2004-10-29 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
147 shared lib. */
148 #define ELIMINATE_COPY_RELOCS 1
149
150 enum elf32_hppa_stub_type {
151 hppa_stub_long_branch,
152 hppa_stub_long_branch_shared,
153 hppa_stub_import,
154 hppa_stub_import_shared,
155 hppa_stub_export,
156 hppa_stub_none
157 };
158
159 struct elf32_hppa_stub_hash_entry {
160
161 /* Base hash table entry structure. */
162 struct bfd_hash_entry root;
163
164 /* The stub section. */
165 asection *stub_sec;
166
167 /* Offset within stub_sec of the beginning of this stub. */
168 bfd_vma stub_offset;
169
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
172 bfd_vma target_value;
173 asection *target_section;
174
175 enum elf32_hppa_stub_type stub_type;
176
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry *h;
179
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
182 asection *id_sec;
183 };
184
185 struct elf32_hppa_link_hash_entry {
186
187 struct elf_link_hash_entry elf;
188
189 /* A pointer to the most recently used stub hash entry against this
190 symbol. */
191 struct elf32_hppa_stub_hash_entry *stub_cache;
192
193 /* Used to count relocations for delayed sizing of relocation
194 sections. */
195 struct elf32_hppa_dyn_reloc_entry {
196
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry *next;
199
200 /* The input section of the reloc. */
201 asection *sec;
202
203 /* Number of relocs copied in this section. */
204 bfd_size_type count;
205
206 #if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count;
209 #endif
210 } *dyn_relocs;
211
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel:1;
214 };
215
216 struct elf32_hppa_link_hash_table {
217
218 /* The main hash table. */
219 struct elf_link_hash_table elf;
220
221 /* The stub hash table. */
222 struct bfd_hash_table stub_hash_table;
223
224 /* Linker stub bfd. */
225 bfd *stub_bfd;
226
227 /* Linker call-backs. */
228 asection * (*add_stub_section) (const char *, asection *);
229 void (*layout_sections_again) (void);
230
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
233 struct map_stub {
234 /* This is the section to which stubs in the group will be
235 attached. */
236 asection *link_sec;
237 /* The stub section. */
238 asection *stub_sec;
239 } *stub_group;
240
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count;
243 int top_index;
244 asection **input_list;
245 Elf_Internal_Sym **all_local_syms;
246
247 /* Short-cuts to get to dynamic linker sections. */
248 asection *sgot;
249 asection *srelgot;
250 asection *splt;
251 asection *srelplt;
252 asection *sdynbss;
253 asection *srelbss;
254
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
259
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
262
263 /* Flags set when various size branches are detected. Used to
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
267 unsigned int has_22bit_branch:1;
268
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub:1;
271
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec;
274 };
275
276 /* Various hash macros and functions. */
277 #define hppa_link_hash_table(p) \
278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
279
280 #define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
283
284 /* Assorted hash table functions. */
285
286 /* Initialize an entry in the stub hash table. */
287
288 static struct bfd_hash_entry *
289 stub_hash_newfunc (struct bfd_hash_entry *entry,
290 struct bfd_hash_table *table,
291 const char *string)
292 {
293 /* Allocate the structure if it has not already been allocated by a
294 subclass. */
295 if (entry == NULL)
296 {
297 entry = bfd_hash_allocate (table,
298 sizeof (struct elf32_hppa_stub_hash_entry));
299 if (entry == NULL)
300 return entry;
301 }
302
303 /* Call the allocation method of the superclass. */
304 entry = bfd_hash_newfunc (entry, table, string);
305 if (entry != NULL)
306 {
307 struct elf32_hppa_stub_hash_entry *eh;
308
309 /* Initialize the local fields. */
310 eh = (struct elf32_hppa_stub_hash_entry *) entry;
311 eh->stub_sec = NULL;
312 eh->stub_offset = 0;
313 eh->target_value = 0;
314 eh->target_section = NULL;
315 eh->stub_type = hppa_stub_long_branch;
316 eh->h = NULL;
317 eh->id_sec = NULL;
318 }
319
320 return entry;
321 }
322
323 /* Initialize an entry in the link hash table. */
324
325 static struct bfd_hash_entry *
326 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
328 const char *string)
329 {
330 /* Allocate the structure if it has not already been allocated by a
331 subclass. */
332 if (entry == NULL)
333 {
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_link_hash_entry));
336 if (entry == NULL)
337 return entry;
338 }
339
340 /* Call the allocation method of the superclass. */
341 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
342 if (entry != NULL)
343 {
344 struct elf32_hppa_link_hash_entry *eh;
345
346 /* Initialize the local fields. */
347 eh = (struct elf32_hppa_link_hash_entry *) entry;
348 eh->stub_cache = NULL;
349 eh->dyn_relocs = NULL;
350 eh->plabel = 0;
351 }
352
353 return entry;
354 }
355
356 /* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
359
360 static struct bfd_link_hash_table *
361 elf32_hppa_link_hash_table_create (bfd *abfd)
362 {
363 struct elf32_hppa_link_hash_table *ret;
364 bfd_size_type amt = sizeof (*ret);
365
366 ret = bfd_malloc (amt);
367 if (ret == NULL)
368 return NULL;
369
370 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
371 {
372 free (ret);
373 return NULL;
374 }
375
376 /* Init the stub hash table too. */
377 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
378 return NULL;
379
380 ret->stub_bfd = NULL;
381 ret->add_stub_section = NULL;
382 ret->layout_sections_again = NULL;
383 ret->stub_group = NULL;
384 ret->sgot = NULL;
385 ret->srelgot = NULL;
386 ret->splt = NULL;
387 ret->srelplt = NULL;
388 ret->sdynbss = NULL;
389 ret->srelbss = NULL;
390 ret->text_segment_base = (bfd_vma) -1;
391 ret->data_segment_base = (bfd_vma) -1;
392 ret->multi_subspace = 0;
393 ret->has_12bit_branch = 0;
394 ret->has_17bit_branch = 0;
395 ret->has_22bit_branch = 0;
396 ret->need_plt_stub = 0;
397 ret->sym_sec.abfd = NULL;
398
399 return &ret->elf.root;
400 }
401
402 /* Free the derived linker hash table. */
403
404 static void
405 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
406 {
407 struct elf32_hppa_link_hash_table *ret
408 = (struct elf32_hppa_link_hash_table *) hash;
409
410 bfd_hash_table_free (&ret->stub_hash_table);
411 _bfd_generic_link_hash_table_free (hash);
412 }
413
414 /* Build a name for an entry in the stub hash table. */
415
416 static char *
417 hppa_stub_name (const asection *input_section,
418 const asection *sym_sec,
419 const struct elf32_hppa_link_hash_entry *hash,
420 const Elf_Internal_Rela *rel)
421 {
422 char *stub_name;
423 bfd_size_type len;
424
425 if (hash)
426 {
427 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428 stub_name = bfd_malloc (len);
429 if (stub_name != NULL)
430 {
431 sprintf (stub_name, "%08x_%s+%x",
432 input_section->id & 0xffffffff,
433 hash->elf.root.root.string,
434 (int) rel->r_addend & 0xffffffff);
435 }
436 }
437 else
438 {
439 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name = bfd_malloc (len);
441 if (stub_name != NULL)
442 {
443 sprintf (stub_name, "%08x_%x:%x+%x",
444 input_section->id & 0xffffffff,
445 sym_sec->id & 0xffffffff,
446 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 (int) rel->r_addend & 0xffffffff);
448 }
449 }
450 return stub_name;
451 }
452
453 /* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
455
456 static struct elf32_hppa_stub_hash_entry *
457 hppa_get_stub_entry (const asection *input_section,
458 const asection *sym_sec,
459 struct elf32_hppa_link_hash_entry *hash,
460 const Elf_Internal_Rela *rel,
461 struct elf32_hppa_link_hash_table *htab)
462 {
463 struct elf32_hppa_stub_hash_entry *stub_entry;
464 const asection *id_sec;
465
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
471 id_sec = htab->stub_group[input_section->id].link_sec;
472
473 if (hash != NULL && hash->stub_cache != NULL
474 && hash->stub_cache->h == hash
475 && hash->stub_cache->id_sec == id_sec)
476 {
477 stub_entry = hash->stub_cache;
478 }
479 else
480 {
481 char *stub_name;
482
483 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
484 if (stub_name == NULL)
485 return NULL;
486
487 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
488 stub_name, FALSE, FALSE);
489 if (hash != NULL)
490 hash->stub_cache = stub_entry;
491
492 free (stub_name);
493 }
494
495 return stub_entry;
496 }
497
498 /* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
500
501 static struct elf32_hppa_stub_hash_entry *
502 hppa_add_stub (const char *stub_name,
503 asection *section,
504 struct elf32_hppa_link_hash_table *htab)
505 {
506 asection *link_sec;
507 asection *stub_sec;
508 struct elf32_hppa_stub_hash_entry *stub_entry;
509
510 link_sec = htab->stub_group[section->id].link_sec;
511 stub_sec = htab->stub_group[section->id].stub_sec;
512 if (stub_sec == NULL)
513 {
514 stub_sec = htab->stub_group[link_sec->id].stub_sec;
515 if (stub_sec == NULL)
516 {
517 size_t namelen;
518 bfd_size_type len;
519 char *s_name;
520
521 namelen = strlen (link_sec->name);
522 len = namelen + sizeof (STUB_SUFFIX);
523 s_name = bfd_alloc (htab->stub_bfd, len);
524 if (s_name == NULL)
525 return NULL;
526
527 memcpy (s_name, link_sec->name, namelen);
528 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
529 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
530 if (stub_sec == NULL)
531 return NULL;
532 htab->stub_group[link_sec->id].stub_sec = stub_sec;
533 }
534 htab->stub_group[section->id].stub_sec = stub_sec;
535 }
536
537 /* Enter this entry into the linker stub hash table. */
538 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
539 TRUE, FALSE);
540 if (stub_entry == NULL)
541 {
542 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
543 section->owner,
544 stub_name);
545 return NULL;
546 }
547
548 stub_entry->stub_sec = stub_sec;
549 stub_entry->stub_offset = 0;
550 stub_entry->id_sec = link_sec;
551 return stub_entry;
552 }
553
554 /* Determine the type of stub needed, if any, for a call. */
555
556 static enum elf32_hppa_stub_type
557 hppa_type_of_stub (asection *input_sec,
558 const Elf_Internal_Rela *rel,
559 struct elf32_hppa_link_hash_entry *hash,
560 bfd_vma destination,
561 struct bfd_link_info *info)
562 {
563 bfd_vma location;
564 bfd_vma branch_offset;
565 bfd_vma max_branch_offset;
566 unsigned int r_type;
567
568 if (hash != NULL
569 && hash->elf.plt.offset != (bfd_vma) -1
570 && hash->elf.dynindx != -1
571 && !hash->plabel
572 && (info->shared
573 || !hash->elf.def_regular
574 || hash->elf.root.type == bfd_link_hash_defweak))
575 {
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
578 return hppa_stub_import;
579 }
580
581 /* Determine where the call point is. */
582 location = (input_sec->output_offset
583 + input_sec->output_section->vma
584 + rel->r_offset);
585
586 branch_offset = destination - location - 8;
587 r_type = ELF32_R_TYPE (rel->r_info);
588
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type == (unsigned int) R_PARISC_PCREL17F)
594 {
595 max_branch_offset = (1 << (17-1)) << 2;
596 }
597 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
598 {
599 max_branch_offset = (1 << (12-1)) << 2;
600 }
601 else /* R_PARISC_PCREL22F. */
602 {
603 max_branch_offset = (1 << (22-1)) << 2;
604 }
605
606 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
607 return hppa_stub_long_branch;
608
609 return hppa_stub_none;
610 }
611
612 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
614
615 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
617
618 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
619 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
620 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
621
622 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
624 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
625 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
626
627 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
629
630 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
634
635 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
636 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637 #define NOP 0x08000240 /* nop */
638 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
641
642 #ifndef R19_STUBS
643 #define R19_STUBS 1
644 #endif
645
646 #if R19_STUBS
647 #define LDW_R1_DLT LDW_R1_R19
648 #else
649 #define LDW_R1_DLT LDW_R1_DP
650 #endif
651
652 static bfd_boolean
653 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
654 {
655 struct elf32_hppa_stub_hash_entry *stub_entry;
656 struct bfd_link_info *info;
657 struct elf32_hppa_link_hash_table *htab;
658 asection *stub_sec;
659 bfd *stub_bfd;
660 bfd_byte *loc;
661 bfd_vma sym_value;
662 bfd_vma insn;
663 bfd_vma off;
664 int val;
665 int size;
666
667 /* Massage our args to the form they really have. */
668 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
669 info = in_arg;
670
671 htab = hppa_link_hash_table (info);
672 stub_sec = stub_entry->stub_sec;
673
674 /* Make a note of the offset within the stubs for this entry. */
675 stub_entry->stub_offset = stub_sec->size;
676 loc = stub_sec->contents + stub_entry->stub_offset;
677
678 stub_bfd = stub_sec->owner;
679
680 switch (stub_entry->stub_type)
681 {
682 case hppa_stub_long_branch:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value = (stub_entry->target_value
688 + stub_entry->target_section->output_offset
689 + stub_entry->target_section->output_section->vma);
690
691 val = hppa_field_adjust (sym_value, 0, e_lrsel);
692 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
693 bfd_put_32 (stub_bfd, insn, loc);
694
695 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
696 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
697 bfd_put_32 (stub_bfd, insn, loc + 4);
698
699 size = 8;
700 break;
701
702 case hppa_stub_long_branch_shared:
703 /* Branches are relative. This is where we are going to. */
704 sym_value = (stub_entry->target_value
705 + stub_entry->target_section->output_offset
706 + stub_entry->target_section->output_section->vma);
707
708 /* And this is where we are coming from, more or less. */
709 sym_value -= (stub_entry->stub_offset
710 + stub_sec->output_offset
711 + stub_sec->output_section->vma);
712
713 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
714 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
715 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
716 bfd_put_32 (stub_bfd, insn, loc + 4);
717
718 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
719 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
720 bfd_put_32 (stub_bfd, insn, loc + 8);
721 size = 12;
722 break;
723
724 case hppa_stub_import:
725 case hppa_stub_import_shared:
726 off = stub_entry->h->elf.plt.offset;
727 if (off >= (bfd_vma) -2)
728 abort ();
729
730 off &= ~ (bfd_vma) 1;
731 sym_value = (off
732 + htab->splt->output_offset
733 + htab->splt->output_section->vma
734 - elf_gp (htab->splt->output_section->owner));
735
736 insn = ADDIL_DP;
737 #if R19_STUBS
738 if (stub_entry->stub_type == hppa_stub_import_shared)
739 insn = ADDIL_R19;
740 #endif
741 val = hppa_field_adjust (sym_value, 0, e_lrsel),
742 insn = hppa_rebuild_insn ((int) insn, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc);
744
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
750 val = hppa_field_adjust (sym_value, 0, e_rrsel);
751 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 if (htab->multi_subspace)
755 {
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
757 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
759
760 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
762 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
763 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
764
765 size = 28;
766 }
767 else
768 {
769 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
770 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
771 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
772 bfd_put_32 (stub_bfd, insn, loc + 12);
773
774 size = 16;
775 }
776
777 break;
778
779 case hppa_stub_export:
780 /* Branches are relative. This is where we are going to. */
781 sym_value = (stub_entry->target_value
782 + stub_entry->target_section->output_offset
783 + stub_entry->target_section->output_section->vma);
784
785 /* And this is where we are coming from. */
786 sym_value -= (stub_entry->stub_offset
787 + stub_sec->output_offset
788 + stub_sec->output_section->vma);
789
790 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab->has_22bit_branch
792 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
793 {
794 (*_bfd_error_handler)
795 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
796 stub_entry->target_section->owner,
797 stub_sec,
798 (long) stub_entry->stub_offset,
799 stub_entry->root.string);
800 bfd_set_error (bfd_error_bad_value);
801 return FALSE;
802 }
803
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
805 if (!htab->has_22bit_branch)
806 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
807 else
808 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
809 bfd_put_32 (stub_bfd, insn, loc);
810
811 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
812 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
813 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
815 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
816
817 /* Point the function symbol at the stub. */
818 stub_entry->h->elf.root.u.def.section = stub_sec;
819 stub_entry->h->elf.root.u.def.value = stub_sec->size;
820
821 size = 24;
822 break;
823
824 default:
825 BFD_FAIL ();
826 return FALSE;
827 }
828
829 stub_sec->size += size;
830 return TRUE;
831 }
832
833 #undef LDIL_R1
834 #undef BE_SR4_R1
835 #undef BL_R1
836 #undef ADDIL_R1
837 #undef DEPI_R1
838 #undef LDW_R1_R21
839 #undef LDW_R1_DLT
840 #undef LDW_R1_R19
841 #undef ADDIL_R19
842 #undef LDW_R1_DP
843 #undef LDSID_R21_R1
844 #undef MTSP_R1
845 #undef BE_SR0_R21
846 #undef STW_RP
847 #undef BV_R0_R21
848 #undef BL_RP
849 #undef NOP
850 #undef LDW_RP
851 #undef LDSID_RP_R1
852 #undef BE_SR0_RP
853
854 /* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
856
857 static bfd_boolean
858 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
859 {
860 struct elf32_hppa_stub_hash_entry *stub_entry;
861 struct elf32_hppa_link_hash_table *htab;
862 int size;
863
864 /* Massage our args to the form they really have. */
865 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
866 htab = in_arg;
867
868 if (stub_entry->stub_type == hppa_stub_long_branch)
869 size = 8;
870 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
871 size = 12;
872 else if (stub_entry->stub_type == hppa_stub_export)
873 size = 24;
874 else /* hppa_stub_import or hppa_stub_import_shared. */
875 {
876 if (htab->multi_subspace)
877 size = 28;
878 else
879 size = 16;
880 }
881
882 stub_entry->stub_sec->size += size;
883 return TRUE;
884 }
885
886 /* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
888
889 static bfd_boolean
890 elf32_hppa_object_p (bfd *abfd)
891 {
892 Elf_Internal_Ehdr * i_ehdrp;
893 unsigned int flags;
894
895 i_ehdrp = elf_elfheader (abfd);
896 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
897 {
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
902 return FALSE;
903 }
904 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
905 {
906 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
907 but the kernel produces corefiles with OSABI=SysV. */
908 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
909 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
910 return FALSE;
911 }
912 else
913 {
914 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
915 return FALSE;
916 }
917
918 flags = i_ehdrp->e_flags;
919 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
920 {
921 case EFA_PARISC_1_0:
922 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
923 case EFA_PARISC_1_1:
924 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
925 case EFA_PARISC_2_0:
926 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
927 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
928 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
929 }
930 return TRUE;
931 }
932
933 /* Create the .plt and .got sections, and set up our hash table
934 short-cuts to various dynamic sections. */
935
936 static bfd_boolean
937 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
938 {
939 struct elf32_hppa_link_hash_table *htab;
940
941 /* Don't try to create the .plt and .got twice. */
942 htab = hppa_link_hash_table (info);
943 if (htab->splt != NULL)
944 return TRUE;
945
946 /* Call the generic code to do most of the work. */
947 if (! _bfd_elf_create_dynamic_sections (abfd, info))
948 return FALSE;
949
950 htab->splt = bfd_get_section_by_name (abfd, ".plt");
951 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
952
953 htab->sgot = bfd_get_section_by_name (abfd, ".got");
954 htab->srelgot = bfd_make_section (abfd, ".rela.got");
955 if (htab->srelgot == NULL
956 || ! bfd_set_section_flags (abfd, htab->srelgot,
957 (SEC_ALLOC
958 | SEC_LOAD
959 | SEC_HAS_CONTENTS
960 | SEC_IN_MEMORY
961 | SEC_LINKER_CREATED
962 | SEC_READONLY))
963 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
964 return FALSE;
965
966 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
967 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
968
969 return TRUE;
970 }
971
972 /* Copy the extra info we tack onto an elf_link_hash_entry. */
973
974 static void
975 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
976 struct elf_link_hash_entry *dir,
977 struct elf_link_hash_entry *ind)
978 {
979 struct elf32_hppa_link_hash_entry *edir, *eind;
980
981 edir = (struct elf32_hppa_link_hash_entry *) dir;
982 eind = (struct elf32_hppa_link_hash_entry *) ind;
983
984 if (eind->dyn_relocs != NULL)
985 {
986 if (edir->dyn_relocs != NULL)
987 {
988 struct elf32_hppa_dyn_reloc_entry **pp;
989 struct elf32_hppa_dyn_reloc_entry *p;
990
991 if (ind->root.type == bfd_link_hash_indirect)
992 abort ();
993
994 /* Add reloc counts against the weak sym to the strong sym
995 list. Merge any entries against the same section. */
996 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
997 {
998 struct elf32_hppa_dyn_reloc_entry *q;
999
1000 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1001 if (q->sec == p->sec)
1002 {
1003 #if RELATIVE_DYNRELOCS
1004 q->relative_count += p->relative_count;
1005 #endif
1006 q->count += p->count;
1007 *pp = p->next;
1008 break;
1009 }
1010 if (q == NULL)
1011 pp = &p->next;
1012 }
1013 *pp = edir->dyn_relocs;
1014 }
1015
1016 edir->dyn_relocs = eind->dyn_relocs;
1017 eind->dyn_relocs = NULL;
1018 }
1019
1020 if (ELIMINATE_COPY_RELOCS
1021 && ind->root.type != bfd_link_hash_indirect
1022 && dir->dynamic_adjusted)
1023 {
1024 /* If called to transfer flags for a weakdef during processing
1025 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1026 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1027 dir->ref_dynamic |= ind->ref_dynamic;
1028 dir->ref_regular |= ind->ref_regular;
1029 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1030 dir->needs_plt |= ind->needs_plt;
1031 }
1032 else
1033 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1034 }
1035
1036 /* Look through the relocs for a section during the first phase, and
1037 calculate needed space in the global offset table, procedure linkage
1038 table, and dynamic reloc sections. At this point we haven't
1039 necessarily read all the input files. */
1040
1041 static bfd_boolean
1042 elf32_hppa_check_relocs (bfd *abfd,
1043 struct bfd_link_info *info,
1044 asection *sec,
1045 const Elf_Internal_Rela *relocs)
1046 {
1047 Elf_Internal_Shdr *symtab_hdr;
1048 struct elf_link_hash_entry **sym_hashes;
1049 const Elf_Internal_Rela *rel;
1050 const Elf_Internal_Rela *rel_end;
1051 struct elf32_hppa_link_hash_table *htab;
1052 asection *sreloc;
1053 asection *stubreloc;
1054
1055 if (info->relocatable)
1056 return TRUE;
1057
1058 htab = hppa_link_hash_table (info);
1059 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1060 sym_hashes = elf_sym_hashes (abfd);
1061 sreloc = NULL;
1062 stubreloc = NULL;
1063
1064 rel_end = relocs + sec->reloc_count;
1065 for (rel = relocs; rel < rel_end; rel++)
1066 {
1067 enum {
1068 NEED_GOT = 1,
1069 NEED_PLT = 2,
1070 NEED_DYNREL = 4,
1071 PLT_PLABEL = 8
1072 };
1073
1074 unsigned int r_symndx, r_type;
1075 struct elf32_hppa_link_hash_entry *h;
1076 int need_entry;
1077
1078 r_symndx = ELF32_R_SYM (rel->r_info);
1079
1080 if (r_symndx < symtab_hdr->sh_info)
1081 h = NULL;
1082 else
1083 h = ((struct elf32_hppa_link_hash_entry *)
1084 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1085
1086 r_type = ELF32_R_TYPE (rel->r_info);
1087
1088 switch (r_type)
1089 {
1090 case R_PARISC_DLTIND14F:
1091 case R_PARISC_DLTIND14R:
1092 case R_PARISC_DLTIND21L:
1093 /* This symbol requires a global offset table entry. */
1094 need_entry = NEED_GOT;
1095 break;
1096
1097 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1098 case R_PARISC_PLABEL21L:
1099 case R_PARISC_PLABEL32:
1100 /* If the addend is non-zero, we break badly. */
1101 if (rel->r_addend != 0)
1102 abort ();
1103
1104 /* If we are creating a shared library, then we need to
1105 create a PLT entry for all PLABELs, because PLABELs with
1106 local symbols may be passed via a pointer to another
1107 object. Additionally, output a dynamic relocation
1108 pointing to the PLT entry.
1109 For executables, the original 32-bit ABI allowed two
1110 different styles of PLABELs (function pointers): For
1111 global functions, the PLABEL word points into the .plt
1112 two bytes past a (function address, gp) pair, and for
1113 local functions the PLABEL points directly at the
1114 function. The magic +2 for the first type allows us to
1115 differentiate between the two. As you can imagine, this
1116 is a real pain when it comes to generating code to call
1117 functions indirectly or to compare function pointers.
1118 We avoid the mess by always pointing a PLABEL into the
1119 .plt, even for local functions. */
1120 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1121 break;
1122
1123 case R_PARISC_PCREL12F:
1124 htab->has_12bit_branch = 1;
1125 goto branch_common;
1126
1127 case R_PARISC_PCREL17C:
1128 case R_PARISC_PCREL17F:
1129 htab->has_17bit_branch = 1;
1130 goto branch_common;
1131
1132 case R_PARISC_PCREL22F:
1133 htab->has_22bit_branch = 1;
1134 branch_common:
1135 /* Function calls might need to go through the .plt, and
1136 might require long branch stubs. */
1137 if (h == NULL)
1138 {
1139 /* We know local syms won't need a .plt entry, and if
1140 they need a long branch stub we can't guarantee that
1141 we can reach the stub. So just flag an error later
1142 if we're doing a shared link and find we need a long
1143 branch stub. */
1144 continue;
1145 }
1146 else
1147 {
1148 /* Global symbols will need a .plt entry if they remain
1149 global, and in most cases won't need a long branch
1150 stub. Unfortunately, we have to cater for the case
1151 where a symbol is forced local by versioning, or due
1152 to symbolic linking, and we lose the .plt entry. */
1153 need_entry = NEED_PLT;
1154 if (h->elf.type == STT_PARISC_MILLI)
1155 need_entry = 0;
1156 }
1157 break;
1158
1159 case R_PARISC_SEGBASE: /* Used to set segment base. */
1160 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1161 case R_PARISC_PCREL14F: /* PC relative load/store. */
1162 case R_PARISC_PCREL14R:
1163 case R_PARISC_PCREL17R: /* External branches. */
1164 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1165 case R_PARISC_PCREL32:
1166 /* We don't need to propagate the relocation if linking a
1167 shared object since these are section relative. */
1168 continue;
1169
1170 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1171 case R_PARISC_DPREL14R:
1172 case R_PARISC_DPREL21L:
1173 if (info->shared)
1174 {
1175 (*_bfd_error_handler)
1176 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1177 abfd,
1178 elf_hppa_howto_table[r_type].name);
1179 bfd_set_error (bfd_error_bad_value);
1180 return FALSE;
1181 }
1182 /* Fall through. */
1183
1184 case R_PARISC_DIR17F: /* Used for external branches. */
1185 case R_PARISC_DIR17R:
1186 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1187 case R_PARISC_DIR14R:
1188 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1189 #if 0
1190 /* Help debug shared library creation. Any of the above
1191 relocs can be used in shared libs, but they may cause
1192 pages to become unshared. */
1193 if (info->shared)
1194 {
1195 (*_bfd_error_handler)
1196 (_("%B: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1197 abfd,
1198 elf_hppa_howto_table[r_type].name);
1199 }
1200 /* Fall through. */
1201 #endif
1202
1203 case R_PARISC_DIR32: /* .word relocs. */
1204 /* We may want to output a dynamic relocation later. */
1205 need_entry = NEED_DYNREL;
1206 break;
1207
1208 /* This relocation describes the C++ object vtable hierarchy.
1209 Reconstruct it for later use during GC. */
1210 case R_PARISC_GNU_VTINHERIT:
1211 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &h->elf, rel->r_offset))
1212 return FALSE;
1213 continue;
1214
1215 /* This relocation describes which C++ vtable entries are actually
1216 used. Record for later use during GC. */
1217 case R_PARISC_GNU_VTENTRY:
1218 if (!bfd_elf_gc_record_vtentry (abfd, sec, &h->elf, rel->r_addend))
1219 return FALSE;
1220 continue;
1221
1222 default:
1223 continue;
1224 }
1225
1226 /* Now carry out our orders. */
1227 if (need_entry & NEED_GOT)
1228 {
1229 /* Allocate space for a GOT entry, as well as a dynamic
1230 relocation for this entry. */
1231 if (htab->sgot == NULL)
1232 {
1233 if (htab->elf.dynobj == NULL)
1234 htab->elf.dynobj = abfd;
1235 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1236 return FALSE;
1237 }
1238
1239 if (h != NULL)
1240 {
1241 h->elf.got.refcount += 1;
1242 }
1243 else
1244 {
1245 bfd_signed_vma *local_got_refcounts;
1246
1247 /* This is a global offset table entry for a local symbol. */
1248 local_got_refcounts = elf_local_got_refcounts (abfd);
1249 if (local_got_refcounts == NULL)
1250 {
1251 bfd_size_type size;
1252
1253 /* Allocate space for local got offsets and local
1254 plt offsets. Done this way to save polluting
1255 elf_obj_tdata with another target specific
1256 pointer. */
1257 size = symtab_hdr->sh_info;
1258 size *= 2 * sizeof (bfd_signed_vma);
1259 local_got_refcounts = bfd_zalloc (abfd, size);
1260 if (local_got_refcounts == NULL)
1261 return FALSE;
1262 elf_local_got_refcounts (abfd) = local_got_refcounts;
1263 }
1264 local_got_refcounts[r_symndx] += 1;
1265 }
1266 }
1267
1268 if (need_entry & NEED_PLT)
1269 {
1270 /* If we are creating a shared library, and this is a reloc
1271 against a weak symbol or a global symbol in a dynamic
1272 object, then we will be creating an import stub and a
1273 .plt entry for the symbol. Similarly, on a normal link
1274 to symbols defined in a dynamic object we'll need the
1275 import stub and a .plt entry. We don't know yet whether
1276 the symbol is defined or not, so make an entry anyway and
1277 clean up later in adjust_dynamic_symbol. */
1278 if ((sec->flags & SEC_ALLOC) != 0)
1279 {
1280 if (h != NULL)
1281 {
1282 h->elf.needs_plt = 1;
1283 h->elf.plt.refcount += 1;
1284
1285 /* If this .plt entry is for a plabel, mark it so
1286 that adjust_dynamic_symbol will keep the entry
1287 even if it appears to be local. */
1288 if (need_entry & PLT_PLABEL)
1289 h->plabel = 1;
1290 }
1291 else if (need_entry & PLT_PLABEL)
1292 {
1293 bfd_signed_vma *local_got_refcounts;
1294 bfd_signed_vma *local_plt_refcounts;
1295
1296 local_got_refcounts = elf_local_got_refcounts (abfd);
1297 if (local_got_refcounts == NULL)
1298 {
1299 bfd_size_type size;
1300
1301 /* Allocate space for local got offsets and local
1302 plt offsets. */
1303 size = symtab_hdr->sh_info;
1304 size *= 2 * sizeof (bfd_signed_vma);
1305 local_got_refcounts = bfd_zalloc (abfd, size);
1306 if (local_got_refcounts == NULL)
1307 return FALSE;
1308 elf_local_got_refcounts (abfd) = local_got_refcounts;
1309 }
1310 local_plt_refcounts = (local_got_refcounts
1311 + symtab_hdr->sh_info);
1312 local_plt_refcounts[r_symndx] += 1;
1313 }
1314 }
1315 }
1316
1317 if (need_entry & NEED_DYNREL)
1318 {
1319 /* Flag this symbol as having a non-got, non-plt reference
1320 so that we generate copy relocs if it turns out to be
1321 dynamic. */
1322 if (h != NULL && !info->shared)
1323 h->elf.non_got_ref = 1;
1324
1325 /* If we are creating a shared library then we need to copy
1326 the reloc into the shared library. However, if we are
1327 linking with -Bsymbolic, we need only copy absolute
1328 relocs or relocs against symbols that are not defined in
1329 an object we are including in the link. PC- or DP- or
1330 DLT-relative relocs against any local sym or global sym
1331 with DEF_REGULAR set, can be discarded. At this point we
1332 have not seen all the input files, so it is possible that
1333 DEF_REGULAR is not set now but will be set later (it is
1334 never cleared). We account for that possibility below by
1335 storing information in the dyn_relocs field of the
1336 hash table entry.
1337
1338 A similar situation to the -Bsymbolic case occurs when
1339 creating shared libraries and symbol visibility changes
1340 render the symbol local.
1341
1342 As it turns out, all the relocs we will be creating here
1343 are absolute, so we cannot remove them on -Bsymbolic
1344 links or visibility changes anyway. A STUB_REL reloc
1345 is absolute too, as in that case it is the reloc in the
1346 stub we will be creating, rather than copying the PCREL
1347 reloc in the branch.
1348
1349 If on the other hand, we are creating an executable, we
1350 may need to keep relocations for symbols satisfied by a
1351 dynamic library if we manage to avoid copy relocs for the
1352 symbol. */
1353 if ((info->shared
1354 && (sec->flags & SEC_ALLOC) != 0
1355 && (IS_ABSOLUTE_RELOC (r_type)
1356 || (h != NULL
1357 && (!info->symbolic
1358 || h->elf.root.type == bfd_link_hash_defweak
1359 || !h->elf.def_regular))))
1360 || (ELIMINATE_COPY_RELOCS
1361 && !info->shared
1362 && (sec->flags & SEC_ALLOC) != 0
1363 && h != NULL
1364 && (h->elf.root.type == bfd_link_hash_defweak
1365 || !h->elf.def_regular)))
1366 {
1367 struct elf32_hppa_dyn_reloc_entry *p;
1368 struct elf32_hppa_dyn_reloc_entry **head;
1369
1370 /* Create a reloc section in dynobj and make room for
1371 this reloc. */
1372 if (sreloc == NULL)
1373 {
1374 char *name;
1375 bfd *dynobj;
1376
1377 name = (bfd_elf_string_from_elf_section
1378 (abfd,
1379 elf_elfheader (abfd)->e_shstrndx,
1380 elf_section_data (sec)->rel_hdr.sh_name));
1381 if (name == NULL)
1382 {
1383 (*_bfd_error_handler)
1384 (_("Could not find relocation section for %s"),
1385 sec->name);
1386 bfd_set_error (bfd_error_bad_value);
1387 return FALSE;
1388 }
1389
1390 if (htab->elf.dynobj == NULL)
1391 htab->elf.dynobj = abfd;
1392
1393 dynobj = htab->elf.dynobj;
1394 sreloc = bfd_get_section_by_name (dynobj, name);
1395 if (sreloc == NULL)
1396 {
1397 flagword flags;
1398
1399 sreloc = bfd_make_section (dynobj, name);
1400 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1401 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1402 if ((sec->flags & SEC_ALLOC) != 0)
1403 flags |= SEC_ALLOC | SEC_LOAD;
1404 if (sreloc == NULL
1405 || !bfd_set_section_flags (dynobj, sreloc, flags)
1406 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1407 return FALSE;
1408 }
1409
1410 elf_section_data (sec)->sreloc = sreloc;
1411 }
1412
1413 /* If this is a global symbol, we count the number of
1414 relocations we need for this symbol. */
1415 if (h != NULL)
1416 {
1417 head = &h->dyn_relocs;
1418 }
1419 else
1420 {
1421 /* Track dynamic relocs needed for local syms too.
1422 We really need local syms available to do this
1423 easily. Oh well. */
1424
1425 asection *s;
1426 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1427 sec, r_symndx);
1428 if (s == NULL)
1429 return FALSE;
1430
1431 head = ((struct elf32_hppa_dyn_reloc_entry **)
1432 &elf_section_data (s)->local_dynrel);
1433 }
1434
1435 p = *head;
1436 if (p == NULL || p->sec != sec)
1437 {
1438 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1439 if (p == NULL)
1440 return FALSE;
1441 p->next = *head;
1442 *head = p;
1443 p->sec = sec;
1444 p->count = 0;
1445 #if RELATIVE_DYNRELOCS
1446 p->relative_count = 0;
1447 #endif
1448 }
1449
1450 p->count += 1;
1451 #if RELATIVE_DYNRELOCS
1452 if (!IS_ABSOLUTE_RELOC (rtype))
1453 p->relative_count += 1;
1454 #endif
1455 }
1456 }
1457 }
1458
1459 return TRUE;
1460 }
1461
1462 /* Return the section that should be marked against garbage collection
1463 for a given relocation. */
1464
1465 static asection *
1466 elf32_hppa_gc_mark_hook (asection *sec,
1467 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1468 Elf_Internal_Rela *rel,
1469 struct elf_link_hash_entry *h,
1470 Elf_Internal_Sym *sym)
1471 {
1472 if (h != NULL)
1473 {
1474 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1475 {
1476 case R_PARISC_GNU_VTINHERIT:
1477 case R_PARISC_GNU_VTENTRY:
1478 break;
1479
1480 default:
1481 switch (h->root.type)
1482 {
1483 case bfd_link_hash_defined:
1484 case bfd_link_hash_defweak:
1485 return h->root.u.def.section;
1486
1487 case bfd_link_hash_common:
1488 return h->root.u.c.p->section;
1489
1490 default:
1491 break;
1492 }
1493 }
1494 }
1495 else
1496 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1497
1498 return NULL;
1499 }
1500
1501 /* Update the got and plt entry reference counts for the section being
1502 removed. */
1503
1504 static bfd_boolean
1505 elf32_hppa_gc_sweep_hook (bfd *abfd,
1506 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1507 asection *sec,
1508 const Elf_Internal_Rela *relocs)
1509 {
1510 Elf_Internal_Shdr *symtab_hdr;
1511 struct elf_link_hash_entry **sym_hashes;
1512 bfd_signed_vma *local_got_refcounts;
1513 bfd_signed_vma *local_plt_refcounts;
1514 const Elf_Internal_Rela *rel, *relend;
1515
1516 elf_section_data (sec)->local_dynrel = NULL;
1517
1518 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1519 sym_hashes = elf_sym_hashes (abfd);
1520 local_got_refcounts = elf_local_got_refcounts (abfd);
1521 local_plt_refcounts = local_got_refcounts;
1522 if (local_plt_refcounts != NULL)
1523 local_plt_refcounts += symtab_hdr->sh_info;
1524
1525 relend = relocs + sec->reloc_count;
1526 for (rel = relocs; rel < relend; rel++)
1527 {
1528 unsigned long r_symndx;
1529 unsigned int r_type;
1530 struct elf_link_hash_entry *h = NULL;
1531
1532 r_symndx = ELF32_R_SYM (rel->r_info);
1533 if (r_symndx >= symtab_hdr->sh_info)
1534 {
1535 struct elf32_hppa_link_hash_entry *eh;
1536 struct elf32_hppa_dyn_reloc_entry **pp;
1537 struct elf32_hppa_dyn_reloc_entry *p;
1538
1539 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1540 eh = (struct elf32_hppa_link_hash_entry *) h;
1541
1542 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1543 if (p->sec == sec)
1544 {
1545 /* Everything must go for SEC. */
1546 *pp = p->next;
1547 break;
1548 }
1549 }
1550
1551 r_type = ELF32_R_TYPE (rel->r_info);
1552 switch (r_type)
1553 {
1554 case R_PARISC_DLTIND14F:
1555 case R_PARISC_DLTIND14R:
1556 case R_PARISC_DLTIND21L:
1557 if (h != NULL)
1558 {
1559 if (h->got.refcount > 0)
1560 h->got.refcount -= 1;
1561 }
1562 else if (local_got_refcounts != NULL)
1563 {
1564 if (local_got_refcounts[r_symndx] > 0)
1565 local_got_refcounts[r_symndx] -= 1;
1566 }
1567 break;
1568
1569 case R_PARISC_PCREL12F:
1570 case R_PARISC_PCREL17C:
1571 case R_PARISC_PCREL17F:
1572 case R_PARISC_PCREL22F:
1573 if (h != NULL)
1574 {
1575 if (h->plt.refcount > 0)
1576 h->plt.refcount -= 1;
1577 }
1578 break;
1579
1580 case R_PARISC_PLABEL14R:
1581 case R_PARISC_PLABEL21L:
1582 case R_PARISC_PLABEL32:
1583 if (h != NULL)
1584 {
1585 if (h->plt.refcount > 0)
1586 h->plt.refcount -= 1;
1587 }
1588 else if (local_plt_refcounts != NULL)
1589 {
1590 if (local_plt_refcounts[r_symndx] > 0)
1591 local_plt_refcounts[r_symndx] -= 1;
1592 }
1593 break;
1594
1595 default:
1596 break;
1597 }
1598 }
1599
1600 return TRUE;
1601 }
1602
1603 /* Our own version of hide_symbol, so that we can keep plt entries for
1604 plabels. */
1605
1606 static void
1607 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1608 struct elf_link_hash_entry *h,
1609 bfd_boolean force_local)
1610 {
1611 if (force_local)
1612 {
1613 h->forced_local = 1;
1614 if (h->dynindx != -1)
1615 {
1616 h->dynindx = -1;
1617 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1618 h->dynstr_index);
1619 }
1620 }
1621
1622 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1623 {
1624 h->needs_plt = 0;
1625 h->plt = elf_hash_table (info)->init_refcount;
1626 }
1627 }
1628
1629 /* Adjust a symbol defined by a dynamic object and referenced by a
1630 regular object. The current definition is in some section of the
1631 dynamic object, but we're not including those sections. We have to
1632 change the definition to something the rest of the link can
1633 understand. */
1634
1635 static bfd_boolean
1636 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1637 struct elf_link_hash_entry *h)
1638 {
1639 struct elf32_hppa_link_hash_table *htab;
1640 asection *s;
1641 unsigned int power_of_two;
1642
1643 /* If this is a function, put it in the procedure linkage table. We
1644 will fill in the contents of the procedure linkage table later. */
1645 if (h->type == STT_FUNC
1646 || h->needs_plt)
1647 {
1648 if (h->plt.refcount <= 0
1649 || (h->def_regular
1650 && h->root.type != bfd_link_hash_defweak
1651 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1652 && (!info->shared || info->symbolic)))
1653 {
1654 /* The .plt entry is not needed when:
1655 a) Garbage collection has removed all references to the
1656 symbol, or
1657 b) We know for certain the symbol is defined in this
1658 object, and it's not a weak definition, nor is the symbol
1659 used by a plabel relocation. Either this object is the
1660 application or we are doing a shared symbolic link. */
1661
1662 h->plt.offset = (bfd_vma) -1;
1663 h->needs_plt = 0;
1664 }
1665
1666 return TRUE;
1667 }
1668 else
1669 h->plt.offset = (bfd_vma) -1;
1670
1671 /* If this is a weak symbol, and there is a real definition, the
1672 processor independent code will have arranged for us to see the
1673 real definition first, and we can just use the same value. */
1674 if (h->u.weakdef != NULL)
1675 {
1676 if (h->u.weakdef->root.type != bfd_link_hash_defined
1677 && h->u.weakdef->root.type != bfd_link_hash_defweak)
1678 abort ();
1679 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1680 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1681 if (ELIMINATE_COPY_RELOCS)
1682 h->non_got_ref = h->u.weakdef->non_got_ref;
1683 return TRUE;
1684 }
1685
1686 /* This is a reference to a symbol defined by a dynamic object which
1687 is not a function. */
1688
1689 /* If we are creating a shared library, we must presume that the
1690 only references to the symbol are via the global offset table.
1691 For such cases we need not do anything here; the relocations will
1692 be handled correctly by relocate_section. */
1693 if (info->shared)
1694 return TRUE;
1695
1696 /* If there are no references to this symbol that do not use the
1697 GOT, we don't need to generate a copy reloc. */
1698 if (!h->non_got_ref)
1699 return TRUE;
1700
1701 if (ELIMINATE_COPY_RELOCS)
1702 {
1703 struct elf32_hppa_link_hash_entry *eh;
1704 struct elf32_hppa_dyn_reloc_entry *p;
1705
1706 eh = (struct elf32_hppa_link_hash_entry *) h;
1707 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1708 {
1709 s = p->sec->output_section;
1710 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1711 break;
1712 }
1713
1714 /* If we didn't find any dynamic relocs in read-only sections, then
1715 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1716 if (p == NULL)
1717 {
1718 h->non_got_ref = 0;
1719 return TRUE;
1720 }
1721 }
1722
1723 /* We must allocate the symbol in our .dynbss section, which will
1724 become part of the .bss section of the executable. There will be
1725 an entry for this symbol in the .dynsym section. The dynamic
1726 object will contain position independent code, so all references
1727 from the dynamic object to this symbol will go through the global
1728 offset table. The dynamic linker will use the .dynsym entry to
1729 determine the address it must put in the global offset table, so
1730 both the dynamic object and the regular object will refer to the
1731 same memory location for the variable. */
1732
1733 htab = hppa_link_hash_table (info);
1734
1735 /* We must generate a COPY reloc to tell the dynamic linker to
1736 copy the initial value out of the dynamic object and into the
1737 runtime process image. */
1738 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1739 {
1740 htab->srelbss->size += sizeof (Elf32_External_Rela);
1741 h->needs_copy = 1;
1742 }
1743
1744 /* We need to figure out the alignment required for this symbol. I
1745 have no idea how other ELF linkers handle this. */
1746
1747 power_of_two = bfd_log2 (h->size);
1748 if (power_of_two > 3)
1749 power_of_two = 3;
1750
1751 /* Apply the required alignment. */
1752 s = htab->sdynbss;
1753 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1754 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1755 {
1756 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1757 return FALSE;
1758 }
1759
1760 /* Define the symbol as being at this point in the section. */
1761 h->root.u.def.section = s;
1762 h->root.u.def.value = s->size;
1763
1764 /* Increment the section size to make room for the symbol. */
1765 s->size += h->size;
1766
1767 return TRUE;
1768 }
1769
1770 /* Allocate space in the .plt for entries that won't have relocations.
1771 ie. plabel entries. */
1772
1773 static bfd_boolean
1774 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1775 {
1776 struct bfd_link_info *info;
1777 struct elf32_hppa_link_hash_table *htab;
1778 asection *s;
1779
1780 if (h->root.type == bfd_link_hash_indirect)
1781 return TRUE;
1782
1783 if (h->root.type == bfd_link_hash_warning)
1784 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1785
1786 info = inf;
1787 htab = hppa_link_hash_table (info);
1788 if (htab->elf.dynamic_sections_created
1789 && h->plt.refcount > 0)
1790 {
1791 /* Make sure this symbol is output as a dynamic symbol.
1792 Undefined weak syms won't yet be marked as dynamic. */
1793 if (h->dynindx == -1
1794 && !h->forced_local
1795 && h->type != STT_PARISC_MILLI)
1796 {
1797 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1798 return FALSE;
1799 }
1800
1801 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
1802 {
1803 /* Allocate these later. From this point on, h->plabel
1804 means that the plt entry is only used by a plabel.
1805 We'll be using a normal plt entry for this symbol, so
1806 clear the plabel indicator. */
1807 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1808 }
1809 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1810 {
1811 /* Make an entry in the .plt section for plabel references
1812 that won't have a .plt entry for other reasons. */
1813 s = htab->splt;
1814 h->plt.offset = s->size;
1815 s->size += PLT_ENTRY_SIZE;
1816 }
1817 else
1818 {
1819 /* No .plt entry needed. */
1820 h->plt.offset = (bfd_vma) -1;
1821 h->needs_plt = 0;
1822 }
1823 }
1824 else
1825 {
1826 h->plt.offset = (bfd_vma) -1;
1827 h->needs_plt = 0;
1828 }
1829
1830 return TRUE;
1831 }
1832
1833 /* Allocate space in .plt, .got and associated reloc sections for
1834 global syms. */
1835
1836 static bfd_boolean
1837 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1838 {
1839 struct bfd_link_info *info;
1840 struct elf32_hppa_link_hash_table *htab;
1841 asection *s;
1842 struct elf32_hppa_link_hash_entry *eh;
1843 struct elf32_hppa_dyn_reloc_entry *p;
1844
1845 if (h->root.type == bfd_link_hash_indirect)
1846 return TRUE;
1847
1848 if (h->root.type == bfd_link_hash_warning)
1849 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1850
1851 info = inf;
1852 htab = hppa_link_hash_table (info);
1853 if (htab->elf.dynamic_sections_created
1854 && h->plt.offset != (bfd_vma) -1
1855 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1856 {
1857 /* Make an entry in the .plt section. */
1858 s = htab->splt;
1859 h->plt.offset = s->size;
1860 s->size += PLT_ENTRY_SIZE;
1861
1862 /* We also need to make an entry in the .rela.plt section. */
1863 htab->srelplt->size += sizeof (Elf32_External_Rela);
1864 htab->need_plt_stub = 1;
1865 }
1866
1867 if (h->got.refcount > 0)
1868 {
1869 /* Make sure this symbol is output as a dynamic symbol.
1870 Undefined weak syms won't yet be marked as dynamic. */
1871 if (h->dynindx == -1
1872 && !h->forced_local
1873 && h->type != STT_PARISC_MILLI)
1874 {
1875 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1876 return FALSE;
1877 }
1878
1879 s = htab->sgot;
1880 h->got.offset = s->size;
1881 s->size += GOT_ENTRY_SIZE;
1882 if (htab->elf.dynamic_sections_created
1883 && (info->shared
1884 || (h->dynindx != -1
1885 && !h->forced_local)))
1886 {
1887 htab->srelgot->size += sizeof (Elf32_External_Rela);
1888 }
1889 }
1890 else
1891 h->got.offset = (bfd_vma) -1;
1892
1893 eh = (struct elf32_hppa_link_hash_entry *) h;
1894 if (eh->dyn_relocs == NULL)
1895 return TRUE;
1896
1897 /* If this is a -Bsymbolic shared link, then we need to discard all
1898 space allocated for dynamic pc-relative relocs against symbols
1899 defined in a regular object. For the normal shared case, discard
1900 space for relocs that have become local due to symbol visibility
1901 changes. */
1902 if (info->shared)
1903 {
1904 #if RELATIVE_DYNRELOCS
1905 if (SYMBOL_CALLS_LOCAL (info, h))
1906 {
1907 struct elf32_hppa_dyn_reloc_entry **pp;
1908
1909 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1910 {
1911 p->count -= p->relative_count;
1912 p->relative_count = 0;
1913 if (p->count == 0)
1914 *pp = p->next;
1915 else
1916 pp = &p->next;
1917 }
1918 }
1919 #endif
1920
1921 /* Also discard relocs on undefined weak syms with non-default
1922 visibility. */
1923 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1924 && h->root.type == bfd_link_hash_undefweak)
1925 eh->dyn_relocs = NULL;
1926 }
1927 else
1928 {
1929 /* For the non-shared case, discard space for relocs against
1930 symbols which turn out to need copy relocs or are not
1931 dynamic. */
1932 if (!h->non_got_ref
1933 && ((ELIMINATE_COPY_RELOCS
1934 && h->def_dynamic
1935 && !h->def_regular)
1936 || (htab->elf.dynamic_sections_created
1937 && (h->root.type == bfd_link_hash_undefweak
1938 || h->root.type == bfd_link_hash_undefined))))
1939 {
1940 /* Make sure this symbol is output as a dynamic symbol.
1941 Undefined weak syms won't yet be marked as dynamic. */
1942 if (h->dynindx == -1
1943 && !h->forced_local
1944 && h->type != STT_PARISC_MILLI)
1945 {
1946 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1947 return FALSE;
1948 }
1949
1950 /* If that succeeded, we know we'll be keeping all the
1951 relocs. */
1952 if (h->dynindx != -1)
1953 goto keep;
1954 }
1955
1956 eh->dyn_relocs = NULL;
1957 return TRUE;
1958
1959 keep: ;
1960 }
1961
1962 /* Finally, allocate space. */
1963 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1964 {
1965 asection *sreloc = elf_section_data (p->sec)->sreloc;
1966 sreloc->size += p->count * sizeof (Elf32_External_Rela);
1967 }
1968
1969 return TRUE;
1970 }
1971
1972 /* This function is called via elf_link_hash_traverse to force
1973 millicode symbols local so they do not end up as globals in the
1974 dynamic symbol table. We ought to be able to do this in
1975 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
1976 for all dynamic symbols. Arguably, this is a bug in
1977 elf_adjust_dynamic_symbol. */
1978
1979 static bfd_boolean
1980 clobber_millicode_symbols (struct elf_link_hash_entry *h,
1981 struct bfd_link_info *info)
1982 {
1983 if (h->root.type == bfd_link_hash_warning)
1984 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1985
1986 if (h->type == STT_PARISC_MILLI
1987 && !h->forced_local)
1988 {
1989 elf32_hppa_hide_symbol (info, h, TRUE);
1990 }
1991 return TRUE;
1992 }
1993
1994 /* Find any dynamic relocs that apply to read-only sections. */
1995
1996 static bfd_boolean
1997 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1998 {
1999 struct elf32_hppa_link_hash_entry *eh;
2000 struct elf32_hppa_dyn_reloc_entry *p;
2001
2002 if (h->root.type == bfd_link_hash_warning)
2003 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2004
2005 eh = (struct elf32_hppa_link_hash_entry *) h;
2006 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2007 {
2008 asection *s = p->sec->output_section;
2009
2010 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2011 {
2012 struct bfd_link_info *info = inf;
2013
2014 info->flags |= DF_TEXTREL;
2015
2016 /* Not an error, just cut short the traversal. */
2017 return FALSE;
2018 }
2019 }
2020 return TRUE;
2021 }
2022
2023 /* Set the sizes of the dynamic sections. */
2024
2025 static bfd_boolean
2026 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2027 struct bfd_link_info *info)
2028 {
2029 struct elf32_hppa_link_hash_table *htab;
2030 bfd *dynobj;
2031 bfd *ibfd;
2032 asection *s;
2033 bfd_boolean relocs;
2034
2035 htab = hppa_link_hash_table (info);
2036 dynobj = htab->elf.dynobj;
2037 if (dynobj == NULL)
2038 abort ();
2039
2040 if (htab->elf.dynamic_sections_created)
2041 {
2042 /* Set the contents of the .interp section to the interpreter. */
2043 if (info->executable)
2044 {
2045 s = bfd_get_section_by_name (dynobj, ".interp");
2046 if (s == NULL)
2047 abort ();
2048 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2049 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2050 }
2051
2052 /* Force millicode symbols local. */
2053 elf_link_hash_traverse (&htab->elf,
2054 clobber_millicode_symbols,
2055 info);
2056 }
2057
2058 /* Set up .got and .plt offsets for local syms, and space for local
2059 dynamic relocs. */
2060 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2061 {
2062 bfd_signed_vma *local_got;
2063 bfd_signed_vma *end_local_got;
2064 bfd_signed_vma *local_plt;
2065 bfd_signed_vma *end_local_plt;
2066 bfd_size_type locsymcount;
2067 Elf_Internal_Shdr *symtab_hdr;
2068 asection *srel;
2069
2070 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2071 continue;
2072
2073 for (s = ibfd->sections; s != NULL; s = s->next)
2074 {
2075 struct elf32_hppa_dyn_reloc_entry *p;
2076
2077 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2078 elf_section_data (s)->local_dynrel);
2079 p != NULL;
2080 p = p->next)
2081 {
2082 if (!bfd_is_abs_section (p->sec)
2083 && bfd_is_abs_section (p->sec->output_section))
2084 {
2085 /* Input section has been discarded, either because
2086 it is a copy of a linkonce section or due to
2087 linker script /DISCARD/, so we'll be discarding
2088 the relocs too. */
2089 }
2090 else if (p->count != 0)
2091 {
2092 srel = elf_section_data (p->sec)->sreloc;
2093 srel->size += p->count * sizeof (Elf32_External_Rela);
2094 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2095 info->flags |= DF_TEXTREL;
2096 }
2097 }
2098 }
2099
2100 local_got = elf_local_got_refcounts (ibfd);
2101 if (!local_got)
2102 continue;
2103
2104 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2105 locsymcount = symtab_hdr->sh_info;
2106 end_local_got = local_got + locsymcount;
2107 s = htab->sgot;
2108 srel = htab->srelgot;
2109 for (; local_got < end_local_got; ++local_got)
2110 {
2111 if (*local_got > 0)
2112 {
2113 *local_got = s->size;
2114 s->size += GOT_ENTRY_SIZE;
2115 if (info->shared)
2116 srel->size += sizeof (Elf32_External_Rela);
2117 }
2118 else
2119 *local_got = (bfd_vma) -1;
2120 }
2121
2122 local_plt = end_local_got;
2123 end_local_plt = local_plt + locsymcount;
2124 if (! htab->elf.dynamic_sections_created)
2125 {
2126 /* Won't be used, but be safe. */
2127 for (; local_plt < end_local_plt; ++local_plt)
2128 *local_plt = (bfd_vma) -1;
2129 }
2130 else
2131 {
2132 s = htab->splt;
2133 srel = htab->srelplt;
2134 for (; local_plt < end_local_plt; ++local_plt)
2135 {
2136 if (*local_plt > 0)
2137 {
2138 *local_plt = s->size;
2139 s->size += PLT_ENTRY_SIZE;
2140 if (info->shared)
2141 srel->size += sizeof (Elf32_External_Rela);
2142 }
2143 else
2144 *local_plt = (bfd_vma) -1;
2145 }
2146 }
2147 }
2148
2149 /* Do all the .plt entries without relocs first. The dynamic linker
2150 uses the last .plt reloc to find the end of the .plt (and hence
2151 the start of the .got) for lazy linking. */
2152 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2153
2154 /* Allocate global sym .plt and .got entries, and space for global
2155 sym dynamic relocs. */
2156 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2157
2158 /* The check_relocs and adjust_dynamic_symbol entry points have
2159 determined the sizes of the various dynamic sections. Allocate
2160 memory for them. */
2161 relocs = FALSE;
2162 for (s = dynobj->sections; s != NULL; s = s->next)
2163 {
2164 if ((s->flags & SEC_LINKER_CREATED) == 0)
2165 continue;
2166
2167 if (s == htab->splt)
2168 {
2169 if (htab->need_plt_stub)
2170 {
2171 /* Make space for the plt stub at the end of the .plt
2172 section. We want this stub right at the end, up
2173 against the .got section. */
2174 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2175 int pltalign = bfd_section_alignment (dynobj, s);
2176 bfd_size_type mask;
2177
2178 if (gotalign > pltalign)
2179 bfd_set_section_alignment (dynobj, s, gotalign);
2180 mask = ((bfd_size_type) 1 << gotalign) - 1;
2181 s->size = (s->size + sizeof (plt_stub) + mask) & ~mask;
2182 }
2183 }
2184 else if (s == htab->sgot)
2185 ;
2186 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2187 {
2188 if (s->size != 0)
2189 {
2190 /* Remember whether there are any reloc sections other
2191 than .rela.plt. */
2192 if (s != htab->srelplt)
2193 relocs = TRUE;
2194
2195 /* We use the reloc_count field as a counter if we need
2196 to copy relocs into the output file. */
2197 s->reloc_count = 0;
2198 }
2199 }
2200 else
2201 {
2202 /* It's not one of our sections, so don't allocate space. */
2203 continue;
2204 }
2205
2206 if (s->size == 0)
2207 {
2208 /* If we don't need this section, strip it from the
2209 output file. This is mostly to handle .rela.bss and
2210 .rela.plt. We must create both sections in
2211 create_dynamic_sections, because they must be created
2212 before the linker maps input sections to output
2213 sections. The linker does that before
2214 adjust_dynamic_symbol is called, and it is that
2215 function which decides whether anything needs to go
2216 into these sections. */
2217 _bfd_strip_section_from_output (info, s);
2218 continue;
2219 }
2220
2221 /* Allocate memory for the section contents. Zero it, because
2222 we may not fill in all the reloc sections. */
2223 s->contents = bfd_zalloc (dynobj, s->size);
2224 if (s->contents == NULL && s->size != 0)
2225 return FALSE;
2226 }
2227
2228 if (htab->elf.dynamic_sections_created)
2229 {
2230 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2231 actually has nothing to do with the PLT, it is how we
2232 communicate the LTP value of a load module to the dynamic
2233 linker. */
2234 #define add_dynamic_entry(TAG, VAL) \
2235 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2236
2237 if (!add_dynamic_entry (DT_PLTGOT, 0))
2238 return FALSE;
2239
2240 /* Add some entries to the .dynamic section. We fill in the
2241 values later, in elf32_hppa_finish_dynamic_sections, but we
2242 must add the entries now so that we get the correct size for
2243 the .dynamic section. The DT_DEBUG entry is filled in by the
2244 dynamic linker and used by the debugger. */
2245 if (!info->shared)
2246 {
2247 if (!add_dynamic_entry (DT_DEBUG, 0))
2248 return FALSE;
2249 }
2250
2251 if (htab->srelplt->size != 0)
2252 {
2253 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2254 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2255 || !add_dynamic_entry (DT_JMPREL, 0))
2256 return FALSE;
2257 }
2258
2259 if (relocs)
2260 {
2261 if (!add_dynamic_entry (DT_RELA, 0)
2262 || !add_dynamic_entry (DT_RELASZ, 0)
2263 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2264 return FALSE;
2265
2266 /* If any dynamic relocs apply to a read-only section,
2267 then we need a DT_TEXTREL entry. */
2268 if ((info->flags & DF_TEXTREL) == 0)
2269 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2270
2271 if ((info->flags & DF_TEXTREL) != 0)
2272 {
2273 if (!add_dynamic_entry (DT_TEXTREL, 0))
2274 return FALSE;
2275 }
2276 }
2277 }
2278 #undef add_dynamic_entry
2279
2280 return TRUE;
2281 }
2282
2283 /* External entry points for sizing and building linker stubs. */
2284
2285 /* Set up various things so that we can make a list of input sections
2286 for each output section included in the link. Returns -1 on error,
2287 0 when no stubs will be needed, and 1 on success. */
2288
2289 int
2290 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2291 {
2292 bfd *input_bfd;
2293 unsigned int bfd_count;
2294 int top_id, top_index;
2295 asection *section;
2296 asection **input_list, **list;
2297 bfd_size_type amt;
2298 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2299
2300 /* Count the number of input BFDs and find the top input section id. */
2301 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2302 input_bfd != NULL;
2303 input_bfd = input_bfd->link_next)
2304 {
2305 bfd_count += 1;
2306 for (section = input_bfd->sections;
2307 section != NULL;
2308 section = section->next)
2309 {
2310 if (top_id < section->id)
2311 top_id = section->id;
2312 }
2313 }
2314 htab->bfd_count = bfd_count;
2315
2316 amt = sizeof (struct map_stub) * (top_id + 1);
2317 htab->stub_group = bfd_zmalloc (amt);
2318 if (htab->stub_group == NULL)
2319 return -1;
2320
2321 /* We can't use output_bfd->section_count here to find the top output
2322 section index as some sections may have been removed, and
2323 _bfd_strip_section_from_output doesn't renumber the indices. */
2324 for (section = output_bfd->sections, top_index = 0;
2325 section != NULL;
2326 section = section->next)
2327 {
2328 if (top_index < section->index)
2329 top_index = section->index;
2330 }
2331
2332 htab->top_index = top_index;
2333 amt = sizeof (asection *) * (top_index + 1);
2334 input_list = bfd_malloc (amt);
2335 htab->input_list = input_list;
2336 if (input_list == NULL)
2337 return -1;
2338
2339 /* For sections we aren't interested in, mark their entries with a
2340 value we can check later. */
2341 list = input_list + top_index;
2342 do
2343 *list = bfd_abs_section_ptr;
2344 while (list-- != input_list);
2345
2346 for (section = output_bfd->sections;
2347 section != NULL;
2348 section = section->next)
2349 {
2350 if ((section->flags & SEC_CODE) != 0)
2351 input_list[section->index] = NULL;
2352 }
2353
2354 return 1;
2355 }
2356
2357 /* The linker repeatedly calls this function for each input section,
2358 in the order that input sections are linked into output sections.
2359 Build lists of input sections to determine groupings between which
2360 we may insert linker stubs. */
2361
2362 void
2363 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2364 {
2365 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2366
2367 if (isec->output_section->index <= htab->top_index)
2368 {
2369 asection **list = htab->input_list + isec->output_section->index;
2370 if (*list != bfd_abs_section_ptr)
2371 {
2372 /* Steal the link_sec pointer for our list. */
2373 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2374 /* This happens to make the list in reverse order,
2375 which is what we want. */
2376 PREV_SEC (isec) = *list;
2377 *list = isec;
2378 }
2379 }
2380 }
2381
2382 /* See whether we can group stub sections together. Grouping stub
2383 sections may result in fewer stubs. More importantly, we need to
2384 put all .init* and .fini* stubs at the beginning of the .init or
2385 .fini output sections respectively, because glibc splits the
2386 _init and _fini functions into multiple parts. Putting a stub in
2387 the middle of a function is not a good idea. */
2388
2389 static void
2390 group_sections (struct elf32_hppa_link_hash_table *htab,
2391 bfd_size_type stub_group_size,
2392 bfd_boolean stubs_always_before_branch)
2393 {
2394 asection **list = htab->input_list + htab->top_index;
2395 do
2396 {
2397 asection *tail = *list;
2398 if (tail == bfd_abs_section_ptr)
2399 continue;
2400 while (tail != NULL)
2401 {
2402 asection *curr;
2403 asection *prev;
2404 bfd_size_type total;
2405 bfd_boolean big_sec;
2406
2407 curr = tail;
2408 total = tail->size;
2409 big_sec = total >= stub_group_size;
2410
2411 while ((prev = PREV_SEC (curr)) != NULL
2412 && ((total += curr->output_offset - prev->output_offset)
2413 < stub_group_size))
2414 curr = prev;
2415
2416 /* OK, the size from the start of CURR to the end is less
2417 than 240000 bytes and thus can be handled by one stub
2418 section. (or the tail section is itself larger than
2419 240000 bytes, in which case we may be toast.)
2420 We should really be keeping track of the total size of
2421 stubs added here, as stubs contribute to the final output
2422 section size. That's a little tricky, and this way will
2423 only break if stubs added total more than 22144 bytes, or
2424 2768 long branch stubs. It seems unlikely for more than
2425 2768 different functions to be called, especially from
2426 code only 240000 bytes long. This limit used to be
2427 250000, but c++ code tends to generate lots of little
2428 functions, and sometimes violated the assumption. */
2429 do
2430 {
2431 prev = PREV_SEC (tail);
2432 /* Set up this stub group. */
2433 htab->stub_group[tail->id].link_sec = curr;
2434 }
2435 while (tail != curr && (tail = prev) != NULL);
2436
2437 /* But wait, there's more! Input sections up to 240000
2438 bytes before the stub section can be handled by it too.
2439 Don't do this if we have a really large section after the
2440 stubs, as adding more stubs increases the chance that
2441 branches may not reach into the stub section. */
2442 if (!stubs_always_before_branch && !big_sec)
2443 {
2444 total = 0;
2445 while (prev != NULL
2446 && ((total += tail->output_offset - prev->output_offset)
2447 < stub_group_size))
2448 {
2449 tail = prev;
2450 prev = PREV_SEC (tail);
2451 htab->stub_group[tail->id].link_sec = curr;
2452 }
2453 }
2454 tail = prev;
2455 }
2456 }
2457 while (list-- != htab->input_list);
2458 free (htab->input_list);
2459 #undef PREV_SEC
2460 }
2461
2462 /* Read in all local syms for all input bfds, and create hash entries
2463 for export stubs if we are building a multi-subspace shared lib.
2464 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2465
2466 static int
2467 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2468 {
2469 unsigned int bfd_indx;
2470 Elf_Internal_Sym *local_syms, **all_local_syms;
2471 int stub_changed = 0;
2472 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2473
2474 /* We want to read in symbol extension records only once. To do this
2475 we need to read in the local symbols in parallel and save them for
2476 later use; so hold pointers to the local symbols in an array. */
2477 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2478 all_local_syms = bfd_zmalloc (amt);
2479 htab->all_local_syms = all_local_syms;
2480 if (all_local_syms == NULL)
2481 return -1;
2482
2483 /* Walk over all the input BFDs, swapping in local symbols.
2484 If we are creating a shared library, create hash entries for the
2485 export stubs. */
2486 for (bfd_indx = 0;
2487 input_bfd != NULL;
2488 input_bfd = input_bfd->link_next, bfd_indx++)
2489 {
2490 Elf_Internal_Shdr *symtab_hdr;
2491
2492 /* We'll need the symbol table in a second. */
2493 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2494 if (symtab_hdr->sh_info == 0)
2495 continue;
2496
2497 /* We need an array of the local symbols attached to the input bfd. */
2498 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2499 if (local_syms == NULL)
2500 {
2501 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2502 symtab_hdr->sh_info, 0,
2503 NULL, NULL, NULL);
2504 /* Cache them for elf_link_input_bfd. */
2505 symtab_hdr->contents = (unsigned char *) local_syms;
2506 }
2507 if (local_syms == NULL)
2508 return -1;
2509
2510 all_local_syms[bfd_indx] = local_syms;
2511
2512 if (info->shared && htab->multi_subspace)
2513 {
2514 struct elf_link_hash_entry **sym_hashes;
2515 struct elf_link_hash_entry **end_hashes;
2516 unsigned int symcount;
2517
2518 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2519 - symtab_hdr->sh_info);
2520 sym_hashes = elf_sym_hashes (input_bfd);
2521 end_hashes = sym_hashes + symcount;
2522
2523 /* Look through the global syms for functions; We need to
2524 build export stubs for all globally visible functions. */
2525 for (; sym_hashes < end_hashes; sym_hashes++)
2526 {
2527 struct elf32_hppa_link_hash_entry *hash;
2528
2529 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2530
2531 while (hash->elf.root.type == bfd_link_hash_indirect
2532 || hash->elf.root.type == bfd_link_hash_warning)
2533 hash = ((struct elf32_hppa_link_hash_entry *)
2534 hash->elf.root.u.i.link);
2535
2536 /* At this point in the link, undefined syms have been
2537 resolved, so we need to check that the symbol was
2538 defined in this BFD. */
2539 if ((hash->elf.root.type == bfd_link_hash_defined
2540 || hash->elf.root.type == bfd_link_hash_defweak)
2541 && hash->elf.type == STT_FUNC
2542 && hash->elf.root.u.def.section->output_section != NULL
2543 && (hash->elf.root.u.def.section->output_section->owner
2544 == output_bfd)
2545 && hash->elf.root.u.def.section->owner == input_bfd
2546 && hash->elf.def_regular
2547 && !hash->elf.forced_local
2548 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2549 {
2550 asection *sec;
2551 const char *stub_name;
2552 struct elf32_hppa_stub_hash_entry *stub_entry;
2553
2554 sec = hash->elf.root.u.def.section;
2555 stub_name = hash->elf.root.root.string;
2556 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2557 stub_name,
2558 FALSE, FALSE);
2559 if (stub_entry == NULL)
2560 {
2561 stub_entry = hppa_add_stub (stub_name, sec, htab);
2562 if (!stub_entry)
2563 return -1;
2564
2565 stub_entry->target_value = hash->elf.root.u.def.value;
2566 stub_entry->target_section = hash->elf.root.u.def.section;
2567 stub_entry->stub_type = hppa_stub_export;
2568 stub_entry->h = hash;
2569 stub_changed = 1;
2570 }
2571 else
2572 {
2573 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2574 input_bfd,
2575 stub_name);
2576 }
2577 }
2578 }
2579 }
2580 }
2581
2582 return stub_changed;
2583 }
2584
2585 /* Determine and set the size of the stub section for a final link.
2586
2587 The basic idea here is to examine all the relocations looking for
2588 PC-relative calls to a target that is unreachable with a "bl"
2589 instruction. */
2590
2591 bfd_boolean
2592 elf32_hppa_size_stubs
2593 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2594 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2595 asection * (*add_stub_section) (const char *, asection *),
2596 void (*layout_sections_again) (void))
2597 {
2598 bfd_size_type stub_group_size;
2599 bfd_boolean stubs_always_before_branch;
2600 bfd_boolean stub_changed;
2601 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2602
2603 /* Stash our params away. */
2604 htab->stub_bfd = stub_bfd;
2605 htab->multi_subspace = multi_subspace;
2606 htab->add_stub_section = add_stub_section;
2607 htab->layout_sections_again = layout_sections_again;
2608 stubs_always_before_branch = group_size < 0;
2609 if (group_size < 0)
2610 stub_group_size = -group_size;
2611 else
2612 stub_group_size = group_size;
2613 if (stub_group_size == 1)
2614 {
2615 /* Default values. */
2616 if (stubs_always_before_branch)
2617 {
2618 stub_group_size = 7680000;
2619 if (htab->has_17bit_branch || htab->multi_subspace)
2620 stub_group_size = 240000;
2621 if (htab->has_12bit_branch)
2622 stub_group_size = 7500;
2623 }
2624 else
2625 {
2626 stub_group_size = 6971392;
2627 if (htab->has_17bit_branch || htab->multi_subspace)
2628 stub_group_size = 217856;
2629 if (htab->has_12bit_branch)
2630 stub_group_size = 6808;
2631 }
2632 }
2633
2634 group_sections (htab, stub_group_size, stubs_always_before_branch);
2635
2636 switch (get_local_syms (output_bfd, info->input_bfds, info))
2637 {
2638 default:
2639 if (htab->all_local_syms)
2640 goto error_ret_free_local;
2641 return FALSE;
2642
2643 case 0:
2644 stub_changed = FALSE;
2645 break;
2646
2647 case 1:
2648 stub_changed = TRUE;
2649 break;
2650 }
2651
2652 while (1)
2653 {
2654 bfd *input_bfd;
2655 unsigned int bfd_indx;
2656 asection *stub_sec;
2657
2658 for (input_bfd = info->input_bfds, bfd_indx = 0;
2659 input_bfd != NULL;
2660 input_bfd = input_bfd->link_next, bfd_indx++)
2661 {
2662 Elf_Internal_Shdr *symtab_hdr;
2663 asection *section;
2664 Elf_Internal_Sym *local_syms;
2665
2666 /* We'll need the symbol table in a second. */
2667 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2668 if (symtab_hdr->sh_info == 0)
2669 continue;
2670
2671 local_syms = htab->all_local_syms[bfd_indx];
2672
2673 /* Walk over each section attached to the input bfd. */
2674 for (section = input_bfd->sections;
2675 section != NULL;
2676 section = section->next)
2677 {
2678 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2679
2680 /* If there aren't any relocs, then there's nothing more
2681 to do. */
2682 if ((section->flags & SEC_RELOC) == 0
2683 || section->reloc_count == 0)
2684 continue;
2685
2686 /* If this section is a link-once section that will be
2687 discarded, then don't create any stubs. */
2688 if (section->output_section == NULL
2689 || section->output_section->owner != output_bfd)
2690 continue;
2691
2692 /* Get the relocs. */
2693 internal_relocs
2694 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2695 info->keep_memory);
2696 if (internal_relocs == NULL)
2697 goto error_ret_free_local;
2698
2699 /* Now examine each relocation. */
2700 irela = internal_relocs;
2701 irelaend = irela + section->reloc_count;
2702 for (; irela < irelaend; irela++)
2703 {
2704 unsigned int r_type, r_indx;
2705 enum elf32_hppa_stub_type stub_type;
2706 struct elf32_hppa_stub_hash_entry *stub_entry;
2707 asection *sym_sec;
2708 bfd_vma sym_value;
2709 bfd_vma destination;
2710 struct elf32_hppa_link_hash_entry *hash;
2711 char *stub_name;
2712 const asection *id_sec;
2713
2714 r_type = ELF32_R_TYPE (irela->r_info);
2715 r_indx = ELF32_R_SYM (irela->r_info);
2716
2717 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2718 {
2719 bfd_set_error (bfd_error_bad_value);
2720 error_ret_free_internal:
2721 if (elf_section_data (section)->relocs == NULL)
2722 free (internal_relocs);
2723 goto error_ret_free_local;
2724 }
2725
2726 /* Only look for stubs on call instructions. */
2727 if (r_type != (unsigned int) R_PARISC_PCREL12F
2728 && r_type != (unsigned int) R_PARISC_PCREL17F
2729 && r_type != (unsigned int) R_PARISC_PCREL22F)
2730 continue;
2731
2732 /* Now determine the call target, its name, value,
2733 section. */
2734 sym_sec = NULL;
2735 sym_value = 0;
2736 destination = 0;
2737 hash = NULL;
2738 if (r_indx < symtab_hdr->sh_info)
2739 {
2740 /* It's a local symbol. */
2741 Elf_Internal_Sym *sym;
2742 Elf_Internal_Shdr *hdr;
2743
2744 sym = local_syms + r_indx;
2745 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2746 sym_sec = hdr->bfd_section;
2747 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2748 sym_value = sym->st_value;
2749 destination = (sym_value + irela->r_addend
2750 + sym_sec->output_offset
2751 + sym_sec->output_section->vma);
2752 }
2753 else
2754 {
2755 /* It's an external symbol. */
2756 int e_indx;
2757
2758 e_indx = r_indx - symtab_hdr->sh_info;
2759 hash = ((struct elf32_hppa_link_hash_entry *)
2760 elf_sym_hashes (input_bfd)[e_indx]);
2761
2762 while (hash->elf.root.type == bfd_link_hash_indirect
2763 || hash->elf.root.type == bfd_link_hash_warning)
2764 hash = ((struct elf32_hppa_link_hash_entry *)
2765 hash->elf.root.u.i.link);
2766
2767 if (hash->elf.root.type == bfd_link_hash_defined
2768 || hash->elf.root.type == bfd_link_hash_defweak)
2769 {
2770 sym_sec = hash->elf.root.u.def.section;
2771 sym_value = hash->elf.root.u.def.value;
2772 if (sym_sec->output_section != NULL)
2773 destination = (sym_value + irela->r_addend
2774 + sym_sec->output_offset
2775 + sym_sec->output_section->vma);
2776 }
2777 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2778 {
2779 if (! info->shared)
2780 continue;
2781 }
2782 else if (hash->elf.root.type == bfd_link_hash_undefined)
2783 {
2784 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2785 && (ELF_ST_VISIBILITY (hash->elf.other)
2786 == STV_DEFAULT)
2787 && hash->elf.type != STT_PARISC_MILLI))
2788 continue;
2789 }
2790 else
2791 {
2792 bfd_set_error (bfd_error_bad_value);
2793 goto error_ret_free_internal;
2794 }
2795 }
2796
2797 /* Determine what (if any) linker stub is needed. */
2798 stub_type = hppa_type_of_stub (section, irela, hash,
2799 destination, info);
2800 if (stub_type == hppa_stub_none)
2801 continue;
2802
2803 /* Support for grouping stub sections. */
2804 id_sec = htab->stub_group[section->id].link_sec;
2805
2806 /* Get the name of this stub. */
2807 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2808 if (!stub_name)
2809 goto error_ret_free_internal;
2810
2811 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2812 stub_name,
2813 FALSE, FALSE);
2814 if (stub_entry != NULL)
2815 {
2816 /* The proper stub has already been created. */
2817 free (stub_name);
2818 continue;
2819 }
2820
2821 stub_entry = hppa_add_stub (stub_name, section, htab);
2822 if (stub_entry == NULL)
2823 {
2824 free (stub_name);
2825 goto error_ret_free_internal;
2826 }
2827
2828 stub_entry->target_value = sym_value;
2829 stub_entry->target_section = sym_sec;
2830 stub_entry->stub_type = stub_type;
2831 if (info->shared)
2832 {
2833 if (stub_type == hppa_stub_import)
2834 stub_entry->stub_type = hppa_stub_import_shared;
2835 else if (stub_type == hppa_stub_long_branch)
2836 stub_entry->stub_type = hppa_stub_long_branch_shared;
2837 }
2838 stub_entry->h = hash;
2839 stub_changed = TRUE;
2840 }
2841
2842 /* We're done with the internal relocs, free them. */
2843 if (elf_section_data (section)->relocs == NULL)
2844 free (internal_relocs);
2845 }
2846 }
2847
2848 if (!stub_changed)
2849 break;
2850
2851 /* OK, we've added some stubs. Find out the new size of the
2852 stub sections. */
2853 for (stub_sec = htab->stub_bfd->sections;
2854 stub_sec != NULL;
2855 stub_sec = stub_sec->next)
2856 stub_sec->size = 0;
2857
2858 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2859
2860 /* Ask the linker to do its stuff. */
2861 (*htab->layout_sections_again) ();
2862 stub_changed = FALSE;
2863 }
2864
2865 free (htab->all_local_syms);
2866 return TRUE;
2867
2868 error_ret_free_local:
2869 free (htab->all_local_syms);
2870 return FALSE;
2871 }
2872
2873 /* For a final link, this function is called after we have sized the
2874 stubs to provide a value for __gp. */
2875
2876 bfd_boolean
2877 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2878 {
2879 struct bfd_link_hash_entry *h;
2880 asection *sec = NULL;
2881 bfd_vma gp_val = 0;
2882 struct elf32_hppa_link_hash_table *htab;
2883
2884 htab = hppa_link_hash_table (info);
2885 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2886
2887 if (h != NULL
2888 && (h->type == bfd_link_hash_defined
2889 || h->type == bfd_link_hash_defweak))
2890 {
2891 gp_val = h->u.def.value;
2892 sec = h->u.def.section;
2893 }
2894 else
2895 {
2896 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2897 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2898
2899 /* Choose to point our LTP at, in this order, one of .plt, .got,
2900 or .data, if these sections exist. In the case of choosing
2901 .plt try to make the LTP ideal for addressing anywhere in the
2902 .plt or .got with a 14 bit signed offset. Typically, the end
2903 of the .plt is the start of the .got, so choose .plt + 0x2000
2904 if either the .plt or .got is larger than 0x2000. If both
2905 the .plt and .got are smaller than 0x2000, choose the end of
2906 the .plt section. */
2907 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
2908 ? NULL : splt;
2909 if (sec != NULL)
2910 {
2911 gp_val = sec->size;
2912 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
2913 {
2914 gp_val = 0x2000;
2915 }
2916 }
2917 else
2918 {
2919 sec = sgot;
2920 if (sec != NULL)
2921 {
2922 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
2923 {
2924 /* We know we don't have a .plt. If .got is large,
2925 offset our LTP. */
2926 if (sec->size > 0x2000)
2927 gp_val = 0x2000;
2928 }
2929 }
2930 else
2931 {
2932 /* No .plt or .got. Who cares what the LTP is? */
2933 sec = bfd_get_section_by_name (abfd, ".data");
2934 }
2935 }
2936
2937 if (h != NULL)
2938 {
2939 h->type = bfd_link_hash_defined;
2940 h->u.def.value = gp_val;
2941 if (sec != NULL)
2942 h->u.def.section = sec;
2943 else
2944 h->u.def.section = bfd_abs_section_ptr;
2945 }
2946 }
2947
2948 if (sec != NULL && sec->output_section != NULL)
2949 gp_val += sec->output_section->vma + sec->output_offset;
2950
2951 elf_gp (abfd) = gp_val;
2952 return TRUE;
2953 }
2954
2955 /* Build all the stubs associated with the current output file. The
2956 stubs are kept in a hash table attached to the main linker hash
2957 table. We also set up the .plt entries for statically linked PIC
2958 functions here. This function is called via hppaelf_finish in the
2959 linker. */
2960
2961 bfd_boolean
2962 elf32_hppa_build_stubs (struct bfd_link_info *info)
2963 {
2964 asection *stub_sec;
2965 struct bfd_hash_table *table;
2966 struct elf32_hppa_link_hash_table *htab;
2967
2968 htab = hppa_link_hash_table (info);
2969
2970 for (stub_sec = htab->stub_bfd->sections;
2971 stub_sec != NULL;
2972 stub_sec = stub_sec->next)
2973 {
2974 bfd_size_type size;
2975
2976 /* Allocate memory to hold the linker stubs. */
2977 size = stub_sec->size;
2978 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2979 if (stub_sec->contents == NULL && size != 0)
2980 return FALSE;
2981 stub_sec->size = 0;
2982 }
2983
2984 /* Build the stubs as directed by the stub hash table. */
2985 table = &htab->stub_hash_table;
2986 bfd_hash_traverse (table, hppa_build_one_stub, info);
2987
2988 return TRUE;
2989 }
2990
2991 /* Perform a final link. */
2992
2993 static bfd_boolean
2994 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2995 {
2996 /* Invoke the regular ELF linker to do all the work. */
2997 if (!bfd_elf_final_link (abfd, info))
2998 return FALSE;
2999
3000 /* If we're producing a final executable, sort the contents of the
3001 unwind section. */
3002 return elf_hppa_sort_unwind (abfd);
3003 }
3004
3005 /* Record the lowest address for the data and text segments. */
3006
3007 static void
3008 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3009 asection *section,
3010 void *data)
3011 {
3012 struct elf32_hppa_link_hash_table *htab;
3013
3014 htab = (struct elf32_hppa_link_hash_table *) data;
3015
3016 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3017 {
3018 bfd_vma value = section->vma - section->filepos;
3019
3020 if ((section->flags & SEC_READONLY) != 0)
3021 {
3022 if (value < htab->text_segment_base)
3023 htab->text_segment_base = value;
3024 }
3025 else
3026 {
3027 if (value < htab->data_segment_base)
3028 htab->data_segment_base = value;
3029 }
3030 }
3031 }
3032
3033 /* Perform a relocation as part of a final link. */
3034
3035 static bfd_reloc_status_type
3036 final_link_relocate (asection *input_section,
3037 bfd_byte *contents,
3038 const Elf_Internal_Rela *rel,
3039 bfd_vma value,
3040 struct elf32_hppa_link_hash_table *htab,
3041 asection *sym_sec,
3042 struct elf32_hppa_link_hash_entry *h,
3043 struct bfd_link_info *info)
3044 {
3045 int insn;
3046 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3047 unsigned int orig_r_type = r_type;
3048 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3049 int r_format = howto->bitsize;
3050 enum hppa_reloc_field_selector_type_alt r_field;
3051 bfd *input_bfd = input_section->owner;
3052 bfd_vma offset = rel->r_offset;
3053 bfd_vma max_branch_offset = 0;
3054 bfd_byte *hit_data = contents + offset;
3055 bfd_signed_vma addend = rel->r_addend;
3056 bfd_vma location;
3057 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3058 int val;
3059
3060 if (r_type == R_PARISC_NONE)
3061 return bfd_reloc_ok;
3062
3063 insn = bfd_get_32 (input_bfd, hit_data);
3064
3065 /* Find out where we are and where we're going. */
3066 location = (offset +
3067 input_section->output_offset +
3068 input_section->output_section->vma);
3069
3070 /* If we are not building a shared library, convert DLTIND relocs to
3071 DPREL relocs. */
3072 if (!info->shared)
3073 {
3074 switch (r_type)
3075 {
3076 case R_PARISC_DLTIND21L:
3077 r_type = R_PARISC_DPREL21L;
3078 break;
3079
3080 case R_PARISC_DLTIND14R:
3081 r_type = R_PARISC_DPREL14R;
3082 break;
3083
3084 case R_PARISC_DLTIND14F:
3085 r_type = R_PARISC_DPREL14F;
3086 break;
3087 }
3088 }
3089
3090 switch (r_type)
3091 {
3092 case R_PARISC_PCREL12F:
3093 case R_PARISC_PCREL17F:
3094 case R_PARISC_PCREL22F:
3095 /* If this call should go via the plt, find the import stub in
3096 the stub hash. */
3097 if (sym_sec == NULL
3098 || sym_sec->output_section == NULL
3099 || (h != NULL
3100 && h->elf.plt.offset != (bfd_vma) -1
3101 && h->elf.dynindx != -1
3102 && !h->plabel
3103 && (info->shared
3104 || !h->elf.def_regular
3105 || h->elf.root.type == bfd_link_hash_defweak)))
3106 {
3107 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3108 h, rel, htab);
3109 if (stub_entry != NULL)
3110 {
3111 value = (stub_entry->stub_offset
3112 + stub_entry->stub_sec->output_offset
3113 + stub_entry->stub_sec->output_section->vma);
3114 addend = 0;
3115 }
3116 else if (sym_sec == NULL && h != NULL
3117 && h->elf.root.type == bfd_link_hash_undefweak)
3118 {
3119 /* It's OK if undefined weak. Calls to undefined weak
3120 symbols behave as if the "called" function
3121 immediately returns. We can thus call to a weak
3122 function without first checking whether the function
3123 is defined. */
3124 value = location;
3125 addend = 8;
3126 }
3127 else
3128 return bfd_reloc_undefined;
3129 }
3130 /* Fall thru. */
3131
3132 case R_PARISC_PCREL21L:
3133 case R_PARISC_PCREL17C:
3134 case R_PARISC_PCREL17R:
3135 case R_PARISC_PCREL14R:
3136 case R_PARISC_PCREL14F:
3137 case R_PARISC_PCREL32:
3138 /* Make it a pc relative offset. */
3139 value -= location;
3140 addend -= 8;
3141 break;
3142
3143 case R_PARISC_DPREL21L:
3144 case R_PARISC_DPREL14R:
3145 case R_PARISC_DPREL14F:
3146 /* Convert instructions that use the linkage table pointer (r19) to
3147 instructions that use the global data pointer (dp). This is the
3148 most efficient way of using PIC code in an incomplete executable,
3149 but the user must follow the standard runtime conventions for
3150 accessing data for this to work. */
3151 if (orig_r_type == R_PARISC_DLTIND21L)
3152 {
3153 /* Convert addil instructions if the original reloc was a
3154 DLTIND21L. GCC sometimes uses a register other than r19 for
3155 the operation, so we must convert any addil instruction
3156 that uses this relocation. */
3157 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3158 insn = ADDIL_DP;
3159 else
3160 /* We must have a ldil instruction. It's too hard to find
3161 and convert the associated add instruction, so issue an
3162 error. */
3163 (*_bfd_error_handler)
3164 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3165 input_bfd,
3166 input_section,
3167 (long) rel->r_offset,
3168 howto->name,
3169 insn);
3170 }
3171 else if (orig_r_type == R_PARISC_DLTIND14F)
3172 {
3173 /* This must be a format 1 load/store. Change the base
3174 register to dp. */
3175 insn = (insn & 0xfc1ffff) | (27 << 21);
3176 }
3177
3178 /* For all the DP relative relocations, we need to examine the symbol's
3179 section. If it has no section or if it's a code section, then
3180 "data pointer relative" makes no sense. In that case we don't
3181 adjust the "value", and for 21 bit addil instructions, we change the
3182 source addend register from %dp to %r0. This situation commonly
3183 arises for undefined weak symbols and when a variable's "constness"
3184 is declared differently from the way the variable is defined. For
3185 instance: "extern int foo" with foo defined as "const int foo". */
3186 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3187 {
3188 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3189 == (((int) OP_ADDIL << 26) | (27 << 21)))
3190 {
3191 insn &= ~ (0x1f << 21);
3192 #if 0 /* debug them. */
3193 (*_bfd_error_handler)
3194 (_("%B(%A+0x%lx): fixing %s"),
3195 input_bfd,
3196 input_section,
3197 (long) rel->r_offset,
3198 howto->name);
3199 #endif
3200 }
3201 /* Now try to make things easy for the dynamic linker. */
3202
3203 break;
3204 }
3205 /* Fall thru. */
3206
3207 case R_PARISC_DLTIND21L:
3208 case R_PARISC_DLTIND14R:
3209 case R_PARISC_DLTIND14F:
3210 value -= elf_gp (input_section->output_section->owner);
3211 break;
3212
3213 case R_PARISC_SEGREL32:
3214 if ((sym_sec->flags & SEC_CODE) != 0)
3215 value -= htab->text_segment_base;
3216 else
3217 value -= htab->data_segment_base;
3218 break;
3219
3220 default:
3221 break;
3222 }
3223
3224 switch (r_type)
3225 {
3226 case R_PARISC_DIR32:
3227 case R_PARISC_DIR14F:
3228 case R_PARISC_DIR17F:
3229 case R_PARISC_PCREL17C:
3230 case R_PARISC_PCREL14F:
3231 case R_PARISC_PCREL32:
3232 case R_PARISC_DPREL14F:
3233 case R_PARISC_PLABEL32:
3234 case R_PARISC_DLTIND14F:
3235 case R_PARISC_SEGBASE:
3236 case R_PARISC_SEGREL32:
3237 r_field = e_fsel;
3238 break;
3239
3240 case R_PARISC_DLTIND21L:
3241 case R_PARISC_PCREL21L:
3242 case R_PARISC_PLABEL21L:
3243 r_field = e_lsel;
3244 break;
3245
3246 case R_PARISC_DIR21L:
3247 case R_PARISC_DPREL21L:
3248 r_field = e_lrsel;
3249 break;
3250
3251 case R_PARISC_PCREL17R:
3252 case R_PARISC_PCREL14R:
3253 case R_PARISC_PLABEL14R:
3254 case R_PARISC_DLTIND14R:
3255 r_field = e_rsel;
3256 break;
3257
3258 case R_PARISC_DIR17R:
3259 case R_PARISC_DIR14R:
3260 case R_PARISC_DPREL14R:
3261 r_field = e_rrsel;
3262 break;
3263
3264 case R_PARISC_PCREL12F:
3265 case R_PARISC_PCREL17F:
3266 case R_PARISC_PCREL22F:
3267 r_field = e_fsel;
3268
3269 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3270 {
3271 max_branch_offset = (1 << (17-1)) << 2;
3272 }
3273 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3274 {
3275 max_branch_offset = (1 << (12-1)) << 2;
3276 }
3277 else
3278 {
3279 max_branch_offset = (1 << (22-1)) << 2;
3280 }
3281
3282 /* sym_sec is NULL on undefined weak syms or when shared on
3283 undefined syms. We've already checked for a stub for the
3284 shared undefined case. */
3285 if (sym_sec == NULL)
3286 break;
3287
3288 /* If the branch is out of reach, then redirect the
3289 call to the local stub for this function. */
3290 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3291 {
3292 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3293 h, rel, htab);
3294 if (stub_entry == NULL)
3295 return bfd_reloc_undefined;
3296
3297 /* Munge up the value and addend so that we call the stub
3298 rather than the procedure directly. */
3299 value = (stub_entry->stub_offset
3300 + stub_entry->stub_sec->output_offset
3301 + stub_entry->stub_sec->output_section->vma
3302 - location);
3303 addend = -8;
3304 }
3305 break;
3306
3307 /* Something we don't know how to handle. */
3308 default:
3309 return bfd_reloc_notsupported;
3310 }
3311
3312 /* Make sure we can reach the stub. */
3313 if (max_branch_offset != 0
3314 && value + addend + max_branch_offset >= 2*max_branch_offset)
3315 {
3316 (*_bfd_error_handler)
3317 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3318 input_bfd,
3319 input_section,
3320 (long) rel->r_offset,
3321 stub_entry->root.string);
3322 bfd_set_error (bfd_error_bad_value);
3323 return bfd_reloc_notsupported;
3324 }
3325
3326 val = hppa_field_adjust (value, addend, r_field);
3327
3328 switch (r_type)
3329 {
3330 case R_PARISC_PCREL12F:
3331 case R_PARISC_PCREL17C:
3332 case R_PARISC_PCREL17F:
3333 case R_PARISC_PCREL17R:
3334 case R_PARISC_PCREL22F:
3335 case R_PARISC_DIR17F:
3336 case R_PARISC_DIR17R:
3337 /* This is a branch. Divide the offset by four.
3338 Note that we need to decide whether it's a branch or
3339 otherwise by inspecting the reloc. Inspecting insn won't
3340 work as insn might be from a .word directive. */
3341 val >>= 2;
3342 break;
3343
3344 default:
3345 break;
3346 }
3347
3348 insn = hppa_rebuild_insn (insn, val, r_format);
3349
3350 /* Update the instruction word. */
3351 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3352 return bfd_reloc_ok;
3353 }
3354
3355 /* Relocate an HPPA ELF section. */
3356
3357 static bfd_boolean
3358 elf32_hppa_relocate_section (bfd *output_bfd,
3359 struct bfd_link_info *info,
3360 bfd *input_bfd,
3361 asection *input_section,
3362 bfd_byte *contents,
3363 Elf_Internal_Rela *relocs,
3364 Elf_Internal_Sym *local_syms,
3365 asection **local_sections)
3366 {
3367 bfd_vma *local_got_offsets;
3368 struct elf32_hppa_link_hash_table *htab;
3369 Elf_Internal_Shdr *symtab_hdr;
3370 Elf_Internal_Rela *rel;
3371 Elf_Internal_Rela *relend;
3372
3373 if (info->relocatable)
3374 return TRUE;
3375
3376 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3377
3378 htab = hppa_link_hash_table (info);
3379 local_got_offsets = elf_local_got_offsets (input_bfd);
3380
3381 rel = relocs;
3382 relend = relocs + input_section->reloc_count;
3383 for (; rel < relend; rel++)
3384 {
3385 unsigned int r_type;
3386 reloc_howto_type *howto;
3387 unsigned int r_symndx;
3388 struct elf32_hppa_link_hash_entry *h;
3389 Elf_Internal_Sym *sym;
3390 asection *sym_sec;
3391 bfd_vma relocation;
3392 bfd_reloc_status_type r;
3393 const char *sym_name;
3394 bfd_boolean plabel;
3395 bfd_boolean warned_undef;
3396
3397 r_type = ELF32_R_TYPE (rel->r_info);
3398 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3399 {
3400 bfd_set_error (bfd_error_bad_value);
3401 return FALSE;
3402 }
3403 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3404 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3405 continue;
3406
3407 /* This is a final link. */
3408 r_symndx = ELF32_R_SYM (rel->r_info);
3409 h = NULL;
3410 sym = NULL;
3411 sym_sec = NULL;
3412 warned_undef = FALSE;
3413 if (r_symndx < symtab_hdr->sh_info)
3414 {
3415 /* This is a local symbol, h defaults to NULL. */
3416 sym = local_syms + r_symndx;
3417 sym_sec = local_sections[r_symndx];
3418 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3419 }
3420 else
3421 {
3422 struct elf_link_hash_entry *hh;
3423 bfd_boolean unresolved_reloc;
3424 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3425
3426 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3427 r_symndx, symtab_hdr, sym_hashes,
3428 hh, sym_sec, relocation,
3429 unresolved_reloc, warned_undef);
3430
3431 if (relocation == 0
3432 && hh->root.type != bfd_link_hash_defined
3433 && hh->root.type != bfd_link_hash_defweak
3434 && hh->root.type != bfd_link_hash_undefweak)
3435 {
3436 if (info->unresolved_syms_in_objects == RM_IGNORE
3437 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3438 && hh->type == STT_PARISC_MILLI)
3439 {
3440 if (! info->callbacks->undefined_symbol
3441 (info, hh->root.root.string, input_bfd,
3442 input_section, rel->r_offset, FALSE))
3443 return FALSE;
3444 warned_undef = TRUE;
3445 }
3446 }
3447 h = (struct elf32_hppa_link_hash_entry *) hh;
3448 }
3449
3450 /* Do any required modifications to the relocation value, and
3451 determine what types of dynamic info we need to output, if
3452 any. */
3453 plabel = 0;
3454 switch (r_type)
3455 {
3456 case R_PARISC_DLTIND14F:
3457 case R_PARISC_DLTIND14R:
3458 case R_PARISC_DLTIND21L:
3459 {
3460 bfd_vma off;
3461 bfd_boolean do_got = 0;
3462
3463 /* Relocation is to the entry for this symbol in the
3464 global offset table. */
3465 if (h != NULL)
3466 {
3467 bfd_boolean dyn;
3468
3469 off = h->elf.got.offset;
3470 dyn = htab->elf.dynamic_sections_created;
3471 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3472 &h->elf))
3473 {
3474 /* If we aren't going to call finish_dynamic_symbol,
3475 then we need to handle initialisation of the .got
3476 entry and create needed relocs here. Since the
3477 offset must always be a multiple of 4, we use the
3478 least significant bit to record whether we have
3479 initialised it already. */
3480 if ((off & 1) != 0)
3481 off &= ~1;
3482 else
3483 {
3484 h->elf.got.offset |= 1;
3485 do_got = 1;
3486 }
3487 }
3488 }
3489 else
3490 {
3491 /* Local symbol case. */
3492 if (local_got_offsets == NULL)
3493 abort ();
3494
3495 off = local_got_offsets[r_symndx];
3496
3497 /* The offset must always be a multiple of 4. We use
3498 the least significant bit to record whether we have
3499 already generated the necessary reloc. */
3500 if ((off & 1) != 0)
3501 off &= ~1;
3502 else
3503 {
3504 local_got_offsets[r_symndx] |= 1;
3505 do_got = 1;
3506 }
3507 }
3508
3509 if (do_got)
3510 {
3511 if (info->shared)
3512 {
3513 /* Output a dynamic relocation for this GOT entry.
3514 In this case it is relative to the base of the
3515 object because the symbol index is zero. */
3516 Elf_Internal_Rela outrel;
3517 bfd_byte *loc;
3518 asection *s = htab->srelgot;
3519
3520 outrel.r_offset = (off
3521 + htab->sgot->output_offset
3522 + htab->sgot->output_section->vma);
3523 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3524 outrel.r_addend = relocation;
3525 loc = s->contents;
3526 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3527 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3528 }
3529 else
3530 bfd_put_32 (output_bfd, relocation,
3531 htab->sgot->contents + off);
3532 }
3533
3534 if (off >= (bfd_vma) -2)
3535 abort ();
3536
3537 /* Add the base of the GOT to the relocation value. */
3538 relocation = (off
3539 + htab->sgot->output_offset
3540 + htab->sgot->output_section->vma);
3541 }
3542 break;
3543
3544 case R_PARISC_SEGREL32:
3545 /* If this is the first SEGREL relocation, then initialize
3546 the segment base values. */
3547 if (htab->text_segment_base == (bfd_vma) -1)
3548 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3549 break;
3550
3551 case R_PARISC_PLABEL14R:
3552 case R_PARISC_PLABEL21L:
3553 case R_PARISC_PLABEL32:
3554 if (htab->elf.dynamic_sections_created)
3555 {
3556 bfd_vma off;
3557 bfd_boolean do_plt = 0;
3558
3559 /* If we have a global symbol with a PLT slot, then
3560 redirect this relocation to it. */
3561 if (h != NULL)
3562 {
3563 off = h->elf.plt.offset;
3564 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3565 &h->elf))
3566 {
3567 /* In a non-shared link, adjust_dynamic_symbols
3568 isn't called for symbols forced local. We
3569 need to write out the plt entry here. */
3570 if ((off & 1) != 0)
3571 off &= ~1;
3572 else
3573 {
3574 h->elf.plt.offset |= 1;
3575 do_plt = 1;
3576 }
3577 }
3578 }
3579 else
3580 {
3581 bfd_vma *local_plt_offsets;
3582
3583 if (local_got_offsets == NULL)
3584 abort ();
3585
3586 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3587 off = local_plt_offsets[r_symndx];
3588
3589 /* As for the local .got entry case, we use the last
3590 bit to record whether we've already initialised
3591 this local .plt entry. */
3592 if ((off & 1) != 0)
3593 off &= ~1;
3594 else
3595 {
3596 local_plt_offsets[r_symndx] |= 1;
3597 do_plt = 1;
3598 }
3599 }
3600
3601 if (do_plt)
3602 {
3603 if (info->shared)
3604 {
3605 /* Output a dynamic IPLT relocation for this
3606 PLT entry. */
3607 Elf_Internal_Rela outrel;
3608 bfd_byte *loc;
3609 asection *s = htab->srelplt;
3610
3611 outrel.r_offset = (off
3612 + htab->splt->output_offset
3613 + htab->splt->output_section->vma);
3614 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3615 outrel.r_addend = relocation;
3616 loc = s->contents;
3617 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3618 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3619 }
3620 else
3621 {
3622 bfd_put_32 (output_bfd,
3623 relocation,
3624 htab->splt->contents + off);
3625 bfd_put_32 (output_bfd,
3626 elf_gp (htab->splt->output_section->owner),
3627 htab->splt->contents + off + 4);
3628 }
3629 }
3630
3631 if (off >= (bfd_vma) -2)
3632 abort ();
3633
3634 /* PLABELs contain function pointers. Relocation is to
3635 the entry for the function in the .plt. The magic +2
3636 offset signals to $$dyncall that the function pointer
3637 is in the .plt and thus has a gp pointer too.
3638 Exception: Undefined PLABELs should have a value of
3639 zero. */
3640 if (h == NULL
3641 || (h->elf.root.type != bfd_link_hash_undefweak
3642 && h->elf.root.type != bfd_link_hash_undefined))
3643 {
3644 relocation = (off
3645 + htab->splt->output_offset
3646 + htab->splt->output_section->vma
3647 + 2);
3648 }
3649 plabel = 1;
3650 }
3651 /* Fall through and possibly emit a dynamic relocation. */
3652
3653 case R_PARISC_DIR17F:
3654 case R_PARISC_DIR17R:
3655 case R_PARISC_DIR14F:
3656 case R_PARISC_DIR14R:
3657 case R_PARISC_DIR21L:
3658 case R_PARISC_DPREL14F:
3659 case R_PARISC_DPREL14R:
3660 case R_PARISC_DPREL21L:
3661 case R_PARISC_DIR32:
3662 /* r_symndx will be zero only for relocs against symbols
3663 from removed linkonce sections, or sections discarded by
3664 a linker script. */
3665 if (r_symndx == 0
3666 || (input_section->flags & SEC_ALLOC) == 0)
3667 break;
3668
3669 /* The reloc types handled here and this conditional
3670 expression must match the code in ..check_relocs and
3671 allocate_dynrelocs. ie. We need exactly the same condition
3672 as in ..check_relocs, with some extra conditions (dynindx
3673 test in this case) to cater for relocs removed by
3674 allocate_dynrelocs. If you squint, the non-shared test
3675 here does indeed match the one in ..check_relocs, the
3676 difference being that here we test DEF_DYNAMIC as well as
3677 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3678 which is why we can't use just that test here.
3679 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3680 there all files have not been loaded. */
3681 if ((info->shared
3682 && (h == NULL
3683 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3684 || h->elf.root.type != bfd_link_hash_undefweak)
3685 && (IS_ABSOLUTE_RELOC (r_type)
3686 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
3687 || (!info->shared
3688 && h != NULL
3689 && h->elf.dynindx != -1
3690 && !h->elf.non_got_ref
3691 && ((ELIMINATE_COPY_RELOCS
3692 && h->elf.def_dynamic
3693 && !h->elf.def_regular)
3694 || h->elf.root.type == bfd_link_hash_undefweak
3695 || h->elf.root.type == bfd_link_hash_undefined)))
3696 {
3697 Elf_Internal_Rela outrel;
3698 bfd_boolean skip;
3699 asection *sreloc;
3700 bfd_byte *loc;
3701
3702 /* When generating a shared object, these relocations
3703 are copied into the output file to be resolved at run
3704 time. */
3705
3706 outrel.r_addend = rel->r_addend;
3707 outrel.r_offset =
3708 _bfd_elf_section_offset (output_bfd, info, input_section,
3709 rel->r_offset);
3710 skip = (outrel.r_offset == (bfd_vma) -1
3711 || outrel.r_offset == (bfd_vma) -2);
3712 outrel.r_offset += (input_section->output_offset
3713 + input_section->output_section->vma);
3714
3715 if (skip)
3716 {
3717 memset (&outrel, 0, sizeof (outrel));
3718 }
3719 else if (h != NULL
3720 && h->elf.dynindx != -1
3721 && (plabel
3722 || !IS_ABSOLUTE_RELOC (r_type)
3723 || !info->shared
3724 || !info->symbolic
3725 || !h->elf.def_regular))
3726 {
3727 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3728 }
3729 else /* It's a local symbol, or one marked to become local. */
3730 {
3731 int indx = 0;
3732
3733 /* Add the absolute offset of the symbol. */
3734 outrel.r_addend += relocation;
3735
3736 /* Global plabels need to be processed by the
3737 dynamic linker so that functions have at most one
3738 fptr. For this reason, we need to differentiate
3739 between global and local plabels, which we do by
3740 providing the function symbol for a global plabel
3741 reloc, and no symbol for local plabels. */
3742 if (! plabel
3743 && sym_sec != NULL
3744 && sym_sec->output_section != NULL
3745 && ! bfd_is_abs_section (sym_sec))
3746 {
3747 /* Skip this relocation if the output section has
3748 been discarded. */
3749 if (bfd_is_abs_section (sym_sec->output_section))
3750 break;
3751
3752 indx = elf_section_data (sym_sec->output_section)->dynindx;
3753 /* We are turning this relocation into one
3754 against a section symbol, so subtract out the
3755 output section's address but not the offset
3756 of the input section in the output section. */
3757 outrel.r_addend -= sym_sec->output_section->vma;
3758 }
3759
3760 outrel.r_info = ELF32_R_INFO (indx, r_type);
3761 }
3762 #if 0
3763 /* EH info can cause unaligned DIR32 relocs.
3764 Tweak the reloc type for the dynamic linker. */
3765 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3766 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3767 R_PARISC_DIR32U);
3768 #endif
3769 sreloc = elf_section_data (input_section)->sreloc;
3770 if (sreloc == NULL)
3771 abort ();
3772
3773 loc = sreloc->contents;
3774 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3775 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3776 }
3777 break;
3778
3779 default:
3780 break;
3781 }
3782
3783 r = final_link_relocate (input_section, contents, rel, relocation,
3784 htab, sym_sec, h, info);
3785
3786 if (r == bfd_reloc_ok)
3787 continue;
3788
3789 if (h != NULL)
3790 sym_name = h->elf.root.root.string;
3791 else
3792 {
3793 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3794 symtab_hdr->sh_link,
3795 sym->st_name);
3796 if (sym_name == NULL)
3797 return FALSE;
3798 if (*sym_name == '\0')
3799 sym_name = bfd_section_name (input_bfd, sym_sec);
3800 }
3801
3802 howto = elf_hppa_howto_table + r_type;
3803
3804 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3805 {
3806 if (r == bfd_reloc_notsupported || !warned_undef)
3807 {
3808 (*_bfd_error_handler)
3809 (_("%B(%A+0x%lx): cannot handle %s for %s"),
3810 input_bfd,
3811 input_section,
3812 (long) rel->r_offset,
3813 howto->name,
3814 sym_name);
3815 bfd_set_error (bfd_error_bad_value);
3816 return FALSE;
3817 }
3818 }
3819 else
3820 {
3821 if (!((*info->callbacks->reloc_overflow)
3822 (info, (h ? &h->elf.root : NULL), sym_name, howto->name,
3823 (bfd_vma) 0, input_bfd, input_section, rel->r_offset)))
3824 return FALSE;
3825 }
3826 }
3827
3828 return TRUE;
3829 }
3830
3831 /* Finish up dynamic symbol handling. We set the contents of various
3832 dynamic sections here. */
3833
3834 static bfd_boolean
3835 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3836 struct bfd_link_info *info,
3837 struct elf_link_hash_entry *h,
3838 Elf_Internal_Sym *sym)
3839 {
3840 struct elf32_hppa_link_hash_table *htab;
3841 Elf_Internal_Rela rel;
3842 bfd_byte *loc;
3843
3844 htab = hppa_link_hash_table (info);
3845
3846 if (h->plt.offset != (bfd_vma) -1)
3847 {
3848 bfd_vma value;
3849
3850 if (h->plt.offset & 1)
3851 abort ();
3852
3853 /* This symbol has an entry in the procedure linkage table. Set
3854 it up.
3855
3856 The format of a plt entry is
3857 <funcaddr>
3858 <__gp>
3859 */
3860 value = 0;
3861 if (h->root.type == bfd_link_hash_defined
3862 || h->root.type == bfd_link_hash_defweak)
3863 {
3864 value = h->root.u.def.value;
3865 if (h->root.u.def.section->output_section != NULL)
3866 value += (h->root.u.def.section->output_offset
3867 + h->root.u.def.section->output_section->vma);
3868 }
3869
3870 /* Create a dynamic IPLT relocation for this entry. */
3871 rel.r_offset = (h->plt.offset
3872 + htab->splt->output_offset
3873 + htab->splt->output_section->vma);
3874 if (h->dynindx != -1)
3875 {
3876 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3877 rel.r_addend = 0;
3878 }
3879 else
3880 {
3881 /* This symbol has been marked to become local, and is
3882 used by a plabel so must be kept in the .plt. */
3883 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3884 rel.r_addend = value;
3885 }
3886
3887 loc = htab->srelplt->contents;
3888 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3889 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3890
3891 if (!h->def_regular)
3892 {
3893 /* Mark the symbol as undefined, rather than as defined in
3894 the .plt section. Leave the value alone. */
3895 sym->st_shndx = SHN_UNDEF;
3896 }
3897 }
3898
3899 if (h->got.offset != (bfd_vma) -1)
3900 {
3901 /* This symbol has an entry in the global offset table. Set it
3902 up. */
3903
3904 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3905 + htab->sgot->output_offset
3906 + htab->sgot->output_section->vma);
3907
3908 /* If this is a -Bsymbolic link and the symbol is defined
3909 locally or was forced to be local because of a version file,
3910 we just want to emit a RELATIVE reloc. The entry in the
3911 global offset table will already have been initialized in the
3912 relocate_section function. */
3913 if (info->shared
3914 && (info->symbolic || h->dynindx == -1)
3915 && h->def_regular)
3916 {
3917 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3918 rel.r_addend = (h->root.u.def.value
3919 + h->root.u.def.section->output_offset
3920 + h->root.u.def.section->output_section->vma);
3921 }
3922 else
3923 {
3924 if ((h->got.offset & 1) != 0)
3925 abort ();
3926 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3927 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3928 rel.r_addend = 0;
3929 }
3930
3931 loc = htab->srelgot->contents;
3932 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3933 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3934 }
3935
3936 if (h->needs_copy)
3937 {
3938 asection *s;
3939
3940 /* This symbol needs a copy reloc. Set it up. */
3941
3942 if (! (h->dynindx != -1
3943 && (h->root.type == bfd_link_hash_defined
3944 || h->root.type == bfd_link_hash_defweak)))
3945 abort ();
3946
3947 s = htab->srelbss;
3948
3949 rel.r_offset = (h->root.u.def.value
3950 + h->root.u.def.section->output_offset
3951 + h->root.u.def.section->output_section->vma);
3952 rel.r_addend = 0;
3953 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3954 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3955 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3956 }
3957
3958 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3959 if (h->root.root.string[0] == '_'
3960 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3961 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3962 {
3963 sym->st_shndx = SHN_ABS;
3964 }
3965
3966 return TRUE;
3967 }
3968
3969 /* Used to decide how to sort relocs in an optimal manner for the
3970 dynamic linker, before writing them out. */
3971
3972 static enum elf_reloc_type_class
3973 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
3974 {
3975 if (ELF32_R_SYM (rela->r_info) == 0)
3976 return reloc_class_relative;
3977
3978 switch ((int) ELF32_R_TYPE (rela->r_info))
3979 {
3980 case R_PARISC_IPLT:
3981 return reloc_class_plt;
3982 case R_PARISC_COPY:
3983 return reloc_class_copy;
3984 default:
3985 return reloc_class_normal;
3986 }
3987 }
3988
3989 /* Finish up the dynamic sections. */
3990
3991 static bfd_boolean
3992 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
3993 struct bfd_link_info *info)
3994 {
3995 bfd *dynobj;
3996 struct elf32_hppa_link_hash_table *htab;
3997 asection *sdyn;
3998
3999 htab = hppa_link_hash_table (info);
4000 dynobj = htab->elf.dynobj;
4001
4002 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4003
4004 if (htab->elf.dynamic_sections_created)
4005 {
4006 Elf32_External_Dyn *dyncon, *dynconend;
4007
4008 if (sdyn == NULL)
4009 abort ();
4010
4011 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4012 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4013 for (; dyncon < dynconend; dyncon++)
4014 {
4015 Elf_Internal_Dyn dyn;
4016 asection *s;
4017
4018 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4019
4020 switch (dyn.d_tag)
4021 {
4022 default:
4023 continue;
4024
4025 case DT_PLTGOT:
4026 /* Use PLTGOT to set the GOT register. */
4027 dyn.d_un.d_ptr = elf_gp (output_bfd);
4028 break;
4029
4030 case DT_JMPREL:
4031 s = htab->srelplt;
4032 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4033 break;
4034
4035 case DT_PLTRELSZ:
4036 s = htab->srelplt;
4037 dyn.d_un.d_val = s->size;
4038 break;
4039
4040 case DT_RELASZ:
4041 /* Don't count procedure linkage table relocs in the
4042 overall reloc count. */
4043 s = htab->srelplt;
4044 if (s == NULL)
4045 continue;
4046 dyn.d_un.d_val -= s->size;
4047 break;
4048
4049 case DT_RELA:
4050 /* We may not be using the standard ELF linker script.
4051 If .rela.plt is the first .rela section, we adjust
4052 DT_RELA to not include it. */
4053 s = htab->srelplt;
4054 if (s == NULL)
4055 continue;
4056 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4057 continue;
4058 dyn.d_un.d_ptr += s->size;
4059 break;
4060 }
4061
4062 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4063 }
4064 }
4065
4066 if (htab->sgot != NULL && htab->sgot->size != 0)
4067 {
4068 /* Fill in the first entry in the global offset table.
4069 We use it to point to our dynamic section, if we have one. */
4070 bfd_put_32 (output_bfd,
4071 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4072 htab->sgot->contents);
4073
4074 /* The second entry is reserved for use by the dynamic linker. */
4075 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4076
4077 /* Set .got entry size. */
4078 elf_section_data (htab->sgot->output_section)
4079 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4080 }
4081
4082 if (htab->splt != NULL && htab->splt->size != 0)
4083 {
4084 /* Set plt entry size. */
4085 elf_section_data (htab->splt->output_section)
4086 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4087
4088 if (htab->need_plt_stub)
4089 {
4090 /* Set up the .plt stub. */
4091 memcpy (htab->splt->contents
4092 + htab->splt->size - sizeof (plt_stub),
4093 plt_stub, sizeof (plt_stub));
4094
4095 if ((htab->splt->output_offset
4096 + htab->splt->output_section->vma
4097 + htab->splt->size)
4098 != (htab->sgot->output_offset
4099 + htab->sgot->output_section->vma))
4100 {
4101 (*_bfd_error_handler)
4102 (_(".got section not immediately after .plt section"));
4103 return FALSE;
4104 }
4105 }
4106 }
4107
4108 return TRUE;
4109 }
4110
4111 /* Tweak the OSABI field of the elf header. */
4112
4113 static void
4114 elf32_hppa_post_process_headers (bfd *abfd,
4115 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4116 {
4117 Elf_Internal_Ehdr * i_ehdrp;
4118
4119 i_ehdrp = elf_elfheader (abfd);
4120
4121 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4122 {
4123 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4124 }
4125 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4126 {
4127 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4128 }
4129 else
4130 {
4131 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4132 }
4133 }
4134
4135 /* Called when writing out an object file to decide the type of a
4136 symbol. */
4137 static int
4138 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4139 {
4140 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4141 return STT_PARISC_MILLI;
4142 else
4143 return type;
4144 }
4145
4146 /* Misc BFD support code. */
4147 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4148 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4149 #define elf_info_to_howto elf_hppa_info_to_howto
4150 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4151
4152 /* Stuff for the BFD linker. */
4153 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4154 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4155 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4156 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4157 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4158 #define elf_backend_check_relocs elf32_hppa_check_relocs
4159 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4160 #define elf_backend_fake_sections elf_hppa_fake_sections
4161 #define elf_backend_relocate_section elf32_hppa_relocate_section
4162 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4163 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4164 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4165 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4166 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4167 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4168 #define elf_backend_object_p elf32_hppa_object_p
4169 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4170 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4171 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4172 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4173
4174 #define elf_backend_can_gc_sections 1
4175 #define elf_backend_can_refcount 1
4176 #define elf_backend_plt_alignment 2
4177 #define elf_backend_want_got_plt 0
4178 #define elf_backend_plt_readonly 0
4179 #define elf_backend_want_plt_sym 0
4180 #define elf_backend_got_header_size 8
4181 #define elf_backend_rela_normal 1
4182
4183 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4184 #define TARGET_BIG_NAME "elf32-hppa"
4185 #define ELF_ARCH bfd_arch_hppa
4186 #define ELF_MACHINE_CODE EM_PARISC
4187 #define ELF_MAXPAGESIZE 0x1000
4188
4189 #include "elf32-target.h"
4190
4191 #undef TARGET_BIG_SYM
4192 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4193 #undef TARGET_BIG_NAME
4194 #define TARGET_BIG_NAME "elf32-hppa-linux"
4195
4196 #define INCLUDED_TARGET_FILE 1
4197 #include "elf32-target.h"
4198
4199 #undef TARGET_BIG_SYM
4200 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4201 #undef TARGET_BIG_NAME
4202 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4203
4204 #include "elf32-target.h"
This page took 0.118108 seconds and 4 git commands to generate.