716017ebf0c6139d6cec61e4478510ef8915a50f
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20
21 typedef unsigned long int insn32;
22 typedef unsigned short int insn16;
23
24 static boolean elf32_arm_set_private_flags
25 PARAMS ((bfd *, flagword));
26 static boolean elf32_arm_copy_private_bfd_data
27 PARAMS ((bfd *, bfd *));
28 static boolean elf32_arm_merge_private_bfd_data
29 PARAMS ((bfd *, bfd *));
30 static boolean elf32_arm_print_private_bfd_data
31 PARAMS ((bfd *, PTR));
32 static int elf32_arm_get_symbol_type
33 PARAMS (( Elf_Internal_Sym *, int));
34 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
35 PARAMS ((bfd *));
36 static bfd_reloc_status_type elf32_arm_final_link_relocate
37 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
38 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
39 const char *, unsigned char, struct elf_link_hash_entry *));
40 static insn32 insert_thumb_branch
41 PARAMS ((insn32, int));
42 static struct elf_link_hash_entry *find_thumb_glue
43 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
44 static struct elf_link_hash_entry *find_arm_glue
45 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
46 static void record_arm_to_thumb_glue
47 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
48 static void record_thumb_to_arm_glue
49 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
50 static void elf32_arm_post_process_headers
51 PARAMS ((bfd *, struct bfd_link_info *));
52 static int elf32_arm_to_thumb_stub
53 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
54 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
55 static int elf32_thumb_to_arm_stub
56 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
57 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
58
59 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_INTERWORK)
60
61 /* The linker script knows the section names for placement.
62 The entry_names are used to do simple name mangling on the stubs.
63 Given a function name, and its type, the stub can be found. The
64 name can be changed. The only requirement is the %s be present. */
65 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
66 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
67
68 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
69 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
70
71 /* The name of the dynamic interpreter. This is put in the .interp
72 section. */
73 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
74
75 /* The size in bytes of an entry in the procedure linkage table. */
76 #define PLT_ENTRY_SIZE 16
77
78 /* The first entry in a procedure linkage table looks like
79 this. It is set up so that any shared library function that is
80 called before the relocation has been set up calls the dynamic
81 linker first. */
82 static const bfd_byte elf32_arm_plt0_entry [PLT_ENTRY_SIZE] =
83 {
84 0x04, 0xe0, 0x2d, 0xe5, /* str lr, [sp, #-4]! */
85 0x10, 0xe0, 0x9f, 0xe5, /* ldr lr, [pc, #16] */
86 0x0e, 0xe0, 0x8f, 0xe0, /* adr lr, pc, lr */
87 0x08, 0xf0, 0xbe, 0xe5 /* ldr pc, [lr, #8]! */
88 };
89
90 /* Subsequent entries in a procedure linkage table look like
91 this. */
92 static const bfd_byte elf32_arm_plt_entry [PLT_ENTRY_SIZE] =
93 {
94 0x04, 0xc0, 0x9f, 0xe5, /* ldr ip, [pc, #4] */
95 0x0c, 0xc0, 0x8f, 0xe0, /* add ip, pc, ip */
96 0x00, 0xf0, 0x9c, 0xe5, /* ldr pc, [ip] */
97 0x00, 0x00, 0x00, 0x00 /* offset to symbol in got */
98 };
99
100 /* The ARM linker needs to keep track of the number of relocs that it
101 decides to copy in check_relocs for each symbol. This is so that
102 it can discard PC relative relocs if it doesn't need them when
103 linking with -Bsymbolic. We store the information in a field
104 extending the regular ELF linker hash table. */
105
106 /* This structure keeps track of the number of PC relative relocs we
107 have copied for a given symbol. */
108 struct elf32_arm_pcrel_relocs_copied
109 {
110 /* Next section. */
111 struct elf32_arm_pcrel_relocs_copied * next;
112 /* A section in dynobj. */
113 asection * section;
114 /* Number of relocs copied in this section. */
115 bfd_size_type count;
116 };
117
118 /* Arm ELF linker hash entry. */
119 struct elf32_arm_link_hash_entry
120 {
121 struct elf_link_hash_entry root;
122
123 /* Number of PC relative relocs copied for this symbol. */
124 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
125 };
126
127 /* Declare this now that the above structures are defined. */
128 static boolean elf32_arm_discard_copies
129 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
130
131 /* Traverse an arm ELF linker hash table. */
132 #define elf32_arm_link_hash_traverse(table, func, info) \
133 (elf_link_hash_traverse \
134 (&(table)->root, \
135 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
136 (info)))
137
138 /* Get the ARM elf linker hash table from a link_info structure. */
139 #define elf32_arm_hash_table(info) \
140 ((struct elf32_arm_link_hash_table *) ((info)->hash))
141
142 /* ARM ELF linker hash table. */
143 struct elf32_arm_link_hash_table
144 {
145 /* The main hash table. */
146 struct elf_link_hash_table root;
147
148 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
149 long int thumb_glue_size;
150
151 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
152 long int arm_glue_size;
153
154 /* An arbitary input BFD chosen to hold the glue sections. */
155 bfd * bfd_of_glue_owner;
156
157 /* A boolean indicating whether knowledge of the ARM's pipeline
158 length should be applied by the linker. */
159 int no_pipeline_knowledge;
160 };
161
162
163 /* Create an entry in an ARM ELF linker hash table. */
164
165 static struct bfd_hash_entry *
166 elf32_arm_link_hash_newfunc (entry, table, string)
167 struct bfd_hash_entry * entry;
168 struct bfd_hash_table * table;
169 const char * string;
170 {
171 struct elf32_arm_link_hash_entry * ret =
172 (struct elf32_arm_link_hash_entry *) entry;
173
174 /* Allocate the structure if it has not already been allocated by a
175 subclass. */
176 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
177 ret = ((struct elf32_arm_link_hash_entry *)
178 bfd_hash_allocate (table,
179 sizeof (struct elf32_arm_link_hash_entry)));
180 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
181 return (struct bfd_hash_entry *) ret;
182
183 /* Call the allocation method of the superclass. */
184 ret = ((struct elf32_arm_link_hash_entry *)
185 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
186 table, string));
187 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
188 ret->pcrel_relocs_copied = NULL;
189
190 return (struct bfd_hash_entry *) ret;
191 }
192
193 /* Create an ARM elf linker hash table. */
194
195 static struct bfd_link_hash_table *
196 elf32_arm_link_hash_table_create (abfd)
197 bfd *abfd;
198 {
199 struct elf32_arm_link_hash_table *ret;
200
201 ret = ((struct elf32_arm_link_hash_table *)
202 bfd_alloc (abfd, sizeof (struct elf32_arm_link_hash_table)));
203 if (ret == (struct elf32_arm_link_hash_table *) NULL)
204 return NULL;
205
206 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
207 elf32_arm_link_hash_newfunc))
208 {
209 bfd_release (abfd, ret);
210 return NULL;
211 }
212
213 ret->thumb_glue_size = 0;
214 ret->arm_glue_size = 0;
215 ret->bfd_of_glue_owner = NULL;
216 ret->no_pipeline_knowledge = 0;
217
218 return &ret->root.root;
219 }
220
221 /* Locate the Thumb encoded calling stub for NAME. */
222
223 static struct elf_link_hash_entry *
224 find_thumb_glue (link_info, name, input_bfd)
225 struct bfd_link_info *link_info;
226 CONST char *name;
227 bfd *input_bfd;
228 {
229 char *tmp_name;
230 struct elf_link_hash_entry *hash;
231 struct elf32_arm_link_hash_table *hash_table;
232
233 /* We need a pointer to the armelf specific hash table. */
234 hash_table = elf32_arm_hash_table (link_info);
235
236 tmp_name = ((char *)
237 bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1));
238
239 BFD_ASSERT (tmp_name);
240
241 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
242
243 hash = elf_link_hash_lookup
244 (&(hash_table)->root, tmp_name, false, false, true);
245
246 if (hash == NULL)
247 /* xgettext:c-format */
248 _bfd_error_handler (_("%s: unable to find THUMB glue '%s' for `%s'"),
249 bfd_get_filename (input_bfd), tmp_name, name);
250
251 free (tmp_name);
252
253 return hash;
254 }
255
256 /* Locate the ARM encoded calling stub for NAME. */
257
258 static struct elf_link_hash_entry *
259 find_arm_glue (link_info, name, input_bfd)
260 struct bfd_link_info *link_info;
261 CONST char *name;
262 bfd *input_bfd;
263 {
264 char *tmp_name;
265 struct elf_link_hash_entry *myh;
266 struct elf32_arm_link_hash_table *hash_table;
267
268 /* We need a pointer to the elfarm specific hash table. */
269 hash_table = elf32_arm_hash_table (link_info);
270
271 tmp_name = ((char *)
272 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
273
274 BFD_ASSERT (tmp_name);
275
276 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
277
278 myh = elf_link_hash_lookup
279 (&(hash_table)->root, tmp_name, false, false, true);
280
281 if (myh == NULL)
282 /* xgettext:c-format */
283 _bfd_error_handler (_("%s: unable to find ARM glue '%s' for `%s'"),
284 bfd_get_filename (input_bfd), tmp_name, name);
285
286 free (tmp_name);
287
288 return myh;
289 }
290
291 /* ARM->Thumb glue:
292
293 .arm
294 __func_from_arm:
295 ldr r12, __func_addr
296 bx r12
297 __func_addr:
298 .word func @ behave as if you saw a ARM_32 reloc. */
299
300 #define ARM2THUMB_GLUE_SIZE 12
301 static const insn32 a2t1_ldr_insn = 0xe59fc000;
302 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
303 static const insn32 a2t3_func_addr_insn = 0x00000001;
304
305 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
306
307 .thumb .thumb
308 .align 2 .align 2
309 __func_from_thumb: __func_from_thumb:
310 bx pc push {r6, lr}
311 nop ldr r6, __func_addr
312 .arm mov lr, pc
313 __func_change_to_arm: bx r6
314 b func .arm
315 __func_back_to_thumb:
316 ldmia r13! {r6, lr}
317 bx lr
318 __func_addr:
319 .word func */
320
321 #define THUMB2ARM_GLUE_SIZE 8
322 static const insn16 t2a1_bx_pc_insn = 0x4778;
323 static const insn16 t2a2_noop_insn = 0x46c0;
324 static const insn32 t2a3_b_insn = 0xea000000;
325
326 static const insn16 t2a1_push_insn = 0xb540;
327 static const insn16 t2a2_ldr_insn = 0x4e03;
328 static const insn16 t2a3_mov_insn = 0x46fe;
329 static const insn16 t2a4_bx_insn = 0x4730;
330 static const insn32 t2a5_pop_insn = 0xe8bd4040;
331 static const insn32 t2a6_bx_insn = 0xe12fff1e;
332
333 boolean
334 bfd_elf32_arm_allocate_interworking_sections (info)
335 struct bfd_link_info * info;
336 {
337 asection * s;
338 bfd_byte * foo;
339 struct elf32_arm_link_hash_table * globals;
340
341 globals = elf32_arm_hash_table (info);
342
343 BFD_ASSERT (globals != NULL);
344
345 if (globals->arm_glue_size != 0)
346 {
347 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
348
349 s = bfd_get_section_by_name
350 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
351
352 BFD_ASSERT (s != NULL);
353
354 foo = (bfd_byte *) bfd_alloc
355 (globals->bfd_of_glue_owner, globals->arm_glue_size);
356
357 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
358 s->contents = foo;
359 }
360
361 if (globals->thumb_glue_size != 0)
362 {
363 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
364
365 s = bfd_get_section_by_name
366 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
367
368 BFD_ASSERT (s != NULL);
369
370 foo = (bfd_byte *) bfd_alloc
371 (globals->bfd_of_glue_owner, globals->thumb_glue_size);
372
373 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
374 s->contents = foo;
375 }
376
377 return true;
378 }
379
380 static void
381 record_arm_to_thumb_glue (link_info, h)
382 struct bfd_link_info * link_info;
383 struct elf_link_hash_entry * h;
384 {
385 const char * name = h->root.root.string;
386 register asection * s;
387 char * tmp_name;
388 struct elf_link_hash_entry * myh;
389 struct elf32_arm_link_hash_table * globals;
390
391 globals = elf32_arm_hash_table (link_info);
392
393 BFD_ASSERT (globals != NULL);
394 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
395
396 s = bfd_get_section_by_name
397 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
398
399 BFD_ASSERT (s != NULL);
400
401 tmp_name = ((char *)
402 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
403
404 BFD_ASSERT (tmp_name);
405
406 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
407
408 myh = elf_link_hash_lookup
409 (&(globals)->root, tmp_name, false, false, true);
410
411 if (myh != NULL)
412 {
413 /* We've already seen this guy. */
414 free (tmp_name);
415 return;
416 }
417
418 /* The only trick here is using hash_table->arm_glue_size as the value. Even
419 though the section isn't allocated yet, this is where we will be putting
420 it. */
421 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name,
422 BSF_GLOBAL,
423 s, globals->arm_glue_size + 1,
424 NULL, true, false,
425 (struct bfd_link_hash_entry **) &myh);
426
427 free (tmp_name);
428
429 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
430
431 return;
432 }
433
434 static void
435 record_thumb_to_arm_glue (link_info, h)
436 struct bfd_link_info *link_info;
437 struct elf_link_hash_entry *h;
438 {
439 const char *name = h->root.root.string;
440 register asection *s;
441 char *tmp_name;
442 struct elf_link_hash_entry *myh;
443 struct elf32_arm_link_hash_table *hash_table;
444 char bind;
445
446 hash_table = elf32_arm_hash_table (link_info);
447
448 BFD_ASSERT (hash_table != NULL);
449 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
450
451 s = bfd_get_section_by_name
452 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
453
454 BFD_ASSERT (s != NULL);
455
456 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
457
458 BFD_ASSERT (tmp_name);
459
460 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
461
462 myh = elf_link_hash_lookup
463 (&(hash_table)->root, tmp_name, false, false, true);
464
465 if (myh != NULL)
466 {
467 /* We've already seen this guy. */
468 free (tmp_name);
469 return;
470 }
471
472 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
473 BSF_GLOBAL, s, hash_table->thumb_glue_size + 1,
474 NULL, true, false,
475 (struct bfd_link_hash_entry **) &myh);
476
477 /* If we mark it 'Thumb', the disassembler will do a better job. */
478 bind = ELF_ST_BIND (myh->type);
479 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
480
481 free (tmp_name);
482
483 #define CHANGE_TO_ARM "__%s_change_to_arm"
484 #define BACK_FROM_ARM "__%s_back_from_arm"
485
486 /* Allocate another symbol to mark where we switch to Arm mode. */
487 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (CHANGE_TO_ARM) + 1);
488
489 BFD_ASSERT (tmp_name);
490
491 sprintf (tmp_name, CHANGE_TO_ARM, name);
492
493 myh = NULL;
494
495 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
496 BSF_LOCAL, s, hash_table->thumb_glue_size + 4,
497 NULL, true, false,
498 (struct bfd_link_hash_entry **) &myh);
499
500 free (tmp_name);
501
502 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
503
504 return;
505 }
506
507 /* Select a BFD to be used to hold the sections used by the glue code.
508 This function is called from the linker scripts in ld/emultempl/
509 {armelf/pe}.em */
510
511 boolean
512 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
513 bfd *abfd;
514 struct bfd_link_info *info;
515 {
516 struct elf32_arm_link_hash_table *globals;
517 flagword flags;
518 asection *sec;
519
520 /* If we are only performing a partial link do not bother
521 getting a bfd to hold the glue. */
522 if (info->relocateable)
523 return true;
524
525 globals = elf32_arm_hash_table (info);
526
527 BFD_ASSERT (globals != NULL);
528
529 if (globals->bfd_of_glue_owner != NULL)
530 return true;
531
532 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
533
534 if (sec == NULL)
535 {
536 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
537 will prevent elf_link_input_bfd() from processing the contents
538 of this section. */
539 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
540
541 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
542
543 if (sec == NULL
544 || !bfd_set_section_flags (abfd, sec, flags)
545 || !bfd_set_section_alignment (abfd, sec, 2))
546 return false;
547
548 /* Set the gc mark to prevent the section from being removed by garbage
549 collection, despite the fact that no relocs refer to this section. */
550 sec->gc_mark = 1;
551 }
552
553 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
554
555 if (sec == NULL)
556 {
557 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
558
559 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
560
561 if (sec == NULL
562 || !bfd_set_section_flags (abfd, sec, flags)
563 || !bfd_set_section_alignment (abfd, sec, 2))
564 return false;
565
566 sec->gc_mark = 1;
567 }
568
569 /* Save the bfd for later use. */
570 globals->bfd_of_glue_owner = abfd;
571
572 return true;
573 }
574
575 boolean
576 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
577 bfd *abfd;
578 struct bfd_link_info *link_info;
579 int no_pipeline_knowledge;
580 {
581 Elf_Internal_Shdr *symtab_hdr;
582 Elf_Internal_Rela *free_relocs = NULL;
583 Elf_Internal_Rela *irel, *irelend;
584 bfd_byte *contents = NULL;
585 bfd_byte *free_contents = NULL;
586 Elf32_External_Sym *extsyms = NULL;
587 Elf32_External_Sym *free_extsyms = NULL;
588
589 asection *sec;
590 struct elf32_arm_link_hash_table *globals;
591
592 /* If we are only performing a partial link do not bother
593 to construct any glue. */
594 if (link_info->relocateable)
595 return true;
596
597 /* Here we have a bfd that is to be included on the link. We have a hook
598 to do reloc rummaging, before section sizes are nailed down. */
599 globals = elf32_arm_hash_table (link_info);
600
601 BFD_ASSERT (globals != NULL);
602 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
603
604 globals->no_pipeline_knowledge = no_pipeline_knowledge;
605
606 /* Rummage around all the relocs and map the glue vectors. */
607 sec = abfd->sections;
608
609 if (sec == NULL)
610 return true;
611
612 for (; sec != NULL; sec = sec->next)
613 {
614 if (sec->reloc_count == 0)
615 continue;
616
617 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
618
619 /* Load the relocs. */
620 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
621 (Elf_Internal_Rela *) NULL, false));
622
623 BFD_ASSERT (irel != 0);
624
625 irelend = irel + sec->reloc_count;
626 for (; irel < irelend; irel++)
627 {
628 long r_type;
629 unsigned long r_index;
630
631 struct elf_link_hash_entry *h;
632
633 r_type = ELF32_R_TYPE (irel->r_info);
634 r_index = ELF32_R_SYM (irel->r_info);
635
636 /* These are the only relocation types we care about. */
637 if ( r_type != R_ARM_PC24
638 && r_type != R_ARM_THM_PC22)
639 continue;
640
641 /* Get the section contents if we haven't done so already. */
642 if (contents == NULL)
643 {
644 /* Get cached copy if it exists. */
645 if (elf_section_data (sec)->this_hdr.contents != NULL)
646 contents = elf_section_data (sec)->this_hdr.contents;
647 else
648 {
649 /* Go get them off disk. */
650 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
651 if (contents == NULL)
652 goto error_return;
653
654 free_contents = contents;
655
656 if (!bfd_get_section_contents (abfd, sec, contents,
657 (file_ptr) 0, sec->_raw_size))
658 goto error_return;
659 }
660 }
661
662 /* Read this BFD's symbols if we haven't done so already. */
663 if (extsyms == NULL)
664 {
665 /* Get cached copy if it exists. */
666 if (symtab_hdr->contents != NULL)
667 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
668 else
669 {
670 /* Go get them off disk. */
671 extsyms = ((Elf32_External_Sym *)
672 bfd_malloc (symtab_hdr->sh_size));
673 if (extsyms == NULL)
674 goto error_return;
675
676 free_extsyms = extsyms;
677
678 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
679 || (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
680 != symtab_hdr->sh_size))
681 goto error_return;
682 }
683 }
684
685 /* If the relocation is not against a symbol it cannot concern us. */
686 h = NULL;
687
688 /* We don't care about local symbols. */
689 if (r_index < symtab_hdr->sh_info)
690 continue;
691
692 /* This is an external symbol. */
693 r_index -= symtab_hdr->sh_info;
694 h = (struct elf_link_hash_entry *)
695 elf_sym_hashes (abfd)[r_index];
696
697 /* If the relocation is against a static symbol it must be within
698 the current section and so cannot be a cross ARM/Thumb relocation. */
699 if (h == NULL)
700 continue;
701
702 switch (r_type)
703 {
704 case R_ARM_PC24:
705 /* This one is a call from arm code. We need to look up
706 the target of the call. If it is a thumb target, we
707 insert glue. */
708 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
709 record_arm_to_thumb_glue (link_info, h);
710 break;
711
712 case R_ARM_THM_PC22:
713 /* This one is a call from thumb code. We look
714 up the target of the call. If it is not a thumb
715 target, we insert glue. */
716 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
717 record_thumb_to_arm_glue (link_info, h);
718 break;
719
720 default:
721 break;
722 }
723 }
724 }
725
726 return true;
727
728 error_return:
729 if (free_relocs != NULL)
730 free (free_relocs);
731 if (free_contents != NULL)
732 free (free_contents);
733 if (free_extsyms != NULL)
734 free (free_extsyms);
735
736 return false;
737 }
738
739 /* The thumb form of a long branch is a bit finicky, because the offset
740 encoding is split over two fields, each in it's own instruction. They
741 can occur in any order. So given a thumb form of long branch, and an
742 offset, insert the offset into the thumb branch and return finished
743 instruction.
744
745 It takes two thumb instructions to encode the target address. Each has
746 11 bits to invest. The upper 11 bits are stored in one (identifed by
747 H-0.. see below), the lower 11 bits are stored in the other (identified
748 by H-1).
749
750 Combine together and shifted left by 1 (it's a half word address) and
751 there you have it.
752
753 Op: 1111 = F,
754 H-0, upper address-0 = 000
755 Op: 1111 = F,
756 H-1, lower address-0 = 800
757
758 They can be ordered either way, but the arm tools I've seen always put
759 the lower one first. It probably doesn't matter. krk@cygnus.com
760
761 XXX: Actually the order does matter. The second instruction (H-1)
762 moves the computed address into the PC, so it must be the second one
763 in the sequence. The problem, however is that whilst little endian code
764 stores the instructions in HI then LOW order, big endian code does the
765 reverse. nickc@cygnus.com. */
766
767 #define LOW_HI_ORDER 0xF800F000
768 #define HI_LOW_ORDER 0xF000F800
769
770 static insn32
771 insert_thumb_branch (br_insn, rel_off)
772 insn32 br_insn;
773 int rel_off;
774 {
775 unsigned int low_bits;
776 unsigned int high_bits;
777
778 BFD_ASSERT ((rel_off & 1) != 1);
779
780 rel_off >>= 1; /* Half word aligned address. */
781 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
782 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
783
784 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
785 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
786 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
787 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
788 else
789 /* FIXME: abort is probably not the right call. krk@cygnus.com */
790 abort (); /* error - not a valid branch instruction form. */
791
792 return br_insn;
793 }
794
795 /* Thumb code calling an ARM function. */
796
797 static int
798 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
799 hit_data, sym_sec, offset, addend, val)
800 struct bfd_link_info * info;
801 const char * name;
802 bfd * input_bfd;
803 bfd * output_bfd;
804 asection * input_section;
805 bfd_byte * hit_data;
806 asection * sym_sec;
807 bfd_vma offset;
808 bfd_signed_vma addend;
809 bfd_vma val;
810 {
811 asection * s = 0;
812 long int my_offset;
813 unsigned long int tmp;
814 long int ret_offset;
815 struct elf_link_hash_entry * myh;
816 struct elf32_arm_link_hash_table * globals;
817
818 myh = find_thumb_glue (info, name, input_bfd);
819 if (myh == NULL)
820 return false;
821
822 globals = elf32_arm_hash_table (info);
823
824 BFD_ASSERT (globals != NULL);
825 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
826
827 my_offset = myh->root.u.def.value;
828
829 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
830 THUMB2ARM_GLUE_SECTION_NAME);
831
832 BFD_ASSERT (s != NULL);
833 BFD_ASSERT (s->contents != NULL);
834 BFD_ASSERT (s->output_section != NULL);
835
836 if ((my_offset & 0x01) == 0x01)
837 {
838 if (sym_sec != NULL
839 && sym_sec->owner != NULL
840 && !INTERWORK_FLAG (sym_sec->owner))
841 {
842 _bfd_error_handler
843 (_("%s(%s): warning: interworking not enabled."),
844 bfd_get_filename (sym_sec->owner), name);
845 _bfd_error_handler
846 (_(" first occurrence: %s: thumb call to arm"),
847 bfd_get_filename (input_bfd));
848
849 return false;
850 }
851
852 --my_offset;
853 myh->root.u.def.value = my_offset;
854
855 bfd_put_16 (output_bfd, t2a1_bx_pc_insn,
856 s->contents + my_offset);
857
858 bfd_put_16 (output_bfd, t2a2_noop_insn,
859 s->contents + my_offset + 2);
860
861 ret_offset =
862 /* Address of destination of the stub. */
863 ((bfd_signed_vma) val)
864 - ((bfd_signed_vma)
865 /* Offset from the start of the current section to the start of the stubs. */
866 (s->output_offset
867 /* Offset of the start of this stub from the start of the stubs. */
868 + my_offset
869 /* Address of the start of the current section. */
870 + s->output_section->vma)
871 /* The branch instruction is 4 bytes into the stub. */
872 + 4
873 /* ARM branches work from the pc of the instruction + 8. */
874 + 8);
875
876 bfd_put_32 (output_bfd,
877 t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
878 s->contents + my_offset + 4);
879 }
880
881 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
882
883 /* Now go back and fix up the original BL insn to point
884 to here. */
885 ret_offset =
886 s->output_offset
887 + my_offset
888 - (input_section->output_offset
889 + offset + addend)
890 - 8;
891
892 tmp = bfd_get_32 (input_bfd, hit_data
893 - input_section->vma);
894
895 bfd_put_32 (output_bfd,
896 insert_thumb_branch (tmp, ret_offset),
897 hit_data - input_section->vma);
898
899 return true;
900 }
901
902 /* Arm code calling a Thumb function. */
903
904 static int
905 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
906 hit_data, sym_sec, offset, addend, val)
907 struct bfd_link_info * info;
908 const char * name;
909 bfd * input_bfd;
910 bfd * output_bfd;
911 asection * input_section;
912 bfd_byte * hit_data;
913 asection * sym_sec;
914 bfd_vma offset;
915 bfd_signed_vma addend;
916 bfd_vma val;
917 {
918 unsigned long int tmp;
919 long int my_offset;
920 asection * s;
921 long int ret_offset;
922 struct elf_link_hash_entry * myh;
923 struct elf32_arm_link_hash_table * globals;
924
925 myh = find_arm_glue (info, name, input_bfd);
926 if (myh == NULL)
927 return false;
928
929 globals = elf32_arm_hash_table (info);
930
931 BFD_ASSERT (globals != NULL);
932 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
933
934 my_offset = myh->root.u.def.value;
935 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
936 ARM2THUMB_GLUE_SECTION_NAME);
937 BFD_ASSERT (s != NULL);
938 BFD_ASSERT (s->contents != NULL);
939 BFD_ASSERT (s->output_section != NULL);
940
941 if ((my_offset & 0x01) == 0x01)
942 {
943 if (sym_sec != NULL
944 && sym_sec->owner != NULL
945 && !INTERWORK_FLAG (sym_sec->owner))
946 {
947 _bfd_error_handler
948 (_("%s(%s): warning: interworking not enabled."),
949 bfd_get_filename (sym_sec->owner), name);
950 _bfd_error_handler
951 (_(" first occurrence: %s: arm call to thumb"),
952 bfd_get_filename (input_bfd));
953 }
954
955 --my_offset;
956 myh->root.u.def.value = my_offset;
957
958 bfd_put_32 (output_bfd, a2t1_ldr_insn,
959 s->contents + my_offset);
960
961 bfd_put_32 (output_bfd, a2t2_bx_r12_insn,
962 s->contents + my_offset + 4);
963
964 /* It's a thumb address. Add the low order bit. */
965 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
966 s->contents + my_offset + 8);
967 }
968
969 BFD_ASSERT (my_offset <= globals->arm_glue_size);
970
971 tmp = bfd_get_32 (input_bfd, hit_data);
972 tmp = tmp & 0xFF000000;
973
974 /* Somehow these are both 4 too far, so subtract 8. */
975 ret_offset = s->output_offset
976 + my_offset
977 + s->output_section->vma
978 - (input_section->output_offset
979 + input_section->output_section->vma
980 + offset + addend)
981 - 8;
982
983 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
984
985 bfd_put_32 (output_bfd, tmp, hit_data
986 - input_section->vma);
987
988 return true;
989 }
990
991 /* Perform a relocation as part of a final link. */
992
993 static bfd_reloc_status_type
994 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
995 input_section, contents, rel, value,
996 info, sym_sec, sym_name, sym_flags, h)
997 reloc_howto_type * howto;
998 bfd * input_bfd;
999 bfd * output_bfd;
1000 asection * input_section;
1001 bfd_byte * contents;
1002 Elf_Internal_Rela * rel;
1003 bfd_vma value;
1004 struct bfd_link_info * info;
1005 asection * sym_sec;
1006 const char * sym_name;
1007 unsigned char sym_flags;
1008 struct elf_link_hash_entry * h;
1009 {
1010 unsigned long r_type = howto->type;
1011 unsigned long r_symndx;
1012 bfd_byte * hit_data = contents + rel->r_offset;
1013 bfd * dynobj = NULL;
1014 Elf_Internal_Shdr * symtab_hdr;
1015 struct elf_link_hash_entry ** sym_hashes;
1016 bfd_vma * local_got_offsets;
1017 asection * sgot = NULL;
1018 asection * splt = NULL;
1019 asection * sreloc = NULL;
1020 bfd_vma addend;
1021 bfd_signed_vma signed_addend;
1022 struct elf32_arm_link_hash_table * globals;
1023
1024 globals = elf32_arm_hash_table (info);
1025
1026 dynobj = elf_hash_table (info)->dynobj;
1027 if (dynobj)
1028 {
1029 sgot = bfd_get_section_by_name (dynobj, ".got");
1030 splt = bfd_get_section_by_name (dynobj, ".plt");
1031 }
1032 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1033 sym_hashes = elf_sym_hashes (input_bfd);
1034 local_got_offsets = elf_local_got_offsets (input_bfd);
1035 r_symndx = ELF32_R_SYM (rel->r_info);
1036
1037 #ifdef USE_REL
1038 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1039
1040 if (addend & ((howto->src_mask + 1) >> 1))
1041 {
1042 signed_addend = -1;
1043 signed_addend &= ~ howto->src_mask;
1044 signed_addend |= addend;
1045 }
1046 else
1047 signed_addend = addend;
1048 #else
1049 addend = signed_addend = rel->r_addend;
1050 #endif
1051
1052 switch (r_type)
1053 {
1054 case R_ARM_NONE:
1055 return bfd_reloc_ok;
1056
1057 case R_ARM_PC24:
1058 case R_ARM_ABS32:
1059 case R_ARM_REL32:
1060 #ifndef OLD_ARM_ABI
1061 case R_ARM_XPC25:
1062 #endif
1063 /* When generating a shared object, these relocations are copied
1064 into the output file to be resolved at run time. */
1065 if (info->shared
1066 && (r_type != R_ARM_PC24
1067 || (h != NULL
1068 && h->dynindx != -1
1069 && (! info->symbolic
1070 || (h->elf_link_hash_flags
1071 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1072 {
1073 Elf_Internal_Rel outrel;
1074 boolean skip, relocate;
1075
1076 if (sreloc == NULL)
1077 {
1078 const char * name;
1079
1080 name = (bfd_elf_string_from_elf_section
1081 (input_bfd,
1082 elf_elfheader (input_bfd)->e_shstrndx,
1083 elf_section_data (input_section)->rel_hdr.sh_name));
1084 if (name == NULL)
1085 return bfd_reloc_notsupported;
1086
1087 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1088 && strcmp (bfd_get_section_name (input_bfd,
1089 input_section),
1090 name + 4) == 0);
1091
1092 sreloc = bfd_get_section_by_name (dynobj, name);
1093 BFD_ASSERT (sreloc != NULL);
1094 }
1095
1096 skip = false;
1097
1098 if (elf_section_data (input_section)->stab_info == NULL)
1099 outrel.r_offset = rel->r_offset;
1100 else
1101 {
1102 bfd_vma off;
1103
1104 off = (_bfd_stab_section_offset
1105 (output_bfd, &elf_hash_table (info)->stab_info,
1106 input_section,
1107 & elf_section_data (input_section)->stab_info,
1108 rel->r_offset));
1109 if (off == (bfd_vma) -1)
1110 skip = true;
1111 outrel.r_offset = off;
1112 }
1113
1114 outrel.r_offset += (input_section->output_section->vma
1115 + input_section->output_offset);
1116
1117 if (skip)
1118 {
1119 memset (&outrel, 0, sizeof outrel);
1120 relocate = false;
1121 }
1122 else if (r_type == R_ARM_PC24)
1123 {
1124 BFD_ASSERT (h != NULL && h->dynindx != -1);
1125 if ((input_section->flags & SEC_ALLOC) != 0)
1126 relocate = false;
1127 else
1128 relocate = true;
1129 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1130 }
1131 else
1132 {
1133 if (h == NULL
1134 || ((info->symbolic || h->dynindx == -1)
1135 && (h->elf_link_hash_flags
1136 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1137 {
1138 relocate = true;
1139 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1140 }
1141 else
1142 {
1143 BFD_ASSERT (h->dynindx != -1);
1144 if ((input_section->flags & SEC_ALLOC) != 0)
1145 relocate = false;
1146 else
1147 relocate = true;
1148 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1149 }
1150 }
1151
1152 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1153 (((Elf32_External_Rel *)
1154 sreloc->contents)
1155 + sreloc->reloc_count));
1156 ++sreloc->reloc_count;
1157
1158 /* If this reloc is against an external symbol, we do not want to
1159 fiddle with the addend. Otherwise, we need to include the symbol
1160 value so that it becomes an addend for the dynamic reloc. */
1161 if (! relocate)
1162 return bfd_reloc_ok;
1163
1164 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1165 contents, rel->r_offset, value,
1166 (bfd_vma) 0);
1167 }
1168 else switch (r_type)
1169 {
1170 #ifndef OLD_ARM_ABI
1171 case R_ARM_XPC25: /* Arm BLX instruction. */
1172 #endif
1173 case R_ARM_PC24: /* Arm B/BL instruction */
1174 #ifndef OLD_ARM_ABI
1175 if (r_type == R_ARM_XPC25)
1176 {
1177 /* Check for Arm calling Arm function. */
1178 /* FIXME: Should we translate the instruction into a BL
1179 instruction instead ? */
1180 if (sym_flags != STT_ARM_TFUNC)
1181 _bfd_error_handler (_("\
1182 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1183 bfd_get_filename (input_bfd),
1184 h ? h->root.root.string : "(local)");
1185 }
1186 else
1187 #endif
1188 {
1189 /* Check for Arm calling Thumb function. */
1190 if (sym_flags == STT_ARM_TFUNC)
1191 {
1192 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1193 input_section, hit_data, sym_sec, rel->r_offset,
1194 signed_addend, value);
1195 return bfd_reloc_ok;
1196 }
1197 }
1198
1199 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1200 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1201 {
1202 /* The old way of doing things. Trearing the addend as a
1203 byte sized field and adding in the pipeline offset. */
1204 value -= (input_section->output_section->vma
1205 + input_section->output_offset);
1206 value -= rel->r_offset;
1207 value += addend;
1208
1209 if (! globals->no_pipeline_knowledge)
1210 value -= 8;
1211 }
1212 else
1213 {
1214 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1215 where:
1216 S is the address of the symbol in the relocation.
1217 P is address of the instruction being relocated.
1218 A is the addend (extracted from the instruction) in bytes.
1219
1220 S is held in 'value'.
1221 P is the base address of the section containing the instruction
1222 plus the offset of the reloc into that section, ie:
1223 (input_section->output_section->vma +
1224 input_section->output_offset +
1225 rel->r_offset).
1226 A is the addend, converted into bytes, ie:
1227 (signed_addend * 4)
1228
1229 Note: None of these operations have knowledge of the pipeline
1230 size of the processor, thus it is up to the assembler to encode
1231 this information into the addend. */
1232 value -= (input_section->output_section->vma
1233 + input_section->output_offset);
1234 value -= rel->r_offset;
1235 value += (signed_addend << howto->size);
1236
1237 /* Previous versions of this code also used to add in the pipeline
1238 offset here. This is wrong because the linker is not supposed
1239 to know about such things, and one day it might change. In order
1240 to support old binaries that need the old behaviour however, so
1241 we attempt to detect which ABI was used to create the reloc. */
1242 if (! globals->no_pipeline_knowledge)
1243 {
1244 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1245
1246 i_ehdrp = elf_elfheader (input_bfd);
1247
1248 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1249 value -= 8;
1250 }
1251 }
1252
1253 signed_addend = value;
1254 signed_addend >>= howto->rightshift;
1255
1256 /* It is not an error for an undefined weak reference to be
1257 out of range. Any program that branches to such a symbol
1258 is going to crash anyway, so there is no point worrying
1259 about getting the destination exactly right. */
1260 if (! h || h->root.type != bfd_link_hash_undefweak)
1261 {
1262 /* Perform a signed range check. */
1263 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1264 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1265 return bfd_reloc_overflow;
1266 }
1267
1268 #ifndef OLD_ARM_ABI
1269 /* If necessary set the H bit in the BLX instruction. */
1270 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1271 value = (signed_addend & howto->dst_mask)
1272 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1273 | (1 << 24);
1274 else
1275 #endif
1276 value = (signed_addend & howto->dst_mask)
1277 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1278 break;
1279
1280 case R_ARM_ABS32:
1281 value += addend;
1282 if (sym_flags == STT_ARM_TFUNC)
1283 value |= 1;
1284 break;
1285
1286 case R_ARM_REL32:
1287 value -= (input_section->output_section->vma
1288 + input_section->output_offset);
1289 value += addend;
1290 break;
1291 }
1292
1293 bfd_put_32 (input_bfd, value, hit_data);
1294 return bfd_reloc_ok;
1295
1296 case R_ARM_ABS8:
1297 value += addend;
1298 if ((long) value > 0x7f || (long) value < -0x80)
1299 return bfd_reloc_overflow;
1300
1301 bfd_put_8 (input_bfd, value, hit_data);
1302 return bfd_reloc_ok;
1303
1304 case R_ARM_ABS16:
1305 value += addend;
1306
1307 if ((long) value > 0x7fff || (long) value < -0x8000)
1308 return bfd_reloc_overflow;
1309
1310 bfd_put_16 (input_bfd, value, hit_data);
1311 return bfd_reloc_ok;
1312
1313 case R_ARM_ABS12:
1314 /* Support ldr and str instruction for the arm */
1315 /* Also thumb b (unconditional branch). ??? Really? */
1316 value += addend;
1317
1318 if ((long) value > 0x7ff || (long) value < -0x800)
1319 return bfd_reloc_overflow;
1320
1321 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1322 bfd_put_32 (input_bfd, value, hit_data);
1323 return bfd_reloc_ok;
1324
1325 case R_ARM_THM_ABS5:
1326 /* Support ldr and str instructions for the thumb. */
1327 #ifdef USE_REL
1328 /* Need to refetch addend. */
1329 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1330 /* ??? Need to determine shift amount from operand size. */
1331 addend >>= howto->rightshift;
1332 #endif
1333 value += addend;
1334
1335 /* ??? Isn't value unsigned? */
1336 if ((long) value > 0x1f || (long) value < -0x10)
1337 return bfd_reloc_overflow;
1338
1339 /* ??? Value needs to be properly shifted into place first. */
1340 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1341 bfd_put_16 (input_bfd, value, hit_data);
1342 return bfd_reloc_ok;
1343
1344 #ifndef OLD_ARM_ABI
1345 case R_ARM_THM_XPC22:
1346 #endif
1347 case R_ARM_THM_PC22:
1348 /* Thumb BL (branch long instruction). */
1349 {
1350 bfd_vma relocation;
1351 boolean overflow = false;
1352 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1353 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1354 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1355 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1356 bfd_vma check;
1357 bfd_signed_vma signed_check;
1358
1359 #ifdef USE_REL
1360 /* Need to refetch the addend and squish the two 11 bit pieces
1361 together. */
1362 {
1363 bfd_vma upper = upper_insn & 0x7ff;
1364 bfd_vma lower = lower_insn & 0x7ff;
1365 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1366 addend = (upper << 12) | (lower << 1);
1367 signed_addend = addend;
1368 }
1369 #endif
1370 #ifndef OLD_ARM_ABI
1371 if (r_type == R_ARM_THM_XPC22)
1372 {
1373 /* Check for Thumb to Thumb call. */
1374 /* FIXME: Should we translate the instruction into a BL
1375 instruction instead ? */
1376 if (sym_flags == STT_ARM_TFUNC)
1377 _bfd_error_handler (_("\
1378 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1379 bfd_get_filename (input_bfd),
1380 h ? h->root.root.string : "(local)");
1381 }
1382 else
1383 #endif
1384 {
1385 /* If it is not a call to Thumb, assume call to Arm.
1386 If it is a call relative to a section name, then it is not a
1387 function call at all, but rather a long jump. */
1388 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1389 {
1390 if (elf32_thumb_to_arm_stub
1391 (info, sym_name, input_bfd, output_bfd, input_section,
1392 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1393 return bfd_reloc_ok;
1394 else
1395 return bfd_reloc_dangerous;
1396 }
1397 }
1398
1399 relocation = value + signed_addend;
1400
1401 relocation -= (input_section->output_section->vma
1402 + input_section->output_offset
1403 + rel->r_offset);
1404
1405 if (! globals->no_pipeline_knowledge)
1406 {
1407 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1408
1409 i_ehdrp = elf_elfheader (input_bfd);
1410
1411 /* Previous versions of this code also used to add in the pipline
1412 offset here. This is wrong because the linker is not supposed
1413 to know about such things, and one day it might change. In order
1414 to support old binaries that need the old behaviour however, so
1415 we attempt to detect which ABI was used to create the reloc. */
1416 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1417 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1418 || i_ehdrp->e_ident[EI_OSABI] == 0)
1419 relocation += 4;
1420 }
1421
1422 check = relocation >> howto->rightshift;
1423
1424 /* If this is a signed value, the rightshift just dropped
1425 leading 1 bits (assuming twos complement). */
1426 if ((bfd_signed_vma) relocation >= 0)
1427 signed_check = check;
1428 else
1429 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1430
1431 /* Assumes two's complement. */
1432 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1433 overflow = true;
1434
1435 /* Put RELOCATION back into the insn. */
1436 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1437 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1438
1439 /* Put the relocated value back in the object file: */
1440 bfd_put_16 (input_bfd, upper_insn, hit_data);
1441 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1442
1443 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1444 }
1445 break;
1446
1447 case R_ARM_GNU_VTINHERIT:
1448 case R_ARM_GNU_VTENTRY:
1449 return bfd_reloc_ok;
1450
1451 case R_ARM_COPY:
1452 return bfd_reloc_notsupported;
1453
1454 case R_ARM_GLOB_DAT:
1455 return bfd_reloc_notsupported;
1456
1457 case R_ARM_JUMP_SLOT:
1458 return bfd_reloc_notsupported;
1459
1460 case R_ARM_RELATIVE:
1461 return bfd_reloc_notsupported;
1462
1463 case R_ARM_GOTOFF:
1464 /* Relocation is relative to the start of the
1465 global offset table. */
1466
1467 BFD_ASSERT (sgot != NULL);
1468 if (sgot == NULL)
1469 return bfd_reloc_notsupported;
1470
1471 /* Note that sgot->output_offset is not involved in this
1472 calculation. We always want the start of .got. If we
1473 define _GLOBAL_OFFSET_TABLE in a different way, as is
1474 permitted by the ABI, we might have to change this
1475 calculation. */
1476 value -= sgot->output_section->vma;
1477 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1478 contents, rel->r_offset, value,
1479 (bfd_vma) 0);
1480
1481 case R_ARM_GOTPC:
1482 /* Use global offset table as symbol value. */
1483 BFD_ASSERT (sgot != NULL);
1484
1485 if (sgot == NULL)
1486 return bfd_reloc_notsupported;
1487
1488 value = sgot->output_section->vma;
1489 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1490 contents, rel->r_offset, value,
1491 (bfd_vma) 0);
1492
1493 case R_ARM_GOT32:
1494 /* Relocation is to the entry for this symbol in the
1495 global offset table. */
1496 if (sgot == NULL)
1497 return bfd_reloc_notsupported;
1498
1499 if (h != NULL)
1500 {
1501 bfd_vma off;
1502
1503 off = h->got.offset;
1504 BFD_ASSERT (off != (bfd_vma) -1);
1505
1506 if (!elf_hash_table (info)->dynamic_sections_created ||
1507 (info->shared && (info->symbolic || h->dynindx == -1)
1508 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1509 {
1510 /* This is actually a static link, or it is a -Bsymbolic link
1511 and the symbol is defined locally. We must initialize this
1512 entry in the global offset table. Since the offset must
1513 always be a multiple of 4, we use the least significant bit
1514 to record whether we have initialized it already.
1515
1516 When doing a dynamic link, we create a .rel.got relocation
1517 entry to initialize the value. This is done in the
1518 finish_dynamic_symbol routine. */
1519 if ((off & 1) != 0)
1520 off &= ~1;
1521 else
1522 {
1523 bfd_put_32 (output_bfd, value, sgot->contents + off);
1524 h->got.offset |= 1;
1525 }
1526 }
1527
1528 value = sgot->output_offset + off;
1529 }
1530 else
1531 {
1532 bfd_vma off;
1533
1534 BFD_ASSERT (local_got_offsets != NULL &&
1535 local_got_offsets[r_symndx] != (bfd_vma) -1);
1536
1537 off = local_got_offsets[r_symndx];
1538
1539 /* The offset must always be a multiple of 4. We use the
1540 least significant bit to record whether we have already
1541 generated the necessary reloc. */
1542 if ((off & 1) != 0)
1543 off &= ~1;
1544 else
1545 {
1546 bfd_put_32 (output_bfd, value, sgot->contents + off);
1547
1548 if (info->shared)
1549 {
1550 asection * srelgot;
1551 Elf_Internal_Rel outrel;
1552
1553 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1554 BFD_ASSERT (srelgot != NULL);
1555
1556 outrel.r_offset = (sgot->output_section->vma
1557 + sgot->output_offset
1558 + off);
1559 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1560 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1561 (((Elf32_External_Rel *)
1562 srelgot->contents)
1563 + srelgot->reloc_count));
1564 ++srelgot->reloc_count;
1565 }
1566
1567 local_got_offsets[r_symndx] |= 1;
1568 }
1569
1570 value = sgot->output_offset + off;
1571 }
1572
1573 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1574 contents, rel->r_offset, value,
1575 (bfd_vma) 0);
1576
1577 case R_ARM_PLT32:
1578 /* Relocation is to the entry for this symbol in the
1579 procedure linkage table. */
1580
1581 /* Resolve a PLT32 reloc against a local symbol directly,
1582 without using the procedure linkage table. */
1583 if (h == NULL)
1584 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1585 contents, rel->r_offset, value,
1586 (bfd_vma) 0);
1587
1588 if (h->plt.offset == (bfd_vma) -1)
1589 /* We didn't make a PLT entry for this symbol. This
1590 happens when statically linking PIC code, or when
1591 using -Bsymbolic. */
1592 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1593 contents, rel->r_offset, value,
1594 (bfd_vma) 0);
1595
1596 BFD_ASSERT(splt != NULL);
1597 if (splt == NULL)
1598 return bfd_reloc_notsupported;
1599
1600 value = (splt->output_section->vma
1601 + splt->output_offset
1602 + h->plt.offset);
1603 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1604 contents, rel->r_offset, value,
1605 (bfd_vma) 0);
1606
1607 case R_ARM_SBREL32:
1608 return bfd_reloc_notsupported;
1609
1610 case R_ARM_AMP_VCALL9:
1611 return bfd_reloc_notsupported;
1612
1613 case R_ARM_RSBREL32:
1614 return bfd_reloc_notsupported;
1615
1616 case R_ARM_THM_RPC22:
1617 return bfd_reloc_notsupported;
1618
1619 case R_ARM_RREL32:
1620 return bfd_reloc_notsupported;
1621
1622 case R_ARM_RABS32:
1623 return bfd_reloc_notsupported;
1624
1625 case R_ARM_RPC24:
1626 return bfd_reloc_notsupported;
1627
1628 case R_ARM_RBASE:
1629 return bfd_reloc_notsupported;
1630
1631 default:
1632 return bfd_reloc_notsupported;
1633 }
1634 }
1635
1636 #ifdef USE_REL
1637 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1638 static void
1639 arm_add_to_rel (abfd, address, howto, increment)
1640 bfd * abfd;
1641 bfd_byte * address;
1642 reloc_howto_type * howto;
1643 bfd_signed_vma increment;
1644 {
1645 bfd_vma contents;
1646 bfd_signed_vma addend;
1647
1648 contents = bfd_get_32 (abfd, address);
1649
1650 /* Get the (signed) value from the instruction. */
1651 addend = contents & howto->src_mask;
1652 if (addend & ((howto->src_mask + 1) >> 1))
1653 {
1654 bfd_signed_vma mask;
1655
1656 mask = -1;
1657 mask &= ~ howto->src_mask;
1658 addend |= mask;
1659 }
1660
1661 /* Add in the increment, (which is a byte value). */
1662 switch (howto->type)
1663 {
1664 case R_ARM_THM_PC22:
1665 default:
1666 addend += increment;
1667 break;
1668
1669 case R_ARM_PC24:
1670 addend <<= howto->size;
1671 addend += increment;
1672
1673 /* Should we check for overflow here ? */
1674
1675 /* Drop any undesired bits. */
1676 addend >>= howto->rightshift;
1677 break;
1678 }
1679
1680 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1681
1682 bfd_put_32 (abfd, contents, address);
1683 }
1684 #endif /* USE_REL */
1685
1686 /* Relocate an ARM ELF section. */
1687 static boolean
1688 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1689 contents, relocs, local_syms, local_sections)
1690 bfd * output_bfd;
1691 struct bfd_link_info * info;
1692 bfd * input_bfd;
1693 asection * input_section;
1694 bfd_byte * contents;
1695 Elf_Internal_Rela * relocs;
1696 Elf_Internal_Sym * local_syms;
1697 asection ** local_sections;
1698 {
1699 Elf_Internal_Shdr * symtab_hdr;
1700 struct elf_link_hash_entry ** sym_hashes;
1701 Elf_Internal_Rela * rel;
1702 Elf_Internal_Rela * relend;
1703 const char * name;
1704
1705 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1706 sym_hashes = elf_sym_hashes (input_bfd);
1707
1708 rel = relocs;
1709 relend = relocs + input_section->reloc_count;
1710 for (; rel < relend; rel++)
1711 {
1712 int r_type;
1713 reloc_howto_type * howto;
1714 unsigned long r_symndx;
1715 Elf_Internal_Sym * sym;
1716 asection * sec;
1717 struct elf_link_hash_entry * h;
1718 bfd_vma relocation;
1719 bfd_reloc_status_type r;
1720 arelent bfd_reloc;
1721
1722 r_symndx = ELF32_R_SYM (rel->r_info);
1723 r_type = ELF32_R_TYPE (rel->r_info);
1724
1725 if ( r_type == R_ARM_GNU_VTENTRY
1726 || r_type == R_ARM_GNU_VTINHERIT)
1727 continue;
1728
1729 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1730 howto = bfd_reloc.howto;
1731
1732 if (info->relocateable)
1733 {
1734 /* This is a relocateable link. We don't have to change
1735 anything, unless the reloc is against a section symbol,
1736 in which case we have to adjust according to where the
1737 section symbol winds up in the output section. */
1738 if (r_symndx < symtab_hdr->sh_info)
1739 {
1740 sym = local_syms + r_symndx;
1741 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1742 {
1743 sec = local_sections[r_symndx];
1744 #ifdef USE_REL
1745 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1746 howto, sec->output_offset + sym->st_value);
1747 #else
1748 rel->r_addend += (sec->output_offset + sym->st_value)
1749 >> howto->rightshift;
1750 #endif
1751 }
1752 }
1753
1754 continue;
1755 }
1756
1757 /* This is a final link. */
1758 h = NULL;
1759 sym = NULL;
1760 sec = NULL;
1761
1762 if (r_symndx < symtab_hdr->sh_info)
1763 {
1764 sym = local_syms + r_symndx;
1765 sec = local_sections[r_symndx];
1766 relocation = (sec->output_section->vma
1767 + sec->output_offset
1768 + sym->st_value);
1769 }
1770 else
1771 {
1772 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1773
1774 while ( h->root.type == bfd_link_hash_indirect
1775 || h->root.type == bfd_link_hash_warning)
1776 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1777
1778 if ( h->root.type == bfd_link_hash_defined
1779 || h->root.type == bfd_link_hash_defweak)
1780 {
1781 int relocation_needed = 1;
1782
1783 sec = h->root.u.def.section;
1784
1785 /* In these cases, we don't need the relocation value.
1786 We check specially because in some obscure cases
1787 sec->output_section will be NULL. */
1788 switch (r_type)
1789 {
1790 case R_ARM_PC24:
1791 case R_ARM_ABS32:
1792 if (info->shared
1793 && (
1794 (!info->symbolic && h->dynindx != -1)
1795 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1796 )
1797 && ((input_section->flags & SEC_ALLOC) != 0)
1798 )
1799 relocation_needed = 0;
1800 break;
1801
1802 case R_ARM_GOTPC:
1803 relocation_needed = 0;
1804 break;
1805
1806 case R_ARM_GOT32:
1807 if (elf_hash_table(info)->dynamic_sections_created
1808 && (!info->shared
1809 || (!info->symbolic && h->dynindx != -1)
1810 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1811 )
1812 )
1813 relocation_needed = 0;
1814 break;
1815
1816 case R_ARM_PLT32:
1817 if (h->plt.offset != (bfd_vma)-1)
1818 relocation_needed = 0;
1819 break;
1820
1821 default:
1822 if (sec->output_section == NULL)
1823 {
1824 (*_bfd_error_handler)
1825 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1826 bfd_get_filename (input_bfd), h->root.root.string,
1827 bfd_get_section_name (input_bfd, input_section));
1828 relocation_needed = 0;
1829 }
1830 }
1831
1832 if (relocation_needed)
1833 relocation = h->root.u.def.value
1834 + sec->output_section->vma
1835 + sec->output_offset;
1836 else
1837 relocation = 0;
1838 }
1839 else if (h->root.type == bfd_link_hash_undefweak)
1840 relocation = 0;
1841 else if (info->shared && !info->symbolic
1842 && !info->no_undefined
1843 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1844 relocation = 0;
1845 else
1846 {
1847 if (!((*info->callbacks->undefined_symbol)
1848 (info, h->root.root.string, input_bfd,
1849 input_section, rel->r_offset,
1850 (!info->shared || info->no_undefined
1851 || ELF_ST_VISIBILITY (h->other)))))
1852 return false;
1853 relocation = 0;
1854 }
1855 }
1856
1857 if (h != NULL)
1858 name = h->root.root.string;
1859 else
1860 {
1861 name = (bfd_elf_string_from_elf_section
1862 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1863 if (name == NULL || *name == '\0')
1864 name = bfd_section_name (input_bfd, sec);
1865 }
1866
1867 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1868 input_section, contents, rel,
1869 relocation, info, sec, name,
1870 (h ? ELF_ST_TYPE (h->type) :
1871 ELF_ST_TYPE (sym->st_info)), h);
1872
1873 if (r != bfd_reloc_ok)
1874 {
1875 const char * msg = (const char *) 0;
1876
1877 switch (r)
1878 {
1879 case bfd_reloc_overflow:
1880 if (!((*info->callbacks->reloc_overflow)
1881 (info, name, howto->name, (bfd_vma) 0,
1882 input_bfd, input_section, rel->r_offset)))
1883 return false;
1884 break;
1885
1886 case bfd_reloc_undefined:
1887 if (!((*info->callbacks->undefined_symbol)
1888 (info, name, input_bfd, input_section,
1889 rel->r_offset, true)))
1890 return false;
1891 break;
1892
1893 case bfd_reloc_outofrange:
1894 msg = _("internal error: out of range error");
1895 goto common_error;
1896
1897 case bfd_reloc_notsupported:
1898 msg = _("internal error: unsupported relocation error");
1899 goto common_error;
1900
1901 case bfd_reloc_dangerous:
1902 msg = _("internal error: dangerous error");
1903 goto common_error;
1904
1905 default:
1906 msg = _("internal error: unknown error");
1907 /* fall through */
1908
1909 common_error:
1910 if (!((*info->callbacks->warning)
1911 (info, msg, name, input_bfd, input_section,
1912 rel->r_offset)))
1913 return false;
1914 break;
1915 }
1916 }
1917 }
1918
1919 return true;
1920 }
1921
1922 /* Function to keep ARM specific flags in the ELF header. */
1923 static boolean
1924 elf32_arm_set_private_flags (abfd, flags)
1925 bfd *abfd;
1926 flagword flags;
1927 {
1928 if (elf_flags_init (abfd)
1929 && elf_elfheader (abfd)->e_flags != flags)
1930 {
1931 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
1932 {
1933 if (flags & EF_INTERWORK)
1934 _bfd_error_handler (_("\
1935 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
1936 bfd_get_filename (abfd));
1937 else
1938 _bfd_error_handler (_("\
1939 Warning: Clearing the interwork flag of %s due to outside request"),
1940 bfd_get_filename (abfd));
1941 }
1942 }
1943 else
1944 {
1945 elf_elfheader (abfd)->e_flags = flags;
1946 elf_flags_init (abfd) = true;
1947 }
1948
1949 return true;
1950 }
1951
1952 /* Copy backend specific data from one object module to another. */
1953
1954 static boolean
1955 elf32_arm_copy_private_bfd_data (ibfd, obfd)
1956 bfd *ibfd;
1957 bfd *obfd;
1958 {
1959 flagword in_flags;
1960 flagword out_flags;
1961
1962 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1963 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1964 return true;
1965
1966 in_flags = elf_elfheader (ibfd)->e_flags;
1967 out_flags = elf_elfheader (obfd)->e_flags;
1968
1969 if (elf_flags_init (obfd)
1970 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
1971 && in_flags != out_flags)
1972 {
1973 /* Cannot mix PIC and non-PIC code. */
1974 if ((in_flags & EF_PIC) != (out_flags & EF_PIC))
1975 return false;
1976
1977 /* Cannot mix APCS26 and APCS32 code. */
1978 if ((in_flags & EF_APCS_26) != (out_flags & EF_APCS_26))
1979 return false;
1980
1981 /* Cannot mix float APCS and non-float APCS code. */
1982 if ((in_flags & EF_APCS_FLOAT) != (out_flags & EF_APCS_FLOAT))
1983 return false;
1984
1985 /* If the src and dest have different interworking flags
1986 then turn off the interworking bit. */
1987 if ((in_flags & EF_INTERWORK) != (out_flags & EF_INTERWORK))
1988 {
1989 if (out_flags & EF_INTERWORK)
1990 _bfd_error_handler (_("\
1991 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
1992 bfd_get_filename (obfd), bfd_get_filename (ibfd));
1993
1994 in_flags &= ~EF_INTERWORK;
1995 }
1996 }
1997
1998 elf_elfheader (obfd)->e_flags = in_flags;
1999 elf_flags_init (obfd) = true;
2000
2001 return true;
2002 }
2003
2004 /* Merge backend specific data from an object file to the output
2005 object file when linking. */
2006
2007 static boolean
2008 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2009 bfd * ibfd;
2010 bfd * obfd;
2011 {
2012 flagword out_flags;
2013 flagword in_flags;
2014
2015 /* Check if we have the same endianess. */
2016 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2017 return false;
2018
2019 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2020 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2021 return true;
2022
2023 /* The input BFD must have had its flags initialised. */
2024 /* The following seems bogus to me -- The flags are initialized in
2025 the assembler but I don't think an elf_flags_init field is
2026 written into the object. */
2027 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2028
2029 in_flags = elf_elfheader (ibfd)->e_flags;
2030 out_flags = elf_elfheader (obfd)->e_flags;
2031
2032 if (!elf_flags_init (obfd))
2033 {
2034 /* If the input is the default architecture then do not
2035 bother setting the flags for the output architecture,
2036 instead allow future merges to do this. If no future
2037 merges ever set these flags then they will retain their
2038 unitialised values, which surprise surprise, correspond
2039 to the default values. */
2040 if (bfd_get_arch_info (ibfd)->the_default)
2041 return true;
2042
2043 elf_flags_init (obfd) = true;
2044 elf_elfheader (obfd)->e_flags = in_flags;
2045
2046 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2047 && bfd_get_arch_info (obfd)->the_default)
2048 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2049
2050 return true;
2051 }
2052
2053 /* Check flag compatibility. */
2054 if (in_flags == out_flags)
2055 return true;
2056
2057 /* Complain about various flag mismatches. */
2058 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2059 {
2060 _bfd_error_handler (_("\
2061 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2062 bfd_get_filename (ibfd),
2063 (in_flags & EF_ARM_EABIMASK) >> 24,
2064 bfd_get_filename (obfd),
2065 (out_flags & EF_ARM_EABIMASK) >> 24);
2066 }
2067 else if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_UNKNOWN)
2068 /* Not sure what needs to be checked for EABI versions >= 1. */
2069 return true;
2070
2071 if ((in_flags & EF_APCS_26) != (out_flags & EF_APCS_26))
2072 _bfd_error_handler (_("\
2073 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2074 bfd_get_filename (ibfd),
2075 in_flags & EF_APCS_26 ? 26 : 32,
2076 bfd_get_filename (obfd),
2077 out_flags & EF_APCS_26 ? 26 : 32);
2078
2079 if ((in_flags & EF_APCS_FLOAT) != (out_flags & EF_APCS_FLOAT))
2080 _bfd_error_handler (_("\
2081 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2082 bfd_get_filename (ibfd),
2083 in_flags & EF_APCS_FLOAT ? _("float") : _("integer"),
2084 bfd_get_filename (obfd),
2085 out_flags & EF_APCS_26 ? _("float") : _("integer"));
2086
2087 if ((in_flags & EF_PIC) != (out_flags & EF_PIC))
2088 _bfd_error_handler (_("\
2089 Error: %s is compiled as position %s code, whereas %s is not"),
2090 bfd_get_filename (ibfd),
2091 in_flags & EF_PIC ? _("independent") : _("dependent"),
2092 bfd_get_filename (obfd));
2093
2094 /* Interworking mismatch is only a warning. */
2095 if ((in_flags & EF_INTERWORK) != (out_flags & EF_INTERWORK))
2096 {
2097 _bfd_error_handler (_("\
2098 Warning: %s %s interworking, whereas %s %s"),
2099 bfd_get_filename (ibfd),
2100 in_flags & EF_INTERWORK ? _("supports") : _("does not support"),
2101 bfd_get_filename (obfd),
2102 out_flags & EF_INTERWORK ? _("does not") : _("does"));
2103 return true;
2104 }
2105
2106 return false;
2107 }
2108
2109 /* Display the flags field. */
2110
2111 static boolean
2112 elf32_arm_print_private_bfd_data (abfd, ptr)
2113 bfd *abfd;
2114 PTR ptr;
2115 {
2116 FILE * file = (FILE *) ptr;
2117 unsigned long flags;
2118
2119 BFD_ASSERT (abfd != NULL && ptr != NULL);
2120
2121 /* Print normal ELF private data. */
2122 _bfd_elf_print_private_bfd_data (abfd, ptr);
2123
2124 flags = elf_elfheader (abfd)->e_flags;
2125 /* Ignore init flag - it may not be set, despite the flags field
2126 containing valid data. */
2127
2128 /* xgettext:c-format */
2129 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2130
2131 switch (EF_ARM_EABI_VERSION (flags))
2132 {
2133 case EF_ARM_EABI_UNKNOWN:
2134 /* The following flag bits are GNU extenstions and not part of the
2135 official ARM ELF extended ABI. Hence they are only decoded if
2136 the EABI version is not set. */
2137 if (flags & EF_INTERWORK)
2138 fprintf (file, _(" [interworking enabled]"));
2139
2140 if (flags & EF_APCS_26)
2141 fprintf (file, _(" [APCS-26]"));
2142 else
2143 fprintf (file, _(" [APCS-32]"));
2144
2145 if (flags & EF_APCS_FLOAT)
2146 fprintf (file, _(" [floats passed in float registers]"));
2147
2148 if (flags & EF_PIC)
2149 fprintf (file, _(" [position independent]"));
2150
2151 if (flags & EF_NEW_ABI)
2152 fprintf (file, _(" [new ABI]"));
2153
2154 if (flags & EF_OLD_ABI)
2155 fprintf (file, _(" [old ABI]"));
2156
2157 if (flags & EF_SOFT_FLOAT)
2158 fprintf (file, _(" [software FP]"));
2159
2160 flags &= ~(EF_INTERWORK | EF_APCS_26 | EF_APCS_FLOAT | EF_PIC
2161 | EF_NEW_ABI | EF_OLD_ABI | EF_SOFT_FLOAT);
2162 break;
2163
2164 case EF_ARM_EABI_VER1:
2165 fprintf (file, _(" [Version1 EABI]"));
2166
2167 if (flags & EF_ARM_SYMSARESORTED)
2168 fprintf (file, _(" [sorted symbol table]"));
2169 else
2170 fprintf (file, _(" [unsorted symbol table]"));
2171
2172 flags &= ~ EF_ARM_SYMSARESORTED;
2173 break;
2174
2175 default:
2176 fprintf (file, _(" <EABI version unrecognised>"));
2177 break;
2178 }
2179
2180 flags &= ~ EF_ARM_EABIMASK;
2181
2182 if (flags & EF_ARM_RELEXEC)
2183 fprintf (file, _(" [relocatable executable]"));
2184
2185 if (flags & EF_ARM_HASENTRY)
2186 fprintf (file, _(" [has entry point]"));
2187
2188 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2189
2190 if (flags)
2191 fprintf (file, _("<Unrecognised flag bits set>"));
2192
2193 fputc ('\n', file);
2194
2195 return true;
2196 }
2197
2198 static int
2199 elf32_arm_get_symbol_type (elf_sym, type)
2200 Elf_Internal_Sym * elf_sym;
2201 int type;
2202 {
2203 switch (ELF_ST_TYPE (elf_sym->st_info))
2204 {
2205 case STT_ARM_TFUNC:
2206 return ELF_ST_TYPE (elf_sym->st_info);
2207
2208 case STT_ARM_16BIT:
2209 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2210 This allows us to distinguish between data used by Thumb instructions
2211 and non-data (which is probably code) inside Thumb regions of an
2212 executable. */
2213 if (type != STT_OBJECT)
2214 return ELF_ST_TYPE (elf_sym->st_info);
2215 break;
2216
2217 default:
2218 break;
2219 }
2220
2221 return type;
2222 }
2223
2224 static asection *
2225 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2226 bfd *abfd;
2227 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2228 Elf_Internal_Rela *rel;
2229 struct elf_link_hash_entry *h;
2230 Elf_Internal_Sym *sym;
2231 {
2232 if (h != NULL)
2233 {
2234 switch (ELF32_R_TYPE (rel->r_info))
2235 {
2236 case R_ARM_GNU_VTINHERIT:
2237 case R_ARM_GNU_VTENTRY:
2238 break;
2239
2240 default:
2241 switch (h->root.type)
2242 {
2243 case bfd_link_hash_defined:
2244 case bfd_link_hash_defweak:
2245 return h->root.u.def.section;
2246
2247 case bfd_link_hash_common:
2248 return h->root.u.c.p->section;
2249
2250 default:
2251 break;
2252 }
2253 }
2254 }
2255 else
2256 {
2257 if (!(elf_bad_symtab (abfd)
2258 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
2259 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
2260 && sym->st_shndx != SHN_COMMON))
2261 {
2262 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2263 }
2264 }
2265 return NULL;
2266 }
2267
2268 /* Update the got entry reference counts for the section being removed. */
2269
2270 static boolean
2271 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2272 bfd *abfd ATTRIBUTE_UNUSED;
2273 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2274 asection *sec ATTRIBUTE_UNUSED;
2275 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2276 {
2277 /* We don't support garbage collection of GOT and PLT relocs yet. */
2278 return true;
2279 }
2280
2281 /* Look through the relocs for a section during the first phase. */
2282
2283 static boolean
2284 elf32_arm_check_relocs (abfd, info, sec, relocs)
2285 bfd * abfd;
2286 struct bfd_link_info * info;
2287 asection * sec;
2288 const Elf_Internal_Rela * relocs;
2289 {
2290 Elf_Internal_Shdr * symtab_hdr;
2291 struct elf_link_hash_entry ** sym_hashes;
2292 struct elf_link_hash_entry ** sym_hashes_end;
2293 const Elf_Internal_Rela * rel;
2294 const Elf_Internal_Rela * rel_end;
2295 bfd * dynobj;
2296 asection * sgot, *srelgot, *sreloc;
2297 bfd_vma * local_got_offsets;
2298
2299 if (info->relocateable)
2300 return true;
2301
2302 sgot = srelgot = sreloc = NULL;
2303
2304 dynobj = elf_hash_table (info)->dynobj;
2305 local_got_offsets = elf_local_got_offsets (abfd);
2306
2307 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2308 sym_hashes = elf_sym_hashes (abfd);
2309 sym_hashes_end = sym_hashes
2310 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2311
2312 if (!elf_bad_symtab (abfd))
2313 sym_hashes_end -= symtab_hdr->sh_info;
2314
2315 rel_end = relocs + sec->reloc_count;
2316 for (rel = relocs; rel < rel_end; rel++)
2317 {
2318 struct elf_link_hash_entry *h;
2319 unsigned long r_symndx;
2320
2321 r_symndx = ELF32_R_SYM (rel->r_info);
2322 if (r_symndx < symtab_hdr->sh_info)
2323 h = NULL;
2324 else
2325 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2326
2327 /* Some relocs require a global offset table. */
2328 if (dynobj == NULL)
2329 {
2330 switch (ELF32_R_TYPE (rel->r_info))
2331 {
2332 case R_ARM_GOT32:
2333 case R_ARM_GOTOFF:
2334 case R_ARM_GOTPC:
2335 elf_hash_table (info)->dynobj = dynobj = abfd;
2336 if (! _bfd_elf_create_got_section (dynobj, info))
2337 return false;
2338 break;
2339
2340 default:
2341 break;
2342 }
2343 }
2344
2345 switch (ELF32_R_TYPE (rel->r_info))
2346 {
2347 case R_ARM_GOT32:
2348 /* This symbol requires a global offset table entry. */
2349 if (sgot == NULL)
2350 {
2351 sgot = bfd_get_section_by_name (dynobj, ".got");
2352 BFD_ASSERT (sgot != NULL);
2353 }
2354
2355 /* Get the got relocation section if necessary. */
2356 if (srelgot == NULL
2357 && (h != NULL || info->shared))
2358 {
2359 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2360
2361 /* If no got relocation section, make one and initialize. */
2362 if (srelgot == NULL)
2363 {
2364 srelgot = bfd_make_section (dynobj, ".rel.got");
2365 if (srelgot == NULL
2366 || ! bfd_set_section_flags (dynobj, srelgot,
2367 (SEC_ALLOC
2368 | SEC_LOAD
2369 | SEC_HAS_CONTENTS
2370 | SEC_IN_MEMORY
2371 | SEC_LINKER_CREATED
2372 | SEC_READONLY))
2373 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2374 return false;
2375 }
2376 }
2377
2378 if (h != NULL)
2379 {
2380 if (h->got.offset != (bfd_vma) -1)
2381 /* We have already allocated space in the .got. */
2382 break;
2383
2384 h->got.offset = sgot->_raw_size;
2385
2386 /* Make sure this symbol is output as a dynamic symbol. */
2387 if (h->dynindx == -1)
2388 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2389 return false;
2390
2391 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2392 }
2393 else
2394 {
2395 /* This is a global offset table entry for a local
2396 symbol. */
2397 if (local_got_offsets == NULL)
2398 {
2399 size_t size;
2400 register unsigned int i;
2401
2402 size = symtab_hdr->sh_info * sizeof (bfd_vma);
2403 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2404 if (local_got_offsets == NULL)
2405 return false;
2406 elf_local_got_offsets (abfd) = local_got_offsets;
2407 for (i = 0; i < symtab_hdr->sh_info; i++)
2408 local_got_offsets[i] = (bfd_vma) -1;
2409 }
2410
2411 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2412 /* We have already allocated space in the .got. */
2413 break;
2414
2415 local_got_offsets[r_symndx] = sgot->_raw_size;
2416
2417 if (info->shared)
2418 /* If we are generating a shared object, we need to
2419 output a R_ARM_RELATIVE reloc so that the dynamic
2420 linker can adjust this GOT entry. */
2421 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2422 }
2423
2424 sgot->_raw_size += 4;
2425 break;
2426
2427 case R_ARM_PLT32:
2428 /* This symbol requires a procedure linkage table entry. We
2429 actually build the entry in adjust_dynamic_symbol,
2430 because this might be a case of linking PIC code which is
2431 never referenced by a dynamic object, in which case we
2432 don't need to generate a procedure linkage table entry
2433 after all. */
2434
2435 /* If this is a local symbol, we resolve it directly without
2436 creating a procedure linkage table entry. */
2437 if (h == NULL)
2438 continue;
2439
2440 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2441 break;
2442
2443 case R_ARM_ABS32:
2444 case R_ARM_REL32:
2445 case R_ARM_PC24:
2446 /* If we are creating a shared library, and this is a reloc
2447 against a global symbol, or a non PC relative reloc
2448 against a local symbol, then we need to copy the reloc
2449 into the shared library. However, if we are linking with
2450 -Bsymbolic, we do not need to copy a reloc against a
2451 global symbol which is defined in an object we are
2452 including in the link (i.e., DEF_REGULAR is set). At
2453 this point we have not seen all the input files, so it is
2454 possible that DEF_REGULAR is not set now but will be set
2455 later (it is never cleared). We account for that
2456 possibility below by storing information in the
2457 pcrel_relocs_copied field of the hash table entry. */
2458 if (info->shared
2459 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2460 || (h != NULL
2461 && (! info->symbolic
2462 || (h->elf_link_hash_flags
2463 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2464 {
2465 /* When creating a shared object, we must copy these
2466 reloc types into the output file. We create a reloc
2467 section in dynobj and make room for this reloc. */
2468 if (sreloc == NULL)
2469 {
2470 const char * name;
2471
2472 name = (bfd_elf_string_from_elf_section
2473 (abfd,
2474 elf_elfheader (abfd)->e_shstrndx,
2475 elf_section_data (sec)->rel_hdr.sh_name));
2476 if (name == NULL)
2477 return false;
2478
2479 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2480 && strcmp (bfd_get_section_name (abfd, sec),
2481 name + 4) == 0);
2482
2483 sreloc = bfd_get_section_by_name (dynobj, name);
2484 if (sreloc == NULL)
2485 {
2486 flagword flags;
2487
2488 sreloc = bfd_make_section (dynobj, name);
2489 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2490 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2491 if ((sec->flags & SEC_ALLOC) != 0)
2492 flags |= SEC_ALLOC | SEC_LOAD;
2493 if (sreloc == NULL
2494 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2495 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2496 return false;
2497 }
2498 }
2499
2500 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2501 /* If we are linking with -Bsymbolic, and this is a
2502 global symbol, we count the number of PC relative
2503 relocations we have entered for this symbol, so that
2504 we can discard them again if the symbol is later
2505 defined by a regular object. Note that this function
2506 is only called if we are using an elf_i386 linker
2507 hash table, which means that h is really a pointer to
2508 an elf_i386_link_hash_entry. */
2509 if (h != NULL && info->symbolic
2510 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2511 {
2512 struct elf32_arm_link_hash_entry * eh;
2513 struct elf32_arm_pcrel_relocs_copied * p;
2514
2515 eh = (struct elf32_arm_link_hash_entry *) h;
2516
2517 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2518 if (p->section == sreloc)
2519 break;
2520
2521 if (p == NULL)
2522 {
2523 p = ((struct elf32_arm_pcrel_relocs_copied *)
2524 bfd_alloc (dynobj, sizeof * p));
2525
2526 if (p == NULL)
2527 return false;
2528 p->next = eh->pcrel_relocs_copied;
2529 eh->pcrel_relocs_copied = p;
2530 p->section = sreloc;
2531 p->count = 0;
2532 }
2533
2534 ++p->count;
2535 }
2536 }
2537 break;
2538
2539 /* This relocation describes the C++ object vtable hierarchy.
2540 Reconstruct it for later use during GC. */
2541 case R_ARM_GNU_VTINHERIT:
2542 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2543 return false;
2544 break;
2545
2546 /* This relocation describes which C++ vtable entries are actually
2547 used. Record for later use during GC. */
2548 case R_ARM_GNU_VTENTRY:
2549 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2550 return false;
2551 break;
2552 }
2553 }
2554
2555 return true;
2556 }
2557
2558
2559 /* Find the nearest line to a particular section and offset, for error
2560 reporting. This code is a duplicate of the code in elf.c, except
2561 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2562
2563 static boolean
2564 elf32_arm_find_nearest_line
2565 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2566 bfd * abfd;
2567 asection * section;
2568 asymbol ** symbols;
2569 bfd_vma offset;
2570 CONST char ** filename_ptr;
2571 CONST char ** functionname_ptr;
2572 unsigned int * line_ptr;
2573 {
2574 boolean found;
2575 const char * filename;
2576 asymbol * func;
2577 bfd_vma low_func;
2578 asymbol ** p;
2579
2580 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2581 filename_ptr, functionname_ptr,
2582 line_ptr, 0))
2583 return true;
2584
2585 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2586 &found, filename_ptr,
2587 functionname_ptr, line_ptr,
2588 &elf_tdata (abfd)->line_info))
2589 return false;
2590
2591 if (found)
2592 return true;
2593
2594 if (symbols == NULL)
2595 return false;
2596
2597 filename = NULL;
2598 func = NULL;
2599 low_func = 0;
2600
2601 for (p = symbols; *p != NULL; p++)
2602 {
2603 elf_symbol_type *q;
2604
2605 q = (elf_symbol_type *) *p;
2606
2607 if (bfd_get_section (&q->symbol) != section)
2608 continue;
2609
2610 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2611 {
2612 default:
2613 break;
2614 case STT_FILE:
2615 filename = bfd_asymbol_name (&q->symbol);
2616 break;
2617 case STT_NOTYPE:
2618 case STT_FUNC:
2619 case STT_ARM_TFUNC:
2620 if (q->symbol.section == section
2621 && q->symbol.value >= low_func
2622 && q->symbol.value <= offset)
2623 {
2624 func = (asymbol *) q;
2625 low_func = q->symbol.value;
2626 }
2627 break;
2628 }
2629 }
2630
2631 if (func == NULL)
2632 return false;
2633
2634 *filename_ptr = filename;
2635 *functionname_ptr = bfd_asymbol_name (func);
2636 *line_ptr = 0;
2637
2638 return true;
2639 }
2640
2641 /* Adjust a symbol defined by a dynamic object and referenced by a
2642 regular object. The current definition is in some section of the
2643 dynamic object, but we're not including those sections. We have to
2644 change the definition to something the rest of the link can
2645 understand. */
2646
2647 static boolean
2648 elf32_arm_adjust_dynamic_symbol (info, h)
2649 struct bfd_link_info * info;
2650 struct elf_link_hash_entry * h;
2651 {
2652 bfd * dynobj;
2653 asection * s;
2654 unsigned int power_of_two;
2655
2656 dynobj = elf_hash_table (info)->dynobj;
2657
2658 /* Make sure we know what is going on here. */
2659 BFD_ASSERT (dynobj != NULL
2660 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2661 || h->weakdef != NULL
2662 || ((h->elf_link_hash_flags
2663 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2664 && (h->elf_link_hash_flags
2665 & ELF_LINK_HASH_REF_REGULAR) != 0
2666 && (h->elf_link_hash_flags
2667 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2668
2669 /* If this is a function, put it in the procedure linkage table. We
2670 will fill in the contents of the procedure linkage table later,
2671 when we know the address of the .got section. */
2672 if (h->type == STT_FUNC
2673 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2674 {
2675 if (! info->shared
2676 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2677 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2678 {
2679 /* This case can occur if we saw a PLT32 reloc in an input
2680 file, but the symbol was never referred to by a dynamic
2681 object. In such a case, we don't actually need to build
2682 a procedure linkage table, and we can just do a PC32
2683 reloc instead. */
2684 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2685 return true;
2686 }
2687
2688 /* Make sure this symbol is output as a dynamic symbol. */
2689 if (h->dynindx == -1)
2690 {
2691 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2692 return false;
2693 }
2694
2695 s = bfd_get_section_by_name (dynobj, ".plt");
2696 BFD_ASSERT (s != NULL);
2697
2698 /* If this is the first .plt entry, make room for the special
2699 first entry. */
2700 if (s->_raw_size == 0)
2701 s->_raw_size += PLT_ENTRY_SIZE;
2702
2703 /* If this symbol is not defined in a regular file, and we are
2704 not generating a shared library, then set the symbol to this
2705 location in the .plt. This is required to make function
2706 pointers compare as equal between the normal executable and
2707 the shared library. */
2708 if (! info->shared
2709 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2710 {
2711 h->root.u.def.section = s;
2712 h->root.u.def.value = s->_raw_size;
2713 }
2714
2715 h->plt.offset = s->_raw_size;
2716
2717 /* Make room for this entry. */
2718 s->_raw_size += PLT_ENTRY_SIZE;
2719
2720 /* We also need to make an entry in the .got.plt section, which
2721 will be placed in the .got section by the linker script. */
2722 s = bfd_get_section_by_name (dynobj, ".got.plt");
2723 BFD_ASSERT (s != NULL);
2724 s->_raw_size += 4;
2725
2726 /* We also need to make an entry in the .rel.plt section. */
2727
2728 s = bfd_get_section_by_name (dynobj, ".rel.plt");
2729 BFD_ASSERT (s != NULL);
2730 s->_raw_size += sizeof (Elf32_External_Rel);
2731
2732 return true;
2733 }
2734
2735 /* If this is a weak symbol, and there is a real definition, the
2736 processor independent code will have arranged for us to see the
2737 real definition first, and we can just use the same value. */
2738 if (h->weakdef != NULL)
2739 {
2740 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2741 || h->weakdef->root.type == bfd_link_hash_defweak);
2742 h->root.u.def.section = h->weakdef->root.u.def.section;
2743 h->root.u.def.value = h->weakdef->root.u.def.value;
2744 return true;
2745 }
2746
2747 /* This is a reference to a symbol defined by a dynamic object which
2748 is not a function. */
2749
2750 /* If we are creating a shared library, we must presume that the
2751 only references to the symbol are via the global offset table.
2752 For such cases we need not do anything here; the relocations will
2753 be handled correctly by relocate_section. */
2754 if (info->shared)
2755 return true;
2756
2757 /* We must allocate the symbol in our .dynbss section, which will
2758 become part of the .bss section of the executable. There will be
2759 an entry for this symbol in the .dynsym section. The dynamic
2760 object will contain position independent code, so all references
2761 from the dynamic object to this symbol will go through the global
2762 offset table. The dynamic linker will use the .dynsym entry to
2763 determine the address it must put in the global offset table, so
2764 both the dynamic object and the regular object will refer to the
2765 same memory location for the variable. */
2766 s = bfd_get_section_by_name (dynobj, ".dynbss");
2767 BFD_ASSERT (s != NULL);
2768
2769 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2770 copy the initial value out of the dynamic object and into the
2771 runtime process image. We need to remember the offset into the
2772 .rel.bss section we are going to use. */
2773 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2774 {
2775 asection *srel;
2776
2777 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
2778 BFD_ASSERT (srel != NULL);
2779 srel->_raw_size += sizeof (Elf32_External_Rel);
2780 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2781 }
2782
2783 /* We need to figure out the alignment required for this symbol. I
2784 have no idea how ELF linkers handle this. */
2785 power_of_two = bfd_log2 (h->size);
2786 if (power_of_two > 3)
2787 power_of_two = 3;
2788
2789 /* Apply the required alignment. */
2790 s->_raw_size = BFD_ALIGN (s->_raw_size,
2791 (bfd_size_type) (1 << power_of_two));
2792 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2793 {
2794 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2795 return false;
2796 }
2797
2798 /* Define the symbol as being at this point in the section. */
2799 h->root.u.def.section = s;
2800 h->root.u.def.value = s->_raw_size;
2801
2802 /* Increment the section size to make room for the symbol. */
2803 s->_raw_size += h->size;
2804
2805 return true;
2806 }
2807
2808 /* Set the sizes of the dynamic sections. */
2809
2810 static boolean
2811 elf32_arm_size_dynamic_sections (output_bfd, info)
2812 bfd * output_bfd;
2813 struct bfd_link_info * info;
2814 {
2815 bfd * dynobj;
2816 asection * s;
2817 boolean plt;
2818 boolean relocs;
2819 boolean reltext;
2820
2821 dynobj = elf_hash_table (info)->dynobj;
2822 BFD_ASSERT (dynobj != NULL);
2823
2824 if (elf_hash_table (info)->dynamic_sections_created)
2825 {
2826 /* Set the contents of the .interp section to the interpreter. */
2827 if (! info->shared)
2828 {
2829 s = bfd_get_section_by_name (dynobj, ".interp");
2830 BFD_ASSERT (s != NULL);
2831 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2832 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2833 }
2834 }
2835 else
2836 {
2837 /* We may have created entries in the .rel.got section.
2838 However, if we are not creating the dynamic sections, we will
2839 not actually use these entries. Reset the size of .rel.got,
2840 which will cause it to get stripped from the output file
2841 below. */
2842 s = bfd_get_section_by_name (dynobj, ".rel.got");
2843 if (s != NULL)
2844 s->_raw_size = 0;
2845 }
2846
2847 /* If this is a -Bsymbolic shared link, then we need to discard all
2848 PC relative relocs against symbols defined in a regular object.
2849 We allocated space for them in the check_relocs routine, but we
2850 will not fill them in in the relocate_section routine. */
2851 if (info->shared && info->symbolic)
2852 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
2853 elf32_arm_discard_copies,
2854 (PTR) NULL);
2855
2856 /* The check_relocs and adjust_dynamic_symbol entry points have
2857 determined the sizes of the various dynamic sections. Allocate
2858 memory for them. */
2859 plt = false;
2860 relocs = false;
2861 reltext = false;
2862 for (s = dynobj->sections; s != NULL; s = s->next)
2863 {
2864 const char * name;
2865 boolean strip;
2866
2867 if ((s->flags & SEC_LINKER_CREATED) == 0)
2868 continue;
2869
2870 /* It's OK to base decisions on the section name, because none
2871 of the dynobj section names depend upon the input files. */
2872 name = bfd_get_section_name (dynobj, s);
2873
2874 strip = false;
2875
2876 if (strcmp (name, ".plt") == 0)
2877 {
2878 if (s->_raw_size == 0)
2879 {
2880 /* Strip this section if we don't need it; see the
2881 comment below. */
2882 strip = true;
2883 }
2884 else
2885 {
2886 /* Remember whether there is a PLT. */
2887 plt = true;
2888 }
2889 }
2890 else if (strncmp (name, ".rel", 4) == 0)
2891 {
2892 if (s->_raw_size == 0)
2893 {
2894 /* If we don't need this section, strip it from the
2895 output file. This is mostly to handle .rel.bss and
2896 .rel.plt. We must create both sections in
2897 create_dynamic_sections, because they must be created
2898 before the linker maps input sections to output
2899 sections. The linker does that before
2900 adjust_dynamic_symbol is called, and it is that
2901 function which decides whether anything needs to go
2902 into these sections. */
2903 strip = true;
2904 }
2905 else
2906 {
2907 asection * target;
2908
2909 /* Remember whether there are any reloc sections other
2910 than .rel.plt. */
2911 if (strcmp (name, ".rel.plt") != 0)
2912 {
2913 const char *outname;
2914
2915 relocs = true;
2916
2917 /* If this relocation section applies to a read only
2918 section, then we probably need a DT_TEXTREL
2919 entry. The entries in the .rel.plt section
2920 really apply to the .got section, which we
2921 created ourselves and so know is not readonly. */
2922 outname = bfd_get_section_name (output_bfd,
2923 s->output_section);
2924 target = bfd_get_section_by_name (output_bfd, outname + 4);
2925
2926 if (target != NULL
2927 && (target->flags & SEC_READONLY) != 0
2928 && (target->flags & SEC_ALLOC) != 0)
2929 reltext = true;
2930 }
2931
2932 /* We use the reloc_count field as a counter if we need
2933 to copy relocs into the output file. */
2934 s->reloc_count = 0;
2935 }
2936 }
2937 else if (strncmp (name, ".got", 4) != 0)
2938 {
2939 /* It's not one of our sections, so don't allocate space. */
2940 continue;
2941 }
2942
2943 if (strip)
2944 {
2945 asection ** spp;
2946
2947 for (spp = &s->output_section->owner->sections;
2948 *spp != s->output_section;
2949 spp = &(*spp)->next)
2950 ;
2951 *spp = s->output_section->next;
2952 --s->output_section->owner->section_count;
2953
2954 continue;
2955 }
2956
2957 /* Allocate memory for the section contents. */
2958 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2959 if (s->contents == NULL && s->_raw_size != 0)
2960 return false;
2961 }
2962
2963 if (elf_hash_table (info)->dynamic_sections_created)
2964 {
2965 /* Add some entries to the .dynamic section. We fill in the
2966 values later, in elf32_arm_finish_dynamic_sections, but we
2967 must add the entries now so that we get the correct size for
2968 the .dynamic section. The DT_DEBUG entry is filled in by the
2969 dynamic linker and used by the debugger. */
2970 if (! info->shared)
2971 {
2972 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
2973 return false;
2974 }
2975
2976 if (plt)
2977 {
2978 if ( ! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
2979 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
2980 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
2981 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
2982 return false;
2983 }
2984
2985 if (relocs)
2986 {
2987 if ( ! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
2988 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
2989 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
2990 sizeof (Elf32_External_Rel)))
2991 return false;
2992 }
2993
2994 if (reltext)
2995 {
2996 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
2997 return false;
2998 info->flags |= DF_TEXTREL;
2999 }
3000 }
3001
3002 return true;
3003 }
3004
3005 /* This function is called via elf32_arm_link_hash_traverse if we are
3006 creating a shared object with -Bsymbolic. It discards the space
3007 allocated to copy PC relative relocs against symbols which are
3008 defined in regular objects. We allocated space for them in the
3009 check_relocs routine, but we won't fill them in in the
3010 relocate_section routine. */
3011
3012 static boolean
3013 elf32_arm_discard_copies (h, ignore)
3014 struct elf32_arm_link_hash_entry * h;
3015 PTR ignore ATTRIBUTE_UNUSED;
3016 {
3017 struct elf32_arm_pcrel_relocs_copied * s;
3018
3019 /* We only discard relocs for symbols defined in a regular object. */
3020 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3021 return true;
3022
3023 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3024 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3025
3026 return true;
3027 }
3028
3029 /* Finish up dynamic symbol handling. We set the contents of various
3030 dynamic sections here. */
3031
3032 static boolean
3033 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3034 bfd * output_bfd;
3035 struct bfd_link_info * info;
3036 struct elf_link_hash_entry * h;
3037 Elf_Internal_Sym * sym;
3038 {
3039 bfd * dynobj;
3040
3041 dynobj = elf_hash_table (info)->dynobj;
3042
3043 if (h->plt.offset != (bfd_vma) -1)
3044 {
3045 asection * splt;
3046 asection * sgot;
3047 asection * srel;
3048 bfd_vma plt_index;
3049 bfd_vma got_offset;
3050 Elf_Internal_Rel rel;
3051
3052 /* This symbol has an entry in the procedure linkage table. Set
3053 it up. */
3054
3055 BFD_ASSERT (h->dynindx != -1);
3056
3057 splt = bfd_get_section_by_name (dynobj, ".plt");
3058 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3059 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3060 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3061
3062 /* Get the index in the procedure linkage table which
3063 corresponds to this symbol. This is the index of this symbol
3064 in all the symbols for which we are making plt entries. The
3065 first entry in the procedure linkage table is reserved. */
3066 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3067
3068 /* Get the offset into the .got table of the entry that
3069 corresponds to this function. Each .got entry is 4 bytes.
3070 The first three are reserved. */
3071 got_offset = (plt_index + 3) * 4;
3072
3073 /* Fill in the entry in the procedure linkage table. */
3074 memcpy (splt->contents + h->plt.offset,
3075 elf32_arm_plt_entry,
3076 PLT_ENTRY_SIZE);
3077 bfd_put_32 (output_bfd,
3078 (sgot->output_section->vma
3079 + sgot->output_offset
3080 + got_offset
3081 - splt->output_section->vma
3082 - splt->output_offset
3083 - h->plt.offset - 12),
3084 splt->contents + h->plt.offset + 12);
3085
3086 /* Fill in the entry in the global offset table. */
3087 bfd_put_32 (output_bfd,
3088 (splt->output_section->vma
3089 + splt->output_offset),
3090 sgot->contents + got_offset);
3091
3092 /* Fill in the entry in the .rel.plt section. */
3093 rel.r_offset = (sgot->output_section->vma
3094 + sgot->output_offset
3095 + got_offset);
3096 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3097 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3098 ((Elf32_External_Rel *) srel->contents
3099 + plt_index));
3100
3101 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3102 {
3103 /* Mark the symbol as undefined, rather than as defined in
3104 the .plt section. Leave the value alone. */
3105 sym->st_shndx = SHN_UNDEF;
3106 }
3107 }
3108
3109 if (h->got.offset != (bfd_vma) -1)
3110 {
3111 asection * sgot;
3112 asection * srel;
3113 Elf_Internal_Rel rel;
3114
3115 /* This symbol has an entry in the global offset table. Set it
3116 up. */
3117 sgot = bfd_get_section_by_name (dynobj, ".got");
3118 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3119 BFD_ASSERT (sgot != NULL && srel != NULL);
3120
3121 rel.r_offset = (sgot->output_section->vma
3122 + sgot->output_offset
3123 + (h->got.offset &~ 1));
3124
3125 /* If this is a -Bsymbolic link, and the symbol is defined
3126 locally, we just want to emit a RELATIVE reloc. The entry in
3127 the global offset table will already have been initialized in
3128 the relocate_section function. */
3129 if (info->shared
3130 && (info->symbolic || h->dynindx == -1)
3131 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3132 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3133 else
3134 {
3135 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3136 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3137 }
3138
3139 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3140 ((Elf32_External_Rel *) srel->contents
3141 + srel->reloc_count));
3142 ++srel->reloc_count;
3143 }
3144
3145 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3146 {
3147 asection * s;
3148 Elf_Internal_Rel rel;
3149
3150 /* This symbol needs a copy reloc. Set it up. */
3151 BFD_ASSERT (h->dynindx != -1
3152 && (h->root.type == bfd_link_hash_defined
3153 || h->root.type == bfd_link_hash_defweak));
3154
3155 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3156 ".rel.bss");
3157 BFD_ASSERT (s != NULL);
3158
3159 rel.r_offset = (h->root.u.def.value
3160 + h->root.u.def.section->output_section->vma
3161 + h->root.u.def.section->output_offset);
3162 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3163 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3164 ((Elf32_External_Rel *) s->contents
3165 + s->reloc_count));
3166 ++s->reloc_count;
3167 }
3168
3169 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3170 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3171 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3172 sym->st_shndx = SHN_ABS;
3173
3174 return true;
3175 }
3176
3177 /* Finish up the dynamic sections. */
3178
3179 static boolean
3180 elf32_arm_finish_dynamic_sections (output_bfd, info)
3181 bfd * output_bfd;
3182 struct bfd_link_info * info;
3183 {
3184 bfd * dynobj;
3185 asection * sgot;
3186 asection * sdyn;
3187
3188 dynobj = elf_hash_table (info)->dynobj;
3189
3190 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3191 BFD_ASSERT (sgot != NULL);
3192 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3193
3194 if (elf_hash_table (info)->dynamic_sections_created)
3195 {
3196 asection *splt;
3197 Elf32_External_Dyn *dyncon, *dynconend;
3198
3199 splt = bfd_get_section_by_name (dynobj, ".plt");
3200 BFD_ASSERT (splt != NULL && sdyn != NULL);
3201
3202 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3203 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3204
3205 for (; dyncon < dynconend; dyncon++)
3206 {
3207 Elf_Internal_Dyn dyn;
3208 const char * name;
3209 asection * s;
3210
3211 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3212
3213 switch (dyn.d_tag)
3214 {
3215 default:
3216 break;
3217
3218 case DT_PLTGOT:
3219 name = ".got";
3220 goto get_vma;
3221 case DT_JMPREL:
3222 name = ".rel.plt";
3223 get_vma:
3224 s = bfd_get_section_by_name (output_bfd, name);
3225 BFD_ASSERT (s != NULL);
3226 dyn.d_un.d_ptr = s->vma;
3227 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3228 break;
3229
3230 case DT_PLTRELSZ:
3231 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3232 BFD_ASSERT (s != NULL);
3233 if (s->_cooked_size != 0)
3234 dyn.d_un.d_val = s->_cooked_size;
3235 else
3236 dyn.d_un.d_val = s->_raw_size;
3237 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3238 break;
3239
3240 case DT_RELSZ:
3241 /* My reading of the SVR4 ABI indicates that the
3242 procedure linkage table relocs (DT_JMPREL) should be
3243 included in the overall relocs (DT_REL). This is
3244 what Solaris does. However, UnixWare can not handle
3245 that case. Therefore, we override the DT_RELSZ entry
3246 here to make it not include the JMPREL relocs. Since
3247 the linker script arranges for .rel.plt to follow all
3248 other relocation sections, we don't have to worry
3249 about changing the DT_REL entry. */
3250 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3251 if (s != NULL)
3252 {
3253 if (s->_cooked_size != 0)
3254 dyn.d_un.d_val -= s->_cooked_size;
3255 else
3256 dyn.d_un.d_val -= s->_raw_size;
3257 }
3258 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3259 break;
3260 }
3261 }
3262
3263 /* Fill in the first entry in the procedure linkage table. */
3264 if (splt->_raw_size > 0)
3265 memcpy (splt->contents, elf32_arm_plt0_entry, PLT_ENTRY_SIZE);
3266
3267 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3268 really seem like the right value. */
3269 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3270 }
3271
3272 /* Fill in the first three entries in the global offset table. */
3273 if (sgot->_raw_size > 0)
3274 {
3275 if (sdyn == NULL)
3276 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3277 else
3278 bfd_put_32 (output_bfd,
3279 sdyn->output_section->vma + sdyn->output_offset,
3280 sgot->contents);
3281 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3282 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3283 }
3284
3285 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3286
3287 return true;
3288 }
3289
3290 static void
3291 elf32_arm_post_process_headers (abfd, link_info)
3292 bfd * abfd;
3293 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3294 {
3295 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3296
3297 i_ehdrp = elf_elfheader (abfd);
3298
3299 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3300 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3301 }
3302
3303
3304 #define ELF_ARCH bfd_arch_arm
3305 #define ELF_MACHINE_CODE EM_ARM
3306 #define ELF_MAXPAGESIZE 0x8000
3307
3308
3309 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3310 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3311 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3312 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3313 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3314 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3315 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3316
3317 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3318 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3319 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3320 #define elf_backend_check_relocs elf32_arm_check_relocs
3321 #define elf_backend_relocate_section elf32_arm_relocate_section
3322 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3323 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3324 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3325 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3326 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3327 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3328
3329 #define elf_backend_can_gc_sections 1
3330 #define elf_backend_plt_readonly 1
3331 #define elf_backend_want_got_plt 1
3332 #define elf_backend_want_plt_sym 0
3333
3334 #define elf_backend_got_header_size 12
3335 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3336
3337 #include "elf32-target.h"
This page took 0.11627 seconds and 4 git commands to generate.