3c03a063528b6e63fc7ddf1c84126697f98cb10e
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set if the only reason we need a .plt entry is for a non-PIC to
207 PIC function call. */
208 unsigned int pic_call:1;
209
210 /* Set if this symbol is used by a plabel reloc. */
211 unsigned int plabel:1;
212 };
213
214 struct elf32_hppa_link_hash_table {
215
216 /* The main hash table. */
217 struct elf_link_hash_table elf;
218
219 /* The stub hash table. */
220 struct bfd_hash_table stub_hash_table;
221
222 /* Linker stub bfd. */
223 bfd *stub_bfd;
224
225 /* Linker call-backs. */
226 asection * (*add_stub_section) (const char *, asection *);
227 void (*layout_sections_again) (void);
228
229 /* Array to keep track of which stub sections have been created, and
230 information on stub grouping. */
231 struct map_stub {
232 /* This is the section to which stubs in the group will be
233 attached. */
234 asection *link_sec;
235 /* The stub section. */
236 asection *stub_sec;
237 } *stub_group;
238
239 /* Assorted information used by elf32_hppa_size_stubs. */
240 unsigned int bfd_count;
241 int top_index;
242 asection **input_list;
243 Elf_Internal_Sym **all_local_syms;
244
245 /* Short-cuts to get to dynamic linker sections. */
246 asection *sgot;
247 asection *srelgot;
248 asection *splt;
249 asection *srelplt;
250 asection *sdynbss;
251 asection *srelbss;
252
253 /* Used during a final link to store the base of the text and data
254 segments so that we can perform SEGREL relocations. */
255 bfd_vma text_segment_base;
256 bfd_vma data_segment_base;
257
258 /* Whether we support multiple sub-spaces for shared libs. */
259 unsigned int multi_subspace:1;
260
261 /* Flags set when various size branches are detected. Used to
262 select suitable defaults for the stub group size. */
263 unsigned int has_12bit_branch:1;
264 unsigned int has_17bit_branch:1;
265 unsigned int has_22bit_branch:1;
266
267 /* Set if we need a .plt stub to support lazy dynamic linking. */
268 unsigned int need_plt_stub:1;
269
270 /* Small local sym to section mapping cache. */
271 struct sym_sec_cache sym_sec;
272 };
273
274 /* Various hash macros and functions. */
275 #define hppa_link_hash_table(p) \
276 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
277
278 #define hppa_stub_hash_lookup(table, string, create, copy) \
279 ((struct elf32_hppa_stub_hash_entry *) \
280 bfd_hash_lookup ((table), (string), (create), (copy)))
281
282 /* Assorted hash table functions. */
283
284 /* Initialize an entry in the stub hash table. */
285
286 static struct bfd_hash_entry *
287 stub_hash_newfunc (struct bfd_hash_entry *entry,
288 struct bfd_hash_table *table,
289 const char *string)
290 {
291 /* Allocate the structure if it has not already been allocated by a
292 subclass. */
293 if (entry == NULL)
294 {
295 entry = bfd_hash_allocate (table,
296 sizeof (struct elf32_hppa_stub_hash_entry));
297 if (entry == NULL)
298 return entry;
299 }
300
301 /* Call the allocation method of the superclass. */
302 entry = bfd_hash_newfunc (entry, table, string);
303 if (entry != NULL)
304 {
305 struct elf32_hppa_stub_hash_entry *eh;
306
307 /* Initialize the local fields. */
308 eh = (struct elf32_hppa_stub_hash_entry *) entry;
309 eh->stub_sec = NULL;
310 eh->stub_offset = 0;
311 eh->target_value = 0;
312 eh->target_section = NULL;
313 eh->stub_type = hppa_stub_long_branch;
314 eh->h = NULL;
315 eh->id_sec = NULL;
316 }
317
318 return entry;
319 }
320
321 /* Initialize an entry in the link hash table. */
322
323 static struct bfd_hash_entry *
324 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
325 struct bfd_hash_table *table,
326 const char *string)
327 {
328 /* Allocate the structure if it has not already been allocated by a
329 subclass. */
330 if (entry == NULL)
331 {
332 entry = bfd_hash_allocate (table,
333 sizeof (struct elf32_hppa_link_hash_entry));
334 if (entry == NULL)
335 return entry;
336 }
337
338 /* Call the allocation method of the superclass. */
339 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
340 if (entry != NULL)
341 {
342 struct elf32_hppa_link_hash_entry *eh;
343
344 /* Initialize the local fields. */
345 eh = (struct elf32_hppa_link_hash_entry *) entry;
346 eh->stub_cache = NULL;
347 eh->dyn_relocs = NULL;
348 eh->pic_call = 0;
349 eh->plabel = 0;
350 }
351
352 return entry;
353 }
354
355 /* Create the derived linker hash table. The PA ELF port uses the derived
356 hash table to keep information specific to the PA ELF linker (without
357 using static variables). */
358
359 static struct bfd_link_hash_table *
360 elf32_hppa_link_hash_table_create (bfd *abfd)
361 {
362 struct elf32_hppa_link_hash_table *ret;
363 bfd_size_type amt = sizeof (*ret);
364
365 ret = bfd_malloc (amt);
366 if (ret == NULL)
367 return NULL;
368
369 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
370 {
371 free (ret);
372 return NULL;
373 }
374
375 /* Init the stub hash table too. */
376 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
377 return NULL;
378
379 ret->stub_bfd = NULL;
380 ret->add_stub_section = NULL;
381 ret->layout_sections_again = NULL;
382 ret->stub_group = NULL;
383 ret->sgot = NULL;
384 ret->srelgot = NULL;
385 ret->splt = NULL;
386 ret->srelplt = NULL;
387 ret->sdynbss = NULL;
388 ret->srelbss = NULL;
389 ret->text_segment_base = (bfd_vma) -1;
390 ret->data_segment_base = (bfd_vma) -1;
391 ret->multi_subspace = 0;
392 ret->has_12bit_branch = 0;
393 ret->has_17bit_branch = 0;
394 ret->has_22bit_branch = 0;
395 ret->need_plt_stub = 0;
396 ret->sym_sec.abfd = NULL;
397
398 return &ret->elf.root;
399 }
400
401 /* Free the derived linker hash table. */
402
403 static void
404 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
405 {
406 struct elf32_hppa_link_hash_table *ret
407 = (struct elf32_hppa_link_hash_table *) hash;
408
409 bfd_hash_table_free (&ret->stub_hash_table);
410 _bfd_generic_link_hash_table_free (hash);
411 }
412
413 /* Build a name for an entry in the stub hash table. */
414
415 static char *
416 hppa_stub_name (const asection *input_section,
417 const asection *sym_sec,
418 const struct elf32_hppa_link_hash_entry *hash,
419 const Elf_Internal_Rela *rel)
420 {
421 char *stub_name;
422 bfd_size_type len;
423
424 if (hash)
425 {
426 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
427 stub_name = bfd_malloc (len);
428 if (stub_name != NULL)
429 {
430 sprintf (stub_name, "%08x_%s+%x",
431 input_section->id & 0xffffffff,
432 hash->elf.root.root.string,
433 (int) rel->r_addend & 0xffffffff);
434 }
435 }
436 else
437 {
438 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
439 stub_name = bfd_malloc (len);
440 if (stub_name != NULL)
441 {
442 sprintf (stub_name, "%08x_%x:%x+%x",
443 input_section->id & 0xffffffff,
444 sym_sec->id & 0xffffffff,
445 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
446 (int) rel->r_addend & 0xffffffff);
447 }
448 }
449 return stub_name;
450 }
451
452 /* Look up an entry in the stub hash. Stub entries are cached because
453 creating the stub name takes a bit of time. */
454
455 static struct elf32_hppa_stub_hash_entry *
456 hppa_get_stub_entry (const asection *input_section,
457 const asection *sym_sec,
458 struct elf32_hppa_link_hash_entry *hash,
459 const Elf_Internal_Rela *rel,
460 struct elf32_hppa_link_hash_table *htab)
461 {
462 struct elf32_hppa_stub_hash_entry *stub_entry;
463 const asection *id_sec;
464
465 /* If this input section is part of a group of sections sharing one
466 stub section, then use the id of the first section in the group.
467 Stub names need to include a section id, as there may well be
468 more than one stub used to reach say, printf, and we need to
469 distinguish between them. */
470 id_sec = htab->stub_group[input_section->id].link_sec;
471
472 if (hash != NULL && hash->stub_cache != NULL
473 && hash->stub_cache->h == hash
474 && hash->stub_cache->id_sec == id_sec)
475 {
476 stub_entry = hash->stub_cache;
477 }
478 else
479 {
480 char *stub_name;
481
482 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
483 if (stub_name == NULL)
484 return NULL;
485
486 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
487 stub_name, FALSE, FALSE);
488 if (hash != NULL)
489 hash->stub_cache = stub_entry;
490
491 free (stub_name);
492 }
493
494 return stub_entry;
495 }
496
497 /* Add a new stub entry to the stub hash. Not all fields of the new
498 stub entry are initialised. */
499
500 static struct elf32_hppa_stub_hash_entry *
501 hppa_add_stub (const char *stub_name,
502 asection *section,
503 struct elf32_hppa_link_hash_table *htab)
504 {
505 asection *link_sec;
506 asection *stub_sec;
507 struct elf32_hppa_stub_hash_entry *stub_entry;
508
509 link_sec = htab->stub_group[section->id].link_sec;
510 stub_sec = htab->stub_group[section->id].stub_sec;
511 if (stub_sec == NULL)
512 {
513 stub_sec = htab->stub_group[link_sec->id].stub_sec;
514 if (stub_sec == NULL)
515 {
516 size_t namelen;
517 bfd_size_type len;
518 char *s_name;
519
520 namelen = strlen (link_sec->name);
521 len = namelen + sizeof (STUB_SUFFIX);
522 s_name = bfd_alloc (htab->stub_bfd, len);
523 if (s_name == NULL)
524 return NULL;
525
526 memcpy (s_name, link_sec->name, namelen);
527 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
528 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
529 if (stub_sec == NULL)
530 return NULL;
531 htab->stub_group[link_sec->id].stub_sec = stub_sec;
532 }
533 htab->stub_group[section->id].stub_sec = stub_sec;
534 }
535
536 /* Enter this entry into the linker stub hash table. */
537 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
538 TRUE, FALSE);
539 if (stub_entry == NULL)
540 {
541 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
542 bfd_archive_filename (section->owner),
543 stub_name);
544 return NULL;
545 }
546
547 stub_entry->stub_sec = stub_sec;
548 stub_entry->stub_offset = 0;
549 stub_entry->id_sec = link_sec;
550 return stub_entry;
551 }
552
553 /* Determine the type of stub needed, if any, for a call. */
554
555 static enum elf32_hppa_stub_type
556 hppa_type_of_stub (asection *input_sec,
557 const Elf_Internal_Rela *rel,
558 struct elf32_hppa_link_hash_entry *hash,
559 bfd_vma destination)
560 {
561 bfd_vma location;
562 bfd_vma branch_offset;
563 bfd_vma max_branch_offset;
564 unsigned int r_type;
565
566 if (hash != NULL
567 && hash->elf.plt.offset != (bfd_vma) -1
568 && (hash->elf.dynindx != -1 || hash->pic_call)
569 && !hash->plabel)
570 {
571 /* We need an import stub. Decide between hppa_stub_import
572 and hppa_stub_import_shared later. */
573 return hppa_stub_import;
574 }
575
576 /* Determine where the call point is. */
577 location = (input_sec->output_offset
578 + input_sec->output_section->vma
579 + rel->r_offset);
580
581 branch_offset = destination - location - 8;
582 r_type = ELF32_R_TYPE (rel->r_info);
583
584 /* Determine if a long branch stub is needed. parisc branch offsets
585 are relative to the second instruction past the branch, ie. +8
586 bytes on from the branch instruction location. The offset is
587 signed and counts in units of 4 bytes. */
588 if (r_type == (unsigned int) R_PARISC_PCREL17F)
589 {
590 max_branch_offset = (1 << (17-1)) << 2;
591 }
592 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
593 {
594 max_branch_offset = (1 << (12-1)) << 2;
595 }
596 else /* R_PARISC_PCREL22F. */
597 {
598 max_branch_offset = (1 << (22-1)) << 2;
599 }
600
601 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
602 return hppa_stub_long_branch;
603
604 return hppa_stub_none;
605 }
606
607 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
608 IN_ARG contains the link info pointer. */
609
610 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
611 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
612
613 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
614 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
615 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
616
617 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
618 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
619 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
620 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
621
622 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
623 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
624
625 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
626 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
627 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
628 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
629
630 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
631 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
632 #define NOP 0x08000240 /* nop */
633 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
634 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
635 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
636
637 #ifndef R19_STUBS
638 #define R19_STUBS 1
639 #endif
640
641 #if R19_STUBS
642 #define LDW_R1_DLT LDW_R1_R19
643 #else
644 #define LDW_R1_DLT LDW_R1_DP
645 #endif
646
647 static bfd_boolean
648 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
649 {
650 struct elf32_hppa_stub_hash_entry *stub_entry;
651 struct bfd_link_info *info;
652 struct elf32_hppa_link_hash_table *htab;
653 asection *stub_sec;
654 bfd *stub_bfd;
655 bfd_byte *loc;
656 bfd_vma sym_value;
657 bfd_vma insn;
658 bfd_vma off;
659 int val;
660 int size;
661
662 /* Massage our args to the form they really have. */
663 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
664 info = in_arg;
665
666 htab = hppa_link_hash_table (info);
667 stub_sec = stub_entry->stub_sec;
668
669 /* Make a note of the offset within the stubs for this entry. */
670 stub_entry->stub_offset = stub_sec->_raw_size;
671 loc = stub_sec->contents + stub_entry->stub_offset;
672
673 stub_bfd = stub_sec->owner;
674
675 switch (stub_entry->stub_type)
676 {
677 case hppa_stub_long_branch:
678 /* Create the long branch. A long branch is formed with "ldil"
679 loading the upper bits of the target address into a register,
680 then branching with "be" which adds in the lower bits.
681 The "be" has its delay slot nullified. */
682 sym_value = (stub_entry->target_value
683 + stub_entry->target_section->output_offset
684 + stub_entry->target_section->output_section->vma);
685
686 val = hppa_field_adjust (sym_value, 0, e_lrsel);
687 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
688 bfd_put_32 (stub_bfd, insn, loc);
689
690 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
691 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
692 bfd_put_32 (stub_bfd, insn, loc + 4);
693
694 size = 8;
695 break;
696
697 case hppa_stub_long_branch_shared:
698 /* Branches are relative. This is where we are going to. */
699 sym_value = (stub_entry->target_value
700 + stub_entry->target_section->output_offset
701 + stub_entry->target_section->output_section->vma);
702
703 /* And this is where we are coming from, more or less. */
704 sym_value -= (stub_entry->stub_offset
705 + stub_sec->output_offset
706 + stub_sec->output_section->vma);
707
708 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
709 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
710 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
711 bfd_put_32 (stub_bfd, insn, loc + 4);
712
713 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
714 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
715 bfd_put_32 (stub_bfd, insn, loc + 8);
716 size = 12;
717 break;
718
719 case hppa_stub_import:
720 case hppa_stub_import_shared:
721 off = stub_entry->h->elf.plt.offset;
722 if (off >= (bfd_vma) -2)
723 abort ();
724
725 off &= ~ (bfd_vma) 1;
726 sym_value = (off
727 + htab->splt->output_offset
728 + htab->splt->output_section->vma
729 - elf_gp (htab->splt->output_section->owner));
730
731 insn = ADDIL_DP;
732 #if R19_STUBS
733 if (stub_entry->stub_type == hppa_stub_import_shared)
734 insn = ADDIL_R19;
735 #endif
736 val = hppa_field_adjust (sym_value, 0, e_lrsel),
737 insn = hppa_rebuild_insn ((int) insn, val, 21);
738 bfd_put_32 (stub_bfd, insn, loc);
739
740 /* It is critical to use lrsel/rrsel here because we are using
741 two different offsets (+0 and +4) from sym_value. If we use
742 lsel/rsel then with unfortunate sym_values we will round
743 sym_value+4 up to the next 2k block leading to a mis-match
744 between the lsel and rsel value. */
745 val = hppa_field_adjust (sym_value, 0, e_rrsel);
746 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
747 bfd_put_32 (stub_bfd, insn, loc + 4);
748
749 if (htab->multi_subspace)
750 {
751 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
752 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
753 bfd_put_32 (stub_bfd, insn, loc + 8);
754
755 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
756 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
757 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
758 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
759
760 size = 28;
761 }
762 else
763 {
764 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
765 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
766 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
767 bfd_put_32 (stub_bfd, insn, loc + 12);
768
769 size = 16;
770 }
771
772 if (!info->shared
773 && stub_entry->h != NULL
774 && stub_entry->h->pic_call)
775 {
776 /* Build the .plt entry needed to call a PIC function from
777 statically linked code. We don't need any relocs. */
778 bfd *dynobj;
779 struct elf32_hppa_link_hash_entry *eh;
780 bfd_vma value;
781
782 dynobj = htab->elf.dynobj;
783 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
784
785 if (eh->elf.root.type != bfd_link_hash_defined
786 && eh->elf.root.type != bfd_link_hash_defweak)
787 abort ();
788
789 value = (eh->elf.root.u.def.value
790 + eh->elf.root.u.def.section->output_offset
791 + eh->elf.root.u.def.section->output_section->vma);
792
793 /* Fill in the entry in the procedure linkage table.
794
795 The format of a plt entry is
796 <funcaddr>
797 <__gp>. */
798
799 bfd_put_32 (htab->splt->owner, value,
800 htab->splt->contents + off);
801 value = elf_gp (htab->splt->output_section->owner);
802 bfd_put_32 (htab->splt->owner, value,
803 htab->splt->contents + off + 4);
804 }
805 break;
806
807 case hppa_stub_export:
808 /* Branches are relative. This is where we are going to. */
809 sym_value = (stub_entry->target_value
810 + stub_entry->target_section->output_offset
811 + stub_entry->target_section->output_section->vma);
812
813 /* And this is where we are coming from. */
814 sym_value -= (stub_entry->stub_offset
815 + stub_sec->output_offset
816 + stub_sec->output_section->vma);
817
818 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
819 && (!htab->has_22bit_branch
820 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
821 {
822 (*_bfd_error_handler)
823 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
824 bfd_archive_filename (stub_entry->target_section->owner),
825 stub_sec->name,
826 (long) stub_entry->stub_offset,
827 stub_entry->root.string);
828 bfd_set_error (bfd_error_bad_value);
829 return FALSE;
830 }
831
832 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
833 if (!htab->has_22bit_branch)
834 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
835 else
836 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
837 bfd_put_32 (stub_bfd, insn, loc);
838
839 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
840 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
841 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
842 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
843 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
844
845 /* Point the function symbol at the stub. */
846 stub_entry->h->elf.root.u.def.section = stub_sec;
847 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
848
849 size = 24;
850 break;
851
852 default:
853 BFD_FAIL ();
854 return FALSE;
855 }
856
857 stub_sec->_raw_size += size;
858 return TRUE;
859 }
860
861 #undef LDIL_R1
862 #undef BE_SR4_R1
863 #undef BL_R1
864 #undef ADDIL_R1
865 #undef DEPI_R1
866 #undef ADDIL_DP
867 #undef LDW_R1_R21
868 #undef LDW_R1_DLT
869 #undef LDW_R1_R19
870 #undef ADDIL_R19
871 #undef LDW_R1_DP
872 #undef LDSID_R21_R1
873 #undef MTSP_R1
874 #undef BE_SR0_R21
875 #undef STW_RP
876 #undef BV_R0_R21
877 #undef BL_RP
878 #undef NOP
879 #undef LDW_RP
880 #undef LDSID_RP_R1
881 #undef BE_SR0_RP
882
883 /* As above, but don't actually build the stub. Just bump offset so
884 we know stub section sizes. */
885
886 static bfd_boolean
887 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
888 {
889 struct elf32_hppa_stub_hash_entry *stub_entry;
890 struct elf32_hppa_link_hash_table *htab;
891 int size;
892
893 /* Massage our args to the form they really have. */
894 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
895 htab = in_arg;
896
897 if (stub_entry->stub_type == hppa_stub_long_branch)
898 size = 8;
899 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
900 size = 12;
901 else if (stub_entry->stub_type == hppa_stub_export)
902 size = 24;
903 else /* hppa_stub_import or hppa_stub_import_shared. */
904 {
905 if (htab->multi_subspace)
906 size = 28;
907 else
908 size = 16;
909 }
910
911 stub_entry->stub_sec->_raw_size += size;
912 return TRUE;
913 }
914
915 /* Return nonzero if ABFD represents an HPPA ELF32 file.
916 Additionally we set the default architecture and machine. */
917
918 static bfd_boolean
919 elf32_hppa_object_p (bfd *abfd)
920 {
921 Elf_Internal_Ehdr * i_ehdrp;
922 unsigned int flags;
923
924 i_ehdrp = elf_elfheader (abfd);
925 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
926 {
927 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
928 return FALSE;
929 }
930 else
931 {
932 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
933 return FALSE;
934 }
935
936 flags = i_ehdrp->e_flags;
937 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
938 {
939 case EFA_PARISC_1_0:
940 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
941 case EFA_PARISC_1_1:
942 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
943 case EFA_PARISC_2_0:
944 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
945 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
946 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
947 }
948 return TRUE;
949 }
950
951 /* Create the .plt and .got sections, and set up our hash table
952 short-cuts to various dynamic sections. */
953
954 static bfd_boolean
955 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
956 {
957 struct elf32_hppa_link_hash_table *htab;
958
959 /* Don't try to create the .plt and .got twice. */
960 htab = hppa_link_hash_table (info);
961 if (htab->splt != NULL)
962 return TRUE;
963
964 /* Call the generic code to do most of the work. */
965 if (! _bfd_elf_create_dynamic_sections (abfd, info))
966 return FALSE;
967
968 htab->splt = bfd_get_section_by_name (abfd, ".plt");
969 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
970
971 htab->sgot = bfd_get_section_by_name (abfd, ".got");
972 htab->srelgot = bfd_make_section (abfd, ".rela.got");
973 if (htab->srelgot == NULL
974 || ! bfd_set_section_flags (abfd, htab->srelgot,
975 (SEC_ALLOC
976 | SEC_LOAD
977 | SEC_HAS_CONTENTS
978 | SEC_IN_MEMORY
979 | SEC_LINKER_CREATED
980 | SEC_READONLY))
981 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
982 return FALSE;
983
984 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
985 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
986
987 return TRUE;
988 }
989
990 /* Copy the extra info we tack onto an elf_link_hash_entry. */
991
992 static void
993 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
994 struct elf_link_hash_entry *dir,
995 struct elf_link_hash_entry *ind)
996 {
997 struct elf32_hppa_link_hash_entry *edir, *eind;
998
999 edir = (struct elf32_hppa_link_hash_entry *) dir;
1000 eind = (struct elf32_hppa_link_hash_entry *) ind;
1001
1002 if (eind->dyn_relocs != NULL)
1003 {
1004 if (edir->dyn_relocs != NULL)
1005 {
1006 struct elf32_hppa_dyn_reloc_entry **pp;
1007 struct elf32_hppa_dyn_reloc_entry *p;
1008
1009 if (ind->root.type == bfd_link_hash_indirect)
1010 abort ();
1011
1012 /* Add reloc counts against the weak sym to the strong sym
1013 list. Merge any entries against the same section. */
1014 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1015 {
1016 struct elf32_hppa_dyn_reloc_entry *q;
1017
1018 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1019 if (q->sec == p->sec)
1020 {
1021 #if RELATIVE_DYNRELOCS
1022 q->relative_count += p->relative_count;
1023 #endif
1024 q->count += p->count;
1025 *pp = p->next;
1026 break;
1027 }
1028 if (q == NULL)
1029 pp = &p->next;
1030 }
1031 *pp = edir->dyn_relocs;
1032 }
1033
1034 edir->dyn_relocs = eind->dyn_relocs;
1035 eind->dyn_relocs = NULL;
1036 }
1037
1038 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1039 }
1040
1041 /* Look through the relocs for a section during the first phase, and
1042 calculate needed space in the global offset table, procedure linkage
1043 table, and dynamic reloc sections. At this point we haven't
1044 necessarily read all the input files. */
1045
1046 static bfd_boolean
1047 elf32_hppa_check_relocs (bfd *abfd,
1048 struct bfd_link_info *info,
1049 asection *sec,
1050 const Elf_Internal_Rela *relocs)
1051 {
1052 Elf_Internal_Shdr *symtab_hdr;
1053 struct elf_link_hash_entry **sym_hashes;
1054 const Elf_Internal_Rela *rel;
1055 const Elf_Internal_Rela *rel_end;
1056 struct elf32_hppa_link_hash_table *htab;
1057 asection *sreloc;
1058 asection *stubreloc;
1059
1060 if (info->relocatable)
1061 return TRUE;
1062
1063 htab = hppa_link_hash_table (info);
1064 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1065 sym_hashes = elf_sym_hashes (abfd);
1066 sreloc = NULL;
1067 stubreloc = NULL;
1068
1069 rel_end = relocs + sec->reloc_count;
1070 for (rel = relocs; rel < rel_end; rel++)
1071 {
1072 enum {
1073 NEED_GOT = 1,
1074 NEED_PLT = 2,
1075 NEED_DYNREL = 4,
1076 PLT_PLABEL = 8
1077 };
1078
1079 unsigned int r_symndx, r_type;
1080 struct elf32_hppa_link_hash_entry *h;
1081 int need_entry;
1082
1083 r_symndx = ELF32_R_SYM (rel->r_info);
1084
1085 if (r_symndx < symtab_hdr->sh_info)
1086 h = NULL;
1087 else
1088 h = ((struct elf32_hppa_link_hash_entry *)
1089 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1090
1091 r_type = ELF32_R_TYPE (rel->r_info);
1092
1093 switch (r_type)
1094 {
1095 case R_PARISC_DLTIND14F:
1096 case R_PARISC_DLTIND14R:
1097 case R_PARISC_DLTIND21L:
1098 /* This symbol requires a global offset table entry. */
1099 need_entry = NEED_GOT;
1100
1101 /* Mark this section as containing PIC code. */
1102 sec->flags |= SEC_HAS_GOT_REF;
1103 break;
1104
1105 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1106 case R_PARISC_PLABEL21L:
1107 case R_PARISC_PLABEL32:
1108 /* If the addend is non-zero, we break badly. */
1109 if (rel->r_addend != 0)
1110 abort ();
1111
1112 /* If we are creating a shared library, then we need to
1113 create a PLT entry for all PLABELs, because PLABELs with
1114 local symbols may be passed via a pointer to another
1115 object. Additionally, output a dynamic relocation
1116 pointing to the PLT entry.
1117 For executables, the original 32-bit ABI allowed two
1118 different styles of PLABELs (function pointers): For
1119 global functions, the PLABEL word points into the .plt
1120 two bytes past a (function address, gp) pair, and for
1121 local functions the PLABEL points directly at the
1122 function. The magic +2 for the first type allows us to
1123 differentiate between the two. As you can imagine, this
1124 is a real pain when it comes to generating code to call
1125 functions indirectly or to compare function pointers.
1126 We avoid the mess by always pointing a PLABEL into the
1127 .plt, even for local functions. */
1128 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1129 break;
1130
1131 case R_PARISC_PCREL12F:
1132 htab->has_12bit_branch = 1;
1133 goto branch_common;
1134
1135 case R_PARISC_PCREL17C:
1136 case R_PARISC_PCREL17F:
1137 htab->has_17bit_branch = 1;
1138 goto branch_common;
1139
1140 case R_PARISC_PCREL22F:
1141 htab->has_22bit_branch = 1;
1142 branch_common:
1143 /* Function calls might need to go through the .plt, and
1144 might require long branch stubs. */
1145 if (h == NULL)
1146 {
1147 /* We know local syms won't need a .plt entry, and if
1148 they need a long branch stub we can't guarantee that
1149 we can reach the stub. So just flag an error later
1150 if we're doing a shared link and find we need a long
1151 branch stub. */
1152 continue;
1153 }
1154 else
1155 {
1156 /* Global symbols will need a .plt entry if they remain
1157 global, and in most cases won't need a long branch
1158 stub. Unfortunately, we have to cater for the case
1159 where a symbol is forced local by versioning, or due
1160 to symbolic linking, and we lose the .plt entry. */
1161 need_entry = NEED_PLT;
1162 if (h->elf.type == STT_PARISC_MILLI)
1163 need_entry = 0;
1164 }
1165 break;
1166
1167 case R_PARISC_SEGBASE: /* Used to set segment base. */
1168 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1169 case R_PARISC_PCREL14F: /* PC relative load/store. */
1170 case R_PARISC_PCREL14R:
1171 case R_PARISC_PCREL17R: /* External branches. */
1172 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1173 /* We don't need to propagate the relocation if linking a
1174 shared object since these are section relative. */
1175 continue;
1176
1177 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1178 case R_PARISC_DPREL14R:
1179 case R_PARISC_DPREL21L:
1180 if (info->shared)
1181 {
1182 (*_bfd_error_handler)
1183 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1184 bfd_archive_filename (abfd),
1185 elf_hppa_howto_table[r_type].name);
1186 bfd_set_error (bfd_error_bad_value);
1187 return FALSE;
1188 }
1189 /* Fall through. */
1190
1191 case R_PARISC_DIR17F: /* Used for external branches. */
1192 case R_PARISC_DIR17R:
1193 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1194 case R_PARISC_DIR14R:
1195 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1196 #if 0
1197 /* Help debug shared library creation. Any of the above
1198 relocs can be used in shared libs, but they may cause
1199 pages to become unshared. */
1200 if (info->shared)
1201 {
1202 (*_bfd_error_handler)
1203 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1204 bfd_archive_filename (abfd),
1205 elf_hppa_howto_table[r_type].name);
1206 }
1207 /* Fall through. */
1208 #endif
1209
1210 case R_PARISC_DIR32: /* .word relocs. */
1211 /* We may want to output a dynamic relocation later. */
1212 need_entry = NEED_DYNREL;
1213 break;
1214
1215 /* This relocation describes the C++ object vtable hierarchy.
1216 Reconstruct it for later use during GC. */
1217 case R_PARISC_GNU_VTINHERIT:
1218 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1219 &h->elf, rel->r_offset))
1220 return FALSE;
1221 continue;
1222
1223 /* This relocation describes which C++ vtable entries are actually
1224 used. Record for later use during GC. */
1225 case R_PARISC_GNU_VTENTRY:
1226 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1227 &h->elf, rel->r_addend))
1228 return FALSE;
1229 continue;
1230
1231 default:
1232 continue;
1233 }
1234
1235 /* Now carry out our orders. */
1236 if (need_entry & NEED_GOT)
1237 {
1238 /* Allocate space for a GOT entry, as well as a dynamic
1239 relocation for this entry. */
1240 if (htab->sgot == NULL)
1241 {
1242 if (htab->elf.dynobj == NULL)
1243 htab->elf.dynobj = abfd;
1244 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1245 return FALSE;
1246 }
1247
1248 if (h != NULL)
1249 {
1250 h->elf.got.refcount += 1;
1251 }
1252 else
1253 {
1254 bfd_signed_vma *local_got_refcounts;
1255
1256 /* This is a global offset table entry for a local symbol. */
1257 local_got_refcounts = elf_local_got_refcounts (abfd);
1258 if (local_got_refcounts == NULL)
1259 {
1260 bfd_size_type size;
1261
1262 /* Allocate space for local got offsets and local
1263 plt offsets. Done this way to save polluting
1264 elf_obj_tdata with another target specific
1265 pointer. */
1266 size = symtab_hdr->sh_info;
1267 size *= 2 * sizeof (bfd_signed_vma);
1268 local_got_refcounts = bfd_zalloc (abfd, size);
1269 if (local_got_refcounts == NULL)
1270 return FALSE;
1271 elf_local_got_refcounts (abfd) = local_got_refcounts;
1272 }
1273 local_got_refcounts[r_symndx] += 1;
1274 }
1275 }
1276
1277 if (need_entry & NEED_PLT)
1278 {
1279 /* If we are creating a shared library, and this is a reloc
1280 against a weak symbol or a global symbol in a dynamic
1281 object, then we will be creating an import stub and a
1282 .plt entry for the symbol. Similarly, on a normal link
1283 to symbols defined in a dynamic object we'll need the
1284 import stub and a .plt entry. We don't know yet whether
1285 the symbol is defined or not, so make an entry anyway and
1286 clean up later in adjust_dynamic_symbol. */
1287 if ((sec->flags & SEC_ALLOC) != 0)
1288 {
1289 if (h != NULL)
1290 {
1291 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1292 h->elf.plt.refcount += 1;
1293
1294 /* If this .plt entry is for a plabel, mark it so
1295 that adjust_dynamic_symbol will keep the entry
1296 even if it appears to be local. */
1297 if (need_entry & PLT_PLABEL)
1298 h->plabel = 1;
1299 }
1300 else if (need_entry & PLT_PLABEL)
1301 {
1302 bfd_signed_vma *local_got_refcounts;
1303 bfd_signed_vma *local_plt_refcounts;
1304
1305 local_got_refcounts = elf_local_got_refcounts (abfd);
1306 if (local_got_refcounts == NULL)
1307 {
1308 bfd_size_type size;
1309
1310 /* Allocate space for local got offsets and local
1311 plt offsets. */
1312 size = symtab_hdr->sh_info;
1313 size *= 2 * sizeof (bfd_signed_vma);
1314 local_got_refcounts = bfd_zalloc (abfd, size);
1315 if (local_got_refcounts == NULL)
1316 return FALSE;
1317 elf_local_got_refcounts (abfd) = local_got_refcounts;
1318 }
1319 local_plt_refcounts = (local_got_refcounts
1320 + symtab_hdr->sh_info);
1321 local_plt_refcounts[r_symndx] += 1;
1322 }
1323 }
1324 }
1325
1326 if (need_entry & NEED_DYNREL)
1327 {
1328 /* Flag this symbol as having a non-got, non-plt reference
1329 so that we generate copy relocs if it turns out to be
1330 dynamic. */
1331 if (h != NULL && !info->shared)
1332 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1333
1334 /* If we are creating a shared library then we need to copy
1335 the reloc into the shared library. However, if we are
1336 linking with -Bsymbolic, we need only copy absolute
1337 relocs or relocs against symbols that are not defined in
1338 an object we are including in the link. PC- or DP- or
1339 DLT-relative relocs against any local sym or global sym
1340 with DEF_REGULAR set, can be discarded. At this point we
1341 have not seen all the input files, so it is possible that
1342 DEF_REGULAR is not set now but will be set later (it is
1343 never cleared). We account for that possibility below by
1344 storing information in the dyn_relocs field of the
1345 hash table entry.
1346
1347 A similar situation to the -Bsymbolic case occurs when
1348 creating shared libraries and symbol visibility changes
1349 render the symbol local.
1350
1351 As it turns out, all the relocs we will be creating here
1352 are absolute, so we cannot remove them on -Bsymbolic
1353 links or visibility changes anyway. A STUB_REL reloc
1354 is absolute too, as in that case it is the reloc in the
1355 stub we will be creating, rather than copying the PCREL
1356 reloc in the branch.
1357
1358 If on the other hand, we are creating an executable, we
1359 may need to keep relocations for symbols satisfied by a
1360 dynamic library if we manage to avoid copy relocs for the
1361 symbol. */
1362 if ((info->shared
1363 && (sec->flags & SEC_ALLOC) != 0
1364 && (IS_ABSOLUTE_RELOC (r_type)
1365 || (h != NULL
1366 && (!info->symbolic
1367 || h->elf.root.type == bfd_link_hash_defweak
1368 || (h->elf.elf_link_hash_flags
1369 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1370 || (!info->shared
1371 && (sec->flags & SEC_ALLOC) != 0
1372 && h != NULL
1373 && (h->elf.root.type == bfd_link_hash_defweak
1374 || (h->elf.elf_link_hash_flags
1375 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1376 {
1377 struct elf32_hppa_dyn_reloc_entry *p;
1378 struct elf32_hppa_dyn_reloc_entry **head;
1379
1380 /* Create a reloc section in dynobj and make room for
1381 this reloc. */
1382 if (sreloc == NULL)
1383 {
1384 char *name;
1385 bfd *dynobj;
1386
1387 name = (bfd_elf_string_from_elf_section
1388 (abfd,
1389 elf_elfheader (abfd)->e_shstrndx,
1390 elf_section_data (sec)->rel_hdr.sh_name));
1391 if (name == NULL)
1392 {
1393 (*_bfd_error_handler)
1394 (_("Could not find relocation section for %s"),
1395 sec->name);
1396 bfd_set_error (bfd_error_bad_value);
1397 return FALSE;
1398 }
1399
1400 if (htab->elf.dynobj == NULL)
1401 htab->elf.dynobj = abfd;
1402
1403 dynobj = htab->elf.dynobj;
1404 sreloc = bfd_get_section_by_name (dynobj, name);
1405 if (sreloc == NULL)
1406 {
1407 flagword flags;
1408
1409 sreloc = bfd_make_section (dynobj, name);
1410 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1411 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1412 if ((sec->flags & SEC_ALLOC) != 0)
1413 flags |= SEC_ALLOC | SEC_LOAD;
1414 if (sreloc == NULL
1415 || !bfd_set_section_flags (dynobj, sreloc, flags)
1416 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1417 return FALSE;
1418 }
1419
1420 elf_section_data (sec)->sreloc = sreloc;
1421 }
1422
1423 /* If this is a global symbol, we count the number of
1424 relocations we need for this symbol. */
1425 if (h != NULL)
1426 {
1427 head = &h->dyn_relocs;
1428 }
1429 else
1430 {
1431 /* Track dynamic relocs needed for local syms too.
1432 We really need local syms available to do this
1433 easily. Oh well. */
1434
1435 asection *s;
1436 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1437 sec, r_symndx);
1438 if (s == NULL)
1439 return FALSE;
1440
1441 head = ((struct elf32_hppa_dyn_reloc_entry **)
1442 &elf_section_data (s)->local_dynrel);
1443 }
1444
1445 p = *head;
1446 if (p == NULL || p->sec != sec)
1447 {
1448 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1449 if (p == NULL)
1450 return FALSE;
1451 p->next = *head;
1452 *head = p;
1453 p->sec = sec;
1454 p->count = 0;
1455 #if RELATIVE_DYNRELOCS
1456 p->relative_count = 0;
1457 #endif
1458 }
1459
1460 p->count += 1;
1461 #if RELATIVE_DYNRELOCS
1462 if (!IS_ABSOLUTE_RELOC (rtype))
1463 p->relative_count += 1;
1464 #endif
1465 }
1466 }
1467 }
1468
1469 return TRUE;
1470 }
1471
1472 /* Return the section that should be marked against garbage collection
1473 for a given relocation. */
1474
1475 static asection *
1476 elf32_hppa_gc_mark_hook (asection *sec,
1477 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1478 Elf_Internal_Rela *rel,
1479 struct elf_link_hash_entry *h,
1480 Elf_Internal_Sym *sym)
1481 {
1482 if (h != NULL)
1483 {
1484 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1485 {
1486 case R_PARISC_GNU_VTINHERIT:
1487 case R_PARISC_GNU_VTENTRY:
1488 break;
1489
1490 default:
1491 switch (h->root.type)
1492 {
1493 case bfd_link_hash_defined:
1494 case bfd_link_hash_defweak:
1495 return h->root.u.def.section;
1496
1497 case bfd_link_hash_common:
1498 return h->root.u.c.p->section;
1499
1500 default:
1501 break;
1502 }
1503 }
1504 }
1505 else
1506 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1507
1508 return NULL;
1509 }
1510
1511 /* Update the got and plt entry reference counts for the section being
1512 removed. */
1513
1514 static bfd_boolean
1515 elf32_hppa_gc_sweep_hook (bfd *abfd,
1516 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1517 asection *sec,
1518 const Elf_Internal_Rela *relocs)
1519 {
1520 Elf_Internal_Shdr *symtab_hdr;
1521 struct elf_link_hash_entry **sym_hashes;
1522 bfd_signed_vma *local_got_refcounts;
1523 bfd_signed_vma *local_plt_refcounts;
1524 const Elf_Internal_Rela *rel, *relend;
1525
1526 elf_section_data (sec)->local_dynrel = NULL;
1527
1528 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1529 sym_hashes = elf_sym_hashes (abfd);
1530 local_got_refcounts = elf_local_got_refcounts (abfd);
1531 local_plt_refcounts = local_got_refcounts;
1532 if (local_plt_refcounts != NULL)
1533 local_plt_refcounts += symtab_hdr->sh_info;
1534
1535 relend = relocs + sec->reloc_count;
1536 for (rel = relocs; rel < relend; rel++)
1537 {
1538 unsigned long r_symndx;
1539 unsigned int r_type;
1540 struct elf_link_hash_entry *h = NULL;
1541
1542 r_symndx = ELF32_R_SYM (rel->r_info);
1543 if (r_symndx >= symtab_hdr->sh_info)
1544 {
1545 struct elf32_hppa_link_hash_entry *eh;
1546 struct elf32_hppa_dyn_reloc_entry **pp;
1547 struct elf32_hppa_dyn_reloc_entry *p;
1548
1549 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1550 eh = (struct elf32_hppa_link_hash_entry *) h;
1551
1552 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1553 if (p->sec == sec)
1554 {
1555 /* Everything must go for SEC. */
1556 *pp = p->next;
1557 break;
1558 }
1559 }
1560
1561 r_type = ELF32_R_TYPE (rel->r_info);
1562 switch (r_type)
1563 {
1564 case R_PARISC_DLTIND14F:
1565 case R_PARISC_DLTIND14R:
1566 case R_PARISC_DLTIND21L:
1567 if (h != NULL)
1568 {
1569 if (h->got.refcount > 0)
1570 h->got.refcount -= 1;
1571 }
1572 else if (local_got_refcounts != NULL)
1573 {
1574 if (local_got_refcounts[r_symndx] > 0)
1575 local_got_refcounts[r_symndx] -= 1;
1576 }
1577 break;
1578
1579 case R_PARISC_PCREL12F:
1580 case R_PARISC_PCREL17C:
1581 case R_PARISC_PCREL17F:
1582 case R_PARISC_PCREL22F:
1583 if (h != NULL)
1584 {
1585 if (h->plt.refcount > 0)
1586 h->plt.refcount -= 1;
1587 }
1588 break;
1589
1590 case R_PARISC_PLABEL14R:
1591 case R_PARISC_PLABEL21L:
1592 case R_PARISC_PLABEL32:
1593 if (h != NULL)
1594 {
1595 if (h->plt.refcount > 0)
1596 h->plt.refcount -= 1;
1597 }
1598 else if (local_plt_refcounts != NULL)
1599 {
1600 if (local_plt_refcounts[r_symndx] > 0)
1601 local_plt_refcounts[r_symndx] -= 1;
1602 }
1603 break;
1604
1605 default:
1606 break;
1607 }
1608 }
1609
1610 return TRUE;
1611 }
1612
1613 /* Our own version of hide_symbol, so that we can keep plt entries for
1614 plabels. */
1615
1616 static void
1617 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1618 struct elf_link_hash_entry *h,
1619 bfd_boolean force_local)
1620 {
1621 if (force_local)
1622 {
1623 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1624 if (h->dynindx != -1)
1625 {
1626 h->dynindx = -1;
1627 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1628 h->dynstr_index);
1629 }
1630 }
1631
1632 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1633 {
1634 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1635 h->plt.offset = (bfd_vma) -1;
1636 }
1637 }
1638
1639 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1640 will be called from elflink.h. If elflink.h doesn't call our
1641 finish_dynamic_symbol routine, we'll need to do something about
1642 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1643 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1644 ((DYN) \
1645 && ((INFO)->shared \
1646 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1647 && ((H)->dynindx != -1 \
1648 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1649
1650 /* Adjust a symbol defined by a dynamic object and referenced by a
1651 regular object. The current definition is in some section of the
1652 dynamic object, but we're not including those sections. We have to
1653 change the definition to something the rest of the link can
1654 understand. */
1655
1656 static bfd_boolean
1657 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1658 struct elf_link_hash_entry *h)
1659 {
1660 struct elf32_hppa_link_hash_table *htab;
1661 struct elf32_hppa_link_hash_entry *eh;
1662 struct elf32_hppa_dyn_reloc_entry *p;
1663 asection *s;
1664 unsigned int power_of_two;
1665
1666 /* If this is a function, put it in the procedure linkage table. We
1667 will fill in the contents of the procedure linkage table later. */
1668 if (h->type == STT_FUNC
1669 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1670 {
1671 if (h->plt.refcount <= 0
1672 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1673 && h->root.type != bfd_link_hash_defweak
1674 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1675 && (!info->shared || info->symbolic)))
1676 {
1677 /* The .plt entry is not needed when:
1678 a) Garbage collection has removed all references to the
1679 symbol, or
1680 b) We know for certain the symbol is defined in this
1681 object, and it's not a weak definition, nor is the symbol
1682 used by a plabel relocation. Either this object is the
1683 application or we are doing a shared symbolic link. */
1684
1685 /* As a special sop to the hppa ABI, we keep a .plt entry
1686 for functions in sections containing PIC code. */
1687 if (!info->shared
1688 && h->plt.refcount > 0
1689 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1690 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1691 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1692 else
1693 {
1694 h->plt.offset = (bfd_vma) -1;
1695 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1696 }
1697 }
1698
1699 return TRUE;
1700 }
1701 else
1702 h->plt.offset = (bfd_vma) -1;
1703
1704 /* If this is a weak symbol, and there is a real definition, the
1705 processor independent code will have arranged for us to see the
1706 real definition first, and we can just use the same value. */
1707 if (h->weakdef != NULL)
1708 {
1709 if (h->weakdef->root.type != bfd_link_hash_defined
1710 && h->weakdef->root.type != bfd_link_hash_defweak)
1711 abort ();
1712 h->root.u.def.section = h->weakdef->root.u.def.section;
1713 h->root.u.def.value = h->weakdef->root.u.def.value;
1714 return TRUE;
1715 }
1716
1717 /* This is a reference to a symbol defined by a dynamic object which
1718 is not a function. */
1719
1720 /* If we are creating a shared library, we must presume that the
1721 only references to the symbol are via the global offset table.
1722 For such cases we need not do anything here; the relocations will
1723 be handled correctly by relocate_section. */
1724 if (info->shared)
1725 return TRUE;
1726
1727 /* If there are no references to this symbol that do not use the
1728 GOT, we don't need to generate a copy reloc. */
1729 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1730 return TRUE;
1731
1732 eh = (struct elf32_hppa_link_hash_entry *) h;
1733 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1734 {
1735 s = p->sec->output_section;
1736 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1737 break;
1738 }
1739
1740 /* If we didn't find any dynamic relocs in read-only sections, then
1741 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1742 if (p == NULL)
1743 {
1744 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1745 return TRUE;
1746 }
1747
1748 /* We must allocate the symbol in our .dynbss section, which will
1749 become part of the .bss section of the executable. There will be
1750 an entry for this symbol in the .dynsym section. The dynamic
1751 object will contain position independent code, so all references
1752 from the dynamic object to this symbol will go through the global
1753 offset table. The dynamic linker will use the .dynsym entry to
1754 determine the address it must put in the global offset table, so
1755 both the dynamic object and the regular object will refer to the
1756 same memory location for the variable. */
1757
1758 htab = hppa_link_hash_table (info);
1759
1760 /* We must generate a COPY reloc to tell the dynamic linker to
1761 copy the initial value out of the dynamic object and into the
1762 runtime process image. */
1763 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1764 {
1765 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1766 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1767 }
1768
1769 /* We need to figure out the alignment required for this symbol. I
1770 have no idea how other ELF linkers handle this. */
1771
1772 power_of_two = bfd_log2 (h->size);
1773 if (power_of_two > 3)
1774 power_of_two = 3;
1775
1776 /* Apply the required alignment. */
1777 s = htab->sdynbss;
1778 s->_raw_size = BFD_ALIGN (s->_raw_size,
1779 (bfd_size_type) (1 << power_of_two));
1780 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1781 {
1782 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1783 return FALSE;
1784 }
1785
1786 /* Define the symbol as being at this point in the section. */
1787 h->root.u.def.section = s;
1788 h->root.u.def.value = s->_raw_size;
1789
1790 /* Increment the section size to make room for the symbol. */
1791 s->_raw_size += h->size;
1792
1793 return TRUE;
1794 }
1795
1796 /* Called via elf_link_hash_traverse to create .plt entries for an
1797 application that uses statically linked PIC functions. Similar to
1798 the first part of elf32_hppa_adjust_dynamic_symbol. */
1799
1800 static bfd_boolean
1801 mark_PIC_calls (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
1802 {
1803 if (h->root.type == bfd_link_hash_warning)
1804 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1805
1806 if (! (h->plt.refcount > 0
1807 && (h->root.type == bfd_link_hash_defined
1808 || h->root.type == bfd_link_hash_defweak)
1809 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
1810 {
1811 h->plt.offset = (bfd_vma) -1;
1812 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1813 return TRUE;
1814 }
1815
1816 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1817 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1818
1819 return TRUE;
1820 }
1821
1822 /* Allocate space in the .plt for entries that won't have relocations.
1823 ie. pic_call and plabel entries. */
1824
1825 static bfd_boolean
1826 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1827 {
1828 struct bfd_link_info *info;
1829 struct elf32_hppa_link_hash_table *htab;
1830 asection *s;
1831
1832 if (h->root.type == bfd_link_hash_indirect)
1833 return TRUE;
1834
1835 if (h->root.type == bfd_link_hash_warning)
1836 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1837
1838 info = inf;
1839 htab = hppa_link_hash_table (info);
1840 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
1841 {
1842 /* Make an entry in the .plt section for non-pic code that is
1843 calling pic code. */
1844 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1845 s = htab->splt;
1846 h->plt.offset = s->_raw_size;
1847 s->_raw_size += PLT_ENTRY_SIZE;
1848 }
1849 else if (htab->elf.dynamic_sections_created
1850 && h->plt.refcount > 0)
1851 {
1852 /* Make sure this symbol is output as a dynamic symbol.
1853 Undefined weak syms won't yet be marked as dynamic. */
1854 if (h->dynindx == -1
1855 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1856 && h->type != STT_PARISC_MILLI)
1857 {
1858 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1859 return FALSE;
1860 }
1861
1862 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1863 {
1864 /* Allocate these later. From this point on, h->plabel
1865 means that the plt entry is only used by a plabel.
1866 We'll be using a normal plt entry for this symbol, so
1867 clear the plabel indicator. */
1868 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1869 }
1870 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1871 {
1872 /* Make an entry in the .plt section for plabel references
1873 that won't have a .plt entry for other reasons. */
1874 s = htab->splt;
1875 h->plt.offset = s->_raw_size;
1876 s->_raw_size += PLT_ENTRY_SIZE;
1877 }
1878 else
1879 {
1880 /* No .plt entry needed. */
1881 h->plt.offset = (bfd_vma) -1;
1882 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1883 }
1884 }
1885 else
1886 {
1887 h->plt.offset = (bfd_vma) -1;
1888 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1889 }
1890
1891 return TRUE;
1892 }
1893
1894 /* Allocate space in .plt, .got and associated reloc sections for
1895 global syms. */
1896
1897 static bfd_boolean
1898 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1899 {
1900 struct bfd_link_info *info;
1901 struct elf32_hppa_link_hash_table *htab;
1902 asection *s;
1903 struct elf32_hppa_link_hash_entry *eh;
1904 struct elf32_hppa_dyn_reloc_entry *p;
1905
1906 if (h->root.type == bfd_link_hash_indirect)
1907 return TRUE;
1908
1909 if (h->root.type == bfd_link_hash_warning)
1910 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1911
1912 info = inf;
1913 htab = hppa_link_hash_table (info);
1914 if (htab->elf.dynamic_sections_created
1915 && h->plt.offset != (bfd_vma) -1
1916 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
1917 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1918 {
1919 /* Make an entry in the .plt section. */
1920 s = htab->splt;
1921 h->plt.offset = s->_raw_size;
1922 s->_raw_size += PLT_ENTRY_SIZE;
1923
1924 /* We also need to make an entry in the .rela.plt section. */
1925 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1926 htab->need_plt_stub = 1;
1927 }
1928
1929 if (h->got.refcount > 0)
1930 {
1931 /* Make sure this symbol is output as a dynamic symbol.
1932 Undefined weak syms won't yet be marked as dynamic. */
1933 if (h->dynindx == -1
1934 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1935 && h->type != STT_PARISC_MILLI)
1936 {
1937 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1938 return FALSE;
1939 }
1940
1941 s = htab->sgot;
1942 h->got.offset = s->_raw_size;
1943 s->_raw_size += GOT_ENTRY_SIZE;
1944 if (htab->elf.dynamic_sections_created
1945 && (info->shared
1946 || (h->dynindx != -1
1947 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1948 {
1949 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1950 }
1951 }
1952 else
1953 h->got.offset = (bfd_vma) -1;
1954
1955 eh = (struct elf32_hppa_link_hash_entry *) h;
1956 if (eh->dyn_relocs == NULL)
1957 return TRUE;
1958
1959 /* If this is a -Bsymbolic shared link, then we need to discard all
1960 space allocated for dynamic pc-relative relocs against symbols
1961 defined in a regular object. For the normal shared case, discard
1962 space for relocs that have become local due to symbol visibility
1963 changes. */
1964 if (info->shared)
1965 {
1966 #if RELATIVE_DYNRELOCS
1967 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1968 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1969 || info->symbolic))
1970 {
1971 struct elf32_hppa_dyn_reloc_entry **pp;
1972
1973 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1974 {
1975 p->count -= p->relative_count;
1976 p->relative_count = 0;
1977 if (p->count == 0)
1978 *pp = p->next;
1979 else
1980 pp = &p->next;
1981 }
1982 }
1983 #endif
1984 }
1985 else
1986 {
1987 /* For the non-shared case, discard space for relocs against
1988 symbols which turn out to need copy relocs or are not
1989 dynamic. */
1990 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1991 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1992 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1993 || (htab->elf.dynamic_sections_created
1994 && (h->root.type == bfd_link_hash_undefweak
1995 || h->root.type == bfd_link_hash_undefined))))
1996 {
1997 /* Make sure this symbol is output as a dynamic symbol.
1998 Undefined weak syms won't yet be marked as dynamic. */
1999 if (h->dynindx == -1
2000 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2001 && h->type != STT_PARISC_MILLI)
2002 {
2003 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2004 return FALSE;
2005 }
2006
2007 /* If that succeeded, we know we'll be keeping all the
2008 relocs. */
2009 if (h->dynindx != -1)
2010 goto keep;
2011 }
2012
2013 eh->dyn_relocs = NULL;
2014 return TRUE;
2015
2016 keep: ;
2017 }
2018
2019 /* Finally, allocate space. */
2020 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2021 {
2022 asection *sreloc = elf_section_data (p->sec)->sreloc;
2023 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2024 }
2025
2026 return TRUE;
2027 }
2028
2029 /* This function is called via elf_link_hash_traverse to force
2030 millicode symbols local so they do not end up as globals in the
2031 dynamic symbol table. We ought to be able to do this in
2032 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2033 for all dynamic symbols. Arguably, this is a bug in
2034 elf_adjust_dynamic_symbol. */
2035
2036 static bfd_boolean
2037 clobber_millicode_symbols (struct elf_link_hash_entry *h,
2038 struct bfd_link_info *info)
2039 {
2040 if (h->root.type == bfd_link_hash_warning)
2041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2042
2043 if (h->type == STT_PARISC_MILLI
2044 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2045 {
2046 elf32_hppa_hide_symbol (info, h, TRUE);
2047 }
2048 return TRUE;
2049 }
2050
2051 /* Find any dynamic relocs that apply to read-only sections. */
2052
2053 static bfd_boolean
2054 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2055 {
2056 struct elf32_hppa_link_hash_entry *eh;
2057 struct elf32_hppa_dyn_reloc_entry *p;
2058
2059 if (h->root.type == bfd_link_hash_warning)
2060 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2061
2062 eh = (struct elf32_hppa_link_hash_entry *) h;
2063 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2064 {
2065 asection *s = p->sec->output_section;
2066
2067 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2068 {
2069 struct bfd_link_info *info = inf;
2070
2071 info->flags |= DF_TEXTREL;
2072
2073 /* Not an error, just cut short the traversal. */
2074 return FALSE;
2075 }
2076 }
2077 return TRUE;
2078 }
2079
2080 /* Set the sizes of the dynamic sections. */
2081
2082 static bfd_boolean
2083 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2084 struct bfd_link_info *info)
2085 {
2086 struct elf32_hppa_link_hash_table *htab;
2087 bfd *dynobj;
2088 bfd *ibfd;
2089 asection *s;
2090 bfd_boolean relocs;
2091
2092 htab = hppa_link_hash_table (info);
2093 dynobj = htab->elf.dynobj;
2094 if (dynobj == NULL)
2095 abort ();
2096
2097 if (htab->elf.dynamic_sections_created)
2098 {
2099 /* Set the contents of the .interp section to the interpreter. */
2100 if (! info->shared)
2101 {
2102 s = bfd_get_section_by_name (dynobj, ".interp");
2103 if (s == NULL)
2104 abort ();
2105 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2106 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2107 }
2108
2109 /* Force millicode symbols local. */
2110 elf_link_hash_traverse (&htab->elf,
2111 clobber_millicode_symbols,
2112 info);
2113 }
2114 else
2115 {
2116 /* Run through the function symbols, looking for any that are
2117 PIC, and mark them as needing .plt entries so that %r19 will
2118 be set up. */
2119 if (! info->shared)
2120 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, info);
2121 }
2122
2123 /* Set up .got and .plt offsets for local syms, and space for local
2124 dynamic relocs. */
2125 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2126 {
2127 bfd_signed_vma *local_got;
2128 bfd_signed_vma *end_local_got;
2129 bfd_signed_vma *local_plt;
2130 bfd_signed_vma *end_local_plt;
2131 bfd_size_type locsymcount;
2132 Elf_Internal_Shdr *symtab_hdr;
2133 asection *srel;
2134
2135 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2136 continue;
2137
2138 for (s = ibfd->sections; s != NULL; s = s->next)
2139 {
2140 struct elf32_hppa_dyn_reloc_entry *p;
2141
2142 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2143 elf_section_data (s)->local_dynrel);
2144 p != NULL;
2145 p = p->next)
2146 {
2147 if (!bfd_is_abs_section (p->sec)
2148 && bfd_is_abs_section (p->sec->output_section))
2149 {
2150 /* Input section has been discarded, either because
2151 it is a copy of a linkonce section or due to
2152 linker script /DISCARD/, so we'll be discarding
2153 the relocs too. */
2154 }
2155 else if (p->count != 0)
2156 {
2157 srel = elf_section_data (p->sec)->sreloc;
2158 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2159 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2160 info->flags |= DF_TEXTREL;
2161 }
2162 }
2163 }
2164
2165 local_got = elf_local_got_refcounts (ibfd);
2166 if (!local_got)
2167 continue;
2168
2169 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2170 locsymcount = symtab_hdr->sh_info;
2171 end_local_got = local_got + locsymcount;
2172 s = htab->sgot;
2173 srel = htab->srelgot;
2174 for (; local_got < end_local_got; ++local_got)
2175 {
2176 if (*local_got > 0)
2177 {
2178 *local_got = s->_raw_size;
2179 s->_raw_size += GOT_ENTRY_SIZE;
2180 if (info->shared)
2181 srel->_raw_size += sizeof (Elf32_External_Rela);
2182 }
2183 else
2184 *local_got = (bfd_vma) -1;
2185 }
2186
2187 local_plt = end_local_got;
2188 end_local_plt = local_plt + locsymcount;
2189 if (! htab->elf.dynamic_sections_created)
2190 {
2191 /* Won't be used, but be safe. */
2192 for (; local_plt < end_local_plt; ++local_plt)
2193 *local_plt = (bfd_vma) -1;
2194 }
2195 else
2196 {
2197 s = htab->splt;
2198 srel = htab->srelplt;
2199 for (; local_plt < end_local_plt; ++local_plt)
2200 {
2201 if (*local_plt > 0)
2202 {
2203 *local_plt = s->_raw_size;
2204 s->_raw_size += PLT_ENTRY_SIZE;
2205 if (info->shared)
2206 srel->_raw_size += sizeof (Elf32_External_Rela);
2207 }
2208 else
2209 *local_plt = (bfd_vma) -1;
2210 }
2211 }
2212 }
2213
2214 /* Do all the .plt entries without relocs first. The dynamic linker
2215 uses the last .plt reloc to find the end of the .plt (and hence
2216 the start of the .got) for lazy linking. */
2217 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2218
2219 /* Allocate global sym .plt and .got entries, and space for global
2220 sym dynamic relocs. */
2221 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2222
2223 /* The check_relocs and adjust_dynamic_symbol entry points have
2224 determined the sizes of the various dynamic sections. Allocate
2225 memory for them. */
2226 relocs = FALSE;
2227 for (s = dynobj->sections; s != NULL; s = s->next)
2228 {
2229 if ((s->flags & SEC_LINKER_CREATED) == 0)
2230 continue;
2231
2232 if (s == htab->splt)
2233 {
2234 if (htab->need_plt_stub)
2235 {
2236 /* Make space for the plt stub at the end of the .plt
2237 section. We want this stub right at the end, up
2238 against the .got section. */
2239 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2240 int pltalign = bfd_section_alignment (dynobj, s);
2241 bfd_size_type mask;
2242
2243 if (gotalign > pltalign)
2244 bfd_set_section_alignment (dynobj, s, gotalign);
2245 mask = ((bfd_size_type) 1 << gotalign) - 1;
2246 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2247 }
2248 }
2249 else if (s == htab->sgot)
2250 ;
2251 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2252 {
2253 if (s->_raw_size != 0)
2254 {
2255 /* Remember whether there are any reloc sections other
2256 than .rela.plt. */
2257 if (s != htab->srelplt)
2258 relocs = TRUE;
2259
2260 /* We use the reloc_count field as a counter if we need
2261 to copy relocs into the output file. */
2262 s->reloc_count = 0;
2263 }
2264 }
2265 else
2266 {
2267 /* It's not one of our sections, so don't allocate space. */
2268 continue;
2269 }
2270
2271 if (s->_raw_size == 0)
2272 {
2273 /* If we don't need this section, strip it from the
2274 output file. This is mostly to handle .rela.bss and
2275 .rela.plt. We must create both sections in
2276 create_dynamic_sections, because they must be created
2277 before the linker maps input sections to output
2278 sections. The linker does that before
2279 adjust_dynamic_symbol is called, and it is that
2280 function which decides whether anything needs to go
2281 into these sections. */
2282 _bfd_strip_section_from_output (info, s);
2283 continue;
2284 }
2285
2286 /* Allocate memory for the section contents. Zero it, because
2287 we may not fill in all the reloc sections. */
2288 s->contents = bfd_zalloc (dynobj, s->_raw_size);
2289 if (s->contents == NULL && s->_raw_size != 0)
2290 return FALSE;
2291 }
2292
2293 if (htab->elf.dynamic_sections_created)
2294 {
2295 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2296 actually has nothing to do with the PLT, it is how we
2297 communicate the LTP value of a load module to the dynamic
2298 linker. */
2299 #define add_dynamic_entry(TAG, VAL) \
2300 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2301
2302 if (!add_dynamic_entry (DT_PLTGOT, 0))
2303 return FALSE;
2304
2305 /* Add some entries to the .dynamic section. We fill in the
2306 values later, in elf32_hppa_finish_dynamic_sections, but we
2307 must add the entries now so that we get the correct size for
2308 the .dynamic section. The DT_DEBUG entry is filled in by the
2309 dynamic linker and used by the debugger. */
2310 if (!info->shared)
2311 {
2312 if (!add_dynamic_entry (DT_DEBUG, 0))
2313 return FALSE;
2314 }
2315
2316 if (htab->srelplt->_raw_size != 0)
2317 {
2318 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2319 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2320 || !add_dynamic_entry (DT_JMPREL, 0))
2321 return FALSE;
2322 }
2323
2324 if (relocs)
2325 {
2326 if (!add_dynamic_entry (DT_RELA, 0)
2327 || !add_dynamic_entry (DT_RELASZ, 0)
2328 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2329 return FALSE;
2330
2331 /* If any dynamic relocs apply to a read-only section,
2332 then we need a DT_TEXTREL entry. */
2333 if ((info->flags & DF_TEXTREL) == 0)
2334 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2335
2336 if ((info->flags & DF_TEXTREL) != 0)
2337 {
2338 if (!add_dynamic_entry (DT_TEXTREL, 0))
2339 return FALSE;
2340 }
2341 }
2342 }
2343 #undef add_dynamic_entry
2344
2345 return TRUE;
2346 }
2347
2348 /* External entry points for sizing and building linker stubs. */
2349
2350 /* Set up various things so that we can make a list of input sections
2351 for each output section included in the link. Returns -1 on error,
2352 0 when no stubs will be needed, and 1 on success. */
2353
2354 int
2355 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2356 {
2357 bfd *input_bfd;
2358 unsigned int bfd_count;
2359 int top_id, top_index;
2360 asection *section;
2361 asection **input_list, **list;
2362 bfd_size_type amt;
2363 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2364
2365 if (htab->elf.root.creator->flavour != bfd_target_elf_flavour)
2366 return 0;
2367
2368 /* Count the number of input BFDs and find the top input section id. */
2369 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2370 input_bfd != NULL;
2371 input_bfd = input_bfd->link_next)
2372 {
2373 bfd_count += 1;
2374 for (section = input_bfd->sections;
2375 section != NULL;
2376 section = section->next)
2377 {
2378 if (top_id < section->id)
2379 top_id = section->id;
2380 }
2381 }
2382 htab->bfd_count = bfd_count;
2383
2384 amt = sizeof (struct map_stub) * (top_id + 1);
2385 htab->stub_group = bfd_zmalloc (amt);
2386 if (htab->stub_group == NULL)
2387 return -1;
2388
2389 /* We can't use output_bfd->section_count here to find the top output
2390 section index as some sections may have been removed, and
2391 _bfd_strip_section_from_output doesn't renumber the indices. */
2392 for (section = output_bfd->sections, top_index = 0;
2393 section != NULL;
2394 section = section->next)
2395 {
2396 if (top_index < section->index)
2397 top_index = section->index;
2398 }
2399
2400 htab->top_index = top_index;
2401 amt = sizeof (asection *) * (top_index + 1);
2402 input_list = bfd_malloc (amt);
2403 htab->input_list = input_list;
2404 if (input_list == NULL)
2405 return -1;
2406
2407 /* For sections we aren't interested in, mark their entries with a
2408 value we can check later. */
2409 list = input_list + top_index;
2410 do
2411 *list = bfd_abs_section_ptr;
2412 while (list-- != input_list);
2413
2414 for (section = output_bfd->sections;
2415 section != NULL;
2416 section = section->next)
2417 {
2418 if ((section->flags & SEC_CODE) != 0)
2419 input_list[section->index] = NULL;
2420 }
2421
2422 return 1;
2423 }
2424
2425 /* The linker repeatedly calls this function for each input section,
2426 in the order that input sections are linked into output sections.
2427 Build lists of input sections to determine groupings between which
2428 we may insert linker stubs. */
2429
2430 void
2431 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2432 {
2433 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2434
2435 if (isec->output_section->index <= htab->top_index)
2436 {
2437 asection **list = htab->input_list + isec->output_section->index;
2438 if (*list != bfd_abs_section_ptr)
2439 {
2440 /* Steal the link_sec pointer for our list. */
2441 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2442 /* This happens to make the list in reverse order,
2443 which is what we want. */
2444 PREV_SEC (isec) = *list;
2445 *list = isec;
2446 }
2447 }
2448 }
2449
2450 /* See whether we can group stub sections together. Grouping stub
2451 sections may result in fewer stubs. More importantly, we need to
2452 put all .init* and .fini* stubs at the beginning of the .init or
2453 .fini output sections respectively, because glibc splits the
2454 _init and _fini functions into multiple parts. Putting a stub in
2455 the middle of a function is not a good idea. */
2456
2457 static void
2458 group_sections (struct elf32_hppa_link_hash_table *htab,
2459 bfd_size_type stub_group_size,
2460 bfd_boolean stubs_always_before_branch)
2461 {
2462 asection **list = htab->input_list + htab->top_index;
2463 do
2464 {
2465 asection *tail = *list;
2466 if (tail == bfd_abs_section_ptr)
2467 continue;
2468 while (tail != NULL)
2469 {
2470 asection *curr;
2471 asection *prev;
2472 bfd_size_type total;
2473 bfd_boolean big_sec;
2474
2475 curr = tail;
2476 if (tail->_cooked_size)
2477 total = tail->_cooked_size;
2478 else
2479 total = tail->_raw_size;
2480 big_sec = total >= stub_group_size;
2481
2482 while ((prev = PREV_SEC (curr)) != NULL
2483 && ((total += curr->output_offset - prev->output_offset)
2484 < stub_group_size))
2485 curr = prev;
2486
2487 /* OK, the size from the start of CURR to the end is less
2488 than 240000 bytes and thus can be handled by one stub
2489 section. (or the tail section is itself larger than
2490 240000 bytes, in which case we may be toast.)
2491 We should really be keeping track of the total size of
2492 stubs added here, as stubs contribute to the final output
2493 section size. That's a little tricky, and this way will
2494 only break if stubs added total more than 22144 bytes, or
2495 2768 long branch stubs. It seems unlikely for more than
2496 2768 different functions to be called, especially from
2497 code only 240000 bytes long. This limit used to be
2498 250000, but c++ code tends to generate lots of little
2499 functions, and sometimes violated the assumption. */
2500 do
2501 {
2502 prev = PREV_SEC (tail);
2503 /* Set up this stub group. */
2504 htab->stub_group[tail->id].link_sec = curr;
2505 }
2506 while (tail != curr && (tail = prev) != NULL);
2507
2508 /* But wait, there's more! Input sections up to 240000
2509 bytes before the stub section can be handled by it too.
2510 Don't do this if we have a really large section after the
2511 stubs, as adding more stubs increases the chance that
2512 branches may not reach into the stub section. */
2513 if (!stubs_always_before_branch && !big_sec)
2514 {
2515 total = 0;
2516 while (prev != NULL
2517 && ((total += tail->output_offset - prev->output_offset)
2518 < stub_group_size))
2519 {
2520 tail = prev;
2521 prev = PREV_SEC (tail);
2522 htab->stub_group[tail->id].link_sec = curr;
2523 }
2524 }
2525 tail = prev;
2526 }
2527 }
2528 while (list-- != htab->input_list);
2529 free (htab->input_list);
2530 #undef PREV_SEC
2531 }
2532
2533 /* Read in all local syms for all input bfds, and create hash entries
2534 for export stubs if we are building a multi-subspace shared lib.
2535 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2536
2537 static int
2538 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2539 {
2540 unsigned int bfd_indx;
2541 Elf_Internal_Sym *local_syms, **all_local_syms;
2542 int stub_changed = 0;
2543 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2544
2545 /* We want to read in symbol extension records only once. To do this
2546 we need to read in the local symbols in parallel and save them for
2547 later use; so hold pointers to the local symbols in an array. */
2548 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2549 all_local_syms = bfd_zmalloc (amt);
2550 htab->all_local_syms = all_local_syms;
2551 if (all_local_syms == NULL)
2552 return -1;
2553
2554 /* Walk over all the input BFDs, swapping in local symbols.
2555 If we are creating a shared library, create hash entries for the
2556 export stubs. */
2557 for (bfd_indx = 0;
2558 input_bfd != NULL;
2559 input_bfd = input_bfd->link_next, bfd_indx++)
2560 {
2561 Elf_Internal_Shdr *symtab_hdr;
2562
2563 /* We'll need the symbol table in a second. */
2564 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2565 if (symtab_hdr->sh_info == 0)
2566 continue;
2567
2568 /* We need an array of the local symbols attached to the input bfd. */
2569 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2570 if (local_syms == NULL)
2571 {
2572 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2573 symtab_hdr->sh_info, 0,
2574 NULL, NULL, NULL);
2575 /* Cache them for elf_link_input_bfd. */
2576 symtab_hdr->contents = (unsigned char *) local_syms;
2577 }
2578 if (local_syms == NULL)
2579 return -1;
2580
2581 all_local_syms[bfd_indx] = local_syms;
2582
2583 if (info->shared && htab->multi_subspace)
2584 {
2585 struct elf_link_hash_entry **sym_hashes;
2586 struct elf_link_hash_entry **end_hashes;
2587 unsigned int symcount;
2588
2589 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2590 - symtab_hdr->sh_info);
2591 sym_hashes = elf_sym_hashes (input_bfd);
2592 end_hashes = sym_hashes + symcount;
2593
2594 /* Look through the global syms for functions; We need to
2595 build export stubs for all globally visible functions. */
2596 for (; sym_hashes < end_hashes; sym_hashes++)
2597 {
2598 struct elf32_hppa_link_hash_entry *hash;
2599
2600 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2601
2602 while (hash->elf.root.type == bfd_link_hash_indirect
2603 || hash->elf.root.type == bfd_link_hash_warning)
2604 hash = ((struct elf32_hppa_link_hash_entry *)
2605 hash->elf.root.u.i.link);
2606
2607 /* At this point in the link, undefined syms have been
2608 resolved, so we need to check that the symbol was
2609 defined in this BFD. */
2610 if ((hash->elf.root.type == bfd_link_hash_defined
2611 || hash->elf.root.type == bfd_link_hash_defweak)
2612 && hash->elf.type == STT_FUNC
2613 && hash->elf.root.u.def.section->output_section != NULL
2614 && (hash->elf.root.u.def.section->output_section->owner
2615 == output_bfd)
2616 && hash->elf.root.u.def.section->owner == input_bfd
2617 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2618 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2619 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2620 {
2621 asection *sec;
2622 const char *stub_name;
2623 struct elf32_hppa_stub_hash_entry *stub_entry;
2624
2625 sec = hash->elf.root.u.def.section;
2626 stub_name = hash->elf.root.root.string;
2627 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2628 stub_name,
2629 FALSE, FALSE);
2630 if (stub_entry == NULL)
2631 {
2632 stub_entry = hppa_add_stub (stub_name, sec, htab);
2633 if (!stub_entry)
2634 return -1;
2635
2636 stub_entry->target_value = hash->elf.root.u.def.value;
2637 stub_entry->target_section = hash->elf.root.u.def.section;
2638 stub_entry->stub_type = hppa_stub_export;
2639 stub_entry->h = hash;
2640 stub_changed = 1;
2641 }
2642 else
2643 {
2644 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2645 bfd_archive_filename (input_bfd),
2646 stub_name);
2647 }
2648 }
2649 }
2650 }
2651 }
2652
2653 return stub_changed;
2654 }
2655
2656 /* Determine and set the size of the stub section for a final link.
2657
2658 The basic idea here is to examine all the relocations looking for
2659 PC-relative calls to a target that is unreachable with a "bl"
2660 instruction. */
2661
2662 bfd_boolean
2663 elf32_hppa_size_stubs
2664 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2665 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2666 asection * (*add_stub_section) (const char *, asection *),
2667 void (*layout_sections_again) (void))
2668 {
2669 bfd_size_type stub_group_size;
2670 bfd_boolean stubs_always_before_branch;
2671 bfd_boolean stub_changed;
2672 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2673
2674 /* Stash our params away. */
2675 htab->stub_bfd = stub_bfd;
2676 htab->multi_subspace = multi_subspace;
2677 htab->add_stub_section = add_stub_section;
2678 htab->layout_sections_again = layout_sections_again;
2679 stubs_always_before_branch = group_size < 0;
2680 if (group_size < 0)
2681 stub_group_size = -group_size;
2682 else
2683 stub_group_size = group_size;
2684 if (stub_group_size == 1)
2685 {
2686 /* Default values. */
2687 if (stubs_always_before_branch)
2688 {
2689 stub_group_size = 7680000;
2690 if (htab->has_17bit_branch || htab->multi_subspace)
2691 stub_group_size = 240000;
2692 if (htab->has_12bit_branch)
2693 stub_group_size = 7500;
2694 }
2695 else
2696 {
2697 stub_group_size = 6971392;
2698 if (htab->has_17bit_branch || htab->multi_subspace)
2699 stub_group_size = 217856;
2700 if (htab->has_12bit_branch)
2701 stub_group_size = 6808;
2702 }
2703 }
2704
2705 group_sections (htab, stub_group_size, stubs_always_before_branch);
2706
2707 switch (get_local_syms (output_bfd, info->input_bfds, info))
2708 {
2709 default:
2710 if (htab->all_local_syms)
2711 goto error_ret_free_local;
2712 return FALSE;
2713
2714 case 0:
2715 stub_changed = FALSE;
2716 break;
2717
2718 case 1:
2719 stub_changed = TRUE;
2720 break;
2721 }
2722
2723 while (1)
2724 {
2725 bfd *input_bfd;
2726 unsigned int bfd_indx;
2727 asection *stub_sec;
2728
2729 for (input_bfd = info->input_bfds, bfd_indx = 0;
2730 input_bfd != NULL;
2731 input_bfd = input_bfd->link_next, bfd_indx++)
2732 {
2733 Elf_Internal_Shdr *symtab_hdr;
2734 asection *section;
2735 Elf_Internal_Sym *local_syms;
2736
2737 /* We'll need the symbol table in a second. */
2738 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2739 if (symtab_hdr->sh_info == 0)
2740 continue;
2741
2742 local_syms = htab->all_local_syms[bfd_indx];
2743
2744 /* Walk over each section attached to the input bfd. */
2745 for (section = input_bfd->sections;
2746 section != NULL;
2747 section = section->next)
2748 {
2749 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2750
2751 /* If there aren't any relocs, then there's nothing more
2752 to do. */
2753 if ((section->flags & SEC_RELOC) == 0
2754 || section->reloc_count == 0)
2755 continue;
2756
2757 /* If this section is a link-once section that will be
2758 discarded, then don't create any stubs. */
2759 if (section->output_section == NULL
2760 || section->output_section->owner != output_bfd)
2761 continue;
2762
2763 /* Get the relocs. */
2764 internal_relocs
2765 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2766 info->keep_memory);
2767 if (internal_relocs == NULL)
2768 goto error_ret_free_local;
2769
2770 /* Now examine each relocation. */
2771 irela = internal_relocs;
2772 irelaend = irela + section->reloc_count;
2773 for (; irela < irelaend; irela++)
2774 {
2775 unsigned int r_type, r_indx;
2776 enum elf32_hppa_stub_type stub_type;
2777 struct elf32_hppa_stub_hash_entry *stub_entry;
2778 asection *sym_sec;
2779 bfd_vma sym_value;
2780 bfd_vma destination;
2781 struct elf32_hppa_link_hash_entry *hash;
2782 char *stub_name;
2783 const asection *id_sec;
2784
2785 r_type = ELF32_R_TYPE (irela->r_info);
2786 r_indx = ELF32_R_SYM (irela->r_info);
2787
2788 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2789 {
2790 bfd_set_error (bfd_error_bad_value);
2791 error_ret_free_internal:
2792 if (elf_section_data (section)->relocs == NULL)
2793 free (internal_relocs);
2794 goto error_ret_free_local;
2795 }
2796
2797 /* Only look for stubs on call instructions. */
2798 if (r_type != (unsigned int) R_PARISC_PCREL12F
2799 && r_type != (unsigned int) R_PARISC_PCREL17F
2800 && r_type != (unsigned int) R_PARISC_PCREL22F)
2801 continue;
2802
2803 /* Now determine the call target, its name, value,
2804 section. */
2805 sym_sec = NULL;
2806 sym_value = 0;
2807 destination = 0;
2808 hash = NULL;
2809 if (r_indx < symtab_hdr->sh_info)
2810 {
2811 /* It's a local symbol. */
2812 Elf_Internal_Sym *sym;
2813 Elf_Internal_Shdr *hdr;
2814
2815 sym = local_syms + r_indx;
2816 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2817 sym_sec = hdr->bfd_section;
2818 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2819 sym_value = sym->st_value;
2820 destination = (sym_value + irela->r_addend
2821 + sym_sec->output_offset
2822 + sym_sec->output_section->vma);
2823 }
2824 else
2825 {
2826 /* It's an external symbol. */
2827 int e_indx;
2828
2829 e_indx = r_indx - symtab_hdr->sh_info;
2830 hash = ((struct elf32_hppa_link_hash_entry *)
2831 elf_sym_hashes (input_bfd)[e_indx]);
2832
2833 while (hash->elf.root.type == bfd_link_hash_indirect
2834 || hash->elf.root.type == bfd_link_hash_warning)
2835 hash = ((struct elf32_hppa_link_hash_entry *)
2836 hash->elf.root.u.i.link);
2837
2838 if (hash->elf.root.type == bfd_link_hash_defined
2839 || hash->elf.root.type == bfd_link_hash_defweak)
2840 {
2841 sym_sec = hash->elf.root.u.def.section;
2842 sym_value = hash->elf.root.u.def.value;
2843 if (sym_sec->output_section != NULL)
2844 destination = (sym_value + irela->r_addend
2845 + sym_sec->output_offset
2846 + sym_sec->output_section->vma);
2847 }
2848 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2849 {
2850 if (! info->shared)
2851 continue;
2852 }
2853 else if (hash->elf.root.type == bfd_link_hash_undefined)
2854 {
2855 if (! (info->shared
2856 && info->unresolved_syms_in_objects == RM_IGNORE
2857 && (ELF_ST_VISIBILITY (hash->elf.other)
2858 == STV_DEFAULT)
2859 && hash->elf.type != STT_PARISC_MILLI))
2860 continue;
2861 }
2862 else
2863 {
2864 bfd_set_error (bfd_error_bad_value);
2865 goto error_ret_free_internal;
2866 }
2867 }
2868
2869 /* Determine what (if any) linker stub is needed. */
2870 stub_type = hppa_type_of_stub (section, irela, hash,
2871 destination);
2872 if (stub_type == hppa_stub_none)
2873 continue;
2874
2875 /* Support for grouping stub sections. */
2876 id_sec = htab->stub_group[section->id].link_sec;
2877
2878 /* Get the name of this stub. */
2879 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2880 if (!stub_name)
2881 goto error_ret_free_internal;
2882
2883 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2884 stub_name,
2885 FALSE, FALSE);
2886 if (stub_entry != NULL)
2887 {
2888 /* The proper stub has already been created. */
2889 free (stub_name);
2890 continue;
2891 }
2892
2893 stub_entry = hppa_add_stub (stub_name, section, htab);
2894 if (stub_entry == NULL)
2895 {
2896 free (stub_name);
2897 goto error_ret_free_internal;
2898 }
2899
2900 stub_entry->target_value = sym_value;
2901 stub_entry->target_section = sym_sec;
2902 stub_entry->stub_type = stub_type;
2903 if (info->shared)
2904 {
2905 if (stub_type == hppa_stub_import)
2906 stub_entry->stub_type = hppa_stub_import_shared;
2907 else if (stub_type == hppa_stub_long_branch)
2908 stub_entry->stub_type = hppa_stub_long_branch_shared;
2909 }
2910 stub_entry->h = hash;
2911 stub_changed = TRUE;
2912 }
2913
2914 /* We're done with the internal relocs, free them. */
2915 if (elf_section_data (section)->relocs == NULL)
2916 free (internal_relocs);
2917 }
2918 }
2919
2920 if (!stub_changed)
2921 break;
2922
2923 /* OK, we've added some stubs. Find out the new size of the
2924 stub sections. */
2925 for (stub_sec = htab->stub_bfd->sections;
2926 stub_sec != NULL;
2927 stub_sec = stub_sec->next)
2928 {
2929 stub_sec->_raw_size = 0;
2930 stub_sec->_cooked_size = 0;
2931 }
2932
2933 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2934
2935 /* Ask the linker to do its stuff. */
2936 (*htab->layout_sections_again) ();
2937 stub_changed = FALSE;
2938 }
2939
2940 free (htab->all_local_syms);
2941 return TRUE;
2942
2943 error_ret_free_local:
2944 free (htab->all_local_syms);
2945 return FALSE;
2946 }
2947
2948 /* For a final link, this function is called after we have sized the
2949 stubs to provide a value for __gp. */
2950
2951 bfd_boolean
2952 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2953 {
2954 struct bfd_link_hash_entry *h;
2955 asection *sec = NULL;
2956 bfd_vma gp_val = 0;
2957 struct elf32_hppa_link_hash_table *htab;
2958
2959 htab = hppa_link_hash_table (info);
2960 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2961
2962 if (h != NULL
2963 && (h->type == bfd_link_hash_defined
2964 || h->type == bfd_link_hash_defweak))
2965 {
2966 gp_val = h->u.def.value;
2967 sec = h->u.def.section;
2968 }
2969 else
2970 {
2971 asection *splt;
2972 asection *sgot;
2973
2974 if (htab->elf.root.creator->flavour == bfd_target_elf_flavour)
2975 {
2976 splt = htab->splt;
2977 sgot = htab->sgot;
2978 }
2979 else
2980 {
2981 /* If we're not elf, look up the output sections in the
2982 hope we may actually find them. */
2983 splt = bfd_get_section_by_name (abfd, ".plt");
2984 sgot = bfd_get_section_by_name (abfd, ".got");
2985 }
2986
2987 /* Choose to point our LTP at, in this order, one of .plt, .got,
2988 or .data, if these sections exist. In the case of choosing
2989 .plt try to make the LTP ideal for addressing anywhere in the
2990 .plt or .got with a 14 bit signed offset. Typically, the end
2991 of the .plt is the start of the .got, so choose .plt + 0x2000
2992 if either the .plt or .got is larger than 0x2000. If both
2993 the .plt and .got are smaller than 0x2000, choose the end of
2994 the .plt section. */
2995 sec = splt;
2996 if (sec != NULL)
2997 {
2998 gp_val = sec->_raw_size;
2999 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
3000 {
3001 gp_val = 0x2000;
3002 }
3003 }
3004 else
3005 {
3006 sec = sgot;
3007 if (sec != NULL)
3008 {
3009 /* We know we don't have a .plt. If .got is large,
3010 offset our LTP. */
3011 if (sec->_raw_size > 0x2000)
3012 gp_val = 0x2000;
3013 }
3014 else
3015 {
3016 /* No .plt or .got. Who cares what the LTP is? */
3017 sec = bfd_get_section_by_name (abfd, ".data");
3018 }
3019 }
3020
3021 if (h != NULL)
3022 {
3023 h->type = bfd_link_hash_defined;
3024 h->u.def.value = gp_val;
3025 if (sec != NULL)
3026 h->u.def.section = sec;
3027 else
3028 h->u.def.section = bfd_abs_section_ptr;
3029 }
3030 }
3031
3032 if (sec != NULL && sec->output_section != NULL)
3033 gp_val += sec->output_section->vma + sec->output_offset;
3034
3035 elf_gp (abfd) = gp_val;
3036 return TRUE;
3037 }
3038
3039 /* Build all the stubs associated with the current output file. The
3040 stubs are kept in a hash table attached to the main linker hash
3041 table. We also set up the .plt entries for statically linked PIC
3042 functions here. This function is called via hppaelf_finish in the
3043 linker. */
3044
3045 bfd_boolean
3046 elf32_hppa_build_stubs (struct bfd_link_info *info)
3047 {
3048 asection *stub_sec;
3049 struct bfd_hash_table *table;
3050 struct elf32_hppa_link_hash_table *htab;
3051
3052 htab = hppa_link_hash_table (info);
3053
3054 for (stub_sec = htab->stub_bfd->sections;
3055 stub_sec != NULL;
3056 stub_sec = stub_sec->next)
3057 {
3058 bfd_size_type size;
3059
3060 /* Allocate memory to hold the linker stubs. */
3061 size = stub_sec->_raw_size;
3062 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3063 if (stub_sec->contents == NULL && size != 0)
3064 return FALSE;
3065 stub_sec->_raw_size = 0;
3066 }
3067
3068 /* Build the stubs as directed by the stub hash table. */
3069 table = &htab->stub_hash_table;
3070 bfd_hash_traverse (table, hppa_build_one_stub, info);
3071
3072 return TRUE;
3073 }
3074
3075 /* Perform a final link. */
3076
3077 static bfd_boolean
3078 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3079 {
3080 /* Invoke the regular ELF linker to do all the work. */
3081 if (!bfd_elf32_bfd_final_link (abfd, info))
3082 return FALSE;
3083
3084 /* If we're producing a final executable, sort the contents of the
3085 unwind section. */
3086 return elf_hppa_sort_unwind (abfd);
3087 }
3088
3089 /* Record the lowest address for the data and text segments. */
3090
3091 static void
3092 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3093 asection *section,
3094 void *data)
3095 {
3096 struct elf32_hppa_link_hash_table *htab;
3097
3098 htab = (struct elf32_hppa_link_hash_table *) data;
3099
3100 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3101 {
3102 bfd_vma value = section->vma - section->filepos;
3103
3104 if ((section->flags & SEC_READONLY) != 0)
3105 {
3106 if (value < htab->text_segment_base)
3107 htab->text_segment_base = value;
3108 }
3109 else
3110 {
3111 if (value < htab->data_segment_base)
3112 htab->data_segment_base = value;
3113 }
3114 }
3115 }
3116
3117 /* Perform a relocation as part of a final link. */
3118
3119 static bfd_reloc_status_type
3120 final_link_relocate (asection *input_section,
3121 bfd_byte *contents,
3122 const Elf_Internal_Rela *rel,
3123 bfd_vma value,
3124 struct elf32_hppa_link_hash_table *htab,
3125 asection *sym_sec,
3126 struct elf32_hppa_link_hash_entry *h)
3127 {
3128 int insn;
3129 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3130 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3131 int r_format = howto->bitsize;
3132 enum hppa_reloc_field_selector_type_alt r_field;
3133 bfd *input_bfd = input_section->owner;
3134 bfd_vma offset = rel->r_offset;
3135 bfd_vma max_branch_offset = 0;
3136 bfd_byte *hit_data = contents + offset;
3137 bfd_signed_vma addend = rel->r_addend;
3138 bfd_vma location;
3139 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3140 int val;
3141
3142 if (r_type == R_PARISC_NONE)
3143 return bfd_reloc_ok;
3144
3145 insn = bfd_get_32 (input_bfd, hit_data);
3146
3147 /* Find out where we are and where we're going. */
3148 location = (offset +
3149 input_section->output_offset +
3150 input_section->output_section->vma);
3151
3152 switch (r_type)
3153 {
3154 case R_PARISC_PCREL12F:
3155 case R_PARISC_PCREL17F:
3156 case R_PARISC_PCREL22F:
3157 /* If this call should go via the plt, find the import stub in
3158 the stub hash. */
3159 if (sym_sec == NULL
3160 || sym_sec->output_section == NULL
3161 || (h != NULL
3162 && h->elf.plt.offset != (bfd_vma) -1
3163 && (h->elf.dynindx != -1 || h->pic_call)
3164 && !h->plabel))
3165 {
3166 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3167 h, rel, htab);
3168 if (stub_entry != NULL)
3169 {
3170 value = (stub_entry->stub_offset
3171 + stub_entry->stub_sec->output_offset
3172 + stub_entry->stub_sec->output_section->vma);
3173 addend = 0;
3174 }
3175 else if (sym_sec == NULL && h != NULL
3176 && h->elf.root.type == bfd_link_hash_undefweak)
3177 {
3178 /* It's OK if undefined weak. Calls to undefined weak
3179 symbols behave as if the "called" function
3180 immediately returns. We can thus call to a weak
3181 function without first checking whether the function
3182 is defined. */
3183 value = location;
3184 addend = 8;
3185 }
3186 else
3187 return bfd_reloc_undefined;
3188 }
3189 /* Fall thru. */
3190
3191 case R_PARISC_PCREL21L:
3192 case R_PARISC_PCREL17C:
3193 case R_PARISC_PCREL17R:
3194 case R_PARISC_PCREL14R:
3195 case R_PARISC_PCREL14F:
3196 /* Make it a pc relative offset. */
3197 value -= location;
3198 addend -= 8;
3199 break;
3200
3201 case R_PARISC_DPREL21L:
3202 case R_PARISC_DPREL14R:
3203 case R_PARISC_DPREL14F:
3204 /* For all the DP relative relocations, we need to examine the symbol's
3205 section. If it has no section or if it's a code section, then
3206 "data pointer relative" makes no sense. In that case we don't
3207 adjust the "value", and for 21 bit addil instructions, we change the
3208 source addend register from %dp to %r0. This situation commonly
3209 arises for undefined weak symbols and when a variable's "constness"
3210 is declared differently from the way the variable is defined. For
3211 instance: "extern int foo" with foo defined as "const int foo". */
3212 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3213 {
3214 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3215 == (((int) OP_ADDIL << 26) | (27 << 21)))
3216 {
3217 insn &= ~ (0x1f << 21);
3218 #if 0 /* debug them. */
3219 (*_bfd_error_handler)
3220 (_("%s(%s+0x%lx): fixing %s"),
3221 bfd_archive_filename (input_bfd),
3222 input_section->name,
3223 (long) rel->r_offset,
3224 howto->name);
3225 #endif
3226 }
3227 /* Now try to make things easy for the dynamic linker. */
3228
3229 break;
3230 }
3231 /* Fall thru. */
3232
3233 case R_PARISC_DLTIND21L:
3234 case R_PARISC_DLTIND14R:
3235 case R_PARISC_DLTIND14F:
3236 value -= elf_gp (input_section->output_section->owner);
3237 break;
3238
3239 case R_PARISC_SEGREL32:
3240 if ((sym_sec->flags & SEC_CODE) != 0)
3241 value -= htab->text_segment_base;
3242 else
3243 value -= htab->data_segment_base;
3244 break;
3245
3246 default:
3247 break;
3248 }
3249
3250 switch (r_type)
3251 {
3252 case R_PARISC_DIR32:
3253 case R_PARISC_DIR14F:
3254 case R_PARISC_DIR17F:
3255 case R_PARISC_PCREL17C:
3256 case R_PARISC_PCREL14F:
3257 case R_PARISC_DPREL14F:
3258 case R_PARISC_PLABEL32:
3259 case R_PARISC_DLTIND14F:
3260 case R_PARISC_SEGBASE:
3261 case R_PARISC_SEGREL32:
3262 r_field = e_fsel;
3263 break;
3264
3265 case R_PARISC_DLTIND21L:
3266 case R_PARISC_PCREL21L:
3267 case R_PARISC_PLABEL21L:
3268 r_field = e_lsel;
3269 break;
3270
3271 case R_PARISC_DIR21L:
3272 case R_PARISC_DPREL21L:
3273 r_field = e_lrsel;
3274 break;
3275
3276 case R_PARISC_PCREL17R:
3277 case R_PARISC_PCREL14R:
3278 case R_PARISC_PLABEL14R:
3279 case R_PARISC_DLTIND14R:
3280 r_field = e_rsel;
3281 break;
3282
3283 case R_PARISC_DIR17R:
3284 case R_PARISC_DIR14R:
3285 case R_PARISC_DPREL14R:
3286 r_field = e_rrsel;
3287 break;
3288
3289 case R_PARISC_PCREL12F:
3290 case R_PARISC_PCREL17F:
3291 case R_PARISC_PCREL22F:
3292 r_field = e_fsel;
3293
3294 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3295 {
3296 max_branch_offset = (1 << (17-1)) << 2;
3297 }
3298 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3299 {
3300 max_branch_offset = (1 << (12-1)) << 2;
3301 }
3302 else
3303 {
3304 max_branch_offset = (1 << (22-1)) << 2;
3305 }
3306
3307 /* sym_sec is NULL on undefined weak syms or when shared on
3308 undefined syms. We've already checked for a stub for the
3309 shared undefined case. */
3310 if (sym_sec == NULL)
3311 break;
3312
3313 /* If the branch is out of reach, then redirect the
3314 call to the local stub for this function. */
3315 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3316 {
3317 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3318 h, rel, htab);
3319 if (stub_entry == NULL)
3320 return bfd_reloc_undefined;
3321
3322 /* Munge up the value and addend so that we call the stub
3323 rather than the procedure directly. */
3324 value = (stub_entry->stub_offset
3325 + stub_entry->stub_sec->output_offset
3326 + stub_entry->stub_sec->output_section->vma
3327 - location);
3328 addend = -8;
3329 }
3330 break;
3331
3332 /* Something we don't know how to handle. */
3333 default:
3334 return bfd_reloc_notsupported;
3335 }
3336
3337 /* Make sure we can reach the stub. */
3338 if (max_branch_offset != 0
3339 && value + addend + max_branch_offset >= 2*max_branch_offset)
3340 {
3341 (*_bfd_error_handler)
3342 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3343 bfd_archive_filename (input_bfd),
3344 input_section->name,
3345 (long) rel->r_offset,
3346 stub_entry->root.string);
3347 bfd_set_error (bfd_error_bad_value);
3348 return bfd_reloc_notsupported;
3349 }
3350
3351 val = hppa_field_adjust (value, addend, r_field);
3352
3353 switch (r_type)
3354 {
3355 case R_PARISC_PCREL12F:
3356 case R_PARISC_PCREL17C:
3357 case R_PARISC_PCREL17F:
3358 case R_PARISC_PCREL17R:
3359 case R_PARISC_PCREL22F:
3360 case R_PARISC_DIR17F:
3361 case R_PARISC_DIR17R:
3362 /* This is a branch. Divide the offset by four.
3363 Note that we need to decide whether it's a branch or
3364 otherwise by inspecting the reloc. Inspecting insn won't
3365 work as insn might be from a .word directive. */
3366 val >>= 2;
3367 break;
3368
3369 default:
3370 break;
3371 }
3372
3373 insn = hppa_rebuild_insn (insn, val, r_format);
3374
3375 /* Update the instruction word. */
3376 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3377 return bfd_reloc_ok;
3378 }
3379
3380 /* Relocate an HPPA ELF section. */
3381
3382 static bfd_boolean
3383 elf32_hppa_relocate_section (bfd *output_bfd,
3384 struct bfd_link_info *info,
3385 bfd *input_bfd,
3386 asection *input_section,
3387 bfd_byte *contents,
3388 Elf_Internal_Rela *relocs,
3389 Elf_Internal_Sym *local_syms,
3390 asection **local_sections)
3391 {
3392 bfd_vma *local_got_offsets;
3393 struct elf32_hppa_link_hash_table *htab;
3394 Elf_Internal_Shdr *symtab_hdr;
3395 Elf_Internal_Rela *rel;
3396 Elf_Internal_Rela *relend;
3397
3398 if (info->relocatable)
3399 return TRUE;
3400
3401 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3402
3403 htab = hppa_link_hash_table (info);
3404 local_got_offsets = elf_local_got_offsets (input_bfd);
3405
3406 rel = relocs;
3407 relend = relocs + input_section->reloc_count;
3408 for (; rel < relend; rel++)
3409 {
3410 unsigned int r_type;
3411 reloc_howto_type *howto;
3412 unsigned int r_symndx;
3413 struct elf32_hppa_link_hash_entry *h;
3414 Elf_Internal_Sym *sym;
3415 asection *sym_sec;
3416 bfd_vma relocation;
3417 bfd_reloc_status_type r;
3418 const char *sym_name;
3419 bfd_boolean plabel;
3420 bfd_boolean warned_undef;
3421
3422 r_type = ELF32_R_TYPE (rel->r_info);
3423 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3424 {
3425 bfd_set_error (bfd_error_bad_value);
3426 return FALSE;
3427 }
3428 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3429 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3430 continue;
3431
3432 /* This is a final link. */
3433 r_symndx = ELF32_R_SYM (rel->r_info);
3434 h = NULL;
3435 sym = NULL;
3436 sym_sec = NULL;
3437 warned_undef = FALSE;
3438 if (r_symndx < symtab_hdr->sh_info)
3439 {
3440 /* This is a local symbol, h defaults to NULL. */
3441 sym = local_syms + r_symndx;
3442 sym_sec = local_sections[r_symndx];
3443 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3444 }
3445 else
3446 {
3447 struct elf_link_hash_entry *hh;
3448 bfd_boolean unresolved_reloc;
3449
3450 RELOC_FOR_GLOBAL_SYMBOL (hh, elf_sym_hashes (input_bfd), r_symndx, symtab_hdr,
3451 relocation, sym_sec, unresolved_reloc, info,
3452 warned_undef);
3453
3454 if (relocation == 0
3455 && hh->root.type != bfd_link_hash_defined
3456 && hh->root.type != bfd_link_hash_defweak
3457 && hh->root.type != bfd_link_hash_undefweak)
3458 {
3459 if (!info->executable
3460 && info->unresolved_syms_in_objects == RM_IGNORE
3461 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3462 && hh->type == STT_PARISC_MILLI)
3463 {
3464 if (! info->callbacks->undefined_symbol
3465 (info, hh->root.root.string, input_bfd,
3466 input_section, rel->r_offset,
3467 ((info->shared && info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)
3468 || (!info->shared && info->unresolved_syms_in_objects == RM_GENERATE_ERROR))))
3469 return FALSE;
3470 warned_undef = TRUE;
3471 }
3472 }
3473 h = (struct elf32_hppa_link_hash_entry *) hh;
3474 }
3475
3476 /* Do any required modifications to the relocation value, and
3477 determine what types of dynamic info we need to output, if
3478 any. */
3479 plabel = 0;
3480 switch (r_type)
3481 {
3482 case R_PARISC_DLTIND14F:
3483 case R_PARISC_DLTIND14R:
3484 case R_PARISC_DLTIND21L:
3485 {
3486 bfd_vma off;
3487 bfd_boolean do_got = 0;
3488
3489 /* Relocation is to the entry for this symbol in the
3490 global offset table. */
3491 if (h != NULL)
3492 {
3493 bfd_boolean dyn;
3494
3495 off = h->elf.got.offset;
3496 dyn = htab->elf.dynamic_sections_created;
3497 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3498 {
3499 /* If we aren't going to call finish_dynamic_symbol,
3500 then we need to handle initialisation of the .got
3501 entry and create needed relocs here. Since the
3502 offset must always be a multiple of 4, we use the
3503 least significant bit to record whether we have
3504 initialised it already. */
3505 if ((off & 1) != 0)
3506 off &= ~1;
3507 else
3508 {
3509 h->elf.got.offset |= 1;
3510 do_got = 1;
3511 }
3512 }
3513 }
3514 else
3515 {
3516 /* Local symbol case. */
3517 if (local_got_offsets == NULL)
3518 abort ();
3519
3520 off = local_got_offsets[r_symndx];
3521
3522 /* The offset must always be a multiple of 4. We use
3523 the least significant bit to record whether we have
3524 already generated the necessary reloc. */
3525 if ((off & 1) != 0)
3526 off &= ~1;
3527 else
3528 {
3529 local_got_offsets[r_symndx] |= 1;
3530 do_got = 1;
3531 }
3532 }
3533
3534 if (do_got)
3535 {
3536 if (info->shared)
3537 {
3538 /* Output a dynamic relocation for this GOT entry.
3539 In this case it is relative to the base of the
3540 object because the symbol index is zero. */
3541 Elf_Internal_Rela outrel;
3542 bfd_byte *loc;
3543 asection *s = htab->srelgot;
3544
3545 outrel.r_offset = (off
3546 + htab->sgot->output_offset
3547 + htab->sgot->output_section->vma);
3548 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3549 outrel.r_addend = relocation;
3550 loc = s->contents;
3551 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3552 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3553 }
3554 else
3555 bfd_put_32 (output_bfd, relocation,
3556 htab->sgot->contents + off);
3557 }
3558
3559 if (off >= (bfd_vma) -2)
3560 abort ();
3561
3562 /* Add the base of the GOT to the relocation value. */
3563 relocation = (off
3564 + htab->sgot->output_offset
3565 + htab->sgot->output_section->vma);
3566 }
3567 break;
3568
3569 case R_PARISC_SEGREL32:
3570 /* If this is the first SEGREL relocation, then initialize
3571 the segment base values. */
3572 if (htab->text_segment_base == (bfd_vma) -1)
3573 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3574 break;
3575
3576 case R_PARISC_PLABEL14R:
3577 case R_PARISC_PLABEL21L:
3578 case R_PARISC_PLABEL32:
3579 if (htab->elf.dynamic_sections_created)
3580 {
3581 bfd_vma off;
3582 bfd_boolean do_plt = 0;
3583
3584 /* If we have a global symbol with a PLT slot, then
3585 redirect this relocation to it. */
3586 if (h != NULL)
3587 {
3588 off = h->elf.plt.offset;
3589 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3590 {
3591 /* In a non-shared link, adjust_dynamic_symbols
3592 isn't called for symbols forced local. We
3593 need to write out the plt entry here. */
3594 if ((off & 1) != 0)
3595 off &= ~1;
3596 else
3597 {
3598 h->elf.plt.offset |= 1;
3599 do_plt = 1;
3600 }
3601 }
3602 }
3603 else
3604 {
3605 bfd_vma *local_plt_offsets;
3606
3607 if (local_got_offsets == NULL)
3608 abort ();
3609
3610 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3611 off = local_plt_offsets[r_symndx];
3612
3613 /* As for the local .got entry case, we use the last
3614 bit to record whether we've already initialised
3615 this local .plt entry. */
3616 if ((off & 1) != 0)
3617 off &= ~1;
3618 else
3619 {
3620 local_plt_offsets[r_symndx] |= 1;
3621 do_plt = 1;
3622 }
3623 }
3624
3625 if (do_plt)
3626 {
3627 if (info->shared)
3628 {
3629 /* Output a dynamic IPLT relocation for this
3630 PLT entry. */
3631 Elf_Internal_Rela outrel;
3632 bfd_byte *loc;
3633 asection *s = htab->srelplt;
3634
3635 outrel.r_offset = (off
3636 + htab->splt->output_offset
3637 + htab->splt->output_section->vma);
3638 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3639 outrel.r_addend = relocation;
3640 loc = s->contents;
3641 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3642 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3643 }
3644 else
3645 {
3646 bfd_put_32 (output_bfd,
3647 relocation,
3648 htab->splt->contents + off);
3649 bfd_put_32 (output_bfd,
3650 elf_gp (htab->splt->output_section->owner),
3651 htab->splt->contents + off + 4);
3652 }
3653 }
3654
3655 if (off >= (bfd_vma) -2)
3656 abort ();
3657
3658 /* PLABELs contain function pointers. Relocation is to
3659 the entry for the function in the .plt. The magic +2
3660 offset signals to $$dyncall that the function pointer
3661 is in the .plt and thus has a gp pointer too.
3662 Exception: Undefined PLABELs should have a value of
3663 zero. */
3664 if (h == NULL
3665 || (h->elf.root.type != bfd_link_hash_undefweak
3666 && h->elf.root.type != bfd_link_hash_undefined))
3667 {
3668 relocation = (off
3669 + htab->splt->output_offset
3670 + htab->splt->output_section->vma
3671 + 2);
3672 }
3673 plabel = 1;
3674 }
3675 /* Fall through and possibly emit a dynamic relocation. */
3676
3677 case R_PARISC_DIR17F:
3678 case R_PARISC_DIR17R:
3679 case R_PARISC_DIR14F:
3680 case R_PARISC_DIR14R:
3681 case R_PARISC_DIR21L:
3682 case R_PARISC_DPREL14F:
3683 case R_PARISC_DPREL14R:
3684 case R_PARISC_DPREL21L:
3685 case R_PARISC_DIR32:
3686 /* r_symndx will be zero only for relocs against symbols
3687 from removed linkonce sections, or sections discarded by
3688 a linker script. */
3689 if (r_symndx == 0
3690 || (input_section->flags & SEC_ALLOC) == 0)
3691 break;
3692
3693 /* The reloc types handled here and this conditional
3694 expression must match the code in ..check_relocs and
3695 allocate_dynrelocs. ie. We need exactly the same condition
3696 as in ..check_relocs, with some extra conditions (dynindx
3697 test in this case) to cater for relocs removed by
3698 allocate_dynrelocs. If you squint, the non-shared test
3699 here does indeed match the one in ..check_relocs, the
3700 difference being that here we test DEF_DYNAMIC as well as
3701 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3702 which is why we can't use just that test here.
3703 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3704 there all files have not been loaded. */
3705 if ((info->shared
3706 && (IS_ABSOLUTE_RELOC (r_type)
3707 || (h != NULL
3708 && h->elf.dynindx != -1
3709 && (!info->symbolic
3710 || (h->elf.elf_link_hash_flags
3711 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3712 || (!info->shared
3713 && h != NULL
3714 && h->elf.dynindx != -1
3715 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3716 && (((h->elf.elf_link_hash_flags
3717 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3718 && (h->elf.elf_link_hash_flags
3719 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3720 || h->elf.root.type == bfd_link_hash_undefweak
3721 || h->elf.root.type == bfd_link_hash_undefined)))
3722 {
3723 Elf_Internal_Rela outrel;
3724 bfd_boolean skip;
3725 asection *sreloc;
3726 bfd_byte *loc;
3727
3728 /* When generating a shared object, these relocations
3729 are copied into the output file to be resolved at run
3730 time. */
3731
3732 outrel.r_addend = rel->r_addend;
3733 outrel.r_offset =
3734 _bfd_elf_section_offset (output_bfd, info, input_section,
3735 rel->r_offset);
3736 skip = (outrel.r_offset == (bfd_vma) -1
3737 || outrel.r_offset == (bfd_vma) -2);
3738 outrel.r_offset += (input_section->output_offset
3739 + input_section->output_section->vma);
3740
3741 if (skip)
3742 {
3743 memset (&outrel, 0, sizeof (outrel));
3744 }
3745 else if (h != NULL
3746 && h->elf.dynindx != -1
3747 && (plabel
3748 || !IS_ABSOLUTE_RELOC (r_type)
3749 || !info->shared
3750 || !info->symbolic
3751 || (h->elf.elf_link_hash_flags
3752 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3753 {
3754 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3755 }
3756 else /* It's a local symbol, or one marked to become local. */
3757 {
3758 int indx = 0;
3759
3760 /* Add the absolute offset of the symbol. */
3761 outrel.r_addend += relocation;
3762
3763 /* Global plabels need to be processed by the
3764 dynamic linker so that functions have at most one
3765 fptr. For this reason, we need to differentiate
3766 between global and local plabels, which we do by
3767 providing the function symbol for a global plabel
3768 reloc, and no symbol for local plabels. */
3769 if (! plabel
3770 && sym_sec != NULL
3771 && sym_sec->output_section != NULL
3772 && ! bfd_is_abs_section (sym_sec))
3773 {
3774 indx = elf_section_data (sym_sec->output_section)->dynindx;
3775 /* We are turning this relocation into one
3776 against a section symbol, so subtract out the
3777 output section's address but not the offset
3778 of the input section in the output section. */
3779 outrel.r_addend -= sym_sec->output_section->vma;
3780 }
3781
3782 outrel.r_info = ELF32_R_INFO (indx, r_type);
3783 }
3784 #if 0
3785 /* EH info can cause unaligned DIR32 relocs.
3786 Tweak the reloc type for the dynamic linker. */
3787 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3788 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3789 R_PARISC_DIR32U);
3790 #endif
3791 sreloc = elf_section_data (input_section)->sreloc;
3792 if (sreloc == NULL)
3793 abort ();
3794
3795 loc = sreloc->contents;
3796 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3797 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3798 }
3799 break;
3800
3801 default:
3802 break;
3803 }
3804
3805 r = final_link_relocate (input_section, contents, rel, relocation,
3806 htab, sym_sec, h);
3807
3808 if (r == bfd_reloc_ok)
3809 continue;
3810
3811 if (h != NULL)
3812 sym_name = h->elf.root.root.string;
3813 else
3814 {
3815 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3816 symtab_hdr->sh_link,
3817 sym->st_name);
3818 if (sym_name == NULL)
3819 return FALSE;
3820 if (*sym_name == '\0')
3821 sym_name = bfd_section_name (input_bfd, sym_sec);
3822 }
3823
3824 howto = elf_hppa_howto_table + r_type;
3825
3826 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3827 {
3828 if (r == bfd_reloc_notsupported || !warned_undef)
3829 {
3830 (*_bfd_error_handler)
3831 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3832 bfd_archive_filename (input_bfd),
3833 input_section->name,
3834 (long) rel->r_offset,
3835 howto->name,
3836 sym_name);
3837 bfd_set_error (bfd_error_bad_value);
3838 return FALSE;
3839 }
3840 }
3841 else
3842 {
3843 if (!((*info->callbacks->reloc_overflow)
3844 (info, sym_name, howto->name, 0, input_bfd, input_section,
3845 rel->r_offset)))
3846 return FALSE;
3847 }
3848 }
3849
3850 return TRUE;
3851 }
3852
3853 /* Finish up dynamic symbol handling. We set the contents of various
3854 dynamic sections here. */
3855
3856 static bfd_boolean
3857 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3858 struct bfd_link_info *info,
3859 struct elf_link_hash_entry *h,
3860 Elf_Internal_Sym *sym)
3861 {
3862 struct elf32_hppa_link_hash_table *htab;
3863
3864 htab = hppa_link_hash_table (info);
3865
3866 if (h->plt.offset != (bfd_vma) -1)
3867 {
3868 bfd_vma value;
3869
3870 if (h->plt.offset & 1)
3871 abort ();
3872
3873 /* This symbol has an entry in the procedure linkage table. Set
3874 it up.
3875
3876 The format of a plt entry is
3877 <funcaddr>
3878 <__gp>
3879 */
3880 value = 0;
3881 if (h->root.type == bfd_link_hash_defined
3882 || h->root.type == bfd_link_hash_defweak)
3883 {
3884 value = h->root.u.def.value;
3885 if (h->root.u.def.section->output_section != NULL)
3886 value += (h->root.u.def.section->output_offset
3887 + h->root.u.def.section->output_section->vma);
3888 }
3889
3890 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
3891 {
3892 Elf_Internal_Rela rel;
3893 bfd_byte *loc;
3894
3895 /* Create a dynamic IPLT relocation for this entry. */
3896 rel.r_offset = (h->plt.offset
3897 + htab->splt->output_offset
3898 + htab->splt->output_section->vma);
3899 if (h->dynindx != -1)
3900 {
3901 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3902 rel.r_addend = 0;
3903 }
3904 else
3905 {
3906 /* This symbol has been marked to become local, and is
3907 used by a plabel so must be kept in the .plt. */
3908 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3909 rel.r_addend = value;
3910 }
3911
3912 loc = htab->srelplt->contents;
3913 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3914 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
3915 &rel, loc);
3916 }
3917 else
3918 {
3919 bfd_put_32 (htab->splt->owner,
3920 value,
3921 htab->splt->contents + h->plt.offset);
3922 bfd_put_32 (htab->splt->owner,
3923 elf_gp (htab->splt->output_section->owner),
3924 htab->splt->contents + h->plt.offset + 4);
3925 }
3926
3927 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3928 {
3929 /* Mark the symbol as undefined, rather than as defined in
3930 the .plt section. Leave the value alone. */
3931 sym->st_shndx = SHN_UNDEF;
3932 }
3933 }
3934
3935 if (h->got.offset != (bfd_vma) -1)
3936 {
3937 Elf_Internal_Rela rel;
3938 bfd_byte *loc;
3939
3940 /* This symbol has an entry in the global offset table. Set it
3941 up. */
3942
3943 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3944 + htab->sgot->output_offset
3945 + htab->sgot->output_section->vma);
3946
3947 /* If this is a -Bsymbolic link and the symbol is defined
3948 locally or was forced to be local because of a version file,
3949 we just want to emit a RELATIVE reloc. The entry in the
3950 global offset table will already have been initialized in the
3951 relocate_section function. */
3952 if (info->shared
3953 && (info->symbolic || h->dynindx == -1)
3954 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3955 {
3956 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3957 rel.r_addend = (h->root.u.def.value
3958 + h->root.u.def.section->output_offset
3959 + h->root.u.def.section->output_section->vma);
3960 }
3961 else
3962 {
3963 if ((h->got.offset & 1) != 0)
3964 abort ();
3965 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3966 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3967 rel.r_addend = 0;
3968 }
3969
3970 loc = htab->srelgot->contents;
3971 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3972 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3973 }
3974
3975 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3976 {
3977 asection *s;
3978 Elf_Internal_Rela rel;
3979 bfd_byte *loc;
3980
3981 /* This symbol needs a copy reloc. Set it up. */
3982
3983 if (! (h->dynindx != -1
3984 && (h->root.type == bfd_link_hash_defined
3985 || h->root.type == bfd_link_hash_defweak)))
3986 abort ();
3987
3988 s = htab->srelbss;
3989
3990 rel.r_offset = (h->root.u.def.value
3991 + h->root.u.def.section->output_offset
3992 + h->root.u.def.section->output_section->vma);
3993 rel.r_addend = 0;
3994 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3995 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3996 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3997 }
3998
3999 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4000 if (h->root.root.string[0] == '_'
4001 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4002 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4003 {
4004 sym->st_shndx = SHN_ABS;
4005 }
4006
4007 return TRUE;
4008 }
4009
4010 /* Used to decide how to sort relocs in an optimal manner for the
4011 dynamic linker, before writing them out. */
4012
4013 static enum elf_reloc_type_class
4014 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4015 {
4016 if (ELF32_R_SYM (rela->r_info) == 0)
4017 return reloc_class_relative;
4018
4019 switch ((int) ELF32_R_TYPE (rela->r_info))
4020 {
4021 case R_PARISC_IPLT:
4022 return reloc_class_plt;
4023 case R_PARISC_COPY:
4024 return reloc_class_copy;
4025 default:
4026 return reloc_class_normal;
4027 }
4028 }
4029
4030 /* Finish up the dynamic sections. */
4031
4032 static bfd_boolean
4033 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4034 struct bfd_link_info *info)
4035 {
4036 bfd *dynobj;
4037 struct elf32_hppa_link_hash_table *htab;
4038 asection *sdyn;
4039
4040 htab = hppa_link_hash_table (info);
4041 dynobj = htab->elf.dynobj;
4042
4043 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4044
4045 if (htab->elf.dynamic_sections_created)
4046 {
4047 Elf32_External_Dyn *dyncon, *dynconend;
4048
4049 if (sdyn == NULL)
4050 abort ();
4051
4052 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4053 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4054 for (; dyncon < dynconend; dyncon++)
4055 {
4056 Elf_Internal_Dyn dyn;
4057 asection *s;
4058
4059 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4060
4061 switch (dyn.d_tag)
4062 {
4063 default:
4064 continue;
4065
4066 case DT_PLTGOT:
4067 /* Use PLTGOT to set the GOT register. */
4068 dyn.d_un.d_ptr = elf_gp (output_bfd);
4069 break;
4070
4071 case DT_JMPREL:
4072 s = htab->srelplt;
4073 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4074 break;
4075
4076 case DT_PLTRELSZ:
4077 s = htab->srelplt;
4078 dyn.d_un.d_val = s->_raw_size;
4079 break;
4080
4081 case DT_RELASZ:
4082 /* Don't count procedure linkage table relocs in the
4083 overall reloc count. */
4084 s = htab->srelplt;
4085 if (s == NULL)
4086 continue;
4087 dyn.d_un.d_val -= s->_raw_size;
4088 break;
4089
4090 case DT_RELA:
4091 /* We may not be using the standard ELF linker script.
4092 If .rela.plt is the first .rela section, we adjust
4093 DT_RELA to not include it. */
4094 s = htab->srelplt;
4095 if (s == NULL)
4096 continue;
4097 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4098 continue;
4099 dyn.d_un.d_ptr += s->_raw_size;
4100 break;
4101 }
4102
4103 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4104 }
4105 }
4106
4107 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4108 {
4109 /* Fill in the first entry in the global offset table.
4110 We use it to point to our dynamic section, if we have one. */
4111 bfd_put_32 (output_bfd,
4112 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4113 htab->sgot->contents);
4114
4115 /* The second entry is reserved for use by the dynamic linker. */
4116 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4117
4118 /* Set .got entry size. */
4119 elf_section_data (htab->sgot->output_section)
4120 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4121 }
4122
4123 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4124 {
4125 /* Set plt entry size. */
4126 elf_section_data (htab->splt->output_section)
4127 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4128
4129 if (htab->need_plt_stub)
4130 {
4131 /* Set up the .plt stub. */
4132 memcpy (htab->splt->contents
4133 + htab->splt->_raw_size - sizeof (plt_stub),
4134 plt_stub, sizeof (plt_stub));
4135
4136 if ((htab->splt->output_offset
4137 + htab->splt->output_section->vma
4138 + htab->splt->_raw_size)
4139 != (htab->sgot->output_offset
4140 + htab->sgot->output_section->vma))
4141 {
4142 (*_bfd_error_handler)
4143 (_(".got section not immediately after .plt section"));
4144 return FALSE;
4145 }
4146 }
4147 }
4148
4149 return TRUE;
4150 }
4151
4152 /* Tweak the OSABI field of the elf header. */
4153
4154 static void
4155 elf32_hppa_post_process_headers (bfd *abfd,
4156 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4157 {
4158 Elf_Internal_Ehdr * i_ehdrp;
4159
4160 i_ehdrp = elf_elfheader (abfd);
4161
4162 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4163 {
4164 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4165 }
4166 else
4167 {
4168 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4169 }
4170 }
4171
4172 /* Called when writing out an object file to decide the type of a
4173 symbol. */
4174 static int
4175 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4176 {
4177 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4178 return STT_PARISC_MILLI;
4179 else
4180 return type;
4181 }
4182
4183 /* Misc BFD support code. */
4184 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4185 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4186 #define elf_info_to_howto elf_hppa_info_to_howto
4187 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4188
4189 /* Stuff for the BFD linker. */
4190 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4191 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4192 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4193 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4194 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4195 #define elf_backend_check_relocs elf32_hppa_check_relocs
4196 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4197 #define elf_backend_fake_sections elf_hppa_fake_sections
4198 #define elf_backend_relocate_section elf32_hppa_relocate_section
4199 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4200 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4201 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4202 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4203 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4204 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4205 #define elf_backend_object_p elf32_hppa_object_p
4206 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4207 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4208 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4209 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4210
4211 #define elf_backend_can_gc_sections 1
4212 #define elf_backend_can_refcount 1
4213 #define elf_backend_plt_alignment 2
4214 #define elf_backend_want_got_plt 0
4215 #define elf_backend_plt_readonly 0
4216 #define elf_backend_want_plt_sym 0
4217 #define elf_backend_got_header_size 8
4218 #define elf_backend_rela_normal 1
4219
4220 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4221 #define TARGET_BIG_NAME "elf32-hppa"
4222 #define ELF_ARCH bfd_arch_hppa
4223 #define ELF_MACHINE_CODE EM_PARISC
4224 #define ELF_MAXPAGESIZE 0x1000
4225
4226 #include "elf32-target.h"
4227
4228 #undef TARGET_BIG_SYM
4229 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4230 #undef TARGET_BIG_NAME
4231 #define TARGET_BIG_NAME "elf32-hppa-linux"
4232
4233 #define INCLUDED_TARGET_FILE 1
4234 #include "elf32-target.h"
This page took 0.141488 seconds and 4 git commands to generate.