merge from gcc
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #ifndef USE_REL
21 #define USE_REL 0
22 #endif
23
24 typedef unsigned long int insn32;
25 typedef unsigned short int insn16;
26
27 static bfd_boolean elf32_arm_set_private_flags
28 PARAMS ((bfd *, flagword));
29 static bfd_boolean elf32_arm_copy_private_bfd_data
30 PARAMS ((bfd *, bfd *));
31 static bfd_boolean elf32_arm_merge_private_bfd_data
32 PARAMS ((bfd *, bfd *));
33 static bfd_boolean elf32_arm_print_private_bfd_data
34 PARAMS ((bfd *, PTR));
35 static int elf32_arm_get_symbol_type
36 PARAMS (( Elf_Internal_Sym *, int));
37 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type elf32_arm_final_link_relocate
40 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
41 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
42 const char *, int, struct elf_link_hash_entry *));
43 static insn32 insert_thumb_branch
44 PARAMS ((insn32, int));
45 static struct elf_link_hash_entry *find_thumb_glue
46 PARAMS ((struct bfd_link_info *, const char *, bfd *));
47 static struct elf_link_hash_entry *find_arm_glue
48 PARAMS ((struct bfd_link_info *, const char *, bfd *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static bfd_boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static bfd_boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static bfd_boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static bfd_boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static bfd_boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static bfd_boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static bfd_boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static bfd_boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #if USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87 static enum elf_reloc_type_class elf32_arm_reloc_type_class
88 PARAMS ((const Elf_Internal_Rela *));
89 static bfd_boolean elf32_arm_object_p
90 PARAMS ((bfd *));
91
92 #ifndef ELFARM_NABI_C_INCLUDED
93 static void record_arm_to_thumb_glue
94 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
95 static void record_thumb_to_arm_glue
96 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
97 bfd_boolean bfd_elf32_arm_allocate_interworking_sections
98 PARAMS ((struct bfd_link_info *));
99 bfd_boolean bfd_elf32_arm_get_bfd_for_interworking
100 PARAMS ((bfd *, struct bfd_link_info *));
101 bfd_boolean bfd_elf32_arm_process_before_allocation
102 PARAMS ((bfd *, struct bfd_link_info *, int));
103 #endif
104
105
106 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
107
108 /* The linker script knows the section names for placement.
109 The entry_names are used to do simple name mangling on the stubs.
110 Given a function name, and its type, the stub can be found. The
111 name can be changed. The only requirement is the %s be present. */
112 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
113 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
114
115 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
116 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
117
118 /* The name of the dynamic interpreter. This is put in the .interp
119 section. */
120 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
121
122 /* The size in bytes of an entry in the procedure linkage table. */
123 #define PLT_ENTRY_SIZE 16
124
125 /* The first entry in a procedure linkage table looks like
126 this. It is set up so that any shared library function that is
127 called before the relocation has been set up calls the dynamic
128 linker first. */
129 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
130 {
131 0xe52de004, /* str lr, [sp, #-4]! */
132 0xe59fe010, /* ldr lr, [pc, #16] */
133 0xe08fe00e, /* add lr, pc, lr */
134 0xe5bef008 /* ldr pc, [lr, #8]! */
135 };
136
137 /* Subsequent entries in a procedure linkage table look like
138 this. */
139 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
140 {
141 0xe59fc004, /* ldr ip, [pc, #4] */
142 0xe08fc00c, /* add ip, pc, ip */
143 0xe59cf000, /* ldr pc, [ip] */
144 0x00000000 /* offset to symbol in got */
145 };
146
147 /* The ARM linker needs to keep track of the number of relocs that it
148 decides to copy in check_relocs for each symbol. This is so that
149 it can discard PC relative relocs if it doesn't need them when
150 linking with -Bsymbolic. We store the information in a field
151 extending the regular ELF linker hash table. */
152
153 /* This structure keeps track of the number of PC relative relocs we
154 have copied for a given symbol. */
155 struct elf32_arm_pcrel_relocs_copied
156 {
157 /* Next section. */
158 struct elf32_arm_pcrel_relocs_copied * next;
159 /* A section in dynobj. */
160 asection * section;
161 /* Number of relocs copied in this section. */
162 bfd_size_type count;
163 };
164
165 /* Arm ELF linker hash entry. */
166 struct elf32_arm_link_hash_entry
167 {
168 struct elf_link_hash_entry root;
169
170 /* Number of PC relative relocs copied for this symbol. */
171 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
172 };
173
174 /* Declare this now that the above structures are defined. */
175 static bfd_boolean elf32_arm_discard_copies
176 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
177
178 /* Traverse an arm ELF linker hash table. */
179 #define elf32_arm_link_hash_traverse(table, func, info) \
180 (elf_link_hash_traverse \
181 (&(table)->root, \
182 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
183 (info)))
184
185 /* Get the ARM elf linker hash table from a link_info structure. */
186 #define elf32_arm_hash_table(info) \
187 ((struct elf32_arm_link_hash_table *) ((info)->hash))
188
189 /* ARM ELF linker hash table. */
190 struct elf32_arm_link_hash_table
191 {
192 /* The main hash table. */
193 struct elf_link_hash_table root;
194
195 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
196 bfd_size_type thumb_glue_size;
197
198 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
199 bfd_size_type arm_glue_size;
200
201 /* An arbitary input BFD chosen to hold the glue sections. */
202 bfd * bfd_of_glue_owner;
203
204 /* A boolean indicating whether knowledge of the ARM's pipeline
205 length should be applied by the linker. */
206 int no_pipeline_knowledge;
207 };
208
209 /* Create an entry in an ARM ELF linker hash table. */
210
211 static struct bfd_hash_entry *
212 elf32_arm_link_hash_newfunc (entry, table, string)
213 struct bfd_hash_entry * entry;
214 struct bfd_hash_table * table;
215 const char * string;
216 {
217 struct elf32_arm_link_hash_entry * ret =
218 (struct elf32_arm_link_hash_entry *) entry;
219
220 /* Allocate the structure if it has not already been allocated by a
221 subclass. */
222 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
223 ret = ((struct elf32_arm_link_hash_entry *)
224 bfd_hash_allocate (table,
225 sizeof (struct elf32_arm_link_hash_entry)));
226 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
227 return (struct bfd_hash_entry *) ret;
228
229 /* Call the allocation method of the superclass. */
230 ret = ((struct elf32_arm_link_hash_entry *)
231 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
232 table, string));
233 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
234 ret->pcrel_relocs_copied = NULL;
235
236 return (struct bfd_hash_entry *) ret;
237 }
238
239 /* Create an ARM elf linker hash table. */
240
241 static struct bfd_link_hash_table *
242 elf32_arm_link_hash_table_create (abfd)
243 bfd *abfd;
244 {
245 struct elf32_arm_link_hash_table *ret;
246 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
247
248 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
249 if (ret == (struct elf32_arm_link_hash_table *) NULL)
250 return NULL;
251
252 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
253 elf32_arm_link_hash_newfunc))
254 {
255 free (ret);
256 return NULL;
257 }
258
259 ret->thumb_glue_size = 0;
260 ret->arm_glue_size = 0;
261 ret->bfd_of_glue_owner = NULL;
262 ret->no_pipeline_knowledge = 0;
263
264 return &ret->root.root;
265 }
266
267 /* Locate the Thumb encoded calling stub for NAME. */
268
269 static struct elf_link_hash_entry *
270 find_thumb_glue (link_info, name, input_bfd)
271 struct bfd_link_info *link_info;
272 const char *name;
273 bfd *input_bfd;
274 {
275 char *tmp_name;
276 struct elf_link_hash_entry *hash;
277 struct elf32_arm_link_hash_table *hash_table;
278
279 /* We need a pointer to the armelf specific hash table. */
280 hash_table = elf32_arm_hash_table (link_info);
281
282 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
283 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
284
285 BFD_ASSERT (tmp_name);
286
287 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
288
289 hash = elf_link_hash_lookup
290 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
291
292 if (hash == NULL)
293 /* xgettext:c-format */
294 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
295 bfd_archive_filename (input_bfd), tmp_name, name);
296
297 free (tmp_name);
298
299 return hash;
300 }
301
302 /* Locate the ARM encoded calling stub for NAME. */
303
304 static struct elf_link_hash_entry *
305 find_arm_glue (link_info, name, input_bfd)
306 struct bfd_link_info *link_info;
307 const char *name;
308 bfd *input_bfd;
309 {
310 char *tmp_name;
311 struct elf_link_hash_entry *myh;
312 struct elf32_arm_link_hash_table *hash_table;
313
314 /* We need a pointer to the elfarm specific hash table. */
315 hash_table = elf32_arm_hash_table (link_info);
316
317 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
318 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
319
320 BFD_ASSERT (tmp_name);
321
322 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
323
324 myh = elf_link_hash_lookup
325 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
326
327 if (myh == NULL)
328 /* xgettext:c-format */
329 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
330 bfd_archive_filename (input_bfd), tmp_name, name);
331
332 free (tmp_name);
333
334 return myh;
335 }
336
337 /* ARM->Thumb glue:
338
339 .arm
340 __func_from_arm:
341 ldr r12, __func_addr
342 bx r12
343 __func_addr:
344 .word func @ behave as if you saw a ARM_32 reloc. */
345
346 #define ARM2THUMB_GLUE_SIZE 12
347 static const insn32 a2t1_ldr_insn = 0xe59fc000;
348 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
349 static const insn32 a2t3_func_addr_insn = 0x00000001;
350
351 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
352
353 .thumb .thumb
354 .align 2 .align 2
355 __func_from_thumb: __func_from_thumb:
356 bx pc push {r6, lr}
357 nop ldr r6, __func_addr
358 .arm mov lr, pc
359 __func_change_to_arm: bx r6
360 b func .arm
361 __func_back_to_thumb:
362 ldmia r13! {r6, lr}
363 bx lr
364 __func_addr:
365 .word func */
366
367 #define THUMB2ARM_GLUE_SIZE 8
368 static const insn16 t2a1_bx_pc_insn = 0x4778;
369 static const insn16 t2a2_noop_insn = 0x46c0;
370 static const insn32 t2a3_b_insn = 0xea000000;
371
372 #ifndef ELFARM_NABI_C_INCLUDED
373 bfd_boolean
374 bfd_elf32_arm_allocate_interworking_sections (info)
375 struct bfd_link_info * info;
376 {
377 asection * s;
378 bfd_byte * foo;
379 struct elf32_arm_link_hash_table * globals;
380
381 globals = elf32_arm_hash_table (info);
382
383 BFD_ASSERT (globals != NULL);
384
385 if (globals->arm_glue_size != 0)
386 {
387 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
388
389 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
390 ARM2THUMB_GLUE_SECTION_NAME);
391
392 BFD_ASSERT (s != NULL);
393
394 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
395 globals->arm_glue_size);
396
397 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
398 s->contents = foo;
399 }
400
401 if (globals->thumb_glue_size != 0)
402 {
403 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
404
405 s = bfd_get_section_by_name
406 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
407
408 BFD_ASSERT (s != NULL);
409
410 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
411 globals->thumb_glue_size);
412
413 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
414 s->contents = foo;
415 }
416
417 return TRUE;
418 }
419
420 static void
421 record_arm_to_thumb_glue (link_info, h)
422 struct bfd_link_info * link_info;
423 struct elf_link_hash_entry * h;
424 {
425 const char * name = h->root.root.string;
426 asection * s;
427 char * tmp_name;
428 struct elf_link_hash_entry * myh;
429 struct bfd_link_hash_entry * bh;
430 struct elf32_arm_link_hash_table * globals;
431 bfd_vma val;
432
433 globals = elf32_arm_hash_table (link_info);
434
435 BFD_ASSERT (globals != NULL);
436 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
437
438 s = bfd_get_section_by_name
439 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
440
441 BFD_ASSERT (s != NULL);
442
443 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
444 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
445
446 BFD_ASSERT (tmp_name);
447
448 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
449
450 myh = elf_link_hash_lookup
451 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
452
453 if (myh != NULL)
454 {
455 /* We've already seen this guy. */
456 free (tmp_name);
457 return;
458 }
459
460 /* The only trick here is using hash_table->arm_glue_size as the value. Even
461 though the section isn't allocated yet, this is where we will be putting
462 it. */
463 bh = NULL;
464 val = globals->arm_glue_size + 1;
465 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
466 tmp_name, BSF_GLOBAL, s, val,
467 NULL, TRUE, FALSE, &bh);
468
469 free (tmp_name);
470
471 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
472
473 return;
474 }
475
476 static void
477 record_thumb_to_arm_glue (link_info, h)
478 struct bfd_link_info *link_info;
479 struct elf_link_hash_entry *h;
480 {
481 const char *name = h->root.root.string;
482 asection *s;
483 char *tmp_name;
484 struct elf_link_hash_entry *myh;
485 struct bfd_link_hash_entry *bh;
486 struct elf32_arm_link_hash_table *hash_table;
487 char bind;
488 bfd_vma val;
489
490 hash_table = elf32_arm_hash_table (link_info);
491
492 BFD_ASSERT (hash_table != NULL);
493 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
494
495 s = bfd_get_section_by_name
496 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
497
498 BFD_ASSERT (s != NULL);
499
500 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
501 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
502
503 BFD_ASSERT (tmp_name);
504
505 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
506
507 myh = elf_link_hash_lookup
508 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
509
510 if (myh != NULL)
511 {
512 /* We've already seen this guy. */
513 free (tmp_name);
514 return;
515 }
516
517 bh = NULL;
518 val = hash_table->thumb_glue_size + 1;
519 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
520 tmp_name, BSF_GLOBAL, s, val,
521 NULL, TRUE, FALSE, &bh);
522
523 /* If we mark it 'Thumb', the disassembler will do a better job. */
524 myh = (struct elf_link_hash_entry *) bh;
525 bind = ELF_ST_BIND (myh->type);
526 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
527
528 free (tmp_name);
529
530 #define CHANGE_TO_ARM "__%s_change_to_arm"
531 #define BACK_FROM_ARM "__%s_back_from_arm"
532
533 /* Allocate another symbol to mark where we switch to Arm mode. */
534 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
535 + strlen (CHANGE_TO_ARM) + 1);
536
537 BFD_ASSERT (tmp_name);
538
539 sprintf (tmp_name, CHANGE_TO_ARM, name);
540
541 bh = NULL;
542 val = hash_table->thumb_glue_size + 4,
543 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
544 tmp_name, BSF_LOCAL, s, val,
545 NULL, TRUE, FALSE, &bh);
546
547 free (tmp_name);
548
549 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
550
551 return;
552 }
553
554 /* Add the glue sections to ABFD. This function is called from the
555 linker scripts in ld/emultempl/{armelf}.em. */
556
557 bfd_boolean
558 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
559 bfd *abfd;
560 struct bfd_link_info *info;
561 {
562 flagword flags;
563 asection *sec;
564
565 /* If we are only performing a partial
566 link do not bother adding the glue. */
567 if (info->relocateable)
568 return TRUE;
569
570 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
571
572 if (sec == NULL)
573 {
574 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
575 will prevent elf_link_input_bfd() from processing the contents
576 of this section. */
577 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
578
579 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
580
581 if (sec == NULL
582 || !bfd_set_section_flags (abfd, sec, flags)
583 || !bfd_set_section_alignment (abfd, sec, 2))
584 return FALSE;
585
586 /* Set the gc mark to prevent the section from being removed by garbage
587 collection, despite the fact that no relocs refer to this section. */
588 sec->gc_mark = 1;
589 }
590
591 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
592
593 if (sec == NULL)
594 {
595 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
596
597 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
598
599 if (sec == NULL
600 || !bfd_set_section_flags (abfd, sec, flags)
601 || !bfd_set_section_alignment (abfd, sec, 2))
602 return FALSE;
603
604 sec->gc_mark = 1;
605 }
606
607 return TRUE;
608 }
609
610 /* Select a BFD to be used to hold the sections used by the glue code.
611 This function is called from the linker scripts in ld/emultempl/
612 {armelf/pe}.em */
613
614 bfd_boolean
615 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
616 bfd *abfd;
617 struct bfd_link_info *info;
618 {
619 struct elf32_arm_link_hash_table *globals;
620
621 /* If we are only performing a partial link
622 do not bother getting a bfd to hold the glue. */
623 if (info->relocateable)
624 return TRUE;
625
626 globals = elf32_arm_hash_table (info);
627
628 BFD_ASSERT (globals != NULL);
629
630 if (globals->bfd_of_glue_owner != NULL)
631 return TRUE;
632
633 /* Save the bfd for later use. */
634 globals->bfd_of_glue_owner = abfd;
635
636 return TRUE;
637 }
638
639 bfd_boolean
640 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
641 bfd *abfd;
642 struct bfd_link_info *link_info;
643 int no_pipeline_knowledge;
644 {
645 Elf_Internal_Shdr *symtab_hdr;
646 Elf_Internal_Rela *internal_relocs = NULL;
647 Elf_Internal_Rela *irel, *irelend;
648 bfd_byte *contents = NULL;
649
650 asection *sec;
651 struct elf32_arm_link_hash_table *globals;
652
653 /* If we are only performing a partial link do not bother
654 to construct any glue. */
655 if (link_info->relocateable)
656 return TRUE;
657
658 /* Here we have a bfd that is to be included on the link. We have a hook
659 to do reloc rummaging, before section sizes are nailed down. */
660 globals = elf32_arm_hash_table (link_info);
661
662 BFD_ASSERT (globals != NULL);
663 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
664
665 globals->no_pipeline_knowledge = no_pipeline_knowledge;
666
667 /* Rummage around all the relocs and map the glue vectors. */
668 sec = abfd->sections;
669
670 if (sec == NULL)
671 return TRUE;
672
673 for (; sec != NULL; sec = sec->next)
674 {
675 if (sec->reloc_count == 0)
676 continue;
677
678 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
679
680 /* Load the relocs. */
681 internal_relocs
682 = _bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
683 (Elf_Internal_Rela *) NULL, FALSE);
684
685 if (internal_relocs == NULL)
686 goto error_return;
687
688 irelend = internal_relocs + sec->reloc_count;
689 for (irel = internal_relocs; irel < irelend; irel++)
690 {
691 long r_type;
692 unsigned long r_index;
693
694 struct elf_link_hash_entry *h;
695
696 r_type = ELF32_R_TYPE (irel->r_info);
697 r_index = ELF32_R_SYM (irel->r_info);
698
699 /* These are the only relocation types we care about. */
700 if ( r_type != R_ARM_PC24
701 && r_type != R_ARM_THM_PC22)
702 continue;
703
704 /* Get the section contents if we haven't done so already. */
705 if (contents == NULL)
706 {
707 /* Get cached copy if it exists. */
708 if (elf_section_data (sec)->this_hdr.contents != NULL)
709 contents = elf_section_data (sec)->this_hdr.contents;
710 else
711 {
712 /* Go get them off disk. */
713 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
714 if (contents == NULL)
715 goto error_return;
716
717 if (!bfd_get_section_contents (abfd, sec, contents,
718 (file_ptr) 0, sec->_raw_size))
719 goto error_return;
720 }
721 }
722
723 /* If the relocation is not against a symbol it cannot concern us. */
724 h = NULL;
725
726 /* We don't care about local symbols. */
727 if (r_index < symtab_hdr->sh_info)
728 continue;
729
730 /* This is an external symbol. */
731 r_index -= symtab_hdr->sh_info;
732 h = (struct elf_link_hash_entry *)
733 elf_sym_hashes (abfd)[r_index];
734
735 /* If the relocation is against a static symbol it must be within
736 the current section and so cannot be a cross ARM/Thumb relocation. */
737 if (h == NULL)
738 continue;
739
740 switch (r_type)
741 {
742 case R_ARM_PC24:
743 /* This one is a call from arm code. We need to look up
744 the target of the call. If it is a thumb target, we
745 insert glue. */
746 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
747 record_arm_to_thumb_glue (link_info, h);
748 break;
749
750 case R_ARM_THM_PC22:
751 /* This one is a call from thumb code. We look
752 up the target of the call. If it is not a thumb
753 target, we insert glue. */
754 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
755 record_thumb_to_arm_glue (link_info, h);
756 break;
757
758 default:
759 break;
760 }
761 }
762
763 if (contents != NULL
764 && elf_section_data (sec)->this_hdr.contents != contents)
765 free (contents);
766 contents = NULL;
767
768 if (internal_relocs != NULL
769 && elf_section_data (sec)->relocs != internal_relocs)
770 free (internal_relocs);
771 internal_relocs = NULL;
772 }
773
774 return TRUE;
775
776 error_return:
777 if (contents != NULL
778 && elf_section_data (sec)->this_hdr.contents != contents)
779 free (contents);
780 if (internal_relocs != NULL
781 && elf_section_data (sec)->relocs != internal_relocs)
782 free (internal_relocs);
783
784 return FALSE;
785 }
786 #endif
787
788 /* The thumb form of a long branch is a bit finicky, because the offset
789 encoding is split over two fields, each in it's own instruction. They
790 can occur in any order. So given a thumb form of long branch, and an
791 offset, insert the offset into the thumb branch and return finished
792 instruction.
793
794 It takes two thumb instructions to encode the target address. Each has
795 11 bits to invest. The upper 11 bits are stored in one (identifed by
796 H-0.. see below), the lower 11 bits are stored in the other (identified
797 by H-1).
798
799 Combine together and shifted left by 1 (it's a half word address) and
800 there you have it.
801
802 Op: 1111 = F,
803 H-0, upper address-0 = 000
804 Op: 1111 = F,
805 H-1, lower address-0 = 800
806
807 They can be ordered either way, but the arm tools I've seen always put
808 the lower one first. It probably doesn't matter. krk@cygnus.com
809
810 XXX: Actually the order does matter. The second instruction (H-1)
811 moves the computed address into the PC, so it must be the second one
812 in the sequence. The problem, however is that whilst little endian code
813 stores the instructions in HI then LOW order, big endian code does the
814 reverse. nickc@cygnus.com. */
815
816 #define LOW_HI_ORDER 0xF800F000
817 #define HI_LOW_ORDER 0xF000F800
818
819 static insn32
820 insert_thumb_branch (br_insn, rel_off)
821 insn32 br_insn;
822 int rel_off;
823 {
824 unsigned int low_bits;
825 unsigned int high_bits;
826
827 BFD_ASSERT ((rel_off & 1) != 1);
828
829 rel_off >>= 1; /* Half word aligned address. */
830 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
831 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
832
833 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
834 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
835 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
836 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
837 else
838 /* FIXME: abort is probably not the right call. krk@cygnus.com */
839 abort (); /* error - not a valid branch instruction form. */
840
841 return br_insn;
842 }
843
844 /* Thumb code calling an ARM function. */
845
846 static int
847 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
848 hit_data, sym_sec, offset, addend, val)
849 struct bfd_link_info * info;
850 const char * name;
851 bfd * input_bfd;
852 bfd * output_bfd;
853 asection * input_section;
854 bfd_byte * hit_data;
855 asection * sym_sec;
856 bfd_vma offset;
857 bfd_signed_vma addend;
858 bfd_vma val;
859 {
860 asection * s = 0;
861 bfd_vma my_offset;
862 unsigned long int tmp;
863 long int ret_offset;
864 struct elf_link_hash_entry * myh;
865 struct elf32_arm_link_hash_table * globals;
866
867 myh = find_thumb_glue (info, name, input_bfd);
868 if (myh == NULL)
869 return FALSE;
870
871 globals = elf32_arm_hash_table (info);
872
873 BFD_ASSERT (globals != NULL);
874 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
875
876 my_offset = myh->root.u.def.value;
877
878 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
879 THUMB2ARM_GLUE_SECTION_NAME);
880
881 BFD_ASSERT (s != NULL);
882 BFD_ASSERT (s->contents != NULL);
883 BFD_ASSERT (s->output_section != NULL);
884
885 if ((my_offset & 0x01) == 0x01)
886 {
887 if (sym_sec != NULL
888 && sym_sec->owner != NULL
889 && !INTERWORK_FLAG (sym_sec->owner))
890 {
891 (*_bfd_error_handler)
892 (_("%s(%s): warning: interworking not enabled."),
893 bfd_archive_filename (sym_sec->owner), name);
894 (*_bfd_error_handler)
895 (_(" first occurrence: %s: thumb call to arm"),
896 bfd_archive_filename (input_bfd));
897
898 return FALSE;
899 }
900
901 --my_offset;
902 myh->root.u.def.value = my_offset;
903
904 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
905 s->contents + my_offset);
906
907 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
908 s->contents + my_offset + 2);
909
910 ret_offset =
911 /* Address of destination of the stub. */
912 ((bfd_signed_vma) val)
913 - ((bfd_signed_vma)
914 /* Offset from the start of the current section to the start of the stubs. */
915 (s->output_offset
916 /* Offset of the start of this stub from the start of the stubs. */
917 + my_offset
918 /* Address of the start of the current section. */
919 + s->output_section->vma)
920 /* The branch instruction is 4 bytes into the stub. */
921 + 4
922 /* ARM branches work from the pc of the instruction + 8. */
923 + 8);
924
925 bfd_put_32 (output_bfd,
926 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
927 s->contents + my_offset + 4);
928 }
929
930 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
931
932 /* Now go back and fix up the original BL insn to point
933 to here. */
934 ret_offset = (s->output_offset
935 + my_offset
936 - (input_section->output_offset
937 + offset + addend)
938 - 8);
939
940 tmp = bfd_get_32 (input_bfd, hit_data
941 - input_section->vma);
942
943 bfd_put_32 (output_bfd,
944 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
945 hit_data - input_section->vma);
946
947 return TRUE;
948 }
949
950 /* Arm code calling a Thumb function. */
951
952 static int
953 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
954 hit_data, sym_sec, offset, addend, val)
955 struct bfd_link_info * info;
956 const char * name;
957 bfd * input_bfd;
958 bfd * output_bfd;
959 asection * input_section;
960 bfd_byte * hit_data;
961 asection * sym_sec;
962 bfd_vma offset;
963 bfd_signed_vma addend;
964 bfd_vma val;
965 {
966 unsigned long int tmp;
967 bfd_vma my_offset;
968 asection * s;
969 long int ret_offset;
970 struct elf_link_hash_entry * myh;
971 struct elf32_arm_link_hash_table * globals;
972
973 myh = find_arm_glue (info, name, input_bfd);
974 if (myh == NULL)
975 return FALSE;
976
977 globals = elf32_arm_hash_table (info);
978
979 BFD_ASSERT (globals != NULL);
980 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
981
982 my_offset = myh->root.u.def.value;
983 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
984 ARM2THUMB_GLUE_SECTION_NAME);
985 BFD_ASSERT (s != NULL);
986 BFD_ASSERT (s->contents != NULL);
987 BFD_ASSERT (s->output_section != NULL);
988
989 if ((my_offset & 0x01) == 0x01)
990 {
991 if (sym_sec != NULL
992 && sym_sec->owner != NULL
993 && !INTERWORK_FLAG (sym_sec->owner))
994 {
995 (*_bfd_error_handler)
996 (_("%s(%s): warning: interworking not enabled."),
997 bfd_archive_filename (sym_sec->owner), name);
998 (*_bfd_error_handler)
999 (_(" first occurrence: %s: arm call to thumb"),
1000 bfd_archive_filename (input_bfd));
1001 }
1002
1003 --my_offset;
1004 myh->root.u.def.value = my_offset;
1005
1006 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1007 s->contents + my_offset);
1008
1009 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1010 s->contents + my_offset + 4);
1011
1012 /* It's a thumb address. Add the low order bit. */
1013 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1014 s->contents + my_offset + 8);
1015 }
1016
1017 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1018
1019 tmp = bfd_get_32 (input_bfd, hit_data);
1020 tmp = tmp & 0xFF000000;
1021
1022 /* Somehow these are both 4 too far, so subtract 8. */
1023 ret_offset = (s->output_offset
1024 + my_offset
1025 + s->output_section->vma
1026 - (input_section->output_offset
1027 + input_section->output_section->vma
1028 + offset + addend)
1029 - 8);
1030
1031 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1032
1033 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1034
1035 return TRUE;
1036 }
1037
1038 /* Perform a relocation as part of a final link. */
1039
1040 static bfd_reloc_status_type
1041 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1042 input_section, contents, rel, value,
1043 info, sym_sec, sym_name, sym_flags, h)
1044 reloc_howto_type * howto;
1045 bfd * input_bfd;
1046 bfd * output_bfd;
1047 asection * input_section;
1048 bfd_byte * contents;
1049 Elf_Internal_Rela * rel;
1050 bfd_vma value;
1051 struct bfd_link_info * info;
1052 asection * sym_sec;
1053 const char * sym_name;
1054 int sym_flags;
1055 struct elf_link_hash_entry * h;
1056 {
1057 unsigned long r_type = howto->type;
1058 unsigned long r_symndx;
1059 bfd_byte * hit_data = contents + rel->r_offset;
1060 bfd * dynobj = NULL;
1061 Elf_Internal_Shdr * symtab_hdr;
1062 struct elf_link_hash_entry ** sym_hashes;
1063 bfd_vma * local_got_offsets;
1064 asection * sgot = NULL;
1065 asection * splt = NULL;
1066 asection * sreloc = NULL;
1067 bfd_vma addend;
1068 bfd_signed_vma signed_addend;
1069 struct elf32_arm_link_hash_table * globals;
1070
1071 /* If the start address has been set, then set the EF_ARM_HASENTRY
1072 flag. Setting this more than once is redundant, but the cost is
1073 not too high, and it keeps the code simple.
1074
1075 The test is done here, rather than somewhere else, because the
1076 start address is only set just before the final link commences.
1077
1078 Note - if the user deliberately sets a start address of 0, the
1079 flag will not be set. */
1080 if (bfd_get_start_address (output_bfd) != 0)
1081 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1082
1083 globals = elf32_arm_hash_table (info);
1084
1085 dynobj = elf_hash_table (info)->dynobj;
1086 if (dynobj)
1087 {
1088 sgot = bfd_get_section_by_name (dynobj, ".got");
1089 splt = bfd_get_section_by_name (dynobj, ".plt");
1090 }
1091 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1092 sym_hashes = elf_sym_hashes (input_bfd);
1093 local_got_offsets = elf_local_got_offsets (input_bfd);
1094 r_symndx = ELF32_R_SYM (rel->r_info);
1095
1096 #if USE_REL
1097 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1098
1099 if (addend & ((howto->src_mask + 1) >> 1))
1100 {
1101 signed_addend = -1;
1102 signed_addend &= ~ howto->src_mask;
1103 signed_addend |= addend;
1104 }
1105 else
1106 signed_addend = addend;
1107 #else
1108 addend = signed_addend = rel->r_addend;
1109 #endif
1110
1111 switch (r_type)
1112 {
1113 case R_ARM_NONE:
1114 return bfd_reloc_ok;
1115
1116 case R_ARM_PC24:
1117 case R_ARM_ABS32:
1118 case R_ARM_REL32:
1119 #ifndef OLD_ARM_ABI
1120 case R_ARM_XPC25:
1121 #endif
1122 /* When generating a shared object, these relocations are copied
1123 into the output file to be resolved at run time. */
1124 if (info->shared
1125 && r_symndx != 0
1126 && (r_type != R_ARM_PC24
1127 || (h != NULL
1128 && h->dynindx != -1
1129 && (! info->symbolic
1130 || (h->elf_link_hash_flags
1131 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1132 {
1133 Elf_Internal_Rela outrel;
1134 bfd_byte *loc;
1135 bfd_boolean skip, relocate;
1136
1137 if (sreloc == NULL)
1138 {
1139 const char * name;
1140
1141 name = (bfd_elf_string_from_elf_section
1142 (input_bfd,
1143 elf_elfheader (input_bfd)->e_shstrndx,
1144 elf_section_data (input_section)->rel_hdr.sh_name));
1145 if (name == NULL)
1146 return bfd_reloc_notsupported;
1147
1148 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1149 && strcmp (bfd_get_section_name (input_bfd,
1150 input_section),
1151 name + 4) == 0);
1152
1153 sreloc = bfd_get_section_by_name (dynobj, name);
1154 BFD_ASSERT (sreloc != NULL);
1155 }
1156
1157 skip = FALSE;
1158 relocate = FALSE;
1159
1160 outrel.r_offset =
1161 _bfd_elf_section_offset (output_bfd, info, input_section,
1162 rel->r_offset);
1163 if (outrel.r_offset == (bfd_vma) -1)
1164 skip = TRUE;
1165 else if (outrel.r_offset == (bfd_vma) -2)
1166 skip = TRUE, relocate = TRUE;
1167 outrel.r_offset += (input_section->output_section->vma
1168 + input_section->output_offset);
1169
1170 if (skip)
1171 memset (&outrel, 0, sizeof outrel);
1172 else if (r_type == R_ARM_PC24)
1173 {
1174 BFD_ASSERT (h != NULL && h->dynindx != -1);
1175 if ((input_section->flags & SEC_ALLOC) == 0)
1176 relocate = TRUE;
1177 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1178 }
1179 else
1180 {
1181 if (h == NULL
1182 || ((info->symbolic || h->dynindx == -1)
1183 && (h->elf_link_hash_flags
1184 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1185 {
1186 relocate = TRUE;
1187 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1188 }
1189 else
1190 {
1191 BFD_ASSERT (h->dynindx != -1);
1192 if ((input_section->flags & SEC_ALLOC) == 0)
1193 relocate = TRUE;
1194 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1195 }
1196 }
1197
1198 loc = sreloc->contents;
1199 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1200 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1201
1202 /* If this reloc is against an external symbol, we do not want to
1203 fiddle with the addend. Otherwise, we need to include the symbol
1204 value so that it becomes an addend for the dynamic reloc. */
1205 if (! relocate)
1206 return bfd_reloc_ok;
1207
1208 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1209 contents, rel->r_offset, value,
1210 (bfd_vma) 0);
1211 }
1212 else switch (r_type)
1213 {
1214 #ifndef OLD_ARM_ABI
1215 case R_ARM_XPC25: /* Arm BLX instruction. */
1216 #endif
1217 case R_ARM_PC24: /* Arm B/BL instruction */
1218 #ifndef OLD_ARM_ABI
1219 if (r_type == R_ARM_XPC25)
1220 {
1221 /* Check for Arm calling Arm function. */
1222 /* FIXME: Should we translate the instruction into a BL
1223 instruction instead ? */
1224 if (sym_flags != STT_ARM_TFUNC)
1225 (*_bfd_error_handler) (_("\
1226 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1227 bfd_archive_filename (input_bfd),
1228 h ? h->root.root.string : "(local)");
1229 }
1230 else
1231 #endif
1232 {
1233 /* Check for Arm calling Thumb function. */
1234 if (sym_flags == STT_ARM_TFUNC)
1235 {
1236 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1237 input_section, hit_data, sym_sec, rel->r_offset,
1238 signed_addend, value);
1239 return bfd_reloc_ok;
1240 }
1241 }
1242
1243 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1244 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1245 {
1246 /* The old way of doing things. Trearing the addend as a
1247 byte sized field and adding in the pipeline offset. */
1248 value -= (input_section->output_section->vma
1249 + input_section->output_offset);
1250 value -= rel->r_offset;
1251 value += addend;
1252
1253 if (! globals->no_pipeline_knowledge)
1254 value -= 8;
1255 }
1256 else
1257 {
1258 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1259 where:
1260 S is the address of the symbol in the relocation.
1261 P is address of the instruction being relocated.
1262 A is the addend (extracted from the instruction) in bytes.
1263
1264 S is held in 'value'.
1265 P is the base address of the section containing the instruction
1266 plus the offset of the reloc into that section, ie:
1267 (input_section->output_section->vma +
1268 input_section->output_offset +
1269 rel->r_offset).
1270 A is the addend, converted into bytes, ie:
1271 (signed_addend * 4)
1272
1273 Note: None of these operations have knowledge of the pipeline
1274 size of the processor, thus it is up to the assembler to encode
1275 this information into the addend. */
1276 value -= (input_section->output_section->vma
1277 + input_section->output_offset);
1278 value -= rel->r_offset;
1279 value += (signed_addend << howto->size);
1280
1281 /* Previous versions of this code also used to add in the pipeline
1282 offset here. This is wrong because the linker is not supposed
1283 to know about such things, and one day it might change. In order
1284 to support old binaries that need the old behaviour however, so
1285 we attempt to detect which ABI was used to create the reloc. */
1286 if (! globals->no_pipeline_knowledge)
1287 {
1288 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1289
1290 i_ehdrp = elf_elfheader (input_bfd);
1291
1292 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1293 value -= 8;
1294 }
1295 }
1296
1297 signed_addend = value;
1298 signed_addend >>= howto->rightshift;
1299
1300 /* It is not an error for an undefined weak reference to be
1301 out of range. Any program that branches to such a symbol
1302 is going to crash anyway, so there is no point worrying
1303 about getting the destination exactly right. */
1304 if (! h || h->root.type != bfd_link_hash_undefweak)
1305 {
1306 /* Perform a signed range check. */
1307 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1308 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1309 return bfd_reloc_overflow;
1310 }
1311
1312 #ifndef OLD_ARM_ABI
1313 /* If necessary set the H bit in the BLX instruction. */
1314 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1315 value = (signed_addend & howto->dst_mask)
1316 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1317 | (1 << 24);
1318 else
1319 #endif
1320 value = (signed_addend & howto->dst_mask)
1321 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1322 break;
1323
1324 case R_ARM_ABS32:
1325 value += addend;
1326 if (sym_flags == STT_ARM_TFUNC)
1327 value |= 1;
1328 break;
1329
1330 case R_ARM_REL32:
1331 value -= (input_section->output_section->vma
1332 + input_section->output_offset + rel->r_offset);
1333 value += addend;
1334 break;
1335 }
1336
1337 bfd_put_32 (input_bfd, value, hit_data);
1338 return bfd_reloc_ok;
1339
1340 case R_ARM_ABS8:
1341 value += addend;
1342 if ((long) value > 0x7f || (long) value < -0x80)
1343 return bfd_reloc_overflow;
1344
1345 bfd_put_8 (input_bfd, value, hit_data);
1346 return bfd_reloc_ok;
1347
1348 case R_ARM_ABS16:
1349 value += addend;
1350
1351 if ((long) value > 0x7fff || (long) value < -0x8000)
1352 return bfd_reloc_overflow;
1353
1354 bfd_put_16 (input_bfd, value, hit_data);
1355 return bfd_reloc_ok;
1356
1357 case R_ARM_ABS12:
1358 /* Support ldr and str instruction for the arm */
1359 /* Also thumb b (unconditional branch). ??? Really? */
1360 value += addend;
1361
1362 if ((long) value > 0x7ff || (long) value < -0x800)
1363 return bfd_reloc_overflow;
1364
1365 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1366 bfd_put_32 (input_bfd, value, hit_data);
1367 return bfd_reloc_ok;
1368
1369 case R_ARM_THM_ABS5:
1370 /* Support ldr and str instructions for the thumb. */
1371 #if USE_REL
1372 /* Need to refetch addend. */
1373 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1374 /* ??? Need to determine shift amount from operand size. */
1375 addend >>= howto->rightshift;
1376 #endif
1377 value += addend;
1378
1379 /* ??? Isn't value unsigned? */
1380 if ((long) value > 0x1f || (long) value < -0x10)
1381 return bfd_reloc_overflow;
1382
1383 /* ??? Value needs to be properly shifted into place first. */
1384 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1385 bfd_put_16 (input_bfd, value, hit_data);
1386 return bfd_reloc_ok;
1387
1388 #ifndef OLD_ARM_ABI
1389 case R_ARM_THM_XPC22:
1390 #endif
1391 case R_ARM_THM_PC22:
1392 /* Thumb BL (branch long instruction). */
1393 {
1394 bfd_vma relocation;
1395 bfd_boolean overflow = FALSE;
1396 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1397 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1398 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1399 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1400 bfd_vma check;
1401 bfd_signed_vma signed_check;
1402
1403 #if USE_REL
1404 /* Need to refetch the addend and squish the two 11 bit pieces
1405 together. */
1406 {
1407 bfd_vma upper = upper_insn & 0x7ff;
1408 bfd_vma lower = lower_insn & 0x7ff;
1409 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1410 addend = (upper << 12) | (lower << 1);
1411 signed_addend = addend;
1412 }
1413 #endif
1414 #ifndef OLD_ARM_ABI
1415 if (r_type == R_ARM_THM_XPC22)
1416 {
1417 /* Check for Thumb to Thumb call. */
1418 /* FIXME: Should we translate the instruction into a BL
1419 instruction instead ? */
1420 if (sym_flags == STT_ARM_TFUNC)
1421 (*_bfd_error_handler) (_("\
1422 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1423 bfd_archive_filename (input_bfd),
1424 h ? h->root.root.string : "(local)");
1425 }
1426 else
1427 #endif
1428 {
1429 /* If it is not a call to Thumb, assume call to Arm.
1430 If it is a call relative to a section name, then it is not a
1431 function call at all, but rather a long jump. */
1432 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1433 {
1434 if (elf32_thumb_to_arm_stub
1435 (info, sym_name, input_bfd, output_bfd, input_section,
1436 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1437 return bfd_reloc_ok;
1438 else
1439 return bfd_reloc_dangerous;
1440 }
1441 }
1442
1443 relocation = value + signed_addend;
1444
1445 relocation -= (input_section->output_section->vma
1446 + input_section->output_offset
1447 + rel->r_offset);
1448
1449 if (! globals->no_pipeline_knowledge)
1450 {
1451 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1452
1453 i_ehdrp = elf_elfheader (input_bfd);
1454
1455 /* Previous versions of this code also used to add in the pipline
1456 offset here. This is wrong because the linker is not supposed
1457 to know about such things, and one day it might change. In order
1458 to support old binaries that need the old behaviour however, so
1459 we attempt to detect which ABI was used to create the reloc. */
1460 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1461 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1462 || i_ehdrp->e_ident[EI_OSABI] == 0)
1463 relocation += 4;
1464 }
1465
1466 check = relocation >> howto->rightshift;
1467
1468 /* If this is a signed value, the rightshift just dropped
1469 leading 1 bits (assuming twos complement). */
1470 if ((bfd_signed_vma) relocation >= 0)
1471 signed_check = check;
1472 else
1473 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1474
1475 /* Assumes two's complement. */
1476 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1477 overflow = TRUE;
1478
1479 #ifndef OLD_ARM_ABI
1480 if (r_type == R_ARM_THM_XPC22
1481 && ((lower_insn & 0x1800) == 0x0800))
1482 /* For a BLX instruction, make sure that the relocation is rounded up
1483 to a word boundary. This follows the semantics of the instruction
1484 which specifies that bit 1 of the target address will come from bit
1485 1 of the base address. */
1486 relocation = (relocation + 2) & ~ 3;
1487 #endif
1488 /* Put RELOCATION back into the insn. */
1489 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1490 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1491
1492 /* Put the relocated value back in the object file: */
1493 bfd_put_16 (input_bfd, upper_insn, hit_data);
1494 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1495
1496 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1497 }
1498 break;
1499
1500 case R_ARM_THM_PC11:
1501 /* Thumb B (branch) instruction). */
1502 {
1503 bfd_signed_vma relocation;
1504 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1505 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1506 bfd_signed_vma signed_check;
1507
1508 #if USE_REL
1509 /* Need to refetch addend. */
1510 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1511 if (addend & ((howto->src_mask + 1) >> 1))
1512 {
1513 signed_addend = -1;
1514 signed_addend &= ~ howto->src_mask;
1515 signed_addend |= addend;
1516 }
1517 else
1518 signed_addend = addend;
1519 /* The value in the insn has been right shifted. We need to
1520 undo this, so that we can perform the address calculation
1521 in terms of bytes. */
1522 signed_addend <<= howto->rightshift;
1523 #endif
1524 relocation = value + signed_addend;
1525
1526 relocation -= (input_section->output_section->vma
1527 + input_section->output_offset
1528 + rel->r_offset);
1529
1530 relocation >>= howto->rightshift;
1531 signed_check = relocation;
1532 relocation &= howto->dst_mask;
1533 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1534
1535 bfd_put_16 (input_bfd, relocation, hit_data);
1536
1537 /* Assumes two's complement. */
1538 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1539 return bfd_reloc_overflow;
1540
1541 return bfd_reloc_ok;
1542 }
1543
1544 case R_ARM_GNU_VTINHERIT:
1545 case R_ARM_GNU_VTENTRY:
1546 return bfd_reloc_ok;
1547
1548 case R_ARM_COPY:
1549 return bfd_reloc_notsupported;
1550
1551 case R_ARM_GLOB_DAT:
1552 return bfd_reloc_notsupported;
1553
1554 case R_ARM_JUMP_SLOT:
1555 return bfd_reloc_notsupported;
1556
1557 case R_ARM_RELATIVE:
1558 return bfd_reloc_notsupported;
1559
1560 case R_ARM_GOTOFF:
1561 /* Relocation is relative to the start of the
1562 global offset table. */
1563
1564 BFD_ASSERT (sgot != NULL);
1565 if (sgot == NULL)
1566 return bfd_reloc_notsupported;
1567
1568 /* If we are addressing a Thumb function, we need to adjust the
1569 address by one, so that attempts to call the function pointer will
1570 correctly interpret it as Thumb code. */
1571 if (sym_flags == STT_ARM_TFUNC)
1572 value += 1;
1573
1574 /* Note that sgot->output_offset is not involved in this
1575 calculation. We always want the start of .got. If we
1576 define _GLOBAL_OFFSET_TABLE in a different way, as is
1577 permitted by the ABI, we might have to change this
1578 calculation. */
1579 value -= sgot->output_section->vma;
1580 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1581 contents, rel->r_offset, value,
1582 (bfd_vma) 0);
1583
1584 case R_ARM_GOTPC:
1585 /* Use global offset table as symbol value. */
1586 BFD_ASSERT (sgot != NULL);
1587
1588 if (sgot == NULL)
1589 return bfd_reloc_notsupported;
1590
1591 value = sgot->output_section->vma;
1592 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1593 contents, rel->r_offset, value,
1594 (bfd_vma) 0);
1595
1596 case R_ARM_GOT32:
1597 /* Relocation is to the entry for this symbol in the
1598 global offset table. */
1599 if (sgot == NULL)
1600 return bfd_reloc_notsupported;
1601
1602 if (h != NULL)
1603 {
1604 bfd_vma off;
1605
1606 off = h->got.offset;
1607 BFD_ASSERT (off != (bfd_vma) -1);
1608
1609 if (!elf_hash_table (info)->dynamic_sections_created ||
1610 (info->shared && (info->symbolic || h->dynindx == -1)
1611 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1612 {
1613 /* This is actually a static link, or it is a -Bsymbolic link
1614 and the symbol is defined locally. We must initialize this
1615 entry in the global offset table. Since the offset must
1616 always be a multiple of 4, we use the least significant bit
1617 to record whether we have initialized it already.
1618
1619 When doing a dynamic link, we create a .rel.got relocation
1620 entry to initialize the value. This is done in the
1621 finish_dynamic_symbol routine. */
1622 if ((off & 1) != 0)
1623 off &= ~1;
1624 else
1625 {
1626 /* If we are addressing a Thumb function, we need to
1627 adjust the address by one, so that attempts to
1628 call the function pointer will correctly
1629 interpret it as Thumb code. */
1630 if (sym_flags == STT_ARM_TFUNC)
1631 value |= 1;
1632
1633 bfd_put_32 (output_bfd, value, sgot->contents + off);
1634 h->got.offset |= 1;
1635 }
1636 }
1637
1638 value = sgot->output_offset + off;
1639 }
1640 else
1641 {
1642 bfd_vma off;
1643
1644 BFD_ASSERT (local_got_offsets != NULL &&
1645 local_got_offsets[r_symndx] != (bfd_vma) -1);
1646
1647 off = local_got_offsets[r_symndx];
1648
1649 /* The offset must always be a multiple of 4. We use the
1650 least significant bit to record whether we have already
1651 generated the necessary reloc. */
1652 if ((off & 1) != 0)
1653 off &= ~1;
1654 else
1655 {
1656 bfd_put_32 (output_bfd, value, sgot->contents + off);
1657
1658 if (info->shared)
1659 {
1660 asection * srelgot;
1661 Elf_Internal_Rela outrel;
1662 bfd_byte *loc;
1663
1664 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1665 BFD_ASSERT (srelgot != NULL);
1666
1667 outrel.r_offset = (sgot->output_section->vma
1668 + sgot->output_offset
1669 + off);
1670 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1671 loc = srelgot->contents;
1672 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1673 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1674 }
1675
1676 local_got_offsets[r_symndx] |= 1;
1677 }
1678
1679 value = sgot->output_offset + off;
1680 }
1681
1682 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1683 contents, rel->r_offset, value,
1684 (bfd_vma) 0);
1685
1686 case R_ARM_PLT32:
1687 /* Relocation is to the entry for this symbol in the
1688 procedure linkage table. */
1689
1690 /* Resolve a PLT32 reloc against a local symbol directly,
1691 without using the procedure linkage table. */
1692 if (h == NULL)
1693 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1694 contents, rel->r_offset, value,
1695 (bfd_vma) 0);
1696
1697 if (h->plt.offset == (bfd_vma) -1)
1698 /* We didn't make a PLT entry for this symbol. This
1699 happens when statically linking PIC code, or when
1700 using -Bsymbolic. */
1701 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1702 contents, rel->r_offset, value,
1703 (bfd_vma) 0);
1704
1705 BFD_ASSERT(splt != NULL);
1706 if (splt == NULL)
1707 return bfd_reloc_notsupported;
1708
1709 value = (splt->output_section->vma
1710 + splt->output_offset
1711 + h->plt.offset);
1712 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1713 contents, rel->r_offset, value,
1714 (bfd_vma) 0);
1715
1716 case R_ARM_SBREL32:
1717 return bfd_reloc_notsupported;
1718
1719 case R_ARM_AMP_VCALL9:
1720 return bfd_reloc_notsupported;
1721
1722 case R_ARM_RSBREL32:
1723 return bfd_reloc_notsupported;
1724
1725 case R_ARM_THM_RPC22:
1726 return bfd_reloc_notsupported;
1727
1728 case R_ARM_RREL32:
1729 return bfd_reloc_notsupported;
1730
1731 case R_ARM_RABS32:
1732 return bfd_reloc_notsupported;
1733
1734 case R_ARM_RPC24:
1735 return bfd_reloc_notsupported;
1736
1737 case R_ARM_RBASE:
1738 return bfd_reloc_notsupported;
1739
1740 default:
1741 return bfd_reloc_notsupported;
1742 }
1743 }
1744
1745 #if USE_REL
1746 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1747 static void
1748 arm_add_to_rel (abfd, address, howto, increment)
1749 bfd * abfd;
1750 bfd_byte * address;
1751 reloc_howto_type * howto;
1752 bfd_signed_vma increment;
1753 {
1754 bfd_signed_vma addend;
1755
1756 if (howto->type == R_ARM_THM_PC22)
1757 {
1758 int upper_insn, lower_insn;
1759 int upper, lower;
1760
1761 upper_insn = bfd_get_16 (abfd, address);
1762 lower_insn = bfd_get_16 (abfd, address + 2);
1763 upper = upper_insn & 0x7ff;
1764 lower = lower_insn & 0x7ff;
1765
1766 addend = (upper << 12) | (lower << 1);
1767 addend += increment;
1768 addend >>= 1;
1769
1770 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1771 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1772
1773 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1774 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1775 }
1776 else
1777 {
1778 bfd_vma contents;
1779
1780 contents = bfd_get_32 (abfd, address);
1781
1782 /* Get the (signed) value from the instruction. */
1783 addend = contents & howto->src_mask;
1784 if (addend & ((howto->src_mask + 1) >> 1))
1785 {
1786 bfd_signed_vma mask;
1787
1788 mask = -1;
1789 mask &= ~ howto->src_mask;
1790 addend |= mask;
1791 }
1792
1793 /* Add in the increment, (which is a byte value). */
1794 switch (howto->type)
1795 {
1796 default:
1797 addend += increment;
1798 break;
1799
1800 case R_ARM_PC24:
1801 addend <<= howto->size;
1802 addend += increment;
1803
1804 /* Should we check for overflow here ? */
1805
1806 /* Drop any undesired bits. */
1807 addend >>= howto->rightshift;
1808 break;
1809 }
1810
1811 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1812
1813 bfd_put_32 (abfd, contents, address);
1814 }
1815 }
1816 #endif /* USE_REL */
1817
1818 /* Relocate an ARM ELF section. */
1819 static bfd_boolean
1820 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1821 contents, relocs, local_syms, local_sections)
1822 bfd *output_bfd;
1823 struct bfd_link_info *info;
1824 bfd *input_bfd;
1825 asection *input_section;
1826 bfd_byte *contents;
1827 Elf_Internal_Rela *relocs;
1828 Elf_Internal_Sym *local_syms;
1829 asection **local_sections;
1830 {
1831 Elf_Internal_Shdr *symtab_hdr;
1832 struct elf_link_hash_entry **sym_hashes;
1833 Elf_Internal_Rela *rel;
1834 Elf_Internal_Rela *relend;
1835 const char *name;
1836
1837 #if !USE_REL
1838 if (info->relocateable)
1839 return TRUE;
1840 #endif
1841
1842 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1843 sym_hashes = elf_sym_hashes (input_bfd);
1844
1845 rel = relocs;
1846 relend = relocs + input_section->reloc_count;
1847 for (; rel < relend; rel++)
1848 {
1849 int r_type;
1850 reloc_howto_type * howto;
1851 unsigned long r_symndx;
1852 Elf_Internal_Sym * sym;
1853 asection * sec;
1854 struct elf_link_hash_entry * h;
1855 bfd_vma relocation;
1856 bfd_reloc_status_type r;
1857 arelent bfd_reloc;
1858
1859 r_symndx = ELF32_R_SYM (rel->r_info);
1860 r_type = ELF32_R_TYPE (rel->r_info);
1861
1862 if ( r_type == R_ARM_GNU_VTENTRY
1863 || r_type == R_ARM_GNU_VTINHERIT)
1864 continue;
1865
1866 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1867 howto = bfd_reloc.howto;
1868
1869 #if USE_REL
1870 if (info->relocateable)
1871 {
1872 /* This is a relocateable link. We don't have to change
1873 anything, unless the reloc is against a section symbol,
1874 in which case we have to adjust according to where the
1875 section symbol winds up in the output section. */
1876 if (r_symndx < symtab_hdr->sh_info)
1877 {
1878 sym = local_syms + r_symndx;
1879 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1880 {
1881 sec = local_sections[r_symndx];
1882 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1883 howto,
1884 (bfd_signed_vma) (sec->output_offset
1885 + sym->st_value));
1886 }
1887 }
1888
1889 continue;
1890 }
1891 #endif
1892
1893 /* This is a final link. */
1894 h = NULL;
1895 sym = NULL;
1896 sec = NULL;
1897
1898 if (r_symndx < symtab_hdr->sh_info)
1899 {
1900 sym = local_syms + r_symndx;
1901 sec = local_sections[r_symndx];
1902 #if USE_REL
1903 relocation = (sec->output_section->vma
1904 + sec->output_offset
1905 + sym->st_value);
1906 if ((sec->flags & SEC_MERGE)
1907 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1908 {
1909 asection *msec;
1910 bfd_vma addend, value;
1911
1912 if (howto->rightshift)
1913 {
1914 (*_bfd_error_handler)
1915 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1916 bfd_archive_filename (input_bfd),
1917 bfd_get_section_name (input_bfd, input_section),
1918 (long) rel->r_offset, howto->name);
1919 return FALSE;
1920 }
1921
1922 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1923
1924 /* Get the (signed) value from the instruction. */
1925 addend = value & howto->src_mask;
1926 if (addend & ((howto->src_mask + 1) >> 1))
1927 {
1928 bfd_signed_vma mask;
1929
1930 mask = -1;
1931 mask &= ~ howto->src_mask;
1932 addend |= mask;
1933 }
1934 msec = sec;
1935 addend =
1936 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1937 - relocation;
1938 addend += msec->output_section->vma + msec->output_offset;
1939 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1940 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1941 }
1942 #else
1943 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1944 #endif
1945 }
1946 else
1947 {
1948 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1949
1950 while ( h->root.type == bfd_link_hash_indirect
1951 || h->root.type == bfd_link_hash_warning)
1952 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1953
1954 if ( h->root.type == bfd_link_hash_defined
1955 || h->root.type == bfd_link_hash_defweak)
1956 {
1957 int relocation_needed = 1;
1958
1959 sec = h->root.u.def.section;
1960
1961 /* In these cases, we don't need the relocation value.
1962 We check specially because in some obscure cases
1963 sec->output_section will be NULL. */
1964 switch (r_type)
1965 {
1966 case R_ARM_PC24:
1967 case R_ARM_ABS32:
1968 case R_ARM_THM_PC22:
1969 if (info->shared
1970 && (
1971 (!info->symbolic && h->dynindx != -1)
1972 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1973 )
1974 && ((input_section->flags & SEC_ALLOC) != 0
1975 /* DWARF will emit R_ARM_ABS32 relocations in its
1976 sections against symbols defined externally
1977 in shared libraries. We can't do anything
1978 with them here. */
1979 || ((input_section->flags & SEC_DEBUGGING) != 0
1980 && (h->elf_link_hash_flags
1981 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1982 )
1983 relocation_needed = 0;
1984 break;
1985
1986 case R_ARM_GOTPC:
1987 relocation_needed = 0;
1988 break;
1989
1990 case R_ARM_GOT32:
1991 if (elf_hash_table(info)->dynamic_sections_created
1992 && (!info->shared
1993 || (!info->symbolic && h->dynindx != -1)
1994 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1995 )
1996 )
1997 relocation_needed = 0;
1998 break;
1999
2000 case R_ARM_PLT32:
2001 if (h->plt.offset != (bfd_vma)-1)
2002 relocation_needed = 0;
2003 break;
2004
2005 default:
2006 if (sec->output_section == NULL)
2007 {
2008 (*_bfd_error_handler)
2009 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2010 bfd_archive_filename (input_bfd),
2011 r_type,
2012 h->root.root.string,
2013 bfd_get_section_name (input_bfd, input_section));
2014 relocation_needed = 0;
2015 }
2016 }
2017
2018 if (relocation_needed)
2019 relocation = h->root.u.def.value
2020 + sec->output_section->vma
2021 + sec->output_offset;
2022 else
2023 relocation = 0;
2024 }
2025 else if (h->root.type == bfd_link_hash_undefweak)
2026 relocation = 0;
2027 else if (info->shared && !info->symbolic
2028 && !info->no_undefined
2029 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2030 relocation = 0;
2031 else
2032 {
2033 if (!((*info->callbacks->undefined_symbol)
2034 (info, h->root.root.string, input_bfd,
2035 input_section, rel->r_offset,
2036 (!info->shared || info->no_undefined
2037 || ELF_ST_VISIBILITY (h->other)))))
2038 return FALSE;
2039 relocation = 0;
2040 }
2041 }
2042
2043 if (h != NULL)
2044 name = h->root.root.string;
2045 else
2046 {
2047 name = (bfd_elf_string_from_elf_section
2048 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2049 if (name == NULL || *name == '\0')
2050 name = bfd_section_name (input_bfd, sec);
2051 }
2052
2053 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2054 input_section, contents, rel,
2055 relocation, info, sec, name,
2056 (h ? ELF_ST_TYPE (h->type) :
2057 ELF_ST_TYPE (sym->st_info)), h);
2058
2059 if (r != bfd_reloc_ok)
2060 {
2061 const char * msg = (const char *) 0;
2062
2063 switch (r)
2064 {
2065 case bfd_reloc_overflow:
2066 /* If the overflowing reloc was to an undefined symbol,
2067 we have already printed one error message and there
2068 is no point complaining again. */
2069 if ((! h ||
2070 h->root.type != bfd_link_hash_undefined)
2071 && (!((*info->callbacks->reloc_overflow)
2072 (info, name, howto->name, (bfd_vma) 0,
2073 input_bfd, input_section, rel->r_offset))))
2074 return FALSE;
2075 break;
2076
2077 case bfd_reloc_undefined:
2078 if (!((*info->callbacks->undefined_symbol)
2079 (info, name, input_bfd, input_section,
2080 rel->r_offset, TRUE)))
2081 return FALSE;
2082 break;
2083
2084 case bfd_reloc_outofrange:
2085 msg = _("internal error: out of range error");
2086 goto common_error;
2087
2088 case bfd_reloc_notsupported:
2089 msg = _("internal error: unsupported relocation error");
2090 goto common_error;
2091
2092 case bfd_reloc_dangerous:
2093 msg = _("internal error: dangerous error");
2094 goto common_error;
2095
2096 default:
2097 msg = _("internal error: unknown error");
2098 /* fall through */
2099
2100 common_error:
2101 if (!((*info->callbacks->warning)
2102 (info, msg, name, input_bfd, input_section,
2103 rel->r_offset)))
2104 return FALSE;
2105 break;
2106 }
2107 }
2108 }
2109
2110 return TRUE;
2111 }
2112
2113 /* Set the right machine number. */
2114
2115 static bfd_boolean
2116 elf32_arm_object_p (abfd)
2117 bfd *abfd;
2118 {
2119 /* XXX - we ought to examine a .note section here. */
2120
2121 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
2122 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
2123
2124 return TRUE;
2125 }
2126
2127 /* Function to keep ARM specific flags in the ELF header. */
2128 static bfd_boolean
2129 elf32_arm_set_private_flags (abfd, flags)
2130 bfd *abfd;
2131 flagword flags;
2132 {
2133 if (elf_flags_init (abfd)
2134 && elf_elfheader (abfd)->e_flags != flags)
2135 {
2136 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2137 {
2138 if (flags & EF_ARM_INTERWORK)
2139 (*_bfd_error_handler) (_("\
2140 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2141 bfd_archive_filename (abfd));
2142 else
2143 _bfd_error_handler (_("\
2144 Warning: Clearing the interworking flag of %s due to outside request"),
2145 bfd_archive_filename (abfd));
2146 }
2147 }
2148 else
2149 {
2150 elf_elfheader (abfd)->e_flags = flags;
2151 elf_flags_init (abfd) = TRUE;
2152 }
2153
2154 return TRUE;
2155 }
2156
2157 /* Copy backend specific data from one object module to another. */
2158
2159 static bfd_boolean
2160 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2161 bfd *ibfd;
2162 bfd *obfd;
2163 {
2164 flagword in_flags;
2165 flagword out_flags;
2166
2167 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2168 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2169 return TRUE;
2170
2171 in_flags = elf_elfheader (ibfd)->e_flags;
2172 out_flags = elf_elfheader (obfd)->e_flags;
2173
2174 if (elf_flags_init (obfd)
2175 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2176 && in_flags != out_flags)
2177 {
2178 /* Cannot mix APCS26 and APCS32 code. */
2179 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2180 return FALSE;
2181
2182 /* Cannot mix float APCS and non-float APCS code. */
2183 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2184 return FALSE;
2185
2186 /* If the src and dest have different interworking flags
2187 then turn off the interworking bit. */
2188 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2189 {
2190 if (out_flags & EF_ARM_INTERWORK)
2191 _bfd_error_handler (_("\
2192 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2193 bfd_get_filename (obfd),
2194 bfd_archive_filename (ibfd));
2195
2196 in_flags &= ~EF_ARM_INTERWORK;
2197 }
2198
2199 /* Likewise for PIC, though don't warn for this case. */
2200 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2201 in_flags &= ~EF_ARM_PIC;
2202 }
2203
2204 elf_elfheader (obfd)->e_flags = in_flags;
2205 elf_flags_init (obfd) = TRUE;
2206
2207 return TRUE;
2208 }
2209
2210 /* Merge backend specific data from an object file to the output
2211 object file when linking. */
2212
2213 static bfd_boolean
2214 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2215 bfd * ibfd;
2216 bfd * obfd;
2217 {
2218 flagword out_flags;
2219 flagword in_flags;
2220 bfd_boolean flags_compatible = TRUE;
2221 bfd_boolean null_input_bfd = TRUE;
2222 asection *sec;
2223
2224 /* Check if we have the same endianess. */
2225 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2226 return FALSE;
2227
2228 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2229 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2230 return TRUE;
2231
2232 /* The input BFD must have had its flags initialised. */
2233 /* The following seems bogus to me -- The flags are initialized in
2234 the assembler but I don't think an elf_flags_init field is
2235 written into the object. */
2236 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2237
2238 in_flags = elf_elfheader (ibfd)->e_flags;
2239 out_flags = elf_elfheader (obfd)->e_flags;
2240
2241 if (!elf_flags_init (obfd))
2242 {
2243 /* If the input is the default architecture and had the default
2244 flags then do not bother setting the flags for the output
2245 architecture, instead allow future merges to do this. If no
2246 future merges ever set these flags then they will retain their
2247 uninitialised values, which surprise surprise, correspond
2248 to the default values. */
2249 if (bfd_get_arch_info (ibfd)->the_default
2250 && elf_elfheader (ibfd)->e_flags == 0)
2251 return TRUE;
2252
2253 elf_flags_init (obfd) = TRUE;
2254 elf_elfheader (obfd)->e_flags = in_flags;
2255
2256 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2257 && bfd_get_arch_info (obfd)->the_default)
2258 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2259
2260 return TRUE;
2261 }
2262
2263 /* Identical flags must be compatible. */
2264 if (in_flags == out_flags)
2265 return TRUE;
2266
2267 /* Check to see if the input BFD actually contains any sections.
2268 If not, its flags may not have been initialised either, but it cannot
2269 actually cause any incompatibility. */
2270 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2271 {
2272 /* Ignore synthetic glue sections. */
2273 if (strcmp (sec->name, ".glue_7")
2274 && strcmp (sec->name, ".glue_7t"))
2275 {
2276 null_input_bfd = FALSE;
2277 break;
2278 }
2279 }
2280 if (null_input_bfd)
2281 return TRUE;
2282
2283 /* Complain about various flag mismatches. */
2284 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2285 {
2286 _bfd_error_handler (_("\
2287 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2288 bfd_archive_filename (ibfd),
2289 (in_flags & EF_ARM_EABIMASK) >> 24,
2290 bfd_get_filename (obfd),
2291 (out_flags & EF_ARM_EABIMASK) >> 24);
2292 return FALSE;
2293 }
2294
2295 /* Not sure what needs to be checked for EABI versions >= 1. */
2296 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2297 {
2298 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2299 {
2300 _bfd_error_handler (_("\
2301 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2302 bfd_archive_filename (ibfd),
2303 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2304 bfd_get_filename (obfd),
2305 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2306 flags_compatible = FALSE;
2307 }
2308
2309 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2310 {
2311 if (in_flags & EF_ARM_APCS_FLOAT)
2312 _bfd_error_handler (_("\
2313 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2314 bfd_archive_filename (ibfd),
2315 bfd_get_filename (obfd));
2316 else
2317 _bfd_error_handler (_("\
2318 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2319 bfd_archive_filename (ibfd),
2320 bfd_get_filename (obfd));
2321
2322 flags_compatible = FALSE;
2323 }
2324
2325 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2326 {
2327 if (in_flags & EF_ARM_VFP_FLOAT)
2328 _bfd_error_handler (_("\
2329 ERROR: %s uses VFP instructions, whereas %s does not"),
2330 bfd_archive_filename (ibfd),
2331 bfd_get_filename (obfd));
2332 else
2333 _bfd_error_handler (_("\
2334 ERROR: %s uses FPA instructions, whereas %s does not"),
2335 bfd_archive_filename (ibfd),
2336 bfd_get_filename (obfd));
2337
2338 flags_compatible = FALSE;
2339 }
2340
2341 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2342 {
2343 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2344 _bfd_error_handler (_("\
2345 ERROR: %s uses Maverick instructions, whereas %s does not"),
2346 bfd_archive_filename (ibfd),
2347 bfd_get_filename (obfd));
2348 else
2349 _bfd_error_handler (_("\
2350 ERROR: %s uses Maverick instructions, whereas %s does not"),
2351 bfd_archive_filename (ibfd),
2352 bfd_get_filename (obfd));
2353
2354 flags_compatible = FALSE;
2355 }
2356
2357 #ifdef EF_ARM_SOFT_FLOAT
2358 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2359 {
2360 /* We can allow interworking between code that is VFP format
2361 layout, and uses either soft float or integer regs for
2362 passing floating point arguments and results. We already
2363 know that the APCS_FLOAT flags match; similarly for VFP
2364 flags. */
2365 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2366 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2367 {
2368 if (in_flags & EF_ARM_SOFT_FLOAT)
2369 _bfd_error_handler (_("\
2370 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2371 bfd_archive_filename (ibfd),
2372 bfd_get_filename (obfd));
2373 else
2374 _bfd_error_handler (_("\
2375 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2376 bfd_archive_filename (ibfd),
2377 bfd_get_filename (obfd));
2378
2379 flags_compatible = FALSE;
2380 }
2381 }
2382 #endif
2383
2384 /* Interworking mismatch is only a warning. */
2385 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2386 {
2387 if (in_flags & EF_ARM_INTERWORK)
2388 {
2389 _bfd_error_handler (_("\
2390 Warning: %s supports interworking, whereas %s does not"),
2391 bfd_archive_filename (ibfd),
2392 bfd_get_filename (obfd));
2393 }
2394 else
2395 {
2396 _bfd_error_handler (_("\
2397 Warning: %s does not support interworking, whereas %s does"),
2398 bfd_archive_filename (ibfd),
2399 bfd_get_filename (obfd));
2400 }
2401 }
2402 }
2403
2404 return flags_compatible;
2405 }
2406
2407 /* Display the flags field. */
2408
2409 static bfd_boolean
2410 elf32_arm_print_private_bfd_data (abfd, ptr)
2411 bfd *abfd;
2412 PTR ptr;
2413 {
2414 FILE * file = (FILE *) ptr;
2415 unsigned long flags;
2416
2417 BFD_ASSERT (abfd != NULL && ptr != NULL);
2418
2419 /* Print normal ELF private data. */
2420 _bfd_elf_print_private_bfd_data (abfd, ptr);
2421
2422 flags = elf_elfheader (abfd)->e_flags;
2423 /* Ignore init flag - it may not be set, despite the flags field
2424 containing valid data. */
2425
2426 /* xgettext:c-format */
2427 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2428
2429 switch (EF_ARM_EABI_VERSION (flags))
2430 {
2431 case EF_ARM_EABI_UNKNOWN:
2432 /* The following flag bits are GNU extenstions and not part of the
2433 official ARM ELF extended ABI. Hence they are only decoded if
2434 the EABI version is not set. */
2435 if (flags & EF_ARM_INTERWORK)
2436 fprintf (file, _(" [interworking enabled]"));
2437
2438 if (flags & EF_ARM_APCS_26)
2439 fprintf (file, " [APCS-26]");
2440 else
2441 fprintf (file, " [APCS-32]");
2442
2443 if (flags & EF_ARM_VFP_FLOAT)
2444 fprintf (file, _(" [VFP float format]"));
2445 else if (flags & EF_ARM_MAVERICK_FLOAT)
2446 fprintf (file, _(" [Maverick float format]"));
2447 else
2448 fprintf (file, _(" [FPA float format]"));
2449
2450 if (flags & EF_ARM_APCS_FLOAT)
2451 fprintf (file, _(" [floats passed in float registers]"));
2452
2453 if (flags & EF_ARM_PIC)
2454 fprintf (file, _(" [position independent]"));
2455
2456 if (flags & EF_ARM_NEW_ABI)
2457 fprintf (file, _(" [new ABI]"));
2458
2459 if (flags & EF_ARM_OLD_ABI)
2460 fprintf (file, _(" [old ABI]"));
2461
2462 if (flags & EF_ARM_SOFT_FLOAT)
2463 fprintf (file, _(" [software FP]"));
2464
2465 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2466 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2467 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2468 | EF_ARM_MAVERICK_FLOAT);
2469 break;
2470
2471 case EF_ARM_EABI_VER1:
2472 fprintf (file, _(" [Version1 EABI]"));
2473
2474 if (flags & EF_ARM_SYMSARESORTED)
2475 fprintf (file, _(" [sorted symbol table]"));
2476 else
2477 fprintf (file, _(" [unsorted symbol table]"));
2478
2479 flags &= ~ EF_ARM_SYMSARESORTED;
2480 break;
2481
2482 case EF_ARM_EABI_VER2:
2483 fprintf (file, _(" [Version2 EABI]"));
2484
2485 if (flags & EF_ARM_SYMSARESORTED)
2486 fprintf (file, _(" [sorted symbol table]"));
2487 else
2488 fprintf (file, _(" [unsorted symbol table]"));
2489
2490 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2491 fprintf (file, _(" [dynamic symbols use segment index]"));
2492
2493 if (flags & EF_ARM_MAPSYMSFIRST)
2494 fprintf (file, _(" [mapping symbols precede others]"));
2495
2496 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2497 | EF_ARM_MAPSYMSFIRST);
2498 break;
2499
2500 default:
2501 fprintf (file, _(" <EABI version unrecognised>"));
2502 break;
2503 }
2504
2505 flags &= ~ EF_ARM_EABIMASK;
2506
2507 if (flags & EF_ARM_RELEXEC)
2508 fprintf (file, _(" [relocatable executable]"));
2509
2510 if (flags & EF_ARM_HASENTRY)
2511 fprintf (file, _(" [has entry point]"));
2512
2513 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2514
2515 if (flags)
2516 fprintf (file, _("<Unrecognised flag bits set>"));
2517
2518 fputc ('\n', file);
2519
2520 return TRUE;
2521 }
2522
2523 static int
2524 elf32_arm_get_symbol_type (elf_sym, type)
2525 Elf_Internal_Sym * elf_sym;
2526 int type;
2527 {
2528 switch (ELF_ST_TYPE (elf_sym->st_info))
2529 {
2530 case STT_ARM_TFUNC:
2531 return ELF_ST_TYPE (elf_sym->st_info);
2532
2533 case STT_ARM_16BIT:
2534 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2535 This allows us to distinguish between data used by Thumb instructions
2536 and non-data (which is probably code) inside Thumb regions of an
2537 executable. */
2538 if (type != STT_OBJECT)
2539 return ELF_ST_TYPE (elf_sym->st_info);
2540 break;
2541
2542 default:
2543 break;
2544 }
2545
2546 return type;
2547 }
2548
2549 static asection *
2550 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2551 asection *sec;
2552 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2553 Elf_Internal_Rela *rel;
2554 struct elf_link_hash_entry *h;
2555 Elf_Internal_Sym *sym;
2556 {
2557 if (h != NULL)
2558 {
2559 switch (ELF32_R_TYPE (rel->r_info))
2560 {
2561 case R_ARM_GNU_VTINHERIT:
2562 case R_ARM_GNU_VTENTRY:
2563 break;
2564
2565 default:
2566 switch (h->root.type)
2567 {
2568 case bfd_link_hash_defined:
2569 case bfd_link_hash_defweak:
2570 return h->root.u.def.section;
2571
2572 case bfd_link_hash_common:
2573 return h->root.u.c.p->section;
2574
2575 default:
2576 break;
2577 }
2578 }
2579 }
2580 else
2581 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2582
2583 return NULL;
2584 }
2585
2586 /* Update the got entry reference counts for the section being removed. */
2587
2588 static bfd_boolean
2589 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2590 bfd *abfd ATTRIBUTE_UNUSED;
2591 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2592 asection *sec ATTRIBUTE_UNUSED;
2593 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2594 {
2595 /* We don't support garbage collection of GOT and PLT relocs yet. */
2596 return TRUE;
2597 }
2598
2599 /* Look through the relocs for a section during the first phase. */
2600
2601 static bfd_boolean
2602 elf32_arm_check_relocs (abfd, info, sec, relocs)
2603 bfd *abfd;
2604 struct bfd_link_info *info;
2605 asection *sec;
2606 const Elf_Internal_Rela *relocs;
2607 {
2608 Elf_Internal_Shdr *symtab_hdr;
2609 struct elf_link_hash_entry **sym_hashes;
2610 struct elf_link_hash_entry **sym_hashes_end;
2611 const Elf_Internal_Rela *rel;
2612 const Elf_Internal_Rela *rel_end;
2613 bfd *dynobj;
2614 asection *sgot, *srelgot, *sreloc;
2615 bfd_vma *local_got_offsets;
2616
2617 if (info->relocateable)
2618 return TRUE;
2619
2620 sgot = srelgot = sreloc = NULL;
2621
2622 dynobj = elf_hash_table (info)->dynobj;
2623 local_got_offsets = elf_local_got_offsets (abfd);
2624
2625 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2626 sym_hashes = elf_sym_hashes (abfd);
2627 sym_hashes_end = sym_hashes
2628 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2629
2630 if (!elf_bad_symtab (abfd))
2631 sym_hashes_end -= symtab_hdr->sh_info;
2632
2633 rel_end = relocs + sec->reloc_count;
2634 for (rel = relocs; rel < rel_end; rel++)
2635 {
2636 struct elf_link_hash_entry *h;
2637 unsigned long r_symndx;
2638
2639 r_symndx = ELF32_R_SYM (rel->r_info);
2640 if (r_symndx < symtab_hdr->sh_info)
2641 h = NULL;
2642 else
2643 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2644
2645 /* Some relocs require a global offset table. */
2646 if (dynobj == NULL)
2647 {
2648 switch (ELF32_R_TYPE (rel->r_info))
2649 {
2650 case R_ARM_GOT32:
2651 case R_ARM_GOTOFF:
2652 case R_ARM_GOTPC:
2653 elf_hash_table (info)->dynobj = dynobj = abfd;
2654 if (! _bfd_elf_create_got_section (dynobj, info))
2655 return FALSE;
2656 break;
2657
2658 default:
2659 break;
2660 }
2661 }
2662
2663 switch (ELF32_R_TYPE (rel->r_info))
2664 {
2665 case R_ARM_GOT32:
2666 /* This symbol requires a global offset table entry. */
2667 if (sgot == NULL)
2668 {
2669 sgot = bfd_get_section_by_name (dynobj, ".got");
2670 BFD_ASSERT (sgot != NULL);
2671 }
2672
2673 /* Get the got relocation section if necessary. */
2674 if (srelgot == NULL
2675 && (h != NULL || info->shared))
2676 {
2677 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2678
2679 /* If no got relocation section, make one and initialize. */
2680 if (srelgot == NULL)
2681 {
2682 srelgot = bfd_make_section (dynobj, ".rel.got");
2683 if (srelgot == NULL
2684 || ! bfd_set_section_flags (dynobj, srelgot,
2685 (SEC_ALLOC
2686 | SEC_LOAD
2687 | SEC_HAS_CONTENTS
2688 | SEC_IN_MEMORY
2689 | SEC_LINKER_CREATED
2690 | SEC_READONLY))
2691 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2692 return FALSE;
2693 }
2694 }
2695
2696 if (h != NULL)
2697 {
2698 if (h->got.offset != (bfd_vma) -1)
2699 /* We have already allocated space in the .got. */
2700 break;
2701
2702 h->got.offset = sgot->_raw_size;
2703
2704 /* Make sure this symbol is output as a dynamic symbol. */
2705 if (h->dynindx == -1)
2706 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2707 return FALSE;
2708
2709 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2710 }
2711 else
2712 {
2713 /* This is a global offset table entry for a local
2714 symbol. */
2715 if (local_got_offsets == NULL)
2716 {
2717 bfd_size_type size;
2718 unsigned int i;
2719
2720 size = symtab_hdr->sh_info;
2721 size *= sizeof (bfd_vma);
2722 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2723 if (local_got_offsets == NULL)
2724 return FALSE;
2725 elf_local_got_offsets (abfd) = local_got_offsets;
2726 for (i = 0; i < symtab_hdr->sh_info; i++)
2727 local_got_offsets[i] = (bfd_vma) -1;
2728 }
2729
2730 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2731 /* We have already allocated space in the .got. */
2732 break;
2733
2734 local_got_offsets[r_symndx] = sgot->_raw_size;
2735
2736 if (info->shared)
2737 /* If we are generating a shared object, we need to
2738 output a R_ARM_RELATIVE reloc so that the dynamic
2739 linker can adjust this GOT entry. */
2740 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2741 }
2742
2743 sgot->_raw_size += 4;
2744 break;
2745
2746 case R_ARM_PLT32:
2747 /* This symbol requires a procedure linkage table entry. We
2748 actually build the entry in adjust_dynamic_symbol,
2749 because this might be a case of linking PIC code which is
2750 never referenced by a dynamic object, in which case we
2751 don't need to generate a procedure linkage table entry
2752 after all. */
2753
2754 /* If this is a local symbol, we resolve it directly without
2755 creating a procedure linkage table entry. */
2756 if (h == NULL)
2757 continue;
2758
2759 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2760 break;
2761
2762 case R_ARM_ABS32:
2763 case R_ARM_REL32:
2764 case R_ARM_PC24:
2765 /* If we are creating a shared library, and this is a reloc
2766 against a global symbol, or a non PC relative reloc
2767 against a local symbol, then we need to copy the reloc
2768 into the shared library. However, if we are linking with
2769 -Bsymbolic, we do not need to copy a reloc against a
2770 global symbol which is defined in an object we are
2771 including in the link (i.e., DEF_REGULAR is set). At
2772 this point we have not seen all the input files, so it is
2773 possible that DEF_REGULAR is not set now but will be set
2774 later (it is never cleared). We account for that
2775 possibility below by storing information in the
2776 pcrel_relocs_copied field of the hash table entry. */
2777 if (info->shared
2778 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2779 || (h != NULL
2780 && (! info->symbolic
2781 || (h->elf_link_hash_flags
2782 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2783 {
2784 /* When creating a shared object, we must copy these
2785 reloc types into the output file. We create a reloc
2786 section in dynobj and make room for this reloc. */
2787 if (sreloc == NULL)
2788 {
2789 const char * name;
2790
2791 name = (bfd_elf_string_from_elf_section
2792 (abfd,
2793 elf_elfheader (abfd)->e_shstrndx,
2794 elf_section_data (sec)->rel_hdr.sh_name));
2795 if (name == NULL)
2796 return FALSE;
2797
2798 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2799 && strcmp (bfd_get_section_name (abfd, sec),
2800 name + 4) == 0);
2801
2802 sreloc = bfd_get_section_by_name (dynobj, name);
2803 if (sreloc == NULL)
2804 {
2805 flagword flags;
2806
2807 sreloc = bfd_make_section (dynobj, name);
2808 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2809 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2810 if ((sec->flags & SEC_ALLOC) != 0)
2811 flags |= SEC_ALLOC | SEC_LOAD;
2812 if (sreloc == NULL
2813 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2814 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2815 return FALSE;
2816 }
2817 if (sec->flags & SEC_READONLY)
2818 info->flags |= DF_TEXTREL;
2819 }
2820
2821 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2822 /* If we are linking with -Bsymbolic, and this is a
2823 global symbol, we count the number of PC relative
2824 relocations we have entered for this symbol, so that
2825 we can discard them again if the symbol is later
2826 defined by a regular object. Note that this function
2827 is only called if we are using an elf_i386 linker
2828 hash table, which means that h is really a pointer to
2829 an elf_i386_link_hash_entry. */
2830 if (h != NULL && info->symbolic
2831 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2832 {
2833 struct elf32_arm_link_hash_entry * eh;
2834 struct elf32_arm_pcrel_relocs_copied * p;
2835
2836 eh = (struct elf32_arm_link_hash_entry *) h;
2837
2838 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2839 if (p->section == sreloc)
2840 break;
2841
2842 if (p == NULL)
2843 {
2844 p = ((struct elf32_arm_pcrel_relocs_copied *)
2845 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2846 if (p == NULL)
2847 return FALSE;
2848 p->next = eh->pcrel_relocs_copied;
2849 eh->pcrel_relocs_copied = p;
2850 p->section = sreloc;
2851 p->count = 0;
2852 }
2853
2854 ++p->count;
2855 }
2856 }
2857 break;
2858
2859 /* This relocation describes the C++ object vtable hierarchy.
2860 Reconstruct it for later use during GC. */
2861 case R_ARM_GNU_VTINHERIT:
2862 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2863 return FALSE;
2864 break;
2865
2866 /* This relocation describes which C++ vtable entries are actually
2867 used. Record for later use during GC. */
2868 case R_ARM_GNU_VTENTRY:
2869 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2870 return FALSE;
2871 break;
2872 }
2873 }
2874
2875 return TRUE;
2876 }
2877
2878 /* Find the nearest line to a particular section and offset, for error
2879 reporting. This code is a duplicate of the code in elf.c, except
2880 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2881
2882 static bfd_boolean
2883 elf32_arm_find_nearest_line
2884 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2885 bfd *abfd;
2886 asection *section;
2887 asymbol **symbols;
2888 bfd_vma offset;
2889 const char **filename_ptr;
2890 const char **functionname_ptr;
2891 unsigned int *line_ptr;
2892 {
2893 bfd_boolean found;
2894 const char *filename;
2895 asymbol *func;
2896 bfd_vma low_func;
2897 asymbol **p;
2898
2899 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2900 filename_ptr, functionname_ptr,
2901 line_ptr, 0,
2902 &elf_tdata (abfd)->dwarf2_find_line_info))
2903 return TRUE;
2904
2905 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2906 &found, filename_ptr,
2907 functionname_ptr, line_ptr,
2908 &elf_tdata (abfd)->line_info))
2909 return FALSE;
2910
2911 if (found)
2912 return TRUE;
2913
2914 if (symbols == NULL)
2915 return FALSE;
2916
2917 filename = NULL;
2918 func = NULL;
2919 low_func = 0;
2920
2921 for (p = symbols; *p != NULL; p++)
2922 {
2923 elf_symbol_type *q;
2924
2925 q = (elf_symbol_type *) *p;
2926
2927 if (bfd_get_section (&q->symbol) != section)
2928 continue;
2929
2930 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2931 {
2932 default:
2933 break;
2934 case STT_FILE:
2935 filename = bfd_asymbol_name (&q->symbol);
2936 break;
2937 case STT_NOTYPE:
2938 case STT_FUNC:
2939 case STT_ARM_TFUNC:
2940 if (q->symbol.section == section
2941 && q->symbol.value >= low_func
2942 && q->symbol.value <= offset)
2943 {
2944 func = (asymbol *) q;
2945 low_func = q->symbol.value;
2946 }
2947 break;
2948 }
2949 }
2950
2951 if (func == NULL)
2952 return FALSE;
2953
2954 *filename_ptr = filename;
2955 *functionname_ptr = bfd_asymbol_name (func);
2956 *line_ptr = 0;
2957
2958 return TRUE;
2959 }
2960
2961 /* Adjust a symbol defined by a dynamic object and referenced by a
2962 regular object. The current definition is in some section of the
2963 dynamic object, but we're not including those sections. We have to
2964 change the definition to something the rest of the link can
2965 understand. */
2966
2967 static bfd_boolean
2968 elf32_arm_adjust_dynamic_symbol (info, h)
2969 struct bfd_link_info * info;
2970 struct elf_link_hash_entry * h;
2971 {
2972 bfd * dynobj;
2973 asection * s;
2974 unsigned int power_of_two;
2975
2976 dynobj = elf_hash_table (info)->dynobj;
2977
2978 /* Make sure we know what is going on here. */
2979 BFD_ASSERT (dynobj != NULL
2980 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2981 || h->weakdef != NULL
2982 || ((h->elf_link_hash_flags
2983 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2984 && (h->elf_link_hash_flags
2985 & ELF_LINK_HASH_REF_REGULAR) != 0
2986 && (h->elf_link_hash_flags
2987 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2988
2989 /* If this is a function, put it in the procedure linkage table. We
2990 will fill in the contents of the procedure linkage table later,
2991 when we know the address of the .got section. */
2992 if (h->type == STT_FUNC
2993 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2994 {
2995 /* If we link a program (not a DSO), we'll get rid of unnecessary
2996 PLT entries; we point to the actual symbols -- even for pic
2997 relocs, because a program built with -fpic should have the same
2998 result as one built without -fpic, specifically considering weak
2999 symbols.
3000 FIXME: m68k and i386 differ here, for unclear reasons. */
3001 if (! info->shared
3002 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
3003 {
3004 /* This case can occur if we saw a PLT32 reloc in an input
3005 file, but the symbol was not defined by a dynamic object.
3006 In such a case, we don't actually need to build a
3007 procedure linkage table, and we can just do a PC32 reloc
3008 instead. */
3009 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
3010 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3011 return TRUE;
3012 }
3013
3014 /* Make sure this symbol is output as a dynamic symbol. */
3015 if (h->dynindx == -1)
3016 {
3017 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3018 return FALSE;
3019 }
3020
3021 s = bfd_get_section_by_name (dynobj, ".plt");
3022 BFD_ASSERT (s != NULL);
3023
3024 /* If this is the first .plt entry, make room for the special
3025 first entry. */
3026 if (s->_raw_size == 0)
3027 s->_raw_size += PLT_ENTRY_SIZE;
3028
3029 /* If this symbol is not defined in a regular file, and we are
3030 not generating a shared library, then set the symbol to this
3031 location in the .plt. This is required to make function
3032 pointers compare as equal between the normal executable and
3033 the shared library. */
3034 if (! info->shared
3035 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3036 {
3037 h->root.u.def.section = s;
3038 h->root.u.def.value = s->_raw_size;
3039 }
3040
3041 h->plt.offset = s->_raw_size;
3042
3043 /* Make room for this entry. */
3044 s->_raw_size += PLT_ENTRY_SIZE;
3045
3046 /* We also need to make an entry in the .got.plt section, which
3047 will be placed in the .got section by the linker script. */
3048 s = bfd_get_section_by_name (dynobj, ".got.plt");
3049 BFD_ASSERT (s != NULL);
3050 s->_raw_size += 4;
3051
3052 /* We also need to make an entry in the .rel.plt section. */
3053
3054 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3055 BFD_ASSERT (s != NULL);
3056 s->_raw_size += sizeof (Elf32_External_Rel);
3057
3058 return TRUE;
3059 }
3060
3061 /* If this is a weak symbol, and there is a real definition, the
3062 processor independent code will have arranged for us to see the
3063 real definition first, and we can just use the same value. */
3064 if (h->weakdef != NULL)
3065 {
3066 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3067 || h->weakdef->root.type == bfd_link_hash_defweak);
3068 h->root.u.def.section = h->weakdef->root.u.def.section;
3069 h->root.u.def.value = h->weakdef->root.u.def.value;
3070 return TRUE;
3071 }
3072
3073 /* This is a reference to a symbol defined by a dynamic object which
3074 is not a function. */
3075
3076 /* If we are creating a shared library, we must presume that the
3077 only references to the symbol are via the global offset table.
3078 For such cases we need not do anything here; the relocations will
3079 be handled correctly by relocate_section. */
3080 if (info->shared)
3081 return TRUE;
3082
3083 /* We must allocate the symbol in our .dynbss section, which will
3084 become part of the .bss section of the executable. There will be
3085 an entry for this symbol in the .dynsym section. The dynamic
3086 object will contain position independent code, so all references
3087 from the dynamic object to this symbol will go through the global
3088 offset table. The dynamic linker will use the .dynsym entry to
3089 determine the address it must put in the global offset table, so
3090 both the dynamic object and the regular object will refer to the
3091 same memory location for the variable. */
3092 s = bfd_get_section_by_name (dynobj, ".dynbss");
3093 BFD_ASSERT (s != NULL);
3094
3095 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3096 copy the initial value out of the dynamic object and into the
3097 runtime process image. We need to remember the offset into the
3098 .rel.bss section we are going to use. */
3099 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3100 {
3101 asection *srel;
3102
3103 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3104 BFD_ASSERT (srel != NULL);
3105 srel->_raw_size += sizeof (Elf32_External_Rel);
3106 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3107 }
3108
3109 /* We need to figure out the alignment required for this symbol. I
3110 have no idea how ELF linkers handle this. */
3111 power_of_two = bfd_log2 (h->size);
3112 if (power_of_two > 3)
3113 power_of_two = 3;
3114
3115 /* Apply the required alignment. */
3116 s->_raw_size = BFD_ALIGN (s->_raw_size,
3117 (bfd_size_type) (1 << power_of_two));
3118 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3119 {
3120 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3121 return FALSE;
3122 }
3123
3124 /* Define the symbol as being at this point in the section. */
3125 h->root.u.def.section = s;
3126 h->root.u.def.value = s->_raw_size;
3127
3128 /* Increment the section size to make room for the symbol. */
3129 s->_raw_size += h->size;
3130
3131 return TRUE;
3132 }
3133
3134 /* Set the sizes of the dynamic sections. */
3135
3136 static bfd_boolean
3137 elf32_arm_size_dynamic_sections (output_bfd, info)
3138 bfd * output_bfd ATTRIBUTE_UNUSED;
3139 struct bfd_link_info * info;
3140 {
3141 bfd * dynobj;
3142 asection * s;
3143 bfd_boolean plt;
3144 bfd_boolean relocs;
3145
3146 dynobj = elf_hash_table (info)->dynobj;
3147 BFD_ASSERT (dynobj != NULL);
3148
3149 if (elf_hash_table (info)->dynamic_sections_created)
3150 {
3151 /* Set the contents of the .interp section to the interpreter. */
3152 if (! info->shared)
3153 {
3154 s = bfd_get_section_by_name (dynobj, ".interp");
3155 BFD_ASSERT (s != NULL);
3156 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3157 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3158 }
3159 }
3160 else
3161 {
3162 /* We may have created entries in the .rel.got section.
3163 However, if we are not creating the dynamic sections, we will
3164 not actually use these entries. Reset the size of .rel.got,
3165 which will cause it to get stripped from the output file
3166 below. */
3167 s = bfd_get_section_by_name (dynobj, ".rel.got");
3168 if (s != NULL)
3169 s->_raw_size = 0;
3170 }
3171
3172 /* If this is a -Bsymbolic shared link, then we need to discard all
3173 PC relative relocs against symbols defined in a regular object.
3174 We allocated space for them in the check_relocs routine, but we
3175 will not fill them in in the relocate_section routine. */
3176 if (info->shared && info->symbolic)
3177 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3178 elf32_arm_discard_copies,
3179 (PTR) NULL);
3180
3181 /* The check_relocs and adjust_dynamic_symbol entry points have
3182 determined the sizes of the various dynamic sections. Allocate
3183 memory for them. */
3184 plt = FALSE;
3185 relocs = FALSE;
3186 for (s = dynobj->sections; s != NULL; s = s->next)
3187 {
3188 const char * name;
3189 bfd_boolean strip;
3190
3191 if ((s->flags & SEC_LINKER_CREATED) == 0)
3192 continue;
3193
3194 /* It's OK to base decisions on the section name, because none
3195 of the dynobj section names depend upon the input files. */
3196 name = bfd_get_section_name (dynobj, s);
3197
3198 strip = FALSE;
3199
3200 if (strcmp (name, ".plt") == 0)
3201 {
3202 if (s->_raw_size == 0)
3203 {
3204 /* Strip this section if we don't need it; see the
3205 comment below. */
3206 strip = TRUE;
3207 }
3208 else
3209 {
3210 /* Remember whether there is a PLT. */
3211 plt = TRUE;
3212 }
3213 }
3214 else if (strncmp (name, ".rel", 4) == 0)
3215 {
3216 if (s->_raw_size == 0)
3217 {
3218 /* If we don't need this section, strip it from the
3219 output file. This is mostly to handle .rel.bss and
3220 .rel.plt. We must create both sections in
3221 create_dynamic_sections, because they must be created
3222 before the linker maps input sections to output
3223 sections. The linker does that before
3224 adjust_dynamic_symbol is called, and it is that
3225 function which decides whether anything needs to go
3226 into these sections. */
3227 strip = TRUE;
3228 }
3229 else
3230 {
3231 /* Remember whether there are any reloc sections other
3232 than .rel.plt. */
3233 if (strcmp (name, ".rel.plt") != 0)
3234 relocs = TRUE;
3235
3236 /* We use the reloc_count field as a counter if we need
3237 to copy relocs into the output file. */
3238 s->reloc_count = 0;
3239 }
3240 }
3241 else if (strncmp (name, ".got", 4) != 0)
3242 {
3243 /* It's not one of our sections, so don't allocate space. */
3244 continue;
3245 }
3246
3247 if (strip)
3248 {
3249 _bfd_strip_section_from_output (info, s);
3250 continue;
3251 }
3252
3253 /* Allocate memory for the section contents. */
3254 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3255 if (s->contents == NULL && s->_raw_size != 0)
3256 return FALSE;
3257 }
3258
3259 if (elf_hash_table (info)->dynamic_sections_created)
3260 {
3261 /* Add some entries to the .dynamic section. We fill in the
3262 values later, in elf32_arm_finish_dynamic_sections, but we
3263 must add the entries now so that we get the correct size for
3264 the .dynamic section. The DT_DEBUG entry is filled in by the
3265 dynamic linker and used by the debugger. */
3266 #define add_dynamic_entry(TAG, VAL) \
3267 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3268
3269 if (!info->shared)
3270 {
3271 if (!add_dynamic_entry (DT_DEBUG, 0))
3272 return FALSE;
3273 }
3274
3275 if (plt)
3276 {
3277 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3278 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3279 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3280 || !add_dynamic_entry (DT_JMPREL, 0))
3281 return FALSE;
3282 }
3283
3284 if (relocs)
3285 {
3286 if ( !add_dynamic_entry (DT_REL, 0)
3287 || !add_dynamic_entry (DT_RELSZ, 0)
3288 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3289 return FALSE;
3290 }
3291
3292 if ((info->flags & DF_TEXTREL) != 0)
3293 {
3294 if (!add_dynamic_entry (DT_TEXTREL, 0))
3295 return FALSE;
3296 info->flags |= DF_TEXTREL;
3297 }
3298 }
3299 #undef add_synamic_entry
3300
3301 return TRUE;
3302 }
3303
3304 /* This function is called via elf32_arm_link_hash_traverse if we are
3305 creating a shared object with -Bsymbolic. It discards the space
3306 allocated to copy PC relative relocs against symbols which are
3307 defined in regular objects. We allocated space for them in the
3308 check_relocs routine, but we won't fill them in in the
3309 relocate_section routine. */
3310
3311 static bfd_boolean
3312 elf32_arm_discard_copies (h, ignore)
3313 struct elf32_arm_link_hash_entry * h;
3314 PTR ignore ATTRIBUTE_UNUSED;
3315 {
3316 struct elf32_arm_pcrel_relocs_copied * s;
3317
3318 if (h->root.root.type == bfd_link_hash_warning)
3319 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3320
3321 /* We only discard relocs for symbols defined in a regular object. */
3322 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3323 return TRUE;
3324
3325 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3326 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3327
3328 return TRUE;
3329 }
3330
3331 /* Finish up dynamic symbol handling. We set the contents of various
3332 dynamic sections here. */
3333
3334 static bfd_boolean
3335 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3336 bfd * output_bfd;
3337 struct bfd_link_info * info;
3338 struct elf_link_hash_entry * h;
3339 Elf_Internal_Sym * sym;
3340 {
3341 bfd * dynobj;
3342
3343 dynobj = elf_hash_table (info)->dynobj;
3344
3345 if (h->plt.offset != (bfd_vma) -1)
3346 {
3347 asection * splt;
3348 asection * sgot;
3349 asection * srel;
3350 bfd_vma plt_index;
3351 bfd_vma got_offset;
3352 Elf_Internal_Rela rel;
3353 bfd_byte *loc;
3354
3355 /* This symbol has an entry in the procedure linkage table. Set
3356 it up. */
3357
3358 BFD_ASSERT (h->dynindx != -1);
3359
3360 splt = bfd_get_section_by_name (dynobj, ".plt");
3361 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3362 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3363 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3364
3365 /* Get the index in the procedure linkage table which
3366 corresponds to this symbol. This is the index of this symbol
3367 in all the symbols for which we are making plt entries. The
3368 first entry in the procedure linkage table is reserved. */
3369 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3370
3371 /* Get the offset into the .got table of the entry that
3372 corresponds to this function. Each .got entry is 4 bytes.
3373 The first three are reserved. */
3374 got_offset = (plt_index + 3) * 4;
3375
3376 /* Fill in the entry in the procedure linkage table. */
3377 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3378 splt->contents + h->plt.offset + 0);
3379 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3380 splt->contents + h->plt.offset + 4);
3381 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3382 splt->contents + h->plt.offset + 8);
3383 bfd_put_32 (output_bfd,
3384 (sgot->output_section->vma
3385 + sgot->output_offset
3386 + got_offset
3387 - splt->output_section->vma
3388 - splt->output_offset
3389 - h->plt.offset - 12),
3390 splt->contents + h->plt.offset + 12);
3391
3392 /* Fill in the entry in the global offset table. */
3393 bfd_put_32 (output_bfd,
3394 (splt->output_section->vma
3395 + splt->output_offset),
3396 sgot->contents + got_offset);
3397
3398 /* Fill in the entry in the .rel.plt section. */
3399 rel.r_offset = (sgot->output_section->vma
3400 + sgot->output_offset
3401 + got_offset);
3402 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3403 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3404 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3405
3406 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3407 {
3408 /* Mark the symbol as undefined, rather than as defined in
3409 the .plt section. Leave the value alone. */
3410 sym->st_shndx = SHN_UNDEF;
3411 /* If the symbol is weak, we do need to clear the value.
3412 Otherwise, the PLT entry would provide a definition for
3413 the symbol even if the symbol wasn't defined anywhere,
3414 and so the symbol would never be NULL. */
3415 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3416 == 0)
3417 sym->st_value = 0;
3418 }
3419 }
3420
3421 if (h->got.offset != (bfd_vma) -1)
3422 {
3423 asection * sgot;
3424 asection * srel;
3425 Elf_Internal_Rela rel;
3426 bfd_byte *loc;
3427
3428 /* This symbol has an entry in the global offset table. Set it
3429 up. */
3430 sgot = bfd_get_section_by_name (dynobj, ".got");
3431 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3432 BFD_ASSERT (sgot != NULL && srel != NULL);
3433
3434 rel.r_offset = (sgot->output_section->vma
3435 + sgot->output_offset
3436 + (h->got.offset &~ (bfd_vma) 1));
3437
3438 /* If this is a -Bsymbolic link, and the symbol is defined
3439 locally, we just want to emit a RELATIVE reloc. The entry in
3440 the global offset table will already have been initialized in
3441 the relocate_section function. */
3442 if (info->shared
3443 && (info->symbolic || h->dynindx == -1)
3444 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3445 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3446 else
3447 {
3448 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3449 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3450 }
3451
3452 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3453 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3454 }
3455
3456 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3457 {
3458 asection * s;
3459 Elf_Internal_Rela rel;
3460 bfd_byte *loc;
3461
3462 /* This symbol needs a copy reloc. Set it up. */
3463 BFD_ASSERT (h->dynindx != -1
3464 && (h->root.type == bfd_link_hash_defined
3465 || h->root.type == bfd_link_hash_defweak));
3466
3467 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3468 ".rel.bss");
3469 BFD_ASSERT (s != NULL);
3470
3471 rel.r_offset = (h->root.u.def.value
3472 + h->root.u.def.section->output_section->vma
3473 + h->root.u.def.section->output_offset);
3474 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3475 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3476 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3477 }
3478
3479 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3480 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3481 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3482 sym->st_shndx = SHN_ABS;
3483
3484 return TRUE;
3485 }
3486
3487 /* Finish up the dynamic sections. */
3488
3489 static bfd_boolean
3490 elf32_arm_finish_dynamic_sections (output_bfd, info)
3491 bfd * output_bfd;
3492 struct bfd_link_info * info;
3493 {
3494 bfd * dynobj;
3495 asection * sgot;
3496 asection * sdyn;
3497
3498 dynobj = elf_hash_table (info)->dynobj;
3499
3500 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3501 BFD_ASSERT (sgot != NULL);
3502 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3503
3504 if (elf_hash_table (info)->dynamic_sections_created)
3505 {
3506 asection *splt;
3507 Elf32_External_Dyn *dyncon, *dynconend;
3508
3509 splt = bfd_get_section_by_name (dynobj, ".plt");
3510 BFD_ASSERT (splt != NULL && sdyn != NULL);
3511
3512 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3513 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3514
3515 for (; dyncon < dynconend; dyncon++)
3516 {
3517 Elf_Internal_Dyn dyn;
3518 const char * name;
3519 asection * s;
3520
3521 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3522
3523 switch (dyn.d_tag)
3524 {
3525 default:
3526 break;
3527
3528 case DT_PLTGOT:
3529 name = ".got";
3530 goto get_vma;
3531 case DT_JMPREL:
3532 name = ".rel.plt";
3533 get_vma:
3534 s = bfd_get_section_by_name (output_bfd, name);
3535 BFD_ASSERT (s != NULL);
3536 dyn.d_un.d_ptr = s->vma;
3537 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3538 break;
3539
3540 case DT_PLTRELSZ:
3541 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3542 BFD_ASSERT (s != NULL);
3543 if (s->_cooked_size != 0)
3544 dyn.d_un.d_val = s->_cooked_size;
3545 else
3546 dyn.d_un.d_val = s->_raw_size;
3547 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3548 break;
3549
3550 case DT_RELSZ:
3551 /* My reading of the SVR4 ABI indicates that the
3552 procedure linkage table relocs (DT_JMPREL) should be
3553 included in the overall relocs (DT_REL). This is
3554 what Solaris does. However, UnixWare can not handle
3555 that case. Therefore, we override the DT_RELSZ entry
3556 here to make it not include the JMPREL relocs. Since
3557 the linker script arranges for .rel.plt to follow all
3558 other relocation sections, we don't have to worry
3559 about changing the DT_REL entry. */
3560 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3561 if (s != NULL)
3562 {
3563 if (s->_cooked_size != 0)
3564 dyn.d_un.d_val -= s->_cooked_size;
3565 else
3566 dyn.d_un.d_val -= s->_raw_size;
3567 }
3568 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3569 break;
3570
3571 /* Set the bottom bit of DT_INIT/FINI if the
3572 corresponding function is Thumb. */
3573 case DT_INIT:
3574 name = info->init_function;
3575 goto get_sym;
3576 case DT_FINI:
3577 name = info->fini_function;
3578 get_sym:
3579 /* If it wasn't set by elf_bfd_final_link
3580 then there is nothing to ajdust. */
3581 if (dyn.d_un.d_val != 0)
3582 {
3583 struct elf_link_hash_entry * eh;
3584
3585 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3586 FALSE, FALSE, TRUE);
3587 if (eh != (struct elf_link_hash_entry *) NULL
3588 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3589 {
3590 dyn.d_un.d_val |= 1;
3591 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3592 }
3593 }
3594 break;
3595 }
3596 }
3597
3598 /* Fill in the first entry in the procedure linkage table. */
3599 if (splt->_raw_size > 0)
3600 {
3601 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3602 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3603 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3604 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3605 }
3606
3607 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3608 really seem like the right value. */
3609 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3610 }
3611
3612 /* Fill in the first three entries in the global offset table. */
3613 if (sgot->_raw_size > 0)
3614 {
3615 if (sdyn == NULL)
3616 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3617 else
3618 bfd_put_32 (output_bfd,
3619 sdyn->output_section->vma + sdyn->output_offset,
3620 sgot->contents);
3621 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3622 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3623 }
3624
3625 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3626
3627 return TRUE;
3628 }
3629
3630 static void
3631 elf32_arm_post_process_headers (abfd, link_info)
3632 bfd * abfd;
3633 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3634 {
3635 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3636
3637 i_ehdrp = elf_elfheader (abfd);
3638
3639 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3640 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3641 }
3642
3643 static enum elf_reloc_type_class
3644 elf32_arm_reloc_type_class (rela)
3645 const Elf_Internal_Rela *rela;
3646 {
3647 switch ((int) ELF32_R_TYPE (rela->r_info))
3648 {
3649 case R_ARM_RELATIVE:
3650 return reloc_class_relative;
3651 case R_ARM_JUMP_SLOT:
3652 return reloc_class_plt;
3653 case R_ARM_COPY:
3654 return reloc_class_copy;
3655 default:
3656 return reloc_class_normal;
3657 }
3658 }
3659
3660 #define ELF_ARCH bfd_arch_arm
3661 #define ELF_MACHINE_CODE EM_ARM
3662 #define ELF_MAXPAGESIZE 0x8000
3663
3664 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3665 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3666 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3667 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3668 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3669 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3670 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3671
3672 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3673 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3674 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3675 #define elf_backend_check_relocs elf32_arm_check_relocs
3676 #define elf_backend_relocate_section elf32_arm_relocate_section
3677 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3678 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3679 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3680 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3681 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3682 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3683 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3684 #define elf_backend_object_p elf32_arm_object_p
3685
3686 #define elf_backend_can_gc_sections 1
3687 #define elf_backend_plt_readonly 1
3688 #define elf_backend_want_got_plt 1
3689 #define elf_backend_want_plt_sym 0
3690 #if !USE_REL
3691 #define elf_backend_rela_normal 1
3692 #endif
3693
3694 #define elf_backend_got_header_size 12
3695 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3696
3697 #include "elf32-target.h"
3698
This page took 0.115097 seconds and 4 git commands to generate.