 }
11369
11370 /* Finally, output mapping symbols for the PLT. */
11371 if (!htab->splt || htab->splt->size == 0)
11372 return TRUE;
11373
11374 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11375 htab->splt->output_section);
11376 osi.sec = htab->splt;
11377 /* Output mapping symbols for the plt header. SymbianOS does not have a
11378 plt header. */
11379 if (htab->vxworks_p)
11380 {
11381 /* VxWorks shared libraries have no PLT header. */
11382 if (!info->shared)
11383 {
11384 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11385 return FALSE;
11386 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
11387 return FALSE;
11388 }
11389 }
11390 else if (!htab->symbian_p)
11391 {
11392 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11393 return FALSE;
11394 #ifndef FOUR_WORD_PLT
11395 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
11396 return FALSE;
11397 #endif
11398 }
11399
11400 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11401 return TRUE;
11402 }
11403
11404 /* Allocate target specific section data. */
11405
11406 static bfd_boolean
11407 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11408 {
11409 if (!sec->used_by_bfd)
11410 {
11411 _arm_elf_section_data *sdata;
11412 bfd_size_type amt = sizeof (*sdata);
11413
11414 sdata = bfd_zalloc (abfd, amt);
11415 if (sdata == NULL)
11416 return FALSE;
11417 sec->used_by_bfd = sdata;
11418 }
11419
11420 record_section_with_arm_elf_section_data (sec);
11421
11422 return _bfd_elf_new_section_hook (abfd, sec);
11423 }
11424
11425
11426 /* Used to order a list of mapping symbols by address. */
11427
11428 static int
11429 elf32_arm_compare_mapping (const void * a, const void * b)
11430 {
11431 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11432 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11433
11434 if (amap->vma > bmap->vma)
11435 return 1;
11436 else if (amap->vma < bmap->vma)
11437 return -1;
11438 else if (amap->type > bmap->type)
11439 /* Ensure results do not depend on the host qsort for objects with
11440 multiple mapping symbols at the same address by sorting on type
11441 after vma. */
11442 return 1;
11443 else if (amap->type < bmap->type)
11444 return -1;
11445 else
11446 return 0;
11447 }
11448
11449
11450 /* Do code byteswapping. Return FALSE afterwards so that the section is
11451 written out as normal. */
11452
11453 static bfd_boolean
11454 elf32_arm_write_section (bfd *output_bfd,
11455 struct bfd_link_info *link_info, asection *sec,
11456 bfd_byte *contents)
11457 {
11458 int mapcount, errcount;
11459 _arm_elf_section_data *arm_data;
11460 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11461 elf32_arm_section_map *map;
11462 elf32_vfp11_erratum_list *errnode;
11463 bfd_vma ptr;
11464 bfd_vma end;
11465 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11466 bfd_byte tmp;
11467 int i;
11468
11469 /* If this section has not been allocated an _arm_elf_section_data
11470 structure then we cannot record anything. */
11471 arm_data = get_arm_elf_section_data (sec);
11472 if (arm_data == NULL)
11473 return FALSE;
11474
11475 mapcount = arm_data->mapcount;
11476 map = arm_data->map;
11477 errcount = arm_data->erratumcount;
11478
11479 if (errcount != 0)
11480 {
11481 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11482
11483 for (errnode = arm_data->erratumlist; errnode != 0;
11484 errnode = errnode->next)
11485 {
11486 bfd_vma index = errnode->vma - offset;
11487
11488 switch (errnode->type)
11489 {
11490 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11491 {
11492 bfd_vma branch_to_veneer;
11493 /* Original condition code of instruction, plus bit mask for
11494 ARM B instruction. */
11495 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11496 | 0x0a000000;
11497
11498 /* The instruction is before the label. */
11499 index -= 4;
11500
11501 /* Above offset included in -4 below. */
11502 branch_to_veneer = errnode->u.b.veneer->vma
11503 - errnode->vma - 4;
11504
11505 if ((signed) branch_to_veneer < -(1 << 25)
11506 || (signed) branch_to_veneer >= (1 << 25))
11507 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11508 "range"), output_bfd);
11509
11510 insn |= (branch_to_veneer >> 2) & 0xffffff;
11511 contents[endianflip ^ index] = insn & 0xff;
11512 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11513 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11514 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11515 }
11516 break;
11517
11518 case VFP11_ERRATUM_ARM_VENEER:
11519 {
11520 bfd_vma branch_from_veneer;
11521 unsigned int insn;
11522
11523 /* Take size of veneer into account. */
11524 branch_from_veneer = errnode->u.v.branch->vma
11525 - errnode->vma - 12;
11526
11527 if ((signed) branch_from_veneer < -(1 << 25)
11528 || (signed) branch_from_veneer >= (1 << 25))
11529 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11530 "range"), output_bfd);
11531
11532 /* Original instruction. */
11533 insn = errnode->u.v.branch->u.b.vfp_insn;
11534 contents[endianflip ^ index] = insn & 0xff;
11535 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11536 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11537 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11538
11539 /* Branch back to insn after original insn. */
11540 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11541 contents[endianflip ^ (index + 4)] = insn & 0xff;
11542 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11543 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11544 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11545 }
11546 break;
11547
11548 default:
11549 abort ();
11550 }
11551 }
11552 }
11553
11554 if (mapcount == 0)
11555 return FALSE;
11556
11557 if (globals->byteswap_code)
11558 {
11559 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
11560
11561 ptr = map[0].vma;
11562 for (i = 0; i < mapcount; i++)
11563 {
11564 if (i == mapcount - 1)
11565 end = sec->size;
11566 else
11567 end = map[i + 1].vma;
11568
11569 switch (map[i].type)
11570 {
11571 case 'a':
11572 /* Byte swap code words. */
11573 while (ptr + 3 < end)
11574 {
11575 tmp = contents[ptr];
11576 contents[ptr] = contents[ptr + 3];
11577 contents[ptr + 3] = tmp;
11578 tmp = contents[ptr + 1];
11579 contents[ptr + 1] = contents[ptr + 2];
11580 contents[ptr + 2] = tmp;
11581 ptr += 4;
11582 }
11583 break;
11584
11585 case 't':
11586 /* Byte swap code halfwords. */
11587 while (ptr + 1 < end)
11588 {
11589 tmp = contents[ptr];
11590 contents[ptr] = contents[ptr + 1];
11591 contents[ptr + 1] = tmp;
11592 ptr += 2;
11593 }
11594 break;
11595
11596 case 'd':
11597 /* Leave data alone. */
11598 break;
11599 }
11600 ptr = end;
11601 }
11602 }
11603
11604 free (map);
11605 arm_data->mapcount = 0;
11606 arm_data->mapsize = 0;
11607 arm_data->map = NULL;
11608 unrecord_section_with_arm_elf_section_data (sec);
11609
11610 return FALSE;
11611 }
11612
11613 static void
11614 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
11615 asection * sec,
11616 void * ignore ATTRIBUTE_UNUSED)
11617 {
11618 unrecord_section_with_arm_elf_section_data (sec);
11619 }
11620
11621 static bfd_boolean
11622 elf32_arm_close_and_cleanup (bfd * abfd)
11623 {
11624 if (abfd->sections)
11625 bfd_map_over_sections (abfd,
11626 unrecord_section_via_map_over_sections,
11627 NULL);
11628
11629 return _bfd_elf_close_and_cleanup (abfd);
11630 }
11631
11632 static bfd_boolean
11633 elf32_arm_bfd_free_cached_info (bfd * abfd)
11634 {
11635 if (abfd->sections)
11636 bfd_map_over_sections (abfd,
11637 unrecord_section_via_map_over_sections,
11638 NULL);
11639
11640 return _bfd_free_cached_info (abfd);
11641 }
11642
11643 /* Display STT_ARM_TFUNC symbols as functions. */
11644
11645 static void
11646 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
11647 asymbol *asym)
11648 {
11649 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
11650
11651 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
11652 elfsym->symbol.flags |= BSF_FUNCTION;
11653 }
11654
11655
11656 /* Mangle thumb function symbols as we read them in. */
11657
11658 static bfd_boolean
11659 elf32_arm_swap_symbol_in (bfd * abfd,
11660 const void *psrc,
11661 const void *pshn,
11662 Elf_Internal_Sym *dst)
11663 {
11664 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
11665 return FALSE;
11666
11667 /* New EABI objects mark thumb function symbols by setting the low bit of
11668 the address. Turn these into STT_ARM_TFUNC. */
11669 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
11670 && (dst->st_value & 1))
11671 {
11672 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
11673 dst->st_value &= ~(bfd_vma) 1;
11674 }
11675 return TRUE;
11676 }
11677
11678
11679 /* Mangle thumb function symbols as we write them out. */
11680
11681 static void
11682 elf32_arm_swap_symbol_out (bfd *abfd,
11683 const Elf_Internal_Sym *src,
11684 void *cdst,
11685 void *shndx)
11686 {
11687 Elf_Internal_Sym newsym;
11688
11689 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11690 of the address set, as per the new EABI. We do this unconditionally
11691 because objcopy does not set the elf header flags until after
11692 it writes out the symbol table. */
11693 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
11694 {
11695 newsym = *src;
11696 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
11697 if (newsym.st_shndx != SHN_UNDEF)
11698 {
11699 /* Do this only for defined symbols. At link type, the static
11700 linker will simulate the work of dynamic linker of resolving
11701 symbols and will carry over the thumbness of found symbols to
11702 the output symbol table. It's not clear how it happens, but
11703 the thumbness of undefined symbols can well be different at
11704 runtime, and writing '1' for them will be confusing for users
11705 and possibly for dynamic linker itself.
11706 */
11707 newsym.st_value |= 1;
11708 }
11709
11710 src = &newsym;
11711 }
11712 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
11713 }
11714
11715 /* Add the PT_ARM_EXIDX program header. */
11716
11717 static bfd_boolean
11718 elf32_arm_modify_segment_map (bfd *abfd,
11719 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11720 {
11721 struct elf_segment_map *m;
11722 asection *sec;
11723
11724 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11725 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11726 {
11727 /* If there is already a PT_ARM_EXIDX header, then we do not
11728 want to add another one. This situation arises when running
11729 "strip"; the input binary already has the header. */
11730 m = elf_tdata (abfd)->segment_map;
11731 while (m && m->p_type != PT_ARM_EXIDX)
11732 m = m->next;
11733 if (!m)
11734 {
11735 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
11736 if (m == NULL)
11737 return FALSE;
11738 m->p_type = PT_ARM_EXIDX;
11739 m->count = 1;
11740 m->sections[0] = sec;
11741
11742 m->next = elf_tdata (abfd)->segment_map;
11743 elf_tdata (abfd)->segment_map = m;
11744 }
11745 }
11746
11747 return TRUE;
11748 }
11749
11750 /* We may add a PT_ARM_EXIDX program header. */
11751
11752 static int
11753 elf32_arm_additional_program_headers (bfd *abfd,
11754 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11755 {
11756 asection *sec;
11757
11758 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11759 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11760 return 1;
11761 else
11762 return 0;
11763 }
11764
11765 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11766
11767 static bfd_boolean
11768 elf32_arm_is_function_type (unsigned int type)
11769 {
11770 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
11771 }
11772
11773 /* We use this to override swap_symbol_in and swap_symbol_out. */
11774 const struct elf_size_info elf32_arm_size_info =
11775 {
11776 sizeof (Elf32_External_Ehdr),
11777 sizeof (Elf32_External_Phdr),
11778 sizeof (Elf32_External_Shdr),
11779 sizeof (Elf32_External_Rel),
11780 sizeof (Elf32_External_Rela),
11781 sizeof (Elf32_External_Sym),
11782 sizeof (Elf32_External_Dyn),
11783 sizeof (Elf_External_Note),
11784 4,
11785 1,
11786 32, 2,
11787 ELFCLASS32, EV_CURRENT,
11788 bfd_elf32_write_out_phdrs,
11789 bfd_elf32_write_shdrs_and_ehdr,
11790 bfd_elf32_checksum_contents,
11791 bfd_elf32_write_relocs,
11792 elf32_arm_swap_symbol_in,
11793 elf32_arm_swap_symbol_out,
11794 bfd_elf32_slurp_reloc_table,
11795 bfd_elf32_slurp_symbol_table,
11796 bfd_elf32_swap_dyn_in,
11797 bfd_elf32_swap_dyn_out,
11798 bfd_elf32_swap_reloc_in,
11799 bfd_elf32_swap_reloc_out,
11800 bfd_elf32_swap_reloca_in,
11801 bfd_elf32_swap_reloca_out
11802 };
11803
11804 #define ELF_ARCH bfd_arch_arm
11805 #define ELF_MACHINE_CODE EM_ARM
11806 #ifdef __QNXTARGET__
11807 #define ELF_MAXPAGESIZE 0x1000
11808 #else
11809 #define ELF_MAXPAGESIZE 0x8000
11810 #endif
11811 #define ELF_MINPAGESIZE 0x1000
11812 #define ELF_COMMONPAGESIZE 0x1000
11813
11814 #define bfd_elf32_mkobject elf32_arm_mkobject
11815
11816 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11817 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11818 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11819 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11820 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11821 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11822 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11823 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11824 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11825 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11826 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11827 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11828 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11829 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11830
11831 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11832 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11833 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11834 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11835 #define elf_backend_check_relocs elf32_arm_check_relocs
11836 #define elf_backend_relocate_section elf32_arm_relocate_section
11837 #define elf_backend_write_section elf32_arm_write_section
11838 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11839 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11840 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11841 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11842 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11843 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11844 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11845 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11846 #define elf_backend_object_p elf32_arm_object_p
11847 #define elf_backend_section_flags elf32_arm_section_flags
11848 #define elf_backend_fake_sections elf32_arm_fake_sections
11849 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11850 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11851 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11852 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11853 #define elf_backend_size_info elf32_arm_size_info
11854 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11855 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11856 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11857 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11858 #define elf_backend_is_function_type elf32_arm_is_function_type
11859
11860 #define elf_backend_can_refcount 1
11861 #define elf_backend_can_gc_sections 1
11862 #define elf_backend_plt_readonly 1
11863 #define elf_backend_want_got_plt 1
11864 #define elf_backend_want_plt_sym 0
11865 #define elf_backend_may_use_rel_p 1
11866 #define elf_backend_may_use_rela_p 0
11867 #define elf_backend_default_use_rela_p 0
11868
11869 #define elf_backend_got_header_size 12
11870
11871 #undef elf_backend_obj_attrs_vendor
11872 #define elf_backend_obj_attrs_vendor "aeabi"
11873 #undef elf_backend_obj_attrs_section
11874 #define elf_backend_obj_attrs_section ".ARM.attributes"
11875 #undef elf_backend_obj_attrs_arg_type
11876 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11877 #undef elf_backend_obj_attrs_section_type
11878 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11879
11880 #include "elf32-target.h"
11881
11882 /* VxWorks Targets. */
11883
11884 #undef TARGET_LITTLE_SYM
11885 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11886 #undef TARGET_LITTLE_NAME
11887 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11888 #undef TARGET_BIG_SYM
11889 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11890 #undef TARGET_BIG_NAME
11891 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11892
11893 /* Like elf32_arm_link_hash_table_create -- but overrides
11894 appropriately for VxWorks. */
11895
11896 static struct bfd_link_hash_table *
11897 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
11898 {
11899 struct bfd_link_hash_table *ret;
11900
11901 ret = elf32_arm_link_hash_table_create (abfd);
11902 if (ret)
11903 {
11904 struct elf32_arm_link_hash_table *htab
11905 = (struct elf32_arm_link_hash_table *) ret;
11906 htab->use_rel = 0;
11907 htab->vxworks_p = 1;
11908 }
11909 return ret;
11910 }
11911
11912 static void
11913 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
11914 {
11915 elf32_arm_final_write_processing (abfd, linker);
11916 elf_vxworks_final_write_processing (abfd, linker);
11917 }
11918
11919 #undef elf32_bed
11920 #define elf32_bed elf32_arm_vxworks_bed
11921
11922 #undef bfd_elf32_bfd_link_hash_table_create
11923 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
11924 #undef elf_backend_add_symbol_hook
11925 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
11926 #undef elf_backend_final_write_processing
11927 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
11928 #undef elf_backend_emit_relocs
11929 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
11930
11931 #undef elf_backend_may_use_rel_p
11932 #define elf_backend_may_use_rel_p 0
11933 #undef elf_backend_may_use_rela_p
11934 #define elf_backend_may_use_rela_p 1
11935 #undef elf_backend_default_use_rela_p
11936 #define elf_backend_default_use_rela_p 1
11937 #undef elf_backend_want_plt_sym
11938 #define elf_backend_want_plt_sym 1
11939 #undef ELF_MAXPAGESIZE
11940 #define ELF_MAXPAGESIZE 0x1000
11941
11942 #include "elf32-target.h"
11943
11944
11945 /* Symbian OS Targets. */
11946
11947 #undef TARGET_LITTLE_SYM
11948 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
11949 #undef TARGET_LITTLE_NAME
11950 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
11951 #undef TARGET_BIG_SYM
11952 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
11953 #undef TARGET_BIG_NAME
11954 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
11955
11956 /* Like elf32_arm_link_hash_table_create -- but overrides
11957 appropriately for Symbian OS. */
11958
11959 static struct bfd_link_hash_table *
11960 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
11961 {
11962 struct bfd_link_hash_table *ret;
11963
11964 ret = elf32_arm_link_hash_table_create (abfd);
11965 if (ret)
11966 {
11967 struct elf32_arm_link_hash_table *htab
11968 = (struct elf32_arm_link_hash_table *)ret;
11969 /* There is no PLT header for Symbian OS. */
11970 htab->plt_header_size = 0;
11971 /* The PLT entries are each one instruction and one word. */
11972 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
11973 htab->symbian_p = 1;
11974 /* Symbian uses armv5t or above, so use_blx is always true. */
11975 htab->use_blx = 1;
11976 htab->root.is_relocatable_executable = 1;
11977 }
11978 return ret;
11979 }
11980
11981 static const struct bfd_elf_special_section
11982 elf32_arm_symbian_special_sections[] =
11983 {
11984 /* In a BPABI executable, the dynamic linking sections do not go in
11985 the loadable read-only segment. The post-linker may wish to
11986 refer to these sections, but they are not part of the final
11987 program image. */
11988 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
11989 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
11990 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
11991 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
11992 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
11993 /* These sections do not need to be writable as the SymbianOS
11994 postlinker will arrange things so that no dynamic relocation is
11995 required. */
11996 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
11997 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
11998 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
11999 { NULL, 0, 0, 0, 0 }
12000 };
12001
12002 static void
12003 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12004 struct bfd_link_info *link_info)
12005 {
12006 /* BPABI objects are never loaded directly by an OS kernel; they are
12007 processed by a postlinker first, into an OS-specific format. If
12008 the D_PAGED bit is set on the file, BFD will align segments on
12009 page boundaries, so that an OS can directly map the file. With
12010 BPABI objects, that just results in wasted space. In addition,
12011 because we clear the D_PAGED bit, map_sections_to_segments will
12012 recognize that the program headers should not be mapped into any
12013 loadable segment. */
12014 abfd->flags &= ~D_PAGED;
12015 elf32_arm_begin_write_processing (abfd, link_info);
12016 }
12017
12018 static bfd_boolean
12019 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12020 struct bfd_link_info *info)
12021 {
12022 struct elf_segment_map *m;
12023 asection *dynsec;
12024
12025 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12026 segment. However, because the .dynamic section is not marked
12027 with SEC_LOAD, the generic ELF code will not create such a
12028 segment. */
12029 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12030 if (dynsec)
12031 {
12032 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12033 if (m->p_type == PT_DYNAMIC)
12034 break;
12035
12036 if (m == NULL)
12037 {
12038 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12039 m->next = elf_tdata (abfd)->segment_map;
12040 elf_tdata (abfd)->segment_map = m;
12041 }
12042 }
12043
12044 /* Also call the generic arm routine. */
12045 return elf32_arm_modify_segment_map (abfd, info);
12046 }
12047
12048 /* Return address for Ith PLT stub in section PLT, for relocation REL
12049 or (bfd_vma) -1 if it should not be included. */
12050
12051 static bfd_vma
12052 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12053 const arelent *rel ATTRIBUTE_UNUSED)
12054 {
12055 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12056 }
12057
12058
12059 #undef elf32_bed
12060 #define elf32_bed elf32_arm_symbian_bed
12061
12062 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12063 will process them and then discard them. */
12064 #undef ELF_DYNAMIC_SEC_FLAGS
12065 #define ELF_DYNAMIC_SEC_FLAGS \
12066 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12067
12068 #undef elf_backend_add_symbol_hook
12069 #undef elf_backend_emit_relocs
12070
12071 #undef bfd_elf32_bfd_link_hash_table_create
12072 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12073 #undef elf_backend_special_sections
12074 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12075 #undef elf_backend_begin_write_processing
12076 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12077 #undef elf_backend_final_write_processing
12078 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12079
12080 #undef elf_backend_modify_segment_map
12081 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12082
12083 /* There is no .got section for BPABI objects, and hence no header. */
12084 #undef elf_backend_got_header_size
12085 #define elf_backend_got_header_size 0
12086
12087 /* Similarly, there is no .got.plt section. */
12088 #undef elf_backend_want_got_plt
12089 #define elf_backend_want_got_plt 0
12090
12091 #undef elf_backend_plt_sym_val
12092 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12093
12094 #undef elf_backend_may_use_rel_p
12095 #define elf_backend_may_use_rel_p 1
12096 #undef elf_backend_may_use_rela_p
12097 #define elf_backend_may_use_rela_p 0
12098 #undef elf_backend_default_use_rela_p
12099 #define elf_backend_default_use_rela_p 0
12100 #undef elf_backend_want_plt_sym
12101 #define elf_backend_want_plt_sym 0
12102 #undef ELF_MAXPAGESIZE
12103 #define ELF_MAXPAGESIZE 0x8000
12104
12105 #include "elf32-target.h"
This page took 0.263248 seconds and 5 git commands to generate.