* elf32-arm.h (elf32_arm_final_link_relocate): Add R_ARM_ALU*.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef USE_REL
22 #define USE_REL 0
23 #endif
24
25 typedef unsigned long int insn32;
26 typedef unsigned short int insn16;
27
28 static bfd_boolean elf32_arm_set_private_flags
29 PARAMS ((bfd *, flagword));
30 static bfd_boolean elf32_arm_copy_private_bfd_data
31 PARAMS ((bfd *, bfd *));
32 static bfd_boolean elf32_arm_merge_private_bfd_data
33 PARAMS ((bfd *, bfd *));
34 static bfd_boolean elf32_arm_print_private_bfd_data
35 PARAMS ((bfd *, PTR));
36 static int elf32_arm_get_symbol_type
37 PARAMS (( Elf_Internal_Sym *, int));
38 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
39 PARAMS ((bfd *));
40 static bfd_reloc_status_type elf32_arm_final_link_relocate
41 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
42 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
43 const char *, int, struct elf_link_hash_entry *));
44 static insn32 insert_thumb_branch
45 PARAMS ((insn32, int));
46 static struct elf_link_hash_entry *find_thumb_glue
47 PARAMS ((struct bfd_link_info *, const char *, bfd *));
48 static struct elf_link_hash_entry *find_arm_glue
49 PARAMS ((struct bfd_link_info *, const char *, bfd *));
50 static void elf32_arm_post_process_headers
51 PARAMS ((bfd *, struct bfd_link_info *));
52 static int elf32_arm_to_thumb_stub
53 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
54 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
55 static int elf32_thumb_to_arm_stub
56 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
57 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
58 static bfd_boolean elf32_arm_relocate_section
59 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
60 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
61 static asection * elf32_arm_gc_mark_hook
62 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
63 struct elf_link_hash_entry *, Elf_Internal_Sym *));
64 static bfd_boolean elf32_arm_gc_sweep_hook
65 PARAMS ((bfd *, struct bfd_link_info *, asection *,
66 const Elf_Internal_Rela *));
67 static bfd_boolean elf32_arm_check_relocs
68 PARAMS ((bfd *, struct bfd_link_info *, asection *,
69 const Elf_Internal_Rela *));
70 static bfd_boolean elf32_arm_find_nearest_line
71 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
72 const char **, unsigned int *));
73 static bfd_boolean elf32_arm_adjust_dynamic_symbol
74 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
75 static bfd_boolean elf32_arm_size_dynamic_sections
76 PARAMS ((bfd *, struct bfd_link_info *));
77 static bfd_boolean elf32_arm_finish_dynamic_symbol
78 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
79 Elf_Internal_Sym *));
80 static bfd_boolean elf32_arm_finish_dynamic_sections
81 PARAMS ((bfd *, struct bfd_link_info *));
82 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
83 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
84 #if USE_REL
85 static void arm_add_to_rel
86 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
87 #endif
88 static bfd_boolean allocate_dynrelocs
89 PARAMS ((struct elf_link_hash_entry *h, PTR inf));
90 static bfd_boolean create_got_section
91 PARAMS ((bfd * dynobj, struct bfd_link_info * info));
92 static bfd_boolean elf32_arm_create_dynamic_sections
93 PARAMS ((bfd * dynobj, struct bfd_link_info * info));
94 static enum elf_reloc_type_class elf32_arm_reloc_type_class
95 PARAMS ((const Elf_Internal_Rela *));
96 static bfd_boolean elf32_arm_object_p
97 PARAMS ((bfd *));
98
99 #ifndef ELFARM_NABI_C_INCLUDED
100 static void record_arm_to_thumb_glue
101 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
102 static void record_thumb_to_arm_glue
103 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
104 bfd_boolean bfd_elf32_arm_allocate_interworking_sections
105 PARAMS ((struct bfd_link_info *));
106 bfd_boolean bfd_elf32_arm_get_bfd_for_interworking
107 PARAMS ((bfd *, struct bfd_link_info *));
108 bfd_boolean bfd_elf32_arm_process_before_allocation
109 PARAMS ((bfd *, struct bfd_link_info *, int));
110 #endif
111
112
113 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
114
115 /* The linker script knows the section names for placement.
116 The entry_names are used to do simple name mangling on the stubs.
117 Given a function name, and its type, the stub can be found. The
118 name can be changed. The only requirement is the %s be present. */
119 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
120 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
121
122 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
123 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
124
125 /* The name of the dynamic interpreter. This is put in the .interp
126 section. */
127 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
128
129 #ifdef FOUR_WORD_PLT
130
131 /* The size in bytes of the special first entry in the procedure
132 linkage table. */
133 #define PLT_HEADER_SIZE 16
134
135 /* The size in bytes of an entry in the procedure linkage table. */
136 #define PLT_ENTRY_SIZE 16
137
138 /* The first entry in a procedure linkage table looks like
139 this. It is set up so that any shared library function that is
140 called before the relocation has been set up calls the dynamic
141 linker first. */
142 static const bfd_vma elf32_arm_plt0_entry [PLT_HEADER_SIZE / 4] =
143 {
144 0xe52de004, /* str lr, [sp, #-4]! */
145 0xe59fe010, /* ldr lr, [pc, #16] */
146 0xe08fe00e, /* add lr, pc, lr */
147 0xe5bef008, /* ldr pc, [lr, #8]! */
148 };
149
150 /* Subsequent entries in a procedure linkage table look like
151 this. */
152 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
153 {
154 0xe28fc600, /* add ip, pc, #NN */
155 0xe28cca00, /* add ip, ip, #NN */
156 0xe5bcf000, /* ldr pc, [ip, #NN]! */
157 0x00000000, /* unused */
158 };
159
160 #else
161
162 /* The size in bytes of the special first entry in the procedure
163 linkage table. */
164 #define PLT_HEADER_SIZE 20
165
166 /* The size in bytes of an entry in the procedure linkage table. */
167 #define PLT_ENTRY_SIZE 12
168
169 /* The first entry in a procedure linkage table looks like
170 this. It is set up so that any shared library function that is
171 called before the relocation has been set up calls the dynamic
172 linker first. */
173 static const bfd_vma elf32_arm_plt0_entry [PLT_HEADER_SIZE / 4] =
174 {
175 0xe52de004, /* str lr, [sp, #-4]! */
176 0xe59fe004, /* ldr lr, [pc, #4] */
177 0xe08fe00e, /* add lr, pc, lr */
178 0xe5bef008, /* ldr pc, [lr, #8]! */
179 0x00000000, /* &GOT[0] - . */
180 };
181
182 /* Subsequent entries in a procedure linkage table look like
183 this. */
184 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
185 {
186 0xe28fc600, /* add ip, pc, #0xNN00000 */
187 0xe28cca00, /* add ip, ip, #0xNN000 */
188 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
189 };
190
191 #endif
192
193 /* The ARM linker needs to keep track of the number of relocs that it
194 decides to copy in check_relocs for each symbol. This is so that
195 it can discard PC relative relocs if it doesn't need them when
196 linking with -Bsymbolic. We store the information in a field
197 extending the regular ELF linker hash table. */
198
199 /* This structure keeps track of the number of PC relative relocs we
200 have copied for a given symbol. */
201 struct elf32_arm_relocs_copied
202 {
203 /* Next section. */
204 struct elf32_arm_relocs_copied * next;
205 /* A section in dynobj. */
206 asection * section;
207 /* Number of relocs copied in this section. */
208 bfd_size_type count;
209 };
210
211 /* Arm ELF linker hash entry. */
212 struct elf32_arm_link_hash_entry
213 {
214 struct elf_link_hash_entry root;
215
216 /* Number of PC relative relocs copied for this symbol. */
217 struct elf32_arm_relocs_copied * relocs_copied;
218 };
219
220 /* Traverse an arm ELF linker hash table. */
221 #define elf32_arm_link_hash_traverse(table, func, info) \
222 (elf_link_hash_traverse \
223 (&(table)->root, \
224 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
225 (info)))
226
227 /* Get the ARM elf linker hash table from a link_info structure. */
228 #define elf32_arm_hash_table(info) \
229 ((struct elf32_arm_link_hash_table *) ((info)->hash))
230
231 /* ARM ELF linker hash table. */
232 struct elf32_arm_link_hash_table
233 {
234 /* The main hash table. */
235 struct elf_link_hash_table root;
236
237 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
238 bfd_size_type thumb_glue_size;
239
240 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
241 bfd_size_type arm_glue_size;
242
243 /* An arbitrary input BFD chosen to hold the glue sections. */
244 bfd * bfd_of_glue_owner;
245
246 /* A boolean indicating whether knowledge of the ARM's pipeline
247 length should be applied by the linker. */
248 int no_pipeline_knowledge;
249
250 /* Short-cuts to get to dynamic linker sections. */
251 asection *sgot;
252 asection *sgotplt;
253 asection *srelgot;
254 asection *splt;
255 asection *srelplt;
256 asection *sdynbss;
257 asection *srelbss;
258
259 /* Small local sym to section mapping cache. */
260 struct sym_sec_cache sym_sec;
261 };
262
263 /* Create an entry in an ARM ELF linker hash table. */
264
265 static struct bfd_hash_entry *
266 elf32_arm_link_hash_newfunc (entry, table, string)
267 struct bfd_hash_entry * entry;
268 struct bfd_hash_table * table;
269 const char * string;
270 {
271 struct elf32_arm_link_hash_entry * ret =
272 (struct elf32_arm_link_hash_entry *) entry;
273
274 /* Allocate the structure if it has not already been allocated by a
275 subclass. */
276 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
277 ret = ((struct elf32_arm_link_hash_entry *)
278 bfd_hash_allocate (table,
279 sizeof (struct elf32_arm_link_hash_entry)));
280 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
281 return (struct bfd_hash_entry *) ret;
282
283 /* Call the allocation method of the superclass. */
284 ret = ((struct elf32_arm_link_hash_entry *)
285 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
286 table, string));
287 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
288 ret->relocs_copied = NULL;
289
290 return (struct bfd_hash_entry *) ret;
291 }
292
293 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
294 shortcuts to them in our hash table. */
295
296 static bfd_boolean
297 create_got_section (dynobj, info)
298 bfd *dynobj;
299 struct bfd_link_info *info;
300 {
301 struct elf32_arm_link_hash_table *htab;
302
303 if (! _bfd_elf_create_got_section (dynobj, info))
304 return FALSE;
305
306 htab = elf32_arm_hash_table (info);
307 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
308 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
309 if (!htab->sgot || !htab->sgotplt)
310 abort ();
311
312 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
313 if (htab->srelgot == NULL
314 || ! bfd_set_section_flags (dynobj, htab->srelgot,
315 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
316 | SEC_IN_MEMORY | SEC_LINKER_CREATED
317 | SEC_READONLY))
318 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
319 return FALSE;
320 return TRUE;
321 }
322
323 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
324 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
325 hash table. */
326
327 static bfd_boolean
328 elf32_arm_create_dynamic_sections (dynobj, info)
329 bfd *dynobj;
330 struct bfd_link_info *info;
331 {
332 struct elf32_arm_link_hash_table *htab;
333
334 htab = elf32_arm_hash_table (info);
335 if (!htab->sgot && !create_got_section (dynobj, info))
336 return FALSE;
337
338 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
339 return FALSE;
340
341 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
342 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
343 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
344 if (!info->shared)
345 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
346
347 if (!htab->splt || !htab->srelplt || !htab->sdynbss
348 || (!info->shared && !htab->srelbss))
349 abort ();
350
351 return TRUE;
352 }
353
354 /* Copy the extra info we tack onto an elf_link_hash_entry. */
355
356 static void
357 elf32_arm_copy_indirect_symbol (const struct elf_backend_data *bed,
358 struct elf_link_hash_entry *dir,
359 struct elf_link_hash_entry *ind)
360 {
361 struct elf32_arm_link_hash_entry *edir, *eind;
362
363 edir = (struct elf32_arm_link_hash_entry *) dir;
364 eind = (struct elf32_arm_link_hash_entry *) ind;
365
366 if (eind->relocs_copied != NULL)
367 {
368 if (edir->relocs_copied != NULL)
369 {
370 struct elf32_arm_relocs_copied **pp;
371 struct elf32_arm_relocs_copied *p;
372
373 if (ind->root.type == bfd_link_hash_indirect)
374 abort ();
375
376 /* Add reloc counts against the weak sym to the strong sym
377 list. Merge any entries against the same section. */
378 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
379 {
380 struct elf32_arm_relocs_copied *q;
381
382 for (q = edir->relocs_copied; q != NULL; q = q->next)
383 if (q->section == p->section)
384 {
385 q->count += p->count;
386 *pp = p->next;
387 break;
388 }
389 if (q == NULL)
390 pp = &p->next;
391 }
392 *pp = edir->relocs_copied;
393 }
394
395 edir->relocs_copied = eind->relocs_copied;
396 eind->relocs_copied = NULL;
397 }
398
399 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
400 }
401
402 /* Create an ARM elf linker hash table. */
403
404 static struct bfd_link_hash_table *
405 elf32_arm_link_hash_table_create (abfd)
406 bfd *abfd;
407 {
408 struct elf32_arm_link_hash_table *ret;
409 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
410
411 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
412 if (ret == (struct elf32_arm_link_hash_table *) NULL)
413 return NULL;
414
415 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
416 elf32_arm_link_hash_newfunc))
417 {
418 free (ret);
419 return NULL;
420 }
421
422 ret->sgot = NULL;
423 ret->sgotplt = NULL;
424 ret->srelgot = NULL;
425 ret->splt = NULL;
426 ret->srelplt = NULL;
427 ret->sdynbss = NULL;
428 ret->srelbss = NULL;
429 ret->thumb_glue_size = 0;
430 ret->arm_glue_size = 0;
431 ret->bfd_of_glue_owner = NULL;
432 ret->no_pipeline_knowledge = 0;
433 ret->sym_sec.abfd = NULL;
434
435 return &ret->root.root;
436 }
437
438 /* Locate the Thumb encoded calling stub for NAME. */
439
440 static struct elf_link_hash_entry *
441 find_thumb_glue (link_info, name, input_bfd)
442 struct bfd_link_info *link_info;
443 const char *name;
444 bfd *input_bfd;
445 {
446 char *tmp_name;
447 struct elf_link_hash_entry *hash;
448 struct elf32_arm_link_hash_table *hash_table;
449
450 /* We need a pointer to the armelf specific hash table. */
451 hash_table = elf32_arm_hash_table (link_info);
452
453 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
454 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
455
456 BFD_ASSERT (tmp_name);
457
458 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
459
460 hash = elf_link_hash_lookup
461 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
462
463 if (hash == NULL)
464 /* xgettext:c-format */
465 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
466 bfd_archive_filename (input_bfd), tmp_name, name);
467
468 free (tmp_name);
469
470 return hash;
471 }
472
473 /* Locate the ARM encoded calling stub for NAME. */
474
475 static struct elf_link_hash_entry *
476 find_arm_glue (link_info, name, input_bfd)
477 struct bfd_link_info *link_info;
478 const char *name;
479 bfd *input_bfd;
480 {
481 char *tmp_name;
482 struct elf_link_hash_entry *myh;
483 struct elf32_arm_link_hash_table *hash_table;
484
485 /* We need a pointer to the elfarm specific hash table. */
486 hash_table = elf32_arm_hash_table (link_info);
487
488 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
489 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
490
491 BFD_ASSERT (tmp_name);
492
493 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
494
495 myh = elf_link_hash_lookup
496 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
497
498 if (myh == NULL)
499 /* xgettext:c-format */
500 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
501 bfd_archive_filename (input_bfd), tmp_name, name);
502
503 free (tmp_name);
504
505 return myh;
506 }
507
508 /* ARM->Thumb glue:
509
510 .arm
511 __func_from_arm:
512 ldr r12, __func_addr
513 bx r12
514 __func_addr:
515 .word func @ behave as if you saw a ARM_32 reloc. */
516
517 #define ARM2THUMB_GLUE_SIZE 12
518 static const insn32 a2t1_ldr_insn = 0xe59fc000;
519 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
520 static const insn32 a2t3_func_addr_insn = 0x00000001;
521
522 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
523
524 .thumb .thumb
525 .align 2 .align 2
526 __func_from_thumb: __func_from_thumb:
527 bx pc push {r6, lr}
528 nop ldr r6, __func_addr
529 .arm mov lr, pc
530 __func_change_to_arm: bx r6
531 b func .arm
532 __func_back_to_thumb:
533 ldmia r13! {r6, lr}
534 bx lr
535 __func_addr:
536 .word func */
537
538 #define THUMB2ARM_GLUE_SIZE 8
539 static const insn16 t2a1_bx_pc_insn = 0x4778;
540 static const insn16 t2a2_noop_insn = 0x46c0;
541 static const insn32 t2a3_b_insn = 0xea000000;
542
543 #ifndef ELFARM_NABI_C_INCLUDED
544 bfd_boolean
545 bfd_elf32_arm_allocate_interworking_sections (info)
546 struct bfd_link_info * info;
547 {
548 asection * s;
549 bfd_byte * foo;
550 struct elf32_arm_link_hash_table * globals;
551
552 globals = elf32_arm_hash_table (info);
553
554 BFD_ASSERT (globals != NULL);
555
556 if (globals->arm_glue_size != 0)
557 {
558 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
559
560 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
561 ARM2THUMB_GLUE_SECTION_NAME);
562
563 BFD_ASSERT (s != NULL);
564
565 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
566 globals->arm_glue_size);
567
568 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
569 s->contents = foo;
570 }
571
572 if (globals->thumb_glue_size != 0)
573 {
574 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
575
576 s = bfd_get_section_by_name
577 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
578
579 BFD_ASSERT (s != NULL);
580
581 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
582 globals->thumb_glue_size);
583
584 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
585 s->contents = foo;
586 }
587
588 return TRUE;
589 }
590
591 static void
592 record_arm_to_thumb_glue (link_info, h)
593 struct bfd_link_info * link_info;
594 struct elf_link_hash_entry * h;
595 {
596 const char * name = h->root.root.string;
597 asection * s;
598 char * tmp_name;
599 struct elf_link_hash_entry * myh;
600 struct bfd_link_hash_entry * bh;
601 struct elf32_arm_link_hash_table * globals;
602 bfd_vma val;
603
604 globals = elf32_arm_hash_table (link_info);
605
606 BFD_ASSERT (globals != NULL);
607 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
608
609 s = bfd_get_section_by_name
610 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
611
612 BFD_ASSERT (s != NULL);
613
614 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
615 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
616
617 BFD_ASSERT (tmp_name);
618
619 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
620
621 myh = elf_link_hash_lookup
622 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
623
624 if (myh != NULL)
625 {
626 /* We've already seen this guy. */
627 free (tmp_name);
628 return;
629 }
630
631 /* The only trick here is using hash_table->arm_glue_size as the value. Even
632 though the section isn't allocated yet, this is where we will be putting
633 it. */
634 bh = NULL;
635 val = globals->arm_glue_size + 1;
636 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
637 tmp_name, BSF_GLOBAL, s, val,
638 NULL, TRUE, FALSE, &bh);
639
640 free (tmp_name);
641
642 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
643
644 return;
645 }
646
647 static void
648 record_thumb_to_arm_glue (link_info, h)
649 struct bfd_link_info *link_info;
650 struct elf_link_hash_entry *h;
651 {
652 const char *name = h->root.root.string;
653 asection *s;
654 char *tmp_name;
655 struct elf_link_hash_entry *myh;
656 struct bfd_link_hash_entry *bh;
657 struct elf32_arm_link_hash_table *hash_table;
658 char bind;
659 bfd_vma val;
660
661 hash_table = elf32_arm_hash_table (link_info);
662
663 BFD_ASSERT (hash_table != NULL);
664 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
665
666 s = bfd_get_section_by_name
667 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
668
669 BFD_ASSERT (s != NULL);
670
671 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
672 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
673
674 BFD_ASSERT (tmp_name);
675
676 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
677
678 myh = elf_link_hash_lookup
679 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
680
681 if (myh != NULL)
682 {
683 /* We've already seen this guy. */
684 free (tmp_name);
685 return;
686 }
687
688 bh = NULL;
689 val = hash_table->thumb_glue_size + 1;
690 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
691 tmp_name, BSF_GLOBAL, s, val,
692 NULL, TRUE, FALSE, &bh);
693
694 /* If we mark it 'Thumb', the disassembler will do a better job. */
695 myh = (struct elf_link_hash_entry *) bh;
696 bind = ELF_ST_BIND (myh->type);
697 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
698
699 free (tmp_name);
700
701 #define CHANGE_TO_ARM "__%s_change_to_arm"
702 #define BACK_FROM_ARM "__%s_back_from_arm"
703
704 /* Allocate another symbol to mark where we switch to Arm mode. */
705 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
706 + strlen (CHANGE_TO_ARM) + 1);
707
708 BFD_ASSERT (tmp_name);
709
710 sprintf (tmp_name, CHANGE_TO_ARM, name);
711
712 bh = NULL;
713 val = hash_table->thumb_glue_size + 4,
714 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
715 tmp_name, BSF_LOCAL, s, val,
716 NULL, TRUE, FALSE, &bh);
717
718 free (tmp_name);
719
720 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
721
722 return;
723 }
724
725 /* Add the glue sections to ABFD. This function is called from the
726 linker scripts in ld/emultempl/{armelf}.em. */
727
728 bfd_boolean
729 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
730 bfd *abfd;
731 struct bfd_link_info *info;
732 {
733 flagword flags;
734 asection *sec;
735
736 /* If we are only performing a partial
737 link do not bother adding the glue. */
738 if (info->relocatable)
739 return TRUE;
740
741 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
742
743 if (sec == NULL)
744 {
745 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
746 will prevent elf_link_input_bfd() from processing the contents
747 of this section. */
748 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
749
750 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
751
752 if (sec == NULL
753 || !bfd_set_section_flags (abfd, sec, flags)
754 || !bfd_set_section_alignment (abfd, sec, 2))
755 return FALSE;
756
757 /* Set the gc mark to prevent the section from being removed by garbage
758 collection, despite the fact that no relocs refer to this section. */
759 sec->gc_mark = 1;
760 }
761
762 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
763
764 if (sec == NULL)
765 {
766 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
767
768 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
769
770 if (sec == NULL
771 || !bfd_set_section_flags (abfd, sec, flags)
772 || !bfd_set_section_alignment (abfd, sec, 2))
773 return FALSE;
774
775 sec->gc_mark = 1;
776 }
777
778 return TRUE;
779 }
780
781 /* Select a BFD to be used to hold the sections used by the glue code.
782 This function is called from the linker scripts in ld/emultempl/
783 {armelf/pe}.em */
784
785 bfd_boolean
786 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
787 bfd *abfd;
788 struct bfd_link_info *info;
789 {
790 struct elf32_arm_link_hash_table *globals;
791
792 /* If we are only performing a partial link
793 do not bother getting a bfd to hold the glue. */
794 if (info->relocatable)
795 return TRUE;
796
797 globals = elf32_arm_hash_table (info);
798
799 BFD_ASSERT (globals != NULL);
800
801 if (globals->bfd_of_glue_owner != NULL)
802 return TRUE;
803
804 /* Save the bfd for later use. */
805 globals->bfd_of_glue_owner = abfd;
806
807 return TRUE;
808 }
809
810 bfd_boolean
811 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
812 bfd *abfd;
813 struct bfd_link_info *link_info;
814 int no_pipeline_knowledge;
815 {
816 Elf_Internal_Shdr *symtab_hdr;
817 Elf_Internal_Rela *internal_relocs = NULL;
818 Elf_Internal_Rela *irel, *irelend;
819 bfd_byte *contents = NULL;
820
821 asection *sec;
822 struct elf32_arm_link_hash_table *globals;
823
824 /* If we are only performing a partial link do not bother
825 to construct any glue. */
826 if (link_info->relocatable)
827 return TRUE;
828
829 /* Here we have a bfd that is to be included on the link. We have a hook
830 to do reloc rummaging, before section sizes are nailed down. */
831 globals = elf32_arm_hash_table (link_info);
832
833 BFD_ASSERT (globals != NULL);
834 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
835
836 globals->no_pipeline_knowledge = no_pipeline_knowledge;
837
838 /* Rummage around all the relocs and map the glue vectors. */
839 sec = abfd->sections;
840
841 if (sec == NULL)
842 return TRUE;
843
844 for (; sec != NULL; sec = sec->next)
845 {
846 if (sec->reloc_count == 0)
847 continue;
848
849 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
850
851 /* Load the relocs. */
852 internal_relocs
853 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
854 (Elf_Internal_Rela *) NULL, FALSE);
855
856 if (internal_relocs == NULL)
857 goto error_return;
858
859 irelend = internal_relocs + sec->reloc_count;
860 for (irel = internal_relocs; irel < irelend; irel++)
861 {
862 long r_type;
863 unsigned long r_index;
864
865 struct elf_link_hash_entry *h;
866
867 r_type = ELF32_R_TYPE (irel->r_info);
868 r_index = ELF32_R_SYM (irel->r_info);
869
870 /* These are the only relocation types we care about. */
871 if ( r_type != R_ARM_PC24
872 && r_type != R_ARM_THM_PC22)
873 continue;
874
875 /* Get the section contents if we haven't done so already. */
876 if (contents == NULL)
877 {
878 /* Get cached copy if it exists. */
879 if (elf_section_data (sec)->this_hdr.contents != NULL)
880 contents = elf_section_data (sec)->this_hdr.contents;
881 else
882 {
883 /* Go get them off disk. */
884 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
885 if (contents == NULL)
886 goto error_return;
887
888 if (!bfd_get_section_contents (abfd, sec, contents,
889 (file_ptr) 0, sec->_raw_size))
890 goto error_return;
891 }
892 }
893
894 /* If the relocation is not against a symbol it cannot concern us. */
895 h = NULL;
896
897 /* We don't care about local symbols. */
898 if (r_index < symtab_hdr->sh_info)
899 continue;
900
901 /* This is an external symbol. */
902 r_index -= symtab_hdr->sh_info;
903 h = (struct elf_link_hash_entry *)
904 elf_sym_hashes (abfd)[r_index];
905
906 /* If the relocation is against a static symbol it must be within
907 the current section and so cannot be a cross ARM/Thumb relocation. */
908 if (h == NULL)
909 continue;
910
911 switch (r_type)
912 {
913 case R_ARM_PC24:
914 /* This one is a call from arm code. We need to look up
915 the target of the call. If it is a thumb target, we
916 insert glue. */
917 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
918 record_arm_to_thumb_glue (link_info, h);
919 break;
920
921 case R_ARM_THM_PC22:
922 /* This one is a call from thumb code. We look
923 up the target of the call. If it is not a thumb
924 target, we insert glue. */
925 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
926 record_thumb_to_arm_glue (link_info, h);
927 break;
928
929 default:
930 break;
931 }
932 }
933
934 if (contents != NULL
935 && elf_section_data (sec)->this_hdr.contents != contents)
936 free (contents);
937 contents = NULL;
938
939 if (internal_relocs != NULL
940 && elf_section_data (sec)->relocs != internal_relocs)
941 free (internal_relocs);
942 internal_relocs = NULL;
943 }
944
945 return TRUE;
946
947 error_return:
948 if (contents != NULL
949 && elf_section_data (sec)->this_hdr.contents != contents)
950 free (contents);
951 if (internal_relocs != NULL
952 && elf_section_data (sec)->relocs != internal_relocs)
953 free (internal_relocs);
954
955 return FALSE;
956 }
957 #endif
958
959 /* The thumb form of a long branch is a bit finicky, because the offset
960 encoding is split over two fields, each in it's own instruction. They
961 can occur in any order. So given a thumb form of long branch, and an
962 offset, insert the offset into the thumb branch and return finished
963 instruction.
964
965 It takes two thumb instructions to encode the target address. Each has
966 11 bits to invest. The upper 11 bits are stored in one (identified by
967 H-0.. see below), the lower 11 bits are stored in the other (identified
968 by H-1).
969
970 Combine together and shifted left by 1 (it's a half word address) and
971 there you have it.
972
973 Op: 1111 = F,
974 H-0, upper address-0 = 000
975 Op: 1111 = F,
976 H-1, lower address-0 = 800
977
978 They can be ordered either way, but the arm tools I've seen always put
979 the lower one first. It probably doesn't matter. krk@cygnus.com
980
981 XXX: Actually the order does matter. The second instruction (H-1)
982 moves the computed address into the PC, so it must be the second one
983 in the sequence. The problem, however is that whilst little endian code
984 stores the instructions in HI then LOW order, big endian code does the
985 reverse. nickc@cygnus.com. */
986
987 #define LOW_HI_ORDER 0xF800F000
988 #define HI_LOW_ORDER 0xF000F800
989
990 static insn32
991 insert_thumb_branch (br_insn, rel_off)
992 insn32 br_insn;
993 int rel_off;
994 {
995 unsigned int low_bits;
996 unsigned int high_bits;
997
998 BFD_ASSERT ((rel_off & 1) != 1);
999
1000 rel_off >>= 1; /* Half word aligned address. */
1001 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
1002 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
1003
1004 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
1005 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
1006 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
1007 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
1008 else
1009 /* FIXME: abort is probably not the right call. krk@cygnus.com */
1010 abort (); /* error - not a valid branch instruction form. */
1011
1012 return br_insn;
1013 }
1014
1015 /* Thumb code calling an ARM function. */
1016
1017 static int
1018 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
1019 hit_data, sym_sec, offset, addend, val)
1020 struct bfd_link_info * info;
1021 const char * name;
1022 bfd * input_bfd;
1023 bfd * output_bfd;
1024 asection * input_section;
1025 bfd_byte * hit_data;
1026 asection * sym_sec;
1027 bfd_vma offset;
1028 bfd_signed_vma addend;
1029 bfd_vma val;
1030 {
1031 asection * s = 0;
1032 bfd_vma my_offset;
1033 unsigned long int tmp;
1034 long int ret_offset;
1035 struct elf_link_hash_entry * myh;
1036 struct elf32_arm_link_hash_table * globals;
1037
1038 myh = find_thumb_glue (info, name, input_bfd);
1039 if (myh == NULL)
1040 return FALSE;
1041
1042 globals = elf32_arm_hash_table (info);
1043
1044 BFD_ASSERT (globals != NULL);
1045 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
1046
1047 my_offset = myh->root.u.def.value;
1048
1049 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
1050 THUMB2ARM_GLUE_SECTION_NAME);
1051
1052 BFD_ASSERT (s != NULL);
1053 BFD_ASSERT (s->contents != NULL);
1054 BFD_ASSERT (s->output_section != NULL);
1055
1056 if ((my_offset & 0x01) == 0x01)
1057 {
1058 if (sym_sec != NULL
1059 && sym_sec->owner != NULL
1060 && !INTERWORK_FLAG (sym_sec->owner))
1061 {
1062 (*_bfd_error_handler)
1063 (_("%s(%s): warning: interworking not enabled."),
1064 bfd_archive_filename (sym_sec->owner), name);
1065 (*_bfd_error_handler)
1066 (_(" first occurrence: %s: thumb call to arm"),
1067 bfd_archive_filename (input_bfd));
1068
1069 return FALSE;
1070 }
1071
1072 --my_offset;
1073 myh->root.u.def.value = my_offset;
1074
1075 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
1076 s->contents + my_offset);
1077
1078 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
1079 s->contents + my_offset + 2);
1080
1081 ret_offset =
1082 /* Address of destination of the stub. */
1083 ((bfd_signed_vma) val)
1084 - ((bfd_signed_vma)
1085 /* Offset from the start of the current section to the start of the stubs. */
1086 (s->output_offset
1087 /* Offset of the start of this stub from the start of the stubs. */
1088 + my_offset
1089 /* Address of the start of the current section. */
1090 + s->output_section->vma)
1091 /* The branch instruction is 4 bytes into the stub. */
1092 + 4
1093 /* ARM branches work from the pc of the instruction + 8. */
1094 + 8);
1095
1096 bfd_put_32 (output_bfd,
1097 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
1098 s->contents + my_offset + 4);
1099 }
1100
1101 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
1102
1103 /* Now go back and fix up the original BL insn to point to here. */
1104 ret_offset =
1105 /* Address of where the stub is located. */
1106 (s->output_section->vma + s->output_offset + my_offset)
1107 /* Address of where the BL is located. */
1108 - (input_section->output_section->vma + input_section->output_offset + offset)
1109 /* Addend in the relocation. */
1110 - addend
1111 /* Biassing for PC-relative addressing. */
1112 - 8;
1113
1114 tmp = bfd_get_32 (input_bfd, hit_data
1115 - input_section->vma);
1116
1117 bfd_put_32 (output_bfd,
1118 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
1119 hit_data - input_section->vma);
1120
1121 return TRUE;
1122 }
1123
1124 /* Arm code calling a Thumb function. */
1125
1126 static int
1127 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
1128 hit_data, sym_sec, offset, addend, val)
1129 struct bfd_link_info * info;
1130 const char * name;
1131 bfd * input_bfd;
1132 bfd * output_bfd;
1133 asection * input_section;
1134 bfd_byte * hit_data;
1135 asection * sym_sec;
1136 bfd_vma offset;
1137 bfd_signed_vma addend;
1138 bfd_vma val;
1139 {
1140 unsigned long int tmp;
1141 bfd_vma my_offset;
1142 asection * s;
1143 long int ret_offset;
1144 struct elf_link_hash_entry * myh;
1145 struct elf32_arm_link_hash_table * globals;
1146
1147 myh = find_arm_glue (info, name, input_bfd);
1148 if (myh == NULL)
1149 return FALSE;
1150
1151 globals = elf32_arm_hash_table (info);
1152
1153 BFD_ASSERT (globals != NULL);
1154 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
1155
1156 my_offset = myh->root.u.def.value;
1157 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
1158 ARM2THUMB_GLUE_SECTION_NAME);
1159 BFD_ASSERT (s != NULL);
1160 BFD_ASSERT (s->contents != NULL);
1161 BFD_ASSERT (s->output_section != NULL);
1162
1163 if ((my_offset & 0x01) == 0x01)
1164 {
1165 if (sym_sec != NULL
1166 && sym_sec->owner != NULL
1167 && !INTERWORK_FLAG (sym_sec->owner))
1168 {
1169 (*_bfd_error_handler)
1170 (_("%s(%s): warning: interworking not enabled."),
1171 bfd_archive_filename (sym_sec->owner), name);
1172 (*_bfd_error_handler)
1173 (_(" first occurrence: %s: arm call to thumb"),
1174 bfd_archive_filename (input_bfd));
1175 }
1176
1177 --my_offset;
1178 myh->root.u.def.value = my_offset;
1179
1180 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1181 s->contents + my_offset);
1182
1183 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1184 s->contents + my_offset + 4);
1185
1186 /* It's a thumb address. Add the low order bit. */
1187 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1188 s->contents + my_offset + 8);
1189 }
1190
1191 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1192
1193 tmp = bfd_get_32 (input_bfd, hit_data);
1194 tmp = tmp & 0xFF000000;
1195
1196 /* Somehow these are both 4 too far, so subtract 8. */
1197 ret_offset = (s->output_offset
1198 + my_offset
1199 + s->output_section->vma
1200 - (input_section->output_offset
1201 + input_section->output_section->vma
1202 + offset + addend)
1203 - 8);
1204
1205 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1206
1207 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1208
1209 return TRUE;
1210 }
1211
1212 /* Perform a relocation as part of a final link. */
1213
1214 static bfd_reloc_status_type
1215 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1216 input_section, contents, rel, value,
1217 info, sym_sec, sym_name, sym_flags, h)
1218 reloc_howto_type * howto;
1219 bfd * input_bfd;
1220 bfd * output_bfd;
1221 asection * input_section;
1222 bfd_byte * contents;
1223 Elf_Internal_Rela * rel;
1224 bfd_vma value;
1225 struct bfd_link_info * info;
1226 asection * sym_sec;
1227 const char * sym_name;
1228 int sym_flags;
1229 struct elf_link_hash_entry * h;
1230 {
1231 unsigned long r_type = howto->type;
1232 unsigned long r_symndx;
1233 bfd_byte * hit_data = contents + rel->r_offset;
1234 bfd * dynobj = NULL;
1235 Elf_Internal_Shdr * symtab_hdr;
1236 struct elf_link_hash_entry ** sym_hashes;
1237 bfd_vma * local_got_offsets;
1238 asection * sgot = NULL;
1239 asection * splt = NULL;
1240 asection * sreloc = NULL;
1241 bfd_vma addend;
1242 bfd_signed_vma signed_addend;
1243 struct elf32_arm_link_hash_table * globals;
1244
1245 /* If the start address has been set, then set the EF_ARM_HASENTRY
1246 flag. Setting this more than once is redundant, but the cost is
1247 not too high, and it keeps the code simple.
1248
1249 The test is done here, rather than somewhere else, because the
1250 start address is only set just before the final link commences.
1251
1252 Note - if the user deliberately sets a start address of 0, the
1253 flag will not be set. */
1254 if (bfd_get_start_address (output_bfd) != 0)
1255 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1256
1257 globals = elf32_arm_hash_table (info);
1258
1259 dynobj = elf_hash_table (info)->dynobj;
1260 if (dynobj)
1261 {
1262 sgot = bfd_get_section_by_name (dynobj, ".got");
1263 splt = bfd_get_section_by_name (dynobj, ".plt");
1264 }
1265 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1266 sym_hashes = elf_sym_hashes (input_bfd);
1267 local_got_offsets = elf_local_got_offsets (input_bfd);
1268 r_symndx = ELF32_R_SYM (rel->r_info);
1269
1270 #if USE_REL
1271 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1272
1273 if (addend & ((howto->src_mask + 1) >> 1))
1274 {
1275 signed_addend = -1;
1276 signed_addend &= ~ howto->src_mask;
1277 signed_addend |= addend;
1278 }
1279 else
1280 signed_addend = addend;
1281 #else
1282 addend = signed_addend = rel->r_addend;
1283 #endif
1284
1285 switch (r_type)
1286 {
1287 case R_ARM_NONE:
1288 return bfd_reloc_ok;
1289
1290 case R_ARM_PC24:
1291 case R_ARM_ABS32:
1292 case R_ARM_REL32:
1293 #ifndef OLD_ARM_ABI
1294 case R_ARM_XPC25:
1295 #endif
1296 case R_ARM_PLT32:
1297 /* r_symndx will be zero only for relocs against symbols
1298 from removed linkonce sections, or sections discarded by
1299 a linker script. */
1300 if (r_symndx == 0)
1301 return bfd_reloc_ok;
1302
1303 /* Handle relocations which should use the PLT entry. ABS32/REL32
1304 will use the symbol's value, which may point to a PLT entry, but we
1305 don't need to handle that here. If we created a PLT entry, all
1306 branches in this object should go to it. */
1307 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32)
1308 && h != NULL
1309 && splt != NULL
1310 && h->plt.offset != (bfd_vma) -1)
1311 {
1312 /* If we've created a .plt section, and assigned a PLT entry to
1313 this function, it should not be known to bind locally. If
1314 it were, we would have cleared the PLT entry. */
1315 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
1316
1317 value = (splt->output_section->vma
1318 + splt->output_offset
1319 + h->plt.offset);
1320 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1321 contents, rel->r_offset, value,
1322 (bfd_vma) 0);
1323 }
1324
1325 /* When generating a shared object, these relocations are copied
1326 into the output file to be resolved at run time. */
1327 if (info->shared
1328 && (input_section->flags & SEC_ALLOC)
1329 && (h == NULL
1330 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1331 || h->root.type != bfd_link_hash_undefweak)
1332 && r_type != R_ARM_PC24
1333 && r_type != R_ARM_PLT32)
1334 {
1335 Elf_Internal_Rela outrel;
1336 bfd_byte *loc;
1337 bfd_boolean skip, relocate;
1338
1339 if (sreloc == NULL)
1340 {
1341 const char * name;
1342
1343 name = (bfd_elf_string_from_elf_section
1344 (input_bfd,
1345 elf_elfheader (input_bfd)->e_shstrndx,
1346 elf_section_data (input_section)->rel_hdr.sh_name));
1347 if (name == NULL)
1348 return bfd_reloc_notsupported;
1349
1350 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1351 && strcmp (bfd_get_section_name (input_bfd,
1352 input_section),
1353 name + 4) == 0);
1354
1355 sreloc = bfd_get_section_by_name (dynobj, name);
1356 BFD_ASSERT (sreloc != NULL);
1357 }
1358
1359 skip = FALSE;
1360 relocate = FALSE;
1361
1362 outrel.r_offset =
1363 _bfd_elf_section_offset (output_bfd, info, input_section,
1364 rel->r_offset);
1365 if (outrel.r_offset == (bfd_vma) -1)
1366 skip = TRUE;
1367 else if (outrel.r_offset == (bfd_vma) -2)
1368 skip = TRUE, relocate = TRUE;
1369 outrel.r_offset += (input_section->output_section->vma
1370 + input_section->output_offset);
1371
1372 if (skip)
1373 memset (&outrel, 0, sizeof outrel);
1374 else if (h != NULL
1375 && h->dynindx != -1
1376 && (!info->shared
1377 || !info->symbolic
1378 || (h->elf_link_hash_flags
1379 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1380 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1381 else
1382 {
1383 /* This symbol is local, or marked to become local. */
1384 relocate = TRUE;
1385 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1386 }
1387
1388 loc = sreloc->contents;
1389 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1390 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1391
1392 /* If this reloc is against an external symbol, we do not want to
1393 fiddle with the addend. Otherwise, we need to include the symbol
1394 value so that it becomes an addend for the dynamic reloc. */
1395 if (! relocate)
1396 return bfd_reloc_ok;
1397
1398 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1399 contents, rel->r_offset, value,
1400 (bfd_vma) 0);
1401 }
1402 else switch (r_type)
1403 {
1404 #ifndef OLD_ARM_ABI
1405 case R_ARM_XPC25: /* Arm BLX instruction. */
1406 #endif
1407 case R_ARM_PC24: /* Arm B/BL instruction */
1408 case R_ARM_PLT32:
1409 #ifndef OLD_ARM_ABI
1410 if (r_type == R_ARM_XPC25)
1411 {
1412 /* Check for Arm calling Arm function. */
1413 /* FIXME: Should we translate the instruction into a BL
1414 instruction instead ? */
1415 if (sym_flags != STT_ARM_TFUNC)
1416 (*_bfd_error_handler) (_("\
1417 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1418 bfd_archive_filename (input_bfd),
1419 h ? h->root.root.string : "(local)");
1420 }
1421 else
1422 #endif
1423 {
1424 /* Check for Arm calling Thumb function. */
1425 if (sym_flags == STT_ARM_TFUNC)
1426 {
1427 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1428 input_section, hit_data, sym_sec, rel->r_offset,
1429 signed_addend, value);
1430 return bfd_reloc_ok;
1431 }
1432 }
1433
1434 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1435 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1436 {
1437 /* The old way of doing things. Trearing the addend as a
1438 byte sized field and adding in the pipeline offset. */
1439 value -= (input_section->output_section->vma
1440 + input_section->output_offset);
1441 value -= rel->r_offset;
1442 value += addend;
1443
1444 if (! globals->no_pipeline_knowledge)
1445 value -= 8;
1446 }
1447 else
1448 {
1449 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1450 where:
1451 S is the address of the symbol in the relocation.
1452 P is address of the instruction being relocated.
1453 A is the addend (extracted from the instruction) in bytes.
1454
1455 S is held in 'value'.
1456 P is the base address of the section containing the instruction
1457 plus the offset of the reloc into that section, ie:
1458 (input_section->output_section->vma +
1459 input_section->output_offset +
1460 rel->r_offset).
1461 A is the addend, converted into bytes, ie:
1462 (signed_addend * 4)
1463
1464 Note: None of these operations have knowledge of the pipeline
1465 size of the processor, thus it is up to the assembler to encode
1466 this information into the addend. */
1467 value -= (input_section->output_section->vma
1468 + input_section->output_offset);
1469 value -= rel->r_offset;
1470 value += (signed_addend << howto->size);
1471
1472 /* Previous versions of this code also used to add in the pipeline
1473 offset here. This is wrong because the linker is not supposed
1474 to know about such things, and one day it might change. In order
1475 to support old binaries that need the old behaviour however, so
1476 we attempt to detect which ABI was used to create the reloc. */
1477 if (! globals->no_pipeline_knowledge)
1478 {
1479 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1480
1481 i_ehdrp = elf_elfheader (input_bfd);
1482
1483 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1484 value -= 8;
1485 }
1486 }
1487
1488 signed_addend = value;
1489 signed_addend >>= howto->rightshift;
1490
1491 /* It is not an error for an undefined weak reference to be
1492 out of range. Any program that branches to such a symbol
1493 is going to crash anyway, so there is no point worrying
1494 about getting the destination exactly right. */
1495 if (! h || h->root.type != bfd_link_hash_undefweak)
1496 {
1497 /* Perform a signed range check. */
1498 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1499 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1500 return bfd_reloc_overflow;
1501 }
1502
1503 #ifndef OLD_ARM_ABI
1504 /* If necessary set the H bit in the BLX instruction. */
1505 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1506 value = (signed_addend & howto->dst_mask)
1507 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1508 | (1 << 24);
1509 else
1510 #endif
1511 value = (signed_addend & howto->dst_mask)
1512 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1513 break;
1514
1515 case R_ARM_ABS32:
1516 value += addend;
1517 if (sym_flags == STT_ARM_TFUNC)
1518 value |= 1;
1519 break;
1520
1521 case R_ARM_REL32:
1522 value -= (input_section->output_section->vma
1523 + input_section->output_offset + rel->r_offset);
1524 value += addend;
1525 break;
1526 }
1527
1528 bfd_put_32 (input_bfd, value, hit_data);
1529 return bfd_reloc_ok;
1530
1531 case R_ARM_ABS8:
1532 value += addend;
1533 if ((long) value > 0x7f || (long) value < -0x80)
1534 return bfd_reloc_overflow;
1535
1536 bfd_put_8 (input_bfd, value, hit_data);
1537 return bfd_reloc_ok;
1538
1539 case R_ARM_ABS16:
1540 value += addend;
1541
1542 if ((long) value > 0x7fff || (long) value < -0x8000)
1543 return bfd_reloc_overflow;
1544
1545 bfd_put_16 (input_bfd, value, hit_data);
1546 return bfd_reloc_ok;
1547
1548 case R_ARM_ABS12:
1549 /* Support ldr and str instruction for the arm */
1550 /* Also thumb b (unconditional branch). ??? Really? */
1551 value += addend;
1552
1553 if ((long) value > 0x7ff || (long) value < -0x800)
1554 return bfd_reloc_overflow;
1555
1556 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1557 bfd_put_32 (input_bfd, value, hit_data);
1558 return bfd_reloc_ok;
1559
1560 case R_ARM_THM_ABS5:
1561 /* Support ldr and str instructions for the thumb. */
1562 #if USE_REL
1563 /* Need to refetch addend. */
1564 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1565 /* ??? Need to determine shift amount from operand size. */
1566 addend >>= howto->rightshift;
1567 #endif
1568 value += addend;
1569
1570 /* ??? Isn't value unsigned? */
1571 if ((long) value > 0x1f || (long) value < -0x10)
1572 return bfd_reloc_overflow;
1573
1574 /* ??? Value needs to be properly shifted into place first. */
1575 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1576 bfd_put_16 (input_bfd, value, hit_data);
1577 return bfd_reloc_ok;
1578
1579 #ifndef OLD_ARM_ABI
1580 case R_ARM_THM_XPC22:
1581 #endif
1582 case R_ARM_THM_PC22:
1583 /* Thumb BL (branch long instruction). */
1584 {
1585 bfd_vma relocation;
1586 bfd_boolean overflow = FALSE;
1587 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1588 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1589 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1590 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1591 bfd_vma check;
1592 bfd_signed_vma signed_check;
1593
1594 #if USE_REL
1595 /* Need to refetch the addend and squish the two 11 bit pieces
1596 together. */
1597 {
1598 bfd_vma upper = upper_insn & 0x7ff;
1599 bfd_vma lower = lower_insn & 0x7ff;
1600 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1601 addend = (upper << 12) | (lower << 1);
1602 signed_addend = addend;
1603 }
1604 #endif
1605 #ifndef OLD_ARM_ABI
1606 if (r_type == R_ARM_THM_XPC22)
1607 {
1608 /* Check for Thumb to Thumb call. */
1609 /* FIXME: Should we translate the instruction into a BL
1610 instruction instead ? */
1611 if (sym_flags == STT_ARM_TFUNC)
1612 (*_bfd_error_handler) (_("\
1613 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1614 bfd_archive_filename (input_bfd),
1615 h ? h->root.root.string : "(local)");
1616 }
1617 else
1618 #endif
1619 {
1620 /* If it is not a call to Thumb, assume call to Arm.
1621 If it is a call relative to a section name, then it is not a
1622 function call at all, but rather a long jump. */
1623 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1624 {
1625 if (elf32_thumb_to_arm_stub
1626 (info, sym_name, input_bfd, output_bfd, input_section,
1627 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1628 return bfd_reloc_ok;
1629 else
1630 return bfd_reloc_dangerous;
1631 }
1632 }
1633
1634 relocation = value + signed_addend;
1635
1636 relocation -= (input_section->output_section->vma
1637 + input_section->output_offset
1638 + rel->r_offset);
1639
1640 if (! globals->no_pipeline_knowledge)
1641 {
1642 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1643
1644 i_ehdrp = elf_elfheader (input_bfd);
1645
1646 /* Previous versions of this code also used to add in the pipline
1647 offset here. This is wrong because the linker is not supposed
1648 to know about such things, and one day it might change. In order
1649 to support old binaries that need the old behaviour however, so
1650 we attempt to detect which ABI was used to create the reloc. */
1651 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1652 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1653 || i_ehdrp->e_ident[EI_OSABI] == 0)
1654 relocation += 4;
1655 }
1656
1657 check = relocation >> howto->rightshift;
1658
1659 /* If this is a signed value, the rightshift just dropped
1660 leading 1 bits (assuming twos complement). */
1661 if ((bfd_signed_vma) relocation >= 0)
1662 signed_check = check;
1663 else
1664 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1665
1666 /* Assumes two's complement. */
1667 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1668 overflow = TRUE;
1669
1670 #ifndef OLD_ARM_ABI
1671 if (r_type == R_ARM_THM_XPC22
1672 && ((lower_insn & 0x1800) == 0x0800))
1673 /* For a BLX instruction, make sure that the relocation is rounded up
1674 to a word boundary. This follows the semantics of the instruction
1675 which specifies that bit 1 of the target address will come from bit
1676 1 of the base address. */
1677 relocation = (relocation + 2) & ~ 3;
1678 #endif
1679 /* Put RELOCATION back into the insn. */
1680 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1681 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1682
1683 /* Put the relocated value back in the object file: */
1684 bfd_put_16 (input_bfd, upper_insn, hit_data);
1685 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1686
1687 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1688 }
1689 break;
1690
1691 case R_ARM_THM_PC11:
1692 /* Thumb B (branch) instruction). */
1693 {
1694 bfd_signed_vma relocation;
1695 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1696 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1697 bfd_signed_vma signed_check;
1698
1699 #if USE_REL
1700 /* Need to refetch addend. */
1701 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1702 if (addend & ((howto->src_mask + 1) >> 1))
1703 {
1704 signed_addend = -1;
1705 signed_addend &= ~ howto->src_mask;
1706 signed_addend |= addend;
1707 }
1708 else
1709 signed_addend = addend;
1710 /* The value in the insn has been right shifted. We need to
1711 undo this, so that we can perform the address calculation
1712 in terms of bytes. */
1713 signed_addend <<= howto->rightshift;
1714 #endif
1715 relocation = value + signed_addend;
1716
1717 relocation -= (input_section->output_section->vma
1718 + input_section->output_offset
1719 + rel->r_offset);
1720
1721 relocation >>= howto->rightshift;
1722 signed_check = relocation;
1723 relocation &= howto->dst_mask;
1724 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1725
1726 bfd_put_16 (input_bfd, relocation, hit_data);
1727
1728 /* Assumes two's complement. */
1729 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1730 return bfd_reloc_overflow;
1731
1732 return bfd_reloc_ok;
1733 }
1734
1735 case R_ARM_ALU_PCREL7_0:
1736 case R_ARM_ALU_PCREL15_8:
1737 case R_ARM_ALU_PCREL23_15:
1738 {
1739 bfd_vma insn;
1740 bfd_vma relocation;
1741
1742 insn = bfd_get_32 (input_bfd, hit_data);
1743 #if USE_REL
1744 /* Extract the addend. */
1745 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
1746 signed_addend = addend;
1747 #endif
1748 relocation = value + signed_addend;
1749
1750 relocation -= (input_section->output_section->vma
1751 + input_section->output_offset
1752 + rel->r_offset);
1753 insn = (insn & ~0xfff)
1754 | ((howto->bitpos << 7) & 0xf00)
1755 | ((relocation >> howto->bitpos) & 0xff);
1756 bfd_put_32 (input_bfd, value, hit_data);
1757 }
1758 return bfd_reloc_ok;
1759
1760 case R_ARM_GNU_VTINHERIT:
1761 case R_ARM_GNU_VTENTRY:
1762 return bfd_reloc_ok;
1763
1764 case R_ARM_COPY:
1765 return bfd_reloc_notsupported;
1766
1767 case R_ARM_GLOB_DAT:
1768 return bfd_reloc_notsupported;
1769
1770 case R_ARM_JUMP_SLOT:
1771 return bfd_reloc_notsupported;
1772
1773 case R_ARM_RELATIVE:
1774 return bfd_reloc_notsupported;
1775
1776 case R_ARM_GOTOFF:
1777 /* Relocation is relative to the start of the
1778 global offset table. */
1779
1780 BFD_ASSERT (sgot != NULL);
1781 if (sgot == NULL)
1782 return bfd_reloc_notsupported;
1783
1784 /* If we are addressing a Thumb function, we need to adjust the
1785 address by one, so that attempts to call the function pointer will
1786 correctly interpret it as Thumb code. */
1787 if (sym_flags == STT_ARM_TFUNC)
1788 value += 1;
1789
1790 /* Note that sgot->output_offset is not involved in this
1791 calculation. We always want the start of .got. If we
1792 define _GLOBAL_OFFSET_TABLE in a different way, as is
1793 permitted by the ABI, we might have to change this
1794 calculation. */
1795 value -= sgot->output_section->vma;
1796 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1797 contents, rel->r_offset, value,
1798 (bfd_vma) 0);
1799
1800 case R_ARM_GOTPC:
1801 /* Use global offset table as symbol value. */
1802 BFD_ASSERT (sgot != NULL);
1803
1804 if (sgot == NULL)
1805 return bfd_reloc_notsupported;
1806
1807 value = sgot->output_section->vma;
1808 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1809 contents, rel->r_offset, value,
1810 (bfd_vma) 0);
1811
1812 case R_ARM_GOT32:
1813 /* Relocation is to the entry for this symbol in the
1814 global offset table. */
1815 if (sgot == NULL)
1816 return bfd_reloc_notsupported;
1817
1818 if (h != NULL)
1819 {
1820 bfd_vma off;
1821 bfd_boolean dyn;
1822
1823 off = h->got.offset;
1824 BFD_ASSERT (off != (bfd_vma) -1);
1825 dyn = globals->root.dynamic_sections_created;
1826
1827 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1828 || (info->shared
1829 && SYMBOL_REFERENCES_LOCAL (info, h))
1830 || (ELF_ST_VISIBILITY (h->other)
1831 && h->root.type == bfd_link_hash_undefweak))
1832 {
1833 /* This is actually a static link, or it is a -Bsymbolic link
1834 and the symbol is defined locally. We must initialize this
1835 entry in the global offset table. Since the offset must
1836 always be a multiple of 4, we use the least significant bit
1837 to record whether we have initialized it already.
1838
1839 When doing a dynamic link, we create a .rel.got relocation
1840 entry to initialize the value. This is done in the
1841 finish_dynamic_symbol routine. */
1842 if ((off & 1) != 0)
1843 off &= ~1;
1844 else
1845 {
1846 /* If we are addressing a Thumb function, we need to
1847 adjust the address by one, so that attempts to
1848 call the function pointer will correctly
1849 interpret it as Thumb code. */
1850 if (sym_flags == STT_ARM_TFUNC)
1851 value |= 1;
1852
1853 bfd_put_32 (output_bfd, value, sgot->contents + off);
1854 h->got.offset |= 1;
1855 }
1856 }
1857
1858 value = sgot->output_offset + off;
1859 }
1860 else
1861 {
1862 bfd_vma off;
1863
1864 BFD_ASSERT (local_got_offsets != NULL &&
1865 local_got_offsets[r_symndx] != (bfd_vma) -1);
1866
1867 off = local_got_offsets[r_symndx];
1868
1869 /* The offset must always be a multiple of 4. We use the
1870 least significant bit to record whether we have already
1871 generated the necessary reloc. */
1872 if ((off & 1) != 0)
1873 off &= ~1;
1874 else
1875 {
1876 bfd_put_32 (output_bfd, value, sgot->contents + off);
1877
1878 if (info->shared)
1879 {
1880 asection * srelgot;
1881 Elf_Internal_Rela outrel;
1882 bfd_byte *loc;
1883
1884 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1885 BFD_ASSERT (srelgot != NULL);
1886
1887 outrel.r_offset = (sgot->output_section->vma
1888 + sgot->output_offset
1889 + off);
1890 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1891 loc = srelgot->contents;
1892 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1893 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1894 }
1895
1896 local_got_offsets[r_symndx] |= 1;
1897 }
1898
1899 value = sgot->output_offset + off;
1900 }
1901
1902 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1903 contents, rel->r_offset, value,
1904 (bfd_vma) 0);
1905
1906 case R_ARM_SBREL32:
1907 return bfd_reloc_notsupported;
1908
1909 case R_ARM_AMP_VCALL9:
1910 return bfd_reloc_notsupported;
1911
1912 case R_ARM_RSBREL32:
1913 return bfd_reloc_notsupported;
1914
1915 case R_ARM_THM_RPC22:
1916 return bfd_reloc_notsupported;
1917
1918 case R_ARM_RREL32:
1919 return bfd_reloc_notsupported;
1920
1921 case R_ARM_RABS32:
1922 return bfd_reloc_notsupported;
1923
1924 case R_ARM_RPC24:
1925 return bfd_reloc_notsupported;
1926
1927 case R_ARM_RBASE:
1928 return bfd_reloc_notsupported;
1929
1930 default:
1931 return bfd_reloc_notsupported;
1932 }
1933 }
1934
1935 #if USE_REL
1936 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1937 static void
1938 arm_add_to_rel (abfd, address, howto, increment)
1939 bfd * abfd;
1940 bfd_byte * address;
1941 reloc_howto_type * howto;
1942 bfd_signed_vma increment;
1943 {
1944 bfd_signed_vma addend;
1945
1946 if (howto->type == R_ARM_THM_PC22)
1947 {
1948 int upper_insn, lower_insn;
1949 int upper, lower;
1950
1951 upper_insn = bfd_get_16 (abfd, address);
1952 lower_insn = bfd_get_16 (abfd, address + 2);
1953 upper = upper_insn & 0x7ff;
1954 lower = lower_insn & 0x7ff;
1955
1956 addend = (upper << 12) | (lower << 1);
1957 addend += increment;
1958 addend >>= 1;
1959
1960 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1961 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1962
1963 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1964 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1965 }
1966 else
1967 {
1968 bfd_vma contents;
1969
1970 contents = bfd_get_32 (abfd, address);
1971
1972 /* Get the (signed) value from the instruction. */
1973 addend = contents & howto->src_mask;
1974 if (addend & ((howto->src_mask + 1) >> 1))
1975 {
1976 bfd_signed_vma mask;
1977
1978 mask = -1;
1979 mask &= ~ howto->src_mask;
1980 addend |= mask;
1981 }
1982
1983 /* Add in the increment, (which is a byte value). */
1984 switch (howto->type)
1985 {
1986 default:
1987 addend += increment;
1988 break;
1989
1990 case R_ARM_PC24:
1991 addend <<= howto->size;
1992 addend += increment;
1993
1994 /* Should we check for overflow here ? */
1995
1996 /* Drop any undesired bits. */
1997 addend >>= howto->rightshift;
1998 break;
1999 }
2000
2001 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
2002
2003 bfd_put_32 (abfd, contents, address);
2004 }
2005 }
2006 #endif /* USE_REL */
2007
2008 /* Relocate an ARM ELF section. */
2009 static bfd_boolean
2010 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
2011 contents, relocs, local_syms, local_sections)
2012 bfd *output_bfd;
2013 struct bfd_link_info *info;
2014 bfd *input_bfd;
2015 asection *input_section;
2016 bfd_byte *contents;
2017 Elf_Internal_Rela *relocs;
2018 Elf_Internal_Sym *local_syms;
2019 asection **local_sections;
2020 {
2021 Elf_Internal_Shdr *symtab_hdr;
2022 struct elf_link_hash_entry **sym_hashes;
2023 Elf_Internal_Rela *rel;
2024 Elf_Internal_Rela *relend;
2025 const char *name;
2026
2027 #if !USE_REL
2028 if (info->relocatable)
2029 return TRUE;
2030 #endif
2031
2032 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
2033 sym_hashes = elf_sym_hashes (input_bfd);
2034
2035 rel = relocs;
2036 relend = relocs + input_section->reloc_count;
2037 for (; rel < relend; rel++)
2038 {
2039 int r_type;
2040 reloc_howto_type * howto;
2041 unsigned long r_symndx;
2042 Elf_Internal_Sym * sym;
2043 asection * sec;
2044 struct elf_link_hash_entry * h;
2045 bfd_vma relocation;
2046 bfd_reloc_status_type r;
2047 arelent bfd_reloc;
2048
2049 r_symndx = ELF32_R_SYM (rel->r_info);
2050 r_type = ELF32_R_TYPE (rel->r_info);
2051
2052 if ( r_type == R_ARM_GNU_VTENTRY
2053 || r_type == R_ARM_GNU_VTINHERIT)
2054 continue;
2055
2056 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
2057 howto = bfd_reloc.howto;
2058
2059 #if USE_REL
2060 if (info->relocatable)
2061 {
2062 /* This is a relocatable link. We don't have to change
2063 anything, unless the reloc is against a section symbol,
2064 in which case we have to adjust according to where the
2065 section symbol winds up in the output section. */
2066 if (r_symndx < symtab_hdr->sh_info)
2067 {
2068 sym = local_syms + r_symndx;
2069 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2070 {
2071 sec = local_sections[r_symndx];
2072 arm_add_to_rel (input_bfd, contents + rel->r_offset,
2073 howto,
2074 (bfd_signed_vma) (sec->output_offset
2075 + sym->st_value));
2076 }
2077 }
2078
2079 continue;
2080 }
2081 #endif
2082
2083 /* This is a final link. */
2084 h = NULL;
2085 sym = NULL;
2086 sec = NULL;
2087
2088 if (r_symndx < symtab_hdr->sh_info)
2089 {
2090 sym = local_syms + r_symndx;
2091 sec = local_sections[r_symndx];
2092 #if USE_REL
2093 relocation = (sec->output_section->vma
2094 + sec->output_offset
2095 + sym->st_value);
2096 if ((sec->flags & SEC_MERGE)
2097 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2098 {
2099 asection *msec;
2100 bfd_vma addend, value;
2101
2102 if (howto->rightshift)
2103 {
2104 (*_bfd_error_handler)
2105 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
2106 bfd_archive_filename (input_bfd),
2107 bfd_get_section_name (input_bfd, input_section),
2108 (long) rel->r_offset, howto->name);
2109 return FALSE;
2110 }
2111
2112 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
2113
2114 /* Get the (signed) value from the instruction. */
2115 addend = value & howto->src_mask;
2116 if (addend & ((howto->src_mask + 1) >> 1))
2117 {
2118 bfd_signed_vma mask;
2119
2120 mask = -1;
2121 mask &= ~ howto->src_mask;
2122 addend |= mask;
2123 }
2124 msec = sec;
2125 addend =
2126 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
2127 - relocation;
2128 addend += msec->output_section->vma + msec->output_offset;
2129 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
2130 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
2131 }
2132 #else
2133 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2134 #endif
2135 }
2136 else
2137 {
2138 bfd_boolean warned;
2139 bfd_boolean unresolved_reloc;
2140
2141 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2142 r_symndx, symtab_hdr, sym_hashes,
2143 h, sec, relocation,
2144 unresolved_reloc, warned);
2145
2146 if (unresolved_reloc || relocation != 0)
2147 {
2148 /* In these cases, we don't need the relocation value.
2149 We check specially because in some obscure cases
2150 sec->output_section will be NULL. */
2151 switch (r_type)
2152 {
2153 case R_ARM_PC24:
2154 case R_ARM_ABS32:
2155 case R_ARM_THM_PC22:
2156 if (info->shared
2157 && (
2158 (!info->symbolic && h->dynindx != -1)
2159 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2160 )
2161 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2162 && ((input_section->flags & SEC_ALLOC) != 0
2163 /* DWARF will emit R_ARM_ABS32 relocations in its
2164 sections against symbols defined externally
2165 in shared libraries. We can't do anything
2166 with them here. */
2167 || ((input_section->flags & SEC_DEBUGGING) != 0
2168 && (h->elf_link_hash_flags
2169 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2170 )
2171 relocation = 0;
2172 break;
2173
2174 case R_ARM_GOTPC:
2175 relocation = 0;
2176 break;
2177
2178 case R_ARM_GOT32:
2179 if ((WILL_CALL_FINISH_DYNAMIC_SYMBOL
2180 (elf_hash_table (info)->dynamic_sections_created,
2181 info->shared, h))
2182 && (!info->shared
2183 || (!info->symbolic && h->dynindx != -1)
2184 || (h->elf_link_hash_flags
2185 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2186 relocation = 0;
2187 break;
2188
2189 case R_ARM_PLT32:
2190 if (h->plt.offset != (bfd_vma)-1)
2191 relocation = 0;
2192 break;
2193
2194 default:
2195 if (unresolved_reloc)
2196 _bfd_error_handler
2197 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2198 bfd_archive_filename (input_bfd),
2199 r_type,
2200 h->root.root.string,
2201 bfd_get_section_name (input_bfd, input_section));
2202 break;
2203 }
2204 }
2205 }
2206
2207 if (h != NULL)
2208 name = h->root.root.string;
2209 else
2210 {
2211 name = (bfd_elf_string_from_elf_section
2212 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2213 if (name == NULL || *name == '\0')
2214 name = bfd_section_name (input_bfd, sec);
2215 }
2216
2217 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2218 input_section, contents, rel,
2219 relocation, info, sec, name,
2220 (h ? ELF_ST_TYPE (h->type) :
2221 ELF_ST_TYPE (sym->st_info)), h);
2222
2223 if (r != bfd_reloc_ok)
2224 {
2225 const char * msg = (const char *) 0;
2226
2227 switch (r)
2228 {
2229 case bfd_reloc_overflow:
2230 /* If the overflowing reloc was to an undefined symbol,
2231 we have already printed one error message and there
2232 is no point complaining again. */
2233 if ((! h ||
2234 h->root.type != bfd_link_hash_undefined)
2235 && (!((*info->callbacks->reloc_overflow)
2236 (info, name, howto->name, (bfd_vma) 0,
2237 input_bfd, input_section, rel->r_offset))))
2238 return FALSE;
2239 break;
2240
2241 case bfd_reloc_undefined:
2242 if (!((*info->callbacks->undefined_symbol)
2243 (info, name, input_bfd, input_section,
2244 rel->r_offset, TRUE)))
2245 return FALSE;
2246 break;
2247
2248 case bfd_reloc_outofrange:
2249 msg = _("internal error: out of range error");
2250 goto common_error;
2251
2252 case bfd_reloc_notsupported:
2253 msg = _("internal error: unsupported relocation error");
2254 goto common_error;
2255
2256 case bfd_reloc_dangerous:
2257 msg = _("internal error: dangerous error");
2258 goto common_error;
2259
2260 default:
2261 msg = _("internal error: unknown error");
2262 /* fall through */
2263
2264 common_error:
2265 if (!((*info->callbacks->warning)
2266 (info, msg, name, input_bfd, input_section,
2267 rel->r_offset)))
2268 return FALSE;
2269 break;
2270 }
2271 }
2272 }
2273
2274 return TRUE;
2275 }
2276
2277 /* Set the right machine number. */
2278
2279 static bfd_boolean
2280 elf32_arm_object_p (abfd)
2281 bfd *abfd;
2282 {
2283 unsigned int mach;
2284
2285 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
2286
2287 if (mach != bfd_mach_arm_unknown)
2288 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2289
2290 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
2291 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
2292
2293 else
2294 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
2295
2296 return TRUE;
2297 }
2298
2299 /* Function to keep ARM specific flags in the ELF header. */
2300 static bfd_boolean
2301 elf32_arm_set_private_flags (abfd, flags)
2302 bfd *abfd;
2303 flagword flags;
2304 {
2305 if (elf_flags_init (abfd)
2306 && elf_elfheader (abfd)->e_flags != flags)
2307 {
2308 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2309 {
2310 if (flags & EF_ARM_INTERWORK)
2311 (*_bfd_error_handler) (_("\
2312 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2313 bfd_archive_filename (abfd));
2314 else
2315 _bfd_error_handler (_("\
2316 Warning: Clearing the interworking flag of %s due to outside request"),
2317 bfd_archive_filename (abfd));
2318 }
2319 }
2320 else
2321 {
2322 elf_elfheader (abfd)->e_flags = flags;
2323 elf_flags_init (abfd) = TRUE;
2324 }
2325
2326 return TRUE;
2327 }
2328
2329 /* Copy backend specific data from one object module to another. */
2330
2331 static bfd_boolean
2332 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2333 bfd *ibfd;
2334 bfd *obfd;
2335 {
2336 flagword in_flags;
2337 flagword out_flags;
2338
2339 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2340 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2341 return TRUE;
2342
2343 in_flags = elf_elfheader (ibfd)->e_flags;
2344 out_flags = elf_elfheader (obfd)->e_flags;
2345
2346 if (elf_flags_init (obfd)
2347 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2348 && in_flags != out_flags)
2349 {
2350 /* Cannot mix APCS26 and APCS32 code. */
2351 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2352 return FALSE;
2353
2354 /* Cannot mix float APCS and non-float APCS code. */
2355 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2356 return FALSE;
2357
2358 /* If the src and dest have different interworking flags
2359 then turn off the interworking bit. */
2360 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2361 {
2362 if (out_flags & EF_ARM_INTERWORK)
2363 _bfd_error_handler (_("\
2364 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2365 bfd_get_filename (obfd),
2366 bfd_archive_filename (ibfd));
2367
2368 in_flags &= ~EF_ARM_INTERWORK;
2369 }
2370
2371 /* Likewise for PIC, though don't warn for this case. */
2372 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2373 in_flags &= ~EF_ARM_PIC;
2374 }
2375
2376 elf_elfheader (obfd)->e_flags = in_flags;
2377 elf_flags_init (obfd) = TRUE;
2378
2379 return TRUE;
2380 }
2381
2382 /* Merge backend specific data from an object file to the output
2383 object file when linking. */
2384
2385 static bfd_boolean
2386 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2387 bfd * ibfd;
2388 bfd * obfd;
2389 {
2390 flagword out_flags;
2391 flagword in_flags;
2392 bfd_boolean flags_compatible = TRUE;
2393 asection *sec;
2394
2395 /* Check if we have the same endianess. */
2396 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2397 return FALSE;
2398
2399 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2400 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2401 return TRUE;
2402
2403 /* The input BFD must have had its flags initialised. */
2404 /* The following seems bogus to me -- The flags are initialized in
2405 the assembler but I don't think an elf_flags_init field is
2406 written into the object. */
2407 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2408
2409 in_flags = elf_elfheader (ibfd)->e_flags;
2410 out_flags = elf_elfheader (obfd)->e_flags;
2411
2412 if (!elf_flags_init (obfd))
2413 {
2414 /* If the input is the default architecture and had the default
2415 flags then do not bother setting the flags for the output
2416 architecture, instead allow future merges to do this. If no
2417 future merges ever set these flags then they will retain their
2418 uninitialised values, which surprise surprise, correspond
2419 to the default values. */
2420 if (bfd_get_arch_info (ibfd)->the_default
2421 && elf_elfheader (ibfd)->e_flags == 0)
2422 return TRUE;
2423
2424 elf_flags_init (obfd) = TRUE;
2425 elf_elfheader (obfd)->e_flags = in_flags;
2426
2427 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2428 && bfd_get_arch_info (obfd)->the_default)
2429 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2430
2431 return TRUE;
2432 }
2433
2434 /* Determine what should happen if the input ARM architecture
2435 does not match the output ARM architecture. */
2436 if (! bfd_arm_merge_machines (ibfd, obfd))
2437 return FALSE;
2438
2439 /* Identical flags must be compatible. */
2440 if (in_flags == out_flags)
2441 return TRUE;
2442
2443 /* Check to see if the input BFD actually contains any sections. If
2444 not, its flags may not have been initialised either, but it
2445 cannot actually cause any incompatibility. Do not short-circuit
2446 dynamic objects; their section list may be emptied by
2447 elf_link_add_object_symbols.
2448
2449 Also check to see if there are no code sections in the input.
2450 In this case there is no need to check for code specific flags.
2451 XXX - do we need to worry about floating-point format compatability
2452 in data sections ? */
2453 if (!(ibfd->flags & DYNAMIC))
2454 {
2455 bfd_boolean null_input_bfd = TRUE;
2456 bfd_boolean only_data_sections = TRUE;
2457
2458 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2459 {
2460 /* Ignore synthetic glue sections. */
2461 if (strcmp (sec->name, ".glue_7")
2462 && strcmp (sec->name, ".glue_7t"))
2463 {
2464 if ((bfd_get_section_flags (ibfd, sec)
2465 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2466 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
2467 only_data_sections = FALSE;
2468
2469 null_input_bfd = FALSE;
2470 break;
2471 }
2472 }
2473
2474 if (null_input_bfd || only_data_sections)
2475 return TRUE;
2476 }
2477
2478 /* Complain about various flag mismatches. */
2479 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2480 {
2481 _bfd_error_handler (_("\
2482 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2483 bfd_archive_filename (ibfd),
2484 (in_flags & EF_ARM_EABIMASK) >> 24,
2485 bfd_get_filename (obfd),
2486 (out_flags & EF_ARM_EABIMASK) >> 24);
2487 return FALSE;
2488 }
2489
2490 /* Not sure what needs to be checked for EABI versions >= 1. */
2491 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2492 {
2493 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2494 {
2495 _bfd_error_handler (_("\
2496 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2497 bfd_archive_filename (ibfd),
2498 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2499 bfd_get_filename (obfd),
2500 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2501 flags_compatible = FALSE;
2502 }
2503
2504 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2505 {
2506 if (in_flags & EF_ARM_APCS_FLOAT)
2507 _bfd_error_handler (_("\
2508 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2509 bfd_archive_filename (ibfd),
2510 bfd_get_filename (obfd));
2511 else
2512 _bfd_error_handler (_("\
2513 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2514 bfd_archive_filename (ibfd),
2515 bfd_get_filename (obfd));
2516
2517 flags_compatible = FALSE;
2518 }
2519
2520 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2521 {
2522 if (in_flags & EF_ARM_VFP_FLOAT)
2523 _bfd_error_handler (_("\
2524 ERROR: %s uses VFP instructions, whereas %s does not"),
2525 bfd_archive_filename (ibfd),
2526 bfd_get_filename (obfd));
2527 else
2528 _bfd_error_handler (_("\
2529 ERROR: %s uses FPA instructions, whereas %s does not"),
2530 bfd_archive_filename (ibfd),
2531 bfd_get_filename (obfd));
2532
2533 flags_compatible = FALSE;
2534 }
2535
2536 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2537 {
2538 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2539 _bfd_error_handler (_("\
2540 ERROR: %s uses Maverick instructions, whereas %s does not"),
2541 bfd_archive_filename (ibfd),
2542 bfd_get_filename (obfd));
2543 else
2544 _bfd_error_handler (_("\
2545 ERROR: %s does not use Maverick instructions, whereas %s does"),
2546 bfd_archive_filename (ibfd),
2547 bfd_get_filename (obfd));
2548
2549 flags_compatible = FALSE;
2550 }
2551
2552 #ifdef EF_ARM_SOFT_FLOAT
2553 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2554 {
2555 /* We can allow interworking between code that is VFP format
2556 layout, and uses either soft float or integer regs for
2557 passing floating point arguments and results. We already
2558 know that the APCS_FLOAT flags match; similarly for VFP
2559 flags. */
2560 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2561 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2562 {
2563 if (in_flags & EF_ARM_SOFT_FLOAT)
2564 _bfd_error_handler (_("\
2565 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2566 bfd_archive_filename (ibfd),
2567 bfd_get_filename (obfd));
2568 else
2569 _bfd_error_handler (_("\
2570 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2571 bfd_archive_filename (ibfd),
2572 bfd_get_filename (obfd));
2573
2574 flags_compatible = FALSE;
2575 }
2576 }
2577 #endif
2578
2579 /* Interworking mismatch is only a warning. */
2580 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2581 {
2582 if (in_flags & EF_ARM_INTERWORK)
2583 {
2584 _bfd_error_handler (_("\
2585 Warning: %s supports interworking, whereas %s does not"),
2586 bfd_archive_filename (ibfd),
2587 bfd_get_filename (obfd));
2588 }
2589 else
2590 {
2591 _bfd_error_handler (_("\
2592 Warning: %s does not support interworking, whereas %s does"),
2593 bfd_archive_filename (ibfd),
2594 bfd_get_filename (obfd));
2595 }
2596 }
2597 }
2598
2599 return flags_compatible;
2600 }
2601
2602 /* Display the flags field. */
2603
2604 static bfd_boolean
2605 elf32_arm_print_private_bfd_data (abfd, ptr)
2606 bfd *abfd;
2607 PTR ptr;
2608 {
2609 FILE * file = (FILE *) ptr;
2610 unsigned long flags;
2611
2612 BFD_ASSERT (abfd != NULL && ptr != NULL);
2613
2614 /* Print normal ELF private data. */
2615 _bfd_elf_print_private_bfd_data (abfd, ptr);
2616
2617 flags = elf_elfheader (abfd)->e_flags;
2618 /* Ignore init flag - it may not be set, despite the flags field
2619 containing valid data. */
2620
2621 /* xgettext:c-format */
2622 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2623
2624 switch (EF_ARM_EABI_VERSION (flags))
2625 {
2626 case EF_ARM_EABI_UNKNOWN:
2627 /* The following flag bits are GNU extensions and not part of the
2628 official ARM ELF extended ABI. Hence they are only decoded if
2629 the EABI version is not set. */
2630 if (flags & EF_ARM_INTERWORK)
2631 fprintf (file, _(" [interworking enabled]"));
2632
2633 if (flags & EF_ARM_APCS_26)
2634 fprintf (file, " [APCS-26]");
2635 else
2636 fprintf (file, " [APCS-32]");
2637
2638 if (flags & EF_ARM_VFP_FLOAT)
2639 fprintf (file, _(" [VFP float format]"));
2640 else if (flags & EF_ARM_MAVERICK_FLOAT)
2641 fprintf (file, _(" [Maverick float format]"));
2642 else
2643 fprintf (file, _(" [FPA float format]"));
2644
2645 if (flags & EF_ARM_APCS_FLOAT)
2646 fprintf (file, _(" [floats passed in float registers]"));
2647
2648 if (flags & EF_ARM_PIC)
2649 fprintf (file, _(" [position independent]"));
2650
2651 if (flags & EF_ARM_NEW_ABI)
2652 fprintf (file, _(" [new ABI]"));
2653
2654 if (flags & EF_ARM_OLD_ABI)
2655 fprintf (file, _(" [old ABI]"));
2656
2657 if (flags & EF_ARM_SOFT_FLOAT)
2658 fprintf (file, _(" [software FP]"));
2659
2660 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2661 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2662 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2663 | EF_ARM_MAVERICK_FLOAT);
2664 break;
2665
2666 case EF_ARM_EABI_VER1:
2667 fprintf (file, _(" [Version1 EABI]"));
2668
2669 if (flags & EF_ARM_SYMSARESORTED)
2670 fprintf (file, _(" [sorted symbol table]"));
2671 else
2672 fprintf (file, _(" [unsorted symbol table]"));
2673
2674 flags &= ~ EF_ARM_SYMSARESORTED;
2675 break;
2676
2677 case EF_ARM_EABI_VER2:
2678 fprintf (file, _(" [Version2 EABI]"));
2679
2680 if (flags & EF_ARM_SYMSARESORTED)
2681 fprintf (file, _(" [sorted symbol table]"));
2682 else
2683 fprintf (file, _(" [unsorted symbol table]"));
2684
2685 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2686 fprintf (file, _(" [dynamic symbols use segment index]"));
2687
2688 if (flags & EF_ARM_MAPSYMSFIRST)
2689 fprintf (file, _(" [mapping symbols precede others]"));
2690
2691 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2692 | EF_ARM_MAPSYMSFIRST);
2693 break;
2694
2695 case EF_ARM_EABI_VER3:
2696 fprintf (file, _(" [Version3 EABI]"));
2697
2698 if (flags & EF_ARM_BE8)
2699 fprintf (file, _(" [BE8]"));
2700
2701 if (flags & EF_ARM_LE8)
2702 fprintf (file, _(" [LE8]"));
2703
2704 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
2705 break;
2706
2707 default:
2708 fprintf (file, _(" <EABI version unrecognised>"));
2709 break;
2710 }
2711
2712 flags &= ~ EF_ARM_EABIMASK;
2713
2714 if (flags & EF_ARM_RELEXEC)
2715 fprintf (file, _(" [relocatable executable]"));
2716
2717 if (flags & EF_ARM_HASENTRY)
2718 fprintf (file, _(" [has entry point]"));
2719
2720 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2721
2722 if (flags)
2723 fprintf (file, _("<Unrecognised flag bits set>"));
2724
2725 fputc ('\n', file);
2726
2727 return TRUE;
2728 }
2729
2730 static int
2731 elf32_arm_get_symbol_type (elf_sym, type)
2732 Elf_Internal_Sym * elf_sym;
2733 int type;
2734 {
2735 switch (ELF_ST_TYPE (elf_sym->st_info))
2736 {
2737 case STT_ARM_TFUNC:
2738 return ELF_ST_TYPE (elf_sym->st_info);
2739
2740 case STT_ARM_16BIT:
2741 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2742 This allows us to distinguish between data used by Thumb instructions
2743 and non-data (which is probably code) inside Thumb regions of an
2744 executable. */
2745 if (type != STT_OBJECT)
2746 return ELF_ST_TYPE (elf_sym->st_info);
2747 break;
2748
2749 default:
2750 break;
2751 }
2752
2753 return type;
2754 }
2755
2756 static asection *
2757 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2758 asection *sec;
2759 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2760 Elf_Internal_Rela *rel;
2761 struct elf_link_hash_entry *h;
2762 Elf_Internal_Sym *sym;
2763 {
2764 if (h != NULL)
2765 {
2766 switch (ELF32_R_TYPE (rel->r_info))
2767 {
2768 case R_ARM_GNU_VTINHERIT:
2769 case R_ARM_GNU_VTENTRY:
2770 break;
2771
2772 default:
2773 switch (h->root.type)
2774 {
2775 case bfd_link_hash_defined:
2776 case bfd_link_hash_defweak:
2777 return h->root.u.def.section;
2778
2779 case bfd_link_hash_common:
2780 return h->root.u.c.p->section;
2781
2782 default:
2783 break;
2784 }
2785 }
2786 }
2787 else
2788 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2789
2790 return NULL;
2791 }
2792
2793 /* Update the got entry reference counts for the section being removed. */
2794
2795 static bfd_boolean
2796 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2797 bfd *abfd ATTRIBUTE_UNUSED;
2798 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2799 asection *sec ATTRIBUTE_UNUSED;
2800 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2801 {
2802 Elf_Internal_Shdr *symtab_hdr;
2803 struct elf_link_hash_entry **sym_hashes;
2804 bfd_signed_vma *local_got_refcounts;
2805 const Elf_Internal_Rela *rel, *relend;
2806 unsigned long r_symndx;
2807 struct elf_link_hash_entry *h;
2808
2809 elf_section_data (sec)->local_dynrel = NULL;
2810
2811 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2812 sym_hashes = elf_sym_hashes (abfd);
2813 local_got_refcounts = elf_local_got_refcounts (abfd);
2814
2815 relend = relocs + sec->reloc_count;
2816 for (rel = relocs; rel < relend; rel++)
2817 switch (ELF32_R_TYPE (rel->r_info))
2818 {
2819 case R_ARM_GOT32:
2820 r_symndx = ELF32_R_SYM (rel->r_info);
2821 if (r_symndx >= symtab_hdr->sh_info)
2822 {
2823 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2824 if (h->got.refcount > 0)
2825 h->got.refcount -= 1;
2826 }
2827 else if (local_got_refcounts != NULL)
2828 {
2829 if (local_got_refcounts[r_symndx] > 0)
2830 local_got_refcounts[r_symndx] -= 1;
2831 }
2832 break;
2833
2834 case R_ARM_ABS32:
2835 case R_ARM_REL32:
2836 case R_ARM_PC24:
2837 case R_ARM_PLT32:
2838 r_symndx = ELF32_R_SYM (rel->r_info);
2839 if (r_symndx >= symtab_hdr->sh_info)
2840 {
2841 struct elf32_arm_link_hash_entry *eh;
2842 struct elf32_arm_relocs_copied **pp;
2843 struct elf32_arm_relocs_copied *p;
2844
2845 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2846
2847 if (h->plt.refcount > 0)
2848 h->plt.refcount -= 1;
2849
2850 if (ELF32_R_TYPE (rel->r_info) == R_ARM_ABS32
2851 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32)
2852 {
2853 eh = (struct elf32_arm_link_hash_entry *) h;
2854
2855 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
2856 pp = &p->next)
2857 if (p->section == sec)
2858 {
2859 p->count -= 1;
2860 if (p->count == 0)
2861 *pp = p->next;
2862 break;
2863 }
2864 }
2865 }
2866 break;
2867
2868 default:
2869 break;
2870 }
2871
2872 return TRUE;
2873 }
2874
2875 /* Look through the relocs for a section during the first phase. */
2876
2877 static bfd_boolean
2878 elf32_arm_check_relocs (abfd, info, sec, relocs)
2879 bfd *abfd;
2880 struct bfd_link_info *info;
2881 asection *sec;
2882 const Elf_Internal_Rela *relocs;
2883 {
2884 Elf_Internal_Shdr *symtab_hdr;
2885 struct elf_link_hash_entry **sym_hashes;
2886 struct elf_link_hash_entry **sym_hashes_end;
2887 const Elf_Internal_Rela *rel;
2888 const Elf_Internal_Rela *rel_end;
2889 bfd *dynobj;
2890 asection *sreloc;
2891 bfd_vma *local_got_offsets;
2892 struct elf32_arm_link_hash_table *htab;
2893
2894 if (info->relocatable)
2895 return TRUE;
2896
2897 htab = elf32_arm_hash_table (info);
2898 sreloc = NULL;
2899
2900 dynobj = elf_hash_table (info)->dynobj;
2901 local_got_offsets = elf_local_got_offsets (abfd);
2902
2903 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2904 sym_hashes = elf_sym_hashes (abfd);
2905 sym_hashes_end = sym_hashes
2906 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2907
2908 if (!elf_bad_symtab (abfd))
2909 sym_hashes_end -= symtab_hdr->sh_info;
2910
2911 rel_end = relocs + sec->reloc_count;
2912 for (rel = relocs; rel < rel_end; rel++)
2913 {
2914 struct elf_link_hash_entry *h;
2915 unsigned long r_symndx;
2916
2917 r_symndx = ELF32_R_SYM (rel->r_info);
2918 if (r_symndx < symtab_hdr->sh_info)
2919 h = NULL;
2920 else
2921 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2922
2923 switch (ELF32_R_TYPE (rel->r_info))
2924 {
2925 case R_ARM_GOT32:
2926 /* This symbol requires a global offset table entry. */
2927 if (h != NULL)
2928 {
2929 h->got.refcount++;
2930 }
2931 else
2932 {
2933 bfd_signed_vma *local_got_refcounts;
2934
2935 /* This is a global offset table entry for a local symbol. */
2936 local_got_refcounts = elf_local_got_refcounts (abfd);
2937 if (local_got_refcounts == NULL)
2938 {
2939 bfd_size_type size;
2940
2941 size = symtab_hdr->sh_info;
2942 size *= (sizeof (bfd_signed_vma) + sizeof(char));
2943 local_got_refcounts = ((bfd_signed_vma *)
2944 bfd_zalloc (abfd, size));
2945 if (local_got_refcounts == NULL)
2946 return FALSE;
2947 elf_local_got_refcounts (abfd) = local_got_refcounts;
2948 }
2949 local_got_refcounts[r_symndx] += 1;
2950 }
2951 break;
2952
2953 case R_ARM_GOTOFF:
2954 case R_ARM_GOTPC:
2955 if (htab->sgot == NULL)
2956 {
2957 if (htab->root.dynobj == NULL)
2958 htab->root.dynobj = abfd;
2959 if (!create_got_section (htab->root.dynobj, info))
2960 return FALSE;
2961 }
2962 break;
2963
2964 case R_ARM_ABS32:
2965 case R_ARM_REL32:
2966 case R_ARM_PC24:
2967 case R_ARM_PLT32:
2968 if (h != NULL)
2969 {
2970 /* If this reloc is in a read-only section, we might
2971 need a copy reloc. We can't check reliably at this
2972 stage whether the section is read-only, as input
2973 sections have not yet been mapped to output sections.
2974 Tentatively set the flag for now, and correct in
2975 adjust_dynamic_symbol. */
2976 if (!info->shared)
2977 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
2978
2979 /* We may need a .plt entry if the function this reloc
2980 refers to is in a different object. We can't tell for
2981 sure yet, because something later might force the
2982 symbol local. */
2983 if (ELF32_R_TYPE (rel->r_info) == R_ARM_PC24
2984 || ELF32_R_TYPE (rel->r_info) == R_ARM_PLT32)
2985 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2986
2987 /* If we create a PLT entry, this relocation will reference
2988 it, even if it's an ABS32 relocation. */
2989 h->plt.refcount += 1;
2990 }
2991
2992 /* If we are creating a shared library, and this is a reloc
2993 against a global symbol, or a non PC relative reloc
2994 against a local symbol, then we need to copy the reloc
2995 into the shared library. However, if we are linking with
2996 -Bsymbolic, we do not need to copy a reloc against a
2997 global symbol which is defined in an object we are
2998 including in the link (i.e., DEF_REGULAR is set). At
2999 this point we have not seen all the input files, so it is
3000 possible that DEF_REGULAR is not set now but will be set
3001 later (it is never cleared). We account for that
3002 possibility below by storing information in the
3003 relocs_copied field of the hash table entry. */
3004 if (info->shared
3005 && (sec->flags & SEC_ALLOC) != 0
3006 && ((ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
3007 && ELF32_R_TYPE (rel->r_info) != R_ARM_PLT32)
3008 || (h != NULL
3009 && (! info->symbolic
3010 || (h->elf_link_hash_flags
3011 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3012 {
3013 struct elf32_arm_relocs_copied *p, **head;
3014
3015 /* When creating a shared object, we must copy these
3016 reloc types into the output file. We create a reloc
3017 section in dynobj and make room for this reloc. */
3018 if (sreloc == NULL)
3019 {
3020 const char * name;
3021
3022 name = (bfd_elf_string_from_elf_section
3023 (abfd,
3024 elf_elfheader (abfd)->e_shstrndx,
3025 elf_section_data (sec)->rel_hdr.sh_name));
3026 if (name == NULL)
3027 return FALSE;
3028
3029 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
3030 && strcmp (bfd_get_section_name (abfd, sec),
3031 name + 4) == 0);
3032
3033 sreloc = bfd_get_section_by_name (dynobj, name);
3034 if (sreloc == NULL)
3035 {
3036 flagword flags;
3037
3038 sreloc = bfd_make_section (dynobj, name);
3039 flags = (SEC_HAS_CONTENTS | SEC_READONLY
3040 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3041 if ((sec->flags & SEC_ALLOC) != 0)
3042 flags |= SEC_ALLOC | SEC_LOAD;
3043 if (sreloc == NULL
3044 || ! bfd_set_section_flags (dynobj, sreloc, flags)
3045 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
3046 return FALSE;
3047 }
3048
3049 elf_section_data (sec)->sreloc = sreloc;
3050 }
3051
3052 /* If this is a global symbol, we count the number of
3053 relocations we need for this symbol. */
3054 if (h != NULL)
3055 {
3056 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
3057 }
3058 else
3059 {
3060 /* Track dynamic relocs needed for local syms too.
3061 We really need local syms available to do this
3062 easily. Oh well. */
3063
3064 asection *s;
3065 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
3066 sec, r_symndx);
3067 if (s == NULL)
3068 return FALSE;
3069
3070 head = ((struct elf32_arm_relocs_copied **)
3071 &elf_section_data (s)->local_dynrel);
3072 }
3073
3074 p = *head;
3075 if (p == NULL || p->section != sec)
3076 {
3077 bfd_size_type amt = sizeof *p;
3078 p = bfd_alloc (htab->root.dynobj, amt);
3079 if (p == NULL)
3080 return FALSE;
3081 p->next = *head;
3082 *head = p;
3083 p->section = sec;
3084 p->count = 0;
3085 }
3086
3087 if (ELF32_R_TYPE (rel->r_info) == R_ARM_ABS32
3088 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32)
3089 p->count += 1;
3090 }
3091 break;
3092
3093 /* This relocation describes the C++ object vtable hierarchy.
3094 Reconstruct it for later use during GC. */
3095 case R_ARM_GNU_VTINHERIT:
3096 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
3097 return FALSE;
3098 break;
3099
3100 /* This relocation describes which C++ vtable entries are actually
3101 used. Record for later use during GC. */
3102 case R_ARM_GNU_VTENTRY:
3103 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
3104 return FALSE;
3105 break;
3106 }
3107 }
3108
3109 return TRUE;
3110 }
3111
3112 /* Find the nearest line to a particular section and offset, for error
3113 reporting. This code is a duplicate of the code in elf.c, except
3114 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
3115
3116 static bfd_boolean
3117 elf32_arm_find_nearest_line
3118 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
3119 bfd *abfd;
3120 asection *section;
3121 asymbol **symbols;
3122 bfd_vma offset;
3123 const char **filename_ptr;
3124 const char **functionname_ptr;
3125 unsigned int *line_ptr;
3126 {
3127 bfd_boolean found;
3128 const char *filename;
3129 asymbol *func;
3130 bfd_vma low_func;
3131 asymbol **p;
3132
3133 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3134 filename_ptr, functionname_ptr,
3135 line_ptr, 0,
3136 &elf_tdata (abfd)->dwarf2_find_line_info))
3137 return TRUE;
3138
3139 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
3140 &found, filename_ptr,
3141 functionname_ptr, line_ptr,
3142 &elf_tdata (abfd)->line_info))
3143 return FALSE;
3144
3145 if (found)
3146 return TRUE;
3147
3148 if (symbols == NULL)
3149 return FALSE;
3150
3151 filename = NULL;
3152 func = NULL;
3153 low_func = 0;
3154
3155 for (p = symbols; *p != NULL; p++)
3156 {
3157 elf_symbol_type *q;
3158
3159 q = (elf_symbol_type *) *p;
3160
3161 if (bfd_get_section (&q->symbol) != section)
3162 continue;
3163
3164 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
3165 {
3166 default:
3167 break;
3168 case STT_FILE:
3169 filename = bfd_asymbol_name (&q->symbol);
3170 break;
3171 case STT_NOTYPE:
3172 case STT_FUNC:
3173 case STT_ARM_TFUNC:
3174 if (q->symbol.section == section
3175 && q->symbol.value >= low_func
3176 && q->symbol.value <= offset)
3177 {
3178 func = (asymbol *) q;
3179 low_func = q->symbol.value;
3180 }
3181 break;
3182 }
3183 }
3184
3185 if (func == NULL)
3186 return FALSE;
3187
3188 *filename_ptr = filename;
3189 *functionname_ptr = bfd_asymbol_name (func);
3190 *line_ptr = 0;
3191
3192 return TRUE;
3193 }
3194
3195 /* Adjust a symbol defined by a dynamic object and referenced by a
3196 regular object. The current definition is in some section of the
3197 dynamic object, but we're not including those sections. We have to
3198 change the definition to something the rest of the link can
3199 understand. */
3200
3201 static bfd_boolean
3202 elf32_arm_adjust_dynamic_symbol (info, h)
3203 struct bfd_link_info * info;
3204 struct elf_link_hash_entry * h;
3205 {
3206 bfd * dynobj;
3207 asection * s;
3208 unsigned int power_of_two;
3209
3210 dynobj = elf_hash_table (info)->dynobj;
3211
3212 /* Make sure we know what is going on here. */
3213 BFD_ASSERT (dynobj != NULL
3214 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
3215 || h->weakdef != NULL
3216 || ((h->elf_link_hash_flags
3217 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3218 && (h->elf_link_hash_flags
3219 & ELF_LINK_HASH_REF_REGULAR) != 0
3220 && (h->elf_link_hash_flags
3221 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
3222
3223 /* If this is a function, put it in the procedure linkage table. We
3224 will fill in the contents of the procedure linkage table later,
3225 when we know the address of the .got section. */
3226 if (h->type == STT_FUNC
3227 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
3228 {
3229 if (h->plt.refcount <= 0
3230 || SYMBOL_CALLS_LOCAL (info, h)
3231 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3232 && h->root.type == bfd_link_hash_undefweak))
3233 {
3234 /* This case can occur if we saw a PLT32 reloc in an input
3235 file, but the symbol was never referred to by a dynamic
3236 object, or if all references were garbage collected. In
3237 such a case, we don't actually need to build a procedure
3238 linkage table, and we can just do a PC24 reloc instead. */
3239 h->plt.offset = (bfd_vma) -1;
3240 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3241 }
3242
3243 return TRUE;
3244 }
3245 else
3246 /* It's possible that we incorrectly decided a .plt reloc was
3247 needed for an R_ARM_PC24 reloc to a non-function sym in
3248 check_relocs. We can't decide accurately between function and
3249 non-function syms in check-relocs; Objects loaded later in
3250 the link may change h->type. So fix it now. */
3251 h->plt.offset = (bfd_vma) -1;
3252
3253 /* If this is a weak symbol, and there is a real definition, the
3254 processor independent code will have arranged for us to see the
3255 real definition first, and we can just use the same value. */
3256 if (h->weakdef != NULL)
3257 {
3258 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3259 || h->weakdef->root.type == bfd_link_hash_defweak);
3260 h->root.u.def.section = h->weakdef->root.u.def.section;
3261 h->root.u.def.value = h->weakdef->root.u.def.value;
3262 return TRUE;
3263 }
3264
3265 /* This is a reference to a symbol defined by a dynamic object which
3266 is not a function. */
3267
3268 /* If we are creating a shared library, we must presume that the
3269 only references to the symbol are via the global offset table.
3270 For such cases we need not do anything here; the relocations will
3271 be handled correctly by relocate_section. */
3272 if (info->shared)
3273 return TRUE;
3274
3275 /* We must allocate the symbol in our .dynbss section, which will
3276 become part of the .bss section of the executable. There will be
3277 an entry for this symbol in the .dynsym section. The dynamic
3278 object will contain position independent code, so all references
3279 from the dynamic object to this symbol will go through the global
3280 offset table. The dynamic linker will use the .dynsym entry to
3281 determine the address it must put in the global offset table, so
3282 both the dynamic object and the regular object will refer to the
3283 same memory location for the variable. */
3284 s = bfd_get_section_by_name (dynobj, ".dynbss");
3285 BFD_ASSERT (s != NULL);
3286
3287 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3288 copy the initial value out of the dynamic object and into the
3289 runtime process image. We need to remember the offset into the
3290 .rel.bss section we are going to use. */
3291 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3292 {
3293 asection *srel;
3294
3295 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3296 BFD_ASSERT (srel != NULL);
3297 srel->_raw_size += sizeof (Elf32_External_Rel);
3298 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3299 }
3300
3301 /* We need to figure out the alignment required for this symbol. I
3302 have no idea how ELF linkers handle this. */
3303 power_of_two = bfd_log2 (h->size);
3304 if (power_of_two > 3)
3305 power_of_two = 3;
3306
3307 /* Apply the required alignment. */
3308 s->_raw_size = BFD_ALIGN (s->_raw_size,
3309 (bfd_size_type) (1 << power_of_two));
3310 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3311 {
3312 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3313 return FALSE;
3314 }
3315
3316 /* Define the symbol as being at this point in the section. */
3317 h->root.u.def.section = s;
3318 h->root.u.def.value = s->_raw_size;
3319
3320 /* Increment the section size to make room for the symbol. */
3321 s->_raw_size += h->size;
3322
3323 return TRUE;
3324 }
3325
3326 /* Allocate space in .plt, .got and associated reloc sections for
3327 dynamic relocs. */
3328
3329 static bfd_boolean
3330 allocate_dynrelocs (h, inf)
3331 struct elf_link_hash_entry *h;
3332 PTR inf;
3333 {
3334 struct bfd_link_info *info;
3335 struct elf32_arm_link_hash_table *htab;
3336 struct elf32_arm_link_hash_entry *eh;
3337 struct elf32_arm_relocs_copied *p;
3338
3339 if (h->root.type == bfd_link_hash_indirect)
3340 return TRUE;
3341
3342 if (h->root.type == bfd_link_hash_warning)
3343 /* When warning symbols are created, they **replace** the "real"
3344 entry in the hash table, thus we never get to see the real
3345 symbol in a hash traversal. So look at it now. */
3346 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3347
3348 info = (struct bfd_link_info *) inf;
3349 htab = elf32_arm_hash_table (info);
3350
3351 if (htab->root.dynamic_sections_created
3352 && h->plt.refcount > 0)
3353 {
3354 /* Make sure this symbol is output as a dynamic symbol.
3355 Undefined weak syms won't yet be marked as dynamic. */
3356 if (h->dynindx == -1
3357 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3358 {
3359 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3360 return FALSE;
3361 }
3362
3363 if (info->shared
3364 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
3365 {
3366 asection *s = htab->splt;
3367
3368 /* If this is the first .plt entry, make room for the special
3369 first entry. */
3370 if (s->_raw_size == 0)
3371 s->_raw_size += PLT_HEADER_SIZE;
3372
3373 h->plt.offset = s->_raw_size;
3374
3375 /* If this symbol is not defined in a regular file, and we are
3376 not generating a shared library, then set the symbol to this
3377 location in the .plt. This is required to make function
3378 pointers compare as equal between the normal executable and
3379 the shared library. */
3380 if (! info->shared
3381 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3382 {
3383 h->root.u.def.section = s;
3384 h->root.u.def.value = h->plt.offset;
3385 }
3386
3387 /* Make room for this entry. */
3388 s->_raw_size += PLT_ENTRY_SIZE;
3389
3390 /* We also need to make an entry in the .got.plt section, which
3391 will be placed in the .got section by the linker script. */
3392 htab->sgotplt->_raw_size += 4;
3393
3394 /* We also need to make an entry in the .rel.plt section. */
3395 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
3396 }
3397 else
3398 {
3399 h->plt.offset = (bfd_vma) -1;
3400 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3401 }
3402 }
3403 else
3404 {
3405 h->plt.offset = (bfd_vma) -1;
3406 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3407 }
3408
3409 if (h->got.refcount > 0)
3410 {
3411 asection *s;
3412 bfd_boolean dyn;
3413
3414 /* Make sure this symbol is output as a dynamic symbol.
3415 Undefined weak syms won't yet be marked as dynamic. */
3416 if (h->dynindx == -1
3417 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3418 {
3419 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3420 return FALSE;
3421 }
3422
3423 s = htab->sgot;
3424 h->got.offset = s->_raw_size;
3425 s->_raw_size += 4;
3426 dyn = htab->root.dynamic_sections_created;
3427 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3428 || h->root.type != bfd_link_hash_undefweak)
3429 && (info->shared
3430 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
3431 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
3432 }
3433 else
3434 h->got.offset = (bfd_vma) -1;
3435
3436 eh = (struct elf32_arm_link_hash_entry *) h;
3437 if (eh->relocs_copied == NULL)
3438 return TRUE;
3439
3440 /* In the shared -Bsymbolic case, discard space allocated for
3441 dynamic pc-relative relocs against symbols which turn out to be
3442 defined in regular objects. For the normal shared case, discard
3443 space for pc-relative relocs that have become local due to symbol
3444 visibility changes. */
3445
3446 if (info->shared)
3447 {
3448 /* Discard relocs on undefined weak syms with non-default
3449 visibility. */
3450 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3451 && h->root.type == bfd_link_hash_undefweak)
3452 eh->relocs_copied = NULL;
3453 }
3454 else
3455 {
3456 /* For the non-shared case, discard space for relocs against
3457 symbols which turn out to need copy relocs or are not
3458 dynamic. */
3459
3460 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3461 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3462 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3463 || (htab->root.dynamic_sections_created
3464 && (h->root.type == bfd_link_hash_undefweak
3465 || h->root.type == bfd_link_hash_undefined))))
3466 {
3467 /* Make sure this symbol is output as a dynamic symbol.
3468 Undefined weak syms won't yet be marked as dynamic. */
3469 if (h->dynindx == -1
3470 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
3471 {
3472 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3473 return FALSE;
3474 }
3475
3476 /* If that succeeded, we know we'll be keeping all the
3477 relocs. */
3478 if (h->dynindx != -1)
3479 goto keep;
3480 }
3481
3482 eh->relocs_copied = NULL;
3483
3484 keep: ;
3485 }
3486
3487 /* Finally, allocate space. */
3488 for (p = eh->relocs_copied; p != NULL; p = p->next)
3489 {
3490 asection *sreloc = elf_section_data (p->section)->sreloc;
3491 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
3492 }
3493
3494 return TRUE;
3495 }
3496
3497 /* Set the sizes of the dynamic sections. */
3498
3499 static bfd_boolean
3500 elf32_arm_size_dynamic_sections (output_bfd, info)
3501 bfd * output_bfd ATTRIBUTE_UNUSED;
3502 struct bfd_link_info * info;
3503 {
3504 bfd * dynobj;
3505 asection * s;
3506 bfd_boolean plt;
3507 bfd_boolean relocs;
3508 bfd *ibfd;
3509 struct elf32_arm_link_hash_table *htab;
3510
3511 htab = elf32_arm_hash_table (info);
3512 dynobj = elf_hash_table (info)->dynobj;
3513 BFD_ASSERT (dynobj != NULL);
3514
3515 if (elf_hash_table (info)->dynamic_sections_created)
3516 {
3517 /* Set the contents of the .interp section to the interpreter. */
3518 if (info->executable)
3519 {
3520 s = bfd_get_section_by_name (dynobj, ".interp");
3521 BFD_ASSERT (s != NULL);
3522 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3523 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3524 }
3525 }
3526
3527 /* Set up .got offsets for local syms, and space for local dynamic
3528 relocs. */
3529 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
3530 {
3531 bfd_signed_vma *local_got;
3532 bfd_signed_vma *end_local_got;
3533 char *local_tls_type;
3534 bfd_size_type locsymcount;
3535 Elf_Internal_Shdr *symtab_hdr;
3536 asection *srel;
3537
3538 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
3539 continue;
3540
3541 for (s = ibfd->sections; s != NULL; s = s->next)
3542 {
3543 struct elf32_arm_relocs_copied *p;
3544
3545 for (p = *((struct elf32_arm_relocs_copied **)
3546 &elf_section_data (s)->local_dynrel);
3547 p != NULL;
3548 p = p->next)
3549 {
3550 if (!bfd_is_abs_section (p->section)
3551 && bfd_is_abs_section (p->section->output_section))
3552 {
3553 /* Input section has been discarded, either because
3554 it is a copy of a linkonce section or due to
3555 linker script /DISCARD/, so we'll be discarding
3556 the relocs too. */
3557 }
3558 else if (p->count != 0)
3559 {
3560 srel = elf_section_data (p->section)->sreloc;
3561 srel->_raw_size += p->count * sizeof (Elf32_External_Rel);
3562 if ((p->section->output_section->flags & SEC_READONLY) != 0)
3563 info->flags |= DF_TEXTREL;
3564 }
3565 }
3566 }
3567
3568 local_got = elf_local_got_refcounts (ibfd);
3569 if (!local_got)
3570 continue;
3571
3572 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
3573 locsymcount = symtab_hdr->sh_info;
3574 end_local_got = local_got + locsymcount;
3575 s = htab->sgot;
3576 srel = htab->srelgot;
3577 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
3578 {
3579 if (*local_got > 0)
3580 {
3581 *local_got = s->_raw_size;
3582 s->_raw_size += 4;
3583 if (info->shared)
3584 srel->_raw_size += sizeof (Elf32_External_Rel);
3585 }
3586 else
3587 *local_got = (bfd_vma) -1;
3588 }
3589 }
3590
3591 /* Allocate global sym .plt and .got entries, and space for global
3592 sym dynamic relocs. */
3593 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
3594
3595 /* The check_relocs and adjust_dynamic_symbol entry points have
3596 determined the sizes of the various dynamic sections. Allocate
3597 memory for them. */
3598 plt = FALSE;
3599 relocs = FALSE;
3600 for (s = dynobj->sections; s != NULL; s = s->next)
3601 {
3602 const char * name;
3603 bfd_boolean strip;
3604
3605 if ((s->flags & SEC_LINKER_CREATED) == 0)
3606 continue;
3607
3608 /* It's OK to base decisions on the section name, because none
3609 of the dynobj section names depend upon the input files. */
3610 name = bfd_get_section_name (dynobj, s);
3611
3612 strip = FALSE;
3613
3614 if (strcmp (name, ".plt") == 0)
3615 {
3616 if (s->_raw_size == 0)
3617 {
3618 /* Strip this section if we don't need it; see the
3619 comment below. */
3620 strip = TRUE;
3621 }
3622 else
3623 {
3624 /* Remember whether there is a PLT. */
3625 plt = TRUE;
3626 }
3627 }
3628 else if (strncmp (name, ".rel", 4) == 0)
3629 {
3630 if (s->_raw_size == 0)
3631 {
3632 /* If we don't need this section, strip it from the
3633 output file. This is mostly to handle .rel.bss and
3634 .rel.plt. We must create both sections in
3635 create_dynamic_sections, because they must be created
3636 before the linker maps input sections to output
3637 sections. The linker does that before
3638 adjust_dynamic_symbol is called, and it is that
3639 function which decides whether anything needs to go
3640 into these sections. */
3641 strip = TRUE;
3642 }
3643 else
3644 {
3645 /* Remember whether there are any reloc sections other
3646 than .rel.plt. */
3647 if (strcmp (name, ".rel.plt") != 0)
3648 relocs = TRUE;
3649
3650 /* We use the reloc_count field as a counter if we need
3651 to copy relocs into the output file. */
3652 s->reloc_count = 0;
3653 }
3654 }
3655 else if (strncmp (name, ".got", 4) != 0)
3656 {
3657 /* It's not one of our sections, so don't allocate space. */
3658 continue;
3659 }
3660
3661 if (strip)
3662 {
3663 _bfd_strip_section_from_output (info, s);
3664 continue;
3665 }
3666
3667 /* Allocate memory for the section contents. */
3668 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3669 if (s->contents == NULL && s->_raw_size != 0)
3670 return FALSE;
3671 }
3672
3673 if (elf_hash_table (info)->dynamic_sections_created)
3674 {
3675 /* Add some entries to the .dynamic section. We fill in the
3676 values later, in elf32_arm_finish_dynamic_sections, but we
3677 must add the entries now so that we get the correct size for
3678 the .dynamic section. The DT_DEBUG entry is filled in by the
3679 dynamic linker and used by the debugger. */
3680 #define add_dynamic_entry(TAG, VAL) \
3681 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3682
3683 if (!info->shared)
3684 {
3685 if (!add_dynamic_entry (DT_DEBUG, 0))
3686 return FALSE;
3687 }
3688
3689 if (plt)
3690 {
3691 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3692 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3693 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3694 || !add_dynamic_entry (DT_JMPREL, 0))
3695 return FALSE;
3696 }
3697
3698 if (relocs)
3699 {
3700 if ( !add_dynamic_entry (DT_REL, 0)
3701 || !add_dynamic_entry (DT_RELSZ, 0)
3702 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3703 return FALSE;
3704 }
3705
3706 if ((info->flags & DF_TEXTREL) != 0)
3707 {
3708 if (!add_dynamic_entry (DT_TEXTREL, 0))
3709 return FALSE;
3710 info->flags |= DF_TEXTREL;
3711 }
3712 }
3713 #undef add_synamic_entry
3714
3715 return TRUE;
3716 }
3717
3718 /* Finish up dynamic symbol handling. We set the contents of various
3719 dynamic sections here. */
3720
3721 static bfd_boolean
3722 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3723 bfd * output_bfd;
3724 struct bfd_link_info * info;
3725 struct elf_link_hash_entry * h;
3726 Elf_Internal_Sym * sym;
3727 {
3728 bfd * dynobj;
3729
3730 dynobj = elf_hash_table (info)->dynobj;
3731
3732 if (h->plt.offset != (bfd_vma) -1)
3733 {
3734 asection * splt;
3735 asection * sgot;
3736 asection * srel;
3737 bfd_vma plt_index;
3738 bfd_vma got_offset;
3739 Elf_Internal_Rela rel;
3740 bfd_byte *loc;
3741 bfd_vma got_displacement;
3742
3743 /* This symbol has an entry in the procedure linkage table. Set
3744 it up. */
3745
3746 BFD_ASSERT (h->dynindx != -1);
3747
3748 splt = bfd_get_section_by_name (dynobj, ".plt");
3749 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3750 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3751 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3752
3753 /* Get the index in the procedure linkage table which
3754 corresponds to this symbol. This is the index of this symbol
3755 in all the symbols for which we are making plt entries. The
3756 first entry in the procedure linkage table is reserved. */
3757 plt_index = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
3758
3759 /* Get the offset into the .got table of the entry that
3760 corresponds to this function. Each .got entry is 4 bytes.
3761 The first three are reserved. */
3762 got_offset = (plt_index + 3) * 4;
3763
3764 /* Calculate the displacement between the PLT slot and the
3765 entry in the GOT. */
3766 got_displacement = (sgot->output_section->vma
3767 + sgot->output_offset
3768 + got_offset
3769 - splt->output_section->vma
3770 - splt->output_offset
3771 - h->plt.offset
3772 - 8);
3773
3774 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
3775
3776 /* Fill in the entry in the procedure linkage table. */
3777 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0] | ((got_displacement & 0x0ff00000) >> 20),
3778 splt->contents + h->plt.offset + 0);
3779 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1] | ((got_displacement & 0x000ff000) >> 12),
3780 splt->contents + h->plt.offset + 4);
3781 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2] | (got_displacement & 0x00000fff),
3782 splt->contents + h->plt.offset + 8);
3783 #ifdef FOUR_WORD_PLT
3784 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3],
3785 splt->contents + h->plt.offset + 12);
3786 #endif
3787
3788 /* Fill in the entry in the global offset table. */
3789 bfd_put_32 (output_bfd,
3790 (splt->output_section->vma
3791 + splt->output_offset),
3792 sgot->contents + got_offset);
3793
3794 /* Fill in the entry in the .rel.plt section. */
3795 rel.r_offset = (sgot->output_section->vma
3796 + sgot->output_offset
3797 + got_offset);
3798 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3799 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3800 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3801
3802 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3803 {
3804 /* Mark the symbol as undefined, rather than as defined in
3805 the .plt section. Leave the value alone. */
3806 sym->st_shndx = SHN_UNDEF;
3807 /* If the symbol is weak, we do need to clear the value.
3808 Otherwise, the PLT entry would provide a definition for
3809 the symbol even if the symbol wasn't defined anywhere,
3810 and so the symbol would never be NULL. */
3811 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3812 == 0)
3813 sym->st_value = 0;
3814 }
3815 }
3816
3817 if (h->got.offset != (bfd_vma) -1)
3818 {
3819 asection * sgot;
3820 asection * srel;
3821 Elf_Internal_Rela rel;
3822 bfd_byte *loc;
3823
3824 /* This symbol has an entry in the global offset table. Set it
3825 up. */
3826 sgot = bfd_get_section_by_name (dynobj, ".got");
3827 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3828 BFD_ASSERT (sgot != NULL && srel != NULL);
3829
3830 rel.r_offset = (sgot->output_section->vma
3831 + sgot->output_offset
3832 + (h->got.offset &~ (bfd_vma) 1));
3833
3834 /* If this is a static link, or it is a -Bsymbolic link and the
3835 symbol is defined locally or was forced to be local because
3836 of a version file, we just want to emit a RELATIVE reloc.
3837 The entry in the global offset table will already have been
3838 initialized in the relocate_section function. */
3839 if (info->shared
3840 && SYMBOL_REFERENCES_LOCAL (info, h))
3841 {
3842 BFD_ASSERT((h->got.offset & 1) != 0);
3843 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3844 }
3845 else
3846 {
3847 BFD_ASSERT((h->got.offset & 1) == 0);
3848 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3849 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3850 }
3851
3852 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3853 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3854 }
3855
3856 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3857 {
3858 asection * s;
3859 Elf_Internal_Rela rel;
3860 bfd_byte *loc;
3861
3862 /* This symbol needs a copy reloc. Set it up. */
3863 BFD_ASSERT (h->dynindx != -1
3864 && (h->root.type == bfd_link_hash_defined
3865 || h->root.type == bfd_link_hash_defweak));
3866
3867 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3868 ".rel.bss");
3869 BFD_ASSERT (s != NULL);
3870
3871 rel.r_offset = (h->root.u.def.value
3872 + h->root.u.def.section->output_section->vma
3873 + h->root.u.def.section->output_offset);
3874 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3875 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3876 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3877 }
3878
3879 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3880 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3881 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3882 sym->st_shndx = SHN_ABS;
3883
3884 return TRUE;
3885 }
3886
3887 /* Finish up the dynamic sections. */
3888
3889 static bfd_boolean
3890 elf32_arm_finish_dynamic_sections (output_bfd, info)
3891 bfd * output_bfd;
3892 struct bfd_link_info * info;
3893 {
3894 bfd * dynobj;
3895 asection * sgot;
3896 asection * sdyn;
3897
3898 dynobj = elf_hash_table (info)->dynobj;
3899
3900 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3901 BFD_ASSERT (sgot != NULL);
3902 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3903
3904 if (elf_hash_table (info)->dynamic_sections_created)
3905 {
3906 asection *splt;
3907 Elf32_External_Dyn *dyncon, *dynconend;
3908
3909 splt = bfd_get_section_by_name (dynobj, ".plt");
3910 BFD_ASSERT (splt != NULL && sdyn != NULL);
3911
3912 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3913 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3914
3915 for (; dyncon < dynconend; dyncon++)
3916 {
3917 Elf_Internal_Dyn dyn;
3918 const char * name;
3919 asection * s;
3920
3921 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3922
3923 switch (dyn.d_tag)
3924 {
3925 default:
3926 break;
3927
3928 case DT_PLTGOT:
3929 name = ".got";
3930 goto get_vma;
3931 case DT_JMPREL:
3932 name = ".rel.plt";
3933 get_vma:
3934 s = bfd_get_section_by_name (output_bfd, name);
3935 BFD_ASSERT (s != NULL);
3936 dyn.d_un.d_ptr = s->vma;
3937 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3938 break;
3939
3940 case DT_PLTRELSZ:
3941 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3942 BFD_ASSERT (s != NULL);
3943 if (s->_cooked_size != 0)
3944 dyn.d_un.d_val = s->_cooked_size;
3945 else
3946 dyn.d_un.d_val = s->_raw_size;
3947 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3948 break;
3949
3950 case DT_RELSZ:
3951 /* My reading of the SVR4 ABI indicates that the
3952 procedure linkage table relocs (DT_JMPREL) should be
3953 included in the overall relocs (DT_REL). This is
3954 what Solaris does. However, UnixWare can not handle
3955 that case. Therefore, we override the DT_RELSZ entry
3956 here to make it not include the JMPREL relocs. Since
3957 the linker script arranges for .rel.plt to follow all
3958 other relocation sections, we don't have to worry
3959 about changing the DT_REL entry. */
3960 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3961 if (s != NULL)
3962 {
3963 if (s->_cooked_size != 0)
3964 dyn.d_un.d_val -= s->_cooked_size;
3965 else
3966 dyn.d_un.d_val -= s->_raw_size;
3967 }
3968 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3969 break;
3970
3971 /* Set the bottom bit of DT_INIT/FINI if the
3972 corresponding function is Thumb. */
3973 case DT_INIT:
3974 name = info->init_function;
3975 goto get_sym;
3976 case DT_FINI:
3977 name = info->fini_function;
3978 get_sym:
3979 /* If it wasn't set by elf_bfd_final_link
3980 then there is nothing to adjust. */
3981 if (dyn.d_un.d_val != 0)
3982 {
3983 struct elf_link_hash_entry * eh;
3984
3985 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3986 FALSE, FALSE, TRUE);
3987 if (eh != (struct elf_link_hash_entry *) NULL
3988 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3989 {
3990 dyn.d_un.d_val |= 1;
3991 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3992 }
3993 }
3994 break;
3995 }
3996 }
3997
3998 /* Fill in the first entry in the procedure linkage table. */
3999 if (splt->_raw_size > 0)
4000 {
4001 bfd_vma got_displacement;
4002
4003 /* Calculate the displacement between the PLT slot and &GOT[0]. */
4004 got_displacement = (sgot->output_section->vma
4005 + sgot->output_offset
4006 - splt->output_section->vma
4007 - splt->output_offset
4008 - 16);
4009
4010 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
4011 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
4012 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
4013 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
4014 #ifdef FOUR_WORD_PLT
4015 /* The displacement value goes in the otherwise-unused last word of
4016 the second entry. */
4017 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
4018 #else
4019 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
4020 #endif
4021 }
4022
4023 /* UnixWare sets the entsize of .plt to 4, although that doesn't
4024 really seem like the right value. */
4025 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
4026 }
4027
4028 /* Fill in the first three entries in the global offset table. */
4029 if (sgot->_raw_size > 0)
4030 {
4031 if (sdyn == NULL)
4032 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4033 else
4034 bfd_put_32 (output_bfd,
4035 sdyn->output_section->vma + sdyn->output_offset,
4036 sgot->contents);
4037 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4038 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4039 }
4040
4041 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4042
4043 return TRUE;
4044 }
4045
4046 static void
4047 elf32_arm_post_process_headers (abfd, link_info)
4048 bfd * abfd;
4049 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
4050 {
4051 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
4052
4053 i_ehdrp = elf_elfheader (abfd);
4054
4055 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
4056 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
4057 }
4058
4059 static enum elf_reloc_type_class
4060 elf32_arm_reloc_type_class (rela)
4061 const Elf_Internal_Rela *rela;
4062 {
4063 switch ((int) ELF32_R_TYPE (rela->r_info))
4064 {
4065 case R_ARM_RELATIVE:
4066 return reloc_class_relative;
4067 case R_ARM_JUMP_SLOT:
4068 return reloc_class_plt;
4069 case R_ARM_COPY:
4070 return reloc_class_copy;
4071 default:
4072 return reloc_class_normal;
4073 }
4074 }
4075
4076 static bfd_boolean elf32_arm_section_flags PARAMS ((flagword *, Elf_Internal_Shdr *));
4077 static void elf32_arm_final_write_processing PARAMS ((bfd *, bfd_boolean));
4078
4079 /* Set the right machine number for an Arm ELF file. */
4080
4081 static bfd_boolean
4082 elf32_arm_section_flags (flags, hdr)
4083 flagword *flags;
4084 Elf_Internal_Shdr *hdr;
4085 {
4086 if (hdr->sh_type == SHT_NOTE)
4087 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
4088
4089 return TRUE;
4090 }
4091
4092 void
4093 elf32_arm_final_write_processing (abfd, linker)
4094 bfd *abfd;
4095 bfd_boolean linker ATTRIBUTE_UNUSED;
4096 {
4097 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
4098 }
4099
4100 #define ELF_ARCH bfd_arch_arm
4101 #define ELF_MACHINE_CODE EM_ARM
4102 #ifdef __QNXTARGET__
4103 #define ELF_MAXPAGESIZE 0x1000
4104 #else
4105 #define ELF_MAXPAGESIZE 0x8000
4106 #endif
4107
4108 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
4109 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
4110 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
4111 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
4112 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
4113 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
4114 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
4115
4116 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
4117 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
4118 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
4119 #define elf_backend_check_relocs elf32_arm_check_relocs
4120 #define elf_backend_relocate_section elf32_arm_relocate_section
4121 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
4122 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
4123 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
4124 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
4125 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
4126 #define elf_backend_post_process_headers elf32_arm_post_process_headers
4127 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
4128 #define elf_backend_object_p elf32_arm_object_p
4129 #define elf_backend_section_flags elf32_arm_section_flags
4130 #define elf_backend_final_write_processing elf32_arm_final_write_processing
4131 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
4132
4133 #define elf_backend_can_refcount 1
4134 #define elf_backend_can_gc_sections 1
4135 #define elf_backend_plt_readonly 1
4136 #define elf_backend_want_got_plt 1
4137 #define elf_backend_want_plt_sym 0
4138 #if !USE_REL
4139 #define elf_backend_rela_normal 1
4140 #endif
4141
4142 #define elf_backend_got_header_size 12
4143
4144 #include "elf32-target.h"
4145
This page took 0.21707 seconds and 5 git commands to generate.