2000-12-03 Kazu Hirata <kazu@hxi.com>
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20
21 typedef unsigned long int insn32;
22 typedef unsigned short int insn16;
23
24 static boolean elf32_arm_set_private_flags
25 PARAMS ((bfd *, flagword));
26 static boolean elf32_arm_copy_private_bfd_data
27 PARAMS ((bfd *, bfd *));
28 static boolean elf32_arm_merge_private_bfd_data
29 PARAMS ((bfd *, bfd *));
30 static boolean elf32_arm_print_private_bfd_data
31 PARAMS ((bfd *, PTR));
32 static int elf32_arm_get_symbol_type
33 PARAMS (( Elf_Internal_Sym *, int));
34 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
35 PARAMS ((bfd *));
36 static bfd_reloc_status_type elf32_arm_final_link_relocate
37 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
38 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
39 const char *, unsigned char, struct elf_link_hash_entry *));
40 static insn32 insert_thumb_branch
41 PARAMS ((insn32, int));
42 static struct elf_link_hash_entry *find_thumb_glue
43 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
44 static struct elf_link_hash_entry *find_arm_glue
45 PARAMS ((struct bfd_link_info *, CONST char *, bfd *));
46 static void record_arm_to_thumb_glue
47 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
48 static void record_thumb_to_arm_glue
49 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
50 static void elf32_arm_post_process_headers
51 PARAMS ((bfd *, struct bfd_link_info *));
52 static int elf32_arm_to_thumb_stub
53 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
54 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
55 static int elf32_thumb_to_arm_stub
56 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
57 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
58
59 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_INTERWORK)
60
61 /* The linker script knows the section names for placement.
62 The entry_names are used to do simple name mangling on the stubs.
63 Given a function name, and its type, the stub can be found. The
64 name can be changed. The only requirement is the %s be present. */
65 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
66 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
67
68 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
69 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
70
71 /* The name of the dynamic interpreter. This is put in the .interp
72 section. */
73 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
74
75 /* The size in bytes of an entry in the procedure linkage table. */
76 #define PLT_ENTRY_SIZE 16
77
78 /* The first entry in a procedure linkage table looks like
79 this. It is set up so that any shared library function that is
80 called before the relocation has been set up calls the dynamic
81 linker first. */
82 static const bfd_byte elf32_arm_plt0_entry [PLT_ENTRY_SIZE] =
83 {
84 0x04, 0xe0, 0x2d, 0xe5, /* str lr, [sp, #-4]! */
85 0x10, 0xe0, 0x9f, 0xe5, /* ldr lr, [pc, #16] */
86 0x0e, 0xe0, 0x8f, 0xe0, /* adr lr, pc, lr */
87 0x08, 0xf0, 0xbe, 0xe5 /* ldr pc, [lr, #8]! */
88 };
89
90 /* Subsequent entries in a procedure linkage table look like
91 this. */
92 static const bfd_byte elf32_arm_plt_entry [PLT_ENTRY_SIZE] =
93 {
94 0x04, 0xc0, 0x9f, 0xe5, /* ldr ip, [pc, #4] */
95 0x0c, 0xc0, 0x8f, 0xe0, /* add ip, pc, ip */
96 0x00, 0xf0, 0x9c, 0xe5, /* ldr pc, [ip] */
97 0x00, 0x00, 0x00, 0x00 /* offset to symbol in got */
98 };
99
100 /* The ARM linker needs to keep track of the number of relocs that it
101 decides to copy in check_relocs for each symbol. This is so that
102 it can discard PC relative relocs if it doesn't need them when
103 linking with -Bsymbolic. We store the information in a field
104 extending the regular ELF linker hash table. */
105
106 /* This structure keeps track of the number of PC relative relocs we
107 have copied for a given symbol. */
108 struct elf32_arm_pcrel_relocs_copied
109 {
110 /* Next section. */
111 struct elf32_arm_pcrel_relocs_copied * next;
112 /* A section in dynobj. */
113 asection * section;
114 /* Number of relocs copied in this section. */
115 bfd_size_type count;
116 };
117
118 /* Arm ELF linker hash entry. */
119 struct elf32_arm_link_hash_entry
120 {
121 struct elf_link_hash_entry root;
122
123 /* Number of PC relative relocs copied for this symbol. */
124 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
125 };
126
127 /* Declare this now that the above structures are defined. */
128 static boolean elf32_arm_discard_copies
129 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
130
131 /* Traverse an arm ELF linker hash table. */
132 #define elf32_arm_link_hash_traverse(table, func, info) \
133 (elf_link_hash_traverse \
134 (&(table)->root, \
135 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
136 (info)))
137
138 /* Get the ARM elf linker hash table from a link_info structure. */
139 #define elf32_arm_hash_table(info) \
140 ((struct elf32_arm_link_hash_table *) ((info)->hash))
141
142 /* ARM ELF linker hash table. */
143 struct elf32_arm_link_hash_table
144 {
145 /* The main hash table. */
146 struct elf_link_hash_table root;
147
148 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
149 long int thumb_glue_size;
150
151 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
152 long int arm_glue_size;
153
154 /* An arbitary input BFD chosen to hold the glue sections. */
155 bfd * bfd_of_glue_owner;
156
157 /* A boolean indicating whether knowledge of the ARM's pipeline
158 length should be applied by the linker. */
159 int no_pipeline_knowledge;
160 };
161
162
163 /* Create an entry in an ARM ELF linker hash table. */
164
165 static struct bfd_hash_entry *
166 elf32_arm_link_hash_newfunc (entry, table, string)
167 struct bfd_hash_entry * entry;
168 struct bfd_hash_table * table;
169 const char * string;
170 {
171 struct elf32_arm_link_hash_entry * ret =
172 (struct elf32_arm_link_hash_entry *) entry;
173
174 /* Allocate the structure if it has not already been allocated by a
175 subclass. */
176 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
177 ret = ((struct elf32_arm_link_hash_entry *)
178 bfd_hash_allocate (table,
179 sizeof (struct elf32_arm_link_hash_entry)));
180 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
181 return (struct bfd_hash_entry *) ret;
182
183 /* Call the allocation method of the superclass. */
184 ret = ((struct elf32_arm_link_hash_entry *)
185 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
186 table, string));
187 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
188 ret->pcrel_relocs_copied = NULL;
189
190 return (struct bfd_hash_entry *) ret;
191 }
192
193 /* Create an ARM elf linker hash table. */
194
195 static struct bfd_link_hash_table *
196 elf32_arm_link_hash_table_create (abfd)
197 bfd *abfd;
198 {
199 struct elf32_arm_link_hash_table *ret;
200
201 ret = ((struct elf32_arm_link_hash_table *)
202 bfd_alloc (abfd, sizeof (struct elf32_arm_link_hash_table)));
203 if (ret == (struct elf32_arm_link_hash_table *) NULL)
204 return NULL;
205
206 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
207 elf32_arm_link_hash_newfunc))
208 {
209 bfd_release (abfd, ret);
210 return NULL;
211 }
212
213 ret->thumb_glue_size = 0;
214 ret->arm_glue_size = 0;
215 ret->bfd_of_glue_owner = NULL;
216 ret->no_pipeline_knowledge = 0;
217
218 return &ret->root.root;
219 }
220
221 /* Locate the Thumb encoded calling stub for NAME. */
222
223 static struct elf_link_hash_entry *
224 find_thumb_glue (link_info, name, input_bfd)
225 struct bfd_link_info *link_info;
226 CONST char *name;
227 bfd *input_bfd;
228 {
229 char *tmp_name;
230 struct elf_link_hash_entry *hash;
231 struct elf32_arm_link_hash_table *hash_table;
232
233 /* We need a pointer to the armelf specific hash table. */
234 hash_table = elf32_arm_hash_table (link_info);
235
236 tmp_name = ((char *)
237 bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1));
238
239 BFD_ASSERT (tmp_name);
240
241 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
242
243 hash = elf_link_hash_lookup
244 (&(hash_table)->root, tmp_name, false, false, true);
245
246 if (hash == NULL)
247 /* xgettext:c-format */
248 _bfd_error_handler (_("%s: unable to find THUMB glue '%s' for `%s'"),
249 bfd_get_filename (input_bfd), tmp_name, name);
250
251 free (tmp_name);
252
253 return hash;
254 }
255
256 /* Locate the ARM encoded calling stub for NAME. */
257
258 static struct elf_link_hash_entry *
259 find_arm_glue (link_info, name, input_bfd)
260 struct bfd_link_info *link_info;
261 CONST char *name;
262 bfd *input_bfd;
263 {
264 char *tmp_name;
265 struct elf_link_hash_entry *myh;
266 struct elf32_arm_link_hash_table *hash_table;
267
268 /* We need a pointer to the elfarm specific hash table. */
269 hash_table = elf32_arm_hash_table (link_info);
270
271 tmp_name = ((char *)
272 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
273
274 BFD_ASSERT (tmp_name);
275
276 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
277
278 myh = elf_link_hash_lookup
279 (&(hash_table)->root, tmp_name, false, false, true);
280
281 if (myh == NULL)
282 /* xgettext:c-format */
283 _bfd_error_handler (_("%s: unable to find ARM glue '%s' for `%s'"),
284 bfd_get_filename (input_bfd), tmp_name, name);
285
286 free (tmp_name);
287
288 return myh;
289 }
290
291 /* ARM->Thumb glue:
292
293 .arm
294 __func_from_arm:
295 ldr r12, __func_addr
296 bx r12
297 __func_addr:
298 .word func @ behave as if you saw a ARM_32 reloc. */
299
300 #define ARM2THUMB_GLUE_SIZE 12
301 static const insn32 a2t1_ldr_insn = 0xe59fc000;
302 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
303 static const insn32 a2t3_func_addr_insn = 0x00000001;
304
305 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
306
307 .thumb .thumb
308 .align 2 .align 2
309 __func_from_thumb: __func_from_thumb:
310 bx pc push {r6, lr}
311 nop ldr r6, __func_addr
312 .arm mov lr, pc
313 __func_change_to_arm: bx r6
314 b func .arm
315 __func_back_to_thumb:
316 ldmia r13! {r6, lr}
317 bx lr
318 __func_addr:
319 .word func */
320
321 #define THUMB2ARM_GLUE_SIZE 8
322 static const insn16 t2a1_bx_pc_insn = 0x4778;
323 static const insn16 t2a2_noop_insn = 0x46c0;
324 static const insn32 t2a3_b_insn = 0xea000000;
325
326 static const insn16 t2a1_push_insn = 0xb540;
327 static const insn16 t2a2_ldr_insn = 0x4e03;
328 static const insn16 t2a3_mov_insn = 0x46fe;
329 static const insn16 t2a4_bx_insn = 0x4730;
330 static const insn32 t2a5_pop_insn = 0xe8bd4040;
331 static const insn32 t2a6_bx_insn = 0xe12fff1e;
332
333 boolean
334 bfd_elf32_arm_allocate_interworking_sections (info)
335 struct bfd_link_info * info;
336 {
337 asection * s;
338 bfd_byte * foo;
339 struct elf32_arm_link_hash_table * globals;
340
341 globals = elf32_arm_hash_table (info);
342
343 BFD_ASSERT (globals != NULL);
344
345 if (globals->arm_glue_size != 0)
346 {
347 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
348
349 s = bfd_get_section_by_name
350 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
351
352 BFD_ASSERT (s != NULL);
353
354 foo = (bfd_byte *) bfd_alloc
355 (globals->bfd_of_glue_owner, globals->arm_glue_size);
356
357 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
358 s->contents = foo;
359 }
360
361 if (globals->thumb_glue_size != 0)
362 {
363 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
364
365 s = bfd_get_section_by_name
366 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
367
368 BFD_ASSERT (s != NULL);
369
370 foo = (bfd_byte *) bfd_alloc
371 (globals->bfd_of_glue_owner, globals->thumb_glue_size);
372
373 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
374 s->contents = foo;
375 }
376
377 return true;
378 }
379
380 static void
381 record_arm_to_thumb_glue (link_info, h)
382 struct bfd_link_info * link_info;
383 struct elf_link_hash_entry * h;
384 {
385 const char * name = h->root.root.string;
386 register asection * s;
387 char * tmp_name;
388 struct elf_link_hash_entry * myh;
389 struct elf32_arm_link_hash_table * globals;
390
391 globals = elf32_arm_hash_table (link_info);
392
393 BFD_ASSERT (globals != NULL);
394 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
395
396 s = bfd_get_section_by_name
397 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
398
399 BFD_ASSERT (s != NULL);
400
401 tmp_name = ((char *)
402 bfd_malloc (strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1));
403
404 BFD_ASSERT (tmp_name);
405
406 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
407
408 myh = elf_link_hash_lookup
409 (&(globals)->root, tmp_name, false, false, true);
410
411 if (myh != NULL)
412 {
413 /* We've already seen this guy. */
414 free (tmp_name);
415 return;
416 }
417
418 /* The only trick here is using hash_table->arm_glue_size as the value. Even
419 though the section isn't allocated yet, this is where we will be putting
420 it. */
421 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, tmp_name,
422 BSF_GLOBAL,
423 s, globals->arm_glue_size + 1,
424 NULL, true, false,
425 (struct bfd_link_hash_entry **) &myh);
426
427 free (tmp_name);
428
429 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
430
431 return;
432 }
433
434 static void
435 record_thumb_to_arm_glue (link_info, h)
436 struct bfd_link_info *link_info;
437 struct elf_link_hash_entry *h;
438 {
439 const char *name = h->root.root.string;
440 register asection *s;
441 char *tmp_name;
442 struct elf_link_hash_entry *myh;
443 struct elf32_arm_link_hash_table *hash_table;
444 char bind;
445
446 hash_table = elf32_arm_hash_table (link_info);
447
448 BFD_ASSERT (hash_table != NULL);
449 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
450
451 s = bfd_get_section_by_name
452 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
453
454 BFD_ASSERT (s != NULL);
455
456 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
457
458 BFD_ASSERT (tmp_name);
459
460 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
461
462 myh = elf_link_hash_lookup
463 (&(hash_table)->root, tmp_name, false, false, true);
464
465 if (myh != NULL)
466 {
467 /* We've already seen this guy. */
468 free (tmp_name);
469 return;
470 }
471
472 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
473 BSF_GLOBAL, s, hash_table->thumb_glue_size + 1,
474 NULL, true, false,
475 (struct bfd_link_hash_entry **) &myh);
476
477 /* If we mark it 'Thumb', the disassembler will do a better job. */
478 bind = ELF_ST_BIND (myh->type);
479 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
480
481 free (tmp_name);
482
483 #define CHANGE_TO_ARM "__%s_change_to_arm"
484 #define BACK_FROM_ARM "__%s_back_from_arm"
485
486 /* Allocate another symbol to mark where we switch to Arm mode. */
487 tmp_name = (char *) bfd_malloc (strlen (name) + strlen (CHANGE_TO_ARM) + 1);
488
489 BFD_ASSERT (tmp_name);
490
491 sprintf (tmp_name, CHANGE_TO_ARM, name);
492
493 myh = NULL;
494
495 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, tmp_name,
496 BSF_LOCAL, s, hash_table->thumb_glue_size + 4,
497 NULL, true, false,
498 (struct bfd_link_hash_entry **) &myh);
499
500 free (tmp_name);
501
502 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
503
504 return;
505 }
506
507 /* Select a BFD to be used to hold the sections used by the glue code.
508 This function is called from the linker scripts in ld/emultempl/
509 {armelf/pe}.em */
510
511 boolean
512 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
513 bfd *abfd;
514 struct bfd_link_info *info;
515 {
516 struct elf32_arm_link_hash_table *globals;
517 flagword flags;
518 asection *sec;
519
520 /* If we are only performing a partial link do not bother
521 getting a bfd to hold the glue. */
522 if (info->relocateable)
523 return true;
524
525 globals = elf32_arm_hash_table (info);
526
527 BFD_ASSERT (globals != NULL);
528
529 if (globals->bfd_of_glue_owner != NULL)
530 return true;
531
532 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
533
534 if (sec == NULL)
535 {
536 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
537 will prevent elf_link_input_bfd() from processing the contents
538 of this section. */
539 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
540
541 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
542
543 if (sec == NULL
544 || !bfd_set_section_flags (abfd, sec, flags)
545 || !bfd_set_section_alignment (abfd, sec, 2))
546 return false;
547
548 /* Set the gc mark to prevent the section from being removed by garbage
549 collection, despite the fact that no relocs refer to this section. */
550 sec->gc_mark = 1;
551 }
552
553 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
554
555 if (sec == NULL)
556 {
557 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
558
559 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
560
561 if (sec == NULL
562 || !bfd_set_section_flags (abfd, sec, flags)
563 || !bfd_set_section_alignment (abfd, sec, 2))
564 return false;
565
566 sec->gc_mark = 1;
567 }
568
569 /* Save the bfd for later use. */
570 globals->bfd_of_glue_owner = abfd;
571
572 return true;
573 }
574
575 boolean
576 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
577 bfd *abfd;
578 struct bfd_link_info *link_info;
579 int no_pipeline_knowledge;
580 {
581 Elf_Internal_Shdr *symtab_hdr;
582 Elf_Internal_Rela *free_relocs = NULL;
583 Elf_Internal_Rela *irel, *irelend;
584 bfd_byte *contents = NULL;
585 bfd_byte *free_contents = NULL;
586 Elf32_External_Sym *extsyms = NULL;
587 Elf32_External_Sym *free_extsyms = NULL;
588
589 asection *sec;
590 struct elf32_arm_link_hash_table *globals;
591
592 /* If we are only performing a partial link do not bother
593 to construct any glue. */
594 if (link_info->relocateable)
595 return true;
596
597 /* Here we have a bfd that is to be included on the link. We have a hook
598 to do reloc rummaging, before section sizes are nailed down. */
599 globals = elf32_arm_hash_table (link_info);
600
601 BFD_ASSERT (globals != NULL);
602 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
603
604 globals->no_pipeline_knowledge = no_pipeline_knowledge;
605
606 /* Rummage around all the relocs and map the glue vectors. */
607 sec = abfd->sections;
608
609 if (sec == NULL)
610 return true;
611
612 for (; sec != NULL; sec = sec->next)
613 {
614 if (sec->reloc_count == 0)
615 continue;
616
617 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
618
619 /* Load the relocs. */
620 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
621 (Elf_Internal_Rela *) NULL, false));
622
623 BFD_ASSERT (irel != 0);
624
625 irelend = irel + sec->reloc_count;
626 for (; irel < irelend; irel++)
627 {
628 long r_type;
629 unsigned long r_index;
630
631 struct elf_link_hash_entry *h;
632
633 r_type = ELF32_R_TYPE (irel->r_info);
634 r_index = ELF32_R_SYM (irel->r_info);
635
636 /* These are the only relocation types we care about. */
637 if ( r_type != R_ARM_PC24
638 && r_type != R_ARM_THM_PC22)
639 continue;
640
641 /* Get the section contents if we haven't done so already. */
642 if (contents == NULL)
643 {
644 /* Get cached copy if it exists. */
645 if (elf_section_data (sec)->this_hdr.contents != NULL)
646 contents = elf_section_data (sec)->this_hdr.contents;
647 else
648 {
649 /* Go get them off disk. */
650 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
651 if (contents == NULL)
652 goto error_return;
653
654 free_contents = contents;
655
656 if (!bfd_get_section_contents (abfd, sec, contents,
657 (file_ptr) 0, sec->_raw_size))
658 goto error_return;
659 }
660 }
661
662 /* Read this BFD's symbols if we haven't done so already. */
663 if (extsyms == NULL)
664 {
665 /* Get cached copy if it exists. */
666 if (symtab_hdr->contents != NULL)
667 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
668 else
669 {
670 /* Go get them off disk. */
671 extsyms = ((Elf32_External_Sym *)
672 bfd_malloc (symtab_hdr->sh_size));
673 if (extsyms == NULL)
674 goto error_return;
675
676 free_extsyms = extsyms;
677
678 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
679 || (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
680 != symtab_hdr->sh_size))
681 goto error_return;
682 }
683 }
684
685 /* If the relocation is not against a symbol it cannot concern us. */
686 h = NULL;
687
688 /* We don't care about local symbols. */
689 if (r_index < symtab_hdr->sh_info)
690 continue;
691
692 /* This is an external symbol. */
693 r_index -= symtab_hdr->sh_info;
694 h = (struct elf_link_hash_entry *)
695 elf_sym_hashes (abfd)[r_index];
696
697 /* If the relocation is against a static symbol it must be within
698 the current section and so cannot be a cross ARM/Thumb relocation. */
699 if (h == NULL)
700 continue;
701
702 switch (r_type)
703 {
704 case R_ARM_PC24:
705 /* This one is a call from arm code. We need to look up
706 the target of the call. If it is a thumb target, we
707 insert glue. */
708 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
709 record_arm_to_thumb_glue (link_info, h);
710 break;
711
712 case R_ARM_THM_PC22:
713 /* This one is a call from thumb code. We look
714 up the target of the call. If it is not a thumb
715 target, we insert glue. */
716 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
717 record_thumb_to_arm_glue (link_info, h);
718 break;
719
720 default:
721 break;
722 }
723 }
724 }
725
726 return true;
727
728 error_return:
729 if (free_relocs != NULL)
730 free (free_relocs);
731 if (free_contents != NULL)
732 free (free_contents);
733 if (free_extsyms != NULL)
734 free (free_extsyms);
735
736 return false;
737 }
738
739 /* The thumb form of a long branch is a bit finicky, because the offset
740 encoding is split over two fields, each in it's own instruction. They
741 can occur in any order. So given a thumb form of long branch, and an
742 offset, insert the offset into the thumb branch and return finished
743 instruction.
744
745 It takes two thumb instructions to encode the target address. Each has
746 11 bits to invest. The upper 11 bits are stored in one (identifed by
747 H-0.. see below), the lower 11 bits are stored in the other (identified
748 by H-1).
749
750 Combine together and shifted left by 1 (it's a half word address) and
751 there you have it.
752
753 Op: 1111 = F,
754 H-0, upper address-0 = 000
755 Op: 1111 = F,
756 H-1, lower address-0 = 800
757
758 They can be ordered either way, but the arm tools I've seen always put
759 the lower one first. It probably doesn't matter. krk@cygnus.com
760
761 XXX: Actually the order does matter. The second instruction (H-1)
762 moves the computed address into the PC, so it must be the second one
763 in the sequence. The problem, however is that whilst little endian code
764 stores the instructions in HI then LOW order, big endian code does the
765 reverse. nickc@cygnus.com. */
766
767 #define LOW_HI_ORDER 0xF800F000
768 #define HI_LOW_ORDER 0xF000F800
769
770 static insn32
771 insert_thumb_branch (br_insn, rel_off)
772 insn32 br_insn;
773 int rel_off;
774 {
775 unsigned int low_bits;
776 unsigned int high_bits;
777
778 BFD_ASSERT ((rel_off & 1) != 1);
779
780 rel_off >>= 1; /* Half word aligned address. */
781 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
782 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
783
784 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
785 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
786 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
787 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
788 else
789 /* FIXME: abort is probably not the right call. krk@cygnus.com */
790 abort (); /* error - not a valid branch instruction form. */
791
792 return br_insn;
793 }
794
795 /* Thumb code calling an ARM function. */
796
797 static int
798 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
799 hit_data, sym_sec, offset, addend, val)
800 struct bfd_link_info * info;
801 const char * name;
802 bfd * input_bfd;
803 bfd * output_bfd;
804 asection * input_section;
805 bfd_byte * hit_data;
806 asection * sym_sec;
807 bfd_vma offset;
808 bfd_signed_vma addend;
809 bfd_vma val;
810 {
811 asection * s = 0;
812 long int my_offset;
813 unsigned long int tmp;
814 long int ret_offset;
815 struct elf_link_hash_entry * myh;
816 struct elf32_arm_link_hash_table * globals;
817
818 myh = find_thumb_glue (info, name, input_bfd);
819 if (myh == NULL)
820 return false;
821
822 globals = elf32_arm_hash_table (info);
823
824 BFD_ASSERT (globals != NULL);
825 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
826
827 my_offset = myh->root.u.def.value;
828
829 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
830 THUMB2ARM_GLUE_SECTION_NAME);
831
832 BFD_ASSERT (s != NULL);
833 BFD_ASSERT (s->contents != NULL);
834 BFD_ASSERT (s->output_section != NULL);
835
836 if ((my_offset & 0x01) == 0x01)
837 {
838 if (sym_sec != NULL
839 && sym_sec->owner != NULL
840 && !INTERWORK_FLAG (sym_sec->owner))
841 {
842 _bfd_error_handler
843 (_("%s(%s): warning: interworking not enabled."),
844 bfd_get_filename (sym_sec->owner), name);
845 _bfd_error_handler
846 (_(" first occurrence: %s: thumb call to arm"),
847 bfd_get_filename (input_bfd));
848
849 return false;
850 }
851
852 --my_offset;
853 myh->root.u.def.value = my_offset;
854
855 bfd_put_16 (output_bfd, t2a1_bx_pc_insn,
856 s->contents + my_offset);
857
858 bfd_put_16 (output_bfd, t2a2_noop_insn,
859 s->contents + my_offset + 2);
860
861 ret_offset =
862 /* Address of destination of the stub. */
863 ((bfd_signed_vma) val)
864 - ((bfd_signed_vma)
865 /* Offset from the start of the current section to the start of the stubs. */
866 (s->output_offset
867 /* Offset of the start of this stub from the start of the stubs. */
868 + my_offset
869 /* Address of the start of the current section. */
870 + s->output_section->vma)
871 /* The branch instruction is 4 bytes into the stub. */
872 + 4
873 /* ARM branches work from the pc of the instruction + 8. */
874 + 8);
875
876 bfd_put_32 (output_bfd,
877 t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
878 s->contents + my_offset + 4);
879 }
880
881 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
882
883 /* Now go back and fix up the original BL insn to point
884 to here. */
885 ret_offset =
886 s->output_offset
887 + my_offset
888 - (input_section->output_offset
889 + offset + addend)
890 - 8;
891
892 tmp = bfd_get_32 (input_bfd, hit_data
893 - input_section->vma);
894
895 bfd_put_32 (output_bfd,
896 insert_thumb_branch (tmp, ret_offset),
897 hit_data - input_section->vma);
898
899 return true;
900 }
901
902 /* Arm code calling a Thumb function. */
903
904 static int
905 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
906 hit_data, sym_sec, offset, addend, val)
907 struct bfd_link_info * info;
908 const char * name;
909 bfd * input_bfd;
910 bfd * output_bfd;
911 asection * input_section;
912 bfd_byte * hit_data;
913 asection * sym_sec;
914 bfd_vma offset;
915 bfd_signed_vma addend;
916 bfd_vma val;
917 {
918 unsigned long int tmp;
919 long int my_offset;
920 asection * s;
921 long int ret_offset;
922 struct elf_link_hash_entry * myh;
923 struct elf32_arm_link_hash_table * globals;
924
925 myh = find_arm_glue (info, name, input_bfd);
926 if (myh == NULL)
927 return false;
928
929 globals = elf32_arm_hash_table (info);
930
931 BFD_ASSERT (globals != NULL);
932 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
933
934 my_offset = myh->root.u.def.value;
935 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
936 ARM2THUMB_GLUE_SECTION_NAME);
937 BFD_ASSERT (s != NULL);
938 BFD_ASSERT (s->contents != NULL);
939 BFD_ASSERT (s->output_section != NULL);
940
941 if ((my_offset & 0x01) == 0x01)
942 {
943 if (sym_sec != NULL
944 && sym_sec->owner != NULL
945 && !INTERWORK_FLAG (sym_sec->owner))
946 {
947 _bfd_error_handler
948 (_("%s(%s): warning: interworking not enabled."),
949 bfd_get_filename (sym_sec->owner), name);
950 _bfd_error_handler
951 (_(" first occurrence: %s: arm call to thumb"),
952 bfd_get_filename (input_bfd));
953 }
954
955 --my_offset;
956 myh->root.u.def.value = my_offset;
957
958 bfd_put_32 (output_bfd, a2t1_ldr_insn,
959 s->contents + my_offset);
960
961 bfd_put_32 (output_bfd, a2t2_bx_r12_insn,
962 s->contents + my_offset + 4);
963
964 /* It's a thumb address. Add the low order bit. */
965 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
966 s->contents + my_offset + 8);
967 }
968
969 BFD_ASSERT (my_offset <= globals->arm_glue_size);
970
971 tmp = bfd_get_32 (input_bfd, hit_data);
972 tmp = tmp & 0xFF000000;
973
974 /* Somehow these are both 4 too far, so subtract 8. */
975 ret_offset = s->output_offset
976 + my_offset
977 + s->output_section->vma
978 - (input_section->output_offset
979 + input_section->output_section->vma
980 + offset + addend)
981 - 8;
982
983 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
984
985 bfd_put_32 (output_bfd, tmp, hit_data
986 - input_section->vma);
987
988 return true;
989 }
990
991 /* Perform a relocation as part of a final link. */
992
993 static bfd_reloc_status_type
994 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
995 input_section, contents, rel, value,
996 info, sym_sec, sym_name, sym_flags, h)
997 reloc_howto_type * howto;
998 bfd * input_bfd;
999 bfd * output_bfd;
1000 asection * input_section;
1001 bfd_byte * contents;
1002 Elf_Internal_Rela * rel;
1003 bfd_vma value;
1004 struct bfd_link_info * info;
1005 asection * sym_sec;
1006 const char * sym_name;
1007 unsigned char sym_flags;
1008 struct elf_link_hash_entry * h;
1009 {
1010 unsigned long r_type = howto->type;
1011 unsigned long r_symndx;
1012 bfd_byte * hit_data = contents + rel->r_offset;
1013 bfd * dynobj = NULL;
1014 Elf_Internal_Shdr * symtab_hdr;
1015 struct elf_link_hash_entry ** sym_hashes;
1016 bfd_vma * local_got_offsets;
1017 asection * sgot = NULL;
1018 asection * splt = NULL;
1019 asection * sreloc = NULL;
1020 bfd_vma addend;
1021 bfd_signed_vma signed_addend;
1022 struct elf32_arm_link_hash_table * globals;
1023
1024 globals = elf32_arm_hash_table (info);
1025
1026 dynobj = elf_hash_table (info)->dynobj;
1027 if (dynobj)
1028 {
1029 sgot = bfd_get_section_by_name (dynobj, ".got");
1030 splt = bfd_get_section_by_name (dynobj, ".plt");
1031 }
1032 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1033 sym_hashes = elf_sym_hashes (input_bfd);
1034 local_got_offsets = elf_local_got_offsets (input_bfd);
1035 r_symndx = ELF32_R_SYM (rel->r_info);
1036
1037 #ifdef USE_REL
1038 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1039
1040 if (addend & ((howto->src_mask + 1) >> 1))
1041 {
1042 signed_addend = -1;
1043 signed_addend &= ~ howto->src_mask;
1044 signed_addend |= addend;
1045 }
1046 else
1047 signed_addend = addend;
1048 #else
1049 addend = signed_addend = rel->r_addend;
1050 #endif
1051
1052 switch (r_type)
1053 {
1054 case R_ARM_NONE:
1055 return bfd_reloc_ok;
1056
1057 case R_ARM_PC24:
1058 case R_ARM_ABS32:
1059 case R_ARM_REL32:
1060 #ifndef OLD_ARM_ABI
1061 case R_ARM_XPC25:
1062 #endif
1063 /* When generating a shared object, these relocations are copied
1064 into the output file to be resolved at run time. */
1065 if (info->shared
1066 && (r_type != R_ARM_PC24
1067 || (h != NULL
1068 && h->dynindx != -1
1069 && (! info->symbolic
1070 || (h->elf_link_hash_flags
1071 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1072 {
1073 Elf_Internal_Rel outrel;
1074 boolean skip, relocate;
1075
1076 if (sreloc == NULL)
1077 {
1078 const char * name;
1079
1080 name = (bfd_elf_string_from_elf_section
1081 (input_bfd,
1082 elf_elfheader (input_bfd)->e_shstrndx,
1083 elf_section_data (input_section)->rel_hdr.sh_name));
1084 if (name == NULL)
1085 return bfd_reloc_notsupported;
1086
1087 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1088 && strcmp (bfd_get_section_name (input_bfd,
1089 input_section),
1090 name + 4) == 0);
1091
1092 sreloc = bfd_get_section_by_name (dynobj, name);
1093 BFD_ASSERT (sreloc != NULL);
1094 }
1095
1096 skip = false;
1097
1098 if (elf_section_data (input_section)->stab_info == NULL)
1099 outrel.r_offset = rel->r_offset;
1100 else
1101 {
1102 bfd_vma off;
1103
1104 off = (_bfd_stab_section_offset
1105 (output_bfd, &elf_hash_table (info)->stab_info,
1106 input_section,
1107 & elf_section_data (input_section)->stab_info,
1108 rel->r_offset));
1109 if (off == (bfd_vma) -1)
1110 skip = true;
1111 outrel.r_offset = off;
1112 }
1113
1114 outrel.r_offset += (input_section->output_section->vma
1115 + input_section->output_offset);
1116
1117 if (skip)
1118 {
1119 memset (&outrel, 0, sizeof outrel);
1120 relocate = false;
1121 }
1122 else if (r_type == R_ARM_PC24)
1123 {
1124 BFD_ASSERT (h != NULL && h->dynindx != -1);
1125 if ((input_section->flags & SEC_ALLOC) != 0)
1126 relocate = false;
1127 else
1128 relocate = true;
1129 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1130 }
1131 else
1132 {
1133 if (h == NULL
1134 || ((info->symbolic || h->dynindx == -1)
1135 && (h->elf_link_hash_flags
1136 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1137 {
1138 relocate = true;
1139 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1140 }
1141 else
1142 {
1143 BFD_ASSERT (h->dynindx != -1);
1144 if ((input_section->flags & SEC_ALLOC) != 0)
1145 relocate = false;
1146 else
1147 relocate = true;
1148 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1149 }
1150 }
1151
1152 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1153 (((Elf32_External_Rel *)
1154 sreloc->contents)
1155 + sreloc->reloc_count));
1156 ++sreloc->reloc_count;
1157
1158 /* If this reloc is against an external symbol, we do not want to
1159 fiddle with the addend. Otherwise, we need to include the symbol
1160 value so that it becomes an addend for the dynamic reloc. */
1161 if (! relocate)
1162 return bfd_reloc_ok;
1163
1164 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1165 contents, rel->r_offset, value,
1166 (bfd_vma) 0);
1167 }
1168 else switch (r_type)
1169 {
1170 #ifndef OLD_ARM_ABI
1171 case R_ARM_XPC25: /* Arm BLX instruction. */
1172 #endif
1173 case R_ARM_PC24: /* Arm B/BL instruction */
1174 #ifndef OLD_ARM_ABI
1175 if (r_type == R_ARM_XPC25)
1176 {
1177 /* Check for Arm calling Arm function. */
1178 /* FIXME: Should we translate the instruction into a BL
1179 instruction instead ? */
1180 if (sym_flags != STT_ARM_TFUNC)
1181 _bfd_error_handler (_("\
1182 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1183 bfd_get_filename (input_bfd),
1184 h ? h->root.root.string : "(local)");
1185 }
1186 else
1187 #endif
1188 {
1189 /* Check for Arm calling Thumb function. */
1190 if (sym_flags == STT_ARM_TFUNC)
1191 {
1192 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1193 input_section, hit_data, sym_sec, rel->r_offset,
1194 signed_addend, value);
1195 return bfd_reloc_ok;
1196 }
1197 }
1198
1199 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1200 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1201 {
1202 /* The old way of doing things. Trearing the addend as a
1203 byte sized field and adding in the pipeline offset. */
1204 value -= (input_section->output_section->vma
1205 + input_section->output_offset);
1206 value -= rel->r_offset;
1207 value += addend;
1208
1209 if (! globals->no_pipeline_knowledge)
1210 value -= 8;
1211 }
1212 else
1213 {
1214 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1215 where:
1216 S is the address of the symbol in the relocation.
1217 P is address of the instruction being relocated.
1218 A is the addend (extracted from the instruction) in bytes.
1219
1220 S is held in 'value'.
1221 P is the base address of the section containing the instruction
1222 plus the offset of the reloc into that section, ie:
1223 (input_section->output_section->vma +
1224 input_section->output_offset +
1225 rel->r_offset).
1226 A is the addend, converted into bytes, ie:
1227 (signed_addend * 4)
1228
1229 Note: None of these operations have knowledge of the pipeline
1230 size of the processor, thus it is up to the assembler to encode
1231 this information into the addend. */
1232 value -= (input_section->output_section->vma
1233 + input_section->output_offset);
1234 value -= rel->r_offset;
1235 value += (signed_addend << howto->size);
1236
1237 /* Previous versions of this code also used to add in the pipeline
1238 offset here. This is wrong because the linker is not supposed
1239 to know about such things, and one day it might change. In order
1240 to support old binaries that need the old behaviour however, so
1241 we attempt to detect which ABI was used to create the reloc. */
1242 if (! globals->no_pipeline_knowledge)
1243 {
1244 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1245
1246 i_ehdrp = elf_elfheader (input_bfd);
1247
1248 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1249 value -= 8;
1250 }
1251 }
1252
1253 signed_addend = value;
1254 signed_addend >>= howto->rightshift;
1255
1256 /* It is not an error for an undefined weak reference to be
1257 out of range. Any program that branches to such a symbol
1258 is going to crash anyway, so there is no point worrying
1259 about getting the destination exactly right. */
1260 if (! h || h->root.type != bfd_link_hash_undefweak)
1261 {
1262 /* Perform a signed range check. */
1263 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1264 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1265 return bfd_reloc_overflow;
1266 }
1267
1268 #ifndef OLD_ARM_ABI
1269 /* If necessary set the H bit in the BLX instruction. */
1270 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1271 value = (signed_addend & howto->dst_mask)
1272 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1273 | (1 << 24);
1274 else
1275 #endif
1276 value = (signed_addend & howto->dst_mask)
1277 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1278 break;
1279
1280 case R_ARM_ABS32:
1281 value += addend;
1282 if (sym_flags == STT_ARM_TFUNC)
1283 value |= 1;
1284 break;
1285
1286 case R_ARM_REL32:
1287 value -= (input_section->output_section->vma
1288 + input_section->output_offset);
1289 value += addend;
1290 break;
1291 }
1292
1293 bfd_put_32 (input_bfd, value, hit_data);
1294 return bfd_reloc_ok;
1295
1296 case R_ARM_ABS8:
1297 value += addend;
1298 if ((long) value > 0x7f || (long) value < -0x80)
1299 return bfd_reloc_overflow;
1300
1301 bfd_put_8 (input_bfd, value, hit_data);
1302 return bfd_reloc_ok;
1303
1304 case R_ARM_ABS16:
1305 value += addend;
1306
1307 if ((long) value > 0x7fff || (long) value < -0x8000)
1308 return bfd_reloc_overflow;
1309
1310 bfd_put_16 (input_bfd, value, hit_data);
1311 return bfd_reloc_ok;
1312
1313 case R_ARM_ABS12:
1314 /* Support ldr and str instruction for the arm */
1315 /* Also thumb b (unconditional branch). ??? Really? */
1316 value += addend;
1317
1318 if ((long) value > 0x7ff || (long) value < -0x800)
1319 return bfd_reloc_overflow;
1320
1321 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1322 bfd_put_32 (input_bfd, value, hit_data);
1323 return bfd_reloc_ok;
1324
1325 case R_ARM_THM_ABS5:
1326 /* Support ldr and str instructions for the thumb. */
1327 #ifdef USE_REL
1328 /* Need to refetch addend. */
1329 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1330 /* ??? Need to determine shift amount from operand size. */
1331 addend >>= howto->rightshift;
1332 #endif
1333 value += addend;
1334
1335 /* ??? Isn't value unsigned? */
1336 if ((long) value > 0x1f || (long) value < -0x10)
1337 return bfd_reloc_overflow;
1338
1339 /* ??? Value needs to be properly shifted into place first. */
1340 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1341 bfd_put_16 (input_bfd, value, hit_data);
1342 return bfd_reloc_ok;
1343
1344 #ifndef OLD_ARM_ABI
1345 case R_ARM_THM_XPC22:
1346 #endif
1347 case R_ARM_THM_PC22:
1348 /* Thumb BL (branch long instruction). */
1349 {
1350 bfd_vma relocation;
1351 boolean overflow = false;
1352 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1353 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1354 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1355 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1356 bfd_vma check;
1357 bfd_signed_vma signed_check;
1358
1359 #ifdef USE_REL
1360 /* Need to refetch the addend and squish the two 11 bit pieces
1361 together. */
1362 {
1363 bfd_vma upper = upper_insn & 0x7ff;
1364 bfd_vma lower = lower_insn & 0x7ff;
1365 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1366 addend = (upper << 12) | (lower << 1);
1367 signed_addend = addend;
1368 }
1369 #endif
1370 #ifndef OLD_ARM_ABI
1371 if (r_type == R_ARM_THM_XPC22)
1372 {
1373 /* Check for Thumb to Thumb call. */
1374 /* FIXME: Should we translate the instruction into a BL
1375 instruction instead ? */
1376 if (sym_flags == STT_ARM_TFUNC)
1377 _bfd_error_handler (_("\
1378 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1379 bfd_get_filename (input_bfd),
1380 h ? h->root.root.string : "(local)");
1381 }
1382 else
1383 #endif
1384 {
1385 /* If it is not a call to Thumb, assume call to Arm.
1386 If it is a call relative to a section name, then it is not a
1387 function call at all, but rather a long jump. */
1388 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1389 {
1390 if (elf32_thumb_to_arm_stub
1391 (info, sym_name, input_bfd, output_bfd, input_section,
1392 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1393 return bfd_reloc_ok;
1394 else
1395 return bfd_reloc_dangerous;
1396 }
1397 }
1398
1399 relocation = value + signed_addend;
1400
1401 relocation -= (input_section->output_section->vma
1402 + input_section->output_offset
1403 + rel->r_offset);
1404
1405 if (! globals->no_pipeline_knowledge)
1406 {
1407 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1408
1409 i_ehdrp = elf_elfheader (input_bfd);
1410
1411 /* Previous versions of this code also used to add in the pipline
1412 offset here. This is wrong because the linker is not supposed
1413 to know about such things, and one day it might change. In order
1414 to support old binaries that need the old behaviour however, so
1415 we attempt to detect which ABI was used to create the reloc. */
1416 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1417 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1418 || i_ehdrp->e_ident[EI_OSABI] == 0)
1419 relocation += 4;
1420 }
1421
1422 check = relocation >> howto->rightshift;
1423
1424 /* If this is a signed value, the rightshift just dropped
1425 leading 1 bits (assuming twos complement). */
1426 if ((bfd_signed_vma) relocation >= 0)
1427 signed_check = check;
1428 else
1429 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1430
1431 /* Assumes two's complement. */
1432 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1433 overflow = true;
1434
1435 /* Put RELOCATION back into the insn. */
1436 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1437 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1438
1439 /* Put the relocated value back in the object file: */
1440 bfd_put_16 (input_bfd, upper_insn, hit_data);
1441 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1442
1443 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1444 }
1445 break;
1446
1447 case R_ARM_GNU_VTINHERIT:
1448 case R_ARM_GNU_VTENTRY:
1449 return bfd_reloc_ok;
1450
1451 case R_ARM_COPY:
1452 return bfd_reloc_notsupported;
1453
1454 case R_ARM_GLOB_DAT:
1455 return bfd_reloc_notsupported;
1456
1457 case R_ARM_JUMP_SLOT:
1458 return bfd_reloc_notsupported;
1459
1460 case R_ARM_RELATIVE:
1461 return bfd_reloc_notsupported;
1462
1463 case R_ARM_GOTOFF:
1464 /* Relocation is relative to the start of the
1465 global offset table. */
1466
1467 BFD_ASSERT (sgot != NULL);
1468 if (sgot == NULL)
1469 return bfd_reloc_notsupported;
1470
1471 /* Note that sgot->output_offset is not involved in this
1472 calculation. We always want the start of .got. If we
1473 define _GLOBAL_OFFSET_TABLE in a different way, as is
1474 permitted by the ABI, we might have to change this
1475 calculation. */
1476 value -= sgot->output_section->vma;
1477 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1478 contents, rel->r_offset, value,
1479 (bfd_vma) 0);
1480
1481 case R_ARM_GOTPC:
1482 /* Use global offset table as symbol value. */
1483 BFD_ASSERT (sgot != NULL);
1484
1485 if (sgot == NULL)
1486 return bfd_reloc_notsupported;
1487
1488 value = sgot->output_section->vma;
1489 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1490 contents, rel->r_offset, value,
1491 (bfd_vma) 0);
1492
1493 case R_ARM_GOT32:
1494 /* Relocation is to the entry for this symbol in the
1495 global offset table. */
1496 if (sgot == NULL)
1497 return bfd_reloc_notsupported;
1498
1499 if (h != NULL)
1500 {
1501 bfd_vma off;
1502
1503 off = h->got.offset;
1504 BFD_ASSERT (off != (bfd_vma) -1);
1505
1506 if (!elf_hash_table (info)->dynamic_sections_created ||
1507 (info->shared && (info->symbolic || h->dynindx == -1)
1508 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1509 {
1510 /* This is actually a static link, or it is a -Bsymbolic link
1511 and the symbol is defined locally. We must initialize this
1512 entry in the global offset table. Since the offset must
1513 always be a multiple of 4, we use the least significant bit
1514 to record whether we have initialized it already.
1515
1516 When doing a dynamic link, we create a .rel.got relocation
1517 entry to initialize the value. This is done in the
1518 finish_dynamic_symbol routine. */
1519 if ((off & 1) != 0)
1520 off &= ~1;
1521 else
1522 {
1523 bfd_put_32 (output_bfd, value, sgot->contents + off);
1524 h->got.offset |= 1;
1525 }
1526 }
1527
1528 value = sgot->output_offset + off;
1529 }
1530 else
1531 {
1532 bfd_vma off;
1533
1534 BFD_ASSERT (local_got_offsets != NULL &&
1535 local_got_offsets[r_symndx] != (bfd_vma) -1);
1536
1537 off = local_got_offsets[r_symndx];
1538
1539 /* The offset must always be a multiple of 4. We use the
1540 least significant bit to record whether we have already
1541 generated the necessary reloc. */
1542 if ((off & 1) != 0)
1543 off &= ~1;
1544 else
1545 {
1546 bfd_put_32 (output_bfd, value, sgot->contents + off);
1547
1548 if (info->shared)
1549 {
1550 asection * srelgot;
1551 Elf_Internal_Rel outrel;
1552
1553 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1554 BFD_ASSERT (srelgot != NULL);
1555
1556 outrel.r_offset = (sgot->output_section->vma
1557 + sgot->output_offset
1558 + off);
1559 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1560 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1561 (((Elf32_External_Rel *)
1562 srelgot->contents)
1563 + srelgot->reloc_count));
1564 ++srelgot->reloc_count;
1565 }
1566
1567 local_got_offsets[r_symndx] |= 1;
1568 }
1569
1570 value = sgot->output_offset + off;
1571 }
1572
1573 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1574 contents, rel->r_offset, value,
1575 (bfd_vma) 0);
1576
1577 case R_ARM_PLT32:
1578 /* Relocation is to the entry for this symbol in the
1579 procedure linkage table. */
1580
1581 /* Resolve a PLT32 reloc against a local symbol directly,
1582 without using the procedure linkage table. */
1583 if (h == NULL)
1584 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1585 contents, rel->r_offset, value,
1586 (bfd_vma) 0);
1587
1588 if (h->plt.offset == (bfd_vma) -1)
1589 /* We didn't make a PLT entry for this symbol. This
1590 happens when statically linking PIC code, or when
1591 using -Bsymbolic. */
1592 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1593 contents, rel->r_offset, value,
1594 (bfd_vma) 0);
1595
1596 BFD_ASSERT(splt != NULL);
1597 if (splt == NULL)
1598 return bfd_reloc_notsupported;
1599
1600 value = (splt->output_section->vma
1601 + splt->output_offset
1602 + h->plt.offset);
1603 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1604 contents, rel->r_offset, value,
1605 (bfd_vma) 0);
1606
1607 case R_ARM_SBREL32:
1608 return bfd_reloc_notsupported;
1609
1610 case R_ARM_AMP_VCALL9:
1611 return bfd_reloc_notsupported;
1612
1613 case R_ARM_RSBREL32:
1614 return bfd_reloc_notsupported;
1615
1616 case R_ARM_THM_RPC22:
1617 return bfd_reloc_notsupported;
1618
1619 case R_ARM_RREL32:
1620 return bfd_reloc_notsupported;
1621
1622 case R_ARM_RABS32:
1623 return bfd_reloc_notsupported;
1624
1625 case R_ARM_RPC24:
1626 return bfd_reloc_notsupported;
1627
1628 case R_ARM_RBASE:
1629 return bfd_reloc_notsupported;
1630
1631 default:
1632 return bfd_reloc_notsupported;
1633 }
1634 }
1635
1636 #ifdef USE_REL
1637 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1638 static void
1639 arm_add_to_rel (abfd, address, howto, increment)
1640 bfd * abfd;
1641 bfd_byte * address;
1642 reloc_howto_type * howto;
1643 bfd_signed_vma increment;
1644 {
1645 bfd_signed_vma addend;
1646
1647 if (howto->type == R_ARM_THM_PC22)
1648 {
1649 int upper_insn, lower_insn;
1650 int upper, lower;
1651
1652 upper_insn = bfd_get_16 (abfd, address);
1653 lower_insn = bfd_get_16 (abfd, address + 2);
1654 upper = upper_insn & 0x7ff;
1655 lower = lower_insn & 0x7ff;
1656
1657 addend = (upper << 12) | (lower << 1);
1658 addend += increment;
1659 addend >>= 1;
1660
1661 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1662 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1663
1664 bfd_put_16 (abfd, upper_insn, address);
1665 bfd_put_16 (abfd, lower_insn, address + 2);
1666 }
1667 else
1668 {
1669 bfd_vma contents;
1670
1671 contents = bfd_get_32 (abfd, address);
1672
1673 /* Get the (signed) value from the instruction. */
1674 addend = contents & howto->src_mask;
1675 if (addend & ((howto->src_mask + 1) >> 1))
1676 {
1677 bfd_signed_vma mask;
1678
1679 mask = -1;
1680 mask &= ~ howto->src_mask;
1681 addend |= mask;
1682 }
1683
1684 /* Add in the increment, (which is a byte value). */
1685 switch (howto->type)
1686 {
1687 default:
1688 addend += increment;
1689 break;
1690
1691 case R_ARM_PC24:
1692 addend <<= howto->size;
1693 addend += increment;
1694
1695 /* Should we check for overflow here ? */
1696
1697 /* Drop any undesired bits. */
1698 addend >>= howto->rightshift;
1699 break;
1700 }
1701
1702 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1703
1704 bfd_put_32 (abfd, contents, address);
1705 }
1706 }
1707 #endif /* USE_REL */
1708
1709 /* Relocate an ARM ELF section. */
1710 static boolean
1711 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1712 contents, relocs, local_syms, local_sections)
1713 bfd * output_bfd;
1714 struct bfd_link_info * info;
1715 bfd * input_bfd;
1716 asection * input_section;
1717 bfd_byte * contents;
1718 Elf_Internal_Rela * relocs;
1719 Elf_Internal_Sym * local_syms;
1720 asection ** local_sections;
1721 {
1722 Elf_Internal_Shdr * symtab_hdr;
1723 struct elf_link_hash_entry ** sym_hashes;
1724 Elf_Internal_Rela * rel;
1725 Elf_Internal_Rela * relend;
1726 const char * name;
1727
1728 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1729 sym_hashes = elf_sym_hashes (input_bfd);
1730
1731 rel = relocs;
1732 relend = relocs + input_section->reloc_count;
1733 for (; rel < relend; rel++)
1734 {
1735 int r_type;
1736 reloc_howto_type * howto;
1737 unsigned long r_symndx;
1738 Elf_Internal_Sym * sym;
1739 asection * sec;
1740 struct elf_link_hash_entry * h;
1741 bfd_vma relocation;
1742 bfd_reloc_status_type r;
1743 arelent bfd_reloc;
1744
1745 r_symndx = ELF32_R_SYM (rel->r_info);
1746 r_type = ELF32_R_TYPE (rel->r_info);
1747
1748 if ( r_type == R_ARM_GNU_VTENTRY
1749 || r_type == R_ARM_GNU_VTINHERIT)
1750 continue;
1751
1752 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1753 howto = bfd_reloc.howto;
1754
1755 if (info->relocateable)
1756 {
1757 /* This is a relocateable link. We don't have to change
1758 anything, unless the reloc is against a section symbol,
1759 in which case we have to adjust according to where the
1760 section symbol winds up in the output section. */
1761 if (r_symndx < symtab_hdr->sh_info)
1762 {
1763 sym = local_syms + r_symndx;
1764 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1765 {
1766 sec = local_sections[r_symndx];
1767 #ifdef USE_REL
1768 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1769 howto, sec->output_offset + sym->st_value);
1770 #else
1771 rel->r_addend += (sec->output_offset + sym->st_value)
1772 >> howto->rightshift;
1773 #endif
1774 }
1775 }
1776
1777 continue;
1778 }
1779
1780 /* This is a final link. */
1781 h = NULL;
1782 sym = NULL;
1783 sec = NULL;
1784
1785 if (r_symndx < symtab_hdr->sh_info)
1786 {
1787 sym = local_syms + r_symndx;
1788 sec = local_sections[r_symndx];
1789 relocation = (sec->output_section->vma
1790 + sec->output_offset
1791 + sym->st_value);
1792 }
1793 else
1794 {
1795 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1796
1797 while ( h->root.type == bfd_link_hash_indirect
1798 || h->root.type == bfd_link_hash_warning)
1799 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1800
1801 if ( h->root.type == bfd_link_hash_defined
1802 || h->root.type == bfd_link_hash_defweak)
1803 {
1804 int relocation_needed = 1;
1805
1806 sec = h->root.u.def.section;
1807
1808 /* In these cases, we don't need the relocation value.
1809 We check specially because in some obscure cases
1810 sec->output_section will be NULL. */
1811 switch (r_type)
1812 {
1813 case R_ARM_PC24:
1814 case R_ARM_ABS32:
1815 if (info->shared
1816 && (
1817 (!info->symbolic && h->dynindx != -1)
1818 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1819 )
1820 && ((input_section->flags & SEC_ALLOC) != 0
1821 /* DWARF will emit R_ARM_ABS32 relocations in its
1822 sections against symbols defined externally
1823 in shared libraries. We can't do anything
1824 with them here. */
1825 || ((input_section->flags & SEC_DEBUGGING) != 0
1826 && (h->elf_link_hash_flags
1827 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1828 )
1829 relocation_needed = 0;
1830 break;
1831
1832 case R_ARM_GOTPC:
1833 relocation_needed = 0;
1834 break;
1835
1836 case R_ARM_GOT32:
1837 if (elf_hash_table(info)->dynamic_sections_created
1838 && (!info->shared
1839 || (!info->symbolic && h->dynindx != -1)
1840 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1841 )
1842 )
1843 relocation_needed = 0;
1844 break;
1845
1846 case R_ARM_PLT32:
1847 if (h->plt.offset != (bfd_vma)-1)
1848 relocation_needed = 0;
1849 break;
1850
1851 default:
1852 if (sec->output_section == NULL)
1853 {
1854 (*_bfd_error_handler)
1855 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1856 bfd_get_filename (input_bfd), h->root.root.string,
1857 bfd_get_section_name (input_bfd, input_section));
1858 relocation_needed = 0;
1859 }
1860 }
1861
1862 if (relocation_needed)
1863 relocation = h->root.u.def.value
1864 + sec->output_section->vma
1865 + sec->output_offset;
1866 else
1867 relocation = 0;
1868 }
1869 else if (h->root.type == bfd_link_hash_undefweak)
1870 relocation = 0;
1871 else if (info->shared && !info->symbolic
1872 && !info->no_undefined
1873 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1874 relocation = 0;
1875 else
1876 {
1877 if (!((*info->callbacks->undefined_symbol)
1878 (info, h->root.root.string, input_bfd,
1879 input_section, rel->r_offset,
1880 (!info->shared || info->no_undefined
1881 || ELF_ST_VISIBILITY (h->other)))))
1882 return false;
1883 relocation = 0;
1884 }
1885 }
1886
1887 if (h != NULL)
1888 name = h->root.root.string;
1889 else
1890 {
1891 name = (bfd_elf_string_from_elf_section
1892 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1893 if (name == NULL || *name == '\0')
1894 name = bfd_section_name (input_bfd, sec);
1895 }
1896
1897 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1898 input_section, contents, rel,
1899 relocation, info, sec, name,
1900 (h ? ELF_ST_TYPE (h->type) :
1901 ELF_ST_TYPE (sym->st_info)), h);
1902
1903 if (r != bfd_reloc_ok)
1904 {
1905 const char * msg = (const char *) 0;
1906
1907 switch (r)
1908 {
1909 case bfd_reloc_overflow:
1910 /* If the overflowing reloc was to an undefined symbol,
1911 we have already printed one error message and there
1912 is no point complaining again. */
1913 if ((! h ||
1914 h->root.type != bfd_link_hash_undefined)
1915 && (!((*info->callbacks->reloc_overflow)
1916 (info, name, howto->name, (bfd_vma) 0,
1917 input_bfd, input_section, rel->r_offset))))
1918 return false;
1919 break;
1920
1921 case bfd_reloc_undefined:
1922 if (!((*info->callbacks->undefined_symbol)
1923 (info, name, input_bfd, input_section,
1924 rel->r_offset, true)))
1925 return false;
1926 break;
1927
1928 case bfd_reloc_outofrange:
1929 msg = _("internal error: out of range error");
1930 goto common_error;
1931
1932 case bfd_reloc_notsupported:
1933 msg = _("internal error: unsupported relocation error");
1934 goto common_error;
1935
1936 case bfd_reloc_dangerous:
1937 msg = _("internal error: dangerous error");
1938 goto common_error;
1939
1940 default:
1941 msg = _("internal error: unknown error");
1942 /* fall through */
1943
1944 common_error:
1945 if (!((*info->callbacks->warning)
1946 (info, msg, name, input_bfd, input_section,
1947 rel->r_offset)))
1948 return false;
1949 break;
1950 }
1951 }
1952 }
1953
1954 return true;
1955 }
1956
1957 /* Function to keep ARM specific flags in the ELF header. */
1958 static boolean
1959 elf32_arm_set_private_flags (abfd, flags)
1960 bfd *abfd;
1961 flagword flags;
1962 {
1963 if (elf_flags_init (abfd)
1964 && elf_elfheader (abfd)->e_flags != flags)
1965 {
1966 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
1967 {
1968 if (flags & EF_INTERWORK)
1969 _bfd_error_handler (_("\
1970 Warning: Not setting interwork flag of %s since it has already been specified as non-interworking"),
1971 bfd_get_filename (abfd));
1972 else
1973 _bfd_error_handler (_("\
1974 Warning: Clearing the interwork flag of %s due to outside request"),
1975 bfd_get_filename (abfd));
1976 }
1977 }
1978 else
1979 {
1980 elf_elfheader (abfd)->e_flags = flags;
1981 elf_flags_init (abfd) = true;
1982 }
1983
1984 return true;
1985 }
1986
1987 /* Copy backend specific data from one object module to another. */
1988
1989 static boolean
1990 elf32_arm_copy_private_bfd_data (ibfd, obfd)
1991 bfd *ibfd;
1992 bfd *obfd;
1993 {
1994 flagword in_flags;
1995 flagword out_flags;
1996
1997 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1998 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1999 return true;
2000
2001 in_flags = elf_elfheader (ibfd)->e_flags;
2002 out_flags = elf_elfheader (obfd)->e_flags;
2003
2004 if (elf_flags_init (obfd)
2005 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2006 && in_flags != out_flags)
2007 {
2008 /* Cannot mix APCS26 and APCS32 code. */
2009 if ((in_flags & EF_APCS_26) != (out_flags & EF_APCS_26))
2010 return false;
2011
2012 /* Cannot mix float APCS and non-float APCS code. */
2013 if ((in_flags & EF_APCS_FLOAT) != (out_flags & EF_APCS_FLOAT))
2014 return false;
2015
2016 /* If the src and dest have different interworking flags
2017 then turn off the interworking bit. */
2018 if ((in_flags & EF_INTERWORK) != (out_flags & EF_INTERWORK))
2019 {
2020 if (out_flags & EF_INTERWORK)
2021 _bfd_error_handler (_("\
2022 Warning: Clearing the interwork flag in %s because non-interworking code in %s has been linked with it"),
2023 bfd_get_filename (obfd), bfd_get_filename (ibfd));
2024
2025 in_flags &= ~EF_INTERWORK;
2026 }
2027
2028 /* Likewise for PIC, though don't warn for this case. */
2029 if ((in_flags & EF_PIC) != (out_flags & EF_PIC))
2030 in_flags &= ~EF_PIC;
2031 }
2032
2033 elf_elfheader (obfd)->e_flags = in_flags;
2034 elf_flags_init (obfd) = true;
2035
2036 return true;
2037 }
2038
2039 /* Merge backend specific data from an object file to the output
2040 object file when linking. */
2041
2042 static boolean
2043 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2044 bfd * ibfd;
2045 bfd * obfd;
2046 {
2047 flagword out_flags;
2048 flagword in_flags;
2049 boolean flags_compatible = true;
2050 boolean null_input_bfd = true;
2051 asection *sec;
2052
2053 /* Check if we have the same endianess. */
2054 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2055 return false;
2056
2057 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2059 return true;
2060
2061 /* The input BFD must have had its flags initialised. */
2062 /* The following seems bogus to me -- The flags are initialized in
2063 the assembler but I don't think an elf_flags_init field is
2064 written into the object. */
2065 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2066
2067 in_flags = elf_elfheader (ibfd)->e_flags;
2068 out_flags = elf_elfheader (obfd)->e_flags;
2069
2070 if (!elf_flags_init (obfd))
2071 {
2072 /* If the input is the default architecture and had the default
2073 flags then do not bother setting the flags for the output
2074 architecture, instead allow future merges to do this. If no
2075 future merges ever set these flags then they will retain their
2076 uninitialised values, which surprise surprise, correspond
2077 to the default values. */
2078 if (bfd_get_arch_info (ibfd)->the_default
2079 && elf_elfheader (ibfd)->e_flags == 0)
2080 return true;
2081
2082 elf_flags_init (obfd) = true;
2083 elf_elfheader (obfd)->e_flags = in_flags;
2084
2085 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2086 && bfd_get_arch_info (obfd)->the_default)
2087 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2088
2089 return true;
2090 }
2091
2092 /* Identical flags must be compatible. */
2093 if (in_flags == out_flags)
2094 return true;
2095
2096 /* Check to see if the input BFD actually contains any sections.
2097 If not, its flags may not have been initialised either, but it cannot
2098 actually cause any incompatibility. */
2099 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2100 {
2101 /* Ignore synthetic glue sections. */
2102 if (strcmp (sec->name, ".glue_7")
2103 && strcmp (sec->name, ".glue_7t"))
2104 {
2105 null_input_bfd = false;
2106 break;
2107 }
2108 }
2109 if (null_input_bfd)
2110 return true;
2111
2112 /* Complain about various flag mismatches. */
2113 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2114 {
2115 _bfd_error_handler (_("\
2116 Error: %s compiled for EABI version %d, whereas %s is compiled for version %d"),
2117 bfd_get_filename (ibfd),
2118 (in_flags & EF_ARM_EABIMASK) >> 24,
2119 bfd_get_filename (obfd),
2120 (out_flags & EF_ARM_EABIMASK) >> 24);
2121 return false;
2122 }
2123
2124 /* Not sure what needs to be checked for EABI versions >= 1. */
2125 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2126 {
2127 if ((in_flags & EF_APCS_26) != (out_flags & EF_APCS_26))
2128 {
2129 _bfd_error_handler (_("\
2130 Error: %s compiled for APCS-%d, whereas %s is compiled for APCS-%d"),
2131 bfd_get_filename (ibfd),
2132 in_flags & EF_APCS_26 ? 26 : 32,
2133 bfd_get_filename (obfd),
2134 out_flags & EF_APCS_26 ? 26 : 32);
2135 flags_compatible = false;
2136 }
2137
2138 if ((in_flags & EF_APCS_FLOAT) != (out_flags & EF_APCS_FLOAT))
2139 {
2140 _bfd_error_handler (_("\
2141 Error: %s passes floats in %s registers, whereas %s passes them in %s registers"),
2142 bfd_get_filename (ibfd),
2143 in_flags & EF_APCS_FLOAT ? _("float") : _("integer"),
2144 bfd_get_filename (obfd),
2145 out_flags & EF_APCS_26 ? _("float") : _("integer"));
2146 flags_compatible = false;
2147 }
2148
2149 #ifdef EF_SOFT_FLOAT
2150 if ((in_flags & EF_SOFT_FLOAT) != (out_flags & EF_SOFT_FLOAT))
2151 {
2152 _bfd_error_handler (_ ("\
2153 Error: %s uses %s floating point, whereas %s uses %s floating point"),
2154 bfd_get_filename (ibfd),
2155 in_flags & EF_SOFT_FLOAT ? _("soft") : _("hard"),
2156 bfd_get_filename (obfd),
2157 out_flags & EF_SOFT_FLOAT ? _("soft") : _("hard"));
2158 flags_compatible = false;
2159 }
2160 #endif
2161
2162 /* Interworking mismatch is only a warning. */
2163 if ((in_flags & EF_INTERWORK) != (out_flags & EF_INTERWORK))
2164 _bfd_error_handler (_("\
2165 Warning: %s %s interworking, whereas %s %s"),
2166 bfd_get_filename (ibfd),
2167 in_flags & EF_INTERWORK ? _("supports") : _("does not support"),
2168 bfd_get_filename (obfd),
2169 out_flags & EF_INTERWORK ? _("does not") : _("does"));
2170 }
2171
2172 return flags_compatible;
2173 }
2174
2175 /* Display the flags field. */
2176
2177 static boolean
2178 elf32_arm_print_private_bfd_data (abfd, ptr)
2179 bfd *abfd;
2180 PTR ptr;
2181 {
2182 FILE * file = (FILE *) ptr;
2183 unsigned long flags;
2184
2185 BFD_ASSERT (abfd != NULL && ptr != NULL);
2186
2187 /* Print normal ELF private data. */
2188 _bfd_elf_print_private_bfd_data (abfd, ptr);
2189
2190 flags = elf_elfheader (abfd)->e_flags;
2191 /* Ignore init flag - it may not be set, despite the flags field
2192 containing valid data. */
2193
2194 /* xgettext:c-format */
2195 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2196
2197 switch (EF_ARM_EABI_VERSION (flags))
2198 {
2199 case EF_ARM_EABI_UNKNOWN:
2200 /* The following flag bits are GNU extenstions and not part of the
2201 official ARM ELF extended ABI. Hence they are only decoded if
2202 the EABI version is not set. */
2203 if (flags & EF_INTERWORK)
2204 fprintf (file, _(" [interworking enabled]"));
2205
2206 if (flags & EF_APCS_26)
2207 fprintf (file, _(" [APCS-26]"));
2208 else
2209 fprintf (file, _(" [APCS-32]"));
2210
2211 if (flags & EF_APCS_FLOAT)
2212 fprintf (file, _(" [floats passed in float registers]"));
2213
2214 if (flags & EF_PIC)
2215 fprintf (file, _(" [position independent]"));
2216
2217 if (flags & EF_NEW_ABI)
2218 fprintf (file, _(" [new ABI]"));
2219
2220 if (flags & EF_OLD_ABI)
2221 fprintf (file, _(" [old ABI]"));
2222
2223 if (flags & EF_SOFT_FLOAT)
2224 fprintf (file, _(" [software FP]"));
2225
2226 flags &= ~(EF_INTERWORK | EF_APCS_26 | EF_APCS_FLOAT | EF_PIC
2227 | EF_NEW_ABI | EF_OLD_ABI | EF_SOFT_FLOAT);
2228 break;
2229
2230 case EF_ARM_EABI_VER1:
2231 fprintf (file, _(" [Version1 EABI]"));
2232
2233 if (flags & EF_ARM_SYMSARESORTED)
2234 fprintf (file, _(" [sorted symbol table]"));
2235 else
2236 fprintf (file, _(" [unsorted symbol table]"));
2237
2238 flags &= ~ EF_ARM_SYMSARESORTED;
2239 break;
2240
2241 default:
2242 fprintf (file, _(" <EABI version unrecognised>"));
2243 break;
2244 }
2245
2246 flags &= ~ EF_ARM_EABIMASK;
2247
2248 if (flags & EF_ARM_RELEXEC)
2249 fprintf (file, _(" [relocatable executable]"));
2250
2251 if (flags & EF_ARM_HASENTRY)
2252 fprintf (file, _(" [has entry point]"));
2253
2254 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2255
2256 if (flags)
2257 fprintf (file, _("<Unrecognised flag bits set>"));
2258
2259 fputc ('\n', file);
2260
2261 return true;
2262 }
2263
2264 static int
2265 elf32_arm_get_symbol_type (elf_sym, type)
2266 Elf_Internal_Sym * elf_sym;
2267 int type;
2268 {
2269 switch (ELF_ST_TYPE (elf_sym->st_info))
2270 {
2271 case STT_ARM_TFUNC:
2272 return ELF_ST_TYPE (elf_sym->st_info);
2273
2274 case STT_ARM_16BIT:
2275 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2276 This allows us to distinguish between data used by Thumb instructions
2277 and non-data (which is probably code) inside Thumb regions of an
2278 executable. */
2279 if (type != STT_OBJECT)
2280 return ELF_ST_TYPE (elf_sym->st_info);
2281 break;
2282
2283 default:
2284 break;
2285 }
2286
2287 return type;
2288 }
2289
2290 static asection *
2291 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2292 bfd *abfd;
2293 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2294 Elf_Internal_Rela *rel;
2295 struct elf_link_hash_entry *h;
2296 Elf_Internal_Sym *sym;
2297 {
2298 if (h != NULL)
2299 {
2300 switch (ELF32_R_TYPE (rel->r_info))
2301 {
2302 case R_ARM_GNU_VTINHERIT:
2303 case R_ARM_GNU_VTENTRY:
2304 break;
2305
2306 default:
2307 switch (h->root.type)
2308 {
2309 case bfd_link_hash_defined:
2310 case bfd_link_hash_defweak:
2311 return h->root.u.def.section;
2312
2313 case bfd_link_hash_common:
2314 return h->root.u.c.p->section;
2315
2316 default:
2317 break;
2318 }
2319 }
2320 }
2321 else
2322 {
2323 if (!(elf_bad_symtab (abfd)
2324 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
2325 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
2326 && sym->st_shndx != SHN_COMMON))
2327 {
2328 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2329 }
2330 }
2331 return NULL;
2332 }
2333
2334 /* Update the got entry reference counts for the section being removed. */
2335
2336 static boolean
2337 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2338 bfd *abfd ATTRIBUTE_UNUSED;
2339 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2340 asection *sec ATTRIBUTE_UNUSED;
2341 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2342 {
2343 /* We don't support garbage collection of GOT and PLT relocs yet. */
2344 return true;
2345 }
2346
2347 /* Look through the relocs for a section during the first phase. */
2348
2349 static boolean
2350 elf32_arm_check_relocs (abfd, info, sec, relocs)
2351 bfd * abfd;
2352 struct bfd_link_info * info;
2353 asection * sec;
2354 const Elf_Internal_Rela * relocs;
2355 {
2356 Elf_Internal_Shdr * symtab_hdr;
2357 struct elf_link_hash_entry ** sym_hashes;
2358 struct elf_link_hash_entry ** sym_hashes_end;
2359 const Elf_Internal_Rela * rel;
2360 const Elf_Internal_Rela * rel_end;
2361 bfd * dynobj;
2362 asection * sgot, *srelgot, *sreloc;
2363 bfd_vma * local_got_offsets;
2364
2365 if (info->relocateable)
2366 return true;
2367
2368 sgot = srelgot = sreloc = NULL;
2369
2370 dynobj = elf_hash_table (info)->dynobj;
2371 local_got_offsets = elf_local_got_offsets (abfd);
2372
2373 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2374 sym_hashes = elf_sym_hashes (abfd);
2375 sym_hashes_end = sym_hashes
2376 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2377
2378 if (!elf_bad_symtab (abfd))
2379 sym_hashes_end -= symtab_hdr->sh_info;
2380
2381 rel_end = relocs + sec->reloc_count;
2382 for (rel = relocs; rel < rel_end; rel++)
2383 {
2384 struct elf_link_hash_entry *h;
2385 unsigned long r_symndx;
2386
2387 r_symndx = ELF32_R_SYM (rel->r_info);
2388 if (r_symndx < symtab_hdr->sh_info)
2389 h = NULL;
2390 else
2391 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2392
2393 /* Some relocs require a global offset table. */
2394 if (dynobj == NULL)
2395 {
2396 switch (ELF32_R_TYPE (rel->r_info))
2397 {
2398 case R_ARM_GOT32:
2399 case R_ARM_GOTOFF:
2400 case R_ARM_GOTPC:
2401 elf_hash_table (info)->dynobj = dynobj = abfd;
2402 if (! _bfd_elf_create_got_section (dynobj, info))
2403 return false;
2404 break;
2405
2406 default:
2407 break;
2408 }
2409 }
2410
2411 switch (ELF32_R_TYPE (rel->r_info))
2412 {
2413 case R_ARM_GOT32:
2414 /* This symbol requires a global offset table entry. */
2415 if (sgot == NULL)
2416 {
2417 sgot = bfd_get_section_by_name (dynobj, ".got");
2418 BFD_ASSERT (sgot != NULL);
2419 }
2420
2421 /* Get the got relocation section if necessary. */
2422 if (srelgot == NULL
2423 && (h != NULL || info->shared))
2424 {
2425 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2426
2427 /* If no got relocation section, make one and initialize. */
2428 if (srelgot == NULL)
2429 {
2430 srelgot = bfd_make_section (dynobj, ".rel.got");
2431 if (srelgot == NULL
2432 || ! bfd_set_section_flags (dynobj, srelgot,
2433 (SEC_ALLOC
2434 | SEC_LOAD
2435 | SEC_HAS_CONTENTS
2436 | SEC_IN_MEMORY
2437 | SEC_LINKER_CREATED
2438 | SEC_READONLY))
2439 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2440 return false;
2441 }
2442 }
2443
2444 if (h != NULL)
2445 {
2446 if (h->got.offset != (bfd_vma) -1)
2447 /* We have already allocated space in the .got. */
2448 break;
2449
2450 h->got.offset = sgot->_raw_size;
2451
2452 /* Make sure this symbol is output as a dynamic symbol. */
2453 if (h->dynindx == -1)
2454 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2455 return false;
2456
2457 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2458 }
2459 else
2460 {
2461 /* This is a global offset table entry for a local
2462 symbol. */
2463 if (local_got_offsets == NULL)
2464 {
2465 size_t size;
2466 register unsigned int i;
2467
2468 size = symtab_hdr->sh_info * sizeof (bfd_vma);
2469 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2470 if (local_got_offsets == NULL)
2471 return false;
2472 elf_local_got_offsets (abfd) = local_got_offsets;
2473 for (i = 0; i < symtab_hdr->sh_info; i++)
2474 local_got_offsets[i] = (bfd_vma) -1;
2475 }
2476
2477 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2478 /* We have already allocated space in the .got. */
2479 break;
2480
2481 local_got_offsets[r_symndx] = sgot->_raw_size;
2482
2483 if (info->shared)
2484 /* If we are generating a shared object, we need to
2485 output a R_ARM_RELATIVE reloc so that the dynamic
2486 linker can adjust this GOT entry. */
2487 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2488 }
2489
2490 sgot->_raw_size += 4;
2491 break;
2492
2493 case R_ARM_PLT32:
2494 /* This symbol requires a procedure linkage table entry. We
2495 actually build the entry in adjust_dynamic_symbol,
2496 because this might be a case of linking PIC code which is
2497 never referenced by a dynamic object, in which case we
2498 don't need to generate a procedure linkage table entry
2499 after all. */
2500
2501 /* If this is a local symbol, we resolve it directly without
2502 creating a procedure linkage table entry. */
2503 if (h == NULL)
2504 continue;
2505
2506 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2507 break;
2508
2509 case R_ARM_ABS32:
2510 case R_ARM_REL32:
2511 case R_ARM_PC24:
2512 /* If we are creating a shared library, and this is a reloc
2513 against a global symbol, or a non PC relative reloc
2514 against a local symbol, then we need to copy the reloc
2515 into the shared library. However, if we are linking with
2516 -Bsymbolic, we do not need to copy a reloc against a
2517 global symbol which is defined in an object we are
2518 including in the link (i.e., DEF_REGULAR is set). At
2519 this point we have not seen all the input files, so it is
2520 possible that DEF_REGULAR is not set now but will be set
2521 later (it is never cleared). We account for that
2522 possibility below by storing information in the
2523 pcrel_relocs_copied field of the hash table entry. */
2524 if (info->shared
2525 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2526 || (h != NULL
2527 && (! info->symbolic
2528 || (h->elf_link_hash_flags
2529 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2530 {
2531 /* When creating a shared object, we must copy these
2532 reloc types into the output file. We create a reloc
2533 section in dynobj and make room for this reloc. */
2534 if (sreloc == NULL)
2535 {
2536 const char * name;
2537
2538 name = (bfd_elf_string_from_elf_section
2539 (abfd,
2540 elf_elfheader (abfd)->e_shstrndx,
2541 elf_section_data (sec)->rel_hdr.sh_name));
2542 if (name == NULL)
2543 return false;
2544
2545 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2546 && strcmp (bfd_get_section_name (abfd, sec),
2547 name + 4) == 0);
2548
2549 sreloc = bfd_get_section_by_name (dynobj, name);
2550 if (sreloc == NULL)
2551 {
2552 flagword flags;
2553
2554 sreloc = bfd_make_section (dynobj, name);
2555 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2556 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2557 if ((sec->flags & SEC_ALLOC) != 0)
2558 flags |= SEC_ALLOC | SEC_LOAD;
2559 if (sreloc == NULL
2560 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2561 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2562 return false;
2563 }
2564 }
2565
2566 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2567 /* If we are linking with -Bsymbolic, and this is a
2568 global symbol, we count the number of PC relative
2569 relocations we have entered for this symbol, so that
2570 we can discard them again if the symbol is later
2571 defined by a regular object. Note that this function
2572 is only called if we are using an elf_i386 linker
2573 hash table, which means that h is really a pointer to
2574 an elf_i386_link_hash_entry. */
2575 if (h != NULL && info->symbolic
2576 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2577 {
2578 struct elf32_arm_link_hash_entry * eh;
2579 struct elf32_arm_pcrel_relocs_copied * p;
2580
2581 eh = (struct elf32_arm_link_hash_entry *) h;
2582
2583 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2584 if (p->section == sreloc)
2585 break;
2586
2587 if (p == NULL)
2588 {
2589 p = ((struct elf32_arm_pcrel_relocs_copied *)
2590 bfd_alloc (dynobj, sizeof * p));
2591
2592 if (p == NULL)
2593 return false;
2594 p->next = eh->pcrel_relocs_copied;
2595 eh->pcrel_relocs_copied = p;
2596 p->section = sreloc;
2597 p->count = 0;
2598 }
2599
2600 ++p->count;
2601 }
2602 }
2603 break;
2604
2605 /* This relocation describes the C++ object vtable hierarchy.
2606 Reconstruct it for later use during GC. */
2607 case R_ARM_GNU_VTINHERIT:
2608 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2609 return false;
2610 break;
2611
2612 /* This relocation describes which C++ vtable entries are actually
2613 used. Record for later use during GC. */
2614 case R_ARM_GNU_VTENTRY:
2615 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2616 return false;
2617 break;
2618 }
2619 }
2620
2621 return true;
2622 }
2623
2624
2625 /* Find the nearest line to a particular section and offset, for error
2626 reporting. This code is a duplicate of the code in elf.c, except
2627 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2628
2629 static boolean
2630 elf32_arm_find_nearest_line
2631 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2632 bfd * abfd;
2633 asection * section;
2634 asymbol ** symbols;
2635 bfd_vma offset;
2636 CONST char ** filename_ptr;
2637 CONST char ** functionname_ptr;
2638 unsigned int * line_ptr;
2639 {
2640 boolean found;
2641 const char * filename;
2642 asymbol * func;
2643 bfd_vma low_func;
2644 asymbol ** p;
2645
2646 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2647 filename_ptr, functionname_ptr,
2648 line_ptr, 0))
2649 return true;
2650
2651 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2652 &found, filename_ptr,
2653 functionname_ptr, line_ptr,
2654 &elf_tdata (abfd)->line_info))
2655 return false;
2656
2657 if (found)
2658 return true;
2659
2660 if (symbols == NULL)
2661 return false;
2662
2663 filename = NULL;
2664 func = NULL;
2665 low_func = 0;
2666
2667 for (p = symbols; *p != NULL; p++)
2668 {
2669 elf_symbol_type *q;
2670
2671 q = (elf_symbol_type *) *p;
2672
2673 if (bfd_get_section (&q->symbol) != section)
2674 continue;
2675
2676 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2677 {
2678 default:
2679 break;
2680 case STT_FILE:
2681 filename = bfd_asymbol_name (&q->symbol);
2682 break;
2683 case STT_NOTYPE:
2684 case STT_FUNC:
2685 case STT_ARM_TFUNC:
2686 if (q->symbol.section == section
2687 && q->symbol.value >= low_func
2688 && q->symbol.value <= offset)
2689 {
2690 func = (asymbol *) q;
2691 low_func = q->symbol.value;
2692 }
2693 break;
2694 }
2695 }
2696
2697 if (func == NULL)
2698 return false;
2699
2700 *filename_ptr = filename;
2701 *functionname_ptr = bfd_asymbol_name (func);
2702 *line_ptr = 0;
2703
2704 return true;
2705 }
2706
2707 /* Adjust a symbol defined by a dynamic object and referenced by a
2708 regular object. The current definition is in some section of the
2709 dynamic object, but we're not including those sections. We have to
2710 change the definition to something the rest of the link can
2711 understand. */
2712
2713 static boolean
2714 elf32_arm_adjust_dynamic_symbol (info, h)
2715 struct bfd_link_info * info;
2716 struct elf_link_hash_entry * h;
2717 {
2718 bfd * dynobj;
2719 asection * s;
2720 unsigned int power_of_two;
2721
2722 dynobj = elf_hash_table (info)->dynobj;
2723
2724 /* Make sure we know what is going on here. */
2725 BFD_ASSERT (dynobj != NULL
2726 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2727 || h->weakdef != NULL
2728 || ((h->elf_link_hash_flags
2729 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2730 && (h->elf_link_hash_flags
2731 & ELF_LINK_HASH_REF_REGULAR) != 0
2732 && (h->elf_link_hash_flags
2733 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2734
2735 /* If this is a function, put it in the procedure linkage table. We
2736 will fill in the contents of the procedure linkage table later,
2737 when we know the address of the .got section. */
2738 if (h->type == STT_FUNC
2739 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2740 {
2741 if (! info->shared
2742 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2743 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2744 {
2745 /* This case can occur if we saw a PLT32 reloc in an input
2746 file, but the symbol was never referred to by a dynamic
2747 object. In such a case, we don't actually need to build
2748 a procedure linkage table, and we can just do a PC32
2749 reloc instead. */
2750 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2751 return true;
2752 }
2753
2754 /* Make sure this symbol is output as a dynamic symbol. */
2755 if (h->dynindx == -1)
2756 {
2757 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2758 return false;
2759 }
2760
2761 s = bfd_get_section_by_name (dynobj, ".plt");
2762 BFD_ASSERT (s != NULL);
2763
2764 /* If this is the first .plt entry, make room for the special
2765 first entry. */
2766 if (s->_raw_size == 0)
2767 s->_raw_size += PLT_ENTRY_SIZE;
2768
2769 /* If this symbol is not defined in a regular file, and we are
2770 not generating a shared library, then set the symbol to this
2771 location in the .plt. This is required to make function
2772 pointers compare as equal between the normal executable and
2773 the shared library. */
2774 if (! info->shared
2775 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2776 {
2777 h->root.u.def.section = s;
2778 h->root.u.def.value = s->_raw_size;
2779 }
2780
2781 h->plt.offset = s->_raw_size;
2782
2783 /* Make room for this entry. */
2784 s->_raw_size += PLT_ENTRY_SIZE;
2785
2786 /* We also need to make an entry in the .got.plt section, which
2787 will be placed in the .got section by the linker script. */
2788 s = bfd_get_section_by_name (dynobj, ".got.plt");
2789 BFD_ASSERT (s != NULL);
2790 s->_raw_size += 4;
2791
2792 /* We also need to make an entry in the .rel.plt section. */
2793
2794 s = bfd_get_section_by_name (dynobj, ".rel.plt");
2795 BFD_ASSERT (s != NULL);
2796 s->_raw_size += sizeof (Elf32_External_Rel);
2797
2798 return true;
2799 }
2800
2801 /* If this is a weak symbol, and there is a real definition, the
2802 processor independent code will have arranged for us to see the
2803 real definition first, and we can just use the same value. */
2804 if (h->weakdef != NULL)
2805 {
2806 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
2807 || h->weakdef->root.type == bfd_link_hash_defweak);
2808 h->root.u.def.section = h->weakdef->root.u.def.section;
2809 h->root.u.def.value = h->weakdef->root.u.def.value;
2810 return true;
2811 }
2812
2813 /* This is a reference to a symbol defined by a dynamic object which
2814 is not a function. */
2815
2816 /* If we are creating a shared library, we must presume that the
2817 only references to the symbol are via the global offset table.
2818 For such cases we need not do anything here; the relocations will
2819 be handled correctly by relocate_section. */
2820 if (info->shared)
2821 return true;
2822
2823 /* We must allocate the symbol in our .dynbss section, which will
2824 become part of the .bss section of the executable. There will be
2825 an entry for this symbol in the .dynsym section. The dynamic
2826 object will contain position independent code, so all references
2827 from the dynamic object to this symbol will go through the global
2828 offset table. The dynamic linker will use the .dynsym entry to
2829 determine the address it must put in the global offset table, so
2830 both the dynamic object and the regular object will refer to the
2831 same memory location for the variable. */
2832 s = bfd_get_section_by_name (dynobj, ".dynbss");
2833 BFD_ASSERT (s != NULL);
2834
2835 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
2836 copy the initial value out of the dynamic object and into the
2837 runtime process image. We need to remember the offset into the
2838 .rel.bss section we are going to use. */
2839 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2840 {
2841 asection *srel;
2842
2843 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
2844 BFD_ASSERT (srel != NULL);
2845 srel->_raw_size += sizeof (Elf32_External_Rel);
2846 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
2847 }
2848
2849 /* We need to figure out the alignment required for this symbol. I
2850 have no idea how ELF linkers handle this. */
2851 power_of_two = bfd_log2 (h->size);
2852 if (power_of_two > 3)
2853 power_of_two = 3;
2854
2855 /* Apply the required alignment. */
2856 s->_raw_size = BFD_ALIGN (s->_raw_size,
2857 (bfd_size_type) (1 << power_of_two));
2858 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2859 {
2860 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2861 return false;
2862 }
2863
2864 /* Define the symbol as being at this point in the section. */
2865 h->root.u.def.section = s;
2866 h->root.u.def.value = s->_raw_size;
2867
2868 /* Increment the section size to make room for the symbol. */
2869 s->_raw_size += h->size;
2870
2871 return true;
2872 }
2873
2874 /* Set the sizes of the dynamic sections. */
2875
2876 static boolean
2877 elf32_arm_size_dynamic_sections (output_bfd, info)
2878 bfd * output_bfd;
2879 struct bfd_link_info * info;
2880 {
2881 bfd * dynobj;
2882 asection * s;
2883 boolean plt;
2884 boolean relocs;
2885 boolean reltext;
2886
2887 dynobj = elf_hash_table (info)->dynobj;
2888 BFD_ASSERT (dynobj != NULL);
2889
2890 if (elf_hash_table (info)->dynamic_sections_created)
2891 {
2892 /* Set the contents of the .interp section to the interpreter. */
2893 if (! info->shared)
2894 {
2895 s = bfd_get_section_by_name (dynobj, ".interp");
2896 BFD_ASSERT (s != NULL);
2897 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2898 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2899 }
2900 }
2901 else
2902 {
2903 /* We may have created entries in the .rel.got section.
2904 However, if we are not creating the dynamic sections, we will
2905 not actually use these entries. Reset the size of .rel.got,
2906 which will cause it to get stripped from the output file
2907 below. */
2908 s = bfd_get_section_by_name (dynobj, ".rel.got");
2909 if (s != NULL)
2910 s->_raw_size = 0;
2911 }
2912
2913 /* If this is a -Bsymbolic shared link, then we need to discard all
2914 PC relative relocs against symbols defined in a regular object.
2915 We allocated space for them in the check_relocs routine, but we
2916 will not fill them in in the relocate_section routine. */
2917 if (info->shared && info->symbolic)
2918 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
2919 elf32_arm_discard_copies,
2920 (PTR) NULL);
2921
2922 /* The check_relocs and adjust_dynamic_symbol entry points have
2923 determined the sizes of the various dynamic sections. Allocate
2924 memory for them. */
2925 plt = false;
2926 relocs = false;
2927 reltext = false;
2928 for (s = dynobj->sections; s != NULL; s = s->next)
2929 {
2930 const char * name;
2931 boolean strip;
2932
2933 if ((s->flags & SEC_LINKER_CREATED) == 0)
2934 continue;
2935
2936 /* It's OK to base decisions on the section name, because none
2937 of the dynobj section names depend upon the input files. */
2938 name = bfd_get_section_name (dynobj, s);
2939
2940 strip = false;
2941
2942 if (strcmp (name, ".plt") == 0)
2943 {
2944 if (s->_raw_size == 0)
2945 {
2946 /* Strip this section if we don't need it; see the
2947 comment below. */
2948 strip = true;
2949 }
2950 else
2951 {
2952 /* Remember whether there is a PLT. */
2953 plt = true;
2954 }
2955 }
2956 else if (strncmp (name, ".rel", 4) == 0)
2957 {
2958 if (s->_raw_size == 0)
2959 {
2960 /* If we don't need this section, strip it from the
2961 output file. This is mostly to handle .rel.bss and
2962 .rel.plt. We must create both sections in
2963 create_dynamic_sections, because they must be created
2964 before the linker maps input sections to output
2965 sections. The linker does that before
2966 adjust_dynamic_symbol is called, and it is that
2967 function which decides whether anything needs to go
2968 into these sections. */
2969 strip = true;
2970 }
2971 else
2972 {
2973 asection * target;
2974
2975 /* Remember whether there are any reloc sections other
2976 than .rel.plt. */
2977 if (strcmp (name, ".rel.plt") != 0)
2978 {
2979 const char *outname;
2980
2981 relocs = true;
2982
2983 /* If this relocation section applies to a read only
2984 section, then we probably need a DT_TEXTREL
2985 entry. The entries in the .rel.plt section
2986 really apply to the .got section, which we
2987 created ourselves and so know is not readonly. */
2988 outname = bfd_get_section_name (output_bfd,
2989 s->output_section);
2990 target = bfd_get_section_by_name (output_bfd, outname + 4);
2991
2992 if (target != NULL
2993 && (target->flags & SEC_READONLY) != 0
2994 && (target->flags & SEC_ALLOC) != 0)
2995 reltext = true;
2996 }
2997
2998 /* We use the reloc_count field as a counter if we need
2999 to copy relocs into the output file. */
3000 s->reloc_count = 0;
3001 }
3002 }
3003 else if (strncmp (name, ".got", 4) != 0)
3004 {
3005 /* It's not one of our sections, so don't allocate space. */
3006 continue;
3007 }
3008
3009 if (strip)
3010 {
3011 asection ** spp;
3012
3013 for (spp = &s->output_section->owner->sections;
3014 *spp != s->output_section;
3015 spp = &(*spp)->next)
3016 ;
3017 *spp = s->output_section->next;
3018 --s->output_section->owner->section_count;
3019
3020 continue;
3021 }
3022
3023 /* Allocate memory for the section contents. */
3024 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3025 if (s->contents == NULL && s->_raw_size != 0)
3026 return false;
3027 }
3028
3029 if (elf_hash_table (info)->dynamic_sections_created)
3030 {
3031 /* Add some entries to the .dynamic section. We fill in the
3032 values later, in elf32_arm_finish_dynamic_sections, but we
3033 must add the entries now so that we get the correct size for
3034 the .dynamic section. The DT_DEBUG entry is filled in by the
3035 dynamic linker and used by the debugger. */
3036 if (! info->shared)
3037 {
3038 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
3039 return false;
3040 }
3041
3042 if (plt)
3043 {
3044 if ( ! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
3045 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
3046 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
3047 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
3048 return false;
3049 }
3050
3051 if (relocs)
3052 {
3053 if ( ! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
3054 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
3055 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
3056 sizeof (Elf32_External_Rel)))
3057 return false;
3058 }
3059
3060 if (reltext)
3061 {
3062 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
3063 return false;
3064 info->flags |= DF_TEXTREL;
3065 }
3066 }
3067
3068 return true;
3069 }
3070
3071 /* This function is called via elf32_arm_link_hash_traverse if we are
3072 creating a shared object with -Bsymbolic. It discards the space
3073 allocated to copy PC relative relocs against symbols which are
3074 defined in regular objects. We allocated space for them in the
3075 check_relocs routine, but we won't fill them in in the
3076 relocate_section routine. */
3077
3078 static boolean
3079 elf32_arm_discard_copies (h, ignore)
3080 struct elf32_arm_link_hash_entry * h;
3081 PTR ignore ATTRIBUTE_UNUSED;
3082 {
3083 struct elf32_arm_pcrel_relocs_copied * s;
3084
3085 /* We only discard relocs for symbols defined in a regular object. */
3086 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3087 return true;
3088
3089 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3090 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3091
3092 return true;
3093 }
3094
3095 /* Finish up dynamic symbol handling. We set the contents of various
3096 dynamic sections here. */
3097
3098 static boolean
3099 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3100 bfd * output_bfd;
3101 struct bfd_link_info * info;
3102 struct elf_link_hash_entry * h;
3103 Elf_Internal_Sym * sym;
3104 {
3105 bfd * dynobj;
3106
3107 dynobj = elf_hash_table (info)->dynobj;
3108
3109 if (h->plt.offset != (bfd_vma) -1)
3110 {
3111 asection * splt;
3112 asection * sgot;
3113 asection * srel;
3114 bfd_vma plt_index;
3115 bfd_vma got_offset;
3116 Elf_Internal_Rel rel;
3117
3118 /* This symbol has an entry in the procedure linkage table. Set
3119 it up. */
3120
3121 BFD_ASSERT (h->dynindx != -1);
3122
3123 splt = bfd_get_section_by_name (dynobj, ".plt");
3124 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3125 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3126 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3127
3128 /* Get the index in the procedure linkage table which
3129 corresponds to this symbol. This is the index of this symbol
3130 in all the symbols for which we are making plt entries. The
3131 first entry in the procedure linkage table is reserved. */
3132 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3133
3134 /* Get the offset into the .got table of the entry that
3135 corresponds to this function. Each .got entry is 4 bytes.
3136 The first three are reserved. */
3137 got_offset = (plt_index + 3) * 4;
3138
3139 /* Fill in the entry in the procedure linkage table. */
3140 memcpy (splt->contents + h->plt.offset,
3141 elf32_arm_plt_entry,
3142 PLT_ENTRY_SIZE);
3143 bfd_put_32 (output_bfd,
3144 (sgot->output_section->vma
3145 + sgot->output_offset
3146 + got_offset
3147 - splt->output_section->vma
3148 - splt->output_offset
3149 - h->plt.offset - 12),
3150 splt->contents + h->plt.offset + 12);
3151
3152 /* Fill in the entry in the global offset table. */
3153 bfd_put_32 (output_bfd,
3154 (splt->output_section->vma
3155 + splt->output_offset),
3156 sgot->contents + got_offset);
3157
3158 /* Fill in the entry in the .rel.plt section. */
3159 rel.r_offset = (sgot->output_section->vma
3160 + sgot->output_offset
3161 + got_offset);
3162 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3163 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3164 ((Elf32_External_Rel *) srel->contents
3165 + plt_index));
3166
3167 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3168 {
3169 /* Mark the symbol as undefined, rather than as defined in
3170 the .plt section. Leave the value alone. */
3171 sym->st_shndx = SHN_UNDEF;
3172 }
3173 }
3174
3175 if (h->got.offset != (bfd_vma) -1)
3176 {
3177 asection * sgot;
3178 asection * srel;
3179 Elf_Internal_Rel rel;
3180
3181 /* This symbol has an entry in the global offset table. Set it
3182 up. */
3183 sgot = bfd_get_section_by_name (dynobj, ".got");
3184 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3185 BFD_ASSERT (sgot != NULL && srel != NULL);
3186
3187 rel.r_offset = (sgot->output_section->vma
3188 + sgot->output_offset
3189 + (h->got.offset &~ 1));
3190
3191 /* If this is a -Bsymbolic link, and the symbol is defined
3192 locally, we just want to emit a RELATIVE reloc. The entry in
3193 the global offset table will already have been initialized in
3194 the relocate_section function. */
3195 if (info->shared
3196 && (info->symbolic || h->dynindx == -1)
3197 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3198 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3199 else
3200 {
3201 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3202 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3203 }
3204
3205 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3206 ((Elf32_External_Rel *) srel->contents
3207 + srel->reloc_count));
3208 ++srel->reloc_count;
3209 }
3210
3211 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3212 {
3213 asection * s;
3214 Elf_Internal_Rel rel;
3215
3216 /* This symbol needs a copy reloc. Set it up. */
3217 BFD_ASSERT (h->dynindx != -1
3218 && (h->root.type == bfd_link_hash_defined
3219 || h->root.type == bfd_link_hash_defweak));
3220
3221 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3222 ".rel.bss");
3223 BFD_ASSERT (s != NULL);
3224
3225 rel.r_offset = (h->root.u.def.value
3226 + h->root.u.def.section->output_section->vma
3227 + h->root.u.def.section->output_offset);
3228 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3229 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3230 ((Elf32_External_Rel *) s->contents
3231 + s->reloc_count));
3232 ++s->reloc_count;
3233 }
3234
3235 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3236 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3237 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3238 sym->st_shndx = SHN_ABS;
3239
3240 return true;
3241 }
3242
3243 /* Finish up the dynamic sections. */
3244
3245 static boolean
3246 elf32_arm_finish_dynamic_sections (output_bfd, info)
3247 bfd * output_bfd;
3248 struct bfd_link_info * info;
3249 {
3250 bfd * dynobj;
3251 asection * sgot;
3252 asection * sdyn;
3253
3254 dynobj = elf_hash_table (info)->dynobj;
3255
3256 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3257 BFD_ASSERT (sgot != NULL);
3258 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3259
3260 if (elf_hash_table (info)->dynamic_sections_created)
3261 {
3262 asection *splt;
3263 Elf32_External_Dyn *dyncon, *dynconend;
3264
3265 splt = bfd_get_section_by_name (dynobj, ".plt");
3266 BFD_ASSERT (splt != NULL && sdyn != NULL);
3267
3268 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3269 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3270
3271 for (; dyncon < dynconend; dyncon++)
3272 {
3273 Elf_Internal_Dyn dyn;
3274 const char * name;
3275 asection * s;
3276
3277 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3278
3279 switch (dyn.d_tag)
3280 {
3281 default:
3282 break;
3283
3284 case DT_PLTGOT:
3285 name = ".got";
3286 goto get_vma;
3287 case DT_JMPREL:
3288 name = ".rel.plt";
3289 get_vma:
3290 s = bfd_get_section_by_name (output_bfd, name);
3291 BFD_ASSERT (s != NULL);
3292 dyn.d_un.d_ptr = s->vma;
3293 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3294 break;
3295
3296 case DT_PLTRELSZ:
3297 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3298 BFD_ASSERT (s != NULL);
3299 if (s->_cooked_size != 0)
3300 dyn.d_un.d_val = s->_cooked_size;
3301 else
3302 dyn.d_un.d_val = s->_raw_size;
3303 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3304 break;
3305
3306 case DT_RELSZ:
3307 /* My reading of the SVR4 ABI indicates that the
3308 procedure linkage table relocs (DT_JMPREL) should be
3309 included in the overall relocs (DT_REL). This is
3310 what Solaris does. However, UnixWare can not handle
3311 that case. Therefore, we override the DT_RELSZ entry
3312 here to make it not include the JMPREL relocs. Since
3313 the linker script arranges for .rel.plt to follow all
3314 other relocation sections, we don't have to worry
3315 about changing the DT_REL entry. */
3316 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3317 if (s != NULL)
3318 {
3319 if (s->_cooked_size != 0)
3320 dyn.d_un.d_val -= s->_cooked_size;
3321 else
3322 dyn.d_un.d_val -= s->_raw_size;
3323 }
3324 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3325 break;
3326 }
3327 }
3328
3329 /* Fill in the first entry in the procedure linkage table. */
3330 if (splt->_raw_size > 0)
3331 memcpy (splt->contents, elf32_arm_plt0_entry, PLT_ENTRY_SIZE);
3332
3333 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3334 really seem like the right value. */
3335 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3336 }
3337
3338 /* Fill in the first three entries in the global offset table. */
3339 if (sgot->_raw_size > 0)
3340 {
3341 if (sdyn == NULL)
3342 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3343 else
3344 bfd_put_32 (output_bfd,
3345 sdyn->output_section->vma + sdyn->output_offset,
3346 sgot->contents);
3347 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3348 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3349 }
3350
3351 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3352
3353 return true;
3354 }
3355
3356 static void
3357 elf32_arm_post_process_headers (abfd, link_info)
3358 bfd * abfd;
3359 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3360 {
3361 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3362
3363 i_ehdrp = elf_elfheader (abfd);
3364
3365 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3366 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3367 }
3368
3369
3370 #define ELF_ARCH bfd_arch_arm
3371 #define ELF_MACHINE_CODE EM_ARM
3372 #define ELF_MAXPAGESIZE 0x8000
3373
3374
3375 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3376 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3377 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3378 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3379 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3380 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3381 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3382
3383 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3384 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3385 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3386 #define elf_backend_check_relocs elf32_arm_check_relocs
3387 #define elf_backend_relocate_section elf32_arm_relocate_section
3388 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3389 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3390 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3391 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3392 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3393 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3394
3395 #define elf_backend_can_gc_sections 1
3396 #define elf_backend_plt_readonly 1
3397 #define elf_backend_want_got_plt 1
3398 #define elf_backend_want_plt_sym 0
3399
3400 #define elf_backend_got_header_size 12
3401 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3402
3403 #include "elf32-target.h"
This page took 0.098388 seconds and 4 git commands to generate.