e8538ac3ff2ccab5b4362a9e9d9095f571247063
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, int, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, const char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, const char *, bfd *));
45 static void elf32_arm_post_process_headers
46 PARAMS ((bfd *, struct bfd_link_info *));
47 static int elf32_arm_to_thumb_stub
48 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
49 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
50 static int elf32_thumb_to_arm_stub
51 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
52 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
53 static boolean elf32_arm_relocate_section
54 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
55 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
56 static asection * elf32_arm_gc_mark_hook
57 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
58 struct elf_link_hash_entry *, Elf_Internal_Sym *));
59 static boolean elf32_arm_gc_sweep_hook
60 PARAMS ((bfd *, struct bfd_link_info *, asection *,
61 const Elf_Internal_Rela *));
62 static boolean elf32_arm_check_relocs
63 PARAMS ((bfd *, struct bfd_link_info *, asection *,
64 const Elf_Internal_Rela *));
65 static boolean elf32_arm_find_nearest_line
66 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
67 const char **, unsigned int *));
68 static boolean elf32_arm_adjust_dynamic_symbol
69 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
70 static boolean elf32_arm_size_dynamic_sections
71 PARAMS ((bfd *, struct bfd_link_info *));
72 static boolean elf32_arm_finish_dynamic_symbol
73 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
74 Elf_Internal_Sym *));
75 static boolean elf32_arm_finish_dynamic_sections
76 PARAMS ((bfd *, struct bfd_link_info *));
77 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
78 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
79 #ifdef USE_REL
80 static void arm_add_to_rel
81 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
82 #endif
83 static enum elf_reloc_type_class elf32_arm_reloc_type_class
84 PARAMS ((const Elf_Internal_Rela *));
85
86 #ifndef ELFARM_NABI_C_INCLUDED
87 static void record_arm_to_thumb_glue
88 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
89 static void record_thumb_to_arm_glue
90 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
91 boolean bfd_elf32_arm_allocate_interworking_sections
92 PARAMS ((struct bfd_link_info *));
93 boolean bfd_elf32_arm_get_bfd_for_interworking
94 PARAMS ((bfd *, struct bfd_link_info *));
95 boolean bfd_elf32_arm_process_before_allocation
96 PARAMS ((bfd *, struct bfd_link_info *, int));
97 #endif
98
99
100 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
101
102 /* The linker script knows the section names for placement.
103 The entry_names are used to do simple name mangling on the stubs.
104 Given a function name, and its type, the stub can be found. The
105 name can be changed. The only requirement is the %s be present. */
106 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
107 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
108
109 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
110 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
111
112 /* The name of the dynamic interpreter. This is put in the .interp
113 section. */
114 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
115
116 /* The size in bytes of an entry in the procedure linkage table. */
117 #define PLT_ENTRY_SIZE 16
118
119 /* The first entry in a procedure linkage table looks like
120 this. It is set up so that any shared library function that is
121 called before the relocation has been set up calls the dynamic
122 linker first. */
123 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
124 {
125 0xe52de004, /* str lr, [sp, #-4]! */
126 0xe59fe010, /* ldr lr, [pc, #16] */
127 0xe08fe00e, /* add lr, pc, lr */
128 0xe5bef008 /* ldr pc, [lr, #8]! */
129 };
130
131 /* Subsequent entries in a procedure linkage table look like
132 this. */
133 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
134 {
135 0xe59fc004, /* ldr ip, [pc, #4] */
136 0xe08fc00c, /* add ip, pc, ip */
137 0xe59cf000, /* ldr pc, [ip] */
138 0x00000000 /* offset to symbol in got */
139 };
140
141 /* The ARM linker needs to keep track of the number of relocs that it
142 decides to copy in check_relocs for each symbol. This is so that
143 it can discard PC relative relocs if it doesn't need them when
144 linking with -Bsymbolic. We store the information in a field
145 extending the regular ELF linker hash table. */
146
147 /* This structure keeps track of the number of PC relative relocs we
148 have copied for a given symbol. */
149 struct elf32_arm_pcrel_relocs_copied
150 {
151 /* Next section. */
152 struct elf32_arm_pcrel_relocs_copied * next;
153 /* A section in dynobj. */
154 asection * section;
155 /* Number of relocs copied in this section. */
156 bfd_size_type count;
157 };
158
159 /* Arm ELF linker hash entry. */
160 struct elf32_arm_link_hash_entry
161 {
162 struct elf_link_hash_entry root;
163
164 /* Number of PC relative relocs copied for this symbol. */
165 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
166 };
167
168 /* Declare this now that the above structures are defined. */
169 static boolean elf32_arm_discard_copies
170 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
171
172 /* Traverse an arm ELF linker hash table. */
173 #define elf32_arm_link_hash_traverse(table, func, info) \
174 (elf_link_hash_traverse \
175 (&(table)->root, \
176 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
177 (info)))
178
179 /* Get the ARM elf linker hash table from a link_info structure. */
180 #define elf32_arm_hash_table(info) \
181 ((struct elf32_arm_link_hash_table *) ((info)->hash))
182
183 /* ARM ELF linker hash table. */
184 struct elf32_arm_link_hash_table
185 {
186 /* The main hash table. */
187 struct elf_link_hash_table root;
188
189 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
190 bfd_size_type thumb_glue_size;
191
192 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
193 bfd_size_type arm_glue_size;
194
195 /* An arbitary input BFD chosen to hold the glue sections. */
196 bfd * bfd_of_glue_owner;
197
198 /* A boolean indicating whether knowledge of the ARM's pipeline
199 length should be applied by the linker. */
200 int no_pipeline_knowledge;
201 };
202
203 /* Create an entry in an ARM ELF linker hash table. */
204
205 static struct bfd_hash_entry *
206 elf32_arm_link_hash_newfunc (entry, table, string)
207 struct bfd_hash_entry * entry;
208 struct bfd_hash_table * table;
209 const char * string;
210 {
211 struct elf32_arm_link_hash_entry * ret =
212 (struct elf32_arm_link_hash_entry *) entry;
213
214 /* Allocate the structure if it has not already been allocated by a
215 subclass. */
216 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
217 ret = ((struct elf32_arm_link_hash_entry *)
218 bfd_hash_allocate (table,
219 sizeof (struct elf32_arm_link_hash_entry)));
220 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
221 return (struct bfd_hash_entry *) ret;
222
223 /* Call the allocation method of the superclass. */
224 ret = ((struct elf32_arm_link_hash_entry *)
225 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
226 table, string));
227 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
228 ret->pcrel_relocs_copied = NULL;
229
230 return (struct bfd_hash_entry *) ret;
231 }
232
233 /* Create an ARM elf linker hash table. */
234
235 static struct bfd_link_hash_table *
236 elf32_arm_link_hash_table_create (abfd)
237 bfd *abfd;
238 {
239 struct elf32_arm_link_hash_table *ret;
240 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
241
242 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
243 if (ret == (struct elf32_arm_link_hash_table *) NULL)
244 return NULL;
245
246 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
247 elf32_arm_link_hash_newfunc))
248 {
249 free (ret);
250 return NULL;
251 }
252
253 ret->thumb_glue_size = 0;
254 ret->arm_glue_size = 0;
255 ret->bfd_of_glue_owner = NULL;
256 ret->no_pipeline_knowledge = 0;
257
258 return &ret->root.root;
259 }
260
261 /* Locate the Thumb encoded calling stub for NAME. */
262
263 static struct elf_link_hash_entry *
264 find_thumb_glue (link_info, name, input_bfd)
265 struct bfd_link_info *link_info;
266 const char *name;
267 bfd *input_bfd;
268 {
269 char *tmp_name;
270 struct elf_link_hash_entry *hash;
271 struct elf32_arm_link_hash_table *hash_table;
272
273 /* We need a pointer to the armelf specific hash table. */
274 hash_table = elf32_arm_hash_table (link_info);
275
276 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
277 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
278
279 BFD_ASSERT (tmp_name);
280
281 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
282
283 hash = elf_link_hash_lookup
284 (&(hash_table)->root, tmp_name, false, false, true);
285
286 if (hash == NULL)
287 /* xgettext:c-format */
288 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
289 bfd_archive_filename (input_bfd), tmp_name, name);
290
291 free (tmp_name);
292
293 return hash;
294 }
295
296 /* Locate the ARM encoded calling stub for NAME. */
297
298 static struct elf_link_hash_entry *
299 find_arm_glue (link_info, name, input_bfd)
300 struct bfd_link_info *link_info;
301 const char *name;
302 bfd *input_bfd;
303 {
304 char *tmp_name;
305 struct elf_link_hash_entry *myh;
306 struct elf32_arm_link_hash_table *hash_table;
307
308 /* We need a pointer to the elfarm specific hash table. */
309 hash_table = elf32_arm_hash_table (link_info);
310
311 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
312 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
313
314 BFD_ASSERT (tmp_name);
315
316 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
317
318 myh = elf_link_hash_lookup
319 (&(hash_table)->root, tmp_name, false, false, true);
320
321 if (myh == NULL)
322 /* xgettext:c-format */
323 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
324 bfd_archive_filename (input_bfd), tmp_name, name);
325
326 free (tmp_name);
327
328 return myh;
329 }
330
331 /* ARM->Thumb glue:
332
333 .arm
334 __func_from_arm:
335 ldr r12, __func_addr
336 bx r12
337 __func_addr:
338 .word func @ behave as if you saw a ARM_32 reloc. */
339
340 #define ARM2THUMB_GLUE_SIZE 12
341 static const insn32 a2t1_ldr_insn = 0xe59fc000;
342 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
343 static const insn32 a2t3_func_addr_insn = 0x00000001;
344
345 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
346
347 .thumb .thumb
348 .align 2 .align 2
349 __func_from_thumb: __func_from_thumb:
350 bx pc push {r6, lr}
351 nop ldr r6, __func_addr
352 .arm mov lr, pc
353 __func_change_to_arm: bx r6
354 b func .arm
355 __func_back_to_thumb:
356 ldmia r13! {r6, lr}
357 bx lr
358 __func_addr:
359 .word func */
360
361 #define THUMB2ARM_GLUE_SIZE 8
362 static const insn16 t2a1_bx_pc_insn = 0x4778;
363 static const insn16 t2a2_noop_insn = 0x46c0;
364 static const insn32 t2a3_b_insn = 0xea000000;
365
366 static const insn16 t2a1_push_insn = 0xb540;
367 static const insn16 t2a2_ldr_insn = 0x4e03;
368 static const insn16 t2a3_mov_insn = 0x46fe;
369 static const insn16 t2a4_bx_insn = 0x4730;
370 static const insn32 t2a5_pop_insn = 0xe8bd4040;
371 static const insn32 t2a6_bx_insn = 0xe12fff1e;
372
373 #ifndef ELFARM_NABI_C_INCLUDED
374 boolean
375 bfd_elf32_arm_allocate_interworking_sections (info)
376 struct bfd_link_info * info;
377 {
378 asection * s;
379 bfd_byte * foo;
380 struct elf32_arm_link_hash_table * globals;
381
382 globals = elf32_arm_hash_table (info);
383
384 BFD_ASSERT (globals != NULL);
385
386 if (globals->arm_glue_size != 0)
387 {
388 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
389
390 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
391 ARM2THUMB_GLUE_SECTION_NAME);
392
393 BFD_ASSERT (s != NULL);
394
395 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
396 globals->arm_glue_size);
397
398 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
399 s->contents = foo;
400 }
401
402 if (globals->thumb_glue_size != 0)
403 {
404 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
405
406 s = bfd_get_section_by_name
407 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
408
409 BFD_ASSERT (s != NULL);
410
411 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
412 globals->thumb_glue_size);
413
414 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
415 s->contents = foo;
416 }
417
418 return true;
419 }
420
421 static void
422 record_arm_to_thumb_glue (link_info, h)
423 struct bfd_link_info * link_info;
424 struct elf_link_hash_entry * h;
425 {
426 const char * name = h->root.root.string;
427 asection * s;
428 char * tmp_name;
429 struct elf_link_hash_entry * myh;
430 struct elf32_arm_link_hash_table * globals;
431 bfd_vma val;
432
433 globals = elf32_arm_hash_table (link_info);
434
435 BFD_ASSERT (globals != NULL);
436 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
437
438 s = bfd_get_section_by_name
439 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
440
441 BFD_ASSERT (s != NULL);
442
443 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
444 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
445
446 BFD_ASSERT (tmp_name);
447
448 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
449
450 myh = elf_link_hash_lookup
451 (&(globals)->root, tmp_name, false, false, true);
452
453 if (myh != NULL)
454 {
455 /* We've already seen this guy. */
456 free (tmp_name);
457 return;
458 }
459
460 /* The only trick here is using hash_table->arm_glue_size as the value. Even
461 though the section isn't allocated yet, this is where we will be putting
462 it. */
463 val = globals->arm_glue_size + 1;
464 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
465 tmp_name, BSF_GLOBAL, s, val,
466 NULL, true, false,
467 (struct bfd_link_hash_entry **) &myh);
468
469 free (tmp_name);
470
471 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
472
473 return;
474 }
475
476 static void
477 record_thumb_to_arm_glue (link_info, h)
478 struct bfd_link_info *link_info;
479 struct elf_link_hash_entry *h;
480 {
481 const char *name = h->root.root.string;
482 asection *s;
483 char *tmp_name;
484 struct elf_link_hash_entry *myh;
485 struct elf32_arm_link_hash_table *hash_table;
486 char bind;
487 bfd_vma val;
488
489 hash_table = elf32_arm_hash_table (link_info);
490
491 BFD_ASSERT (hash_table != NULL);
492 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
493
494 s = bfd_get_section_by_name
495 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
496
497 BFD_ASSERT (s != NULL);
498
499 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
500 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
501
502 BFD_ASSERT (tmp_name);
503
504 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
505
506 myh = elf_link_hash_lookup
507 (&(hash_table)->root, tmp_name, false, false, true);
508
509 if (myh != NULL)
510 {
511 /* We've already seen this guy. */
512 free (tmp_name);
513 return;
514 }
515
516 val = hash_table->thumb_glue_size + 1;
517 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
518 tmp_name, BSF_GLOBAL, s, val,
519 NULL, true, false,
520 (struct bfd_link_hash_entry **) &myh);
521
522 /* If we mark it 'Thumb', the disassembler will do a better job. */
523 bind = ELF_ST_BIND (myh->type);
524 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
525
526 free (tmp_name);
527
528 #define CHANGE_TO_ARM "__%s_change_to_arm"
529 #define BACK_FROM_ARM "__%s_back_from_arm"
530
531 /* Allocate another symbol to mark where we switch to Arm mode. */
532 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
533 + strlen (CHANGE_TO_ARM) + 1);
534
535 BFD_ASSERT (tmp_name);
536
537 sprintf (tmp_name, CHANGE_TO_ARM, name);
538
539 myh = NULL;
540
541 val = hash_table->thumb_glue_size + 4,
542 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
543 tmp_name, BSF_LOCAL, s, val,
544 NULL, true, false,
545 (struct bfd_link_hash_entry **) &myh);
546
547 free (tmp_name);
548
549 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
550
551 return;
552 }
553
554 /* Add the glue sections to ABFD. This function is called from the
555 linker scripts in ld/emultempl/{armelf}.em. */
556
557 boolean
558 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
559 bfd *abfd;
560 struct bfd_link_info *info;
561 {
562 flagword flags;
563 asection *sec;
564
565 /* If we are only performing a partial
566 link do not bother adding the glue. */
567 if (info->relocateable)
568 return true;
569
570 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
571
572 if (sec == NULL)
573 {
574 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
575 will prevent elf_link_input_bfd() from processing the contents
576 of this section. */
577 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
578
579 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
580
581 if (sec == NULL
582 || !bfd_set_section_flags (abfd, sec, flags)
583 || !bfd_set_section_alignment (abfd, sec, 2))
584 return false;
585
586 /* Set the gc mark to prevent the section from being removed by garbage
587 collection, despite the fact that no relocs refer to this section. */
588 sec->gc_mark = 1;
589 }
590
591 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
592
593 if (sec == NULL)
594 {
595 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
596
597 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
598
599 if (sec == NULL
600 || !bfd_set_section_flags (abfd, sec, flags)
601 || !bfd_set_section_alignment (abfd, sec, 2))
602 return false;
603
604 sec->gc_mark = 1;
605 }
606
607 return true;
608 }
609
610 /* Select a BFD to be used to hold the sections used by the glue code.
611 This function is called from the linker scripts in ld/emultempl/
612 {armelf/pe}.em */
613
614 boolean
615 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
616 bfd *abfd;
617 struct bfd_link_info *info;
618 {
619 struct elf32_arm_link_hash_table *globals;
620
621 /* If we are only performing a partial link
622 do not bother getting a bfd to hold the glue. */
623 if (info->relocateable)
624 return true;
625
626 globals = elf32_arm_hash_table (info);
627
628 BFD_ASSERT (globals != NULL);
629
630 if (globals->bfd_of_glue_owner != NULL)
631 return true;
632
633 /* Save the bfd for later use. */
634 globals->bfd_of_glue_owner = abfd;
635
636 return true;
637 }
638
639 boolean
640 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
641 bfd *abfd;
642 struct bfd_link_info *link_info;
643 int no_pipeline_knowledge;
644 {
645 Elf_Internal_Shdr *symtab_hdr;
646 Elf_Internal_Rela *internal_relocs = NULL;
647 Elf_Internal_Rela *irel, *irelend;
648 bfd_byte *contents = NULL;
649
650 asection *sec;
651 struct elf32_arm_link_hash_table *globals;
652
653 /* If we are only performing a partial link do not bother
654 to construct any glue. */
655 if (link_info->relocateable)
656 return true;
657
658 /* Here we have a bfd that is to be included on the link. We have a hook
659 to do reloc rummaging, before section sizes are nailed down. */
660 globals = elf32_arm_hash_table (link_info);
661
662 BFD_ASSERT (globals != NULL);
663 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
664
665 globals->no_pipeline_knowledge = no_pipeline_knowledge;
666
667 /* Rummage around all the relocs and map the glue vectors. */
668 sec = abfd->sections;
669
670 if (sec == NULL)
671 return true;
672
673 for (; sec != NULL; sec = sec->next)
674 {
675 if (sec->reloc_count == 0)
676 continue;
677
678 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
679
680 /* Load the relocs. */
681 internal_relocs
682 = _bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
683 (Elf_Internal_Rela *) NULL, false);
684
685 if (internal_relocs == NULL)
686 goto error_return;
687
688 irelend = internal_relocs + sec->reloc_count;
689 for (irel = internal_relocs; irel < irelend; irel++)
690 {
691 long r_type;
692 unsigned long r_index;
693
694 struct elf_link_hash_entry *h;
695
696 r_type = ELF32_R_TYPE (irel->r_info);
697 r_index = ELF32_R_SYM (irel->r_info);
698
699 /* These are the only relocation types we care about. */
700 if ( r_type != R_ARM_PC24
701 && r_type != R_ARM_THM_PC22)
702 continue;
703
704 /* Get the section contents if we haven't done so already. */
705 if (contents == NULL)
706 {
707 /* Get cached copy if it exists. */
708 if (elf_section_data (sec)->this_hdr.contents != NULL)
709 contents = elf_section_data (sec)->this_hdr.contents;
710 else
711 {
712 /* Go get them off disk. */
713 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
714 if (contents == NULL)
715 goto error_return;
716
717 if (!bfd_get_section_contents (abfd, sec, contents,
718 (file_ptr) 0, sec->_raw_size))
719 goto error_return;
720 }
721 }
722
723 /* If the relocation is not against a symbol it cannot concern us. */
724 h = NULL;
725
726 /* We don't care about local symbols. */
727 if (r_index < symtab_hdr->sh_info)
728 continue;
729
730 /* This is an external symbol. */
731 r_index -= symtab_hdr->sh_info;
732 h = (struct elf_link_hash_entry *)
733 elf_sym_hashes (abfd)[r_index];
734
735 /* If the relocation is against a static symbol it must be within
736 the current section and so cannot be a cross ARM/Thumb relocation. */
737 if (h == NULL)
738 continue;
739
740 switch (r_type)
741 {
742 case R_ARM_PC24:
743 /* This one is a call from arm code. We need to look up
744 the target of the call. If it is a thumb target, we
745 insert glue. */
746 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
747 record_arm_to_thumb_glue (link_info, h);
748 break;
749
750 case R_ARM_THM_PC22:
751 /* This one is a call from thumb code. We look
752 up the target of the call. If it is not a thumb
753 target, we insert glue. */
754 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
755 record_thumb_to_arm_glue (link_info, h);
756 break;
757
758 default:
759 break;
760 }
761 }
762
763 if (contents != NULL
764 && elf_section_data (sec)->this_hdr.contents != contents)
765 free (contents);
766 contents = NULL;
767
768 if (internal_relocs != NULL
769 && elf_section_data (sec)->relocs != internal_relocs)
770 free (internal_relocs);
771 internal_relocs = NULL;
772 }
773
774 return true;
775
776 error_return:
777 if (contents != NULL
778 && elf_section_data (sec)->this_hdr.contents != contents)
779 free (contents);
780 if (internal_relocs != NULL
781 && elf_section_data (sec)->relocs != internal_relocs)
782 free (internal_relocs);
783
784 return false;
785 }
786 #endif
787
788 /* The thumb form of a long branch is a bit finicky, because the offset
789 encoding is split over two fields, each in it's own instruction. They
790 can occur in any order. So given a thumb form of long branch, and an
791 offset, insert the offset into the thumb branch and return finished
792 instruction.
793
794 It takes two thumb instructions to encode the target address. Each has
795 11 bits to invest. The upper 11 bits are stored in one (identifed by
796 H-0.. see below), the lower 11 bits are stored in the other (identified
797 by H-1).
798
799 Combine together and shifted left by 1 (it's a half word address) and
800 there you have it.
801
802 Op: 1111 = F,
803 H-0, upper address-0 = 000
804 Op: 1111 = F,
805 H-1, lower address-0 = 800
806
807 They can be ordered either way, but the arm tools I've seen always put
808 the lower one first. It probably doesn't matter. krk@cygnus.com
809
810 XXX: Actually the order does matter. The second instruction (H-1)
811 moves the computed address into the PC, so it must be the second one
812 in the sequence. The problem, however is that whilst little endian code
813 stores the instructions in HI then LOW order, big endian code does the
814 reverse. nickc@cygnus.com. */
815
816 #define LOW_HI_ORDER 0xF800F000
817 #define HI_LOW_ORDER 0xF000F800
818
819 static insn32
820 insert_thumb_branch (br_insn, rel_off)
821 insn32 br_insn;
822 int rel_off;
823 {
824 unsigned int low_bits;
825 unsigned int high_bits;
826
827 BFD_ASSERT ((rel_off & 1) != 1);
828
829 rel_off >>= 1; /* Half word aligned address. */
830 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
831 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
832
833 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
834 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
835 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
836 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
837 else
838 /* FIXME: abort is probably not the right call. krk@cygnus.com */
839 abort (); /* error - not a valid branch instruction form. */
840
841 return br_insn;
842 }
843
844 /* Thumb code calling an ARM function. */
845
846 static int
847 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
848 hit_data, sym_sec, offset, addend, val)
849 struct bfd_link_info * info;
850 const char * name;
851 bfd * input_bfd;
852 bfd * output_bfd;
853 asection * input_section;
854 bfd_byte * hit_data;
855 asection * sym_sec;
856 bfd_vma offset;
857 bfd_signed_vma addend;
858 bfd_vma val;
859 {
860 asection * s = 0;
861 bfd_vma my_offset;
862 unsigned long int tmp;
863 long int ret_offset;
864 struct elf_link_hash_entry * myh;
865 struct elf32_arm_link_hash_table * globals;
866
867 myh = find_thumb_glue (info, name, input_bfd);
868 if (myh == NULL)
869 return false;
870
871 globals = elf32_arm_hash_table (info);
872
873 BFD_ASSERT (globals != NULL);
874 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
875
876 my_offset = myh->root.u.def.value;
877
878 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
879 THUMB2ARM_GLUE_SECTION_NAME);
880
881 BFD_ASSERT (s != NULL);
882 BFD_ASSERT (s->contents != NULL);
883 BFD_ASSERT (s->output_section != NULL);
884
885 if ((my_offset & 0x01) == 0x01)
886 {
887 if (sym_sec != NULL
888 && sym_sec->owner != NULL
889 && !INTERWORK_FLAG (sym_sec->owner))
890 {
891 (*_bfd_error_handler)
892 (_("%s(%s): warning: interworking not enabled."),
893 bfd_archive_filename (sym_sec->owner), name);
894 (*_bfd_error_handler)
895 (_(" first occurrence: %s: thumb call to arm"),
896 bfd_archive_filename (input_bfd));
897
898 return false;
899 }
900
901 --my_offset;
902 myh->root.u.def.value = my_offset;
903
904 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
905 s->contents + my_offset);
906
907 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
908 s->contents + my_offset + 2);
909
910 ret_offset =
911 /* Address of destination of the stub. */
912 ((bfd_signed_vma) val)
913 - ((bfd_signed_vma)
914 /* Offset from the start of the current section to the start of the stubs. */
915 (s->output_offset
916 /* Offset of the start of this stub from the start of the stubs. */
917 + my_offset
918 /* Address of the start of the current section. */
919 + s->output_section->vma)
920 /* The branch instruction is 4 bytes into the stub. */
921 + 4
922 /* ARM branches work from the pc of the instruction + 8. */
923 + 8);
924
925 bfd_put_32 (output_bfd,
926 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
927 s->contents + my_offset + 4);
928 }
929
930 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
931
932 /* Now go back and fix up the original BL insn to point
933 to here. */
934 ret_offset = (s->output_offset
935 + my_offset
936 - (input_section->output_offset
937 + offset + addend)
938 - 8);
939
940 tmp = bfd_get_32 (input_bfd, hit_data
941 - input_section->vma);
942
943 bfd_put_32 (output_bfd,
944 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
945 hit_data - input_section->vma);
946
947 return true;
948 }
949
950 /* Arm code calling a Thumb function. */
951
952 static int
953 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
954 hit_data, sym_sec, offset, addend, val)
955 struct bfd_link_info * info;
956 const char * name;
957 bfd * input_bfd;
958 bfd * output_bfd;
959 asection * input_section;
960 bfd_byte * hit_data;
961 asection * sym_sec;
962 bfd_vma offset;
963 bfd_signed_vma addend;
964 bfd_vma val;
965 {
966 unsigned long int tmp;
967 bfd_vma my_offset;
968 asection * s;
969 long int ret_offset;
970 struct elf_link_hash_entry * myh;
971 struct elf32_arm_link_hash_table * globals;
972
973 myh = find_arm_glue (info, name, input_bfd);
974 if (myh == NULL)
975 return false;
976
977 globals = elf32_arm_hash_table (info);
978
979 BFD_ASSERT (globals != NULL);
980 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
981
982 my_offset = myh->root.u.def.value;
983 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
984 ARM2THUMB_GLUE_SECTION_NAME);
985 BFD_ASSERT (s != NULL);
986 BFD_ASSERT (s->contents != NULL);
987 BFD_ASSERT (s->output_section != NULL);
988
989 if ((my_offset & 0x01) == 0x01)
990 {
991 if (sym_sec != NULL
992 && sym_sec->owner != NULL
993 && !INTERWORK_FLAG (sym_sec->owner))
994 {
995 (*_bfd_error_handler)
996 (_("%s(%s): warning: interworking not enabled."),
997 bfd_archive_filename (sym_sec->owner), name);
998 (*_bfd_error_handler)
999 (_(" first occurrence: %s: arm call to thumb"),
1000 bfd_archive_filename (input_bfd));
1001 }
1002
1003 --my_offset;
1004 myh->root.u.def.value = my_offset;
1005
1006 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1007 s->contents + my_offset);
1008
1009 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1010 s->contents + my_offset + 4);
1011
1012 /* It's a thumb address. Add the low order bit. */
1013 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1014 s->contents + my_offset + 8);
1015 }
1016
1017 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1018
1019 tmp = bfd_get_32 (input_bfd, hit_data);
1020 tmp = tmp & 0xFF000000;
1021
1022 /* Somehow these are both 4 too far, so subtract 8. */
1023 ret_offset = (s->output_offset
1024 + my_offset
1025 + s->output_section->vma
1026 - (input_section->output_offset
1027 + input_section->output_section->vma
1028 + offset + addend)
1029 - 8);
1030
1031 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1032
1033 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1034
1035 return true;
1036 }
1037
1038 /* Perform a relocation as part of a final link. */
1039
1040 static bfd_reloc_status_type
1041 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1042 input_section, contents, rel, value,
1043 info, sym_sec, sym_name, sym_flags, h)
1044 reloc_howto_type * howto;
1045 bfd * input_bfd;
1046 bfd * output_bfd;
1047 asection * input_section;
1048 bfd_byte * contents;
1049 Elf_Internal_Rela * rel;
1050 bfd_vma value;
1051 struct bfd_link_info * info;
1052 asection * sym_sec;
1053 const char * sym_name;
1054 int sym_flags;
1055 struct elf_link_hash_entry * h;
1056 {
1057 unsigned long r_type = howto->type;
1058 unsigned long r_symndx;
1059 bfd_byte * hit_data = contents + rel->r_offset;
1060 bfd * dynobj = NULL;
1061 Elf_Internal_Shdr * symtab_hdr;
1062 struct elf_link_hash_entry ** sym_hashes;
1063 bfd_vma * local_got_offsets;
1064 asection * sgot = NULL;
1065 asection * splt = NULL;
1066 asection * sreloc = NULL;
1067 bfd_vma addend;
1068 bfd_signed_vma signed_addend;
1069 struct elf32_arm_link_hash_table * globals;
1070
1071 /* If the start address has been set, then set the EF_ARM_HASENTRY
1072 flag. Setting this more than once is redundant, but the cost is
1073 not too high, and it keeps the code simple.
1074
1075 The test is done here, rather than somewhere else, because the
1076 start address is only set just before the final link commences.
1077
1078 Note - if the user deliberately sets a start address of 0, the
1079 flag will not be set. */
1080 if (bfd_get_start_address (output_bfd) != 0)
1081 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1082
1083 globals = elf32_arm_hash_table (info);
1084
1085 dynobj = elf_hash_table (info)->dynobj;
1086 if (dynobj)
1087 {
1088 sgot = bfd_get_section_by_name (dynobj, ".got");
1089 splt = bfd_get_section_by_name (dynobj, ".plt");
1090 }
1091 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1092 sym_hashes = elf_sym_hashes (input_bfd);
1093 local_got_offsets = elf_local_got_offsets (input_bfd);
1094 r_symndx = ELF32_R_SYM (rel->r_info);
1095
1096 #ifdef USE_REL
1097 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1098
1099 if (addend & ((howto->src_mask + 1) >> 1))
1100 {
1101 signed_addend = -1;
1102 signed_addend &= ~ howto->src_mask;
1103 signed_addend |= addend;
1104 }
1105 else
1106 signed_addend = addend;
1107 #else
1108 addend = signed_addend = rel->r_addend;
1109 #endif
1110
1111 switch (r_type)
1112 {
1113 case R_ARM_NONE:
1114 return bfd_reloc_ok;
1115
1116 case R_ARM_PC24:
1117 case R_ARM_ABS32:
1118 case R_ARM_REL32:
1119 #ifndef OLD_ARM_ABI
1120 case R_ARM_XPC25:
1121 #endif
1122 /* When generating a shared object, these relocations are copied
1123 into the output file to be resolved at run time. */
1124 if (info->shared
1125 && r_symndx != 0
1126 && (r_type != R_ARM_PC24
1127 || (h != NULL
1128 && h->dynindx != -1
1129 && (! info->symbolic
1130 || (h->elf_link_hash_flags
1131 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1132 {
1133 Elf_Internal_Rel outrel;
1134 boolean skip, relocate;
1135
1136 if (sreloc == NULL)
1137 {
1138 const char * name;
1139
1140 name = (bfd_elf_string_from_elf_section
1141 (input_bfd,
1142 elf_elfheader (input_bfd)->e_shstrndx,
1143 elf_section_data (input_section)->rel_hdr.sh_name));
1144 if (name == NULL)
1145 return bfd_reloc_notsupported;
1146
1147 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1148 && strcmp (bfd_get_section_name (input_bfd,
1149 input_section),
1150 name + 4) == 0);
1151
1152 sreloc = bfd_get_section_by_name (dynobj, name);
1153 BFD_ASSERT (sreloc != NULL);
1154 }
1155
1156 skip = false;
1157 relocate = false;
1158
1159 outrel.r_offset =
1160 _bfd_elf_section_offset (output_bfd, info, input_section,
1161 rel->r_offset);
1162 if (outrel.r_offset == (bfd_vma) -1)
1163 skip = true;
1164 else if (outrel.r_offset == (bfd_vma) -2)
1165 skip = true, relocate = true;
1166 outrel.r_offset += (input_section->output_section->vma
1167 + input_section->output_offset);
1168
1169 if (skip)
1170 memset (&outrel, 0, sizeof outrel);
1171 else if (r_type == R_ARM_PC24)
1172 {
1173 BFD_ASSERT (h != NULL && h->dynindx != -1);
1174 if ((input_section->flags & SEC_ALLOC) == 0)
1175 relocate = true;
1176 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1177 }
1178 else
1179 {
1180 if (h == NULL
1181 || ((info->symbolic || h->dynindx == -1)
1182 && (h->elf_link_hash_flags
1183 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1184 {
1185 relocate = true;
1186 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1187 }
1188 else
1189 {
1190 BFD_ASSERT (h->dynindx != -1);
1191 if ((input_section->flags & SEC_ALLOC) == 0)
1192 relocate = true;
1193 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1194 }
1195 }
1196
1197 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1198 (((Elf32_External_Rel *)
1199 sreloc->contents)
1200 + sreloc->reloc_count));
1201 ++sreloc->reloc_count;
1202
1203 /* If this reloc is against an external symbol, we do not want to
1204 fiddle with the addend. Otherwise, we need to include the symbol
1205 value so that it becomes an addend for the dynamic reloc. */
1206 if (! relocate)
1207 return bfd_reloc_ok;
1208
1209 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1210 contents, rel->r_offset, value,
1211 (bfd_vma) 0);
1212 }
1213 else switch (r_type)
1214 {
1215 #ifndef OLD_ARM_ABI
1216 case R_ARM_XPC25: /* Arm BLX instruction. */
1217 #endif
1218 case R_ARM_PC24: /* Arm B/BL instruction */
1219 #ifndef OLD_ARM_ABI
1220 if (r_type == R_ARM_XPC25)
1221 {
1222 /* Check for Arm calling Arm function. */
1223 /* FIXME: Should we translate the instruction into a BL
1224 instruction instead ? */
1225 if (sym_flags != STT_ARM_TFUNC)
1226 (*_bfd_error_handler) (_("\
1227 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1228 bfd_archive_filename (input_bfd),
1229 h ? h->root.root.string : "(local)");
1230 }
1231 else
1232 #endif
1233 {
1234 /* Check for Arm calling Thumb function. */
1235 if (sym_flags == STT_ARM_TFUNC)
1236 {
1237 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1238 input_section, hit_data, sym_sec, rel->r_offset,
1239 signed_addend, value);
1240 return bfd_reloc_ok;
1241 }
1242 }
1243
1244 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1245 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1246 {
1247 /* The old way of doing things. Trearing the addend as a
1248 byte sized field and adding in the pipeline offset. */
1249 value -= (input_section->output_section->vma
1250 + input_section->output_offset);
1251 value -= rel->r_offset;
1252 value += addend;
1253
1254 if (! globals->no_pipeline_knowledge)
1255 value -= 8;
1256 }
1257 else
1258 {
1259 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1260 where:
1261 S is the address of the symbol in the relocation.
1262 P is address of the instruction being relocated.
1263 A is the addend (extracted from the instruction) in bytes.
1264
1265 S is held in 'value'.
1266 P is the base address of the section containing the instruction
1267 plus the offset of the reloc into that section, ie:
1268 (input_section->output_section->vma +
1269 input_section->output_offset +
1270 rel->r_offset).
1271 A is the addend, converted into bytes, ie:
1272 (signed_addend * 4)
1273
1274 Note: None of these operations have knowledge of the pipeline
1275 size of the processor, thus it is up to the assembler to encode
1276 this information into the addend. */
1277 value -= (input_section->output_section->vma
1278 + input_section->output_offset);
1279 value -= rel->r_offset;
1280 value += (signed_addend << howto->size);
1281
1282 /* Previous versions of this code also used to add in the pipeline
1283 offset here. This is wrong because the linker is not supposed
1284 to know about such things, and one day it might change. In order
1285 to support old binaries that need the old behaviour however, so
1286 we attempt to detect which ABI was used to create the reloc. */
1287 if (! globals->no_pipeline_knowledge)
1288 {
1289 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1290
1291 i_ehdrp = elf_elfheader (input_bfd);
1292
1293 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1294 value -= 8;
1295 }
1296 }
1297
1298 signed_addend = value;
1299 signed_addend >>= howto->rightshift;
1300
1301 /* It is not an error for an undefined weak reference to be
1302 out of range. Any program that branches to such a symbol
1303 is going to crash anyway, so there is no point worrying
1304 about getting the destination exactly right. */
1305 if (! h || h->root.type != bfd_link_hash_undefweak)
1306 {
1307 /* Perform a signed range check. */
1308 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1309 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1310 return bfd_reloc_overflow;
1311 }
1312
1313 #ifndef OLD_ARM_ABI
1314 /* If necessary set the H bit in the BLX instruction. */
1315 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1316 value = (signed_addend & howto->dst_mask)
1317 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1318 | (1 << 24);
1319 else
1320 #endif
1321 value = (signed_addend & howto->dst_mask)
1322 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1323 break;
1324
1325 case R_ARM_ABS32:
1326 value += addend;
1327 if (sym_flags == STT_ARM_TFUNC)
1328 value |= 1;
1329 break;
1330
1331 case R_ARM_REL32:
1332 value -= (input_section->output_section->vma
1333 + input_section->output_offset + rel->r_offset);
1334 value += addend;
1335 break;
1336 }
1337
1338 bfd_put_32 (input_bfd, value, hit_data);
1339 return bfd_reloc_ok;
1340
1341 case R_ARM_ABS8:
1342 value += addend;
1343 if ((long) value > 0x7f || (long) value < -0x80)
1344 return bfd_reloc_overflow;
1345
1346 bfd_put_8 (input_bfd, value, hit_data);
1347 return bfd_reloc_ok;
1348
1349 case R_ARM_ABS16:
1350 value += addend;
1351
1352 if ((long) value > 0x7fff || (long) value < -0x8000)
1353 return bfd_reloc_overflow;
1354
1355 bfd_put_16 (input_bfd, value, hit_data);
1356 return bfd_reloc_ok;
1357
1358 case R_ARM_ABS12:
1359 /* Support ldr and str instruction for the arm */
1360 /* Also thumb b (unconditional branch). ??? Really? */
1361 value += addend;
1362
1363 if ((long) value > 0x7ff || (long) value < -0x800)
1364 return bfd_reloc_overflow;
1365
1366 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1367 bfd_put_32 (input_bfd, value, hit_data);
1368 return bfd_reloc_ok;
1369
1370 case R_ARM_THM_ABS5:
1371 /* Support ldr and str instructions for the thumb. */
1372 #ifdef USE_REL
1373 /* Need to refetch addend. */
1374 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1375 /* ??? Need to determine shift amount from operand size. */
1376 addend >>= howto->rightshift;
1377 #endif
1378 value += addend;
1379
1380 /* ??? Isn't value unsigned? */
1381 if ((long) value > 0x1f || (long) value < -0x10)
1382 return bfd_reloc_overflow;
1383
1384 /* ??? Value needs to be properly shifted into place first. */
1385 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1386 bfd_put_16 (input_bfd, value, hit_data);
1387 return bfd_reloc_ok;
1388
1389 #ifndef OLD_ARM_ABI
1390 case R_ARM_THM_XPC22:
1391 #endif
1392 case R_ARM_THM_PC22:
1393 /* Thumb BL (branch long instruction). */
1394 {
1395 bfd_vma relocation;
1396 boolean overflow = false;
1397 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1398 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1399 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1400 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1401 bfd_vma check;
1402 bfd_signed_vma signed_check;
1403
1404 #ifdef USE_REL
1405 /* Need to refetch the addend and squish the two 11 bit pieces
1406 together. */
1407 {
1408 bfd_vma upper = upper_insn & 0x7ff;
1409 bfd_vma lower = lower_insn & 0x7ff;
1410 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1411 addend = (upper << 12) | (lower << 1);
1412 signed_addend = addend;
1413 }
1414 #endif
1415 #ifndef OLD_ARM_ABI
1416 if (r_type == R_ARM_THM_XPC22)
1417 {
1418 /* Check for Thumb to Thumb call. */
1419 /* FIXME: Should we translate the instruction into a BL
1420 instruction instead ? */
1421 if (sym_flags == STT_ARM_TFUNC)
1422 (*_bfd_error_handler) (_("\
1423 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1424 bfd_archive_filename (input_bfd),
1425 h ? h->root.root.string : "(local)");
1426 }
1427 else
1428 #endif
1429 {
1430 /* If it is not a call to Thumb, assume call to Arm.
1431 If it is a call relative to a section name, then it is not a
1432 function call at all, but rather a long jump. */
1433 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1434 {
1435 if (elf32_thumb_to_arm_stub
1436 (info, sym_name, input_bfd, output_bfd, input_section,
1437 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1438 return bfd_reloc_ok;
1439 else
1440 return bfd_reloc_dangerous;
1441 }
1442 }
1443
1444 relocation = value + signed_addend;
1445
1446 relocation -= (input_section->output_section->vma
1447 + input_section->output_offset
1448 + rel->r_offset);
1449
1450 if (! globals->no_pipeline_knowledge)
1451 {
1452 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1453
1454 i_ehdrp = elf_elfheader (input_bfd);
1455
1456 /* Previous versions of this code also used to add in the pipline
1457 offset here. This is wrong because the linker is not supposed
1458 to know about such things, and one day it might change. In order
1459 to support old binaries that need the old behaviour however, so
1460 we attempt to detect which ABI was used to create the reloc. */
1461 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1462 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1463 || i_ehdrp->e_ident[EI_OSABI] == 0)
1464 relocation += 4;
1465 }
1466
1467 check = relocation >> howto->rightshift;
1468
1469 /* If this is a signed value, the rightshift just dropped
1470 leading 1 bits (assuming twos complement). */
1471 if ((bfd_signed_vma) relocation >= 0)
1472 signed_check = check;
1473 else
1474 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1475
1476 /* Assumes two's complement. */
1477 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1478 overflow = true;
1479
1480 #ifndef OLD_ARM_ABI
1481 if (r_type == R_ARM_THM_XPC22
1482 && ((lower_insn & 0x1800) == 0x0800))
1483 /* For a BLX instruction, make sure that the relocation is rounded up
1484 to a word boundary. This follows the semantics of the instruction
1485 which specifies that bit 1 of the target address will come from bit
1486 1 of the base address. */
1487 relocation = (relocation + 2) & ~ 3;
1488 #endif
1489 /* Put RELOCATION back into the insn. */
1490 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1491 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1492
1493 /* Put the relocated value back in the object file: */
1494 bfd_put_16 (input_bfd, upper_insn, hit_data);
1495 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1496
1497 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1498 }
1499 break;
1500
1501 case R_ARM_THM_PC11:
1502 /* Thumb B (branch) instruction). */
1503 {
1504 bfd_signed_vma relocation;
1505 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1506 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1507 bfd_signed_vma signed_check;
1508
1509 #ifdef USE_REL
1510 /* Need to refetch addend. */
1511 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1512 if (addend & ((howto->src_mask + 1) >> 1))
1513 {
1514 signed_addend = -1;
1515 signed_addend &= ~ howto->src_mask;
1516 signed_addend |= addend;
1517 }
1518 else
1519 signed_addend = addend;
1520 /* The value in the insn has been right shifted. We need to
1521 undo this, so that we can perform the address calculation
1522 in terms of bytes. */
1523 signed_addend <<= howto->rightshift;
1524 #endif
1525 relocation = value + signed_addend;
1526
1527 relocation -= (input_section->output_section->vma
1528 + input_section->output_offset
1529 + rel->r_offset);
1530
1531 relocation >>= howto->rightshift;
1532 signed_check = relocation;
1533 relocation &= howto->dst_mask;
1534 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1535
1536 bfd_put_16 (input_bfd, relocation, hit_data);
1537
1538 /* Assumes two's complement. */
1539 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1540 return bfd_reloc_overflow;
1541
1542 return bfd_reloc_ok;
1543 }
1544
1545 case R_ARM_GNU_VTINHERIT:
1546 case R_ARM_GNU_VTENTRY:
1547 return bfd_reloc_ok;
1548
1549 case R_ARM_COPY:
1550 return bfd_reloc_notsupported;
1551
1552 case R_ARM_GLOB_DAT:
1553 return bfd_reloc_notsupported;
1554
1555 case R_ARM_JUMP_SLOT:
1556 return bfd_reloc_notsupported;
1557
1558 case R_ARM_RELATIVE:
1559 return bfd_reloc_notsupported;
1560
1561 case R_ARM_GOTOFF:
1562 /* Relocation is relative to the start of the
1563 global offset table. */
1564
1565 BFD_ASSERT (sgot != NULL);
1566 if (sgot == NULL)
1567 return bfd_reloc_notsupported;
1568
1569 /* If we are addressing a Thumb function, we need to adjust the
1570 address by one, so that attempts to call the function pointer will
1571 correctly interpret it as Thumb code. */
1572 if (sym_flags == STT_ARM_TFUNC)
1573 value += 1;
1574
1575 /* Note that sgot->output_offset is not involved in this
1576 calculation. We always want the start of .got. If we
1577 define _GLOBAL_OFFSET_TABLE in a different way, as is
1578 permitted by the ABI, we might have to change this
1579 calculation. */
1580 value -= sgot->output_section->vma;
1581 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1582 contents, rel->r_offset, value,
1583 (bfd_vma) 0);
1584
1585 case R_ARM_GOTPC:
1586 /* Use global offset table as symbol value. */
1587 BFD_ASSERT (sgot != NULL);
1588
1589 if (sgot == NULL)
1590 return bfd_reloc_notsupported;
1591
1592 value = sgot->output_section->vma;
1593 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1594 contents, rel->r_offset, value,
1595 (bfd_vma) 0);
1596
1597 case R_ARM_GOT32:
1598 /* Relocation is to the entry for this symbol in the
1599 global offset table. */
1600 if (sgot == NULL)
1601 return bfd_reloc_notsupported;
1602
1603 if (h != NULL)
1604 {
1605 bfd_vma off;
1606
1607 off = h->got.offset;
1608 BFD_ASSERT (off != (bfd_vma) -1);
1609
1610 if (!elf_hash_table (info)->dynamic_sections_created ||
1611 (info->shared && (info->symbolic || h->dynindx == -1)
1612 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1613 {
1614 /* This is actually a static link, or it is a -Bsymbolic link
1615 and the symbol is defined locally. We must initialize this
1616 entry in the global offset table. Since the offset must
1617 always be a multiple of 4, we use the least significant bit
1618 to record whether we have initialized it already.
1619
1620 When doing a dynamic link, we create a .rel.got relocation
1621 entry to initialize the value. This is done in the
1622 finish_dynamic_symbol routine. */
1623 if ((off & 1) != 0)
1624 off &= ~1;
1625 else
1626 {
1627 /* If we are addressing a Thumb function, we need to
1628 adjust the address by one, so that attempts to
1629 call the function pointer will correctly
1630 interpret it as Thumb code. */
1631 if (sym_flags == STT_ARM_TFUNC)
1632 value |= 1;
1633
1634 bfd_put_32 (output_bfd, value, sgot->contents + off);
1635 h->got.offset |= 1;
1636 }
1637 }
1638
1639 value = sgot->output_offset + off;
1640 }
1641 else
1642 {
1643 bfd_vma off;
1644
1645 BFD_ASSERT (local_got_offsets != NULL &&
1646 local_got_offsets[r_symndx] != (bfd_vma) -1);
1647
1648 off = local_got_offsets[r_symndx];
1649
1650 /* The offset must always be a multiple of 4. We use the
1651 least significant bit to record whether we have already
1652 generated the necessary reloc. */
1653 if ((off & 1) != 0)
1654 off &= ~1;
1655 else
1656 {
1657 bfd_put_32 (output_bfd, value, sgot->contents + off);
1658
1659 if (info->shared)
1660 {
1661 asection * srelgot;
1662 Elf_Internal_Rel outrel;
1663
1664 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1665 BFD_ASSERT (srelgot != NULL);
1666
1667 outrel.r_offset = (sgot->output_section->vma
1668 + sgot->output_offset
1669 + off);
1670 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1671 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1672 (((Elf32_External_Rel *)
1673 srelgot->contents)
1674 + srelgot->reloc_count));
1675 ++srelgot->reloc_count;
1676 }
1677
1678 local_got_offsets[r_symndx] |= 1;
1679 }
1680
1681 value = sgot->output_offset + off;
1682 }
1683
1684 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1685 contents, rel->r_offset, value,
1686 (bfd_vma) 0);
1687
1688 case R_ARM_PLT32:
1689 /* Relocation is to the entry for this symbol in the
1690 procedure linkage table. */
1691
1692 /* Resolve a PLT32 reloc against a local symbol directly,
1693 without using the procedure linkage table. */
1694 if (h == NULL)
1695 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1696 contents, rel->r_offset, value,
1697 (bfd_vma) 0);
1698
1699 if (h->plt.offset == (bfd_vma) -1)
1700 /* We didn't make a PLT entry for this symbol. This
1701 happens when statically linking PIC code, or when
1702 using -Bsymbolic. */
1703 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1704 contents, rel->r_offset, value,
1705 (bfd_vma) 0);
1706
1707 BFD_ASSERT(splt != NULL);
1708 if (splt == NULL)
1709 return bfd_reloc_notsupported;
1710
1711 value = (splt->output_section->vma
1712 + splt->output_offset
1713 + h->plt.offset);
1714 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1715 contents, rel->r_offset, value,
1716 (bfd_vma) 0);
1717
1718 case R_ARM_SBREL32:
1719 return bfd_reloc_notsupported;
1720
1721 case R_ARM_AMP_VCALL9:
1722 return bfd_reloc_notsupported;
1723
1724 case R_ARM_RSBREL32:
1725 return bfd_reloc_notsupported;
1726
1727 case R_ARM_THM_RPC22:
1728 return bfd_reloc_notsupported;
1729
1730 case R_ARM_RREL32:
1731 return bfd_reloc_notsupported;
1732
1733 case R_ARM_RABS32:
1734 return bfd_reloc_notsupported;
1735
1736 case R_ARM_RPC24:
1737 return bfd_reloc_notsupported;
1738
1739 case R_ARM_RBASE:
1740 return bfd_reloc_notsupported;
1741
1742 default:
1743 return bfd_reloc_notsupported;
1744 }
1745 }
1746
1747 #ifdef USE_REL
1748 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1749 static void
1750 arm_add_to_rel (abfd, address, howto, increment)
1751 bfd * abfd;
1752 bfd_byte * address;
1753 reloc_howto_type * howto;
1754 bfd_signed_vma increment;
1755 {
1756 bfd_signed_vma addend;
1757
1758 if (howto->type == R_ARM_THM_PC22)
1759 {
1760 int upper_insn, lower_insn;
1761 int upper, lower;
1762
1763 upper_insn = bfd_get_16 (abfd, address);
1764 lower_insn = bfd_get_16 (abfd, address + 2);
1765 upper = upper_insn & 0x7ff;
1766 lower = lower_insn & 0x7ff;
1767
1768 addend = (upper << 12) | (lower << 1);
1769 addend += increment;
1770 addend >>= 1;
1771
1772 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1773 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1774
1775 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1776 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1777 }
1778 else
1779 {
1780 bfd_vma contents;
1781
1782 contents = bfd_get_32 (abfd, address);
1783
1784 /* Get the (signed) value from the instruction. */
1785 addend = contents & howto->src_mask;
1786 if (addend & ((howto->src_mask + 1) >> 1))
1787 {
1788 bfd_signed_vma mask;
1789
1790 mask = -1;
1791 mask &= ~ howto->src_mask;
1792 addend |= mask;
1793 }
1794
1795 /* Add in the increment, (which is a byte value). */
1796 switch (howto->type)
1797 {
1798 default:
1799 addend += increment;
1800 break;
1801
1802 case R_ARM_PC24:
1803 addend <<= howto->size;
1804 addend += increment;
1805
1806 /* Should we check for overflow here ? */
1807
1808 /* Drop any undesired bits. */
1809 addend >>= howto->rightshift;
1810 break;
1811 }
1812
1813 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1814
1815 bfd_put_32 (abfd, contents, address);
1816 }
1817 }
1818 #endif /* USE_REL */
1819
1820 /* Relocate an ARM ELF section. */
1821 static boolean
1822 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1823 contents, relocs, local_syms, local_sections)
1824 bfd * output_bfd;
1825 struct bfd_link_info * info;
1826 bfd * input_bfd;
1827 asection * input_section;
1828 bfd_byte * contents;
1829 Elf_Internal_Rela * relocs;
1830 Elf_Internal_Sym * local_syms;
1831 asection ** local_sections;
1832 {
1833 Elf_Internal_Shdr * symtab_hdr;
1834 struct elf_link_hash_entry ** sym_hashes;
1835 Elf_Internal_Rela * rel;
1836 Elf_Internal_Rela * relend;
1837 const char * name;
1838
1839 #ifndef USE_REL
1840 if (info->relocateable)
1841 return true;
1842 #endif
1843
1844 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1845 sym_hashes = elf_sym_hashes (input_bfd);
1846
1847 rel = relocs;
1848 relend = relocs + input_section->reloc_count;
1849 for (; rel < relend; rel++)
1850 {
1851 int r_type;
1852 reloc_howto_type * howto;
1853 unsigned long r_symndx;
1854 Elf_Internal_Sym * sym;
1855 asection * sec;
1856 struct elf_link_hash_entry * h;
1857 bfd_vma relocation;
1858 bfd_reloc_status_type r;
1859 arelent bfd_reloc;
1860
1861 r_symndx = ELF32_R_SYM (rel->r_info);
1862 r_type = ELF32_R_TYPE (rel->r_info);
1863
1864 if ( r_type == R_ARM_GNU_VTENTRY
1865 || r_type == R_ARM_GNU_VTINHERIT)
1866 continue;
1867
1868 #ifdef USE_REL
1869 elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
1870 (Elf_Internal_Rel *) rel);
1871 #else
1872 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1873 #endif
1874 howto = bfd_reloc.howto;
1875
1876 #ifdef USE_REL
1877 if (info->relocateable)
1878 {
1879 /* This is a relocateable link. We don't have to change
1880 anything, unless the reloc is against a section symbol,
1881 in which case we have to adjust according to where the
1882 section symbol winds up in the output section. */
1883 if (r_symndx < symtab_hdr->sh_info)
1884 {
1885 sym = local_syms + r_symndx;
1886 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1887 {
1888 sec = local_sections[r_symndx];
1889 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1890 howto,
1891 (bfd_signed_vma) (sec->output_offset
1892 + sym->st_value));
1893 }
1894 }
1895
1896 continue;
1897 }
1898 #endif
1899
1900 /* This is a final link. */
1901 h = NULL;
1902 sym = NULL;
1903 sec = NULL;
1904
1905 if (r_symndx < symtab_hdr->sh_info)
1906 {
1907 sym = local_syms + r_symndx;
1908 sec = local_sections[r_symndx];
1909 #ifdef USE_REL
1910 relocation = (sec->output_section->vma
1911 + sec->output_offset
1912 + sym->st_value);
1913 if ((sec->flags & SEC_MERGE)
1914 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1915 {
1916 asection *msec;
1917 bfd_vma addend, value;
1918
1919 if (howto->rightshift)
1920 {
1921 (*_bfd_error_handler)
1922 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1923 bfd_archive_filename (input_bfd),
1924 bfd_get_section_name (input_bfd, input_section),
1925 (long) rel->r_offset, howto->name);
1926 return false;
1927 }
1928
1929 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1930
1931 /* Get the (signed) value from the instruction. */
1932 addend = value & howto->src_mask;
1933 if (addend & ((howto->src_mask + 1) >> 1))
1934 {
1935 bfd_signed_vma mask;
1936
1937 mask = -1;
1938 mask &= ~ howto->src_mask;
1939 addend |= mask;
1940 }
1941 msec = sec;
1942 addend =
1943 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1944 - relocation;
1945 addend += msec->output_section->vma + msec->output_offset;
1946 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1947 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1948 }
1949 #else
1950 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1951 #endif
1952 }
1953 else
1954 {
1955 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1956
1957 while ( h->root.type == bfd_link_hash_indirect
1958 || h->root.type == bfd_link_hash_warning)
1959 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1960
1961 if ( h->root.type == bfd_link_hash_defined
1962 || h->root.type == bfd_link_hash_defweak)
1963 {
1964 int relocation_needed = 1;
1965
1966 sec = h->root.u.def.section;
1967
1968 /* In these cases, we don't need the relocation value.
1969 We check specially because in some obscure cases
1970 sec->output_section will be NULL. */
1971 switch (r_type)
1972 {
1973 case R_ARM_PC24:
1974 case R_ARM_ABS32:
1975 case R_ARM_THM_PC22:
1976 if (info->shared
1977 && (
1978 (!info->symbolic && h->dynindx != -1)
1979 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1980 )
1981 && ((input_section->flags & SEC_ALLOC) != 0
1982 /* DWARF will emit R_ARM_ABS32 relocations in its
1983 sections against symbols defined externally
1984 in shared libraries. We can't do anything
1985 with them here. */
1986 || ((input_section->flags & SEC_DEBUGGING) != 0
1987 && (h->elf_link_hash_flags
1988 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1989 )
1990 relocation_needed = 0;
1991 break;
1992
1993 case R_ARM_GOTPC:
1994 relocation_needed = 0;
1995 break;
1996
1997 case R_ARM_GOT32:
1998 if (elf_hash_table(info)->dynamic_sections_created
1999 && (!info->shared
2000 || (!info->symbolic && h->dynindx != -1)
2001 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2002 )
2003 )
2004 relocation_needed = 0;
2005 break;
2006
2007 case R_ARM_PLT32:
2008 if (h->plt.offset != (bfd_vma)-1)
2009 relocation_needed = 0;
2010 break;
2011
2012 default:
2013 if (sec->output_section == NULL)
2014 {
2015 (*_bfd_error_handler)
2016 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2017 bfd_archive_filename (input_bfd),
2018 r_type,
2019 h->root.root.string,
2020 bfd_get_section_name (input_bfd, input_section));
2021 relocation_needed = 0;
2022 }
2023 }
2024
2025 if (relocation_needed)
2026 relocation = h->root.u.def.value
2027 + sec->output_section->vma
2028 + sec->output_offset;
2029 else
2030 relocation = 0;
2031 }
2032 else if (h->root.type == bfd_link_hash_undefweak)
2033 relocation = 0;
2034 else if (info->shared && !info->symbolic
2035 && !info->no_undefined
2036 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2037 relocation = 0;
2038 else
2039 {
2040 if (!((*info->callbacks->undefined_symbol)
2041 (info, h->root.root.string, input_bfd,
2042 input_section, rel->r_offset,
2043 (!info->shared || info->no_undefined
2044 || ELF_ST_VISIBILITY (h->other)))))
2045 return false;
2046 relocation = 0;
2047 }
2048 }
2049
2050 if (h != NULL)
2051 name = h->root.root.string;
2052 else
2053 {
2054 name = (bfd_elf_string_from_elf_section
2055 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2056 if (name == NULL || *name == '\0')
2057 name = bfd_section_name (input_bfd, sec);
2058 }
2059
2060 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2061 input_section, contents, rel,
2062 relocation, info, sec, name,
2063 (h ? ELF_ST_TYPE (h->type) :
2064 ELF_ST_TYPE (sym->st_info)), h);
2065
2066 if (r != bfd_reloc_ok)
2067 {
2068 const char * msg = (const char *) 0;
2069
2070 switch (r)
2071 {
2072 case bfd_reloc_overflow:
2073 /* If the overflowing reloc was to an undefined symbol,
2074 we have already printed one error message and there
2075 is no point complaining again. */
2076 if ((! h ||
2077 h->root.type != bfd_link_hash_undefined)
2078 && (!((*info->callbacks->reloc_overflow)
2079 (info, name, howto->name, (bfd_vma) 0,
2080 input_bfd, input_section, rel->r_offset))))
2081 return false;
2082 break;
2083
2084 case bfd_reloc_undefined:
2085 if (!((*info->callbacks->undefined_symbol)
2086 (info, name, input_bfd, input_section,
2087 rel->r_offset, true)))
2088 return false;
2089 break;
2090
2091 case bfd_reloc_outofrange:
2092 msg = _("internal error: out of range error");
2093 goto common_error;
2094
2095 case bfd_reloc_notsupported:
2096 msg = _("internal error: unsupported relocation error");
2097 goto common_error;
2098
2099 case bfd_reloc_dangerous:
2100 msg = _("internal error: dangerous error");
2101 goto common_error;
2102
2103 default:
2104 msg = _("internal error: unknown error");
2105 /* fall through */
2106
2107 common_error:
2108 if (!((*info->callbacks->warning)
2109 (info, msg, name, input_bfd, input_section,
2110 rel->r_offset)))
2111 return false;
2112 break;
2113 }
2114 }
2115 }
2116
2117 return true;
2118 }
2119
2120 /* Function to keep ARM specific flags in the ELF header. */
2121 static boolean
2122 elf32_arm_set_private_flags (abfd, flags)
2123 bfd *abfd;
2124 flagword flags;
2125 {
2126 if (elf_flags_init (abfd)
2127 && elf_elfheader (abfd)->e_flags != flags)
2128 {
2129 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2130 {
2131 if (flags & EF_ARM_INTERWORK)
2132 (*_bfd_error_handler) (_("\
2133 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2134 bfd_archive_filename (abfd));
2135 else
2136 _bfd_error_handler (_("\
2137 Warning: Clearing the interworking flag of %s due to outside request"),
2138 bfd_archive_filename (abfd));
2139 }
2140 }
2141 else
2142 {
2143 elf_elfheader (abfd)->e_flags = flags;
2144 elf_flags_init (abfd) = true;
2145 }
2146
2147 return true;
2148 }
2149
2150 /* Copy backend specific data from one object module to another. */
2151
2152 static boolean
2153 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2154 bfd *ibfd;
2155 bfd *obfd;
2156 {
2157 flagword in_flags;
2158 flagword out_flags;
2159
2160 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2161 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2162 return true;
2163
2164 in_flags = elf_elfheader (ibfd)->e_flags;
2165 out_flags = elf_elfheader (obfd)->e_flags;
2166
2167 if (elf_flags_init (obfd)
2168 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2169 && in_flags != out_flags)
2170 {
2171 /* Cannot mix APCS26 and APCS32 code. */
2172 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2173 return false;
2174
2175 /* Cannot mix float APCS and non-float APCS code. */
2176 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2177 return false;
2178
2179 /* If the src and dest have different interworking flags
2180 then turn off the interworking bit. */
2181 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2182 {
2183 if (out_flags & EF_ARM_INTERWORK)
2184 _bfd_error_handler (_("\
2185 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2186 bfd_get_filename (obfd),
2187 bfd_archive_filename (ibfd));
2188
2189 in_flags &= ~EF_ARM_INTERWORK;
2190 }
2191
2192 /* Likewise for PIC, though don't warn for this case. */
2193 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2194 in_flags &= ~EF_ARM_PIC;
2195 }
2196
2197 elf_elfheader (obfd)->e_flags = in_flags;
2198 elf_flags_init (obfd) = true;
2199
2200 return true;
2201 }
2202
2203 /* Merge backend specific data from an object file to the output
2204 object file when linking. */
2205
2206 static boolean
2207 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2208 bfd * ibfd;
2209 bfd * obfd;
2210 {
2211 flagword out_flags;
2212 flagword in_flags;
2213 boolean flags_compatible = true;
2214 boolean null_input_bfd = true;
2215 asection *sec;
2216
2217 /* Check if we have the same endianess. */
2218 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2219 return false;
2220
2221 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2222 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2223 return true;
2224
2225 /* The input BFD must have had its flags initialised. */
2226 /* The following seems bogus to me -- The flags are initialized in
2227 the assembler but I don't think an elf_flags_init field is
2228 written into the object. */
2229 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2230
2231 in_flags = elf_elfheader (ibfd)->e_flags;
2232 out_flags = elf_elfheader (obfd)->e_flags;
2233
2234 if (!elf_flags_init (obfd))
2235 {
2236 /* If the input is the default architecture and had the default
2237 flags then do not bother setting the flags for the output
2238 architecture, instead allow future merges to do this. If no
2239 future merges ever set these flags then they will retain their
2240 uninitialised values, which surprise surprise, correspond
2241 to the default values. */
2242 if (bfd_get_arch_info (ibfd)->the_default
2243 && elf_elfheader (ibfd)->e_flags == 0)
2244 return true;
2245
2246 elf_flags_init (obfd) = true;
2247 elf_elfheader (obfd)->e_flags = in_flags;
2248
2249 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2250 && bfd_get_arch_info (obfd)->the_default)
2251 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2252
2253 return true;
2254 }
2255
2256 /* Identical flags must be compatible. */
2257 if (in_flags == out_flags)
2258 return true;
2259
2260 /* Check to see if the input BFD actually contains any sections.
2261 If not, its flags may not have been initialised either, but it cannot
2262 actually cause any incompatibility. */
2263 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2264 {
2265 /* Ignore synthetic glue sections. */
2266 if (strcmp (sec->name, ".glue_7")
2267 && strcmp (sec->name, ".glue_7t"))
2268 {
2269 null_input_bfd = false;
2270 break;
2271 }
2272 }
2273 if (null_input_bfd)
2274 return true;
2275
2276 /* Complain about various flag mismatches. */
2277 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2278 {
2279 _bfd_error_handler (_("\
2280 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2281 bfd_archive_filename (ibfd),
2282 (in_flags & EF_ARM_EABIMASK) >> 24,
2283 bfd_get_filename (obfd),
2284 (out_flags & EF_ARM_EABIMASK) >> 24);
2285 return false;
2286 }
2287
2288 /* Not sure what needs to be checked for EABI versions >= 1. */
2289 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2290 {
2291 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2292 {
2293 _bfd_error_handler (_("\
2294 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2295 bfd_archive_filename (ibfd),
2296 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2297 bfd_get_filename (obfd),
2298 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2299 flags_compatible = false;
2300 }
2301
2302 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2303 {
2304 if (in_flags & EF_ARM_APCS_FLOAT)
2305 _bfd_error_handler (_("\
2306 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2307 bfd_archive_filename (ibfd),
2308 bfd_get_filename (obfd));
2309 else
2310 _bfd_error_handler (_("\
2311 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2312 bfd_archive_filename (ibfd),
2313 bfd_get_filename (obfd));
2314
2315 flags_compatible = false;
2316 }
2317
2318 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2319 {
2320 if (in_flags & EF_ARM_VFP_FLOAT)
2321 _bfd_error_handler (_("\
2322 ERROR: %s uses VFP instructions, whereas %s uses FPA instructions"),
2323 bfd_archive_filename (ibfd),
2324 bfd_get_filename (obfd));
2325 else
2326 _bfd_error_handler (_("\
2327 ERROR: %s uses FPA instructions, whereas %s uses VFP instructions"),
2328 bfd_archive_filename (ibfd),
2329 bfd_get_filename (obfd));
2330
2331 flags_compatible = false;
2332 }
2333
2334 #ifdef EF_ARM_SOFT_FLOAT
2335 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2336 {
2337 /* We can allow interworking between code that is VFP format
2338 layout, and uses either soft float or integer regs for
2339 passing floating point arguments and results. We already
2340 know that the APCS_FLOAT flags match; similarly for VFP
2341 flags. */
2342 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2343 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2344 {
2345 if (in_flags & EF_ARM_SOFT_FLOAT)
2346 _bfd_error_handler (_("\
2347 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2348 bfd_archive_filename (ibfd),
2349 bfd_get_filename (obfd));
2350 else
2351 _bfd_error_handler (_("\
2352 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2353 bfd_archive_filename (ibfd),
2354 bfd_get_filename (obfd));
2355
2356 flags_compatible = false;
2357 }
2358 }
2359 #endif
2360
2361 /* Interworking mismatch is only a warning. */
2362 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2363 {
2364 if (in_flags & EF_ARM_INTERWORK)
2365 {
2366 _bfd_error_handler (_("\
2367 Warning: %s supports interworking, whereas %s does not"),
2368 bfd_archive_filename (ibfd),
2369 bfd_get_filename (obfd));
2370 }
2371 else
2372 {
2373 _bfd_error_handler (_("\
2374 Warning: %s does not support interworking, whereas %s does"),
2375 bfd_archive_filename (ibfd),
2376 bfd_get_filename (obfd));
2377 }
2378 }
2379 }
2380
2381 return flags_compatible;
2382 }
2383
2384 /* Display the flags field. */
2385
2386 static boolean
2387 elf32_arm_print_private_bfd_data (abfd, ptr)
2388 bfd *abfd;
2389 PTR ptr;
2390 {
2391 FILE * file = (FILE *) ptr;
2392 unsigned long flags;
2393
2394 BFD_ASSERT (abfd != NULL && ptr != NULL);
2395
2396 /* Print normal ELF private data. */
2397 _bfd_elf_print_private_bfd_data (abfd, ptr);
2398
2399 flags = elf_elfheader (abfd)->e_flags;
2400 /* Ignore init flag - it may not be set, despite the flags field
2401 containing valid data. */
2402
2403 /* xgettext:c-format */
2404 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2405
2406 switch (EF_ARM_EABI_VERSION (flags))
2407 {
2408 case EF_ARM_EABI_UNKNOWN:
2409 /* The following flag bits are GNU extenstions and not part of the
2410 official ARM ELF extended ABI. Hence they are only decoded if
2411 the EABI version is not set. */
2412 if (flags & EF_ARM_INTERWORK)
2413 fprintf (file, _(" [interworking enabled]"));
2414
2415 if (flags & EF_ARM_APCS_26)
2416 fprintf (file, " [APCS-26]");
2417 else
2418 fprintf (file, " [APCS-32]");
2419
2420 if (flags & EF_ARM_VFP_FLOAT)
2421 fprintf (file, _(" [VFP float format]"));
2422 else
2423 fprintf (file, _(" [FPA float format]"));
2424
2425 if (flags & EF_ARM_APCS_FLOAT)
2426 fprintf (file, _(" [floats passed in float registers]"));
2427
2428 if (flags & EF_ARM_PIC)
2429 fprintf (file, _(" [position independent]"));
2430
2431 if (flags & EF_ARM_NEW_ABI)
2432 fprintf (file, _(" [new ABI]"));
2433
2434 if (flags & EF_ARM_OLD_ABI)
2435 fprintf (file, _(" [old ABI]"));
2436
2437 if (flags & EF_ARM_SOFT_FLOAT)
2438 fprintf (file, _(" [software FP]"));
2439
2440 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2441 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2442 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT);
2443 break;
2444
2445 case EF_ARM_EABI_VER1:
2446 fprintf (file, _(" [Version1 EABI]"));
2447
2448 if (flags & EF_ARM_SYMSARESORTED)
2449 fprintf (file, _(" [sorted symbol table]"));
2450 else
2451 fprintf (file, _(" [unsorted symbol table]"));
2452
2453 flags &= ~ EF_ARM_SYMSARESORTED;
2454 break;
2455
2456 case EF_ARM_EABI_VER2:
2457 fprintf (file, _(" [Version2 EABI]"));
2458
2459 if (flags & EF_ARM_SYMSARESORTED)
2460 fprintf (file, _(" [sorted symbol table]"));
2461 else
2462 fprintf (file, _(" [unsorted symbol table]"));
2463
2464 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2465 fprintf (file, _(" [dynamic symbols use segment index]"));
2466
2467 if (flags & EF_ARM_MAPSYMSFIRST)
2468 fprintf (file, _(" [mapping symbols precede others]"));
2469
2470 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2471 | EF_ARM_MAPSYMSFIRST);
2472 break;
2473
2474 default:
2475 fprintf (file, _(" <EABI version unrecognised>"));
2476 break;
2477 }
2478
2479 flags &= ~ EF_ARM_EABIMASK;
2480
2481 if (flags & EF_ARM_RELEXEC)
2482 fprintf (file, _(" [relocatable executable]"));
2483
2484 if (flags & EF_ARM_HASENTRY)
2485 fprintf (file, _(" [has entry point]"));
2486
2487 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2488
2489 if (flags)
2490 fprintf (file, _("<Unrecognised flag bits set>"));
2491
2492 fputc ('\n', file);
2493
2494 return true;
2495 }
2496
2497 static int
2498 elf32_arm_get_symbol_type (elf_sym, type)
2499 Elf_Internal_Sym * elf_sym;
2500 int type;
2501 {
2502 switch (ELF_ST_TYPE (elf_sym->st_info))
2503 {
2504 case STT_ARM_TFUNC:
2505 return ELF_ST_TYPE (elf_sym->st_info);
2506
2507 case STT_ARM_16BIT:
2508 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2509 This allows us to distinguish between data used by Thumb instructions
2510 and non-data (which is probably code) inside Thumb regions of an
2511 executable. */
2512 if (type != STT_OBJECT)
2513 return ELF_ST_TYPE (elf_sym->st_info);
2514 break;
2515
2516 default:
2517 break;
2518 }
2519
2520 return type;
2521 }
2522
2523 static asection *
2524 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2525 asection *sec;
2526 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2527 Elf_Internal_Rela *rel;
2528 struct elf_link_hash_entry *h;
2529 Elf_Internal_Sym *sym;
2530 {
2531 if (h != NULL)
2532 {
2533 switch (ELF32_R_TYPE (rel->r_info))
2534 {
2535 case R_ARM_GNU_VTINHERIT:
2536 case R_ARM_GNU_VTENTRY:
2537 break;
2538
2539 default:
2540 switch (h->root.type)
2541 {
2542 case bfd_link_hash_defined:
2543 case bfd_link_hash_defweak:
2544 return h->root.u.def.section;
2545
2546 case bfd_link_hash_common:
2547 return h->root.u.c.p->section;
2548
2549 default:
2550 break;
2551 }
2552 }
2553 }
2554 else
2555 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2556
2557 return NULL;
2558 }
2559
2560 /* Update the got entry reference counts for the section being removed. */
2561
2562 static boolean
2563 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2564 bfd *abfd ATTRIBUTE_UNUSED;
2565 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2566 asection *sec ATTRIBUTE_UNUSED;
2567 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2568 {
2569 /* We don't support garbage collection of GOT and PLT relocs yet. */
2570 return true;
2571 }
2572
2573 /* Look through the relocs for a section during the first phase. */
2574
2575 static boolean
2576 elf32_arm_check_relocs (abfd, info, sec, relocs)
2577 bfd * abfd;
2578 struct bfd_link_info * info;
2579 asection * sec;
2580 const Elf_Internal_Rela * relocs;
2581 {
2582 Elf_Internal_Shdr * symtab_hdr;
2583 struct elf_link_hash_entry ** sym_hashes;
2584 struct elf_link_hash_entry ** sym_hashes_end;
2585 const Elf_Internal_Rela * rel;
2586 const Elf_Internal_Rela * rel_end;
2587 bfd * dynobj;
2588 asection * sgot, *srelgot, *sreloc;
2589 bfd_vma * local_got_offsets;
2590
2591 if (info->relocateable)
2592 return true;
2593
2594 sgot = srelgot = sreloc = NULL;
2595
2596 dynobj = elf_hash_table (info)->dynobj;
2597 local_got_offsets = elf_local_got_offsets (abfd);
2598
2599 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2600 sym_hashes = elf_sym_hashes (abfd);
2601 sym_hashes_end = sym_hashes
2602 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2603
2604 if (!elf_bad_symtab (abfd))
2605 sym_hashes_end -= symtab_hdr->sh_info;
2606
2607 rel_end = relocs + sec->reloc_count;
2608 for (rel = relocs; rel < rel_end; rel++)
2609 {
2610 struct elf_link_hash_entry *h;
2611 unsigned long r_symndx;
2612
2613 r_symndx = ELF32_R_SYM (rel->r_info);
2614 if (r_symndx < symtab_hdr->sh_info)
2615 h = NULL;
2616 else
2617 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2618
2619 /* Some relocs require a global offset table. */
2620 if (dynobj == NULL)
2621 {
2622 switch (ELF32_R_TYPE (rel->r_info))
2623 {
2624 case R_ARM_GOT32:
2625 case R_ARM_GOTOFF:
2626 case R_ARM_GOTPC:
2627 elf_hash_table (info)->dynobj = dynobj = abfd;
2628 if (! _bfd_elf_create_got_section (dynobj, info))
2629 return false;
2630 break;
2631
2632 default:
2633 break;
2634 }
2635 }
2636
2637 switch (ELF32_R_TYPE (rel->r_info))
2638 {
2639 case R_ARM_GOT32:
2640 /* This symbol requires a global offset table entry. */
2641 if (sgot == NULL)
2642 {
2643 sgot = bfd_get_section_by_name (dynobj, ".got");
2644 BFD_ASSERT (sgot != NULL);
2645 }
2646
2647 /* Get the got relocation section if necessary. */
2648 if (srelgot == NULL
2649 && (h != NULL || info->shared))
2650 {
2651 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2652
2653 /* If no got relocation section, make one and initialize. */
2654 if (srelgot == NULL)
2655 {
2656 srelgot = bfd_make_section (dynobj, ".rel.got");
2657 if (srelgot == NULL
2658 || ! bfd_set_section_flags (dynobj, srelgot,
2659 (SEC_ALLOC
2660 | SEC_LOAD
2661 | SEC_HAS_CONTENTS
2662 | SEC_IN_MEMORY
2663 | SEC_LINKER_CREATED
2664 | SEC_READONLY))
2665 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2666 return false;
2667 }
2668 }
2669
2670 if (h != NULL)
2671 {
2672 if (h->got.offset != (bfd_vma) -1)
2673 /* We have already allocated space in the .got. */
2674 break;
2675
2676 h->got.offset = sgot->_raw_size;
2677
2678 /* Make sure this symbol is output as a dynamic symbol. */
2679 if (h->dynindx == -1)
2680 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2681 return false;
2682
2683 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2684 }
2685 else
2686 {
2687 /* This is a global offset table entry for a local
2688 symbol. */
2689 if (local_got_offsets == NULL)
2690 {
2691 bfd_size_type size;
2692 unsigned int i;
2693
2694 size = symtab_hdr->sh_info;
2695 size *= sizeof (bfd_vma);
2696 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2697 if (local_got_offsets == NULL)
2698 return false;
2699 elf_local_got_offsets (abfd) = local_got_offsets;
2700 for (i = 0; i < symtab_hdr->sh_info; i++)
2701 local_got_offsets[i] = (bfd_vma) -1;
2702 }
2703
2704 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2705 /* We have already allocated space in the .got. */
2706 break;
2707
2708 local_got_offsets[r_symndx] = sgot->_raw_size;
2709
2710 if (info->shared)
2711 /* If we are generating a shared object, we need to
2712 output a R_ARM_RELATIVE reloc so that the dynamic
2713 linker can adjust this GOT entry. */
2714 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2715 }
2716
2717 sgot->_raw_size += 4;
2718 break;
2719
2720 case R_ARM_PLT32:
2721 /* This symbol requires a procedure linkage table entry. We
2722 actually build the entry in adjust_dynamic_symbol,
2723 because this might be a case of linking PIC code which is
2724 never referenced by a dynamic object, in which case we
2725 don't need to generate a procedure linkage table entry
2726 after all. */
2727
2728 /* If this is a local symbol, we resolve it directly without
2729 creating a procedure linkage table entry. */
2730 if (h == NULL)
2731 continue;
2732
2733 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2734 break;
2735
2736 case R_ARM_ABS32:
2737 case R_ARM_REL32:
2738 case R_ARM_PC24:
2739 /* If we are creating a shared library, and this is a reloc
2740 against a global symbol, or a non PC relative reloc
2741 against a local symbol, then we need to copy the reloc
2742 into the shared library. However, if we are linking with
2743 -Bsymbolic, we do not need to copy a reloc against a
2744 global symbol which is defined in an object we are
2745 including in the link (i.e., DEF_REGULAR is set). At
2746 this point we have not seen all the input files, so it is
2747 possible that DEF_REGULAR is not set now but will be set
2748 later (it is never cleared). We account for that
2749 possibility below by storing information in the
2750 pcrel_relocs_copied field of the hash table entry. */
2751 if (info->shared
2752 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2753 || (h != NULL
2754 && (! info->symbolic
2755 || (h->elf_link_hash_flags
2756 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2757 {
2758 /* When creating a shared object, we must copy these
2759 reloc types into the output file. We create a reloc
2760 section in dynobj and make room for this reloc. */
2761 if (sreloc == NULL)
2762 {
2763 const char * name;
2764
2765 name = (bfd_elf_string_from_elf_section
2766 (abfd,
2767 elf_elfheader (abfd)->e_shstrndx,
2768 elf_section_data (sec)->rel_hdr.sh_name));
2769 if (name == NULL)
2770 return false;
2771
2772 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2773 && strcmp (bfd_get_section_name (abfd, sec),
2774 name + 4) == 0);
2775
2776 sreloc = bfd_get_section_by_name (dynobj, name);
2777 if (sreloc == NULL)
2778 {
2779 flagword flags;
2780
2781 sreloc = bfd_make_section (dynobj, name);
2782 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2783 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2784 if ((sec->flags & SEC_ALLOC) != 0)
2785 flags |= SEC_ALLOC | SEC_LOAD;
2786 if (sreloc == NULL
2787 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2788 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2789 return false;
2790 }
2791 if (sec->flags & SEC_READONLY)
2792 info->flags |= DF_TEXTREL;
2793 }
2794
2795 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2796 /* If we are linking with -Bsymbolic, and this is a
2797 global symbol, we count the number of PC relative
2798 relocations we have entered for this symbol, so that
2799 we can discard them again if the symbol is later
2800 defined by a regular object. Note that this function
2801 is only called if we are using an elf_i386 linker
2802 hash table, which means that h is really a pointer to
2803 an elf_i386_link_hash_entry. */
2804 if (h != NULL && info->symbolic
2805 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2806 {
2807 struct elf32_arm_link_hash_entry * eh;
2808 struct elf32_arm_pcrel_relocs_copied * p;
2809
2810 eh = (struct elf32_arm_link_hash_entry *) h;
2811
2812 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2813 if (p->section == sreloc)
2814 break;
2815
2816 if (p == NULL)
2817 {
2818 p = ((struct elf32_arm_pcrel_relocs_copied *)
2819 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2820 if (p == NULL)
2821 return false;
2822 p->next = eh->pcrel_relocs_copied;
2823 eh->pcrel_relocs_copied = p;
2824 p->section = sreloc;
2825 p->count = 0;
2826 }
2827
2828 ++p->count;
2829 }
2830 }
2831 break;
2832
2833 /* This relocation describes the C++ object vtable hierarchy.
2834 Reconstruct it for later use during GC. */
2835 case R_ARM_GNU_VTINHERIT:
2836 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2837 return false;
2838 break;
2839
2840 /* This relocation describes which C++ vtable entries are actually
2841 used. Record for later use during GC. */
2842 case R_ARM_GNU_VTENTRY:
2843 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2844 return false;
2845 break;
2846 }
2847 }
2848
2849 return true;
2850 }
2851
2852 /* Find the nearest line to a particular section and offset, for error
2853 reporting. This code is a duplicate of the code in elf.c, except
2854 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2855
2856 static boolean
2857 elf32_arm_find_nearest_line
2858 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2859 bfd * abfd;
2860 asection * section;
2861 asymbol ** symbols;
2862 bfd_vma offset;
2863 const char ** filename_ptr;
2864 const char ** functionname_ptr;
2865 unsigned int * line_ptr;
2866 {
2867 boolean found;
2868 const char * filename;
2869 asymbol * func;
2870 bfd_vma low_func;
2871 asymbol ** p;
2872
2873 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2874 filename_ptr, functionname_ptr,
2875 line_ptr, 0,
2876 &elf_tdata (abfd)->dwarf2_find_line_info))
2877 return true;
2878
2879 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2880 &found, filename_ptr,
2881 functionname_ptr, line_ptr,
2882 &elf_tdata (abfd)->line_info))
2883 return false;
2884
2885 if (found)
2886 return true;
2887
2888 if (symbols == NULL)
2889 return false;
2890
2891 filename = NULL;
2892 func = NULL;
2893 low_func = 0;
2894
2895 for (p = symbols; *p != NULL; p++)
2896 {
2897 elf_symbol_type *q;
2898
2899 q = (elf_symbol_type *) *p;
2900
2901 if (bfd_get_section (&q->symbol) != section)
2902 continue;
2903
2904 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2905 {
2906 default:
2907 break;
2908 case STT_FILE:
2909 filename = bfd_asymbol_name (&q->symbol);
2910 break;
2911 case STT_NOTYPE:
2912 case STT_FUNC:
2913 case STT_ARM_TFUNC:
2914 if (q->symbol.section == section
2915 && q->symbol.value >= low_func
2916 && q->symbol.value <= offset)
2917 {
2918 func = (asymbol *) q;
2919 low_func = q->symbol.value;
2920 }
2921 break;
2922 }
2923 }
2924
2925 if (func == NULL)
2926 return false;
2927
2928 *filename_ptr = filename;
2929 *functionname_ptr = bfd_asymbol_name (func);
2930 *line_ptr = 0;
2931
2932 return true;
2933 }
2934
2935 /* Adjust a symbol defined by a dynamic object and referenced by a
2936 regular object. The current definition is in some section of the
2937 dynamic object, but we're not including those sections. We have to
2938 change the definition to something the rest of the link can
2939 understand. */
2940
2941 static boolean
2942 elf32_arm_adjust_dynamic_symbol (info, h)
2943 struct bfd_link_info * info;
2944 struct elf_link_hash_entry * h;
2945 {
2946 bfd * dynobj;
2947 asection * s;
2948 unsigned int power_of_two;
2949
2950 dynobj = elf_hash_table (info)->dynobj;
2951
2952 /* Make sure we know what is going on here. */
2953 BFD_ASSERT (dynobj != NULL
2954 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2955 || h->weakdef != NULL
2956 || ((h->elf_link_hash_flags
2957 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2958 && (h->elf_link_hash_flags
2959 & ELF_LINK_HASH_REF_REGULAR) != 0
2960 && (h->elf_link_hash_flags
2961 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2962
2963 /* If this is a function, put it in the procedure linkage table. We
2964 will fill in the contents of the procedure linkage table later,
2965 when we know the address of the .got section. */
2966 if (h->type == STT_FUNC
2967 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2968 {
2969 if (! info->shared
2970 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2971 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2972 {
2973 /* This case can occur if we saw a PLT32 reloc in an input
2974 file, but the symbol was never referred to by a dynamic
2975 object. In such a case, we don't actually need to build
2976 a procedure linkage table, and we can just do a PC32
2977 reloc instead. */
2978 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2979 return true;
2980 }
2981
2982 /* Make sure this symbol is output as a dynamic symbol. */
2983 if (h->dynindx == -1)
2984 {
2985 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2986 return false;
2987 }
2988
2989 s = bfd_get_section_by_name (dynobj, ".plt");
2990 BFD_ASSERT (s != NULL);
2991
2992 /* If this is the first .plt entry, make room for the special
2993 first entry. */
2994 if (s->_raw_size == 0)
2995 s->_raw_size += PLT_ENTRY_SIZE;
2996
2997 /* If this symbol is not defined in a regular file, and we are
2998 not generating a shared library, then set the symbol to this
2999 location in the .plt. This is required to make function
3000 pointers compare as equal between the normal executable and
3001 the shared library. */
3002 if (! info->shared
3003 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3004 {
3005 h->root.u.def.section = s;
3006 h->root.u.def.value = s->_raw_size;
3007 }
3008
3009 h->plt.offset = s->_raw_size;
3010
3011 /* Make room for this entry. */
3012 s->_raw_size += PLT_ENTRY_SIZE;
3013
3014 /* We also need to make an entry in the .got.plt section, which
3015 will be placed in the .got section by the linker script. */
3016 s = bfd_get_section_by_name (dynobj, ".got.plt");
3017 BFD_ASSERT (s != NULL);
3018 s->_raw_size += 4;
3019
3020 /* We also need to make an entry in the .rel.plt section. */
3021
3022 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3023 BFD_ASSERT (s != NULL);
3024 s->_raw_size += sizeof (Elf32_External_Rel);
3025
3026 return true;
3027 }
3028
3029 /* If this is a weak symbol, and there is a real definition, the
3030 processor independent code will have arranged for us to see the
3031 real definition first, and we can just use the same value. */
3032 if (h->weakdef != NULL)
3033 {
3034 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3035 || h->weakdef->root.type == bfd_link_hash_defweak);
3036 h->root.u.def.section = h->weakdef->root.u.def.section;
3037 h->root.u.def.value = h->weakdef->root.u.def.value;
3038 return true;
3039 }
3040
3041 /* This is a reference to a symbol defined by a dynamic object which
3042 is not a function. */
3043
3044 /* If we are creating a shared library, we must presume that the
3045 only references to the symbol are via the global offset table.
3046 For such cases we need not do anything here; the relocations will
3047 be handled correctly by relocate_section. */
3048 if (info->shared)
3049 return true;
3050
3051 /* We must allocate the symbol in our .dynbss section, which will
3052 become part of the .bss section of the executable. There will be
3053 an entry for this symbol in the .dynsym section. The dynamic
3054 object will contain position independent code, so all references
3055 from the dynamic object to this symbol will go through the global
3056 offset table. The dynamic linker will use the .dynsym entry to
3057 determine the address it must put in the global offset table, so
3058 both the dynamic object and the regular object will refer to the
3059 same memory location for the variable. */
3060 s = bfd_get_section_by_name (dynobj, ".dynbss");
3061 BFD_ASSERT (s != NULL);
3062
3063 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3064 copy the initial value out of the dynamic object and into the
3065 runtime process image. We need to remember the offset into the
3066 .rel.bss section we are going to use. */
3067 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3068 {
3069 asection *srel;
3070
3071 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3072 BFD_ASSERT (srel != NULL);
3073 srel->_raw_size += sizeof (Elf32_External_Rel);
3074 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3075 }
3076
3077 /* We need to figure out the alignment required for this symbol. I
3078 have no idea how ELF linkers handle this. */
3079 power_of_two = bfd_log2 (h->size);
3080 if (power_of_two > 3)
3081 power_of_two = 3;
3082
3083 /* Apply the required alignment. */
3084 s->_raw_size = BFD_ALIGN (s->_raw_size,
3085 (bfd_size_type) (1 << power_of_two));
3086 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3087 {
3088 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3089 return false;
3090 }
3091
3092 /* Define the symbol as being at this point in the section. */
3093 h->root.u.def.section = s;
3094 h->root.u.def.value = s->_raw_size;
3095
3096 /* Increment the section size to make room for the symbol. */
3097 s->_raw_size += h->size;
3098
3099 return true;
3100 }
3101
3102 /* Set the sizes of the dynamic sections. */
3103
3104 static boolean
3105 elf32_arm_size_dynamic_sections (output_bfd, info)
3106 bfd * output_bfd ATTRIBUTE_UNUSED;
3107 struct bfd_link_info * info;
3108 {
3109 bfd * dynobj;
3110 asection * s;
3111 boolean plt;
3112 boolean relocs;
3113
3114 dynobj = elf_hash_table (info)->dynobj;
3115 BFD_ASSERT (dynobj != NULL);
3116
3117 if (elf_hash_table (info)->dynamic_sections_created)
3118 {
3119 /* Set the contents of the .interp section to the interpreter. */
3120 if (! info->shared)
3121 {
3122 s = bfd_get_section_by_name (dynobj, ".interp");
3123 BFD_ASSERT (s != NULL);
3124 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3125 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3126 }
3127 }
3128 else
3129 {
3130 /* We may have created entries in the .rel.got section.
3131 However, if we are not creating the dynamic sections, we will
3132 not actually use these entries. Reset the size of .rel.got,
3133 which will cause it to get stripped from the output file
3134 below. */
3135 s = bfd_get_section_by_name (dynobj, ".rel.got");
3136 if (s != NULL)
3137 s->_raw_size = 0;
3138 }
3139
3140 /* If this is a -Bsymbolic shared link, then we need to discard all
3141 PC relative relocs against symbols defined in a regular object.
3142 We allocated space for them in the check_relocs routine, but we
3143 will not fill them in in the relocate_section routine. */
3144 if (info->shared && info->symbolic)
3145 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3146 elf32_arm_discard_copies,
3147 (PTR) NULL);
3148
3149 /* The check_relocs and adjust_dynamic_symbol entry points have
3150 determined the sizes of the various dynamic sections. Allocate
3151 memory for them. */
3152 plt = false;
3153 relocs = false;
3154 for (s = dynobj->sections; s != NULL; s = s->next)
3155 {
3156 const char * name;
3157 boolean strip;
3158
3159 if ((s->flags & SEC_LINKER_CREATED) == 0)
3160 continue;
3161
3162 /* It's OK to base decisions on the section name, because none
3163 of the dynobj section names depend upon the input files. */
3164 name = bfd_get_section_name (dynobj, s);
3165
3166 strip = false;
3167
3168 if (strcmp (name, ".plt") == 0)
3169 {
3170 if (s->_raw_size == 0)
3171 {
3172 /* Strip this section if we don't need it; see the
3173 comment below. */
3174 strip = true;
3175 }
3176 else
3177 {
3178 /* Remember whether there is a PLT. */
3179 plt = true;
3180 }
3181 }
3182 else if (strncmp (name, ".rel", 4) == 0)
3183 {
3184 if (s->_raw_size == 0)
3185 {
3186 /* If we don't need this section, strip it from the
3187 output file. This is mostly to handle .rel.bss and
3188 .rel.plt. We must create both sections in
3189 create_dynamic_sections, because they must be created
3190 before the linker maps input sections to output
3191 sections. The linker does that before
3192 adjust_dynamic_symbol is called, and it is that
3193 function which decides whether anything needs to go
3194 into these sections. */
3195 strip = true;
3196 }
3197 else
3198 {
3199 /* Remember whether there are any reloc sections other
3200 than .rel.plt. */
3201 if (strcmp (name, ".rel.plt") != 0)
3202 relocs = true;
3203
3204 /* We use the reloc_count field as a counter if we need
3205 to copy relocs into the output file. */
3206 s->reloc_count = 0;
3207 }
3208 }
3209 else if (strncmp (name, ".got", 4) != 0)
3210 {
3211 /* It's not one of our sections, so don't allocate space. */
3212 continue;
3213 }
3214
3215 if (strip)
3216 {
3217 asection ** spp;
3218
3219 for (spp = &s->output_section->owner->sections;
3220 *spp != NULL;
3221 spp = &(*spp)->next)
3222 {
3223 if (*spp == s->output_section)
3224 {
3225 bfd_section_list_remove (s->output_section->owner, spp);
3226 --s->output_section->owner->section_count;
3227 break;
3228 }
3229 }
3230 continue;
3231 }
3232
3233 /* Allocate memory for the section contents. */
3234 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3235 if (s->contents == NULL && s->_raw_size != 0)
3236 return false;
3237 }
3238
3239 if (elf_hash_table (info)->dynamic_sections_created)
3240 {
3241 /* Add some entries to the .dynamic section. We fill in the
3242 values later, in elf32_arm_finish_dynamic_sections, but we
3243 must add the entries now so that we get the correct size for
3244 the .dynamic section. The DT_DEBUG entry is filled in by the
3245 dynamic linker and used by the debugger. */
3246 #define add_dynamic_entry(TAG, VAL) \
3247 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3248
3249 if (!info->shared)
3250 {
3251 if (!add_dynamic_entry (DT_DEBUG, 0))
3252 return false;
3253 }
3254
3255 if (plt)
3256 {
3257 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3258 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3259 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3260 || !add_dynamic_entry (DT_JMPREL, 0))
3261 return false;
3262 }
3263
3264 if (relocs)
3265 {
3266 if ( !add_dynamic_entry (DT_REL, 0)
3267 || !add_dynamic_entry (DT_RELSZ, 0)
3268 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3269 return false;
3270 }
3271
3272 if ((info->flags & DF_TEXTREL) != 0)
3273 {
3274 if (!add_dynamic_entry (DT_TEXTREL, 0))
3275 return false;
3276 info->flags |= DF_TEXTREL;
3277 }
3278 }
3279 #undef add_synamic_entry
3280
3281 return true;
3282 }
3283
3284 /* This function is called via elf32_arm_link_hash_traverse if we are
3285 creating a shared object with -Bsymbolic. It discards the space
3286 allocated to copy PC relative relocs against symbols which are
3287 defined in regular objects. We allocated space for them in the
3288 check_relocs routine, but we won't fill them in in the
3289 relocate_section routine. */
3290
3291 static boolean
3292 elf32_arm_discard_copies (h, ignore)
3293 struct elf32_arm_link_hash_entry * h;
3294 PTR ignore ATTRIBUTE_UNUSED;
3295 {
3296 struct elf32_arm_pcrel_relocs_copied * s;
3297
3298 if (h->root.root.type == bfd_link_hash_warning)
3299 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3300
3301 /* We only discard relocs for symbols defined in a regular object. */
3302 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3303 return true;
3304
3305 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3306 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3307
3308 return true;
3309 }
3310
3311 /* Finish up dynamic symbol handling. We set the contents of various
3312 dynamic sections here. */
3313
3314 static boolean
3315 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3316 bfd * output_bfd;
3317 struct bfd_link_info * info;
3318 struct elf_link_hash_entry * h;
3319 Elf_Internal_Sym * sym;
3320 {
3321 bfd * dynobj;
3322
3323 dynobj = elf_hash_table (info)->dynobj;
3324
3325 if (h->plt.offset != (bfd_vma) -1)
3326 {
3327 asection * splt;
3328 asection * sgot;
3329 asection * srel;
3330 bfd_vma plt_index;
3331 bfd_vma got_offset;
3332 Elf_Internal_Rel rel;
3333
3334 /* This symbol has an entry in the procedure linkage table. Set
3335 it up. */
3336
3337 BFD_ASSERT (h->dynindx != -1);
3338
3339 splt = bfd_get_section_by_name (dynobj, ".plt");
3340 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3341 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3342 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3343
3344 /* Get the index in the procedure linkage table which
3345 corresponds to this symbol. This is the index of this symbol
3346 in all the symbols for which we are making plt entries. The
3347 first entry in the procedure linkage table is reserved. */
3348 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3349
3350 /* Get the offset into the .got table of the entry that
3351 corresponds to this function. Each .got entry is 4 bytes.
3352 The first three are reserved. */
3353 got_offset = (plt_index + 3) * 4;
3354
3355 /* Fill in the entry in the procedure linkage table. */
3356 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3357 splt->contents + h->plt.offset + 0);
3358 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3359 splt->contents + h->plt.offset + 4);
3360 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3361 splt->contents + h->plt.offset + 8);
3362 bfd_put_32 (output_bfd,
3363 (sgot->output_section->vma
3364 + sgot->output_offset
3365 + got_offset
3366 - splt->output_section->vma
3367 - splt->output_offset
3368 - h->plt.offset - 12),
3369 splt->contents + h->plt.offset + 12);
3370
3371 /* Fill in the entry in the global offset table. */
3372 bfd_put_32 (output_bfd,
3373 (splt->output_section->vma
3374 + splt->output_offset),
3375 sgot->contents + got_offset);
3376
3377 /* Fill in the entry in the .rel.plt section. */
3378 rel.r_offset = (sgot->output_section->vma
3379 + sgot->output_offset
3380 + got_offset);
3381 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3382 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3383 ((Elf32_External_Rel *) srel->contents
3384 + plt_index));
3385
3386 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3387 {
3388 /* Mark the symbol as undefined, rather than as defined in
3389 the .plt section. Leave the value alone. */
3390 sym->st_shndx = SHN_UNDEF;
3391 /* If the symbol is weak, we do need to clear the value.
3392 Otherwise, the PLT entry would provide a definition for
3393 the symbol even if the symbol wasn't defined anywhere,
3394 and so the symbol would never be NULL. */
3395 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3396 == 0)
3397 sym->st_value = 0;
3398 }
3399 }
3400
3401 if (h->got.offset != (bfd_vma) -1)
3402 {
3403 asection * sgot;
3404 asection * srel;
3405 Elf_Internal_Rel rel;
3406
3407 /* This symbol has an entry in the global offset table. Set it
3408 up. */
3409 sgot = bfd_get_section_by_name (dynobj, ".got");
3410 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3411 BFD_ASSERT (sgot != NULL && srel != NULL);
3412
3413 rel.r_offset = (sgot->output_section->vma
3414 + sgot->output_offset
3415 + (h->got.offset &~ (bfd_vma) 1));
3416
3417 /* If this is a -Bsymbolic link, and the symbol is defined
3418 locally, we just want to emit a RELATIVE reloc. The entry in
3419 the global offset table will already have been initialized in
3420 the relocate_section function. */
3421 if (info->shared
3422 && (info->symbolic || h->dynindx == -1)
3423 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3424 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3425 else
3426 {
3427 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3428 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3429 }
3430
3431 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3432 ((Elf32_External_Rel *) srel->contents
3433 + srel->reloc_count));
3434 ++srel->reloc_count;
3435 }
3436
3437 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3438 {
3439 asection * s;
3440 Elf_Internal_Rel rel;
3441
3442 /* This symbol needs a copy reloc. Set it up. */
3443 BFD_ASSERT (h->dynindx != -1
3444 && (h->root.type == bfd_link_hash_defined
3445 || h->root.type == bfd_link_hash_defweak));
3446
3447 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3448 ".rel.bss");
3449 BFD_ASSERT (s != NULL);
3450
3451 rel.r_offset = (h->root.u.def.value
3452 + h->root.u.def.section->output_section->vma
3453 + h->root.u.def.section->output_offset);
3454 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3455 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3456 ((Elf32_External_Rel *) s->contents
3457 + s->reloc_count));
3458 ++s->reloc_count;
3459 }
3460
3461 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3462 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3463 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3464 sym->st_shndx = SHN_ABS;
3465
3466 return true;
3467 }
3468
3469 /* Finish up the dynamic sections. */
3470
3471 static boolean
3472 elf32_arm_finish_dynamic_sections (output_bfd, info)
3473 bfd * output_bfd;
3474 struct bfd_link_info * info;
3475 {
3476 bfd * dynobj;
3477 asection * sgot;
3478 asection * sdyn;
3479
3480 dynobj = elf_hash_table (info)->dynobj;
3481
3482 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3483 BFD_ASSERT (sgot != NULL);
3484 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3485
3486 if (elf_hash_table (info)->dynamic_sections_created)
3487 {
3488 asection *splt;
3489 Elf32_External_Dyn *dyncon, *dynconend;
3490
3491 splt = bfd_get_section_by_name (dynobj, ".plt");
3492 BFD_ASSERT (splt != NULL && sdyn != NULL);
3493
3494 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3495 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3496
3497 for (; dyncon < dynconend; dyncon++)
3498 {
3499 Elf_Internal_Dyn dyn;
3500 const char * name;
3501 asection * s;
3502
3503 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3504
3505 switch (dyn.d_tag)
3506 {
3507 default:
3508 break;
3509
3510 case DT_PLTGOT:
3511 name = ".got";
3512 goto get_vma;
3513 case DT_JMPREL:
3514 name = ".rel.plt";
3515 get_vma:
3516 s = bfd_get_section_by_name (output_bfd, name);
3517 BFD_ASSERT (s != NULL);
3518 dyn.d_un.d_ptr = s->vma;
3519 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3520 break;
3521
3522 case DT_PLTRELSZ:
3523 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3524 BFD_ASSERT (s != NULL);
3525 if (s->_cooked_size != 0)
3526 dyn.d_un.d_val = s->_cooked_size;
3527 else
3528 dyn.d_un.d_val = s->_raw_size;
3529 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3530 break;
3531
3532 case DT_RELSZ:
3533 /* My reading of the SVR4 ABI indicates that the
3534 procedure linkage table relocs (DT_JMPREL) should be
3535 included in the overall relocs (DT_REL). This is
3536 what Solaris does. However, UnixWare can not handle
3537 that case. Therefore, we override the DT_RELSZ entry
3538 here to make it not include the JMPREL relocs. Since
3539 the linker script arranges for .rel.plt to follow all
3540 other relocation sections, we don't have to worry
3541 about changing the DT_REL entry. */
3542 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3543 if (s != NULL)
3544 {
3545 if (s->_cooked_size != 0)
3546 dyn.d_un.d_val -= s->_cooked_size;
3547 else
3548 dyn.d_un.d_val -= s->_raw_size;
3549 }
3550 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3551 break;
3552
3553 /* Set the bottom bit of DT_INIT/FINI if the
3554 corresponding function is Thumb. */
3555 case DT_INIT:
3556 name = info->init_function;
3557 goto get_sym;
3558 case DT_FINI:
3559 name = info->fini_function;
3560 get_sym:
3561 /* If it wasn't set by elf_bfd_final_link
3562 then there is nothing to ajdust. */
3563 if (dyn.d_un.d_val != 0)
3564 {
3565 struct elf_link_hash_entry * eh;
3566
3567 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3568 false, false, true);
3569 if (eh != (struct elf_link_hash_entry *) NULL
3570 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3571 {
3572 dyn.d_un.d_val |= 1;
3573 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3574 }
3575 }
3576 break;
3577 }
3578 }
3579
3580 /* Fill in the first entry in the procedure linkage table. */
3581 if (splt->_raw_size > 0)
3582 {
3583 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3584 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3585 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3586 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3587 }
3588
3589 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3590 really seem like the right value. */
3591 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3592 }
3593
3594 /* Fill in the first three entries in the global offset table. */
3595 if (sgot->_raw_size > 0)
3596 {
3597 if (sdyn == NULL)
3598 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3599 else
3600 bfd_put_32 (output_bfd,
3601 sdyn->output_section->vma + sdyn->output_offset,
3602 sgot->contents);
3603 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3604 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3605 }
3606
3607 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3608
3609 return true;
3610 }
3611
3612 static void
3613 elf32_arm_post_process_headers (abfd, link_info)
3614 bfd * abfd;
3615 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3616 {
3617 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3618
3619 i_ehdrp = elf_elfheader (abfd);
3620
3621 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3622 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3623 }
3624
3625 static enum elf_reloc_type_class
3626 elf32_arm_reloc_type_class (rela)
3627 const Elf_Internal_Rela *rela;
3628 {
3629 switch ((int) ELF32_R_TYPE (rela->r_info))
3630 {
3631 case R_ARM_RELATIVE:
3632 return reloc_class_relative;
3633 case R_ARM_JUMP_SLOT:
3634 return reloc_class_plt;
3635 case R_ARM_COPY:
3636 return reloc_class_copy;
3637 default:
3638 return reloc_class_normal;
3639 }
3640 }
3641
3642
3643 #define ELF_ARCH bfd_arch_arm
3644 #define ELF_MACHINE_CODE EM_ARM
3645 #ifndef ELF_MAXPAGESIZE
3646 #define ELF_MAXPAGESIZE 0x8000
3647 #endif
3648
3649 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3650 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3651 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3652 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3653 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3654 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3655 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3656
3657 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3658 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3659 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3660 #define elf_backend_check_relocs elf32_arm_check_relocs
3661 #define elf_backend_relocate_section elf32_arm_relocate_section
3662 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3663 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3664 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3665 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3666 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3667 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3668 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3669
3670 #define elf_backend_can_gc_sections 1
3671 #define elf_backend_plt_readonly 1
3672 #define elf_backend_want_got_plt 1
3673 #define elf_backend_want_plt_sym 0
3674 #ifndef USE_REL
3675 #define elf_backend_rela_normal 1
3676 #endif
3677
3678 #define elf_backend_got_header_size 12
3679 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3680
3681 #include "elf32-target.h"
3682
This page took 0.198376 seconds and 4 git commands to generate.