Update documentation
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #ifndef USE_REL
21 #define USE_REL 0
22 #endif
23
24 typedef unsigned long int insn32;
25 typedef unsigned short int insn16;
26
27 static bfd_boolean elf32_arm_set_private_flags
28 PARAMS ((bfd *, flagword));
29 static bfd_boolean elf32_arm_copy_private_bfd_data
30 PARAMS ((bfd *, bfd *));
31 static bfd_boolean elf32_arm_merge_private_bfd_data
32 PARAMS ((bfd *, bfd *));
33 static bfd_boolean elf32_arm_print_private_bfd_data
34 PARAMS ((bfd *, PTR));
35 static int elf32_arm_get_symbol_type
36 PARAMS (( Elf_Internal_Sym *, int));
37 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type elf32_arm_final_link_relocate
40 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
41 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
42 const char *, int, struct elf_link_hash_entry *));
43 static insn32 insert_thumb_branch
44 PARAMS ((insn32, int));
45 static struct elf_link_hash_entry *find_thumb_glue
46 PARAMS ((struct bfd_link_info *, const char *, bfd *));
47 static struct elf_link_hash_entry *find_arm_glue
48 PARAMS ((struct bfd_link_info *, const char *, bfd *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static bfd_boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static bfd_boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static bfd_boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static bfd_boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static bfd_boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static bfd_boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static bfd_boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static bfd_boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #if USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87 static enum elf_reloc_type_class elf32_arm_reloc_type_class
88 PARAMS ((const Elf_Internal_Rela *));
89 static bfd_boolean elf32_arm_object_p
90 PARAMS ((bfd *));
91
92 #ifndef ELFARM_NABI_C_INCLUDED
93 static void record_arm_to_thumb_glue
94 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
95 static void record_thumb_to_arm_glue
96 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
97 bfd_boolean bfd_elf32_arm_allocate_interworking_sections
98 PARAMS ((struct bfd_link_info *));
99 bfd_boolean bfd_elf32_arm_get_bfd_for_interworking
100 PARAMS ((bfd *, struct bfd_link_info *));
101 bfd_boolean bfd_elf32_arm_process_before_allocation
102 PARAMS ((bfd *, struct bfd_link_info *, int));
103 #endif
104
105
106 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
107
108 /* The linker script knows the section names for placement.
109 The entry_names are used to do simple name mangling on the stubs.
110 Given a function name, and its type, the stub can be found. The
111 name can be changed. The only requirement is the %s be present. */
112 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
113 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
114
115 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
116 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
117
118 /* The name of the dynamic interpreter. This is put in the .interp
119 section. */
120 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
121
122 /* The size in bytes of an entry in the procedure linkage table. */
123 #define PLT_ENTRY_SIZE 16
124
125 /* The first entry in a procedure linkage table looks like
126 this. It is set up so that any shared library function that is
127 called before the relocation has been set up calls the dynamic
128 linker first. */
129 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
130 {
131 0xe52de004, /* str lr, [sp, #-4]! */
132 0xe59fe010, /* ldr lr, [pc, #16] */
133 0xe08fe00e, /* add lr, pc, lr */
134 0xe5bef008 /* ldr pc, [lr, #8]! */
135 };
136
137 /* Subsequent entries in a procedure linkage table look like
138 this. */
139 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
140 {
141 0xe59fc004, /* ldr ip, [pc, #4] */
142 0xe08fc00c, /* add ip, pc, ip */
143 0xe59cf000, /* ldr pc, [ip] */
144 0x00000000 /* offset to symbol in got */
145 };
146
147 /* The ARM linker needs to keep track of the number of relocs that it
148 decides to copy in check_relocs for each symbol. This is so that
149 it can discard PC relative relocs if it doesn't need them when
150 linking with -Bsymbolic. We store the information in a field
151 extending the regular ELF linker hash table. */
152
153 /* This structure keeps track of the number of PC relative relocs we
154 have copied for a given symbol. */
155 struct elf32_arm_pcrel_relocs_copied
156 {
157 /* Next section. */
158 struct elf32_arm_pcrel_relocs_copied * next;
159 /* A section in dynobj. */
160 asection * section;
161 /* Number of relocs copied in this section. */
162 bfd_size_type count;
163 };
164
165 /* Arm ELF linker hash entry. */
166 struct elf32_arm_link_hash_entry
167 {
168 struct elf_link_hash_entry root;
169
170 /* Number of PC relative relocs copied for this symbol. */
171 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
172 };
173
174 /* Declare this now that the above structures are defined. */
175 static bfd_boolean elf32_arm_discard_copies
176 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
177
178 /* Traverse an arm ELF linker hash table. */
179 #define elf32_arm_link_hash_traverse(table, func, info) \
180 (elf_link_hash_traverse \
181 (&(table)->root, \
182 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
183 (info)))
184
185 /* Get the ARM elf linker hash table from a link_info structure. */
186 #define elf32_arm_hash_table(info) \
187 ((struct elf32_arm_link_hash_table *) ((info)->hash))
188
189 /* ARM ELF linker hash table. */
190 struct elf32_arm_link_hash_table
191 {
192 /* The main hash table. */
193 struct elf_link_hash_table root;
194
195 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
196 bfd_size_type thumb_glue_size;
197
198 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
199 bfd_size_type arm_glue_size;
200
201 /* An arbitary input BFD chosen to hold the glue sections. */
202 bfd * bfd_of_glue_owner;
203
204 /* A boolean indicating whether knowledge of the ARM's pipeline
205 length should be applied by the linker. */
206 int no_pipeline_knowledge;
207 };
208
209 /* Create an entry in an ARM ELF linker hash table. */
210
211 static struct bfd_hash_entry *
212 elf32_arm_link_hash_newfunc (entry, table, string)
213 struct bfd_hash_entry * entry;
214 struct bfd_hash_table * table;
215 const char * string;
216 {
217 struct elf32_arm_link_hash_entry * ret =
218 (struct elf32_arm_link_hash_entry *) entry;
219
220 /* Allocate the structure if it has not already been allocated by a
221 subclass. */
222 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
223 ret = ((struct elf32_arm_link_hash_entry *)
224 bfd_hash_allocate (table,
225 sizeof (struct elf32_arm_link_hash_entry)));
226 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
227 return (struct bfd_hash_entry *) ret;
228
229 /* Call the allocation method of the superclass. */
230 ret = ((struct elf32_arm_link_hash_entry *)
231 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
232 table, string));
233 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
234 ret->pcrel_relocs_copied = NULL;
235
236 return (struct bfd_hash_entry *) ret;
237 }
238
239 /* Create an ARM elf linker hash table. */
240
241 static struct bfd_link_hash_table *
242 elf32_arm_link_hash_table_create (abfd)
243 bfd *abfd;
244 {
245 struct elf32_arm_link_hash_table *ret;
246 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
247
248 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
249 if (ret == (struct elf32_arm_link_hash_table *) NULL)
250 return NULL;
251
252 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
253 elf32_arm_link_hash_newfunc))
254 {
255 free (ret);
256 return NULL;
257 }
258
259 ret->thumb_glue_size = 0;
260 ret->arm_glue_size = 0;
261 ret->bfd_of_glue_owner = NULL;
262 ret->no_pipeline_knowledge = 0;
263
264 return &ret->root.root;
265 }
266
267 /* Locate the Thumb encoded calling stub for NAME. */
268
269 static struct elf_link_hash_entry *
270 find_thumb_glue (link_info, name, input_bfd)
271 struct bfd_link_info *link_info;
272 const char *name;
273 bfd *input_bfd;
274 {
275 char *tmp_name;
276 struct elf_link_hash_entry *hash;
277 struct elf32_arm_link_hash_table *hash_table;
278
279 /* We need a pointer to the armelf specific hash table. */
280 hash_table = elf32_arm_hash_table (link_info);
281
282 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
283 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
284
285 BFD_ASSERT (tmp_name);
286
287 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
288
289 hash = elf_link_hash_lookup
290 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
291
292 if (hash == NULL)
293 /* xgettext:c-format */
294 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
295 bfd_archive_filename (input_bfd), tmp_name, name);
296
297 free (tmp_name);
298
299 return hash;
300 }
301
302 /* Locate the ARM encoded calling stub for NAME. */
303
304 static struct elf_link_hash_entry *
305 find_arm_glue (link_info, name, input_bfd)
306 struct bfd_link_info *link_info;
307 const char *name;
308 bfd *input_bfd;
309 {
310 char *tmp_name;
311 struct elf_link_hash_entry *myh;
312 struct elf32_arm_link_hash_table *hash_table;
313
314 /* We need a pointer to the elfarm specific hash table. */
315 hash_table = elf32_arm_hash_table (link_info);
316
317 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
318 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
319
320 BFD_ASSERT (tmp_name);
321
322 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
323
324 myh = elf_link_hash_lookup
325 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
326
327 if (myh == NULL)
328 /* xgettext:c-format */
329 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
330 bfd_archive_filename (input_bfd), tmp_name, name);
331
332 free (tmp_name);
333
334 return myh;
335 }
336
337 /* ARM->Thumb glue:
338
339 .arm
340 __func_from_arm:
341 ldr r12, __func_addr
342 bx r12
343 __func_addr:
344 .word func @ behave as if you saw a ARM_32 reloc. */
345
346 #define ARM2THUMB_GLUE_SIZE 12
347 static const insn32 a2t1_ldr_insn = 0xe59fc000;
348 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
349 static const insn32 a2t3_func_addr_insn = 0x00000001;
350
351 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
352
353 .thumb .thumb
354 .align 2 .align 2
355 __func_from_thumb: __func_from_thumb:
356 bx pc push {r6, lr}
357 nop ldr r6, __func_addr
358 .arm mov lr, pc
359 __func_change_to_arm: bx r6
360 b func .arm
361 __func_back_to_thumb:
362 ldmia r13! {r6, lr}
363 bx lr
364 __func_addr:
365 .word func */
366
367 #define THUMB2ARM_GLUE_SIZE 8
368 static const insn16 t2a1_bx_pc_insn = 0x4778;
369 static const insn16 t2a2_noop_insn = 0x46c0;
370 static const insn32 t2a3_b_insn = 0xea000000;
371
372 #ifndef ELFARM_NABI_C_INCLUDED
373 bfd_boolean
374 bfd_elf32_arm_allocate_interworking_sections (info)
375 struct bfd_link_info * info;
376 {
377 asection * s;
378 bfd_byte * foo;
379 struct elf32_arm_link_hash_table * globals;
380
381 globals = elf32_arm_hash_table (info);
382
383 BFD_ASSERT (globals != NULL);
384
385 if (globals->arm_glue_size != 0)
386 {
387 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
388
389 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
390 ARM2THUMB_GLUE_SECTION_NAME);
391
392 BFD_ASSERT (s != NULL);
393
394 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
395 globals->arm_glue_size);
396
397 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
398 s->contents = foo;
399 }
400
401 if (globals->thumb_glue_size != 0)
402 {
403 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
404
405 s = bfd_get_section_by_name
406 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
407
408 BFD_ASSERT (s != NULL);
409
410 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
411 globals->thumb_glue_size);
412
413 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
414 s->contents = foo;
415 }
416
417 return TRUE;
418 }
419
420 static void
421 record_arm_to_thumb_glue (link_info, h)
422 struct bfd_link_info * link_info;
423 struct elf_link_hash_entry * h;
424 {
425 const char * name = h->root.root.string;
426 asection * s;
427 char * tmp_name;
428 struct elf_link_hash_entry * myh;
429 struct bfd_link_hash_entry * bh;
430 struct elf32_arm_link_hash_table * globals;
431 bfd_vma val;
432
433 globals = elf32_arm_hash_table (link_info);
434
435 BFD_ASSERT (globals != NULL);
436 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
437
438 s = bfd_get_section_by_name
439 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
440
441 BFD_ASSERT (s != NULL);
442
443 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
444 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
445
446 BFD_ASSERT (tmp_name);
447
448 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
449
450 myh = elf_link_hash_lookup
451 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
452
453 if (myh != NULL)
454 {
455 /* We've already seen this guy. */
456 free (tmp_name);
457 return;
458 }
459
460 /* The only trick here is using hash_table->arm_glue_size as the value. Even
461 though the section isn't allocated yet, this is where we will be putting
462 it. */
463 bh = NULL;
464 val = globals->arm_glue_size + 1;
465 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
466 tmp_name, BSF_GLOBAL, s, val,
467 NULL, TRUE, FALSE, &bh);
468
469 free (tmp_name);
470
471 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
472
473 return;
474 }
475
476 static void
477 record_thumb_to_arm_glue (link_info, h)
478 struct bfd_link_info *link_info;
479 struct elf_link_hash_entry *h;
480 {
481 const char *name = h->root.root.string;
482 asection *s;
483 char *tmp_name;
484 struct elf_link_hash_entry *myh;
485 struct bfd_link_hash_entry *bh;
486 struct elf32_arm_link_hash_table *hash_table;
487 char bind;
488 bfd_vma val;
489
490 hash_table = elf32_arm_hash_table (link_info);
491
492 BFD_ASSERT (hash_table != NULL);
493 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
494
495 s = bfd_get_section_by_name
496 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
497
498 BFD_ASSERT (s != NULL);
499
500 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
501 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
502
503 BFD_ASSERT (tmp_name);
504
505 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
506
507 myh = elf_link_hash_lookup
508 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
509
510 if (myh != NULL)
511 {
512 /* We've already seen this guy. */
513 free (tmp_name);
514 return;
515 }
516
517 bh = NULL;
518 val = hash_table->thumb_glue_size + 1;
519 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
520 tmp_name, BSF_GLOBAL, s, val,
521 NULL, TRUE, FALSE, &bh);
522
523 /* If we mark it 'Thumb', the disassembler will do a better job. */
524 myh = (struct elf_link_hash_entry *) bh;
525 bind = ELF_ST_BIND (myh->type);
526 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
527
528 free (tmp_name);
529
530 #define CHANGE_TO_ARM "__%s_change_to_arm"
531 #define BACK_FROM_ARM "__%s_back_from_arm"
532
533 /* Allocate another symbol to mark where we switch to Arm mode. */
534 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
535 + strlen (CHANGE_TO_ARM) + 1);
536
537 BFD_ASSERT (tmp_name);
538
539 sprintf (tmp_name, CHANGE_TO_ARM, name);
540
541 bh = NULL;
542 val = hash_table->thumb_glue_size + 4,
543 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
544 tmp_name, BSF_LOCAL, s, val,
545 NULL, TRUE, FALSE, &bh);
546
547 free (tmp_name);
548
549 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
550
551 return;
552 }
553
554 /* Add the glue sections to ABFD. This function is called from the
555 linker scripts in ld/emultempl/{armelf}.em. */
556
557 bfd_boolean
558 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
559 bfd *abfd;
560 struct bfd_link_info *info;
561 {
562 flagword flags;
563 asection *sec;
564
565 /* If we are only performing a partial
566 link do not bother adding the glue. */
567 if (info->relocatable)
568 return TRUE;
569
570 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
571
572 if (sec == NULL)
573 {
574 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
575 will prevent elf_link_input_bfd() from processing the contents
576 of this section. */
577 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
578
579 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
580
581 if (sec == NULL
582 || !bfd_set_section_flags (abfd, sec, flags)
583 || !bfd_set_section_alignment (abfd, sec, 2))
584 return FALSE;
585
586 /* Set the gc mark to prevent the section from being removed by garbage
587 collection, despite the fact that no relocs refer to this section. */
588 sec->gc_mark = 1;
589 }
590
591 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
592
593 if (sec == NULL)
594 {
595 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
596
597 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
598
599 if (sec == NULL
600 || !bfd_set_section_flags (abfd, sec, flags)
601 || !bfd_set_section_alignment (abfd, sec, 2))
602 return FALSE;
603
604 sec->gc_mark = 1;
605 }
606
607 return TRUE;
608 }
609
610 /* Select a BFD to be used to hold the sections used by the glue code.
611 This function is called from the linker scripts in ld/emultempl/
612 {armelf/pe}.em */
613
614 bfd_boolean
615 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
616 bfd *abfd;
617 struct bfd_link_info *info;
618 {
619 struct elf32_arm_link_hash_table *globals;
620
621 /* If we are only performing a partial link
622 do not bother getting a bfd to hold the glue. */
623 if (info->relocatable)
624 return TRUE;
625
626 globals = elf32_arm_hash_table (info);
627
628 BFD_ASSERT (globals != NULL);
629
630 if (globals->bfd_of_glue_owner != NULL)
631 return TRUE;
632
633 /* Save the bfd for later use. */
634 globals->bfd_of_glue_owner = abfd;
635
636 return TRUE;
637 }
638
639 bfd_boolean
640 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
641 bfd *abfd;
642 struct bfd_link_info *link_info;
643 int no_pipeline_knowledge;
644 {
645 Elf_Internal_Shdr *symtab_hdr;
646 Elf_Internal_Rela *internal_relocs = NULL;
647 Elf_Internal_Rela *irel, *irelend;
648 bfd_byte *contents = NULL;
649
650 asection *sec;
651 struct elf32_arm_link_hash_table *globals;
652
653 /* If we are only performing a partial link do not bother
654 to construct any glue. */
655 if (link_info->relocatable)
656 return TRUE;
657
658 /* Here we have a bfd that is to be included on the link. We have a hook
659 to do reloc rummaging, before section sizes are nailed down. */
660 globals = elf32_arm_hash_table (link_info);
661
662 BFD_ASSERT (globals != NULL);
663 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
664
665 globals->no_pipeline_knowledge = no_pipeline_knowledge;
666
667 /* Rummage around all the relocs and map the glue vectors. */
668 sec = abfd->sections;
669
670 if (sec == NULL)
671 return TRUE;
672
673 for (; sec != NULL; sec = sec->next)
674 {
675 if (sec->reloc_count == 0)
676 continue;
677
678 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
679
680 /* Load the relocs. */
681 internal_relocs
682 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
683 (Elf_Internal_Rela *) NULL, FALSE);
684
685 if (internal_relocs == NULL)
686 goto error_return;
687
688 irelend = internal_relocs + sec->reloc_count;
689 for (irel = internal_relocs; irel < irelend; irel++)
690 {
691 long r_type;
692 unsigned long r_index;
693
694 struct elf_link_hash_entry *h;
695
696 r_type = ELF32_R_TYPE (irel->r_info);
697 r_index = ELF32_R_SYM (irel->r_info);
698
699 /* These are the only relocation types we care about. */
700 if ( r_type != R_ARM_PC24
701 && r_type != R_ARM_THM_PC22)
702 continue;
703
704 /* Get the section contents if we haven't done so already. */
705 if (contents == NULL)
706 {
707 /* Get cached copy if it exists. */
708 if (elf_section_data (sec)->this_hdr.contents != NULL)
709 contents = elf_section_data (sec)->this_hdr.contents;
710 else
711 {
712 /* Go get them off disk. */
713 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
714 if (contents == NULL)
715 goto error_return;
716
717 if (!bfd_get_section_contents (abfd, sec, contents,
718 (file_ptr) 0, sec->_raw_size))
719 goto error_return;
720 }
721 }
722
723 /* If the relocation is not against a symbol it cannot concern us. */
724 h = NULL;
725
726 /* We don't care about local symbols. */
727 if (r_index < symtab_hdr->sh_info)
728 continue;
729
730 /* This is an external symbol. */
731 r_index -= symtab_hdr->sh_info;
732 h = (struct elf_link_hash_entry *)
733 elf_sym_hashes (abfd)[r_index];
734
735 /* If the relocation is against a static symbol it must be within
736 the current section and so cannot be a cross ARM/Thumb relocation. */
737 if (h == NULL)
738 continue;
739
740 switch (r_type)
741 {
742 case R_ARM_PC24:
743 /* This one is a call from arm code. We need to look up
744 the target of the call. If it is a thumb target, we
745 insert glue. */
746 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
747 record_arm_to_thumb_glue (link_info, h);
748 break;
749
750 case R_ARM_THM_PC22:
751 /* This one is a call from thumb code. We look
752 up the target of the call. If it is not a thumb
753 target, we insert glue. */
754 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
755 record_thumb_to_arm_glue (link_info, h);
756 break;
757
758 default:
759 break;
760 }
761 }
762
763 if (contents != NULL
764 && elf_section_data (sec)->this_hdr.contents != contents)
765 free (contents);
766 contents = NULL;
767
768 if (internal_relocs != NULL
769 && elf_section_data (sec)->relocs != internal_relocs)
770 free (internal_relocs);
771 internal_relocs = NULL;
772 }
773
774 return TRUE;
775
776 error_return:
777 if (contents != NULL
778 && elf_section_data (sec)->this_hdr.contents != contents)
779 free (contents);
780 if (internal_relocs != NULL
781 && elf_section_data (sec)->relocs != internal_relocs)
782 free (internal_relocs);
783
784 return FALSE;
785 }
786 #endif
787
788 /* The thumb form of a long branch is a bit finicky, because the offset
789 encoding is split over two fields, each in it's own instruction. They
790 can occur in any order. So given a thumb form of long branch, and an
791 offset, insert the offset into the thumb branch and return finished
792 instruction.
793
794 It takes two thumb instructions to encode the target address. Each has
795 11 bits to invest. The upper 11 bits are stored in one (identifed by
796 H-0.. see below), the lower 11 bits are stored in the other (identified
797 by H-1).
798
799 Combine together and shifted left by 1 (it's a half word address) and
800 there you have it.
801
802 Op: 1111 = F,
803 H-0, upper address-0 = 000
804 Op: 1111 = F,
805 H-1, lower address-0 = 800
806
807 They can be ordered either way, but the arm tools I've seen always put
808 the lower one first. It probably doesn't matter. krk@cygnus.com
809
810 XXX: Actually the order does matter. The second instruction (H-1)
811 moves the computed address into the PC, so it must be the second one
812 in the sequence. The problem, however is that whilst little endian code
813 stores the instructions in HI then LOW order, big endian code does the
814 reverse. nickc@cygnus.com. */
815
816 #define LOW_HI_ORDER 0xF800F000
817 #define HI_LOW_ORDER 0xF000F800
818
819 static insn32
820 insert_thumb_branch (br_insn, rel_off)
821 insn32 br_insn;
822 int rel_off;
823 {
824 unsigned int low_bits;
825 unsigned int high_bits;
826
827 BFD_ASSERT ((rel_off & 1) != 1);
828
829 rel_off >>= 1; /* Half word aligned address. */
830 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
831 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
832
833 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
834 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
835 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
836 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
837 else
838 /* FIXME: abort is probably not the right call. krk@cygnus.com */
839 abort (); /* error - not a valid branch instruction form. */
840
841 return br_insn;
842 }
843
844 /* Thumb code calling an ARM function. */
845
846 static int
847 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
848 hit_data, sym_sec, offset, addend, val)
849 struct bfd_link_info * info;
850 const char * name;
851 bfd * input_bfd;
852 bfd * output_bfd;
853 asection * input_section;
854 bfd_byte * hit_data;
855 asection * sym_sec;
856 bfd_vma offset;
857 bfd_signed_vma addend;
858 bfd_vma val;
859 {
860 asection * s = 0;
861 bfd_vma my_offset;
862 unsigned long int tmp;
863 long int ret_offset;
864 struct elf_link_hash_entry * myh;
865 struct elf32_arm_link_hash_table * globals;
866
867 myh = find_thumb_glue (info, name, input_bfd);
868 if (myh == NULL)
869 return FALSE;
870
871 globals = elf32_arm_hash_table (info);
872
873 BFD_ASSERT (globals != NULL);
874 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
875
876 my_offset = myh->root.u.def.value;
877
878 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
879 THUMB2ARM_GLUE_SECTION_NAME);
880
881 BFD_ASSERT (s != NULL);
882 BFD_ASSERT (s->contents != NULL);
883 BFD_ASSERT (s->output_section != NULL);
884
885 if ((my_offset & 0x01) == 0x01)
886 {
887 if (sym_sec != NULL
888 && sym_sec->owner != NULL
889 && !INTERWORK_FLAG (sym_sec->owner))
890 {
891 (*_bfd_error_handler)
892 (_("%s(%s): warning: interworking not enabled."),
893 bfd_archive_filename (sym_sec->owner), name);
894 (*_bfd_error_handler)
895 (_(" first occurrence: %s: thumb call to arm"),
896 bfd_archive_filename (input_bfd));
897
898 return FALSE;
899 }
900
901 --my_offset;
902 myh->root.u.def.value = my_offset;
903
904 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
905 s->contents + my_offset);
906
907 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
908 s->contents + my_offset + 2);
909
910 ret_offset =
911 /* Address of destination of the stub. */
912 ((bfd_signed_vma) val)
913 - ((bfd_signed_vma)
914 /* Offset from the start of the current section to the start of the stubs. */
915 (s->output_offset
916 /* Offset of the start of this stub from the start of the stubs. */
917 + my_offset
918 /* Address of the start of the current section. */
919 + s->output_section->vma)
920 /* The branch instruction is 4 bytes into the stub. */
921 + 4
922 /* ARM branches work from the pc of the instruction + 8. */
923 + 8);
924
925 bfd_put_32 (output_bfd,
926 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
927 s->contents + my_offset + 4);
928 }
929
930 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
931
932 /* Now go back and fix up the original BL insn to point to here. */
933 ret_offset =
934 /* Address of where the stub is located. */
935 (s->output_section->vma + s->output_offset + my_offset)
936 /* Address of where the BL is located. */
937 - (input_section->output_section->vma + input_section->output_offset + offset)
938 /* Addend in the relocation. */
939 - addend
940 /* Biassing for PC-relative addressing. */
941 - 8;
942
943 tmp = bfd_get_32 (input_bfd, hit_data
944 - input_section->vma);
945
946 bfd_put_32 (output_bfd,
947 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
948 hit_data - input_section->vma);
949
950 return TRUE;
951 }
952
953 /* Arm code calling a Thumb function. */
954
955 static int
956 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
957 hit_data, sym_sec, offset, addend, val)
958 struct bfd_link_info * info;
959 const char * name;
960 bfd * input_bfd;
961 bfd * output_bfd;
962 asection * input_section;
963 bfd_byte * hit_data;
964 asection * sym_sec;
965 bfd_vma offset;
966 bfd_signed_vma addend;
967 bfd_vma val;
968 {
969 unsigned long int tmp;
970 bfd_vma my_offset;
971 asection * s;
972 long int ret_offset;
973 struct elf_link_hash_entry * myh;
974 struct elf32_arm_link_hash_table * globals;
975
976 myh = find_arm_glue (info, name, input_bfd);
977 if (myh == NULL)
978 return FALSE;
979
980 globals = elf32_arm_hash_table (info);
981
982 BFD_ASSERT (globals != NULL);
983 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
984
985 my_offset = myh->root.u.def.value;
986 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
987 ARM2THUMB_GLUE_SECTION_NAME);
988 BFD_ASSERT (s != NULL);
989 BFD_ASSERT (s->contents != NULL);
990 BFD_ASSERT (s->output_section != NULL);
991
992 if ((my_offset & 0x01) == 0x01)
993 {
994 if (sym_sec != NULL
995 && sym_sec->owner != NULL
996 && !INTERWORK_FLAG (sym_sec->owner))
997 {
998 (*_bfd_error_handler)
999 (_("%s(%s): warning: interworking not enabled."),
1000 bfd_archive_filename (sym_sec->owner), name);
1001 (*_bfd_error_handler)
1002 (_(" first occurrence: %s: arm call to thumb"),
1003 bfd_archive_filename (input_bfd));
1004 }
1005
1006 --my_offset;
1007 myh->root.u.def.value = my_offset;
1008
1009 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1010 s->contents + my_offset);
1011
1012 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1013 s->contents + my_offset + 4);
1014
1015 /* It's a thumb address. Add the low order bit. */
1016 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1017 s->contents + my_offset + 8);
1018 }
1019
1020 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1021
1022 tmp = bfd_get_32 (input_bfd, hit_data);
1023 tmp = tmp & 0xFF000000;
1024
1025 /* Somehow these are both 4 too far, so subtract 8. */
1026 ret_offset = (s->output_offset
1027 + my_offset
1028 + s->output_section->vma
1029 - (input_section->output_offset
1030 + input_section->output_section->vma
1031 + offset + addend)
1032 - 8);
1033
1034 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1035
1036 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1037
1038 return TRUE;
1039 }
1040
1041 /* This is the condition under which elf32_arm_finish_dynamic_symbol
1042 will be called from elflink.h. If elflink.h doesn't call our
1043 finish_dynamic_symbol routine, we'll need to do something about
1044 initializing any .plt and .got entries in elf32_arm_relocate_section
1045 and elf32_arm_final_link_relocate. */
1046 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, SHARED, H) \
1047 ((DYN) \
1048 && ((SHARED) \
1049 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1050 && ((H)->dynindx != -1 \
1051 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1052
1053 /* Perform a relocation as part of a final link. */
1054
1055 static bfd_reloc_status_type
1056 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1057 input_section, contents, rel, value,
1058 info, sym_sec, sym_name, sym_flags, h)
1059 reloc_howto_type * howto;
1060 bfd * input_bfd;
1061 bfd * output_bfd;
1062 asection * input_section;
1063 bfd_byte * contents;
1064 Elf_Internal_Rela * rel;
1065 bfd_vma value;
1066 struct bfd_link_info * info;
1067 asection * sym_sec;
1068 const char * sym_name;
1069 int sym_flags;
1070 struct elf_link_hash_entry * h;
1071 {
1072 unsigned long r_type = howto->type;
1073 unsigned long r_symndx;
1074 bfd_byte * hit_data = contents + rel->r_offset;
1075 bfd * dynobj = NULL;
1076 Elf_Internal_Shdr * symtab_hdr;
1077 struct elf_link_hash_entry ** sym_hashes;
1078 bfd_vma * local_got_offsets;
1079 asection * sgot = NULL;
1080 asection * splt = NULL;
1081 asection * sreloc = NULL;
1082 bfd_vma addend;
1083 bfd_signed_vma signed_addend;
1084 struct elf32_arm_link_hash_table * globals;
1085
1086 /* If the start address has been set, then set the EF_ARM_HASENTRY
1087 flag. Setting this more than once is redundant, but the cost is
1088 not too high, and it keeps the code simple.
1089
1090 The test is done here, rather than somewhere else, because the
1091 start address is only set just before the final link commences.
1092
1093 Note - if the user deliberately sets a start address of 0, the
1094 flag will not be set. */
1095 if (bfd_get_start_address (output_bfd) != 0)
1096 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1097
1098 globals = elf32_arm_hash_table (info);
1099
1100 dynobj = elf_hash_table (info)->dynobj;
1101 if (dynobj)
1102 {
1103 sgot = bfd_get_section_by_name (dynobj, ".got");
1104 splt = bfd_get_section_by_name (dynobj, ".plt");
1105 }
1106 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1107 sym_hashes = elf_sym_hashes (input_bfd);
1108 local_got_offsets = elf_local_got_offsets (input_bfd);
1109 r_symndx = ELF32_R_SYM (rel->r_info);
1110
1111 #if USE_REL
1112 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1113
1114 if (addend & ((howto->src_mask + 1) >> 1))
1115 {
1116 signed_addend = -1;
1117 signed_addend &= ~ howto->src_mask;
1118 signed_addend |= addend;
1119 }
1120 else
1121 signed_addend = addend;
1122 #else
1123 addend = signed_addend = rel->r_addend;
1124 #endif
1125
1126 switch (r_type)
1127 {
1128 case R_ARM_NONE:
1129 return bfd_reloc_ok;
1130
1131 case R_ARM_PC24:
1132 case R_ARM_ABS32:
1133 case R_ARM_REL32:
1134 #ifndef OLD_ARM_ABI
1135 case R_ARM_XPC25:
1136 #endif
1137 /* When generating a shared object, these relocations are copied
1138 into the output file to be resolved at run time. */
1139 if (info->shared
1140 && r_symndx != 0
1141 && (r_type != R_ARM_PC24
1142 || (h != NULL
1143 && h->dynindx != -1
1144 && (! info->symbolic
1145 || (h->elf_link_hash_flags
1146 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1147 {
1148 Elf_Internal_Rela outrel;
1149 bfd_byte *loc;
1150 bfd_boolean skip, relocate;
1151
1152 if (sreloc == NULL)
1153 {
1154 const char * name;
1155
1156 name = (bfd_elf_string_from_elf_section
1157 (input_bfd,
1158 elf_elfheader (input_bfd)->e_shstrndx,
1159 elf_section_data (input_section)->rel_hdr.sh_name));
1160 if (name == NULL)
1161 return bfd_reloc_notsupported;
1162
1163 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1164 && strcmp (bfd_get_section_name (input_bfd,
1165 input_section),
1166 name + 4) == 0);
1167
1168 sreloc = bfd_get_section_by_name (dynobj, name);
1169 BFD_ASSERT (sreloc != NULL);
1170 }
1171
1172 skip = FALSE;
1173 relocate = FALSE;
1174
1175 outrel.r_offset =
1176 _bfd_elf_section_offset (output_bfd, info, input_section,
1177 rel->r_offset);
1178 if (outrel.r_offset == (bfd_vma) -1)
1179 skip = TRUE;
1180 else if (outrel.r_offset == (bfd_vma) -2)
1181 skip = TRUE, relocate = TRUE;
1182 outrel.r_offset += (input_section->output_section->vma
1183 + input_section->output_offset);
1184
1185 if (skip)
1186 memset (&outrel, 0, sizeof outrel);
1187 else if (r_type == R_ARM_PC24)
1188 {
1189 BFD_ASSERT (h != NULL && h->dynindx != -1);
1190 if ((input_section->flags & SEC_ALLOC) == 0)
1191 relocate = TRUE;
1192 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1193 }
1194 else
1195 {
1196 if (h == NULL
1197 || ((info->symbolic || h->dynindx == -1)
1198 && (h->elf_link_hash_flags
1199 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1200 {
1201 relocate = TRUE;
1202 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1203 }
1204 else
1205 {
1206 BFD_ASSERT (h->dynindx != -1);
1207 if ((input_section->flags & SEC_ALLOC) == 0)
1208 relocate = TRUE;
1209 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1210 }
1211 }
1212
1213 loc = sreloc->contents;
1214 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1215 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1216
1217 /* If this reloc is against an external symbol, we do not want to
1218 fiddle with the addend. Otherwise, we need to include the symbol
1219 value so that it becomes an addend for the dynamic reloc. */
1220 if (! relocate)
1221 return bfd_reloc_ok;
1222
1223 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1224 contents, rel->r_offset, value,
1225 (bfd_vma) 0);
1226 }
1227 else switch (r_type)
1228 {
1229 #ifndef OLD_ARM_ABI
1230 case R_ARM_XPC25: /* Arm BLX instruction. */
1231 #endif
1232 case R_ARM_PC24: /* Arm B/BL instruction */
1233 #ifndef OLD_ARM_ABI
1234 if (r_type == R_ARM_XPC25)
1235 {
1236 /* Check for Arm calling Arm function. */
1237 /* FIXME: Should we translate the instruction into a BL
1238 instruction instead ? */
1239 if (sym_flags != STT_ARM_TFUNC)
1240 (*_bfd_error_handler) (_("\
1241 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1242 bfd_archive_filename (input_bfd),
1243 h ? h->root.root.string : "(local)");
1244 }
1245 else
1246 #endif
1247 {
1248 /* Check for Arm calling Thumb function. */
1249 if (sym_flags == STT_ARM_TFUNC)
1250 {
1251 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1252 input_section, hit_data, sym_sec, rel->r_offset,
1253 signed_addend, value);
1254 return bfd_reloc_ok;
1255 }
1256 }
1257
1258 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1259 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1260 {
1261 /* The old way of doing things. Trearing the addend as a
1262 byte sized field and adding in the pipeline offset. */
1263 value -= (input_section->output_section->vma
1264 + input_section->output_offset);
1265 value -= rel->r_offset;
1266 value += addend;
1267
1268 if (! globals->no_pipeline_knowledge)
1269 value -= 8;
1270 }
1271 else
1272 {
1273 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1274 where:
1275 S is the address of the symbol in the relocation.
1276 P is address of the instruction being relocated.
1277 A is the addend (extracted from the instruction) in bytes.
1278
1279 S is held in 'value'.
1280 P is the base address of the section containing the instruction
1281 plus the offset of the reloc into that section, ie:
1282 (input_section->output_section->vma +
1283 input_section->output_offset +
1284 rel->r_offset).
1285 A is the addend, converted into bytes, ie:
1286 (signed_addend * 4)
1287
1288 Note: None of these operations have knowledge of the pipeline
1289 size of the processor, thus it is up to the assembler to encode
1290 this information into the addend. */
1291 value -= (input_section->output_section->vma
1292 + input_section->output_offset);
1293 value -= rel->r_offset;
1294 value += (signed_addend << howto->size);
1295
1296 /* Previous versions of this code also used to add in the pipeline
1297 offset here. This is wrong because the linker is not supposed
1298 to know about such things, and one day it might change. In order
1299 to support old binaries that need the old behaviour however, so
1300 we attempt to detect which ABI was used to create the reloc. */
1301 if (! globals->no_pipeline_knowledge)
1302 {
1303 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1304
1305 i_ehdrp = elf_elfheader (input_bfd);
1306
1307 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1308 value -= 8;
1309 }
1310 }
1311
1312 signed_addend = value;
1313 signed_addend >>= howto->rightshift;
1314
1315 /* It is not an error for an undefined weak reference to be
1316 out of range. Any program that branches to such a symbol
1317 is going to crash anyway, so there is no point worrying
1318 about getting the destination exactly right. */
1319 if (! h || h->root.type != bfd_link_hash_undefweak)
1320 {
1321 /* Perform a signed range check. */
1322 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1323 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1324 return bfd_reloc_overflow;
1325 }
1326
1327 #ifndef OLD_ARM_ABI
1328 /* If necessary set the H bit in the BLX instruction. */
1329 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1330 value = (signed_addend & howto->dst_mask)
1331 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1332 | (1 << 24);
1333 else
1334 #endif
1335 value = (signed_addend & howto->dst_mask)
1336 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1337 break;
1338
1339 case R_ARM_ABS32:
1340 value += addend;
1341 if (sym_flags == STT_ARM_TFUNC)
1342 value |= 1;
1343 break;
1344
1345 case R_ARM_REL32:
1346 value -= (input_section->output_section->vma
1347 + input_section->output_offset + rel->r_offset);
1348 value += addend;
1349 break;
1350 }
1351
1352 bfd_put_32 (input_bfd, value, hit_data);
1353 return bfd_reloc_ok;
1354
1355 case R_ARM_ABS8:
1356 value += addend;
1357 if ((long) value > 0x7f || (long) value < -0x80)
1358 return bfd_reloc_overflow;
1359
1360 bfd_put_8 (input_bfd, value, hit_data);
1361 return bfd_reloc_ok;
1362
1363 case R_ARM_ABS16:
1364 value += addend;
1365
1366 if ((long) value > 0x7fff || (long) value < -0x8000)
1367 return bfd_reloc_overflow;
1368
1369 bfd_put_16 (input_bfd, value, hit_data);
1370 return bfd_reloc_ok;
1371
1372 case R_ARM_ABS12:
1373 /* Support ldr and str instruction for the arm */
1374 /* Also thumb b (unconditional branch). ??? Really? */
1375 value += addend;
1376
1377 if ((long) value > 0x7ff || (long) value < -0x800)
1378 return bfd_reloc_overflow;
1379
1380 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1381 bfd_put_32 (input_bfd, value, hit_data);
1382 return bfd_reloc_ok;
1383
1384 case R_ARM_THM_ABS5:
1385 /* Support ldr and str instructions for the thumb. */
1386 #if USE_REL
1387 /* Need to refetch addend. */
1388 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1389 /* ??? Need to determine shift amount from operand size. */
1390 addend >>= howto->rightshift;
1391 #endif
1392 value += addend;
1393
1394 /* ??? Isn't value unsigned? */
1395 if ((long) value > 0x1f || (long) value < -0x10)
1396 return bfd_reloc_overflow;
1397
1398 /* ??? Value needs to be properly shifted into place first. */
1399 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1400 bfd_put_16 (input_bfd, value, hit_data);
1401 return bfd_reloc_ok;
1402
1403 #ifndef OLD_ARM_ABI
1404 case R_ARM_THM_XPC22:
1405 #endif
1406 case R_ARM_THM_PC22:
1407 /* Thumb BL (branch long instruction). */
1408 {
1409 bfd_vma relocation;
1410 bfd_boolean overflow = FALSE;
1411 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1412 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1413 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1414 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1415 bfd_vma check;
1416 bfd_signed_vma signed_check;
1417
1418 #if USE_REL
1419 /* Need to refetch the addend and squish the two 11 bit pieces
1420 together. */
1421 {
1422 bfd_vma upper = upper_insn & 0x7ff;
1423 bfd_vma lower = lower_insn & 0x7ff;
1424 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1425 addend = (upper << 12) | (lower << 1);
1426 signed_addend = addend;
1427 }
1428 #endif
1429 #ifndef OLD_ARM_ABI
1430 if (r_type == R_ARM_THM_XPC22)
1431 {
1432 /* Check for Thumb to Thumb call. */
1433 /* FIXME: Should we translate the instruction into a BL
1434 instruction instead ? */
1435 if (sym_flags == STT_ARM_TFUNC)
1436 (*_bfd_error_handler) (_("\
1437 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1438 bfd_archive_filename (input_bfd),
1439 h ? h->root.root.string : "(local)");
1440 }
1441 else
1442 #endif
1443 {
1444 /* If it is not a call to Thumb, assume call to Arm.
1445 If it is a call relative to a section name, then it is not a
1446 function call at all, but rather a long jump. */
1447 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1448 {
1449 if (elf32_thumb_to_arm_stub
1450 (info, sym_name, input_bfd, output_bfd, input_section,
1451 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1452 return bfd_reloc_ok;
1453 else
1454 return bfd_reloc_dangerous;
1455 }
1456 }
1457
1458 relocation = value + signed_addend;
1459
1460 relocation -= (input_section->output_section->vma
1461 + input_section->output_offset
1462 + rel->r_offset);
1463
1464 if (! globals->no_pipeline_knowledge)
1465 {
1466 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1467
1468 i_ehdrp = elf_elfheader (input_bfd);
1469
1470 /* Previous versions of this code also used to add in the pipline
1471 offset here. This is wrong because the linker is not supposed
1472 to know about such things, and one day it might change. In order
1473 to support old binaries that need the old behaviour however, so
1474 we attempt to detect which ABI was used to create the reloc. */
1475 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1476 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1477 || i_ehdrp->e_ident[EI_OSABI] == 0)
1478 relocation += 4;
1479 }
1480
1481 check = relocation >> howto->rightshift;
1482
1483 /* If this is a signed value, the rightshift just dropped
1484 leading 1 bits (assuming twos complement). */
1485 if ((bfd_signed_vma) relocation >= 0)
1486 signed_check = check;
1487 else
1488 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1489
1490 /* Assumes two's complement. */
1491 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1492 overflow = TRUE;
1493
1494 #ifndef OLD_ARM_ABI
1495 if (r_type == R_ARM_THM_XPC22
1496 && ((lower_insn & 0x1800) == 0x0800))
1497 /* For a BLX instruction, make sure that the relocation is rounded up
1498 to a word boundary. This follows the semantics of the instruction
1499 which specifies that bit 1 of the target address will come from bit
1500 1 of the base address. */
1501 relocation = (relocation + 2) & ~ 3;
1502 #endif
1503 /* Put RELOCATION back into the insn. */
1504 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1505 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1506
1507 /* Put the relocated value back in the object file: */
1508 bfd_put_16 (input_bfd, upper_insn, hit_data);
1509 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1510
1511 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1512 }
1513 break;
1514
1515 case R_ARM_THM_PC11:
1516 /* Thumb B (branch) instruction). */
1517 {
1518 bfd_signed_vma relocation;
1519 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1520 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1521 bfd_signed_vma signed_check;
1522
1523 #if USE_REL
1524 /* Need to refetch addend. */
1525 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1526 if (addend & ((howto->src_mask + 1) >> 1))
1527 {
1528 signed_addend = -1;
1529 signed_addend &= ~ howto->src_mask;
1530 signed_addend |= addend;
1531 }
1532 else
1533 signed_addend = addend;
1534 /* The value in the insn has been right shifted. We need to
1535 undo this, so that we can perform the address calculation
1536 in terms of bytes. */
1537 signed_addend <<= howto->rightshift;
1538 #endif
1539 relocation = value + signed_addend;
1540
1541 relocation -= (input_section->output_section->vma
1542 + input_section->output_offset
1543 + rel->r_offset);
1544
1545 relocation >>= howto->rightshift;
1546 signed_check = relocation;
1547 relocation &= howto->dst_mask;
1548 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1549
1550 bfd_put_16 (input_bfd, relocation, hit_data);
1551
1552 /* Assumes two's complement. */
1553 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1554 return bfd_reloc_overflow;
1555
1556 return bfd_reloc_ok;
1557 }
1558
1559 case R_ARM_GNU_VTINHERIT:
1560 case R_ARM_GNU_VTENTRY:
1561 return bfd_reloc_ok;
1562
1563 case R_ARM_COPY:
1564 return bfd_reloc_notsupported;
1565
1566 case R_ARM_GLOB_DAT:
1567 return bfd_reloc_notsupported;
1568
1569 case R_ARM_JUMP_SLOT:
1570 return bfd_reloc_notsupported;
1571
1572 case R_ARM_RELATIVE:
1573 return bfd_reloc_notsupported;
1574
1575 case R_ARM_GOTOFF:
1576 /* Relocation is relative to the start of the
1577 global offset table. */
1578
1579 BFD_ASSERT (sgot != NULL);
1580 if (sgot == NULL)
1581 return bfd_reloc_notsupported;
1582
1583 /* If we are addressing a Thumb function, we need to adjust the
1584 address by one, so that attempts to call the function pointer will
1585 correctly interpret it as Thumb code. */
1586 if (sym_flags == STT_ARM_TFUNC)
1587 value += 1;
1588
1589 /* Note that sgot->output_offset is not involved in this
1590 calculation. We always want the start of .got. If we
1591 define _GLOBAL_OFFSET_TABLE in a different way, as is
1592 permitted by the ABI, we might have to change this
1593 calculation. */
1594 value -= sgot->output_section->vma;
1595 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1596 contents, rel->r_offset, value,
1597 (bfd_vma) 0);
1598
1599 case R_ARM_GOTPC:
1600 /* Use global offset table as symbol value. */
1601 BFD_ASSERT (sgot != NULL);
1602
1603 if (sgot == NULL)
1604 return bfd_reloc_notsupported;
1605
1606 value = sgot->output_section->vma;
1607 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1608 contents, rel->r_offset, value,
1609 (bfd_vma) 0);
1610
1611 case R_ARM_GOT32:
1612 /* Relocation is to the entry for this symbol in the
1613 global offset table. */
1614 if (sgot == NULL)
1615 return bfd_reloc_notsupported;
1616
1617 if (h != NULL)
1618 {
1619 bfd_vma off;
1620 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
1621
1622 off = h->got.offset;
1623 BFD_ASSERT (off != (bfd_vma) -1);
1624
1625 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1626 || (info->shared
1627 && (info->symbolic || h->dynindx == -1
1628 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1629 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1630 {
1631 /* This is actually a static link, or it is a -Bsymbolic link
1632 and the symbol is defined locally. We must initialize this
1633 entry in the global offset table. Since the offset must
1634 always be a multiple of 4, we use the least significant bit
1635 to record whether we have initialized it already.
1636
1637 When doing a dynamic link, we create a .rel.got relocation
1638 entry to initialize the value. This is done in the
1639 finish_dynamic_symbol routine. */
1640 if ((off & 1) != 0)
1641 off &= ~1;
1642 else
1643 {
1644 /* If we are addressing a Thumb function, we need to
1645 adjust the address by one, so that attempts to
1646 call the function pointer will correctly
1647 interpret it as Thumb code. */
1648 if (sym_flags == STT_ARM_TFUNC)
1649 value |= 1;
1650
1651 bfd_put_32 (output_bfd, value, sgot->contents + off);
1652 h->got.offset |= 1;
1653 }
1654 }
1655
1656 value = sgot->output_offset + off;
1657 }
1658 else
1659 {
1660 bfd_vma off;
1661
1662 BFD_ASSERT (local_got_offsets != NULL &&
1663 local_got_offsets[r_symndx] != (bfd_vma) -1);
1664
1665 off = local_got_offsets[r_symndx];
1666
1667 /* The offset must always be a multiple of 4. We use the
1668 least significant bit to record whether we have already
1669 generated the necessary reloc. */
1670 if ((off & 1) != 0)
1671 off &= ~1;
1672 else
1673 {
1674 bfd_put_32 (output_bfd, value, sgot->contents + off);
1675
1676 if (info->shared)
1677 {
1678 asection * srelgot;
1679 Elf_Internal_Rela outrel;
1680 bfd_byte *loc;
1681
1682 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1683 BFD_ASSERT (srelgot != NULL);
1684
1685 outrel.r_offset = (sgot->output_section->vma
1686 + sgot->output_offset
1687 + off);
1688 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1689 loc = srelgot->contents;
1690 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1691 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1692 }
1693
1694 local_got_offsets[r_symndx] |= 1;
1695 }
1696
1697 value = sgot->output_offset + off;
1698 }
1699
1700 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1701 contents, rel->r_offset, value,
1702 (bfd_vma) 0);
1703
1704 case R_ARM_PLT32:
1705 /* Relocation is to the entry for this symbol in the
1706 procedure linkage table. */
1707
1708 /* Resolve a PLT32 reloc against a local symbol directly,
1709 without using the procedure linkage table. */
1710 if (h == NULL)
1711 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1712 contents, rel->r_offset, value,
1713 (bfd_vma) 0);
1714
1715 if (h->plt.offset == (bfd_vma) -1)
1716 /* We didn't make a PLT entry for this symbol. This
1717 happens when statically linking PIC code, or when
1718 using -Bsymbolic. */
1719 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1720 contents, rel->r_offset, value,
1721 (bfd_vma) 0);
1722
1723 BFD_ASSERT(splt != NULL);
1724 if (splt == NULL)
1725 return bfd_reloc_notsupported;
1726
1727 value = (splt->output_section->vma
1728 + splt->output_offset
1729 + h->plt.offset);
1730 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1731 contents, rel->r_offset, value,
1732 (bfd_vma) 0);
1733
1734 case R_ARM_SBREL32:
1735 return bfd_reloc_notsupported;
1736
1737 case R_ARM_AMP_VCALL9:
1738 return bfd_reloc_notsupported;
1739
1740 case R_ARM_RSBREL32:
1741 return bfd_reloc_notsupported;
1742
1743 case R_ARM_THM_RPC22:
1744 return bfd_reloc_notsupported;
1745
1746 case R_ARM_RREL32:
1747 return bfd_reloc_notsupported;
1748
1749 case R_ARM_RABS32:
1750 return bfd_reloc_notsupported;
1751
1752 case R_ARM_RPC24:
1753 return bfd_reloc_notsupported;
1754
1755 case R_ARM_RBASE:
1756 return bfd_reloc_notsupported;
1757
1758 default:
1759 return bfd_reloc_notsupported;
1760 }
1761 }
1762
1763 #if USE_REL
1764 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1765 static void
1766 arm_add_to_rel (abfd, address, howto, increment)
1767 bfd * abfd;
1768 bfd_byte * address;
1769 reloc_howto_type * howto;
1770 bfd_signed_vma increment;
1771 {
1772 bfd_signed_vma addend;
1773
1774 if (howto->type == R_ARM_THM_PC22)
1775 {
1776 int upper_insn, lower_insn;
1777 int upper, lower;
1778
1779 upper_insn = bfd_get_16 (abfd, address);
1780 lower_insn = bfd_get_16 (abfd, address + 2);
1781 upper = upper_insn & 0x7ff;
1782 lower = lower_insn & 0x7ff;
1783
1784 addend = (upper << 12) | (lower << 1);
1785 addend += increment;
1786 addend >>= 1;
1787
1788 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1789 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1790
1791 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1792 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1793 }
1794 else
1795 {
1796 bfd_vma contents;
1797
1798 contents = bfd_get_32 (abfd, address);
1799
1800 /* Get the (signed) value from the instruction. */
1801 addend = contents & howto->src_mask;
1802 if (addend & ((howto->src_mask + 1) >> 1))
1803 {
1804 bfd_signed_vma mask;
1805
1806 mask = -1;
1807 mask &= ~ howto->src_mask;
1808 addend |= mask;
1809 }
1810
1811 /* Add in the increment, (which is a byte value). */
1812 switch (howto->type)
1813 {
1814 default:
1815 addend += increment;
1816 break;
1817
1818 case R_ARM_PC24:
1819 addend <<= howto->size;
1820 addend += increment;
1821
1822 /* Should we check for overflow here ? */
1823
1824 /* Drop any undesired bits. */
1825 addend >>= howto->rightshift;
1826 break;
1827 }
1828
1829 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1830
1831 bfd_put_32 (abfd, contents, address);
1832 }
1833 }
1834 #endif /* USE_REL */
1835
1836 /* Relocate an ARM ELF section. */
1837 static bfd_boolean
1838 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1839 contents, relocs, local_syms, local_sections)
1840 bfd *output_bfd;
1841 struct bfd_link_info *info;
1842 bfd *input_bfd;
1843 asection *input_section;
1844 bfd_byte *contents;
1845 Elf_Internal_Rela *relocs;
1846 Elf_Internal_Sym *local_syms;
1847 asection **local_sections;
1848 {
1849 Elf_Internal_Shdr *symtab_hdr;
1850 struct elf_link_hash_entry **sym_hashes;
1851 Elf_Internal_Rela *rel;
1852 Elf_Internal_Rela *relend;
1853 const char *name;
1854
1855 #if !USE_REL
1856 if (info->relocatable)
1857 return TRUE;
1858 #endif
1859
1860 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1861 sym_hashes = elf_sym_hashes (input_bfd);
1862
1863 rel = relocs;
1864 relend = relocs + input_section->reloc_count;
1865 for (; rel < relend; rel++)
1866 {
1867 int r_type;
1868 reloc_howto_type * howto;
1869 unsigned long r_symndx;
1870 Elf_Internal_Sym * sym;
1871 asection * sec;
1872 struct elf_link_hash_entry * h;
1873 bfd_vma relocation;
1874 bfd_reloc_status_type r;
1875 arelent bfd_reloc;
1876
1877 r_symndx = ELF32_R_SYM (rel->r_info);
1878 r_type = ELF32_R_TYPE (rel->r_info);
1879
1880 if ( r_type == R_ARM_GNU_VTENTRY
1881 || r_type == R_ARM_GNU_VTINHERIT)
1882 continue;
1883
1884 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1885 howto = bfd_reloc.howto;
1886
1887 #if USE_REL
1888 if (info->relocatable)
1889 {
1890 /* This is a relocatable link. We don't have to change
1891 anything, unless the reloc is against a section symbol,
1892 in which case we have to adjust according to where the
1893 section symbol winds up in the output section. */
1894 if (r_symndx < symtab_hdr->sh_info)
1895 {
1896 sym = local_syms + r_symndx;
1897 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1898 {
1899 sec = local_sections[r_symndx];
1900 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1901 howto,
1902 (bfd_signed_vma) (sec->output_offset
1903 + sym->st_value));
1904 }
1905 }
1906
1907 continue;
1908 }
1909 #endif
1910
1911 /* This is a final link. */
1912 h = NULL;
1913 sym = NULL;
1914 sec = NULL;
1915
1916 if (r_symndx < symtab_hdr->sh_info)
1917 {
1918 sym = local_syms + r_symndx;
1919 sec = local_sections[r_symndx];
1920 #if USE_REL
1921 relocation = (sec->output_section->vma
1922 + sec->output_offset
1923 + sym->st_value);
1924 if ((sec->flags & SEC_MERGE)
1925 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1926 {
1927 asection *msec;
1928 bfd_vma addend, value;
1929
1930 if (howto->rightshift)
1931 {
1932 (*_bfd_error_handler)
1933 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1934 bfd_archive_filename (input_bfd),
1935 bfd_get_section_name (input_bfd, input_section),
1936 (long) rel->r_offset, howto->name);
1937 return FALSE;
1938 }
1939
1940 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1941
1942 /* Get the (signed) value from the instruction. */
1943 addend = value & howto->src_mask;
1944 if (addend & ((howto->src_mask + 1) >> 1))
1945 {
1946 bfd_signed_vma mask;
1947
1948 mask = -1;
1949 mask &= ~ howto->src_mask;
1950 addend |= mask;
1951 }
1952 msec = sec;
1953 addend =
1954 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1955 - relocation;
1956 addend += msec->output_section->vma + msec->output_offset;
1957 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1958 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1959 }
1960 #else
1961 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1962 #endif
1963 }
1964 else
1965 {
1966 bfd_boolean warned;
1967 bfd_boolean unresolved_reloc;
1968
1969 RELOC_FOR_GLOBAL_SYMBOL (h, sym_hashes, r_symndx,
1970 symtab_hdr, relocation,
1971 sec, unresolved_reloc, info,
1972 warned);
1973
1974 if (unresolved_reloc || relocation != 0)
1975 {
1976 /* In these cases, we don't need the relocation value.
1977 We check specially because in some obscure cases
1978 sec->output_section will be NULL. */
1979 switch (r_type)
1980 {
1981 case R_ARM_PC24:
1982 case R_ARM_ABS32:
1983 case R_ARM_THM_PC22:
1984 if (info->shared
1985 && (
1986 (!info->symbolic && h->dynindx != -1)
1987 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1988 )
1989 && ((input_section->flags & SEC_ALLOC) != 0
1990 /* DWARF will emit R_ARM_ABS32 relocations in its
1991 sections against symbols defined externally
1992 in shared libraries. We can't do anything
1993 with them here. */
1994 || ((input_section->flags & SEC_DEBUGGING) != 0
1995 && (h->elf_link_hash_flags
1996 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1997 )
1998 relocation = 0;
1999 break;
2000
2001 case R_ARM_GOTPC:
2002 relocation = 0;
2003 break;
2004
2005 case R_ARM_GOT32:
2006 if ((WILL_CALL_FINISH_DYNAMIC_SYMBOL
2007 (elf_hash_table (info)->dynamic_sections_created,
2008 info->shared, h))
2009 && (!info->shared
2010 || (!info->symbolic && h->dynindx != -1)
2011 || (h->elf_link_hash_flags
2012 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2013 relocation = 0;
2014 break;
2015
2016 case R_ARM_PLT32:
2017 if (h->plt.offset != (bfd_vma)-1)
2018 relocation = 0;
2019 break;
2020
2021 default:
2022 if (unresolved_reloc)
2023 _bfd_error_handler
2024 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2025 bfd_archive_filename (input_bfd),
2026 r_type,
2027 h->root.root.string,
2028 bfd_get_section_name (input_bfd, input_section));
2029 break;
2030 }
2031 }
2032 }
2033
2034 if (h != NULL)
2035 name = h->root.root.string;
2036 else
2037 {
2038 name = (bfd_elf_string_from_elf_section
2039 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2040 if (name == NULL || *name == '\0')
2041 name = bfd_section_name (input_bfd, sec);
2042 }
2043
2044 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2045 input_section, contents, rel,
2046 relocation, info, sec, name,
2047 (h ? ELF_ST_TYPE (h->type) :
2048 ELF_ST_TYPE (sym->st_info)), h);
2049
2050 if (r != bfd_reloc_ok)
2051 {
2052 const char * msg = (const char *) 0;
2053
2054 switch (r)
2055 {
2056 case bfd_reloc_overflow:
2057 /* If the overflowing reloc was to an undefined symbol,
2058 we have already printed one error message and there
2059 is no point complaining again. */
2060 if ((! h ||
2061 h->root.type != bfd_link_hash_undefined)
2062 && (!((*info->callbacks->reloc_overflow)
2063 (info, name, howto->name, (bfd_vma) 0,
2064 input_bfd, input_section, rel->r_offset))))
2065 return FALSE;
2066 break;
2067
2068 case bfd_reloc_undefined:
2069 if (!((*info->callbacks->undefined_symbol)
2070 (info, name, input_bfd, input_section,
2071 rel->r_offset, TRUE)))
2072 return FALSE;
2073 break;
2074
2075 case bfd_reloc_outofrange:
2076 msg = _("internal error: out of range error");
2077 goto common_error;
2078
2079 case bfd_reloc_notsupported:
2080 msg = _("internal error: unsupported relocation error");
2081 goto common_error;
2082
2083 case bfd_reloc_dangerous:
2084 msg = _("internal error: dangerous error");
2085 goto common_error;
2086
2087 default:
2088 msg = _("internal error: unknown error");
2089 /* fall through */
2090
2091 common_error:
2092 if (!((*info->callbacks->warning)
2093 (info, msg, name, input_bfd, input_section,
2094 rel->r_offset)))
2095 return FALSE;
2096 break;
2097 }
2098 }
2099 }
2100
2101 return TRUE;
2102 }
2103
2104 /* Set the right machine number. */
2105
2106 static bfd_boolean
2107 elf32_arm_object_p (abfd)
2108 bfd *abfd;
2109 {
2110 unsigned int mach;
2111
2112 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
2113
2114 if (mach != bfd_mach_arm_unknown)
2115 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2116
2117 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
2118 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
2119
2120 else
2121 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2122
2123 return TRUE;
2124 }
2125
2126 /* Function to keep ARM specific flags in the ELF header. */
2127 static bfd_boolean
2128 elf32_arm_set_private_flags (abfd, flags)
2129 bfd *abfd;
2130 flagword flags;
2131 {
2132 if (elf_flags_init (abfd)
2133 && elf_elfheader (abfd)->e_flags != flags)
2134 {
2135 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2136 {
2137 if (flags & EF_ARM_INTERWORK)
2138 (*_bfd_error_handler) (_("\
2139 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2140 bfd_archive_filename (abfd));
2141 else
2142 _bfd_error_handler (_("\
2143 Warning: Clearing the interworking flag of %s due to outside request"),
2144 bfd_archive_filename (abfd));
2145 }
2146 }
2147 else
2148 {
2149 elf_elfheader (abfd)->e_flags = flags;
2150 elf_flags_init (abfd) = TRUE;
2151 }
2152
2153 return TRUE;
2154 }
2155
2156 /* Copy backend specific data from one object module to another. */
2157
2158 static bfd_boolean
2159 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2160 bfd *ibfd;
2161 bfd *obfd;
2162 {
2163 flagword in_flags;
2164 flagword out_flags;
2165
2166 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2167 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2168 return TRUE;
2169
2170 in_flags = elf_elfheader (ibfd)->e_flags;
2171 out_flags = elf_elfheader (obfd)->e_flags;
2172
2173 if (elf_flags_init (obfd)
2174 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2175 && in_flags != out_flags)
2176 {
2177 /* Cannot mix APCS26 and APCS32 code. */
2178 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2179 return FALSE;
2180
2181 /* Cannot mix float APCS and non-float APCS code. */
2182 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2183 return FALSE;
2184
2185 /* If the src and dest have different interworking flags
2186 then turn off the interworking bit. */
2187 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2188 {
2189 if (out_flags & EF_ARM_INTERWORK)
2190 _bfd_error_handler (_("\
2191 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2192 bfd_get_filename (obfd),
2193 bfd_archive_filename (ibfd));
2194
2195 in_flags &= ~EF_ARM_INTERWORK;
2196 }
2197
2198 /* Likewise for PIC, though don't warn for this case. */
2199 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2200 in_flags &= ~EF_ARM_PIC;
2201 }
2202
2203 elf_elfheader (obfd)->e_flags = in_flags;
2204 elf_flags_init (obfd) = TRUE;
2205
2206 return TRUE;
2207 }
2208
2209 /* Merge backend specific data from an object file to the output
2210 object file when linking. */
2211
2212 static bfd_boolean
2213 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2214 bfd * ibfd;
2215 bfd * obfd;
2216 {
2217 flagword out_flags;
2218 flagword in_flags;
2219 bfd_boolean flags_compatible = TRUE;
2220 asection *sec;
2221
2222 /* Check if we have the same endianess. */
2223 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2224 return FALSE;
2225
2226 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2227 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2228 return TRUE;
2229
2230 /* The input BFD must have had its flags initialised. */
2231 /* The following seems bogus to me -- The flags are initialized in
2232 the assembler but I don't think an elf_flags_init field is
2233 written into the object. */
2234 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2235
2236 in_flags = elf_elfheader (ibfd)->e_flags;
2237 out_flags = elf_elfheader (obfd)->e_flags;
2238
2239 if (!elf_flags_init (obfd))
2240 {
2241 /* If the input is the default architecture and had the default
2242 flags then do not bother setting the flags for the output
2243 architecture, instead allow future merges to do this. If no
2244 future merges ever set these flags then they will retain their
2245 uninitialised values, which surprise surprise, correspond
2246 to the default values. */
2247 if (bfd_get_arch_info (ibfd)->the_default
2248 && elf_elfheader (ibfd)->e_flags == 0)
2249 return TRUE;
2250
2251 elf_flags_init (obfd) = TRUE;
2252 elf_elfheader (obfd)->e_flags = in_flags;
2253
2254 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2255 && bfd_get_arch_info (obfd)->the_default)
2256 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2257
2258 return TRUE;
2259 }
2260
2261 /* Determine what should happen if the input ARM architecture
2262 does not match the output ARM architecture. */
2263 if (! bfd_arm_merge_machines (ibfd, obfd))
2264 return FALSE;
2265
2266 /* Identical flags must be compatible. */
2267 if (in_flags == out_flags)
2268 return TRUE;
2269
2270 /* Check to see if the input BFD actually contains any sections. If
2271 not, its flags may not have been initialised either, but it
2272 cannot actually cause any incompatibility. Do not short-circuit
2273 dynamic objects; their section list may be emptied by
2274 elf_link_add_object_symbols. */
2275
2276 if (!(ibfd->flags & DYNAMIC))
2277 {
2278 bfd_boolean null_input_bfd = TRUE;
2279
2280 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2281 {
2282 /* Ignore synthetic glue sections. */
2283 if (strcmp (sec->name, ".glue_7")
2284 && strcmp (sec->name, ".glue_7t"))
2285 {
2286 null_input_bfd = FALSE;
2287 break;
2288 }
2289 }
2290 if (null_input_bfd)
2291 return TRUE;
2292 }
2293
2294 /* Complain about various flag mismatches. */
2295 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2296 {
2297 _bfd_error_handler (_("\
2298 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2299 bfd_archive_filename (ibfd),
2300 (in_flags & EF_ARM_EABIMASK) >> 24,
2301 bfd_get_filename (obfd),
2302 (out_flags & EF_ARM_EABIMASK) >> 24);
2303 return FALSE;
2304 }
2305
2306 /* Not sure what needs to be checked for EABI versions >= 1. */
2307 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2308 {
2309 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2310 {
2311 _bfd_error_handler (_("\
2312 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2313 bfd_archive_filename (ibfd),
2314 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2315 bfd_get_filename (obfd),
2316 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2317 flags_compatible = FALSE;
2318 }
2319
2320 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2321 {
2322 if (in_flags & EF_ARM_APCS_FLOAT)
2323 _bfd_error_handler (_("\
2324 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2325 bfd_archive_filename (ibfd),
2326 bfd_get_filename (obfd));
2327 else
2328 _bfd_error_handler (_("\
2329 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2330 bfd_archive_filename (ibfd),
2331 bfd_get_filename (obfd));
2332
2333 flags_compatible = FALSE;
2334 }
2335
2336 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2337 {
2338 if (in_flags & EF_ARM_VFP_FLOAT)
2339 _bfd_error_handler (_("\
2340 ERROR: %s uses VFP instructions, whereas %s does not"),
2341 bfd_archive_filename (ibfd),
2342 bfd_get_filename (obfd));
2343 else
2344 _bfd_error_handler (_("\
2345 ERROR: %s uses FPA instructions, whereas %s does not"),
2346 bfd_archive_filename (ibfd),
2347 bfd_get_filename (obfd));
2348
2349 flags_compatible = FALSE;
2350 }
2351
2352 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2353 {
2354 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2355 _bfd_error_handler (_("\
2356 ERROR: %s uses Maverick instructions, whereas %s does not"),
2357 bfd_archive_filename (ibfd),
2358 bfd_get_filename (obfd));
2359 else
2360 _bfd_error_handler (_("\
2361 ERROR: %s does not use Maverick instructions, whereas %s does"),
2362 bfd_archive_filename (ibfd),
2363 bfd_get_filename (obfd));
2364
2365 flags_compatible = FALSE;
2366 }
2367
2368 #ifdef EF_ARM_SOFT_FLOAT
2369 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2370 {
2371 /* We can allow interworking between code that is VFP format
2372 layout, and uses either soft float or integer regs for
2373 passing floating point arguments and results. We already
2374 know that the APCS_FLOAT flags match; similarly for VFP
2375 flags. */
2376 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2377 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2378 {
2379 if (in_flags & EF_ARM_SOFT_FLOAT)
2380 _bfd_error_handler (_("\
2381 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2382 bfd_archive_filename (ibfd),
2383 bfd_get_filename (obfd));
2384 else
2385 _bfd_error_handler (_("\
2386 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2387 bfd_archive_filename (ibfd),
2388 bfd_get_filename (obfd));
2389
2390 flags_compatible = FALSE;
2391 }
2392 }
2393 #endif
2394
2395 /* Interworking mismatch is only a warning. */
2396 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2397 {
2398 if (in_flags & EF_ARM_INTERWORK)
2399 {
2400 _bfd_error_handler (_("\
2401 Warning: %s supports interworking, whereas %s does not"),
2402 bfd_archive_filename (ibfd),
2403 bfd_get_filename (obfd));
2404 }
2405 else
2406 {
2407 _bfd_error_handler (_("\
2408 Warning: %s does not support interworking, whereas %s does"),
2409 bfd_archive_filename (ibfd),
2410 bfd_get_filename (obfd));
2411 }
2412 }
2413 }
2414
2415 return flags_compatible;
2416 }
2417
2418 /* Display the flags field. */
2419
2420 static bfd_boolean
2421 elf32_arm_print_private_bfd_data (abfd, ptr)
2422 bfd *abfd;
2423 PTR ptr;
2424 {
2425 FILE * file = (FILE *) ptr;
2426 unsigned long flags;
2427
2428 BFD_ASSERT (abfd != NULL && ptr != NULL);
2429
2430 /* Print normal ELF private data. */
2431 _bfd_elf_print_private_bfd_data (abfd, ptr);
2432
2433 flags = elf_elfheader (abfd)->e_flags;
2434 /* Ignore init flag - it may not be set, despite the flags field
2435 containing valid data. */
2436
2437 /* xgettext:c-format */
2438 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2439
2440 switch (EF_ARM_EABI_VERSION (flags))
2441 {
2442 case EF_ARM_EABI_UNKNOWN:
2443 /* The following flag bits are GNU extenstions and not part of the
2444 official ARM ELF extended ABI. Hence they are only decoded if
2445 the EABI version is not set. */
2446 if (flags & EF_ARM_INTERWORK)
2447 fprintf (file, _(" [interworking enabled]"));
2448
2449 if (flags & EF_ARM_APCS_26)
2450 fprintf (file, " [APCS-26]");
2451 else
2452 fprintf (file, " [APCS-32]");
2453
2454 if (flags & EF_ARM_VFP_FLOAT)
2455 fprintf (file, _(" [VFP float format]"));
2456 else if (flags & EF_ARM_MAVERICK_FLOAT)
2457 fprintf (file, _(" [Maverick float format]"));
2458 else
2459 fprintf (file, _(" [FPA float format]"));
2460
2461 if (flags & EF_ARM_APCS_FLOAT)
2462 fprintf (file, _(" [floats passed in float registers]"));
2463
2464 if (flags & EF_ARM_PIC)
2465 fprintf (file, _(" [position independent]"));
2466
2467 if (flags & EF_ARM_NEW_ABI)
2468 fprintf (file, _(" [new ABI]"));
2469
2470 if (flags & EF_ARM_OLD_ABI)
2471 fprintf (file, _(" [old ABI]"));
2472
2473 if (flags & EF_ARM_SOFT_FLOAT)
2474 fprintf (file, _(" [software FP]"));
2475
2476 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2477 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2478 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2479 | EF_ARM_MAVERICK_FLOAT);
2480 break;
2481
2482 case EF_ARM_EABI_VER1:
2483 fprintf (file, _(" [Version1 EABI]"));
2484
2485 if (flags & EF_ARM_SYMSARESORTED)
2486 fprintf (file, _(" [sorted symbol table]"));
2487 else
2488 fprintf (file, _(" [unsorted symbol table]"));
2489
2490 flags &= ~ EF_ARM_SYMSARESORTED;
2491 break;
2492
2493 case EF_ARM_EABI_VER2:
2494 fprintf (file, _(" [Version2 EABI]"));
2495
2496 if (flags & EF_ARM_SYMSARESORTED)
2497 fprintf (file, _(" [sorted symbol table]"));
2498 else
2499 fprintf (file, _(" [unsorted symbol table]"));
2500
2501 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2502 fprintf (file, _(" [dynamic symbols use segment index]"));
2503
2504 if (flags & EF_ARM_MAPSYMSFIRST)
2505 fprintf (file, _(" [mapping symbols precede others]"));
2506
2507 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2508 | EF_ARM_MAPSYMSFIRST);
2509 break;
2510
2511 default:
2512 fprintf (file, _(" <EABI version unrecognised>"));
2513 break;
2514 }
2515
2516 flags &= ~ EF_ARM_EABIMASK;
2517
2518 if (flags & EF_ARM_RELEXEC)
2519 fprintf (file, _(" [relocatable executable]"));
2520
2521 if (flags & EF_ARM_HASENTRY)
2522 fprintf (file, _(" [has entry point]"));
2523
2524 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2525
2526 if (flags)
2527 fprintf (file, _("<Unrecognised flag bits set>"));
2528
2529 fputc ('\n', file);
2530
2531 return TRUE;
2532 }
2533
2534 static int
2535 elf32_arm_get_symbol_type (elf_sym, type)
2536 Elf_Internal_Sym * elf_sym;
2537 int type;
2538 {
2539 switch (ELF_ST_TYPE (elf_sym->st_info))
2540 {
2541 case STT_ARM_TFUNC:
2542 return ELF_ST_TYPE (elf_sym->st_info);
2543
2544 case STT_ARM_16BIT:
2545 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2546 This allows us to distinguish between data used by Thumb instructions
2547 and non-data (which is probably code) inside Thumb regions of an
2548 executable. */
2549 if (type != STT_OBJECT)
2550 return ELF_ST_TYPE (elf_sym->st_info);
2551 break;
2552
2553 default:
2554 break;
2555 }
2556
2557 return type;
2558 }
2559
2560 static asection *
2561 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2562 asection *sec;
2563 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2564 Elf_Internal_Rela *rel;
2565 struct elf_link_hash_entry *h;
2566 Elf_Internal_Sym *sym;
2567 {
2568 if (h != NULL)
2569 {
2570 switch (ELF32_R_TYPE (rel->r_info))
2571 {
2572 case R_ARM_GNU_VTINHERIT:
2573 case R_ARM_GNU_VTENTRY:
2574 break;
2575
2576 default:
2577 switch (h->root.type)
2578 {
2579 case bfd_link_hash_defined:
2580 case bfd_link_hash_defweak:
2581 return h->root.u.def.section;
2582
2583 case bfd_link_hash_common:
2584 return h->root.u.c.p->section;
2585
2586 default:
2587 break;
2588 }
2589 }
2590 }
2591 else
2592 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2593
2594 return NULL;
2595 }
2596
2597 /* Update the got entry reference counts for the section being removed. */
2598
2599 static bfd_boolean
2600 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2601 bfd *abfd ATTRIBUTE_UNUSED;
2602 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2603 asection *sec ATTRIBUTE_UNUSED;
2604 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2605 {
2606 /* We don't support garbage collection of GOT and PLT relocs yet. */
2607 return TRUE;
2608 }
2609
2610 /* Look through the relocs for a section during the first phase. */
2611
2612 static bfd_boolean
2613 elf32_arm_check_relocs (abfd, info, sec, relocs)
2614 bfd *abfd;
2615 struct bfd_link_info *info;
2616 asection *sec;
2617 const Elf_Internal_Rela *relocs;
2618 {
2619 Elf_Internal_Shdr *symtab_hdr;
2620 struct elf_link_hash_entry **sym_hashes;
2621 struct elf_link_hash_entry **sym_hashes_end;
2622 const Elf_Internal_Rela *rel;
2623 const Elf_Internal_Rela *rel_end;
2624 bfd *dynobj;
2625 asection *sgot, *srelgot, *sreloc;
2626 bfd_vma *local_got_offsets;
2627
2628 if (info->relocatable)
2629 return TRUE;
2630
2631 sgot = srelgot = sreloc = NULL;
2632
2633 dynobj = elf_hash_table (info)->dynobj;
2634 local_got_offsets = elf_local_got_offsets (abfd);
2635
2636 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2637 sym_hashes = elf_sym_hashes (abfd);
2638 sym_hashes_end = sym_hashes
2639 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2640
2641 if (!elf_bad_symtab (abfd))
2642 sym_hashes_end -= symtab_hdr->sh_info;
2643
2644 rel_end = relocs + sec->reloc_count;
2645 for (rel = relocs; rel < rel_end; rel++)
2646 {
2647 struct elf_link_hash_entry *h;
2648 unsigned long r_symndx;
2649
2650 r_symndx = ELF32_R_SYM (rel->r_info);
2651 if (r_symndx < symtab_hdr->sh_info)
2652 h = NULL;
2653 else
2654 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2655
2656 /* Some relocs require a global offset table. */
2657 if (dynobj == NULL)
2658 {
2659 switch (ELF32_R_TYPE (rel->r_info))
2660 {
2661 case R_ARM_GOT32:
2662 case R_ARM_GOTOFF:
2663 case R_ARM_GOTPC:
2664 elf_hash_table (info)->dynobj = dynobj = abfd;
2665 if (! _bfd_elf_create_got_section (dynobj, info))
2666 return FALSE;
2667 break;
2668
2669 default:
2670 break;
2671 }
2672 }
2673
2674 switch (ELF32_R_TYPE (rel->r_info))
2675 {
2676 case R_ARM_GOT32:
2677 /* This symbol requires a global offset table entry. */
2678 if (sgot == NULL)
2679 {
2680 sgot = bfd_get_section_by_name (dynobj, ".got");
2681 BFD_ASSERT (sgot != NULL);
2682 }
2683
2684 /* Get the got relocation section if necessary. */
2685 if (srelgot == NULL
2686 && (h != NULL || info->shared))
2687 {
2688 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2689
2690 /* If no got relocation section, make one and initialize. */
2691 if (srelgot == NULL)
2692 {
2693 srelgot = bfd_make_section (dynobj, ".rel.got");
2694 if (srelgot == NULL
2695 || ! bfd_set_section_flags (dynobj, srelgot,
2696 (SEC_ALLOC
2697 | SEC_LOAD
2698 | SEC_HAS_CONTENTS
2699 | SEC_IN_MEMORY
2700 | SEC_LINKER_CREATED
2701 | SEC_READONLY))
2702 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2703 return FALSE;
2704 }
2705 }
2706
2707 if (h != NULL)
2708 {
2709 if (h->got.offset != (bfd_vma) -1)
2710 /* We have already allocated space in the .got. */
2711 break;
2712
2713 h->got.offset = sgot->_raw_size;
2714
2715 /* Make sure this symbol is output as a dynamic symbol. */
2716 if (h->dynindx == -1)
2717 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2718 return FALSE;
2719
2720 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2721 }
2722 else
2723 {
2724 /* This is a global offset table entry for a local
2725 symbol. */
2726 if (local_got_offsets == NULL)
2727 {
2728 bfd_size_type size;
2729 unsigned int i;
2730
2731 size = symtab_hdr->sh_info;
2732 size *= sizeof (bfd_vma);
2733 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2734 if (local_got_offsets == NULL)
2735 return FALSE;
2736 elf_local_got_offsets (abfd) = local_got_offsets;
2737 for (i = 0; i < symtab_hdr->sh_info; i++)
2738 local_got_offsets[i] = (bfd_vma) -1;
2739 }
2740
2741 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2742 /* We have already allocated space in the .got. */
2743 break;
2744
2745 local_got_offsets[r_symndx] = sgot->_raw_size;
2746
2747 if (info->shared)
2748 /* If we are generating a shared object, we need to
2749 output a R_ARM_RELATIVE reloc so that the dynamic
2750 linker can adjust this GOT entry. */
2751 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2752 }
2753
2754 sgot->_raw_size += 4;
2755 break;
2756
2757 case R_ARM_PLT32:
2758 /* This symbol requires a procedure linkage table entry. We
2759 actually build the entry in adjust_dynamic_symbol,
2760 because this might be a case of linking PIC code which is
2761 never referenced by a dynamic object, in which case we
2762 don't need to generate a procedure linkage table entry
2763 after all. */
2764
2765 /* If this is a local symbol, we resolve it directly without
2766 creating a procedure linkage table entry. */
2767 if (h == NULL)
2768 continue;
2769
2770 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2771 break;
2772
2773 case R_ARM_ABS32:
2774 case R_ARM_REL32:
2775 case R_ARM_PC24:
2776 /* If we are creating a shared library, and this is a reloc
2777 against a global symbol, or a non PC relative reloc
2778 against a local symbol, then we need to copy the reloc
2779 into the shared library. However, if we are linking with
2780 -Bsymbolic, we do not need to copy a reloc against a
2781 global symbol which is defined in an object we are
2782 including in the link (i.e., DEF_REGULAR is set). At
2783 this point we have not seen all the input files, so it is
2784 possible that DEF_REGULAR is not set now but will be set
2785 later (it is never cleared). We account for that
2786 possibility below by storing information in the
2787 pcrel_relocs_copied field of the hash table entry. */
2788 if (info->shared
2789 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2790 || (h != NULL
2791 && (! info->symbolic
2792 || (h->elf_link_hash_flags
2793 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2794 {
2795 /* When creating a shared object, we must copy these
2796 reloc types into the output file. We create a reloc
2797 section in dynobj and make room for this reloc. */
2798 if (sreloc == NULL)
2799 {
2800 const char * name;
2801
2802 name = (bfd_elf_string_from_elf_section
2803 (abfd,
2804 elf_elfheader (abfd)->e_shstrndx,
2805 elf_section_data (sec)->rel_hdr.sh_name));
2806 if (name == NULL)
2807 return FALSE;
2808
2809 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2810 && strcmp (bfd_get_section_name (abfd, sec),
2811 name + 4) == 0);
2812
2813 sreloc = bfd_get_section_by_name (dynobj, name);
2814 if (sreloc == NULL)
2815 {
2816 flagword flags;
2817
2818 sreloc = bfd_make_section (dynobj, name);
2819 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2820 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2821 if ((sec->flags & SEC_ALLOC) != 0)
2822 flags |= SEC_ALLOC | SEC_LOAD;
2823 if (sreloc == NULL
2824 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2825 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2826 return FALSE;
2827 }
2828 if (sec->flags & SEC_READONLY)
2829 info->flags |= DF_TEXTREL;
2830 }
2831
2832 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2833 /* If we are linking with -Bsymbolic, and this is a
2834 global symbol, we count the number of PC relative
2835 relocations we have entered for this symbol, so that
2836 we can discard them again if the symbol is later
2837 defined by a regular object. Note that this function
2838 is only called if we are using an elf_i386 linker
2839 hash table, which means that h is really a pointer to
2840 an elf_i386_link_hash_entry. */
2841 if (h != NULL && info->symbolic
2842 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2843 {
2844 struct elf32_arm_link_hash_entry * eh;
2845 struct elf32_arm_pcrel_relocs_copied * p;
2846
2847 eh = (struct elf32_arm_link_hash_entry *) h;
2848
2849 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2850 if (p->section == sreloc)
2851 break;
2852
2853 if (p == NULL)
2854 {
2855 p = ((struct elf32_arm_pcrel_relocs_copied *)
2856 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2857 if (p == NULL)
2858 return FALSE;
2859 p->next = eh->pcrel_relocs_copied;
2860 eh->pcrel_relocs_copied = p;
2861 p->section = sreloc;
2862 p->count = 0;
2863 }
2864
2865 ++p->count;
2866 }
2867 }
2868 break;
2869
2870 /* This relocation describes the C++ object vtable hierarchy.
2871 Reconstruct it for later use during GC. */
2872 case R_ARM_GNU_VTINHERIT:
2873 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2874 return FALSE;
2875 break;
2876
2877 /* This relocation describes which C++ vtable entries are actually
2878 used. Record for later use during GC. */
2879 case R_ARM_GNU_VTENTRY:
2880 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2881 return FALSE;
2882 break;
2883 }
2884 }
2885
2886 return TRUE;
2887 }
2888
2889 /* Find the nearest line to a particular section and offset, for error
2890 reporting. This code is a duplicate of the code in elf.c, except
2891 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2892
2893 static bfd_boolean
2894 elf32_arm_find_nearest_line
2895 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2896 bfd *abfd;
2897 asection *section;
2898 asymbol **symbols;
2899 bfd_vma offset;
2900 const char **filename_ptr;
2901 const char **functionname_ptr;
2902 unsigned int *line_ptr;
2903 {
2904 bfd_boolean found;
2905 const char *filename;
2906 asymbol *func;
2907 bfd_vma low_func;
2908 asymbol **p;
2909
2910 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2911 filename_ptr, functionname_ptr,
2912 line_ptr, 0,
2913 &elf_tdata (abfd)->dwarf2_find_line_info))
2914 return TRUE;
2915
2916 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2917 &found, filename_ptr,
2918 functionname_ptr, line_ptr,
2919 &elf_tdata (abfd)->line_info))
2920 return FALSE;
2921
2922 if (found)
2923 return TRUE;
2924
2925 if (symbols == NULL)
2926 return FALSE;
2927
2928 filename = NULL;
2929 func = NULL;
2930 low_func = 0;
2931
2932 for (p = symbols; *p != NULL; p++)
2933 {
2934 elf_symbol_type *q;
2935
2936 q = (elf_symbol_type *) *p;
2937
2938 if (bfd_get_section (&q->symbol) != section)
2939 continue;
2940
2941 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2942 {
2943 default:
2944 break;
2945 case STT_FILE:
2946 filename = bfd_asymbol_name (&q->symbol);
2947 break;
2948 case STT_NOTYPE:
2949 case STT_FUNC:
2950 case STT_ARM_TFUNC:
2951 if (q->symbol.section == section
2952 && q->symbol.value >= low_func
2953 && q->symbol.value <= offset)
2954 {
2955 func = (asymbol *) q;
2956 low_func = q->symbol.value;
2957 }
2958 break;
2959 }
2960 }
2961
2962 if (func == NULL)
2963 return FALSE;
2964
2965 *filename_ptr = filename;
2966 *functionname_ptr = bfd_asymbol_name (func);
2967 *line_ptr = 0;
2968
2969 return TRUE;
2970 }
2971
2972 /* Adjust a symbol defined by a dynamic object and referenced by a
2973 regular object. The current definition is in some section of the
2974 dynamic object, but we're not including those sections. We have to
2975 change the definition to something the rest of the link can
2976 understand. */
2977
2978 static bfd_boolean
2979 elf32_arm_adjust_dynamic_symbol (info, h)
2980 struct bfd_link_info * info;
2981 struct elf_link_hash_entry * h;
2982 {
2983 bfd * dynobj;
2984 asection * s;
2985 unsigned int power_of_two;
2986
2987 dynobj = elf_hash_table (info)->dynobj;
2988
2989 /* Make sure we know what is going on here. */
2990 BFD_ASSERT (dynobj != NULL
2991 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2992 || h->weakdef != NULL
2993 || ((h->elf_link_hash_flags
2994 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2995 && (h->elf_link_hash_flags
2996 & ELF_LINK_HASH_REF_REGULAR) != 0
2997 && (h->elf_link_hash_flags
2998 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2999
3000 /* If this is a function, put it in the procedure linkage table. We
3001 will fill in the contents of the procedure linkage table later,
3002 when we know the address of the .got section. */
3003 if (h->type == STT_FUNC
3004 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
3005 {
3006 /* If we link a program (not a DSO), we'll get rid of unnecessary
3007 PLT entries; we point to the actual symbols -- even for pic
3008 relocs, because a program built with -fpic should have the same
3009 result as one built without -fpic, specifically considering weak
3010 symbols.
3011 FIXME: m68k and i386 differ here, for unclear reasons. */
3012 if (! info->shared
3013 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
3014 {
3015 /* This case can occur if we saw a PLT32 reloc in an input
3016 file, but the symbol was not defined by a dynamic object.
3017 In such a case, we don't actually need to build a
3018 procedure linkage table, and we can just do a PC32 reloc
3019 instead. */
3020 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
3021 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3022 return TRUE;
3023 }
3024
3025 /* Make sure this symbol is output as a dynamic symbol. */
3026 if (h->dynindx == -1)
3027 {
3028 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3029 return FALSE;
3030 }
3031
3032 s = bfd_get_section_by_name (dynobj, ".plt");
3033 BFD_ASSERT (s != NULL);
3034
3035 /* If this is the first .plt entry, make room for the special
3036 first entry. */
3037 if (s->_raw_size == 0)
3038 s->_raw_size += PLT_ENTRY_SIZE;
3039
3040 /* If this symbol is not defined in a regular file, and we are
3041 not generating a shared library, then set the symbol to this
3042 location in the .plt. This is required to make function
3043 pointers compare as equal between the normal executable and
3044 the shared library. */
3045 if (! info->shared
3046 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3047 {
3048 h->root.u.def.section = s;
3049 h->root.u.def.value = s->_raw_size;
3050 }
3051
3052 h->plt.offset = s->_raw_size;
3053
3054 /* Make room for this entry. */
3055 s->_raw_size += PLT_ENTRY_SIZE;
3056
3057 /* We also need to make an entry in the .got.plt section, which
3058 will be placed in the .got section by the linker script. */
3059 s = bfd_get_section_by_name (dynobj, ".got.plt");
3060 BFD_ASSERT (s != NULL);
3061 s->_raw_size += 4;
3062
3063 /* We also need to make an entry in the .rel.plt section. */
3064
3065 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3066 BFD_ASSERT (s != NULL);
3067 s->_raw_size += sizeof (Elf32_External_Rel);
3068
3069 return TRUE;
3070 }
3071
3072 /* If this is a weak symbol, and there is a real definition, the
3073 processor independent code will have arranged for us to see the
3074 real definition first, and we can just use the same value. */
3075 if (h->weakdef != NULL)
3076 {
3077 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3078 || h->weakdef->root.type == bfd_link_hash_defweak);
3079 h->root.u.def.section = h->weakdef->root.u.def.section;
3080 h->root.u.def.value = h->weakdef->root.u.def.value;
3081 return TRUE;
3082 }
3083
3084 /* This is a reference to a symbol defined by a dynamic object which
3085 is not a function. */
3086
3087 /* If we are creating a shared library, we must presume that the
3088 only references to the symbol are via the global offset table.
3089 For such cases we need not do anything here; the relocations will
3090 be handled correctly by relocate_section. */
3091 if (info->shared)
3092 return TRUE;
3093
3094 /* We must allocate the symbol in our .dynbss section, which will
3095 become part of the .bss section of the executable. There will be
3096 an entry for this symbol in the .dynsym section. The dynamic
3097 object will contain position independent code, so all references
3098 from the dynamic object to this symbol will go through the global
3099 offset table. The dynamic linker will use the .dynsym entry to
3100 determine the address it must put in the global offset table, so
3101 both the dynamic object and the regular object will refer to the
3102 same memory location for the variable. */
3103 s = bfd_get_section_by_name (dynobj, ".dynbss");
3104 BFD_ASSERT (s != NULL);
3105
3106 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3107 copy the initial value out of the dynamic object and into the
3108 runtime process image. We need to remember the offset into the
3109 .rel.bss section we are going to use. */
3110 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3111 {
3112 asection *srel;
3113
3114 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3115 BFD_ASSERT (srel != NULL);
3116 srel->_raw_size += sizeof (Elf32_External_Rel);
3117 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3118 }
3119
3120 /* We need to figure out the alignment required for this symbol. I
3121 have no idea how ELF linkers handle this. */
3122 power_of_two = bfd_log2 (h->size);
3123 if (power_of_two > 3)
3124 power_of_two = 3;
3125
3126 /* Apply the required alignment. */
3127 s->_raw_size = BFD_ALIGN (s->_raw_size,
3128 (bfd_size_type) (1 << power_of_two));
3129 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3130 {
3131 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3132 return FALSE;
3133 }
3134
3135 /* Define the symbol as being at this point in the section. */
3136 h->root.u.def.section = s;
3137 h->root.u.def.value = s->_raw_size;
3138
3139 /* Increment the section size to make room for the symbol. */
3140 s->_raw_size += h->size;
3141
3142 return TRUE;
3143 }
3144
3145 /* Set the sizes of the dynamic sections. */
3146
3147 static bfd_boolean
3148 elf32_arm_size_dynamic_sections (output_bfd, info)
3149 bfd * output_bfd ATTRIBUTE_UNUSED;
3150 struct bfd_link_info * info;
3151 {
3152 bfd * dynobj;
3153 asection * s;
3154 bfd_boolean plt;
3155 bfd_boolean relocs;
3156
3157 dynobj = elf_hash_table (info)->dynobj;
3158 BFD_ASSERT (dynobj != NULL);
3159
3160 if (elf_hash_table (info)->dynamic_sections_created)
3161 {
3162 /* Set the contents of the .interp section to the interpreter. */
3163 if (! info->shared)
3164 {
3165 s = bfd_get_section_by_name (dynobj, ".interp");
3166 BFD_ASSERT (s != NULL);
3167 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3168 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3169 }
3170 }
3171 else
3172 {
3173 /* We may have created entries in the .rel.got section.
3174 However, if we are not creating the dynamic sections, we will
3175 not actually use these entries. Reset the size of .rel.got,
3176 which will cause it to get stripped from the output file
3177 below. */
3178 s = bfd_get_section_by_name (dynobj, ".rel.got");
3179 if (s != NULL)
3180 s->_raw_size = 0;
3181 }
3182
3183 /* If this is a -Bsymbolic shared link, then we need to discard all
3184 PC relative relocs against symbols defined in a regular object.
3185 We allocated space for them in the check_relocs routine, but we
3186 will not fill them in in the relocate_section routine. */
3187 if (info->shared && info->symbolic)
3188 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3189 elf32_arm_discard_copies,
3190 (PTR) NULL);
3191
3192 /* The check_relocs and adjust_dynamic_symbol entry points have
3193 determined the sizes of the various dynamic sections. Allocate
3194 memory for them. */
3195 plt = FALSE;
3196 relocs = FALSE;
3197 for (s = dynobj->sections; s != NULL; s = s->next)
3198 {
3199 const char * name;
3200 bfd_boolean strip;
3201
3202 if ((s->flags & SEC_LINKER_CREATED) == 0)
3203 continue;
3204
3205 /* It's OK to base decisions on the section name, because none
3206 of the dynobj section names depend upon the input files. */
3207 name = bfd_get_section_name (dynobj, s);
3208
3209 strip = FALSE;
3210
3211 if (strcmp (name, ".plt") == 0)
3212 {
3213 if (s->_raw_size == 0)
3214 {
3215 /* Strip this section if we don't need it; see the
3216 comment below. */
3217 strip = TRUE;
3218 }
3219 else
3220 {
3221 /* Remember whether there is a PLT. */
3222 plt = TRUE;
3223 }
3224 }
3225 else if (strncmp (name, ".rel", 4) == 0)
3226 {
3227 if (s->_raw_size == 0)
3228 {
3229 /* If we don't need this section, strip it from the
3230 output file. This is mostly to handle .rel.bss and
3231 .rel.plt. We must create both sections in
3232 create_dynamic_sections, because they must be created
3233 before the linker maps input sections to output
3234 sections. The linker does that before
3235 adjust_dynamic_symbol is called, and it is that
3236 function which decides whether anything needs to go
3237 into these sections. */
3238 strip = TRUE;
3239 }
3240 else
3241 {
3242 /* Remember whether there are any reloc sections other
3243 than .rel.plt. */
3244 if (strcmp (name, ".rel.plt") != 0)
3245 relocs = TRUE;
3246
3247 /* We use the reloc_count field as a counter if we need
3248 to copy relocs into the output file. */
3249 s->reloc_count = 0;
3250 }
3251 }
3252 else if (strncmp (name, ".got", 4) != 0)
3253 {
3254 /* It's not one of our sections, so don't allocate space. */
3255 continue;
3256 }
3257
3258 if (strip)
3259 {
3260 _bfd_strip_section_from_output (info, s);
3261 continue;
3262 }
3263
3264 /* Allocate memory for the section contents. */
3265 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3266 if (s->contents == NULL && s->_raw_size != 0)
3267 return FALSE;
3268 }
3269
3270 if (elf_hash_table (info)->dynamic_sections_created)
3271 {
3272 /* Add some entries to the .dynamic section. We fill in the
3273 values later, in elf32_arm_finish_dynamic_sections, but we
3274 must add the entries now so that we get the correct size for
3275 the .dynamic section. The DT_DEBUG entry is filled in by the
3276 dynamic linker and used by the debugger. */
3277 #define add_dynamic_entry(TAG, VAL) \
3278 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3279
3280 if (!info->shared)
3281 {
3282 if (!add_dynamic_entry (DT_DEBUG, 0))
3283 return FALSE;
3284 }
3285
3286 if (plt)
3287 {
3288 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3289 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3290 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3291 || !add_dynamic_entry (DT_JMPREL, 0))
3292 return FALSE;
3293 }
3294
3295 if (relocs)
3296 {
3297 if ( !add_dynamic_entry (DT_REL, 0)
3298 || !add_dynamic_entry (DT_RELSZ, 0)
3299 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3300 return FALSE;
3301 }
3302
3303 if ((info->flags & DF_TEXTREL) != 0)
3304 {
3305 if (!add_dynamic_entry (DT_TEXTREL, 0))
3306 return FALSE;
3307 info->flags |= DF_TEXTREL;
3308 }
3309 }
3310 #undef add_synamic_entry
3311
3312 return TRUE;
3313 }
3314
3315 /* This function is called via elf32_arm_link_hash_traverse if we are
3316 creating a shared object with -Bsymbolic. It discards the space
3317 allocated to copy PC relative relocs against symbols which are
3318 defined in regular objects. We allocated space for them in the
3319 check_relocs routine, but we won't fill them in in the
3320 relocate_section routine. */
3321
3322 static bfd_boolean
3323 elf32_arm_discard_copies (h, ignore)
3324 struct elf32_arm_link_hash_entry * h;
3325 PTR ignore ATTRIBUTE_UNUSED;
3326 {
3327 struct elf32_arm_pcrel_relocs_copied * s;
3328
3329 if (h->root.root.type == bfd_link_hash_warning)
3330 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3331
3332 /* We only discard relocs for symbols defined in a regular object. */
3333 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3334 return TRUE;
3335
3336 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3337 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3338
3339 return TRUE;
3340 }
3341
3342 /* Finish up dynamic symbol handling. We set the contents of various
3343 dynamic sections here. */
3344
3345 static bfd_boolean
3346 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3347 bfd * output_bfd;
3348 struct bfd_link_info * info;
3349 struct elf_link_hash_entry * h;
3350 Elf_Internal_Sym * sym;
3351 {
3352 bfd * dynobj;
3353
3354 dynobj = elf_hash_table (info)->dynobj;
3355
3356 if (h->plt.offset != (bfd_vma) -1)
3357 {
3358 asection * splt;
3359 asection * sgot;
3360 asection * srel;
3361 bfd_vma plt_index;
3362 bfd_vma got_offset;
3363 Elf_Internal_Rela rel;
3364 bfd_byte *loc;
3365
3366 /* This symbol has an entry in the procedure linkage table. Set
3367 it up. */
3368
3369 BFD_ASSERT (h->dynindx != -1);
3370
3371 splt = bfd_get_section_by_name (dynobj, ".plt");
3372 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3373 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3374 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3375
3376 /* Get the index in the procedure linkage table which
3377 corresponds to this symbol. This is the index of this symbol
3378 in all the symbols for which we are making plt entries. The
3379 first entry in the procedure linkage table is reserved. */
3380 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3381
3382 /* Get the offset into the .got table of the entry that
3383 corresponds to this function. Each .got entry is 4 bytes.
3384 The first three are reserved. */
3385 got_offset = (plt_index + 3) * 4;
3386
3387 /* Fill in the entry in the procedure linkage table. */
3388 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3389 splt->contents + h->plt.offset + 0);
3390 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3391 splt->contents + h->plt.offset + 4);
3392 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3393 splt->contents + h->plt.offset + 8);
3394 bfd_put_32 (output_bfd,
3395 (sgot->output_section->vma
3396 + sgot->output_offset
3397 + got_offset
3398 - splt->output_section->vma
3399 - splt->output_offset
3400 - h->plt.offset - 12),
3401 splt->contents + h->plt.offset + 12);
3402
3403 /* Fill in the entry in the global offset table. */
3404 bfd_put_32 (output_bfd,
3405 (splt->output_section->vma
3406 + splt->output_offset),
3407 sgot->contents + got_offset);
3408
3409 /* Fill in the entry in the .rel.plt section. */
3410 rel.r_offset = (sgot->output_section->vma
3411 + sgot->output_offset
3412 + got_offset);
3413 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3414 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3415 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3416
3417 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3418 {
3419 /* Mark the symbol as undefined, rather than as defined in
3420 the .plt section. Leave the value alone. */
3421 sym->st_shndx = SHN_UNDEF;
3422 /* If the symbol is weak, we do need to clear the value.
3423 Otherwise, the PLT entry would provide a definition for
3424 the symbol even if the symbol wasn't defined anywhere,
3425 and so the symbol would never be NULL. */
3426 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3427 == 0)
3428 sym->st_value = 0;
3429 }
3430 }
3431
3432 if (h->got.offset != (bfd_vma) -1)
3433 {
3434 asection * sgot;
3435 asection * srel;
3436 Elf_Internal_Rela rel;
3437 bfd_byte *loc;
3438
3439 /* This symbol has an entry in the global offset table. Set it
3440 up. */
3441 sgot = bfd_get_section_by_name (dynobj, ".got");
3442 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3443 BFD_ASSERT (sgot != NULL && srel != NULL);
3444
3445 rel.r_offset = (sgot->output_section->vma
3446 + sgot->output_offset
3447 + (h->got.offset &~ (bfd_vma) 1));
3448
3449 /* If this is a -Bsymbolic link, and the symbol is defined
3450 locally, we just want to emit a RELATIVE reloc. The entry in
3451 the global offset table will already have been initialized in
3452 the relocate_section function. */
3453 if (info->shared
3454 && (info->symbolic || h->dynindx == -1)
3455 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3456 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3457 else
3458 {
3459 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3460 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3461 }
3462
3463 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3464 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3465 }
3466
3467 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3468 {
3469 asection * s;
3470 Elf_Internal_Rela rel;
3471 bfd_byte *loc;
3472
3473 /* This symbol needs a copy reloc. Set it up. */
3474 BFD_ASSERT (h->dynindx != -1
3475 && (h->root.type == bfd_link_hash_defined
3476 || h->root.type == bfd_link_hash_defweak));
3477
3478 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3479 ".rel.bss");
3480 BFD_ASSERT (s != NULL);
3481
3482 rel.r_offset = (h->root.u.def.value
3483 + h->root.u.def.section->output_section->vma
3484 + h->root.u.def.section->output_offset);
3485 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3486 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3487 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3488 }
3489
3490 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3491 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3492 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3493 sym->st_shndx = SHN_ABS;
3494
3495 return TRUE;
3496 }
3497
3498 /* Finish up the dynamic sections. */
3499
3500 static bfd_boolean
3501 elf32_arm_finish_dynamic_sections (output_bfd, info)
3502 bfd * output_bfd;
3503 struct bfd_link_info * info;
3504 {
3505 bfd * dynobj;
3506 asection * sgot;
3507 asection * sdyn;
3508
3509 dynobj = elf_hash_table (info)->dynobj;
3510
3511 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3512 BFD_ASSERT (sgot != NULL);
3513 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3514
3515 if (elf_hash_table (info)->dynamic_sections_created)
3516 {
3517 asection *splt;
3518 Elf32_External_Dyn *dyncon, *dynconend;
3519
3520 splt = bfd_get_section_by_name (dynobj, ".plt");
3521 BFD_ASSERT (splt != NULL && sdyn != NULL);
3522
3523 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3524 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3525
3526 for (; dyncon < dynconend; dyncon++)
3527 {
3528 Elf_Internal_Dyn dyn;
3529 const char * name;
3530 asection * s;
3531
3532 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3533
3534 switch (dyn.d_tag)
3535 {
3536 default:
3537 break;
3538
3539 case DT_PLTGOT:
3540 name = ".got";
3541 goto get_vma;
3542 case DT_JMPREL:
3543 name = ".rel.plt";
3544 get_vma:
3545 s = bfd_get_section_by_name (output_bfd, name);
3546 BFD_ASSERT (s != NULL);
3547 dyn.d_un.d_ptr = s->vma;
3548 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3549 break;
3550
3551 case DT_PLTRELSZ:
3552 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3553 BFD_ASSERT (s != NULL);
3554 if (s->_cooked_size != 0)
3555 dyn.d_un.d_val = s->_cooked_size;
3556 else
3557 dyn.d_un.d_val = s->_raw_size;
3558 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3559 break;
3560
3561 case DT_RELSZ:
3562 /* My reading of the SVR4 ABI indicates that the
3563 procedure linkage table relocs (DT_JMPREL) should be
3564 included in the overall relocs (DT_REL). This is
3565 what Solaris does. However, UnixWare can not handle
3566 that case. Therefore, we override the DT_RELSZ entry
3567 here to make it not include the JMPREL relocs. Since
3568 the linker script arranges for .rel.plt to follow all
3569 other relocation sections, we don't have to worry
3570 about changing the DT_REL entry. */
3571 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3572 if (s != NULL)
3573 {
3574 if (s->_cooked_size != 0)
3575 dyn.d_un.d_val -= s->_cooked_size;
3576 else
3577 dyn.d_un.d_val -= s->_raw_size;
3578 }
3579 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3580 break;
3581
3582 /* Set the bottom bit of DT_INIT/FINI if the
3583 corresponding function is Thumb. */
3584 case DT_INIT:
3585 name = info->init_function;
3586 goto get_sym;
3587 case DT_FINI:
3588 name = info->fini_function;
3589 get_sym:
3590 /* If it wasn't set by elf_bfd_final_link
3591 then there is nothing to ajdust. */
3592 if (dyn.d_un.d_val != 0)
3593 {
3594 struct elf_link_hash_entry * eh;
3595
3596 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3597 FALSE, FALSE, TRUE);
3598 if (eh != (struct elf_link_hash_entry *) NULL
3599 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3600 {
3601 dyn.d_un.d_val |= 1;
3602 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3603 }
3604 }
3605 break;
3606 }
3607 }
3608
3609 /* Fill in the first entry in the procedure linkage table. */
3610 if (splt->_raw_size > 0)
3611 {
3612 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3613 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3614 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3615 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3616 }
3617
3618 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3619 really seem like the right value. */
3620 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3621 }
3622
3623 /* Fill in the first three entries in the global offset table. */
3624 if (sgot->_raw_size > 0)
3625 {
3626 if (sdyn == NULL)
3627 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3628 else
3629 bfd_put_32 (output_bfd,
3630 sdyn->output_section->vma + sdyn->output_offset,
3631 sgot->contents);
3632 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3633 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3634 }
3635
3636 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3637
3638 return TRUE;
3639 }
3640
3641 static void
3642 elf32_arm_post_process_headers (abfd, link_info)
3643 bfd * abfd;
3644 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3645 {
3646 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3647
3648 i_ehdrp = elf_elfheader (abfd);
3649
3650 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3651 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3652 }
3653
3654 static enum elf_reloc_type_class
3655 elf32_arm_reloc_type_class (rela)
3656 const Elf_Internal_Rela *rela;
3657 {
3658 switch ((int) ELF32_R_TYPE (rela->r_info))
3659 {
3660 case R_ARM_RELATIVE:
3661 return reloc_class_relative;
3662 case R_ARM_JUMP_SLOT:
3663 return reloc_class_plt;
3664 case R_ARM_COPY:
3665 return reloc_class_copy;
3666 default:
3667 return reloc_class_normal;
3668 }
3669 }
3670
3671 static bfd_boolean elf32_arm_section_flags PARAMS ((flagword *, Elf_Internal_Shdr *));
3672 static void elf32_arm_final_write_processing PARAMS ((bfd *, bfd_boolean));
3673
3674 /* Set the right machine number for an Arm ELF file. */
3675
3676 static bfd_boolean
3677 elf32_arm_section_flags (flags, hdr)
3678 flagword *flags;
3679 Elf_Internal_Shdr *hdr;
3680 {
3681 if (hdr->sh_type == SHT_NOTE)
3682 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
3683
3684 return TRUE;
3685 }
3686
3687 void
3688 elf32_arm_final_write_processing (abfd, linker)
3689 bfd *abfd;
3690 bfd_boolean linker ATTRIBUTE_UNUSED;
3691 {
3692 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
3693 }
3694
3695 #define ELF_ARCH bfd_arch_arm
3696 #define ELF_MACHINE_CODE EM_ARM
3697 #ifdef __QNXTARGET__
3698 #define ELF_MAXPAGESIZE 0x1000
3699 #else
3700 #define ELF_MAXPAGESIZE 0x8000
3701 #endif
3702
3703 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3704 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3705 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3706 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3707 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3708 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3709 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3710
3711 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3712 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3713 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3714 #define elf_backend_check_relocs elf32_arm_check_relocs
3715 #define elf_backend_relocate_section elf32_arm_relocate_section
3716 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3717 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3718 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3719 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3720 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3721 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3722 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3723 #define elf_backend_object_p elf32_arm_object_p
3724 #define elf_backend_section_flags elf32_arm_section_flags
3725 #define elf_backend_final_write_processing elf32_arm_final_write_processing
3726
3727 #define elf_backend_can_gc_sections 1
3728 #define elf_backend_plt_readonly 1
3729 #define elf_backend_want_got_plt 1
3730 #define elf_backend_want_plt_sym 0
3731 #if !USE_REL
3732 #define elf_backend_rela_normal 1
3733 #endif
3734
3735 #define elf_backend_got_header_size 12
3736 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3737
3738 #include "elf32-target.h"
3739
This page took 0.105644 seconds and 4 git commands to generate.