Add support for marking ARM ELF binaries as support the Cirrus EP9312 Maverick
[deliverable/binutils-gdb.git] / bfd / elf32-arm.h
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #ifndef USE_REL
21 #define USE_REL 0
22 #endif
23
24 typedef unsigned long int insn32;
25 typedef unsigned short int insn16;
26
27 static bfd_boolean elf32_arm_set_private_flags
28 PARAMS ((bfd *, flagword));
29 static bfd_boolean elf32_arm_copy_private_bfd_data
30 PARAMS ((bfd *, bfd *));
31 static bfd_boolean elf32_arm_merge_private_bfd_data
32 PARAMS ((bfd *, bfd *));
33 static bfd_boolean elf32_arm_print_private_bfd_data
34 PARAMS ((bfd *, PTR));
35 static int elf32_arm_get_symbol_type
36 PARAMS (( Elf_Internal_Sym *, int));
37 static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type elf32_arm_final_link_relocate
40 PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
41 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
42 const char *, int, struct elf_link_hash_entry *));
43 static insn32 insert_thumb_branch
44 PARAMS ((insn32, int));
45 static struct elf_link_hash_entry *find_thumb_glue
46 PARAMS ((struct bfd_link_info *, const char *, bfd *));
47 static struct elf_link_hash_entry *find_arm_glue
48 PARAMS ((struct bfd_link_info *, const char *, bfd *));
49 static void elf32_arm_post_process_headers
50 PARAMS ((bfd *, struct bfd_link_info *));
51 static int elf32_arm_to_thumb_stub
52 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
53 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
54 static int elf32_thumb_to_arm_stub
55 PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
56 bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
57 static bfd_boolean elf32_arm_relocate_section
58 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
59 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
60 static asection * elf32_arm_gc_mark_hook
61 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
62 struct elf_link_hash_entry *, Elf_Internal_Sym *));
63 static bfd_boolean elf32_arm_gc_sweep_hook
64 PARAMS ((bfd *, struct bfd_link_info *, asection *,
65 const Elf_Internal_Rela *));
66 static bfd_boolean elf32_arm_check_relocs
67 PARAMS ((bfd *, struct bfd_link_info *, asection *,
68 const Elf_Internal_Rela *));
69 static bfd_boolean elf32_arm_find_nearest_line
70 PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
71 const char **, unsigned int *));
72 static bfd_boolean elf32_arm_adjust_dynamic_symbol
73 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
74 static bfd_boolean elf32_arm_size_dynamic_sections
75 PARAMS ((bfd *, struct bfd_link_info *));
76 static bfd_boolean elf32_arm_finish_dynamic_symbol
77 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
78 Elf_Internal_Sym *));
79 static bfd_boolean elf32_arm_finish_dynamic_sections
80 PARAMS ((bfd *, struct bfd_link_info *));
81 static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
82 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
83 #if USE_REL
84 static void arm_add_to_rel
85 PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
86 #endif
87 static enum elf_reloc_type_class elf32_arm_reloc_type_class
88 PARAMS ((const Elf_Internal_Rela *));
89
90 #ifndef ELFARM_NABI_C_INCLUDED
91 static void record_arm_to_thumb_glue
92 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
93 static void record_thumb_to_arm_glue
94 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
95 bfd_boolean bfd_elf32_arm_allocate_interworking_sections
96 PARAMS ((struct bfd_link_info *));
97 bfd_boolean bfd_elf32_arm_get_bfd_for_interworking
98 PARAMS ((bfd *, struct bfd_link_info *));
99 bfd_boolean bfd_elf32_arm_process_before_allocation
100 PARAMS ((bfd *, struct bfd_link_info *, int));
101 #endif
102
103
104 #define INTERWORK_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
105
106 /* The linker script knows the section names for placement.
107 The entry_names are used to do simple name mangling on the stubs.
108 Given a function name, and its type, the stub can be found. The
109 name can be changed. The only requirement is the %s be present. */
110 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
111 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
112
113 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
114 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
115
116 /* The name of the dynamic interpreter. This is put in the .interp
117 section. */
118 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
119
120 /* The size in bytes of an entry in the procedure linkage table. */
121 #define PLT_ENTRY_SIZE 16
122
123 /* The first entry in a procedure linkage table looks like
124 this. It is set up so that any shared library function that is
125 called before the relocation has been set up calls the dynamic
126 linker first. */
127 static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
128 {
129 0xe52de004, /* str lr, [sp, #-4]! */
130 0xe59fe010, /* ldr lr, [pc, #16] */
131 0xe08fe00e, /* add lr, pc, lr */
132 0xe5bef008 /* ldr pc, [lr, #8]! */
133 };
134
135 /* Subsequent entries in a procedure linkage table look like
136 this. */
137 static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
138 {
139 0xe59fc004, /* ldr ip, [pc, #4] */
140 0xe08fc00c, /* add ip, pc, ip */
141 0xe59cf000, /* ldr pc, [ip] */
142 0x00000000 /* offset to symbol in got */
143 };
144
145 /* The ARM linker needs to keep track of the number of relocs that it
146 decides to copy in check_relocs for each symbol. This is so that
147 it can discard PC relative relocs if it doesn't need them when
148 linking with -Bsymbolic. We store the information in a field
149 extending the regular ELF linker hash table. */
150
151 /* This structure keeps track of the number of PC relative relocs we
152 have copied for a given symbol. */
153 struct elf32_arm_pcrel_relocs_copied
154 {
155 /* Next section. */
156 struct elf32_arm_pcrel_relocs_copied * next;
157 /* A section in dynobj. */
158 asection * section;
159 /* Number of relocs copied in this section. */
160 bfd_size_type count;
161 };
162
163 /* Arm ELF linker hash entry. */
164 struct elf32_arm_link_hash_entry
165 {
166 struct elf_link_hash_entry root;
167
168 /* Number of PC relative relocs copied for this symbol. */
169 struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
170 };
171
172 /* Declare this now that the above structures are defined. */
173 static bfd_boolean elf32_arm_discard_copies
174 PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
175
176 /* Traverse an arm ELF linker hash table. */
177 #define elf32_arm_link_hash_traverse(table, func, info) \
178 (elf_link_hash_traverse \
179 (&(table)->root, \
180 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
181 (info)))
182
183 /* Get the ARM elf linker hash table from a link_info structure. */
184 #define elf32_arm_hash_table(info) \
185 ((struct elf32_arm_link_hash_table *) ((info)->hash))
186
187 /* ARM ELF linker hash table. */
188 struct elf32_arm_link_hash_table
189 {
190 /* The main hash table. */
191 struct elf_link_hash_table root;
192
193 /* The size in bytes of the section containg the Thumb-to-ARM glue. */
194 bfd_size_type thumb_glue_size;
195
196 /* The size in bytes of the section containg the ARM-to-Thumb glue. */
197 bfd_size_type arm_glue_size;
198
199 /* An arbitary input BFD chosen to hold the glue sections. */
200 bfd * bfd_of_glue_owner;
201
202 /* A boolean indicating whether knowledge of the ARM's pipeline
203 length should be applied by the linker. */
204 int no_pipeline_knowledge;
205 };
206
207 /* Create an entry in an ARM ELF linker hash table. */
208
209 static struct bfd_hash_entry *
210 elf32_arm_link_hash_newfunc (entry, table, string)
211 struct bfd_hash_entry * entry;
212 struct bfd_hash_table * table;
213 const char * string;
214 {
215 struct elf32_arm_link_hash_entry * ret =
216 (struct elf32_arm_link_hash_entry *) entry;
217
218 /* Allocate the structure if it has not already been allocated by a
219 subclass. */
220 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
221 ret = ((struct elf32_arm_link_hash_entry *)
222 bfd_hash_allocate (table,
223 sizeof (struct elf32_arm_link_hash_entry)));
224 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
225 return (struct bfd_hash_entry *) ret;
226
227 /* Call the allocation method of the superclass. */
228 ret = ((struct elf32_arm_link_hash_entry *)
229 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
230 table, string));
231 if (ret != (struct elf32_arm_link_hash_entry *) NULL)
232 ret->pcrel_relocs_copied = NULL;
233
234 return (struct bfd_hash_entry *) ret;
235 }
236
237 /* Create an ARM elf linker hash table. */
238
239 static struct bfd_link_hash_table *
240 elf32_arm_link_hash_table_create (abfd)
241 bfd *abfd;
242 {
243 struct elf32_arm_link_hash_table *ret;
244 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
245
246 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
247 if (ret == (struct elf32_arm_link_hash_table *) NULL)
248 return NULL;
249
250 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
251 elf32_arm_link_hash_newfunc))
252 {
253 free (ret);
254 return NULL;
255 }
256
257 ret->thumb_glue_size = 0;
258 ret->arm_glue_size = 0;
259 ret->bfd_of_glue_owner = NULL;
260 ret->no_pipeline_knowledge = 0;
261
262 return &ret->root.root;
263 }
264
265 /* Locate the Thumb encoded calling stub for NAME. */
266
267 static struct elf_link_hash_entry *
268 find_thumb_glue (link_info, name, input_bfd)
269 struct bfd_link_info *link_info;
270 const char *name;
271 bfd *input_bfd;
272 {
273 char *tmp_name;
274 struct elf_link_hash_entry *hash;
275 struct elf32_arm_link_hash_table *hash_table;
276
277 /* We need a pointer to the armelf specific hash table. */
278 hash_table = elf32_arm_hash_table (link_info);
279
280 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
281 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
282
283 BFD_ASSERT (tmp_name);
284
285 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
286
287 hash = elf_link_hash_lookup
288 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
289
290 if (hash == NULL)
291 /* xgettext:c-format */
292 (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
293 bfd_archive_filename (input_bfd), tmp_name, name);
294
295 free (tmp_name);
296
297 return hash;
298 }
299
300 /* Locate the ARM encoded calling stub for NAME. */
301
302 static struct elf_link_hash_entry *
303 find_arm_glue (link_info, name, input_bfd)
304 struct bfd_link_info *link_info;
305 const char *name;
306 bfd *input_bfd;
307 {
308 char *tmp_name;
309 struct elf_link_hash_entry *myh;
310 struct elf32_arm_link_hash_table *hash_table;
311
312 /* We need a pointer to the elfarm specific hash table. */
313 hash_table = elf32_arm_hash_table (link_info);
314
315 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
316 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
317
318 BFD_ASSERT (tmp_name);
319
320 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
321
322 myh = elf_link_hash_lookup
323 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
324
325 if (myh == NULL)
326 /* xgettext:c-format */
327 (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
328 bfd_archive_filename (input_bfd), tmp_name, name);
329
330 free (tmp_name);
331
332 return myh;
333 }
334
335 /* ARM->Thumb glue:
336
337 .arm
338 __func_from_arm:
339 ldr r12, __func_addr
340 bx r12
341 __func_addr:
342 .word func @ behave as if you saw a ARM_32 reloc. */
343
344 #define ARM2THUMB_GLUE_SIZE 12
345 static const insn32 a2t1_ldr_insn = 0xe59fc000;
346 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
347 static const insn32 a2t3_func_addr_insn = 0x00000001;
348
349 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
350
351 .thumb .thumb
352 .align 2 .align 2
353 __func_from_thumb: __func_from_thumb:
354 bx pc push {r6, lr}
355 nop ldr r6, __func_addr
356 .arm mov lr, pc
357 __func_change_to_arm: bx r6
358 b func .arm
359 __func_back_to_thumb:
360 ldmia r13! {r6, lr}
361 bx lr
362 __func_addr:
363 .word func */
364
365 #define THUMB2ARM_GLUE_SIZE 8
366 static const insn16 t2a1_bx_pc_insn = 0x4778;
367 static const insn16 t2a2_noop_insn = 0x46c0;
368 static const insn32 t2a3_b_insn = 0xea000000;
369
370 #ifndef ELFARM_NABI_C_INCLUDED
371 bfd_boolean
372 bfd_elf32_arm_allocate_interworking_sections (info)
373 struct bfd_link_info * info;
374 {
375 asection * s;
376 bfd_byte * foo;
377 struct elf32_arm_link_hash_table * globals;
378
379 globals = elf32_arm_hash_table (info);
380
381 BFD_ASSERT (globals != NULL);
382
383 if (globals->arm_glue_size != 0)
384 {
385 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
386
387 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
388 ARM2THUMB_GLUE_SECTION_NAME);
389
390 BFD_ASSERT (s != NULL);
391
392 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
393 globals->arm_glue_size);
394
395 s->_raw_size = s->_cooked_size = globals->arm_glue_size;
396 s->contents = foo;
397 }
398
399 if (globals->thumb_glue_size != 0)
400 {
401 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
402
403 s = bfd_get_section_by_name
404 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
405
406 BFD_ASSERT (s != NULL);
407
408 foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
409 globals->thumb_glue_size);
410
411 s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
412 s->contents = foo;
413 }
414
415 return TRUE;
416 }
417
418 static void
419 record_arm_to_thumb_glue (link_info, h)
420 struct bfd_link_info * link_info;
421 struct elf_link_hash_entry * h;
422 {
423 const char * name = h->root.root.string;
424 asection * s;
425 char * tmp_name;
426 struct elf_link_hash_entry * myh;
427 struct bfd_link_hash_entry * bh;
428 struct elf32_arm_link_hash_table * globals;
429 bfd_vma val;
430
431 globals = elf32_arm_hash_table (link_info);
432
433 BFD_ASSERT (globals != NULL);
434 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
435
436 s = bfd_get_section_by_name
437 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
438
439 BFD_ASSERT (s != NULL);
440
441 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
442 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
443
444 BFD_ASSERT (tmp_name);
445
446 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
447
448 myh = elf_link_hash_lookup
449 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
450
451 if (myh != NULL)
452 {
453 /* We've already seen this guy. */
454 free (tmp_name);
455 return;
456 }
457
458 /* The only trick here is using hash_table->arm_glue_size as the value. Even
459 though the section isn't allocated yet, this is where we will be putting
460 it. */
461 bh = NULL;
462 val = globals->arm_glue_size + 1;
463 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
464 tmp_name, BSF_GLOBAL, s, val,
465 NULL, TRUE, FALSE, &bh);
466
467 free (tmp_name);
468
469 globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
470
471 return;
472 }
473
474 static void
475 record_thumb_to_arm_glue (link_info, h)
476 struct bfd_link_info *link_info;
477 struct elf_link_hash_entry *h;
478 {
479 const char *name = h->root.root.string;
480 asection *s;
481 char *tmp_name;
482 struct elf_link_hash_entry *myh;
483 struct bfd_link_hash_entry *bh;
484 struct elf32_arm_link_hash_table *hash_table;
485 char bind;
486 bfd_vma val;
487
488 hash_table = elf32_arm_hash_table (link_info);
489
490 BFD_ASSERT (hash_table != NULL);
491 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
492
493 s = bfd_get_section_by_name
494 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
495
496 BFD_ASSERT (s != NULL);
497
498 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
499 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
500
501 BFD_ASSERT (tmp_name);
502
503 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
504
505 myh = elf_link_hash_lookup
506 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
507
508 if (myh != NULL)
509 {
510 /* We've already seen this guy. */
511 free (tmp_name);
512 return;
513 }
514
515 bh = NULL;
516 val = hash_table->thumb_glue_size + 1;
517 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
518 tmp_name, BSF_GLOBAL, s, val,
519 NULL, TRUE, FALSE, &bh);
520
521 /* If we mark it 'Thumb', the disassembler will do a better job. */
522 myh = (struct elf_link_hash_entry *) bh;
523 bind = ELF_ST_BIND (myh->type);
524 myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
525
526 free (tmp_name);
527
528 #define CHANGE_TO_ARM "__%s_change_to_arm"
529 #define BACK_FROM_ARM "__%s_back_from_arm"
530
531 /* Allocate another symbol to mark where we switch to Arm mode. */
532 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
533 + strlen (CHANGE_TO_ARM) + 1);
534
535 BFD_ASSERT (tmp_name);
536
537 sprintf (tmp_name, CHANGE_TO_ARM, name);
538
539 bh = NULL;
540 val = hash_table->thumb_glue_size + 4,
541 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
542 tmp_name, BSF_LOCAL, s, val,
543 NULL, TRUE, FALSE, &bh);
544
545 free (tmp_name);
546
547 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
548
549 return;
550 }
551
552 /* Add the glue sections to ABFD. This function is called from the
553 linker scripts in ld/emultempl/{armelf}.em. */
554
555 bfd_boolean
556 bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
557 bfd *abfd;
558 struct bfd_link_info *info;
559 {
560 flagword flags;
561 asection *sec;
562
563 /* If we are only performing a partial
564 link do not bother adding the glue. */
565 if (info->relocateable)
566 return TRUE;
567
568 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
569
570 if (sec == NULL)
571 {
572 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
573 will prevent elf_link_input_bfd() from processing the contents
574 of this section. */
575 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
576
577 sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
578
579 if (sec == NULL
580 || !bfd_set_section_flags (abfd, sec, flags)
581 || !bfd_set_section_alignment (abfd, sec, 2))
582 return FALSE;
583
584 /* Set the gc mark to prevent the section from being removed by garbage
585 collection, despite the fact that no relocs refer to this section. */
586 sec->gc_mark = 1;
587 }
588
589 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
590
591 if (sec == NULL)
592 {
593 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
594
595 sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
596
597 if (sec == NULL
598 || !bfd_set_section_flags (abfd, sec, flags)
599 || !bfd_set_section_alignment (abfd, sec, 2))
600 return FALSE;
601
602 sec->gc_mark = 1;
603 }
604
605 return TRUE;
606 }
607
608 /* Select a BFD to be used to hold the sections used by the glue code.
609 This function is called from the linker scripts in ld/emultempl/
610 {armelf/pe}.em */
611
612 bfd_boolean
613 bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
614 bfd *abfd;
615 struct bfd_link_info *info;
616 {
617 struct elf32_arm_link_hash_table *globals;
618
619 /* If we are only performing a partial link
620 do not bother getting a bfd to hold the glue. */
621 if (info->relocateable)
622 return TRUE;
623
624 globals = elf32_arm_hash_table (info);
625
626 BFD_ASSERT (globals != NULL);
627
628 if (globals->bfd_of_glue_owner != NULL)
629 return TRUE;
630
631 /* Save the bfd for later use. */
632 globals->bfd_of_glue_owner = abfd;
633
634 return TRUE;
635 }
636
637 bfd_boolean
638 bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
639 bfd *abfd;
640 struct bfd_link_info *link_info;
641 int no_pipeline_knowledge;
642 {
643 Elf_Internal_Shdr *symtab_hdr;
644 Elf_Internal_Rela *internal_relocs = NULL;
645 Elf_Internal_Rela *irel, *irelend;
646 bfd_byte *contents = NULL;
647
648 asection *sec;
649 struct elf32_arm_link_hash_table *globals;
650
651 /* If we are only performing a partial link do not bother
652 to construct any glue. */
653 if (link_info->relocateable)
654 return TRUE;
655
656 /* Here we have a bfd that is to be included on the link. We have a hook
657 to do reloc rummaging, before section sizes are nailed down. */
658 globals = elf32_arm_hash_table (link_info);
659
660 BFD_ASSERT (globals != NULL);
661 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
662
663 globals->no_pipeline_knowledge = no_pipeline_knowledge;
664
665 /* Rummage around all the relocs and map the glue vectors. */
666 sec = abfd->sections;
667
668 if (sec == NULL)
669 return TRUE;
670
671 for (; sec != NULL; sec = sec->next)
672 {
673 if (sec->reloc_count == 0)
674 continue;
675
676 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
677
678 /* Load the relocs. */
679 internal_relocs
680 = _bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
681 (Elf_Internal_Rela *) NULL, FALSE);
682
683 if (internal_relocs == NULL)
684 goto error_return;
685
686 irelend = internal_relocs + sec->reloc_count;
687 for (irel = internal_relocs; irel < irelend; irel++)
688 {
689 long r_type;
690 unsigned long r_index;
691
692 struct elf_link_hash_entry *h;
693
694 r_type = ELF32_R_TYPE (irel->r_info);
695 r_index = ELF32_R_SYM (irel->r_info);
696
697 /* These are the only relocation types we care about. */
698 if ( r_type != R_ARM_PC24
699 && r_type != R_ARM_THM_PC22)
700 continue;
701
702 /* Get the section contents if we haven't done so already. */
703 if (contents == NULL)
704 {
705 /* Get cached copy if it exists. */
706 if (elf_section_data (sec)->this_hdr.contents != NULL)
707 contents = elf_section_data (sec)->this_hdr.contents;
708 else
709 {
710 /* Go get them off disk. */
711 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
712 if (contents == NULL)
713 goto error_return;
714
715 if (!bfd_get_section_contents (abfd, sec, contents,
716 (file_ptr) 0, sec->_raw_size))
717 goto error_return;
718 }
719 }
720
721 /* If the relocation is not against a symbol it cannot concern us. */
722 h = NULL;
723
724 /* We don't care about local symbols. */
725 if (r_index < symtab_hdr->sh_info)
726 continue;
727
728 /* This is an external symbol. */
729 r_index -= symtab_hdr->sh_info;
730 h = (struct elf_link_hash_entry *)
731 elf_sym_hashes (abfd)[r_index];
732
733 /* If the relocation is against a static symbol it must be within
734 the current section and so cannot be a cross ARM/Thumb relocation. */
735 if (h == NULL)
736 continue;
737
738 switch (r_type)
739 {
740 case R_ARM_PC24:
741 /* This one is a call from arm code. We need to look up
742 the target of the call. If it is a thumb target, we
743 insert glue. */
744 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
745 record_arm_to_thumb_glue (link_info, h);
746 break;
747
748 case R_ARM_THM_PC22:
749 /* This one is a call from thumb code. We look
750 up the target of the call. If it is not a thumb
751 target, we insert glue. */
752 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
753 record_thumb_to_arm_glue (link_info, h);
754 break;
755
756 default:
757 break;
758 }
759 }
760
761 if (contents != NULL
762 && elf_section_data (sec)->this_hdr.contents != contents)
763 free (contents);
764 contents = NULL;
765
766 if (internal_relocs != NULL
767 && elf_section_data (sec)->relocs != internal_relocs)
768 free (internal_relocs);
769 internal_relocs = NULL;
770 }
771
772 return TRUE;
773
774 error_return:
775 if (contents != NULL
776 && elf_section_data (sec)->this_hdr.contents != contents)
777 free (contents);
778 if (internal_relocs != NULL
779 && elf_section_data (sec)->relocs != internal_relocs)
780 free (internal_relocs);
781
782 return FALSE;
783 }
784 #endif
785
786 /* The thumb form of a long branch is a bit finicky, because the offset
787 encoding is split over two fields, each in it's own instruction. They
788 can occur in any order. So given a thumb form of long branch, and an
789 offset, insert the offset into the thumb branch and return finished
790 instruction.
791
792 It takes two thumb instructions to encode the target address. Each has
793 11 bits to invest. The upper 11 bits are stored in one (identifed by
794 H-0.. see below), the lower 11 bits are stored in the other (identified
795 by H-1).
796
797 Combine together and shifted left by 1 (it's a half word address) and
798 there you have it.
799
800 Op: 1111 = F,
801 H-0, upper address-0 = 000
802 Op: 1111 = F,
803 H-1, lower address-0 = 800
804
805 They can be ordered either way, but the arm tools I've seen always put
806 the lower one first. It probably doesn't matter. krk@cygnus.com
807
808 XXX: Actually the order does matter. The second instruction (H-1)
809 moves the computed address into the PC, so it must be the second one
810 in the sequence. The problem, however is that whilst little endian code
811 stores the instructions in HI then LOW order, big endian code does the
812 reverse. nickc@cygnus.com. */
813
814 #define LOW_HI_ORDER 0xF800F000
815 #define HI_LOW_ORDER 0xF000F800
816
817 static insn32
818 insert_thumb_branch (br_insn, rel_off)
819 insn32 br_insn;
820 int rel_off;
821 {
822 unsigned int low_bits;
823 unsigned int high_bits;
824
825 BFD_ASSERT ((rel_off & 1) != 1);
826
827 rel_off >>= 1; /* Half word aligned address. */
828 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
829 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
830
831 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
832 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
833 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
834 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
835 else
836 /* FIXME: abort is probably not the right call. krk@cygnus.com */
837 abort (); /* error - not a valid branch instruction form. */
838
839 return br_insn;
840 }
841
842 /* Thumb code calling an ARM function. */
843
844 static int
845 elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
846 hit_data, sym_sec, offset, addend, val)
847 struct bfd_link_info * info;
848 const char * name;
849 bfd * input_bfd;
850 bfd * output_bfd;
851 asection * input_section;
852 bfd_byte * hit_data;
853 asection * sym_sec;
854 bfd_vma offset;
855 bfd_signed_vma addend;
856 bfd_vma val;
857 {
858 asection * s = 0;
859 bfd_vma my_offset;
860 unsigned long int tmp;
861 long int ret_offset;
862 struct elf_link_hash_entry * myh;
863 struct elf32_arm_link_hash_table * globals;
864
865 myh = find_thumb_glue (info, name, input_bfd);
866 if (myh == NULL)
867 return FALSE;
868
869 globals = elf32_arm_hash_table (info);
870
871 BFD_ASSERT (globals != NULL);
872 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
873
874 my_offset = myh->root.u.def.value;
875
876 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
877 THUMB2ARM_GLUE_SECTION_NAME);
878
879 BFD_ASSERT (s != NULL);
880 BFD_ASSERT (s->contents != NULL);
881 BFD_ASSERT (s->output_section != NULL);
882
883 if ((my_offset & 0x01) == 0x01)
884 {
885 if (sym_sec != NULL
886 && sym_sec->owner != NULL
887 && !INTERWORK_FLAG (sym_sec->owner))
888 {
889 (*_bfd_error_handler)
890 (_("%s(%s): warning: interworking not enabled."),
891 bfd_archive_filename (sym_sec->owner), name);
892 (*_bfd_error_handler)
893 (_(" first occurrence: %s: thumb call to arm"),
894 bfd_archive_filename (input_bfd));
895
896 return FALSE;
897 }
898
899 --my_offset;
900 myh->root.u.def.value = my_offset;
901
902 bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
903 s->contents + my_offset);
904
905 bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
906 s->contents + my_offset + 2);
907
908 ret_offset =
909 /* Address of destination of the stub. */
910 ((bfd_signed_vma) val)
911 - ((bfd_signed_vma)
912 /* Offset from the start of the current section to the start of the stubs. */
913 (s->output_offset
914 /* Offset of the start of this stub from the start of the stubs. */
915 + my_offset
916 /* Address of the start of the current section. */
917 + s->output_section->vma)
918 /* The branch instruction is 4 bytes into the stub. */
919 + 4
920 /* ARM branches work from the pc of the instruction + 8. */
921 + 8);
922
923 bfd_put_32 (output_bfd,
924 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
925 s->contents + my_offset + 4);
926 }
927
928 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
929
930 /* Now go back and fix up the original BL insn to point
931 to here. */
932 ret_offset = (s->output_offset
933 + my_offset
934 - (input_section->output_offset
935 + offset + addend)
936 - 8);
937
938 tmp = bfd_get_32 (input_bfd, hit_data
939 - input_section->vma);
940
941 bfd_put_32 (output_bfd,
942 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
943 hit_data - input_section->vma);
944
945 return TRUE;
946 }
947
948 /* Arm code calling a Thumb function. */
949
950 static int
951 elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
952 hit_data, sym_sec, offset, addend, val)
953 struct bfd_link_info * info;
954 const char * name;
955 bfd * input_bfd;
956 bfd * output_bfd;
957 asection * input_section;
958 bfd_byte * hit_data;
959 asection * sym_sec;
960 bfd_vma offset;
961 bfd_signed_vma addend;
962 bfd_vma val;
963 {
964 unsigned long int tmp;
965 bfd_vma my_offset;
966 asection * s;
967 long int ret_offset;
968 struct elf_link_hash_entry * myh;
969 struct elf32_arm_link_hash_table * globals;
970
971 myh = find_arm_glue (info, name, input_bfd);
972 if (myh == NULL)
973 return FALSE;
974
975 globals = elf32_arm_hash_table (info);
976
977 BFD_ASSERT (globals != NULL);
978 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
979
980 my_offset = myh->root.u.def.value;
981 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
982 ARM2THUMB_GLUE_SECTION_NAME);
983 BFD_ASSERT (s != NULL);
984 BFD_ASSERT (s->contents != NULL);
985 BFD_ASSERT (s->output_section != NULL);
986
987 if ((my_offset & 0x01) == 0x01)
988 {
989 if (sym_sec != NULL
990 && sym_sec->owner != NULL
991 && !INTERWORK_FLAG (sym_sec->owner))
992 {
993 (*_bfd_error_handler)
994 (_("%s(%s): warning: interworking not enabled."),
995 bfd_archive_filename (sym_sec->owner), name);
996 (*_bfd_error_handler)
997 (_(" first occurrence: %s: arm call to thumb"),
998 bfd_archive_filename (input_bfd));
999 }
1000
1001 --my_offset;
1002 myh->root.u.def.value = my_offset;
1003
1004 bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
1005 s->contents + my_offset);
1006
1007 bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
1008 s->contents + my_offset + 4);
1009
1010 /* It's a thumb address. Add the low order bit. */
1011 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
1012 s->contents + my_offset + 8);
1013 }
1014
1015 BFD_ASSERT (my_offset <= globals->arm_glue_size);
1016
1017 tmp = bfd_get_32 (input_bfd, hit_data);
1018 tmp = tmp & 0xFF000000;
1019
1020 /* Somehow these are both 4 too far, so subtract 8. */
1021 ret_offset = (s->output_offset
1022 + my_offset
1023 + s->output_section->vma
1024 - (input_section->output_offset
1025 + input_section->output_section->vma
1026 + offset + addend)
1027 - 8);
1028
1029 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
1030
1031 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
1032
1033 return TRUE;
1034 }
1035
1036 /* Perform a relocation as part of a final link. */
1037
1038 static bfd_reloc_status_type
1039 elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
1040 input_section, contents, rel, value,
1041 info, sym_sec, sym_name, sym_flags, h)
1042 reloc_howto_type * howto;
1043 bfd * input_bfd;
1044 bfd * output_bfd;
1045 asection * input_section;
1046 bfd_byte * contents;
1047 Elf_Internal_Rela * rel;
1048 bfd_vma value;
1049 struct bfd_link_info * info;
1050 asection * sym_sec;
1051 const char * sym_name;
1052 int sym_flags;
1053 struct elf_link_hash_entry * h;
1054 {
1055 unsigned long r_type = howto->type;
1056 unsigned long r_symndx;
1057 bfd_byte * hit_data = contents + rel->r_offset;
1058 bfd * dynobj = NULL;
1059 Elf_Internal_Shdr * symtab_hdr;
1060 struct elf_link_hash_entry ** sym_hashes;
1061 bfd_vma * local_got_offsets;
1062 asection * sgot = NULL;
1063 asection * splt = NULL;
1064 asection * sreloc = NULL;
1065 bfd_vma addend;
1066 bfd_signed_vma signed_addend;
1067 struct elf32_arm_link_hash_table * globals;
1068
1069 /* If the start address has been set, then set the EF_ARM_HASENTRY
1070 flag. Setting this more than once is redundant, but the cost is
1071 not too high, and it keeps the code simple.
1072
1073 The test is done here, rather than somewhere else, because the
1074 start address is only set just before the final link commences.
1075
1076 Note - if the user deliberately sets a start address of 0, the
1077 flag will not be set. */
1078 if (bfd_get_start_address (output_bfd) != 0)
1079 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
1080
1081 globals = elf32_arm_hash_table (info);
1082
1083 dynobj = elf_hash_table (info)->dynobj;
1084 if (dynobj)
1085 {
1086 sgot = bfd_get_section_by_name (dynobj, ".got");
1087 splt = bfd_get_section_by_name (dynobj, ".plt");
1088 }
1089 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1090 sym_hashes = elf_sym_hashes (input_bfd);
1091 local_got_offsets = elf_local_got_offsets (input_bfd);
1092 r_symndx = ELF32_R_SYM (rel->r_info);
1093
1094 #if USE_REL
1095 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
1096
1097 if (addend & ((howto->src_mask + 1) >> 1))
1098 {
1099 signed_addend = -1;
1100 signed_addend &= ~ howto->src_mask;
1101 signed_addend |= addend;
1102 }
1103 else
1104 signed_addend = addend;
1105 #else
1106 addend = signed_addend = rel->r_addend;
1107 #endif
1108
1109 switch (r_type)
1110 {
1111 case R_ARM_NONE:
1112 return bfd_reloc_ok;
1113
1114 case R_ARM_PC24:
1115 case R_ARM_ABS32:
1116 case R_ARM_REL32:
1117 #ifndef OLD_ARM_ABI
1118 case R_ARM_XPC25:
1119 #endif
1120 /* When generating a shared object, these relocations are copied
1121 into the output file to be resolved at run time. */
1122 if (info->shared
1123 && r_symndx != 0
1124 && (r_type != R_ARM_PC24
1125 || (h != NULL
1126 && h->dynindx != -1
1127 && (! info->symbolic
1128 || (h->elf_link_hash_flags
1129 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1130 {
1131 Elf_Internal_Rela outrel;
1132 bfd_byte *loc;
1133 bfd_boolean skip, relocate;
1134
1135 if (sreloc == NULL)
1136 {
1137 const char * name;
1138
1139 name = (bfd_elf_string_from_elf_section
1140 (input_bfd,
1141 elf_elfheader (input_bfd)->e_shstrndx,
1142 elf_section_data (input_section)->rel_hdr.sh_name));
1143 if (name == NULL)
1144 return bfd_reloc_notsupported;
1145
1146 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
1147 && strcmp (bfd_get_section_name (input_bfd,
1148 input_section),
1149 name + 4) == 0);
1150
1151 sreloc = bfd_get_section_by_name (dynobj, name);
1152 BFD_ASSERT (sreloc != NULL);
1153 }
1154
1155 skip = FALSE;
1156 relocate = FALSE;
1157
1158 outrel.r_offset =
1159 _bfd_elf_section_offset (output_bfd, info, input_section,
1160 rel->r_offset);
1161 if (outrel.r_offset == (bfd_vma) -1)
1162 skip = TRUE;
1163 else if (outrel.r_offset == (bfd_vma) -2)
1164 skip = TRUE, relocate = TRUE;
1165 outrel.r_offset += (input_section->output_section->vma
1166 + input_section->output_offset);
1167
1168 if (skip)
1169 memset (&outrel, 0, sizeof outrel);
1170 else if (r_type == R_ARM_PC24)
1171 {
1172 BFD_ASSERT (h != NULL && h->dynindx != -1);
1173 if ((input_section->flags & SEC_ALLOC) == 0)
1174 relocate = TRUE;
1175 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
1176 }
1177 else
1178 {
1179 if (h == NULL
1180 || ((info->symbolic || h->dynindx == -1)
1181 && (h->elf_link_hash_flags
1182 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1183 {
1184 relocate = TRUE;
1185 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1186 }
1187 else
1188 {
1189 BFD_ASSERT (h->dynindx != -1);
1190 if ((input_section->flags & SEC_ALLOC) == 0)
1191 relocate = TRUE;
1192 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
1193 }
1194 }
1195
1196 loc = sreloc->contents;
1197 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
1198 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1199
1200 /* If this reloc is against an external symbol, we do not want to
1201 fiddle with the addend. Otherwise, we need to include the symbol
1202 value so that it becomes an addend for the dynamic reloc. */
1203 if (! relocate)
1204 return bfd_reloc_ok;
1205
1206 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1207 contents, rel->r_offset, value,
1208 (bfd_vma) 0);
1209 }
1210 else switch (r_type)
1211 {
1212 #ifndef OLD_ARM_ABI
1213 case R_ARM_XPC25: /* Arm BLX instruction. */
1214 #endif
1215 case R_ARM_PC24: /* Arm B/BL instruction */
1216 #ifndef OLD_ARM_ABI
1217 if (r_type == R_ARM_XPC25)
1218 {
1219 /* Check for Arm calling Arm function. */
1220 /* FIXME: Should we translate the instruction into a BL
1221 instruction instead ? */
1222 if (sym_flags != STT_ARM_TFUNC)
1223 (*_bfd_error_handler) (_("\
1224 %s: Warning: Arm BLX instruction targets Arm function '%s'."),
1225 bfd_archive_filename (input_bfd),
1226 h ? h->root.root.string : "(local)");
1227 }
1228 else
1229 #endif
1230 {
1231 /* Check for Arm calling Thumb function. */
1232 if (sym_flags == STT_ARM_TFUNC)
1233 {
1234 elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
1235 input_section, hit_data, sym_sec, rel->r_offset,
1236 signed_addend, value);
1237 return bfd_reloc_ok;
1238 }
1239 }
1240
1241 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1242 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
1243 {
1244 /* The old way of doing things. Trearing the addend as a
1245 byte sized field and adding in the pipeline offset. */
1246 value -= (input_section->output_section->vma
1247 + input_section->output_offset);
1248 value -= rel->r_offset;
1249 value += addend;
1250
1251 if (! globals->no_pipeline_knowledge)
1252 value -= 8;
1253 }
1254 else
1255 {
1256 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
1257 where:
1258 S is the address of the symbol in the relocation.
1259 P is address of the instruction being relocated.
1260 A is the addend (extracted from the instruction) in bytes.
1261
1262 S is held in 'value'.
1263 P is the base address of the section containing the instruction
1264 plus the offset of the reloc into that section, ie:
1265 (input_section->output_section->vma +
1266 input_section->output_offset +
1267 rel->r_offset).
1268 A is the addend, converted into bytes, ie:
1269 (signed_addend * 4)
1270
1271 Note: None of these operations have knowledge of the pipeline
1272 size of the processor, thus it is up to the assembler to encode
1273 this information into the addend. */
1274 value -= (input_section->output_section->vma
1275 + input_section->output_offset);
1276 value -= rel->r_offset;
1277 value += (signed_addend << howto->size);
1278
1279 /* Previous versions of this code also used to add in the pipeline
1280 offset here. This is wrong because the linker is not supposed
1281 to know about such things, and one day it might change. In order
1282 to support old binaries that need the old behaviour however, so
1283 we attempt to detect which ABI was used to create the reloc. */
1284 if (! globals->no_pipeline_knowledge)
1285 {
1286 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
1287
1288 i_ehdrp = elf_elfheader (input_bfd);
1289
1290 if (i_ehdrp->e_ident[EI_OSABI] == 0)
1291 value -= 8;
1292 }
1293 }
1294
1295 signed_addend = value;
1296 signed_addend >>= howto->rightshift;
1297
1298 /* It is not an error for an undefined weak reference to be
1299 out of range. Any program that branches to such a symbol
1300 is going to crash anyway, so there is no point worrying
1301 about getting the destination exactly right. */
1302 if (! h || h->root.type != bfd_link_hash_undefweak)
1303 {
1304 /* Perform a signed range check. */
1305 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
1306 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
1307 return bfd_reloc_overflow;
1308 }
1309
1310 #ifndef OLD_ARM_ABI
1311 /* If necessary set the H bit in the BLX instruction. */
1312 if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
1313 value = (signed_addend & howto->dst_mask)
1314 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
1315 | (1 << 24);
1316 else
1317 #endif
1318 value = (signed_addend & howto->dst_mask)
1319 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
1320 break;
1321
1322 case R_ARM_ABS32:
1323 value += addend;
1324 if (sym_flags == STT_ARM_TFUNC)
1325 value |= 1;
1326 break;
1327
1328 case R_ARM_REL32:
1329 value -= (input_section->output_section->vma
1330 + input_section->output_offset + rel->r_offset);
1331 value += addend;
1332 break;
1333 }
1334
1335 bfd_put_32 (input_bfd, value, hit_data);
1336 return bfd_reloc_ok;
1337
1338 case R_ARM_ABS8:
1339 value += addend;
1340 if ((long) value > 0x7f || (long) value < -0x80)
1341 return bfd_reloc_overflow;
1342
1343 bfd_put_8 (input_bfd, value, hit_data);
1344 return bfd_reloc_ok;
1345
1346 case R_ARM_ABS16:
1347 value += addend;
1348
1349 if ((long) value > 0x7fff || (long) value < -0x8000)
1350 return bfd_reloc_overflow;
1351
1352 bfd_put_16 (input_bfd, value, hit_data);
1353 return bfd_reloc_ok;
1354
1355 case R_ARM_ABS12:
1356 /* Support ldr and str instruction for the arm */
1357 /* Also thumb b (unconditional branch). ??? Really? */
1358 value += addend;
1359
1360 if ((long) value > 0x7ff || (long) value < -0x800)
1361 return bfd_reloc_overflow;
1362
1363 value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
1364 bfd_put_32 (input_bfd, value, hit_data);
1365 return bfd_reloc_ok;
1366
1367 case R_ARM_THM_ABS5:
1368 /* Support ldr and str instructions for the thumb. */
1369 #if USE_REL
1370 /* Need to refetch addend. */
1371 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1372 /* ??? Need to determine shift amount from operand size. */
1373 addend >>= howto->rightshift;
1374 #endif
1375 value += addend;
1376
1377 /* ??? Isn't value unsigned? */
1378 if ((long) value > 0x1f || (long) value < -0x10)
1379 return bfd_reloc_overflow;
1380
1381 /* ??? Value needs to be properly shifted into place first. */
1382 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
1383 bfd_put_16 (input_bfd, value, hit_data);
1384 return bfd_reloc_ok;
1385
1386 #ifndef OLD_ARM_ABI
1387 case R_ARM_THM_XPC22:
1388 #endif
1389 case R_ARM_THM_PC22:
1390 /* Thumb BL (branch long instruction). */
1391 {
1392 bfd_vma relocation;
1393 bfd_boolean overflow = FALSE;
1394 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
1395 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
1396 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
1397 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1398 bfd_vma check;
1399 bfd_signed_vma signed_check;
1400
1401 #if USE_REL
1402 /* Need to refetch the addend and squish the two 11 bit pieces
1403 together. */
1404 {
1405 bfd_vma upper = upper_insn & 0x7ff;
1406 bfd_vma lower = lower_insn & 0x7ff;
1407 upper = (upper ^ 0x400) - 0x400; /* Sign extend. */
1408 addend = (upper << 12) | (lower << 1);
1409 signed_addend = addend;
1410 }
1411 #endif
1412 #ifndef OLD_ARM_ABI
1413 if (r_type == R_ARM_THM_XPC22)
1414 {
1415 /* Check for Thumb to Thumb call. */
1416 /* FIXME: Should we translate the instruction into a BL
1417 instruction instead ? */
1418 if (sym_flags == STT_ARM_TFUNC)
1419 (*_bfd_error_handler) (_("\
1420 %s: Warning: Thumb BLX instruction targets thumb function '%s'."),
1421 bfd_archive_filename (input_bfd),
1422 h ? h->root.root.string : "(local)");
1423 }
1424 else
1425 #endif
1426 {
1427 /* If it is not a call to Thumb, assume call to Arm.
1428 If it is a call relative to a section name, then it is not a
1429 function call at all, but rather a long jump. */
1430 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
1431 {
1432 if (elf32_thumb_to_arm_stub
1433 (info, sym_name, input_bfd, output_bfd, input_section,
1434 hit_data, sym_sec, rel->r_offset, signed_addend, value))
1435 return bfd_reloc_ok;
1436 else
1437 return bfd_reloc_dangerous;
1438 }
1439 }
1440
1441 relocation = value + signed_addend;
1442
1443 relocation -= (input_section->output_section->vma
1444 + input_section->output_offset
1445 + rel->r_offset);
1446
1447 if (! globals->no_pipeline_knowledge)
1448 {
1449 Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form. */
1450
1451 i_ehdrp = elf_elfheader (input_bfd);
1452
1453 /* Previous versions of this code also used to add in the pipline
1454 offset here. This is wrong because the linker is not supposed
1455 to know about such things, and one day it might change. In order
1456 to support old binaries that need the old behaviour however, so
1457 we attempt to detect which ABI was used to create the reloc. */
1458 if ( strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
1459 || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
1460 || i_ehdrp->e_ident[EI_OSABI] == 0)
1461 relocation += 4;
1462 }
1463
1464 check = relocation >> howto->rightshift;
1465
1466 /* If this is a signed value, the rightshift just dropped
1467 leading 1 bits (assuming twos complement). */
1468 if ((bfd_signed_vma) relocation >= 0)
1469 signed_check = check;
1470 else
1471 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
1472
1473 /* Assumes two's complement. */
1474 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1475 overflow = TRUE;
1476
1477 #ifndef OLD_ARM_ABI
1478 if (r_type == R_ARM_THM_XPC22
1479 && ((lower_insn & 0x1800) == 0x0800))
1480 /* For a BLX instruction, make sure that the relocation is rounded up
1481 to a word boundary. This follows the semantics of the instruction
1482 which specifies that bit 1 of the target address will come from bit
1483 1 of the base address. */
1484 relocation = (relocation + 2) & ~ 3;
1485 #endif
1486 /* Put RELOCATION back into the insn. */
1487 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
1488 lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
1489
1490 /* Put the relocated value back in the object file: */
1491 bfd_put_16 (input_bfd, upper_insn, hit_data);
1492 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
1493
1494 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
1495 }
1496 break;
1497
1498 case R_ARM_THM_PC11:
1499 /* Thumb B (branch) instruction). */
1500 {
1501 bfd_signed_vma relocation;
1502 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
1503 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
1504 bfd_signed_vma signed_check;
1505
1506 #if USE_REL
1507 /* Need to refetch addend. */
1508 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
1509 if (addend & ((howto->src_mask + 1) >> 1))
1510 {
1511 signed_addend = -1;
1512 signed_addend &= ~ howto->src_mask;
1513 signed_addend |= addend;
1514 }
1515 else
1516 signed_addend = addend;
1517 /* The value in the insn has been right shifted. We need to
1518 undo this, so that we can perform the address calculation
1519 in terms of bytes. */
1520 signed_addend <<= howto->rightshift;
1521 #endif
1522 relocation = value + signed_addend;
1523
1524 relocation -= (input_section->output_section->vma
1525 + input_section->output_offset
1526 + rel->r_offset);
1527
1528 relocation >>= howto->rightshift;
1529 signed_check = relocation;
1530 relocation &= howto->dst_mask;
1531 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
1532
1533 bfd_put_16 (input_bfd, relocation, hit_data);
1534
1535 /* Assumes two's complement. */
1536 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
1537 return bfd_reloc_overflow;
1538
1539 return bfd_reloc_ok;
1540 }
1541
1542 case R_ARM_GNU_VTINHERIT:
1543 case R_ARM_GNU_VTENTRY:
1544 return bfd_reloc_ok;
1545
1546 case R_ARM_COPY:
1547 return bfd_reloc_notsupported;
1548
1549 case R_ARM_GLOB_DAT:
1550 return bfd_reloc_notsupported;
1551
1552 case R_ARM_JUMP_SLOT:
1553 return bfd_reloc_notsupported;
1554
1555 case R_ARM_RELATIVE:
1556 return bfd_reloc_notsupported;
1557
1558 case R_ARM_GOTOFF:
1559 /* Relocation is relative to the start of the
1560 global offset table. */
1561
1562 BFD_ASSERT (sgot != NULL);
1563 if (sgot == NULL)
1564 return bfd_reloc_notsupported;
1565
1566 /* If we are addressing a Thumb function, we need to adjust the
1567 address by one, so that attempts to call the function pointer will
1568 correctly interpret it as Thumb code. */
1569 if (sym_flags == STT_ARM_TFUNC)
1570 value += 1;
1571
1572 /* Note that sgot->output_offset is not involved in this
1573 calculation. We always want the start of .got. If we
1574 define _GLOBAL_OFFSET_TABLE in a different way, as is
1575 permitted by the ABI, we might have to change this
1576 calculation. */
1577 value -= sgot->output_section->vma;
1578 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1579 contents, rel->r_offset, value,
1580 (bfd_vma) 0);
1581
1582 case R_ARM_GOTPC:
1583 /* Use global offset table as symbol value. */
1584 BFD_ASSERT (sgot != NULL);
1585
1586 if (sgot == NULL)
1587 return bfd_reloc_notsupported;
1588
1589 value = sgot->output_section->vma;
1590 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1591 contents, rel->r_offset, value,
1592 (bfd_vma) 0);
1593
1594 case R_ARM_GOT32:
1595 /* Relocation is to the entry for this symbol in the
1596 global offset table. */
1597 if (sgot == NULL)
1598 return bfd_reloc_notsupported;
1599
1600 if (h != NULL)
1601 {
1602 bfd_vma off;
1603
1604 off = h->got.offset;
1605 BFD_ASSERT (off != (bfd_vma) -1);
1606
1607 if (!elf_hash_table (info)->dynamic_sections_created ||
1608 (info->shared && (info->symbolic || h->dynindx == -1)
1609 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1610 {
1611 /* This is actually a static link, or it is a -Bsymbolic link
1612 and the symbol is defined locally. We must initialize this
1613 entry in the global offset table. Since the offset must
1614 always be a multiple of 4, we use the least significant bit
1615 to record whether we have initialized it already.
1616
1617 When doing a dynamic link, we create a .rel.got relocation
1618 entry to initialize the value. This is done in the
1619 finish_dynamic_symbol routine. */
1620 if ((off & 1) != 0)
1621 off &= ~1;
1622 else
1623 {
1624 /* If we are addressing a Thumb function, we need to
1625 adjust the address by one, so that attempts to
1626 call the function pointer will correctly
1627 interpret it as Thumb code. */
1628 if (sym_flags == STT_ARM_TFUNC)
1629 value |= 1;
1630
1631 bfd_put_32 (output_bfd, value, sgot->contents + off);
1632 h->got.offset |= 1;
1633 }
1634 }
1635
1636 value = sgot->output_offset + off;
1637 }
1638 else
1639 {
1640 bfd_vma off;
1641
1642 BFD_ASSERT (local_got_offsets != NULL &&
1643 local_got_offsets[r_symndx] != (bfd_vma) -1);
1644
1645 off = local_got_offsets[r_symndx];
1646
1647 /* The offset must always be a multiple of 4. We use the
1648 least significant bit to record whether we have already
1649 generated the necessary reloc. */
1650 if ((off & 1) != 0)
1651 off &= ~1;
1652 else
1653 {
1654 bfd_put_32 (output_bfd, value, sgot->contents + off);
1655
1656 if (info->shared)
1657 {
1658 asection * srelgot;
1659 Elf_Internal_Rela outrel;
1660 bfd_byte *loc;
1661
1662 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1663 BFD_ASSERT (srelgot != NULL);
1664
1665 outrel.r_offset = (sgot->output_section->vma
1666 + sgot->output_offset
1667 + off);
1668 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
1669 loc = srelgot->contents;
1670 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
1671 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1672 }
1673
1674 local_got_offsets[r_symndx] |= 1;
1675 }
1676
1677 value = sgot->output_offset + off;
1678 }
1679
1680 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1681 contents, rel->r_offset, value,
1682 (bfd_vma) 0);
1683
1684 case R_ARM_PLT32:
1685 /* Relocation is to the entry for this symbol in the
1686 procedure linkage table. */
1687
1688 /* Resolve a PLT32 reloc against a local symbol directly,
1689 without using the procedure linkage table. */
1690 if (h == NULL)
1691 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1692 contents, rel->r_offset, value,
1693 (bfd_vma) 0);
1694
1695 if (h->plt.offset == (bfd_vma) -1)
1696 /* We didn't make a PLT entry for this symbol. This
1697 happens when statically linking PIC code, or when
1698 using -Bsymbolic. */
1699 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1700 contents, rel->r_offset, value,
1701 (bfd_vma) 0);
1702
1703 BFD_ASSERT(splt != NULL);
1704 if (splt == NULL)
1705 return bfd_reloc_notsupported;
1706
1707 value = (splt->output_section->vma
1708 + splt->output_offset
1709 + h->plt.offset);
1710 return _bfd_final_link_relocate (howto, input_bfd, input_section,
1711 contents, rel->r_offset, value,
1712 (bfd_vma) 0);
1713
1714 case R_ARM_SBREL32:
1715 return bfd_reloc_notsupported;
1716
1717 case R_ARM_AMP_VCALL9:
1718 return bfd_reloc_notsupported;
1719
1720 case R_ARM_RSBREL32:
1721 return bfd_reloc_notsupported;
1722
1723 case R_ARM_THM_RPC22:
1724 return bfd_reloc_notsupported;
1725
1726 case R_ARM_RREL32:
1727 return bfd_reloc_notsupported;
1728
1729 case R_ARM_RABS32:
1730 return bfd_reloc_notsupported;
1731
1732 case R_ARM_RPC24:
1733 return bfd_reloc_notsupported;
1734
1735 case R_ARM_RBASE:
1736 return bfd_reloc_notsupported;
1737
1738 default:
1739 return bfd_reloc_notsupported;
1740 }
1741 }
1742
1743 #if USE_REL
1744 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
1745 static void
1746 arm_add_to_rel (abfd, address, howto, increment)
1747 bfd * abfd;
1748 bfd_byte * address;
1749 reloc_howto_type * howto;
1750 bfd_signed_vma increment;
1751 {
1752 bfd_signed_vma addend;
1753
1754 if (howto->type == R_ARM_THM_PC22)
1755 {
1756 int upper_insn, lower_insn;
1757 int upper, lower;
1758
1759 upper_insn = bfd_get_16 (abfd, address);
1760 lower_insn = bfd_get_16 (abfd, address + 2);
1761 upper = upper_insn & 0x7ff;
1762 lower = lower_insn & 0x7ff;
1763
1764 addend = (upper << 12) | (lower << 1);
1765 addend += increment;
1766 addend >>= 1;
1767
1768 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
1769 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
1770
1771 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
1772 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
1773 }
1774 else
1775 {
1776 bfd_vma contents;
1777
1778 contents = bfd_get_32 (abfd, address);
1779
1780 /* Get the (signed) value from the instruction. */
1781 addend = contents & howto->src_mask;
1782 if (addend & ((howto->src_mask + 1) >> 1))
1783 {
1784 bfd_signed_vma mask;
1785
1786 mask = -1;
1787 mask &= ~ howto->src_mask;
1788 addend |= mask;
1789 }
1790
1791 /* Add in the increment, (which is a byte value). */
1792 switch (howto->type)
1793 {
1794 default:
1795 addend += increment;
1796 break;
1797
1798 case R_ARM_PC24:
1799 addend <<= howto->size;
1800 addend += increment;
1801
1802 /* Should we check for overflow here ? */
1803
1804 /* Drop any undesired bits. */
1805 addend >>= howto->rightshift;
1806 break;
1807 }
1808
1809 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
1810
1811 bfd_put_32 (abfd, contents, address);
1812 }
1813 }
1814 #endif /* USE_REL */
1815
1816 /* Relocate an ARM ELF section. */
1817 static bfd_boolean
1818 elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
1819 contents, relocs, local_syms, local_sections)
1820 bfd *output_bfd;
1821 struct bfd_link_info *info;
1822 bfd *input_bfd;
1823 asection *input_section;
1824 bfd_byte *contents;
1825 Elf_Internal_Rela *relocs;
1826 Elf_Internal_Sym *local_syms;
1827 asection **local_sections;
1828 {
1829 Elf_Internal_Shdr *symtab_hdr;
1830 struct elf_link_hash_entry **sym_hashes;
1831 Elf_Internal_Rela *rel;
1832 Elf_Internal_Rela *relend;
1833 const char *name;
1834
1835 #if !USE_REL
1836 if (info->relocateable)
1837 return TRUE;
1838 #endif
1839
1840 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
1841 sym_hashes = elf_sym_hashes (input_bfd);
1842
1843 rel = relocs;
1844 relend = relocs + input_section->reloc_count;
1845 for (; rel < relend; rel++)
1846 {
1847 int r_type;
1848 reloc_howto_type * howto;
1849 unsigned long r_symndx;
1850 Elf_Internal_Sym * sym;
1851 asection * sec;
1852 struct elf_link_hash_entry * h;
1853 bfd_vma relocation;
1854 bfd_reloc_status_type r;
1855 arelent bfd_reloc;
1856
1857 r_symndx = ELF32_R_SYM (rel->r_info);
1858 r_type = ELF32_R_TYPE (rel->r_info);
1859
1860 if ( r_type == R_ARM_GNU_VTENTRY
1861 || r_type == R_ARM_GNU_VTINHERIT)
1862 continue;
1863
1864 elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
1865 howto = bfd_reloc.howto;
1866
1867 #if USE_REL
1868 if (info->relocateable)
1869 {
1870 /* This is a relocateable link. We don't have to change
1871 anything, unless the reloc is against a section symbol,
1872 in which case we have to adjust according to where the
1873 section symbol winds up in the output section. */
1874 if (r_symndx < symtab_hdr->sh_info)
1875 {
1876 sym = local_syms + r_symndx;
1877 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1878 {
1879 sec = local_sections[r_symndx];
1880 arm_add_to_rel (input_bfd, contents + rel->r_offset,
1881 howto,
1882 (bfd_signed_vma) (sec->output_offset
1883 + sym->st_value));
1884 }
1885 }
1886
1887 continue;
1888 }
1889 #endif
1890
1891 /* This is a final link. */
1892 h = NULL;
1893 sym = NULL;
1894 sec = NULL;
1895
1896 if (r_symndx < symtab_hdr->sh_info)
1897 {
1898 sym = local_syms + r_symndx;
1899 sec = local_sections[r_symndx];
1900 #if USE_REL
1901 relocation = (sec->output_section->vma
1902 + sec->output_offset
1903 + sym->st_value);
1904 if ((sec->flags & SEC_MERGE)
1905 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1906 {
1907 asection *msec;
1908 bfd_vma addend, value;
1909
1910 if (howto->rightshift)
1911 {
1912 (*_bfd_error_handler)
1913 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1914 bfd_archive_filename (input_bfd),
1915 bfd_get_section_name (input_bfd, input_section),
1916 (long) rel->r_offset, howto->name);
1917 return FALSE;
1918 }
1919
1920 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
1921
1922 /* Get the (signed) value from the instruction. */
1923 addend = value & howto->src_mask;
1924 if (addend & ((howto->src_mask + 1) >> 1))
1925 {
1926 bfd_signed_vma mask;
1927
1928 mask = -1;
1929 mask &= ~ howto->src_mask;
1930 addend |= mask;
1931 }
1932 msec = sec;
1933 addend =
1934 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1935 - relocation;
1936 addend += msec->output_section->vma + msec->output_offset;
1937 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
1938 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
1939 }
1940 #else
1941 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1942 #endif
1943 }
1944 else
1945 {
1946 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1947
1948 while ( h->root.type == bfd_link_hash_indirect
1949 || h->root.type == bfd_link_hash_warning)
1950 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1951
1952 if ( h->root.type == bfd_link_hash_defined
1953 || h->root.type == bfd_link_hash_defweak)
1954 {
1955 int relocation_needed = 1;
1956
1957 sec = h->root.u.def.section;
1958
1959 /* In these cases, we don't need the relocation value.
1960 We check specially because in some obscure cases
1961 sec->output_section will be NULL. */
1962 switch (r_type)
1963 {
1964 case R_ARM_PC24:
1965 case R_ARM_ABS32:
1966 case R_ARM_THM_PC22:
1967 if (info->shared
1968 && (
1969 (!info->symbolic && h->dynindx != -1)
1970 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1971 )
1972 && ((input_section->flags & SEC_ALLOC) != 0
1973 /* DWARF will emit R_ARM_ABS32 relocations in its
1974 sections against symbols defined externally
1975 in shared libraries. We can't do anything
1976 with them here. */
1977 || ((input_section->flags & SEC_DEBUGGING) != 0
1978 && (h->elf_link_hash_flags
1979 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1980 )
1981 relocation_needed = 0;
1982 break;
1983
1984 case R_ARM_GOTPC:
1985 relocation_needed = 0;
1986 break;
1987
1988 case R_ARM_GOT32:
1989 if (elf_hash_table(info)->dynamic_sections_created
1990 && (!info->shared
1991 || (!info->symbolic && h->dynindx != -1)
1992 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1993 )
1994 )
1995 relocation_needed = 0;
1996 break;
1997
1998 case R_ARM_PLT32:
1999 if (h->plt.offset != (bfd_vma)-1)
2000 relocation_needed = 0;
2001 break;
2002
2003 default:
2004 if (sec->output_section == NULL)
2005 {
2006 (*_bfd_error_handler)
2007 (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
2008 bfd_archive_filename (input_bfd),
2009 r_type,
2010 h->root.root.string,
2011 bfd_get_section_name (input_bfd, input_section));
2012 relocation_needed = 0;
2013 }
2014 }
2015
2016 if (relocation_needed)
2017 relocation = h->root.u.def.value
2018 + sec->output_section->vma
2019 + sec->output_offset;
2020 else
2021 relocation = 0;
2022 }
2023 else if (h->root.type == bfd_link_hash_undefweak)
2024 relocation = 0;
2025 else if (info->shared && !info->symbolic
2026 && !info->no_undefined
2027 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2028 relocation = 0;
2029 else
2030 {
2031 if (!((*info->callbacks->undefined_symbol)
2032 (info, h->root.root.string, input_bfd,
2033 input_section, rel->r_offset,
2034 (!info->shared || info->no_undefined
2035 || ELF_ST_VISIBILITY (h->other)))))
2036 return FALSE;
2037 relocation = 0;
2038 }
2039 }
2040
2041 if (h != NULL)
2042 name = h->root.root.string;
2043 else
2044 {
2045 name = (bfd_elf_string_from_elf_section
2046 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2047 if (name == NULL || *name == '\0')
2048 name = bfd_section_name (input_bfd, sec);
2049 }
2050
2051 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
2052 input_section, contents, rel,
2053 relocation, info, sec, name,
2054 (h ? ELF_ST_TYPE (h->type) :
2055 ELF_ST_TYPE (sym->st_info)), h);
2056
2057 if (r != bfd_reloc_ok)
2058 {
2059 const char * msg = (const char *) 0;
2060
2061 switch (r)
2062 {
2063 case bfd_reloc_overflow:
2064 /* If the overflowing reloc was to an undefined symbol,
2065 we have already printed one error message and there
2066 is no point complaining again. */
2067 if ((! h ||
2068 h->root.type != bfd_link_hash_undefined)
2069 && (!((*info->callbacks->reloc_overflow)
2070 (info, name, howto->name, (bfd_vma) 0,
2071 input_bfd, input_section, rel->r_offset))))
2072 return FALSE;
2073 break;
2074
2075 case bfd_reloc_undefined:
2076 if (!((*info->callbacks->undefined_symbol)
2077 (info, name, input_bfd, input_section,
2078 rel->r_offset, TRUE)))
2079 return FALSE;
2080 break;
2081
2082 case bfd_reloc_outofrange:
2083 msg = _("internal error: out of range error");
2084 goto common_error;
2085
2086 case bfd_reloc_notsupported:
2087 msg = _("internal error: unsupported relocation error");
2088 goto common_error;
2089
2090 case bfd_reloc_dangerous:
2091 msg = _("internal error: dangerous error");
2092 goto common_error;
2093
2094 default:
2095 msg = _("internal error: unknown error");
2096 /* fall through */
2097
2098 common_error:
2099 if (!((*info->callbacks->warning)
2100 (info, msg, name, input_bfd, input_section,
2101 rel->r_offset)))
2102 return FALSE;
2103 break;
2104 }
2105 }
2106 }
2107
2108 return TRUE;
2109 }
2110
2111 /* Function to keep ARM specific flags in the ELF header. */
2112 static bfd_boolean
2113 elf32_arm_set_private_flags (abfd, flags)
2114 bfd *abfd;
2115 flagword flags;
2116 {
2117 if (elf_flags_init (abfd)
2118 && elf_elfheader (abfd)->e_flags != flags)
2119 {
2120 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
2121 {
2122 if (flags & EF_ARM_INTERWORK)
2123 (*_bfd_error_handler) (_("\
2124 Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
2125 bfd_archive_filename (abfd));
2126 else
2127 _bfd_error_handler (_("\
2128 Warning: Clearing the interworking flag of %s due to outside request"),
2129 bfd_archive_filename (abfd));
2130 }
2131 }
2132 else
2133 {
2134 elf_elfheader (abfd)->e_flags = flags;
2135 elf_flags_init (abfd) = TRUE;
2136 }
2137
2138 return TRUE;
2139 }
2140
2141 /* Copy backend specific data from one object module to another. */
2142
2143 static bfd_boolean
2144 elf32_arm_copy_private_bfd_data (ibfd, obfd)
2145 bfd *ibfd;
2146 bfd *obfd;
2147 {
2148 flagword in_flags;
2149 flagword out_flags;
2150
2151 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2152 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2153 return TRUE;
2154
2155 in_flags = elf_elfheader (ibfd)->e_flags;
2156 out_flags = elf_elfheader (obfd)->e_flags;
2157
2158 if (elf_flags_init (obfd)
2159 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
2160 && in_flags != out_flags)
2161 {
2162 /* Cannot mix APCS26 and APCS32 code. */
2163 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2164 return FALSE;
2165
2166 /* Cannot mix float APCS and non-float APCS code. */
2167 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2168 return FALSE;
2169
2170 /* If the src and dest have different interworking flags
2171 then turn off the interworking bit. */
2172 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2173 {
2174 if (out_flags & EF_ARM_INTERWORK)
2175 _bfd_error_handler (_("\
2176 Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
2177 bfd_get_filename (obfd),
2178 bfd_archive_filename (ibfd));
2179
2180 in_flags &= ~EF_ARM_INTERWORK;
2181 }
2182
2183 /* Likewise for PIC, though don't warn for this case. */
2184 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
2185 in_flags &= ~EF_ARM_PIC;
2186 }
2187
2188 elf_elfheader (obfd)->e_flags = in_flags;
2189 elf_flags_init (obfd) = TRUE;
2190
2191 return TRUE;
2192 }
2193
2194 /* Merge backend specific data from an object file to the output
2195 object file when linking. */
2196
2197 static bfd_boolean
2198 elf32_arm_merge_private_bfd_data (ibfd, obfd)
2199 bfd * ibfd;
2200 bfd * obfd;
2201 {
2202 flagword out_flags;
2203 flagword in_flags;
2204 bfd_boolean flags_compatible = TRUE;
2205 bfd_boolean null_input_bfd = TRUE;
2206 asection *sec;
2207
2208 /* Check if we have the same endianess. */
2209 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
2210 return FALSE;
2211
2212 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2213 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2214 return TRUE;
2215
2216 /* The input BFD must have had its flags initialised. */
2217 /* The following seems bogus to me -- The flags are initialized in
2218 the assembler but I don't think an elf_flags_init field is
2219 written into the object. */
2220 /* BFD_ASSERT (elf_flags_init (ibfd)); */
2221
2222 in_flags = elf_elfheader (ibfd)->e_flags;
2223 out_flags = elf_elfheader (obfd)->e_flags;
2224
2225 if (!elf_flags_init (obfd))
2226 {
2227 /* If the input is the default architecture and had the default
2228 flags then do not bother setting the flags for the output
2229 architecture, instead allow future merges to do this. If no
2230 future merges ever set these flags then they will retain their
2231 uninitialised values, which surprise surprise, correspond
2232 to the default values. */
2233 if (bfd_get_arch_info (ibfd)->the_default
2234 && elf_elfheader (ibfd)->e_flags == 0)
2235 return TRUE;
2236
2237 elf_flags_init (obfd) = TRUE;
2238 elf_elfheader (obfd)->e_flags = in_flags;
2239
2240 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2241 && bfd_get_arch_info (obfd)->the_default)
2242 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
2243
2244 return TRUE;
2245 }
2246
2247 /* Identical flags must be compatible. */
2248 if (in_flags == out_flags)
2249 return TRUE;
2250
2251 /* Check to see if the input BFD actually contains any sections.
2252 If not, its flags may not have been initialised either, but it cannot
2253 actually cause any incompatibility. */
2254 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2255 {
2256 /* Ignore synthetic glue sections. */
2257 if (strcmp (sec->name, ".glue_7")
2258 && strcmp (sec->name, ".glue_7t"))
2259 {
2260 null_input_bfd = FALSE;
2261 break;
2262 }
2263 }
2264 if (null_input_bfd)
2265 return TRUE;
2266
2267 /* Complain about various flag mismatches. */
2268 if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
2269 {
2270 _bfd_error_handler (_("\
2271 ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
2272 bfd_archive_filename (ibfd),
2273 (in_flags & EF_ARM_EABIMASK) >> 24,
2274 bfd_get_filename (obfd),
2275 (out_flags & EF_ARM_EABIMASK) >> 24);
2276 return FALSE;
2277 }
2278
2279 /* Not sure what needs to be checked for EABI versions >= 1. */
2280 if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
2281 {
2282 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
2283 {
2284 _bfd_error_handler (_("\
2285 ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
2286 bfd_archive_filename (ibfd),
2287 in_flags & EF_ARM_APCS_26 ? 26 : 32,
2288 bfd_get_filename (obfd),
2289 out_flags & EF_ARM_APCS_26 ? 26 : 32);
2290 flags_compatible = FALSE;
2291 }
2292
2293 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
2294 {
2295 if (in_flags & EF_ARM_APCS_FLOAT)
2296 _bfd_error_handler (_("\
2297 ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
2298 bfd_archive_filename (ibfd),
2299 bfd_get_filename (obfd));
2300 else
2301 _bfd_error_handler (_("\
2302 ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
2303 bfd_archive_filename (ibfd),
2304 bfd_get_filename (obfd));
2305
2306 flags_compatible = FALSE;
2307 }
2308
2309 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
2310 {
2311 if (in_flags & EF_ARM_VFP_FLOAT)
2312 _bfd_error_handler (_("\
2313 ERROR: %s uses VFP instructions, whereas %s does not"),
2314 bfd_archive_filename (ibfd),
2315 bfd_get_filename (obfd));
2316 else
2317 _bfd_error_handler (_("\
2318 ERROR: %s uses FPA instructions, whereas %s does not"),
2319 bfd_archive_filename (ibfd),
2320 bfd_get_filename (obfd));
2321
2322 flags_compatible = FALSE;
2323 }
2324
2325 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
2326 {
2327 if (in_flags & EF_ARM_MAVERICK_FLOAT)
2328 _bfd_error_handler (_("\
2329 ERROR: %s uses Maverick instructions, whereas %s does not"),
2330 bfd_archive_filename (ibfd),
2331 bfd_get_filename (obfd));
2332 else
2333 _bfd_error_handler (_("\
2334 ERROR: %s uses Maverick instructions, whereas %s does not"),
2335 bfd_archive_filename (ibfd),
2336 bfd_get_filename (obfd));
2337
2338 flags_compatible = FALSE;
2339 }
2340
2341 #ifdef EF_ARM_SOFT_FLOAT
2342 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
2343 {
2344 /* We can allow interworking between code that is VFP format
2345 layout, and uses either soft float or integer regs for
2346 passing floating point arguments and results. We already
2347 know that the APCS_FLOAT flags match; similarly for VFP
2348 flags. */
2349 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
2350 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
2351 {
2352 if (in_flags & EF_ARM_SOFT_FLOAT)
2353 _bfd_error_handler (_("\
2354 ERROR: %s uses software FP, whereas %s uses hardware FP"),
2355 bfd_archive_filename (ibfd),
2356 bfd_get_filename (obfd));
2357 else
2358 _bfd_error_handler (_("\
2359 ERROR: %s uses hardware FP, whereas %s uses software FP"),
2360 bfd_archive_filename (ibfd),
2361 bfd_get_filename (obfd));
2362
2363 flags_compatible = FALSE;
2364 }
2365 }
2366 #endif
2367
2368 /* Interworking mismatch is only a warning. */
2369 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
2370 {
2371 if (in_flags & EF_ARM_INTERWORK)
2372 {
2373 _bfd_error_handler (_("\
2374 Warning: %s supports interworking, whereas %s does not"),
2375 bfd_archive_filename (ibfd),
2376 bfd_get_filename (obfd));
2377 }
2378 else
2379 {
2380 _bfd_error_handler (_("\
2381 Warning: %s does not support interworking, whereas %s does"),
2382 bfd_archive_filename (ibfd),
2383 bfd_get_filename (obfd));
2384 }
2385 }
2386 }
2387
2388 return flags_compatible;
2389 }
2390
2391 /* Display the flags field. */
2392
2393 static bfd_boolean
2394 elf32_arm_print_private_bfd_data (abfd, ptr)
2395 bfd *abfd;
2396 PTR ptr;
2397 {
2398 FILE * file = (FILE *) ptr;
2399 unsigned long flags;
2400
2401 BFD_ASSERT (abfd != NULL && ptr != NULL);
2402
2403 /* Print normal ELF private data. */
2404 _bfd_elf_print_private_bfd_data (abfd, ptr);
2405
2406 flags = elf_elfheader (abfd)->e_flags;
2407 /* Ignore init flag - it may not be set, despite the flags field
2408 containing valid data. */
2409
2410 /* xgettext:c-format */
2411 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2412
2413 switch (EF_ARM_EABI_VERSION (flags))
2414 {
2415 case EF_ARM_EABI_UNKNOWN:
2416 /* The following flag bits are GNU extenstions and not part of the
2417 official ARM ELF extended ABI. Hence they are only decoded if
2418 the EABI version is not set. */
2419 if (flags & EF_ARM_INTERWORK)
2420 fprintf (file, _(" [interworking enabled]"));
2421
2422 if (flags & EF_ARM_APCS_26)
2423 fprintf (file, " [APCS-26]");
2424 else
2425 fprintf (file, " [APCS-32]");
2426
2427 if (flags & EF_ARM_VFP_FLOAT)
2428 fprintf (file, _(" [VFP float format]"));
2429 else if (flags & EF_ARM_MAVERICK_FLOAT)
2430 fprintf (file, _(" [Maverick float format]"));
2431 else
2432 fprintf (file, _(" [FPA float format]"));
2433
2434 if (flags & EF_ARM_APCS_FLOAT)
2435 fprintf (file, _(" [floats passed in float registers]"));
2436
2437 if (flags & EF_ARM_PIC)
2438 fprintf (file, _(" [position independent]"));
2439
2440 if (flags & EF_ARM_NEW_ABI)
2441 fprintf (file, _(" [new ABI]"));
2442
2443 if (flags & EF_ARM_OLD_ABI)
2444 fprintf (file, _(" [old ABI]"));
2445
2446 if (flags & EF_ARM_SOFT_FLOAT)
2447 fprintf (file, _(" [software FP]"));
2448
2449 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
2450 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
2451 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
2452 | EF_ARM_MAVERICK_FLOAT);
2453 break;
2454
2455 case EF_ARM_EABI_VER1:
2456 fprintf (file, _(" [Version1 EABI]"));
2457
2458 if (flags & EF_ARM_SYMSARESORTED)
2459 fprintf (file, _(" [sorted symbol table]"));
2460 else
2461 fprintf (file, _(" [unsorted symbol table]"));
2462
2463 flags &= ~ EF_ARM_SYMSARESORTED;
2464 break;
2465
2466 case EF_ARM_EABI_VER2:
2467 fprintf (file, _(" [Version2 EABI]"));
2468
2469 if (flags & EF_ARM_SYMSARESORTED)
2470 fprintf (file, _(" [sorted symbol table]"));
2471 else
2472 fprintf (file, _(" [unsorted symbol table]"));
2473
2474 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
2475 fprintf (file, _(" [dynamic symbols use segment index]"));
2476
2477 if (flags & EF_ARM_MAPSYMSFIRST)
2478 fprintf (file, _(" [mapping symbols precede others]"));
2479
2480 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
2481 | EF_ARM_MAPSYMSFIRST);
2482 break;
2483
2484 default:
2485 fprintf (file, _(" <EABI version unrecognised>"));
2486 break;
2487 }
2488
2489 flags &= ~ EF_ARM_EABIMASK;
2490
2491 if (flags & EF_ARM_RELEXEC)
2492 fprintf (file, _(" [relocatable executable]"));
2493
2494 if (flags & EF_ARM_HASENTRY)
2495 fprintf (file, _(" [has entry point]"));
2496
2497 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
2498
2499 if (flags)
2500 fprintf (file, _("<Unrecognised flag bits set>"));
2501
2502 fputc ('\n', file);
2503
2504 return TRUE;
2505 }
2506
2507 static int
2508 elf32_arm_get_symbol_type (elf_sym, type)
2509 Elf_Internal_Sym * elf_sym;
2510 int type;
2511 {
2512 switch (ELF_ST_TYPE (elf_sym->st_info))
2513 {
2514 case STT_ARM_TFUNC:
2515 return ELF_ST_TYPE (elf_sym->st_info);
2516
2517 case STT_ARM_16BIT:
2518 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
2519 This allows us to distinguish between data used by Thumb instructions
2520 and non-data (which is probably code) inside Thumb regions of an
2521 executable. */
2522 if (type != STT_OBJECT)
2523 return ELF_ST_TYPE (elf_sym->st_info);
2524 break;
2525
2526 default:
2527 break;
2528 }
2529
2530 return type;
2531 }
2532
2533 static asection *
2534 elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
2535 asection *sec;
2536 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2537 Elf_Internal_Rela *rel;
2538 struct elf_link_hash_entry *h;
2539 Elf_Internal_Sym *sym;
2540 {
2541 if (h != NULL)
2542 {
2543 switch (ELF32_R_TYPE (rel->r_info))
2544 {
2545 case R_ARM_GNU_VTINHERIT:
2546 case R_ARM_GNU_VTENTRY:
2547 break;
2548
2549 default:
2550 switch (h->root.type)
2551 {
2552 case bfd_link_hash_defined:
2553 case bfd_link_hash_defweak:
2554 return h->root.u.def.section;
2555
2556 case bfd_link_hash_common:
2557 return h->root.u.c.p->section;
2558
2559 default:
2560 break;
2561 }
2562 }
2563 }
2564 else
2565 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
2566
2567 return NULL;
2568 }
2569
2570 /* Update the got entry reference counts for the section being removed. */
2571
2572 static bfd_boolean
2573 elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
2574 bfd *abfd ATTRIBUTE_UNUSED;
2575 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2576 asection *sec ATTRIBUTE_UNUSED;
2577 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
2578 {
2579 /* We don't support garbage collection of GOT and PLT relocs yet. */
2580 return TRUE;
2581 }
2582
2583 /* Look through the relocs for a section during the first phase. */
2584
2585 static bfd_boolean
2586 elf32_arm_check_relocs (abfd, info, sec, relocs)
2587 bfd *abfd;
2588 struct bfd_link_info *info;
2589 asection *sec;
2590 const Elf_Internal_Rela *relocs;
2591 {
2592 Elf_Internal_Shdr *symtab_hdr;
2593 struct elf_link_hash_entry **sym_hashes;
2594 struct elf_link_hash_entry **sym_hashes_end;
2595 const Elf_Internal_Rela *rel;
2596 const Elf_Internal_Rela *rel_end;
2597 bfd *dynobj;
2598 asection *sgot, *srelgot, *sreloc;
2599 bfd_vma *local_got_offsets;
2600
2601 if (info->relocateable)
2602 return TRUE;
2603
2604 sgot = srelgot = sreloc = NULL;
2605
2606 dynobj = elf_hash_table (info)->dynobj;
2607 local_got_offsets = elf_local_got_offsets (abfd);
2608
2609 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2610 sym_hashes = elf_sym_hashes (abfd);
2611 sym_hashes_end = sym_hashes
2612 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
2613
2614 if (!elf_bad_symtab (abfd))
2615 sym_hashes_end -= symtab_hdr->sh_info;
2616
2617 rel_end = relocs + sec->reloc_count;
2618 for (rel = relocs; rel < rel_end; rel++)
2619 {
2620 struct elf_link_hash_entry *h;
2621 unsigned long r_symndx;
2622
2623 r_symndx = ELF32_R_SYM (rel->r_info);
2624 if (r_symndx < symtab_hdr->sh_info)
2625 h = NULL;
2626 else
2627 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2628
2629 /* Some relocs require a global offset table. */
2630 if (dynobj == NULL)
2631 {
2632 switch (ELF32_R_TYPE (rel->r_info))
2633 {
2634 case R_ARM_GOT32:
2635 case R_ARM_GOTOFF:
2636 case R_ARM_GOTPC:
2637 elf_hash_table (info)->dynobj = dynobj = abfd;
2638 if (! _bfd_elf_create_got_section (dynobj, info))
2639 return FALSE;
2640 break;
2641
2642 default:
2643 break;
2644 }
2645 }
2646
2647 switch (ELF32_R_TYPE (rel->r_info))
2648 {
2649 case R_ARM_GOT32:
2650 /* This symbol requires a global offset table entry. */
2651 if (sgot == NULL)
2652 {
2653 sgot = bfd_get_section_by_name (dynobj, ".got");
2654 BFD_ASSERT (sgot != NULL);
2655 }
2656
2657 /* Get the got relocation section if necessary. */
2658 if (srelgot == NULL
2659 && (h != NULL || info->shared))
2660 {
2661 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
2662
2663 /* If no got relocation section, make one and initialize. */
2664 if (srelgot == NULL)
2665 {
2666 srelgot = bfd_make_section (dynobj, ".rel.got");
2667 if (srelgot == NULL
2668 || ! bfd_set_section_flags (dynobj, srelgot,
2669 (SEC_ALLOC
2670 | SEC_LOAD
2671 | SEC_HAS_CONTENTS
2672 | SEC_IN_MEMORY
2673 | SEC_LINKER_CREATED
2674 | SEC_READONLY))
2675 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
2676 return FALSE;
2677 }
2678 }
2679
2680 if (h != NULL)
2681 {
2682 if (h->got.offset != (bfd_vma) -1)
2683 /* We have already allocated space in the .got. */
2684 break;
2685
2686 h->got.offset = sgot->_raw_size;
2687
2688 /* Make sure this symbol is output as a dynamic symbol. */
2689 if (h->dynindx == -1)
2690 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2691 return FALSE;
2692
2693 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2694 }
2695 else
2696 {
2697 /* This is a global offset table entry for a local
2698 symbol. */
2699 if (local_got_offsets == NULL)
2700 {
2701 bfd_size_type size;
2702 unsigned int i;
2703
2704 size = symtab_hdr->sh_info;
2705 size *= sizeof (bfd_vma);
2706 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
2707 if (local_got_offsets == NULL)
2708 return FALSE;
2709 elf_local_got_offsets (abfd) = local_got_offsets;
2710 for (i = 0; i < symtab_hdr->sh_info; i++)
2711 local_got_offsets[i] = (bfd_vma) -1;
2712 }
2713
2714 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
2715 /* We have already allocated space in the .got. */
2716 break;
2717
2718 local_got_offsets[r_symndx] = sgot->_raw_size;
2719
2720 if (info->shared)
2721 /* If we are generating a shared object, we need to
2722 output a R_ARM_RELATIVE reloc so that the dynamic
2723 linker can adjust this GOT entry. */
2724 srelgot->_raw_size += sizeof (Elf32_External_Rel);
2725 }
2726
2727 sgot->_raw_size += 4;
2728 break;
2729
2730 case R_ARM_PLT32:
2731 /* This symbol requires a procedure linkage table entry. We
2732 actually build the entry in adjust_dynamic_symbol,
2733 because this might be a case of linking PIC code which is
2734 never referenced by a dynamic object, in which case we
2735 don't need to generate a procedure linkage table entry
2736 after all. */
2737
2738 /* If this is a local symbol, we resolve it directly without
2739 creating a procedure linkage table entry. */
2740 if (h == NULL)
2741 continue;
2742
2743 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2744 break;
2745
2746 case R_ARM_ABS32:
2747 case R_ARM_REL32:
2748 case R_ARM_PC24:
2749 /* If we are creating a shared library, and this is a reloc
2750 against a global symbol, or a non PC relative reloc
2751 against a local symbol, then we need to copy the reloc
2752 into the shared library. However, if we are linking with
2753 -Bsymbolic, we do not need to copy a reloc against a
2754 global symbol which is defined in an object we are
2755 including in the link (i.e., DEF_REGULAR is set). At
2756 this point we have not seen all the input files, so it is
2757 possible that DEF_REGULAR is not set now but will be set
2758 later (it is never cleared). We account for that
2759 possibility below by storing information in the
2760 pcrel_relocs_copied field of the hash table entry. */
2761 if (info->shared
2762 && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
2763 || (h != NULL
2764 && (! info->symbolic
2765 || (h->elf_link_hash_flags
2766 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2767 {
2768 /* When creating a shared object, we must copy these
2769 reloc types into the output file. We create a reloc
2770 section in dynobj and make room for this reloc. */
2771 if (sreloc == NULL)
2772 {
2773 const char * name;
2774
2775 name = (bfd_elf_string_from_elf_section
2776 (abfd,
2777 elf_elfheader (abfd)->e_shstrndx,
2778 elf_section_data (sec)->rel_hdr.sh_name));
2779 if (name == NULL)
2780 return FALSE;
2781
2782 BFD_ASSERT (strncmp (name, ".rel", 4) == 0
2783 && strcmp (bfd_get_section_name (abfd, sec),
2784 name + 4) == 0);
2785
2786 sreloc = bfd_get_section_by_name (dynobj, name);
2787 if (sreloc == NULL)
2788 {
2789 flagword flags;
2790
2791 sreloc = bfd_make_section (dynobj, name);
2792 flags = (SEC_HAS_CONTENTS | SEC_READONLY
2793 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2794 if ((sec->flags & SEC_ALLOC) != 0)
2795 flags |= SEC_ALLOC | SEC_LOAD;
2796 if (sreloc == NULL
2797 || ! bfd_set_section_flags (dynobj, sreloc, flags)
2798 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
2799 return FALSE;
2800 }
2801 if (sec->flags & SEC_READONLY)
2802 info->flags |= DF_TEXTREL;
2803 }
2804
2805 sreloc->_raw_size += sizeof (Elf32_External_Rel);
2806 /* If we are linking with -Bsymbolic, and this is a
2807 global symbol, we count the number of PC relative
2808 relocations we have entered for this symbol, so that
2809 we can discard them again if the symbol is later
2810 defined by a regular object. Note that this function
2811 is only called if we are using an elf_i386 linker
2812 hash table, which means that h is really a pointer to
2813 an elf_i386_link_hash_entry. */
2814 if (h != NULL && info->symbolic
2815 && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
2816 {
2817 struct elf32_arm_link_hash_entry * eh;
2818 struct elf32_arm_pcrel_relocs_copied * p;
2819
2820 eh = (struct elf32_arm_link_hash_entry *) h;
2821
2822 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
2823 if (p->section == sreloc)
2824 break;
2825
2826 if (p == NULL)
2827 {
2828 p = ((struct elf32_arm_pcrel_relocs_copied *)
2829 bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
2830 if (p == NULL)
2831 return FALSE;
2832 p->next = eh->pcrel_relocs_copied;
2833 eh->pcrel_relocs_copied = p;
2834 p->section = sreloc;
2835 p->count = 0;
2836 }
2837
2838 ++p->count;
2839 }
2840 }
2841 break;
2842
2843 /* This relocation describes the C++ object vtable hierarchy.
2844 Reconstruct it for later use during GC. */
2845 case R_ARM_GNU_VTINHERIT:
2846 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2847 return FALSE;
2848 break;
2849
2850 /* This relocation describes which C++ vtable entries are actually
2851 used. Record for later use during GC. */
2852 case R_ARM_GNU_VTENTRY:
2853 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
2854 return FALSE;
2855 break;
2856 }
2857 }
2858
2859 return TRUE;
2860 }
2861
2862 /* Find the nearest line to a particular section and offset, for error
2863 reporting. This code is a duplicate of the code in elf.c, except
2864 that it also accepts STT_ARM_TFUNC as a symbol that names a function. */
2865
2866 static bfd_boolean
2867 elf32_arm_find_nearest_line
2868 (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
2869 bfd *abfd;
2870 asection *section;
2871 asymbol **symbols;
2872 bfd_vma offset;
2873 const char **filename_ptr;
2874 const char **functionname_ptr;
2875 unsigned int *line_ptr;
2876 {
2877 bfd_boolean found;
2878 const char *filename;
2879 asymbol *func;
2880 bfd_vma low_func;
2881 asymbol **p;
2882
2883 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
2884 filename_ptr, functionname_ptr,
2885 line_ptr, 0,
2886 &elf_tdata (abfd)->dwarf2_find_line_info))
2887 return TRUE;
2888
2889 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
2890 &found, filename_ptr,
2891 functionname_ptr, line_ptr,
2892 &elf_tdata (abfd)->line_info))
2893 return FALSE;
2894
2895 if (found)
2896 return TRUE;
2897
2898 if (symbols == NULL)
2899 return FALSE;
2900
2901 filename = NULL;
2902 func = NULL;
2903 low_func = 0;
2904
2905 for (p = symbols; *p != NULL; p++)
2906 {
2907 elf_symbol_type *q;
2908
2909 q = (elf_symbol_type *) *p;
2910
2911 if (bfd_get_section (&q->symbol) != section)
2912 continue;
2913
2914 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
2915 {
2916 default:
2917 break;
2918 case STT_FILE:
2919 filename = bfd_asymbol_name (&q->symbol);
2920 break;
2921 case STT_NOTYPE:
2922 case STT_FUNC:
2923 case STT_ARM_TFUNC:
2924 if (q->symbol.section == section
2925 && q->symbol.value >= low_func
2926 && q->symbol.value <= offset)
2927 {
2928 func = (asymbol *) q;
2929 low_func = q->symbol.value;
2930 }
2931 break;
2932 }
2933 }
2934
2935 if (func == NULL)
2936 return FALSE;
2937
2938 *filename_ptr = filename;
2939 *functionname_ptr = bfd_asymbol_name (func);
2940 *line_ptr = 0;
2941
2942 return TRUE;
2943 }
2944
2945 /* Adjust a symbol defined by a dynamic object and referenced by a
2946 regular object. The current definition is in some section of the
2947 dynamic object, but we're not including those sections. We have to
2948 change the definition to something the rest of the link can
2949 understand. */
2950
2951 static bfd_boolean
2952 elf32_arm_adjust_dynamic_symbol (info, h)
2953 struct bfd_link_info * info;
2954 struct elf_link_hash_entry * h;
2955 {
2956 bfd * dynobj;
2957 asection * s;
2958 unsigned int power_of_two;
2959
2960 dynobj = elf_hash_table (info)->dynobj;
2961
2962 /* Make sure we know what is going on here. */
2963 BFD_ASSERT (dynobj != NULL
2964 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
2965 || h->weakdef != NULL
2966 || ((h->elf_link_hash_flags
2967 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2968 && (h->elf_link_hash_flags
2969 & ELF_LINK_HASH_REF_REGULAR) != 0
2970 && (h->elf_link_hash_flags
2971 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
2972
2973 /* If this is a function, put it in the procedure linkage table. We
2974 will fill in the contents of the procedure linkage table later,
2975 when we know the address of the .got section. */
2976 if (h->type == STT_FUNC
2977 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
2978 {
2979 /* If we link a program (not a DSO), we'll get rid of unnecessary
2980 PLT entries; we point to the actual symbols -- even for pic
2981 relocs, because a program built with -fpic should have the same
2982 result as one built without -fpic, specifically considering weak
2983 symbols.
2984 FIXME: m68k and i386 differ here, for unclear reasons. */
2985 if (! info->shared
2986 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
2987 {
2988 /* This case can occur if we saw a PLT32 reloc in an input
2989 file, but the symbol was not defined by a dynamic object.
2990 In such a case, we don't actually need to build a
2991 procedure linkage table, and we can just do a PC32 reloc
2992 instead. */
2993 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
2994 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2995 return TRUE;
2996 }
2997
2998 /* Make sure this symbol is output as a dynamic symbol. */
2999 if (h->dynindx == -1)
3000 {
3001 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3002 return FALSE;
3003 }
3004
3005 s = bfd_get_section_by_name (dynobj, ".plt");
3006 BFD_ASSERT (s != NULL);
3007
3008 /* If this is the first .plt entry, make room for the special
3009 first entry. */
3010 if (s->_raw_size == 0)
3011 s->_raw_size += PLT_ENTRY_SIZE;
3012
3013 /* If this symbol is not defined in a regular file, and we are
3014 not generating a shared library, then set the symbol to this
3015 location in the .plt. This is required to make function
3016 pointers compare as equal between the normal executable and
3017 the shared library. */
3018 if (! info->shared
3019 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3020 {
3021 h->root.u.def.section = s;
3022 h->root.u.def.value = s->_raw_size;
3023 }
3024
3025 h->plt.offset = s->_raw_size;
3026
3027 /* Make room for this entry. */
3028 s->_raw_size += PLT_ENTRY_SIZE;
3029
3030 /* We also need to make an entry in the .got.plt section, which
3031 will be placed in the .got section by the linker script. */
3032 s = bfd_get_section_by_name (dynobj, ".got.plt");
3033 BFD_ASSERT (s != NULL);
3034 s->_raw_size += 4;
3035
3036 /* We also need to make an entry in the .rel.plt section. */
3037
3038 s = bfd_get_section_by_name (dynobj, ".rel.plt");
3039 BFD_ASSERT (s != NULL);
3040 s->_raw_size += sizeof (Elf32_External_Rel);
3041
3042 return TRUE;
3043 }
3044
3045 /* If this is a weak symbol, and there is a real definition, the
3046 processor independent code will have arranged for us to see the
3047 real definition first, and we can just use the same value. */
3048 if (h->weakdef != NULL)
3049 {
3050 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
3051 || h->weakdef->root.type == bfd_link_hash_defweak);
3052 h->root.u.def.section = h->weakdef->root.u.def.section;
3053 h->root.u.def.value = h->weakdef->root.u.def.value;
3054 return TRUE;
3055 }
3056
3057 /* This is a reference to a symbol defined by a dynamic object which
3058 is not a function. */
3059
3060 /* If we are creating a shared library, we must presume that the
3061 only references to the symbol are via the global offset table.
3062 For such cases we need not do anything here; the relocations will
3063 be handled correctly by relocate_section. */
3064 if (info->shared)
3065 return TRUE;
3066
3067 /* We must allocate the symbol in our .dynbss section, which will
3068 become part of the .bss section of the executable. There will be
3069 an entry for this symbol in the .dynsym section. The dynamic
3070 object will contain position independent code, so all references
3071 from the dynamic object to this symbol will go through the global
3072 offset table. The dynamic linker will use the .dynsym entry to
3073 determine the address it must put in the global offset table, so
3074 both the dynamic object and the regular object will refer to the
3075 same memory location for the variable. */
3076 s = bfd_get_section_by_name (dynobj, ".dynbss");
3077 BFD_ASSERT (s != NULL);
3078
3079 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
3080 copy the initial value out of the dynamic object and into the
3081 runtime process image. We need to remember the offset into the
3082 .rel.bss section we are going to use. */
3083 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3084 {
3085 asection *srel;
3086
3087 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
3088 BFD_ASSERT (srel != NULL);
3089 srel->_raw_size += sizeof (Elf32_External_Rel);
3090 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
3091 }
3092
3093 /* We need to figure out the alignment required for this symbol. I
3094 have no idea how ELF linkers handle this. */
3095 power_of_two = bfd_log2 (h->size);
3096 if (power_of_two > 3)
3097 power_of_two = 3;
3098
3099 /* Apply the required alignment. */
3100 s->_raw_size = BFD_ALIGN (s->_raw_size,
3101 (bfd_size_type) (1 << power_of_two));
3102 if (power_of_two > bfd_get_section_alignment (dynobj, s))
3103 {
3104 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
3105 return FALSE;
3106 }
3107
3108 /* Define the symbol as being at this point in the section. */
3109 h->root.u.def.section = s;
3110 h->root.u.def.value = s->_raw_size;
3111
3112 /* Increment the section size to make room for the symbol. */
3113 s->_raw_size += h->size;
3114
3115 return TRUE;
3116 }
3117
3118 /* Set the sizes of the dynamic sections. */
3119
3120 static bfd_boolean
3121 elf32_arm_size_dynamic_sections (output_bfd, info)
3122 bfd * output_bfd ATTRIBUTE_UNUSED;
3123 struct bfd_link_info * info;
3124 {
3125 bfd * dynobj;
3126 asection * s;
3127 bfd_boolean plt;
3128 bfd_boolean relocs;
3129
3130 dynobj = elf_hash_table (info)->dynobj;
3131 BFD_ASSERT (dynobj != NULL);
3132
3133 if (elf_hash_table (info)->dynamic_sections_created)
3134 {
3135 /* Set the contents of the .interp section to the interpreter. */
3136 if (! info->shared)
3137 {
3138 s = bfd_get_section_by_name (dynobj, ".interp");
3139 BFD_ASSERT (s != NULL);
3140 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
3141 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3142 }
3143 }
3144 else
3145 {
3146 /* We may have created entries in the .rel.got section.
3147 However, if we are not creating the dynamic sections, we will
3148 not actually use these entries. Reset the size of .rel.got,
3149 which will cause it to get stripped from the output file
3150 below. */
3151 s = bfd_get_section_by_name (dynobj, ".rel.got");
3152 if (s != NULL)
3153 s->_raw_size = 0;
3154 }
3155
3156 /* If this is a -Bsymbolic shared link, then we need to discard all
3157 PC relative relocs against symbols defined in a regular object.
3158 We allocated space for them in the check_relocs routine, but we
3159 will not fill them in in the relocate_section routine. */
3160 if (info->shared && info->symbolic)
3161 elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
3162 elf32_arm_discard_copies,
3163 (PTR) NULL);
3164
3165 /* The check_relocs and adjust_dynamic_symbol entry points have
3166 determined the sizes of the various dynamic sections. Allocate
3167 memory for them. */
3168 plt = FALSE;
3169 relocs = FALSE;
3170 for (s = dynobj->sections; s != NULL; s = s->next)
3171 {
3172 const char * name;
3173 bfd_boolean strip;
3174
3175 if ((s->flags & SEC_LINKER_CREATED) == 0)
3176 continue;
3177
3178 /* It's OK to base decisions on the section name, because none
3179 of the dynobj section names depend upon the input files. */
3180 name = bfd_get_section_name (dynobj, s);
3181
3182 strip = FALSE;
3183
3184 if (strcmp (name, ".plt") == 0)
3185 {
3186 if (s->_raw_size == 0)
3187 {
3188 /* Strip this section if we don't need it; see the
3189 comment below. */
3190 strip = TRUE;
3191 }
3192 else
3193 {
3194 /* Remember whether there is a PLT. */
3195 plt = TRUE;
3196 }
3197 }
3198 else if (strncmp (name, ".rel", 4) == 0)
3199 {
3200 if (s->_raw_size == 0)
3201 {
3202 /* If we don't need this section, strip it from the
3203 output file. This is mostly to handle .rel.bss and
3204 .rel.plt. We must create both sections in
3205 create_dynamic_sections, because they must be created
3206 before the linker maps input sections to output
3207 sections. The linker does that before
3208 adjust_dynamic_symbol is called, and it is that
3209 function which decides whether anything needs to go
3210 into these sections. */
3211 strip = TRUE;
3212 }
3213 else
3214 {
3215 /* Remember whether there are any reloc sections other
3216 than .rel.plt. */
3217 if (strcmp (name, ".rel.plt") != 0)
3218 relocs = TRUE;
3219
3220 /* We use the reloc_count field as a counter if we need
3221 to copy relocs into the output file. */
3222 s->reloc_count = 0;
3223 }
3224 }
3225 else if (strncmp (name, ".got", 4) != 0)
3226 {
3227 /* It's not one of our sections, so don't allocate space. */
3228 continue;
3229 }
3230
3231 if (strip)
3232 {
3233 _bfd_strip_section_from_output (info, s);
3234 continue;
3235 }
3236
3237 /* Allocate memory for the section contents. */
3238 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
3239 if (s->contents == NULL && s->_raw_size != 0)
3240 return FALSE;
3241 }
3242
3243 if (elf_hash_table (info)->dynamic_sections_created)
3244 {
3245 /* Add some entries to the .dynamic section. We fill in the
3246 values later, in elf32_arm_finish_dynamic_sections, but we
3247 must add the entries now so that we get the correct size for
3248 the .dynamic section. The DT_DEBUG entry is filled in by the
3249 dynamic linker and used by the debugger. */
3250 #define add_dynamic_entry(TAG, VAL) \
3251 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
3252
3253 if (!info->shared)
3254 {
3255 if (!add_dynamic_entry (DT_DEBUG, 0))
3256 return FALSE;
3257 }
3258
3259 if (plt)
3260 {
3261 if ( !add_dynamic_entry (DT_PLTGOT, 0)
3262 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3263 || !add_dynamic_entry (DT_PLTREL, DT_REL)
3264 || !add_dynamic_entry (DT_JMPREL, 0))
3265 return FALSE;
3266 }
3267
3268 if (relocs)
3269 {
3270 if ( !add_dynamic_entry (DT_REL, 0)
3271 || !add_dynamic_entry (DT_RELSZ, 0)
3272 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
3273 return FALSE;
3274 }
3275
3276 if ((info->flags & DF_TEXTREL) != 0)
3277 {
3278 if (!add_dynamic_entry (DT_TEXTREL, 0))
3279 return FALSE;
3280 info->flags |= DF_TEXTREL;
3281 }
3282 }
3283 #undef add_synamic_entry
3284
3285 return TRUE;
3286 }
3287
3288 /* This function is called via elf32_arm_link_hash_traverse if we are
3289 creating a shared object with -Bsymbolic. It discards the space
3290 allocated to copy PC relative relocs against symbols which are
3291 defined in regular objects. We allocated space for them in the
3292 check_relocs routine, but we won't fill them in in the
3293 relocate_section routine. */
3294
3295 static bfd_boolean
3296 elf32_arm_discard_copies (h, ignore)
3297 struct elf32_arm_link_hash_entry * h;
3298 PTR ignore ATTRIBUTE_UNUSED;
3299 {
3300 struct elf32_arm_pcrel_relocs_copied * s;
3301
3302 if (h->root.root.type == bfd_link_hash_warning)
3303 h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
3304
3305 /* We only discard relocs for symbols defined in a regular object. */
3306 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3307 return TRUE;
3308
3309 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
3310 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
3311
3312 return TRUE;
3313 }
3314
3315 /* Finish up dynamic symbol handling. We set the contents of various
3316 dynamic sections here. */
3317
3318 static bfd_boolean
3319 elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
3320 bfd * output_bfd;
3321 struct bfd_link_info * info;
3322 struct elf_link_hash_entry * h;
3323 Elf_Internal_Sym * sym;
3324 {
3325 bfd * dynobj;
3326
3327 dynobj = elf_hash_table (info)->dynobj;
3328
3329 if (h->plt.offset != (bfd_vma) -1)
3330 {
3331 asection * splt;
3332 asection * sgot;
3333 asection * srel;
3334 bfd_vma plt_index;
3335 bfd_vma got_offset;
3336 Elf_Internal_Rela rel;
3337 bfd_byte *loc;
3338
3339 /* This symbol has an entry in the procedure linkage table. Set
3340 it up. */
3341
3342 BFD_ASSERT (h->dynindx != -1);
3343
3344 splt = bfd_get_section_by_name (dynobj, ".plt");
3345 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3346 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
3347 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
3348
3349 /* Get the index in the procedure linkage table which
3350 corresponds to this symbol. This is the index of this symbol
3351 in all the symbols for which we are making plt entries. The
3352 first entry in the procedure linkage table is reserved. */
3353 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3354
3355 /* Get the offset into the .got table of the entry that
3356 corresponds to this function. Each .got entry is 4 bytes.
3357 The first three are reserved. */
3358 got_offset = (plt_index + 3) * 4;
3359
3360 /* Fill in the entry in the procedure linkage table. */
3361 bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
3362 splt->contents + h->plt.offset + 0);
3363 bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
3364 splt->contents + h->plt.offset + 4);
3365 bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
3366 splt->contents + h->plt.offset + 8);
3367 bfd_put_32 (output_bfd,
3368 (sgot->output_section->vma
3369 + sgot->output_offset
3370 + got_offset
3371 - splt->output_section->vma
3372 - splt->output_offset
3373 - h->plt.offset - 12),
3374 splt->contents + h->plt.offset + 12);
3375
3376 /* Fill in the entry in the global offset table. */
3377 bfd_put_32 (output_bfd,
3378 (splt->output_section->vma
3379 + splt->output_offset),
3380 sgot->contents + got_offset);
3381
3382 /* Fill in the entry in the .rel.plt section. */
3383 rel.r_offset = (sgot->output_section->vma
3384 + sgot->output_offset
3385 + got_offset);
3386 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
3387 loc = srel->contents + plt_index * sizeof (Elf32_External_Rel);
3388 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3389
3390 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3391 {
3392 /* Mark the symbol as undefined, rather than as defined in
3393 the .plt section. Leave the value alone. */
3394 sym->st_shndx = SHN_UNDEF;
3395 /* If the symbol is weak, we do need to clear the value.
3396 Otherwise, the PLT entry would provide a definition for
3397 the symbol even if the symbol wasn't defined anywhere,
3398 and so the symbol would never be NULL. */
3399 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
3400 == 0)
3401 sym->st_value = 0;
3402 }
3403 }
3404
3405 if (h->got.offset != (bfd_vma) -1)
3406 {
3407 asection * sgot;
3408 asection * srel;
3409 Elf_Internal_Rela rel;
3410 bfd_byte *loc;
3411
3412 /* This symbol has an entry in the global offset table. Set it
3413 up. */
3414 sgot = bfd_get_section_by_name (dynobj, ".got");
3415 srel = bfd_get_section_by_name (dynobj, ".rel.got");
3416 BFD_ASSERT (sgot != NULL && srel != NULL);
3417
3418 rel.r_offset = (sgot->output_section->vma
3419 + sgot->output_offset
3420 + (h->got.offset &~ (bfd_vma) 1));
3421
3422 /* If this is a -Bsymbolic link, and the symbol is defined
3423 locally, we just want to emit a RELATIVE reloc. The entry in
3424 the global offset table will already have been initialized in
3425 the relocate_section function. */
3426 if (info->shared
3427 && (info->symbolic || h->dynindx == -1)
3428 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3429 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
3430 else
3431 {
3432 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
3433 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
3434 }
3435
3436 loc = srel->contents + srel->reloc_count++ * sizeof (Elf32_External_Rel);
3437 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3438 }
3439
3440 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3441 {
3442 asection * s;
3443 Elf_Internal_Rela rel;
3444 bfd_byte *loc;
3445
3446 /* This symbol needs a copy reloc. Set it up. */
3447 BFD_ASSERT (h->dynindx != -1
3448 && (h->root.type == bfd_link_hash_defined
3449 || h->root.type == bfd_link_hash_defweak));
3450
3451 s = bfd_get_section_by_name (h->root.u.def.section->owner,
3452 ".rel.bss");
3453 BFD_ASSERT (s != NULL);
3454
3455 rel.r_offset = (h->root.u.def.value
3456 + h->root.u.def.section->output_section->vma
3457 + h->root.u.def.section->output_offset);
3458 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
3459 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rel);
3460 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3461 }
3462
3463 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3464 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3465 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3466 sym->st_shndx = SHN_ABS;
3467
3468 return TRUE;
3469 }
3470
3471 /* Finish up the dynamic sections. */
3472
3473 static bfd_boolean
3474 elf32_arm_finish_dynamic_sections (output_bfd, info)
3475 bfd * output_bfd;
3476 struct bfd_link_info * info;
3477 {
3478 bfd * dynobj;
3479 asection * sgot;
3480 asection * sdyn;
3481
3482 dynobj = elf_hash_table (info)->dynobj;
3483
3484 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
3485 BFD_ASSERT (sgot != NULL);
3486 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3487
3488 if (elf_hash_table (info)->dynamic_sections_created)
3489 {
3490 asection *splt;
3491 Elf32_External_Dyn *dyncon, *dynconend;
3492
3493 splt = bfd_get_section_by_name (dynobj, ".plt");
3494 BFD_ASSERT (splt != NULL && sdyn != NULL);
3495
3496 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3497 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
3498
3499 for (; dyncon < dynconend; dyncon++)
3500 {
3501 Elf_Internal_Dyn dyn;
3502 const char * name;
3503 asection * s;
3504
3505 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3506
3507 switch (dyn.d_tag)
3508 {
3509 default:
3510 break;
3511
3512 case DT_PLTGOT:
3513 name = ".got";
3514 goto get_vma;
3515 case DT_JMPREL:
3516 name = ".rel.plt";
3517 get_vma:
3518 s = bfd_get_section_by_name (output_bfd, name);
3519 BFD_ASSERT (s != NULL);
3520 dyn.d_un.d_ptr = s->vma;
3521 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3522 break;
3523
3524 case DT_PLTRELSZ:
3525 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3526 BFD_ASSERT (s != NULL);
3527 if (s->_cooked_size != 0)
3528 dyn.d_un.d_val = s->_cooked_size;
3529 else
3530 dyn.d_un.d_val = s->_raw_size;
3531 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3532 break;
3533
3534 case DT_RELSZ:
3535 /* My reading of the SVR4 ABI indicates that the
3536 procedure linkage table relocs (DT_JMPREL) should be
3537 included in the overall relocs (DT_REL). This is
3538 what Solaris does. However, UnixWare can not handle
3539 that case. Therefore, we override the DT_RELSZ entry
3540 here to make it not include the JMPREL relocs. Since
3541 the linker script arranges for .rel.plt to follow all
3542 other relocation sections, we don't have to worry
3543 about changing the DT_REL entry. */
3544 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
3545 if (s != NULL)
3546 {
3547 if (s->_cooked_size != 0)
3548 dyn.d_un.d_val -= s->_cooked_size;
3549 else
3550 dyn.d_un.d_val -= s->_raw_size;
3551 }
3552 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3553 break;
3554
3555 /* Set the bottom bit of DT_INIT/FINI if the
3556 corresponding function is Thumb. */
3557 case DT_INIT:
3558 name = info->init_function;
3559 goto get_sym;
3560 case DT_FINI:
3561 name = info->fini_function;
3562 get_sym:
3563 /* If it wasn't set by elf_bfd_final_link
3564 then there is nothing to ajdust. */
3565 if (dyn.d_un.d_val != 0)
3566 {
3567 struct elf_link_hash_entry * eh;
3568
3569 eh = elf_link_hash_lookup (elf_hash_table (info), name,
3570 FALSE, FALSE, TRUE);
3571 if (eh != (struct elf_link_hash_entry *) NULL
3572 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
3573 {
3574 dyn.d_un.d_val |= 1;
3575 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3576 }
3577 }
3578 break;
3579 }
3580 }
3581
3582 /* Fill in the first entry in the procedure linkage table. */
3583 if (splt->_raw_size > 0)
3584 {
3585 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents + 0);
3586 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents + 4);
3587 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents + 8);
3588 bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
3589 }
3590
3591 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3592 really seem like the right value. */
3593 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
3594 }
3595
3596 /* Fill in the first three entries in the global offset table. */
3597 if (sgot->_raw_size > 0)
3598 {
3599 if (sdyn == NULL)
3600 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
3601 else
3602 bfd_put_32 (output_bfd,
3603 sdyn->output_section->vma + sdyn->output_offset,
3604 sgot->contents);
3605 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
3606 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
3607 }
3608
3609 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
3610
3611 return TRUE;
3612 }
3613
3614 static void
3615 elf32_arm_post_process_headers (abfd, link_info)
3616 bfd * abfd;
3617 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
3618 {
3619 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3620
3621 i_ehdrp = elf_elfheader (abfd);
3622
3623 i_ehdrp->e_ident[EI_OSABI] = ARM_ELF_OS_ABI_VERSION;
3624 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
3625 }
3626
3627 static enum elf_reloc_type_class
3628 elf32_arm_reloc_type_class (rela)
3629 const Elf_Internal_Rela *rela;
3630 {
3631 switch ((int) ELF32_R_TYPE (rela->r_info))
3632 {
3633 case R_ARM_RELATIVE:
3634 return reloc_class_relative;
3635 case R_ARM_JUMP_SLOT:
3636 return reloc_class_plt;
3637 case R_ARM_COPY:
3638 return reloc_class_copy;
3639 default:
3640 return reloc_class_normal;
3641 }
3642 }
3643
3644
3645 #define ELF_ARCH bfd_arch_arm
3646 #define ELF_MACHINE_CODE EM_ARM
3647 #define ELF_MAXPAGESIZE 0x8000
3648
3649 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
3650 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
3651 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
3652 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
3653 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
3654 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
3655 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
3656
3657 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
3658 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
3659 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
3660 #define elf_backend_check_relocs elf32_arm_check_relocs
3661 #define elf_backend_relocate_section elf32_arm_relocate_section
3662 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
3663 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
3664 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
3665 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
3666 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
3667 #define elf_backend_post_process_headers elf32_arm_post_process_headers
3668 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
3669
3670 #define elf_backend_can_gc_sections 1
3671 #define elf_backend_plt_readonly 1
3672 #define elf_backend_want_got_plt 1
3673 #define elf_backend_want_plt_sym 0
3674 #if !USE_REL
3675 #define elf_backend_rela_normal 1
3676 #endif
3677
3678 #define elf_backend_got_header_size 12
3679 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
3680
3681 #include "elf32-target.h"
3682
This page took 0.191438 seconds and 5 git commands to generate.