* elf32-m32r.c (m32r_elf_add_symbol_hook): Check the hash table
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set during a static link if we detect a function is PIC. */
207 unsigned int maybe_pic_call:1;
208
209 /* Set if the only reason we need a .plt entry is for a non-PIC to
210 PIC function call. */
211 unsigned int pic_call:1;
212
213 /* Set if this symbol is used by a plabel reloc. */
214 unsigned int plabel:1;
215 };
216
217 struct elf32_hppa_link_hash_table {
218
219 /* The main hash table. */
220 struct elf_link_hash_table elf;
221
222 /* The stub hash table. */
223 struct bfd_hash_table stub_hash_table;
224
225 /* Linker stub bfd. */
226 bfd *stub_bfd;
227
228 /* Linker call-backs. */
229 asection * (*add_stub_section) PARAMS ((const char *, asection *));
230 void (*layout_sections_again) PARAMS ((void));
231
232 /* Array to keep track of which stub sections have been created, and
233 information on stub grouping. */
234 struct map_stub {
235 /* This is the section to which stubs in the group will be
236 attached. */
237 asection *link_sec;
238 /* The stub section. */
239 asection *stub_sec;
240 } *stub_group;
241
242 /* Short-cuts to get to dynamic linker sections. */
243 asection *sgot;
244 asection *srelgot;
245 asection *splt;
246 asection *srelplt;
247 asection *sdynbss;
248 asection *srelbss;
249
250 /* Used during a final link to store the base of the text and data
251 segments so that we can perform SEGREL relocations. */
252 bfd_vma text_segment_base;
253 bfd_vma data_segment_base;
254
255 /* Whether we support multiple sub-spaces for shared libs. */
256 unsigned int multi_subspace:1;
257
258 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
259 select suitable defaults for the stub group size. */
260 unsigned int has_12bit_branch:1;
261 unsigned int has_17bit_branch:1;
262
263 /* Set if we need a .plt stub to support lazy dynamic linking. */
264 unsigned int need_plt_stub:1;
265
266 /* Small local sym to section mapping cache. */
267 struct sym_sec_cache sym_sec;
268 };
269
270 /* Various hash macros and functions. */
271 #define hppa_link_hash_table(p) \
272 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
273
274 #define hppa_stub_hash_lookup(table, string, create, copy) \
275 ((struct elf32_hppa_stub_hash_entry *) \
276 bfd_hash_lookup ((table), (string), (create), (copy)))
277
278 static struct bfd_hash_entry *stub_hash_newfunc
279 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
280
281 static struct bfd_hash_entry *hppa_link_hash_newfunc
282 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
283
284 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
285 PARAMS ((bfd *));
286
287 static void elf32_hppa_link_hash_table_free
288 PARAMS ((struct bfd_link_hash_table *));
289
290 /* Stub handling functions. */
291 static char *hppa_stub_name
292 PARAMS ((const asection *, const asection *,
293 const struct elf32_hppa_link_hash_entry *,
294 const Elf_Internal_Rela *));
295
296 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
297 PARAMS ((const asection *, const asection *,
298 struct elf32_hppa_link_hash_entry *,
299 const Elf_Internal_Rela *,
300 struct elf32_hppa_link_hash_table *));
301
302 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
303 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
304
305 static enum elf32_hppa_stub_type hppa_type_of_stub
306 PARAMS ((asection *, const Elf_Internal_Rela *,
307 struct elf32_hppa_link_hash_entry *, bfd_vma));
308
309 static boolean hppa_build_one_stub
310 PARAMS ((struct bfd_hash_entry *, PTR));
311
312 static boolean hppa_size_one_stub
313 PARAMS ((struct bfd_hash_entry *, PTR));
314
315 /* BFD and elf backend functions. */
316 static boolean elf32_hppa_object_p PARAMS ((bfd *));
317
318 static boolean elf32_hppa_add_symbol_hook
319 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
320 const char **, flagword *, asection **, bfd_vma *));
321
322 static boolean elf32_hppa_create_dynamic_sections
323 PARAMS ((bfd *, struct bfd_link_info *));
324
325 static void elf32_hppa_copy_indirect_symbol
326 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
327
328 static boolean elf32_hppa_check_relocs
329 PARAMS ((bfd *, struct bfd_link_info *,
330 asection *, const Elf_Internal_Rela *));
331
332 static asection *elf32_hppa_gc_mark_hook
333 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
334 struct elf_link_hash_entry *, Elf_Internal_Sym *));
335
336 static boolean elf32_hppa_gc_sweep_hook
337 PARAMS ((bfd *, struct bfd_link_info *,
338 asection *, const Elf_Internal_Rela *));
339
340 static void elf32_hppa_hide_symbol
341 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, boolean));
342
343 static boolean elf32_hppa_adjust_dynamic_symbol
344 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
345
346 static boolean mark_PIC_calls
347 PARAMS ((struct elf_link_hash_entry *, PTR));
348
349 static boolean allocate_plt_static
350 PARAMS ((struct elf_link_hash_entry *, PTR));
351
352 static boolean allocate_dynrelocs
353 PARAMS ((struct elf_link_hash_entry *, PTR));
354
355 static boolean readonly_dynrelocs
356 PARAMS ((struct elf_link_hash_entry *, PTR));
357
358 static boolean clobber_millicode_symbols
359 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
360
361 static boolean elf32_hppa_size_dynamic_sections
362 PARAMS ((bfd *, struct bfd_link_info *));
363
364 static boolean elf32_hppa_final_link
365 PARAMS ((bfd *, struct bfd_link_info *));
366
367 static void hppa_record_segment_addr
368 PARAMS ((bfd *, asection *, PTR));
369
370 static bfd_reloc_status_type final_link_relocate
371 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
372 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
373 struct elf32_hppa_link_hash_entry *));
374
375 static boolean elf32_hppa_relocate_section
376 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
377 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
378
379 static boolean elf32_hppa_finish_dynamic_symbol
380 PARAMS ((bfd *, struct bfd_link_info *,
381 struct elf_link_hash_entry *, Elf_Internal_Sym *));
382
383 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
384 PARAMS ((const Elf_Internal_Rela *));
385
386 static boolean elf32_hppa_finish_dynamic_sections
387 PARAMS ((bfd *, struct bfd_link_info *));
388
389 static void elf32_hppa_post_process_headers
390 PARAMS ((bfd *, struct bfd_link_info *));
391
392 static int elf32_hppa_elf_get_symbol_type
393 PARAMS ((Elf_Internal_Sym *, int));
394
395 /* Assorted hash table functions. */
396
397 /* Initialize an entry in the stub hash table. */
398
399 static struct bfd_hash_entry *
400 stub_hash_newfunc (entry, table, string)
401 struct bfd_hash_entry *entry;
402 struct bfd_hash_table *table;
403 const char *string;
404 {
405 /* Allocate the structure if it has not already been allocated by a
406 subclass. */
407 if (entry == NULL)
408 {
409 entry = bfd_hash_allocate (table,
410 sizeof (struct elf32_hppa_stub_hash_entry));
411 if (entry == NULL)
412 return entry;
413 }
414
415 /* Call the allocation method of the superclass. */
416 entry = bfd_hash_newfunc (entry, table, string);
417 if (entry != NULL)
418 {
419 struct elf32_hppa_stub_hash_entry *eh;
420
421 /* Initialize the local fields. */
422 eh = (struct elf32_hppa_stub_hash_entry *) entry;
423 eh->stub_sec = NULL;
424 eh->stub_offset = 0;
425 eh->target_value = 0;
426 eh->target_section = NULL;
427 eh->stub_type = hppa_stub_long_branch;
428 eh->h = NULL;
429 eh->id_sec = NULL;
430 }
431
432 return entry;
433 }
434
435 /* Initialize an entry in the link hash table. */
436
437 static struct bfd_hash_entry *
438 hppa_link_hash_newfunc (entry, table, string)
439 struct bfd_hash_entry *entry;
440 struct bfd_hash_table *table;
441 const char *string;
442 {
443 /* Allocate the structure if it has not already been allocated by a
444 subclass. */
445 if (entry == NULL)
446 {
447 entry = bfd_hash_allocate (table,
448 sizeof (struct elf32_hppa_link_hash_entry));
449 if (entry == NULL)
450 return entry;
451 }
452
453 /* Call the allocation method of the superclass. */
454 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
455 if (entry != NULL)
456 {
457 struct elf32_hppa_link_hash_entry *eh;
458
459 /* Initialize the local fields. */
460 eh = (struct elf32_hppa_link_hash_entry *) entry;
461 eh->stub_cache = NULL;
462 eh->dyn_relocs = NULL;
463 eh->maybe_pic_call = 0;
464 eh->pic_call = 0;
465 eh->plabel = 0;
466 }
467
468 return entry;
469 }
470
471 /* Create the derived linker hash table. The PA ELF port uses the derived
472 hash table to keep information specific to the PA ELF linker (without
473 using static variables). */
474
475 static struct bfd_link_hash_table *
476 elf32_hppa_link_hash_table_create (abfd)
477 bfd *abfd;
478 {
479 struct elf32_hppa_link_hash_table *ret;
480 bfd_size_type amt = sizeof (*ret);
481
482 ret = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
483 if (ret == NULL)
484 return NULL;
485
486 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
487 {
488 free (ret);
489 return NULL;
490 }
491
492 /* Init the stub hash table too. */
493 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
494 return NULL;
495
496 ret->stub_bfd = NULL;
497 ret->add_stub_section = NULL;
498 ret->layout_sections_again = NULL;
499 ret->stub_group = NULL;
500 ret->sgot = NULL;
501 ret->srelgot = NULL;
502 ret->splt = NULL;
503 ret->srelplt = NULL;
504 ret->sdynbss = NULL;
505 ret->srelbss = NULL;
506 ret->text_segment_base = (bfd_vma) -1;
507 ret->data_segment_base = (bfd_vma) -1;
508 ret->multi_subspace = 0;
509 ret->has_12bit_branch = 0;
510 ret->has_17bit_branch = 0;
511 ret->need_plt_stub = 0;
512 ret->sym_sec.abfd = NULL;
513
514 return &ret->elf.root;
515 }
516
517 /* Free the derived linker hash table. */
518
519 static void
520 elf32_hppa_link_hash_table_free (hash)
521 struct bfd_link_hash_table *hash;
522 {
523 struct elf32_hppa_link_hash_table *ret
524 = (struct elf32_hppa_link_hash_table *) hash;
525
526 bfd_hash_table_free (&ret->stub_hash_table);
527 _bfd_generic_link_hash_table_free (hash);
528 }
529
530 /* Build a name for an entry in the stub hash table. */
531
532 static char *
533 hppa_stub_name (input_section, sym_sec, hash, rel)
534 const asection *input_section;
535 const asection *sym_sec;
536 const struct elf32_hppa_link_hash_entry *hash;
537 const Elf_Internal_Rela *rel;
538 {
539 char *stub_name;
540 bfd_size_type len;
541
542 if (hash)
543 {
544 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
545 stub_name = bfd_malloc (len);
546 if (stub_name != NULL)
547 {
548 sprintf (stub_name, "%08x_%s+%x",
549 input_section->id & 0xffffffff,
550 hash->elf.root.root.string,
551 (int) rel->r_addend & 0xffffffff);
552 }
553 }
554 else
555 {
556 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
557 stub_name = bfd_malloc (len);
558 if (stub_name != NULL)
559 {
560 sprintf (stub_name, "%08x_%x:%x+%x",
561 input_section->id & 0xffffffff,
562 sym_sec->id & 0xffffffff,
563 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
564 (int) rel->r_addend & 0xffffffff);
565 }
566 }
567 return stub_name;
568 }
569
570 /* Look up an entry in the stub hash. Stub entries are cached because
571 creating the stub name takes a bit of time. */
572
573 static struct elf32_hppa_stub_hash_entry *
574 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
575 const asection *input_section;
576 const asection *sym_sec;
577 struct elf32_hppa_link_hash_entry *hash;
578 const Elf_Internal_Rela *rel;
579 struct elf32_hppa_link_hash_table *htab;
580 {
581 struct elf32_hppa_stub_hash_entry *stub_entry;
582 const asection *id_sec;
583
584 /* If this input section is part of a group of sections sharing one
585 stub section, then use the id of the first section in the group.
586 Stub names need to include a section id, as there may well be
587 more than one stub used to reach say, printf, and we need to
588 distinguish between them. */
589 id_sec = htab->stub_group[input_section->id].link_sec;
590
591 if (hash != NULL && hash->stub_cache != NULL
592 && hash->stub_cache->h == hash
593 && hash->stub_cache->id_sec == id_sec)
594 {
595 stub_entry = hash->stub_cache;
596 }
597 else
598 {
599 char *stub_name;
600
601 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
602 if (stub_name == NULL)
603 return NULL;
604
605 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
606 stub_name, false, false);
607 if (hash != NULL)
608 hash->stub_cache = stub_entry;
609
610 free (stub_name);
611 }
612
613 return stub_entry;
614 }
615
616 /* Add a new stub entry to the stub hash. Not all fields of the new
617 stub entry are initialised. */
618
619 static struct elf32_hppa_stub_hash_entry *
620 hppa_add_stub (stub_name, section, htab)
621 const char *stub_name;
622 asection *section;
623 struct elf32_hppa_link_hash_table *htab;
624 {
625 asection *link_sec;
626 asection *stub_sec;
627 struct elf32_hppa_stub_hash_entry *stub_entry;
628
629 link_sec = htab->stub_group[section->id].link_sec;
630 stub_sec = htab->stub_group[section->id].stub_sec;
631 if (stub_sec == NULL)
632 {
633 stub_sec = htab->stub_group[link_sec->id].stub_sec;
634 if (stub_sec == NULL)
635 {
636 bfd_size_type len;
637 char *s_name;
638
639 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
640 s_name = bfd_alloc (htab->stub_bfd, len);
641 if (s_name == NULL)
642 return NULL;
643
644 strcpy (s_name, link_sec->name);
645 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
646 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
647 if (stub_sec == NULL)
648 return NULL;
649 htab->stub_group[link_sec->id].stub_sec = stub_sec;
650 }
651 htab->stub_group[section->id].stub_sec = stub_sec;
652 }
653
654 /* Enter this entry into the linker stub hash table. */
655 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
656 true, false);
657 if (stub_entry == NULL)
658 {
659 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
660 bfd_archive_filename (section->owner),
661 stub_name);
662 return NULL;
663 }
664
665 stub_entry->stub_sec = stub_sec;
666 stub_entry->stub_offset = 0;
667 stub_entry->id_sec = link_sec;
668 return stub_entry;
669 }
670
671 /* Determine the type of stub needed, if any, for a call. */
672
673 static enum elf32_hppa_stub_type
674 hppa_type_of_stub (input_sec, rel, hash, destination)
675 asection *input_sec;
676 const Elf_Internal_Rela *rel;
677 struct elf32_hppa_link_hash_entry *hash;
678 bfd_vma destination;
679 {
680 bfd_vma location;
681 bfd_vma branch_offset;
682 bfd_vma max_branch_offset;
683 unsigned int r_type;
684
685 if (hash != NULL
686 && (((hash->elf.root.type == bfd_link_hash_defined
687 || hash->elf.root.type == bfd_link_hash_defweak)
688 && hash->elf.root.u.def.section->output_section == NULL)
689 || (hash->elf.root.type == bfd_link_hash_defweak
690 && hash->elf.dynindx != -1
691 && hash->elf.plt.offset != (bfd_vma) -1)
692 || hash->elf.root.type == bfd_link_hash_undefweak
693 || hash->elf.root.type == bfd_link_hash_undefined
694 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
695 {
696 /* If output_section is NULL, then it's a symbol defined in a
697 shared library. We will need an import stub. Decide between
698 hppa_stub_import and hppa_stub_import_shared later. For
699 shared links we need stubs for undefined or weak syms too;
700 They will presumably be resolved by the dynamic linker. */
701 return hppa_stub_import;
702 }
703
704 /* Determine where the call point is. */
705 location = (input_sec->output_offset
706 + input_sec->output_section->vma
707 + rel->r_offset);
708
709 branch_offset = destination - location - 8;
710 r_type = ELF32_R_TYPE (rel->r_info);
711
712 /* Determine if a long branch stub is needed. parisc branch offsets
713 are relative to the second instruction past the branch, ie. +8
714 bytes on from the branch instruction location. The offset is
715 signed and counts in units of 4 bytes. */
716 if (r_type == (unsigned int) R_PARISC_PCREL17F)
717 {
718 max_branch_offset = (1 << (17-1)) << 2;
719 }
720 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
721 {
722 max_branch_offset = (1 << (12-1)) << 2;
723 }
724 else /* R_PARISC_PCREL22F. */
725 {
726 max_branch_offset = (1 << (22-1)) << 2;
727 }
728
729 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
730 return hppa_stub_long_branch;
731
732 return hppa_stub_none;
733 }
734
735 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
736 IN_ARG contains the link info pointer. */
737
738 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
739 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
740
741 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
742 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
743 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
744
745 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
746 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
747 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
748 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
749
750 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
751 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
752
753 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
754 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
755 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
756 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
757
758 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
759 #define NOP 0x08000240 /* nop */
760 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
761 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
762 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
763
764 #ifndef R19_STUBS
765 #define R19_STUBS 1
766 #endif
767
768 #if R19_STUBS
769 #define LDW_R1_DLT LDW_R1_R19
770 #else
771 #define LDW_R1_DLT LDW_R1_DP
772 #endif
773
774 static boolean
775 hppa_build_one_stub (gen_entry, in_arg)
776 struct bfd_hash_entry *gen_entry;
777 PTR in_arg;
778 {
779 struct elf32_hppa_stub_hash_entry *stub_entry;
780 struct bfd_link_info *info;
781 struct elf32_hppa_link_hash_table *htab;
782 asection *stub_sec;
783 bfd *stub_bfd;
784 bfd_byte *loc;
785 bfd_vma sym_value;
786 bfd_vma insn;
787 bfd_vma off;
788 int val;
789 int size;
790
791 /* Massage our args to the form they really have. */
792 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
793 info = (struct bfd_link_info *) in_arg;
794
795 htab = hppa_link_hash_table (info);
796 stub_sec = stub_entry->stub_sec;
797
798 /* Make a note of the offset within the stubs for this entry. */
799 stub_entry->stub_offset = stub_sec->_raw_size;
800 loc = stub_sec->contents + stub_entry->stub_offset;
801
802 stub_bfd = stub_sec->owner;
803
804 switch (stub_entry->stub_type)
805 {
806 case hppa_stub_long_branch:
807 /* Create the long branch. A long branch is formed with "ldil"
808 loading the upper bits of the target address into a register,
809 then branching with "be" which adds in the lower bits.
810 The "be" has its delay slot nullified. */
811 sym_value = (stub_entry->target_value
812 + stub_entry->target_section->output_offset
813 + stub_entry->target_section->output_section->vma);
814
815 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
816 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
817 bfd_put_32 (stub_bfd, insn, loc);
818
819 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
820 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
821 bfd_put_32 (stub_bfd, insn, loc + 4);
822
823 size = 8;
824 break;
825
826 case hppa_stub_long_branch_shared:
827 /* Branches are relative. This is where we are going to. */
828 sym_value = (stub_entry->target_value
829 + stub_entry->target_section->output_offset
830 + stub_entry->target_section->output_section->vma);
831
832 /* And this is where we are coming from, more or less. */
833 sym_value -= (stub_entry->stub_offset
834 + stub_sec->output_offset
835 + stub_sec->output_section->vma);
836
837 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
838 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
839 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
840 bfd_put_32 (stub_bfd, insn, loc + 4);
841
842 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
843 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
844 bfd_put_32 (stub_bfd, insn, loc + 8);
845 size = 12;
846 break;
847
848 case hppa_stub_import:
849 case hppa_stub_import_shared:
850 off = stub_entry->h->elf.plt.offset;
851 if (off >= (bfd_vma) -2)
852 abort ();
853
854 off &= ~ (bfd_vma) 1;
855 sym_value = (off
856 + htab->splt->output_offset
857 + htab->splt->output_section->vma
858 - elf_gp (htab->splt->output_section->owner));
859
860 insn = ADDIL_DP;
861 #if R19_STUBS
862 if (stub_entry->stub_type == hppa_stub_import_shared)
863 insn = ADDIL_R19;
864 #endif
865 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
866 insn = hppa_rebuild_insn ((int) insn, val, 21);
867 bfd_put_32 (stub_bfd, insn, loc);
868
869 /* It is critical to use lrsel/rrsel here because we are using
870 two different offsets (+0 and +4) from sym_value. If we use
871 lsel/rsel then with unfortunate sym_values we will round
872 sym_value+4 up to the next 2k block leading to a mis-match
873 between the lsel and rsel value. */
874 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
875 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
876 bfd_put_32 (stub_bfd, insn, loc + 4);
877
878 if (htab->multi_subspace)
879 {
880 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
881 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
882 bfd_put_32 (stub_bfd, insn, loc + 8);
883
884 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
885 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
886 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
887 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
888
889 size = 28;
890 }
891 else
892 {
893 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
894 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
895 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
896 bfd_put_32 (stub_bfd, insn, loc + 12);
897
898 size = 16;
899 }
900
901 if (!info->shared
902 && stub_entry->h != NULL
903 && stub_entry->h->pic_call)
904 {
905 /* Build the .plt entry needed to call a PIC function from
906 statically linked code. We don't need any relocs. */
907 bfd *dynobj;
908 struct elf32_hppa_link_hash_entry *eh;
909 bfd_vma value;
910
911 dynobj = htab->elf.dynobj;
912 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
913
914 if (eh->elf.root.type != bfd_link_hash_defined
915 && eh->elf.root.type != bfd_link_hash_defweak)
916 abort ();
917
918 value = (eh->elf.root.u.def.value
919 + eh->elf.root.u.def.section->output_offset
920 + eh->elf.root.u.def.section->output_section->vma);
921
922 /* Fill in the entry in the procedure linkage table.
923
924 The format of a plt entry is
925 <funcaddr>
926 <__gp>. */
927
928 bfd_put_32 (htab->splt->owner, value,
929 htab->splt->contents + off);
930 value = elf_gp (htab->splt->output_section->owner);
931 bfd_put_32 (htab->splt->owner, value,
932 htab->splt->contents + off + 4);
933 }
934 break;
935
936 case hppa_stub_export:
937 /* Branches are relative. This is where we are going to. */
938 sym_value = (stub_entry->target_value
939 + stub_entry->target_section->output_offset
940 + stub_entry->target_section->output_section->vma);
941
942 /* And this is where we are coming from. */
943 sym_value -= (stub_entry->stub_offset
944 + stub_sec->output_offset
945 + stub_sec->output_section->vma);
946
947 if (sym_value - 8 + 0x40000 >= 0x80000)
948 {
949 (*_bfd_error_handler)
950 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
951 bfd_archive_filename (stub_entry->target_section->owner),
952 stub_sec->name,
953 (long) stub_entry->stub_offset,
954 stub_entry->root.string);
955 bfd_set_error (bfd_error_bad_value);
956 return false;
957 }
958
959 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
960 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
961 bfd_put_32 (stub_bfd, insn, loc);
962
963 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
964 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
965 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
966 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
967 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
968
969 /* Point the function symbol at the stub. */
970 stub_entry->h->elf.root.u.def.section = stub_sec;
971 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
972
973 size = 24;
974 break;
975
976 default:
977 BFD_FAIL ();
978 return false;
979 }
980
981 stub_sec->_raw_size += size;
982 return true;
983 }
984
985 #undef LDIL_R1
986 #undef BE_SR4_R1
987 #undef BL_R1
988 #undef ADDIL_R1
989 #undef DEPI_R1
990 #undef ADDIL_DP
991 #undef LDW_R1_R21
992 #undef LDW_R1_DLT
993 #undef LDW_R1_R19
994 #undef ADDIL_R19
995 #undef LDW_R1_DP
996 #undef LDSID_R21_R1
997 #undef MTSP_R1
998 #undef BE_SR0_R21
999 #undef STW_RP
1000 #undef BV_R0_R21
1001 #undef BL_RP
1002 #undef NOP
1003 #undef LDW_RP
1004 #undef LDSID_RP_R1
1005 #undef BE_SR0_RP
1006
1007 /* As above, but don't actually build the stub. Just bump offset so
1008 we know stub section sizes. */
1009
1010 static boolean
1011 hppa_size_one_stub (gen_entry, in_arg)
1012 struct bfd_hash_entry *gen_entry;
1013 PTR in_arg;
1014 {
1015 struct elf32_hppa_stub_hash_entry *stub_entry;
1016 struct elf32_hppa_link_hash_table *htab;
1017 int size;
1018
1019 /* Massage our args to the form they really have. */
1020 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1021 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1022
1023 if (stub_entry->stub_type == hppa_stub_long_branch)
1024 size = 8;
1025 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1026 size = 12;
1027 else if (stub_entry->stub_type == hppa_stub_export)
1028 size = 24;
1029 else /* hppa_stub_import or hppa_stub_import_shared. */
1030 {
1031 if (htab->multi_subspace)
1032 size = 28;
1033 else
1034 size = 16;
1035 }
1036
1037 stub_entry->stub_sec->_raw_size += size;
1038 return true;
1039 }
1040
1041 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1042 Additionally we set the default architecture and machine. */
1043
1044 static boolean
1045 elf32_hppa_object_p (abfd)
1046 bfd *abfd;
1047 {
1048 Elf_Internal_Ehdr * i_ehdrp;
1049 unsigned int flags;
1050
1051 i_ehdrp = elf_elfheader (abfd);
1052 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1053 {
1054 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1055 return false;
1056 }
1057 else
1058 {
1059 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1060 return false;
1061 }
1062
1063 flags = i_ehdrp->e_flags;
1064 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1065 {
1066 case EFA_PARISC_1_0:
1067 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1068 case EFA_PARISC_1_1:
1069 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1070 case EFA_PARISC_2_0:
1071 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1072 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1073 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1074 }
1075 return true;
1076 }
1077
1078 /* Undo the generic ELF code's subtraction of section->vma from the
1079 value of each external symbol. */
1080
1081 static boolean
1082 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1083 bfd *abfd ATTRIBUTE_UNUSED;
1084 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1085 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1086 const char **namep ATTRIBUTE_UNUSED;
1087 flagword *flagsp ATTRIBUTE_UNUSED;
1088 asection **secp;
1089 bfd_vma *valp;
1090 {
1091 *valp += (*secp)->vma;
1092 return true;
1093 }
1094
1095 /* Create the .plt and .got sections, and set up our hash table
1096 short-cuts to various dynamic sections. */
1097
1098 static boolean
1099 elf32_hppa_create_dynamic_sections (abfd, info)
1100 bfd *abfd;
1101 struct bfd_link_info *info;
1102 {
1103 struct elf32_hppa_link_hash_table *htab;
1104
1105 /* Don't try to create the .plt and .got twice. */
1106 htab = hppa_link_hash_table (info);
1107 if (htab->splt != NULL)
1108 return true;
1109
1110 /* Call the generic code to do most of the work. */
1111 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1112 return false;
1113
1114 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1115 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1116
1117 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1118 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1119 if (htab->srelgot == NULL
1120 || ! bfd_set_section_flags (abfd, htab->srelgot,
1121 (SEC_ALLOC
1122 | SEC_LOAD
1123 | SEC_HAS_CONTENTS
1124 | SEC_IN_MEMORY
1125 | SEC_LINKER_CREATED
1126 | SEC_READONLY))
1127 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1128 return false;
1129
1130 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1131 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1132
1133 return true;
1134 }
1135
1136 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1137
1138 static void
1139 elf32_hppa_copy_indirect_symbol (dir, ind)
1140 struct elf_link_hash_entry *dir, *ind;
1141 {
1142 struct elf32_hppa_link_hash_entry *edir, *eind;
1143
1144 edir = (struct elf32_hppa_link_hash_entry *) dir;
1145 eind = (struct elf32_hppa_link_hash_entry *) ind;
1146
1147 if (eind->dyn_relocs != NULL)
1148 {
1149 if (edir->dyn_relocs != NULL)
1150 {
1151 struct elf32_hppa_dyn_reloc_entry **pp;
1152 struct elf32_hppa_dyn_reloc_entry *p;
1153
1154 if (ind->root.type == bfd_link_hash_indirect)
1155 abort ();
1156
1157 /* Add reloc counts against the weak sym to the strong sym
1158 list. Merge any entries against the same section. */
1159 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1160 {
1161 struct elf32_hppa_dyn_reloc_entry *q;
1162
1163 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1164 if (q->sec == p->sec)
1165 {
1166 #if RELATIVE_DYNRELOCS
1167 q->relative_count += p->relative_count;
1168 #endif
1169 q->count += p->count;
1170 *pp = p->next;
1171 break;
1172 }
1173 if (q == NULL)
1174 pp = &p->next;
1175 }
1176 *pp = edir->dyn_relocs;
1177 }
1178
1179 edir->dyn_relocs = eind->dyn_relocs;
1180 eind->dyn_relocs = NULL;
1181 }
1182
1183 _bfd_elf_link_hash_copy_indirect (dir, ind);
1184 }
1185
1186 /* Look through the relocs for a section during the first phase, and
1187 calculate needed space in the global offset table, procedure linkage
1188 table, and dynamic reloc sections. At this point we haven't
1189 necessarily read all the input files. */
1190
1191 static boolean
1192 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1193 bfd *abfd;
1194 struct bfd_link_info *info;
1195 asection *sec;
1196 const Elf_Internal_Rela *relocs;
1197 {
1198 Elf_Internal_Shdr *symtab_hdr;
1199 struct elf_link_hash_entry **sym_hashes;
1200 const Elf_Internal_Rela *rel;
1201 const Elf_Internal_Rela *rel_end;
1202 struct elf32_hppa_link_hash_table *htab;
1203 asection *sreloc;
1204 asection *stubreloc;
1205
1206 if (info->relocateable)
1207 return true;
1208
1209 htab = hppa_link_hash_table (info);
1210 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1211 sym_hashes = elf_sym_hashes (abfd);
1212 sreloc = NULL;
1213 stubreloc = NULL;
1214
1215 rel_end = relocs + sec->reloc_count;
1216 for (rel = relocs; rel < rel_end; rel++)
1217 {
1218 enum {
1219 NEED_GOT = 1,
1220 NEED_PLT = 2,
1221 NEED_DYNREL = 4,
1222 PLT_PLABEL = 8
1223 };
1224
1225 unsigned int r_symndx, r_type;
1226 struct elf32_hppa_link_hash_entry *h;
1227 int need_entry;
1228
1229 r_symndx = ELF32_R_SYM (rel->r_info);
1230
1231 if (r_symndx < symtab_hdr->sh_info)
1232 h = NULL;
1233 else
1234 h = ((struct elf32_hppa_link_hash_entry *)
1235 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1236
1237 r_type = ELF32_R_TYPE (rel->r_info);
1238
1239 switch (r_type)
1240 {
1241 case R_PARISC_DLTIND14F:
1242 case R_PARISC_DLTIND14R:
1243 case R_PARISC_DLTIND21L:
1244 /* This symbol requires a global offset table entry. */
1245 need_entry = NEED_GOT;
1246
1247 /* Mark this section as containing PIC code. */
1248 sec->flags |= SEC_HAS_GOT_REF;
1249 break;
1250
1251 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1252 case R_PARISC_PLABEL21L:
1253 case R_PARISC_PLABEL32:
1254 /* If the addend is non-zero, we break badly. */
1255 if (rel->r_addend != 0)
1256 abort ();
1257
1258 /* If we are creating a shared library, then we need to
1259 create a PLT entry for all PLABELs, because PLABELs with
1260 local symbols may be passed via a pointer to another
1261 object. Additionally, output a dynamic relocation
1262 pointing to the PLT entry.
1263 For executables, the original 32-bit ABI allowed two
1264 different styles of PLABELs (function pointers): For
1265 global functions, the PLABEL word points into the .plt
1266 two bytes past a (function address, gp) pair, and for
1267 local functions the PLABEL points directly at the
1268 function. The magic +2 for the first type allows us to
1269 differentiate between the two. As you can imagine, this
1270 is a real pain when it comes to generating code to call
1271 functions indirectly or to compare function pointers.
1272 We avoid the mess by always pointing a PLABEL into the
1273 .plt, even for local functions. */
1274 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1275 break;
1276
1277 case R_PARISC_PCREL12F:
1278 htab->has_12bit_branch = 1;
1279 /* Fall thru. */
1280 case R_PARISC_PCREL17C:
1281 case R_PARISC_PCREL17F:
1282 htab->has_17bit_branch = 1;
1283 /* Fall thru. */
1284 case R_PARISC_PCREL22F:
1285 /* Function calls might need to go through the .plt, and
1286 might require long branch stubs. */
1287 if (h == NULL)
1288 {
1289 /* We know local syms won't need a .plt entry, and if
1290 they need a long branch stub we can't guarantee that
1291 we can reach the stub. So just flag an error later
1292 if we're doing a shared link and find we need a long
1293 branch stub. */
1294 continue;
1295 }
1296 else
1297 {
1298 /* Global symbols will need a .plt entry if they remain
1299 global, and in most cases won't need a long branch
1300 stub. Unfortunately, we have to cater for the case
1301 where a symbol is forced local by versioning, or due
1302 to symbolic linking, and we lose the .plt entry. */
1303 need_entry = NEED_PLT;
1304 if (h->elf.type == STT_PARISC_MILLI)
1305 need_entry = 0;
1306 }
1307 break;
1308
1309 case R_PARISC_SEGBASE: /* Used to set segment base. */
1310 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1311 case R_PARISC_PCREL14F: /* PC relative load/store. */
1312 case R_PARISC_PCREL14R:
1313 case R_PARISC_PCREL17R: /* External branches. */
1314 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1315 /* We don't need to propagate the relocation if linking a
1316 shared object since these are section relative. */
1317 continue;
1318
1319 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1320 case R_PARISC_DPREL14R:
1321 case R_PARISC_DPREL21L:
1322 if (info->shared)
1323 {
1324 (*_bfd_error_handler)
1325 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1326 bfd_archive_filename (abfd),
1327 elf_hppa_howto_table[r_type].name);
1328 bfd_set_error (bfd_error_bad_value);
1329 return false;
1330 }
1331 /* Fall through. */
1332
1333 case R_PARISC_DIR17F: /* Used for external branches. */
1334 case R_PARISC_DIR17R:
1335 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1336 case R_PARISC_DIR14R:
1337 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1338 #if 1
1339 /* Help debug shared library creation. Any of the above
1340 relocs can be used in shared libs, but they may cause
1341 pages to become unshared. */
1342 if (info->shared)
1343 {
1344 (*_bfd_error_handler)
1345 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1346 bfd_archive_filename (abfd),
1347 elf_hppa_howto_table[r_type].name);
1348 }
1349 /* Fall through. */
1350 #endif
1351
1352 case R_PARISC_DIR32: /* .word relocs. */
1353 /* We may want to output a dynamic relocation later. */
1354 need_entry = NEED_DYNREL;
1355 break;
1356
1357 /* This relocation describes the C++ object vtable hierarchy.
1358 Reconstruct it for later use during GC. */
1359 case R_PARISC_GNU_VTINHERIT:
1360 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1361 &h->elf, rel->r_offset))
1362 return false;
1363 continue;
1364
1365 /* This relocation describes which C++ vtable entries are actually
1366 used. Record for later use during GC. */
1367 case R_PARISC_GNU_VTENTRY:
1368 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1369 &h->elf, rel->r_addend))
1370 return false;
1371 continue;
1372
1373 default:
1374 continue;
1375 }
1376
1377 /* Now carry out our orders. */
1378 if (need_entry & NEED_GOT)
1379 {
1380 /* Allocate space for a GOT entry, as well as a dynamic
1381 relocation for this entry. */
1382 if (htab->sgot == NULL)
1383 {
1384 if (htab->elf.dynobj == NULL)
1385 htab->elf.dynobj = abfd;
1386 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1387 return false;
1388 }
1389
1390 if (h != NULL)
1391 {
1392 h->elf.got.refcount += 1;
1393 }
1394 else
1395 {
1396 bfd_signed_vma *local_got_refcounts;
1397
1398 /* This is a global offset table entry for a local symbol. */
1399 local_got_refcounts = elf_local_got_refcounts (abfd);
1400 if (local_got_refcounts == NULL)
1401 {
1402 bfd_size_type size;
1403
1404 /* Allocate space for local got offsets and local
1405 plt offsets. Done this way to save polluting
1406 elf_obj_tdata with another target specific
1407 pointer. */
1408 size = symtab_hdr->sh_info;
1409 size *= 2 * sizeof (bfd_signed_vma);
1410 local_got_refcounts = ((bfd_signed_vma *)
1411 bfd_zalloc (abfd, size));
1412 if (local_got_refcounts == NULL)
1413 return false;
1414 elf_local_got_refcounts (abfd) = local_got_refcounts;
1415 }
1416 local_got_refcounts[r_symndx] += 1;
1417 }
1418 }
1419
1420 if (need_entry & NEED_PLT)
1421 {
1422 /* If we are creating a shared library, and this is a reloc
1423 against a weak symbol or a global symbol in a dynamic
1424 object, then we will be creating an import stub and a
1425 .plt entry for the symbol. Similarly, on a normal link
1426 to symbols defined in a dynamic object we'll need the
1427 import stub and a .plt entry. We don't know yet whether
1428 the symbol is defined or not, so make an entry anyway and
1429 clean up later in adjust_dynamic_symbol. */
1430 if ((sec->flags & SEC_ALLOC) != 0)
1431 {
1432 if (h != NULL)
1433 {
1434 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1435 h->elf.plt.refcount += 1;
1436
1437 /* If this .plt entry is for a plabel, mark it so
1438 that adjust_dynamic_symbol will keep the entry
1439 even if it appears to be local. */
1440 if (need_entry & PLT_PLABEL)
1441 h->plabel = 1;
1442 }
1443 else if (need_entry & PLT_PLABEL)
1444 {
1445 bfd_signed_vma *local_got_refcounts;
1446 bfd_signed_vma *local_plt_refcounts;
1447
1448 local_got_refcounts = elf_local_got_refcounts (abfd);
1449 if (local_got_refcounts == NULL)
1450 {
1451 bfd_size_type size;
1452
1453 /* Allocate space for local got offsets and local
1454 plt offsets. */
1455 size = symtab_hdr->sh_info;
1456 size *= 2 * sizeof (bfd_signed_vma);
1457 local_got_refcounts = ((bfd_signed_vma *)
1458 bfd_zalloc (abfd, size));
1459 if (local_got_refcounts == NULL)
1460 return false;
1461 elf_local_got_refcounts (abfd) = local_got_refcounts;
1462 }
1463 local_plt_refcounts = (local_got_refcounts
1464 + symtab_hdr->sh_info);
1465 local_plt_refcounts[r_symndx] += 1;
1466 }
1467 }
1468 }
1469
1470 if (need_entry & NEED_DYNREL)
1471 {
1472 /* Flag this symbol as having a non-got, non-plt reference
1473 so that we generate copy relocs if it turns out to be
1474 dynamic. */
1475 if (h != NULL && !info->shared)
1476 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1477
1478 /* If we are creating a shared library then we need to copy
1479 the reloc into the shared library. However, if we are
1480 linking with -Bsymbolic, we need only copy absolute
1481 relocs or relocs against symbols that are not defined in
1482 an object we are including in the link. PC- or DP- or
1483 DLT-relative relocs against any local sym or global sym
1484 with DEF_REGULAR set, can be discarded. At this point we
1485 have not seen all the input files, so it is possible that
1486 DEF_REGULAR is not set now but will be set later (it is
1487 never cleared). We account for that possibility below by
1488 storing information in the dyn_relocs field of the
1489 hash table entry.
1490
1491 A similar situation to the -Bsymbolic case occurs when
1492 creating shared libraries and symbol visibility changes
1493 render the symbol local.
1494
1495 As it turns out, all the relocs we will be creating here
1496 are absolute, so we cannot remove them on -Bsymbolic
1497 links or visibility changes anyway. A STUB_REL reloc
1498 is absolute too, as in that case it is the reloc in the
1499 stub we will be creating, rather than copying the PCREL
1500 reloc in the branch.
1501
1502 If on the other hand, we are creating an executable, we
1503 may need to keep relocations for symbols satisfied by a
1504 dynamic library if we manage to avoid copy relocs for the
1505 symbol. */
1506 if ((info->shared
1507 && (sec->flags & SEC_ALLOC) != 0
1508 && (IS_ABSOLUTE_RELOC (r_type)
1509 || (h != NULL
1510 && (!info->symbolic
1511 || h->elf.root.type == bfd_link_hash_defweak
1512 || (h->elf.elf_link_hash_flags
1513 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1514 || (!info->shared
1515 && (sec->flags & SEC_ALLOC) != 0
1516 && h != NULL
1517 && (h->elf.root.type == bfd_link_hash_defweak
1518 || (h->elf.elf_link_hash_flags
1519 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1520 {
1521 struct elf32_hppa_dyn_reloc_entry *p;
1522 struct elf32_hppa_dyn_reloc_entry **head;
1523
1524 /* Create a reloc section in dynobj and make room for
1525 this reloc. */
1526 if (sreloc == NULL)
1527 {
1528 char *name;
1529 bfd *dynobj;
1530
1531 name = (bfd_elf_string_from_elf_section
1532 (abfd,
1533 elf_elfheader (abfd)->e_shstrndx,
1534 elf_section_data (sec)->rel_hdr.sh_name));
1535 if (name == NULL)
1536 {
1537 (*_bfd_error_handler)
1538 (_("Could not find relocation section for %s"),
1539 sec->name);
1540 bfd_set_error (bfd_error_bad_value);
1541 return false;
1542 }
1543
1544 if (htab->elf.dynobj == NULL)
1545 htab->elf.dynobj = abfd;
1546
1547 dynobj = htab->elf.dynobj;
1548 sreloc = bfd_get_section_by_name (dynobj, name);
1549 if (sreloc == NULL)
1550 {
1551 flagword flags;
1552
1553 sreloc = bfd_make_section (dynobj, name);
1554 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1555 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1556 if ((sec->flags & SEC_ALLOC) != 0)
1557 flags |= SEC_ALLOC | SEC_LOAD;
1558 if (sreloc == NULL
1559 || !bfd_set_section_flags (dynobj, sreloc, flags)
1560 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1561 return false;
1562 }
1563
1564 elf_section_data (sec)->sreloc = sreloc;
1565 }
1566
1567 /* If this is a global symbol, we count the number of
1568 relocations we need for this symbol. */
1569 if (h != NULL)
1570 {
1571 head = &h->dyn_relocs;
1572 }
1573 else
1574 {
1575 /* Track dynamic relocs needed for local syms too.
1576 We really need local syms available to do this
1577 easily. Oh well. */
1578
1579 asection *s;
1580 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1581 sec, r_symndx);
1582 if (s == NULL)
1583 return false;
1584
1585 head = ((struct elf32_hppa_dyn_reloc_entry **)
1586 &elf_section_data (s)->local_dynrel);
1587 }
1588
1589 p = *head;
1590 if (p == NULL || p->sec != sec)
1591 {
1592 p = ((struct elf32_hppa_dyn_reloc_entry *)
1593 bfd_alloc (htab->elf.dynobj,
1594 (bfd_size_type) sizeof *p));
1595 if (p == NULL)
1596 return false;
1597 p->next = *head;
1598 *head = p;
1599 p->sec = sec;
1600 p->count = 0;
1601 #if RELATIVE_DYNRELOCS
1602 p->relative_count = 0;
1603 #endif
1604 }
1605
1606 p->count += 1;
1607 #if RELATIVE_DYNRELOCS
1608 if (!IS_ABSOLUTE_RELOC (rtype))
1609 p->relative_count += 1;
1610 #endif
1611 }
1612 }
1613 }
1614
1615 return true;
1616 }
1617
1618 /* Return the section that should be marked against garbage collection
1619 for a given relocation. */
1620
1621 static asection *
1622 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1623 bfd *abfd;
1624 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1625 Elf_Internal_Rela *rel;
1626 struct elf_link_hash_entry *h;
1627 Elf_Internal_Sym *sym;
1628 {
1629 if (h != NULL)
1630 {
1631 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1632 {
1633 case R_PARISC_GNU_VTINHERIT:
1634 case R_PARISC_GNU_VTENTRY:
1635 break;
1636
1637 default:
1638 switch (h->root.type)
1639 {
1640 case bfd_link_hash_defined:
1641 case bfd_link_hash_defweak:
1642 return h->root.u.def.section;
1643
1644 case bfd_link_hash_common:
1645 return h->root.u.c.p->section;
1646
1647 default:
1648 break;
1649 }
1650 }
1651 }
1652 else
1653 {
1654 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1655 }
1656
1657 return NULL;
1658 }
1659
1660 /* Update the got and plt entry reference counts for the section being
1661 removed. */
1662
1663 static boolean
1664 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1665 bfd *abfd;
1666 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1667 asection *sec;
1668 const Elf_Internal_Rela *relocs;
1669 {
1670 Elf_Internal_Shdr *symtab_hdr;
1671 struct elf_link_hash_entry **sym_hashes;
1672 bfd_signed_vma *local_got_refcounts;
1673 bfd_signed_vma *local_plt_refcounts;
1674 const Elf_Internal_Rela *rel, *relend;
1675 unsigned long r_symndx;
1676 struct elf_link_hash_entry *h;
1677 struct elf32_hppa_link_hash_table *htab;
1678 bfd *dynobj;
1679
1680 elf_section_data (sec)->local_dynrel = NULL;
1681
1682 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1683 sym_hashes = elf_sym_hashes (abfd);
1684 local_got_refcounts = elf_local_got_refcounts (abfd);
1685 local_plt_refcounts = local_got_refcounts;
1686 if (local_plt_refcounts != NULL)
1687 local_plt_refcounts += symtab_hdr->sh_info;
1688 htab = hppa_link_hash_table (info);
1689 dynobj = htab->elf.dynobj;
1690 if (dynobj == NULL)
1691 return true;
1692
1693 relend = relocs + sec->reloc_count;
1694 for (rel = relocs; rel < relend; rel++)
1695 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1696 {
1697 case R_PARISC_DLTIND14F:
1698 case R_PARISC_DLTIND14R:
1699 case R_PARISC_DLTIND21L:
1700 r_symndx = ELF32_R_SYM (rel->r_info);
1701 if (r_symndx >= symtab_hdr->sh_info)
1702 {
1703 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1704 if (h->got.refcount > 0)
1705 h->got.refcount -= 1;
1706 }
1707 else if (local_got_refcounts != NULL)
1708 {
1709 if (local_got_refcounts[r_symndx] > 0)
1710 local_got_refcounts[r_symndx] -= 1;
1711 }
1712 break;
1713
1714 case R_PARISC_PCREL12F:
1715 case R_PARISC_PCREL17C:
1716 case R_PARISC_PCREL17F:
1717 case R_PARISC_PCREL22F:
1718 r_symndx = ELF32_R_SYM (rel->r_info);
1719 if (r_symndx >= symtab_hdr->sh_info)
1720 {
1721 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1722 if (h->plt.refcount > 0)
1723 h->plt.refcount -= 1;
1724 }
1725 break;
1726
1727 case R_PARISC_PLABEL14R:
1728 case R_PARISC_PLABEL21L:
1729 case R_PARISC_PLABEL32:
1730 r_symndx = ELF32_R_SYM (rel->r_info);
1731 if (r_symndx >= symtab_hdr->sh_info)
1732 {
1733 struct elf32_hppa_link_hash_entry *eh;
1734 struct elf32_hppa_dyn_reloc_entry **pp;
1735 struct elf32_hppa_dyn_reloc_entry *p;
1736
1737 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1738
1739 if (h->plt.refcount > 0)
1740 h->plt.refcount -= 1;
1741
1742 eh = (struct elf32_hppa_link_hash_entry *) h;
1743
1744 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1745 if (p->sec == sec)
1746 {
1747 #if RELATIVE_DYNRELOCS
1748 if (!IS_ABSOLUTE_RELOC (rtype))
1749 p->relative_count -= 1;
1750 #endif
1751 p->count -= 1;
1752 if (p->count == 0)
1753 *pp = p->next;
1754 break;
1755 }
1756 }
1757 else if (local_plt_refcounts != NULL)
1758 {
1759 if (local_plt_refcounts[r_symndx] > 0)
1760 local_plt_refcounts[r_symndx] -= 1;
1761 }
1762 break;
1763
1764 case R_PARISC_DIR32:
1765 r_symndx = ELF32_R_SYM (rel->r_info);
1766 if (r_symndx >= symtab_hdr->sh_info)
1767 {
1768 struct elf32_hppa_link_hash_entry *eh;
1769 struct elf32_hppa_dyn_reloc_entry **pp;
1770 struct elf32_hppa_dyn_reloc_entry *p;
1771
1772 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1773
1774 eh = (struct elf32_hppa_link_hash_entry *) h;
1775
1776 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1777 if (p->sec == sec)
1778 {
1779 #if RELATIVE_DYNRELOCS
1780 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1781 p->relative_count -= 1;
1782 #endif
1783 p->count -= 1;
1784 if (p->count == 0)
1785 *pp = p->next;
1786 break;
1787 }
1788 }
1789 break;
1790
1791 default:
1792 break;
1793 }
1794
1795 return true;
1796 }
1797
1798 /* Our own version of hide_symbol, so that we can keep plt entries for
1799 plabels. */
1800
1801 static void
1802 elf32_hppa_hide_symbol (info, h, force_local)
1803 struct bfd_link_info *info;
1804 struct elf_link_hash_entry *h;
1805 boolean force_local;
1806 {
1807 if (force_local)
1808 {
1809 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1810 if (h->dynindx != -1)
1811 {
1812 h->dynindx = -1;
1813 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1814 h->dynstr_index);
1815 }
1816 }
1817
1818 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1819 {
1820 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1821 h->plt.offset = (bfd_vma) -1;
1822 }
1823 }
1824
1825 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1826 will be called from elflink.h. If elflink.h doesn't call our
1827 finish_dynamic_symbol routine, we'll need to do something about
1828 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1829 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1830 ((DYN) \
1831 && ((INFO)->shared \
1832 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1833 && ((H)->dynindx != -1 \
1834 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1835
1836 /* Adjust a symbol defined by a dynamic object and referenced by a
1837 regular object. The current definition is in some section of the
1838 dynamic object, but we're not including those sections. We have to
1839 change the definition to something the rest of the link can
1840 understand. */
1841
1842 static boolean
1843 elf32_hppa_adjust_dynamic_symbol (info, h)
1844 struct bfd_link_info *info;
1845 struct elf_link_hash_entry *h;
1846 {
1847 struct elf32_hppa_link_hash_table *htab;
1848 struct elf32_hppa_link_hash_entry *eh;
1849 struct elf32_hppa_dyn_reloc_entry *p;
1850 asection *s;
1851 unsigned int power_of_two;
1852
1853 /* If this is a function, put it in the procedure linkage table. We
1854 will fill in the contents of the procedure linkage table later,
1855 when we know the address of the .got section. */
1856 if (h->type == STT_FUNC
1857 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1858 {
1859 if (!info->shared
1860 && h->plt.refcount > 0
1861 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1862 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1863 {
1864 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1865 }
1866
1867 if (h->plt.refcount <= 0
1868 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1869 && h->root.type != bfd_link_hash_defweak
1870 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1871 && (!info->shared || info->symbolic)))
1872 {
1873 /* The .plt entry is not needed when:
1874 a) Garbage collection has removed all references to the
1875 symbol, or
1876 b) We know for certain the symbol is defined in this
1877 object, and it's not a weak definition, nor is the symbol
1878 used by a plabel relocation. Either this object is the
1879 application or we are doing a shared symbolic link. */
1880
1881 /* As a special sop to the hppa ABI, we keep a .plt entry
1882 for functions in sections containing PIC code. */
1883 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1884 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1885 else
1886 {
1887 h->plt.offset = (bfd_vma) -1;
1888 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1889 }
1890 }
1891
1892 return true;
1893 }
1894 else
1895 h->plt.offset = (bfd_vma) -1;
1896
1897 /* If this is a weak symbol, and there is a real definition, the
1898 processor independent code will have arranged for us to see the
1899 real definition first, and we can just use the same value. */
1900 if (h->weakdef != NULL)
1901 {
1902 if (h->weakdef->root.type != bfd_link_hash_defined
1903 && h->weakdef->root.type != bfd_link_hash_defweak)
1904 abort ();
1905 h->root.u.def.section = h->weakdef->root.u.def.section;
1906 h->root.u.def.value = h->weakdef->root.u.def.value;
1907 return true;
1908 }
1909
1910 /* This is a reference to a symbol defined by a dynamic object which
1911 is not a function. */
1912
1913 /* If we are creating a shared library, we must presume that the
1914 only references to the symbol are via the global offset table.
1915 For such cases we need not do anything here; the relocations will
1916 be handled correctly by relocate_section. */
1917 if (info->shared)
1918 return true;
1919
1920 /* If there are no references to this symbol that do not use the
1921 GOT, we don't need to generate a copy reloc. */
1922 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1923 return true;
1924
1925 eh = (struct elf32_hppa_link_hash_entry *) h;
1926 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1927 {
1928 s = p->sec->output_section;
1929 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1930 break;
1931 }
1932
1933 /* If we didn't find any dynamic relocs in read-only sections, then
1934 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1935 if (p == NULL)
1936 {
1937 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1938 return true;
1939 }
1940
1941 /* We must allocate the symbol in our .dynbss section, which will
1942 become part of the .bss section of the executable. There will be
1943 an entry for this symbol in the .dynsym section. The dynamic
1944 object will contain position independent code, so all references
1945 from the dynamic object to this symbol will go through the global
1946 offset table. The dynamic linker will use the .dynsym entry to
1947 determine the address it must put in the global offset table, so
1948 both the dynamic object and the regular object will refer to the
1949 same memory location for the variable. */
1950
1951 htab = hppa_link_hash_table (info);
1952
1953 /* We must generate a COPY reloc to tell the dynamic linker to
1954 copy the initial value out of the dynamic object and into the
1955 runtime process image. */
1956 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1957 {
1958 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1959 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1960 }
1961
1962 /* We need to figure out the alignment required for this symbol. I
1963 have no idea how other ELF linkers handle this. */
1964
1965 power_of_two = bfd_log2 (h->size);
1966 if (power_of_two > 3)
1967 power_of_two = 3;
1968
1969 /* Apply the required alignment. */
1970 s = htab->sdynbss;
1971 s->_raw_size = BFD_ALIGN (s->_raw_size,
1972 (bfd_size_type) (1 << power_of_two));
1973 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1974 {
1975 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1976 return false;
1977 }
1978
1979 /* Define the symbol as being at this point in the section. */
1980 h->root.u.def.section = s;
1981 h->root.u.def.value = s->_raw_size;
1982
1983 /* Increment the section size to make room for the symbol. */
1984 s->_raw_size += h->size;
1985
1986 return true;
1987 }
1988
1989 /* Called via elf_link_hash_traverse to create .plt entries for an
1990 application that uses statically linked PIC functions. Similar to
1991 the first part of elf32_hppa_adjust_dynamic_symbol. */
1992
1993 static boolean
1994 mark_PIC_calls (h, inf)
1995 struct elf_link_hash_entry *h;
1996 PTR inf ATTRIBUTE_UNUSED;
1997 {
1998 if (h->root.type == bfd_link_hash_warning)
1999 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2000
2001 if (! (h->plt.refcount > 0
2002 && (h->root.type == bfd_link_hash_defined
2003 || h->root.type == bfd_link_hash_defweak)
2004 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2005 {
2006 h->plt.offset = (bfd_vma) -1;
2007 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2008 return true;
2009 }
2010
2011 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2012 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
2013 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2014
2015 return true;
2016 }
2017
2018 /* Allocate space in the .plt for entries that won't have relocations.
2019 ie. pic_call and plabel entries. */
2020
2021 static boolean
2022 allocate_plt_static (h, inf)
2023 struct elf_link_hash_entry *h;
2024 PTR inf;
2025 {
2026 struct bfd_link_info *info;
2027 struct elf32_hppa_link_hash_table *htab;
2028 asection *s;
2029
2030 if (h->root.type == bfd_link_hash_indirect)
2031 return true;
2032
2033 if (h->root.type == bfd_link_hash_warning)
2034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2035
2036 info = (struct bfd_link_info *) inf;
2037 htab = hppa_link_hash_table (info);
2038 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2039 {
2040 /* Make an entry in the .plt section for non-pic code that is
2041 calling pic code. */
2042 s = htab->splt;
2043 h->plt.offset = s->_raw_size;
2044 s->_raw_size += PLT_ENTRY_SIZE;
2045 }
2046 else if (htab->elf.dynamic_sections_created
2047 && h->plt.refcount > 0)
2048 {
2049 /* Make sure this symbol is output as a dynamic symbol.
2050 Undefined weak syms won't yet be marked as dynamic. */
2051 if (h->dynindx == -1
2052 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2053 && h->type != STT_PARISC_MILLI)
2054 {
2055 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2056 return false;
2057 }
2058
2059 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2060 {
2061 /* Allocate these later. */
2062 }
2063 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2064 {
2065 /* Make an entry in the .plt section for plabel references
2066 that won't have a .plt entry for other reasons. */
2067 s = htab->splt;
2068 h->plt.offset = s->_raw_size;
2069 s->_raw_size += PLT_ENTRY_SIZE;
2070 }
2071 else
2072 {
2073 /* No .plt entry needed. */
2074 h->plt.offset = (bfd_vma) -1;
2075 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2076 }
2077 }
2078 else
2079 {
2080 h->plt.offset = (bfd_vma) -1;
2081 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2082 }
2083
2084 return true;
2085 }
2086
2087 /* Allocate space in .plt, .got and associated reloc sections for
2088 global syms. */
2089
2090 static boolean
2091 allocate_dynrelocs (h, inf)
2092 struct elf_link_hash_entry *h;
2093 PTR inf;
2094 {
2095 struct bfd_link_info *info;
2096 struct elf32_hppa_link_hash_table *htab;
2097 asection *s;
2098 struct elf32_hppa_link_hash_entry *eh;
2099 struct elf32_hppa_dyn_reloc_entry *p;
2100
2101 if (h->root.type == bfd_link_hash_indirect)
2102 return true;
2103
2104 if (h->root.type == bfd_link_hash_warning)
2105 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2106
2107 info = (struct bfd_link_info *) inf;
2108 htab = hppa_link_hash_table (info);
2109 if (htab->elf.dynamic_sections_created
2110 && h->plt.offset != (bfd_vma) -1
2111 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2112 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2113 {
2114 /* Make an entry in the .plt section. */
2115 s = htab->splt;
2116 h->plt.offset = s->_raw_size;
2117 s->_raw_size += PLT_ENTRY_SIZE;
2118
2119 /* We also need to make an entry in the .rela.plt section. */
2120 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2121 htab->need_plt_stub = 1;
2122 }
2123
2124 if (h->got.refcount > 0)
2125 {
2126 /* Make sure this symbol is output as a dynamic symbol.
2127 Undefined weak syms won't yet be marked as dynamic. */
2128 if (h->dynindx == -1
2129 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2130 && h->type != STT_PARISC_MILLI)
2131 {
2132 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2133 return false;
2134 }
2135
2136 s = htab->sgot;
2137 h->got.offset = s->_raw_size;
2138 s->_raw_size += GOT_ENTRY_SIZE;
2139 if (htab->elf.dynamic_sections_created
2140 && (info->shared
2141 || (h->dynindx != -1
2142 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2143 {
2144 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2145 }
2146 }
2147 else
2148 h->got.offset = (bfd_vma) -1;
2149
2150 eh = (struct elf32_hppa_link_hash_entry *) h;
2151 if (eh->dyn_relocs == NULL)
2152 return true;
2153
2154 /* If this is a -Bsymbolic shared link, then we need to discard all
2155 space allocated for dynamic pc-relative relocs against symbols
2156 defined in a regular object. For the normal shared case, discard
2157 space for relocs that have become local due to symbol visibility
2158 changes. */
2159 if (info->shared)
2160 {
2161 #if RELATIVE_DYNRELOCS
2162 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2163 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2164 || info->symbolic))
2165 {
2166 struct elf32_hppa_dyn_reloc_entry **pp;
2167
2168 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2169 {
2170 p->count -= p->relative_count;
2171 p->relative_count = 0;
2172 if (p->count == 0)
2173 *pp = p->next;
2174 else
2175 pp = &p->next;
2176 }
2177 }
2178 #endif
2179 }
2180 else
2181 {
2182 /* For the non-shared case, discard space for relocs against
2183 symbols which turn out to need copy relocs or are not
2184 dynamic. */
2185 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2186 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2187 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2188 || (htab->elf.dynamic_sections_created
2189 && (h->root.type == bfd_link_hash_undefweak
2190 || h->root.type == bfd_link_hash_undefined))))
2191 {
2192 /* Make sure this symbol is output as a dynamic symbol.
2193 Undefined weak syms won't yet be marked as dynamic. */
2194 if (h->dynindx == -1
2195 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2196 && h->type != STT_PARISC_MILLI)
2197 {
2198 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2199 return false;
2200 }
2201
2202 /* If that succeeded, we know we'll be keeping all the
2203 relocs. */
2204 if (h->dynindx != -1)
2205 goto keep;
2206 }
2207
2208 eh->dyn_relocs = NULL;
2209 return true;
2210
2211 keep: ;
2212 }
2213
2214 /* Finally, allocate space. */
2215 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2216 {
2217 asection *sreloc = elf_section_data (p->sec)->sreloc;
2218 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2219 }
2220
2221 return true;
2222 }
2223
2224 /* This function is called via elf_link_hash_traverse to force
2225 millicode symbols local so they do not end up as globals in the
2226 dynamic symbol table. We ought to be able to do this in
2227 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2228 for all dynamic symbols. Arguably, this is a bug in
2229 elf_adjust_dynamic_symbol. */
2230
2231 static boolean
2232 clobber_millicode_symbols (h, info)
2233 struct elf_link_hash_entry *h;
2234 struct bfd_link_info *info;
2235 {
2236 if (h->root.type == bfd_link_hash_warning)
2237 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2238
2239 if (h->type == STT_PARISC_MILLI
2240 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2241 {
2242 elf32_hppa_hide_symbol (info, h, true);
2243 }
2244 return true;
2245 }
2246
2247 /* Find any dynamic relocs that apply to read-only sections. */
2248
2249 static boolean
2250 readonly_dynrelocs (h, inf)
2251 struct elf_link_hash_entry *h;
2252 PTR inf;
2253 {
2254 struct elf32_hppa_link_hash_entry *eh;
2255 struct elf32_hppa_dyn_reloc_entry *p;
2256
2257 if (h->root.type == bfd_link_hash_warning)
2258 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2259
2260 eh = (struct elf32_hppa_link_hash_entry *) h;
2261 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2262 {
2263 asection *s = p->sec->output_section;
2264
2265 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2266 {
2267 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2268
2269 info->flags |= DF_TEXTREL;
2270
2271 /* Not an error, just cut short the traversal. */
2272 return false;
2273 }
2274 }
2275 return true;
2276 }
2277
2278 /* Set the sizes of the dynamic sections. */
2279
2280 static boolean
2281 elf32_hppa_size_dynamic_sections (output_bfd, info)
2282 bfd *output_bfd ATTRIBUTE_UNUSED;
2283 struct bfd_link_info *info;
2284 {
2285 struct elf32_hppa_link_hash_table *htab;
2286 bfd *dynobj;
2287 bfd *ibfd;
2288 asection *s;
2289 boolean relocs;
2290
2291 htab = hppa_link_hash_table (info);
2292 dynobj = htab->elf.dynobj;
2293 if (dynobj == NULL)
2294 abort ();
2295
2296 if (htab->elf.dynamic_sections_created)
2297 {
2298 /* Set the contents of the .interp section to the interpreter. */
2299 if (! info->shared)
2300 {
2301 s = bfd_get_section_by_name (dynobj, ".interp");
2302 if (s == NULL)
2303 abort ();
2304 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2305 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2306 }
2307
2308 /* Force millicode symbols local. */
2309 elf_link_hash_traverse (&htab->elf,
2310 clobber_millicode_symbols,
2311 info);
2312 }
2313 else
2314 {
2315 /* Run through the function symbols, looking for any that are
2316 PIC, and mark them as needing .plt entries so that %r19 will
2317 be set up. */
2318 if (! info->shared)
2319 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2320 }
2321
2322 /* Set up .got and .plt offsets for local syms, and space for local
2323 dynamic relocs. */
2324 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2325 {
2326 bfd_signed_vma *local_got;
2327 bfd_signed_vma *end_local_got;
2328 bfd_signed_vma *local_plt;
2329 bfd_signed_vma *end_local_plt;
2330 bfd_size_type locsymcount;
2331 Elf_Internal_Shdr *symtab_hdr;
2332 asection *srel;
2333
2334 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2335 continue;
2336
2337 for (s = ibfd->sections; s != NULL; s = s->next)
2338 {
2339 struct elf32_hppa_dyn_reloc_entry *p;
2340
2341 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2342 elf_section_data (s)->local_dynrel);
2343 p != NULL;
2344 p = p->next)
2345 {
2346 if (!bfd_is_abs_section (p->sec)
2347 && bfd_is_abs_section (p->sec->output_section))
2348 {
2349 /* Input section has been discarded, either because
2350 it is a copy of a linkonce section or due to
2351 linker script /DISCARD/, so we'll be discarding
2352 the relocs too. */
2353 }
2354 else if (p->count != 0)
2355 {
2356 srel = elf_section_data (p->sec)->sreloc;
2357 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2358 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2359 info->flags |= DF_TEXTREL;
2360 }
2361 }
2362 }
2363
2364 local_got = elf_local_got_refcounts (ibfd);
2365 if (!local_got)
2366 continue;
2367
2368 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2369 locsymcount = symtab_hdr->sh_info;
2370 end_local_got = local_got + locsymcount;
2371 s = htab->sgot;
2372 srel = htab->srelgot;
2373 for (; local_got < end_local_got; ++local_got)
2374 {
2375 if (*local_got > 0)
2376 {
2377 *local_got = s->_raw_size;
2378 s->_raw_size += GOT_ENTRY_SIZE;
2379 if (info->shared)
2380 srel->_raw_size += sizeof (Elf32_External_Rela);
2381 }
2382 else
2383 *local_got = (bfd_vma) -1;
2384 }
2385
2386 local_plt = end_local_got;
2387 end_local_plt = local_plt + locsymcount;
2388 if (! htab->elf.dynamic_sections_created)
2389 {
2390 /* Won't be used, but be safe. */
2391 for (; local_plt < end_local_plt; ++local_plt)
2392 *local_plt = (bfd_vma) -1;
2393 }
2394 else
2395 {
2396 s = htab->splt;
2397 srel = htab->srelplt;
2398 for (; local_plt < end_local_plt; ++local_plt)
2399 {
2400 if (*local_plt > 0)
2401 {
2402 *local_plt = s->_raw_size;
2403 s->_raw_size += PLT_ENTRY_SIZE;
2404 if (info->shared)
2405 srel->_raw_size += sizeof (Elf32_External_Rela);
2406 }
2407 else
2408 *local_plt = (bfd_vma) -1;
2409 }
2410 }
2411 }
2412
2413 /* Do all the .plt entries without relocs first. The dynamic linker
2414 uses the last .plt reloc to find the end of the .plt (and hence
2415 the start of the .got) for lazy linking. */
2416 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2417
2418 /* Allocate global sym .plt and .got entries, and space for global
2419 sym dynamic relocs. */
2420 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2421
2422 /* The check_relocs and adjust_dynamic_symbol entry points have
2423 determined the sizes of the various dynamic sections. Allocate
2424 memory for them. */
2425 relocs = false;
2426 for (s = dynobj->sections; s != NULL; s = s->next)
2427 {
2428 if ((s->flags & SEC_LINKER_CREATED) == 0)
2429 continue;
2430
2431 if (s == htab->splt)
2432 {
2433 if (htab->need_plt_stub)
2434 {
2435 /* Make space for the plt stub at the end of the .plt
2436 section. We want this stub right at the end, up
2437 against the .got section. */
2438 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2439 int pltalign = bfd_section_alignment (dynobj, s);
2440 bfd_size_type mask;
2441
2442 if (gotalign > pltalign)
2443 bfd_set_section_alignment (dynobj, s, gotalign);
2444 mask = ((bfd_size_type) 1 << gotalign) - 1;
2445 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2446 }
2447 }
2448 else if (s == htab->sgot)
2449 ;
2450 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2451 {
2452 if (s->_raw_size != 0)
2453 {
2454 /* Remember whether there are any reloc sections other
2455 than .rela.plt. */
2456 if (s != htab->srelplt)
2457 relocs = true;
2458
2459 /* We use the reloc_count field as a counter if we need
2460 to copy relocs into the output file. */
2461 s->reloc_count = 0;
2462 }
2463 }
2464 else
2465 {
2466 /* It's not one of our sections, so don't allocate space. */
2467 continue;
2468 }
2469
2470 if (s->_raw_size == 0)
2471 {
2472 /* If we don't need this section, strip it from the
2473 output file. This is mostly to handle .rela.bss and
2474 .rela.plt. We must create both sections in
2475 create_dynamic_sections, because they must be created
2476 before the linker maps input sections to output
2477 sections. The linker does that before
2478 adjust_dynamic_symbol is called, and it is that
2479 function which decides whether anything needs to go
2480 into these sections. */
2481 _bfd_strip_section_from_output (info, s);
2482 continue;
2483 }
2484
2485 /* Allocate memory for the section contents. Zero it, because
2486 we may not fill in all the reloc sections. */
2487 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2488 if (s->contents == NULL && s->_raw_size != 0)
2489 return false;
2490 }
2491
2492 if (htab->elf.dynamic_sections_created)
2493 {
2494 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2495 actually has nothing to do with the PLT, it is how we
2496 communicate the LTP value of a load module to the dynamic
2497 linker. */
2498 #define add_dynamic_entry(TAG, VAL) \
2499 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2500
2501 if (!add_dynamic_entry (DT_PLTGOT, 0))
2502 return false;
2503
2504 /* Add some entries to the .dynamic section. We fill in the
2505 values later, in elf32_hppa_finish_dynamic_sections, but we
2506 must add the entries now so that we get the correct size for
2507 the .dynamic section. The DT_DEBUG entry is filled in by the
2508 dynamic linker and used by the debugger. */
2509 if (!info->shared)
2510 {
2511 if (!add_dynamic_entry (DT_DEBUG, 0))
2512 return false;
2513 }
2514
2515 if (htab->srelplt->_raw_size != 0)
2516 {
2517 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2518 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2519 || !add_dynamic_entry (DT_JMPREL, 0))
2520 return false;
2521 }
2522
2523 if (relocs)
2524 {
2525 if (!add_dynamic_entry (DT_RELA, 0)
2526 || !add_dynamic_entry (DT_RELASZ, 0)
2527 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2528 return false;
2529
2530 /* If any dynamic relocs apply to a read-only section,
2531 then we need a DT_TEXTREL entry. */
2532 if ((info->flags & DF_TEXTREL) == 0)
2533 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2534 (PTR) info);
2535
2536 if ((info->flags & DF_TEXTREL) != 0)
2537 {
2538 if (!add_dynamic_entry (DT_TEXTREL, 0))
2539 return false;
2540 }
2541 }
2542 }
2543 #undef add_dynamic_entry
2544
2545 return true;
2546 }
2547
2548 /* External entry points for sizing and building linker stubs. */
2549
2550 /* Determine and set the size of the stub section for a final link.
2551
2552 The basic idea here is to examine all the relocations looking for
2553 PC-relative calls to a target that is unreachable with a "bl"
2554 instruction. */
2555
2556 boolean
2557 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2558 add_stub_section, layout_sections_again)
2559 bfd *output_bfd;
2560 bfd *stub_bfd;
2561 struct bfd_link_info *info;
2562 boolean multi_subspace;
2563 bfd_signed_vma group_size;
2564 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2565 void (*layout_sections_again) PARAMS ((void));
2566 {
2567 bfd *input_bfd;
2568 asection *section;
2569 asection **input_list, **list;
2570 Elf_Internal_Sym *local_syms, **all_local_syms;
2571 unsigned int bfd_indx, bfd_count;
2572 int top_id, top_index;
2573 struct elf32_hppa_link_hash_table *htab;
2574 bfd_size_type stub_group_size;
2575 boolean stubs_always_before_branch;
2576 boolean stub_changed = 0;
2577 boolean ret = 0;
2578 bfd_size_type amt;
2579
2580 htab = hppa_link_hash_table (info);
2581
2582 /* Stash our params away. */
2583 htab->stub_bfd = stub_bfd;
2584 htab->multi_subspace = multi_subspace;
2585 htab->add_stub_section = add_stub_section;
2586 htab->layout_sections_again = layout_sections_again;
2587 stubs_always_before_branch = group_size < 0;
2588 if (group_size < 0)
2589 stub_group_size = -group_size;
2590 else
2591 stub_group_size = group_size;
2592 if (stub_group_size == 1)
2593 {
2594 /* Default values. */
2595 stub_group_size = 7680000;
2596 if (htab->has_17bit_branch || htab->multi_subspace)
2597 stub_group_size = 240000;
2598 if (htab->has_12bit_branch)
2599 stub_group_size = 7500;
2600 }
2601
2602 /* Count the number of input BFDs and find the top input section id. */
2603 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2604 input_bfd != NULL;
2605 input_bfd = input_bfd->link_next)
2606 {
2607 bfd_count += 1;
2608 for (section = input_bfd->sections;
2609 section != NULL;
2610 section = section->next)
2611 {
2612 if (top_id < section->id)
2613 top_id = section->id;
2614 }
2615 }
2616
2617 amt = sizeof (struct map_stub) * (top_id + 1);
2618 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2619 if (htab->stub_group == NULL)
2620 return false;
2621
2622 /* Make a list of input sections for each output section included in
2623 the link.
2624
2625 We can't use output_bfd->section_count here to find the top output
2626 section index as some sections may have been removed, and
2627 _bfd_strip_section_from_output doesn't renumber the indices. */
2628 for (section = output_bfd->sections, top_index = 0;
2629 section != NULL;
2630 section = section->next)
2631 {
2632 if (top_index < section->index)
2633 top_index = section->index;
2634 }
2635
2636 amt = sizeof (asection *) * (top_index + 1);
2637 input_list = (asection **) bfd_malloc (amt);
2638 if (input_list == NULL)
2639 return false;
2640
2641 /* For sections we aren't interested in, mark their entries with a
2642 value we can check later. */
2643 list = input_list + top_index;
2644 do
2645 *list = bfd_abs_section_ptr;
2646 while (list-- != input_list);
2647
2648 for (section = output_bfd->sections;
2649 section != NULL;
2650 section = section->next)
2651 {
2652 if ((section->flags & SEC_CODE) != 0)
2653 input_list[section->index] = NULL;
2654 }
2655
2656 /* Now actually build the lists. */
2657 for (input_bfd = info->input_bfds;
2658 input_bfd != NULL;
2659 input_bfd = input_bfd->link_next)
2660 {
2661 for (section = input_bfd->sections;
2662 section != NULL;
2663 section = section->next)
2664 {
2665 if (section->output_section != NULL
2666 && section->output_section->owner == output_bfd
2667 && section->output_section->index <= top_index)
2668 {
2669 list = input_list + section->output_section->index;
2670 if (*list != bfd_abs_section_ptr)
2671 {
2672 /* Steal the link_sec pointer for our list. */
2673 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2674 /* This happens to make the list in reverse order,
2675 which is what we want. */
2676 PREV_SEC (section) = *list;
2677 *list = section;
2678 }
2679 }
2680 }
2681 }
2682
2683 /* See whether we can group stub sections together. Grouping stub
2684 sections may result in fewer stubs. More importantly, we need to
2685 put all .init* and .fini* stubs at the beginning of the .init or
2686 .fini output sections respectively, because glibc splits the
2687 _init and _fini functions into multiple parts. Putting a stub in
2688 the middle of a function is not a good idea. */
2689 list = input_list + top_index;
2690 do
2691 {
2692 asection *tail = *list;
2693 if (tail == bfd_abs_section_ptr)
2694 continue;
2695 while (tail != NULL)
2696 {
2697 asection *curr;
2698 asection *prev;
2699 bfd_size_type total;
2700
2701 curr = tail;
2702 if (tail->_cooked_size)
2703 total = tail->_cooked_size;
2704 else
2705 total = tail->_raw_size;
2706 while ((prev = PREV_SEC (curr)) != NULL
2707 && ((total += curr->output_offset - prev->output_offset)
2708 < stub_group_size))
2709 curr = prev;
2710
2711 /* OK, the size from the start of CURR to the end is less
2712 than 240000 bytes and thus can be handled by one stub
2713 section. (or the tail section is itself larger than
2714 240000 bytes, in which case we may be toast.)
2715 We should really be keeping track of the total size of
2716 stubs added here, as stubs contribute to the final output
2717 section size. That's a little tricky, and this way will
2718 only break if stubs added total more than 22144 bytes, or
2719 2768 long branch stubs. It seems unlikely for more than
2720 2768 different functions to be called, especially from
2721 code only 240000 bytes long. This limit used to be
2722 250000, but c++ code tends to generate lots of little
2723 functions, and sometimes violated the assumption. */
2724 do
2725 {
2726 prev = PREV_SEC (tail);
2727 /* Set up this stub group. */
2728 htab->stub_group[tail->id].link_sec = curr;
2729 }
2730 while (tail != curr && (tail = prev) != NULL);
2731
2732 /* But wait, there's more! Input sections up to 240000
2733 bytes before the stub section can be handled by it too. */
2734 if (!stubs_always_before_branch)
2735 {
2736 total = 0;
2737 while (prev != NULL
2738 && ((total += tail->output_offset - prev->output_offset)
2739 < stub_group_size))
2740 {
2741 tail = prev;
2742 prev = PREV_SEC (tail);
2743 htab->stub_group[tail->id].link_sec = curr;
2744 }
2745 }
2746 tail = prev;
2747 }
2748 }
2749 while (list-- != input_list);
2750 free (input_list);
2751 #undef PREV_SEC
2752
2753 /* We want to read in symbol extension records only once. To do this
2754 we need to read in the local symbols in parallel and save them for
2755 later use; so hold pointers to the local symbols in an array. */
2756 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
2757 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2758 if (all_local_syms == NULL)
2759 return false;
2760
2761 /* Walk over all the input BFDs, swapping in local symbols.
2762 If we are creating a shared library, create hash entries for the
2763 export stubs. */
2764 for (input_bfd = info->input_bfds, bfd_indx = 0;
2765 input_bfd != NULL;
2766 input_bfd = input_bfd->link_next, bfd_indx++)
2767 {
2768 Elf_Internal_Shdr *symtab_hdr;
2769 Elf_Internal_Shdr *shndx_hdr;
2770 Elf_Internal_Sym *isym;
2771 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2772 Elf_External_Sym_Shndx *shndx_buf, *shndx;
2773 bfd_size_type sec_size;
2774
2775 /* We'll need the symbol table in a second. */
2776 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2777 if (symtab_hdr->sh_info == 0)
2778 continue;
2779
2780 /* We need an array of the local symbols attached to the input bfd.
2781 Unfortunately, we're going to have to read & swap them in. */
2782 sec_size = symtab_hdr->sh_info;
2783 sec_size *= sizeof (Elf_Internal_Sym);
2784 local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size);
2785 if (local_syms == NULL)
2786 goto error_ret_free_local;
2787
2788 all_local_syms[bfd_indx] = local_syms;
2789 sec_size = symtab_hdr->sh_info;
2790 sec_size *= sizeof (Elf32_External_Sym);
2791 ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size);
2792 if (ext_syms == NULL)
2793 goto error_ret_free_local;
2794
2795 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2796 || bfd_bread ((PTR) ext_syms, sec_size, input_bfd) != sec_size)
2797 {
2798 error_ret_free_ext_syms:
2799 free (ext_syms);
2800 goto error_ret_free_local;
2801 }
2802
2803 shndx_buf = NULL;
2804 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
2805 if (shndx_hdr->sh_size != 0)
2806 {
2807 sec_size = symtab_hdr->sh_info;
2808 sec_size *= sizeof (Elf_External_Sym_Shndx);
2809 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (sec_size);
2810 if (shndx_buf == NULL)
2811 goto error_ret_free_ext_syms;
2812
2813 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
2814 || bfd_bread ((PTR) shndx_buf, sec_size, input_bfd) != sec_size)
2815 {
2816 free (shndx_buf);
2817 goto error_ret_free_ext_syms;
2818 }
2819 }
2820
2821 /* Swap the local symbols in. */
2822 for (esym = ext_syms, end_sy = esym + symtab_hdr->sh_info,
2823 isym = local_syms, shndx = shndx_buf;
2824 esym < end_sy;
2825 esym++, isym++, shndx = (shndx ? shndx + 1 : NULL))
2826 bfd_elf32_swap_symbol_in (input_bfd, esym, shndx, isym);
2827
2828 /* Now we can free the external symbols. */
2829 free (shndx_buf);
2830 free (ext_syms);
2831
2832 if (info->shared && htab->multi_subspace)
2833 {
2834 struct elf_link_hash_entry **sym_hashes;
2835 struct elf_link_hash_entry **end_hashes;
2836 unsigned int symcount;
2837
2838 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2839 - symtab_hdr->sh_info);
2840 sym_hashes = elf_sym_hashes (input_bfd);
2841 end_hashes = sym_hashes + symcount;
2842
2843 /* Look through the global syms for functions; We need to
2844 build export stubs for all globally visible functions. */
2845 for (; sym_hashes < end_hashes; sym_hashes++)
2846 {
2847 struct elf32_hppa_link_hash_entry *hash;
2848
2849 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2850
2851 while (hash->elf.root.type == bfd_link_hash_indirect
2852 || hash->elf.root.type == bfd_link_hash_warning)
2853 hash = ((struct elf32_hppa_link_hash_entry *)
2854 hash->elf.root.u.i.link);
2855
2856 /* At this point in the link, undefined syms have been
2857 resolved, so we need to check that the symbol was
2858 defined in this BFD. */
2859 if ((hash->elf.root.type == bfd_link_hash_defined
2860 || hash->elf.root.type == bfd_link_hash_defweak)
2861 && hash->elf.type == STT_FUNC
2862 && hash->elf.root.u.def.section->output_section != NULL
2863 && (hash->elf.root.u.def.section->output_section->owner
2864 == output_bfd)
2865 && hash->elf.root.u.def.section->owner == input_bfd
2866 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2867 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2868 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2869 {
2870 asection *sec;
2871 const char *stub_name;
2872 struct elf32_hppa_stub_hash_entry *stub_entry;
2873
2874 sec = hash->elf.root.u.def.section;
2875 stub_name = hash->elf.root.root.string;
2876 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2877 stub_name,
2878 false, false);
2879 if (stub_entry == NULL)
2880 {
2881 stub_entry = hppa_add_stub (stub_name, sec, htab);
2882 if (!stub_entry)
2883 goto error_ret_free_local;
2884
2885 stub_entry->target_value = hash->elf.root.u.def.value;
2886 stub_entry->target_section = hash->elf.root.u.def.section;
2887 stub_entry->stub_type = hppa_stub_export;
2888 stub_entry->h = hash;
2889 stub_changed = 1;
2890 }
2891 else
2892 {
2893 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2894 bfd_archive_filename (input_bfd),
2895 stub_name);
2896 }
2897 }
2898 }
2899 }
2900 }
2901
2902 while (1)
2903 {
2904 asection *stub_sec;
2905
2906 for (input_bfd = info->input_bfds, bfd_indx = 0;
2907 input_bfd != NULL;
2908 input_bfd = input_bfd->link_next, bfd_indx++)
2909 {
2910 Elf_Internal_Shdr *symtab_hdr;
2911
2912 /* We'll need the symbol table in a second. */
2913 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2914 if (symtab_hdr->sh_info == 0)
2915 continue;
2916
2917 local_syms = all_local_syms[bfd_indx];
2918
2919 /* Walk over each section attached to the input bfd. */
2920 for (section = input_bfd->sections;
2921 section != NULL;
2922 section = section->next)
2923 {
2924 Elf_Internal_Shdr *input_rel_hdr;
2925 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2926 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2927
2928 /* If there aren't any relocs, then there's nothing more
2929 to do. */
2930 if ((section->flags & SEC_RELOC) == 0
2931 || section->reloc_count == 0)
2932 continue;
2933
2934 /* If this section is a link-once section that will be
2935 discarded, then don't create any stubs. */
2936 if (section->output_section == NULL
2937 || section->output_section->owner != output_bfd)
2938 continue;
2939
2940 /* Allocate space for the external relocations. */
2941 amt = section->reloc_count;
2942 amt *= sizeof (Elf32_External_Rela);
2943 external_relocs = (Elf32_External_Rela *) bfd_malloc (amt);
2944 if (external_relocs == NULL)
2945 {
2946 goto error_ret_free_local;
2947 }
2948
2949 /* Likewise for the internal relocations. */
2950 amt = section->reloc_count;
2951 amt *= sizeof (Elf_Internal_Rela);
2952 internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
2953 if (internal_relocs == NULL)
2954 {
2955 free (external_relocs);
2956 goto error_ret_free_local;
2957 }
2958
2959 /* Read in the external relocs. */
2960 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2961 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2962 || bfd_bread ((PTR) external_relocs,
2963 input_rel_hdr->sh_size,
2964 input_bfd) != input_rel_hdr->sh_size)
2965 {
2966 free (external_relocs);
2967 error_ret_free_internal:
2968 free (internal_relocs);
2969 goto error_ret_free_local;
2970 }
2971
2972 /* Swap in the relocs. */
2973 erela = external_relocs;
2974 erelaend = erela + section->reloc_count;
2975 irela = internal_relocs;
2976 for (; erela < erelaend; erela++, irela++)
2977 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2978
2979 /* We're done with the external relocs, free them. */
2980 free (external_relocs);
2981
2982 /* Now examine each relocation. */
2983 irela = internal_relocs;
2984 irelaend = irela + section->reloc_count;
2985 for (; irela < irelaend; irela++)
2986 {
2987 unsigned int r_type, r_indx;
2988 enum elf32_hppa_stub_type stub_type;
2989 struct elf32_hppa_stub_hash_entry *stub_entry;
2990 asection *sym_sec;
2991 bfd_vma sym_value;
2992 bfd_vma destination;
2993 struct elf32_hppa_link_hash_entry *hash;
2994 char *stub_name;
2995 const asection *id_sec;
2996
2997 r_type = ELF32_R_TYPE (irela->r_info);
2998 r_indx = ELF32_R_SYM (irela->r_info);
2999
3000 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3001 {
3002 bfd_set_error (bfd_error_bad_value);
3003 goto error_ret_free_internal;
3004 }
3005
3006 /* Only look for stubs on call instructions. */
3007 if (r_type != (unsigned int) R_PARISC_PCREL12F
3008 && r_type != (unsigned int) R_PARISC_PCREL17F
3009 && r_type != (unsigned int) R_PARISC_PCREL22F)
3010 continue;
3011
3012 /* Now determine the call target, its name, value,
3013 section. */
3014 sym_sec = NULL;
3015 sym_value = 0;
3016 destination = 0;
3017 hash = NULL;
3018 if (r_indx < symtab_hdr->sh_info)
3019 {
3020 /* It's a local symbol. */
3021 Elf_Internal_Sym *sym;
3022 Elf_Internal_Shdr *hdr;
3023
3024 sym = local_syms + r_indx;
3025 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3026 sym_sec = hdr->bfd_section;
3027 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3028 sym_value = sym->st_value;
3029 destination = (sym_value + irela->r_addend
3030 + sym_sec->output_offset
3031 + sym_sec->output_section->vma);
3032 }
3033 else
3034 {
3035 /* It's an external symbol. */
3036 int e_indx;
3037
3038 e_indx = r_indx - symtab_hdr->sh_info;
3039 hash = ((struct elf32_hppa_link_hash_entry *)
3040 elf_sym_hashes (input_bfd)[e_indx]);
3041
3042 while (hash->elf.root.type == bfd_link_hash_indirect
3043 || hash->elf.root.type == bfd_link_hash_warning)
3044 hash = ((struct elf32_hppa_link_hash_entry *)
3045 hash->elf.root.u.i.link);
3046
3047 if (hash->elf.root.type == bfd_link_hash_defined
3048 || hash->elf.root.type == bfd_link_hash_defweak)
3049 {
3050 sym_sec = hash->elf.root.u.def.section;
3051 sym_value = hash->elf.root.u.def.value;
3052 if (sym_sec->output_section != NULL)
3053 destination = (sym_value + irela->r_addend
3054 + sym_sec->output_offset
3055 + sym_sec->output_section->vma);
3056 }
3057 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3058 {
3059 if (! info->shared)
3060 continue;
3061 }
3062 else if (hash->elf.root.type == bfd_link_hash_undefined)
3063 {
3064 if (! (info->shared
3065 && !info->no_undefined
3066 && (ELF_ST_VISIBILITY (hash->elf.other)
3067 == STV_DEFAULT)
3068 && hash->elf.type != STT_PARISC_MILLI))
3069 continue;
3070 }
3071 else
3072 {
3073 bfd_set_error (bfd_error_bad_value);
3074 goto error_ret_free_internal;
3075 }
3076 }
3077
3078 /* Determine what (if any) linker stub is needed. */
3079 stub_type = hppa_type_of_stub (section, irela, hash,
3080 destination);
3081 if (stub_type == hppa_stub_none)
3082 continue;
3083
3084 /* Support for grouping stub sections. */
3085 id_sec = htab->stub_group[section->id].link_sec;
3086
3087 /* Get the name of this stub. */
3088 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3089 if (!stub_name)
3090 goto error_ret_free_internal;
3091
3092 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3093 stub_name,
3094 false, false);
3095 if (stub_entry != NULL)
3096 {
3097 /* The proper stub has already been created. */
3098 free (stub_name);
3099 continue;
3100 }
3101
3102 stub_entry = hppa_add_stub (stub_name, section, htab);
3103 if (stub_entry == NULL)
3104 {
3105 free (stub_name);
3106 goto error_ret_free_local;
3107 }
3108
3109 stub_entry->target_value = sym_value;
3110 stub_entry->target_section = sym_sec;
3111 stub_entry->stub_type = stub_type;
3112 if (info->shared)
3113 {
3114 if (stub_type == hppa_stub_import)
3115 stub_entry->stub_type = hppa_stub_import_shared;
3116 else if (stub_type == hppa_stub_long_branch)
3117 stub_entry->stub_type = hppa_stub_long_branch_shared;
3118 }
3119 stub_entry->h = hash;
3120 stub_changed = 1;
3121 }
3122
3123 /* We're done with the internal relocs, free them. */
3124 free (internal_relocs);
3125 }
3126 }
3127
3128 if (!stub_changed)
3129 break;
3130
3131 /* OK, we've added some stubs. Find out the new size of the
3132 stub sections. */
3133 for (stub_sec = htab->stub_bfd->sections;
3134 stub_sec != NULL;
3135 stub_sec = stub_sec->next)
3136 {
3137 stub_sec->_raw_size = 0;
3138 stub_sec->_cooked_size = 0;
3139 }
3140
3141 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3142
3143 /* Ask the linker to do its stuff. */
3144 (*htab->layout_sections_again) ();
3145 stub_changed = 0;
3146 }
3147
3148 ret = 1;
3149
3150 error_ret_free_local:
3151 while (bfd_count-- > 0)
3152 if (all_local_syms[bfd_count])
3153 free (all_local_syms[bfd_count]);
3154 free (all_local_syms);
3155
3156 return ret;
3157 }
3158
3159 /* For a final link, this function is called after we have sized the
3160 stubs to provide a value for __gp. */
3161
3162 boolean
3163 elf32_hppa_set_gp (abfd, info)
3164 bfd *abfd;
3165 struct bfd_link_info *info;
3166 {
3167 struct elf32_hppa_link_hash_table *htab;
3168 struct elf_link_hash_entry *h;
3169 asection *sec;
3170 bfd_vma gp_val;
3171
3172 htab = hppa_link_hash_table (info);
3173 h = elf_link_hash_lookup (&htab->elf, "$global$", false, false, false);
3174
3175 if (h != NULL
3176 && (h->root.type == bfd_link_hash_defined
3177 || h->root.type == bfd_link_hash_defweak))
3178 {
3179 gp_val = h->root.u.def.value;
3180 sec = h->root.u.def.section;
3181 }
3182 else
3183 {
3184 /* Choose to point our LTP at, in this order, one of .plt, .got,
3185 or .data, if these sections exist. In the case of choosing
3186 .plt try to make the LTP ideal for addressing anywhere in the
3187 .plt or .got with a 14 bit signed offset. Typically, the end
3188 of the .plt is the start of the .got, so choose .plt + 0x2000
3189 if either the .plt or .got is larger than 0x2000. If both
3190 the .plt and .got are smaller than 0x2000, choose the end of
3191 the .plt section. */
3192
3193 sec = htab->splt;
3194 if (sec != NULL)
3195 {
3196 gp_val = sec->_raw_size;
3197 if (gp_val > 0x2000
3198 || (htab->sgot && htab->sgot->_raw_size > 0x2000))
3199 {
3200 gp_val = 0x2000;
3201 }
3202 }
3203 else
3204 {
3205 gp_val = 0;
3206 sec = htab->sgot;
3207 if (sec != NULL)
3208 {
3209 /* We know we don't have a .plt. If .got is large,
3210 offset our LTP. */
3211 if (sec->_raw_size > 0x2000)
3212 gp_val = 0x2000;
3213 }
3214 else
3215 {
3216 /* No .plt or .got. Who cares what the LTP is? */
3217 sec = bfd_get_section_by_name (abfd, ".data");
3218 }
3219 }
3220
3221 if (h != NULL)
3222 {
3223 h->root.type = bfd_link_hash_defined;
3224 h->root.u.def.value = gp_val;
3225 if (sec != NULL)
3226 h->root.u.def.section = sec;
3227 else
3228 h->root.u.def.section = bfd_abs_section_ptr;
3229 }
3230 }
3231
3232 if (sec != NULL && sec->output_section != NULL)
3233 gp_val += sec->output_section->vma + sec->output_offset;
3234
3235 elf_gp (abfd) = gp_val;
3236 return true;
3237 }
3238
3239 /* Build all the stubs associated with the current output file. The
3240 stubs are kept in a hash table attached to the main linker hash
3241 table. We also set up the .plt entries for statically linked PIC
3242 functions here. This function is called via hppaelf_finish in the
3243 linker. */
3244
3245 boolean
3246 elf32_hppa_build_stubs (info)
3247 struct bfd_link_info *info;
3248 {
3249 asection *stub_sec;
3250 struct bfd_hash_table *table;
3251 struct elf32_hppa_link_hash_table *htab;
3252
3253 htab = hppa_link_hash_table (info);
3254
3255 for (stub_sec = htab->stub_bfd->sections;
3256 stub_sec != NULL;
3257 stub_sec = stub_sec->next)
3258 {
3259 bfd_size_type size;
3260
3261 /* Allocate memory to hold the linker stubs. */
3262 size = stub_sec->_raw_size;
3263 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3264 if (stub_sec->contents == NULL && size != 0)
3265 return false;
3266 stub_sec->_raw_size = 0;
3267 }
3268
3269 /* Build the stubs as directed by the stub hash table. */
3270 table = &htab->stub_hash_table;
3271 bfd_hash_traverse (table, hppa_build_one_stub, info);
3272
3273 return true;
3274 }
3275
3276 /* Perform a final link. */
3277
3278 static boolean
3279 elf32_hppa_final_link (abfd, info)
3280 bfd *abfd;
3281 struct bfd_link_info *info;
3282 {
3283 /* Invoke the regular ELF linker to do all the work. */
3284 if (!bfd_elf32_bfd_final_link (abfd, info))
3285 return false;
3286
3287 /* If we're producing a final executable, sort the contents of the
3288 unwind section. */
3289 return elf_hppa_sort_unwind (abfd);
3290 }
3291
3292 /* Record the lowest address for the data and text segments. */
3293
3294 static void
3295 hppa_record_segment_addr (abfd, section, data)
3296 bfd *abfd ATTRIBUTE_UNUSED;
3297 asection *section;
3298 PTR data;
3299 {
3300 struct elf32_hppa_link_hash_table *htab;
3301
3302 htab = (struct elf32_hppa_link_hash_table *) data;
3303
3304 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3305 {
3306 bfd_vma value = section->vma - section->filepos;
3307
3308 if ((section->flags & SEC_READONLY) != 0)
3309 {
3310 if (value < htab->text_segment_base)
3311 htab->text_segment_base = value;
3312 }
3313 else
3314 {
3315 if (value < htab->data_segment_base)
3316 htab->data_segment_base = value;
3317 }
3318 }
3319 }
3320
3321 /* Perform a relocation as part of a final link. */
3322
3323 static bfd_reloc_status_type
3324 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3325 asection *input_section;
3326 bfd_byte *contents;
3327 const Elf_Internal_Rela *rel;
3328 bfd_vma value;
3329 struct elf32_hppa_link_hash_table *htab;
3330 asection *sym_sec;
3331 struct elf32_hppa_link_hash_entry *h;
3332 {
3333 int insn;
3334 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3335 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3336 int r_format = howto->bitsize;
3337 enum hppa_reloc_field_selector_type_alt r_field;
3338 bfd *input_bfd = input_section->owner;
3339 bfd_vma offset = rel->r_offset;
3340 bfd_vma max_branch_offset = 0;
3341 bfd_byte *hit_data = contents + offset;
3342 bfd_signed_vma addend = rel->r_addend;
3343 bfd_vma location;
3344 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3345 int val;
3346
3347 if (r_type == R_PARISC_NONE)
3348 return bfd_reloc_ok;
3349
3350 insn = bfd_get_32 (input_bfd, hit_data);
3351
3352 /* Find out where we are and where we're going. */
3353 location = (offset +
3354 input_section->output_offset +
3355 input_section->output_section->vma);
3356
3357 switch (r_type)
3358 {
3359 case R_PARISC_PCREL12F:
3360 case R_PARISC_PCREL17F:
3361 case R_PARISC_PCREL22F:
3362 /* If this is a call to a function defined in another dynamic
3363 library, or if it is a call to a PIC function in the same
3364 object, or if this is a shared link and it is a call to a
3365 weak symbol which may or may not be in the same object, then
3366 find the import stub in the stub hash. */
3367 if (sym_sec == NULL
3368 || sym_sec->output_section == NULL
3369 || (h != NULL
3370 && ((h->maybe_pic_call
3371 && !(input_section->flags & SEC_HAS_GOT_REF))
3372 || (h->elf.root.type == bfd_link_hash_defweak
3373 && h->elf.dynindx != -1
3374 && h->elf.plt.offset != (bfd_vma) -1))))
3375 {
3376 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3377 h, rel, htab);
3378 if (stub_entry != NULL)
3379 {
3380 value = (stub_entry->stub_offset
3381 + stub_entry->stub_sec->output_offset
3382 + stub_entry->stub_sec->output_section->vma);
3383 addend = 0;
3384 }
3385 else if (sym_sec == NULL && h != NULL
3386 && h->elf.root.type == bfd_link_hash_undefweak)
3387 {
3388 /* It's OK if undefined weak. Calls to undefined weak
3389 symbols behave as if the "called" function
3390 immediately returns. We can thus call to a weak
3391 function without first checking whether the function
3392 is defined. */
3393 value = location;
3394 addend = 8;
3395 }
3396 else
3397 return bfd_reloc_undefined;
3398 }
3399 /* Fall thru. */
3400
3401 case R_PARISC_PCREL21L:
3402 case R_PARISC_PCREL17C:
3403 case R_PARISC_PCREL17R:
3404 case R_PARISC_PCREL14R:
3405 case R_PARISC_PCREL14F:
3406 /* Make it a pc relative offset. */
3407 value -= location;
3408 addend -= 8;
3409 break;
3410
3411 case R_PARISC_DPREL21L:
3412 case R_PARISC_DPREL14R:
3413 case R_PARISC_DPREL14F:
3414 /* For all the DP relative relocations, we need to examine the symbol's
3415 section. If it's a code section, then "data pointer relative" makes
3416 no sense. In that case we don't adjust the "value", and for 21 bit
3417 addil instructions, we change the source addend register from %dp to
3418 %r0. This situation commonly arises when a variable's "constness"
3419 is declared differently from the way the variable is defined. For
3420 instance: "extern int foo" with foo defined as "const int foo". */
3421 if (sym_sec == NULL)
3422 break;
3423 if ((sym_sec->flags & SEC_CODE) != 0)
3424 {
3425 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3426 == (((int) OP_ADDIL << 26) | (27 << 21)))
3427 {
3428 insn &= ~ (0x1f << 21);
3429 #if 1 /* debug them. */
3430 (*_bfd_error_handler)
3431 (_("%s(%s+0x%lx): fixing %s"),
3432 bfd_archive_filename (input_bfd),
3433 input_section->name,
3434 (long) rel->r_offset,
3435 howto->name);
3436 #endif
3437 }
3438 /* Now try to make things easy for the dynamic linker. */
3439
3440 break;
3441 }
3442 /* Fall thru. */
3443
3444 case R_PARISC_DLTIND21L:
3445 case R_PARISC_DLTIND14R:
3446 case R_PARISC_DLTIND14F:
3447 value -= elf_gp (input_section->output_section->owner);
3448 break;
3449
3450 case R_PARISC_SEGREL32:
3451 if ((sym_sec->flags & SEC_CODE) != 0)
3452 value -= htab->text_segment_base;
3453 else
3454 value -= htab->data_segment_base;
3455 break;
3456
3457 default:
3458 break;
3459 }
3460
3461 switch (r_type)
3462 {
3463 case R_PARISC_DIR32:
3464 case R_PARISC_DIR14F:
3465 case R_PARISC_DIR17F:
3466 case R_PARISC_PCREL17C:
3467 case R_PARISC_PCREL14F:
3468 case R_PARISC_DPREL14F:
3469 case R_PARISC_PLABEL32:
3470 case R_PARISC_DLTIND14F:
3471 case R_PARISC_SEGBASE:
3472 case R_PARISC_SEGREL32:
3473 r_field = e_fsel;
3474 break;
3475
3476 case R_PARISC_DLTIND21L:
3477 case R_PARISC_PCREL21L:
3478 case R_PARISC_PLABEL21L:
3479 r_field = e_lsel;
3480 break;
3481
3482 case R_PARISC_DIR21L:
3483 case R_PARISC_DPREL21L:
3484 r_field = e_lrsel;
3485 break;
3486
3487 case R_PARISC_PCREL17R:
3488 case R_PARISC_PCREL14R:
3489 case R_PARISC_PLABEL14R:
3490 case R_PARISC_DLTIND14R:
3491 r_field = e_rsel;
3492 break;
3493
3494 case R_PARISC_DIR17R:
3495 case R_PARISC_DIR14R:
3496 case R_PARISC_DPREL14R:
3497 r_field = e_rrsel;
3498 break;
3499
3500 case R_PARISC_PCREL12F:
3501 case R_PARISC_PCREL17F:
3502 case R_PARISC_PCREL22F:
3503 r_field = e_fsel;
3504
3505 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3506 {
3507 max_branch_offset = (1 << (17-1)) << 2;
3508 }
3509 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3510 {
3511 max_branch_offset = (1 << (12-1)) << 2;
3512 }
3513 else
3514 {
3515 max_branch_offset = (1 << (22-1)) << 2;
3516 }
3517
3518 /* sym_sec is NULL on undefined weak syms or when shared on
3519 undefined syms. We've already checked for a stub for the
3520 shared undefined case. */
3521 if (sym_sec == NULL)
3522 break;
3523
3524 /* If the branch is out of reach, then redirect the
3525 call to the local stub for this function. */
3526 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3527 {
3528 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3529 h, rel, htab);
3530 if (stub_entry == NULL)
3531 return bfd_reloc_undefined;
3532
3533 /* Munge up the value and addend so that we call the stub
3534 rather than the procedure directly. */
3535 value = (stub_entry->stub_offset
3536 + stub_entry->stub_sec->output_offset
3537 + stub_entry->stub_sec->output_section->vma
3538 - location);
3539 addend = -8;
3540 }
3541 break;
3542
3543 /* Something we don't know how to handle. */
3544 default:
3545 return bfd_reloc_notsupported;
3546 }
3547
3548 /* Make sure we can reach the stub. */
3549 if (max_branch_offset != 0
3550 && value + addend + max_branch_offset >= 2*max_branch_offset)
3551 {
3552 (*_bfd_error_handler)
3553 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3554 bfd_archive_filename (input_bfd),
3555 input_section->name,
3556 (long) rel->r_offset,
3557 stub_entry->root.string);
3558 bfd_set_error (bfd_error_bad_value);
3559 return bfd_reloc_notsupported;
3560 }
3561
3562 val = hppa_field_adjust (value, addend, r_field);
3563
3564 switch (r_type)
3565 {
3566 case R_PARISC_PCREL12F:
3567 case R_PARISC_PCREL17C:
3568 case R_PARISC_PCREL17F:
3569 case R_PARISC_PCREL17R:
3570 case R_PARISC_PCREL22F:
3571 case R_PARISC_DIR17F:
3572 case R_PARISC_DIR17R:
3573 /* This is a branch. Divide the offset by four.
3574 Note that we need to decide whether it's a branch or
3575 otherwise by inspecting the reloc. Inspecting insn won't
3576 work as insn might be from a .word directive. */
3577 val >>= 2;
3578 break;
3579
3580 default:
3581 break;
3582 }
3583
3584 insn = hppa_rebuild_insn (insn, val, r_format);
3585
3586 /* Update the instruction word. */
3587 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3588 return bfd_reloc_ok;
3589 }
3590
3591 /* Relocate an HPPA ELF section. */
3592
3593 static boolean
3594 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3595 contents, relocs, local_syms, local_sections)
3596 bfd *output_bfd;
3597 struct bfd_link_info *info;
3598 bfd *input_bfd;
3599 asection *input_section;
3600 bfd_byte *contents;
3601 Elf_Internal_Rela *relocs;
3602 Elf_Internal_Sym *local_syms;
3603 asection **local_sections;
3604 {
3605 bfd_vma *local_got_offsets;
3606 struct elf32_hppa_link_hash_table *htab;
3607 Elf_Internal_Shdr *symtab_hdr;
3608 Elf_Internal_Rela *rel;
3609 Elf_Internal_Rela *relend;
3610
3611 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3612
3613 htab = hppa_link_hash_table (info);
3614 local_got_offsets = elf_local_got_offsets (input_bfd);
3615
3616 rel = relocs;
3617 relend = relocs + input_section->reloc_count;
3618 for (; rel < relend; rel++)
3619 {
3620 unsigned int r_type;
3621 reloc_howto_type *howto;
3622 unsigned int r_symndx;
3623 struct elf32_hppa_link_hash_entry *h;
3624 Elf_Internal_Sym *sym;
3625 asection *sym_sec;
3626 bfd_vma relocation;
3627 bfd_reloc_status_type r;
3628 const char *sym_name;
3629 boolean plabel;
3630 boolean warned_undef;
3631
3632 r_type = ELF32_R_TYPE (rel->r_info);
3633 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3634 {
3635 bfd_set_error (bfd_error_bad_value);
3636 return false;
3637 }
3638 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3639 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3640 continue;
3641
3642 r_symndx = ELF32_R_SYM (rel->r_info);
3643
3644 if (info->relocateable)
3645 {
3646 /* This is a relocatable link. We don't have to change
3647 anything, unless the reloc is against a section symbol,
3648 in which case we have to adjust according to where the
3649 section symbol winds up in the output section. */
3650 if (r_symndx < symtab_hdr->sh_info)
3651 {
3652 sym = local_syms + r_symndx;
3653 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3654 {
3655 sym_sec = local_sections[r_symndx];
3656 rel->r_addend += sym_sec->output_offset;
3657 }
3658 }
3659 continue;
3660 }
3661
3662 /* This is a final link. */
3663 h = NULL;
3664 sym = NULL;
3665 sym_sec = NULL;
3666 warned_undef = false;
3667 if (r_symndx < symtab_hdr->sh_info)
3668 {
3669 /* This is a local symbol, h defaults to NULL. */
3670 sym = local_syms + r_symndx;
3671 sym_sec = local_sections[r_symndx];
3672 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3673 }
3674 else
3675 {
3676 int indx;
3677
3678 /* It's a global; Find its entry in the link hash. */
3679 indx = r_symndx - symtab_hdr->sh_info;
3680 h = ((struct elf32_hppa_link_hash_entry *)
3681 elf_sym_hashes (input_bfd)[indx]);
3682 while (h->elf.root.type == bfd_link_hash_indirect
3683 || h->elf.root.type == bfd_link_hash_warning)
3684 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3685
3686 relocation = 0;
3687 if (h->elf.root.type == bfd_link_hash_defined
3688 || h->elf.root.type == bfd_link_hash_defweak)
3689 {
3690 sym_sec = h->elf.root.u.def.section;
3691 /* If sym_sec->output_section is NULL, then it's a
3692 symbol defined in a shared library. */
3693 if (sym_sec->output_section != NULL)
3694 relocation = (h->elf.root.u.def.value
3695 + sym_sec->output_offset
3696 + sym_sec->output_section->vma);
3697 }
3698 else if (h->elf.root.type == bfd_link_hash_undefweak)
3699 ;
3700 else if (info->shared && !info->no_undefined
3701 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3702 && h->elf.type != STT_PARISC_MILLI)
3703 {
3704 if (info->symbolic && !info->allow_shlib_undefined)
3705 {
3706 if (!((*info->callbacks->undefined_symbol)
3707 (info, h->elf.root.root.string, input_bfd,
3708 input_section, rel->r_offset, false)))
3709 return false;
3710 warned_undef = true;
3711 }
3712 }
3713 else
3714 {
3715 if (!((*info->callbacks->undefined_symbol)
3716 (info, h->elf.root.root.string, input_bfd,
3717 input_section, rel->r_offset, true)))
3718 return false;
3719 warned_undef = true;
3720 }
3721 }
3722
3723 /* Do any required modifications to the relocation value, and
3724 determine what types of dynamic info we need to output, if
3725 any. */
3726 plabel = 0;
3727 switch (r_type)
3728 {
3729 case R_PARISC_DLTIND14F:
3730 case R_PARISC_DLTIND14R:
3731 case R_PARISC_DLTIND21L:
3732 {
3733 bfd_vma off;
3734 boolean do_got = 0;
3735
3736 /* Relocation is to the entry for this symbol in the
3737 global offset table. */
3738 if (h != NULL)
3739 {
3740 boolean dyn;
3741
3742 off = h->elf.got.offset;
3743 dyn = htab->elf.dynamic_sections_created;
3744 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3745 {
3746 /* If we aren't going to call finish_dynamic_symbol,
3747 then we need to handle initialisation of the .got
3748 entry and create needed relocs here. Since the
3749 offset must always be a multiple of 4, we use the
3750 least significant bit to record whether we have
3751 initialised it already. */
3752 if ((off & 1) != 0)
3753 off &= ~1;
3754 else
3755 {
3756 h->elf.got.offset |= 1;
3757 do_got = 1;
3758 }
3759 }
3760 }
3761 else
3762 {
3763 /* Local symbol case. */
3764 if (local_got_offsets == NULL)
3765 abort ();
3766
3767 off = local_got_offsets[r_symndx];
3768
3769 /* The offset must always be a multiple of 4. We use
3770 the least significant bit to record whether we have
3771 already generated the necessary reloc. */
3772 if ((off & 1) != 0)
3773 off &= ~1;
3774 else
3775 {
3776 local_got_offsets[r_symndx] |= 1;
3777 do_got = 1;
3778 }
3779 }
3780
3781 if (do_got)
3782 {
3783 if (info->shared)
3784 {
3785 /* Output a dynamic relocation for this GOT entry.
3786 In this case it is relative to the base of the
3787 object because the symbol index is zero. */
3788 Elf_Internal_Rela outrel;
3789 asection *srelgot = htab->srelgot;
3790 Elf32_External_Rela *loc;
3791
3792 outrel.r_offset = (off
3793 + htab->sgot->output_offset
3794 + htab->sgot->output_section->vma);
3795 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3796 outrel.r_addend = relocation;
3797 loc = (Elf32_External_Rela *) srelgot->contents;
3798 loc += srelgot->reloc_count++;
3799 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3800 }
3801 else
3802 bfd_put_32 (output_bfd, relocation,
3803 htab->sgot->contents + off);
3804 }
3805
3806 if (off >= (bfd_vma) -2)
3807 abort ();
3808
3809 /* Add the base of the GOT to the relocation value. */
3810 relocation = (off
3811 + htab->sgot->output_offset
3812 + htab->sgot->output_section->vma);
3813 }
3814 break;
3815
3816 case R_PARISC_SEGREL32:
3817 /* If this is the first SEGREL relocation, then initialize
3818 the segment base values. */
3819 if (htab->text_segment_base == (bfd_vma) -1)
3820 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3821 break;
3822
3823 case R_PARISC_PLABEL14R:
3824 case R_PARISC_PLABEL21L:
3825 case R_PARISC_PLABEL32:
3826 if (htab->elf.dynamic_sections_created)
3827 {
3828 bfd_vma off;
3829 boolean do_plt = 0;
3830
3831 /* If we have a global symbol with a PLT slot, then
3832 redirect this relocation to it. */
3833 if (h != NULL)
3834 {
3835 off = h->elf.plt.offset;
3836 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3837 {
3838 /* In a non-shared link, adjust_dynamic_symbols
3839 isn't called for symbols forced local. We
3840 need to write out the plt entry here. */
3841 if ((off & 1) != 0)
3842 off &= ~1;
3843 else
3844 {
3845 h->elf.plt.offset |= 1;
3846 do_plt = 1;
3847 }
3848 }
3849 }
3850 else
3851 {
3852 bfd_vma *local_plt_offsets;
3853
3854 if (local_got_offsets == NULL)
3855 abort ();
3856
3857 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3858 off = local_plt_offsets[r_symndx];
3859
3860 /* As for the local .got entry case, we use the last
3861 bit to record whether we've already initialised
3862 this local .plt entry. */
3863 if ((off & 1) != 0)
3864 off &= ~1;
3865 else
3866 {
3867 local_plt_offsets[r_symndx] |= 1;
3868 do_plt = 1;
3869 }
3870 }
3871
3872 if (do_plt)
3873 {
3874 if (info->shared)
3875 {
3876 /* Output a dynamic IPLT relocation for this
3877 PLT entry. */
3878 Elf_Internal_Rela outrel;
3879 asection *srelplt = htab->srelplt;
3880 Elf32_External_Rela *loc;
3881
3882 outrel.r_offset = (off
3883 + htab->splt->output_offset
3884 + htab->splt->output_section->vma);
3885 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3886 outrel.r_addend = relocation;
3887 loc = (Elf32_External_Rela *) srelplt->contents;
3888 loc += srelplt->reloc_count++;
3889 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3890 }
3891 else
3892 {
3893 bfd_put_32 (output_bfd,
3894 relocation,
3895 htab->splt->contents + off);
3896 bfd_put_32 (output_bfd,
3897 elf_gp (htab->splt->output_section->owner),
3898 htab->splt->contents + off + 4);
3899 }
3900 }
3901
3902 if (off >= (bfd_vma) -2)
3903 abort ();
3904
3905 /* PLABELs contain function pointers. Relocation is to
3906 the entry for the function in the .plt. The magic +2
3907 offset signals to $$dyncall that the function pointer
3908 is in the .plt and thus has a gp pointer too.
3909 Exception: Undefined PLABELs should have a value of
3910 zero. */
3911 if (h == NULL
3912 || (h->elf.root.type != bfd_link_hash_undefweak
3913 && h->elf.root.type != bfd_link_hash_undefined))
3914 {
3915 relocation = (off
3916 + htab->splt->output_offset
3917 + htab->splt->output_section->vma
3918 + 2);
3919 }
3920 plabel = 1;
3921 }
3922 /* Fall through and possibly emit a dynamic relocation. */
3923
3924 case R_PARISC_DIR17F:
3925 case R_PARISC_DIR17R:
3926 case R_PARISC_DIR14F:
3927 case R_PARISC_DIR14R:
3928 case R_PARISC_DIR21L:
3929 case R_PARISC_DPREL14F:
3930 case R_PARISC_DPREL14R:
3931 case R_PARISC_DPREL21L:
3932 case R_PARISC_DIR32:
3933 /* r_symndx will be zero only for relocs against symbols
3934 from removed linkonce sections, or sections discarded by
3935 a linker script. */
3936 if (r_symndx == 0
3937 || (input_section->flags & SEC_ALLOC) == 0)
3938 break;
3939
3940 /* The reloc types handled here and this conditional
3941 expression must match the code in ..check_relocs and
3942 allocate_dynrelocs. ie. We need exactly the same condition
3943 as in ..check_relocs, with some extra conditions (dynindx
3944 test in this case) to cater for relocs removed by
3945 allocate_dynrelocs. If you squint, the non-shared test
3946 here does indeed match the one in ..check_relocs, the
3947 difference being that here we test DEF_DYNAMIC as well as
3948 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3949 which is why we can't use just that test here.
3950 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3951 there all files have not been loaded. */
3952 if ((info->shared
3953 && (IS_ABSOLUTE_RELOC (r_type)
3954 || (h != NULL
3955 && h->elf.dynindx != -1
3956 && (!info->symbolic
3957 || (h->elf.elf_link_hash_flags
3958 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3959 || (!info->shared
3960 && h != NULL
3961 && h->elf.dynindx != -1
3962 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3963 && (((h->elf.elf_link_hash_flags
3964 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3965 && (h->elf.elf_link_hash_flags
3966 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3967 || h->elf.root.type == bfd_link_hash_undefweak
3968 || h->elf.root.type == bfd_link_hash_undefined)))
3969 {
3970 Elf_Internal_Rela outrel;
3971 boolean skip;
3972 asection *sreloc;
3973 Elf32_External_Rela *loc;
3974
3975 /* When generating a shared object, these relocations
3976 are copied into the output file to be resolved at run
3977 time. */
3978
3979 outrel.r_addend = rel->r_addend;
3980 outrel.r_offset =
3981 _bfd_elf_section_offset (output_bfd, info, input_section,
3982 rel->r_offset);
3983 skip = (outrel.r_offset == (bfd_vma) -1
3984 || outrel.r_offset == (bfd_vma) -2);
3985 outrel.r_offset += (input_section->output_offset
3986 + input_section->output_section->vma);
3987
3988 if (skip)
3989 {
3990 memset (&outrel, 0, sizeof (outrel));
3991 }
3992 else if (h != NULL
3993 && h->elf.dynindx != -1
3994 && (plabel
3995 || !IS_ABSOLUTE_RELOC (r_type)
3996 || !info->shared
3997 || !info->symbolic
3998 || (h->elf.elf_link_hash_flags
3999 & ELF_LINK_HASH_DEF_REGULAR) == 0))
4000 {
4001 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
4002 }
4003 else /* It's a local symbol, or one marked to become local. */
4004 {
4005 int indx = 0;
4006
4007 /* Add the absolute offset of the symbol. */
4008 outrel.r_addend += relocation;
4009
4010 /* Global plabels need to be processed by the
4011 dynamic linker so that functions have at most one
4012 fptr. For this reason, we need to differentiate
4013 between global and local plabels, which we do by
4014 providing the function symbol for a global plabel
4015 reloc, and no symbol for local plabels. */
4016 if (! plabel
4017 && sym_sec != NULL
4018 && sym_sec->output_section != NULL
4019 && ! bfd_is_abs_section (sym_sec))
4020 {
4021 indx = elf_section_data (sym_sec->output_section)->dynindx;
4022 /* We are turning this relocation into one
4023 against a section symbol, so subtract out the
4024 output section's address but not the offset
4025 of the input section in the output section. */
4026 outrel.r_addend -= sym_sec->output_section->vma;
4027 }
4028
4029 outrel.r_info = ELF32_R_INFO (indx, r_type);
4030 }
4031 #if 0
4032 /* EH info can cause unaligned DIR32 relocs.
4033 Tweak the reloc type for the dynamic linker. */
4034 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4035 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4036 R_PARISC_DIR32U);
4037 #endif
4038 sreloc = elf_section_data (input_section)->sreloc;
4039 if (sreloc == NULL)
4040 abort ();
4041
4042 loc = (Elf32_External_Rela *) sreloc->contents;
4043 loc += sreloc->reloc_count++;
4044 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4045 }
4046 break;
4047
4048 default:
4049 break;
4050 }
4051
4052 r = final_link_relocate (input_section, contents, rel, relocation,
4053 htab, sym_sec, h);
4054
4055 if (r == bfd_reloc_ok)
4056 continue;
4057
4058 if (h != NULL)
4059 sym_name = h->elf.root.root.string;
4060 else
4061 {
4062 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4063 symtab_hdr->sh_link,
4064 sym->st_name);
4065 if (sym_name == NULL)
4066 return false;
4067 if (*sym_name == '\0')
4068 sym_name = bfd_section_name (input_bfd, sym_sec);
4069 }
4070
4071 howto = elf_hppa_howto_table + r_type;
4072
4073 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4074 {
4075 if (r == bfd_reloc_notsupported || !warned_undef)
4076 {
4077 (*_bfd_error_handler)
4078 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4079 bfd_archive_filename (input_bfd),
4080 input_section->name,
4081 (long) rel->r_offset,
4082 howto->name,
4083 sym_name);
4084 bfd_set_error (bfd_error_bad_value);
4085 return false;
4086 }
4087 }
4088 else
4089 {
4090 if (!((*info->callbacks->reloc_overflow)
4091 (info, sym_name, howto->name, (bfd_vma) 0,
4092 input_bfd, input_section, rel->r_offset)))
4093 return false;
4094 }
4095 }
4096
4097 return true;
4098 }
4099
4100 /* Finish up dynamic symbol handling. We set the contents of various
4101 dynamic sections here. */
4102
4103 static boolean
4104 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4105 bfd *output_bfd;
4106 struct bfd_link_info *info;
4107 struct elf_link_hash_entry *h;
4108 Elf_Internal_Sym *sym;
4109 {
4110 struct elf32_hppa_link_hash_table *htab;
4111
4112 htab = hppa_link_hash_table (info);
4113
4114 if (h->plt.offset != (bfd_vma) -1)
4115 {
4116 bfd_vma value;
4117
4118 if (h->plt.offset & 1)
4119 abort ();
4120
4121 /* This symbol has an entry in the procedure linkage table. Set
4122 it up.
4123
4124 The format of a plt entry is
4125 <funcaddr>
4126 <__gp>
4127 */
4128 value = 0;
4129 if (h->root.type == bfd_link_hash_defined
4130 || h->root.type == bfd_link_hash_defweak)
4131 {
4132 value = h->root.u.def.value;
4133 if (h->root.u.def.section->output_section != NULL)
4134 value += (h->root.u.def.section->output_offset
4135 + h->root.u.def.section->output_section->vma);
4136 }
4137
4138 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4139 {
4140 Elf_Internal_Rela rel;
4141 Elf32_External_Rela *loc;
4142
4143 /* Create a dynamic IPLT relocation for this entry. */
4144 rel.r_offset = (h->plt.offset
4145 + htab->splt->output_offset
4146 + htab->splt->output_section->vma);
4147 if (h->dynindx != -1)
4148 {
4149 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4150 rel.r_addend = 0;
4151 }
4152 else
4153 {
4154 /* This symbol has been marked to become local, and is
4155 used by a plabel so must be kept in the .plt. */
4156 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4157 rel.r_addend = value;
4158 }
4159
4160 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4161 loc += htab->srelplt->reloc_count++;
4162 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4163 &rel, loc);
4164 }
4165 else
4166 {
4167 bfd_put_32 (htab->splt->owner,
4168 value,
4169 htab->splt->contents + h->plt.offset);
4170 bfd_put_32 (htab->splt->owner,
4171 elf_gp (htab->splt->output_section->owner),
4172 htab->splt->contents + h->plt.offset + 4);
4173 }
4174
4175 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4176 {
4177 /* Mark the symbol as undefined, rather than as defined in
4178 the .plt section. Leave the value alone. */
4179 sym->st_shndx = SHN_UNDEF;
4180 }
4181 }
4182
4183 if (h->got.offset != (bfd_vma) -1)
4184 {
4185 Elf_Internal_Rela rel;
4186 Elf32_External_Rela *loc;
4187
4188 /* This symbol has an entry in the global offset table. Set it
4189 up. */
4190
4191 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4192 + htab->sgot->output_offset
4193 + htab->sgot->output_section->vma);
4194
4195 /* If this is a -Bsymbolic link and the symbol is defined
4196 locally or was forced to be local because of a version file,
4197 we just want to emit a RELATIVE reloc. The entry in the
4198 global offset table will already have been initialized in the
4199 relocate_section function. */
4200 if (info->shared
4201 && (info->symbolic || h->dynindx == -1)
4202 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4203 {
4204 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4205 rel.r_addend = (h->root.u.def.value
4206 + h->root.u.def.section->output_offset
4207 + h->root.u.def.section->output_section->vma);
4208 }
4209 else
4210 {
4211 if ((h->got.offset & 1) != 0)
4212 abort ();
4213 bfd_put_32 (output_bfd, (bfd_vma) 0,
4214 htab->sgot->contents + h->got.offset);
4215 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4216 rel.r_addend = 0;
4217 }
4218
4219 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4220 loc += htab->srelgot->reloc_count++;
4221 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4222 }
4223
4224 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4225 {
4226 asection *s;
4227 Elf_Internal_Rela rel;
4228 Elf32_External_Rela *loc;
4229
4230 /* This symbol needs a copy reloc. Set it up. */
4231
4232 if (! (h->dynindx != -1
4233 && (h->root.type == bfd_link_hash_defined
4234 || h->root.type == bfd_link_hash_defweak)))
4235 abort ();
4236
4237 s = htab->srelbss;
4238
4239 rel.r_offset = (h->root.u.def.value
4240 + h->root.u.def.section->output_offset
4241 + h->root.u.def.section->output_section->vma);
4242 rel.r_addend = 0;
4243 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4244 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4245 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4246 }
4247
4248 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4249 if (h->root.root.string[0] == '_'
4250 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4251 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4252 {
4253 sym->st_shndx = SHN_ABS;
4254 }
4255
4256 return true;
4257 }
4258
4259 /* Used to decide how to sort relocs in an optimal manner for the
4260 dynamic linker, before writing them out. */
4261
4262 static enum elf_reloc_type_class
4263 elf32_hppa_reloc_type_class (rela)
4264 const Elf_Internal_Rela *rela;
4265 {
4266 if (ELF32_R_SYM (rela->r_info) == 0)
4267 return reloc_class_relative;
4268
4269 switch ((int) ELF32_R_TYPE (rela->r_info))
4270 {
4271 case R_PARISC_IPLT:
4272 return reloc_class_plt;
4273 case R_PARISC_COPY:
4274 return reloc_class_copy;
4275 default:
4276 return reloc_class_normal;
4277 }
4278 }
4279
4280 /* Finish up the dynamic sections. */
4281
4282 static boolean
4283 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4284 bfd *output_bfd;
4285 struct bfd_link_info *info;
4286 {
4287 bfd *dynobj;
4288 struct elf32_hppa_link_hash_table *htab;
4289 asection *sdyn;
4290
4291 htab = hppa_link_hash_table (info);
4292 dynobj = htab->elf.dynobj;
4293
4294 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4295
4296 if (htab->elf.dynamic_sections_created)
4297 {
4298 Elf32_External_Dyn *dyncon, *dynconend;
4299
4300 if (sdyn == NULL)
4301 abort ();
4302
4303 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4304 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4305 for (; dyncon < dynconend; dyncon++)
4306 {
4307 Elf_Internal_Dyn dyn;
4308 asection *s;
4309
4310 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4311
4312 switch (dyn.d_tag)
4313 {
4314 default:
4315 continue;
4316
4317 case DT_PLTGOT:
4318 /* Use PLTGOT to set the GOT register. */
4319 dyn.d_un.d_ptr = elf_gp (output_bfd);
4320 break;
4321
4322 case DT_JMPREL:
4323 s = htab->srelplt;
4324 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4325 break;
4326
4327 case DT_PLTRELSZ:
4328 s = htab->srelplt;
4329 if (s->_cooked_size != 0)
4330 dyn.d_un.d_val = s->_cooked_size;
4331 else
4332 dyn.d_un.d_val = s->_raw_size;
4333 break;
4334
4335 case DT_RELASZ:
4336 /* Don't count procedure linkage table relocs in the
4337 overall reloc count. */
4338 if (htab->srelplt != NULL)
4339 {
4340 s = htab->srelplt->output_section;
4341 if (s->_cooked_size != 0)
4342 dyn.d_un.d_val -= s->_cooked_size;
4343 else
4344 dyn.d_un.d_val -= s->_raw_size;
4345 }
4346 break;
4347 }
4348
4349 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4350 }
4351 }
4352
4353 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4354 {
4355 /* Fill in the first entry in the global offset table.
4356 We use it to point to our dynamic section, if we have one. */
4357 bfd_put_32 (output_bfd,
4358 (sdyn != NULL
4359 ? sdyn->output_section->vma + sdyn->output_offset
4360 : (bfd_vma) 0),
4361 htab->sgot->contents);
4362
4363 /* The second entry is reserved for use by the dynamic linker. */
4364 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4365
4366 /* Set .got entry size. */
4367 elf_section_data (htab->sgot->output_section)
4368 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4369 }
4370
4371 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4372 {
4373 /* Set plt entry size. */
4374 elf_section_data (htab->splt->output_section)
4375 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4376
4377 if (htab->need_plt_stub)
4378 {
4379 /* Set up the .plt stub. */
4380 memcpy (htab->splt->contents
4381 + htab->splt->_raw_size - sizeof (plt_stub),
4382 plt_stub, sizeof (plt_stub));
4383
4384 if ((htab->splt->output_offset
4385 + htab->splt->output_section->vma
4386 + htab->splt->_raw_size)
4387 != (htab->sgot->output_offset
4388 + htab->sgot->output_section->vma))
4389 {
4390 (*_bfd_error_handler)
4391 (_(".got section not immediately after .plt section"));
4392 return false;
4393 }
4394 }
4395 }
4396
4397 return true;
4398 }
4399
4400 /* Tweak the OSABI field of the elf header. */
4401
4402 static void
4403 elf32_hppa_post_process_headers (abfd, link_info)
4404 bfd *abfd;
4405 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4406 {
4407 Elf_Internal_Ehdr * i_ehdrp;
4408
4409 i_ehdrp = elf_elfheader (abfd);
4410
4411 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4412 {
4413 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4414 }
4415 else
4416 {
4417 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4418 }
4419 }
4420
4421 /* Called when writing out an object file to decide the type of a
4422 symbol. */
4423 static int
4424 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4425 Elf_Internal_Sym *elf_sym;
4426 int type;
4427 {
4428 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4429 return STT_PARISC_MILLI;
4430 else
4431 return type;
4432 }
4433
4434 /* Misc BFD support code. */
4435 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4436 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4437 #define elf_info_to_howto elf_hppa_info_to_howto
4438 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4439
4440 /* Stuff for the BFD linker. */
4441 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4442 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4443 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4444 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4445 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4446 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4447 #define elf_backend_check_relocs elf32_hppa_check_relocs
4448 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4449 #define elf_backend_fake_sections elf_hppa_fake_sections
4450 #define elf_backend_relocate_section elf32_hppa_relocate_section
4451 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4452 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4453 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4454 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4455 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4456 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4457 #define elf_backend_object_p elf32_hppa_object_p
4458 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4459 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4460 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4461 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4462
4463 #define elf_backend_can_gc_sections 1
4464 #define elf_backend_can_refcount 1
4465 #define elf_backend_plt_alignment 2
4466 #define elf_backend_want_got_plt 0
4467 #define elf_backend_plt_readonly 0
4468 #define elf_backend_want_plt_sym 0
4469 #define elf_backend_got_header_size 8
4470
4471 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4472 #define TARGET_BIG_NAME "elf32-hppa"
4473 #define ELF_ARCH bfd_arch_hppa
4474 #define ELF_MACHINE_CODE EM_PARISC
4475 #define ELF_MAXPAGESIZE 0x1000
4476
4477 #include "elf32-target.h"
4478
4479 #undef TARGET_BIG_SYM
4480 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4481 #undef TARGET_BIG_NAME
4482 #define TARGET_BIG_NAME "elf32-hppa-linux"
4483
4484 #define INCLUDED_TARGET_FILE 1
4485 #include "elf32-target.h"
This page took 0.14728 seconds and 4 git commands to generate.