daily update
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set if the only reason we need a .plt entry is for a non-PIC to
207 PIC function call. */
208 unsigned int pic_call:1;
209
210 /* Set if this symbol is used by a plabel reloc. */
211 unsigned int plabel:1;
212 };
213
214 struct elf32_hppa_link_hash_table {
215
216 /* The main hash table. */
217 struct elf_link_hash_table elf;
218
219 /* The stub hash table. */
220 struct bfd_hash_table stub_hash_table;
221
222 /* Linker stub bfd. */
223 bfd *stub_bfd;
224
225 /* Linker call-backs. */
226 asection * (*add_stub_section) PARAMS ((const char *, asection *));
227 void (*layout_sections_again) PARAMS ((void));
228
229 /* Array to keep track of which stub sections have been created, and
230 information on stub grouping. */
231 struct map_stub {
232 /* This is the section to which stubs in the group will be
233 attached. */
234 asection *link_sec;
235 /* The stub section. */
236 asection *stub_sec;
237 } *stub_group;
238
239 /* Assorted information used by elf32_hppa_size_stubs. */
240 unsigned int bfd_count;
241 int top_index;
242 asection **input_list;
243 Elf_Internal_Sym **all_local_syms;
244
245 /* Short-cuts to get to dynamic linker sections. */
246 asection *sgot;
247 asection *srelgot;
248 asection *splt;
249 asection *srelplt;
250 asection *sdynbss;
251 asection *srelbss;
252
253 /* Used during a final link to store the base of the text and data
254 segments so that we can perform SEGREL relocations. */
255 bfd_vma text_segment_base;
256 bfd_vma data_segment_base;
257
258 /* Whether we support multiple sub-spaces for shared libs. */
259 unsigned int multi_subspace:1;
260
261 /* Flags set when various size branches are detected. Used to
262 select suitable defaults for the stub group size. */
263 unsigned int has_12bit_branch:1;
264 unsigned int has_17bit_branch:1;
265 unsigned int has_22bit_branch:1;
266
267 /* Set if we need a .plt stub to support lazy dynamic linking. */
268 unsigned int need_plt_stub:1;
269
270 /* Small local sym to section mapping cache. */
271 struct sym_sec_cache sym_sec;
272 };
273
274 /* Various hash macros and functions. */
275 #define hppa_link_hash_table(p) \
276 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
277
278 #define hppa_stub_hash_lookup(table, string, create, copy) \
279 ((struct elf32_hppa_stub_hash_entry *) \
280 bfd_hash_lookup ((table), (string), (create), (copy)))
281
282 static struct bfd_hash_entry *stub_hash_newfunc
283 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
284
285 static struct bfd_hash_entry *hppa_link_hash_newfunc
286 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
287
288 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
289 PARAMS ((bfd *));
290
291 static void elf32_hppa_link_hash_table_free
292 PARAMS ((struct bfd_link_hash_table *));
293
294 /* Stub handling functions. */
295 static char *hppa_stub_name
296 PARAMS ((const asection *, const asection *,
297 const struct elf32_hppa_link_hash_entry *,
298 const Elf_Internal_Rela *));
299
300 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
301 PARAMS ((const asection *, const asection *,
302 struct elf32_hppa_link_hash_entry *,
303 const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_table *));
305
306 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
307 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
308
309 static enum elf32_hppa_stub_type hppa_type_of_stub
310 PARAMS ((asection *, const Elf_Internal_Rela *,
311 struct elf32_hppa_link_hash_entry *, bfd_vma));
312
313 static boolean hppa_build_one_stub
314 PARAMS ((struct bfd_hash_entry *, PTR));
315
316 static boolean hppa_size_one_stub
317 PARAMS ((struct bfd_hash_entry *, PTR));
318
319 /* BFD and elf backend functions. */
320 static boolean elf32_hppa_object_p PARAMS ((bfd *));
321
322 static boolean elf32_hppa_add_symbol_hook
323 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
324 const char **, flagword *, asection **, bfd_vma *));
325
326 static boolean elf32_hppa_create_dynamic_sections
327 PARAMS ((bfd *, struct bfd_link_info *));
328
329 static void elf32_hppa_copy_indirect_symbol
330 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
331
332 static boolean elf32_hppa_check_relocs
333 PARAMS ((bfd *, struct bfd_link_info *,
334 asection *, const Elf_Internal_Rela *));
335
336 static asection *elf32_hppa_gc_mark_hook
337 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
338 struct elf_link_hash_entry *, Elf_Internal_Sym *));
339
340 static boolean elf32_hppa_gc_sweep_hook
341 PARAMS ((bfd *, struct bfd_link_info *,
342 asection *, const Elf_Internal_Rela *));
343
344 static void elf32_hppa_hide_symbol
345 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, boolean));
346
347 static boolean elf32_hppa_adjust_dynamic_symbol
348 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
349
350 static boolean mark_PIC_calls
351 PARAMS ((struct elf_link_hash_entry *, PTR));
352
353 static boolean allocate_plt_static
354 PARAMS ((struct elf_link_hash_entry *, PTR));
355
356 static boolean allocate_dynrelocs
357 PARAMS ((struct elf_link_hash_entry *, PTR));
358
359 static boolean readonly_dynrelocs
360 PARAMS ((struct elf_link_hash_entry *, PTR));
361
362 static boolean clobber_millicode_symbols
363 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
364
365 static boolean elf32_hppa_size_dynamic_sections
366 PARAMS ((bfd *, struct bfd_link_info *));
367
368 static void group_sections
369 PARAMS ((struct elf32_hppa_link_hash_table *, bfd_size_type, boolean));
370
371 static int get_local_syms
372 PARAMS ((bfd *, bfd *, struct bfd_link_info *));
373
374 static boolean elf32_hppa_final_link
375 PARAMS ((bfd *, struct bfd_link_info *));
376
377 static void hppa_record_segment_addr
378 PARAMS ((bfd *, asection *, PTR));
379
380 static bfd_reloc_status_type final_link_relocate
381 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
382 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
383 struct elf32_hppa_link_hash_entry *));
384
385 static boolean elf32_hppa_relocate_section
386 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
387 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
388
389 static boolean elf32_hppa_finish_dynamic_symbol
390 PARAMS ((bfd *, struct bfd_link_info *,
391 struct elf_link_hash_entry *, Elf_Internal_Sym *));
392
393 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
394 PARAMS ((const Elf_Internal_Rela *));
395
396 static boolean elf32_hppa_finish_dynamic_sections
397 PARAMS ((bfd *, struct bfd_link_info *));
398
399 static void elf32_hppa_post_process_headers
400 PARAMS ((bfd *, struct bfd_link_info *));
401
402 static int elf32_hppa_elf_get_symbol_type
403 PARAMS ((Elf_Internal_Sym *, int));
404
405 /* Assorted hash table functions. */
406
407 /* Initialize an entry in the stub hash table. */
408
409 static struct bfd_hash_entry *
410 stub_hash_newfunc (entry, table, string)
411 struct bfd_hash_entry *entry;
412 struct bfd_hash_table *table;
413 const char *string;
414 {
415 /* Allocate the structure if it has not already been allocated by a
416 subclass. */
417 if (entry == NULL)
418 {
419 entry = bfd_hash_allocate (table,
420 sizeof (struct elf32_hppa_stub_hash_entry));
421 if (entry == NULL)
422 return entry;
423 }
424
425 /* Call the allocation method of the superclass. */
426 entry = bfd_hash_newfunc (entry, table, string);
427 if (entry != NULL)
428 {
429 struct elf32_hppa_stub_hash_entry *eh;
430
431 /* Initialize the local fields. */
432 eh = (struct elf32_hppa_stub_hash_entry *) entry;
433 eh->stub_sec = NULL;
434 eh->stub_offset = 0;
435 eh->target_value = 0;
436 eh->target_section = NULL;
437 eh->stub_type = hppa_stub_long_branch;
438 eh->h = NULL;
439 eh->id_sec = NULL;
440 }
441
442 return entry;
443 }
444
445 /* Initialize an entry in the link hash table. */
446
447 static struct bfd_hash_entry *
448 hppa_link_hash_newfunc (entry, table, string)
449 struct bfd_hash_entry *entry;
450 struct bfd_hash_table *table;
451 const char *string;
452 {
453 /* Allocate the structure if it has not already been allocated by a
454 subclass. */
455 if (entry == NULL)
456 {
457 entry = bfd_hash_allocate (table,
458 sizeof (struct elf32_hppa_link_hash_entry));
459 if (entry == NULL)
460 return entry;
461 }
462
463 /* Call the allocation method of the superclass. */
464 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
465 if (entry != NULL)
466 {
467 struct elf32_hppa_link_hash_entry *eh;
468
469 /* Initialize the local fields. */
470 eh = (struct elf32_hppa_link_hash_entry *) entry;
471 eh->stub_cache = NULL;
472 eh->dyn_relocs = NULL;
473 eh->pic_call = 0;
474 eh->plabel = 0;
475 }
476
477 return entry;
478 }
479
480 /* Create the derived linker hash table. The PA ELF port uses the derived
481 hash table to keep information specific to the PA ELF linker (without
482 using static variables). */
483
484 static struct bfd_link_hash_table *
485 elf32_hppa_link_hash_table_create (abfd)
486 bfd *abfd;
487 {
488 struct elf32_hppa_link_hash_table *ret;
489 bfd_size_type amt = sizeof (*ret);
490
491 ret = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
492 if (ret == NULL)
493 return NULL;
494
495 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
496 {
497 free (ret);
498 return NULL;
499 }
500
501 /* Init the stub hash table too. */
502 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
503 return NULL;
504
505 ret->stub_bfd = NULL;
506 ret->add_stub_section = NULL;
507 ret->layout_sections_again = NULL;
508 ret->stub_group = NULL;
509 ret->sgot = NULL;
510 ret->srelgot = NULL;
511 ret->splt = NULL;
512 ret->srelplt = NULL;
513 ret->sdynbss = NULL;
514 ret->srelbss = NULL;
515 ret->text_segment_base = (bfd_vma) -1;
516 ret->data_segment_base = (bfd_vma) -1;
517 ret->multi_subspace = 0;
518 ret->has_12bit_branch = 0;
519 ret->has_17bit_branch = 0;
520 ret->has_22bit_branch = 0;
521 ret->need_plt_stub = 0;
522 ret->sym_sec.abfd = NULL;
523
524 return &ret->elf.root;
525 }
526
527 /* Free the derived linker hash table. */
528
529 static void
530 elf32_hppa_link_hash_table_free (hash)
531 struct bfd_link_hash_table *hash;
532 {
533 struct elf32_hppa_link_hash_table *ret
534 = (struct elf32_hppa_link_hash_table *) hash;
535
536 bfd_hash_table_free (&ret->stub_hash_table);
537 _bfd_generic_link_hash_table_free (hash);
538 }
539
540 /* Build a name for an entry in the stub hash table. */
541
542 static char *
543 hppa_stub_name (input_section, sym_sec, hash, rel)
544 const asection *input_section;
545 const asection *sym_sec;
546 const struct elf32_hppa_link_hash_entry *hash;
547 const Elf_Internal_Rela *rel;
548 {
549 char *stub_name;
550 bfd_size_type len;
551
552 if (hash)
553 {
554 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
555 stub_name = bfd_malloc (len);
556 if (stub_name != NULL)
557 {
558 sprintf (stub_name, "%08x_%s+%x",
559 input_section->id & 0xffffffff,
560 hash->elf.root.root.string,
561 (int) rel->r_addend & 0xffffffff);
562 }
563 }
564 else
565 {
566 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
567 stub_name = bfd_malloc (len);
568 if (stub_name != NULL)
569 {
570 sprintf (stub_name, "%08x_%x:%x+%x",
571 input_section->id & 0xffffffff,
572 sym_sec->id & 0xffffffff,
573 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
574 (int) rel->r_addend & 0xffffffff);
575 }
576 }
577 return stub_name;
578 }
579
580 /* Look up an entry in the stub hash. Stub entries are cached because
581 creating the stub name takes a bit of time. */
582
583 static struct elf32_hppa_stub_hash_entry *
584 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
585 const asection *input_section;
586 const asection *sym_sec;
587 struct elf32_hppa_link_hash_entry *hash;
588 const Elf_Internal_Rela *rel;
589 struct elf32_hppa_link_hash_table *htab;
590 {
591 struct elf32_hppa_stub_hash_entry *stub_entry;
592 const asection *id_sec;
593
594 /* If this input section is part of a group of sections sharing one
595 stub section, then use the id of the first section in the group.
596 Stub names need to include a section id, as there may well be
597 more than one stub used to reach say, printf, and we need to
598 distinguish between them. */
599 id_sec = htab->stub_group[input_section->id].link_sec;
600
601 if (hash != NULL && hash->stub_cache != NULL
602 && hash->stub_cache->h == hash
603 && hash->stub_cache->id_sec == id_sec)
604 {
605 stub_entry = hash->stub_cache;
606 }
607 else
608 {
609 char *stub_name;
610
611 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
612 if (stub_name == NULL)
613 return NULL;
614
615 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
616 stub_name, false, false);
617 if (hash != NULL)
618 hash->stub_cache = stub_entry;
619
620 free (stub_name);
621 }
622
623 return stub_entry;
624 }
625
626 /* Add a new stub entry to the stub hash. Not all fields of the new
627 stub entry are initialised. */
628
629 static struct elf32_hppa_stub_hash_entry *
630 hppa_add_stub (stub_name, section, htab)
631 const char *stub_name;
632 asection *section;
633 struct elf32_hppa_link_hash_table *htab;
634 {
635 asection *link_sec;
636 asection *stub_sec;
637 struct elf32_hppa_stub_hash_entry *stub_entry;
638
639 link_sec = htab->stub_group[section->id].link_sec;
640 stub_sec = htab->stub_group[section->id].stub_sec;
641 if (stub_sec == NULL)
642 {
643 stub_sec = htab->stub_group[link_sec->id].stub_sec;
644 if (stub_sec == NULL)
645 {
646 size_t namelen;
647 bfd_size_type len;
648 char *s_name;
649
650 namelen = strlen (link_sec->name);
651 len = namelen + sizeof (STUB_SUFFIX);
652 s_name = bfd_alloc (htab->stub_bfd, len);
653 if (s_name == NULL)
654 return NULL;
655
656 memcpy (s_name, link_sec->name, namelen);
657 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
658 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
659 if (stub_sec == NULL)
660 return NULL;
661 htab->stub_group[link_sec->id].stub_sec = stub_sec;
662 }
663 htab->stub_group[section->id].stub_sec = stub_sec;
664 }
665
666 /* Enter this entry into the linker stub hash table. */
667 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
668 true, false);
669 if (stub_entry == NULL)
670 {
671 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
672 bfd_archive_filename (section->owner),
673 stub_name);
674 return NULL;
675 }
676
677 stub_entry->stub_sec = stub_sec;
678 stub_entry->stub_offset = 0;
679 stub_entry->id_sec = link_sec;
680 return stub_entry;
681 }
682
683 /* Determine the type of stub needed, if any, for a call. */
684
685 static enum elf32_hppa_stub_type
686 hppa_type_of_stub (input_sec, rel, hash, destination)
687 asection *input_sec;
688 const Elf_Internal_Rela *rel;
689 struct elf32_hppa_link_hash_entry *hash;
690 bfd_vma destination;
691 {
692 bfd_vma location;
693 bfd_vma branch_offset;
694 bfd_vma max_branch_offset;
695 unsigned int r_type;
696
697 if (hash != NULL
698 && hash->elf.plt.offset != (bfd_vma) -1
699 && (hash->elf.dynindx != -1 || hash->pic_call)
700 && !hash->plabel)
701 {
702 /* We need an import stub. Decide between hppa_stub_import
703 and hppa_stub_import_shared later. */
704 return hppa_stub_import;
705 }
706
707 /* Determine where the call point is. */
708 location = (input_sec->output_offset
709 + input_sec->output_section->vma
710 + rel->r_offset);
711
712 branch_offset = destination - location - 8;
713 r_type = ELF32_R_TYPE (rel->r_info);
714
715 /* Determine if a long branch stub is needed. parisc branch offsets
716 are relative to the second instruction past the branch, ie. +8
717 bytes on from the branch instruction location. The offset is
718 signed and counts in units of 4 bytes. */
719 if (r_type == (unsigned int) R_PARISC_PCREL17F)
720 {
721 max_branch_offset = (1 << (17-1)) << 2;
722 }
723 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
724 {
725 max_branch_offset = (1 << (12-1)) << 2;
726 }
727 else /* R_PARISC_PCREL22F. */
728 {
729 max_branch_offset = (1 << (22-1)) << 2;
730 }
731
732 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
733 return hppa_stub_long_branch;
734
735 return hppa_stub_none;
736 }
737
738 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
739 IN_ARG contains the link info pointer. */
740
741 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
742 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
743
744 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
745 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
746 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
747
748 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
749 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
750 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
751 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
752
753 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
754 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
755
756 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
757 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
758 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
759 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
760
761 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
762 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
763 #define NOP 0x08000240 /* nop */
764 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
765 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
766 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
767
768 #ifndef R19_STUBS
769 #define R19_STUBS 1
770 #endif
771
772 #if R19_STUBS
773 #define LDW_R1_DLT LDW_R1_R19
774 #else
775 #define LDW_R1_DLT LDW_R1_DP
776 #endif
777
778 static boolean
779 hppa_build_one_stub (gen_entry, in_arg)
780 struct bfd_hash_entry *gen_entry;
781 PTR in_arg;
782 {
783 struct elf32_hppa_stub_hash_entry *stub_entry;
784 struct bfd_link_info *info;
785 struct elf32_hppa_link_hash_table *htab;
786 asection *stub_sec;
787 bfd *stub_bfd;
788 bfd_byte *loc;
789 bfd_vma sym_value;
790 bfd_vma insn;
791 bfd_vma off;
792 int val;
793 int size;
794
795 /* Massage our args to the form they really have. */
796 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
797 info = (struct bfd_link_info *) in_arg;
798
799 htab = hppa_link_hash_table (info);
800 stub_sec = stub_entry->stub_sec;
801
802 /* Make a note of the offset within the stubs for this entry. */
803 stub_entry->stub_offset = stub_sec->_raw_size;
804 loc = stub_sec->contents + stub_entry->stub_offset;
805
806 stub_bfd = stub_sec->owner;
807
808 switch (stub_entry->stub_type)
809 {
810 case hppa_stub_long_branch:
811 /* Create the long branch. A long branch is formed with "ldil"
812 loading the upper bits of the target address into a register,
813 then branching with "be" which adds in the lower bits.
814 The "be" has its delay slot nullified. */
815 sym_value = (stub_entry->target_value
816 + stub_entry->target_section->output_offset
817 + stub_entry->target_section->output_section->vma);
818
819 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
820 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
821 bfd_put_32 (stub_bfd, insn, loc);
822
823 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
824 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
825 bfd_put_32 (stub_bfd, insn, loc + 4);
826
827 size = 8;
828 break;
829
830 case hppa_stub_long_branch_shared:
831 /* Branches are relative. This is where we are going to. */
832 sym_value = (stub_entry->target_value
833 + stub_entry->target_section->output_offset
834 + stub_entry->target_section->output_section->vma);
835
836 /* And this is where we are coming from, more or less. */
837 sym_value -= (stub_entry->stub_offset
838 + stub_sec->output_offset
839 + stub_sec->output_section->vma);
840
841 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
842 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
843 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
844 bfd_put_32 (stub_bfd, insn, loc + 4);
845
846 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
847 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
848 bfd_put_32 (stub_bfd, insn, loc + 8);
849 size = 12;
850 break;
851
852 case hppa_stub_import:
853 case hppa_stub_import_shared:
854 off = stub_entry->h->elf.plt.offset;
855 if (off >= (bfd_vma) -2)
856 abort ();
857
858 off &= ~ (bfd_vma) 1;
859 sym_value = (off
860 + htab->splt->output_offset
861 + htab->splt->output_section->vma
862 - elf_gp (htab->splt->output_section->owner));
863
864 insn = ADDIL_DP;
865 #if R19_STUBS
866 if (stub_entry->stub_type == hppa_stub_import_shared)
867 insn = ADDIL_R19;
868 #endif
869 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
870 insn = hppa_rebuild_insn ((int) insn, val, 21);
871 bfd_put_32 (stub_bfd, insn, loc);
872
873 /* It is critical to use lrsel/rrsel here because we are using
874 two different offsets (+0 and +4) from sym_value. If we use
875 lsel/rsel then with unfortunate sym_values we will round
876 sym_value+4 up to the next 2k block leading to a mis-match
877 between the lsel and rsel value. */
878 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
879 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
880 bfd_put_32 (stub_bfd, insn, loc + 4);
881
882 if (htab->multi_subspace)
883 {
884 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
885 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
886 bfd_put_32 (stub_bfd, insn, loc + 8);
887
888 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
889 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
890 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
891 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
892
893 size = 28;
894 }
895 else
896 {
897 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
898 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
899 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
900 bfd_put_32 (stub_bfd, insn, loc + 12);
901
902 size = 16;
903 }
904
905 if (!info->shared
906 && stub_entry->h != NULL
907 && stub_entry->h->pic_call)
908 {
909 /* Build the .plt entry needed to call a PIC function from
910 statically linked code. We don't need any relocs. */
911 bfd *dynobj;
912 struct elf32_hppa_link_hash_entry *eh;
913 bfd_vma value;
914
915 dynobj = htab->elf.dynobj;
916 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
917
918 if (eh->elf.root.type != bfd_link_hash_defined
919 && eh->elf.root.type != bfd_link_hash_defweak)
920 abort ();
921
922 value = (eh->elf.root.u.def.value
923 + eh->elf.root.u.def.section->output_offset
924 + eh->elf.root.u.def.section->output_section->vma);
925
926 /* Fill in the entry in the procedure linkage table.
927
928 The format of a plt entry is
929 <funcaddr>
930 <__gp>. */
931
932 bfd_put_32 (htab->splt->owner, value,
933 htab->splt->contents + off);
934 value = elf_gp (htab->splt->output_section->owner);
935 bfd_put_32 (htab->splt->owner, value,
936 htab->splt->contents + off + 4);
937 }
938 break;
939
940 case hppa_stub_export:
941 /* Branches are relative. This is where we are going to. */
942 sym_value = (stub_entry->target_value
943 + stub_entry->target_section->output_offset
944 + stub_entry->target_section->output_section->vma);
945
946 /* And this is where we are coming from. */
947 sym_value -= (stub_entry->stub_offset
948 + stub_sec->output_offset
949 + stub_sec->output_section->vma);
950
951 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
952 && (!htab->has_22bit_branch
953 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
954 {
955 (*_bfd_error_handler)
956 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
957 bfd_archive_filename (stub_entry->target_section->owner),
958 stub_sec->name,
959 (long) stub_entry->stub_offset,
960 stub_entry->root.string);
961 bfd_set_error (bfd_error_bad_value);
962 return false;
963 }
964
965 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
966 if (!htab->has_22bit_branch)
967 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
968 else
969 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
970 bfd_put_32 (stub_bfd, insn, loc);
971
972 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
973 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
974 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
975 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
976 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
977
978 /* Point the function symbol at the stub. */
979 stub_entry->h->elf.root.u.def.section = stub_sec;
980 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
981
982 size = 24;
983 break;
984
985 default:
986 BFD_FAIL ();
987 return false;
988 }
989
990 stub_sec->_raw_size += size;
991 return true;
992 }
993
994 #undef LDIL_R1
995 #undef BE_SR4_R1
996 #undef BL_R1
997 #undef ADDIL_R1
998 #undef DEPI_R1
999 #undef ADDIL_DP
1000 #undef LDW_R1_R21
1001 #undef LDW_R1_DLT
1002 #undef LDW_R1_R19
1003 #undef ADDIL_R19
1004 #undef LDW_R1_DP
1005 #undef LDSID_R21_R1
1006 #undef MTSP_R1
1007 #undef BE_SR0_R21
1008 #undef STW_RP
1009 #undef BV_R0_R21
1010 #undef BL_RP
1011 #undef NOP
1012 #undef LDW_RP
1013 #undef LDSID_RP_R1
1014 #undef BE_SR0_RP
1015
1016 /* As above, but don't actually build the stub. Just bump offset so
1017 we know stub section sizes. */
1018
1019 static boolean
1020 hppa_size_one_stub (gen_entry, in_arg)
1021 struct bfd_hash_entry *gen_entry;
1022 PTR in_arg;
1023 {
1024 struct elf32_hppa_stub_hash_entry *stub_entry;
1025 struct elf32_hppa_link_hash_table *htab;
1026 int size;
1027
1028 /* Massage our args to the form they really have. */
1029 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1030 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1031
1032 if (stub_entry->stub_type == hppa_stub_long_branch)
1033 size = 8;
1034 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1035 size = 12;
1036 else if (stub_entry->stub_type == hppa_stub_export)
1037 size = 24;
1038 else /* hppa_stub_import or hppa_stub_import_shared. */
1039 {
1040 if (htab->multi_subspace)
1041 size = 28;
1042 else
1043 size = 16;
1044 }
1045
1046 stub_entry->stub_sec->_raw_size += size;
1047 return true;
1048 }
1049
1050 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1051 Additionally we set the default architecture and machine. */
1052
1053 static boolean
1054 elf32_hppa_object_p (abfd)
1055 bfd *abfd;
1056 {
1057 Elf_Internal_Ehdr * i_ehdrp;
1058 unsigned int flags;
1059
1060 i_ehdrp = elf_elfheader (abfd);
1061 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1062 {
1063 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1064 return false;
1065 }
1066 else
1067 {
1068 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1069 return false;
1070 }
1071
1072 flags = i_ehdrp->e_flags;
1073 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1074 {
1075 case EFA_PARISC_1_0:
1076 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1077 case EFA_PARISC_1_1:
1078 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1079 case EFA_PARISC_2_0:
1080 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1081 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1082 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1083 }
1084 return true;
1085 }
1086
1087 /* Undo the generic ELF code's subtraction of section->vma from the
1088 value of each external symbol. */
1089
1090 static boolean
1091 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1092 bfd *abfd ATTRIBUTE_UNUSED;
1093 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1094 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1095 const char **namep ATTRIBUTE_UNUSED;
1096 flagword *flagsp ATTRIBUTE_UNUSED;
1097 asection **secp;
1098 bfd_vma *valp;
1099 {
1100 *valp += (*secp)->vma;
1101 return true;
1102 }
1103
1104 /* Create the .plt and .got sections, and set up our hash table
1105 short-cuts to various dynamic sections. */
1106
1107 static boolean
1108 elf32_hppa_create_dynamic_sections (abfd, info)
1109 bfd *abfd;
1110 struct bfd_link_info *info;
1111 {
1112 struct elf32_hppa_link_hash_table *htab;
1113
1114 /* Don't try to create the .plt and .got twice. */
1115 htab = hppa_link_hash_table (info);
1116 if (htab->splt != NULL)
1117 return true;
1118
1119 /* Call the generic code to do most of the work. */
1120 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1121 return false;
1122
1123 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1124 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1125
1126 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1127 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1128 if (htab->srelgot == NULL
1129 || ! bfd_set_section_flags (abfd, htab->srelgot,
1130 (SEC_ALLOC
1131 | SEC_LOAD
1132 | SEC_HAS_CONTENTS
1133 | SEC_IN_MEMORY
1134 | SEC_LINKER_CREATED
1135 | SEC_READONLY))
1136 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1137 return false;
1138
1139 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1140 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1141
1142 return true;
1143 }
1144
1145 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1146
1147 static void
1148 elf32_hppa_copy_indirect_symbol (dir, ind)
1149 struct elf_link_hash_entry *dir, *ind;
1150 {
1151 struct elf32_hppa_link_hash_entry *edir, *eind;
1152
1153 edir = (struct elf32_hppa_link_hash_entry *) dir;
1154 eind = (struct elf32_hppa_link_hash_entry *) ind;
1155
1156 if (eind->dyn_relocs != NULL)
1157 {
1158 if (edir->dyn_relocs != NULL)
1159 {
1160 struct elf32_hppa_dyn_reloc_entry **pp;
1161 struct elf32_hppa_dyn_reloc_entry *p;
1162
1163 if (ind->root.type == bfd_link_hash_indirect)
1164 abort ();
1165
1166 /* Add reloc counts against the weak sym to the strong sym
1167 list. Merge any entries against the same section. */
1168 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1169 {
1170 struct elf32_hppa_dyn_reloc_entry *q;
1171
1172 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1173 if (q->sec == p->sec)
1174 {
1175 #if RELATIVE_DYNRELOCS
1176 q->relative_count += p->relative_count;
1177 #endif
1178 q->count += p->count;
1179 *pp = p->next;
1180 break;
1181 }
1182 if (q == NULL)
1183 pp = &p->next;
1184 }
1185 *pp = edir->dyn_relocs;
1186 }
1187
1188 edir->dyn_relocs = eind->dyn_relocs;
1189 eind->dyn_relocs = NULL;
1190 }
1191
1192 _bfd_elf_link_hash_copy_indirect (dir, ind);
1193 }
1194
1195 /* Look through the relocs for a section during the first phase, and
1196 calculate needed space in the global offset table, procedure linkage
1197 table, and dynamic reloc sections. At this point we haven't
1198 necessarily read all the input files. */
1199
1200 static boolean
1201 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1202 bfd *abfd;
1203 struct bfd_link_info *info;
1204 asection *sec;
1205 const Elf_Internal_Rela *relocs;
1206 {
1207 Elf_Internal_Shdr *symtab_hdr;
1208 struct elf_link_hash_entry **sym_hashes;
1209 const Elf_Internal_Rela *rel;
1210 const Elf_Internal_Rela *rel_end;
1211 struct elf32_hppa_link_hash_table *htab;
1212 asection *sreloc;
1213 asection *stubreloc;
1214
1215 if (info->relocateable)
1216 return true;
1217
1218 htab = hppa_link_hash_table (info);
1219 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1220 sym_hashes = elf_sym_hashes (abfd);
1221 sreloc = NULL;
1222 stubreloc = NULL;
1223
1224 rel_end = relocs + sec->reloc_count;
1225 for (rel = relocs; rel < rel_end; rel++)
1226 {
1227 enum {
1228 NEED_GOT = 1,
1229 NEED_PLT = 2,
1230 NEED_DYNREL = 4,
1231 PLT_PLABEL = 8
1232 };
1233
1234 unsigned int r_symndx, r_type;
1235 struct elf32_hppa_link_hash_entry *h;
1236 int need_entry;
1237
1238 r_symndx = ELF32_R_SYM (rel->r_info);
1239
1240 if (r_symndx < symtab_hdr->sh_info)
1241 h = NULL;
1242 else
1243 h = ((struct elf32_hppa_link_hash_entry *)
1244 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1245
1246 r_type = ELF32_R_TYPE (rel->r_info);
1247
1248 switch (r_type)
1249 {
1250 case R_PARISC_DLTIND14F:
1251 case R_PARISC_DLTIND14R:
1252 case R_PARISC_DLTIND21L:
1253 /* This symbol requires a global offset table entry. */
1254 need_entry = NEED_GOT;
1255
1256 /* Mark this section as containing PIC code. */
1257 sec->flags |= SEC_HAS_GOT_REF;
1258 break;
1259
1260 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1261 case R_PARISC_PLABEL21L:
1262 case R_PARISC_PLABEL32:
1263 /* If the addend is non-zero, we break badly. */
1264 if (rel->r_addend != 0)
1265 abort ();
1266
1267 /* If we are creating a shared library, then we need to
1268 create a PLT entry for all PLABELs, because PLABELs with
1269 local symbols may be passed via a pointer to another
1270 object. Additionally, output a dynamic relocation
1271 pointing to the PLT entry.
1272 For executables, the original 32-bit ABI allowed two
1273 different styles of PLABELs (function pointers): For
1274 global functions, the PLABEL word points into the .plt
1275 two bytes past a (function address, gp) pair, and for
1276 local functions the PLABEL points directly at the
1277 function. The magic +2 for the first type allows us to
1278 differentiate between the two. As you can imagine, this
1279 is a real pain when it comes to generating code to call
1280 functions indirectly or to compare function pointers.
1281 We avoid the mess by always pointing a PLABEL into the
1282 .plt, even for local functions. */
1283 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1284 break;
1285
1286 case R_PARISC_PCREL12F:
1287 htab->has_12bit_branch = 1;
1288 goto branch_common;
1289
1290 case R_PARISC_PCREL17C:
1291 case R_PARISC_PCREL17F:
1292 htab->has_17bit_branch = 1;
1293 goto branch_common;
1294
1295 case R_PARISC_PCREL22F:
1296 htab->has_22bit_branch = 1;
1297 branch_common:
1298 /* Function calls might need to go through the .plt, and
1299 might require long branch stubs. */
1300 if (h == NULL)
1301 {
1302 /* We know local syms won't need a .plt entry, and if
1303 they need a long branch stub we can't guarantee that
1304 we can reach the stub. So just flag an error later
1305 if we're doing a shared link and find we need a long
1306 branch stub. */
1307 continue;
1308 }
1309 else
1310 {
1311 /* Global symbols will need a .plt entry if they remain
1312 global, and in most cases won't need a long branch
1313 stub. Unfortunately, we have to cater for the case
1314 where a symbol is forced local by versioning, or due
1315 to symbolic linking, and we lose the .plt entry. */
1316 need_entry = NEED_PLT;
1317 if (h->elf.type == STT_PARISC_MILLI)
1318 need_entry = 0;
1319 }
1320 break;
1321
1322 case R_PARISC_SEGBASE: /* Used to set segment base. */
1323 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1324 case R_PARISC_PCREL14F: /* PC relative load/store. */
1325 case R_PARISC_PCREL14R:
1326 case R_PARISC_PCREL17R: /* External branches. */
1327 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1328 /* We don't need to propagate the relocation if linking a
1329 shared object since these are section relative. */
1330 continue;
1331
1332 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1333 case R_PARISC_DPREL14R:
1334 case R_PARISC_DPREL21L:
1335 if (info->shared)
1336 {
1337 (*_bfd_error_handler)
1338 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1339 bfd_archive_filename (abfd),
1340 elf_hppa_howto_table[r_type].name);
1341 bfd_set_error (bfd_error_bad_value);
1342 return false;
1343 }
1344 /* Fall through. */
1345
1346 case R_PARISC_DIR17F: /* Used for external branches. */
1347 case R_PARISC_DIR17R:
1348 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1349 case R_PARISC_DIR14R:
1350 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1351 #if 0
1352 /* Help debug shared library creation. Any of the above
1353 relocs can be used in shared libs, but they may cause
1354 pages to become unshared. */
1355 if (info->shared)
1356 {
1357 (*_bfd_error_handler)
1358 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1359 bfd_archive_filename (abfd),
1360 elf_hppa_howto_table[r_type].name);
1361 }
1362 /* Fall through. */
1363 #endif
1364
1365 case R_PARISC_DIR32: /* .word relocs. */
1366 /* We may want to output a dynamic relocation later. */
1367 need_entry = NEED_DYNREL;
1368 break;
1369
1370 /* This relocation describes the C++ object vtable hierarchy.
1371 Reconstruct it for later use during GC. */
1372 case R_PARISC_GNU_VTINHERIT:
1373 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1374 &h->elf, rel->r_offset))
1375 return false;
1376 continue;
1377
1378 /* This relocation describes which C++ vtable entries are actually
1379 used. Record for later use during GC. */
1380 case R_PARISC_GNU_VTENTRY:
1381 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1382 &h->elf, rel->r_addend))
1383 return false;
1384 continue;
1385
1386 default:
1387 continue;
1388 }
1389
1390 /* Now carry out our orders. */
1391 if (need_entry & NEED_GOT)
1392 {
1393 /* Allocate space for a GOT entry, as well as a dynamic
1394 relocation for this entry. */
1395 if (htab->sgot == NULL)
1396 {
1397 if (htab->elf.dynobj == NULL)
1398 htab->elf.dynobj = abfd;
1399 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1400 return false;
1401 }
1402
1403 if (h != NULL)
1404 {
1405 h->elf.got.refcount += 1;
1406 }
1407 else
1408 {
1409 bfd_signed_vma *local_got_refcounts;
1410
1411 /* This is a global offset table entry for a local symbol. */
1412 local_got_refcounts = elf_local_got_refcounts (abfd);
1413 if (local_got_refcounts == NULL)
1414 {
1415 bfd_size_type size;
1416
1417 /* Allocate space for local got offsets and local
1418 plt offsets. Done this way to save polluting
1419 elf_obj_tdata with another target specific
1420 pointer. */
1421 size = symtab_hdr->sh_info;
1422 size *= 2 * sizeof (bfd_signed_vma);
1423 local_got_refcounts = ((bfd_signed_vma *)
1424 bfd_zalloc (abfd, size));
1425 if (local_got_refcounts == NULL)
1426 return false;
1427 elf_local_got_refcounts (abfd) = local_got_refcounts;
1428 }
1429 local_got_refcounts[r_symndx] += 1;
1430 }
1431 }
1432
1433 if (need_entry & NEED_PLT)
1434 {
1435 /* If we are creating a shared library, and this is a reloc
1436 against a weak symbol or a global symbol in a dynamic
1437 object, then we will be creating an import stub and a
1438 .plt entry for the symbol. Similarly, on a normal link
1439 to symbols defined in a dynamic object we'll need the
1440 import stub and a .plt entry. We don't know yet whether
1441 the symbol is defined or not, so make an entry anyway and
1442 clean up later in adjust_dynamic_symbol. */
1443 if ((sec->flags & SEC_ALLOC) != 0)
1444 {
1445 if (h != NULL)
1446 {
1447 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1448 h->elf.plt.refcount += 1;
1449
1450 /* If this .plt entry is for a plabel, mark it so
1451 that adjust_dynamic_symbol will keep the entry
1452 even if it appears to be local. */
1453 if (need_entry & PLT_PLABEL)
1454 h->plabel = 1;
1455 }
1456 else if (need_entry & PLT_PLABEL)
1457 {
1458 bfd_signed_vma *local_got_refcounts;
1459 bfd_signed_vma *local_plt_refcounts;
1460
1461 local_got_refcounts = elf_local_got_refcounts (abfd);
1462 if (local_got_refcounts == NULL)
1463 {
1464 bfd_size_type size;
1465
1466 /* Allocate space for local got offsets and local
1467 plt offsets. */
1468 size = symtab_hdr->sh_info;
1469 size *= 2 * sizeof (bfd_signed_vma);
1470 local_got_refcounts = ((bfd_signed_vma *)
1471 bfd_zalloc (abfd, size));
1472 if (local_got_refcounts == NULL)
1473 return false;
1474 elf_local_got_refcounts (abfd) = local_got_refcounts;
1475 }
1476 local_plt_refcounts = (local_got_refcounts
1477 + symtab_hdr->sh_info);
1478 local_plt_refcounts[r_symndx] += 1;
1479 }
1480 }
1481 }
1482
1483 if (need_entry & NEED_DYNREL)
1484 {
1485 /* Flag this symbol as having a non-got, non-plt reference
1486 so that we generate copy relocs if it turns out to be
1487 dynamic. */
1488 if (h != NULL && !info->shared)
1489 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1490
1491 /* If we are creating a shared library then we need to copy
1492 the reloc into the shared library. However, if we are
1493 linking with -Bsymbolic, we need only copy absolute
1494 relocs or relocs against symbols that are not defined in
1495 an object we are including in the link. PC- or DP- or
1496 DLT-relative relocs against any local sym or global sym
1497 with DEF_REGULAR set, can be discarded. At this point we
1498 have not seen all the input files, so it is possible that
1499 DEF_REGULAR is not set now but will be set later (it is
1500 never cleared). We account for that possibility below by
1501 storing information in the dyn_relocs field of the
1502 hash table entry.
1503
1504 A similar situation to the -Bsymbolic case occurs when
1505 creating shared libraries and symbol visibility changes
1506 render the symbol local.
1507
1508 As it turns out, all the relocs we will be creating here
1509 are absolute, so we cannot remove them on -Bsymbolic
1510 links or visibility changes anyway. A STUB_REL reloc
1511 is absolute too, as in that case it is the reloc in the
1512 stub we will be creating, rather than copying the PCREL
1513 reloc in the branch.
1514
1515 If on the other hand, we are creating an executable, we
1516 may need to keep relocations for symbols satisfied by a
1517 dynamic library if we manage to avoid copy relocs for the
1518 symbol. */
1519 if ((info->shared
1520 && (sec->flags & SEC_ALLOC) != 0
1521 && (IS_ABSOLUTE_RELOC (r_type)
1522 || (h != NULL
1523 && (!info->symbolic
1524 || h->elf.root.type == bfd_link_hash_defweak
1525 || (h->elf.elf_link_hash_flags
1526 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1527 || (!info->shared
1528 && (sec->flags & SEC_ALLOC) != 0
1529 && h != NULL
1530 && (h->elf.root.type == bfd_link_hash_defweak
1531 || (h->elf.elf_link_hash_flags
1532 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1533 {
1534 struct elf32_hppa_dyn_reloc_entry *p;
1535 struct elf32_hppa_dyn_reloc_entry **head;
1536
1537 /* Create a reloc section in dynobj and make room for
1538 this reloc. */
1539 if (sreloc == NULL)
1540 {
1541 char *name;
1542 bfd *dynobj;
1543
1544 name = (bfd_elf_string_from_elf_section
1545 (abfd,
1546 elf_elfheader (abfd)->e_shstrndx,
1547 elf_section_data (sec)->rel_hdr.sh_name));
1548 if (name == NULL)
1549 {
1550 (*_bfd_error_handler)
1551 (_("Could not find relocation section for %s"),
1552 sec->name);
1553 bfd_set_error (bfd_error_bad_value);
1554 return false;
1555 }
1556
1557 if (htab->elf.dynobj == NULL)
1558 htab->elf.dynobj = abfd;
1559
1560 dynobj = htab->elf.dynobj;
1561 sreloc = bfd_get_section_by_name (dynobj, name);
1562 if (sreloc == NULL)
1563 {
1564 flagword flags;
1565
1566 sreloc = bfd_make_section (dynobj, name);
1567 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1568 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1569 if ((sec->flags & SEC_ALLOC) != 0)
1570 flags |= SEC_ALLOC | SEC_LOAD;
1571 if (sreloc == NULL
1572 || !bfd_set_section_flags (dynobj, sreloc, flags)
1573 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1574 return false;
1575 }
1576
1577 elf_section_data (sec)->sreloc = sreloc;
1578 }
1579
1580 /* If this is a global symbol, we count the number of
1581 relocations we need for this symbol. */
1582 if (h != NULL)
1583 {
1584 head = &h->dyn_relocs;
1585 }
1586 else
1587 {
1588 /* Track dynamic relocs needed for local syms too.
1589 We really need local syms available to do this
1590 easily. Oh well. */
1591
1592 asection *s;
1593 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1594 sec, r_symndx);
1595 if (s == NULL)
1596 return false;
1597
1598 head = ((struct elf32_hppa_dyn_reloc_entry **)
1599 &elf_section_data (s)->local_dynrel);
1600 }
1601
1602 p = *head;
1603 if (p == NULL || p->sec != sec)
1604 {
1605 p = ((struct elf32_hppa_dyn_reloc_entry *)
1606 bfd_alloc (htab->elf.dynobj,
1607 (bfd_size_type) sizeof *p));
1608 if (p == NULL)
1609 return false;
1610 p->next = *head;
1611 *head = p;
1612 p->sec = sec;
1613 p->count = 0;
1614 #if RELATIVE_DYNRELOCS
1615 p->relative_count = 0;
1616 #endif
1617 }
1618
1619 p->count += 1;
1620 #if RELATIVE_DYNRELOCS
1621 if (!IS_ABSOLUTE_RELOC (rtype))
1622 p->relative_count += 1;
1623 #endif
1624 }
1625 }
1626 }
1627
1628 return true;
1629 }
1630
1631 /* Return the section that should be marked against garbage collection
1632 for a given relocation. */
1633
1634 static asection *
1635 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1636 bfd *abfd;
1637 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1638 Elf_Internal_Rela *rel;
1639 struct elf_link_hash_entry *h;
1640 Elf_Internal_Sym *sym;
1641 {
1642 if (h != NULL)
1643 {
1644 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1645 {
1646 case R_PARISC_GNU_VTINHERIT:
1647 case R_PARISC_GNU_VTENTRY:
1648 break;
1649
1650 default:
1651 switch (h->root.type)
1652 {
1653 case bfd_link_hash_defined:
1654 case bfd_link_hash_defweak:
1655 return h->root.u.def.section;
1656
1657 case bfd_link_hash_common:
1658 return h->root.u.c.p->section;
1659
1660 default:
1661 break;
1662 }
1663 }
1664 }
1665 else
1666 {
1667 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1668 }
1669
1670 return NULL;
1671 }
1672
1673 /* Update the got and plt entry reference counts for the section being
1674 removed. */
1675
1676 static boolean
1677 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1678 bfd *abfd;
1679 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1680 asection *sec;
1681 const Elf_Internal_Rela *relocs;
1682 {
1683 Elf_Internal_Shdr *symtab_hdr;
1684 struct elf_link_hash_entry **sym_hashes;
1685 bfd_signed_vma *local_got_refcounts;
1686 bfd_signed_vma *local_plt_refcounts;
1687 const Elf_Internal_Rela *rel, *relend;
1688 unsigned long r_symndx;
1689 struct elf_link_hash_entry *h;
1690 struct elf32_hppa_link_hash_table *htab;
1691 bfd *dynobj;
1692
1693 elf_section_data (sec)->local_dynrel = NULL;
1694
1695 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1696 sym_hashes = elf_sym_hashes (abfd);
1697 local_got_refcounts = elf_local_got_refcounts (abfd);
1698 local_plt_refcounts = local_got_refcounts;
1699 if (local_plt_refcounts != NULL)
1700 local_plt_refcounts += symtab_hdr->sh_info;
1701 htab = hppa_link_hash_table (info);
1702 dynobj = htab->elf.dynobj;
1703 if (dynobj == NULL)
1704 return true;
1705
1706 relend = relocs + sec->reloc_count;
1707 for (rel = relocs; rel < relend; rel++)
1708 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1709 {
1710 case R_PARISC_DLTIND14F:
1711 case R_PARISC_DLTIND14R:
1712 case R_PARISC_DLTIND21L:
1713 r_symndx = ELF32_R_SYM (rel->r_info);
1714 if (r_symndx >= symtab_hdr->sh_info)
1715 {
1716 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1717 if (h->got.refcount > 0)
1718 h->got.refcount -= 1;
1719 }
1720 else if (local_got_refcounts != NULL)
1721 {
1722 if (local_got_refcounts[r_symndx] > 0)
1723 local_got_refcounts[r_symndx] -= 1;
1724 }
1725 break;
1726
1727 case R_PARISC_PCREL12F:
1728 case R_PARISC_PCREL17C:
1729 case R_PARISC_PCREL17F:
1730 case R_PARISC_PCREL22F:
1731 r_symndx = ELF32_R_SYM (rel->r_info);
1732 if (r_symndx >= symtab_hdr->sh_info)
1733 {
1734 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1735 if (h->plt.refcount > 0)
1736 h->plt.refcount -= 1;
1737 }
1738 break;
1739
1740 case R_PARISC_PLABEL14R:
1741 case R_PARISC_PLABEL21L:
1742 case R_PARISC_PLABEL32:
1743 r_symndx = ELF32_R_SYM (rel->r_info);
1744 if (r_symndx >= symtab_hdr->sh_info)
1745 {
1746 struct elf32_hppa_link_hash_entry *eh;
1747 struct elf32_hppa_dyn_reloc_entry **pp;
1748 struct elf32_hppa_dyn_reloc_entry *p;
1749
1750 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1751
1752 if (h->plt.refcount > 0)
1753 h->plt.refcount -= 1;
1754
1755 eh = (struct elf32_hppa_link_hash_entry *) h;
1756
1757 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1758 if (p->sec == sec)
1759 {
1760 #if RELATIVE_DYNRELOCS
1761 if (!IS_ABSOLUTE_RELOC (rtype))
1762 p->relative_count -= 1;
1763 #endif
1764 p->count -= 1;
1765 if (p->count == 0)
1766 *pp = p->next;
1767 break;
1768 }
1769 }
1770 else if (local_plt_refcounts != NULL)
1771 {
1772 if (local_plt_refcounts[r_symndx] > 0)
1773 local_plt_refcounts[r_symndx] -= 1;
1774 }
1775 break;
1776
1777 case R_PARISC_DIR32:
1778 r_symndx = ELF32_R_SYM (rel->r_info);
1779 if (r_symndx >= symtab_hdr->sh_info)
1780 {
1781 struct elf32_hppa_link_hash_entry *eh;
1782 struct elf32_hppa_dyn_reloc_entry **pp;
1783 struct elf32_hppa_dyn_reloc_entry *p;
1784
1785 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1786
1787 eh = (struct elf32_hppa_link_hash_entry *) h;
1788
1789 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1790 if (p->sec == sec)
1791 {
1792 #if RELATIVE_DYNRELOCS
1793 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1794 p->relative_count -= 1;
1795 #endif
1796 p->count -= 1;
1797 if (p->count == 0)
1798 *pp = p->next;
1799 break;
1800 }
1801 }
1802 break;
1803
1804 default:
1805 break;
1806 }
1807
1808 return true;
1809 }
1810
1811 /* Our own version of hide_symbol, so that we can keep plt entries for
1812 plabels. */
1813
1814 static void
1815 elf32_hppa_hide_symbol (info, h, force_local)
1816 struct bfd_link_info *info;
1817 struct elf_link_hash_entry *h;
1818 boolean force_local;
1819 {
1820 if (force_local)
1821 {
1822 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1823 if (h->dynindx != -1)
1824 {
1825 h->dynindx = -1;
1826 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1827 h->dynstr_index);
1828 }
1829 }
1830
1831 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1832 {
1833 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1834 h->plt.offset = (bfd_vma) -1;
1835 }
1836 }
1837
1838 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1839 will be called from elflink.h. If elflink.h doesn't call our
1840 finish_dynamic_symbol routine, we'll need to do something about
1841 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1842 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1843 ((DYN) \
1844 && ((INFO)->shared \
1845 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1846 && ((H)->dynindx != -1 \
1847 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1848
1849 /* Adjust a symbol defined by a dynamic object and referenced by a
1850 regular object. The current definition is in some section of the
1851 dynamic object, but we're not including those sections. We have to
1852 change the definition to something the rest of the link can
1853 understand. */
1854
1855 static boolean
1856 elf32_hppa_adjust_dynamic_symbol (info, h)
1857 struct bfd_link_info *info;
1858 struct elf_link_hash_entry *h;
1859 {
1860 struct elf32_hppa_link_hash_table *htab;
1861 struct elf32_hppa_link_hash_entry *eh;
1862 struct elf32_hppa_dyn_reloc_entry *p;
1863 asection *s;
1864 unsigned int power_of_two;
1865
1866 /* If this is a function, put it in the procedure linkage table. We
1867 will fill in the contents of the procedure linkage table later. */
1868 if (h->type == STT_FUNC
1869 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1870 {
1871 if (h->plt.refcount <= 0
1872 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1873 && h->root.type != bfd_link_hash_defweak
1874 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1875 && (!info->shared || info->symbolic)))
1876 {
1877 /* The .plt entry is not needed when:
1878 a) Garbage collection has removed all references to the
1879 symbol, or
1880 b) We know for certain the symbol is defined in this
1881 object, and it's not a weak definition, nor is the symbol
1882 used by a plabel relocation. Either this object is the
1883 application or we are doing a shared symbolic link. */
1884
1885 /* As a special sop to the hppa ABI, we keep a .plt entry
1886 for functions in sections containing PIC code. */
1887 if (!info->shared
1888 && h->plt.refcount > 0
1889 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1890 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1891 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1892 else
1893 {
1894 h->plt.offset = (bfd_vma) -1;
1895 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1896 }
1897 }
1898
1899 return true;
1900 }
1901 else
1902 h->plt.offset = (bfd_vma) -1;
1903
1904 /* If this is a weak symbol, and there is a real definition, the
1905 processor independent code will have arranged for us to see the
1906 real definition first, and we can just use the same value. */
1907 if (h->weakdef != NULL)
1908 {
1909 if (h->weakdef->root.type != bfd_link_hash_defined
1910 && h->weakdef->root.type != bfd_link_hash_defweak)
1911 abort ();
1912 h->root.u.def.section = h->weakdef->root.u.def.section;
1913 h->root.u.def.value = h->weakdef->root.u.def.value;
1914 return true;
1915 }
1916
1917 /* This is a reference to a symbol defined by a dynamic object which
1918 is not a function. */
1919
1920 /* If we are creating a shared library, we must presume that the
1921 only references to the symbol are via the global offset table.
1922 For such cases we need not do anything here; the relocations will
1923 be handled correctly by relocate_section. */
1924 if (info->shared)
1925 return true;
1926
1927 /* If there are no references to this symbol that do not use the
1928 GOT, we don't need to generate a copy reloc. */
1929 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1930 return true;
1931
1932 eh = (struct elf32_hppa_link_hash_entry *) h;
1933 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1934 {
1935 s = p->sec->output_section;
1936 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1937 break;
1938 }
1939
1940 /* If we didn't find any dynamic relocs in read-only sections, then
1941 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1942 if (p == NULL)
1943 {
1944 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1945 return true;
1946 }
1947
1948 /* We must allocate the symbol in our .dynbss section, which will
1949 become part of the .bss section of the executable. There will be
1950 an entry for this symbol in the .dynsym section. The dynamic
1951 object will contain position independent code, so all references
1952 from the dynamic object to this symbol will go through the global
1953 offset table. The dynamic linker will use the .dynsym entry to
1954 determine the address it must put in the global offset table, so
1955 both the dynamic object and the regular object will refer to the
1956 same memory location for the variable. */
1957
1958 htab = hppa_link_hash_table (info);
1959
1960 /* We must generate a COPY reloc to tell the dynamic linker to
1961 copy the initial value out of the dynamic object and into the
1962 runtime process image. */
1963 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1964 {
1965 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1966 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1967 }
1968
1969 /* We need to figure out the alignment required for this symbol. I
1970 have no idea how other ELF linkers handle this. */
1971
1972 power_of_two = bfd_log2 (h->size);
1973 if (power_of_two > 3)
1974 power_of_two = 3;
1975
1976 /* Apply the required alignment. */
1977 s = htab->sdynbss;
1978 s->_raw_size = BFD_ALIGN (s->_raw_size,
1979 (bfd_size_type) (1 << power_of_two));
1980 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1981 {
1982 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1983 return false;
1984 }
1985
1986 /* Define the symbol as being at this point in the section. */
1987 h->root.u.def.section = s;
1988 h->root.u.def.value = s->_raw_size;
1989
1990 /* Increment the section size to make room for the symbol. */
1991 s->_raw_size += h->size;
1992
1993 return true;
1994 }
1995
1996 /* Called via elf_link_hash_traverse to create .plt entries for an
1997 application that uses statically linked PIC functions. Similar to
1998 the first part of elf32_hppa_adjust_dynamic_symbol. */
1999
2000 static boolean
2001 mark_PIC_calls (h, inf)
2002 struct elf_link_hash_entry *h;
2003 PTR inf ATTRIBUTE_UNUSED;
2004 {
2005 if (h->root.type == bfd_link_hash_warning)
2006 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2007
2008 if (! (h->plt.refcount > 0
2009 && (h->root.type == bfd_link_hash_defined
2010 || h->root.type == bfd_link_hash_defweak)
2011 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2012 {
2013 h->plt.offset = (bfd_vma) -1;
2014 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2015 return true;
2016 }
2017
2018 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2019 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2020
2021 return true;
2022 }
2023
2024 /* Allocate space in the .plt for entries that won't have relocations.
2025 ie. pic_call and plabel entries. */
2026
2027 static boolean
2028 allocate_plt_static (h, inf)
2029 struct elf_link_hash_entry *h;
2030 PTR inf;
2031 {
2032 struct bfd_link_info *info;
2033 struct elf32_hppa_link_hash_table *htab;
2034 asection *s;
2035
2036 if (h->root.type == bfd_link_hash_indirect)
2037 return true;
2038
2039 if (h->root.type == bfd_link_hash_warning)
2040 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2041
2042 info = (struct bfd_link_info *) inf;
2043 htab = hppa_link_hash_table (info);
2044 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2045 {
2046 /* Make an entry in the .plt section for non-pic code that is
2047 calling pic code. */
2048 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2049 s = htab->splt;
2050 h->plt.offset = s->_raw_size;
2051 s->_raw_size += PLT_ENTRY_SIZE;
2052 }
2053 else if (htab->elf.dynamic_sections_created
2054 && h->plt.refcount > 0)
2055 {
2056 /* Make sure this symbol is output as a dynamic symbol.
2057 Undefined weak syms won't yet be marked as dynamic. */
2058 if (h->dynindx == -1
2059 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2060 && h->type != STT_PARISC_MILLI)
2061 {
2062 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2063 return false;
2064 }
2065
2066 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2067 {
2068 /* Allocate these later. From this point on, h->plabel
2069 means that the plt entry is only used by a plabel.
2070 We'll be using a normal plt entry for this symbol, so
2071 clear the plabel indicator. */
2072 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2073 }
2074 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2075 {
2076 /* Make an entry in the .plt section for plabel references
2077 that won't have a .plt entry for other reasons. */
2078 s = htab->splt;
2079 h->plt.offset = s->_raw_size;
2080 s->_raw_size += PLT_ENTRY_SIZE;
2081 }
2082 else
2083 {
2084 /* No .plt entry needed. */
2085 h->plt.offset = (bfd_vma) -1;
2086 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2087 }
2088 }
2089 else
2090 {
2091 h->plt.offset = (bfd_vma) -1;
2092 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2093 }
2094
2095 return true;
2096 }
2097
2098 /* Allocate space in .plt, .got and associated reloc sections for
2099 global syms. */
2100
2101 static boolean
2102 allocate_dynrelocs (h, inf)
2103 struct elf_link_hash_entry *h;
2104 PTR inf;
2105 {
2106 struct bfd_link_info *info;
2107 struct elf32_hppa_link_hash_table *htab;
2108 asection *s;
2109 struct elf32_hppa_link_hash_entry *eh;
2110 struct elf32_hppa_dyn_reloc_entry *p;
2111
2112 if (h->root.type == bfd_link_hash_indirect)
2113 return true;
2114
2115 if (h->root.type == bfd_link_hash_warning)
2116 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2117
2118 info = (struct bfd_link_info *) inf;
2119 htab = hppa_link_hash_table (info);
2120 if (htab->elf.dynamic_sections_created
2121 && h->plt.offset != (bfd_vma) -1
2122 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2123 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
2124 {
2125 /* Make an entry in the .plt section. */
2126 s = htab->splt;
2127 h->plt.offset = s->_raw_size;
2128 s->_raw_size += PLT_ENTRY_SIZE;
2129
2130 /* We also need to make an entry in the .rela.plt section. */
2131 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2132 htab->need_plt_stub = 1;
2133 }
2134
2135 if (h->got.refcount > 0)
2136 {
2137 /* Make sure this symbol is output as a dynamic symbol.
2138 Undefined weak syms won't yet be marked as dynamic. */
2139 if (h->dynindx == -1
2140 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2141 && h->type != STT_PARISC_MILLI)
2142 {
2143 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2144 return false;
2145 }
2146
2147 s = htab->sgot;
2148 h->got.offset = s->_raw_size;
2149 s->_raw_size += GOT_ENTRY_SIZE;
2150 if (htab->elf.dynamic_sections_created
2151 && (info->shared
2152 || (h->dynindx != -1
2153 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2154 {
2155 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2156 }
2157 }
2158 else
2159 h->got.offset = (bfd_vma) -1;
2160
2161 eh = (struct elf32_hppa_link_hash_entry *) h;
2162 if (eh->dyn_relocs == NULL)
2163 return true;
2164
2165 /* If this is a -Bsymbolic shared link, then we need to discard all
2166 space allocated for dynamic pc-relative relocs against symbols
2167 defined in a regular object. For the normal shared case, discard
2168 space for relocs that have become local due to symbol visibility
2169 changes. */
2170 if (info->shared)
2171 {
2172 #if RELATIVE_DYNRELOCS
2173 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2174 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2175 || info->symbolic))
2176 {
2177 struct elf32_hppa_dyn_reloc_entry **pp;
2178
2179 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2180 {
2181 p->count -= p->relative_count;
2182 p->relative_count = 0;
2183 if (p->count == 0)
2184 *pp = p->next;
2185 else
2186 pp = &p->next;
2187 }
2188 }
2189 #endif
2190 }
2191 else
2192 {
2193 /* For the non-shared case, discard space for relocs against
2194 symbols which turn out to need copy relocs or are not
2195 dynamic. */
2196 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2197 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2198 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2199 || (htab->elf.dynamic_sections_created
2200 && (h->root.type == bfd_link_hash_undefweak
2201 || h->root.type == bfd_link_hash_undefined))))
2202 {
2203 /* Make sure this symbol is output as a dynamic symbol.
2204 Undefined weak syms won't yet be marked as dynamic. */
2205 if (h->dynindx == -1
2206 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2207 && h->type != STT_PARISC_MILLI)
2208 {
2209 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2210 return false;
2211 }
2212
2213 /* If that succeeded, we know we'll be keeping all the
2214 relocs. */
2215 if (h->dynindx != -1)
2216 goto keep;
2217 }
2218
2219 eh->dyn_relocs = NULL;
2220 return true;
2221
2222 keep: ;
2223 }
2224
2225 /* Finally, allocate space. */
2226 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2227 {
2228 asection *sreloc = elf_section_data (p->sec)->sreloc;
2229 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2230 }
2231
2232 return true;
2233 }
2234
2235 /* This function is called via elf_link_hash_traverse to force
2236 millicode symbols local so they do not end up as globals in the
2237 dynamic symbol table. We ought to be able to do this in
2238 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2239 for all dynamic symbols. Arguably, this is a bug in
2240 elf_adjust_dynamic_symbol. */
2241
2242 static boolean
2243 clobber_millicode_symbols (h, info)
2244 struct elf_link_hash_entry *h;
2245 struct bfd_link_info *info;
2246 {
2247 if (h->root.type == bfd_link_hash_warning)
2248 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2249
2250 if (h->type == STT_PARISC_MILLI
2251 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2252 {
2253 elf32_hppa_hide_symbol (info, h, true);
2254 }
2255 return true;
2256 }
2257
2258 /* Find any dynamic relocs that apply to read-only sections. */
2259
2260 static boolean
2261 readonly_dynrelocs (h, inf)
2262 struct elf_link_hash_entry *h;
2263 PTR inf;
2264 {
2265 struct elf32_hppa_link_hash_entry *eh;
2266 struct elf32_hppa_dyn_reloc_entry *p;
2267
2268 if (h->root.type == bfd_link_hash_warning)
2269 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2270
2271 eh = (struct elf32_hppa_link_hash_entry *) h;
2272 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2273 {
2274 asection *s = p->sec->output_section;
2275
2276 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2277 {
2278 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2279
2280 info->flags |= DF_TEXTREL;
2281
2282 /* Not an error, just cut short the traversal. */
2283 return false;
2284 }
2285 }
2286 return true;
2287 }
2288
2289 /* Set the sizes of the dynamic sections. */
2290
2291 static boolean
2292 elf32_hppa_size_dynamic_sections (output_bfd, info)
2293 bfd *output_bfd ATTRIBUTE_UNUSED;
2294 struct bfd_link_info *info;
2295 {
2296 struct elf32_hppa_link_hash_table *htab;
2297 bfd *dynobj;
2298 bfd *ibfd;
2299 asection *s;
2300 boolean relocs;
2301
2302 htab = hppa_link_hash_table (info);
2303 dynobj = htab->elf.dynobj;
2304 if (dynobj == NULL)
2305 abort ();
2306
2307 if (htab->elf.dynamic_sections_created)
2308 {
2309 /* Set the contents of the .interp section to the interpreter. */
2310 if (! info->shared)
2311 {
2312 s = bfd_get_section_by_name (dynobj, ".interp");
2313 if (s == NULL)
2314 abort ();
2315 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2316 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2317 }
2318
2319 /* Force millicode symbols local. */
2320 elf_link_hash_traverse (&htab->elf,
2321 clobber_millicode_symbols,
2322 info);
2323 }
2324 else
2325 {
2326 /* Run through the function symbols, looking for any that are
2327 PIC, and mark them as needing .plt entries so that %r19 will
2328 be set up. */
2329 if (! info->shared)
2330 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2331 }
2332
2333 /* Set up .got and .plt offsets for local syms, and space for local
2334 dynamic relocs. */
2335 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2336 {
2337 bfd_signed_vma *local_got;
2338 bfd_signed_vma *end_local_got;
2339 bfd_signed_vma *local_plt;
2340 bfd_signed_vma *end_local_plt;
2341 bfd_size_type locsymcount;
2342 Elf_Internal_Shdr *symtab_hdr;
2343 asection *srel;
2344
2345 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2346 continue;
2347
2348 for (s = ibfd->sections; s != NULL; s = s->next)
2349 {
2350 struct elf32_hppa_dyn_reloc_entry *p;
2351
2352 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2353 elf_section_data (s)->local_dynrel);
2354 p != NULL;
2355 p = p->next)
2356 {
2357 if (!bfd_is_abs_section (p->sec)
2358 && bfd_is_abs_section (p->sec->output_section))
2359 {
2360 /* Input section has been discarded, either because
2361 it is a copy of a linkonce section or due to
2362 linker script /DISCARD/, so we'll be discarding
2363 the relocs too. */
2364 }
2365 else if (p->count != 0)
2366 {
2367 srel = elf_section_data (p->sec)->sreloc;
2368 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2369 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2370 info->flags |= DF_TEXTREL;
2371 }
2372 }
2373 }
2374
2375 local_got = elf_local_got_refcounts (ibfd);
2376 if (!local_got)
2377 continue;
2378
2379 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2380 locsymcount = symtab_hdr->sh_info;
2381 end_local_got = local_got + locsymcount;
2382 s = htab->sgot;
2383 srel = htab->srelgot;
2384 for (; local_got < end_local_got; ++local_got)
2385 {
2386 if (*local_got > 0)
2387 {
2388 *local_got = s->_raw_size;
2389 s->_raw_size += GOT_ENTRY_SIZE;
2390 if (info->shared)
2391 srel->_raw_size += sizeof (Elf32_External_Rela);
2392 }
2393 else
2394 *local_got = (bfd_vma) -1;
2395 }
2396
2397 local_plt = end_local_got;
2398 end_local_plt = local_plt + locsymcount;
2399 if (! htab->elf.dynamic_sections_created)
2400 {
2401 /* Won't be used, but be safe. */
2402 for (; local_plt < end_local_plt; ++local_plt)
2403 *local_plt = (bfd_vma) -1;
2404 }
2405 else
2406 {
2407 s = htab->splt;
2408 srel = htab->srelplt;
2409 for (; local_plt < end_local_plt; ++local_plt)
2410 {
2411 if (*local_plt > 0)
2412 {
2413 *local_plt = s->_raw_size;
2414 s->_raw_size += PLT_ENTRY_SIZE;
2415 if (info->shared)
2416 srel->_raw_size += sizeof (Elf32_External_Rela);
2417 }
2418 else
2419 *local_plt = (bfd_vma) -1;
2420 }
2421 }
2422 }
2423
2424 /* Do all the .plt entries without relocs first. The dynamic linker
2425 uses the last .plt reloc to find the end of the .plt (and hence
2426 the start of the .got) for lazy linking. */
2427 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2428
2429 /* Allocate global sym .plt and .got entries, and space for global
2430 sym dynamic relocs. */
2431 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2432
2433 /* The check_relocs and adjust_dynamic_symbol entry points have
2434 determined the sizes of the various dynamic sections. Allocate
2435 memory for them. */
2436 relocs = false;
2437 for (s = dynobj->sections; s != NULL; s = s->next)
2438 {
2439 if ((s->flags & SEC_LINKER_CREATED) == 0)
2440 continue;
2441
2442 if (s == htab->splt)
2443 {
2444 if (htab->need_plt_stub)
2445 {
2446 /* Make space for the plt stub at the end of the .plt
2447 section. We want this stub right at the end, up
2448 against the .got section. */
2449 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2450 int pltalign = bfd_section_alignment (dynobj, s);
2451 bfd_size_type mask;
2452
2453 if (gotalign > pltalign)
2454 bfd_set_section_alignment (dynobj, s, gotalign);
2455 mask = ((bfd_size_type) 1 << gotalign) - 1;
2456 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2457 }
2458 }
2459 else if (s == htab->sgot)
2460 ;
2461 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2462 {
2463 if (s->_raw_size != 0)
2464 {
2465 /* Remember whether there are any reloc sections other
2466 than .rela.plt. */
2467 if (s != htab->srelplt)
2468 relocs = true;
2469
2470 /* We use the reloc_count field as a counter if we need
2471 to copy relocs into the output file. */
2472 s->reloc_count = 0;
2473 }
2474 }
2475 else
2476 {
2477 /* It's not one of our sections, so don't allocate space. */
2478 continue;
2479 }
2480
2481 if (s->_raw_size == 0)
2482 {
2483 /* If we don't need this section, strip it from the
2484 output file. This is mostly to handle .rela.bss and
2485 .rela.plt. We must create both sections in
2486 create_dynamic_sections, because they must be created
2487 before the linker maps input sections to output
2488 sections. The linker does that before
2489 adjust_dynamic_symbol is called, and it is that
2490 function which decides whether anything needs to go
2491 into these sections. */
2492 _bfd_strip_section_from_output (info, s);
2493 continue;
2494 }
2495
2496 /* Allocate memory for the section contents. Zero it, because
2497 we may not fill in all the reloc sections. */
2498 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2499 if (s->contents == NULL && s->_raw_size != 0)
2500 return false;
2501 }
2502
2503 if (htab->elf.dynamic_sections_created)
2504 {
2505 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2506 actually has nothing to do with the PLT, it is how we
2507 communicate the LTP value of a load module to the dynamic
2508 linker. */
2509 #define add_dynamic_entry(TAG, VAL) \
2510 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2511
2512 if (!add_dynamic_entry (DT_PLTGOT, 0))
2513 return false;
2514
2515 /* Add some entries to the .dynamic section. We fill in the
2516 values later, in elf32_hppa_finish_dynamic_sections, but we
2517 must add the entries now so that we get the correct size for
2518 the .dynamic section. The DT_DEBUG entry is filled in by the
2519 dynamic linker and used by the debugger. */
2520 if (!info->shared)
2521 {
2522 if (!add_dynamic_entry (DT_DEBUG, 0))
2523 return false;
2524 }
2525
2526 if (htab->srelplt->_raw_size != 0)
2527 {
2528 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2529 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2530 || !add_dynamic_entry (DT_JMPREL, 0))
2531 return false;
2532 }
2533
2534 if (relocs)
2535 {
2536 if (!add_dynamic_entry (DT_RELA, 0)
2537 || !add_dynamic_entry (DT_RELASZ, 0)
2538 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2539 return false;
2540
2541 /* If any dynamic relocs apply to a read-only section,
2542 then we need a DT_TEXTREL entry. */
2543 if ((info->flags & DF_TEXTREL) == 0)
2544 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2545 (PTR) info);
2546
2547 if ((info->flags & DF_TEXTREL) != 0)
2548 {
2549 if (!add_dynamic_entry (DT_TEXTREL, 0))
2550 return false;
2551 }
2552 }
2553 }
2554 #undef add_dynamic_entry
2555
2556 return true;
2557 }
2558
2559 /* External entry points for sizing and building linker stubs. */
2560
2561 /* Set up various things so that we can make a list of input sections
2562 for each output section included in the link. Returns -1 on error,
2563 0 when no stubs will be needed, and 1 on success. */
2564
2565 int
2566 elf32_hppa_setup_section_lists (output_bfd, info)
2567 bfd *output_bfd;
2568 struct bfd_link_info *info;
2569 {
2570 bfd *input_bfd;
2571 unsigned int bfd_count;
2572 int top_id, top_index;
2573 asection *section;
2574 asection **input_list, **list;
2575 bfd_size_type amt;
2576 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2577
2578 if (htab->elf.root.creator->flavour != bfd_target_elf_flavour)
2579 return 0;
2580
2581 /* Count the number of input BFDs and find the top input section id. */
2582 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2583 input_bfd != NULL;
2584 input_bfd = input_bfd->link_next)
2585 {
2586 bfd_count += 1;
2587 for (section = input_bfd->sections;
2588 section != NULL;
2589 section = section->next)
2590 {
2591 if (top_id < section->id)
2592 top_id = section->id;
2593 }
2594 }
2595 htab->bfd_count = bfd_count;
2596
2597 amt = sizeof (struct map_stub) * (top_id + 1);
2598 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2599 if (htab->stub_group == NULL)
2600 return -1;
2601
2602 /* We can't use output_bfd->section_count here to find the top output
2603 section index as some sections may have been removed, and
2604 _bfd_strip_section_from_output doesn't renumber the indices. */
2605 for (section = output_bfd->sections, top_index = 0;
2606 section != NULL;
2607 section = section->next)
2608 {
2609 if (top_index < section->index)
2610 top_index = section->index;
2611 }
2612
2613 htab->top_index = top_index;
2614 amt = sizeof (asection *) * (top_index + 1);
2615 input_list = (asection **) bfd_malloc (amt);
2616 htab->input_list = input_list;
2617 if (input_list == NULL)
2618 return -1;
2619
2620 /* For sections we aren't interested in, mark their entries with a
2621 value we can check later. */
2622 list = input_list + top_index;
2623 do
2624 *list = bfd_abs_section_ptr;
2625 while (list-- != input_list);
2626
2627 for (section = output_bfd->sections;
2628 section != NULL;
2629 section = section->next)
2630 {
2631 if ((section->flags & SEC_CODE) != 0)
2632 input_list[section->index] = NULL;
2633 }
2634
2635 return 1;
2636 }
2637
2638 /* The linker repeatedly calls this function for each input section,
2639 in the order that input sections are linked into output sections.
2640 Build lists of input sections to determine groupings between which
2641 we may insert linker stubs. */
2642
2643 void
2644 elf32_hppa_next_input_section (info, isec)
2645 struct bfd_link_info *info;
2646 asection *isec;
2647 {
2648 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2649
2650 if (isec->output_section->index <= htab->top_index)
2651 {
2652 asection **list = htab->input_list + isec->output_section->index;
2653 if (*list != bfd_abs_section_ptr)
2654 {
2655 /* Steal the link_sec pointer for our list. */
2656 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2657 /* This happens to make the list in reverse order,
2658 which is what we want. */
2659 PREV_SEC (isec) = *list;
2660 *list = isec;
2661 }
2662 }
2663 }
2664
2665 /* See whether we can group stub sections together. Grouping stub
2666 sections may result in fewer stubs. More importantly, we need to
2667 put all .init* and .fini* stubs at the beginning of the .init or
2668 .fini output sections respectively, because glibc splits the
2669 _init and _fini functions into multiple parts. Putting a stub in
2670 the middle of a function is not a good idea. */
2671
2672 static void
2673 group_sections (htab, stub_group_size, stubs_always_before_branch)
2674 struct elf32_hppa_link_hash_table *htab;
2675 bfd_size_type stub_group_size;
2676 boolean stubs_always_before_branch;
2677 {
2678 asection **list = htab->input_list + htab->top_index;
2679 do
2680 {
2681 asection *tail = *list;
2682 if (tail == bfd_abs_section_ptr)
2683 continue;
2684 while (tail != NULL)
2685 {
2686 asection *curr;
2687 asection *prev;
2688 bfd_size_type total;
2689
2690 curr = tail;
2691 if (tail->_cooked_size)
2692 total = tail->_cooked_size;
2693 else
2694 total = tail->_raw_size;
2695 while ((prev = PREV_SEC (curr)) != NULL
2696 && ((total += curr->output_offset - prev->output_offset)
2697 < stub_group_size))
2698 curr = prev;
2699
2700 /* OK, the size from the start of CURR to the end is less
2701 than 240000 bytes and thus can be handled by one stub
2702 section. (or the tail section is itself larger than
2703 240000 bytes, in which case we may be toast.)
2704 We should really be keeping track of the total size of
2705 stubs added here, as stubs contribute to the final output
2706 section size. That's a little tricky, and this way will
2707 only break if stubs added total more than 22144 bytes, or
2708 2768 long branch stubs. It seems unlikely for more than
2709 2768 different functions to be called, especially from
2710 code only 240000 bytes long. This limit used to be
2711 250000, but c++ code tends to generate lots of little
2712 functions, and sometimes violated the assumption. */
2713 do
2714 {
2715 prev = PREV_SEC (tail);
2716 /* Set up this stub group. */
2717 htab->stub_group[tail->id].link_sec = curr;
2718 }
2719 while (tail != curr && (tail = prev) != NULL);
2720
2721 /* But wait, there's more! Input sections up to 240000
2722 bytes before the stub section can be handled by it too. */
2723 if (!stubs_always_before_branch)
2724 {
2725 total = 0;
2726 while (prev != NULL
2727 && ((total += tail->output_offset - prev->output_offset)
2728 < stub_group_size))
2729 {
2730 tail = prev;
2731 prev = PREV_SEC (tail);
2732 htab->stub_group[tail->id].link_sec = curr;
2733 }
2734 }
2735 tail = prev;
2736 }
2737 }
2738 while (list-- != htab->input_list);
2739 free (htab->input_list);
2740 #undef PREV_SEC
2741 }
2742
2743 /* Read in all local syms for all input bfds, and create hash entries
2744 for export stubs if we are building a multi-subspace shared lib.
2745 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2746
2747 static int
2748 get_local_syms (output_bfd, input_bfd, info)
2749 bfd *output_bfd;
2750 bfd *input_bfd;
2751 struct bfd_link_info *info;
2752 {
2753 unsigned int bfd_indx;
2754 Elf_Internal_Sym *local_syms, **all_local_syms;
2755 int stub_changed = 0;
2756 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2757
2758 /* We want to read in symbol extension records only once. To do this
2759 we need to read in the local symbols in parallel and save them for
2760 later use; so hold pointers to the local symbols in an array. */
2761 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2762 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2763 htab->all_local_syms = all_local_syms;
2764 if (all_local_syms == NULL)
2765 return -1;
2766
2767 /* Walk over all the input BFDs, swapping in local symbols.
2768 If we are creating a shared library, create hash entries for the
2769 export stubs. */
2770 for (bfd_indx = 0;
2771 input_bfd != NULL;
2772 input_bfd = input_bfd->link_next, bfd_indx++)
2773 {
2774 Elf_Internal_Shdr *symtab_hdr;
2775 Elf_Internal_Shdr *shndx_hdr;
2776 Elf_Internal_Sym *isym;
2777 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2778 Elf_External_Sym_Shndx *shndx_buf, *shndx;
2779 bfd_size_type sec_size;
2780
2781 /* We'll need the symbol table in a second. */
2782 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2783 if (symtab_hdr->sh_info == 0)
2784 continue;
2785
2786 /* We need an array of the local symbols attached to the input bfd.
2787 Unfortunately, we're going to have to read & swap them in. */
2788 sec_size = symtab_hdr->sh_info;
2789 sec_size *= sizeof (Elf_Internal_Sym);
2790 local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size);
2791 if (local_syms == NULL)
2792 return -1;
2793
2794 all_local_syms[bfd_indx] = local_syms;
2795 sec_size = symtab_hdr->sh_info;
2796 sec_size *= sizeof (Elf32_External_Sym);
2797 ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size);
2798 if (ext_syms == NULL)
2799 return -1;
2800
2801 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2802 || bfd_bread ((PTR) ext_syms, sec_size, input_bfd) != sec_size)
2803 {
2804 error_ret_free_ext_syms:
2805 free (ext_syms);
2806 return -1;
2807 }
2808
2809 shndx_buf = NULL;
2810 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
2811 if (shndx_hdr->sh_size != 0)
2812 {
2813 sec_size = symtab_hdr->sh_info;
2814 sec_size *= sizeof (Elf_External_Sym_Shndx);
2815 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (sec_size);
2816 if (shndx_buf == NULL)
2817 goto error_ret_free_ext_syms;
2818
2819 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
2820 || bfd_bread ((PTR) shndx_buf, sec_size, input_bfd) != sec_size)
2821 {
2822 free (shndx_buf);
2823 goto error_ret_free_ext_syms;
2824 }
2825 }
2826
2827 /* Swap the local symbols in. */
2828 for (esym = ext_syms, end_sy = esym + symtab_hdr->sh_info,
2829 isym = local_syms, shndx = shndx_buf;
2830 esym < end_sy;
2831 esym++, isym++, shndx = (shndx ? shndx + 1 : NULL))
2832 bfd_elf32_swap_symbol_in (input_bfd, (const PTR) esym,
2833 (const PTR) shndx, isym);
2834
2835 /* Now we can free the external symbols. */
2836 free (shndx_buf);
2837 free (ext_syms);
2838
2839 if (info->shared && htab->multi_subspace)
2840 {
2841 struct elf_link_hash_entry **sym_hashes;
2842 struct elf_link_hash_entry **end_hashes;
2843 unsigned int symcount;
2844
2845 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2846 - symtab_hdr->sh_info);
2847 sym_hashes = elf_sym_hashes (input_bfd);
2848 end_hashes = sym_hashes + symcount;
2849
2850 /* Look through the global syms for functions; We need to
2851 build export stubs for all globally visible functions. */
2852 for (; sym_hashes < end_hashes; sym_hashes++)
2853 {
2854 struct elf32_hppa_link_hash_entry *hash;
2855
2856 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2857
2858 while (hash->elf.root.type == bfd_link_hash_indirect
2859 || hash->elf.root.type == bfd_link_hash_warning)
2860 hash = ((struct elf32_hppa_link_hash_entry *)
2861 hash->elf.root.u.i.link);
2862
2863 /* At this point in the link, undefined syms have been
2864 resolved, so we need to check that the symbol was
2865 defined in this BFD. */
2866 if ((hash->elf.root.type == bfd_link_hash_defined
2867 || hash->elf.root.type == bfd_link_hash_defweak)
2868 && hash->elf.type == STT_FUNC
2869 && hash->elf.root.u.def.section->output_section != NULL
2870 && (hash->elf.root.u.def.section->output_section->owner
2871 == output_bfd)
2872 && hash->elf.root.u.def.section->owner == input_bfd
2873 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2874 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2875 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2876 {
2877 asection *sec;
2878 const char *stub_name;
2879 struct elf32_hppa_stub_hash_entry *stub_entry;
2880
2881 sec = hash->elf.root.u.def.section;
2882 stub_name = hash->elf.root.root.string;
2883 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2884 stub_name,
2885 false, false);
2886 if (stub_entry == NULL)
2887 {
2888 stub_entry = hppa_add_stub (stub_name, sec, htab);
2889 if (!stub_entry)
2890 return -1;
2891
2892 stub_entry->target_value = hash->elf.root.u.def.value;
2893 stub_entry->target_section = hash->elf.root.u.def.section;
2894 stub_entry->stub_type = hppa_stub_export;
2895 stub_entry->h = hash;
2896 stub_changed = 1;
2897 }
2898 else
2899 {
2900 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2901 bfd_archive_filename (input_bfd),
2902 stub_name);
2903 }
2904 }
2905 }
2906 }
2907 }
2908
2909 return stub_changed;
2910 }
2911
2912 /* Determine and set the size of the stub section for a final link.
2913
2914 The basic idea here is to examine all the relocations looking for
2915 PC-relative calls to a target that is unreachable with a "bl"
2916 instruction. */
2917
2918 boolean
2919 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2920 add_stub_section, layout_sections_again)
2921 bfd *output_bfd;
2922 bfd *stub_bfd;
2923 struct bfd_link_info *info;
2924 boolean multi_subspace;
2925 bfd_signed_vma group_size;
2926 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2927 void (*layout_sections_again) PARAMS ((void));
2928 {
2929 bfd_size_type stub_group_size;
2930 boolean stubs_always_before_branch;
2931 boolean stub_changed;
2932 boolean ret = 0;
2933 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2934
2935 /* Stash our params away. */
2936 htab->stub_bfd = stub_bfd;
2937 htab->multi_subspace = multi_subspace;
2938 htab->add_stub_section = add_stub_section;
2939 htab->layout_sections_again = layout_sections_again;
2940 stubs_always_before_branch = group_size < 0;
2941 if (group_size < 0)
2942 stub_group_size = -group_size;
2943 else
2944 stub_group_size = group_size;
2945 if (stub_group_size == 1)
2946 {
2947 /* Default values. */
2948 stub_group_size = 7680000;
2949 if (htab->has_17bit_branch || htab->multi_subspace)
2950 stub_group_size = 240000;
2951 if (htab->has_12bit_branch)
2952 stub_group_size = 7500;
2953 }
2954
2955 group_sections (htab, stub_group_size, stubs_always_before_branch);
2956
2957 switch (get_local_syms (output_bfd, info->input_bfds, info))
2958 {
2959 default:
2960 if (htab->all_local_syms)
2961 goto error_ret_free_local;
2962 return false;
2963
2964 case 0:
2965 stub_changed = false;
2966 break;
2967
2968 case 1:
2969 stub_changed = true;
2970 break;
2971 }
2972
2973 while (1)
2974 {
2975 bfd *input_bfd;
2976 unsigned int bfd_indx;
2977 asection *stub_sec;
2978
2979 for (input_bfd = info->input_bfds, bfd_indx = 0;
2980 input_bfd != NULL;
2981 input_bfd = input_bfd->link_next, bfd_indx++)
2982 {
2983 Elf_Internal_Shdr *symtab_hdr;
2984 asection *section;
2985 Elf_Internal_Sym *local_syms;
2986
2987 /* We'll need the symbol table in a second. */
2988 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2989 if (symtab_hdr->sh_info == 0)
2990 continue;
2991
2992 local_syms = htab->all_local_syms[bfd_indx];
2993
2994 /* Walk over each section attached to the input bfd. */
2995 for (section = input_bfd->sections;
2996 section != NULL;
2997 section = section->next)
2998 {
2999 Elf_Internal_Shdr *input_rel_hdr;
3000 Elf32_External_Rela *external_relocs, *erelaend, *erela;
3001 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3002 bfd_size_type amt;
3003
3004 /* If there aren't any relocs, then there's nothing more
3005 to do. */
3006 if ((section->flags & SEC_RELOC) == 0
3007 || section->reloc_count == 0)
3008 continue;
3009
3010 /* If this section is a link-once section that will be
3011 discarded, then don't create any stubs. */
3012 if (section->output_section == NULL
3013 || section->output_section->owner != output_bfd)
3014 continue;
3015
3016 /* Allocate space for the external relocations. */
3017 amt = section->reloc_count;
3018 amt *= sizeof (Elf32_External_Rela);
3019 external_relocs = (Elf32_External_Rela *) bfd_malloc (amt);
3020 if (external_relocs == NULL)
3021 {
3022 goto error_ret_free_local;
3023 }
3024
3025 /* Likewise for the internal relocations. */
3026 amt = section->reloc_count;
3027 amt *= sizeof (Elf_Internal_Rela);
3028 internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
3029 if (internal_relocs == NULL)
3030 {
3031 free (external_relocs);
3032 goto error_ret_free_local;
3033 }
3034
3035 /* Read in the external relocs. */
3036 input_rel_hdr = &elf_section_data (section)->rel_hdr;
3037 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
3038 || bfd_bread ((PTR) external_relocs,
3039 input_rel_hdr->sh_size,
3040 input_bfd) != input_rel_hdr->sh_size)
3041 {
3042 free (external_relocs);
3043 error_ret_free_internal:
3044 free (internal_relocs);
3045 goto error_ret_free_local;
3046 }
3047
3048 /* Swap in the relocs. */
3049 erela = external_relocs;
3050 erelaend = erela + section->reloc_count;
3051 irela = internal_relocs;
3052 for (; erela < erelaend; erela++, irela++)
3053 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
3054
3055 /* We're done with the external relocs, free them. */
3056 free (external_relocs);
3057
3058 /* Now examine each relocation. */
3059 irela = internal_relocs;
3060 irelaend = irela + section->reloc_count;
3061 for (; irela < irelaend; irela++)
3062 {
3063 unsigned int r_type, r_indx;
3064 enum elf32_hppa_stub_type stub_type;
3065 struct elf32_hppa_stub_hash_entry *stub_entry;
3066 asection *sym_sec;
3067 bfd_vma sym_value;
3068 bfd_vma destination;
3069 struct elf32_hppa_link_hash_entry *hash;
3070 char *stub_name;
3071 const asection *id_sec;
3072
3073 r_type = ELF32_R_TYPE (irela->r_info);
3074 r_indx = ELF32_R_SYM (irela->r_info);
3075
3076 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3077 {
3078 bfd_set_error (bfd_error_bad_value);
3079 goto error_ret_free_internal;
3080 }
3081
3082 /* Only look for stubs on call instructions. */
3083 if (r_type != (unsigned int) R_PARISC_PCREL12F
3084 && r_type != (unsigned int) R_PARISC_PCREL17F
3085 && r_type != (unsigned int) R_PARISC_PCREL22F)
3086 continue;
3087
3088 /* Now determine the call target, its name, value,
3089 section. */
3090 sym_sec = NULL;
3091 sym_value = 0;
3092 destination = 0;
3093 hash = NULL;
3094 if (r_indx < symtab_hdr->sh_info)
3095 {
3096 /* It's a local symbol. */
3097 Elf_Internal_Sym *sym;
3098 Elf_Internal_Shdr *hdr;
3099
3100 sym = local_syms + r_indx;
3101 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3102 sym_sec = hdr->bfd_section;
3103 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3104 sym_value = sym->st_value;
3105 destination = (sym_value + irela->r_addend
3106 + sym_sec->output_offset
3107 + sym_sec->output_section->vma);
3108 }
3109 else
3110 {
3111 /* It's an external symbol. */
3112 int e_indx;
3113
3114 e_indx = r_indx - symtab_hdr->sh_info;
3115 hash = ((struct elf32_hppa_link_hash_entry *)
3116 elf_sym_hashes (input_bfd)[e_indx]);
3117
3118 while (hash->elf.root.type == bfd_link_hash_indirect
3119 || hash->elf.root.type == bfd_link_hash_warning)
3120 hash = ((struct elf32_hppa_link_hash_entry *)
3121 hash->elf.root.u.i.link);
3122
3123 if (hash->elf.root.type == bfd_link_hash_defined
3124 || hash->elf.root.type == bfd_link_hash_defweak)
3125 {
3126 sym_sec = hash->elf.root.u.def.section;
3127 sym_value = hash->elf.root.u.def.value;
3128 if (sym_sec->output_section != NULL)
3129 destination = (sym_value + irela->r_addend
3130 + sym_sec->output_offset
3131 + sym_sec->output_section->vma);
3132 }
3133 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3134 {
3135 if (! info->shared)
3136 continue;
3137 }
3138 else if (hash->elf.root.type == bfd_link_hash_undefined)
3139 {
3140 if (! (info->shared
3141 && !info->no_undefined
3142 && (ELF_ST_VISIBILITY (hash->elf.other)
3143 == STV_DEFAULT)
3144 && hash->elf.type != STT_PARISC_MILLI))
3145 continue;
3146 }
3147 else
3148 {
3149 bfd_set_error (bfd_error_bad_value);
3150 goto error_ret_free_internal;
3151 }
3152 }
3153
3154 /* Determine what (if any) linker stub is needed. */
3155 stub_type = hppa_type_of_stub (section, irela, hash,
3156 destination);
3157 if (stub_type == hppa_stub_none)
3158 continue;
3159
3160 /* Support for grouping stub sections. */
3161 id_sec = htab->stub_group[section->id].link_sec;
3162
3163 /* Get the name of this stub. */
3164 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3165 if (!stub_name)
3166 goto error_ret_free_internal;
3167
3168 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3169 stub_name,
3170 false, false);
3171 if (stub_entry != NULL)
3172 {
3173 /* The proper stub has already been created. */
3174 free (stub_name);
3175 continue;
3176 }
3177
3178 stub_entry = hppa_add_stub (stub_name, section, htab);
3179 if (stub_entry == NULL)
3180 {
3181 free (stub_name);
3182 goto error_ret_free_local;
3183 }
3184
3185 stub_entry->target_value = sym_value;
3186 stub_entry->target_section = sym_sec;
3187 stub_entry->stub_type = stub_type;
3188 if (info->shared)
3189 {
3190 if (stub_type == hppa_stub_import)
3191 stub_entry->stub_type = hppa_stub_import_shared;
3192 else if (stub_type == hppa_stub_long_branch)
3193 stub_entry->stub_type = hppa_stub_long_branch_shared;
3194 }
3195 stub_entry->h = hash;
3196 stub_changed = true;
3197 }
3198
3199 /* We're done with the internal relocs, free them. */
3200 free (internal_relocs);
3201 }
3202 }
3203
3204 if (!stub_changed)
3205 break;
3206
3207 /* OK, we've added some stubs. Find out the new size of the
3208 stub sections. */
3209 for (stub_sec = htab->stub_bfd->sections;
3210 stub_sec != NULL;
3211 stub_sec = stub_sec->next)
3212 {
3213 stub_sec->_raw_size = 0;
3214 stub_sec->_cooked_size = 0;
3215 }
3216
3217 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3218
3219 /* Ask the linker to do its stuff. */
3220 (*htab->layout_sections_again) ();
3221 stub_changed = false;
3222 }
3223
3224 ret = true;
3225
3226 error_ret_free_local:
3227 while (htab->bfd_count-- > 0)
3228 if (htab->all_local_syms[htab->bfd_count])
3229 free (htab->all_local_syms[htab->bfd_count]);
3230 free (htab->all_local_syms);
3231
3232 return ret;
3233 }
3234
3235 /* For a final link, this function is called after we have sized the
3236 stubs to provide a value for __gp. */
3237
3238 boolean
3239 elf32_hppa_set_gp (abfd, info)
3240 bfd *abfd;
3241 struct bfd_link_info *info;
3242 {
3243 struct bfd_link_hash_entry *h;
3244 asection *sec = NULL;
3245 bfd_vma gp_val = 0;
3246 struct elf32_hppa_link_hash_table *htab;
3247
3248 htab = hppa_link_hash_table (info);
3249 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", false, false, false);
3250
3251 if (h != NULL
3252 && (h->type == bfd_link_hash_defined
3253 || h->type == bfd_link_hash_defweak))
3254 {
3255 gp_val = h->u.def.value;
3256 sec = h->u.def.section;
3257 }
3258 else
3259 {
3260 asection *splt;
3261 asection *sgot;
3262
3263 if (htab->elf.root.creator->flavour == bfd_target_elf_flavour)
3264 {
3265 splt = htab->splt;
3266 sgot = htab->sgot;
3267 }
3268 else
3269 {
3270 /* If we're not elf, look up the output sections in the
3271 hope we may actually find them. */
3272 splt = bfd_get_section_by_name (abfd, ".plt");
3273 sgot = bfd_get_section_by_name (abfd, ".got");
3274 }
3275
3276 /* Choose to point our LTP at, in this order, one of .plt, .got,
3277 or .data, if these sections exist. In the case of choosing
3278 .plt try to make the LTP ideal for addressing anywhere in the
3279 .plt or .got with a 14 bit signed offset. Typically, the end
3280 of the .plt is the start of the .got, so choose .plt + 0x2000
3281 if either the .plt or .got is larger than 0x2000. If both
3282 the .plt and .got are smaller than 0x2000, choose the end of
3283 the .plt section. */
3284 sec = splt;
3285 if (sec != NULL)
3286 {
3287 gp_val = sec->_raw_size;
3288 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
3289 {
3290 gp_val = 0x2000;
3291 }
3292 }
3293 else
3294 {
3295 sec = sgot;
3296 if (sec != NULL)
3297 {
3298 /* We know we don't have a .plt. If .got is large,
3299 offset our LTP. */
3300 if (sec->_raw_size > 0x2000)
3301 gp_val = 0x2000;
3302 }
3303 else
3304 {
3305 /* No .plt or .got. Who cares what the LTP is? */
3306 sec = bfd_get_section_by_name (abfd, ".data");
3307 }
3308 }
3309
3310 if (h != NULL)
3311 {
3312 h->type = bfd_link_hash_defined;
3313 h->u.def.value = gp_val;
3314 if (sec != NULL)
3315 h->u.def.section = sec;
3316 else
3317 h->u.def.section = bfd_abs_section_ptr;
3318 }
3319 }
3320
3321 if (sec != NULL && sec->output_section != NULL)
3322 gp_val += sec->output_section->vma + sec->output_offset;
3323
3324 elf_gp (abfd) = gp_val;
3325 return true;
3326 }
3327
3328 /* Build all the stubs associated with the current output file. The
3329 stubs are kept in a hash table attached to the main linker hash
3330 table. We also set up the .plt entries for statically linked PIC
3331 functions here. This function is called via hppaelf_finish in the
3332 linker. */
3333
3334 boolean
3335 elf32_hppa_build_stubs (info)
3336 struct bfd_link_info *info;
3337 {
3338 asection *stub_sec;
3339 struct bfd_hash_table *table;
3340 struct elf32_hppa_link_hash_table *htab;
3341
3342 htab = hppa_link_hash_table (info);
3343
3344 for (stub_sec = htab->stub_bfd->sections;
3345 stub_sec != NULL;
3346 stub_sec = stub_sec->next)
3347 {
3348 bfd_size_type size;
3349
3350 /* Allocate memory to hold the linker stubs. */
3351 size = stub_sec->_raw_size;
3352 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3353 if (stub_sec->contents == NULL && size != 0)
3354 return false;
3355 stub_sec->_raw_size = 0;
3356 }
3357
3358 /* Build the stubs as directed by the stub hash table. */
3359 table = &htab->stub_hash_table;
3360 bfd_hash_traverse (table, hppa_build_one_stub, info);
3361
3362 return true;
3363 }
3364
3365 /* Perform a final link. */
3366
3367 static boolean
3368 elf32_hppa_final_link (abfd, info)
3369 bfd *abfd;
3370 struct bfd_link_info *info;
3371 {
3372 /* Invoke the regular ELF linker to do all the work. */
3373 if (!bfd_elf32_bfd_final_link (abfd, info))
3374 return false;
3375
3376 /* If we're producing a final executable, sort the contents of the
3377 unwind section. */
3378 return elf_hppa_sort_unwind (abfd);
3379 }
3380
3381 /* Record the lowest address for the data and text segments. */
3382
3383 static void
3384 hppa_record_segment_addr (abfd, section, data)
3385 bfd *abfd ATTRIBUTE_UNUSED;
3386 asection *section;
3387 PTR data;
3388 {
3389 struct elf32_hppa_link_hash_table *htab;
3390
3391 htab = (struct elf32_hppa_link_hash_table *) data;
3392
3393 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3394 {
3395 bfd_vma value = section->vma - section->filepos;
3396
3397 if ((section->flags & SEC_READONLY) != 0)
3398 {
3399 if (value < htab->text_segment_base)
3400 htab->text_segment_base = value;
3401 }
3402 else
3403 {
3404 if (value < htab->data_segment_base)
3405 htab->data_segment_base = value;
3406 }
3407 }
3408 }
3409
3410 /* Perform a relocation as part of a final link. */
3411
3412 static bfd_reloc_status_type
3413 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3414 asection *input_section;
3415 bfd_byte *contents;
3416 const Elf_Internal_Rela *rel;
3417 bfd_vma value;
3418 struct elf32_hppa_link_hash_table *htab;
3419 asection *sym_sec;
3420 struct elf32_hppa_link_hash_entry *h;
3421 {
3422 int insn;
3423 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3424 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3425 int r_format = howto->bitsize;
3426 enum hppa_reloc_field_selector_type_alt r_field;
3427 bfd *input_bfd = input_section->owner;
3428 bfd_vma offset = rel->r_offset;
3429 bfd_vma max_branch_offset = 0;
3430 bfd_byte *hit_data = contents + offset;
3431 bfd_signed_vma addend = rel->r_addend;
3432 bfd_vma location;
3433 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3434 int val;
3435
3436 if (r_type == R_PARISC_NONE)
3437 return bfd_reloc_ok;
3438
3439 insn = bfd_get_32 (input_bfd, hit_data);
3440
3441 /* Find out where we are and where we're going. */
3442 location = (offset +
3443 input_section->output_offset +
3444 input_section->output_section->vma);
3445
3446 switch (r_type)
3447 {
3448 case R_PARISC_PCREL12F:
3449 case R_PARISC_PCREL17F:
3450 case R_PARISC_PCREL22F:
3451 /* If this call should go via the plt, find the import stub in
3452 the stub hash. */
3453 if (sym_sec == NULL
3454 || sym_sec->output_section == NULL
3455 || (h != NULL
3456 && h->elf.plt.offset != (bfd_vma) -1
3457 && (h->elf.dynindx != -1 || h->pic_call)
3458 && !h->plabel))
3459 {
3460 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3461 h, rel, htab);
3462 if (stub_entry != NULL)
3463 {
3464 value = (stub_entry->stub_offset
3465 + stub_entry->stub_sec->output_offset
3466 + stub_entry->stub_sec->output_section->vma);
3467 addend = 0;
3468 }
3469 else if (sym_sec == NULL && h != NULL
3470 && h->elf.root.type == bfd_link_hash_undefweak)
3471 {
3472 /* It's OK if undefined weak. Calls to undefined weak
3473 symbols behave as if the "called" function
3474 immediately returns. We can thus call to a weak
3475 function without first checking whether the function
3476 is defined. */
3477 value = location;
3478 addend = 8;
3479 }
3480 else
3481 return bfd_reloc_undefined;
3482 }
3483 /* Fall thru. */
3484
3485 case R_PARISC_PCREL21L:
3486 case R_PARISC_PCREL17C:
3487 case R_PARISC_PCREL17R:
3488 case R_PARISC_PCREL14R:
3489 case R_PARISC_PCREL14F:
3490 /* Make it a pc relative offset. */
3491 value -= location;
3492 addend -= 8;
3493 break;
3494
3495 case R_PARISC_DPREL21L:
3496 case R_PARISC_DPREL14R:
3497 case R_PARISC_DPREL14F:
3498 /* For all the DP relative relocations, we need to examine the symbol's
3499 section. If it's a code section, then "data pointer relative" makes
3500 no sense. In that case we don't adjust the "value", and for 21 bit
3501 addil instructions, we change the source addend register from %dp to
3502 %r0. This situation commonly arises when a variable's "constness"
3503 is declared differently from the way the variable is defined. For
3504 instance: "extern int foo" with foo defined as "const int foo". */
3505 if (sym_sec == NULL)
3506 break;
3507 if ((sym_sec->flags & SEC_CODE) != 0)
3508 {
3509 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3510 == (((int) OP_ADDIL << 26) | (27 << 21)))
3511 {
3512 insn &= ~ (0x1f << 21);
3513 #if 0 /* debug them. */
3514 (*_bfd_error_handler)
3515 (_("%s(%s+0x%lx): fixing %s"),
3516 bfd_archive_filename (input_bfd),
3517 input_section->name,
3518 (long) rel->r_offset,
3519 howto->name);
3520 #endif
3521 }
3522 /* Now try to make things easy for the dynamic linker. */
3523
3524 break;
3525 }
3526 /* Fall thru. */
3527
3528 case R_PARISC_DLTIND21L:
3529 case R_PARISC_DLTIND14R:
3530 case R_PARISC_DLTIND14F:
3531 value -= elf_gp (input_section->output_section->owner);
3532 break;
3533
3534 case R_PARISC_SEGREL32:
3535 if ((sym_sec->flags & SEC_CODE) != 0)
3536 value -= htab->text_segment_base;
3537 else
3538 value -= htab->data_segment_base;
3539 break;
3540
3541 default:
3542 break;
3543 }
3544
3545 switch (r_type)
3546 {
3547 case R_PARISC_DIR32:
3548 case R_PARISC_DIR14F:
3549 case R_PARISC_DIR17F:
3550 case R_PARISC_PCREL17C:
3551 case R_PARISC_PCREL14F:
3552 case R_PARISC_DPREL14F:
3553 case R_PARISC_PLABEL32:
3554 case R_PARISC_DLTIND14F:
3555 case R_PARISC_SEGBASE:
3556 case R_PARISC_SEGREL32:
3557 r_field = e_fsel;
3558 break;
3559
3560 case R_PARISC_DLTIND21L:
3561 case R_PARISC_PCREL21L:
3562 case R_PARISC_PLABEL21L:
3563 r_field = e_lsel;
3564 break;
3565
3566 case R_PARISC_DIR21L:
3567 case R_PARISC_DPREL21L:
3568 r_field = e_lrsel;
3569 break;
3570
3571 case R_PARISC_PCREL17R:
3572 case R_PARISC_PCREL14R:
3573 case R_PARISC_PLABEL14R:
3574 case R_PARISC_DLTIND14R:
3575 r_field = e_rsel;
3576 break;
3577
3578 case R_PARISC_DIR17R:
3579 case R_PARISC_DIR14R:
3580 case R_PARISC_DPREL14R:
3581 r_field = e_rrsel;
3582 break;
3583
3584 case R_PARISC_PCREL12F:
3585 case R_PARISC_PCREL17F:
3586 case R_PARISC_PCREL22F:
3587 r_field = e_fsel;
3588
3589 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3590 {
3591 max_branch_offset = (1 << (17-1)) << 2;
3592 }
3593 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3594 {
3595 max_branch_offset = (1 << (12-1)) << 2;
3596 }
3597 else
3598 {
3599 max_branch_offset = (1 << (22-1)) << 2;
3600 }
3601
3602 /* sym_sec is NULL on undefined weak syms or when shared on
3603 undefined syms. We've already checked for a stub for the
3604 shared undefined case. */
3605 if (sym_sec == NULL)
3606 break;
3607
3608 /* If the branch is out of reach, then redirect the
3609 call to the local stub for this function. */
3610 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3611 {
3612 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3613 h, rel, htab);
3614 if (stub_entry == NULL)
3615 return bfd_reloc_undefined;
3616
3617 /* Munge up the value and addend so that we call the stub
3618 rather than the procedure directly. */
3619 value = (stub_entry->stub_offset
3620 + stub_entry->stub_sec->output_offset
3621 + stub_entry->stub_sec->output_section->vma
3622 - location);
3623 addend = -8;
3624 }
3625 break;
3626
3627 /* Something we don't know how to handle. */
3628 default:
3629 return bfd_reloc_notsupported;
3630 }
3631
3632 /* Make sure we can reach the stub. */
3633 if (max_branch_offset != 0
3634 && value + addend + max_branch_offset >= 2*max_branch_offset)
3635 {
3636 (*_bfd_error_handler)
3637 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3638 bfd_archive_filename (input_bfd),
3639 input_section->name,
3640 (long) rel->r_offset,
3641 stub_entry->root.string);
3642 bfd_set_error (bfd_error_bad_value);
3643 return bfd_reloc_notsupported;
3644 }
3645
3646 val = hppa_field_adjust (value, addend, r_field);
3647
3648 switch (r_type)
3649 {
3650 case R_PARISC_PCREL12F:
3651 case R_PARISC_PCREL17C:
3652 case R_PARISC_PCREL17F:
3653 case R_PARISC_PCREL17R:
3654 case R_PARISC_PCREL22F:
3655 case R_PARISC_DIR17F:
3656 case R_PARISC_DIR17R:
3657 /* This is a branch. Divide the offset by four.
3658 Note that we need to decide whether it's a branch or
3659 otherwise by inspecting the reloc. Inspecting insn won't
3660 work as insn might be from a .word directive. */
3661 val >>= 2;
3662 break;
3663
3664 default:
3665 break;
3666 }
3667
3668 insn = hppa_rebuild_insn (insn, val, r_format);
3669
3670 /* Update the instruction word. */
3671 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3672 return bfd_reloc_ok;
3673 }
3674
3675 /* Relocate an HPPA ELF section. */
3676
3677 static boolean
3678 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3679 contents, relocs, local_syms, local_sections)
3680 bfd *output_bfd;
3681 struct bfd_link_info *info;
3682 bfd *input_bfd;
3683 asection *input_section;
3684 bfd_byte *contents;
3685 Elf_Internal_Rela *relocs;
3686 Elf_Internal_Sym *local_syms;
3687 asection **local_sections;
3688 {
3689 bfd_vma *local_got_offsets;
3690 struct elf32_hppa_link_hash_table *htab;
3691 Elf_Internal_Shdr *symtab_hdr;
3692 Elf_Internal_Rela *rel;
3693 Elf_Internal_Rela *relend;
3694
3695 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3696
3697 htab = hppa_link_hash_table (info);
3698 local_got_offsets = elf_local_got_offsets (input_bfd);
3699
3700 rel = relocs;
3701 relend = relocs + input_section->reloc_count;
3702 for (; rel < relend; rel++)
3703 {
3704 unsigned int r_type;
3705 reloc_howto_type *howto;
3706 unsigned int r_symndx;
3707 struct elf32_hppa_link_hash_entry *h;
3708 Elf_Internal_Sym *sym;
3709 asection *sym_sec;
3710 bfd_vma relocation;
3711 bfd_reloc_status_type r;
3712 const char *sym_name;
3713 boolean plabel;
3714 boolean warned_undef;
3715
3716 r_type = ELF32_R_TYPE (rel->r_info);
3717 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3718 {
3719 bfd_set_error (bfd_error_bad_value);
3720 return false;
3721 }
3722 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3723 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3724 continue;
3725
3726 r_symndx = ELF32_R_SYM (rel->r_info);
3727
3728 if (info->relocateable)
3729 {
3730 /* This is a relocatable link. We don't have to change
3731 anything, unless the reloc is against a section symbol,
3732 in which case we have to adjust according to where the
3733 section symbol winds up in the output section. */
3734 if (r_symndx < symtab_hdr->sh_info)
3735 {
3736 sym = local_syms + r_symndx;
3737 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3738 {
3739 sym_sec = local_sections[r_symndx];
3740 rel->r_addend += sym_sec->output_offset;
3741 }
3742 }
3743 continue;
3744 }
3745
3746 /* This is a final link. */
3747 h = NULL;
3748 sym = NULL;
3749 sym_sec = NULL;
3750 warned_undef = false;
3751 if (r_symndx < symtab_hdr->sh_info)
3752 {
3753 /* This is a local symbol, h defaults to NULL. */
3754 sym = local_syms + r_symndx;
3755 sym_sec = local_sections[r_symndx];
3756 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3757 }
3758 else
3759 {
3760 int indx;
3761
3762 /* It's a global; Find its entry in the link hash. */
3763 indx = r_symndx - symtab_hdr->sh_info;
3764 h = ((struct elf32_hppa_link_hash_entry *)
3765 elf_sym_hashes (input_bfd)[indx]);
3766 while (h->elf.root.type == bfd_link_hash_indirect
3767 || h->elf.root.type == bfd_link_hash_warning)
3768 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3769
3770 relocation = 0;
3771 if (h->elf.root.type == bfd_link_hash_defined
3772 || h->elf.root.type == bfd_link_hash_defweak)
3773 {
3774 sym_sec = h->elf.root.u.def.section;
3775 /* If sym_sec->output_section is NULL, then it's a
3776 symbol defined in a shared library. */
3777 if (sym_sec->output_section != NULL)
3778 relocation = (h->elf.root.u.def.value
3779 + sym_sec->output_offset
3780 + sym_sec->output_section->vma);
3781 }
3782 else if (h->elf.root.type == bfd_link_hash_undefweak)
3783 ;
3784 else if (info->shared && !info->no_undefined
3785 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3786 && h->elf.type != STT_PARISC_MILLI)
3787 {
3788 if (info->symbolic && !info->allow_shlib_undefined)
3789 {
3790 if (!((*info->callbacks->undefined_symbol)
3791 (info, h->elf.root.root.string, input_bfd,
3792 input_section, rel->r_offset, false)))
3793 return false;
3794 warned_undef = true;
3795 }
3796 }
3797 else
3798 {
3799 if (!((*info->callbacks->undefined_symbol)
3800 (info, h->elf.root.root.string, input_bfd,
3801 input_section, rel->r_offset, true)))
3802 return false;
3803 warned_undef = true;
3804 }
3805 }
3806
3807 /* Do any required modifications to the relocation value, and
3808 determine what types of dynamic info we need to output, if
3809 any. */
3810 plabel = 0;
3811 switch (r_type)
3812 {
3813 case R_PARISC_DLTIND14F:
3814 case R_PARISC_DLTIND14R:
3815 case R_PARISC_DLTIND21L:
3816 {
3817 bfd_vma off;
3818 boolean do_got = 0;
3819
3820 /* Relocation is to the entry for this symbol in the
3821 global offset table. */
3822 if (h != NULL)
3823 {
3824 boolean dyn;
3825
3826 off = h->elf.got.offset;
3827 dyn = htab->elf.dynamic_sections_created;
3828 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3829 {
3830 /* If we aren't going to call finish_dynamic_symbol,
3831 then we need to handle initialisation of the .got
3832 entry and create needed relocs here. Since the
3833 offset must always be a multiple of 4, we use the
3834 least significant bit to record whether we have
3835 initialised it already. */
3836 if ((off & 1) != 0)
3837 off &= ~1;
3838 else
3839 {
3840 h->elf.got.offset |= 1;
3841 do_got = 1;
3842 }
3843 }
3844 }
3845 else
3846 {
3847 /* Local symbol case. */
3848 if (local_got_offsets == NULL)
3849 abort ();
3850
3851 off = local_got_offsets[r_symndx];
3852
3853 /* The offset must always be a multiple of 4. We use
3854 the least significant bit to record whether we have
3855 already generated the necessary reloc. */
3856 if ((off & 1) != 0)
3857 off &= ~1;
3858 else
3859 {
3860 local_got_offsets[r_symndx] |= 1;
3861 do_got = 1;
3862 }
3863 }
3864
3865 if (do_got)
3866 {
3867 if (info->shared)
3868 {
3869 /* Output a dynamic relocation for this GOT entry.
3870 In this case it is relative to the base of the
3871 object because the symbol index is zero. */
3872 Elf_Internal_Rela outrel;
3873 asection *srelgot = htab->srelgot;
3874 Elf32_External_Rela *loc;
3875
3876 outrel.r_offset = (off
3877 + htab->sgot->output_offset
3878 + htab->sgot->output_section->vma);
3879 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3880 outrel.r_addend = relocation;
3881 loc = (Elf32_External_Rela *) srelgot->contents;
3882 loc += srelgot->reloc_count++;
3883 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3884 }
3885 else
3886 bfd_put_32 (output_bfd, relocation,
3887 htab->sgot->contents + off);
3888 }
3889
3890 if (off >= (bfd_vma) -2)
3891 abort ();
3892
3893 /* Add the base of the GOT to the relocation value. */
3894 relocation = (off
3895 + htab->sgot->output_offset
3896 + htab->sgot->output_section->vma);
3897 }
3898 break;
3899
3900 case R_PARISC_SEGREL32:
3901 /* If this is the first SEGREL relocation, then initialize
3902 the segment base values. */
3903 if (htab->text_segment_base == (bfd_vma) -1)
3904 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3905 break;
3906
3907 case R_PARISC_PLABEL14R:
3908 case R_PARISC_PLABEL21L:
3909 case R_PARISC_PLABEL32:
3910 if (htab->elf.dynamic_sections_created)
3911 {
3912 bfd_vma off;
3913 boolean do_plt = 0;
3914
3915 /* If we have a global symbol with a PLT slot, then
3916 redirect this relocation to it. */
3917 if (h != NULL)
3918 {
3919 off = h->elf.plt.offset;
3920 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3921 {
3922 /* In a non-shared link, adjust_dynamic_symbols
3923 isn't called for symbols forced local. We
3924 need to write out the plt entry here. */
3925 if ((off & 1) != 0)
3926 off &= ~1;
3927 else
3928 {
3929 h->elf.plt.offset |= 1;
3930 do_plt = 1;
3931 }
3932 }
3933 }
3934 else
3935 {
3936 bfd_vma *local_plt_offsets;
3937
3938 if (local_got_offsets == NULL)
3939 abort ();
3940
3941 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3942 off = local_plt_offsets[r_symndx];
3943
3944 /* As for the local .got entry case, we use the last
3945 bit to record whether we've already initialised
3946 this local .plt entry. */
3947 if ((off & 1) != 0)
3948 off &= ~1;
3949 else
3950 {
3951 local_plt_offsets[r_symndx] |= 1;
3952 do_plt = 1;
3953 }
3954 }
3955
3956 if (do_plt)
3957 {
3958 if (info->shared)
3959 {
3960 /* Output a dynamic IPLT relocation for this
3961 PLT entry. */
3962 Elf_Internal_Rela outrel;
3963 asection *srelplt = htab->srelplt;
3964 Elf32_External_Rela *loc;
3965
3966 outrel.r_offset = (off
3967 + htab->splt->output_offset
3968 + htab->splt->output_section->vma);
3969 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3970 outrel.r_addend = relocation;
3971 loc = (Elf32_External_Rela *) srelplt->contents;
3972 loc += srelplt->reloc_count++;
3973 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3974 }
3975 else
3976 {
3977 bfd_put_32 (output_bfd,
3978 relocation,
3979 htab->splt->contents + off);
3980 bfd_put_32 (output_bfd,
3981 elf_gp (htab->splt->output_section->owner),
3982 htab->splt->contents + off + 4);
3983 }
3984 }
3985
3986 if (off >= (bfd_vma) -2)
3987 abort ();
3988
3989 /* PLABELs contain function pointers. Relocation is to
3990 the entry for the function in the .plt. The magic +2
3991 offset signals to $$dyncall that the function pointer
3992 is in the .plt and thus has a gp pointer too.
3993 Exception: Undefined PLABELs should have a value of
3994 zero. */
3995 if (h == NULL
3996 || (h->elf.root.type != bfd_link_hash_undefweak
3997 && h->elf.root.type != bfd_link_hash_undefined))
3998 {
3999 relocation = (off
4000 + htab->splt->output_offset
4001 + htab->splt->output_section->vma
4002 + 2);
4003 }
4004 plabel = 1;
4005 }
4006 /* Fall through and possibly emit a dynamic relocation. */
4007
4008 case R_PARISC_DIR17F:
4009 case R_PARISC_DIR17R:
4010 case R_PARISC_DIR14F:
4011 case R_PARISC_DIR14R:
4012 case R_PARISC_DIR21L:
4013 case R_PARISC_DPREL14F:
4014 case R_PARISC_DPREL14R:
4015 case R_PARISC_DPREL21L:
4016 case R_PARISC_DIR32:
4017 /* r_symndx will be zero only for relocs against symbols
4018 from removed linkonce sections, or sections discarded by
4019 a linker script. */
4020 if (r_symndx == 0
4021 || (input_section->flags & SEC_ALLOC) == 0)
4022 break;
4023
4024 /* The reloc types handled here and this conditional
4025 expression must match the code in ..check_relocs and
4026 allocate_dynrelocs. ie. We need exactly the same condition
4027 as in ..check_relocs, with some extra conditions (dynindx
4028 test in this case) to cater for relocs removed by
4029 allocate_dynrelocs. If you squint, the non-shared test
4030 here does indeed match the one in ..check_relocs, the
4031 difference being that here we test DEF_DYNAMIC as well as
4032 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
4033 which is why we can't use just that test here.
4034 Conversely, DEF_DYNAMIC can't be used in check_relocs as
4035 there all files have not been loaded. */
4036 if ((info->shared
4037 && (IS_ABSOLUTE_RELOC (r_type)
4038 || (h != NULL
4039 && h->elf.dynindx != -1
4040 && (!info->symbolic
4041 || (h->elf.elf_link_hash_flags
4042 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
4043 || (!info->shared
4044 && h != NULL
4045 && h->elf.dynindx != -1
4046 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
4047 && (((h->elf.elf_link_hash_flags
4048 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4049 && (h->elf.elf_link_hash_flags
4050 & ELF_LINK_HASH_DEF_REGULAR) == 0)
4051 || h->elf.root.type == bfd_link_hash_undefweak
4052 || h->elf.root.type == bfd_link_hash_undefined)))
4053 {
4054 Elf_Internal_Rela outrel;
4055 boolean skip;
4056 asection *sreloc;
4057 Elf32_External_Rela *loc;
4058
4059 /* When generating a shared object, these relocations
4060 are copied into the output file to be resolved at run
4061 time. */
4062
4063 outrel.r_addend = rel->r_addend;
4064 outrel.r_offset =
4065 _bfd_elf_section_offset (output_bfd, info, input_section,
4066 rel->r_offset);
4067 skip = (outrel.r_offset == (bfd_vma) -1
4068 || outrel.r_offset == (bfd_vma) -2);
4069 outrel.r_offset += (input_section->output_offset
4070 + input_section->output_section->vma);
4071
4072 if (skip)
4073 {
4074 memset (&outrel, 0, sizeof (outrel));
4075 }
4076 else if (h != NULL
4077 && h->elf.dynindx != -1
4078 && (plabel
4079 || !IS_ABSOLUTE_RELOC (r_type)
4080 || !info->shared
4081 || !info->symbolic
4082 || (h->elf.elf_link_hash_flags
4083 & ELF_LINK_HASH_DEF_REGULAR) == 0))
4084 {
4085 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
4086 }
4087 else /* It's a local symbol, or one marked to become local. */
4088 {
4089 int indx = 0;
4090
4091 /* Add the absolute offset of the symbol. */
4092 outrel.r_addend += relocation;
4093
4094 /* Global plabels need to be processed by the
4095 dynamic linker so that functions have at most one
4096 fptr. For this reason, we need to differentiate
4097 between global and local plabels, which we do by
4098 providing the function symbol for a global plabel
4099 reloc, and no symbol for local plabels. */
4100 if (! plabel
4101 && sym_sec != NULL
4102 && sym_sec->output_section != NULL
4103 && ! bfd_is_abs_section (sym_sec))
4104 {
4105 indx = elf_section_data (sym_sec->output_section)->dynindx;
4106 /* We are turning this relocation into one
4107 against a section symbol, so subtract out the
4108 output section's address but not the offset
4109 of the input section in the output section. */
4110 outrel.r_addend -= sym_sec->output_section->vma;
4111 }
4112
4113 outrel.r_info = ELF32_R_INFO (indx, r_type);
4114 }
4115 #if 0
4116 /* EH info can cause unaligned DIR32 relocs.
4117 Tweak the reloc type for the dynamic linker. */
4118 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4119 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4120 R_PARISC_DIR32U);
4121 #endif
4122 sreloc = elf_section_data (input_section)->sreloc;
4123 if (sreloc == NULL)
4124 abort ();
4125
4126 loc = (Elf32_External_Rela *) sreloc->contents;
4127 loc += sreloc->reloc_count++;
4128 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4129 }
4130 break;
4131
4132 default:
4133 break;
4134 }
4135
4136 r = final_link_relocate (input_section, contents, rel, relocation,
4137 htab, sym_sec, h);
4138
4139 if (r == bfd_reloc_ok)
4140 continue;
4141
4142 if (h != NULL)
4143 sym_name = h->elf.root.root.string;
4144 else
4145 {
4146 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4147 symtab_hdr->sh_link,
4148 sym->st_name);
4149 if (sym_name == NULL)
4150 return false;
4151 if (*sym_name == '\0')
4152 sym_name = bfd_section_name (input_bfd, sym_sec);
4153 }
4154
4155 howto = elf_hppa_howto_table + r_type;
4156
4157 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4158 {
4159 if (r == bfd_reloc_notsupported || !warned_undef)
4160 {
4161 (*_bfd_error_handler)
4162 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4163 bfd_archive_filename (input_bfd),
4164 input_section->name,
4165 (long) rel->r_offset,
4166 howto->name,
4167 sym_name);
4168 bfd_set_error (bfd_error_bad_value);
4169 return false;
4170 }
4171 }
4172 else
4173 {
4174 if (!((*info->callbacks->reloc_overflow)
4175 (info, sym_name, howto->name, (bfd_vma) 0,
4176 input_bfd, input_section, rel->r_offset)))
4177 return false;
4178 }
4179 }
4180
4181 return true;
4182 }
4183
4184 /* Finish up dynamic symbol handling. We set the contents of various
4185 dynamic sections here. */
4186
4187 static boolean
4188 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4189 bfd *output_bfd;
4190 struct bfd_link_info *info;
4191 struct elf_link_hash_entry *h;
4192 Elf_Internal_Sym *sym;
4193 {
4194 struct elf32_hppa_link_hash_table *htab;
4195
4196 htab = hppa_link_hash_table (info);
4197
4198 if (h->plt.offset != (bfd_vma) -1)
4199 {
4200 bfd_vma value;
4201
4202 if (h->plt.offset & 1)
4203 abort ();
4204
4205 /* This symbol has an entry in the procedure linkage table. Set
4206 it up.
4207
4208 The format of a plt entry is
4209 <funcaddr>
4210 <__gp>
4211 */
4212 value = 0;
4213 if (h->root.type == bfd_link_hash_defined
4214 || h->root.type == bfd_link_hash_defweak)
4215 {
4216 value = h->root.u.def.value;
4217 if (h->root.u.def.section->output_section != NULL)
4218 value += (h->root.u.def.section->output_offset
4219 + h->root.u.def.section->output_section->vma);
4220 }
4221
4222 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4223 {
4224 Elf_Internal_Rela rel;
4225 Elf32_External_Rela *loc;
4226
4227 /* Create a dynamic IPLT relocation for this entry. */
4228 rel.r_offset = (h->plt.offset
4229 + htab->splt->output_offset
4230 + htab->splt->output_section->vma);
4231 if (h->dynindx != -1)
4232 {
4233 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4234 rel.r_addend = 0;
4235 }
4236 else
4237 {
4238 /* This symbol has been marked to become local, and is
4239 used by a plabel so must be kept in the .plt. */
4240 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4241 rel.r_addend = value;
4242 }
4243
4244 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4245 loc += htab->srelplt->reloc_count++;
4246 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4247 &rel, loc);
4248 }
4249 else
4250 {
4251 bfd_put_32 (htab->splt->owner,
4252 value,
4253 htab->splt->contents + h->plt.offset);
4254 bfd_put_32 (htab->splt->owner,
4255 elf_gp (htab->splt->output_section->owner),
4256 htab->splt->contents + h->plt.offset + 4);
4257 }
4258
4259 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4260 {
4261 /* Mark the symbol as undefined, rather than as defined in
4262 the .plt section. Leave the value alone. */
4263 sym->st_shndx = SHN_UNDEF;
4264 }
4265 }
4266
4267 if (h->got.offset != (bfd_vma) -1)
4268 {
4269 Elf_Internal_Rela rel;
4270 Elf32_External_Rela *loc;
4271
4272 /* This symbol has an entry in the global offset table. Set it
4273 up. */
4274
4275 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4276 + htab->sgot->output_offset
4277 + htab->sgot->output_section->vma);
4278
4279 /* If this is a -Bsymbolic link and the symbol is defined
4280 locally or was forced to be local because of a version file,
4281 we just want to emit a RELATIVE reloc. The entry in the
4282 global offset table will already have been initialized in the
4283 relocate_section function. */
4284 if (info->shared
4285 && (info->symbolic || h->dynindx == -1)
4286 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4287 {
4288 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4289 rel.r_addend = (h->root.u.def.value
4290 + h->root.u.def.section->output_offset
4291 + h->root.u.def.section->output_section->vma);
4292 }
4293 else
4294 {
4295 if ((h->got.offset & 1) != 0)
4296 abort ();
4297 bfd_put_32 (output_bfd, (bfd_vma) 0,
4298 htab->sgot->contents + h->got.offset);
4299 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4300 rel.r_addend = 0;
4301 }
4302
4303 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4304 loc += htab->srelgot->reloc_count++;
4305 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4306 }
4307
4308 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4309 {
4310 asection *s;
4311 Elf_Internal_Rela rel;
4312 Elf32_External_Rela *loc;
4313
4314 /* This symbol needs a copy reloc. Set it up. */
4315
4316 if (! (h->dynindx != -1
4317 && (h->root.type == bfd_link_hash_defined
4318 || h->root.type == bfd_link_hash_defweak)))
4319 abort ();
4320
4321 s = htab->srelbss;
4322
4323 rel.r_offset = (h->root.u.def.value
4324 + h->root.u.def.section->output_offset
4325 + h->root.u.def.section->output_section->vma);
4326 rel.r_addend = 0;
4327 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4328 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4329 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4330 }
4331
4332 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4333 if (h->root.root.string[0] == '_'
4334 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4335 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4336 {
4337 sym->st_shndx = SHN_ABS;
4338 }
4339
4340 return true;
4341 }
4342
4343 /* Used to decide how to sort relocs in an optimal manner for the
4344 dynamic linker, before writing them out. */
4345
4346 static enum elf_reloc_type_class
4347 elf32_hppa_reloc_type_class (rela)
4348 const Elf_Internal_Rela *rela;
4349 {
4350 if (ELF32_R_SYM (rela->r_info) == 0)
4351 return reloc_class_relative;
4352
4353 switch ((int) ELF32_R_TYPE (rela->r_info))
4354 {
4355 case R_PARISC_IPLT:
4356 return reloc_class_plt;
4357 case R_PARISC_COPY:
4358 return reloc_class_copy;
4359 default:
4360 return reloc_class_normal;
4361 }
4362 }
4363
4364 /* Finish up the dynamic sections. */
4365
4366 static boolean
4367 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4368 bfd *output_bfd;
4369 struct bfd_link_info *info;
4370 {
4371 bfd *dynobj;
4372 struct elf32_hppa_link_hash_table *htab;
4373 asection *sdyn;
4374
4375 htab = hppa_link_hash_table (info);
4376 dynobj = htab->elf.dynobj;
4377
4378 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4379
4380 if (htab->elf.dynamic_sections_created)
4381 {
4382 Elf32_External_Dyn *dyncon, *dynconend;
4383
4384 if (sdyn == NULL)
4385 abort ();
4386
4387 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4388 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4389 for (; dyncon < dynconend; dyncon++)
4390 {
4391 Elf_Internal_Dyn dyn;
4392 asection *s;
4393
4394 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4395
4396 switch (dyn.d_tag)
4397 {
4398 default:
4399 continue;
4400
4401 case DT_PLTGOT:
4402 /* Use PLTGOT to set the GOT register. */
4403 dyn.d_un.d_ptr = elf_gp (output_bfd);
4404 break;
4405
4406 case DT_JMPREL:
4407 s = htab->srelplt;
4408 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4409 break;
4410
4411 case DT_PLTRELSZ:
4412 s = htab->srelplt;
4413 if (s->_cooked_size != 0)
4414 dyn.d_un.d_val = s->_cooked_size;
4415 else
4416 dyn.d_un.d_val = s->_raw_size;
4417 break;
4418
4419 case DT_RELASZ:
4420 /* Don't count procedure linkage table relocs in the
4421 overall reloc count. */
4422 if (htab->srelplt != NULL)
4423 {
4424 s = htab->srelplt->output_section;
4425 if (s->_cooked_size != 0)
4426 dyn.d_un.d_val -= s->_cooked_size;
4427 else
4428 dyn.d_un.d_val -= s->_raw_size;
4429 }
4430 break;
4431 }
4432
4433 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4434 }
4435 }
4436
4437 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4438 {
4439 /* Fill in the first entry in the global offset table.
4440 We use it to point to our dynamic section, if we have one. */
4441 bfd_put_32 (output_bfd,
4442 (sdyn != NULL
4443 ? sdyn->output_section->vma + sdyn->output_offset
4444 : (bfd_vma) 0),
4445 htab->sgot->contents);
4446
4447 /* The second entry is reserved for use by the dynamic linker. */
4448 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4449
4450 /* Set .got entry size. */
4451 elf_section_data (htab->sgot->output_section)
4452 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4453 }
4454
4455 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4456 {
4457 /* Set plt entry size. */
4458 elf_section_data (htab->splt->output_section)
4459 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4460
4461 if (htab->need_plt_stub)
4462 {
4463 /* Set up the .plt stub. */
4464 memcpy (htab->splt->contents
4465 + htab->splt->_raw_size - sizeof (plt_stub),
4466 plt_stub, sizeof (plt_stub));
4467
4468 if ((htab->splt->output_offset
4469 + htab->splt->output_section->vma
4470 + htab->splt->_raw_size)
4471 != (htab->sgot->output_offset
4472 + htab->sgot->output_section->vma))
4473 {
4474 (*_bfd_error_handler)
4475 (_(".got section not immediately after .plt section"));
4476 return false;
4477 }
4478 }
4479 }
4480
4481 return true;
4482 }
4483
4484 /* Tweak the OSABI field of the elf header. */
4485
4486 static void
4487 elf32_hppa_post_process_headers (abfd, link_info)
4488 bfd *abfd;
4489 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4490 {
4491 Elf_Internal_Ehdr * i_ehdrp;
4492
4493 i_ehdrp = elf_elfheader (abfd);
4494
4495 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4496 {
4497 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4498 }
4499 else
4500 {
4501 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4502 }
4503 }
4504
4505 /* Called when writing out an object file to decide the type of a
4506 symbol. */
4507 static int
4508 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4509 Elf_Internal_Sym *elf_sym;
4510 int type;
4511 {
4512 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4513 return STT_PARISC_MILLI;
4514 else
4515 return type;
4516 }
4517
4518 /* Misc BFD support code. */
4519 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4520 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4521 #define elf_info_to_howto elf_hppa_info_to_howto
4522 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4523
4524 /* Stuff for the BFD linker. */
4525 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4526 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4527 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4528 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4529 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4530 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4531 #define elf_backend_check_relocs elf32_hppa_check_relocs
4532 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4533 #define elf_backend_fake_sections elf_hppa_fake_sections
4534 #define elf_backend_relocate_section elf32_hppa_relocate_section
4535 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4536 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4537 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4538 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4539 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4540 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4541 #define elf_backend_object_p elf32_hppa_object_p
4542 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4543 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4544 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4545 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4546
4547 #define elf_backend_can_gc_sections 1
4548 #define elf_backend_can_refcount 1
4549 #define elf_backend_plt_alignment 2
4550 #define elf_backend_want_got_plt 0
4551 #define elf_backend_plt_readonly 0
4552 #define elf_backend_want_plt_sym 0
4553 #define elf_backend_got_header_size 8
4554
4555 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4556 #define TARGET_BIG_NAME "elf32-hppa"
4557 #define ELF_ARCH bfd_arch_hppa
4558 #define ELF_MACHINE_CODE EM_PARISC
4559 #define ELF_MAXPAGESIZE 0x1000
4560
4561 #include "elf32-target.h"
4562
4563 #undef TARGET_BIG_SYM
4564 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4565 #undef TARGET_BIG_NAME
4566 #define TARGET_BIG_NAME "elf32-hppa-linux"
4567
4568 #define INCLUDED_TARGET_FILE 1
4569 #include "elf32-target.h"
This page took 0.122733 seconds and 4 git commands to generate.