bfd/
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation. */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* Unallocated. */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781
1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1785
1786 return NULL;
1787 }
1788
1789 static reloc_howto_type *
1790 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806 }
1807
1808 /* Support for core dump NOTE sections. */
1809
1810 static bfd_boolean
1811 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1812 {
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
1821 case 148: /* Linux/ARM 32-bit. */
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838 }
1839
1840 static bfd_boolean
1841 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 {
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1873
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
1877 typedef unsigned long int insn32;
1878 typedef unsigned short int insn16;
1879
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1903
1904 /* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
1908 #ifdef FOUR_WORD_PLT
1909
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1913 linker first. */
1914 static const bfd_vma elf32_arm_plt0_entry [] =
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922 /* Subsequent entries in a procedure linkage table look like
1923 this. */
1924 static const bfd_vma elf32_arm_plt_entry [] =
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932 #else
1933
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
1938 static const bfd_vma elf32_arm_plt0_entry [] =
1939 {
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1945 };
1946
1947 /* Subsequent entries in a procedure linkage table look like
1948 this. */
1949 static const bfd_vma elf32_arm_plt_entry [] =
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956 #endif
1957
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
1998 /* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
2000 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2001 {
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
2013 static const bfd_vma arm_long_branch_stub[] =
2014 {
2015 0xe51ff004, /* ldr pc, [pc, #-4] */
2016 0x00000000, /* dcd R_ARM_ABS32(X) */
2017 };
2018
2019 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2020 {
2021 0xe59fc000, /* ldr ip, [pc, #0] */
2022 0xe12fff1c, /* bx ip */
2023 0x00000000, /* dcd R_ARM_ABS32(X) */
2024 };
2025
2026 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2027 {
2028 0x4e02b540, /* push {r6, lr} */
2029 /* ldr r6, [pc, #8] */
2030 0x473046fe, /* mov lr, pc */
2031 /* bx r6 */
2032 0xbf00bd40, /* pop {r6, pc} */
2033 /* nop */
2034 0x00000000, /* dcd R_ARM_ABS32(X) */
2035 };
2036
2037 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2038 {
2039 0x4e03b540, /* push {r6, lr} */
2040 /* ldr r6, [pc, #12] */
2041 0x473046fe, /* mov lr, pc */
2042 /* bx r6 */
2043 0xe8bd4040, /* pop {r6, pc} */
2044 0xe12fff1e, /* bx lr */
2045 0x00000000, /* dcd R_ARM_ABS32(X) */
2046 };
2047
2048 static const bfd_vma arm_thumb_arm_v4t_short_branch_stub[] =
2049 {
2050 0x46c04778, /* bx pc */
2051 /* nop */
2052 0xea000000, /* b (X) */
2053 };
2054
2055 static const bfd_vma arm_pic_long_branch_stub[] =
2056 {
2057 0xe59fc000, /* ldr r12, [pc] */
2058 0xe08ff00c, /* add pc, pc, ip */
2059 0x00000000, /* dcd R_ARM_REL32(X) */
2060 };
2061
2062 /* Section name for stubs is the associated section name plus this
2063 string. */
2064 #define STUB_SUFFIX ".stub"
2065
2066 enum elf32_arm_stub_type
2067 {
2068 arm_stub_none,
2069 arm_stub_long_branch,
2070 arm_thumb_v4t_stub_long_branch,
2071 arm_thumb_thumb_stub_long_branch,
2072 arm_thumb_arm_v4t_stub_long_branch,
2073 arm_thumb_arm_v4t_stub_short_branch,
2074 arm_stub_pic_long_branch,
2075 };
2076
2077 struct elf32_arm_stub_hash_entry
2078 {
2079 /* Base hash table entry structure. */
2080 struct bfd_hash_entry root;
2081
2082 /* The stub section. */
2083 asection *stub_sec;
2084
2085 /* Offset within stub_sec of the beginning of this stub. */
2086 bfd_vma stub_offset;
2087
2088 /* Given the symbol's value and its section we can determine its final
2089 value when building the stubs (so the stub knows where to jump). */
2090 bfd_vma target_value;
2091 asection *target_section;
2092
2093 enum elf32_arm_stub_type stub_type;
2094
2095 /* The symbol table entry, if any, that this was derived from. */
2096 struct elf32_arm_link_hash_entry *h;
2097
2098 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2099 unsigned char st_type;
2100
2101 /* Where this stub is being called from, or, in the case of combined
2102 stub sections, the first input section in the group. */
2103 asection *id_sec;
2104
2105 /* The name for the local symbol at the start of this stub. The
2106 stub name in the hash table has to be unique; this does not, so
2107 it can be friendlier. */
2108 char *output_name;
2109 };
2110
2111 /* Used to build a map of a section. This is required for mixed-endian
2112 code/data. */
2113
2114 typedef struct elf32_elf_section_map
2115 {
2116 bfd_vma vma;
2117 char type;
2118 }
2119 elf32_arm_section_map;
2120
2121 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2122
2123 typedef enum
2124 {
2125 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2126 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2127 VFP11_ERRATUM_ARM_VENEER,
2128 VFP11_ERRATUM_THUMB_VENEER
2129 }
2130 elf32_vfp11_erratum_type;
2131
2132 typedef struct elf32_vfp11_erratum_list
2133 {
2134 struct elf32_vfp11_erratum_list *next;
2135 bfd_vma vma;
2136 union
2137 {
2138 struct
2139 {
2140 struct elf32_vfp11_erratum_list *veneer;
2141 unsigned int vfp_insn;
2142 } b;
2143 struct
2144 {
2145 struct elf32_vfp11_erratum_list *branch;
2146 unsigned int id;
2147 } v;
2148 } u;
2149 elf32_vfp11_erratum_type type;
2150 }
2151 elf32_vfp11_erratum_list;
2152
2153 typedef struct _arm_elf_section_data
2154 {
2155 struct bfd_elf_section_data elf;
2156 unsigned int mapcount;
2157 unsigned int mapsize;
2158 elf32_arm_section_map *map;
2159 unsigned int erratumcount;
2160 elf32_vfp11_erratum_list *erratumlist;
2161 }
2162 _arm_elf_section_data;
2163
2164 #define elf32_arm_section_data(sec) \
2165 ((_arm_elf_section_data *) elf_section_data (sec))
2166
2167 /* The size of the thread control block. */
2168 #define TCB_SIZE 8
2169
2170 struct elf_arm_obj_tdata
2171 {
2172 struct elf_obj_tdata root;
2173
2174 /* tls_type for each local got entry. */
2175 char *local_got_tls_type;
2176
2177 /* Zero to warn when linking objects with incompatible enum sizes. */
2178 int no_enum_size_warning;
2179
2180 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2181 int no_wchar_size_warning;
2182 };
2183
2184 #define elf_arm_tdata(bfd) \
2185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2186
2187 #define elf32_arm_local_got_tls_type(bfd) \
2188 (elf_arm_tdata (bfd)->local_got_tls_type)
2189
2190 #define is_arm_elf(bfd) \
2191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2192 && elf_tdata (bfd) != NULL \
2193 && elf_object_id (bfd) == ARM_ELF_TDATA)
2194
2195 static bfd_boolean
2196 elf32_arm_mkobject (bfd *abfd)
2197 {
2198 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2199 ARM_ELF_TDATA);
2200 }
2201
2202 /* The ARM linker needs to keep track of the number of relocs that it
2203 decides to copy in check_relocs for each symbol. This is so that
2204 it can discard PC relative relocs if it doesn't need them when
2205 linking with -Bsymbolic. We store the information in a field
2206 extending the regular ELF linker hash table. */
2207
2208 /* This structure keeps track of the number of relocs we have copied
2209 for a given symbol. */
2210 struct elf32_arm_relocs_copied
2211 {
2212 /* Next section. */
2213 struct elf32_arm_relocs_copied * next;
2214 /* A section in dynobj. */
2215 asection * section;
2216 /* Number of relocs copied in this section. */
2217 bfd_size_type count;
2218 /* Number of PC-relative relocs copied in this section. */
2219 bfd_size_type pc_count;
2220 };
2221
2222 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2223
2224 /* Arm ELF linker hash entry. */
2225 struct elf32_arm_link_hash_entry
2226 {
2227 struct elf_link_hash_entry root;
2228
2229 /* Number of PC relative relocs copied for this symbol. */
2230 struct elf32_arm_relocs_copied * relocs_copied;
2231
2232 /* We reference count Thumb references to a PLT entry separately,
2233 so that we can emit the Thumb trampoline only if needed. */
2234 bfd_signed_vma plt_thumb_refcount;
2235
2236 /* Some references from Thumb code may be eliminated by BL->BLX
2237 conversion, so record them separately. */
2238 bfd_signed_vma plt_maybe_thumb_refcount;
2239
2240 /* Since PLT entries have variable size if the Thumb prologue is
2241 used, we need to record the index into .got.plt instead of
2242 recomputing it from the PLT offset. */
2243 bfd_signed_vma plt_got_offset;
2244
2245 #define GOT_UNKNOWN 0
2246 #define GOT_NORMAL 1
2247 #define GOT_TLS_GD 2
2248 #define GOT_TLS_IE 4
2249 unsigned char tls_type;
2250
2251 /* The symbol marking the real symbol location for exported thumb
2252 symbols with Arm stubs. */
2253 struct elf_link_hash_entry *export_glue;
2254
2255 /* A pointer to the most recently used stub hash entry against this
2256 symbol. */
2257 struct elf32_arm_stub_hash_entry *stub_cache;
2258 };
2259
2260 /* Traverse an arm ELF linker hash table. */
2261 #define elf32_arm_link_hash_traverse(table, func, info) \
2262 (elf_link_hash_traverse \
2263 (&(table)->root, \
2264 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2265 (info)))
2266
2267 /* Get the ARM elf linker hash table from a link_info structure. */
2268 #define elf32_arm_hash_table(info) \
2269 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2270
2271 #define arm_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf32_arm_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2274
2275 /* ARM ELF linker hash table. */
2276 struct elf32_arm_link_hash_table
2277 {
2278 /* The main hash table. */
2279 struct elf_link_hash_table root;
2280
2281 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2282 bfd_size_type thumb_glue_size;
2283
2284 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2285 bfd_size_type arm_glue_size;
2286
2287 /* The size in bytes of section containing the ARMv4 BX veneers. */
2288 bfd_size_type bx_glue_size;
2289
2290 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2291 veneer has been populated. */
2292 bfd_vma bx_glue_offset[15];
2293
2294 /* The size in bytes of the section containing glue for VFP11 erratum
2295 veneers. */
2296 bfd_size_type vfp11_erratum_glue_size;
2297
2298 /* An arbitrary input BFD chosen to hold the glue sections. */
2299 bfd * bfd_of_glue_owner;
2300
2301 /* Nonzero to output a BE8 image. */
2302 int byteswap_code;
2303
2304 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2305 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2306 int target1_is_rel;
2307
2308 /* The relocation to use for R_ARM_TARGET2 relocations. */
2309 int target2_reloc;
2310
2311 /* 0 = Ignore R_ARM_V4BX.
2312 1 = Convert BX to MOV PC.
2313 2 = Generate v4 interworing stubs. */
2314 int fix_v4bx;
2315
2316 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2317 int use_blx;
2318
2319 /* What sort of code sequences we should look for which may trigger the
2320 VFP11 denorm erratum. */
2321 bfd_arm_vfp11_fix vfp11_fix;
2322
2323 /* Global counter for the number of fixes we have emitted. */
2324 int num_vfp11_fixes;
2325
2326 /* Nonzero to force PIC branch veneers. */
2327 int pic_veneer;
2328
2329 /* The number of bytes in the initial entry in the PLT. */
2330 bfd_size_type plt_header_size;
2331
2332 /* The number of bytes in the subsequent PLT etries. */
2333 bfd_size_type plt_entry_size;
2334
2335 /* True if the target system is VxWorks. */
2336 int vxworks_p;
2337
2338 /* True if the target system is Symbian OS. */
2339 int symbian_p;
2340
2341 /* True if the target uses REL relocations. */
2342 int use_rel;
2343
2344 /* Short-cuts to get to dynamic linker sections. */
2345 asection *sgot;
2346 asection *sgotplt;
2347 asection *srelgot;
2348 asection *splt;
2349 asection *srelplt;
2350 asection *sdynbss;
2351 asection *srelbss;
2352
2353 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2354 asection *srelplt2;
2355
2356 /* Data for R_ARM_TLS_LDM32 relocations. */
2357 union
2358 {
2359 bfd_signed_vma refcount;
2360 bfd_vma offset;
2361 } tls_ldm_got;
2362
2363 /* Small local sym to section mapping cache. */
2364 struct sym_sec_cache sym_sec;
2365
2366 /* For convenience in allocate_dynrelocs. */
2367 bfd * obfd;
2368
2369 /* The stub hash table. */
2370 struct bfd_hash_table stub_hash_table;
2371
2372 /* Linker stub bfd. */
2373 bfd *stub_bfd;
2374
2375 /* Linker call-backs. */
2376 asection * (*add_stub_section) (const char *, asection *);
2377 void (*layout_sections_again) (void);
2378
2379 /* Array to keep track of which stub sections have been created, and
2380 information on stub grouping. */
2381 struct map_stub
2382 {
2383 /* This is the section to which stubs in the group will be
2384 attached. */
2385 asection *link_sec;
2386 /* The stub section. */
2387 asection *stub_sec;
2388 } *stub_group;
2389
2390 /* Assorted information used by elf32_arm_size_stubs. */
2391 unsigned int bfd_count;
2392 int top_index;
2393 asection **input_list;
2394 };
2395
2396 /* Create an entry in an ARM ELF linker hash table. */
2397
2398 static struct bfd_hash_entry *
2399 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2400 struct bfd_hash_table * table,
2401 const char * string)
2402 {
2403 struct elf32_arm_link_hash_entry * ret =
2404 (struct elf32_arm_link_hash_entry *) entry;
2405
2406 /* Allocate the structure if it has not already been allocated by a
2407 subclass. */
2408 if (ret == NULL)
2409 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2410 if (ret == NULL)
2411 return (struct bfd_hash_entry *) ret;
2412
2413 /* Call the allocation method of the superclass. */
2414 ret = ((struct elf32_arm_link_hash_entry *)
2415 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2416 table, string));
2417 if (ret != NULL)
2418 {
2419 ret->relocs_copied = NULL;
2420 ret->tls_type = GOT_UNKNOWN;
2421 ret->plt_thumb_refcount = 0;
2422 ret->plt_maybe_thumb_refcount = 0;
2423 ret->plt_got_offset = -1;
2424 ret->export_glue = NULL;
2425
2426 ret->stub_cache = NULL;
2427 }
2428
2429 return (struct bfd_hash_entry *) ret;
2430 }
2431
2432 /* Initialize an entry in the stub hash table. */
2433
2434 static struct bfd_hash_entry *
2435 stub_hash_newfunc (struct bfd_hash_entry *entry,
2436 struct bfd_hash_table *table,
2437 const char *string)
2438 {
2439 /* Allocate the structure if it has not already been allocated by a
2440 subclass. */
2441 if (entry == NULL)
2442 {
2443 entry = bfd_hash_allocate (table,
2444 sizeof (struct elf32_arm_stub_hash_entry));
2445 if (entry == NULL)
2446 return entry;
2447 }
2448
2449 /* Call the allocation method of the superclass. */
2450 entry = bfd_hash_newfunc (entry, table, string);
2451 if (entry != NULL)
2452 {
2453 struct elf32_arm_stub_hash_entry *eh;
2454
2455 /* Initialize the local fields. */
2456 eh = (struct elf32_arm_stub_hash_entry *) entry;
2457 eh->stub_sec = NULL;
2458 eh->stub_offset = 0;
2459 eh->target_value = 0;
2460 eh->target_section = NULL;
2461 eh->stub_type = arm_stub_none;
2462 eh->h = NULL;
2463 eh->id_sec = NULL;
2464 }
2465
2466 return entry;
2467 }
2468
2469 /* Return true if NAME is the name of the relocation section associated
2470 with S. */
2471
2472 static bfd_boolean
2473 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2474 const char *name, asection *s)
2475 {
2476 if (htab->use_rel)
2477 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2478 else
2479 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2480 }
2481
2482 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2483 shortcuts to them in our hash table. */
2484
2485 static bfd_boolean
2486 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2487 {
2488 struct elf32_arm_link_hash_table *htab;
2489
2490 htab = elf32_arm_hash_table (info);
2491 /* BPABI objects never have a GOT, or associated sections. */
2492 if (htab->symbian_p)
2493 return TRUE;
2494
2495 if (! _bfd_elf_create_got_section (dynobj, info))
2496 return FALSE;
2497
2498 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2499 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2500 if (!htab->sgot || !htab->sgotplt)
2501 abort ();
2502
2503 htab->srelgot = bfd_make_section_with_flags (dynobj,
2504 RELOC_SECTION (htab, ".got"),
2505 (SEC_ALLOC | SEC_LOAD
2506 | SEC_HAS_CONTENTS
2507 | SEC_IN_MEMORY
2508 | SEC_LINKER_CREATED
2509 | SEC_READONLY));
2510 if (htab->srelgot == NULL
2511 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2512 return FALSE;
2513 return TRUE;
2514 }
2515
2516 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2517 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2518 hash table. */
2519
2520 static bfd_boolean
2521 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2522 {
2523 struct elf32_arm_link_hash_table *htab;
2524
2525 htab = elf32_arm_hash_table (info);
2526 if (!htab->sgot && !create_got_section (dynobj, info))
2527 return FALSE;
2528
2529 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2530 return FALSE;
2531
2532 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2533 htab->srelplt = bfd_get_section_by_name (dynobj,
2534 RELOC_SECTION (htab, ".plt"));
2535 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2536 if (!info->shared)
2537 htab->srelbss = bfd_get_section_by_name (dynobj,
2538 RELOC_SECTION (htab, ".bss"));
2539
2540 if (htab->vxworks_p)
2541 {
2542 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2543 return FALSE;
2544
2545 if (info->shared)
2546 {
2547 htab->plt_header_size = 0;
2548 htab->plt_entry_size
2549 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2550 }
2551 else
2552 {
2553 htab->plt_header_size
2554 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2555 htab->plt_entry_size
2556 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2557 }
2558 }
2559
2560 if (!htab->splt
2561 || !htab->srelplt
2562 || !htab->sdynbss
2563 || (!info->shared && !htab->srelbss))
2564 abort ();
2565
2566 return TRUE;
2567 }
2568
2569 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2570
2571 static void
2572 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2573 struct elf_link_hash_entry *dir,
2574 struct elf_link_hash_entry *ind)
2575 {
2576 struct elf32_arm_link_hash_entry *edir, *eind;
2577
2578 edir = (struct elf32_arm_link_hash_entry *) dir;
2579 eind = (struct elf32_arm_link_hash_entry *) ind;
2580
2581 if (eind->relocs_copied != NULL)
2582 {
2583 if (edir->relocs_copied != NULL)
2584 {
2585 struct elf32_arm_relocs_copied **pp;
2586 struct elf32_arm_relocs_copied *p;
2587
2588 /* Add reloc counts against the indirect sym to the direct sym
2589 list. Merge any entries against the same section. */
2590 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2591 {
2592 struct elf32_arm_relocs_copied *q;
2593
2594 for (q = edir->relocs_copied; q != NULL; q = q->next)
2595 if (q->section == p->section)
2596 {
2597 q->pc_count += p->pc_count;
2598 q->count += p->count;
2599 *pp = p->next;
2600 break;
2601 }
2602 if (q == NULL)
2603 pp = &p->next;
2604 }
2605 *pp = edir->relocs_copied;
2606 }
2607
2608 edir->relocs_copied = eind->relocs_copied;
2609 eind->relocs_copied = NULL;
2610 }
2611
2612 if (ind->root.type == bfd_link_hash_indirect)
2613 {
2614 /* Copy over PLT info. */
2615 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2616 eind->plt_thumb_refcount = 0;
2617 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2618 eind->plt_maybe_thumb_refcount = 0;
2619
2620 if (dir->got.refcount <= 0)
2621 {
2622 edir->tls_type = eind->tls_type;
2623 eind->tls_type = GOT_UNKNOWN;
2624 }
2625 }
2626
2627 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2628 }
2629
2630 /* Create an ARM elf linker hash table. */
2631
2632 static struct bfd_link_hash_table *
2633 elf32_arm_link_hash_table_create (bfd *abfd)
2634 {
2635 struct elf32_arm_link_hash_table *ret;
2636 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2637
2638 ret = bfd_malloc (amt);
2639 if (ret == NULL)
2640 return NULL;
2641
2642 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2643 elf32_arm_link_hash_newfunc,
2644 sizeof (struct elf32_arm_link_hash_entry)))
2645 {
2646 free (ret);
2647 return NULL;
2648 }
2649
2650 ret->sgot = NULL;
2651 ret->sgotplt = NULL;
2652 ret->srelgot = NULL;
2653 ret->splt = NULL;
2654 ret->srelplt = NULL;
2655 ret->sdynbss = NULL;
2656 ret->srelbss = NULL;
2657 ret->srelplt2 = NULL;
2658 ret->thumb_glue_size = 0;
2659 ret->arm_glue_size = 0;
2660 ret->bx_glue_size = 0;
2661 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2662 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2663 ret->vfp11_erratum_glue_size = 0;
2664 ret->num_vfp11_fixes = 0;
2665 ret->bfd_of_glue_owner = NULL;
2666 ret->byteswap_code = 0;
2667 ret->target1_is_rel = 0;
2668 ret->target2_reloc = R_ARM_NONE;
2669 #ifdef FOUR_WORD_PLT
2670 ret->plt_header_size = 16;
2671 ret->plt_entry_size = 16;
2672 #else
2673 ret->plt_header_size = 20;
2674 ret->plt_entry_size = 12;
2675 #endif
2676 ret->fix_v4bx = 0;
2677 ret->use_blx = 0;
2678 ret->vxworks_p = 0;
2679 ret->symbian_p = 0;
2680 ret->use_rel = 1;
2681 ret->sym_sec.abfd = NULL;
2682 ret->obfd = abfd;
2683 ret->tls_ldm_got.refcount = 0;
2684 ret->stub_bfd = NULL;
2685 ret->add_stub_section = NULL;
2686 ret->layout_sections_again = NULL;
2687 ret->stub_group = NULL;
2688 ret->bfd_count = 0;
2689 ret->top_index = 0;
2690 ret->input_list = NULL;
2691
2692 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2693 sizeof (struct elf32_arm_stub_hash_entry)))
2694 {
2695 free (ret);
2696 return NULL;
2697 }
2698
2699 return &ret->root.root;
2700 }
2701
2702 /* Free the derived linker hash table. */
2703
2704 static void
2705 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2706 {
2707 struct elf32_arm_link_hash_table *ret
2708 = (struct elf32_arm_link_hash_table *) hash;
2709
2710 bfd_hash_table_free (&ret->stub_hash_table);
2711 _bfd_generic_link_hash_table_free (hash);
2712 }
2713
2714 /* Determine if we're dealing with a Thumb only architecture. */
2715
2716 static bfd_boolean
2717 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2718 {
2719 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2720 Tag_CPU_arch);
2721 int profile;
2722
2723 if (arch != TAG_CPU_ARCH_V7)
2724 return FALSE;
2725
2726 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2727 Tag_CPU_arch_profile);
2728
2729 return profile == 'M';
2730 }
2731
2732 /* Determine if we're dealing with a Thumb-2 object. */
2733
2734 static bfd_boolean
2735 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2736 {
2737 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2738 Tag_CPU_arch);
2739 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2740 }
2741
2742 static bfd_boolean
2743 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2744 {
2745 switch (stub_type)
2746 {
2747 case arm_thumb_thumb_stub_long_branch:
2748 case arm_thumb_arm_v4t_stub_long_branch:
2749 case arm_thumb_arm_v4t_stub_short_branch:
2750 return TRUE;
2751 case arm_stub_none:
2752 BFD_FAIL ();
2753 return FALSE;
2754 break;
2755 default:
2756 return FALSE;
2757 }
2758 }
2759
2760 /* Determine the type of stub needed, if any, for a call. */
2761
2762 static enum elf32_arm_stub_type
2763 arm_type_of_stub (struct bfd_link_info *info,
2764 asection *input_sec,
2765 const Elf_Internal_Rela *rel,
2766 unsigned char st_type,
2767 struct elf32_arm_link_hash_entry *hash,
2768 bfd_vma destination,
2769 asection *sym_sec,
2770 bfd *input_bfd,
2771 const char *name)
2772 {
2773 bfd_vma location;
2774 bfd_signed_vma branch_offset;
2775 unsigned int r_type;
2776 struct elf32_arm_link_hash_table * globals;
2777 int thumb2;
2778 int thumb_only;
2779 enum elf32_arm_stub_type stub_type = arm_stub_none;
2780
2781 /* We don't know the actual type of destination in case it is of
2782 type STT_SECTION: give up. */
2783 if (st_type == STT_SECTION)
2784 return stub_type;
2785
2786 globals = elf32_arm_hash_table (info);
2787
2788 thumb_only = using_thumb_only (globals);
2789
2790 thumb2 = using_thumb2 (globals);
2791
2792 /* Determine where the call point is. */
2793 location = (input_sec->output_offset
2794 + input_sec->output_section->vma
2795 + rel->r_offset);
2796
2797 branch_offset = (bfd_signed_vma)(destination - location);
2798
2799 r_type = ELF32_R_TYPE (rel->r_info);
2800
2801 /* If the call will go through a PLT entry then we do not need
2802 glue. */
2803 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2804 return stub_type;
2805
2806 if (r_type == R_ARM_THM_CALL)
2807 {
2808 if ((!thumb2
2809 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2810 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2811 || (thumb2
2812 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2813 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2814 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2815 {
2816 if (st_type == STT_ARM_TFUNC)
2817 {
2818 /* Thumb to thumb. */
2819 if (!thumb_only)
2820 {
2821 stub_type = (info->shared | globals->pic_veneer)
2822 ? ((globals->use_blx)
2823 ? arm_stub_pic_long_branch
2824 : arm_stub_none)
2825 : (globals->use_blx)
2826 ? arm_stub_long_branch
2827 : arm_stub_none;
2828 }
2829 else
2830 {
2831 stub_type = (info->shared | globals->pic_veneer)
2832 ? arm_stub_none
2833 : (globals->use_blx)
2834 ? arm_thumb_thumb_stub_long_branch
2835 : arm_stub_none;
2836 }
2837 }
2838 else
2839 {
2840 /* Thumb to arm. */
2841 if (sym_sec != NULL
2842 && sym_sec->owner != NULL
2843 && !INTERWORK_FLAG (sym_sec->owner))
2844 {
2845 (*_bfd_error_handler)
2846 (_("%B(%s): warning: interworking not enabled.\n"
2847 " first occurrence: %B: Thumb call to ARM"),
2848 sym_sec->owner, input_bfd, name);
2849 }
2850
2851 stub_type = (info->shared | globals->pic_veneer)
2852 ? ((globals->use_blx)
2853 ? arm_stub_pic_long_branch
2854 : arm_stub_none)
2855 : (globals->use_blx)
2856 ? arm_stub_long_branch
2857 : arm_thumb_arm_v4t_stub_long_branch;
2858
2859 /* Handle v4t short branches. */
2860 if ((stub_type == arm_thumb_arm_v4t_stub_long_branch)
2861 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2862 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2863 stub_type = arm_thumb_arm_v4t_stub_short_branch;
2864 }
2865 }
2866 }
2867 else if (r_type == R_ARM_CALL)
2868 {
2869 if (st_type == STT_ARM_TFUNC)
2870 {
2871 /* Arm to thumb. */
2872
2873 if (sym_sec != NULL
2874 && sym_sec->owner != NULL
2875 && !INTERWORK_FLAG (sym_sec->owner))
2876 {
2877 (*_bfd_error_handler)
2878 (_("%B(%s): warning: interworking not enabled.\n"
2879 " first occurrence: %B: Thumb call to ARM"),
2880 sym_sec->owner, input_bfd, name);
2881 }
2882
2883 /* We have an extra 2-bytes reach because of
2884 the mode change (bit 24 (H) of BLX encoding). */
2885 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2886 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2887 || !globals->use_blx)
2888 {
2889 stub_type = (info->shared | globals->pic_veneer)
2890 ? arm_stub_pic_long_branch
2891 : (globals->use_blx)
2892 ? arm_stub_long_branch
2893 : arm_thumb_v4t_stub_long_branch;
2894 }
2895 }
2896 else
2897 {
2898 /* Arm to arm. */
2899 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2900 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2901 {
2902 stub_type = (info->shared | globals->pic_veneer)
2903 ? arm_stub_pic_long_branch
2904 : arm_stub_long_branch;
2905 }
2906 }
2907 }
2908
2909 return stub_type;
2910 }
2911
2912 /* Build a name for an entry in the stub hash table. */
2913
2914 static char *
2915 elf32_arm_stub_name (const asection *input_section,
2916 const asection *sym_sec,
2917 const struct elf32_arm_link_hash_entry *hash,
2918 const Elf_Internal_Rela *rel)
2919 {
2920 char *stub_name;
2921 bfd_size_type len;
2922
2923 if (hash)
2924 {
2925 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2926 stub_name = bfd_malloc (len);
2927 if (stub_name != NULL)
2928 sprintf (stub_name, "%08x_%s+%x",
2929 input_section->id & 0xffffffff,
2930 hash->root.root.root.string,
2931 (int) rel->r_addend & 0xffffffff);
2932 }
2933 else
2934 {
2935 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2936 stub_name = bfd_malloc (len);
2937 if (stub_name != NULL)
2938 sprintf (stub_name, "%08x_%x:%x+%x",
2939 input_section->id & 0xffffffff,
2940 sym_sec->id & 0xffffffff,
2941 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2942 (int) rel->r_addend & 0xffffffff);
2943 }
2944
2945 return stub_name;
2946 }
2947
2948 /* Look up an entry in the stub hash. Stub entries are cached because
2949 creating the stub name takes a bit of time. */
2950
2951 static struct elf32_arm_stub_hash_entry *
2952 elf32_arm_get_stub_entry (const asection *input_section,
2953 const asection *sym_sec,
2954 struct elf_link_hash_entry *hash,
2955 const Elf_Internal_Rela *rel,
2956 struct elf32_arm_link_hash_table *htab)
2957 {
2958 struct elf32_arm_stub_hash_entry *stub_entry;
2959 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2960 const asection *id_sec;
2961
2962 if ((input_section->flags & SEC_CODE) == 0)
2963 return NULL;
2964
2965 /* If this input section is part of a group of sections sharing one
2966 stub section, then use the id of the first section in the group.
2967 Stub names need to include a section id, as there may well be
2968 more than one stub used to reach say, printf, and we need to
2969 distinguish between them. */
2970 id_sec = htab->stub_group[input_section->id].link_sec;
2971
2972 if (h != NULL && h->stub_cache != NULL
2973 && h->stub_cache->h == h
2974 && h->stub_cache->id_sec == id_sec)
2975 {
2976 stub_entry = h->stub_cache;
2977 }
2978 else
2979 {
2980 char *stub_name;
2981
2982 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2983 if (stub_name == NULL)
2984 return NULL;
2985
2986 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2987 stub_name, FALSE, FALSE);
2988 if (h != NULL)
2989 h->stub_cache = stub_entry;
2990
2991 free (stub_name);
2992 }
2993
2994 return stub_entry;
2995 }
2996
2997 /* Add a new stub entry to the stub hash. Not all fields of the new
2998 stub entry are initialised. */
2999
3000 static struct elf32_arm_stub_hash_entry *
3001 elf32_arm_add_stub (const char *stub_name,
3002 asection *section,
3003 struct elf32_arm_link_hash_table *htab)
3004 {
3005 asection *link_sec;
3006 asection *stub_sec;
3007 struct elf32_arm_stub_hash_entry *stub_entry;
3008
3009 link_sec = htab->stub_group[section->id].link_sec;
3010 stub_sec = htab->stub_group[section->id].stub_sec;
3011 if (stub_sec == NULL)
3012 {
3013 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3014 if (stub_sec == NULL)
3015 {
3016 size_t namelen;
3017 bfd_size_type len;
3018 char *s_name;
3019
3020 namelen = strlen (link_sec->name);
3021 len = namelen + sizeof (STUB_SUFFIX);
3022 s_name = bfd_alloc (htab->stub_bfd, len);
3023 if (s_name == NULL)
3024 return NULL;
3025
3026 memcpy (s_name, link_sec->name, namelen);
3027 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3028 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3029 if (stub_sec == NULL)
3030 return NULL;
3031 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3032 }
3033 htab->stub_group[section->id].stub_sec = stub_sec;
3034 }
3035
3036 /* Enter this entry into the linker stub hash table. */
3037 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3038 TRUE, FALSE);
3039 if (stub_entry == NULL)
3040 {
3041 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3042 section->owner,
3043 stub_name);
3044 return NULL;
3045 }
3046
3047 stub_entry->stub_sec = stub_sec;
3048 stub_entry->stub_offset = 0;
3049 stub_entry->id_sec = link_sec;
3050
3051 return stub_entry;
3052 }
3053
3054 /* Store an Arm insn into an output section not processed by
3055 elf32_arm_write_section. */
3056
3057 static void
3058 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3059 bfd * output_bfd, bfd_vma val, void * ptr)
3060 {
3061 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3062 bfd_putl32 (val, ptr);
3063 else
3064 bfd_putb32 (val, ptr);
3065 }
3066
3067 /* Store a 16-bit Thumb insn into an output section not processed by
3068 elf32_arm_write_section. */
3069
3070 static void
3071 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3072 bfd * output_bfd, bfd_vma val, void * ptr)
3073 {
3074 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3075 bfd_putl16 (val, ptr);
3076 else
3077 bfd_putb16 (val, ptr);
3078 }
3079
3080 static bfd_boolean
3081 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3082 void * in_arg)
3083 {
3084 struct elf32_arm_stub_hash_entry *stub_entry;
3085 struct bfd_link_info *info;
3086 struct elf32_arm_link_hash_table *htab;
3087 asection *stub_sec;
3088 bfd *stub_bfd;
3089 bfd_vma stub_addr;
3090 bfd_byte *loc;
3091 bfd_vma sym_value;
3092 int template_size;
3093 int size;
3094 const bfd_vma *template;
3095 int i;
3096 struct elf32_arm_link_hash_table * globals;
3097
3098 /* Massage our args to the form they really have. */
3099 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3100 info = (struct bfd_link_info *) in_arg;
3101
3102 globals = elf32_arm_hash_table (info);
3103
3104 htab = elf32_arm_hash_table (info);
3105 stub_sec = stub_entry->stub_sec;
3106
3107 /* Make a note of the offset within the stubs for this entry. */
3108 stub_entry->stub_offset = stub_sec->size;
3109 loc = stub_sec->contents + stub_entry->stub_offset;
3110
3111 stub_bfd = stub_sec->owner;
3112
3113 /* This is the address of the start of the stub. */
3114 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3115 + stub_entry->stub_offset;
3116
3117 /* This is the address of the stub destination. */
3118 sym_value = (stub_entry->target_value
3119 + stub_entry->target_section->output_offset
3120 + stub_entry->target_section->output_section->vma);
3121
3122 switch (stub_entry->stub_type)
3123 {
3124 case arm_stub_long_branch:
3125 template = arm_long_branch_stub;
3126 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3127 break;
3128 case arm_thumb_v4t_stub_long_branch:
3129 template = arm_thumb_v4t_long_branch_stub;
3130 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3131 break;
3132 case arm_thumb_thumb_stub_long_branch:
3133 template = arm_thumb_thumb_long_branch_stub;
3134 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3135 break;
3136 case arm_thumb_arm_v4t_stub_long_branch:
3137 template = arm_thumb_arm_v4t_long_branch_stub;
3138 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3139 break;
3140 case arm_thumb_arm_v4t_stub_short_branch:
3141 template = arm_thumb_arm_v4t_short_branch_stub;
3142 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3143 break;
3144 case arm_stub_pic_long_branch:
3145 template = arm_pic_long_branch_stub;
3146 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3147 break;
3148 default:
3149 BFD_FAIL ();
3150 return FALSE;
3151 }
3152
3153 size = 0;
3154 for (i = 0; i < (template_size / 4); i++)
3155 {
3156 /* A 0 pattern is a placeholder, every other pattern is an
3157 instruction. */
3158 if (template[i] != 0)
3159 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3160 else
3161 bfd_put_32 (stub_bfd, template[i], loc + size);
3162
3163 size += 4;
3164 }
3165 stub_sec->size += size;
3166
3167 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3168 if (stub_entry->st_type == STT_ARM_TFUNC)
3169 sym_value |= 1;
3170
3171 switch (stub_entry->stub_type)
3172 {
3173 case arm_stub_long_branch:
3174 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3175 stub_bfd, stub_sec, stub_sec->contents,
3176 stub_entry->stub_offset + 4, sym_value, 0);
3177 break;
3178 case arm_thumb_v4t_stub_long_branch:
3179 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3180 stub_bfd, stub_sec, stub_sec->contents,
3181 stub_entry->stub_offset + 8, sym_value, 0);
3182 break;
3183 case arm_thumb_thumb_stub_long_branch:
3184 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3185 stub_bfd, stub_sec, stub_sec->contents,
3186 stub_entry->stub_offset + 12, sym_value, 0);
3187 break;
3188 case arm_thumb_arm_v4t_stub_long_branch:
3189 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3190 stub_bfd, stub_sec, stub_sec->contents,
3191 stub_entry->stub_offset + 16, sym_value, 0);
3192 break;
3193 case arm_thumb_arm_v4t_stub_short_branch:
3194 {
3195 long int rel_offset;
3196 static const insn32 t2a3_b_insn = 0xea000000;
3197
3198 rel_offset = sym_value - (stub_addr + 8 + 4);
3199
3200 put_arm_insn (globals, stub_bfd,
3201 (bfd_vma) t2a3_b_insn | ((rel_offset >> 2) & 0x00FFFFFF),
3202 loc + 4);
3203 }
3204 break;
3205
3206 case arm_stub_pic_long_branch:
3207 /* We want the value relative to the address 8 bytes from the
3208 start of the stub. */
3209 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_REL32),
3210 stub_bfd, stub_sec, stub_sec->contents,
3211 stub_entry->stub_offset + 8, sym_value, 0);
3212 break;
3213 default:
3214 break;
3215 }
3216
3217 return TRUE;
3218 }
3219
3220 /* As above, but don't actually build the stub. Just bump offset so
3221 we know stub section sizes. */
3222
3223 static bfd_boolean
3224 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3225 void * in_arg)
3226 {
3227 struct elf32_arm_stub_hash_entry *stub_entry;
3228 struct elf32_arm_link_hash_table *htab;
3229 const bfd_vma *template;
3230 int template_size;
3231 int size;
3232 int i;
3233
3234 /* Massage our args to the form they really have. */
3235 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3236 htab = (struct elf32_arm_link_hash_table *) in_arg;
3237
3238 switch (stub_entry->stub_type)
3239 {
3240 case arm_stub_long_branch:
3241 template = arm_long_branch_stub;
3242 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3243 break;
3244 case arm_thumb_v4t_stub_long_branch:
3245 template = arm_thumb_v4t_long_branch_stub;
3246 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3247 break;
3248 case arm_thumb_thumb_stub_long_branch:
3249 template = arm_thumb_thumb_long_branch_stub;
3250 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3251 break;
3252 case arm_thumb_arm_v4t_stub_long_branch:
3253 template = arm_thumb_arm_v4t_long_branch_stub;
3254 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3255 break;
3256 case arm_thumb_arm_v4t_stub_short_branch:
3257 template = arm_thumb_arm_v4t_short_branch_stub;
3258 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3259 break;
3260 case arm_stub_pic_long_branch:
3261 template = arm_pic_long_branch_stub;
3262 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3263 break;
3264 default:
3265 BFD_FAIL ();
3266 return FALSE;
3267 break;
3268 }
3269
3270 size = 0;
3271 for (i = 0; i < (template_size / 4); i++)
3272 size += 4;
3273 size = (size + 7) & ~7;
3274 stub_entry->stub_sec->size += size;
3275 return TRUE;
3276 }
3277
3278 /* External entry points for sizing and building linker stubs. */
3279
3280 /* Set up various things so that we can make a list of input sections
3281 for each output section included in the link. Returns -1 on error,
3282 0 when no stubs will be needed, and 1 on success. */
3283
3284 int
3285 elf32_arm_setup_section_lists (bfd *output_bfd,
3286 struct bfd_link_info *info)
3287 {
3288 bfd *input_bfd;
3289 unsigned int bfd_count;
3290 int top_id, top_index;
3291 asection *section;
3292 asection **input_list, **list;
3293 bfd_size_type amt;
3294 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3295
3296 if (! is_elf_hash_table (htab))
3297 return 0;
3298
3299 /* Count the number of input BFDs and find the top input section id. */
3300 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3301 input_bfd != NULL;
3302 input_bfd = input_bfd->link_next)
3303 {
3304 bfd_count += 1;
3305 for (section = input_bfd->sections;
3306 section != NULL;
3307 section = section->next)
3308 {
3309 if (top_id < section->id)
3310 top_id = section->id;
3311 }
3312 }
3313 htab->bfd_count = bfd_count;
3314
3315 amt = sizeof (struct map_stub) * (top_id + 1);
3316 htab->stub_group = bfd_zmalloc (amt);
3317 if (htab->stub_group == NULL)
3318 return -1;
3319
3320 /* We can't use output_bfd->section_count here to find the top output
3321 section index as some sections may have been removed, and
3322 _bfd_strip_section_from_output doesn't renumber the indices. */
3323 for (section = output_bfd->sections, top_index = 0;
3324 section != NULL;
3325 section = section->next)
3326 {
3327 if (top_index < section->index)
3328 top_index = section->index;
3329 }
3330
3331 htab->top_index = top_index;
3332 amt = sizeof (asection *) * (top_index + 1);
3333 input_list = bfd_malloc (amt);
3334 htab->input_list = input_list;
3335 if (input_list == NULL)
3336 return -1;
3337
3338 /* For sections we aren't interested in, mark their entries with a
3339 value we can check later. */
3340 list = input_list + top_index;
3341 do
3342 *list = bfd_abs_section_ptr;
3343 while (list-- != input_list);
3344
3345 for (section = output_bfd->sections;
3346 section != NULL;
3347 section = section->next)
3348 {
3349 if ((section->flags & SEC_CODE) != 0)
3350 input_list[section->index] = NULL;
3351 }
3352
3353 return 1;
3354 }
3355
3356 /* The linker repeatedly calls this function for each input section,
3357 in the order that input sections are linked into output sections.
3358 Build lists of input sections to determine groupings between which
3359 we may insert linker stubs. */
3360
3361 void
3362 elf32_arm_next_input_section (struct bfd_link_info *info,
3363 asection *isec)
3364 {
3365 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3366
3367 if (isec->output_section->index <= htab->top_index)
3368 {
3369 asection **list = htab->input_list + isec->output_section->index;
3370
3371 if (*list != bfd_abs_section_ptr)
3372 {
3373 /* Steal the link_sec pointer for our list. */
3374 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3375 /* This happens to make the list in reverse order,
3376 which is what we want. */
3377 PREV_SEC (isec) = *list;
3378 *list = isec;
3379 }
3380 }
3381 }
3382
3383 /* See whether we can group stub sections together. Grouping stub
3384 sections may result in fewer stubs. More importantly, we need to
3385 put all .init* and .fini* stubs at the beginning of the .init or
3386 .fini output sections respectively, because glibc splits the
3387 _init and _fini functions into multiple parts. Putting a stub in
3388 the middle of a function is not a good idea. */
3389
3390 static void
3391 group_sections (struct elf32_arm_link_hash_table *htab,
3392 bfd_size_type stub_group_size,
3393 bfd_boolean stubs_always_before_branch)
3394 {
3395 asection **list = htab->input_list + htab->top_index;
3396
3397 do
3398 {
3399 asection *tail = *list;
3400
3401 if (tail == bfd_abs_section_ptr)
3402 continue;
3403
3404 while (tail != NULL)
3405 {
3406 asection *curr;
3407 asection *prev;
3408 bfd_size_type total;
3409
3410 curr = tail;
3411 total = tail->size;
3412 while ((prev = PREV_SEC (curr)) != NULL
3413 && ((total += curr->output_offset - prev->output_offset)
3414 < stub_group_size))
3415 curr = prev;
3416
3417 /* OK, the size from the start of CURR to the end is less
3418 than stub_group_size and thus can be handled by one stub
3419 section. (Or the tail section is itself larger than
3420 stub_group_size, in which case we may be toast.)
3421 We should really be keeping track of the total size of
3422 stubs added here, as stubs contribute to the final output
3423 section size. */
3424 do
3425 {
3426 prev = PREV_SEC (tail);
3427 /* Set up this stub group. */
3428 htab->stub_group[tail->id].link_sec = curr;
3429 }
3430 while (tail != curr && (tail = prev) != NULL);
3431
3432 /* But wait, there's more! Input sections up to stub_group_size
3433 bytes before the stub section can be handled by it too. */
3434 if (!stubs_always_before_branch)
3435 {
3436 total = 0;
3437 while (prev != NULL
3438 && ((total += tail->output_offset - prev->output_offset)
3439 < stub_group_size))
3440 {
3441 tail = prev;
3442 prev = PREV_SEC (tail);
3443 htab->stub_group[tail->id].link_sec = curr;
3444 }
3445 }
3446 tail = prev;
3447 }
3448 }
3449 while (list-- != htab->input_list);
3450
3451 free (htab->input_list);
3452 #undef PREV_SEC
3453 }
3454
3455 /* Determine and set the size of the stub section for a final link.
3456
3457 The basic idea here is to examine all the relocations looking for
3458 PC-relative calls to a target that is unreachable with a "bl"
3459 instruction. */
3460
3461 bfd_boolean
3462 elf32_arm_size_stubs (bfd *output_bfd,
3463 bfd *stub_bfd,
3464 struct bfd_link_info *info,
3465 bfd_signed_vma group_size,
3466 asection * (*add_stub_section) (const char *, asection *),
3467 void (*layout_sections_again) (void))
3468 {
3469 bfd_size_type stub_group_size;
3470 bfd_boolean stubs_always_before_branch;
3471 bfd_boolean stub_changed = 0;
3472 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3473
3474 /* Propagate mach to stub bfd, because it may not have been
3475 finalized when we created stub_bfd. */
3476 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3477 bfd_get_mach (output_bfd));
3478
3479 /* Stash our params away. */
3480 htab->stub_bfd = stub_bfd;
3481 htab->add_stub_section = add_stub_section;
3482 htab->layout_sections_again = layout_sections_again;
3483 stubs_always_before_branch = group_size < 0;
3484 if (group_size < 0)
3485 stub_group_size = -group_size;
3486 else
3487 stub_group_size = group_size;
3488
3489 if (stub_group_size == 1)
3490 {
3491 /* Default values. */
3492 /* Thumb branch range is +-4MB has to be used as the default
3493 maximum size (a given section can contain both ARM and Thumb
3494 code, so the worst case has to be taken into account).
3495
3496 This value is 24K less than that, which allows for 2025
3497 12-byte stubs. If we exceed that, then we will fail to link.
3498 The user will have to relink with an explicit group size
3499 option. */
3500 stub_group_size = 4170000;
3501 }
3502
3503 group_sections (htab, stub_group_size, stubs_always_before_branch);
3504
3505 while (1)
3506 {
3507 bfd *input_bfd;
3508 unsigned int bfd_indx;
3509 asection *stub_sec;
3510
3511 for (input_bfd = info->input_bfds, bfd_indx = 0;
3512 input_bfd != NULL;
3513 input_bfd = input_bfd->link_next, bfd_indx++)
3514 {
3515 Elf_Internal_Shdr *symtab_hdr;
3516 asection *section;
3517 Elf_Internal_Sym *local_syms = NULL;
3518
3519 /* We'll need the symbol table in a second. */
3520 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3521 if (symtab_hdr->sh_info == 0)
3522 continue;
3523
3524 /* Walk over each section attached to the input bfd. */
3525 for (section = input_bfd->sections;
3526 section != NULL;
3527 section = section->next)
3528 {
3529 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3530
3531 /* If there aren't any relocs, then there's nothing more
3532 to do. */
3533 if ((section->flags & SEC_RELOC) == 0
3534 || section->reloc_count == 0
3535 || (section->flags & SEC_CODE) == 0)
3536 continue;
3537
3538 /* If this section is a link-once section that will be
3539 discarded, then don't create any stubs. */
3540 if (section->output_section == NULL
3541 || section->output_section->owner != output_bfd)
3542 continue;
3543
3544 /* Get the relocs. */
3545 internal_relocs
3546 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3547 NULL, info->keep_memory);
3548 if (internal_relocs == NULL)
3549 goto error_ret_free_local;
3550
3551 /* Now examine each relocation. */
3552 irela = internal_relocs;
3553 irelaend = irela + section->reloc_count;
3554 for (; irela < irelaend; irela++)
3555 {
3556 unsigned int r_type, r_indx;
3557 enum elf32_arm_stub_type stub_type;
3558 struct elf32_arm_stub_hash_entry *stub_entry;
3559 asection *sym_sec;
3560 bfd_vma sym_value;
3561 bfd_vma destination;
3562 struct elf32_arm_link_hash_entry *hash;
3563 const char *sym_name;
3564 char *stub_name;
3565 const asection *id_sec;
3566 unsigned char st_type;
3567
3568 r_type = ELF32_R_TYPE (irela->r_info);
3569 r_indx = ELF32_R_SYM (irela->r_info);
3570
3571 if (r_type >= (unsigned int) R_ARM_max)
3572 {
3573 bfd_set_error (bfd_error_bad_value);
3574 error_ret_free_internal:
3575 if (elf_section_data (section)->relocs == NULL)
3576 free (internal_relocs);
3577 goto error_ret_free_local;
3578 }
3579
3580 /* Only look for stubs on call instructions. */
3581 if ((r_type != (unsigned int) R_ARM_CALL)
3582 && (r_type != (unsigned int) R_ARM_THM_CALL))
3583 continue;
3584
3585 /* Now determine the call target, its name, value,
3586 section. */
3587 sym_sec = NULL;
3588 sym_value = 0;
3589 destination = 0;
3590 hash = NULL;
3591 sym_name = NULL;
3592 if (r_indx < symtab_hdr->sh_info)
3593 {
3594 /* It's a local symbol. */
3595 Elf_Internal_Sym *sym;
3596 Elf_Internal_Shdr *hdr;
3597
3598 if (local_syms == NULL)
3599 {
3600 local_syms
3601 = (Elf_Internal_Sym *) symtab_hdr->contents;
3602 if (local_syms == NULL)
3603 local_syms
3604 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3605 symtab_hdr->sh_info, 0,
3606 NULL, NULL, NULL);
3607 if (local_syms == NULL)
3608 goto error_ret_free_internal;
3609 }
3610
3611 sym = local_syms + r_indx;
3612 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3613 sym_sec = hdr->bfd_section;
3614 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3615 sym_value = sym->st_value;
3616 destination = (sym_value + irela->r_addend
3617 + sym_sec->output_offset
3618 + sym_sec->output_section->vma);
3619 st_type = ELF_ST_TYPE (sym->st_info);
3620 sym_name
3621 = bfd_elf_string_from_elf_section (input_bfd,
3622 symtab_hdr->sh_link,
3623 sym->st_name);
3624 }
3625 else
3626 {
3627 /* It's an external symbol. */
3628 int e_indx;
3629
3630 e_indx = r_indx - symtab_hdr->sh_info;
3631 hash = ((struct elf32_arm_link_hash_entry *)
3632 elf_sym_hashes (input_bfd)[e_indx]);
3633
3634 while (hash->root.root.type == bfd_link_hash_indirect
3635 || hash->root.root.type == bfd_link_hash_warning)
3636 hash = ((struct elf32_arm_link_hash_entry *)
3637 hash->root.root.u.i.link);
3638
3639 if (hash->root.root.type == bfd_link_hash_defined
3640 || hash->root.root.type == bfd_link_hash_defweak)
3641 {
3642 sym_sec = hash->root.root.u.def.section;
3643 sym_value = hash->root.root.u.def.value;
3644 if (sym_sec->output_section != NULL)
3645 destination = (sym_value + irela->r_addend
3646 + sym_sec->output_offset
3647 + sym_sec->output_section->vma);
3648 }
3649 else if (hash->root.root.type == bfd_link_hash_undefweak
3650 || hash->root.root.type == bfd_link_hash_undefined)
3651 /* For a shared library, these will need a PLT stub,
3652 which is treated separately.
3653 For absolute code, they cannot be handled. */
3654 continue;
3655 else
3656 {
3657 bfd_set_error (bfd_error_bad_value);
3658 goto error_ret_free_internal;
3659 }
3660 st_type = ELF_ST_TYPE (hash->root.type);
3661 sym_name = hash->root.root.root.string;
3662 }
3663
3664 /* Determine what (if any) linker stub is needed. */
3665 stub_type = arm_type_of_stub (info, section, irela, st_type,
3666 hash, destination, sym_sec,
3667 input_bfd, sym_name);
3668 if (stub_type == arm_stub_none)
3669 continue;
3670
3671 /* Support for grouping stub sections. */
3672 id_sec = htab->stub_group[section->id].link_sec;
3673
3674 /* Get the name of this stub. */
3675 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3676 if (!stub_name)
3677 goto error_ret_free_internal;
3678
3679 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3680 stub_name,
3681 FALSE, FALSE);
3682 if (stub_entry != NULL)
3683 {
3684 /* The proper stub has already been created. */
3685 free (stub_name);
3686 continue;
3687 }
3688
3689 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3690 if (stub_entry == NULL)
3691 {
3692 free (stub_name);
3693 goto error_ret_free_internal;
3694 }
3695
3696 stub_entry->target_value = sym_value;
3697 stub_entry->target_section = sym_sec;
3698 stub_entry->stub_type = stub_type;
3699 stub_entry->h = hash;
3700 stub_entry->st_type = st_type;
3701
3702 if (sym_name == NULL)
3703 sym_name = "unnamed";
3704 stub_entry->output_name
3705 = bfd_alloc (htab->stub_bfd,
3706 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3707 + strlen (sym_name));
3708 if (stub_entry->output_name == NULL)
3709 {
3710 free (stub_name);
3711 goto error_ret_free_internal;
3712 }
3713
3714 /* For historical reasons, use the existing names for
3715 ARM-to-Thumb and Thumb-to-ARM stubs. */
3716 if (r_type == (unsigned int) R_ARM_THM_CALL
3717 && st_type != STT_ARM_TFUNC)
3718 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3719 sym_name);
3720 else if (r_type == (unsigned int) R_ARM_CALL
3721 && st_type == STT_ARM_TFUNC)
3722 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3723 sym_name);
3724 else
3725 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3726 sym_name);
3727
3728 stub_changed = TRUE;
3729 }
3730
3731 /* We're done with the internal relocs, free them. */
3732 if (elf_section_data (section)->relocs == NULL)
3733 free (internal_relocs);
3734 }
3735 }
3736
3737 if (!stub_changed)
3738 break;
3739
3740 /* OK, we've added some stubs. Find out the new size of the
3741 stub sections. */
3742 for (stub_sec = htab->stub_bfd->sections;
3743 stub_sec != NULL;
3744 stub_sec = stub_sec->next)
3745 stub_sec->size = 0;
3746
3747 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3748
3749 /* Ask the linker to do its stuff. */
3750 (*htab->layout_sections_again) ();
3751 stub_changed = FALSE;
3752 }
3753
3754 return TRUE;
3755
3756 error_ret_free_local:
3757 return FALSE;
3758 }
3759
3760 /* Build all the stubs associated with the current output file. The
3761 stubs are kept in a hash table attached to the main linker hash
3762 table. We also set up the .plt entries for statically linked PIC
3763 functions here. This function is called via arm_elf_finish in the
3764 linker. */
3765
3766 bfd_boolean
3767 elf32_arm_build_stubs (struct bfd_link_info *info)
3768 {
3769 asection *stub_sec;
3770 struct bfd_hash_table *table;
3771 struct elf32_arm_link_hash_table *htab;
3772
3773 htab = elf32_arm_hash_table (info);
3774
3775 for (stub_sec = htab->stub_bfd->sections;
3776 stub_sec != NULL;
3777 stub_sec = stub_sec->next)
3778 {
3779 bfd_size_type size;
3780
3781 /* Ignore non-stub sections. */
3782 if (!strstr (stub_sec->name, STUB_SUFFIX))
3783 continue;
3784
3785 /* Allocate memory to hold the linker stubs. */
3786 size = stub_sec->size;
3787 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3788 if (stub_sec->contents == NULL && size != 0)
3789 return FALSE;
3790 stub_sec->size = 0;
3791 }
3792
3793 /* Build the stubs as directed by the stub hash table. */
3794 table = &htab->stub_hash_table;
3795 bfd_hash_traverse (table, arm_build_one_stub, info);
3796
3797 return TRUE;
3798 }
3799
3800 /* Locate the Thumb encoded calling stub for NAME. */
3801
3802 static struct elf_link_hash_entry *
3803 find_thumb_glue (struct bfd_link_info *link_info,
3804 const char *name,
3805 char **error_message)
3806 {
3807 char *tmp_name;
3808 struct elf_link_hash_entry *hash;
3809 struct elf32_arm_link_hash_table *hash_table;
3810
3811 /* We need a pointer to the armelf specific hash table. */
3812 hash_table = elf32_arm_hash_table (link_info);
3813
3814 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3815 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3816
3817 BFD_ASSERT (tmp_name);
3818
3819 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3820
3821 hash = elf_link_hash_lookup
3822 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3823
3824 if (hash == NULL
3825 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3826 tmp_name, name) == -1)
3827 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3828
3829 free (tmp_name);
3830
3831 return hash;
3832 }
3833
3834 /* Locate the ARM encoded calling stub for NAME. */
3835
3836 static struct elf_link_hash_entry *
3837 find_arm_glue (struct bfd_link_info *link_info,
3838 const char *name,
3839 char **error_message)
3840 {
3841 char *tmp_name;
3842 struct elf_link_hash_entry *myh;
3843 struct elf32_arm_link_hash_table *hash_table;
3844
3845 /* We need a pointer to the elfarm specific hash table. */
3846 hash_table = elf32_arm_hash_table (link_info);
3847
3848 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3849 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3850
3851 BFD_ASSERT (tmp_name);
3852
3853 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3854
3855 myh = elf_link_hash_lookup
3856 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3857
3858 if (myh == NULL
3859 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3860 tmp_name, name) == -1)
3861 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3862
3863 free (tmp_name);
3864
3865 return myh;
3866 }
3867
3868 /* ARM->Thumb glue (static images):
3869
3870 .arm
3871 __func_from_arm:
3872 ldr r12, __func_addr
3873 bx r12
3874 __func_addr:
3875 .word func @ behave as if you saw a ARM_32 reloc.
3876
3877 (v5t static images)
3878 .arm
3879 __func_from_arm:
3880 ldr pc, __func_addr
3881 __func_addr:
3882 .word func @ behave as if you saw a ARM_32 reloc.
3883
3884 (relocatable images)
3885 .arm
3886 __func_from_arm:
3887 ldr r12, __func_offset
3888 add r12, r12, pc
3889 bx r12
3890 __func_offset:
3891 .word func - . */
3892
3893 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3894 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3895 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3896 static const insn32 a2t3_func_addr_insn = 0x00000001;
3897
3898 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3899 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3900 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3901
3902 #define ARM2THUMB_PIC_GLUE_SIZE 16
3903 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3904 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3905 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3906
3907 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3908
3909 .thumb .thumb
3910 .align 2 .align 2
3911 __func_from_thumb: __func_from_thumb:
3912 bx pc push {r6, lr}
3913 nop ldr r6, __func_addr
3914 .arm mov lr, pc
3915 b func bx r6
3916 ;; back_to_thumb .arm
3917 ldmia r13! {r6, lr} ldmia r13! {r6, lr}
3918 bx lr bx lr
3919 __func_addr:
3920 .word func */
3921
3922 #define THUMB2ARM_GLUE_SIZE 8
3923 static const insn16 t2a1_bx_pc_insn = 0x4778;
3924 static const insn16 t2a2_noop_insn = 0x46c0;
3925 static const insn32 t2a3_b_insn = 0xea000000;
3926
3927 #define VFP11_ERRATUM_VENEER_SIZE 8
3928
3929 #define ARM_BX_VENEER_SIZE 12
3930 static const insn32 armbx1_tst_insn = 0xe3100001;
3931 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3932 static const insn32 armbx3_bx_insn = 0xe12fff10;
3933
3934 #ifndef ELFARM_NABI_C_INCLUDED
3935 static void
3936 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
3937 {
3938 asection * s;
3939 bfd_byte * contents;
3940
3941 if (size == 0)
3942 return;
3943
3944 BFD_ASSERT (abfd != NULL);
3945
3946 s = bfd_get_section_by_name (abfd, name);
3947 BFD_ASSERT (s != NULL);
3948
3949 contents = bfd_alloc (abfd, size);
3950
3951 BFD_ASSERT (s->size == size);
3952 s->contents = contents;
3953 }
3954
3955 bfd_boolean
3956 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3957 {
3958 struct elf32_arm_link_hash_table * globals;
3959
3960 globals = elf32_arm_hash_table (info);
3961 BFD_ASSERT (globals != NULL);
3962
3963 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3964 globals->arm_glue_size,
3965 ARM2THUMB_GLUE_SECTION_NAME);
3966
3967 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3968 globals->thumb_glue_size,
3969 THUMB2ARM_GLUE_SECTION_NAME);
3970
3971 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3972 globals->vfp11_erratum_glue_size,
3973 VFP11_ERRATUM_VENEER_SECTION_NAME);
3974
3975 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3976 globals->bx_glue_size,
3977 ARM_BX_GLUE_SECTION_NAME);
3978
3979 return TRUE;
3980 }
3981
3982 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3983 returns the symbol identifying the stub. */
3984
3985 static struct elf_link_hash_entry *
3986 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3987 struct elf_link_hash_entry * h)
3988 {
3989 const char * name = h->root.root.string;
3990 asection * s;
3991 char * tmp_name;
3992 struct elf_link_hash_entry * myh;
3993 struct bfd_link_hash_entry * bh;
3994 struct elf32_arm_link_hash_table * globals;
3995 bfd_vma val;
3996 bfd_size_type size;
3997
3998 globals = elf32_arm_hash_table (link_info);
3999
4000 BFD_ASSERT (globals != NULL);
4001 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4002
4003 s = bfd_get_section_by_name
4004 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4005
4006 BFD_ASSERT (s != NULL);
4007
4008 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4009
4010 BFD_ASSERT (tmp_name);
4011
4012 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4013
4014 myh = elf_link_hash_lookup
4015 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4016
4017 if (myh != NULL)
4018 {
4019 /* We've already seen this guy. */
4020 free (tmp_name);
4021 return myh;
4022 }
4023
4024 /* The only trick here is using hash_table->arm_glue_size as the value.
4025 Even though the section isn't allocated yet, this is where we will be
4026 putting it. The +1 on the value marks that the stub has not been
4027 output yet - not that it is a Thumb function. */
4028 bh = NULL;
4029 val = globals->arm_glue_size + 1;
4030 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4031 tmp_name, BSF_GLOBAL, s, val,
4032 NULL, TRUE, FALSE, &bh);
4033
4034 myh = (struct elf_link_hash_entry *) bh;
4035 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4036 myh->forced_local = 1;
4037
4038 free (tmp_name);
4039
4040 if (link_info->shared || globals->root.is_relocatable_executable
4041 || globals->pic_veneer)
4042 size = ARM2THUMB_PIC_GLUE_SIZE;
4043 else if (globals->use_blx)
4044 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4045 else
4046 size = ARM2THUMB_STATIC_GLUE_SIZE;
4047
4048 s->size += size;
4049 globals->arm_glue_size += size;
4050
4051 return myh;
4052 }
4053
4054 static void
4055 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4056 struct elf_link_hash_entry *h)
4057 {
4058 const char *name = h->root.root.string;
4059 asection *s;
4060 char *tmp_name;
4061 struct elf_link_hash_entry *myh;
4062 struct bfd_link_hash_entry *bh;
4063 struct elf32_arm_link_hash_table *hash_table;
4064 bfd_vma val;
4065
4066 hash_table = elf32_arm_hash_table (link_info);
4067
4068 BFD_ASSERT (hash_table != NULL);
4069 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4070
4071 s = bfd_get_section_by_name
4072 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4073
4074 BFD_ASSERT (s != NULL);
4075
4076 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4077 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4078
4079 BFD_ASSERT (tmp_name);
4080
4081 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4082
4083 myh = elf_link_hash_lookup
4084 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4085
4086 if (myh != NULL)
4087 {
4088 /* We've already seen this guy. */
4089 free (tmp_name);
4090 return;
4091 }
4092
4093 /* The only trick here is using hash_table->thumb_glue_size as the value.
4094 Even though the section isn't allocated yet, this is where we will be
4095 putting it. The +1 on the value marks that the stub has not been
4096 output yet - not that it is a Thumb function. */
4097 bh = NULL;
4098 val = hash_table->thumb_glue_size + 1;
4099 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4100 tmp_name, BSF_GLOBAL, s, val,
4101 NULL, TRUE, FALSE, &bh);
4102
4103 /* If we mark it 'Thumb', the disassembler will do a better job. */
4104 myh = (struct elf_link_hash_entry *) bh;
4105 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4106 myh->forced_local = 1;
4107
4108 free (tmp_name);
4109
4110 #define CHANGE_TO_ARM "__%s_change_to_arm"
4111 #define BACK_FROM_ARM "__%s_back_from_arm"
4112
4113 /* Allocate another symbol to mark where we switch to Arm mode. */
4114 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4115 + strlen (CHANGE_TO_ARM) + 1);
4116
4117 BFD_ASSERT (tmp_name);
4118
4119 sprintf (tmp_name, CHANGE_TO_ARM, name);
4120
4121 bh = NULL;
4122 val = hash_table->thumb_glue_size + 4,
4123 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4124 tmp_name, BSF_LOCAL, s, val,
4125 NULL, TRUE, FALSE, &bh);
4126
4127 free (tmp_name);
4128
4129 s->size += THUMB2ARM_GLUE_SIZE;
4130 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4131 }
4132
4133
4134 /* Allocate space for ARMv4 BX veneers. */
4135
4136 static void
4137 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4138 {
4139 asection * s;
4140 struct elf32_arm_link_hash_table *globals;
4141 char *tmp_name;
4142 struct elf_link_hash_entry *myh;
4143 struct bfd_link_hash_entry *bh;
4144 bfd_vma val;
4145
4146 /* BX PC does not need a veneer. */
4147 if (reg == 15)
4148 return;
4149
4150 globals = elf32_arm_hash_table (link_info);
4151
4152 BFD_ASSERT (globals != NULL);
4153 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4154
4155 /* Check if this veneer has already been allocated. */
4156 if (globals->bx_glue_offset[reg])
4157 return;
4158
4159 s = bfd_get_section_by_name
4160 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4161
4162 BFD_ASSERT (s != NULL);
4163
4164 /* Add symbol for veneer. */
4165 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4166
4167 BFD_ASSERT (tmp_name);
4168
4169 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4170
4171 myh = elf_link_hash_lookup
4172 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4173
4174 BFD_ASSERT (myh == NULL);
4175
4176 bh = NULL;
4177 val = globals->bx_glue_size;
4178 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4179 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4180 NULL, TRUE, FALSE, &bh);
4181
4182 myh = (struct elf_link_hash_entry *) bh;
4183 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4184 myh->forced_local = 1;
4185
4186 s->size += ARM_BX_VENEER_SIZE;
4187 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4188 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4189 }
4190
4191
4192 /* Add an entry to the code/data map for section SEC. */
4193
4194 static void
4195 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4196 {
4197 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4198 unsigned int newidx;
4199
4200 if (sec_data->map == NULL)
4201 {
4202 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4203 sec_data->mapcount = 0;
4204 sec_data->mapsize = 1;
4205 }
4206
4207 newidx = sec_data->mapcount++;
4208
4209 if (sec_data->mapcount > sec_data->mapsize)
4210 {
4211 sec_data->mapsize *= 2;
4212 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4213 * sizeof (elf32_arm_section_map));
4214 }
4215
4216 if (sec_data->map)
4217 {
4218 sec_data->map[newidx].vma = vma;
4219 sec_data->map[newidx].type = type;
4220 }
4221 }
4222
4223
4224 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4225 veneers are handled for now. */
4226
4227 static bfd_vma
4228 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4229 elf32_vfp11_erratum_list *branch,
4230 bfd *branch_bfd,
4231 asection *branch_sec,
4232 unsigned int offset)
4233 {
4234 asection *s;
4235 struct elf32_arm_link_hash_table *hash_table;
4236 char *tmp_name;
4237 struct elf_link_hash_entry *myh;
4238 struct bfd_link_hash_entry *bh;
4239 bfd_vma val;
4240 struct _arm_elf_section_data *sec_data;
4241 int errcount;
4242 elf32_vfp11_erratum_list *newerr;
4243
4244 hash_table = elf32_arm_hash_table (link_info);
4245
4246 BFD_ASSERT (hash_table != NULL);
4247 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4248
4249 s = bfd_get_section_by_name
4250 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4251
4252 sec_data = elf32_arm_section_data (s);
4253
4254 BFD_ASSERT (s != NULL);
4255
4256 tmp_name = bfd_malloc ((bfd_size_type) strlen
4257 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4258
4259 BFD_ASSERT (tmp_name);
4260
4261 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4262 hash_table->num_vfp11_fixes);
4263
4264 myh = elf_link_hash_lookup
4265 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4266
4267 BFD_ASSERT (myh == NULL);
4268
4269 bh = NULL;
4270 val = hash_table->vfp11_erratum_glue_size;
4271 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4272 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4273 NULL, TRUE, FALSE, &bh);
4274
4275 myh = (struct elf_link_hash_entry *) bh;
4276 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4277 myh->forced_local = 1;
4278
4279 /* Link veneer back to calling location. */
4280 errcount = ++(sec_data->erratumcount);
4281 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4282
4283 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4284 newerr->vma = -1;
4285 newerr->u.v.branch = branch;
4286 newerr->u.v.id = hash_table->num_vfp11_fixes;
4287 branch->u.b.veneer = newerr;
4288
4289 newerr->next = sec_data->erratumlist;
4290 sec_data->erratumlist = newerr;
4291
4292 /* A symbol for the return from the veneer. */
4293 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4294 hash_table->num_vfp11_fixes);
4295
4296 myh = elf_link_hash_lookup
4297 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4298
4299 if (myh != NULL)
4300 abort ();
4301
4302 bh = NULL;
4303 val = offset + 4;
4304 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4305 branch_sec, val, NULL, TRUE, FALSE, &bh);
4306
4307 myh = (struct elf_link_hash_entry *) bh;
4308 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4309 myh->forced_local = 1;
4310
4311 free (tmp_name);
4312
4313 /* Generate a mapping symbol for the veneer section, and explicitly add an
4314 entry for that symbol to the code/data map for the section. */
4315 if (hash_table->vfp11_erratum_glue_size == 0)
4316 {
4317 bh = NULL;
4318 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4319 ever requires this erratum fix. */
4320 _bfd_generic_link_add_one_symbol (link_info,
4321 hash_table->bfd_of_glue_owner, "$a",
4322 BSF_LOCAL, s, 0, NULL,
4323 TRUE, FALSE, &bh);
4324
4325 myh = (struct elf_link_hash_entry *) bh;
4326 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4327 myh->forced_local = 1;
4328
4329 /* The elf32_arm_init_maps function only cares about symbols from input
4330 BFDs. We must make a note of this generated mapping symbol
4331 ourselves so that code byteswapping works properly in
4332 elf32_arm_write_section. */
4333 elf32_arm_section_map_add (s, 'a', 0);
4334 }
4335
4336 s->size += VFP11_ERRATUM_VENEER_SIZE;
4337 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4338 hash_table->num_vfp11_fixes++;
4339
4340 /* The offset of the veneer. */
4341 return val;
4342 }
4343
4344 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4345 would prevent elf_link_input_bfd() from processing the contents
4346 of the section. */
4347 #define ARM_GLUE_SECTION_FLAGS \
4348 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4349
4350 /* Create a fake section for use by the ARM backend of the linker. */
4351
4352 static bfd_boolean
4353 arm_make_glue_section (bfd * abfd, const char * name)
4354 {
4355 asection * sec;
4356
4357 sec = bfd_get_section_by_name (abfd, name);
4358 if (sec != NULL)
4359 /* Already made. */
4360 return TRUE;
4361
4362 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4363
4364 if (sec == NULL
4365 || !bfd_set_section_alignment (abfd, sec, 2))
4366 return FALSE;
4367
4368 /* Set the gc mark to prevent the section from being removed by garbage
4369 collection, despite the fact that no relocs refer to this section. */
4370 sec->gc_mark = 1;
4371
4372 return TRUE;
4373 }
4374
4375 /* Add the glue sections to ABFD. This function is called from the
4376 linker scripts in ld/emultempl/{armelf}.em. */
4377
4378 bfd_boolean
4379 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4380 struct bfd_link_info *info)
4381 {
4382 /* If we are only performing a partial
4383 link do not bother adding the glue. */
4384 if (info->relocatable)
4385 return TRUE;
4386
4387 /* Linker stubs don't need glue. */
4388 if (!strcmp (abfd->filename, "linker stubs"))
4389 return TRUE;
4390
4391 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4392 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4393 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4394 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
4395 }
4396
4397 /* Select a BFD to be used to hold the sections used by the glue code.
4398 This function is called from the linker scripts in ld/emultempl/
4399 {armelf/pe}.em. */
4400
4401 bfd_boolean
4402 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4403 {
4404 struct elf32_arm_link_hash_table *globals;
4405
4406 /* If we are only performing a partial link
4407 do not bother getting a bfd to hold the glue. */
4408 if (info->relocatable)
4409 return TRUE;
4410
4411 /* Make sure we don't attach the glue sections to a dynamic object. */
4412 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4413
4414 globals = elf32_arm_hash_table (info);
4415
4416 BFD_ASSERT (globals != NULL);
4417
4418 if (globals->bfd_of_glue_owner != NULL)
4419 return TRUE;
4420
4421 /* Save the bfd for later use. */
4422 globals->bfd_of_glue_owner = abfd;
4423
4424 return TRUE;
4425 }
4426
4427 static void
4428 check_use_blx (struct elf32_arm_link_hash_table *globals)
4429 {
4430 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4431 Tag_CPU_arch) > 2)
4432 globals->use_blx = 1;
4433 }
4434
4435 bfd_boolean
4436 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4437 struct bfd_link_info *link_info)
4438 {
4439 Elf_Internal_Shdr *symtab_hdr;
4440 Elf_Internal_Rela *internal_relocs = NULL;
4441 Elf_Internal_Rela *irel, *irelend;
4442 bfd_byte *contents = NULL;
4443
4444 asection *sec;
4445 struct elf32_arm_link_hash_table *globals;
4446
4447 /* If we are only performing a partial link do not bother
4448 to construct any glue. */
4449 if (link_info->relocatable)
4450 return TRUE;
4451
4452 /* Here we have a bfd that is to be included on the link. We have a
4453 hook to do reloc rummaging, before section sizes are nailed down. */
4454 globals = elf32_arm_hash_table (link_info);
4455
4456 BFD_ASSERT (globals != NULL);
4457
4458 check_use_blx (globals);
4459
4460 if (globals->byteswap_code && !bfd_big_endian (abfd))
4461 {
4462 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4463 abfd);
4464 return FALSE;
4465 }
4466
4467 /* PR 5398: If we have not decided to include any loadable sections in
4468 the output then we will not have a glue owner bfd. This is OK, it
4469 just means that there is nothing else for us to do here. */
4470 if (globals->bfd_of_glue_owner == NULL)
4471 return TRUE;
4472
4473 /* Rummage around all the relocs and map the glue vectors. */
4474 sec = abfd->sections;
4475
4476 if (sec == NULL)
4477 return TRUE;
4478
4479 for (; sec != NULL; sec = sec->next)
4480 {
4481 if (sec->reloc_count == 0)
4482 continue;
4483
4484 if ((sec->flags & SEC_EXCLUDE) != 0)
4485 continue;
4486
4487 symtab_hdr = & elf_symtab_hdr (abfd);
4488
4489 /* Load the relocs. */
4490 internal_relocs
4491 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4492
4493 if (internal_relocs == NULL)
4494 goto error_return;
4495
4496 irelend = internal_relocs + sec->reloc_count;
4497 for (irel = internal_relocs; irel < irelend; irel++)
4498 {
4499 long r_type;
4500 unsigned long r_index;
4501
4502 struct elf_link_hash_entry *h;
4503
4504 r_type = ELF32_R_TYPE (irel->r_info);
4505 r_index = ELF32_R_SYM (irel->r_info);
4506
4507 /* These are the only relocation types we care about. */
4508 if ( r_type != R_ARM_PC24
4509 && r_type != R_ARM_PLT32
4510 && r_type != R_ARM_JUMP24
4511 && r_type != R_ARM_THM_JUMP24
4512 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4513 continue;
4514
4515 /* Get the section contents if we haven't done so already. */
4516 if (contents == NULL)
4517 {
4518 /* Get cached copy if it exists. */
4519 if (elf_section_data (sec)->this_hdr.contents != NULL)
4520 contents = elf_section_data (sec)->this_hdr.contents;
4521 else
4522 {
4523 /* Go get them off disk. */
4524 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4525 goto error_return;
4526 }
4527 }
4528
4529 if (r_type == R_ARM_V4BX)
4530 {
4531 int reg;
4532
4533 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4534 record_arm_bx_glue (link_info, reg);
4535 continue;
4536 }
4537
4538 /* If the relocation is not against a symbol it cannot concern us. */
4539 h = NULL;
4540
4541 /* We don't care about local symbols. */
4542 if (r_index < symtab_hdr->sh_info)
4543 continue;
4544
4545 /* This is an external symbol. */
4546 r_index -= symtab_hdr->sh_info;
4547 h = (struct elf_link_hash_entry *)
4548 elf_sym_hashes (abfd)[r_index];
4549
4550 /* If the relocation is against a static symbol it must be within
4551 the current section and so cannot be a cross ARM/Thumb relocation. */
4552 if (h == NULL)
4553 continue;
4554
4555 /* If the call will go through a PLT entry then we do not need
4556 glue. */
4557 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4558 continue;
4559
4560 switch (r_type)
4561 {
4562 case R_ARM_PC24:
4563 case R_ARM_PLT32:
4564 case R_ARM_JUMP24:
4565 /* This one is a call from arm code. We need to look up
4566 the target of the call. If it is a thumb target, we
4567 insert glue. */
4568 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4569 && !(r_type == R_ARM_CALL && globals->use_blx))
4570 record_arm_to_thumb_glue (link_info, h);
4571 break;
4572
4573 case R_ARM_THM_JUMP24:
4574 /* This one is a call from thumb code. We look
4575 up the target of the call. If it is not a thumb
4576 target, we insert glue. */
4577 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4578 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4579 && h->root.type != bfd_link_hash_undefweak)
4580 record_thumb_to_arm_glue (link_info, h);
4581 break;
4582
4583 default:
4584 abort ();
4585 }
4586 }
4587
4588 if (contents != NULL
4589 && elf_section_data (sec)->this_hdr.contents != contents)
4590 free (contents);
4591 contents = NULL;
4592
4593 if (internal_relocs != NULL
4594 && elf_section_data (sec)->relocs != internal_relocs)
4595 free (internal_relocs);
4596 internal_relocs = NULL;
4597 }
4598
4599 return TRUE;
4600
4601 error_return:
4602 if (contents != NULL
4603 && elf_section_data (sec)->this_hdr.contents != contents)
4604 free (contents);
4605 if (internal_relocs != NULL
4606 && elf_section_data (sec)->relocs != internal_relocs)
4607 free (internal_relocs);
4608
4609 return FALSE;
4610 }
4611 #endif
4612
4613
4614 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4615
4616 void
4617 bfd_elf32_arm_init_maps (bfd *abfd)
4618 {
4619 Elf_Internal_Sym *isymbuf;
4620 Elf_Internal_Shdr *hdr;
4621 unsigned int i, localsyms;
4622
4623 if ((abfd->flags & DYNAMIC) != 0)
4624 return;
4625
4626 hdr = & elf_symtab_hdr (abfd);
4627 localsyms = hdr->sh_info;
4628
4629 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4630 should contain the number of local symbols, which should come before any
4631 global symbols. Mapping symbols are always local. */
4632 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4633 NULL);
4634
4635 /* No internal symbols read? Skip this BFD. */
4636 if (isymbuf == NULL)
4637 return;
4638
4639 for (i = 0; i < localsyms; i++)
4640 {
4641 Elf_Internal_Sym *isym = &isymbuf[i];
4642 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4643 const char *name;
4644
4645 if (sec != NULL
4646 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4647 {
4648 name = bfd_elf_string_from_elf_section (abfd,
4649 hdr->sh_link, isym->st_name);
4650
4651 if (bfd_is_arm_special_symbol_name (name,
4652 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4653 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4654 }
4655 }
4656 }
4657
4658
4659 void
4660 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4661 {
4662 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4663 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4664
4665 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4666 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4667 {
4668 switch (globals->vfp11_fix)
4669 {
4670 case BFD_ARM_VFP11_FIX_DEFAULT:
4671 case BFD_ARM_VFP11_FIX_NONE:
4672 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4673 break;
4674
4675 default:
4676 /* Give a warning, but do as the user requests anyway. */
4677 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4678 "workaround is not necessary for target architecture"), obfd);
4679 }
4680 }
4681 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4682 /* For earlier architectures, we might need the workaround, but do not
4683 enable it by default. If users is running with broken hardware, they
4684 must enable the erratum fix explicitly. */
4685 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4686 }
4687
4688
4689 enum bfd_arm_vfp11_pipe
4690 {
4691 VFP11_FMAC,
4692 VFP11_LS,
4693 VFP11_DS,
4694 VFP11_BAD
4695 };
4696
4697 /* Return a VFP register number. This is encoded as RX:X for single-precision
4698 registers, or X:RX for double-precision registers, where RX is the group of
4699 four bits in the instruction encoding and X is the single extension bit.
4700 RX and X fields are specified using their lowest (starting) bit. The return
4701 value is:
4702
4703 0...31: single-precision registers s0...s31
4704 32...63: double-precision registers d0...d31.
4705
4706 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4707 encounter VFP3 instructions, so we allow the full range for DP registers. */
4708
4709 static unsigned int
4710 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4711 unsigned int x)
4712 {
4713 if (is_double)
4714 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4715 else
4716 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4717 }
4718
4719 /* Set bits in *WMASK according to a register number REG as encoded by
4720 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4721
4722 static void
4723 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4724 {
4725 if (reg < 32)
4726 *wmask |= 1 << reg;
4727 else if (reg < 48)
4728 *wmask |= 3 << ((reg - 32) * 2);
4729 }
4730
4731 /* Return TRUE if WMASK overwrites anything in REGS. */
4732
4733 static bfd_boolean
4734 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4735 {
4736 int i;
4737
4738 for (i = 0; i < numregs; i++)
4739 {
4740 unsigned int reg = regs[i];
4741
4742 if (reg < 32 && (wmask & (1 << reg)) != 0)
4743 return TRUE;
4744
4745 reg -= 32;
4746
4747 if (reg >= 16)
4748 continue;
4749
4750 if ((wmask & (3 << (reg * 2))) != 0)
4751 return TRUE;
4752 }
4753
4754 return FALSE;
4755 }
4756
4757 /* In this function, we're interested in two things: finding input registers
4758 for VFP data-processing instructions, and finding the set of registers which
4759 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4760 hold the written set, so FLDM etc. are easy to deal with (we're only
4761 interested in 32 SP registers or 16 dp registers, due to the VFP version
4762 implemented by the chip in question). DP registers are marked by setting
4763 both SP registers in the write mask). */
4764
4765 static enum bfd_arm_vfp11_pipe
4766 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4767 int *numregs)
4768 {
4769 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4770 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4771
4772 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4773 {
4774 unsigned int pqrs;
4775 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4776 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4777
4778 pqrs = ((insn & 0x00800000) >> 20)
4779 | ((insn & 0x00300000) >> 19)
4780 | ((insn & 0x00000040) >> 6);
4781
4782 switch (pqrs)
4783 {
4784 case 0: /* fmac[sd]. */
4785 case 1: /* fnmac[sd]. */
4786 case 2: /* fmsc[sd]. */
4787 case 3: /* fnmsc[sd]. */
4788 pipe = VFP11_FMAC;
4789 bfd_arm_vfp11_write_mask (destmask, fd);
4790 regs[0] = fd;
4791 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4792 regs[2] = fm;
4793 *numregs = 3;
4794 break;
4795
4796 case 4: /* fmul[sd]. */
4797 case 5: /* fnmul[sd]. */
4798 case 6: /* fadd[sd]. */
4799 case 7: /* fsub[sd]. */
4800 pipe = VFP11_FMAC;
4801 goto vfp_binop;
4802
4803 case 8: /* fdiv[sd]. */
4804 pipe = VFP11_DS;
4805 vfp_binop:
4806 bfd_arm_vfp11_write_mask (destmask, fd);
4807 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4808 regs[1] = fm;
4809 *numregs = 2;
4810 break;
4811
4812 case 15: /* extended opcode. */
4813 {
4814 unsigned int extn = ((insn >> 15) & 0x1e)
4815 | ((insn >> 7) & 1);
4816
4817 switch (extn)
4818 {
4819 case 0: /* fcpy[sd]. */
4820 case 1: /* fabs[sd]. */
4821 case 2: /* fneg[sd]. */
4822 case 8: /* fcmp[sd]. */
4823 case 9: /* fcmpe[sd]. */
4824 case 10: /* fcmpz[sd]. */
4825 case 11: /* fcmpez[sd]. */
4826 case 16: /* fuito[sd]. */
4827 case 17: /* fsito[sd]. */
4828 case 24: /* ftoui[sd]. */
4829 case 25: /* ftouiz[sd]. */
4830 case 26: /* ftosi[sd]. */
4831 case 27: /* ftosiz[sd]. */
4832 /* These instructions will not bounce due to underflow. */
4833 *numregs = 0;
4834 pipe = VFP11_FMAC;
4835 break;
4836
4837 case 3: /* fsqrt[sd]. */
4838 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4839 registers to cause the erratum in previous instructions. */
4840 bfd_arm_vfp11_write_mask (destmask, fd);
4841 pipe = VFP11_DS;
4842 break;
4843
4844 case 15: /* fcvt{ds,sd}. */
4845 {
4846 int rnum = 0;
4847
4848 bfd_arm_vfp11_write_mask (destmask, fd);
4849
4850 /* Only FCVTSD can underflow. */
4851 if ((insn & 0x100) != 0)
4852 regs[rnum++] = fm;
4853
4854 *numregs = rnum;
4855
4856 pipe = VFP11_FMAC;
4857 }
4858 break;
4859
4860 default:
4861 return VFP11_BAD;
4862 }
4863 }
4864 break;
4865
4866 default:
4867 return VFP11_BAD;
4868 }
4869 }
4870 /* Two-register transfer. */
4871 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4872 {
4873 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4874
4875 if ((insn & 0x100000) == 0)
4876 {
4877 if (is_double)
4878 bfd_arm_vfp11_write_mask (destmask, fm);
4879 else
4880 {
4881 bfd_arm_vfp11_write_mask (destmask, fm);
4882 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4883 }
4884 }
4885
4886 pipe = VFP11_LS;
4887 }
4888 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4889 {
4890 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4891 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4892
4893 switch (puw)
4894 {
4895 case 0: /* Two-reg transfer. We should catch these above. */
4896 abort ();
4897
4898 case 2: /* fldm[sdx]. */
4899 case 3:
4900 case 5:
4901 {
4902 unsigned int i, offset = insn & 0xff;
4903
4904 if (is_double)
4905 offset >>= 1;
4906
4907 for (i = fd; i < fd + offset; i++)
4908 bfd_arm_vfp11_write_mask (destmask, i);
4909 }
4910 break;
4911
4912 case 4: /* fld[sd]. */
4913 case 6:
4914 bfd_arm_vfp11_write_mask (destmask, fd);
4915 break;
4916
4917 default:
4918 return VFP11_BAD;
4919 }
4920
4921 pipe = VFP11_LS;
4922 }
4923 /* Single-register transfer. Note L==0. */
4924 else if ((insn & 0x0f100e10) == 0x0e000a10)
4925 {
4926 unsigned int opcode = (insn >> 21) & 7;
4927 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4928
4929 switch (opcode)
4930 {
4931 case 0: /* fmsr/fmdlr. */
4932 case 1: /* fmdhr. */
4933 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4934 destination register. I don't know if this is exactly right,
4935 but it is the conservative choice. */
4936 bfd_arm_vfp11_write_mask (destmask, fn);
4937 break;
4938
4939 case 7: /* fmxr. */
4940 break;
4941 }
4942
4943 pipe = VFP11_LS;
4944 }
4945
4946 return pipe;
4947 }
4948
4949
4950 static int elf32_arm_compare_mapping (const void * a, const void * b);
4951
4952
4953 /* Look for potentially-troublesome code sequences which might trigger the
4954 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4955 (available from ARM) for details of the erratum. A short version is
4956 described in ld.texinfo. */
4957
4958 bfd_boolean
4959 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4960 {
4961 asection *sec;
4962 bfd_byte *contents = NULL;
4963 int state = 0;
4964 int regs[3], numregs = 0;
4965 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4966 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4967
4968 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4969 The states transition as follows:
4970
4971 0 -> 1 (vector) or 0 -> 2 (scalar)
4972 A VFP FMAC-pipeline instruction has been seen. Fill
4973 regs[0]..regs[numregs-1] with its input operands. Remember this
4974 instruction in 'first_fmac'.
4975
4976 1 -> 2
4977 Any instruction, except for a VFP instruction which overwrites
4978 regs[*].
4979
4980 1 -> 3 [ -> 0 ] or
4981 2 -> 3 [ -> 0 ]
4982 A VFP instruction has been seen which overwrites any of regs[*].
4983 We must make a veneer! Reset state to 0 before examining next
4984 instruction.
4985
4986 2 -> 0
4987 If we fail to match anything in state 2, reset to state 0 and reset
4988 the instruction pointer to the instruction after 'first_fmac'.
4989
4990 If the VFP11 vector mode is in use, there must be at least two unrelated
4991 instructions between anti-dependent VFP11 instructions to properly avoid
4992 triggering the erratum, hence the use of the extra state 1. */
4993
4994 /* If we are only performing a partial link do not bother
4995 to construct any glue. */
4996 if (link_info->relocatable)
4997 return TRUE;
4998
4999 /* Skip if this bfd does not correspond to an ELF image. */
5000 if (! is_arm_elf (abfd))
5001 return TRUE;
5002
5003 /* We should have chosen a fix type by the time we get here. */
5004 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5005
5006 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5007 return TRUE;
5008
5009 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5010 {
5011 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5012 struct _arm_elf_section_data *sec_data;
5013
5014 /* If we don't have executable progbits, we're not interested in this
5015 section. Also skip if section is to be excluded. */
5016 if (elf_section_type (sec) != SHT_PROGBITS
5017 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5018 || (sec->flags & SEC_EXCLUDE) != 0
5019 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5020 continue;
5021
5022 sec_data = elf32_arm_section_data (sec);
5023
5024 if (sec_data->mapcount == 0)
5025 continue;
5026
5027 if (elf_section_data (sec)->this_hdr.contents != NULL)
5028 contents = elf_section_data (sec)->this_hdr.contents;
5029 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5030 goto error_return;
5031
5032 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5033 elf32_arm_compare_mapping);
5034
5035 for (span = 0; span < sec_data->mapcount; span++)
5036 {
5037 unsigned int span_start = sec_data->map[span].vma;
5038 unsigned int span_end = (span == sec_data->mapcount - 1)
5039 ? sec->size : sec_data->map[span + 1].vma;
5040 char span_type = sec_data->map[span].type;
5041
5042 /* FIXME: Only ARM mode is supported at present. We may need to
5043 support Thumb-2 mode also at some point. */
5044 if (span_type != 'a')
5045 continue;
5046
5047 for (i = span_start; i < span_end;)
5048 {
5049 unsigned int next_i = i + 4;
5050 unsigned int insn = bfd_big_endian (abfd)
5051 ? (contents[i] << 24)
5052 | (contents[i + 1] << 16)
5053 | (contents[i + 2] << 8)
5054 | contents[i + 3]
5055 : (contents[i + 3] << 24)
5056 | (contents[i + 2] << 16)
5057 | (contents[i + 1] << 8)
5058 | contents[i];
5059 unsigned int writemask = 0;
5060 enum bfd_arm_vfp11_pipe pipe;
5061
5062 switch (state)
5063 {
5064 case 0:
5065 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5066 &numregs);
5067 /* I'm assuming the VFP11 erratum can trigger with denorm
5068 operands on either the FMAC or the DS pipeline. This might
5069 lead to slightly overenthusiastic veneer insertion. */
5070 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5071 {
5072 state = use_vector ? 1 : 2;
5073 first_fmac = i;
5074 veneer_of_insn = insn;
5075 }
5076 break;
5077
5078 case 1:
5079 {
5080 int other_regs[3], other_numregs;
5081 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5082 other_regs,
5083 &other_numregs);
5084 if (pipe != VFP11_BAD
5085 && bfd_arm_vfp11_antidependency (writemask, regs,
5086 numregs))
5087 state = 3;
5088 else
5089 state = 2;
5090 }
5091 break;
5092
5093 case 2:
5094 {
5095 int other_regs[3], other_numregs;
5096 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5097 other_regs,
5098 &other_numregs);
5099 if (pipe != VFP11_BAD
5100 && bfd_arm_vfp11_antidependency (writemask, regs,
5101 numregs))
5102 state = 3;
5103 else
5104 {
5105 state = 0;
5106 next_i = first_fmac + 4;
5107 }
5108 }
5109 break;
5110
5111 case 3:
5112 abort (); /* Should be unreachable. */
5113 }
5114
5115 if (state == 3)
5116 {
5117 elf32_vfp11_erratum_list *newerr
5118 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5119 int errcount;
5120
5121 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5122
5123 newerr->u.b.vfp_insn = veneer_of_insn;
5124
5125 switch (span_type)
5126 {
5127 case 'a':
5128 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5129 break;
5130
5131 default:
5132 abort ();
5133 }
5134
5135 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5136 first_fmac);
5137
5138 newerr->vma = -1;
5139
5140 newerr->next = sec_data->erratumlist;
5141 sec_data->erratumlist = newerr;
5142
5143 state = 0;
5144 }
5145
5146 i = next_i;
5147 }
5148 }
5149
5150 if (contents != NULL
5151 && elf_section_data (sec)->this_hdr.contents != contents)
5152 free (contents);
5153 contents = NULL;
5154 }
5155
5156 return TRUE;
5157
5158 error_return:
5159 if (contents != NULL
5160 && elf_section_data (sec)->this_hdr.contents != contents)
5161 free (contents);
5162
5163 return FALSE;
5164 }
5165
5166 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5167 after sections have been laid out, using specially-named symbols. */
5168
5169 void
5170 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5171 struct bfd_link_info *link_info)
5172 {
5173 asection *sec;
5174 struct elf32_arm_link_hash_table *globals;
5175 char *tmp_name;
5176
5177 if (link_info->relocatable)
5178 return;
5179
5180 /* Skip if this bfd does not correspond to an ELF image. */
5181 if (! is_arm_elf (abfd))
5182 return;
5183
5184 globals = elf32_arm_hash_table (link_info);
5185
5186 tmp_name = bfd_malloc ((bfd_size_type) strlen
5187 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5188
5189 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5190 {
5191 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5192 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5193
5194 for (; errnode != NULL; errnode = errnode->next)
5195 {
5196 struct elf_link_hash_entry *myh;
5197 bfd_vma vma;
5198
5199 switch (errnode->type)
5200 {
5201 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5202 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5203 /* Find veneer symbol. */
5204 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5205 errnode->u.b.veneer->u.v.id);
5206
5207 myh = elf_link_hash_lookup
5208 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5209
5210 if (myh == NULL)
5211 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5212 "`%s'"), abfd, tmp_name);
5213
5214 vma = myh->root.u.def.section->output_section->vma
5215 + myh->root.u.def.section->output_offset
5216 + myh->root.u.def.value;
5217
5218 errnode->u.b.veneer->vma = vma;
5219 break;
5220
5221 case VFP11_ERRATUM_ARM_VENEER:
5222 case VFP11_ERRATUM_THUMB_VENEER:
5223 /* Find return location. */
5224 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5225 errnode->u.v.id);
5226
5227 myh = elf_link_hash_lookup
5228 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5229
5230 if (myh == NULL)
5231 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5232 "`%s'"), abfd, tmp_name);
5233
5234 vma = myh->root.u.def.section->output_section->vma
5235 + myh->root.u.def.section->output_offset
5236 + myh->root.u.def.value;
5237
5238 errnode->u.v.branch->vma = vma;
5239 break;
5240
5241 default:
5242 abort ();
5243 }
5244 }
5245 }
5246
5247 free (tmp_name);
5248 }
5249
5250
5251 /* Set target relocation values needed during linking. */
5252
5253 void
5254 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5255 struct bfd_link_info *link_info,
5256 int target1_is_rel,
5257 char * target2_type,
5258 int fix_v4bx,
5259 int use_blx,
5260 bfd_arm_vfp11_fix vfp11_fix,
5261 int no_enum_warn, int no_wchar_warn,
5262 int pic_veneer)
5263 {
5264 struct elf32_arm_link_hash_table *globals;
5265
5266 globals = elf32_arm_hash_table (link_info);
5267
5268 globals->target1_is_rel = target1_is_rel;
5269 if (strcmp (target2_type, "rel") == 0)
5270 globals->target2_reloc = R_ARM_REL32;
5271 else if (strcmp (target2_type, "abs") == 0)
5272 globals->target2_reloc = R_ARM_ABS32;
5273 else if (strcmp (target2_type, "got-rel") == 0)
5274 globals->target2_reloc = R_ARM_GOT_PREL;
5275 else
5276 {
5277 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5278 target2_type);
5279 }
5280 globals->fix_v4bx = fix_v4bx;
5281 globals->use_blx |= use_blx;
5282 globals->vfp11_fix = vfp11_fix;
5283 globals->pic_veneer = pic_veneer;
5284
5285 BFD_ASSERT (is_arm_elf (output_bfd));
5286 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5287 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
5288 }
5289
5290 /* Replace the target offset of a Thumb bl or b.w instruction. */
5291
5292 static void
5293 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5294 {
5295 bfd_vma upper;
5296 bfd_vma lower;
5297 int reloc_sign;
5298
5299 BFD_ASSERT ((offset & 1) == 0);
5300
5301 upper = bfd_get_16 (abfd, insn);
5302 lower = bfd_get_16 (abfd, insn + 2);
5303 reloc_sign = (offset < 0) ? 1 : 0;
5304 upper = (upper & ~(bfd_vma) 0x7ff)
5305 | ((offset >> 12) & 0x3ff)
5306 | (reloc_sign << 10);
5307 lower = (lower & ~(bfd_vma) 0x2fff)
5308 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5309 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5310 | ((offset >> 1) & 0x7ff);
5311 bfd_put_16 (abfd, upper, insn);
5312 bfd_put_16 (abfd, lower, insn + 2);
5313 }
5314
5315 /* Thumb code calling an ARM function. */
5316
5317 static int
5318 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5319 const char * name,
5320 bfd * input_bfd,
5321 bfd * output_bfd,
5322 asection * input_section,
5323 bfd_byte * hit_data,
5324 asection * sym_sec,
5325 bfd_vma offset,
5326 bfd_signed_vma addend,
5327 bfd_vma val,
5328 char **error_message)
5329 {
5330 asection * s = 0;
5331 bfd_vma my_offset;
5332 long int ret_offset;
5333 struct elf_link_hash_entry * myh;
5334 struct elf32_arm_link_hash_table * globals;
5335
5336 myh = find_thumb_glue (info, name, error_message);
5337 if (myh == NULL)
5338 return FALSE;
5339
5340 globals = elf32_arm_hash_table (info);
5341
5342 BFD_ASSERT (globals != NULL);
5343 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5344
5345 my_offset = myh->root.u.def.value;
5346
5347 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5348 THUMB2ARM_GLUE_SECTION_NAME);
5349
5350 BFD_ASSERT (s != NULL);
5351 BFD_ASSERT (s->contents != NULL);
5352 BFD_ASSERT (s->output_section != NULL);
5353
5354 if ((my_offset & 0x01) == 0x01)
5355 {
5356 if (sym_sec != NULL
5357 && sym_sec->owner != NULL
5358 && !INTERWORK_FLAG (sym_sec->owner))
5359 {
5360 (*_bfd_error_handler)
5361 (_("%B(%s): warning: interworking not enabled.\n"
5362 " first occurrence: %B: thumb call to arm"),
5363 sym_sec->owner, input_bfd, name);
5364
5365 return FALSE;
5366 }
5367
5368 --my_offset;
5369 myh->root.u.def.value = my_offset;
5370
5371 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5372 s->contents + my_offset);
5373
5374 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5375 s->contents + my_offset + 2);
5376
5377 ret_offset =
5378 /* Address of destination of the stub. */
5379 ((bfd_signed_vma) val)
5380 - ((bfd_signed_vma)
5381 /* Offset from the start of the current section
5382 to the start of the stubs. */
5383 (s->output_offset
5384 /* Offset of the start of this stub from the start of the stubs. */
5385 + my_offset
5386 /* Address of the start of the current section. */
5387 + s->output_section->vma)
5388 /* The branch instruction is 4 bytes into the stub. */
5389 + 4
5390 /* ARM branches work from the pc of the instruction + 8. */
5391 + 8);
5392
5393 put_arm_insn (globals, output_bfd,
5394 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5395 s->contents + my_offset + 4);
5396 }
5397
5398 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5399
5400 /* Now go back and fix up the original BL insn to point to here. */
5401 ret_offset =
5402 /* Address of where the stub is located. */
5403 (s->output_section->vma + s->output_offset + my_offset)
5404 /* Address of where the BL is located. */
5405 - (input_section->output_section->vma + input_section->output_offset
5406 + offset)
5407 /* Addend in the relocation. */
5408 - addend
5409 /* Biassing for PC-relative addressing. */
5410 - 8;
5411
5412 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5413
5414 return TRUE;
5415 }
5416
5417 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5418
5419 static struct elf_link_hash_entry *
5420 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5421 const char * name,
5422 bfd * input_bfd,
5423 bfd * output_bfd,
5424 asection * sym_sec,
5425 bfd_vma val,
5426 asection * s,
5427 char ** error_message)
5428 {
5429 bfd_vma my_offset;
5430 long int ret_offset;
5431 struct elf_link_hash_entry * myh;
5432 struct elf32_arm_link_hash_table * globals;
5433
5434 myh = find_arm_glue (info, name, error_message);
5435 if (myh == NULL)
5436 return NULL;
5437
5438 globals = elf32_arm_hash_table (info);
5439
5440 BFD_ASSERT (globals != NULL);
5441 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5442
5443 my_offset = myh->root.u.def.value;
5444
5445 if ((my_offset & 0x01) == 0x01)
5446 {
5447 if (sym_sec != NULL
5448 && sym_sec->owner != NULL
5449 && !INTERWORK_FLAG (sym_sec->owner))
5450 {
5451 (*_bfd_error_handler)
5452 (_("%B(%s): warning: interworking not enabled.\n"
5453 " first occurrence: %B: arm call to thumb"),
5454 sym_sec->owner, input_bfd, name);
5455 }
5456
5457 --my_offset;
5458 myh->root.u.def.value = my_offset;
5459
5460 if (info->shared || globals->root.is_relocatable_executable
5461 || globals->pic_veneer)
5462 {
5463 /* For relocatable objects we can't use absolute addresses,
5464 so construct the address from a relative offset. */
5465 /* TODO: If the offset is small it's probably worth
5466 constructing the address with adds. */
5467 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5468 s->contents + my_offset);
5469 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5470 s->contents + my_offset + 4);
5471 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5472 s->contents + my_offset + 8);
5473 /* Adjust the offset by 4 for the position of the add,
5474 and 8 for the pipeline offset. */
5475 ret_offset = (val - (s->output_offset
5476 + s->output_section->vma
5477 + my_offset + 12))
5478 | 1;
5479 bfd_put_32 (output_bfd, ret_offset,
5480 s->contents + my_offset + 12);
5481 }
5482 else if (globals->use_blx)
5483 {
5484 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5485 s->contents + my_offset);
5486
5487 /* It's a thumb address. Add the low order bit. */
5488 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5489 s->contents + my_offset + 4);
5490 }
5491 else
5492 {
5493 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5494 s->contents + my_offset);
5495
5496 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5497 s->contents + my_offset + 4);
5498
5499 /* It's a thumb address. Add the low order bit. */
5500 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5501 s->contents + my_offset + 8);
5502
5503 my_offset += 12;
5504 }
5505 }
5506
5507 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5508
5509 return myh;
5510 }
5511
5512 /* Arm code calling a Thumb function. */
5513
5514 static int
5515 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5516 const char * name,
5517 bfd * input_bfd,
5518 bfd * output_bfd,
5519 asection * input_section,
5520 bfd_byte * hit_data,
5521 asection * sym_sec,
5522 bfd_vma offset,
5523 bfd_signed_vma addend,
5524 bfd_vma val,
5525 char **error_message)
5526 {
5527 unsigned long int tmp;
5528 bfd_vma my_offset;
5529 asection * s;
5530 long int ret_offset;
5531 struct elf_link_hash_entry * myh;
5532 struct elf32_arm_link_hash_table * globals;
5533
5534 globals = elf32_arm_hash_table (info);
5535
5536 BFD_ASSERT (globals != NULL);
5537 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5538
5539 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5540 ARM2THUMB_GLUE_SECTION_NAME);
5541 BFD_ASSERT (s != NULL);
5542 BFD_ASSERT (s->contents != NULL);
5543 BFD_ASSERT (s->output_section != NULL);
5544
5545 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5546 sym_sec, val, s, error_message);
5547 if (!myh)
5548 return FALSE;
5549
5550 my_offset = myh->root.u.def.value;
5551 tmp = bfd_get_32 (input_bfd, hit_data);
5552 tmp = tmp & 0xFF000000;
5553
5554 /* Somehow these are both 4 too far, so subtract 8. */
5555 ret_offset = (s->output_offset
5556 + my_offset
5557 + s->output_section->vma
5558 - (input_section->output_offset
5559 + input_section->output_section->vma
5560 + offset + addend)
5561 - 8);
5562
5563 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5564
5565 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5566
5567 return TRUE;
5568 }
5569
5570 /* Populate Arm stub for an exported Thumb function. */
5571
5572 static bfd_boolean
5573 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5574 {
5575 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5576 asection * s;
5577 struct elf_link_hash_entry * myh;
5578 struct elf32_arm_link_hash_entry *eh;
5579 struct elf32_arm_link_hash_table * globals;
5580 asection *sec;
5581 bfd_vma val;
5582 char *error_message;
5583
5584 eh = elf32_arm_hash_entry (h);
5585 /* Allocate stubs for exported Thumb functions on v4t. */
5586 if (eh->export_glue == NULL)
5587 return TRUE;
5588
5589 globals = elf32_arm_hash_table (info);
5590
5591 BFD_ASSERT (globals != NULL);
5592 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5593
5594 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5595 ARM2THUMB_GLUE_SECTION_NAME);
5596 BFD_ASSERT (s != NULL);
5597 BFD_ASSERT (s->contents != NULL);
5598 BFD_ASSERT (s->output_section != NULL);
5599
5600 sec = eh->export_glue->root.u.def.section;
5601
5602 BFD_ASSERT (sec->output_section != NULL);
5603
5604 val = eh->export_glue->root.u.def.value + sec->output_offset
5605 + sec->output_section->vma;
5606
5607 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5608 h->root.u.def.section->owner,
5609 globals->obfd, sec, val, s,
5610 &error_message);
5611 BFD_ASSERT (myh);
5612 return TRUE;
5613 }
5614
5615 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5616
5617 static bfd_vma
5618 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5619 {
5620 bfd_byte *p;
5621 bfd_vma glue_addr;
5622 asection *s;
5623 struct elf32_arm_link_hash_table *globals;
5624
5625 globals = elf32_arm_hash_table (info);
5626
5627 BFD_ASSERT (globals != NULL);
5628 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5629
5630 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5631 ARM_BX_GLUE_SECTION_NAME);
5632 BFD_ASSERT (s != NULL);
5633 BFD_ASSERT (s->contents != NULL);
5634 BFD_ASSERT (s->output_section != NULL);
5635
5636 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5637
5638 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5639
5640 if ((globals->bx_glue_offset[reg] & 1) == 0)
5641 {
5642 p = s->contents + glue_addr;
5643 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5644 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5645 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5646 globals->bx_glue_offset[reg] |= 1;
5647 }
5648
5649 return glue_addr + s->output_section->vma + s->output_offset;
5650 }
5651
5652 /* Generate Arm stubs for exported Thumb symbols. */
5653 static void
5654 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5655 struct bfd_link_info *link_info)
5656 {
5657 struct elf32_arm_link_hash_table * globals;
5658
5659 if (link_info == NULL)
5660 /* Ignore this if we are not called by the ELF backend linker. */
5661 return;
5662
5663 globals = elf32_arm_hash_table (link_info);
5664 /* If blx is available then exported Thumb symbols are OK and there is
5665 nothing to do. */
5666 if (globals->use_blx)
5667 return;
5668
5669 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5670 link_info);
5671 }
5672
5673 /* Some relocations map to different relocations depending on the
5674 target. Return the real relocation. */
5675
5676 static int
5677 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5678 int r_type)
5679 {
5680 switch (r_type)
5681 {
5682 case R_ARM_TARGET1:
5683 if (globals->target1_is_rel)
5684 return R_ARM_REL32;
5685 else
5686 return R_ARM_ABS32;
5687
5688 case R_ARM_TARGET2:
5689 return globals->target2_reloc;
5690
5691 default:
5692 return r_type;
5693 }
5694 }
5695
5696 /* Return the base VMA address which should be subtracted from real addresses
5697 when resolving @dtpoff relocation.
5698 This is PT_TLS segment p_vaddr. */
5699
5700 static bfd_vma
5701 dtpoff_base (struct bfd_link_info *info)
5702 {
5703 /* If tls_sec is NULL, we should have signalled an error already. */
5704 if (elf_hash_table (info)->tls_sec == NULL)
5705 return 0;
5706 return elf_hash_table (info)->tls_sec->vma;
5707 }
5708
5709 /* Return the relocation value for @tpoff relocation
5710 if STT_TLS virtual address is ADDRESS. */
5711
5712 static bfd_vma
5713 tpoff (struct bfd_link_info *info, bfd_vma address)
5714 {
5715 struct elf_link_hash_table *htab = elf_hash_table (info);
5716 bfd_vma base;
5717
5718 /* If tls_sec is NULL, we should have signalled an error already. */
5719 if (htab->tls_sec == NULL)
5720 return 0;
5721 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5722 return address - htab->tls_sec->vma + base;
5723 }
5724
5725 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5726 VALUE is the relocation value. */
5727
5728 static bfd_reloc_status_type
5729 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5730 {
5731 if (value > 0xfff)
5732 return bfd_reloc_overflow;
5733
5734 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5735 bfd_put_32 (abfd, value, data);
5736 return bfd_reloc_ok;
5737 }
5738
5739 /* For a given value of n, calculate the value of G_n as required to
5740 deal with group relocations. We return it in the form of an
5741 encoded constant-and-rotation, together with the final residual. If n is
5742 specified as less than zero, then final_residual is filled with the
5743 input value and no further action is performed. */
5744
5745 static bfd_vma
5746 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5747 {
5748 int current_n;
5749 bfd_vma g_n;
5750 bfd_vma encoded_g_n = 0;
5751 bfd_vma residual = value; /* Also known as Y_n. */
5752
5753 for (current_n = 0; current_n <= n; current_n++)
5754 {
5755 int shift;
5756
5757 /* Calculate which part of the value to mask. */
5758 if (residual == 0)
5759 shift = 0;
5760 else
5761 {
5762 int msb;
5763
5764 /* Determine the most significant bit in the residual and
5765 align the resulting value to a 2-bit boundary. */
5766 for (msb = 30; msb >= 0; msb -= 2)
5767 if (residual & (3 << msb))
5768 break;
5769
5770 /* The desired shift is now (msb - 6), or zero, whichever
5771 is the greater. */
5772 shift = msb - 6;
5773 if (shift < 0)
5774 shift = 0;
5775 }
5776
5777 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5778 g_n = residual & (0xff << shift);
5779 encoded_g_n = (g_n >> shift)
5780 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5781
5782 /* Calculate the residual for the next time around. */
5783 residual &= ~g_n;
5784 }
5785
5786 *final_residual = residual;
5787
5788 return encoded_g_n;
5789 }
5790
5791 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5792 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5793
5794 static int
5795 identify_add_or_sub (bfd_vma insn)
5796 {
5797 int opcode = insn & 0x1e00000;
5798
5799 if (opcode == 1 << 23) /* ADD */
5800 return 1;
5801
5802 if (opcode == 1 << 22) /* SUB */
5803 return -1;
5804
5805 return 0;
5806 }
5807
5808 /* Perform a relocation as part of a final link. */
5809
5810 static bfd_reloc_status_type
5811 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5812 bfd * input_bfd,
5813 bfd * output_bfd,
5814 asection * input_section,
5815 bfd_byte * contents,
5816 Elf_Internal_Rela * rel,
5817 bfd_vma value,
5818 struct bfd_link_info * info,
5819 asection * sym_sec,
5820 const char * sym_name,
5821 int sym_flags,
5822 struct elf_link_hash_entry * h,
5823 bfd_boolean * unresolved_reloc_p,
5824 char ** error_message)
5825 {
5826 unsigned long r_type = howto->type;
5827 unsigned long r_symndx;
5828 bfd_byte * hit_data = contents + rel->r_offset;
5829 bfd * dynobj = NULL;
5830 Elf_Internal_Shdr * symtab_hdr;
5831 struct elf_link_hash_entry ** sym_hashes;
5832 bfd_vma * local_got_offsets;
5833 asection * sgot = NULL;
5834 asection * splt = NULL;
5835 asection * sreloc = NULL;
5836 bfd_vma addend;
5837 bfd_signed_vma signed_addend;
5838 struct elf32_arm_link_hash_table * globals;
5839
5840 globals = elf32_arm_hash_table (info);
5841
5842 BFD_ASSERT (is_arm_elf (input_bfd));
5843
5844 /* Some relocation types map to different relocations depending on the
5845 target. We pick the right one here. */
5846 r_type = arm_real_reloc_type (globals, r_type);
5847 if (r_type != howto->type)
5848 howto = elf32_arm_howto_from_type (r_type);
5849
5850 /* If the start address has been set, then set the EF_ARM_HASENTRY
5851 flag. Setting this more than once is redundant, but the cost is
5852 not too high, and it keeps the code simple.
5853
5854 The test is done here, rather than somewhere else, because the
5855 start address is only set just before the final link commences.
5856
5857 Note - if the user deliberately sets a start address of 0, the
5858 flag will not be set. */
5859 if (bfd_get_start_address (output_bfd) != 0)
5860 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5861
5862 dynobj = elf_hash_table (info)->dynobj;
5863 if (dynobj)
5864 {
5865 sgot = bfd_get_section_by_name (dynobj, ".got");
5866 splt = bfd_get_section_by_name (dynobj, ".plt");
5867 }
5868 symtab_hdr = & elf_symtab_hdr (input_bfd);
5869 sym_hashes = elf_sym_hashes (input_bfd);
5870 local_got_offsets = elf_local_got_offsets (input_bfd);
5871 r_symndx = ELF32_R_SYM (rel->r_info);
5872
5873 if (globals->use_rel)
5874 {
5875 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5876
5877 if (addend & ((howto->src_mask + 1) >> 1))
5878 {
5879 signed_addend = -1;
5880 signed_addend &= ~ howto->src_mask;
5881 signed_addend |= addend;
5882 }
5883 else
5884 signed_addend = addend;
5885 }
5886 else
5887 addend = signed_addend = rel->r_addend;
5888
5889 switch (r_type)
5890 {
5891 case R_ARM_NONE:
5892 /* We don't need to find a value for this symbol. It's just a
5893 marker. */
5894 *unresolved_reloc_p = FALSE;
5895 return bfd_reloc_ok;
5896
5897 case R_ARM_ABS12:
5898 if (!globals->vxworks_p)
5899 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5900
5901 case R_ARM_PC24:
5902 case R_ARM_ABS32:
5903 case R_ARM_ABS32_NOI:
5904 case R_ARM_REL32:
5905 case R_ARM_REL32_NOI:
5906 case R_ARM_CALL:
5907 case R_ARM_JUMP24:
5908 case R_ARM_XPC25:
5909 case R_ARM_PREL31:
5910 case R_ARM_PLT32:
5911 /* Handle relocations which should use the PLT entry. ABS32/REL32
5912 will use the symbol's value, which may point to a PLT entry, but we
5913 don't need to handle that here. If we created a PLT entry, all
5914 branches in this object should go to it. */
5915 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5916 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5917 && h != NULL
5918 && splt != NULL
5919 && h->plt.offset != (bfd_vma) -1)
5920 {
5921 /* If we've created a .plt section, and assigned a PLT entry to
5922 this function, it should not be known to bind locally. If
5923 it were, we would have cleared the PLT entry. */
5924 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5925
5926 value = (splt->output_section->vma
5927 + splt->output_offset
5928 + h->plt.offset);
5929 *unresolved_reloc_p = FALSE;
5930 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5931 contents, rel->r_offset, value,
5932 rel->r_addend);
5933 }
5934
5935 /* When generating a shared object or relocatable executable, these
5936 relocations are copied into the output file to be resolved at
5937 run time. */
5938 if ((info->shared || globals->root.is_relocatable_executable)
5939 && (input_section->flags & SEC_ALLOC)
5940 && !(elf32_arm_hash_table (info)->vxworks_p
5941 && strcmp (input_section->output_section->name,
5942 ".tls_vars") == 0)
5943 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5944 || !SYMBOL_CALLS_LOCAL (info, h))
5945 && (h == NULL
5946 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5947 || h->root.type != bfd_link_hash_undefweak)
5948 && r_type != R_ARM_PC24
5949 && r_type != R_ARM_CALL
5950 && r_type != R_ARM_JUMP24
5951 && r_type != R_ARM_PREL31
5952 && r_type != R_ARM_PLT32)
5953 {
5954 Elf_Internal_Rela outrel;
5955 bfd_byte *loc;
5956 bfd_boolean skip, relocate;
5957
5958 *unresolved_reloc_p = FALSE;
5959
5960 if (sreloc == NULL)
5961 {
5962 const char * name;
5963
5964 name = (bfd_elf_string_from_elf_section
5965 (input_bfd,
5966 elf_elfheader (input_bfd)->e_shstrndx,
5967 elf_section_data (input_section)->rel_hdr.sh_name));
5968 if (name == NULL)
5969 return bfd_reloc_notsupported;
5970
5971 BFD_ASSERT (reloc_section_p (globals, name, input_section));
5972
5973 sreloc = bfd_get_section_by_name (dynobj, name);
5974 BFD_ASSERT (sreloc != NULL);
5975 }
5976
5977 skip = FALSE;
5978 relocate = FALSE;
5979
5980 outrel.r_addend = addend;
5981 outrel.r_offset =
5982 _bfd_elf_section_offset (output_bfd, info, input_section,
5983 rel->r_offset);
5984 if (outrel.r_offset == (bfd_vma) -1)
5985 skip = TRUE;
5986 else if (outrel.r_offset == (bfd_vma) -2)
5987 skip = TRUE, relocate = TRUE;
5988 outrel.r_offset += (input_section->output_section->vma
5989 + input_section->output_offset);
5990
5991 if (skip)
5992 memset (&outrel, 0, sizeof outrel);
5993 else if (h != NULL
5994 && h->dynindx != -1
5995 && (!info->shared
5996 || !info->symbolic
5997 || !h->def_regular))
5998 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
5999 else
6000 {
6001 int symbol;
6002
6003 /* This symbol is local, or marked to become local. */
6004 if (sym_flags == STT_ARM_TFUNC)
6005 value |= 1;
6006 if (globals->symbian_p)
6007 {
6008 asection *osec;
6009
6010 /* On Symbian OS, the data segment and text segement
6011 can be relocated independently. Therefore, we
6012 must indicate the segment to which this
6013 relocation is relative. The BPABI allows us to
6014 use any symbol in the right segment; we just use
6015 the section symbol as it is convenient. (We
6016 cannot use the symbol given by "h" directly as it
6017 will not appear in the dynamic symbol table.)
6018
6019 Note that the dynamic linker ignores the section
6020 symbol value, so we don't subtract osec->vma
6021 from the emitted reloc addend. */
6022 if (sym_sec)
6023 osec = sym_sec->output_section;
6024 else
6025 osec = input_section->output_section;
6026 symbol = elf_section_data (osec)->dynindx;
6027 if (symbol == 0)
6028 {
6029 struct elf_link_hash_table *htab = elf_hash_table (info);
6030
6031 if ((osec->flags & SEC_READONLY) == 0
6032 && htab->data_index_section != NULL)
6033 osec = htab->data_index_section;
6034 else
6035 osec = htab->text_index_section;
6036 symbol = elf_section_data (osec)->dynindx;
6037 }
6038 BFD_ASSERT (symbol != 0);
6039 }
6040 else
6041 /* On SVR4-ish systems, the dynamic loader cannot
6042 relocate the text and data segments independently,
6043 so the symbol does not matter. */
6044 symbol = 0;
6045 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6046 if (globals->use_rel)
6047 relocate = TRUE;
6048 else
6049 outrel.r_addend += value;
6050 }
6051
6052 loc = sreloc->contents;
6053 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6054 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6055
6056 /* If this reloc is against an external symbol, we do not want to
6057 fiddle with the addend. Otherwise, we need to include the symbol
6058 value so that it becomes an addend for the dynamic reloc. */
6059 if (! relocate)
6060 return bfd_reloc_ok;
6061
6062 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6063 contents, rel->r_offset, value,
6064 (bfd_vma) 0);
6065 }
6066 else switch (r_type)
6067 {
6068 case R_ARM_ABS12:
6069 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6070
6071 case R_ARM_XPC25: /* Arm BLX instruction. */
6072 case R_ARM_CALL:
6073 case R_ARM_JUMP24:
6074 case R_ARM_PC24: /* Arm B/BL instruction. */
6075 case R_ARM_PLT32:
6076 {
6077 bfd_vma from;
6078 bfd_signed_vma branch_offset;
6079 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6080
6081 from = (input_section->output_section->vma
6082 + input_section->output_offset
6083 + rel->r_offset);
6084 branch_offset = (bfd_signed_vma)(value - from);
6085
6086 if (r_type == R_ARM_XPC25)
6087 {
6088 /* Check for Arm calling Arm function. */
6089 /* FIXME: Should we translate the instruction into a BL
6090 instruction instead ? */
6091 if (sym_flags != STT_ARM_TFUNC)
6092 (*_bfd_error_handler)
6093 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6094 input_bfd,
6095 h ? h->root.root.string : "(local)");
6096 }
6097 else if (r_type != R_ARM_CALL)
6098 {
6099 /* Check for Arm calling Thumb function. */
6100 if (sym_flags == STT_ARM_TFUNC)
6101 {
6102 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6103 output_bfd, input_section,
6104 hit_data, sym_sec, rel->r_offset,
6105 signed_addend, value,
6106 error_message))
6107 return bfd_reloc_ok;
6108 else
6109 return bfd_reloc_dangerous;
6110 }
6111 }
6112
6113 /* Check if a stub has to be inserted because the
6114 destination is too far or we are changing mode. */
6115 if (r_type == R_ARM_CALL)
6116 {
6117 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6118 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6119 || sym_flags == STT_ARM_TFUNC)
6120 {
6121 /* The target is out of reach, so redirect the
6122 branch to the local stub for this function. */
6123
6124 stub_entry = elf32_arm_get_stub_entry (input_section,
6125 sym_sec, h,
6126 rel, globals);
6127 if (stub_entry != NULL)
6128 value = (stub_entry->stub_offset
6129 + stub_entry->stub_sec->output_offset
6130 + stub_entry->stub_sec->output_section->vma);
6131 }
6132 }
6133
6134 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6135 where:
6136 S is the address of the symbol in the relocation.
6137 P is address of the instruction being relocated.
6138 A is the addend (extracted from the instruction) in bytes.
6139
6140 S is held in 'value'.
6141 P is the base address of the section containing the
6142 instruction plus the offset of the reloc into that
6143 section, ie:
6144 (input_section->output_section->vma +
6145 input_section->output_offset +
6146 rel->r_offset).
6147 A is the addend, converted into bytes, ie:
6148 (signed_addend * 4)
6149
6150 Note: None of these operations have knowledge of the pipeline
6151 size of the processor, thus it is up to the assembler to
6152 encode this information into the addend. */
6153 value -= (input_section->output_section->vma
6154 + input_section->output_offset);
6155 value -= rel->r_offset;
6156 if (globals->use_rel)
6157 value += (signed_addend << howto->size);
6158 else
6159 /* RELA addends do not have to be adjusted by howto->size. */
6160 value += signed_addend;
6161
6162 signed_addend = value;
6163 signed_addend >>= howto->rightshift;
6164
6165 /* A branch to an undefined weak symbol is turned into a jump to
6166 the next instruction. */
6167 if (h && h->root.type == bfd_link_hash_undefweak)
6168 {
6169 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6170 | 0x0affffff;
6171 }
6172 else
6173 {
6174 /* Perform a signed range check. */
6175 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6176 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6177 return bfd_reloc_overflow;
6178
6179 addend = (value & 2);
6180
6181 value = (signed_addend & howto->dst_mask)
6182 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6183
6184 /* Set the H bit in the BLX instruction. */
6185 if (sym_flags == STT_ARM_TFUNC)
6186 {
6187 if (addend)
6188 value |= (1 << 24);
6189 else
6190 value &= ~(bfd_vma)(1 << 24);
6191 }
6192 if (r_type == R_ARM_CALL)
6193 {
6194 /* Select the correct instruction (BL or BLX). */
6195 /* Only if we are not handling a BL to a stub. In this
6196 case, mode switching is performed by the stub. */
6197 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6198 value |= (1 << 28);
6199 else
6200 {
6201 value &= ~(bfd_vma)(1 << 28);
6202 value |= (1 << 24);
6203 }
6204 }
6205 }
6206 }
6207 break;
6208
6209 case R_ARM_ABS32:
6210 value += addend;
6211 if (sym_flags == STT_ARM_TFUNC)
6212 value |= 1;
6213 break;
6214
6215 case R_ARM_ABS32_NOI:
6216 value += addend;
6217 break;
6218
6219 case R_ARM_REL32:
6220 value += addend;
6221 if (sym_flags == STT_ARM_TFUNC)
6222 value |= 1;
6223 value -= (input_section->output_section->vma
6224 + input_section->output_offset + rel->r_offset);
6225 break;
6226
6227 case R_ARM_REL32_NOI:
6228 value += addend;
6229 value -= (input_section->output_section->vma
6230 + input_section->output_offset + rel->r_offset);
6231 break;
6232
6233 case R_ARM_PREL31:
6234 value -= (input_section->output_section->vma
6235 + input_section->output_offset + rel->r_offset);
6236 value += signed_addend;
6237 if (! h || h->root.type != bfd_link_hash_undefweak)
6238 {
6239 /* Check for overflow. */
6240 if ((value ^ (value >> 1)) & (1 << 30))
6241 return bfd_reloc_overflow;
6242 }
6243 value &= 0x7fffffff;
6244 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6245 if (sym_flags == STT_ARM_TFUNC)
6246 value |= 1;
6247 break;
6248 }
6249
6250 bfd_put_32 (input_bfd, value, hit_data);
6251 return bfd_reloc_ok;
6252
6253 case R_ARM_ABS8:
6254 value += addend;
6255 if ((long) value > 0x7f || (long) value < -0x80)
6256 return bfd_reloc_overflow;
6257
6258 bfd_put_8 (input_bfd, value, hit_data);
6259 return bfd_reloc_ok;
6260
6261 case R_ARM_ABS16:
6262 value += addend;
6263
6264 if ((long) value > 0x7fff || (long) value < -0x8000)
6265 return bfd_reloc_overflow;
6266
6267 bfd_put_16 (input_bfd, value, hit_data);
6268 return bfd_reloc_ok;
6269
6270 case R_ARM_THM_ABS5:
6271 /* Support ldr and str instructions for the thumb. */
6272 if (globals->use_rel)
6273 {
6274 /* Need to refetch addend. */
6275 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6276 /* ??? Need to determine shift amount from operand size. */
6277 addend >>= howto->rightshift;
6278 }
6279 value += addend;
6280
6281 /* ??? Isn't value unsigned? */
6282 if ((long) value > 0x1f || (long) value < -0x10)
6283 return bfd_reloc_overflow;
6284
6285 /* ??? Value needs to be properly shifted into place first. */
6286 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6287 bfd_put_16 (input_bfd, value, hit_data);
6288 return bfd_reloc_ok;
6289
6290 case R_ARM_THM_ALU_PREL_11_0:
6291 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6292 {
6293 bfd_vma insn;
6294 bfd_signed_vma relocation;
6295
6296 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6297 | bfd_get_16 (input_bfd, hit_data + 2);
6298
6299 if (globals->use_rel)
6300 {
6301 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6302 | ((insn & (1 << 26)) >> 15);
6303 if (insn & 0xf00000)
6304 signed_addend = -signed_addend;
6305 }
6306
6307 relocation = value + signed_addend;
6308 relocation -= (input_section->output_section->vma
6309 + input_section->output_offset
6310 + rel->r_offset);
6311
6312 value = abs (relocation);
6313
6314 if (value >= 0x1000)
6315 return bfd_reloc_overflow;
6316
6317 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6318 | ((value & 0x700) << 4)
6319 | ((value & 0x800) << 15);
6320 if (relocation < 0)
6321 insn |= 0xa00000;
6322
6323 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6324 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6325
6326 return bfd_reloc_ok;
6327 }
6328
6329 case R_ARM_THM_PC12:
6330 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6331 {
6332 bfd_vma insn;
6333 bfd_signed_vma relocation;
6334
6335 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6336 | bfd_get_16 (input_bfd, hit_data + 2);
6337
6338 if (globals->use_rel)
6339 {
6340 signed_addend = insn & 0xfff;
6341 if (!(insn & (1 << 23)))
6342 signed_addend = -signed_addend;
6343 }
6344
6345 relocation = value + signed_addend;
6346 relocation -= (input_section->output_section->vma
6347 + input_section->output_offset
6348 + rel->r_offset);
6349
6350 value = abs (relocation);
6351
6352 if (value >= 0x1000)
6353 return bfd_reloc_overflow;
6354
6355 insn = (insn & 0xff7ff000) | value;
6356 if (relocation >= 0)
6357 insn |= (1 << 23);
6358
6359 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6360 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6361
6362 return bfd_reloc_ok;
6363 }
6364
6365 case R_ARM_THM_XPC22:
6366 case R_ARM_THM_CALL:
6367 case R_ARM_THM_JUMP24:
6368 /* Thumb BL (branch long instruction). */
6369 {
6370 bfd_vma relocation;
6371 bfd_vma reloc_sign;
6372 bfd_boolean overflow = FALSE;
6373 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6374 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6375 bfd_signed_vma reloc_signed_max;
6376 bfd_signed_vma reloc_signed_min;
6377 bfd_vma check;
6378 bfd_signed_vma signed_check;
6379 int bitsize;
6380 int thumb2 = using_thumb2 (globals);
6381
6382 /* A branch to an undefined weak symbol is turned into a jump to
6383 the next instruction. */
6384 if (h && h->root.type == bfd_link_hash_undefweak)
6385 {
6386 bfd_put_16 (input_bfd, 0xe000, hit_data);
6387 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6388 return bfd_reloc_ok;
6389 }
6390
6391 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6392 with Thumb-1) involving the J1 and J2 bits. */
6393 if (globals->use_rel)
6394 {
6395 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6396 bfd_vma upper = upper_insn & 0x3ff;
6397 bfd_vma lower = lower_insn & 0x7ff;
6398 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6399 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6400 bfd_vma i1 = j1 ^ s ? 0 : 1;
6401 bfd_vma i2 = j2 ^ s ? 0 : 1;
6402
6403 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6404 /* Sign extend. */
6405 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6406
6407 signed_addend = addend;
6408 }
6409
6410 if (r_type == R_ARM_THM_XPC22)
6411 {
6412 /* Check for Thumb to Thumb call. */
6413 /* FIXME: Should we translate the instruction into a BL
6414 instruction instead ? */
6415 if (sym_flags == STT_ARM_TFUNC)
6416 (*_bfd_error_handler)
6417 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6418 input_bfd,
6419 h ? h->root.root.string : "(local)");
6420 }
6421 else
6422 {
6423 /* If it is not a call to Thumb, assume call to Arm.
6424 If it is a call relative to a section name, then it is not a
6425 function call at all, but rather a long jump. Calls through
6426 the PLT do not require stubs. */
6427 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6428 && (h == NULL || splt == NULL
6429 || h->plt.offset == (bfd_vma) -1))
6430 {
6431 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6432 {
6433 /* Convert BL to BLX. */
6434 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6435 }
6436 else if (r_type != R_ARM_THM_CALL)
6437 {
6438 if (elf32_thumb_to_arm_stub
6439 (info, sym_name, input_bfd, output_bfd, input_section,
6440 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6441 error_message))
6442 return bfd_reloc_ok;
6443 else
6444 return bfd_reloc_dangerous;
6445 }
6446 }
6447 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6448 && r_type == R_ARM_THM_CALL)
6449 {
6450 /* Make sure this is a BL. */
6451 lower_insn |= 0x1800;
6452 }
6453 }
6454
6455 /* Handle calls via the PLT. */
6456 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6457 {
6458 value = (splt->output_section->vma
6459 + splt->output_offset
6460 + h->plt.offset);
6461 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6462 {
6463 /* If the Thumb BLX instruction is available, convert the
6464 BL to a BLX instruction to call the ARM-mode PLT entry. */
6465 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6466 }
6467 else
6468 /* Target the Thumb stub before the ARM PLT entry. */
6469 value -= PLT_THUMB_STUB_SIZE;
6470 *unresolved_reloc_p = FALSE;
6471 }
6472
6473 if (r_type == R_ARM_THM_CALL)
6474 {
6475 /* Check if a stub has to be inserted because the destination
6476 is too far. */
6477 bfd_vma from;
6478 bfd_signed_vma branch_offset;
6479 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6480
6481 from = (input_section->output_section->vma
6482 + input_section->output_offset
6483 + rel->r_offset);
6484 branch_offset = (bfd_signed_vma)(value - from);
6485
6486 if ((!thumb2
6487 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6488 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6489 ||
6490 (thumb2
6491 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6492 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6493 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6494 {
6495 /* The target is out of reach or we are changing modes, so
6496 redirect the branch to the local stub for this
6497 function. */
6498 stub_entry = elf32_arm_get_stub_entry (input_section,
6499 sym_sec, h,
6500 rel, globals);
6501 if (stub_entry != NULL)
6502 value = (stub_entry->stub_offset
6503 + stub_entry->stub_sec->output_offset
6504 + stub_entry->stub_sec->output_section->vma);
6505
6506 /* If this call becomes a call to Arm, force BLX. */
6507 if (globals->use_blx)
6508 {
6509 if ((stub_entry
6510 && !arm_stub_is_thumb (stub_entry->stub_type))
6511 || (sym_flags != STT_ARM_TFUNC))
6512 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6513 }
6514 }
6515 }
6516
6517 relocation = value + signed_addend;
6518
6519 relocation -= (input_section->output_section->vma
6520 + input_section->output_offset
6521 + rel->r_offset);
6522
6523 check = relocation >> howto->rightshift;
6524
6525 /* If this is a signed value, the rightshift just dropped
6526 leading 1 bits (assuming twos complement). */
6527 if ((bfd_signed_vma) relocation >= 0)
6528 signed_check = check;
6529 else
6530 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6531
6532 /* Calculate the permissable maximum and minimum values for
6533 this relocation according to whether we're relocating for
6534 Thumb-2 or not. */
6535 bitsize = howto->bitsize;
6536 if (!thumb2)
6537 bitsize -= 2;
6538 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6539 reloc_signed_min = ~reloc_signed_max;
6540
6541 /* Assumes two's complement. */
6542 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6543 overflow = TRUE;
6544
6545 if ((lower_insn & 0x5000) == 0x4000)
6546 /* For a BLX instruction, make sure that the relocation is rounded up
6547 to a word boundary. This follows the semantics of the instruction
6548 which specifies that bit 1 of the target address will come from bit
6549 1 of the base address. */
6550 relocation = (relocation + 2) & ~ 3;
6551
6552 /* Put RELOCATION back into the insn. Assumes two's complement.
6553 We use the Thumb-2 encoding, which is safe even if dealing with
6554 a Thumb-1 instruction by virtue of our overflow check above. */
6555 reloc_sign = (signed_check < 0) ? 1 : 0;
6556 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6557 | ((relocation >> 12) & 0x3ff)
6558 | (reloc_sign << 10);
6559 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6560 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6561 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6562 | ((relocation >> 1) & 0x7ff);
6563
6564 /* Put the relocated value back in the object file: */
6565 bfd_put_16 (input_bfd, upper_insn, hit_data);
6566 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6567
6568 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6569 }
6570 break;
6571
6572 case R_ARM_THM_JUMP19:
6573 /* Thumb32 conditional branch instruction. */
6574 {
6575 bfd_vma relocation;
6576 bfd_boolean overflow = FALSE;
6577 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6578 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6579 bfd_signed_vma reloc_signed_max = 0xffffe;
6580 bfd_signed_vma reloc_signed_min = -0x100000;
6581 bfd_signed_vma signed_check;
6582
6583 /* Need to refetch the addend, reconstruct the top three bits,
6584 and squish the two 11 bit pieces together. */
6585 if (globals->use_rel)
6586 {
6587 bfd_vma S = (upper_insn & 0x0400) >> 10;
6588 bfd_vma upper = (upper_insn & 0x003f);
6589 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6590 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6591 bfd_vma lower = (lower_insn & 0x07ff);
6592
6593 upper |= J1 << 6;
6594 upper |= J2 << 7;
6595 upper |= (!S) << 8;
6596 upper -= 0x0100; /* Sign extend. */
6597
6598 addend = (upper << 12) | (lower << 1);
6599 signed_addend = addend;
6600 }
6601
6602 /* Handle calls via the PLT. */
6603 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6604 {
6605 value = (splt->output_section->vma
6606 + splt->output_offset
6607 + h->plt.offset);
6608 /* Target the Thumb stub before the ARM PLT entry. */
6609 value -= PLT_THUMB_STUB_SIZE;
6610 *unresolved_reloc_p = FALSE;
6611 }
6612
6613 /* ??? Should handle interworking? GCC might someday try to
6614 use this for tail calls. */
6615
6616 relocation = value + signed_addend;
6617 relocation -= (input_section->output_section->vma
6618 + input_section->output_offset
6619 + rel->r_offset);
6620 signed_check = (bfd_signed_vma) relocation;
6621
6622 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6623 overflow = TRUE;
6624
6625 /* Put RELOCATION back into the insn. */
6626 {
6627 bfd_vma S = (relocation & 0x00100000) >> 20;
6628 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6629 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6630 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6631 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6632
6633 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6634 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6635 }
6636
6637 /* Put the relocated value back in the object file: */
6638 bfd_put_16 (input_bfd, upper_insn, hit_data);
6639 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6640
6641 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6642 }
6643
6644 case R_ARM_THM_JUMP11:
6645 case R_ARM_THM_JUMP8:
6646 case R_ARM_THM_JUMP6:
6647 /* Thumb B (branch) instruction). */
6648 {
6649 bfd_signed_vma relocation;
6650 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6651 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6652 bfd_signed_vma signed_check;
6653
6654 /* CZB cannot jump backward. */
6655 if (r_type == R_ARM_THM_JUMP6)
6656 reloc_signed_min = 0;
6657
6658 if (globals->use_rel)
6659 {
6660 /* Need to refetch addend. */
6661 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6662 if (addend & ((howto->src_mask + 1) >> 1))
6663 {
6664 signed_addend = -1;
6665 signed_addend &= ~ howto->src_mask;
6666 signed_addend |= addend;
6667 }
6668 else
6669 signed_addend = addend;
6670 /* The value in the insn has been right shifted. We need to
6671 undo this, so that we can perform the address calculation
6672 in terms of bytes. */
6673 signed_addend <<= howto->rightshift;
6674 }
6675 relocation = value + signed_addend;
6676
6677 relocation -= (input_section->output_section->vma
6678 + input_section->output_offset
6679 + rel->r_offset);
6680
6681 relocation >>= howto->rightshift;
6682 signed_check = relocation;
6683
6684 if (r_type == R_ARM_THM_JUMP6)
6685 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6686 else
6687 relocation &= howto->dst_mask;
6688 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6689
6690 bfd_put_16 (input_bfd, relocation, hit_data);
6691
6692 /* Assumes two's complement. */
6693 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6694 return bfd_reloc_overflow;
6695
6696 return bfd_reloc_ok;
6697 }
6698
6699 case R_ARM_ALU_PCREL7_0:
6700 case R_ARM_ALU_PCREL15_8:
6701 case R_ARM_ALU_PCREL23_15:
6702 {
6703 bfd_vma insn;
6704 bfd_vma relocation;
6705
6706 insn = bfd_get_32 (input_bfd, hit_data);
6707 if (globals->use_rel)
6708 {
6709 /* Extract the addend. */
6710 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6711 signed_addend = addend;
6712 }
6713 relocation = value + signed_addend;
6714
6715 relocation -= (input_section->output_section->vma
6716 + input_section->output_offset
6717 + rel->r_offset);
6718 insn = (insn & ~0xfff)
6719 | ((howto->bitpos << 7) & 0xf00)
6720 | ((relocation >> howto->bitpos) & 0xff);
6721 bfd_put_32 (input_bfd, value, hit_data);
6722 }
6723 return bfd_reloc_ok;
6724
6725 case R_ARM_GNU_VTINHERIT:
6726 case R_ARM_GNU_VTENTRY:
6727 return bfd_reloc_ok;
6728
6729 case R_ARM_GOTOFF32:
6730 /* Relocation is relative to the start of the
6731 global offset table. */
6732
6733 BFD_ASSERT (sgot != NULL);
6734 if (sgot == NULL)
6735 return bfd_reloc_notsupported;
6736
6737 /* If we are addressing a Thumb function, we need to adjust the
6738 address by one, so that attempts to call the function pointer will
6739 correctly interpret it as Thumb code. */
6740 if (sym_flags == STT_ARM_TFUNC)
6741 value += 1;
6742
6743 /* Note that sgot->output_offset is not involved in this
6744 calculation. We always want the start of .got. If we
6745 define _GLOBAL_OFFSET_TABLE in a different way, as is
6746 permitted by the ABI, we might have to change this
6747 calculation. */
6748 value -= sgot->output_section->vma;
6749 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6750 contents, rel->r_offset, value,
6751 rel->r_addend);
6752
6753 case R_ARM_GOTPC:
6754 /* Use global offset table as symbol value. */
6755 BFD_ASSERT (sgot != NULL);
6756
6757 if (sgot == NULL)
6758 return bfd_reloc_notsupported;
6759
6760 *unresolved_reloc_p = FALSE;
6761 value = sgot->output_section->vma;
6762 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6763 contents, rel->r_offset, value,
6764 rel->r_addend);
6765
6766 case R_ARM_GOT32:
6767 case R_ARM_GOT_PREL:
6768 /* Relocation is to the entry for this symbol in the
6769 global offset table. */
6770 if (sgot == NULL)
6771 return bfd_reloc_notsupported;
6772
6773 if (h != NULL)
6774 {
6775 bfd_vma off;
6776 bfd_boolean dyn;
6777
6778 off = h->got.offset;
6779 BFD_ASSERT (off != (bfd_vma) -1);
6780 dyn = globals->root.dynamic_sections_created;
6781
6782 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6783 || (info->shared
6784 && SYMBOL_REFERENCES_LOCAL (info, h))
6785 || (ELF_ST_VISIBILITY (h->other)
6786 && h->root.type == bfd_link_hash_undefweak))
6787 {
6788 /* This is actually a static link, or it is a -Bsymbolic link
6789 and the symbol is defined locally. We must initialize this
6790 entry in the global offset table. Since the offset must
6791 always be a multiple of 4, we use the least significant bit
6792 to record whether we have initialized it already.
6793
6794 When doing a dynamic link, we create a .rel(a).got relocation
6795 entry to initialize the value. This is done in the
6796 finish_dynamic_symbol routine. */
6797 if ((off & 1) != 0)
6798 off &= ~1;
6799 else
6800 {
6801 /* If we are addressing a Thumb function, we need to
6802 adjust the address by one, so that attempts to
6803 call the function pointer will correctly
6804 interpret it as Thumb code. */
6805 if (sym_flags == STT_ARM_TFUNC)
6806 value |= 1;
6807
6808 bfd_put_32 (output_bfd, value, sgot->contents + off);
6809 h->got.offset |= 1;
6810 }
6811 }
6812 else
6813 *unresolved_reloc_p = FALSE;
6814
6815 value = sgot->output_offset + off;
6816 }
6817 else
6818 {
6819 bfd_vma off;
6820
6821 BFD_ASSERT (local_got_offsets != NULL &&
6822 local_got_offsets[r_symndx] != (bfd_vma) -1);
6823
6824 off = local_got_offsets[r_symndx];
6825
6826 /* The offset must always be a multiple of 4. We use the
6827 least significant bit to record whether we have already
6828 generated the necessary reloc. */
6829 if ((off & 1) != 0)
6830 off &= ~1;
6831 else
6832 {
6833 /* If we are addressing a Thumb function, we need to
6834 adjust the address by one, so that attempts to
6835 call the function pointer will correctly
6836 interpret it as Thumb code. */
6837 if (sym_flags == STT_ARM_TFUNC)
6838 value |= 1;
6839
6840 if (globals->use_rel)
6841 bfd_put_32 (output_bfd, value, sgot->contents + off);
6842
6843 if (info->shared)
6844 {
6845 asection * srelgot;
6846 Elf_Internal_Rela outrel;
6847 bfd_byte *loc;
6848
6849 srelgot = (bfd_get_section_by_name
6850 (dynobj, RELOC_SECTION (globals, ".got")));
6851 BFD_ASSERT (srelgot != NULL);
6852
6853 outrel.r_addend = addend + value;
6854 outrel.r_offset = (sgot->output_section->vma
6855 + sgot->output_offset
6856 + off);
6857 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6858 loc = srelgot->contents;
6859 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6860 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6861 }
6862
6863 local_got_offsets[r_symndx] |= 1;
6864 }
6865
6866 value = sgot->output_offset + off;
6867 }
6868 if (r_type != R_ARM_GOT32)
6869 value += sgot->output_section->vma;
6870
6871 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6872 contents, rel->r_offset, value,
6873 rel->r_addend);
6874
6875 case R_ARM_TLS_LDO32:
6876 value = value - dtpoff_base (info);
6877
6878 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6879 contents, rel->r_offset, value,
6880 rel->r_addend);
6881
6882 case R_ARM_TLS_LDM32:
6883 {
6884 bfd_vma off;
6885
6886 if (globals->sgot == NULL)
6887 abort ();
6888
6889 off = globals->tls_ldm_got.offset;
6890
6891 if ((off & 1) != 0)
6892 off &= ~1;
6893 else
6894 {
6895 /* If we don't know the module number, create a relocation
6896 for it. */
6897 if (info->shared)
6898 {
6899 Elf_Internal_Rela outrel;
6900 bfd_byte *loc;
6901
6902 if (globals->srelgot == NULL)
6903 abort ();
6904
6905 outrel.r_addend = 0;
6906 outrel.r_offset = (globals->sgot->output_section->vma
6907 + globals->sgot->output_offset + off);
6908 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6909
6910 if (globals->use_rel)
6911 bfd_put_32 (output_bfd, outrel.r_addend,
6912 globals->sgot->contents + off);
6913
6914 loc = globals->srelgot->contents;
6915 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6916 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6917 }
6918 else
6919 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6920
6921 globals->tls_ldm_got.offset |= 1;
6922 }
6923
6924 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6925 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6926
6927 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6928 contents, rel->r_offset, value,
6929 rel->r_addend);
6930 }
6931
6932 case R_ARM_TLS_GD32:
6933 case R_ARM_TLS_IE32:
6934 {
6935 bfd_vma off;
6936 int indx;
6937 char tls_type;
6938
6939 if (globals->sgot == NULL)
6940 abort ();
6941
6942 indx = 0;
6943 if (h != NULL)
6944 {
6945 bfd_boolean dyn;
6946 dyn = globals->root.dynamic_sections_created;
6947 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6948 && (!info->shared
6949 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6950 {
6951 *unresolved_reloc_p = FALSE;
6952 indx = h->dynindx;
6953 }
6954 off = h->got.offset;
6955 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6956 }
6957 else
6958 {
6959 if (local_got_offsets == NULL)
6960 abort ();
6961 off = local_got_offsets[r_symndx];
6962 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6963 }
6964
6965 if (tls_type == GOT_UNKNOWN)
6966 abort ();
6967
6968 if ((off & 1) != 0)
6969 off &= ~1;
6970 else
6971 {
6972 bfd_boolean need_relocs = FALSE;
6973 Elf_Internal_Rela outrel;
6974 bfd_byte *loc = NULL;
6975 int cur_off = off;
6976
6977 /* The GOT entries have not been initialized yet. Do it
6978 now, and emit any relocations. If both an IE GOT and a
6979 GD GOT are necessary, we emit the GD first. */
6980
6981 if ((info->shared || indx != 0)
6982 && (h == NULL
6983 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6984 || h->root.type != bfd_link_hash_undefweak))
6985 {
6986 need_relocs = TRUE;
6987 if (globals->srelgot == NULL)
6988 abort ();
6989 loc = globals->srelgot->contents;
6990 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6991 }
6992
6993 if (tls_type & GOT_TLS_GD)
6994 {
6995 if (need_relocs)
6996 {
6997 outrel.r_addend = 0;
6998 outrel.r_offset = (globals->sgot->output_section->vma
6999 + globals->sgot->output_offset
7000 + cur_off);
7001 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
7002
7003 if (globals->use_rel)
7004 bfd_put_32 (output_bfd, outrel.r_addend,
7005 globals->sgot->contents + cur_off);
7006
7007 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7008 globals->srelgot->reloc_count++;
7009 loc += RELOC_SIZE (globals);
7010
7011 if (indx == 0)
7012 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7013 globals->sgot->contents + cur_off + 4);
7014 else
7015 {
7016 outrel.r_addend = 0;
7017 outrel.r_info = ELF32_R_INFO (indx,
7018 R_ARM_TLS_DTPOFF32);
7019 outrel.r_offset += 4;
7020
7021 if (globals->use_rel)
7022 bfd_put_32 (output_bfd, outrel.r_addend,
7023 globals->sgot->contents + cur_off + 4);
7024
7025
7026 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7027 globals->srelgot->reloc_count++;
7028 loc += RELOC_SIZE (globals);
7029 }
7030 }
7031 else
7032 {
7033 /* If we are not emitting relocations for a
7034 general dynamic reference, then we must be in a
7035 static link or an executable link with the
7036 symbol binding locally. Mark it as belonging
7037 to module 1, the executable. */
7038 bfd_put_32 (output_bfd, 1,
7039 globals->sgot->contents + cur_off);
7040 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7041 globals->sgot->contents + cur_off + 4);
7042 }
7043
7044 cur_off += 8;
7045 }
7046
7047 if (tls_type & GOT_TLS_IE)
7048 {
7049 if (need_relocs)
7050 {
7051 if (indx == 0)
7052 outrel.r_addend = value - dtpoff_base (info);
7053 else
7054 outrel.r_addend = 0;
7055 outrel.r_offset = (globals->sgot->output_section->vma
7056 + globals->sgot->output_offset
7057 + cur_off);
7058 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7059
7060 if (globals->use_rel)
7061 bfd_put_32 (output_bfd, outrel.r_addend,
7062 globals->sgot->contents + cur_off);
7063
7064 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7065 globals->srelgot->reloc_count++;
7066 loc += RELOC_SIZE (globals);
7067 }
7068 else
7069 bfd_put_32 (output_bfd, tpoff (info, value),
7070 globals->sgot->contents + cur_off);
7071 cur_off += 4;
7072 }
7073
7074 if (h != NULL)
7075 h->got.offset |= 1;
7076 else
7077 local_got_offsets[r_symndx] |= 1;
7078 }
7079
7080 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7081 off += 8;
7082 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7083 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7084
7085 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7086 contents, rel->r_offset, value,
7087 rel->r_addend);
7088 }
7089
7090 case R_ARM_TLS_LE32:
7091 if (info->shared)
7092 {
7093 (*_bfd_error_handler)
7094 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7095 input_bfd, input_section,
7096 (long) rel->r_offset, howto->name);
7097 return FALSE;
7098 }
7099 else
7100 value = tpoff (info, value);
7101
7102 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7103 contents, rel->r_offset, value,
7104 rel->r_addend);
7105
7106 case R_ARM_V4BX:
7107 if (globals->fix_v4bx)
7108 {
7109 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7110
7111 /* Ensure that we have a BX instruction. */
7112 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7113
7114 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7115 {
7116 /* Branch to veneer. */
7117 bfd_vma glue_addr;
7118 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7119 glue_addr -= input_section->output_section->vma
7120 + input_section->output_offset
7121 + rel->r_offset + 8;
7122 insn = (insn & 0xf0000000) | 0x0a000000
7123 | ((glue_addr >> 2) & 0x00ffffff);
7124 }
7125 else
7126 {
7127 /* Preserve Rm (lowest four bits) and the condition code
7128 (highest four bits). Other bits encode MOV PC,Rm. */
7129 insn = (insn & 0xf000000f) | 0x01a0f000;
7130 }
7131
7132 bfd_put_32 (input_bfd, insn, hit_data);
7133 }
7134 return bfd_reloc_ok;
7135
7136 case R_ARM_MOVW_ABS_NC:
7137 case R_ARM_MOVT_ABS:
7138 case R_ARM_MOVW_PREL_NC:
7139 case R_ARM_MOVT_PREL:
7140 /* Until we properly support segment-base-relative addressing then
7141 we assume the segment base to be zero, as for the group relocations.
7142 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7143 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7144 case R_ARM_MOVW_BREL_NC:
7145 case R_ARM_MOVW_BREL:
7146 case R_ARM_MOVT_BREL:
7147 {
7148 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7149
7150 if (globals->use_rel)
7151 {
7152 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7153 signed_addend = (addend ^ 0x8000) - 0x8000;
7154 }
7155
7156 value += signed_addend;
7157
7158 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7159 value -= (input_section->output_section->vma
7160 + input_section->output_offset + rel->r_offset);
7161
7162 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7163 return bfd_reloc_overflow;
7164
7165 if (sym_flags == STT_ARM_TFUNC)
7166 value |= 1;
7167
7168 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7169 || r_type == R_ARM_MOVT_BREL)
7170 value >>= 16;
7171
7172 insn &= 0xfff0f000;
7173 insn |= value & 0xfff;
7174 insn |= (value & 0xf000) << 4;
7175 bfd_put_32 (input_bfd, insn, hit_data);
7176 }
7177 return bfd_reloc_ok;
7178
7179 case R_ARM_THM_MOVW_ABS_NC:
7180 case R_ARM_THM_MOVT_ABS:
7181 case R_ARM_THM_MOVW_PREL_NC:
7182 case R_ARM_THM_MOVT_PREL:
7183 /* Until we properly support segment-base-relative addressing then
7184 we assume the segment base to be zero, as for the above relocations.
7185 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7186 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7187 as R_ARM_THM_MOVT_ABS. */
7188 case R_ARM_THM_MOVW_BREL_NC:
7189 case R_ARM_THM_MOVW_BREL:
7190 case R_ARM_THM_MOVT_BREL:
7191 {
7192 bfd_vma insn;
7193
7194 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7195 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7196
7197 if (globals->use_rel)
7198 {
7199 addend = ((insn >> 4) & 0xf000)
7200 | ((insn >> 15) & 0x0800)
7201 | ((insn >> 4) & 0x0700)
7202 | (insn & 0x00ff);
7203 signed_addend = (addend ^ 0x8000) - 0x8000;
7204 }
7205
7206 value += signed_addend;
7207
7208 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7209 value -= (input_section->output_section->vma
7210 + input_section->output_offset + rel->r_offset);
7211
7212 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7213 return bfd_reloc_overflow;
7214
7215 if (sym_flags == STT_ARM_TFUNC)
7216 value |= 1;
7217
7218 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7219 || r_type == R_ARM_THM_MOVT_BREL)
7220 value >>= 16;
7221
7222 insn &= 0xfbf08f00;
7223 insn |= (value & 0xf000) << 4;
7224 insn |= (value & 0x0800) << 15;
7225 insn |= (value & 0x0700) << 4;
7226 insn |= (value & 0x00ff);
7227
7228 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7229 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7230 }
7231 return bfd_reloc_ok;
7232
7233 case R_ARM_ALU_PC_G0_NC:
7234 case R_ARM_ALU_PC_G1_NC:
7235 case R_ARM_ALU_PC_G0:
7236 case R_ARM_ALU_PC_G1:
7237 case R_ARM_ALU_PC_G2:
7238 case R_ARM_ALU_SB_G0_NC:
7239 case R_ARM_ALU_SB_G1_NC:
7240 case R_ARM_ALU_SB_G0:
7241 case R_ARM_ALU_SB_G1:
7242 case R_ARM_ALU_SB_G2:
7243 {
7244 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7245 bfd_vma pc = input_section->output_section->vma
7246 + input_section->output_offset + rel->r_offset;
7247 /* sb should be the origin of the *segment* containing the symbol.
7248 It is not clear how to obtain this OS-dependent value, so we
7249 make an arbitrary choice of zero. */
7250 bfd_vma sb = 0;
7251 bfd_vma residual;
7252 bfd_vma g_n;
7253 bfd_signed_vma signed_value;
7254 int group = 0;
7255
7256 /* Determine which group of bits to select. */
7257 switch (r_type)
7258 {
7259 case R_ARM_ALU_PC_G0_NC:
7260 case R_ARM_ALU_PC_G0:
7261 case R_ARM_ALU_SB_G0_NC:
7262 case R_ARM_ALU_SB_G0:
7263 group = 0;
7264 break;
7265
7266 case R_ARM_ALU_PC_G1_NC:
7267 case R_ARM_ALU_PC_G1:
7268 case R_ARM_ALU_SB_G1_NC:
7269 case R_ARM_ALU_SB_G1:
7270 group = 1;
7271 break;
7272
7273 case R_ARM_ALU_PC_G2:
7274 case R_ARM_ALU_SB_G2:
7275 group = 2;
7276 break;
7277
7278 default:
7279 abort ();
7280 }
7281
7282 /* If REL, extract the addend from the insn. If RELA, it will
7283 have already been fetched for us. */
7284 if (globals->use_rel)
7285 {
7286 int negative;
7287 bfd_vma constant = insn & 0xff;
7288 bfd_vma rotation = (insn & 0xf00) >> 8;
7289
7290 if (rotation == 0)
7291 signed_addend = constant;
7292 else
7293 {
7294 /* Compensate for the fact that in the instruction, the
7295 rotation is stored in multiples of 2 bits. */
7296 rotation *= 2;
7297
7298 /* Rotate "constant" right by "rotation" bits. */
7299 signed_addend = (constant >> rotation) |
7300 (constant << (8 * sizeof (bfd_vma) - rotation));
7301 }
7302
7303 /* Determine if the instruction is an ADD or a SUB.
7304 (For REL, this determines the sign of the addend.) */
7305 negative = identify_add_or_sub (insn);
7306 if (negative == 0)
7307 {
7308 (*_bfd_error_handler)
7309 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7310 input_bfd, input_section,
7311 (long) rel->r_offset, howto->name);
7312 return bfd_reloc_overflow;
7313 }
7314
7315 signed_addend *= negative;
7316 }
7317
7318 /* Compute the value (X) to go in the place. */
7319 if (r_type == R_ARM_ALU_PC_G0_NC
7320 || r_type == R_ARM_ALU_PC_G1_NC
7321 || r_type == R_ARM_ALU_PC_G0
7322 || r_type == R_ARM_ALU_PC_G1
7323 || r_type == R_ARM_ALU_PC_G2)
7324 /* PC relative. */
7325 signed_value = value - pc + signed_addend;
7326 else
7327 /* Section base relative. */
7328 signed_value = value - sb + signed_addend;
7329
7330 /* If the target symbol is a Thumb function, then set the
7331 Thumb bit in the address. */
7332 if (sym_flags == STT_ARM_TFUNC)
7333 signed_value |= 1;
7334
7335 /* Calculate the value of the relevant G_n, in encoded
7336 constant-with-rotation format. */
7337 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7338 &residual);
7339
7340 /* Check for overflow if required. */
7341 if ((r_type == R_ARM_ALU_PC_G0
7342 || r_type == R_ARM_ALU_PC_G1
7343 || r_type == R_ARM_ALU_PC_G2
7344 || r_type == R_ARM_ALU_SB_G0
7345 || r_type == R_ARM_ALU_SB_G1
7346 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7347 {
7348 (*_bfd_error_handler)
7349 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7350 input_bfd, input_section,
7351 (long) rel->r_offset, abs (signed_value), howto->name);
7352 return bfd_reloc_overflow;
7353 }
7354
7355 /* Mask out the value and the ADD/SUB part of the opcode; take care
7356 not to destroy the S bit. */
7357 insn &= 0xff1ff000;
7358
7359 /* Set the opcode according to whether the value to go in the
7360 place is negative. */
7361 if (signed_value < 0)
7362 insn |= 1 << 22;
7363 else
7364 insn |= 1 << 23;
7365
7366 /* Encode the offset. */
7367 insn |= g_n;
7368
7369 bfd_put_32 (input_bfd, insn, hit_data);
7370 }
7371 return bfd_reloc_ok;
7372
7373 case R_ARM_LDR_PC_G0:
7374 case R_ARM_LDR_PC_G1:
7375 case R_ARM_LDR_PC_G2:
7376 case R_ARM_LDR_SB_G0:
7377 case R_ARM_LDR_SB_G1:
7378 case R_ARM_LDR_SB_G2:
7379 {
7380 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7381 bfd_vma pc = input_section->output_section->vma
7382 + input_section->output_offset + rel->r_offset;
7383 bfd_vma sb = 0; /* See note above. */
7384 bfd_vma residual;
7385 bfd_signed_vma signed_value;
7386 int group = 0;
7387
7388 /* Determine which groups of bits to calculate. */
7389 switch (r_type)
7390 {
7391 case R_ARM_LDR_PC_G0:
7392 case R_ARM_LDR_SB_G0:
7393 group = 0;
7394 break;
7395
7396 case R_ARM_LDR_PC_G1:
7397 case R_ARM_LDR_SB_G1:
7398 group = 1;
7399 break;
7400
7401 case R_ARM_LDR_PC_G2:
7402 case R_ARM_LDR_SB_G2:
7403 group = 2;
7404 break;
7405
7406 default:
7407 abort ();
7408 }
7409
7410 /* If REL, extract the addend from the insn. If RELA, it will
7411 have already been fetched for us. */
7412 if (globals->use_rel)
7413 {
7414 int negative = (insn & (1 << 23)) ? 1 : -1;
7415 signed_addend = negative * (insn & 0xfff);
7416 }
7417
7418 /* Compute the value (X) to go in the place. */
7419 if (r_type == R_ARM_LDR_PC_G0
7420 || r_type == R_ARM_LDR_PC_G1
7421 || r_type == R_ARM_LDR_PC_G2)
7422 /* PC relative. */
7423 signed_value = value - pc + signed_addend;
7424 else
7425 /* Section base relative. */
7426 signed_value = value - sb + signed_addend;
7427
7428 /* Calculate the value of the relevant G_{n-1} to obtain
7429 the residual at that stage. */
7430 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7431
7432 /* Check for overflow. */
7433 if (residual >= 0x1000)
7434 {
7435 (*_bfd_error_handler)
7436 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7437 input_bfd, input_section,
7438 (long) rel->r_offset, abs (signed_value), howto->name);
7439 return bfd_reloc_overflow;
7440 }
7441
7442 /* Mask out the value and U bit. */
7443 insn &= 0xff7ff000;
7444
7445 /* Set the U bit if the value to go in the place is non-negative. */
7446 if (signed_value >= 0)
7447 insn |= 1 << 23;
7448
7449 /* Encode the offset. */
7450 insn |= residual;
7451
7452 bfd_put_32 (input_bfd, insn, hit_data);
7453 }
7454 return bfd_reloc_ok;
7455
7456 case R_ARM_LDRS_PC_G0:
7457 case R_ARM_LDRS_PC_G1:
7458 case R_ARM_LDRS_PC_G2:
7459 case R_ARM_LDRS_SB_G0:
7460 case R_ARM_LDRS_SB_G1:
7461 case R_ARM_LDRS_SB_G2:
7462 {
7463 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7464 bfd_vma pc = input_section->output_section->vma
7465 + input_section->output_offset + rel->r_offset;
7466 bfd_vma sb = 0; /* See note above. */
7467 bfd_vma residual;
7468 bfd_signed_vma signed_value;
7469 int group = 0;
7470
7471 /* Determine which groups of bits to calculate. */
7472 switch (r_type)
7473 {
7474 case R_ARM_LDRS_PC_G0:
7475 case R_ARM_LDRS_SB_G0:
7476 group = 0;
7477 break;
7478
7479 case R_ARM_LDRS_PC_G1:
7480 case R_ARM_LDRS_SB_G1:
7481 group = 1;
7482 break;
7483
7484 case R_ARM_LDRS_PC_G2:
7485 case R_ARM_LDRS_SB_G2:
7486 group = 2;
7487 break;
7488
7489 default:
7490 abort ();
7491 }
7492
7493 /* If REL, extract the addend from the insn. If RELA, it will
7494 have already been fetched for us. */
7495 if (globals->use_rel)
7496 {
7497 int negative = (insn & (1 << 23)) ? 1 : -1;
7498 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7499 }
7500
7501 /* Compute the value (X) to go in the place. */
7502 if (r_type == R_ARM_LDRS_PC_G0
7503 || r_type == R_ARM_LDRS_PC_G1
7504 || r_type == R_ARM_LDRS_PC_G2)
7505 /* PC relative. */
7506 signed_value = value - pc + signed_addend;
7507 else
7508 /* Section base relative. */
7509 signed_value = value - sb + signed_addend;
7510
7511 /* Calculate the value of the relevant G_{n-1} to obtain
7512 the residual at that stage. */
7513 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7514
7515 /* Check for overflow. */
7516 if (residual >= 0x100)
7517 {
7518 (*_bfd_error_handler)
7519 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7520 input_bfd, input_section,
7521 (long) rel->r_offset, abs (signed_value), howto->name);
7522 return bfd_reloc_overflow;
7523 }
7524
7525 /* Mask out the value and U bit. */
7526 insn &= 0xff7ff0f0;
7527
7528 /* Set the U bit if the value to go in the place is non-negative. */
7529 if (signed_value >= 0)
7530 insn |= 1 << 23;
7531
7532 /* Encode the offset. */
7533 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7534
7535 bfd_put_32 (input_bfd, insn, hit_data);
7536 }
7537 return bfd_reloc_ok;
7538
7539 case R_ARM_LDC_PC_G0:
7540 case R_ARM_LDC_PC_G1:
7541 case R_ARM_LDC_PC_G2:
7542 case R_ARM_LDC_SB_G0:
7543 case R_ARM_LDC_SB_G1:
7544 case R_ARM_LDC_SB_G2:
7545 {
7546 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7547 bfd_vma pc = input_section->output_section->vma
7548 + input_section->output_offset + rel->r_offset;
7549 bfd_vma sb = 0; /* See note above. */
7550 bfd_vma residual;
7551 bfd_signed_vma signed_value;
7552 int group = 0;
7553
7554 /* Determine which groups of bits to calculate. */
7555 switch (r_type)
7556 {
7557 case R_ARM_LDC_PC_G0:
7558 case R_ARM_LDC_SB_G0:
7559 group = 0;
7560 break;
7561
7562 case R_ARM_LDC_PC_G1:
7563 case R_ARM_LDC_SB_G1:
7564 group = 1;
7565 break;
7566
7567 case R_ARM_LDC_PC_G2:
7568 case R_ARM_LDC_SB_G2:
7569 group = 2;
7570 break;
7571
7572 default:
7573 abort ();
7574 }
7575
7576 /* If REL, extract the addend from the insn. If RELA, it will
7577 have already been fetched for us. */
7578 if (globals->use_rel)
7579 {
7580 int negative = (insn & (1 << 23)) ? 1 : -1;
7581 signed_addend = negative * ((insn & 0xff) << 2);
7582 }
7583
7584 /* Compute the value (X) to go in the place. */
7585 if (r_type == R_ARM_LDC_PC_G0
7586 || r_type == R_ARM_LDC_PC_G1
7587 || r_type == R_ARM_LDC_PC_G2)
7588 /* PC relative. */
7589 signed_value = value - pc + signed_addend;
7590 else
7591 /* Section base relative. */
7592 signed_value = value - sb + signed_addend;
7593
7594 /* Calculate the value of the relevant G_{n-1} to obtain
7595 the residual at that stage. */
7596 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7597
7598 /* Check for overflow. (The absolute value to go in the place must be
7599 divisible by four and, after having been divided by four, must
7600 fit in eight bits.) */
7601 if ((residual & 0x3) != 0 || residual >= 0x400)
7602 {
7603 (*_bfd_error_handler)
7604 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7605 input_bfd, input_section,
7606 (long) rel->r_offset, abs (signed_value), howto->name);
7607 return bfd_reloc_overflow;
7608 }
7609
7610 /* Mask out the value and U bit. */
7611 insn &= 0xff7fff00;
7612
7613 /* Set the U bit if the value to go in the place is non-negative. */
7614 if (signed_value >= 0)
7615 insn |= 1 << 23;
7616
7617 /* Encode the offset. */
7618 insn |= residual >> 2;
7619
7620 bfd_put_32 (input_bfd, insn, hit_data);
7621 }
7622 return bfd_reloc_ok;
7623
7624 default:
7625 return bfd_reloc_notsupported;
7626 }
7627 }
7628
7629 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7630 static void
7631 arm_add_to_rel (bfd * abfd,
7632 bfd_byte * address,
7633 reloc_howto_type * howto,
7634 bfd_signed_vma increment)
7635 {
7636 bfd_signed_vma addend;
7637
7638 if (howto->type == R_ARM_THM_CALL
7639 || howto->type == R_ARM_THM_JUMP24)
7640 {
7641 int upper_insn, lower_insn;
7642 int upper, lower;
7643
7644 upper_insn = bfd_get_16 (abfd, address);
7645 lower_insn = bfd_get_16 (abfd, address + 2);
7646 upper = upper_insn & 0x7ff;
7647 lower = lower_insn & 0x7ff;
7648
7649 addend = (upper << 12) | (lower << 1);
7650 addend += increment;
7651 addend >>= 1;
7652
7653 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7654 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7655
7656 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7657 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7658 }
7659 else
7660 {
7661 bfd_vma contents;
7662
7663 contents = bfd_get_32 (abfd, address);
7664
7665 /* Get the (signed) value from the instruction. */
7666 addend = contents & howto->src_mask;
7667 if (addend & ((howto->src_mask + 1) >> 1))
7668 {
7669 bfd_signed_vma mask;
7670
7671 mask = -1;
7672 mask &= ~ howto->src_mask;
7673 addend |= mask;
7674 }
7675
7676 /* Add in the increment, (which is a byte value). */
7677 switch (howto->type)
7678 {
7679 default:
7680 addend += increment;
7681 break;
7682
7683 case R_ARM_PC24:
7684 case R_ARM_PLT32:
7685 case R_ARM_CALL:
7686 case R_ARM_JUMP24:
7687 addend <<= howto->size;
7688 addend += increment;
7689
7690 /* Should we check for overflow here ? */
7691
7692 /* Drop any undesired bits. */
7693 addend >>= howto->rightshift;
7694 break;
7695 }
7696
7697 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7698
7699 bfd_put_32 (abfd, contents, address);
7700 }
7701 }
7702
7703 #define IS_ARM_TLS_RELOC(R_TYPE) \
7704 ((R_TYPE) == R_ARM_TLS_GD32 \
7705 || (R_TYPE) == R_ARM_TLS_LDO32 \
7706 || (R_TYPE) == R_ARM_TLS_LDM32 \
7707 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7708 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7709 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7710 || (R_TYPE) == R_ARM_TLS_LE32 \
7711 || (R_TYPE) == R_ARM_TLS_IE32)
7712
7713 /* Relocate an ARM ELF section. */
7714
7715 static bfd_boolean
7716 elf32_arm_relocate_section (bfd * output_bfd,
7717 struct bfd_link_info * info,
7718 bfd * input_bfd,
7719 asection * input_section,
7720 bfd_byte * contents,
7721 Elf_Internal_Rela * relocs,
7722 Elf_Internal_Sym * local_syms,
7723 asection ** local_sections)
7724 {
7725 Elf_Internal_Shdr *symtab_hdr;
7726 struct elf_link_hash_entry **sym_hashes;
7727 Elf_Internal_Rela *rel;
7728 Elf_Internal_Rela *relend;
7729 const char *name;
7730 struct elf32_arm_link_hash_table * globals;
7731
7732 globals = elf32_arm_hash_table (info);
7733
7734 symtab_hdr = & elf_symtab_hdr (input_bfd);
7735 sym_hashes = elf_sym_hashes (input_bfd);
7736
7737 rel = relocs;
7738 relend = relocs + input_section->reloc_count;
7739 for (; rel < relend; rel++)
7740 {
7741 int r_type;
7742 reloc_howto_type * howto;
7743 unsigned long r_symndx;
7744 Elf_Internal_Sym * sym;
7745 asection * sec;
7746 struct elf_link_hash_entry * h;
7747 bfd_vma relocation;
7748 bfd_reloc_status_type r;
7749 arelent bfd_reloc;
7750 char sym_type;
7751 bfd_boolean unresolved_reloc = FALSE;
7752 char *error_message = NULL;
7753
7754 r_symndx = ELF32_R_SYM (rel->r_info);
7755 r_type = ELF32_R_TYPE (rel->r_info);
7756 r_type = arm_real_reloc_type (globals, r_type);
7757
7758 if ( r_type == R_ARM_GNU_VTENTRY
7759 || r_type == R_ARM_GNU_VTINHERIT)
7760 continue;
7761
7762 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7763 howto = bfd_reloc.howto;
7764
7765 h = NULL;
7766 sym = NULL;
7767 sec = NULL;
7768
7769 if (r_symndx < symtab_hdr->sh_info)
7770 {
7771 sym = local_syms + r_symndx;
7772 sym_type = ELF32_ST_TYPE (sym->st_info);
7773 sec = local_sections[r_symndx];
7774 if (globals->use_rel)
7775 {
7776 relocation = (sec->output_section->vma
7777 + sec->output_offset
7778 + sym->st_value);
7779 if (!info->relocatable
7780 && (sec->flags & SEC_MERGE)
7781 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7782 {
7783 asection *msec;
7784 bfd_vma addend, value;
7785
7786 switch (r_type)
7787 {
7788 case R_ARM_MOVW_ABS_NC:
7789 case R_ARM_MOVT_ABS:
7790 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7791 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7792 addend = (addend ^ 0x8000) - 0x8000;
7793 break;
7794
7795 case R_ARM_THM_MOVW_ABS_NC:
7796 case R_ARM_THM_MOVT_ABS:
7797 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7798 << 16;
7799 value |= bfd_get_16 (input_bfd,
7800 contents + rel->r_offset + 2);
7801 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7802 | ((value & 0x04000000) >> 15);
7803 addend = (addend ^ 0x8000) - 0x8000;
7804 break;
7805
7806 default:
7807 if (howto->rightshift
7808 || (howto->src_mask & (howto->src_mask + 1)))
7809 {
7810 (*_bfd_error_handler)
7811 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7812 input_bfd, input_section,
7813 (long) rel->r_offset, howto->name);
7814 return FALSE;
7815 }
7816
7817 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7818
7819 /* Get the (signed) value from the instruction. */
7820 addend = value & howto->src_mask;
7821 if (addend & ((howto->src_mask + 1) >> 1))
7822 {
7823 bfd_signed_vma mask;
7824
7825 mask = -1;
7826 mask &= ~ howto->src_mask;
7827 addend |= mask;
7828 }
7829 break;
7830 }
7831
7832 msec = sec;
7833 addend =
7834 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7835 - relocation;
7836 addend += msec->output_section->vma + msec->output_offset;
7837
7838 /* Cases here must match those in the preceeding
7839 switch statement. */
7840 switch (r_type)
7841 {
7842 case R_ARM_MOVW_ABS_NC:
7843 case R_ARM_MOVT_ABS:
7844 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7845 | (addend & 0xfff);
7846 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7847 break;
7848
7849 case R_ARM_THM_MOVW_ABS_NC:
7850 case R_ARM_THM_MOVT_ABS:
7851 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7852 | (addend & 0xff) | ((addend & 0x0800) << 15);
7853 bfd_put_16 (input_bfd, value >> 16,
7854 contents + rel->r_offset);
7855 bfd_put_16 (input_bfd, value,
7856 contents + rel->r_offset + 2);
7857 break;
7858
7859 default:
7860 value = (value & ~ howto->dst_mask)
7861 | (addend & howto->dst_mask);
7862 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7863 break;
7864 }
7865 }
7866 }
7867 else
7868 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7869 }
7870 else
7871 {
7872 bfd_boolean warned;
7873
7874 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7875 r_symndx, symtab_hdr, sym_hashes,
7876 h, sec, relocation,
7877 unresolved_reloc, warned);
7878
7879 sym_type = h->type;
7880 }
7881
7882 if (sec != NULL && elf_discarded_section (sec))
7883 {
7884 /* For relocs against symbols from removed linkonce sections,
7885 or sections discarded by a linker script, we just want the
7886 section contents zeroed. Avoid any special processing. */
7887 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7888 rel->r_info = 0;
7889 rel->r_addend = 0;
7890 continue;
7891 }
7892
7893 if (info->relocatable)
7894 {
7895 /* This is a relocatable link. We don't have to change
7896 anything, unless the reloc is against a section symbol,
7897 in which case we have to adjust according to where the
7898 section symbol winds up in the output section. */
7899 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7900 {
7901 if (globals->use_rel)
7902 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7903 howto, (bfd_signed_vma) sec->output_offset);
7904 else
7905 rel->r_addend += sec->output_offset;
7906 }
7907 continue;
7908 }
7909
7910 if (h != NULL)
7911 name = h->root.root.string;
7912 else
7913 {
7914 name = (bfd_elf_string_from_elf_section
7915 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7916 if (name == NULL || *name == '\0')
7917 name = bfd_section_name (input_bfd, sec);
7918 }
7919
7920 if (r_symndx != 0
7921 && r_type != R_ARM_NONE
7922 && (h == NULL
7923 || h->root.type == bfd_link_hash_defined
7924 || h->root.type == bfd_link_hash_defweak)
7925 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7926 {
7927 (*_bfd_error_handler)
7928 ((sym_type == STT_TLS
7929 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7930 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7931 input_bfd,
7932 input_section,
7933 (long) rel->r_offset,
7934 howto->name,
7935 name);
7936 }
7937
7938 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7939 input_section, contents, rel,
7940 relocation, info, sec, name,
7941 (h ? ELF_ST_TYPE (h->type) :
7942 ELF_ST_TYPE (sym->st_info)), h,
7943 &unresolved_reloc, &error_message);
7944
7945 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7946 because such sections are not SEC_ALLOC and thus ld.so will
7947 not process them. */
7948 if (unresolved_reloc
7949 && !((input_section->flags & SEC_DEBUGGING) != 0
7950 && h->def_dynamic))
7951 {
7952 (*_bfd_error_handler)
7953 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7954 input_bfd,
7955 input_section,
7956 (long) rel->r_offset,
7957 howto->name,
7958 h->root.root.string);
7959 return FALSE;
7960 }
7961
7962 if (r != bfd_reloc_ok)
7963 {
7964 switch (r)
7965 {
7966 case bfd_reloc_overflow:
7967 /* If the overflowing reloc was to an undefined symbol,
7968 we have already printed one error message and there
7969 is no point complaining again. */
7970 if ((! h ||
7971 h->root.type != bfd_link_hash_undefined)
7972 && (!((*info->callbacks->reloc_overflow)
7973 (info, (h ? &h->root : NULL), name, howto->name,
7974 (bfd_vma) 0, input_bfd, input_section,
7975 rel->r_offset))))
7976 return FALSE;
7977 break;
7978
7979 case bfd_reloc_undefined:
7980 if (!((*info->callbacks->undefined_symbol)
7981 (info, name, input_bfd, input_section,
7982 rel->r_offset, TRUE)))
7983 return FALSE;
7984 break;
7985
7986 case bfd_reloc_outofrange:
7987 error_message = _("out of range");
7988 goto common_error;
7989
7990 case bfd_reloc_notsupported:
7991 error_message = _("unsupported relocation");
7992 goto common_error;
7993
7994 case bfd_reloc_dangerous:
7995 /* error_message should already be set. */
7996 goto common_error;
7997
7998 default:
7999 error_message = _("unknown error");
8000 /* Fall through. */
8001
8002 common_error:
8003 BFD_ASSERT (error_message != NULL);
8004 if (!((*info->callbacks->reloc_dangerous)
8005 (info, error_message, input_bfd, input_section,
8006 rel->r_offset)))
8007 return FALSE;
8008 break;
8009 }
8010 }
8011 }
8012
8013 return TRUE;
8014 }
8015
8016 /* Set the right machine number. */
8017
8018 static bfd_boolean
8019 elf32_arm_object_p (bfd *abfd)
8020 {
8021 unsigned int mach;
8022
8023 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8024
8025 if (mach != bfd_mach_arm_unknown)
8026 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8027
8028 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8029 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8030
8031 else
8032 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8033
8034 return TRUE;
8035 }
8036
8037 /* Function to keep ARM specific flags in the ELF header. */
8038
8039 static bfd_boolean
8040 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8041 {
8042 if (elf_flags_init (abfd)
8043 && elf_elfheader (abfd)->e_flags != flags)
8044 {
8045 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8046 {
8047 if (flags & EF_ARM_INTERWORK)
8048 (*_bfd_error_handler)
8049 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8050 abfd);
8051 else
8052 _bfd_error_handler
8053 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8054 abfd);
8055 }
8056 }
8057 else
8058 {
8059 elf_elfheader (abfd)->e_flags = flags;
8060 elf_flags_init (abfd) = TRUE;
8061 }
8062
8063 return TRUE;
8064 }
8065
8066 /* Copy backend specific data from one object module to another. */
8067
8068 static bfd_boolean
8069 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8070 {
8071 flagword in_flags;
8072 flagword out_flags;
8073
8074 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8075 return TRUE;
8076
8077 in_flags = elf_elfheader (ibfd)->e_flags;
8078 out_flags = elf_elfheader (obfd)->e_flags;
8079
8080 if (elf_flags_init (obfd)
8081 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8082 && in_flags != out_flags)
8083 {
8084 /* Cannot mix APCS26 and APCS32 code. */
8085 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8086 return FALSE;
8087
8088 /* Cannot mix float APCS and non-float APCS code. */
8089 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8090 return FALSE;
8091
8092 /* If the src and dest have different interworking flags
8093 then turn off the interworking bit. */
8094 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8095 {
8096 if (out_flags & EF_ARM_INTERWORK)
8097 _bfd_error_handler
8098 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8099 obfd, ibfd);
8100
8101 in_flags &= ~EF_ARM_INTERWORK;
8102 }
8103
8104 /* Likewise for PIC, though don't warn for this case. */
8105 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8106 in_flags &= ~EF_ARM_PIC;
8107 }
8108
8109 elf_elfheader (obfd)->e_flags = in_flags;
8110 elf_flags_init (obfd) = TRUE;
8111
8112 /* Also copy the EI_OSABI field. */
8113 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8114 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8115
8116 /* Copy object attributes. */
8117 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8118
8119 return TRUE;
8120 }
8121
8122 /* Values for Tag_ABI_PCS_R9_use. */
8123 enum
8124 {
8125 AEABI_R9_V6,
8126 AEABI_R9_SB,
8127 AEABI_R9_TLS,
8128 AEABI_R9_unused
8129 };
8130
8131 /* Values for Tag_ABI_PCS_RW_data. */
8132 enum
8133 {
8134 AEABI_PCS_RW_data_absolute,
8135 AEABI_PCS_RW_data_PCrel,
8136 AEABI_PCS_RW_data_SBrel,
8137 AEABI_PCS_RW_data_unused
8138 };
8139
8140 /* Values for Tag_ABI_enum_size. */
8141 enum
8142 {
8143 AEABI_enum_unused,
8144 AEABI_enum_short,
8145 AEABI_enum_wide,
8146 AEABI_enum_forced_wide
8147 };
8148
8149 /* Determine whether an object attribute tag takes an integer, a
8150 string or both. */
8151
8152 static int
8153 elf32_arm_obj_attrs_arg_type (int tag)
8154 {
8155 if (tag == Tag_compatibility)
8156 return 3;
8157 else if (tag == 4 || tag == 5)
8158 return 2;
8159 else if (tag < 32)
8160 return 1;
8161 else
8162 return (tag & 1) != 0 ? 2 : 1;
8163 }
8164
8165 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8166 are conflicting attributes. */
8167
8168 static bfd_boolean
8169 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8170 {
8171 obj_attribute *in_attr;
8172 obj_attribute *out_attr;
8173 obj_attribute_list *in_list;
8174 /* Some tags have 0 = don't care, 1 = strong requirement,
8175 2 = weak requirement. */
8176 static const int order_312[3] = {3, 1, 2};
8177 /* For use with Tag_VFP_arch. */
8178 static const int order_01243[5] = {0, 1, 2, 4, 3};
8179 int i;
8180
8181 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8182 {
8183 /* This is the first object. Copy the attributes. */
8184 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8185
8186 /* Use the Tag_null value to indicate the attributes have been
8187 initialized. */
8188 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8189
8190 return TRUE;
8191 }
8192
8193 in_attr = elf_known_obj_attributes_proc (ibfd);
8194 out_attr = elf_known_obj_attributes_proc (obfd);
8195 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8196 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8197 {
8198 /* Ignore mismatches if teh object doesn't use floating point. */
8199 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8200 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8201 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8202 {
8203 _bfd_error_handler
8204 (_("ERROR: %B uses VFP register arguments, %B does not"),
8205 ibfd, obfd);
8206 return FALSE;
8207 }
8208 }
8209
8210 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8211 {
8212 /* Merge this attribute with existing attributes. */
8213 switch (i)
8214 {
8215 case Tag_CPU_raw_name:
8216 case Tag_CPU_name:
8217 /* Use whichever has the greatest architecture requirements. We
8218 won't necessarily have both the above tags, so make sure input
8219 name is non-NULL. */
8220 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
8221 && in_attr[i].s)
8222 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
8223 break;
8224
8225 case Tag_ABI_optimization_goals:
8226 case Tag_ABI_FP_optimization_goals:
8227 /* Use the first value seen. */
8228 break;
8229
8230 case Tag_CPU_arch:
8231 case Tag_ARM_ISA_use:
8232 case Tag_THUMB_ISA_use:
8233 case Tag_WMMX_arch:
8234 case Tag_NEON_arch:
8235 /* ??? Do NEON and WMMX conflict? */
8236 case Tag_ABI_FP_rounding:
8237 case Tag_ABI_FP_denormal:
8238 case Tag_ABI_FP_exceptions:
8239 case Tag_ABI_FP_user_exceptions:
8240 case Tag_ABI_FP_number_model:
8241 case Tag_ABI_align8_preserved:
8242 case Tag_ABI_HardFP_use:
8243 /* Use the largest value specified. */
8244 if (in_attr[i].i > out_attr[i].i)
8245 out_attr[i].i = in_attr[i].i;
8246 break;
8247
8248 case Tag_CPU_arch_profile:
8249 /* Warn if conflicting architecture profiles used. */
8250 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
8251 {
8252 _bfd_error_handler
8253 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8254 ibfd, in_attr[i].i, out_attr[i].i);
8255 return FALSE;
8256 }
8257 if (in_attr[i].i)
8258 out_attr[i].i = in_attr[i].i;
8259 break;
8260 case Tag_VFP_arch:
8261 if (in_attr[i].i > 4 || out_attr[i].i > 4
8262 || order_01243[in_attr[i].i] > order_01243[out_attr[i].i])
8263 out_attr[i].i = in_attr[i].i;
8264 break;
8265 case Tag_PCS_config:
8266 if (out_attr[i].i == 0)
8267 out_attr[i].i = in_attr[i].i;
8268 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8269 {
8270 /* It's sometimes ok to mix different configs, so this is only
8271 a warning. */
8272 _bfd_error_handler
8273 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8274 }
8275 break;
8276 case Tag_ABI_PCS_R9_use:
8277 if (in_attr[i].i != out_attr[i].i
8278 && out_attr[i].i != AEABI_R9_unused
8279 && in_attr[i].i != AEABI_R9_unused)
8280 {
8281 _bfd_error_handler
8282 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8283 return FALSE;
8284 }
8285 if (out_attr[i].i == AEABI_R9_unused)
8286 out_attr[i].i = in_attr[i].i;
8287 break;
8288 case Tag_ABI_PCS_RW_data:
8289 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8290 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8291 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8292 {
8293 _bfd_error_handler
8294 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8295 ibfd);
8296 return FALSE;
8297 }
8298 /* Use the smallest value specified. */
8299 if (in_attr[i].i < out_attr[i].i)
8300 out_attr[i].i = in_attr[i].i;
8301 break;
8302 case Tag_ABI_PCS_RO_data:
8303 /* Use the smallest value specified. */
8304 if (in_attr[i].i < out_attr[i].i)
8305 out_attr[i].i = in_attr[i].i;
8306 break;
8307 case Tag_ABI_PCS_GOT_use:
8308 if (in_attr[i].i > 2 || out_attr[i].i > 2
8309 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8310 out_attr[i].i = in_attr[i].i;
8311 break;
8312 case Tag_ABI_PCS_wchar_t:
8313 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8314 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
8315 {
8316 _bfd_error_handler
8317 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8318 ibfd, in_attr[i].i, out_attr[i].i);
8319 }
8320 else if (in_attr[i].i && !out_attr[i].i)
8321 out_attr[i].i = in_attr[i].i;
8322 break;
8323 case Tag_ABI_align8_needed:
8324 /* ??? Check against Tag_ABI_align8_preserved. */
8325 if (in_attr[i].i > 2 || out_attr[i].i > 2
8326 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8327 out_attr[i].i = in_attr[i].i;
8328 break;
8329 case Tag_ABI_enum_size:
8330 if (in_attr[i].i != AEABI_enum_unused)
8331 {
8332 if (out_attr[i].i == AEABI_enum_unused
8333 || out_attr[i].i == AEABI_enum_forced_wide)
8334 {
8335 /* The existing object is compatible with anything.
8336 Use whatever requirements the new object has. */
8337 out_attr[i].i = in_attr[i].i;
8338 }
8339 else if (in_attr[i].i != AEABI_enum_forced_wide
8340 && out_attr[i].i != in_attr[i].i
8341 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8342 {
8343 const char *aeabi_enum_names[] =
8344 { "", "variable-size", "32-bit", "" };
8345 _bfd_error_handler
8346 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8347 ibfd, aeabi_enum_names[in_attr[i].i],
8348 aeabi_enum_names[out_attr[i].i]);
8349 }
8350 }
8351 break;
8352 case Tag_ABI_VFP_args:
8353 /* Aready done. */
8354 break;
8355 case Tag_ABI_WMMX_args:
8356 if (in_attr[i].i != out_attr[i].i)
8357 {
8358 _bfd_error_handler
8359 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8360 ibfd, obfd);
8361 return FALSE;
8362 }
8363 break;
8364 default: /* All known attributes should be explicitly covered. */
8365 abort ();
8366 }
8367
8368 if (in_attr[i].type && !out_attr[i].type)
8369 switch (in_attr[i].type)
8370 {
8371 case 1:
8372 if (out_attr[i].i)
8373 out_attr[i].type = 1;
8374 break;
8375
8376 case 2:
8377 if (out_attr[i].s)
8378 out_attr[i].type = 2;
8379 break;
8380
8381 default:
8382 abort ();
8383 }
8384 }
8385
8386 /* Merge Tag_compatibility attributes and any common GNU ones. */
8387 _bfd_elf_merge_object_attributes (ibfd, obfd);
8388
8389 /* Check for any attributes not known on ARM. */
8390 in_list = elf_other_obj_attributes_proc (ibfd);
8391 while (in_list && in_list->tag == Tag_compatibility)
8392 in_list = in_list->next;
8393
8394 for (; in_list; in_list = in_list->next)
8395 {
8396 if ((in_list->tag & 128) < 64)
8397 {
8398 _bfd_error_handler
8399 (_("Warning: %B: Unknown EABI object attribute %d"),
8400 ibfd, in_list->tag);
8401 break;
8402 }
8403 }
8404 return TRUE;
8405 }
8406
8407
8408 /* Return TRUE if the two EABI versions are incompatible. */
8409
8410 static bfd_boolean
8411 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8412 {
8413 /* v4 and v5 are the same spec before and after it was released,
8414 so allow mixing them. */
8415 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8416 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8417 return TRUE;
8418
8419 return (iver == over);
8420 }
8421
8422 /* Merge backend specific data from an object file to the output
8423 object file when linking. */
8424
8425 static bfd_boolean
8426 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8427 {
8428 flagword out_flags;
8429 flagword in_flags;
8430 bfd_boolean flags_compatible = TRUE;
8431 asection *sec;
8432
8433 /* Check if we have the same endianess. */
8434 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8435 return FALSE;
8436
8437 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8438 return TRUE;
8439
8440 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8441 return FALSE;
8442
8443 /* The input BFD must have had its flags initialised. */
8444 /* The following seems bogus to me -- The flags are initialized in
8445 the assembler but I don't think an elf_flags_init field is
8446 written into the object. */
8447 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8448
8449 in_flags = elf_elfheader (ibfd)->e_flags;
8450 out_flags = elf_elfheader (obfd)->e_flags;
8451
8452 /* In theory there is no reason why we couldn't handle this. However
8453 in practice it isn't even close to working and there is no real
8454 reason to want it. */
8455 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
8456 && !(ibfd->flags & DYNAMIC)
8457 && (in_flags & EF_ARM_BE8))
8458 {
8459 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8460 ibfd);
8461 return FALSE;
8462 }
8463
8464 if (!elf_flags_init (obfd))
8465 {
8466 /* If the input is the default architecture and had the default
8467 flags then do not bother setting the flags for the output
8468 architecture, instead allow future merges to do this. If no
8469 future merges ever set these flags then they will retain their
8470 uninitialised values, which surprise surprise, correspond
8471 to the default values. */
8472 if (bfd_get_arch_info (ibfd)->the_default
8473 && elf_elfheader (ibfd)->e_flags == 0)
8474 return TRUE;
8475
8476 elf_flags_init (obfd) = TRUE;
8477 elf_elfheader (obfd)->e_flags = in_flags;
8478
8479 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8480 && bfd_get_arch_info (obfd)->the_default)
8481 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8482
8483 return TRUE;
8484 }
8485
8486 /* Determine what should happen if the input ARM architecture
8487 does not match the output ARM architecture. */
8488 if (! bfd_arm_merge_machines (ibfd, obfd))
8489 return FALSE;
8490
8491 /* Identical flags must be compatible. */
8492 if (in_flags == out_flags)
8493 return TRUE;
8494
8495 /* Check to see if the input BFD actually contains any sections. If
8496 not, its flags may not have been initialised either, but it
8497 cannot actually cause any incompatiblity. Do not short-circuit
8498 dynamic objects; their section list may be emptied by
8499 elf_link_add_object_symbols.
8500
8501 Also check to see if there are no code sections in the input.
8502 In this case there is no need to check for code specific flags.
8503 XXX - do we need to worry about floating-point format compatability
8504 in data sections ? */
8505 if (!(ibfd->flags & DYNAMIC))
8506 {
8507 bfd_boolean null_input_bfd = TRUE;
8508 bfd_boolean only_data_sections = TRUE;
8509
8510 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8511 {
8512 /* Ignore synthetic glue sections. */
8513 if (strcmp (sec->name, ".glue_7")
8514 && strcmp (sec->name, ".glue_7t"))
8515 {
8516 if ((bfd_get_section_flags (ibfd, sec)
8517 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8518 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8519 only_data_sections = FALSE;
8520
8521 null_input_bfd = FALSE;
8522 break;
8523 }
8524 }
8525
8526 if (null_input_bfd || only_data_sections)
8527 return TRUE;
8528 }
8529
8530 /* Complain about various flag mismatches. */
8531 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8532 EF_ARM_EABI_VERSION (out_flags)))
8533 {
8534 _bfd_error_handler
8535 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8536 ibfd, obfd,
8537 (in_flags & EF_ARM_EABIMASK) >> 24,
8538 (out_flags & EF_ARM_EABIMASK) >> 24);
8539 return FALSE;
8540 }
8541
8542 /* Not sure what needs to be checked for EABI versions >= 1. */
8543 /* VxWorks libraries do not use these flags. */
8544 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8545 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8546 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8547 {
8548 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8549 {
8550 _bfd_error_handler
8551 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8552 ibfd, obfd,
8553 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8554 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8555 flags_compatible = FALSE;
8556 }
8557
8558 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8559 {
8560 if (in_flags & EF_ARM_APCS_FLOAT)
8561 _bfd_error_handler
8562 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8563 ibfd, obfd);
8564 else
8565 _bfd_error_handler
8566 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8567 ibfd, obfd);
8568
8569 flags_compatible = FALSE;
8570 }
8571
8572 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
8573 {
8574 if (in_flags & EF_ARM_VFP_FLOAT)
8575 _bfd_error_handler
8576 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8577 ibfd, obfd);
8578 else
8579 _bfd_error_handler
8580 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8581 ibfd, obfd);
8582
8583 flags_compatible = FALSE;
8584 }
8585
8586 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
8587 {
8588 if (in_flags & EF_ARM_MAVERICK_FLOAT)
8589 _bfd_error_handler
8590 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8591 ibfd, obfd);
8592 else
8593 _bfd_error_handler
8594 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8595 ibfd, obfd);
8596
8597 flags_compatible = FALSE;
8598 }
8599
8600 #ifdef EF_ARM_SOFT_FLOAT
8601 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
8602 {
8603 /* We can allow interworking between code that is VFP format
8604 layout, and uses either soft float or integer regs for
8605 passing floating point arguments and results. We already
8606 know that the APCS_FLOAT flags match; similarly for VFP
8607 flags. */
8608 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
8609 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
8610 {
8611 if (in_flags & EF_ARM_SOFT_FLOAT)
8612 _bfd_error_handler
8613 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8614 ibfd, obfd);
8615 else
8616 _bfd_error_handler
8617 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8618 ibfd, obfd);
8619
8620 flags_compatible = FALSE;
8621 }
8622 }
8623 #endif
8624
8625 /* Interworking mismatch is only a warning. */
8626 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8627 {
8628 if (in_flags & EF_ARM_INTERWORK)
8629 {
8630 _bfd_error_handler
8631 (_("Warning: %B supports interworking, whereas %B does not"),
8632 ibfd, obfd);
8633 }
8634 else
8635 {
8636 _bfd_error_handler
8637 (_("Warning: %B does not support interworking, whereas %B does"),
8638 ibfd, obfd);
8639 }
8640 }
8641 }
8642
8643 return flags_compatible;
8644 }
8645
8646 /* Display the flags field. */
8647
8648 static bfd_boolean
8649 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
8650 {
8651 FILE * file = (FILE *) ptr;
8652 unsigned long flags;
8653
8654 BFD_ASSERT (abfd != NULL && ptr != NULL);
8655
8656 /* Print normal ELF private data. */
8657 _bfd_elf_print_private_bfd_data (abfd, ptr);
8658
8659 flags = elf_elfheader (abfd)->e_flags;
8660 /* Ignore init flag - it may not be set, despite the flags field
8661 containing valid data. */
8662
8663 /* xgettext:c-format */
8664 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
8665
8666 switch (EF_ARM_EABI_VERSION (flags))
8667 {
8668 case EF_ARM_EABI_UNKNOWN:
8669 /* The following flag bits are GNU extensions and not part of the
8670 official ARM ELF extended ABI. Hence they are only decoded if
8671 the EABI version is not set. */
8672 if (flags & EF_ARM_INTERWORK)
8673 fprintf (file, _(" [interworking enabled]"));
8674
8675 if (flags & EF_ARM_APCS_26)
8676 fprintf (file, " [APCS-26]");
8677 else
8678 fprintf (file, " [APCS-32]");
8679
8680 if (flags & EF_ARM_VFP_FLOAT)
8681 fprintf (file, _(" [VFP float format]"));
8682 else if (flags & EF_ARM_MAVERICK_FLOAT)
8683 fprintf (file, _(" [Maverick float format]"));
8684 else
8685 fprintf (file, _(" [FPA float format]"));
8686
8687 if (flags & EF_ARM_APCS_FLOAT)
8688 fprintf (file, _(" [floats passed in float registers]"));
8689
8690 if (flags & EF_ARM_PIC)
8691 fprintf (file, _(" [position independent]"));
8692
8693 if (flags & EF_ARM_NEW_ABI)
8694 fprintf (file, _(" [new ABI]"));
8695
8696 if (flags & EF_ARM_OLD_ABI)
8697 fprintf (file, _(" [old ABI]"));
8698
8699 if (flags & EF_ARM_SOFT_FLOAT)
8700 fprintf (file, _(" [software FP]"));
8701
8702 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
8703 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
8704 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
8705 | EF_ARM_MAVERICK_FLOAT);
8706 break;
8707
8708 case EF_ARM_EABI_VER1:
8709 fprintf (file, _(" [Version1 EABI]"));
8710
8711 if (flags & EF_ARM_SYMSARESORTED)
8712 fprintf (file, _(" [sorted symbol table]"));
8713 else
8714 fprintf (file, _(" [unsorted symbol table]"));
8715
8716 flags &= ~ EF_ARM_SYMSARESORTED;
8717 break;
8718
8719 case EF_ARM_EABI_VER2:
8720 fprintf (file, _(" [Version2 EABI]"));
8721
8722 if (flags & EF_ARM_SYMSARESORTED)
8723 fprintf (file, _(" [sorted symbol table]"));
8724 else
8725 fprintf (file, _(" [unsorted symbol table]"));
8726
8727 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
8728 fprintf (file, _(" [dynamic symbols use segment index]"));
8729
8730 if (flags & EF_ARM_MAPSYMSFIRST)
8731 fprintf (file, _(" [mapping symbols precede others]"));
8732
8733 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
8734 | EF_ARM_MAPSYMSFIRST);
8735 break;
8736
8737 case EF_ARM_EABI_VER3:
8738 fprintf (file, _(" [Version3 EABI]"));
8739 break;
8740
8741 case EF_ARM_EABI_VER4:
8742 fprintf (file, _(" [Version4 EABI]"));
8743 goto eabi;
8744
8745 case EF_ARM_EABI_VER5:
8746 fprintf (file, _(" [Version5 EABI]"));
8747 eabi:
8748 if (flags & EF_ARM_BE8)
8749 fprintf (file, _(" [BE8]"));
8750
8751 if (flags & EF_ARM_LE8)
8752 fprintf (file, _(" [LE8]"));
8753
8754 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
8755 break;
8756
8757 default:
8758 fprintf (file, _(" <EABI version unrecognised>"));
8759 break;
8760 }
8761
8762 flags &= ~ EF_ARM_EABIMASK;
8763
8764 if (flags & EF_ARM_RELEXEC)
8765 fprintf (file, _(" [relocatable executable]"));
8766
8767 if (flags & EF_ARM_HASENTRY)
8768 fprintf (file, _(" [has entry point]"));
8769
8770 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
8771
8772 if (flags)
8773 fprintf (file, _("<Unrecognised flag bits set>"));
8774
8775 fputc ('\n', file);
8776
8777 return TRUE;
8778 }
8779
8780 static int
8781 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
8782 {
8783 switch (ELF_ST_TYPE (elf_sym->st_info))
8784 {
8785 case STT_ARM_TFUNC:
8786 return ELF_ST_TYPE (elf_sym->st_info);
8787
8788 case STT_ARM_16BIT:
8789 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8790 This allows us to distinguish between data used by Thumb instructions
8791 and non-data (which is probably code) inside Thumb regions of an
8792 executable. */
8793 if (type != STT_OBJECT && type != STT_TLS)
8794 return ELF_ST_TYPE (elf_sym->st_info);
8795 break;
8796
8797 default:
8798 break;
8799 }
8800
8801 return type;
8802 }
8803
8804 static asection *
8805 elf32_arm_gc_mark_hook (asection *sec,
8806 struct bfd_link_info *info,
8807 Elf_Internal_Rela *rel,
8808 struct elf_link_hash_entry *h,
8809 Elf_Internal_Sym *sym)
8810 {
8811 if (h != NULL)
8812 switch (ELF32_R_TYPE (rel->r_info))
8813 {
8814 case R_ARM_GNU_VTINHERIT:
8815 case R_ARM_GNU_VTENTRY:
8816 return NULL;
8817 }
8818
8819 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
8820 }
8821
8822 /* Update the got entry reference counts for the section being removed. */
8823
8824 static bfd_boolean
8825 elf32_arm_gc_sweep_hook (bfd * abfd,
8826 struct bfd_link_info * info,
8827 asection * sec,
8828 const Elf_Internal_Rela * relocs)
8829 {
8830 Elf_Internal_Shdr *symtab_hdr;
8831 struct elf_link_hash_entry **sym_hashes;
8832 bfd_signed_vma *local_got_refcounts;
8833 const Elf_Internal_Rela *rel, *relend;
8834 struct elf32_arm_link_hash_table * globals;
8835
8836 if (info->relocatable)
8837 return TRUE;
8838
8839 globals = elf32_arm_hash_table (info);
8840
8841 elf_section_data (sec)->local_dynrel = NULL;
8842
8843 symtab_hdr = & elf_symtab_hdr (abfd);
8844 sym_hashes = elf_sym_hashes (abfd);
8845 local_got_refcounts = elf_local_got_refcounts (abfd);
8846
8847 check_use_blx (globals);
8848
8849 relend = relocs + sec->reloc_count;
8850 for (rel = relocs; rel < relend; rel++)
8851 {
8852 unsigned long r_symndx;
8853 struct elf_link_hash_entry *h = NULL;
8854 int r_type;
8855
8856 r_symndx = ELF32_R_SYM (rel->r_info);
8857 if (r_symndx >= symtab_hdr->sh_info)
8858 {
8859 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8860 while (h->root.type == bfd_link_hash_indirect
8861 || h->root.type == bfd_link_hash_warning)
8862 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8863 }
8864
8865 r_type = ELF32_R_TYPE (rel->r_info);
8866 r_type = arm_real_reloc_type (globals, r_type);
8867 switch (r_type)
8868 {
8869 case R_ARM_GOT32:
8870 case R_ARM_GOT_PREL:
8871 case R_ARM_TLS_GD32:
8872 case R_ARM_TLS_IE32:
8873 if (h != NULL)
8874 {
8875 if (h->got.refcount > 0)
8876 h->got.refcount -= 1;
8877 }
8878 else if (local_got_refcounts != NULL)
8879 {
8880 if (local_got_refcounts[r_symndx] > 0)
8881 local_got_refcounts[r_symndx] -= 1;
8882 }
8883 break;
8884
8885 case R_ARM_TLS_LDM32:
8886 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
8887 break;
8888
8889 case R_ARM_ABS32:
8890 case R_ARM_ABS32_NOI:
8891 case R_ARM_REL32:
8892 case R_ARM_REL32_NOI:
8893 case R_ARM_PC24:
8894 case R_ARM_PLT32:
8895 case R_ARM_CALL:
8896 case R_ARM_JUMP24:
8897 case R_ARM_PREL31:
8898 case R_ARM_THM_CALL:
8899 case R_ARM_THM_JUMP24:
8900 case R_ARM_THM_JUMP19:
8901 case R_ARM_MOVW_ABS_NC:
8902 case R_ARM_MOVT_ABS:
8903 case R_ARM_MOVW_PREL_NC:
8904 case R_ARM_MOVT_PREL:
8905 case R_ARM_THM_MOVW_ABS_NC:
8906 case R_ARM_THM_MOVT_ABS:
8907 case R_ARM_THM_MOVW_PREL_NC:
8908 case R_ARM_THM_MOVT_PREL:
8909 /* Should the interworking branches be here also? */
8910
8911 if (h != NULL)
8912 {
8913 struct elf32_arm_link_hash_entry *eh;
8914 struct elf32_arm_relocs_copied **pp;
8915 struct elf32_arm_relocs_copied *p;
8916
8917 eh = (struct elf32_arm_link_hash_entry *) h;
8918
8919 if (h->plt.refcount > 0)
8920 {
8921 h->plt.refcount -= 1;
8922 if (r_type == R_ARM_THM_CALL)
8923 eh->plt_maybe_thumb_refcount--;
8924
8925 if (r_type == R_ARM_THM_JUMP24
8926 || r_type == R_ARM_THM_JUMP19)
8927 eh->plt_thumb_refcount--;
8928 }
8929
8930 if (r_type == R_ARM_ABS32
8931 || r_type == R_ARM_REL32
8932 || r_type == R_ARM_ABS32_NOI
8933 || r_type == R_ARM_REL32_NOI)
8934 {
8935 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
8936 pp = &p->next)
8937 if (p->section == sec)
8938 {
8939 p->count -= 1;
8940 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
8941 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
8942 p->pc_count -= 1;
8943 if (p->count == 0)
8944 *pp = p->next;
8945 break;
8946 }
8947 }
8948 }
8949 break;
8950
8951 default:
8952 break;
8953 }
8954 }
8955
8956 return TRUE;
8957 }
8958
8959 /* Look through the relocs for a section during the first phase. */
8960
8961 static bfd_boolean
8962 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
8963 asection *sec, const Elf_Internal_Rela *relocs)
8964 {
8965 Elf_Internal_Shdr *symtab_hdr;
8966 struct elf_link_hash_entry **sym_hashes;
8967 const Elf_Internal_Rela *rel;
8968 const Elf_Internal_Rela *rel_end;
8969 bfd *dynobj;
8970 asection *sreloc;
8971 bfd_vma *local_got_offsets;
8972 struct elf32_arm_link_hash_table *htab;
8973 bfd_boolean needs_plt;
8974
8975 if (info->relocatable)
8976 return TRUE;
8977
8978 BFD_ASSERT (is_arm_elf (abfd));
8979
8980 htab = elf32_arm_hash_table (info);
8981 sreloc = NULL;
8982
8983 /* Create dynamic sections for relocatable executables so that we can
8984 copy relocations. */
8985 if (htab->root.is_relocatable_executable
8986 && ! htab->root.dynamic_sections_created)
8987 {
8988 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
8989 return FALSE;
8990 }
8991
8992 dynobj = elf_hash_table (info)->dynobj;
8993 local_got_offsets = elf_local_got_offsets (abfd);
8994
8995 symtab_hdr = & elf_symtab_hdr (abfd);
8996 sym_hashes = elf_sym_hashes (abfd);
8997
8998 rel_end = relocs + sec->reloc_count;
8999 for (rel = relocs; rel < rel_end; rel++)
9000 {
9001 struct elf_link_hash_entry *h;
9002 struct elf32_arm_link_hash_entry *eh;
9003 unsigned long r_symndx;
9004 int r_type;
9005
9006 r_symndx = ELF32_R_SYM (rel->r_info);
9007 r_type = ELF32_R_TYPE (rel->r_info);
9008 r_type = arm_real_reloc_type (htab, r_type);
9009
9010 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
9011 {
9012 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9013 r_symndx);
9014 return FALSE;
9015 }
9016
9017 if (r_symndx < symtab_hdr->sh_info)
9018 h = NULL;
9019 else
9020 {
9021 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9022 while (h->root.type == bfd_link_hash_indirect
9023 || h->root.type == bfd_link_hash_warning)
9024 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9025 }
9026
9027 eh = (struct elf32_arm_link_hash_entry *) h;
9028
9029 switch (r_type)
9030 {
9031 case R_ARM_GOT32:
9032 case R_ARM_GOT_PREL:
9033 case R_ARM_TLS_GD32:
9034 case R_ARM_TLS_IE32:
9035 /* This symbol requires a global offset table entry. */
9036 {
9037 int tls_type, old_tls_type;
9038
9039 switch (r_type)
9040 {
9041 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9042 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9043 default: tls_type = GOT_NORMAL; break;
9044 }
9045
9046 if (h != NULL)
9047 {
9048 h->got.refcount++;
9049 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9050 }
9051 else
9052 {
9053 bfd_signed_vma *local_got_refcounts;
9054
9055 /* This is a global offset table entry for a local symbol. */
9056 local_got_refcounts = elf_local_got_refcounts (abfd);
9057 if (local_got_refcounts == NULL)
9058 {
9059 bfd_size_type size;
9060
9061 size = symtab_hdr->sh_info;
9062 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9063 local_got_refcounts = bfd_zalloc (abfd, size);
9064 if (local_got_refcounts == NULL)
9065 return FALSE;
9066 elf_local_got_refcounts (abfd) = local_got_refcounts;
9067 elf32_arm_local_got_tls_type (abfd)
9068 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9069 }
9070 local_got_refcounts[r_symndx] += 1;
9071 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9072 }
9073
9074 /* We will already have issued an error message if there is a
9075 TLS / non-TLS mismatch, based on the symbol type. We don't
9076 support any linker relaxations. So just combine any TLS
9077 types needed. */
9078 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9079 && tls_type != GOT_NORMAL)
9080 tls_type |= old_tls_type;
9081
9082 if (old_tls_type != tls_type)
9083 {
9084 if (h != NULL)
9085 elf32_arm_hash_entry (h)->tls_type = tls_type;
9086 else
9087 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9088 }
9089 }
9090 /* Fall through. */
9091
9092 case R_ARM_TLS_LDM32:
9093 if (r_type == R_ARM_TLS_LDM32)
9094 htab->tls_ldm_got.refcount++;
9095 /* Fall through. */
9096
9097 case R_ARM_GOTOFF32:
9098 case R_ARM_GOTPC:
9099 if (htab->sgot == NULL)
9100 {
9101 if (htab->root.dynobj == NULL)
9102 htab->root.dynobj = abfd;
9103 if (!create_got_section (htab->root.dynobj, info))
9104 return FALSE;
9105 }
9106 break;
9107
9108 case R_ARM_ABS12:
9109 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9110 ldr __GOTT_INDEX__ offsets. */
9111 if (!htab->vxworks_p)
9112 break;
9113 /* Fall through. */
9114
9115 case R_ARM_PC24:
9116 case R_ARM_PLT32:
9117 case R_ARM_CALL:
9118 case R_ARM_JUMP24:
9119 case R_ARM_PREL31:
9120 case R_ARM_THM_CALL:
9121 case R_ARM_THM_JUMP24:
9122 case R_ARM_THM_JUMP19:
9123 needs_plt = 1;
9124 goto normal_reloc;
9125
9126 case R_ARM_ABS32:
9127 case R_ARM_ABS32_NOI:
9128 case R_ARM_REL32:
9129 case R_ARM_REL32_NOI:
9130 case R_ARM_MOVW_ABS_NC:
9131 case R_ARM_MOVT_ABS:
9132 case R_ARM_MOVW_PREL_NC:
9133 case R_ARM_MOVT_PREL:
9134 case R_ARM_THM_MOVW_ABS_NC:
9135 case R_ARM_THM_MOVT_ABS:
9136 case R_ARM_THM_MOVW_PREL_NC:
9137 case R_ARM_THM_MOVT_PREL:
9138 needs_plt = 0;
9139 normal_reloc:
9140
9141 /* Should the interworking branches be listed here? */
9142 if (h != NULL)
9143 {
9144 /* If this reloc is in a read-only section, we might
9145 need a copy reloc. We can't check reliably at this
9146 stage whether the section is read-only, as input
9147 sections have not yet been mapped to output sections.
9148 Tentatively set the flag for now, and correct in
9149 adjust_dynamic_symbol. */
9150 if (!info->shared)
9151 h->non_got_ref = 1;
9152
9153 /* We may need a .plt entry if the function this reloc
9154 refers to is in a different object. We can't tell for
9155 sure yet, because something later might force the
9156 symbol local. */
9157 if (needs_plt)
9158 h->needs_plt = 1;
9159
9160 /* If we create a PLT entry, this relocation will reference
9161 it, even if it's an ABS32 relocation. */
9162 h->plt.refcount += 1;
9163
9164 /* It's too early to use htab->use_blx here, so we have to
9165 record possible blx references separately from
9166 relocs that definitely need a thumb stub. */
9167
9168 if (r_type == R_ARM_THM_CALL)
9169 eh->plt_maybe_thumb_refcount += 1;
9170
9171 if (r_type == R_ARM_THM_JUMP24
9172 || r_type == R_ARM_THM_JUMP19)
9173 eh->plt_thumb_refcount += 1;
9174 }
9175
9176 /* If we are creating a shared library or relocatable executable,
9177 and this is a reloc against a global symbol, or a non PC
9178 relative reloc against a local symbol, then we need to copy
9179 the reloc into the shared library. However, if we are linking
9180 with -Bsymbolic, we do not need to copy a reloc against a
9181 global symbol which is defined in an object we are
9182 including in the link (i.e., DEF_REGULAR is set). At
9183 this point we have not seen all the input files, so it is
9184 possible that DEF_REGULAR is not set now but will be set
9185 later (it is never cleared). We account for that
9186 possibility below by storing information in the
9187 relocs_copied field of the hash table entry. */
9188 if ((info->shared || htab->root.is_relocatable_executable)
9189 && (sec->flags & SEC_ALLOC) != 0
9190 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9191 || (h != NULL && ! h->needs_plt
9192 && (! info->symbolic || ! h->def_regular))))
9193 {
9194 struct elf32_arm_relocs_copied *p, **head;
9195
9196 /* When creating a shared object, we must copy these
9197 reloc types into the output file. We create a reloc
9198 section in dynobj and make room for this reloc. */
9199 if (sreloc == NULL)
9200 {
9201 const char * name;
9202
9203 name = (bfd_elf_string_from_elf_section
9204 (abfd,
9205 elf_elfheader (abfd)->e_shstrndx,
9206 elf_section_data (sec)->rel_hdr.sh_name));
9207 if (name == NULL)
9208 return FALSE;
9209
9210 BFD_ASSERT (reloc_section_p (htab, name, sec));
9211
9212 sreloc = bfd_get_section_by_name (dynobj, name);
9213 if (sreloc == NULL)
9214 {
9215 flagword flags;
9216
9217 flags = (SEC_HAS_CONTENTS | SEC_READONLY
9218 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
9219 if ((sec->flags & SEC_ALLOC) != 0
9220 /* BPABI objects never have dynamic
9221 relocations mapped. */
9222 && !htab->symbian_p)
9223 flags |= SEC_ALLOC | SEC_LOAD;
9224 sreloc = bfd_make_section_with_flags (dynobj,
9225 name,
9226 flags);
9227 if (sreloc == NULL
9228 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
9229 return FALSE;
9230 }
9231
9232 elf_section_data (sec)->sreloc = sreloc;
9233 }
9234
9235 /* If this is a global symbol, we count the number of
9236 relocations we need for this symbol. */
9237 if (h != NULL)
9238 {
9239 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9240 }
9241 else
9242 {
9243 /* Track dynamic relocs needed for local syms too.
9244 We really need local syms available to do this
9245 easily. Oh well. */
9246
9247 asection *s;
9248 void *vpp;
9249
9250 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9251 sec, r_symndx);
9252 if (s == NULL)
9253 return FALSE;
9254
9255 vpp = &elf_section_data (s)->local_dynrel;
9256 head = (struct elf32_arm_relocs_copied **) vpp;
9257 }
9258
9259 p = *head;
9260 if (p == NULL || p->section != sec)
9261 {
9262 bfd_size_type amt = sizeof *p;
9263
9264 p = bfd_alloc (htab->root.dynobj, amt);
9265 if (p == NULL)
9266 return FALSE;
9267 p->next = *head;
9268 *head = p;
9269 p->section = sec;
9270 p->count = 0;
9271 p->pc_count = 0;
9272 }
9273
9274 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9275 p->pc_count += 1;
9276 p->count += 1;
9277 }
9278 break;
9279
9280 /* This relocation describes the C++ object vtable hierarchy.
9281 Reconstruct it for later use during GC. */
9282 case R_ARM_GNU_VTINHERIT:
9283 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9284 return FALSE;
9285 break;
9286
9287 /* This relocation describes which C++ vtable entries are actually
9288 used. Record for later use during GC. */
9289 case R_ARM_GNU_VTENTRY:
9290 BFD_ASSERT (h != NULL);
9291 if (h != NULL
9292 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9293 return FALSE;
9294 break;
9295 }
9296 }
9297
9298 return TRUE;
9299 }
9300
9301 /* Unwinding tables are not referenced directly. This pass marks them as
9302 required if the corresponding code section is marked. */
9303
9304 static bfd_boolean
9305 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9306 elf_gc_mark_hook_fn gc_mark_hook)
9307 {
9308 bfd *sub;
9309 Elf_Internal_Shdr **elf_shdrp;
9310 bfd_boolean again;
9311
9312 /* Marking EH data may cause additional code sections to be marked,
9313 requiring multiple passes. */
9314 again = TRUE;
9315 while (again)
9316 {
9317 again = FALSE;
9318 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9319 {
9320 asection *o;
9321
9322 if (! is_arm_elf (sub))
9323 continue;
9324
9325 elf_shdrp = elf_elfsections (sub);
9326 for (o = sub->sections; o != NULL; o = o->next)
9327 {
9328 Elf_Internal_Shdr *hdr;
9329
9330 hdr = &elf_section_data (o)->this_hdr;
9331 if (hdr->sh_type == SHT_ARM_EXIDX
9332 && hdr->sh_link
9333 && hdr->sh_link < elf_numsections (sub)
9334 && !o->gc_mark
9335 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9336 {
9337 again = TRUE;
9338 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9339 return FALSE;
9340 }
9341 }
9342 }
9343 }
9344
9345 return TRUE;
9346 }
9347
9348 /* Treat mapping symbols as special target symbols. */
9349
9350 static bfd_boolean
9351 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9352 {
9353 return bfd_is_arm_special_symbol_name (sym->name,
9354 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9355 }
9356
9357 /* This is a copy of elf_find_function() from elf.c except that
9358 ARM mapping symbols are ignored when looking for function names
9359 and STT_ARM_TFUNC is considered to a function type. */
9360
9361 static bfd_boolean
9362 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9363 asection * section,
9364 asymbol ** symbols,
9365 bfd_vma offset,
9366 const char ** filename_ptr,
9367 const char ** functionname_ptr)
9368 {
9369 const char * filename = NULL;
9370 asymbol * func = NULL;
9371 bfd_vma low_func = 0;
9372 asymbol ** p;
9373
9374 for (p = symbols; *p != NULL; p++)
9375 {
9376 elf_symbol_type *q;
9377
9378 q = (elf_symbol_type *) *p;
9379
9380 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9381 {
9382 default:
9383 break;
9384 case STT_FILE:
9385 filename = bfd_asymbol_name (&q->symbol);
9386 break;
9387 case STT_FUNC:
9388 case STT_ARM_TFUNC:
9389 case STT_NOTYPE:
9390 /* Skip mapping symbols. */
9391 if ((q->symbol.flags & BSF_LOCAL)
9392 && bfd_is_arm_special_symbol_name (q->symbol.name,
9393 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9394 continue;
9395 /* Fall through. */
9396 if (bfd_get_section (&q->symbol) == section
9397 && q->symbol.value >= low_func
9398 && q->symbol.value <= offset)
9399 {
9400 func = (asymbol *) q;
9401 low_func = q->symbol.value;
9402 }
9403 break;
9404 }
9405 }
9406
9407 if (func == NULL)
9408 return FALSE;
9409
9410 if (filename_ptr)
9411 *filename_ptr = filename;
9412 if (functionname_ptr)
9413 *functionname_ptr = bfd_asymbol_name (func);
9414
9415 return TRUE;
9416 }
9417
9418
9419 /* Find the nearest line to a particular section and offset, for error
9420 reporting. This code is a duplicate of the code in elf.c, except
9421 that it uses arm_elf_find_function. */
9422
9423 static bfd_boolean
9424 elf32_arm_find_nearest_line (bfd * abfd,
9425 asection * section,
9426 asymbol ** symbols,
9427 bfd_vma offset,
9428 const char ** filename_ptr,
9429 const char ** functionname_ptr,
9430 unsigned int * line_ptr)
9431 {
9432 bfd_boolean found = FALSE;
9433
9434 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9435
9436 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9437 filename_ptr, functionname_ptr,
9438 line_ptr, 0,
9439 & elf_tdata (abfd)->dwarf2_find_line_info))
9440 {
9441 if (!*functionname_ptr)
9442 arm_elf_find_function (abfd, section, symbols, offset,
9443 *filename_ptr ? NULL : filename_ptr,
9444 functionname_ptr);
9445
9446 return TRUE;
9447 }
9448
9449 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9450 & found, filename_ptr,
9451 functionname_ptr, line_ptr,
9452 & elf_tdata (abfd)->line_info))
9453 return FALSE;
9454
9455 if (found && (*functionname_ptr || *line_ptr))
9456 return TRUE;
9457
9458 if (symbols == NULL)
9459 return FALSE;
9460
9461 if (! arm_elf_find_function (abfd, section, symbols, offset,
9462 filename_ptr, functionname_ptr))
9463 return FALSE;
9464
9465 *line_ptr = 0;
9466 return TRUE;
9467 }
9468
9469 static bfd_boolean
9470 elf32_arm_find_inliner_info (bfd * abfd,
9471 const char ** filename_ptr,
9472 const char ** functionname_ptr,
9473 unsigned int * line_ptr)
9474 {
9475 bfd_boolean found;
9476 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9477 functionname_ptr, line_ptr,
9478 & elf_tdata (abfd)->dwarf2_find_line_info);
9479 return found;
9480 }
9481
9482 /* Adjust a symbol defined by a dynamic object and referenced by a
9483 regular object. The current definition is in some section of the
9484 dynamic object, but we're not including those sections. We have to
9485 change the definition to something the rest of the link can
9486 understand. */
9487
9488 static bfd_boolean
9489 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9490 struct elf_link_hash_entry * h)
9491 {
9492 bfd * dynobj;
9493 asection * s;
9494 struct elf32_arm_link_hash_entry * eh;
9495 struct elf32_arm_link_hash_table *globals;
9496
9497 globals = elf32_arm_hash_table (info);
9498 dynobj = elf_hash_table (info)->dynobj;
9499
9500 /* Make sure we know what is going on here. */
9501 BFD_ASSERT (dynobj != NULL
9502 && (h->needs_plt
9503 || h->u.weakdef != NULL
9504 || (h->def_dynamic
9505 && h->ref_regular
9506 && !h->def_regular)));
9507
9508 eh = (struct elf32_arm_link_hash_entry *) h;
9509
9510 /* If this is a function, put it in the procedure linkage table. We
9511 will fill in the contents of the procedure linkage table later,
9512 when we know the address of the .got section. */
9513 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
9514 || h->needs_plt)
9515 {
9516 if (h->plt.refcount <= 0
9517 || SYMBOL_CALLS_LOCAL (info, h)
9518 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9519 && h->root.type == bfd_link_hash_undefweak))
9520 {
9521 /* This case can occur if we saw a PLT32 reloc in an input
9522 file, but the symbol was never referred to by a dynamic
9523 object, or if all references were garbage collected. In
9524 such a case, we don't actually need to build a procedure
9525 linkage table, and we can just do a PC24 reloc instead. */
9526 h->plt.offset = (bfd_vma) -1;
9527 eh->plt_thumb_refcount = 0;
9528 eh->plt_maybe_thumb_refcount = 0;
9529 h->needs_plt = 0;
9530 }
9531
9532 return TRUE;
9533 }
9534 else
9535 {
9536 /* It's possible that we incorrectly decided a .plt reloc was
9537 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9538 in check_relocs. We can't decide accurately between function
9539 and non-function syms in check-relocs; Objects loaded later in
9540 the link may change h->type. So fix it now. */
9541 h->plt.offset = (bfd_vma) -1;
9542 eh->plt_thumb_refcount = 0;
9543 eh->plt_maybe_thumb_refcount = 0;
9544 }
9545
9546 /* If this is a weak symbol, and there is a real definition, the
9547 processor independent code will have arranged for us to see the
9548 real definition first, and we can just use the same value. */
9549 if (h->u.weakdef != NULL)
9550 {
9551 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9552 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9553 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9554 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9555 return TRUE;
9556 }
9557
9558 /* If there are no non-GOT references, we do not need a copy
9559 relocation. */
9560 if (!h->non_got_ref)
9561 return TRUE;
9562
9563 /* This is a reference to a symbol defined by a dynamic object which
9564 is not a function. */
9565
9566 /* If we are creating a shared library, we must presume that the
9567 only references to the symbol are via the global offset table.
9568 For such cases we need not do anything here; the relocations will
9569 be handled correctly by relocate_section. Relocatable executables
9570 can reference data in shared objects directly, so we don't need to
9571 do anything here. */
9572 if (info->shared || globals->root.is_relocatable_executable)
9573 return TRUE;
9574
9575 if (h->size == 0)
9576 {
9577 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
9578 h->root.root.string);
9579 return TRUE;
9580 }
9581
9582 /* We must allocate the symbol in our .dynbss section, which will
9583 become part of the .bss section of the executable. There will be
9584 an entry for this symbol in the .dynsym section. The dynamic
9585 object will contain position independent code, so all references
9586 from the dynamic object to this symbol will go through the global
9587 offset table. The dynamic linker will use the .dynsym entry to
9588 determine the address it must put in the global offset table, so
9589 both the dynamic object and the regular object will refer to the
9590 same memory location for the variable. */
9591 s = bfd_get_section_by_name (dynobj, ".dynbss");
9592 BFD_ASSERT (s != NULL);
9593
9594 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9595 copy the initial value out of the dynamic object and into the
9596 runtime process image. We need to remember the offset into the
9597 .rel(a).bss section we are going to use. */
9598 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9599 {
9600 asection *srel;
9601
9602 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
9603 BFD_ASSERT (srel != NULL);
9604 srel->size += RELOC_SIZE (globals);
9605 h->needs_copy = 1;
9606 }
9607
9608 return _bfd_elf_adjust_dynamic_copy (h, s);
9609 }
9610
9611 /* Allocate space in .plt, .got and associated reloc sections for
9612 dynamic relocs. */
9613
9614 static bfd_boolean
9615 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
9616 {
9617 struct bfd_link_info *info;
9618 struct elf32_arm_link_hash_table *htab;
9619 struct elf32_arm_link_hash_entry *eh;
9620 struct elf32_arm_relocs_copied *p;
9621 bfd_signed_vma thumb_refs;
9622
9623 eh = (struct elf32_arm_link_hash_entry *) h;
9624
9625 if (h->root.type == bfd_link_hash_indirect)
9626 return TRUE;
9627
9628 if (h->root.type == bfd_link_hash_warning)
9629 /* When warning symbols are created, they **replace** the "real"
9630 entry in the hash table, thus we never get to see the real
9631 symbol in a hash traversal. So look at it now. */
9632 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9633
9634 info = (struct bfd_link_info *) inf;
9635 htab = elf32_arm_hash_table (info);
9636
9637 if (htab->root.dynamic_sections_created
9638 && h->plt.refcount > 0)
9639 {
9640 /* Make sure this symbol is output as a dynamic symbol.
9641 Undefined weak syms won't yet be marked as dynamic. */
9642 if (h->dynindx == -1
9643 && !h->forced_local)
9644 {
9645 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9646 return FALSE;
9647 }
9648
9649 if (info->shared
9650 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
9651 {
9652 asection *s = htab->splt;
9653
9654 /* If this is the first .plt entry, make room for the special
9655 first entry. */
9656 if (s->size == 0)
9657 s->size += htab->plt_header_size;
9658
9659 h->plt.offset = s->size;
9660
9661 /* If we will insert a Thumb trampoline before this PLT, leave room
9662 for it. */
9663 thumb_refs = eh->plt_thumb_refcount;
9664 if (!htab->use_blx)
9665 thumb_refs += eh->plt_maybe_thumb_refcount;
9666
9667 if (thumb_refs > 0)
9668 {
9669 h->plt.offset += PLT_THUMB_STUB_SIZE;
9670 s->size += PLT_THUMB_STUB_SIZE;
9671 }
9672
9673 /* If this symbol is not defined in a regular file, and we are
9674 not generating a shared library, then set the symbol to this
9675 location in the .plt. This is required to make function
9676 pointers compare as equal between the normal executable and
9677 the shared library. */
9678 if (! info->shared
9679 && !h->def_regular)
9680 {
9681 h->root.u.def.section = s;
9682 h->root.u.def.value = h->plt.offset;
9683
9684 /* Make sure the function is not marked as Thumb, in case
9685 it is the target of an ABS32 relocation, which will
9686 point to the PLT entry. */
9687 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
9688 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9689 }
9690
9691 /* Make room for this entry. */
9692 s->size += htab->plt_entry_size;
9693
9694 if (!htab->symbian_p)
9695 {
9696 /* We also need to make an entry in the .got.plt section, which
9697 will be placed in the .got section by the linker script. */
9698 eh->plt_got_offset = htab->sgotplt->size;
9699 htab->sgotplt->size += 4;
9700 }
9701
9702 /* We also need to make an entry in the .rel(a).plt section. */
9703 htab->srelplt->size += RELOC_SIZE (htab);
9704
9705 /* VxWorks executables have a second set of relocations for
9706 each PLT entry. They go in a separate relocation section,
9707 which is processed by the kernel loader. */
9708 if (htab->vxworks_p && !info->shared)
9709 {
9710 /* There is a relocation for the initial PLT entry:
9711 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9712 if (h->plt.offset == htab->plt_header_size)
9713 htab->srelplt2->size += RELOC_SIZE (htab);
9714
9715 /* There are two extra relocations for each subsequent
9716 PLT entry: an R_ARM_32 relocation for the GOT entry,
9717 and an R_ARM_32 relocation for the PLT entry. */
9718 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
9719 }
9720 }
9721 else
9722 {
9723 h->plt.offset = (bfd_vma) -1;
9724 h->needs_plt = 0;
9725 }
9726 }
9727 else
9728 {
9729 h->plt.offset = (bfd_vma) -1;
9730 h->needs_plt = 0;
9731 }
9732
9733 if (h->got.refcount > 0)
9734 {
9735 asection *s;
9736 bfd_boolean dyn;
9737 int tls_type = elf32_arm_hash_entry (h)->tls_type;
9738 int indx;
9739
9740 /* Make sure this symbol is output as a dynamic symbol.
9741 Undefined weak syms won't yet be marked as dynamic. */
9742 if (h->dynindx == -1
9743 && !h->forced_local)
9744 {
9745 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9746 return FALSE;
9747 }
9748
9749 if (!htab->symbian_p)
9750 {
9751 s = htab->sgot;
9752 h->got.offset = s->size;
9753
9754 if (tls_type == GOT_UNKNOWN)
9755 abort ();
9756
9757 if (tls_type == GOT_NORMAL)
9758 /* Non-TLS symbols need one GOT slot. */
9759 s->size += 4;
9760 else
9761 {
9762 if (tls_type & GOT_TLS_GD)
9763 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9764 s->size += 8;
9765 if (tls_type & GOT_TLS_IE)
9766 /* R_ARM_TLS_IE32 needs one GOT slot. */
9767 s->size += 4;
9768 }
9769
9770 dyn = htab->root.dynamic_sections_created;
9771
9772 indx = 0;
9773 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9774 && (!info->shared
9775 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9776 indx = h->dynindx;
9777
9778 if (tls_type != GOT_NORMAL
9779 && (info->shared || indx != 0)
9780 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9781 || h->root.type != bfd_link_hash_undefweak))
9782 {
9783 if (tls_type & GOT_TLS_IE)
9784 htab->srelgot->size += RELOC_SIZE (htab);
9785
9786 if (tls_type & GOT_TLS_GD)
9787 htab->srelgot->size += RELOC_SIZE (htab);
9788
9789 if ((tls_type & GOT_TLS_GD) && indx != 0)
9790 htab->srelgot->size += RELOC_SIZE (htab);
9791 }
9792 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9793 || h->root.type != bfd_link_hash_undefweak)
9794 && (info->shared
9795 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
9796 htab->srelgot->size += RELOC_SIZE (htab);
9797 }
9798 }
9799 else
9800 h->got.offset = (bfd_vma) -1;
9801
9802 /* Allocate stubs for exported Thumb functions on v4t. */
9803 if (!htab->use_blx && h->dynindx != -1
9804 && h->def_regular
9805 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
9806 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9807 {
9808 struct elf_link_hash_entry * th;
9809 struct bfd_link_hash_entry * bh;
9810 struct elf_link_hash_entry * myh;
9811 char name[1024];
9812 asection *s;
9813 bh = NULL;
9814 /* Create a new symbol to regist the real location of the function. */
9815 s = h->root.u.def.section;
9816 sprintf (name, "__real_%s", h->root.root.string);
9817 _bfd_generic_link_add_one_symbol (info, s->owner,
9818 name, BSF_GLOBAL, s,
9819 h->root.u.def.value,
9820 NULL, TRUE, FALSE, &bh);
9821
9822 myh = (struct elf_link_hash_entry *) bh;
9823 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
9824 myh->forced_local = 1;
9825 eh->export_glue = myh;
9826 th = record_arm_to_thumb_glue (info, h);
9827 /* Point the symbol at the stub. */
9828 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9829 h->root.u.def.section = th->root.u.def.section;
9830 h->root.u.def.value = th->root.u.def.value & ~1;
9831 }
9832
9833 if (eh->relocs_copied == NULL)
9834 return TRUE;
9835
9836 /* In the shared -Bsymbolic case, discard space allocated for
9837 dynamic pc-relative relocs against symbols which turn out to be
9838 defined in regular objects. For the normal shared case, discard
9839 space for pc-relative relocs that have become local due to symbol
9840 visibility changes. */
9841
9842 if (info->shared || htab->root.is_relocatable_executable)
9843 {
9844 /* The only relocs that use pc_count are R_ARM_REL32 and
9845 R_ARM_REL32_NOI, which will appear on something like
9846 ".long foo - .". We want calls to protected symbols to resolve
9847 directly to the function rather than going via the plt. If people
9848 want function pointer comparisons to work as expected then they
9849 should avoid writing assembly like ".long foo - .". */
9850 if (SYMBOL_CALLS_LOCAL (info, h))
9851 {
9852 struct elf32_arm_relocs_copied **pp;
9853
9854 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9855 {
9856 p->count -= p->pc_count;
9857 p->pc_count = 0;
9858 if (p->count == 0)
9859 *pp = p->next;
9860 else
9861 pp = &p->next;
9862 }
9863 }
9864
9865 if (elf32_arm_hash_table (info)->vxworks_p)
9866 {
9867 struct elf32_arm_relocs_copied **pp;
9868
9869 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9870 {
9871 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
9872 *pp = p->next;
9873 else
9874 pp = &p->next;
9875 }
9876 }
9877
9878 /* Also discard relocs on undefined weak syms with non-default
9879 visibility. */
9880 if (eh->relocs_copied != NULL
9881 && h->root.type == bfd_link_hash_undefweak)
9882 {
9883 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9884 eh->relocs_copied = NULL;
9885
9886 /* Make sure undefined weak symbols are output as a dynamic
9887 symbol in PIEs. */
9888 else if (h->dynindx == -1
9889 && !h->forced_local)
9890 {
9891 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9892 return FALSE;
9893 }
9894 }
9895
9896 else if (htab->root.is_relocatable_executable && h->dynindx == -1
9897 && h->root.type == bfd_link_hash_new)
9898 {
9899 /* Output absolute symbols so that we can create relocations
9900 against them. For normal symbols we output a relocation
9901 against the section that contains them. */
9902 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9903 return FALSE;
9904 }
9905
9906 }
9907 else
9908 {
9909 /* For the non-shared case, discard space for relocs against
9910 symbols which turn out to need copy relocs or are not
9911 dynamic. */
9912
9913 if (!h->non_got_ref
9914 && ((h->def_dynamic
9915 && !h->def_regular)
9916 || (htab->root.dynamic_sections_created
9917 && (h->root.type == bfd_link_hash_undefweak
9918 || h->root.type == bfd_link_hash_undefined))))
9919 {
9920 /* Make sure this symbol is output as a dynamic symbol.
9921 Undefined weak syms won't yet be marked as dynamic. */
9922 if (h->dynindx == -1
9923 && !h->forced_local)
9924 {
9925 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9926 return FALSE;
9927 }
9928
9929 /* If that succeeded, we know we'll be keeping all the
9930 relocs. */
9931 if (h->dynindx != -1)
9932 goto keep;
9933 }
9934
9935 eh->relocs_copied = NULL;
9936
9937 keep: ;
9938 }
9939
9940 /* Finally, allocate space. */
9941 for (p = eh->relocs_copied; p != NULL; p = p->next)
9942 {
9943 asection *sreloc = elf_section_data (p->section)->sreloc;
9944 sreloc->size += p->count * RELOC_SIZE (htab);
9945 }
9946
9947 return TRUE;
9948 }
9949
9950 /* Find any dynamic relocs that apply to read-only sections. */
9951
9952 static bfd_boolean
9953 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
9954 {
9955 struct elf32_arm_link_hash_entry * eh;
9956 struct elf32_arm_relocs_copied * p;
9957
9958 if (h->root.type == bfd_link_hash_warning)
9959 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9960
9961 eh = (struct elf32_arm_link_hash_entry *) h;
9962 for (p = eh->relocs_copied; p != NULL; p = p->next)
9963 {
9964 asection *s = p->section;
9965
9966 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9967 {
9968 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9969
9970 info->flags |= DF_TEXTREL;
9971
9972 /* Not an error, just cut short the traversal. */
9973 return FALSE;
9974 }
9975 }
9976 return TRUE;
9977 }
9978
9979 void
9980 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
9981 int byteswap_code)
9982 {
9983 struct elf32_arm_link_hash_table *globals;
9984
9985 globals = elf32_arm_hash_table (info);
9986 globals->byteswap_code = byteswap_code;
9987 }
9988
9989 /* Set the sizes of the dynamic sections. */
9990
9991 static bfd_boolean
9992 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
9993 struct bfd_link_info * info)
9994 {
9995 bfd * dynobj;
9996 asection * s;
9997 bfd_boolean plt;
9998 bfd_boolean relocs;
9999 bfd *ibfd;
10000 struct elf32_arm_link_hash_table *htab;
10001
10002 htab = elf32_arm_hash_table (info);
10003 dynobj = elf_hash_table (info)->dynobj;
10004 BFD_ASSERT (dynobj != NULL);
10005 check_use_blx (htab);
10006
10007 if (elf_hash_table (info)->dynamic_sections_created)
10008 {
10009 /* Set the contents of the .interp section to the interpreter. */
10010 if (info->executable)
10011 {
10012 s = bfd_get_section_by_name (dynobj, ".interp");
10013 BFD_ASSERT (s != NULL);
10014 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10015 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10016 }
10017 }
10018
10019 /* Set up .got offsets for local syms, and space for local dynamic
10020 relocs. */
10021 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10022 {
10023 bfd_signed_vma *local_got;
10024 bfd_signed_vma *end_local_got;
10025 char *local_tls_type;
10026 bfd_size_type locsymcount;
10027 Elf_Internal_Shdr *symtab_hdr;
10028 asection *srel;
10029 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10030
10031 if (! is_arm_elf (ibfd))
10032 continue;
10033
10034 for (s = ibfd->sections; s != NULL; s = s->next)
10035 {
10036 struct elf32_arm_relocs_copied *p;
10037
10038 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10039 {
10040 if (!bfd_is_abs_section (p->section)
10041 && bfd_is_abs_section (p->section->output_section))
10042 {
10043 /* Input section has been discarded, either because
10044 it is a copy of a linkonce section or due to
10045 linker script /DISCARD/, so we'll be discarding
10046 the relocs too. */
10047 }
10048 else if (is_vxworks
10049 && strcmp (p->section->output_section->name,
10050 ".tls_vars") == 0)
10051 {
10052 /* Relocations in vxworks .tls_vars sections are
10053 handled specially by the loader. */
10054 }
10055 else if (p->count != 0)
10056 {
10057 srel = elf_section_data (p->section)->sreloc;
10058 srel->size += p->count * RELOC_SIZE (htab);
10059 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10060 info->flags |= DF_TEXTREL;
10061 }
10062 }
10063 }
10064
10065 local_got = elf_local_got_refcounts (ibfd);
10066 if (!local_got)
10067 continue;
10068
10069 symtab_hdr = & elf_symtab_hdr (ibfd);
10070 locsymcount = symtab_hdr->sh_info;
10071 end_local_got = local_got + locsymcount;
10072 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10073 s = htab->sgot;
10074 srel = htab->srelgot;
10075 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10076 {
10077 if (*local_got > 0)
10078 {
10079 *local_got = s->size;
10080 if (*local_tls_type & GOT_TLS_GD)
10081 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10082 s->size += 8;
10083 if (*local_tls_type & GOT_TLS_IE)
10084 s->size += 4;
10085 if (*local_tls_type == GOT_NORMAL)
10086 s->size += 4;
10087
10088 if (info->shared || *local_tls_type == GOT_TLS_GD)
10089 srel->size += RELOC_SIZE (htab);
10090 }
10091 else
10092 *local_got = (bfd_vma) -1;
10093 }
10094 }
10095
10096 if (htab->tls_ldm_got.refcount > 0)
10097 {
10098 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10099 for R_ARM_TLS_LDM32 relocations. */
10100 htab->tls_ldm_got.offset = htab->sgot->size;
10101 htab->sgot->size += 8;
10102 if (info->shared)
10103 htab->srelgot->size += RELOC_SIZE (htab);
10104 }
10105 else
10106 htab->tls_ldm_got.offset = -1;
10107
10108 /* Allocate global sym .plt and .got entries, and space for global
10109 sym dynamic relocs. */
10110 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10111
10112 /* Here we rummage through the found bfds to collect glue information. */
10113 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10114 {
10115 if (! is_arm_elf (ibfd))
10116 continue;
10117
10118 /* Initialise mapping tables for code/data. */
10119 bfd_elf32_arm_init_maps (ibfd);
10120
10121 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10122 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10123 /* xgettext:c-format */
10124 _bfd_error_handler (_("Errors encountered processing file %s"),
10125 ibfd->filename);
10126 }
10127
10128 /* The check_relocs and adjust_dynamic_symbol entry points have
10129 determined the sizes of the various dynamic sections. Allocate
10130 memory for them. */
10131 plt = FALSE;
10132 relocs = FALSE;
10133 for (s = dynobj->sections; s != NULL; s = s->next)
10134 {
10135 const char * name;
10136
10137 if ((s->flags & SEC_LINKER_CREATED) == 0)
10138 continue;
10139
10140 /* It's OK to base decisions on the section name, because none
10141 of the dynobj section names depend upon the input files. */
10142 name = bfd_get_section_name (dynobj, s);
10143
10144 if (strcmp (name, ".plt") == 0)
10145 {
10146 /* Remember whether there is a PLT. */
10147 plt = s->size != 0;
10148 }
10149 else if (CONST_STRNEQ (name, ".rel"))
10150 {
10151 if (s->size != 0)
10152 {
10153 /* Remember whether there are any reloc sections other
10154 than .rel(a).plt and .rela.plt.unloaded. */
10155 if (s != htab->srelplt && s != htab->srelplt2)
10156 relocs = TRUE;
10157
10158 /* We use the reloc_count field as a counter if we need
10159 to copy relocs into the output file. */
10160 s->reloc_count = 0;
10161 }
10162 }
10163 else if (! CONST_STRNEQ (name, ".got")
10164 && strcmp (name, ".dynbss") != 0)
10165 {
10166 /* It's not one of our sections, so don't allocate space. */
10167 continue;
10168 }
10169
10170 if (s->size == 0)
10171 {
10172 /* If we don't need this section, strip it from the
10173 output file. This is mostly to handle .rel(a).bss and
10174 .rel(a).plt. We must create both sections in
10175 create_dynamic_sections, because they must be created
10176 before the linker maps input sections to output
10177 sections. The linker does that before
10178 adjust_dynamic_symbol is called, and it is that
10179 function which decides whether anything needs to go
10180 into these sections. */
10181 s->flags |= SEC_EXCLUDE;
10182 continue;
10183 }
10184
10185 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10186 continue;
10187
10188 /* Allocate memory for the section contents. */
10189 s->contents = bfd_zalloc (dynobj, s->size);
10190 if (s->contents == NULL)
10191 return FALSE;
10192 }
10193
10194 if (elf_hash_table (info)->dynamic_sections_created)
10195 {
10196 /* Add some entries to the .dynamic section. We fill in the
10197 values later, in elf32_arm_finish_dynamic_sections, but we
10198 must add the entries now so that we get the correct size for
10199 the .dynamic section. The DT_DEBUG entry is filled in by the
10200 dynamic linker and used by the debugger. */
10201 #define add_dynamic_entry(TAG, VAL) \
10202 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10203
10204 if (info->executable)
10205 {
10206 if (!add_dynamic_entry (DT_DEBUG, 0))
10207 return FALSE;
10208 }
10209
10210 if (plt)
10211 {
10212 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10213 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10214 || !add_dynamic_entry (DT_PLTREL,
10215 htab->use_rel ? DT_REL : DT_RELA)
10216 || !add_dynamic_entry (DT_JMPREL, 0))
10217 return FALSE;
10218 }
10219
10220 if (relocs)
10221 {
10222 if (htab->use_rel)
10223 {
10224 if (!add_dynamic_entry (DT_REL, 0)
10225 || !add_dynamic_entry (DT_RELSZ, 0)
10226 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10227 return FALSE;
10228 }
10229 else
10230 {
10231 if (!add_dynamic_entry (DT_RELA, 0)
10232 || !add_dynamic_entry (DT_RELASZ, 0)
10233 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10234 return FALSE;
10235 }
10236 }
10237
10238 /* If any dynamic relocs apply to a read-only section,
10239 then we need a DT_TEXTREL entry. */
10240 if ((info->flags & DF_TEXTREL) == 0)
10241 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10242 info);
10243
10244 if ((info->flags & DF_TEXTREL) != 0)
10245 {
10246 if (!add_dynamic_entry (DT_TEXTREL, 0))
10247 return FALSE;
10248 }
10249 if (htab->vxworks_p
10250 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10251 return FALSE;
10252 }
10253 #undef add_dynamic_entry
10254
10255 return TRUE;
10256 }
10257
10258 /* Finish up dynamic symbol handling. We set the contents of various
10259 dynamic sections here. */
10260
10261 static bfd_boolean
10262 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10263 struct bfd_link_info * info,
10264 struct elf_link_hash_entry * h,
10265 Elf_Internal_Sym * sym)
10266 {
10267 bfd * dynobj;
10268 struct elf32_arm_link_hash_table *htab;
10269 struct elf32_arm_link_hash_entry *eh;
10270
10271 dynobj = elf_hash_table (info)->dynobj;
10272 htab = elf32_arm_hash_table (info);
10273 eh = (struct elf32_arm_link_hash_entry *) h;
10274
10275 if (h->plt.offset != (bfd_vma) -1)
10276 {
10277 asection * splt;
10278 asection * srel;
10279 bfd_byte *loc;
10280 bfd_vma plt_index;
10281 Elf_Internal_Rela rel;
10282
10283 /* This symbol has an entry in the procedure linkage table. Set
10284 it up. */
10285
10286 BFD_ASSERT (h->dynindx != -1);
10287
10288 splt = bfd_get_section_by_name (dynobj, ".plt");
10289 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10290 BFD_ASSERT (splt != NULL && srel != NULL);
10291
10292 /* Fill in the entry in the procedure linkage table. */
10293 if (htab->symbian_p)
10294 {
10295 put_arm_insn (htab, output_bfd,
10296 elf32_arm_symbian_plt_entry[0],
10297 splt->contents + h->plt.offset);
10298 bfd_put_32 (output_bfd,
10299 elf32_arm_symbian_plt_entry[1],
10300 splt->contents + h->plt.offset + 4);
10301
10302 /* Fill in the entry in the .rel.plt section. */
10303 rel.r_offset = (splt->output_section->vma
10304 + splt->output_offset
10305 + h->plt.offset + 4);
10306 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10307
10308 /* Get the index in the procedure linkage table which
10309 corresponds to this symbol. This is the index of this symbol
10310 in all the symbols for which we are making plt entries. The
10311 first entry in the procedure linkage table is reserved. */
10312 plt_index = ((h->plt.offset - htab->plt_header_size)
10313 / htab->plt_entry_size);
10314 }
10315 else
10316 {
10317 bfd_vma got_offset, got_address, plt_address;
10318 bfd_vma got_displacement;
10319 asection * sgot;
10320 bfd_byte * ptr;
10321
10322 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10323 BFD_ASSERT (sgot != NULL);
10324
10325 /* Get the offset into the .got.plt table of the entry that
10326 corresponds to this function. */
10327 got_offset = eh->plt_got_offset;
10328
10329 /* Get the index in the procedure linkage table which
10330 corresponds to this symbol. This is the index of this symbol
10331 in all the symbols for which we are making plt entries. The
10332 first three entries in .got.plt are reserved; after that
10333 symbols appear in the same order as in .plt. */
10334 plt_index = (got_offset - 12) / 4;
10335
10336 /* Calculate the address of the GOT entry. */
10337 got_address = (sgot->output_section->vma
10338 + sgot->output_offset
10339 + got_offset);
10340
10341 /* ...and the address of the PLT entry. */
10342 plt_address = (splt->output_section->vma
10343 + splt->output_offset
10344 + h->plt.offset);
10345
10346 ptr = htab->splt->contents + h->plt.offset;
10347 if (htab->vxworks_p && info->shared)
10348 {
10349 unsigned int i;
10350 bfd_vma val;
10351
10352 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10353 {
10354 val = elf32_arm_vxworks_shared_plt_entry[i];
10355 if (i == 2)
10356 val |= got_address - sgot->output_section->vma;
10357 if (i == 5)
10358 val |= plt_index * RELOC_SIZE (htab);
10359 if (i == 2 || i == 5)
10360 bfd_put_32 (output_bfd, val, ptr);
10361 else
10362 put_arm_insn (htab, output_bfd, val, ptr);
10363 }
10364 }
10365 else if (htab->vxworks_p)
10366 {
10367 unsigned int i;
10368 bfd_vma val;
10369
10370 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10371 {
10372 val = elf32_arm_vxworks_exec_plt_entry[i];
10373 if (i == 2)
10374 val |= got_address;
10375 if (i == 4)
10376 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10377 if (i == 5)
10378 val |= plt_index * RELOC_SIZE (htab);
10379 if (i == 2 || i == 5)
10380 bfd_put_32 (output_bfd, val, ptr);
10381 else
10382 put_arm_insn (htab, output_bfd, val, ptr);
10383 }
10384
10385 loc = (htab->srelplt2->contents
10386 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10387
10388 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10389 referencing the GOT for this PLT entry. */
10390 rel.r_offset = plt_address + 8;
10391 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10392 rel.r_addend = got_offset;
10393 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10394 loc += RELOC_SIZE (htab);
10395
10396 /* Create the R_ARM_ABS32 relocation referencing the
10397 beginning of the PLT for this GOT entry. */
10398 rel.r_offset = got_address;
10399 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10400 rel.r_addend = 0;
10401 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10402 }
10403 else
10404 {
10405 bfd_signed_vma thumb_refs;
10406 /* Calculate the displacement between the PLT slot and the
10407 entry in the GOT. The eight-byte offset accounts for the
10408 value produced by adding to pc in the first instruction
10409 of the PLT stub. */
10410 got_displacement = got_address - (plt_address + 8);
10411
10412 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10413
10414 thumb_refs = eh->plt_thumb_refcount;
10415 if (!htab->use_blx)
10416 thumb_refs += eh->plt_maybe_thumb_refcount;
10417
10418 if (thumb_refs > 0)
10419 {
10420 put_thumb_insn (htab, output_bfd,
10421 elf32_arm_plt_thumb_stub[0], ptr - 4);
10422 put_thumb_insn (htab, output_bfd,
10423 elf32_arm_plt_thumb_stub[1], ptr - 2);
10424 }
10425
10426 put_arm_insn (htab, output_bfd,
10427 elf32_arm_plt_entry[0]
10428 | ((got_displacement & 0x0ff00000) >> 20),
10429 ptr + 0);
10430 put_arm_insn (htab, output_bfd,
10431 elf32_arm_plt_entry[1]
10432 | ((got_displacement & 0x000ff000) >> 12),
10433 ptr+ 4);
10434 put_arm_insn (htab, output_bfd,
10435 elf32_arm_plt_entry[2]
10436 | (got_displacement & 0x00000fff),
10437 ptr + 8);
10438 #ifdef FOUR_WORD_PLT
10439 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10440 #endif
10441 }
10442
10443 /* Fill in the entry in the global offset table. */
10444 bfd_put_32 (output_bfd,
10445 (splt->output_section->vma
10446 + splt->output_offset),
10447 sgot->contents + got_offset);
10448
10449 /* Fill in the entry in the .rel(a).plt section. */
10450 rel.r_addend = 0;
10451 rel.r_offset = got_address;
10452 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10453 }
10454
10455 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10456 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10457
10458 if (!h->def_regular)
10459 {
10460 /* Mark the symbol as undefined, rather than as defined in
10461 the .plt section. Leave the value alone. */
10462 sym->st_shndx = SHN_UNDEF;
10463 /* If the symbol is weak, we do need to clear the value.
10464 Otherwise, the PLT entry would provide a definition for
10465 the symbol even if the symbol wasn't defined anywhere,
10466 and so the symbol would never be NULL. */
10467 if (!h->ref_regular_nonweak)
10468 sym->st_value = 0;
10469 }
10470 }
10471
10472 if (h->got.offset != (bfd_vma) -1
10473 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10474 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10475 {
10476 asection * sgot;
10477 asection * srel;
10478 Elf_Internal_Rela rel;
10479 bfd_byte *loc;
10480 bfd_vma offset;
10481
10482 /* This symbol has an entry in the global offset table. Set it
10483 up. */
10484 sgot = bfd_get_section_by_name (dynobj, ".got");
10485 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10486 BFD_ASSERT (sgot != NULL && srel != NULL);
10487
10488 offset = (h->got.offset & ~(bfd_vma) 1);
10489 rel.r_addend = 0;
10490 rel.r_offset = (sgot->output_section->vma
10491 + sgot->output_offset
10492 + offset);
10493
10494 /* If this is a static link, or it is a -Bsymbolic link and the
10495 symbol is defined locally or was forced to be local because
10496 of a version file, we just want to emit a RELATIVE reloc.
10497 The entry in the global offset table will already have been
10498 initialized in the relocate_section function. */
10499 if (info->shared
10500 && SYMBOL_REFERENCES_LOCAL (info, h))
10501 {
10502 BFD_ASSERT ((h->got.offset & 1) != 0);
10503 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10504 if (!htab->use_rel)
10505 {
10506 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10507 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10508 }
10509 }
10510 else
10511 {
10512 BFD_ASSERT ((h->got.offset & 1) == 0);
10513 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10514 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10515 }
10516
10517 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10518 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10519 }
10520
10521 if (h->needs_copy)
10522 {
10523 asection * s;
10524 Elf_Internal_Rela rel;
10525 bfd_byte *loc;
10526
10527 /* This symbol needs a copy reloc. Set it up. */
10528 BFD_ASSERT (h->dynindx != -1
10529 && (h->root.type == bfd_link_hash_defined
10530 || h->root.type == bfd_link_hash_defweak));
10531
10532 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10533 RELOC_SECTION (htab, ".bss"));
10534 BFD_ASSERT (s != NULL);
10535
10536 rel.r_addend = 0;
10537 rel.r_offset = (h->root.u.def.value
10538 + h->root.u.def.section->output_section->vma
10539 + h->root.u.def.section->output_offset);
10540 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10541 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10542 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10543 }
10544
10545 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10546 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10547 to the ".got" section. */
10548 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10549 || (!htab->vxworks_p && h == htab->root.hgot))
10550 sym->st_shndx = SHN_ABS;
10551
10552 return TRUE;
10553 }
10554
10555 /* Finish up the dynamic sections. */
10556
10557 static bfd_boolean
10558 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10559 {
10560 bfd * dynobj;
10561 asection * sgot;
10562 asection * sdyn;
10563
10564 dynobj = elf_hash_table (info)->dynobj;
10565
10566 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10567 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10568 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10569
10570 if (elf_hash_table (info)->dynamic_sections_created)
10571 {
10572 asection *splt;
10573 Elf32_External_Dyn *dyncon, *dynconend;
10574 struct elf32_arm_link_hash_table *htab;
10575
10576 htab = elf32_arm_hash_table (info);
10577 splt = bfd_get_section_by_name (dynobj, ".plt");
10578 BFD_ASSERT (splt != NULL && sdyn != NULL);
10579
10580 dyncon = (Elf32_External_Dyn *) sdyn->contents;
10581 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
10582
10583 for (; dyncon < dynconend; dyncon++)
10584 {
10585 Elf_Internal_Dyn dyn;
10586 const char * name;
10587 asection * s;
10588
10589 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
10590
10591 switch (dyn.d_tag)
10592 {
10593 unsigned int type;
10594
10595 default:
10596 if (htab->vxworks_p
10597 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10598 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10599 break;
10600
10601 case DT_HASH:
10602 name = ".hash";
10603 goto get_vma_if_bpabi;
10604 case DT_STRTAB:
10605 name = ".dynstr";
10606 goto get_vma_if_bpabi;
10607 case DT_SYMTAB:
10608 name = ".dynsym";
10609 goto get_vma_if_bpabi;
10610 case DT_VERSYM:
10611 name = ".gnu.version";
10612 goto get_vma_if_bpabi;
10613 case DT_VERDEF:
10614 name = ".gnu.version_d";
10615 goto get_vma_if_bpabi;
10616 case DT_VERNEED:
10617 name = ".gnu.version_r";
10618 goto get_vma_if_bpabi;
10619
10620 case DT_PLTGOT:
10621 name = ".got";
10622 goto get_vma;
10623 case DT_JMPREL:
10624 name = RELOC_SECTION (htab, ".plt");
10625 get_vma:
10626 s = bfd_get_section_by_name (output_bfd, name);
10627 BFD_ASSERT (s != NULL);
10628 if (!htab->symbian_p)
10629 dyn.d_un.d_ptr = s->vma;
10630 else
10631 /* In the BPABI, tags in the PT_DYNAMIC section point
10632 at the file offset, not the memory address, for the
10633 convenience of the post linker. */
10634 dyn.d_un.d_ptr = s->filepos;
10635 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10636 break;
10637
10638 get_vma_if_bpabi:
10639 if (htab->symbian_p)
10640 goto get_vma;
10641 break;
10642
10643 case DT_PLTRELSZ:
10644 s = bfd_get_section_by_name (output_bfd,
10645 RELOC_SECTION (htab, ".plt"));
10646 BFD_ASSERT (s != NULL);
10647 dyn.d_un.d_val = s->size;
10648 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10649 break;
10650
10651 case DT_RELSZ:
10652 case DT_RELASZ:
10653 if (!htab->symbian_p)
10654 {
10655 /* My reading of the SVR4 ABI indicates that the
10656 procedure linkage table relocs (DT_JMPREL) should be
10657 included in the overall relocs (DT_REL). This is
10658 what Solaris does. However, UnixWare can not handle
10659 that case. Therefore, we override the DT_RELSZ entry
10660 here to make it not include the JMPREL relocs. Since
10661 the linker script arranges for .rel(a).plt to follow all
10662 other relocation sections, we don't have to worry
10663 about changing the DT_REL entry. */
10664 s = bfd_get_section_by_name (output_bfd,
10665 RELOC_SECTION (htab, ".plt"));
10666 if (s != NULL)
10667 dyn.d_un.d_val -= s->size;
10668 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10669 break;
10670 }
10671 /* Fall through. */
10672
10673 case DT_REL:
10674 case DT_RELA:
10675 /* In the BPABI, the DT_REL tag must point at the file
10676 offset, not the VMA, of the first relocation
10677 section. So, we use code similar to that in
10678 elflink.c, but do not check for SHF_ALLOC on the
10679 relcoation section, since relocations sections are
10680 never allocated under the BPABI. The comments above
10681 about Unixware notwithstanding, we include all of the
10682 relocations here. */
10683 if (htab->symbian_p)
10684 {
10685 unsigned int i;
10686 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10687 ? SHT_REL : SHT_RELA);
10688 dyn.d_un.d_val = 0;
10689 for (i = 1; i < elf_numsections (output_bfd); i++)
10690 {
10691 Elf_Internal_Shdr *hdr
10692 = elf_elfsections (output_bfd)[i];
10693 if (hdr->sh_type == type)
10694 {
10695 if (dyn.d_tag == DT_RELSZ
10696 || dyn.d_tag == DT_RELASZ)
10697 dyn.d_un.d_val += hdr->sh_size;
10698 else if ((ufile_ptr) hdr->sh_offset
10699 <= dyn.d_un.d_val - 1)
10700 dyn.d_un.d_val = hdr->sh_offset;
10701 }
10702 }
10703 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10704 }
10705 break;
10706
10707 /* Set the bottom bit of DT_INIT/FINI if the
10708 corresponding function is Thumb. */
10709 case DT_INIT:
10710 name = info->init_function;
10711 goto get_sym;
10712 case DT_FINI:
10713 name = info->fini_function;
10714 get_sym:
10715 /* If it wasn't set by elf_bfd_final_link
10716 then there is nothing to adjust. */
10717 if (dyn.d_un.d_val != 0)
10718 {
10719 struct elf_link_hash_entry * eh;
10720
10721 eh = elf_link_hash_lookup (elf_hash_table (info), name,
10722 FALSE, FALSE, TRUE);
10723 if (eh != NULL
10724 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
10725 {
10726 dyn.d_un.d_val |= 1;
10727 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10728 }
10729 }
10730 break;
10731 }
10732 }
10733
10734 /* Fill in the first entry in the procedure linkage table. */
10735 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
10736 {
10737 const bfd_vma *plt0_entry;
10738 bfd_vma got_address, plt_address, got_displacement;
10739
10740 /* Calculate the addresses of the GOT and PLT. */
10741 got_address = sgot->output_section->vma + sgot->output_offset;
10742 plt_address = splt->output_section->vma + splt->output_offset;
10743
10744 if (htab->vxworks_p)
10745 {
10746 /* The VxWorks GOT is relocated by the dynamic linker.
10747 Therefore, we must emit relocations rather than simply
10748 computing the values now. */
10749 Elf_Internal_Rela rel;
10750
10751 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
10752 put_arm_insn (htab, output_bfd, plt0_entry[0],
10753 splt->contents + 0);
10754 put_arm_insn (htab, output_bfd, plt0_entry[1],
10755 splt->contents + 4);
10756 put_arm_insn (htab, output_bfd, plt0_entry[2],
10757 splt->contents + 8);
10758 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
10759
10760 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10761 rel.r_offset = plt_address + 12;
10762 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10763 rel.r_addend = 0;
10764 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
10765 htab->srelplt2->contents);
10766 }
10767 else
10768 {
10769 got_displacement = got_address - (plt_address + 16);
10770
10771 plt0_entry = elf32_arm_plt0_entry;
10772 put_arm_insn (htab, output_bfd, plt0_entry[0],
10773 splt->contents + 0);
10774 put_arm_insn (htab, output_bfd, plt0_entry[1],
10775 splt->contents + 4);
10776 put_arm_insn (htab, output_bfd, plt0_entry[2],
10777 splt->contents + 8);
10778 put_arm_insn (htab, output_bfd, plt0_entry[3],
10779 splt->contents + 12);
10780
10781 #ifdef FOUR_WORD_PLT
10782 /* The displacement value goes in the otherwise-unused
10783 last word of the second entry. */
10784 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
10785 #else
10786 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
10787 #endif
10788 }
10789 }
10790
10791 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10792 really seem like the right value. */
10793 if (splt->output_section->owner == output_bfd)
10794 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
10795
10796 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
10797 {
10798 /* Correct the .rel(a).plt.unloaded relocations. They will have
10799 incorrect symbol indexes. */
10800 int num_plts;
10801 unsigned char *p;
10802
10803 num_plts = ((htab->splt->size - htab->plt_header_size)
10804 / htab->plt_entry_size);
10805 p = htab->srelplt2->contents + RELOC_SIZE (htab);
10806
10807 for (; num_plts; num_plts--)
10808 {
10809 Elf_Internal_Rela rel;
10810
10811 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10812 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10813 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10814 p += RELOC_SIZE (htab);
10815
10816 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10817 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10818 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10819 p += RELOC_SIZE (htab);
10820 }
10821 }
10822 }
10823
10824 /* Fill in the first three entries in the global offset table. */
10825 if (sgot)
10826 {
10827 if (sgot->size > 0)
10828 {
10829 if (sdyn == NULL)
10830 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
10831 else
10832 bfd_put_32 (output_bfd,
10833 sdyn->output_section->vma + sdyn->output_offset,
10834 sgot->contents);
10835 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
10836 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
10837 }
10838
10839 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
10840 }
10841
10842 return TRUE;
10843 }
10844
10845 static void
10846 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10847 {
10848 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10849 struct elf32_arm_link_hash_table *globals;
10850
10851 i_ehdrp = elf_elfheader (abfd);
10852
10853 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
10854 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
10855 else
10856 i_ehdrp->e_ident[EI_OSABI] = 0;
10857 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
10858
10859 if (link_info)
10860 {
10861 globals = elf32_arm_hash_table (link_info);
10862 if (globals->byteswap_code)
10863 i_ehdrp->e_flags |= EF_ARM_BE8;
10864 }
10865 }
10866
10867 static enum elf_reloc_type_class
10868 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
10869 {
10870 switch ((int) ELF32_R_TYPE (rela->r_info))
10871 {
10872 case R_ARM_RELATIVE:
10873 return reloc_class_relative;
10874 case R_ARM_JUMP_SLOT:
10875 return reloc_class_plt;
10876 case R_ARM_COPY:
10877 return reloc_class_copy;
10878 default:
10879 return reloc_class_normal;
10880 }
10881 }
10882
10883 /* Set the right machine number for an Arm ELF file. */
10884
10885 static bfd_boolean
10886 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
10887 {
10888 if (hdr->sh_type == SHT_NOTE)
10889 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
10890
10891 return TRUE;
10892 }
10893
10894 static void
10895 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
10896 {
10897 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
10898 }
10899
10900 /* Return TRUE if this is an unwinding table entry. */
10901
10902 static bfd_boolean
10903 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
10904 {
10905 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
10906 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
10907 }
10908
10909
10910 /* Set the type and flags for an ARM section. We do this by
10911 the section name, which is a hack, but ought to work. */
10912
10913 static bfd_boolean
10914 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
10915 {
10916 const char * name;
10917
10918 name = bfd_get_section_name (abfd, sec);
10919
10920 if (is_arm_elf_unwind_section_name (abfd, name))
10921 {
10922 hdr->sh_type = SHT_ARM_EXIDX;
10923 hdr->sh_flags |= SHF_LINK_ORDER;
10924 }
10925 return TRUE;
10926 }
10927
10928 /* Handle an ARM specific section when reading an object file. This is
10929 called when bfd_section_from_shdr finds a section with an unknown
10930 type. */
10931
10932 static bfd_boolean
10933 elf32_arm_section_from_shdr (bfd *abfd,
10934 Elf_Internal_Shdr * hdr,
10935 const char *name,
10936 int shindex)
10937 {
10938 /* There ought to be a place to keep ELF backend specific flags, but
10939 at the moment there isn't one. We just keep track of the
10940 sections by their name, instead. Fortunately, the ABI gives
10941 names for all the ARM specific sections, so we will probably get
10942 away with this. */
10943 switch (hdr->sh_type)
10944 {
10945 case SHT_ARM_EXIDX:
10946 case SHT_ARM_PREEMPTMAP:
10947 case SHT_ARM_ATTRIBUTES:
10948 break;
10949
10950 default:
10951 return FALSE;
10952 }
10953
10954 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
10955 return FALSE;
10956
10957 return TRUE;
10958 }
10959
10960 /* A structure used to record a list of sections, independently
10961 of the next and prev fields in the asection structure. */
10962 typedef struct section_list
10963 {
10964 asection * sec;
10965 struct section_list * next;
10966 struct section_list * prev;
10967 }
10968 section_list;
10969
10970 /* Unfortunately we need to keep a list of sections for which
10971 an _arm_elf_section_data structure has been allocated. This
10972 is because it is possible for functions like elf32_arm_write_section
10973 to be called on a section which has had an elf_data_structure
10974 allocated for it (and so the used_by_bfd field is valid) but
10975 for which the ARM extended version of this structure - the
10976 _arm_elf_section_data structure - has not been allocated. */
10977 static section_list * sections_with_arm_elf_section_data = NULL;
10978
10979 static void
10980 record_section_with_arm_elf_section_data (asection * sec)
10981 {
10982 struct section_list * entry;
10983
10984 entry = bfd_malloc (sizeof (* entry));
10985 if (entry == NULL)
10986 return;
10987 entry->sec = sec;
10988 entry->next = sections_with_arm_elf_section_data;
10989 entry->prev = NULL;
10990 if (entry->next != NULL)
10991 entry->next->prev = entry;
10992 sections_with_arm_elf_section_data = entry;
10993 }
10994
10995 static struct section_list *
10996 find_arm_elf_section_entry (asection * sec)
10997 {
10998 struct section_list * entry;
10999 static struct section_list * last_entry = NULL;
11000
11001 /* This is a short cut for the typical case where the sections are added
11002 to the sections_with_arm_elf_section_data list in forward order and
11003 then looked up here in backwards order. This makes a real difference
11004 to the ld-srec/sec64k.exp linker test. */
11005 entry = sections_with_arm_elf_section_data;
11006 if (last_entry != NULL)
11007 {
11008 if (last_entry->sec == sec)
11009 entry = last_entry;
11010 else if (last_entry->next != NULL
11011 && last_entry->next->sec == sec)
11012 entry = last_entry->next;
11013 }
11014
11015 for (; entry; entry = entry->next)
11016 if (entry->sec == sec)
11017 break;
11018
11019 if (entry)
11020 /* Record the entry prior to this one - it is the entry we are most
11021 likely to want to locate next time. Also this way if we have been
11022 called from unrecord_section_with_arm_elf_section_data() we will not
11023 be caching a pointer that is about to be freed. */
11024 last_entry = entry->prev;
11025
11026 return entry;
11027 }
11028
11029 static _arm_elf_section_data *
11030 get_arm_elf_section_data (asection * sec)
11031 {
11032 struct section_list * entry;
11033
11034 entry = find_arm_elf_section_entry (sec);
11035
11036 if (entry)
11037 return elf32_arm_section_data (entry->sec);
11038 else
11039 return NULL;
11040 }
11041
11042 static void
11043 unrecord_section_with_arm_elf_section_data (asection * sec)
11044 {
11045 struct section_list * entry;
11046
11047 entry = find_arm_elf_section_entry (sec);
11048
11049 if (entry)
11050 {
11051 if (entry->prev != NULL)
11052 entry->prev->next = entry->next;
11053 if (entry->next != NULL)
11054 entry->next->prev = entry->prev;
11055 if (entry == sections_with_arm_elf_section_data)
11056 sections_with_arm_elf_section_data = entry->next;
11057 free (entry);
11058 }
11059 }
11060
11061
11062 typedef struct
11063 {
11064 void *finfo;
11065 struct bfd_link_info *info;
11066 asection *sec;
11067 int sec_shndx;
11068 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11069 asection *, struct elf_link_hash_entry *);
11070 } output_arch_syminfo;
11071
11072 enum map_symbol_type
11073 {
11074 ARM_MAP_ARM,
11075 ARM_MAP_THUMB,
11076 ARM_MAP_DATA
11077 };
11078
11079
11080 /* Output a single mapping symbol. */
11081
11082 static bfd_boolean
11083 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11084 enum map_symbol_type type,
11085 bfd_vma offset)
11086 {
11087 static const char *names[3] = {"$a", "$t", "$d"};
11088 struct elf32_arm_link_hash_table *htab;
11089 Elf_Internal_Sym sym;
11090
11091 htab = elf32_arm_hash_table (osi->info);
11092 sym.st_value = osi->sec->output_section->vma
11093 + osi->sec->output_offset
11094 + offset;
11095 sym.st_size = 0;
11096 sym.st_other = 0;
11097 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11098 sym.st_shndx = osi->sec_shndx;
11099 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11100 return FALSE;
11101 return TRUE;
11102 }
11103
11104
11105 /* Output mapping symbols for PLT entries associated with H. */
11106
11107 static bfd_boolean
11108 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11109 {
11110 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11111 struct elf32_arm_link_hash_table *htab;
11112 struct elf32_arm_link_hash_entry *eh;
11113 bfd_vma addr;
11114
11115 htab = elf32_arm_hash_table (osi->info);
11116
11117 if (h->root.type == bfd_link_hash_indirect)
11118 return TRUE;
11119
11120 if (h->root.type == bfd_link_hash_warning)
11121 /* When warning symbols are created, they **replace** the "real"
11122 entry in the hash table, thus we never get to see the real
11123 symbol in a hash traversal. So look at it now. */
11124 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11125
11126 if (h->plt.offset == (bfd_vma) -1)
11127 return TRUE;
11128
11129 eh = (struct elf32_arm_link_hash_entry *) h;
11130 addr = h->plt.offset;
11131 if (htab->symbian_p)
11132 {
11133 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11134 return FALSE;
11135 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11136 return FALSE;
11137 }
11138 else if (htab->vxworks_p)
11139 {
11140 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11141 return FALSE;
11142 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11143 return FALSE;
11144 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11145 return FALSE;
11146 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11147 return FALSE;
11148 }
11149 else
11150 {
11151 bfd_signed_vma thumb_refs;
11152
11153 thumb_refs = eh->plt_thumb_refcount;
11154 if (!htab->use_blx)
11155 thumb_refs += eh->plt_maybe_thumb_refcount;
11156
11157 if (thumb_refs > 0)
11158 {
11159 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11160 return FALSE;
11161 }
11162 #ifdef FOUR_WORD_PLT
11163 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11164 return FALSE;
11165 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11166 return FALSE;
11167 #else
11168 /* A three-word PLT with no Thumb thunk contains only Arm code,
11169 so only need to output a mapping symbol for the first PLT entry and
11170 entries with thumb thunks. */
11171 if (thumb_refs > 0 || addr == 20)
11172 {
11173 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11174 return FALSE;
11175 }
11176 #endif
11177 }
11178
11179 return TRUE;
11180 }
11181
11182 /* Output a single local symbol for a generated stub. */
11183
11184 static bfd_boolean
11185 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11186 bfd_vma offset, bfd_vma size)
11187 {
11188 struct elf32_arm_link_hash_table *htab;
11189 Elf_Internal_Sym sym;
11190
11191 htab = elf32_arm_hash_table (osi->info);
11192 sym.st_value = osi->sec->output_section->vma
11193 + osi->sec->output_offset
11194 + offset;
11195 sym.st_size = size;
11196 sym.st_other = 0;
11197 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11198 sym.st_shndx = osi->sec_shndx;
11199 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11200 return FALSE;
11201 return TRUE;
11202 }
11203
11204 static bfd_boolean
11205 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11206 void * in_arg)
11207 {
11208 struct elf32_arm_stub_hash_entry *stub_entry;
11209 struct bfd_link_info *info;
11210 struct elf32_arm_link_hash_table *htab;
11211 asection *stub_sec;
11212 bfd_vma addr;
11213 char *stub_name;
11214 output_arch_syminfo *osi;
11215
11216 /* Massage our args to the form they really have. */
11217 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11218 osi = (output_arch_syminfo *) in_arg;
11219
11220 info = osi->info;
11221
11222 htab = elf32_arm_hash_table (info);
11223 stub_sec = stub_entry->stub_sec;
11224
11225 /* Ensure this stub is attached to the current section being
11226 processed. */
11227 if (stub_sec != osi->sec)
11228 return TRUE;
11229
11230 addr = (bfd_vma) stub_entry->stub_offset;
11231 stub_name = stub_entry->output_name;
11232
11233 switch (stub_entry->stub_type)
11234 {
11235 case arm_stub_long_branch:
11236 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 8))
11237 return FALSE;
11238 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11239 return FALSE;
11240 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11241 return FALSE;
11242 break;
11243 case arm_thumb_v4t_stub_long_branch:
11244 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11245 return FALSE;
11246 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11247 return FALSE;
11248 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11249 return FALSE;
11250 break;
11251 case arm_thumb_thumb_stub_long_branch:
11252 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 16))
11253 return FALSE;
11254 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11255 return FALSE;
11256 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11257 return FALSE;
11258 break;
11259 case arm_thumb_arm_v4t_stub_long_branch:
11260 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 20))
11261 return FALSE;
11262 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11263 return FALSE;
11264 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 8))
11265 return FALSE;
11266 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
11267 return FALSE;
11268 break;
11269 case arm_thumb_arm_v4t_stub_short_branch:
11270 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 8))
11271 return FALSE;
11272 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 4))
11273 return FALSE;
11274 break;
11275 case arm_stub_pic_long_branch:
11276 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11277 return FALSE;
11278 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11279 return FALSE;
11280 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11281 return FALSE;
11282 break;
11283 default:
11284 BFD_FAIL ();
11285 }
11286
11287 return TRUE;
11288 }
11289
11290 /* Output mapping symbols for linker generated sections. */
11291
11292 static bfd_boolean
11293 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11294 struct bfd_link_info *info,
11295 void *finfo,
11296 bfd_boolean (*func) (void *, const char *,
11297 Elf_Internal_Sym *,
11298 asection *,
11299 struct elf_link_hash_entry *))
11300 {
11301 output_arch_syminfo osi;
11302 struct elf32_arm_link_hash_table *htab;
11303 bfd_vma offset;
11304 bfd_size_type size;
11305
11306 htab = elf32_arm_hash_table (info);
11307 check_use_blx (htab);
11308
11309 osi.finfo = finfo;
11310 osi.info = info;
11311 osi.func = func;
11312
11313 /* ARM->Thumb glue. */
11314 if (htab->arm_glue_size > 0)
11315 {
11316 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11317 ARM2THUMB_GLUE_SECTION_NAME);
11318
11319 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11320 (output_bfd, osi.sec->output_section);
11321 if (info->shared || htab->root.is_relocatable_executable
11322 || htab->pic_veneer)
11323 size = ARM2THUMB_PIC_GLUE_SIZE;
11324 else if (htab->use_blx)
11325 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11326 else
11327 size = ARM2THUMB_STATIC_GLUE_SIZE;
11328
11329 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11330 {
11331 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11332 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11333 }
11334 }
11335
11336 /* Thumb->ARM glue. */
11337 if (htab->thumb_glue_size > 0)
11338 {
11339 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11340 THUMB2ARM_GLUE_SECTION_NAME);
11341
11342 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11343 (output_bfd, osi.sec->output_section);
11344 size = THUMB2ARM_GLUE_SIZE;
11345
11346 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11347 {
11348 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11349 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11350 }
11351 }
11352
11353 /* ARMv4 BX veneers. */
11354 if (htab->bx_glue_size > 0)
11355 {
11356 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11357 ARM_BX_GLUE_SECTION_NAME);
11358
11359 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11360 (output_bfd, osi.sec->output_section);
11361
11362 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
11363 }
11364
11365 /* Long calls stubs. */
11366 if (htab->stub_bfd && htab->stub_bfd->sections)
11367 {
11368 asection* stub_sec;
11369
11370 for (stub_sec = htab->stub_bfd->sections;
11371 stub_sec != NULL;
11372 stub_sec = stub_sec->next)
11373 {
11374 /* Ignore non-stub sections. */
11375 if (!strstr (stub_sec->name, STUB_SUFFIX))
11376 continue;
11377
11378 osi.sec = stub_sec;
11379
11380 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11381 (output_bfd, osi.sec->output_section);
11382
11383 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
11384 }
11385 }
11386
11387 /* Finally, output mapping symbols for the PLT. */
11388 if (!htab->splt || htab->splt->size == 0)
11389 return TRUE;
11390
11391 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11392 htab->splt->output_section);
11393 osi.sec = htab->splt;
11394 /* Output mapping symbols for the plt header. SymbianOS does not have a
11395 plt header. */
11396 if (htab->vxworks_p)
11397 {
11398 /* VxWorks shared libraries have no PLT header. */
11399 if (!info->shared)
11400 {
11401 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11402 return FALSE;
11403 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
11404 return FALSE;
11405 }
11406 }
11407 else if (!htab->symbian_p)
11408 {
11409 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11410 return FALSE;
11411 #ifndef FOUR_WORD_PLT
11412 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
11413 return FALSE;
11414 #endif
11415 }
11416
11417 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11418 return TRUE;
11419 }
11420
11421 /* Allocate target specific section data. */
11422
11423 static bfd_boolean
11424 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11425 {
11426 if (!sec->used_by_bfd)
11427 {
11428 _arm_elf_section_data *sdata;
11429 bfd_size_type amt = sizeof (*sdata);
11430
11431 sdata = bfd_zalloc (abfd, amt);
11432 if (sdata == NULL)
11433 return FALSE;
11434 sec->used_by_bfd = sdata;
11435 }
11436
11437 record_section_with_arm_elf_section_data (sec);
11438
11439 return _bfd_elf_new_section_hook (abfd, sec);
11440 }
11441
11442
11443 /* Used to order a list of mapping symbols by address. */
11444
11445 static int
11446 elf32_arm_compare_mapping (const void * a, const void * b)
11447 {
11448 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11449 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11450
11451 if (amap->vma > bmap->vma)
11452 return 1;
11453 else if (amap->vma < bmap->vma)
11454 return -1;
11455 else if (amap->type > bmap->type)
11456 /* Ensure results do not depend on the host qsort for objects with
11457 multiple mapping symbols at the same address by sorting on type
11458 after vma. */
11459 return 1;
11460 else if (amap->type < bmap->type)
11461 return -1;
11462 else
11463 return 0;
11464 }
11465
11466
11467 /* Do code byteswapping. Return FALSE afterwards so that the section is
11468 written out as normal. */
11469
11470 static bfd_boolean
11471 elf32_arm_write_section (bfd *output_bfd,
11472 struct bfd_link_info *link_info,
11473 asection *sec,
11474 bfd_byte *contents)
11475 {
11476 int mapcount, errcount;
11477 _arm_elf_section_data *arm_data;
11478 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11479 elf32_arm_section_map *map;
11480 elf32_vfp11_erratum_list *errnode;
11481 bfd_vma ptr;
11482 bfd_vma end;
11483 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11484 bfd_byte tmp;
11485 int i;
11486
11487 /* If this section has not been allocated an _arm_elf_section_data
11488 structure then we cannot record anything. */
11489 arm_data = get_arm_elf_section_data (sec);
11490 if (arm_data == NULL)
11491 return FALSE;
11492
11493 mapcount = arm_data->mapcount;
11494 map = arm_data->map;
11495 errcount = arm_data->erratumcount;
11496
11497 if (errcount != 0)
11498 {
11499 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11500
11501 for (errnode = arm_data->erratumlist; errnode != 0;
11502 errnode = errnode->next)
11503 {
11504 bfd_vma index = errnode->vma - offset;
11505
11506 switch (errnode->type)
11507 {
11508 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11509 {
11510 bfd_vma branch_to_veneer;
11511 /* Original condition code of instruction, plus bit mask for
11512 ARM B instruction. */
11513 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11514 | 0x0a000000;
11515
11516 /* The instruction is before the label. */
11517 index -= 4;
11518
11519 /* Above offset included in -4 below. */
11520 branch_to_veneer = errnode->u.b.veneer->vma
11521 - errnode->vma - 4;
11522
11523 if ((signed) branch_to_veneer < -(1 << 25)
11524 || (signed) branch_to_veneer >= (1 << 25))
11525 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11526 "range"), output_bfd);
11527
11528 insn |= (branch_to_veneer >> 2) & 0xffffff;
11529 contents[endianflip ^ index] = insn & 0xff;
11530 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11531 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11532 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11533 }
11534 break;
11535
11536 case VFP11_ERRATUM_ARM_VENEER:
11537 {
11538 bfd_vma branch_from_veneer;
11539 unsigned int insn;
11540
11541 /* Take size of veneer into account. */
11542 branch_from_veneer = errnode->u.v.branch->vma
11543 - errnode->vma - 12;
11544
11545 if ((signed) branch_from_veneer < -(1 << 25)
11546 || (signed) branch_from_veneer >= (1 << 25))
11547 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11548 "range"), output_bfd);
11549
11550 /* Original instruction. */
11551 insn = errnode->u.v.branch->u.b.vfp_insn;
11552 contents[endianflip ^ index] = insn & 0xff;
11553 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11554 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11555 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11556
11557 /* Branch back to insn after original insn. */
11558 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11559 contents[endianflip ^ (index + 4)] = insn & 0xff;
11560 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11561 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11562 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11563 }
11564 break;
11565
11566 default:
11567 abort ();
11568 }
11569 }
11570 }
11571
11572 if (mapcount == 0)
11573 return FALSE;
11574
11575 if (globals->byteswap_code)
11576 {
11577 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
11578
11579 ptr = map[0].vma;
11580 for (i = 0; i < mapcount; i++)
11581 {
11582 if (i == mapcount - 1)
11583 end = sec->size;
11584 else
11585 end = map[i + 1].vma;
11586
11587 switch (map[i].type)
11588 {
11589 case 'a':
11590 /* Byte swap code words. */
11591 while (ptr + 3 < end)
11592 {
11593 tmp = contents[ptr];
11594 contents[ptr] = contents[ptr + 3];
11595 contents[ptr + 3] = tmp;
11596 tmp = contents[ptr + 1];
11597 contents[ptr + 1] = contents[ptr + 2];
11598 contents[ptr + 2] = tmp;
11599 ptr += 4;
11600 }
11601 break;
11602
11603 case 't':
11604 /* Byte swap code halfwords. */
11605 while (ptr + 1 < end)
11606 {
11607 tmp = contents[ptr];
11608 contents[ptr] = contents[ptr + 1];
11609 contents[ptr + 1] = tmp;
11610 ptr += 2;
11611 }
11612 break;
11613
11614 case 'd':
11615 /* Leave data alone. */
11616 break;
11617 }
11618 ptr = end;
11619 }
11620 }
11621
11622 free (map);
11623 arm_data->mapcount = 0;
11624 arm_data->mapsize = 0;
11625 arm_data->map = NULL;
11626 unrecord_section_with_arm_elf_section_data (sec);
11627
11628 return FALSE;
11629 }
11630
11631 static void
11632 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
11633 asection * sec,
11634 void * ignore ATTRIBUTE_UNUSED)
11635 {
11636 unrecord_section_with_arm_elf_section_data (sec);
11637 }
11638
11639 static bfd_boolean
11640 elf32_arm_close_and_cleanup (bfd * abfd)
11641 {
11642 if (abfd->sections)
11643 bfd_map_over_sections (abfd,
11644 unrecord_section_via_map_over_sections,
11645 NULL);
11646
11647 return _bfd_elf_close_and_cleanup (abfd);
11648 }
11649
11650 static bfd_boolean
11651 elf32_arm_bfd_free_cached_info (bfd * abfd)
11652 {
11653 if (abfd->sections)
11654 bfd_map_over_sections (abfd,
11655 unrecord_section_via_map_over_sections,
11656 NULL);
11657
11658 return _bfd_free_cached_info (abfd);
11659 }
11660
11661 /* Display STT_ARM_TFUNC symbols as functions. */
11662
11663 static void
11664 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
11665 asymbol *asym)
11666 {
11667 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
11668
11669 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
11670 elfsym->symbol.flags |= BSF_FUNCTION;
11671 }
11672
11673
11674 /* Mangle thumb function symbols as we read them in. */
11675
11676 static bfd_boolean
11677 elf32_arm_swap_symbol_in (bfd * abfd,
11678 const void *psrc,
11679 const void *pshn,
11680 Elf_Internal_Sym *dst)
11681 {
11682 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
11683 return FALSE;
11684
11685 /* New EABI objects mark thumb function symbols by setting the low bit of
11686 the address. Turn these into STT_ARM_TFUNC. */
11687 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
11688 && (dst->st_value & 1))
11689 {
11690 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
11691 dst->st_value &= ~(bfd_vma) 1;
11692 }
11693 return TRUE;
11694 }
11695
11696
11697 /* Mangle thumb function symbols as we write them out. */
11698
11699 static void
11700 elf32_arm_swap_symbol_out (bfd *abfd,
11701 const Elf_Internal_Sym *src,
11702 void *cdst,
11703 void *shndx)
11704 {
11705 Elf_Internal_Sym newsym;
11706
11707 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11708 of the address set, as per the new EABI. We do this unconditionally
11709 because objcopy does not set the elf header flags until after
11710 it writes out the symbol table. */
11711 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
11712 {
11713 newsym = *src;
11714 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
11715 if (newsym.st_shndx != SHN_UNDEF)
11716 {
11717 /* Do this only for defined symbols. At link type, the static
11718 linker will simulate the work of dynamic linker of resolving
11719 symbols and will carry over the thumbness of found symbols to
11720 the output symbol table. It's not clear how it happens, but
11721 the thumbness of undefined symbols can well be different at
11722 runtime, and writing '1' for them will be confusing for users
11723 and possibly for dynamic linker itself.
11724 */
11725 newsym.st_value |= 1;
11726 }
11727
11728 src = &newsym;
11729 }
11730 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
11731 }
11732
11733 /* Add the PT_ARM_EXIDX program header. */
11734
11735 static bfd_boolean
11736 elf32_arm_modify_segment_map (bfd *abfd,
11737 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11738 {
11739 struct elf_segment_map *m;
11740 asection *sec;
11741
11742 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11743 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11744 {
11745 /* If there is already a PT_ARM_EXIDX header, then we do not
11746 want to add another one. This situation arises when running
11747 "strip"; the input binary already has the header. */
11748 m = elf_tdata (abfd)->segment_map;
11749 while (m && m->p_type != PT_ARM_EXIDX)
11750 m = m->next;
11751 if (!m)
11752 {
11753 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
11754 if (m == NULL)
11755 return FALSE;
11756 m->p_type = PT_ARM_EXIDX;
11757 m->count = 1;
11758 m->sections[0] = sec;
11759
11760 m->next = elf_tdata (abfd)->segment_map;
11761 elf_tdata (abfd)->segment_map = m;
11762 }
11763 }
11764
11765 return TRUE;
11766 }
11767
11768 /* We may add a PT_ARM_EXIDX program header. */
11769
11770 static int
11771 elf32_arm_additional_program_headers (bfd *abfd,
11772 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11773 {
11774 asection *sec;
11775
11776 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11777 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11778 return 1;
11779 else
11780 return 0;
11781 }
11782
11783 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11784
11785 static bfd_boolean
11786 elf32_arm_is_function_type (unsigned int type)
11787 {
11788 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
11789 }
11790
11791 /* We use this to override swap_symbol_in and swap_symbol_out. */
11792 const struct elf_size_info elf32_arm_size_info =
11793 {
11794 sizeof (Elf32_External_Ehdr),
11795 sizeof (Elf32_External_Phdr),
11796 sizeof (Elf32_External_Shdr),
11797 sizeof (Elf32_External_Rel),
11798 sizeof (Elf32_External_Rela),
11799 sizeof (Elf32_External_Sym),
11800 sizeof (Elf32_External_Dyn),
11801 sizeof (Elf_External_Note),
11802 4,
11803 1,
11804 32, 2,
11805 ELFCLASS32, EV_CURRENT,
11806 bfd_elf32_write_out_phdrs,
11807 bfd_elf32_write_shdrs_and_ehdr,
11808 bfd_elf32_checksum_contents,
11809 bfd_elf32_write_relocs,
11810 elf32_arm_swap_symbol_in,
11811 elf32_arm_swap_symbol_out,
11812 bfd_elf32_slurp_reloc_table,
11813 bfd_elf32_slurp_symbol_table,
11814 bfd_elf32_swap_dyn_in,
11815 bfd_elf32_swap_dyn_out,
11816 bfd_elf32_swap_reloc_in,
11817 bfd_elf32_swap_reloc_out,
11818 bfd_elf32_swap_reloca_in,
11819 bfd_elf32_swap_reloca_out
11820 };
11821
11822 #define ELF_ARCH bfd_arch_arm
11823 #define ELF_MACHINE_CODE EM_ARM
11824 #ifdef __QNXTARGET__
11825 #define ELF_MAXPAGESIZE 0x1000
11826 #else
11827 #define ELF_MAXPAGESIZE 0x8000
11828 #endif
11829 #define ELF_MINPAGESIZE 0x1000
11830 #define ELF_COMMONPAGESIZE 0x1000
11831
11832 #define bfd_elf32_mkobject elf32_arm_mkobject
11833
11834 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11835 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11836 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11837 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11838 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11839 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11840 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11841 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11842 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11843 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11844 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11845 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11846 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11847 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11848
11849 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11850 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11851 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11852 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11853 #define elf_backend_check_relocs elf32_arm_check_relocs
11854 #define elf_backend_relocate_section elf32_arm_relocate_section
11855 #define elf_backend_write_section elf32_arm_write_section
11856 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11857 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11858 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11859 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11860 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11861 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11862 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11863 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11864 #define elf_backend_object_p elf32_arm_object_p
11865 #define elf_backend_section_flags elf32_arm_section_flags
11866 #define elf_backend_fake_sections elf32_arm_fake_sections
11867 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11868 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11869 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11870 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11871 #define elf_backend_size_info elf32_arm_size_info
11872 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11873 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11874 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11875 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11876 #define elf_backend_is_function_type elf32_arm_is_function_type
11877
11878 #define elf_backend_can_refcount 1
11879 #define elf_backend_can_gc_sections 1
11880 #define elf_backend_plt_readonly 1
11881 #define elf_backend_want_got_plt 1
11882 #define elf_backend_want_plt_sym 0
11883 #define elf_backend_may_use_rel_p 1
11884 #define elf_backend_may_use_rela_p 0
11885 #define elf_backend_default_use_rela_p 0
11886
11887 #define elf_backend_got_header_size 12
11888
11889 #undef elf_backend_obj_attrs_vendor
11890 #define elf_backend_obj_attrs_vendor "aeabi"
11891 #undef elf_backend_obj_attrs_section
11892 #define elf_backend_obj_attrs_section ".ARM.attributes"
11893 #undef elf_backend_obj_attrs_arg_type
11894 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11895 #undef elf_backend_obj_attrs_section_type
11896 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11897
11898 #include "elf32-target.h"
11899
11900 /* VxWorks Targets. */
11901
11902 #undef TARGET_LITTLE_SYM
11903 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11904 #undef TARGET_LITTLE_NAME
11905 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11906 #undef TARGET_BIG_SYM
11907 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11908 #undef TARGET_BIG_NAME
11909 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11910
11911 /* Like elf32_arm_link_hash_table_create -- but overrides
11912 appropriately for VxWorks. */
11913
11914 static struct bfd_link_hash_table *
11915 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
11916 {
11917 struct bfd_link_hash_table *ret;
11918
11919 ret = elf32_arm_link_hash_table_create (abfd);
11920 if (ret)
11921 {
11922 struct elf32_arm_link_hash_table *htab
11923 = (struct elf32_arm_link_hash_table *) ret;
11924 htab->use_rel = 0;
11925 htab->vxworks_p = 1;
11926 }
11927 return ret;
11928 }
11929
11930 static void
11931 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
11932 {
11933 elf32_arm_final_write_processing (abfd, linker);
11934 elf_vxworks_final_write_processing (abfd, linker);
11935 }
11936
11937 #undef elf32_bed
11938 #define elf32_bed elf32_arm_vxworks_bed
11939
11940 #undef bfd_elf32_bfd_link_hash_table_create
11941 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
11942 #undef elf_backend_add_symbol_hook
11943 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
11944 #undef elf_backend_final_write_processing
11945 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
11946 #undef elf_backend_emit_relocs
11947 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
11948
11949 #undef elf_backend_may_use_rel_p
11950 #define elf_backend_may_use_rel_p 0
11951 #undef elf_backend_may_use_rela_p
11952 #define elf_backend_may_use_rela_p 1
11953 #undef elf_backend_default_use_rela_p
11954 #define elf_backend_default_use_rela_p 1
11955 #undef elf_backend_want_plt_sym
11956 #define elf_backend_want_plt_sym 1
11957 #undef ELF_MAXPAGESIZE
11958 #define ELF_MAXPAGESIZE 0x1000
11959
11960 #include "elf32-target.h"
11961
11962
11963 /* Symbian OS Targets. */
11964
11965 #undef TARGET_LITTLE_SYM
11966 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
11967 #undef TARGET_LITTLE_NAME
11968 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
11969 #undef TARGET_BIG_SYM
11970 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
11971 #undef TARGET_BIG_NAME
11972 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
11973
11974 /* Like elf32_arm_link_hash_table_create -- but overrides
11975 appropriately for Symbian OS. */
11976
11977 static struct bfd_link_hash_table *
11978 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
11979 {
11980 struct bfd_link_hash_table *ret;
11981
11982 ret = elf32_arm_link_hash_table_create (abfd);
11983 if (ret)
11984 {
11985 struct elf32_arm_link_hash_table *htab
11986 = (struct elf32_arm_link_hash_table *)ret;
11987 /* There is no PLT header for Symbian OS. */
11988 htab->plt_header_size = 0;
11989 /* The PLT entries are each one instruction and one word. */
11990 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
11991 htab->symbian_p = 1;
11992 /* Symbian uses armv5t or above, so use_blx is always true. */
11993 htab->use_blx = 1;
11994 htab->root.is_relocatable_executable = 1;
11995 }
11996 return ret;
11997 }
11998
11999 static const struct bfd_elf_special_section
12000 elf32_arm_symbian_special_sections[] =
12001 {
12002 /* In a BPABI executable, the dynamic linking sections do not go in
12003 the loadable read-only segment. The post-linker may wish to
12004 refer to these sections, but they are not part of the final
12005 program image. */
12006 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12007 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12008 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12009 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12010 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
12011 /* These sections do not need to be writable as the SymbianOS
12012 postlinker will arrange things so that no dynamic relocation is
12013 required. */
12014 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12015 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12016 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12017 { NULL, 0, 0, 0, 0 }
12018 };
12019
12020 static void
12021 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12022 struct bfd_link_info *link_info)
12023 {
12024 /* BPABI objects are never loaded directly by an OS kernel; they are
12025 processed by a postlinker first, into an OS-specific format. If
12026 the D_PAGED bit is set on the file, BFD will align segments on
12027 page boundaries, so that an OS can directly map the file. With
12028 BPABI objects, that just results in wasted space. In addition,
12029 because we clear the D_PAGED bit, map_sections_to_segments will
12030 recognize that the program headers should not be mapped into any
12031 loadable segment. */
12032 abfd->flags &= ~D_PAGED;
12033 elf32_arm_begin_write_processing (abfd, link_info);
12034 }
12035
12036 static bfd_boolean
12037 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12038 struct bfd_link_info *info)
12039 {
12040 struct elf_segment_map *m;
12041 asection *dynsec;
12042
12043 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12044 segment. However, because the .dynamic section is not marked
12045 with SEC_LOAD, the generic ELF code will not create such a
12046 segment. */
12047 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12048 if (dynsec)
12049 {
12050 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12051 if (m->p_type == PT_DYNAMIC)
12052 break;
12053
12054 if (m == NULL)
12055 {
12056 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12057 m->next = elf_tdata (abfd)->segment_map;
12058 elf_tdata (abfd)->segment_map = m;
12059 }
12060 }
12061
12062 /* Also call the generic arm routine. */
12063 return elf32_arm_modify_segment_map (abfd, info);
12064 }
12065
12066 /* Return address for Ith PLT stub in section PLT, for relocation REL
12067 or (bfd_vma) -1 if it should not be included. */
12068
12069 static bfd_vma
12070 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12071 const arelent *rel ATTRIBUTE_UNUSED)
12072 {
12073 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12074 }
12075
12076
12077 #undef elf32_bed
12078 #define elf32_bed elf32_arm_symbian_bed
12079
12080 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12081 will process them and then discard them. */
12082 #undef ELF_DYNAMIC_SEC_FLAGS
12083 #define ELF_DYNAMIC_SEC_FLAGS \
12084 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12085
12086 #undef elf_backend_add_symbol_hook
12087 #undef elf_backend_emit_relocs
12088
12089 #undef bfd_elf32_bfd_link_hash_table_create
12090 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12091 #undef elf_backend_special_sections
12092 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12093 #undef elf_backend_begin_write_processing
12094 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12095 #undef elf_backend_final_write_processing
12096 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12097
12098 #undef elf_backend_modify_segment_map
12099 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12100
12101 /* There is no .got section for BPABI objects, and hence no header. */
12102 #undef elf_backend_got_header_size
12103 #define elf_backend_got_header_size 0
12104
12105 /* Similarly, there is no .got.plt section. */
12106 #undef elf_backend_want_got_plt
12107 #define elf_backend_want_got_plt 0
12108
12109 #undef elf_backend_plt_sym_val
12110 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12111
12112 #undef elf_backend_may_use_rel_p
12113 #define elf_backend_may_use_rel_p 1
12114 #undef elf_backend_may_use_rela_p
12115 #define elf_backend_may_use_rela_p 0
12116 #undef elf_backend_default_use_rela_p
12117 #define elf_backend_default_use_rela_p 0
12118 #undef elf_backend_want_plt_sym
12119 #define elf_backend_want_plt_sym 0
12120 #undef ELF_MAXPAGESIZE
12121 #define ELF_MAXPAGESIZE 0x8000
12122
12123 #include "elf32-target.h"
This page took 0.302003 seconds and 5 git commands to generate.