* elf-eh-frame.c (_bfd_elf_discard_section_eh_frame): Enable
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 typedef unsigned long int insn32;
21 typedef unsigned short int insn16;
22
23 static boolean elf32_arm_set_private_flags
24 PARAMS ((bfd *, flagword));
25 static boolean elf32_arm_copy_private_bfd_data
26 PARAMS ((bfd *, bfd *));
27 static boolean elf32_arm_merge_private_bfd_data
28 PARAMS ((bfd *, bfd *));
29 static boolean elf32_arm_print_private_bfd_data
30 PARAMS ((bfd *, PTR));
31 static int elf32_arm_get_symbol_type
32 PARAMS (( Elf_Internal_Sym *, int));
33 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
34 PARAMS ((bfd *));
35 static bfd_reloc_status_type elf32_arm_final_link_relocate
36 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
37 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
38 const char *, int, struct elf_link_hash_entry *));
39 static insn32 insert_thumb_branch
40 PARAMS ((insn32, int));
41 static struct elf_link_hash_entry *find_thumb_glue
42 PARAMS ((struct bfd_link_info *, const char *, bfd *));
43 static struct elf_link_hash_entry *find_arm_glue
44 PARAMS ((struct bfd_link_info *, const char *, bfd *));
45 static void record_arm_to_thumb_glue
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static void record_thumb_to_arm_glue
48 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #ifdef USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87
88 boolean bfd_elf32_arm_allocate_interworking_sections
89 PARAMS ((struct bfd_link_info *));
90 boolean bfd_elf32_arm_get_bfd_for_interworking
91 PARAMS ((bfd *, struct bfd_link_info *));
92 boolean bfd_elf32_arm_process_before_allocation
93 PARAMS ((bfd *, struct bfd_link_info *, int));
94 static enum elf_reloc_type_class elf32_arm_reloc_type_class
95 PARAMS ((const Elf_Internal_Rela *));
96
97 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
98
99 /* The linker script knows the section names for placement.
100 The entry_names are used to do simple name mangling on the stubs.
101 Given a function name, and its type, the stub can be found. The
102 name can be changed. The only requirement is the %s be present. */
103 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
104 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
105
106 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
107 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
108
109 /* The name of the dynamic interpreter. This is put in the .interp
110 section. */
111 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
112
113 /* The size in bytes of an entry in the procedure linkage table. */
114 #define PLT_ENTRY_SIZE 16
115
116 /* The first entry in a procedure linkage table looks like
117 this. It is set up so that any shared library function that is
118 called before the relocation has been set up calls the dynamic
119 linker first. */
120 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
121 {
122 0xe52de004, /* str lr, [sp, #-4]! */
123 0xe59fe010, /* ldr lr, [pc, #16] */
124 0xe08fe00e, /* add lr, pc, lr */
125 0xe5bef008 /* ldr pc, [lr, #8]! */
126 };
127
128 /* Subsequent entries in a procedure linkage table look like
129 this. */
130 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
131 {
132 0xe59fc004, /* ldr ip, [pc, #4] */
133 0xe08fc00c, /* add ip, pc, ip */
134 0xe59cf000, /* ldr pc, [ip] */
135 0x00000000 /* offset to symbol in got */
136 };
137
138 /* The ARM linker needs to keep track of the number of relocs that it
139 decides to copy in check_relocs for each symbol. This is so that
140 it can discard PC relative relocs if it doesn't need them when
141 linking with -Bsymbolic. We store the information in a field
142 extending the regular ELF linker hash table. */
143
144 /* This structure keeps track of the number of PC relative relocs we
145 have copied for a given symbol. */
146 struct elf32_arm_pcrel_relocs_copied
147 {
148 /* Next section. */
149 struct elf32_arm_pcrel_relocs_copied * next;
150 /* A section in dynobj. */
151 asection * section;
152 /* Number of relocs copied in this section. */
153 bfd_size_type count;
154 };
155
156 /* Arm ELF linker hash entry. */
157 struct elf32_arm_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160
161 /* Number of PC relative relocs copied for this symbol. */
162 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
163 };
164
165 /* Declare this now that the above structures are defined. */
166 static boolean elf32_arm_discard_copies
167 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
168
169 /* Traverse an arm ELF linker hash table. */
170 #define elf32_arm_link_hash_traverse(table, func, info) \
171 (elf_link_hash_traverse \
172 (&(table)->root, \
173 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
174 (info)))
175
176 /* Get the ARM elf linker hash table from a link_info structure. */
177 #define elf32_arm_hash_table(info) \
178 ((struct elf32_arm_link_hash_table *) ((info)->hash))
179
180 /* ARM ELF linker hash table. */
181 struct elf32_arm_link_hash_table
182 {
183 /* The main hash table. */
184 struct elf_link_hash_table root;
185
186 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
187 bfd_size_type thumb_glue_size;
188
189 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
190 bfd_size_type arm_glue_size;
191
192 /* An arbitary input BFD chosen to hold the glue sections. */
193 bfd * bfd_of_glue_owner;
194
195 /* A boolean indicating whether knowledge of the ARM's pipeline
196 length should be applied by the linker. */
197 int no_pipeline_knowledge;
198 };
199
200 /* Create an entry in an ARM ELF linker hash table. */
201
202 static struct bfd_hash_entry *
203 elf32_arm_link_hash_newfunc (entry, table, string)
204 struct bfd_hash_entry * entry;
205 struct bfd_hash_table * table;
206 const char * string;
207 {
208 struct elf32_arm_link_hash_entry * ret =
209 (struct elf32_arm_link_hash_entry *) entry;
210
211 /* Allocate the structure if it has not already been allocated by a
212 subclass. */
213 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
214 ret = ((struct elf32_arm_link_hash_entry *)
215 bfd_hash_allocate (table,
216 sizeof (struct elf32_arm_link_hash_entry)));
217 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
218 return (struct bfd_hash_entry *) ret;
219
220 /* Call the allocation method of the superclass. */
221 ret = ((struct elf32_arm_link_hash_entry *)
222 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
223 table, string));
224 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
225 ret->pcrel_relocs_copied = NULL;
226
227 return (struct bfd_hash_entry *) ret;
228 }
229
230 /* Create an ARM elf linker hash table. */
231
232 static struct bfd_link_hash_table *
233 elf32_arm_link_hash_table_create (abfd)
234 bfd *abfd;
235 {
236 struct elf32_arm_link_hash_table *ret;
237 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
238
239 ret = (struct elf32_arm_link_hash_table *) bfd_alloc (abfd, amt);
240 if (ret == (struct elf32_arm_link_hash_table *) NULL)
241 return NULL;
242
243 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
244 elf32_arm_link_hash_newfunc))
245 {
246 bfd_release (abfd, ret);
247 return NULL;
248 }
249
250 ret->thumb_glue_size = 0;
251 ret->arm_glue_size = 0;
252 ret->bfd_of_glue_owner = NULL;
253 ret->no_pipeline_knowledge = 0;
254
255 return &ret->root.root;
256 }
257
258 /* Locate the Thumb encoded calling stub for NAME. */
259
260 static struct elf_link_hash_entry *
261 find_thumb_glue (link_info, name, input_bfd)
262 struct bfd_link_info *link_info;
263 const char *name;
264 bfd *input_bfd;
265 {
266 char *tmp_name;
267 struct elf_link_hash_entry *hash;
268 struct elf32_arm_link_hash_table *hash_table;
269
270 /* We need a pointer to the armelf specific hash table. */
271 hash_table = elf32_arm_hash_table (link_info);
272
273 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
274 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
275
276 BFD_ASSERT (tmp_name);
277
278 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
279
280 hash = elf_link_hash_lookup
281 (&(hash_table)->root, tmp_name, false, false, true);
282
283 if (hash == NULL)
284 /* xgettext:c-format */
285 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
286 bfd_archive_filename (input_bfd), tmp_name, name);
287
288 free (tmp_name);
289
290 return hash;
291 }
292
293 /* Locate the ARM encoded calling stub for NAME. */
294
295 static struct elf_link_hash_entry *
296 find_arm_glue (link_info, name, input_bfd)
297 struct bfd_link_info *link_info;
298 const char *name;
299 bfd *input_bfd;
300 {
301 char *tmp_name;
302 struct elf_link_hash_entry *myh;
303 struct elf32_arm_link_hash_table *hash_table;
304
305 /* We need a pointer to the elfarm specific hash table. */
306 hash_table = elf32_arm_hash_table (link_info);
307
308 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
309 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
310
311 BFD_ASSERT (tmp_name);
312
313 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
314
315 myh = elf_link_hash_lookup
316 (&(hash_table)->root, tmp_name, false, false, true);
317
318 if (myh == NULL)
319 /* xgettext:c-format */
320 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
321 bfd_archive_filename (input_bfd), tmp_name, name);
322
323 free (tmp_name);
324
325 return myh;
326 }
327
328 /* ARM->Thumb glue:
329
330 .arm
331 __func_from_arm:
332 ldr r12, __func_addr
333 bx r12
334 __func_addr:
335 .word func @ behave as if you saw a ARM_32 reloc. */
336
337 #define ARM2THUMB_GLUE_SIZE 12
338 static const insn32 a2t1_ldr_insn = 0xe59fc000;
339 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
340 static const insn32 a2t3_func_addr_insn = 0x00000001;
341
342 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
343
344 .thumb .thumb
345 .align 2 .align 2
346 __func_from_thumb: __func_from_thumb:
347 bx pc push {r6, lr}
348 nop ldr r6, __func_addr
349 .arm mov lr, pc
350 __func_change_to_arm: bx r6
351 b func .arm
352 __func_back_to_thumb:
353 ldmia r13! {r6, lr}
354 bx lr
355 __func_addr:
356 .word func */
357
358 #define THUMB2ARM_GLUE_SIZE 8
359 static const insn16 t2a1_bx_pc_insn = 0x4778;
360 static const insn16 t2a2_noop_insn = 0x46c0;
361 static const insn32 t2a3_b_insn = 0xea000000;
362
363 static const insn16 t2a1_push_insn = 0xb540;
364 static const insn16 t2a2_ldr_insn = 0x4e03;
365 static const insn16 t2a3_mov_insn = 0x46fe;
366 static const insn16 t2a4_bx_insn = 0x4730;
367 static const insn32 t2a5_pop_insn = 0xe8bd4040;
368 static const insn32 t2a6_bx_insn = 0xe12fff1e;
369
370 boolean
371 bfd_elf32_arm_allocate_interworking_sections (info)
372 struct bfd_link_info * info;
373 {
374 asection * s;
375 bfd_byte * foo;
376 struct elf32_arm_link_hash_table * globals;
377
378 globals = elf32_arm_hash_table (info);
379
380 BFD_ASSERT (globals != NULL);
381
382 if (globals->arm_glue_size != 0)
383 {
384 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
385
386 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
387 ARM2THUMB_GLUE_SECTION_NAME);
388
389 BFD_ASSERT (s != NULL);
390
391 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
392 globals->arm_glue_size);
393
394 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
395 s->contents = foo;
396 }
397
398 if (globals->thumb_glue_size != 0)
399 {
400 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
401
402 s = bfd_get_section_by_name
403 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
404
405 BFD_ASSERT (s != NULL);
406
407 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
408 globals->thumb_glue_size);
409
410 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
411 s->contents = foo;
412 }
413
414 return true;
415 }
416
417 static void
418 record_arm_to_thumb_glue (link_info, h)
419 struct bfd_link_info * link_info;
420 struct elf_link_hash_entry * h;
421 {
422 const char * name = h->root.root.string;
423 asection * s;
424 char * tmp_name;
425 struct elf_link_hash_entry * myh;
426 struct elf32_arm_link_hash_table * globals;
427 bfd_vma val;
428
429 globals = elf32_arm_hash_table (link_info);
430
431 BFD_ASSERT (globals != NULL);
432 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
433
434 s = bfd_get_section_by_name
435 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
436
437 BFD_ASSERT (s != NULL);
438
439 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
440 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
441
442 BFD_ASSERT (tmp_name);
443
444 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
445
446 myh = elf_link_hash_lookup
447 (&(globals)->root, tmp_name, false, false, true);
448
449 if (myh != NULL)
450 {
451 /* We've already seen this guy. */
452 free (tmp_name);
453 return;
454 }
455
456 /* The only trick here is using hash_table->arm_glue_size as the value. Even
457 though the section isn't allocated yet, this is where we will be putting
458 it. */
459 val = globals->arm_glue_size + 1;
460 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
461 tmp_name, BSF_GLOBAL, s, val,
462 NULL, true, false,
463 (struct bfd_link_hash_entry **) &myh);
464
465 free (tmp_name);
466
467 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
468
469 return;
470 }
471
472 static void
473 record_thumb_to_arm_glue (link_info, h)
474 struct bfd_link_info *link_info;
475 struct elf_link_hash_entry *h;
476 {
477 const char *name = h->root.root.string;
478 asection *s;
479 char *tmp_name;
480 struct elf_link_hash_entry *myh;
481 struct elf32_arm_link_hash_table *hash_table;
482 char bind;
483 bfd_vma val;
484
485 hash_table = elf32_arm_hash_table (link_info);
486
487 BFD_ASSERT (hash_table != NULL);
488 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
489
490 s = bfd_get_section_by_name
491 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
492
493 BFD_ASSERT (s != NULL);
494
495 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
496 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
497
498 BFD_ASSERT (tmp_name);
499
500 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
501
502 myh = elf_link_hash_lookup
503 (&(hash_table)->root, tmp_name, false, false, true);
504
505 if (myh != NULL)
506 {
507 /* We've already seen this guy. */
508 free (tmp_name);
509 return;
510 }
511
512 val = hash_table->thumb_glue_size + 1;
513 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
514 tmp_name, BSF_GLOBAL, s, val,
515 NULL, true, false,
516 (struct bfd_link_hash_entry **) &myh);
517
518 /* If we mark it 'Thumb', the disassembler will do a better job. */
519 bind = ELF_ST_BIND (myh->type);
520 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
521
522 free (tmp_name);
523
524 #define CHANGE_TO_ARM "__%s_change_to_arm"
525 #define BACK_FROM_ARM "__%s_back_from_arm"
526
527 /* Allocate another symbol to mark where we switch to Arm mode. */
528 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
529 + strlen (CHANGE_TO_ARM) + 1);
530
531 BFD_ASSERT (tmp_name);
532
533 sprintf (tmp_name, CHANGE_TO_ARM, name);
534
535 myh = NULL;
536
537 val = hash_table->thumb_glue_size + 4,
538 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
539 tmp_name, BSF_LOCAL, s, val,
540 NULL, true, false,
541 (struct bfd_link_hash_entry **) &myh);
542
543 free (tmp_name);
544
545 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
546
547 return;
548 }
549
550 /* Select a BFD to be used to hold the sections used by the glue code.
551 This function is called from the linker scripts in ld/emultempl/
552 {armelf/pe}.em */
553
554 boolean
555 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
556 bfd *abfd;
557 struct bfd_link_info *info;
558 {
559 struct elf32_arm_link_hash_table *globals;
560 flagword flags;
561 asection *sec;
562
563 /* If we are only performing a partial link do not bother
564 getting a bfd to hold the glue. */
565 if (info->relocateable)
566 return true;
567
568 globals = elf32_arm_hash_table (info);
569
570 BFD_ASSERT (globals != NULL);
571
572 if (globals->bfd_of_glue_owner != NULL)
573 return true;
574
575 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
576
577 if (sec == NULL)
578 {
579 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
580 will prevent elf_link_input_bfd() from processing the contents
581 of this section. */
582 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
583
584 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
585
586 if (sec == NULL
587 || !bfd_set_section_flags (abfd, sec, flags)
588 || !bfd_set_section_alignment (abfd, sec, 2))
589 return false;
590
591 /* Set the gc mark to prevent the section from being removed by garbage
592 collection, despite the fact that no relocs refer to this section. */
593 sec->gc_mark = 1;
594 }
595
596 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
597
598 if (sec == NULL)
599 {
600 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
601
602 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
603
604 if (sec == NULL
605 || !bfd_set_section_flags (abfd, sec, flags)
606 || !bfd_set_section_alignment (abfd, sec, 2))
607 return false;
608
609 sec->gc_mark = 1;
610 }
611
612 /* Save the bfd for later use. */
613 globals->bfd_of_glue_owner = abfd;
614
615 return true;
616 }
617
618 boolean
619 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
620 bfd *abfd;
621 struct bfd_link_info *link_info;
622 int no_pipeline_knowledge;
623 {
624 Elf_Internal_Shdr *symtab_hdr;
625 Elf_Internal_Rela *free_relocs = NULL;
626 Elf_Internal_Rela *irel, *irelend;
627 bfd_byte *contents = NULL;
628 bfd_byte *free_contents = NULL;
629 Elf32_External_Sym *extsyms = NULL;
630 Elf32_External_Sym *free_extsyms = NULL;
631
632 asection *sec;
633 struct elf32_arm_link_hash_table *globals;
634
635 /* If we are only performing a partial link do not bother
636 to construct any glue. */
637 if (link_info->relocateable)
638 return true;
639
640 /* Here we have a bfd that is to be included on the link. We have a hook
641 to do reloc rummaging, before section sizes are nailed down. */
642 globals = elf32_arm_hash_table (link_info);
643
644 BFD_ASSERT (globals != NULL);
645 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
646
647 globals->no_pipeline_knowledge = no_pipeline_knowledge;
648
649 /* Rummage around all the relocs and map the glue vectors. */
650 sec = abfd->sections;
651
652 if (sec == NULL)
653 return true;
654
655 for (; sec != NULL; sec = sec->next)
656 {
657 if (sec->reloc_count == 0)
658 continue;
659
660 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
661
662 /* Load the relocs. */
663 irel = (_bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
664 (Elf_Internal_Rela *) NULL, false));
665
666 BFD_ASSERT (irel != 0);
667
668 irelend = irel + sec->reloc_count;
669 for (; irel < irelend; irel++)
670 {
671 long r_type;
672 unsigned long r_index;
673
674 struct elf_link_hash_entry *h;
675
676 r_type = ELF32_R_TYPE (irel->r_info);
677 r_index = ELF32_R_SYM (irel->r_info);
678
679 /* These are the only relocation types we care about. */
680 if ( r_type != R_ARM_PC24
681 && r_type != R_ARM_THM_PC22)
682 continue;
683
684 /* Get the section contents if we haven't done so already. */
685 if (contents == NULL)
686 {
687 /* Get cached copy if it exists. */
688 if (elf_section_data (sec)->this_hdr.contents != NULL)
689 contents = elf_section_data (sec)->this_hdr.contents;
690 else
691 {
692 /* Go get them off disk. */
693 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
694 if (contents == NULL)
695 goto error_return;
696
697 free_contents = contents;
698
699 if (!bfd_get_section_contents (abfd, sec, contents,
700 (file_ptr) 0, sec->_raw_size))
701 goto error_return;
702 }
703 }
704
705 /* Read this BFD's symbols if we haven't done so already. */
706 if (extsyms == NULL)
707 {
708 /* Get cached copy if it exists. */
709 if (symtab_hdr->contents != NULL)
710 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
711 else
712 {
713 /* Go get them off disk. */
714 extsyms = ((Elf32_External_Sym *)
715 bfd_malloc (symtab_hdr->sh_size));
716 if (extsyms == NULL)
717 goto error_return;
718
719 free_extsyms = extsyms;
720
721 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
722 || (bfd_bread (extsyms, symtab_hdr->sh_size, abfd)
723 != symtab_hdr->sh_size))
724 goto error_return;
725 }
726 }
727
728 /* If the relocation is not against a symbol it cannot concern us. */
729 h = NULL;
730
731 /* We don't care about local symbols. */
732 if (r_index < symtab_hdr->sh_info)
733 continue;
734
735 /* This is an external symbol. */
736 r_index -= symtab_hdr->sh_info;
737 h = (struct elf_link_hash_entry *)
738 elf_sym_hashes (abfd)[r_index];
739
740 /* If the relocation is against a static symbol it must be within
741 the current section and so cannot be a cross ARM/Thumb relocation. */
742 if (h == NULL)
743 continue;
744
745 switch (r_type)
746 {
747 case R_ARM_PC24:
748 /* This one is a call from arm code. We need to look up
749 the target of the call. If it is a thumb target, we
750 insert glue. */
751 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
752 record_arm_to_thumb_glue (link_info, h);
753 break;
754
755 case R_ARM_THM_PC22:
756 /* This one is a call from thumb code. We look
757 up the target of the call. If it is not a thumb
758 target, we insert glue. */
759 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
760 record_thumb_to_arm_glue (link_info, h);
761 break;
762
763 default:
764 break;
765 }
766 }
767 }
768
769 return true;
770
771 error_return:
772 if (free_relocs != NULL)
773 free (free_relocs);
774 if (free_contents != NULL)
775 free (free_contents);
776 if (free_extsyms != NULL)
777 free (free_extsyms);
778
779 return false;
780 }
781
782 /* The thumb form of a long branch is a bit finicky, because the offset
783 encoding is split over two fields, each in it's own instruction. They
784 can occur in any order. So given a thumb form of long branch, and an
785 offset, insert the offset into the thumb branch and return finished
786 instruction.
787
788 It takes two thumb instructions to encode the target address. Each has
789 11 bits to invest. The upper 11 bits are stored in one (identifed by
790 H-0.. see below), the lower 11 bits are stored in the other (identified
791 by H-1).
792
793 Combine together and shifted left by 1 (it's a half word address) and
794 there you have it.
795
796 Op: 1111 = F,
797 H-0, upper address-0 = 000
798 Op: 1111 = F,
799 H-1, lower address-0 = 800
800
801 They can be ordered either way, but the arm tools I've seen always put
802 the lower one first. It probably doesn't matter. krk@cygnus.com
803
804 XXX: Actually the order does matter. The second instruction (H-1)
805 moves the computed address into the PC, so it must be the second one
806 in the sequence. The problem, however is that whilst little endian code
807 stores the instructions in HI then LOW order, big endian code does the
808 reverse. nickc@cygnus.com. */
809
810 #define LOW_HI_ORDER 0xF800F000
811 #define HI_LOW_ORDER 0xF000F800
812
813 static insn32
814 insert_thumb_branch (br_insn, rel_off)
815 insn32 br_insn;
816 int rel_off;
817 {
818 unsigned int low_bits;
819 unsigned int high_bits;
820
821 BFD_ASSERT ((rel_off & 1) != 1);
822
823 rel_off >>= 1; /* Half word aligned address. */
824 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
825 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
826
827 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
828 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
829 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
830 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
831 else
832 /* FIXME: abort is probably not the right call. krk@cygnus.com */
833 abort (); /* error - not a valid branch instruction form. */
834
835 return br_insn;
836 }
837
838 /* Thumb code calling an ARM function. */
839
840 static int
841 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
842 hit_data, sym_sec, offset, addend, val)
843 struct bfd_link_info * info;
844 const char * name;
845 bfd * input_bfd;
846 bfd * output_bfd;
847 asection * input_section;
848 bfd_byte * hit_data;
849 asection * sym_sec;
850 bfd_vma offset;
851 bfd_signed_vma addend;
852 bfd_vma val;
853 {
854 asection * s = 0;
855 bfd_vma my_offset;
856 unsigned long int tmp;
857 long int ret_offset;
858 struct elf_link_hash_entry * myh;
859 struct elf32_arm_link_hash_table * globals;
860
861 myh = find_thumb_glue (info, name, input_bfd);
862 if (myh == NULL)
863 return false;
864
865 globals = elf32_arm_hash_table (info);
866
867 BFD_ASSERT (globals != NULL);
868 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
869
870 my_offset = myh->root.u.def.value;
871
872 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
873 THUMB2ARM_GLUE_SECTION_NAME);
874
875 BFD_ASSERT (s != NULL);
876 BFD_ASSERT (s->contents != NULL);
877 BFD_ASSERT (s->output_section != NULL);
878
879 if ((my_offset & 0x01) == 0x01)
880 {
881 if (sym_sec != NULL
882 && sym_sec->owner != NULL
883 && !INTERWORK_FLAG (sym_sec->owner))
884 {
885 (*_bfd_error_handler)
886 (_("%s(%s): warning: interworking not enabled."),
887 bfd_archive_filename (sym_sec->owner), name);
888 (*_bfd_error_handler)
889 (_(" first occurrence: %s: thumb call to arm"),
890 bfd_archive_filename (input_bfd));
891
892 return false;
893 }
894
895 --my_offset;
896 myh->root.u.def.value = my_offset;
897
898 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
899 s->contents + my_offset);
900
901 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
902 s->contents + my_offset + 2);
903
904 ret_offset =
905 /* Address of destination of the stub. */
906 ((bfd_signed_vma) val)
907 - ((bfd_signed_vma)
908 /* Offset from the start of the current section to the start of the stubs. */
909 (s->output_offset
910 /* Offset of the start of this stub from the start of the stubs. */
911 + my_offset
912 /* Address of the start of the current section. */
913 + s->output_section->vma)
914 /* The branch instruction is 4 bytes into the stub. */
915 + 4
916 /* ARM branches work from the pc of the instruction + 8. */
917 + 8);
918
919 bfd_put_32 (output_bfd,
920 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
921 s->contents + my_offset + 4);
922 }
923
924 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
925
926 /* Now go back and fix up the original BL insn to point
927 to here. */
928 ret_offset = (s->output_offset
929 + my_offset
930 - (input_section->output_offset
931 + offset + addend)
932 - 8);
933
934 tmp = bfd_get_32 (input_bfd, hit_data
935 - input_section->vma);
936
937 bfd_put_32 (output_bfd,
938 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
939 hit_data - input_section->vma);
940
941 return true;
942 }
943
944 /* Arm code calling a Thumb function. */
945
946 static int
947 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
948 hit_data, sym_sec, offset, addend, val)
949 struct bfd_link_info * info;
950 const char * name;
951 bfd * input_bfd;
952 bfd * output_bfd;
953 asection * input_section;
954 bfd_byte * hit_data;
955 asection * sym_sec;
956 bfd_vma offset;
957 bfd_signed_vma addend;
958 bfd_vma val;
959 {
960 unsigned long int tmp;
961 bfd_vma my_offset;
962 asection * s;
963 long int ret_offset;
964 struct elf_link_hash_entry * myh;
965 struct elf32_arm_link_hash_table * globals;
966
967 myh = find_arm_glue (info, name, input_bfd);
968 if (myh == NULL)
969 return false;
970
971 globals = elf32_arm_hash_table (info);
972
973 BFD_ASSERT (globals != NULL);
974 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
975
976 my_offset = myh->root.u.def.value;
977 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
978 ARM2THUMB_GLUE_SECTION_NAME);
979 BFD_ASSERT (s != NULL);
980 BFD_ASSERT (s->contents != NULL);
981 BFD_ASSERT (s->output_section != NULL);
982
983 if ((my_offset & 0x01) == 0x01)
984 {
985 if (sym_sec != NULL
986 && sym_sec->owner != NULL
987 && !INTERWORK_FLAG (sym_sec->owner))
988 {
989 (*_bfd_error_handler)
990 (_("%s(%s): warning: interworking not enabled."),
991 bfd_archive_filename (sym_sec->owner), name);
992 (*_bfd_error_handler)
993 (_(" first occurrence: %s: arm call to thumb"),
994 bfd_archive_filename (input_bfd));
995 }
996
997 --my_offset;
998 myh->root.u.def.value = my_offset;
999
1000 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1001 s->contents + my_offset);
1002
1003 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1004 s->contents + my_offset + 4);
1005
1006 /* It's a thumb address. Add the low order bit. */
1007 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1008 s->contents + my_offset + 8);
1009 }
1010
1011 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1012
1013 tmp = bfd_get_32 (input_bfd, hit_data);
1014 tmp = tmp & 0xFF000000;
1015
1016 /* Somehow these are both 4 too far, so subtract 8. */
1017 ret_offset = (s->output_offset
1018 + my_offset
1019 + s->output_section->vma
1020 - (input_section->output_offset
1021 + input_section->output_section->vma
1022 + offset + addend)
1023 - 8);
1024
1025 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1026
1027 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1028
1029 return true;
1030 }
1031
1032 /* Perform a relocation as part of a final link. */
1033
1034 static bfd_reloc_status_type
1035 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1036 input_section, contents, rel, value,
1037 info, sym_sec, sym_name, sym_flags, h)
1038 reloc_howto_type * howto;
1039 bfd * input_bfd;
1040 bfd * output_bfd;
1041 asection * input_section;
1042 bfd_byte * contents;
1043 Elf_Internal_Rela * rel;
1044 bfd_vma value;
1045 struct bfd_link_info * info;
1046 asection * sym_sec;
1047 const char * sym_name;
1048 int sym_flags;
1049 struct elf_link_hash_entry * h;
1050 {
1051 unsigned long r_type = howto->type;
1052 unsigned long r_symndx;
1053 bfd_byte * hit_data = contents + rel->r_offset;
1054 bfd * dynobj = NULL;
1055 Elf_Internal_Shdr * symtab_hdr;
1056 struct elf_link_hash_entry ** sym_hashes;
1057 bfd_vma * local_got_offsets;
1058 asection * sgot = NULL;
1059 asection * splt = NULL;
1060 asection * sreloc = NULL;
1061 bfd_vma addend;
1062 bfd_signed_vma signed_addend;
1063 struct elf32_arm_link_hash_table * globals;
1064
1065 /* If the start address has been set, then set the EF_ARM_HASENTRY
1066 flag. Setting this more than once is redundant, but the cost is
1067 not too high, and it keeps the code simple.
1068
1069 The test is done here, rather than somewhere else, because the
1070 start address is only set just before the final link commences.
1071
1072 Note - if the user deliberately sets a start address of 0, the
1073 flag will not be set. */
1074 if (bfd_get_start_address (output_bfd) != 0)
1075 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1076
1077 globals = elf32_arm_hash_table (info);
1078
1079 dynobj = elf_hash_table (info)->dynobj;
1080 if (dynobj)
1081 {
1082 sgot = bfd_get_section_by_name (dynobj, ".got");
1083 splt = bfd_get_section_by_name (dynobj, ".plt");
1084 }
1085 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1086 sym_hashes = elf_sym_hashes (input_bfd);
1087 local_got_offsets = elf_local_got_offsets (input_bfd);
1088 r_symndx = ELF32_R_SYM (rel->r_info);
1089
1090 #ifdef USE_REL
1091 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1092
1093 if (addend & ((howto->src_mask + 1) >> 1))
1094 {
1095 signed_addend = -1;
1096 signed_addend &= ~ howto->src_mask;
1097 signed_addend |= addend;
1098 }
1099 else
1100 signed_addend = addend;
1101 #else
1102 addend = signed_addend = rel->r_addend;
1103 #endif
1104
1105 switch (r_type)
1106 {
1107 case R_ARM_NONE:
1108 return bfd_reloc_ok;
1109
1110 case R_ARM_PC24:
1111 case R_ARM_ABS32:
1112 case R_ARM_REL32:
1113 #ifndef OLD_ARM_ABI
1114 case R_ARM_XPC25:
1115 #endif
1116 /* When generating a shared object, these relocations are copied
1117 into the output file to be resolved at run time. */
1118 if (info->shared
1119 && r_symndx != 0
1120 && (r_type != R_ARM_PC24
1121 || (h != NULL
1122 && h->dynindx != -1
1123 && (! info->symbolic
1124 || (h->elf_link_hash_flags
1125 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1126 {
1127 Elf_Internal_Rel outrel;
1128 boolean skip, relocate;
1129
1130 if (sreloc == NULL)
1131 {
1132 const char * name;
1133
1134 name = (bfd_elf_string_from_elf_section
1135 (input_bfd,
1136 elf_elfheader (input_bfd)->e_shstrndx,
1137 elf_section_data (input_section)->rel_hdr.sh_name));
1138 if (name == NULL)
1139 return bfd_reloc_notsupported;
1140
1141 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1142 && strcmp (bfd_get_section_name (input_bfd,
1143 input_section),
1144 name + 4) == 0);
1145
1146 sreloc = bfd_get_section_by_name (dynobj, name);
1147 BFD_ASSERT (sreloc != NULL);
1148 }
1149
1150 skip = false;
1151 relocate = false;
1152
1153 outrel.r_offset =
1154 _bfd_elf_section_offset (output_bfd, info, input_section,
1155 rel->r_offset);
1156 if (outrel.r_offset == (bfd_vma) -1)
1157 skip = true;
1158 else if (outrel.r_offset == (bfd_vma) -2)
1159 skip = true, relocate = true;
1160 outrel.r_offset += (input_section->output_section->vma
1161 + input_section->output_offset);
1162
1163 if (skip)
1164 memset (&outrel, 0, sizeof outrel);
1165 else if (r_type == R_ARM_PC24)
1166 {
1167 BFD_ASSERT (h != NULL && h->dynindx != -1);
1168 if ((input_section->flags & SEC_ALLOC) == 0)
1169 relocate = true;
1170 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1171 }
1172 else
1173 {
1174 if (h == NULL
1175 || ((info->symbolic || h->dynindx == -1)
1176 && (h->elf_link_hash_flags
1177 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1178 {
1179 relocate = true;
1180 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1181 }
1182 else
1183 {
1184 BFD_ASSERT (h->dynindx != -1);
1185 if ((input_section->flags & SEC_ALLOC) == 0)
1186 relocate = true;
1187 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1188 }
1189 }
1190
1191 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1192 (((Elf32_External_Rel *)
1193 sreloc->contents)
1194 + sreloc->reloc_count));
1195 ++sreloc->reloc_count;
1196
1197 /* If this reloc is against an external symbol, we do not want to
1198 fiddle with the addend. Otherwise, we need to include the symbol
1199 value so that it becomes an addend for the dynamic reloc. */
1200 if (! relocate)
1201 return bfd_reloc_ok;
1202
1203 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1204 contents, rel->r_offset, value,
1205 (bfd_vma) 0);
1206 }
1207 else switch (r_type)
1208 {
1209 #ifndef OLD_ARM_ABI
1210 case R_ARM_XPC25: /* Arm BLX instruction. */
1211 #endif
1212 case R_ARM_PC24: /* Arm B/BL instruction */
1213 #ifndef OLD_ARM_ABI
1214 if (r_type == R_ARM_XPC25)
1215 {
1216 /* Check for Arm calling Arm function. */
1217 /* FIXME: Should we translate the instruction into a BL
1218 instruction instead ? */
1219 if (sym_flags != STT_ARM_TFUNC)
1220 (*_bfd_error_handler) (_("\
1221 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1222 bfd_archive_filename (input_bfd),
1223 h ? h->root.root.string : "(local)");
1224 }
1225 else
1226 #endif
1227 {
1228 /* Check for Arm calling Thumb function. */
1229 if (sym_flags == STT_ARM_TFUNC)
1230 {
1231 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1232 input_section, hit_data, sym_sec, rel->r_offset,
1233 signed_addend, value);
1234 return bfd_reloc_ok;
1235 }
1236 }
1237
1238 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1239 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1240 {
1241 /* The old way of doing things. Trearing the addend as a
1242 byte sized field and adding in the pipeline offset. */
1243 value -= (input_section->output_section->vma
1244 + input_section->output_offset);
1245 value -= rel->r_offset;
1246 value += addend;
1247
1248 if (! globals->no_pipeline_knowledge)
1249 value -= 8;
1250 }
1251 else
1252 {
1253 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1254 where:
1255 S is the address of the symbol in the relocation.
1256 P is address of the instruction being relocated.
1257 A is the addend (extracted from the instruction) in bytes.
1258
1259 S is held in 'value'.
1260 P is the base address of the section containing the instruction
1261 plus the offset of the reloc into that section, ie:
1262 (input_section->output_section->vma +
1263 input_section->output_offset +
1264 rel->r_offset).
1265 A is the addend, converted into bytes, ie:
1266 (signed_addend * 4)
1267
1268 Note: None of these operations have knowledge of the pipeline
1269 size of the processor, thus it is up to the assembler to encode
1270 this information into the addend. */
1271 value -= (input_section->output_section->vma
1272 + input_section->output_offset);
1273 value -= rel->r_offset;
1274 value += (signed_addend << howto->size);
1275
1276 /* Previous versions of this code also used to add in the pipeline
1277 offset here. This is wrong because the linker is not supposed
1278 to know about such things, and one day it might change. In order
1279 to support old binaries that need the old behaviour however, so
1280 we attempt to detect which ABI was used to create the reloc. */
1281 if (! globals->no_pipeline_knowledge)
1282 {
1283 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1284
1285 i_ehdrp = elf_elfheader (input_bfd);
1286
1287 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1288 value -= 8;
1289 }
1290 }
1291
1292 signed_addend = value;
1293 signed_addend >>= howto->rightshift;
1294
1295 /* It is not an error for an undefined weak reference to be
1296 out of range. Any program that branches to such a symbol
1297 is going to crash anyway, so there is no point worrying
1298 about getting the destination exactly right. */
1299 if (! h || h->root.type != bfd_link_hash_undefweak)
1300 {
1301 /* Perform a signed range check. */
1302 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1303 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1304 return bfd_reloc_overflow;
1305 }
1306
1307 #ifndef OLD_ARM_ABI
1308 /* If necessary set the H bit in the BLX instruction. */
1309 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1310 value = (signed_addend & howto->dst_mask)
1311 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1312 | (1 << 24);
1313 else
1314 #endif
1315 value = (signed_addend & howto->dst_mask)
1316 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1317 break;
1318
1319 case R_ARM_ABS32:
1320 value += addend;
1321 if (sym_flags == STT_ARM_TFUNC)
1322 value |= 1;
1323 break;
1324
1325 case R_ARM_REL32:
1326 value -= (input_section->output_section->vma
1327 + input_section->output_offset + rel->r_offset);
1328 value += addend;
1329 break;
1330 }
1331
1332 bfd_put_32 (input_bfd, value, hit_data);
1333 return bfd_reloc_ok;
1334
1335 case R_ARM_ABS8:
1336 value += addend;
1337 if ((long) value > 0x7f || (long) value < -0x80)
1338 return bfd_reloc_overflow;
1339
1340 bfd_put_8 (input_bfd, value, hit_data);
1341 return bfd_reloc_ok;
1342
1343 case R_ARM_ABS16:
1344 value += addend;
1345
1346 if ((long) value > 0x7fff || (long) value < -0x8000)
1347 return bfd_reloc_overflow;
1348
1349 bfd_put_16 (input_bfd, value, hit_data);
1350 return bfd_reloc_ok;
1351
1352 case R_ARM_ABS12:
1353 /* Support ldr and str instruction for the arm */
1354 /* Also thumb b (unconditional branch). ??? Really? */
1355 value += addend;
1356
1357 if ((long) value > 0x7ff || (long) value < -0x800)
1358 return bfd_reloc_overflow;
1359
1360 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1361 bfd_put_32 (input_bfd, value, hit_data);
1362 return bfd_reloc_ok;
1363
1364 case R_ARM_THM_ABS5:
1365 /* Support ldr and str instructions for the thumb. */
1366 #ifdef USE_REL
1367 /* Need to refetch addend. */
1368 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1369 /* ??? Need to determine shift amount from operand size. */
1370 addend >>= howto->rightshift;
1371 #endif
1372 value += addend;
1373
1374 /* ??? Isn't value unsigned? */
1375 if ((long) value > 0x1f || (long) value < -0x10)
1376 return bfd_reloc_overflow;
1377
1378 /* ??? Value needs to be properly shifted into place first. */
1379 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1380 bfd_put_16 (input_bfd, value, hit_data);
1381 return bfd_reloc_ok;
1382
1383 #ifndef OLD_ARM_ABI
1384 case R_ARM_THM_XPC22:
1385 #endif
1386 case R_ARM_THM_PC22:
1387 /* Thumb BL (branch long instruction). */
1388 {
1389 bfd_vma relocation;
1390 boolean overflow = false;
1391 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1392 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1393 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1394 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1395 bfd_vma check;
1396 bfd_signed_vma signed_check;
1397
1398 #ifdef USE_REL
1399 /* Need to refetch the addend and squish the two 11 bit pieces
1400 together. */
1401 {
1402 bfd_vma upper = upper_insn & 0x7ff;
1403 bfd_vma lower = lower_insn & 0x7ff;
1404 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1405 addend = (upper << 12) | (lower << 1);
1406 signed_addend = addend;
1407 }
1408 #endif
1409 #ifndef OLD_ARM_ABI
1410 if (r_type == R_ARM_THM_XPC22)
1411 {
1412 /* Check for Thumb to Thumb call. */
1413 /* FIXME: Should we translate the instruction into a BL
1414 instruction instead ? */
1415 if (sym_flags == STT_ARM_TFUNC)
1416 (*_bfd_error_handler) (_("\
1417 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1418 bfd_archive_filename (input_bfd),
1419 h ? h->root.root.string : "(local)");
1420 }
1421 else
1422 #endif
1423 {
1424 /* If it is not a call to Thumb, assume call to Arm.
1425 If it is a call relative to a section name, then it is not a
1426 function call at all, but rather a long jump. */
1427 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1428 {
1429 if (elf32_thumb_to_arm_stub
1430 (info, sym_name, input_bfd, output_bfd, input_section,
1431 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1432 return bfd_reloc_ok;
1433 else
1434 return bfd_reloc_dangerous;
1435 }
1436 }
1437
1438 relocation = value + signed_addend;
1439
1440 relocation -= (input_section->output_section->vma
1441 + input_section->output_offset
1442 + rel->r_offset);
1443
1444 if (! globals->no_pipeline_knowledge)
1445 {
1446 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1447
1448 i_ehdrp = elf_elfheader (input_bfd);
1449
1450 /* Previous versions of this code also used to add in the pipline
1451 offset here. This is wrong because the linker is not supposed
1452 to know about such things, and one day it might change. In order
1453 to support old binaries that need the old behaviour however, so
1454 we attempt to detect which ABI was used to create the reloc. */
1455 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1456 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1457 || i_ehdrp->e_ident[EI_OSABI] == 0)
1458 relocation += 4;
1459 }
1460
1461 check = relocation >> howto->rightshift;
1462
1463 /* If this is a signed value, the rightshift just dropped
1464 leading 1 bits (assuming twos complement). */
1465 if ((bfd_signed_vma) relocation >= 0)
1466 signed_check = check;
1467 else
1468 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1469
1470 /* Assumes two's complement. */
1471 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1472 overflow = true;
1473
1474 /* Put RELOCATION back into the insn. */
1475 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1476 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1477
1478 #ifndef OLD_ARM_ABI
1479 if (r_type == R_ARM_THM_XPC22
1480 && ((lower_insn & 0x1800) == 0x0800))
1481 /* Remove bit zero of the adjusted offset. Bit zero can only be
1482 set if the upper insn is at a half-word boundary, since the
1483 destination address, an ARM instruction, must always be on a
1484 word boundary. The semantics of the BLX (1) instruction, however,
1485 are that bit zero in the offset must always be zero, and the
1486 corresponding bit one in the target address will be set from bit
1487 one of the source address. */
1488 lower_insn &= ~1;
1489 #endif
1490 /* Put the relocated value back in the object file: */
1491 bfd_put_16 (input_bfd, upper_insn, hit_data);
1492 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1493
1494 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1495 }
1496 break;
1497
1498 case R_ARM_THM_PC11:
1499 /* Thumb B (branch) instruction). */
1500 {
1501 bfd_vma relocation;
1502 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1503 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1504 bfd_vma check;
1505 bfd_signed_vma signed_check;
1506
1507 #ifdef USE_REL
1508 /* Need to refetch addend. */
1509 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1510 /* ??? Need to determine shift amount from operand size. */
1511 addend >>= howto->rightshift;
1512 #endif
1513 relocation = value + addend;
1514
1515 relocation -= (input_section->output_section->vma
1516 + input_section->output_offset
1517 + rel->r_offset);
1518
1519 check = relocation >> howto->rightshift;
1520
1521 /* If this is a signed value, the rightshift just
1522 dropped leading 1 bits (assuming twos complement). */
1523 if ((bfd_signed_vma) relocation >= 0)
1524 signed_check = check;
1525 else
1526 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1527
1528 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1529
1530 bfd_put_16 (input_bfd, relocation, hit_data);
1531
1532 /* Assumes two's complement. */
1533 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1534 return bfd_reloc_overflow;
1535
1536 return bfd_reloc_ok;
1537 }
1538
1539 case R_ARM_GNU_VTINHERIT:
1540 case R_ARM_GNU_VTENTRY:
1541 return bfd_reloc_ok;
1542
1543 case R_ARM_COPY:
1544 return bfd_reloc_notsupported;
1545
1546 case R_ARM_GLOB_DAT:
1547 return bfd_reloc_notsupported;
1548
1549 case R_ARM_JUMP_SLOT:
1550 return bfd_reloc_notsupported;
1551
1552 case R_ARM_RELATIVE:
1553 return bfd_reloc_notsupported;
1554
1555 case R_ARM_GOTOFF:
1556 /* Relocation is relative to the start of the
1557 global offset table. */
1558
1559 BFD_ASSERT (sgot != NULL);
1560 if (sgot == NULL)
1561 return bfd_reloc_notsupported;
1562
1563 /* Note that sgot->output_offset is not involved in this
1564 calculation. We always want the start of .got. If we
1565 define _GLOBAL_OFFSET_TABLE in a different way, as is
1566 permitted by the ABI, we might have to change this
1567 calculation. */
1568 value -= sgot->output_section->vma;
1569 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1570 contents, rel->r_offset, value,
1571 (bfd_vma) 0);
1572
1573 case R_ARM_GOTPC:
1574 /* Use global offset table as symbol value. */
1575 BFD_ASSERT (sgot != NULL);
1576
1577 if (sgot == NULL)
1578 return bfd_reloc_notsupported;
1579
1580 value = sgot->output_section->vma;
1581 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1582 contents, rel->r_offset, value,
1583 (bfd_vma) 0);
1584
1585 case R_ARM_GOT32:
1586 /* Relocation is to the entry for this symbol in the
1587 global offset table. */
1588 if (sgot == NULL)
1589 return bfd_reloc_notsupported;
1590
1591 if (h != NULL)
1592 {
1593 bfd_vma off;
1594
1595 off = h->got.offset;
1596 BFD_ASSERT (off != (bfd_vma) -1);
1597
1598 if (!elf_hash_table (info)->dynamic_sections_created ||
1599 (info->shared && (info->symbolic || h->dynindx == -1)
1600 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1601 {
1602 /* This is actually a static link, or it is a -Bsymbolic link
1603 and the symbol is defined locally. We must initialize this
1604 entry in the global offset table. Since the offset must
1605 always be a multiple of 4, we use the least significant bit
1606 to record whether we have initialized it already.
1607
1608 When doing a dynamic link, we create a .rel.got relocation
1609 entry to initialize the value. This is done in the
1610 finish_dynamic_symbol routine. */
1611 if ((off & 1) != 0)
1612 off &= ~1;
1613 else
1614 {
1615 bfd_put_32 (output_bfd, value, sgot->contents + off);
1616 h->got.offset |= 1;
1617 }
1618 }
1619
1620 value = sgot->output_offset + off;
1621 }
1622 else
1623 {
1624 bfd_vma off;
1625
1626 BFD_ASSERT (local_got_offsets != NULL &&
1627 local_got_offsets[r_symndx] != (bfd_vma) -1);
1628
1629 off = local_got_offsets[r_symndx];
1630
1631 /* The offset must always be a multiple of 4. We use the
1632 least significant bit to record whether we have already
1633 generated the necessary reloc. */
1634 if ((off & 1) != 0)
1635 off &= ~1;
1636 else
1637 {
1638 bfd_put_32 (output_bfd, value, sgot->contents + off);
1639
1640 if (info->shared)
1641 {
1642 asection * srelgot;
1643 Elf_Internal_Rel outrel;
1644
1645 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1646 BFD_ASSERT (srelgot != NULL);
1647
1648 outrel.r_offset = (sgot->output_section->vma
1649 + sgot->output_offset
1650 + off);
1651 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1652 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1653 (((Elf32_External_Rel *)
1654 srelgot->contents)
1655 + srelgot->reloc_count));
1656 ++srelgot->reloc_count;
1657 }
1658
1659 local_got_offsets[r_symndx] |= 1;
1660 }
1661
1662 value = sgot->output_offset + off;
1663 }
1664
1665 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1666 contents, rel->r_offset, value,
1667 (bfd_vma) 0);
1668
1669 case R_ARM_PLT32:
1670 /* Relocation is to the entry for this symbol in the
1671 procedure linkage table. */
1672
1673 /* Resolve a PLT32 reloc against a local symbol directly,
1674 without using the procedure linkage table. */
1675 if (h == NULL)
1676 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1677 contents, rel->r_offset, value,
1678 (bfd_vma) 0);
1679
1680 if (h->plt.offset == (bfd_vma) -1)
1681 /* We didn't make a PLT entry for this symbol. This
1682 happens when statically linking PIC code, or when
1683 using -Bsymbolic. */
1684 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1685 contents, rel->r_offset, value,
1686 (bfd_vma) 0);
1687
1688 BFD_ASSERT(splt != NULL);
1689 if (splt == NULL)
1690 return bfd_reloc_notsupported;
1691
1692 value = (splt->output_section->vma
1693 + splt->output_offset
1694 + h->plt.offset);
1695 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1696 contents, rel->r_offset, value,
1697 (bfd_vma) 0);
1698
1699 case R_ARM_SBREL32:
1700 return bfd_reloc_notsupported;
1701
1702 case R_ARM_AMP_VCALL9:
1703 return bfd_reloc_notsupported;
1704
1705 case R_ARM_RSBREL32:
1706 return bfd_reloc_notsupported;
1707
1708 case R_ARM_THM_RPC22:
1709 return bfd_reloc_notsupported;
1710
1711 case R_ARM_RREL32:
1712 return bfd_reloc_notsupported;
1713
1714 case R_ARM_RABS32:
1715 return bfd_reloc_notsupported;
1716
1717 case R_ARM_RPC24:
1718 return bfd_reloc_notsupported;
1719
1720 case R_ARM_RBASE:
1721 return bfd_reloc_notsupported;
1722
1723 default:
1724 return bfd_reloc_notsupported;
1725 }
1726 }
1727
1728 #ifdef USE_REL
1729 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1730 static void
1731 arm_add_to_rel (abfd, address, howto, increment)
1732 bfd * abfd;
1733 bfd_byte * address;
1734 reloc_howto_type * howto;
1735 bfd_signed_vma increment;
1736 {
1737 bfd_signed_vma addend;
1738
1739 if (howto->type == R_ARM_THM_PC22)
1740 {
1741 int upper_insn, lower_insn;
1742 int upper, lower;
1743
1744 upper_insn = bfd_get_16 (abfd, address);
1745 lower_insn = bfd_get_16 (abfd, address + 2);
1746 upper = upper_insn & 0x7ff;
1747 lower = lower_insn & 0x7ff;
1748
1749 addend = (upper << 12) | (lower << 1);
1750 addend += increment;
1751 addend >>= 1;
1752
1753 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1754 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1755
1756 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1757 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1758 }
1759 else
1760 {
1761 bfd_vma contents;
1762
1763 contents = bfd_get_32 (abfd, address);
1764
1765 /* Get the (signed) value from the instruction. */
1766 addend = contents & howto->src_mask;
1767 if (addend & ((howto->src_mask + 1) >> 1))
1768 {
1769 bfd_signed_vma mask;
1770
1771 mask = -1;
1772 mask &= ~ howto->src_mask;
1773 addend |= mask;
1774 }
1775
1776 /* Add in the increment, (which is a byte value). */
1777 switch (howto->type)
1778 {
1779 default:
1780 addend += increment;
1781 break;
1782
1783 case R_ARM_PC24:
1784 addend <<= howto->size;
1785 addend += increment;
1786
1787 /* Should we check for overflow here ? */
1788
1789 /* Drop any undesired bits. */
1790 addend >>= howto->rightshift;
1791 break;
1792 }
1793
1794 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1795
1796 bfd_put_32 (abfd, contents, address);
1797 }
1798 }
1799 #endif /* USE_REL */
1800
1801 /* Relocate an ARM ELF section. */
1802 static boolean
1803 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1804 contents, relocs, local_syms, local_sections)
1805 bfd * output_bfd;
1806 struct bfd_link_info * info;
1807 bfd * input_bfd;
1808 asection * input_section;
1809 bfd_byte * contents;
1810 Elf_Internal_Rela * relocs;
1811 Elf_Internal_Sym * local_syms;
1812 asection ** local_sections;
1813 {
1814 Elf_Internal_Shdr * symtab_hdr;
1815 struct elf_link_hash_entry ** sym_hashes;
1816 Elf_Internal_Rela * rel;
1817 Elf_Internal_Rela * relend;
1818 const char * name;
1819
1820 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1821 sym_hashes = elf_sym_hashes (input_bfd);
1822
1823 rel = relocs;
1824 relend = relocs + input_section->reloc_count;
1825 for (; rel < relend; rel++)
1826 {
1827 int r_type;
1828 reloc_howto_type * howto;
1829 unsigned long r_symndx;
1830 Elf_Internal_Sym * sym;
1831 asection * sec;
1832 struct elf_link_hash_entry * h;
1833 bfd_vma relocation;
1834 bfd_reloc_status_type r;
1835 arelent bfd_reloc;
1836
1837 r_symndx = ELF32_R_SYM (rel->r_info);
1838 r_type = ELF32_R_TYPE (rel->r_info);
1839
1840 if ( r_type == R_ARM_GNU_VTENTRY
1841 || r_type == R_ARM_GNU_VTINHERIT)
1842 continue;
1843
1844 #ifdef USE_REL
1845 elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
1846 (Elf_Internal_Rel *) rel);
1847 #else
1848 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1849 #endif
1850 howto = bfd_reloc.howto;
1851
1852 if (info->relocateable)
1853 {
1854 /* This is a relocateable link. We don't have to change
1855 anything, unless the reloc is against a section symbol,
1856 in which case we have to adjust according to where the
1857 section symbol winds up in the output section. */
1858 if (r_symndx < symtab_hdr->sh_info)
1859 {
1860 sym = local_syms + r_symndx;
1861 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1862 {
1863 sec = local_sections[r_symndx];
1864 #ifdef USE_REL
1865 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1866 howto,
1867 (bfd_signed_vma) (sec->output_offset
1868 + sym->st_value));
1869 #else
1870 rel->r_addend += (sec->output_offset + sym->st_value);
1871 #endif
1872 }
1873 }
1874
1875 continue;
1876 }
1877
1878 /* This is a final link. */
1879 h = NULL;
1880 sym = NULL;
1881 sec = NULL;
1882
1883 if (r_symndx < symtab_hdr->sh_info)
1884 {
1885 sym = local_syms + r_symndx;
1886 sec = local_sections[r_symndx];
1887 #ifdef USE_REL
1888 relocation = (sec->output_section->vma
1889 + sec->output_offset
1890 + sym->st_value);
1891 if ((sec->flags & SEC_MERGE)
1892 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1893 {
1894 asection *msec;
1895 bfd_vma addend, value;
1896
1897 if (howto->rightshift)
1898 {
1899 (*_bfd_error_handler)
1900 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1901 bfd_archive_filename (input_bfd),
1902 bfd_get_section_name (input_bfd, input_section),
1903 (long) rel->r_offset, howto->name);
1904 return false;
1905 }
1906
1907 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1908
1909 /* Get the (signed) value from the instruction. */
1910 addend = value & howto->src_mask;
1911 if (addend & ((howto->src_mask + 1) >> 1))
1912 {
1913 bfd_signed_vma mask;
1914
1915 mask = -1;
1916 mask &= ~ howto->src_mask;
1917 addend |= mask;
1918 }
1919 msec = sec;
1920 addend =
1921 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1922 - relocation;
1923 addend += msec->output_section->vma + msec->output_offset;
1924 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1925 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1926 }
1927 #else
1928 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1929 #endif
1930 }
1931 else
1932 {
1933 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1934
1935 while ( h->root.type == bfd_link_hash_indirect
1936 || h->root.type == bfd_link_hash_warning)
1937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1938
1939 if ( h->root.type == bfd_link_hash_defined
1940 || h->root.type == bfd_link_hash_defweak)
1941 {
1942 int relocation_needed = 1;
1943
1944 sec = h->root.u.def.section;
1945
1946 /* In these cases, we don't need the relocation value.
1947 We check specially because in some obscure cases
1948 sec->output_section will be NULL. */
1949 switch (r_type)
1950 {
1951 case R_ARM_PC24:
1952 case R_ARM_ABS32:
1953 case R_ARM_THM_PC22:
1954 if (info->shared
1955 && (
1956 (!info->symbolic && h->dynindx != -1)
1957 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1958 )
1959 && ((input_section->flags & SEC_ALLOC) != 0
1960 /* DWARF will emit R_ARM_ABS32 relocations in its
1961 sections against symbols defined externally
1962 in shared libraries. We can't do anything
1963 with them here. */
1964 || ((input_section->flags & SEC_DEBUGGING) != 0
1965 && (h->elf_link_hash_flags
1966 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1967 )
1968 relocation_needed = 0;
1969 break;
1970
1971 case R_ARM_GOTPC:
1972 relocation_needed = 0;
1973 break;
1974
1975 case R_ARM_GOT32:
1976 if (elf_hash_table(info)->dynamic_sections_created
1977 && (!info->shared
1978 || (!info->symbolic && h->dynindx != -1)
1979 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1980 )
1981 )
1982 relocation_needed = 0;
1983 break;
1984
1985 case R_ARM_PLT32:
1986 if (h->plt.offset != (bfd_vma)-1)
1987 relocation_needed = 0;
1988 break;
1989
1990 default:
1991 if (sec->output_section == NULL)
1992 {
1993 (*_bfd_error_handler)
1994 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
1995 bfd_archive_filename (input_bfd),
1996 r_type,
1997 h->root.root.string,
1998 bfd_get_section_name (input_bfd, input_section));
1999 relocation_needed = 0;
2000 }
2001 }
2002
2003 if (relocation_needed)
2004 relocation = h->root.u.def.value
2005 + sec->output_section->vma
2006 + sec->output_offset;
2007 else
2008 relocation = 0;
2009 }
2010 else if (h->root.type == bfd_link_hash_undefweak)
2011 relocation = 0;
2012 else if (info->shared && !info->symbolic
2013 && !info->no_undefined
2014 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2015 relocation = 0;
2016 else
2017 {
2018 if (!((*info->callbacks->undefined_symbol)
2019 (info, h->root.root.string, input_bfd,
2020 input_section, rel->r_offset,
2021 (!info->shared || info->no_undefined
2022 || ELF_ST_VISIBILITY (h->other)))))
2023 return false;
2024 relocation = 0;
2025 }
2026 }
2027
2028 if (h != NULL)
2029 name = h->root.root.string;
2030 else
2031 {
2032 name = (bfd_elf_string_from_elf_section
2033 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2034 if (name == NULL || *name == '\0')
2035 name = bfd_section_name (input_bfd, sec);
2036 }
2037
2038 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2039 input_section, contents, rel,
2040 relocation, info, sec, name,
2041 (h ? ELF_ST_TYPE (h->type) :
2042 ELF_ST_TYPE (sym->st_info)), h);
2043
2044 if (r != bfd_reloc_ok)
2045 {
2046 const char * msg = (const char *) 0;
2047
2048 switch (r)
2049 {
2050 case bfd_reloc_overflow:
2051 /* If the overflowing reloc was to an undefined symbol,
2052 we have already printed one error message and there
2053 is no point complaining again. */
2054 if ((! h ||
2055 h->root.type != bfd_link_hash_undefined)
2056 && (!((*info->callbacks->reloc_overflow)
2057 (info, name, howto->name, (bfd_vma) 0,
2058 input_bfd, input_section, rel->r_offset))))
2059 return false;
2060 break;
2061
2062 case bfd_reloc_undefined:
2063 if (!((*info->callbacks->undefined_symbol)
2064 (info, name, input_bfd, input_section,
2065 rel->r_offset, true)))
2066 return false;
2067 break;
2068
2069 case bfd_reloc_outofrange:
2070 msg = _("internal error: out of range error");
2071 goto common_error;
2072
2073 case bfd_reloc_notsupported:
2074 msg = _("internal error: unsupported relocation error");
2075 goto common_error;
2076
2077 case bfd_reloc_dangerous:
2078 msg = _("internal error: dangerous error");
2079 goto common_error;
2080
2081 default:
2082 msg = _("internal error: unknown error");
2083 /* fall through */
2084
2085 common_error:
2086 if (!((*info->callbacks->warning)
2087 (info, msg, name, input_bfd, input_section,
2088 rel->r_offset)))
2089 return false;
2090 break;
2091 }
2092 }
2093 }
2094
2095 return true;
2096 }
2097
2098 /* Function to keep ARM specific flags in the ELF header. */
2099 static boolean
2100 elf32_arm_set_private_flags (abfd, flags)
2101 bfd *abfd;
2102 flagword flags;
2103 {
2104 if (elf_flags_init (abfd)
2105 && elf_elfheader (abfd)->e_flags != flags)
2106 {
2107 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2108 {
2109 if (flags & EF_ARM_INTERWORK)
2110 (*_bfd_error_handler) (_("\
2111 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2112 bfd_archive_filename (abfd));
2113 else
2114 _bfd_error_handler (_("\
2115 Warning: Clearing the interworking flag of %s due to outside request"),
2116 bfd_archive_filename (abfd));
2117 }
2118 }
2119 else
2120 {
2121 elf_elfheader (abfd)->e_flags = flags;
2122 elf_flags_init (abfd) = true;
2123 }
2124
2125 return true;
2126 }
2127
2128 /* Copy backend specific data from one object module to another. */
2129
2130 static boolean
2131 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2132 bfd *ibfd;
2133 bfd *obfd;
2134 {
2135 flagword in_flags;
2136 flagword out_flags;
2137
2138 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2139 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2140 return true;
2141
2142 in_flags = elf_elfheader (ibfd)->e_flags;
2143 out_flags = elf_elfheader (obfd)->e_flags;
2144
2145 if (elf_flags_init (obfd)
2146 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2147 && in_flags != out_flags)
2148 {
2149 /* Cannot mix APCS26 and APCS32 code. */
2150 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2151 return false;
2152
2153 /* Cannot mix float APCS and non-float APCS code. */
2154 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2155 return false;
2156
2157 /* If the src and dest have different interworking flags
2158 then turn off the interworking bit. */
2159 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2160 {
2161 if (out_flags & EF_ARM_INTERWORK)
2162 _bfd_error_handler (_("\
2163 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2164 bfd_get_filename (obfd),
2165 bfd_archive_filename (ibfd));
2166
2167 in_flags &= ~EF_ARM_INTERWORK;
2168 }
2169
2170 /* Likewise for PIC, though don't warn for this case. */
2171 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2172 in_flags &= ~EF_ARM_PIC;
2173 }
2174
2175 elf_elfheader (obfd)->e_flags = in_flags;
2176 elf_flags_init (obfd) = true;
2177
2178 return true;
2179 }
2180
2181 /* Merge backend specific data from an object file to the output
2182 object file when linking. */
2183
2184 static boolean
2185 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2186 bfd * ibfd;
2187 bfd * obfd;
2188 {
2189 flagword out_flags;
2190 flagword in_flags;
2191 boolean flags_compatible = true;
2192 boolean null_input_bfd = true;
2193 asection *sec;
2194
2195 /* Check if we have the same endianess. */
2196 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2197 return false;
2198
2199 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2200 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2201 return true;
2202
2203 /* The input BFD must have had its flags initialised. */
2204 /* The following seems bogus to me -- The flags are initialized in
2205 the assembler but I don't think an elf_flags_init field is
2206 written into the object. */
2207 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2208
2209 in_flags = elf_elfheader (ibfd)->e_flags;
2210 out_flags = elf_elfheader (obfd)->e_flags;
2211
2212 if (!elf_flags_init (obfd))
2213 {
2214 /* If the input is the default architecture and had the default
2215 flags then do not bother setting the flags for the output
2216 architecture, instead allow future merges to do this. If no
2217 future merges ever set these flags then they will retain their
2218 uninitialised values, which surprise surprise, correspond
2219 to the default values. */
2220 if (bfd_get_arch_info (ibfd)->the_default
2221 && elf_elfheader (ibfd)->e_flags == 0)
2222 return true;
2223
2224 elf_flags_init (obfd) = true;
2225 elf_elfheader (obfd)->e_flags = in_flags;
2226
2227 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2228 && bfd_get_arch_info (obfd)->the_default)
2229 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2230
2231 return true;
2232 }
2233
2234 /* Identical flags must be compatible. */
2235 if (in_flags == out_flags)
2236 return true;
2237
2238 /* Check to see if the input BFD actually contains any sections.
2239 If not, its flags may not have been initialised either, but it cannot
2240 actually cause any incompatibility. */
2241 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2242 {
2243 /* Ignore synthetic glue sections. */
2244 if (strcmp (sec->name, ".glue_7")
2245 && strcmp (sec->name, ".glue_7t"))
2246 {
2247 null_input_bfd = false;
2248 break;
2249 }
2250 }
2251 if (null_input_bfd)
2252 return true;
2253
2254 /* Complain about various flag mismatches. */
2255 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2256 {
2257 _bfd_error_handler (_("\
2258 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2259 bfd_archive_filename (ibfd),
2260 (in_flags & EF_ARM_EABIMASK) >> 24,
2261 bfd_get_filename (obfd),
2262 (out_flags & EF_ARM_EABIMASK) >> 24);
2263 return false;
2264 }
2265
2266 /* Not sure what needs to be checked for EABI versions >= 1. */
2267 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2268 {
2269 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2270 {
2271 _bfd_error_handler (_("\
2272 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2273 bfd_archive_filename (ibfd),
2274 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2275 bfd_get_filename (obfd),
2276 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2277 flags_compatible = false;
2278 }
2279
2280 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2281 {
2282 if (in_flags & EF_ARM_APCS_FLOAT)
2283 _bfd_error_handler (_("\
2284 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2285 bfd_archive_filename (ibfd),
2286 bfd_get_filename (obfd));
2287 else
2288 _bfd_error_handler (_("\
2289 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2290 bfd_archive_filename (ibfd),
2291 bfd_get_filename (obfd));
2292
2293 flags_compatible = false;
2294 }
2295
2296 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2297 {
2298 if (in_flags & EF_ARM_VFP_FLOAT)
2299 _bfd_error_handler (_("\
2300 ERROR: %s uses VFP instructions, whereas %s uses FPA instructions"),
2301 bfd_archive_filename (ibfd),
2302 bfd_get_filename (obfd));
2303 else
2304 _bfd_error_handler (_("\
2305 ERROR: %s uses FPA instructions, whereas %s uses VFP instructions"),
2306 bfd_archive_filename (ibfd),
2307 bfd_get_filename (obfd));
2308
2309 flags_compatible = false;
2310 }
2311
2312 #ifdef EF_ARM_SOFT_FLOAT
2313 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2314 {
2315 /* We can allow interworking between code that is VFP format
2316 layout, and uses either soft float or integer regs for
2317 passing floating point arguments and results. We already
2318 know that the APCS_FLOAT flags match; similarly for VFP
2319 flags. */
2320 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2321 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2322 {
2323 if (in_flags & EF_ARM_SOFT_FLOAT)
2324 _bfd_error_handler (_("\
2325 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2326 bfd_archive_filename (ibfd),
2327 bfd_get_filename (obfd));
2328 else
2329 _bfd_error_handler (_("\
2330 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2331 bfd_archive_filename (ibfd),
2332 bfd_get_filename (obfd));
2333
2334 flags_compatible = false;
2335 }
2336 }
2337 #endif
2338
2339 /* Interworking mismatch is only a warning. */
2340 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2341 {
2342 if (in_flags & EF_ARM_INTERWORK)
2343 {
2344 _bfd_error_handler (_("\
2345 Warning: %s supports interworking, whereas %s does not"),
2346 bfd_archive_filename (ibfd),
2347 bfd_get_filename (obfd));
2348 }
2349 else
2350 {
2351 _bfd_error_handler (_("\
2352 Warning: %s does not support interworking, whereas %s does"),
2353 bfd_archive_filename (ibfd),
2354 bfd_get_filename (obfd));
2355 }
2356 }
2357 }
2358
2359 return flags_compatible;
2360 }
2361
2362 /* Display the flags field. */
2363
2364 static boolean
2365 elf32_arm_print_private_bfd_data (abfd, ptr)
2366 bfd *abfd;
2367 PTR ptr;
2368 {
2369 FILE * file = (FILE *) ptr;
2370 unsigned long flags;
2371
2372 BFD_ASSERT (abfd != NULL && ptr != NULL);
2373
2374 /* Print normal ELF private data. */
2375 _bfd_elf_print_private_bfd_data (abfd, ptr);
2376
2377 flags = elf_elfheader (abfd)->e_flags;
2378 /* Ignore init flag - it may not be set, despite the flags field
2379 containing valid data. */
2380
2381 /* xgettext:c-format */
2382 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2383
2384 switch (EF_ARM_EABI_VERSION (flags))
2385 {
2386 case EF_ARM_EABI_UNKNOWN:
2387 /* The following flag bits are GNU extenstions and not part of the
2388 official ARM ELF extended ABI. Hence they are only decoded if
2389 the EABI version is not set. */
2390 if (flags & EF_ARM_INTERWORK)
2391 fprintf (file, _(" [interworking enabled]"));
2392
2393 if (flags & EF_ARM_APCS_26)
2394 fprintf (file, " [APCS-26]");
2395 else
2396 fprintf (file, " [APCS-32]");
2397
2398 if (flags & EF_ARM_VFP_FLOAT)
2399 fprintf (file, _(" [VFP float format]"));
2400 else
2401 fprintf (file, _(" [FPA float format]"));
2402
2403 if (flags & EF_ARM_APCS_FLOAT)
2404 fprintf (file, _(" [floats passed in float registers]"));
2405
2406 if (flags & EF_ARM_PIC)
2407 fprintf (file, _(" [position independent]"));
2408
2409 if (flags & EF_ARM_NEW_ABI)
2410 fprintf (file, _(" [new ABI]"));
2411
2412 if (flags & EF_ARM_OLD_ABI)
2413 fprintf (file, _(" [old ABI]"));
2414
2415 if (flags & EF_ARM_SOFT_FLOAT)
2416 fprintf (file, _(" [software FP]"));
2417
2418 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2419 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2420 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT);
2421 break;
2422
2423 case EF_ARM_EABI_VER1:
2424 fprintf (file, _(" [Version1 EABI]"));
2425
2426 if (flags & EF_ARM_SYMSARESORTED)
2427 fprintf (file, _(" [sorted symbol table]"));
2428 else
2429 fprintf (file, _(" [unsorted symbol table]"));
2430
2431 flags &= ~ EF_ARM_SYMSARESORTED;
2432 break;
2433
2434 case EF_ARM_EABI_VER2:
2435 fprintf (file, _(" [Version2 EABI]"));
2436
2437 if (flags & EF_ARM_SYMSARESORTED)
2438 fprintf (file, _(" [sorted symbol table]"));
2439 else
2440 fprintf (file, _(" [unsorted symbol table]"));
2441
2442 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2443 fprintf (file, _(" [dynamic symbols use segment index]"));
2444
2445 if (flags & EF_ARM_MAPSYMSFIRST)
2446 fprintf (file, _(" [mapping symbols precede others]"));
2447
2448 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2449 | EF_ARM_MAPSYMSFIRST);
2450 break;
2451
2452 default:
2453 fprintf (file, _(" <EABI version unrecognised>"));
2454 break;
2455 }
2456
2457 flags &= ~ EF_ARM_EABIMASK;
2458
2459 if (flags & EF_ARM_RELEXEC)
2460 fprintf (file, _(" [relocatable executable]"));
2461
2462 if (flags & EF_ARM_HASENTRY)
2463 fprintf (file, _(" [has entry point]"));
2464
2465 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2466
2467 if (flags)
2468 fprintf (file, _("<Unrecognised flag bits set>"));
2469
2470 fputc ('\n', file);
2471
2472 return true;
2473 }
2474
2475 static int
2476 elf32_arm_get_symbol_type (elf_sym, type)
2477 Elf_Internal_Sym * elf_sym;
2478 int type;
2479 {
2480 switch (ELF_ST_TYPE (elf_sym->st_info))
2481 {
2482 case STT_ARM_TFUNC:
2483 return ELF_ST_TYPE (elf_sym->st_info);
2484
2485 case STT_ARM_16BIT:
2486 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2487 This allows us to distinguish between data used by Thumb instructions
2488 and non-data (which is probably code) inside Thumb regions of an
2489 executable. */
2490 if (type != STT_OBJECT)
2491 return ELF_ST_TYPE (elf_sym->st_info);
2492 break;
2493
2494 default:
2495 break;
2496 }
2497
2498 return type;
2499 }
2500
2501 static asection *
2502 elf32_arm_gc_mark_hook (abfd, info, rel, h, sym)
2503 bfd *abfd;
2504 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2505 Elf_Internal_Rela *rel;
2506 struct elf_link_hash_entry *h;
2507 Elf_Internal_Sym *sym;
2508 {
2509 if (h != NULL)
2510 {
2511 switch (ELF32_R_TYPE (rel->r_info))
2512 {
2513 case R_ARM_GNU_VTINHERIT:
2514 case R_ARM_GNU_VTENTRY:
2515 break;
2516
2517 default:
2518 switch (h->root.type)
2519 {
2520 case bfd_link_hash_defined:
2521 case bfd_link_hash_defweak:
2522 return h->root.u.def.section;
2523
2524 case bfd_link_hash_common:
2525 return h->root.u.c.p->section;
2526
2527 default:
2528 break;
2529 }
2530 }
2531 }
2532 else
2533 {
2534 return bfd_section_from_elf_index (abfd, sym->st_shndx);
2535 }
2536
2537 return NULL;
2538 }
2539
2540 /* Update the got entry reference counts for the section being removed. */
2541
2542 static boolean
2543 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2544 bfd *abfd ATTRIBUTE_UNUSED;
2545 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2546 asection *sec ATTRIBUTE_UNUSED;
2547 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2548 {
2549 /* We don't support garbage collection of GOT and PLT relocs yet. */
2550 return true;
2551 }
2552
2553 /* Look through the relocs for a section during the first phase. */
2554
2555 static boolean
2556 elf32_arm_check_relocs (abfd, info, sec, relocs)
2557 bfd * abfd;
2558 struct bfd_link_info * info;
2559 asection * sec;
2560 const Elf_Internal_Rela * relocs;
2561 {
2562 Elf_Internal_Shdr * symtab_hdr;
2563 struct elf_link_hash_entry ** sym_hashes;
2564 struct elf_link_hash_entry ** sym_hashes_end;
2565 const Elf_Internal_Rela * rel;
2566 const Elf_Internal_Rela * rel_end;
2567 bfd * dynobj;
2568 asection * sgot, *srelgot, *sreloc;
2569 bfd_vma * local_got_offsets;
2570
2571 if (info->relocateable)
2572 return true;
2573
2574 sgot = srelgot = sreloc = NULL;
2575
2576 dynobj = elf_hash_table (info)->dynobj;
2577 local_got_offsets = elf_local_got_offsets (abfd);
2578
2579 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2580 sym_hashes = elf_sym_hashes (abfd);
2581 sym_hashes_end = sym_hashes
2582 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2583
2584 if (!elf_bad_symtab (abfd))
2585 sym_hashes_end -= symtab_hdr->sh_info;
2586
2587 rel_end = relocs + sec->reloc_count;
2588 for (rel = relocs; rel < rel_end; rel++)
2589 {
2590 struct elf_link_hash_entry *h;
2591 unsigned long r_symndx;
2592
2593 r_symndx = ELF32_R_SYM (rel->r_info);
2594 if (r_symndx < symtab_hdr->sh_info)
2595 h = NULL;
2596 else
2597 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2598
2599 /* Some relocs require a global offset table. */
2600 if (dynobj == NULL)
2601 {
2602 switch (ELF32_R_TYPE (rel->r_info))
2603 {
2604 case R_ARM_GOT32:
2605 case R_ARM_GOTOFF:
2606 case R_ARM_GOTPC:
2607 elf_hash_table (info)->dynobj = dynobj = abfd;
2608 if (! _bfd_elf_create_got_section (dynobj, info))
2609 return false;
2610 break;
2611
2612 default:
2613 break;
2614 }
2615 }
2616
2617 switch (ELF32_R_TYPE (rel->r_info))
2618 {
2619 case R_ARM_GOT32:
2620 /* This symbol requires a global offset table entry. */
2621 if (sgot == NULL)
2622 {
2623 sgot = bfd_get_section_by_name (dynobj, ".got");
2624 BFD_ASSERT (sgot != NULL);
2625 }
2626
2627 /* Get the got relocation section if necessary. */
2628 if (srelgot == NULL
2629 && (h != NULL || info->shared))
2630 {
2631 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2632
2633 /* If no got relocation section, make one and initialize. */
2634 if (srelgot == NULL)
2635 {
2636 srelgot = bfd_make_section (dynobj, ".rel.got");
2637 if (srelgot == NULL
2638 || ! bfd_set_section_flags (dynobj, srelgot,
2639 (SEC_ALLOC
2640 | SEC_LOAD
2641 | SEC_HAS_CONTENTS
2642 | SEC_IN_MEMORY
2643 | SEC_LINKER_CREATED
2644 | SEC_READONLY))
2645 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2646 return false;
2647 }
2648 }
2649
2650 if (h != NULL)
2651 {
2652 if (h->got.offset != (bfd_vma) -1)
2653 /* We have already allocated space in the .got. */
2654 break;
2655
2656 h->got.offset = sgot->_raw_size;
2657
2658 /* Make sure this symbol is output as a dynamic symbol. */
2659 if (h->dynindx == -1)
2660 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2661 return false;
2662
2663 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2664 }
2665 else
2666 {
2667 /* This is a global offset table entry for a local
2668 symbol. */
2669 if (local_got_offsets == NULL)
2670 {
2671 bfd_size_type size;
2672 unsigned int i;
2673
2674 size = symtab_hdr->sh_info;
2675 size *= sizeof (bfd_vma);
2676 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2677 if (local_got_offsets == NULL)
2678 return false;
2679 elf_local_got_offsets (abfd) = local_got_offsets;
2680 for (i = 0; i < symtab_hdr->sh_info; i++)
2681 local_got_offsets[i] = (bfd_vma) -1;
2682 }
2683
2684 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2685 /* We have already allocated space in the .got. */
2686 break;
2687
2688 local_got_offsets[r_symndx] = sgot->_raw_size;
2689
2690 if (info->shared)
2691 /* If we are generating a shared object, we need to
2692 output a R_ARM_RELATIVE reloc so that the dynamic
2693 linker can adjust this GOT entry. */
2694 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2695 }
2696
2697 sgot->_raw_size += 4;
2698 break;
2699
2700 case R_ARM_PLT32:
2701 /* This symbol requires a procedure linkage table entry. We
2702 actually build the entry in adjust_dynamic_symbol,
2703 because this might be a case of linking PIC code which is
2704 never referenced by a dynamic object, in which case we
2705 don't need to generate a procedure linkage table entry
2706 after all. */
2707
2708 /* If this is a local symbol, we resolve it directly without
2709 creating a procedure linkage table entry. */
2710 if (h == NULL)
2711 continue;
2712
2713 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2714 break;
2715
2716 case R_ARM_ABS32:
2717 case R_ARM_REL32:
2718 case R_ARM_PC24:
2719 /* If we are creating a shared library, and this is a reloc
2720 against a global symbol, or a non PC relative reloc
2721 against a local symbol, then we need to copy the reloc
2722 into the shared library. However, if we are linking with
2723 -Bsymbolic, we do not need to copy a reloc against a
2724 global symbol which is defined in an object we are
2725 including in the link (i.e., DEF_REGULAR is set). At
2726 this point we have not seen all the input files, so it is
2727 possible that DEF_REGULAR is not set now but will be set
2728 later (it is never cleared). We account for that
2729 possibility below by storing information in the
2730 pcrel_relocs_copied field of the hash table entry. */
2731 if (info->shared
2732 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2733 || (h != NULL
2734 && (! info->symbolic
2735 || (h->elf_link_hash_flags
2736 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2737 {
2738 /* When creating a shared object, we must copy these
2739 reloc types into the output file. We create a reloc
2740 section in dynobj and make room for this reloc. */
2741 if (sreloc == NULL)
2742 {
2743 const char * name;
2744
2745 name = (bfd_elf_string_from_elf_section
2746 (abfd,
2747 elf_elfheader (abfd)->e_shstrndx,
2748 elf_section_data (sec)->rel_hdr.sh_name));
2749 if (name == NULL)
2750 return false;
2751
2752 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2753 && strcmp (bfd_get_section_name (abfd, sec),
2754 name + 4) == 0);
2755
2756 sreloc = bfd_get_section_by_name (dynobj, name);
2757 if (sreloc == NULL)
2758 {
2759 flagword flags;
2760
2761 sreloc = bfd_make_section (dynobj, name);
2762 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2763 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2764 if ((sec->flags & SEC_ALLOC) != 0)
2765 flags |= SEC_ALLOC | SEC_LOAD;
2766 if (sreloc == NULL
2767 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2768 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2769 return false;
2770 }
2771 if (sec->flags & SEC_READONLY)
2772 info->flags |= DF_TEXTREL;
2773 }
2774
2775 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2776 /* If we are linking with -Bsymbolic, and this is a
2777 global symbol, we count the number of PC relative
2778 relocations we have entered for this symbol, so that
2779 we can discard them again if the symbol is later
2780 defined by a regular object. Note that this function
2781 is only called if we are using an elf_i386 linker
2782 hash table, which means that h is really a pointer to
2783 an elf_i386_link_hash_entry. */
2784 if (h != NULL && info->symbolic
2785 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2786 {
2787 struct elf32_arm_link_hash_entry * eh;
2788 struct elf32_arm_pcrel_relocs_copied * p;
2789
2790 eh = (struct elf32_arm_link_hash_entry *) h;
2791
2792 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2793 if (p->section == sreloc)
2794 break;
2795
2796 if (p == NULL)
2797 {
2798 p = ((struct elf32_arm_pcrel_relocs_copied *)
2799 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2800 if (p == NULL)
2801 return false;
2802 p->next = eh->pcrel_relocs_copied;
2803 eh->pcrel_relocs_copied = p;
2804 p->section = sreloc;
2805 p->count = 0;
2806 }
2807
2808 ++p->count;
2809 }
2810 }
2811 break;
2812
2813 /* This relocation describes the C++ object vtable hierarchy.
2814 Reconstruct it for later use during GC. */
2815 case R_ARM_GNU_VTINHERIT:
2816 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2817 return false;
2818 break;
2819
2820 /* This relocation describes which C++ vtable entries are actually
2821 used. Record for later use during GC. */
2822 case R_ARM_GNU_VTENTRY:
2823 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2824 return false;
2825 break;
2826 }
2827 }
2828
2829 return true;
2830 }
2831
2832 /* Find the nearest line to a particular section and offset, for error
2833 reporting. This code is a duplicate of the code in elf.c, except
2834 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2835
2836 static boolean
2837 elf32_arm_find_nearest_line
2838 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2839 bfd * abfd;
2840 asection * section;
2841 asymbol ** symbols;
2842 bfd_vma offset;
2843 const char ** filename_ptr;
2844 const char ** functionname_ptr;
2845 unsigned int * line_ptr;
2846 {
2847 boolean found;
2848 const char * filename;
2849 asymbol * func;
2850 bfd_vma low_func;
2851 asymbol ** p;
2852
2853 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2854 filename_ptr, functionname_ptr,
2855 line_ptr, 0,
2856 &elf_tdata (abfd)->dwarf2_find_line_info))
2857 return true;
2858
2859 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2860 &found, filename_ptr,
2861 functionname_ptr, line_ptr,
2862 &elf_tdata (abfd)->line_info))
2863 return false;
2864
2865 if (found)
2866 return true;
2867
2868 if (symbols == NULL)
2869 return false;
2870
2871 filename = NULL;
2872 func = NULL;
2873 low_func = 0;
2874
2875 for (p = symbols; *p != NULL; p++)
2876 {
2877 elf_symbol_type *q;
2878
2879 q = (elf_symbol_type *) *p;
2880
2881 if (bfd_get_section (&q->symbol) != section)
2882 continue;
2883
2884 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2885 {
2886 default:
2887 break;
2888 case STT_FILE:
2889 filename = bfd_asymbol_name (&q->symbol);
2890 break;
2891 case STT_NOTYPE:
2892 case STT_FUNC:
2893 case STT_ARM_TFUNC:
2894 if (q->symbol.section == section
2895 && q->symbol.value >= low_func
2896 && q->symbol.value <= offset)
2897 {
2898 func = (asymbol *) q;
2899 low_func = q->symbol.value;
2900 }
2901 break;
2902 }
2903 }
2904
2905 if (func == NULL)
2906 return false;
2907
2908 *filename_ptr = filename;
2909 *functionname_ptr = bfd_asymbol_name (func);
2910 *line_ptr = 0;
2911
2912 return true;
2913 }
2914
2915 /* Adjust a symbol defined by a dynamic object and referenced by a
2916 regular object. The current definition is in some section of the
2917 dynamic object, but we're not including those sections. We have to
2918 change the definition to something the rest of the link can
2919 understand. */
2920
2921 static boolean
2922 elf32_arm_adjust_dynamic_symbol (info, h)
2923 struct bfd_link_info * info;
2924 struct elf_link_hash_entry * h;
2925 {
2926 bfd * dynobj;
2927 asection * s;
2928 unsigned int power_of_two;
2929
2930 dynobj = elf_hash_table (info)->dynobj;
2931
2932 /* Make sure we know what is going on here. */
2933 BFD_ASSERT (dynobj != NULL
2934 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2935 || h->weakdef != NULL
2936 || ((h->elf_link_hash_flags
2937 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2938 && (h->elf_link_hash_flags
2939 & ELF_LINK_HASH_REF_REGULAR) != 0
2940 && (h->elf_link_hash_flags
2941 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2942
2943 /* If this is a function, put it in the procedure linkage table. We
2944 will fill in the contents of the procedure linkage table later,
2945 when we know the address of the .got section. */
2946 if (h->type == STT_FUNC
2947 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2948 {
2949 if (! info->shared
2950 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2951 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
2952 {
2953 /* This case can occur if we saw a PLT32 reloc in an input
2954 file, but the symbol was never referred to by a dynamic
2955 object. In such a case, we don't actually need to build
2956 a procedure linkage table, and we can just do a PC32
2957 reloc instead. */
2958 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2959 return true;
2960 }
2961
2962 /* Make sure this symbol is output as a dynamic symbol. */
2963 if (h->dynindx == -1)
2964 {
2965 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2966 return false;
2967 }
2968
2969 s = bfd_get_section_by_name (dynobj, ".plt");
2970 BFD_ASSERT (s != NULL);
2971
2972 /* If this is the first .plt entry, make room for the special
2973 first entry. */
2974 if (s->_raw_size == 0)
2975 s->_raw_size += PLT_ENTRY_SIZE;
2976
2977 /* If this symbol is not defined in a regular file, and we are
2978 not generating a shared library, then set the symbol to this
2979 location in the .plt. This is required to make function
2980 pointers compare as equal between the normal executable and
2981 the shared library. */
2982 if (! info->shared
2983 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2984 {
2985 h->root.u.def.section = s;
2986 h->root.u.def.value = s->_raw_size;
2987 }
2988
2989 h->plt.offset = s->_raw_size;
2990
2991 /* Make room for this entry. */
2992 s->_raw_size += PLT_ENTRY_SIZE;
2993
2994 /* We also need to make an entry in the .got.plt section, which
2995 will be placed in the .got section by the linker script. */
2996 s = bfd_get_section_by_name (dynobj, ".got.plt");
2997 BFD_ASSERT (s != NULL);
2998 s->_raw_size += 4;
2999
3000 /* We also need to make an entry in the .rel.plt section. */
3001
3002 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3003 BFD_ASSERT (s != NULL);
3004 s->_raw_size += sizeof (Elf32_External_Rel);
3005
3006 return true;
3007 }
3008
3009 /* If this is a weak symbol, and there is a real definition, the
3010 processor independent code will have arranged for us to see the
3011 real definition first, and we can just use the same value. */
3012 if (h->weakdef != NULL)
3013 {
3014 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3015 || h->weakdef->root.type == bfd_link_hash_defweak);
3016 h->root.u.def.section = h->weakdef->root.u.def.section;
3017 h->root.u.def.value = h->weakdef->root.u.def.value;
3018 return true;
3019 }
3020
3021 /* This is a reference to a symbol defined by a dynamic object which
3022 is not a function. */
3023
3024 /* If we are creating a shared library, we must presume that the
3025 only references to the symbol are via the global offset table.
3026 For such cases we need not do anything here; the relocations will
3027 be handled correctly by relocate_section. */
3028 if (info->shared)
3029 return true;
3030
3031 /* We must allocate the symbol in our .dynbss section, which will
3032 become part of the .bss section of the executable. There will be
3033 an entry for this symbol in the .dynsym section. The dynamic
3034 object will contain position independent code, so all references
3035 from the dynamic object to this symbol will go through the global
3036 offset table. The dynamic linker will use the .dynsym entry to
3037 determine the address it must put in the global offset table, so
3038 both the dynamic object and the regular object will refer to the
3039 same memory location for the variable. */
3040 s = bfd_get_section_by_name (dynobj, ".dynbss");
3041 BFD_ASSERT (s != NULL);
3042
3043 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3044 copy the initial value out of the dynamic object and into the
3045 runtime process image. We need to remember the offset into the
3046 .rel.bss section we are going to use. */
3047 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3048 {
3049 asection *srel;
3050
3051 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3052 BFD_ASSERT (srel != NULL);
3053 srel->_raw_size += sizeof (Elf32_External_Rel);
3054 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3055 }
3056
3057 /* We need to figure out the alignment required for this symbol. I
3058 have no idea how ELF linkers handle this. */
3059 power_of_two = bfd_log2 (h->size);
3060 if (power_of_two > 3)
3061 power_of_two = 3;
3062
3063 /* Apply the required alignment. */
3064 s->_raw_size = BFD_ALIGN (s->_raw_size,
3065 (bfd_size_type) (1 << power_of_two));
3066 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3067 {
3068 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3069 return false;
3070 }
3071
3072 /* Define the symbol as being at this point in the section. */
3073 h->root.u.def.section = s;
3074 h->root.u.def.value = s->_raw_size;
3075
3076 /* Increment the section size to make room for the symbol. */
3077 s->_raw_size += h->size;
3078
3079 return true;
3080 }
3081
3082 /* Set the sizes of the dynamic sections. */
3083
3084 static boolean
3085 elf32_arm_size_dynamic_sections (output_bfd, info)
3086 bfd * output_bfd ATTRIBUTE_UNUSED;
3087 struct bfd_link_info * info;
3088 {
3089 bfd * dynobj;
3090 asection * s;
3091 boolean plt;
3092 boolean relocs;
3093
3094 dynobj = elf_hash_table (info)->dynobj;
3095 BFD_ASSERT (dynobj != NULL);
3096
3097 if (elf_hash_table (info)->dynamic_sections_created)
3098 {
3099 /* Set the contents of the .interp section to the interpreter. */
3100 if (! info->shared)
3101 {
3102 s = bfd_get_section_by_name (dynobj, ".interp");
3103 BFD_ASSERT (s != NULL);
3104 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3105 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3106 }
3107 }
3108 else
3109 {
3110 /* We may have created entries in the .rel.got section.
3111 However, if we are not creating the dynamic sections, we will
3112 not actually use these entries. Reset the size of .rel.got,
3113 which will cause it to get stripped from the output file
3114 below. */
3115 s = bfd_get_section_by_name (dynobj, ".rel.got");
3116 if (s != NULL)
3117 s->_raw_size = 0;
3118 }
3119
3120 /* If this is a -Bsymbolic shared link, then we need to discard all
3121 PC relative relocs against symbols defined in a regular object.
3122 We allocated space for them in the check_relocs routine, but we
3123 will not fill them in in the relocate_section routine. */
3124 if (info->shared && info->symbolic)
3125 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3126 elf32_arm_discard_copies,
3127 (PTR) NULL);
3128
3129 /* The check_relocs and adjust_dynamic_symbol entry points have
3130 determined the sizes of the various dynamic sections. Allocate
3131 memory for them. */
3132 plt = false;
3133 relocs = false;
3134 for (s = dynobj->sections; s != NULL; s = s->next)
3135 {
3136 const char * name;
3137 boolean strip;
3138
3139 if ((s->flags & SEC_LINKER_CREATED) == 0)
3140 continue;
3141
3142 /* It's OK to base decisions on the section name, because none
3143 of the dynobj section names depend upon the input files. */
3144 name = bfd_get_section_name (dynobj, s);
3145
3146 strip = false;
3147
3148 if (strcmp (name, ".plt") == 0)
3149 {
3150 if (s->_raw_size == 0)
3151 {
3152 /* Strip this section if we don't need it; see the
3153 comment below. */
3154 strip = true;
3155 }
3156 else
3157 {
3158 /* Remember whether there is a PLT. */
3159 plt = true;
3160 }
3161 }
3162 else if (strncmp (name, ".rel", 4) == 0)
3163 {
3164 if (s->_raw_size == 0)
3165 {
3166 /* If we don't need this section, strip it from the
3167 output file. This is mostly to handle .rel.bss and
3168 .rel.plt. We must create both sections in
3169 create_dynamic_sections, because they must be created
3170 before the linker maps input sections to output
3171 sections. The linker does that before
3172 adjust_dynamic_symbol is called, and it is that
3173 function which decides whether anything needs to go
3174 into these sections. */
3175 strip = true;
3176 }
3177 else
3178 {
3179 /* Remember whether there are any reloc sections other
3180 than .rel.plt. */
3181 if (strcmp (name, ".rel.plt") != 0)
3182 relocs = true;
3183
3184 /* We use the reloc_count field as a counter if we need
3185 to copy relocs into the output file. */
3186 s->reloc_count = 0;
3187 }
3188 }
3189 else if (strncmp (name, ".got", 4) != 0)
3190 {
3191 /* It's not one of our sections, so don't allocate space. */
3192 continue;
3193 }
3194
3195 if (strip)
3196 {
3197 asection ** spp;
3198
3199 for (spp = &s->output_section->owner->sections;
3200 *spp != NULL;
3201 spp = &(*spp)->next)
3202 {
3203 if (*spp == s->output_section)
3204 {
3205 bfd_section_list_remove (s->output_section->owner, spp);
3206 --s->output_section->owner->section_count;
3207 break;
3208 }
3209 }
3210 continue;
3211 }
3212
3213 /* Allocate memory for the section contents. */
3214 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3215 if (s->contents == NULL && s->_raw_size != 0)
3216 return false;
3217 }
3218
3219 if (elf_hash_table (info)->dynamic_sections_created)
3220 {
3221 /* Add some entries to the .dynamic section. We fill in the
3222 values later, in elf32_arm_finish_dynamic_sections, but we
3223 must add the entries now so that we get the correct size for
3224 the .dynamic section. The DT_DEBUG entry is filled in by the
3225 dynamic linker and used by the debugger. */
3226 #define add_dynamic_entry(TAG, VAL) \
3227 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3228
3229 if (!info->shared)
3230 {
3231 if (!add_dynamic_entry (DT_DEBUG, 0))
3232 return false;
3233 }
3234
3235 if (plt)
3236 {
3237 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3238 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3239 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3240 || !add_dynamic_entry (DT_JMPREL, 0))
3241 return false;
3242 }
3243
3244 if (relocs)
3245 {
3246 if ( !add_dynamic_entry (DT_REL, 0)
3247 || !add_dynamic_entry (DT_RELSZ, 0)
3248 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3249 return false;
3250 }
3251
3252 if ((info->flags & DF_TEXTREL) != 0)
3253 {
3254 if (!add_dynamic_entry (DT_TEXTREL, 0))
3255 return false;
3256 info->flags |= DF_TEXTREL;
3257 }
3258 }
3259 #undef add_synamic_entry
3260
3261 return true;
3262 }
3263
3264 /* This function is called via elf32_arm_link_hash_traverse if we are
3265 creating a shared object with -Bsymbolic. It discards the space
3266 allocated to copy PC relative relocs against symbols which are
3267 defined in regular objects. We allocated space for them in the
3268 check_relocs routine, but we won't fill them in in the
3269 relocate_section routine. */
3270
3271 static boolean
3272 elf32_arm_discard_copies (h, ignore)
3273 struct elf32_arm_link_hash_entry * h;
3274 PTR ignore ATTRIBUTE_UNUSED;
3275 {
3276 struct elf32_arm_pcrel_relocs_copied * s;
3277
3278 /* We only discard relocs for symbols defined in a regular object. */
3279 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3280 return true;
3281
3282 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3283 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3284
3285 return true;
3286 }
3287
3288 /* Finish up dynamic symbol handling. We set the contents of various
3289 dynamic sections here. */
3290
3291 static boolean
3292 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3293 bfd * output_bfd;
3294 struct bfd_link_info * info;
3295 struct elf_link_hash_entry * h;
3296 Elf_Internal_Sym * sym;
3297 {
3298 bfd * dynobj;
3299
3300 dynobj = elf_hash_table (info)->dynobj;
3301
3302 if (h->plt.offset != (bfd_vma) -1)
3303 {
3304 asection * splt;
3305 asection * sgot;
3306 asection * srel;
3307 bfd_vma plt_index;
3308 bfd_vma got_offset;
3309 Elf_Internal_Rel rel;
3310
3311 /* This symbol has an entry in the procedure linkage table. Set
3312 it up. */
3313
3314 BFD_ASSERT (h->dynindx != -1);
3315
3316 splt = bfd_get_section_by_name (dynobj, ".plt");
3317 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3318 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3319 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3320
3321 /* Get the index in the procedure linkage table which
3322 corresponds to this symbol. This is the index of this symbol
3323 in all the symbols for which we are making plt entries. The
3324 first entry in the procedure linkage table is reserved. */
3325 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3326
3327 /* Get the offset into the .got table of the entry that
3328 corresponds to this function. Each .got entry is 4 bytes.
3329 The first three are reserved. */
3330 got_offset = (plt_index + 3) * 4;
3331
3332 /* Fill in the entry in the procedure linkage table. */
3333 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3334 splt->contents + h->plt.offset + 0);
3335 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3336 splt->contents + h->plt.offset + 4);
3337 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3338 splt->contents + h->plt.offset + 8);
3339 bfd_put_32 (output_bfd,
3340 (sgot->output_section->vma
3341 + sgot->output_offset
3342 + got_offset
3343 - splt->output_section->vma
3344 - splt->output_offset
3345 - h->plt.offset - 12),
3346 splt->contents + h->plt.offset + 12);
3347
3348 /* Fill in the entry in the global offset table. */
3349 bfd_put_32 (output_bfd,
3350 (splt->output_section->vma
3351 + splt->output_offset),
3352 sgot->contents + got_offset);
3353
3354 /* Fill in the entry in the .rel.plt section. */
3355 rel.r_offset = (sgot->output_section->vma
3356 + sgot->output_offset
3357 + got_offset);
3358 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3359 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3360 ((Elf32_External_Rel *) srel->contents
3361 + plt_index));
3362
3363 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3364 {
3365 /* Mark the symbol as undefined, rather than as defined in
3366 the .plt section. Leave the value alone. */
3367 sym->st_shndx = SHN_UNDEF;
3368 /* If the symbol is weak, we do need to clear the value.
3369 Otherwise, the PLT entry would provide a definition for
3370 the symbol even if the symbol wasn't defined anywhere,
3371 and so the symbol would never be NULL. */
3372 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3373 == 0)
3374 sym->st_value = 0;
3375 }
3376 }
3377
3378 if (h->got.offset != (bfd_vma) -1)
3379 {
3380 asection * sgot;
3381 asection * srel;
3382 Elf_Internal_Rel rel;
3383
3384 /* This symbol has an entry in the global offset table. Set it
3385 up. */
3386 sgot = bfd_get_section_by_name (dynobj, ".got");
3387 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3388 BFD_ASSERT (sgot != NULL && srel != NULL);
3389
3390 rel.r_offset = (sgot->output_section->vma
3391 + sgot->output_offset
3392 + (h->got.offset &~ (bfd_vma) 1));
3393
3394 /* If this is a -Bsymbolic link, and the symbol is defined
3395 locally, we just want to emit a RELATIVE reloc. The entry in
3396 the global offset table will already have been initialized in
3397 the relocate_section function. */
3398 if (info->shared
3399 && (info->symbolic || h->dynindx == -1)
3400 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3401 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3402 else
3403 {
3404 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3405 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3406 }
3407
3408 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3409 ((Elf32_External_Rel *) srel->contents
3410 + srel->reloc_count));
3411 ++srel->reloc_count;
3412 }
3413
3414 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3415 {
3416 asection * s;
3417 Elf_Internal_Rel rel;
3418
3419 /* This symbol needs a copy reloc. Set it up. */
3420 BFD_ASSERT (h->dynindx != -1
3421 && (h->root.type == bfd_link_hash_defined
3422 || h->root.type == bfd_link_hash_defweak));
3423
3424 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3425 ".rel.bss");
3426 BFD_ASSERT (s != NULL);
3427
3428 rel.r_offset = (h->root.u.def.value
3429 + h->root.u.def.section->output_section->vma
3430 + h->root.u.def.section->output_offset);
3431 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3432 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3433 ((Elf32_External_Rel *) s->contents
3434 + s->reloc_count));
3435 ++s->reloc_count;
3436 }
3437
3438 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3439 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3440 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3441 sym->st_shndx = SHN_ABS;
3442
3443 return true;
3444 }
3445
3446 /* Finish up the dynamic sections. */
3447
3448 static boolean
3449 elf32_arm_finish_dynamic_sections (output_bfd, info)
3450 bfd * output_bfd;
3451 struct bfd_link_info * info;
3452 {
3453 bfd * dynobj;
3454 asection * sgot;
3455 asection * sdyn;
3456
3457 dynobj = elf_hash_table (info)->dynobj;
3458
3459 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3460 BFD_ASSERT (sgot != NULL);
3461 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3462
3463 if (elf_hash_table (info)->dynamic_sections_created)
3464 {
3465 asection *splt;
3466 Elf32_External_Dyn *dyncon, *dynconend;
3467
3468 splt = bfd_get_section_by_name (dynobj, ".plt");
3469 BFD_ASSERT (splt != NULL && sdyn != NULL);
3470
3471 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3472 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3473
3474 for (; dyncon < dynconend; dyncon++)
3475 {
3476 Elf_Internal_Dyn dyn;
3477 const char * name;
3478 asection * s;
3479
3480 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3481
3482 switch (dyn.d_tag)
3483 {
3484 default:
3485 break;
3486
3487 case DT_PLTGOT:
3488 name = ".got";
3489 goto get_vma;
3490 case DT_JMPREL:
3491 name = ".rel.plt";
3492 get_vma:
3493 s = bfd_get_section_by_name (output_bfd, name);
3494 BFD_ASSERT (s != NULL);
3495 dyn.d_un.d_ptr = s->vma;
3496 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3497 break;
3498
3499 case DT_PLTRELSZ:
3500 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3501 BFD_ASSERT (s != NULL);
3502 if (s->_cooked_size != 0)
3503 dyn.d_un.d_val = s->_cooked_size;
3504 else
3505 dyn.d_un.d_val = s->_raw_size;
3506 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3507 break;
3508
3509 case DT_RELSZ:
3510 /* My reading of the SVR4 ABI indicates that the
3511 procedure linkage table relocs (DT_JMPREL) should be
3512 included in the overall relocs (DT_REL). This is
3513 what Solaris does. However, UnixWare can not handle
3514 that case. Therefore, we override the DT_RELSZ entry
3515 here to make it not include the JMPREL relocs. Since
3516 the linker script arranges for .rel.plt to follow all
3517 other relocation sections, we don't have to worry
3518 about changing the DT_REL entry. */
3519 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3520 if (s != NULL)
3521 {
3522 if (s->_cooked_size != 0)
3523 dyn.d_un.d_val -= s->_cooked_size;
3524 else
3525 dyn.d_un.d_val -= s->_raw_size;
3526 }
3527 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3528 break;
3529 }
3530 }
3531
3532 /* Fill in the first entry in the procedure linkage table. */
3533 if (splt->_raw_size > 0)
3534 {
3535 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3536 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3537 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3538 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3539 }
3540
3541 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3542 really seem like the right value. */
3543 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3544 }
3545
3546 /* Fill in the first three entries in the global offset table. */
3547 if (sgot->_raw_size > 0)
3548 {
3549 if (sdyn == NULL)
3550 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3551 else
3552 bfd_put_32 (output_bfd,
3553 sdyn->output_section->vma + sdyn->output_offset,
3554 sgot->contents);
3555 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3556 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3557 }
3558
3559 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3560
3561 return true;
3562 }
3563
3564 static void
3565 elf32_arm_post_process_headers (abfd, link_info)
3566 bfd * abfd;
3567 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3568 {
3569 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3570
3571 i_ehdrp = elf_elfheader (abfd);
3572
3573 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3574 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3575 }
3576
3577 static enum elf_reloc_type_class
3578 elf32_arm_reloc_type_class (rela)
3579 const Elf_Internal_Rela *rela;
3580 {
3581 switch ((int) ELF32_R_TYPE (rela->r_info))
3582 {
3583 case R_ARM_RELATIVE:
3584 return reloc_class_relative;
3585 case R_ARM_JUMP_SLOT:
3586 return reloc_class_plt;
3587 case R_ARM_COPY:
3588 return reloc_class_copy;
3589 default:
3590 return reloc_class_normal;
3591 }
3592 }
3593
3594
3595 #define ELF_ARCH bfd_arch_arm
3596 #define ELF_MACHINE_CODE EM_ARM
3597 #define ELF_MAXPAGESIZE 0x8000
3598
3599 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3600 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3601 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3602 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3603 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3604 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3605 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3606
3607 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3608 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3609 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3610 #define elf_backend_check_relocs elf32_arm_check_relocs
3611 #define elf_backend_relocate_section elf32_arm_relocate_section
3612 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3613 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3614 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3615 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3616 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3617 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3618 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3619
3620 #define elf_backend_can_gc_sections 1
3621 #define elf_backend_plt_readonly 1
3622 #define elf_backend_want_got_plt 1
3623 #define elf_backend_want_plt_sym 0
3624
3625 #define elf_backend_got_header_size 12
3626 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3627
3628 #include "elf32-target.h"
This page took 0.144346 seconds and 5 git commands to generate.