2001-07-11 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf-hppa.h"
36 #include "elf32-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define PLABEL_PLT_ENTRY_SIZE PLT_ENTRY_SIZE
118 #define GOT_ENTRY_SIZE 4
119 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120
121 static const bfd_byte plt_stub[] =
122 {
123 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
124 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
125 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
126 #define PLT_STUB_ENTRY (3*4)
127 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
128 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
129 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
130 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
131 };
132
133 /* Section name for stubs is the associated section name plus this
134 string. */
135 #define STUB_SUFFIX ".stub"
136
137 /* Setting the following non-zero makes all long branch stubs
138 generated during a shared link of the PIC variety. This saves on
139 relocs, but costs one extra instruction per stub. */
140 #ifndef LONG_BRANCH_PIC_IN_SHLIB
141 #define LONG_BRANCH_PIC_IN_SHLIB 1
142 #endif
143
144 /* Set this non-zero to use import stubs instead of long branch stubs
145 where a .plt entry exists for the symbol. This is a fairly useless
146 option as import stubs are bigger than PIC long branch stubs. */
147 #ifndef LONG_BRANCH_VIA_PLT
148 #define LONG_BRANCH_VIA_PLT 0
149 #endif
150
151 /* We don't need to copy any PC- or GP-relative dynamic relocs into a
152 shared object's dynamic section. All the relocs of the limited
153 class we are interested in, are absolute. See check_relocs. */
154 #ifndef IS_ABSOLUTE_RELOC
155 #define IS_ABSOLUTE_RELOC(r_type) 1
156 #endif
157
158 enum elf32_hppa_stub_type {
159 hppa_stub_long_branch,
160 hppa_stub_long_branch_shared,
161 hppa_stub_import,
162 hppa_stub_import_shared,
163 hppa_stub_export,
164 hppa_stub_none
165 };
166
167 struct elf32_hppa_stub_hash_entry {
168
169 /* Base hash table entry structure. */
170 struct bfd_hash_entry root;
171
172 /* The stub section. */
173 asection *stub_sec;
174
175 #if ! LONG_BRANCH_PIC_IN_SHLIB
176 /* It's associated reloc section. */
177 asection *reloc_sec;
178 #endif
179
180 /* Offset within stub_sec of the beginning of this stub. */
181 bfd_vma stub_offset;
182
183 /* Given the symbol's value and its section we can determine its final
184 value when building the stubs (so the stub knows where to jump. */
185 bfd_vma target_value;
186 asection *target_section;
187
188 enum elf32_hppa_stub_type stub_type;
189
190 /* The symbol table entry, if any, that this was derived from. */
191 struct elf32_hppa_link_hash_entry *h;
192
193 /* Where this stub is being called from, or, in the case of combined
194 stub sections, the first input section in the group. */
195 asection *id_sec;
196 };
197
198 struct elf32_hppa_link_hash_entry {
199
200 struct elf_link_hash_entry elf;
201
202 /* A pointer to the most recently used stub hash entry against this
203 symbol. */
204 struct elf32_hppa_stub_hash_entry *stub_cache;
205
206 #if ! LONG_BRANCH_PIC_IN_SHLIB
207 /* Used to track whether we have allocated space for a long branch
208 stub relocation for this symbol in the given section. */
209 asection *stub_reloc_sec;
210 #endif
211
212 /* Used to count relocations for delayed sizing of relocation
213 sections. */
214 struct elf32_hppa_dyn_reloc_entry {
215
216 /* Next relocation in the chain. */
217 struct elf32_hppa_dyn_reloc_entry *next;
218
219 /* The section in dynobj. */
220 asection *section;
221
222 /* Number of relocs copied in this section. */
223 bfd_size_type count;
224 } *reloc_entries;
225
226 /* Set during a static link if we detect a function is PIC. */
227 unsigned int maybe_pic_call:1;
228
229 /* Set if the only reason we need a .plt entry is for a non-PIC to
230 PIC function call. */
231 unsigned int pic_call:1;
232
233 /* Set if this symbol is used by a plabel reloc. */
234 unsigned int plabel:1;
235
236 /* Set if this symbol is an init or fini function and thus should
237 use an absolute reloc. */
238 unsigned int plt_abs:1;
239 };
240
241 struct elf32_hppa_link_hash_table {
242
243 /* The main hash table. */
244 struct elf_link_hash_table root;
245
246 /* The stub hash table. */
247 struct bfd_hash_table stub_hash_table;
248
249 /* Linker stub bfd. */
250 bfd *stub_bfd;
251
252 /* Linker call-backs. */
253 asection * (*add_stub_section) PARAMS ((const char *, asection *));
254 void (*layout_sections_again) PARAMS ((void));
255
256 /* Array to keep track of which stub sections have been created, and
257 information on stub grouping. */
258 struct map_stub {
259 /* This is the section to which stubs in the group will be
260 attached. */
261 asection *link_sec;
262 /* The stub section. */
263 asection *stub_sec;
264 #if ! LONG_BRANCH_PIC_IN_SHLIB
265 /* The stub section's reloc section. */
266 asection *reloc_sec;
267 #endif
268 } *stub_group;
269
270 /* Short-cuts to get to dynamic linker sections. */
271 asection *sgot;
272 asection *srelgot;
273 asection *splt;
274 asection *srelplt;
275 asection *sdynbss;
276 asection *srelbss;
277
278 /* Used during a final link to store the base of the text and data
279 segments so that we can perform SEGREL relocations. */
280 bfd_vma text_segment_base;
281 bfd_vma data_segment_base;
282
283 /* Whether we support multiple sub-spaces for shared libs. */
284 unsigned int multi_subspace:1;
285
286 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
287 select suitable defaults for the stub group size. */
288 unsigned int has_12bit_branch:1;
289 unsigned int has_17bit_branch:1;
290
291 /* Set if we need a .plt stub to support lazy dynamic linking. */
292 unsigned int need_plt_stub:1;
293 };
294
295 /* Various hash macros and functions. */
296 #define hppa_link_hash_table(p) \
297 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
298
299 #define hppa_stub_hash_lookup(table, string, create, copy) \
300 ((struct elf32_hppa_stub_hash_entry *) \
301 bfd_hash_lookup ((table), (string), (create), (copy)))
302
303 static struct bfd_hash_entry *stub_hash_newfunc
304 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
305
306 static struct bfd_hash_entry *hppa_link_hash_newfunc
307 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
308
309 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
310 PARAMS ((bfd *));
311
312 /* Stub handling functions. */
313 static char *hppa_stub_name
314 PARAMS ((const asection *, const asection *,
315 const struct elf32_hppa_link_hash_entry *,
316 const Elf_Internal_Rela *));
317
318 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
319 PARAMS ((const asection *, const asection *,
320 struct elf32_hppa_link_hash_entry *,
321 const Elf_Internal_Rela *,
322 struct elf32_hppa_link_hash_table *));
323
324 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
325 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
326
327 static enum elf32_hppa_stub_type hppa_type_of_stub
328 PARAMS ((asection *, const Elf_Internal_Rela *,
329 struct elf32_hppa_link_hash_entry *, bfd_vma));
330
331 static boolean hppa_build_one_stub
332 PARAMS ((struct bfd_hash_entry *, PTR));
333
334 static boolean hppa_size_one_stub
335 PARAMS ((struct bfd_hash_entry *, PTR));
336
337 /* BFD and elf backend functions. */
338 static boolean elf32_hppa_object_p PARAMS ((bfd *));
339
340 static boolean elf32_hppa_add_symbol_hook
341 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
342 const char **, flagword *, asection **, bfd_vma *));
343
344 static boolean elf32_hppa_create_dynamic_sections
345 PARAMS ((bfd *, struct bfd_link_info *));
346
347 static boolean elf32_hppa_check_relocs
348 PARAMS ((bfd *, struct bfd_link_info *,
349 asection *, const Elf_Internal_Rela *));
350
351 static asection *elf32_hppa_gc_mark_hook
352 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
353 struct elf_link_hash_entry *, Elf_Internal_Sym *));
354
355 static boolean elf32_hppa_gc_sweep_hook
356 PARAMS ((bfd *, struct bfd_link_info *,
357 asection *, const Elf_Internal_Rela *));
358
359 static void elf32_hppa_hide_symbol
360 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
361
362 static boolean elf32_hppa_adjust_dynamic_symbol
363 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
364
365 static boolean hppa_handle_PIC_calls
366 PARAMS ((struct elf_link_hash_entry *, PTR));
367
368 static boolean allocate_plt_and_got_and_discard_relocs
369 PARAMS ((struct elf_link_hash_entry *, PTR));
370
371 static boolean clobber_millicode_symbols
372 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
373
374 static boolean elf32_hppa_size_dynamic_sections
375 PARAMS ((bfd *, struct bfd_link_info *));
376
377 static boolean elf32_hppa_final_link
378 PARAMS ((bfd *, struct bfd_link_info *));
379
380 static void hppa_record_segment_addr
381 PARAMS ((bfd *, asection *, PTR));
382
383 static bfd_reloc_status_type final_link_relocate
384 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
385 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
386 struct elf32_hppa_link_hash_entry *));
387
388 static boolean elf32_hppa_relocate_section
389 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
390 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
391
392 static int hppa_unwind_entry_compare
393 PARAMS ((const PTR, const PTR));
394
395 static boolean elf32_hppa_finish_dynamic_symbol
396 PARAMS ((bfd *, struct bfd_link_info *,
397 struct elf_link_hash_entry *, Elf_Internal_Sym *));
398
399 static boolean elf32_hppa_finish_dynamic_sections
400 PARAMS ((bfd *, struct bfd_link_info *));
401
402 static void elf32_hppa_post_process_headers
403 PARAMS ((bfd *, struct bfd_link_info *));
404
405 static int elf32_hppa_elf_get_symbol_type
406 PARAMS ((Elf_Internal_Sym *, int));
407
408 /* Assorted hash table functions. */
409
410 /* Initialize an entry in the stub hash table. */
411
412 static struct bfd_hash_entry *
413 stub_hash_newfunc (entry, table, string)
414 struct bfd_hash_entry *entry;
415 struct bfd_hash_table *table;
416 const char *string;
417 {
418 struct elf32_hppa_stub_hash_entry *ret;
419
420 ret = (struct elf32_hppa_stub_hash_entry *) entry;
421
422 /* Allocate the structure if it has not already been allocated by a
423 subclass. */
424 if (ret == NULL)
425 {
426 ret = ((struct elf32_hppa_stub_hash_entry *)
427 bfd_hash_allocate (table,
428 sizeof (struct elf32_hppa_stub_hash_entry)));
429 if (ret == NULL)
430 return NULL;
431 }
432
433 /* Call the allocation method of the superclass. */
434 ret = ((struct elf32_hppa_stub_hash_entry *)
435 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
436
437 if (ret)
438 {
439 /* Initialize the local fields. */
440 ret->stub_sec = NULL;
441 #if ! LONG_BRANCH_PIC_IN_SHLIB
442 ret->reloc_sec = NULL;
443 #endif
444 ret->stub_offset = 0;
445 ret->target_value = 0;
446 ret->target_section = NULL;
447 ret->stub_type = hppa_stub_long_branch;
448 ret->h = NULL;
449 ret->id_sec = NULL;
450 }
451
452 return (struct bfd_hash_entry *) ret;
453 }
454
455 /* Initialize an entry in the link hash table. */
456
457 static struct bfd_hash_entry *
458 hppa_link_hash_newfunc (entry, table, string)
459 struct bfd_hash_entry *entry;
460 struct bfd_hash_table *table;
461 const char *string;
462 {
463 struct elf32_hppa_link_hash_entry *ret;
464
465 ret = (struct elf32_hppa_link_hash_entry *) entry;
466
467 /* Allocate the structure if it has not already been allocated by a
468 subclass. */
469 if (ret == NULL)
470 {
471 ret = ((struct elf32_hppa_link_hash_entry *)
472 bfd_hash_allocate (table,
473 sizeof (struct elf32_hppa_link_hash_entry)));
474 if (ret == NULL)
475 return NULL;
476 }
477
478 /* Call the allocation method of the superclass. */
479 ret = ((struct elf32_hppa_link_hash_entry *)
480 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
481 table, string));
482
483 if (ret)
484 {
485 /* Initialize the local fields. */
486 #if ! LONG_BRANCH_PIC_IN_SHLIB
487 ret->stub_reloc_sec = NULL;
488 #endif
489 ret->stub_cache = NULL;
490 ret->reloc_entries = NULL;
491 ret->maybe_pic_call = 0;
492 ret->pic_call = 0;
493 ret->plabel = 0;
494 ret->plt_abs = 0;
495 }
496
497 return (struct bfd_hash_entry *) ret;
498 }
499
500 /* Create the derived linker hash table. The PA ELF port uses the derived
501 hash table to keep information specific to the PA ELF linker (without
502 using static variables). */
503
504 static struct bfd_link_hash_table *
505 elf32_hppa_link_hash_table_create (abfd)
506 bfd *abfd;
507 {
508 struct elf32_hppa_link_hash_table *ret;
509
510 ret = ((struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, sizeof (*ret)));
511 if (ret == NULL)
512 return NULL;
513
514 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, hppa_link_hash_newfunc))
515 {
516 bfd_release (abfd, ret);
517 return NULL;
518 }
519
520 /* Init the stub hash table too. */
521 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
522 return NULL;
523
524 ret->stub_bfd = NULL;
525 ret->add_stub_section = NULL;
526 ret->layout_sections_again = NULL;
527 ret->stub_group = NULL;
528 ret->sgot = NULL;
529 ret->srelgot = NULL;
530 ret->splt = NULL;
531 ret->srelplt = NULL;
532 ret->sdynbss = NULL;
533 ret->srelbss = NULL;
534 ret->text_segment_base = (bfd_vma) -1;
535 ret->data_segment_base = (bfd_vma) -1;
536 ret->multi_subspace = 0;
537 ret->has_12bit_branch = 0;
538 ret->has_17bit_branch = 0;
539 ret->need_plt_stub = 0;
540
541 return &ret->root.root;
542 }
543
544 /* Build a name for an entry in the stub hash table. */
545
546 static char *
547 hppa_stub_name (input_section, sym_sec, hash, rel)
548 const asection *input_section;
549 const asection *sym_sec;
550 const struct elf32_hppa_link_hash_entry *hash;
551 const Elf_Internal_Rela *rel;
552 {
553 char *stub_name;
554 size_t len;
555
556 if (hash)
557 {
558 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
559 stub_name = bfd_malloc (len);
560 if (stub_name != NULL)
561 {
562 sprintf (stub_name, "%08x_%s+%x",
563 input_section->id & 0xffffffff,
564 hash->elf.root.root.string,
565 (int) rel->r_addend & 0xffffffff);
566 }
567 }
568 else
569 {
570 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
571 stub_name = bfd_malloc (len);
572 if (stub_name != NULL)
573 {
574 sprintf (stub_name, "%08x_%x:%x+%x",
575 input_section->id & 0xffffffff,
576 sym_sec->id & 0xffffffff,
577 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
578 (int) rel->r_addend & 0xffffffff);
579 }
580 }
581 return stub_name;
582 }
583
584 /* Look up an entry in the stub hash. Stub entries are cached because
585 creating the stub name takes a bit of time. */
586
587 static struct elf32_hppa_stub_hash_entry *
588 hppa_get_stub_entry (input_section, sym_sec, hash, rel, hplink)
589 const asection *input_section;
590 const asection *sym_sec;
591 struct elf32_hppa_link_hash_entry *hash;
592 const Elf_Internal_Rela *rel;
593 struct elf32_hppa_link_hash_table *hplink;
594 {
595 struct elf32_hppa_stub_hash_entry *stub_entry;
596 const asection *id_sec;
597
598 /* If this input section is part of a group of sections sharing one
599 stub section, then use the id of the first section in the group.
600 Stub names need to include a section id, as there may well be
601 more than one stub used to reach say, printf, and we need to
602 distinguish between them. */
603 id_sec = hplink->stub_group[input_section->id].link_sec;
604
605 if (hash != NULL && hash->stub_cache != NULL
606 && hash->stub_cache->h == hash
607 && hash->stub_cache->id_sec == id_sec)
608 {
609 stub_entry = hash->stub_cache;
610 }
611 else
612 {
613 char *stub_name;
614
615 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
616 if (stub_name == NULL)
617 return NULL;
618
619 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
620 stub_name, false, false);
621 if (stub_entry == NULL)
622 {
623 if (hash == NULL || hash->elf.root.type != bfd_link_hash_undefweak)
624 (*_bfd_error_handler) (_("%s(%s+0x%lx): cannot find stub entry %s"),
625 bfd_get_filename (input_section->owner),
626 input_section->name,
627 (long) rel->r_offset,
628 stub_name);
629 }
630 else
631 {
632 if (hash != NULL)
633 hash->stub_cache = stub_entry;
634 }
635
636 free (stub_name);
637 }
638
639 return stub_entry;
640 }
641
642 /* Add a new stub entry to the stub hash. Not all fields of the new
643 stub entry are initialised. */
644
645 static struct elf32_hppa_stub_hash_entry *
646 hppa_add_stub (stub_name, section, hplink)
647 const char *stub_name;
648 asection *section;
649 struct elf32_hppa_link_hash_table *hplink;
650 {
651 asection *link_sec;
652 asection *stub_sec;
653 struct elf32_hppa_stub_hash_entry *stub_entry;
654
655 link_sec = hplink->stub_group[section->id].link_sec;
656 stub_sec = hplink->stub_group[section->id].stub_sec;
657 if (stub_sec == NULL)
658 {
659 stub_sec = hplink->stub_group[link_sec->id].stub_sec;
660 if (stub_sec == NULL)
661 {
662 size_t len;
663 char *s_name;
664
665 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
666 s_name = bfd_alloc (hplink->stub_bfd, len);
667 if (s_name == NULL)
668 return NULL;
669
670 strcpy (s_name, link_sec->name);
671 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
672 stub_sec = (*hplink->add_stub_section) (s_name, link_sec);
673 if (stub_sec == NULL)
674 return NULL;
675 hplink->stub_group[link_sec->id].stub_sec = stub_sec;
676 }
677 hplink->stub_group[section->id].stub_sec = stub_sec;
678 }
679
680 /* Enter this entry into the linker stub hash table. */
681 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table, stub_name,
682 true, false);
683 if (stub_entry == NULL)
684 {
685 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
686 bfd_get_filename (section->owner),
687 stub_name);
688 return NULL;
689 }
690
691 stub_entry->stub_sec = stub_sec;
692 #if ! LONG_BRANCH_PIC_IN_SHLIB
693 stub_entry->reloc_sec = hplink->stub_group[section->id].reloc_sec;
694 #endif
695 stub_entry->stub_offset = 0;
696 stub_entry->id_sec = link_sec;
697 return stub_entry;
698 }
699
700 /* Determine the type of stub needed, if any, for a call. */
701
702 static enum elf32_hppa_stub_type
703 hppa_type_of_stub (input_sec, rel, hash, destination)
704 asection *input_sec;
705 const Elf_Internal_Rela *rel;
706 struct elf32_hppa_link_hash_entry *hash;
707 bfd_vma destination;
708 {
709 bfd_vma location;
710 bfd_vma branch_offset;
711 bfd_vma max_branch_offset;
712 unsigned int r_type;
713
714 if (hash != NULL
715 && (((hash->elf.root.type == bfd_link_hash_defined
716 || hash->elf.root.type == bfd_link_hash_defweak)
717 && hash->elf.root.u.def.section->output_section == NULL)
718 || (hash->elf.root.type == bfd_link_hash_defweak
719 && hash->elf.dynindx != -1
720 && hash->elf.plt.offset != (bfd_vma) -1)
721 || hash->elf.root.type == bfd_link_hash_undefweak
722 || hash->elf.root.type == bfd_link_hash_undefined
723 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
724 {
725 /* If output_section is NULL, then it's a symbol defined in a
726 shared library. We will need an import stub. Decide between
727 hppa_stub_import and hppa_stub_import_shared later. For
728 shared links we need stubs for undefined or weak syms too;
729 They will presumably be resolved by the dynamic linker. */
730 return hppa_stub_import;
731 }
732
733 /* Determine where the call point is. */
734 location = (input_sec->output_offset
735 + input_sec->output_section->vma
736 + rel->r_offset);
737
738 branch_offset = destination - location - 8;
739 r_type = ELF32_R_TYPE (rel->r_info);
740
741 /* Determine if a long branch stub is needed. parisc branch offsets
742 are relative to the second instruction past the branch, ie. +8
743 bytes on from the branch instruction location. The offset is
744 signed and counts in units of 4 bytes. */
745 if (r_type == (unsigned int) R_PARISC_PCREL17F)
746 {
747 max_branch_offset = (1 << (17-1)) << 2;
748 }
749 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
750 {
751 max_branch_offset = (1 << (12-1)) << 2;
752 }
753 else /* R_PARISC_PCREL22F. */
754 {
755 max_branch_offset = (1 << (22-1)) << 2;
756 }
757
758 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
759 {
760 #if LONG_BRANCH_VIA_PLT
761 if (hash != NULL
762 && hash->elf.dynindx != -1
763 && hash->elf.plt.offset != (bfd_vma) -1
764 && hash->elf.type != STT_PARISC_MILLI)
765 {
766 /* If we are doing a shared link and find we need a long
767 branch stub, then go via the .plt if possible. */
768 return hppa_stub_import;
769 }
770 else
771 #endif
772 return hppa_stub_long_branch;
773 }
774 return hppa_stub_none;
775 }
776
777 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
778 IN_ARG contains the link info pointer. */
779
780 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
781 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
782
783 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
784 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
785 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
786
787 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
788 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
789 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
790 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
791
792 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
793 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
794
795 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
796 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
797 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
798 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
799
800 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
801 #define NOP 0x08000240 /* nop */
802 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
803 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
804 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
805
806 #ifndef R19_STUBS
807 #define R19_STUBS 1
808 #endif
809
810 #if R19_STUBS
811 #define LDW_R1_DLT LDW_R1_R19
812 #else
813 #define LDW_R1_DLT LDW_R1_DP
814 #endif
815
816 static boolean
817 hppa_build_one_stub (gen_entry, in_arg)
818 struct bfd_hash_entry *gen_entry;
819 PTR in_arg;
820 {
821 struct elf32_hppa_stub_hash_entry *stub_entry;
822 struct bfd_link_info *info;
823 struct elf32_hppa_link_hash_table *hplink;
824 asection *stub_sec;
825 bfd *stub_bfd;
826 bfd_byte *loc;
827 bfd_vma sym_value;
828 bfd_vma insn;
829 bfd_vma off;
830 int val;
831 int size;
832
833 /* Massage our args to the form they really have. */
834 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
835 info = (struct bfd_link_info *) in_arg;
836
837 hplink = hppa_link_hash_table (info);
838 stub_sec = stub_entry->stub_sec;
839
840 /* Make a note of the offset within the stubs for this entry. */
841 stub_entry->stub_offset = stub_sec->_raw_size;
842 loc = stub_sec->contents + stub_entry->stub_offset;
843
844 stub_bfd = stub_sec->owner;
845
846 switch (stub_entry->stub_type)
847 {
848 case hppa_stub_long_branch:
849 /* Create the long branch. A long branch is formed with "ldil"
850 loading the upper bits of the target address into a register,
851 then branching with "be" which adds in the lower bits.
852 The "be" has its delay slot nullified. */
853 sym_value = (stub_entry->target_value
854 + stub_entry->target_section->output_offset
855 + stub_entry->target_section->output_section->vma);
856
857 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
858 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
859 bfd_put_32 (stub_bfd, insn, loc);
860
861 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
862 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
863 bfd_put_32 (stub_bfd, insn, loc + 4);
864
865 #if ! LONG_BRANCH_PIC_IN_SHLIB
866 if (info->shared)
867 {
868 /* Output a dynamic relocation for this stub. We only
869 output one PCREL21L reloc per stub, trusting that the
870 dynamic linker will also fix the implied PCREL17R for the
871 second instruction. PCREL21L dynamic relocs had better
872 never be emitted for some other purpose... */
873 asection *srel;
874 Elf_Internal_Rela outrel;
875
876 if (stub_entry->h == NULL)
877 {
878 (*_bfd_error_handler)
879 (_("%s(%s+0x%lx): cannot relocate %s, recompile with -ffunction-sections"),
880 bfd_get_filename (stub_entry->target_section->owner),
881 stub_sec->name,
882 (long) stub_entry->stub_offset,
883 stub_entry->root.string);
884 bfd_set_error (bfd_error_bad_value);
885 return false;
886 }
887
888 srel = stub_entry->reloc_sec;
889 if (srel == NULL)
890 {
891 (*_bfd_error_handler)
892 (_("Could not find relocation section for %s"),
893 stub_sec->name);
894 bfd_set_error (bfd_error_bad_value);
895 return false;
896 }
897
898 outrel.r_offset = (stub_entry->stub_offset
899 + stub_sec->output_offset
900 + stub_sec->output_section->vma);
901 outrel.r_info = ELF32_R_INFO (0, R_PARISC_PCREL21L);
902 outrel.r_addend = sym_value;
903 bfd_elf32_swap_reloca_out (stub_sec->output_section->owner,
904 &outrel,
905 ((Elf32_External_Rela *)
906 srel->contents + srel->reloc_count));
907 ++srel->reloc_count;
908 }
909 #endif
910 size = 8;
911 break;
912
913 case hppa_stub_long_branch_shared:
914 /* Branches are relative. This is where we are going to. */
915 sym_value = (stub_entry->target_value
916 + stub_entry->target_section->output_offset
917 + stub_entry->target_section->output_section->vma);
918
919 /* And this is where we are coming from, more or less. */
920 sym_value -= (stub_entry->stub_offset
921 + stub_sec->output_offset
922 + stub_sec->output_section->vma);
923
924 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
925 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
926 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
927 bfd_put_32 (stub_bfd, insn, loc + 4);
928
929 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
930 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
931 bfd_put_32 (stub_bfd, insn, loc + 8);
932 size = 12;
933 break;
934
935 case hppa_stub_import:
936 case hppa_stub_import_shared:
937 off = stub_entry->h->elf.plt.offset;
938 if (off >= (bfd_vma) -2)
939 abort ();
940
941 off &= ~ (bfd_vma) 1;
942 sym_value = (off
943 + hplink->splt->output_offset
944 + hplink->splt->output_section->vma
945 - elf_gp (hplink->splt->output_section->owner));
946
947 insn = ADDIL_DP;
948 #if R19_STUBS
949 if (stub_entry->stub_type == hppa_stub_import_shared)
950 insn = ADDIL_R19;
951 #endif
952 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
953 insn = hppa_rebuild_insn ((int) insn, val, 21);
954 bfd_put_32 (stub_bfd, insn, loc);
955
956 /* It is critical to use lrsel/rrsel here because we are using
957 two different offsets (+0 and +4) from sym_value. If we use
958 lsel/rsel then with unfortunate sym_values we will round
959 sym_value+4 up to the next 2k block leading to a mis-match
960 between the lsel and rsel value. */
961 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
962 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
963 bfd_put_32 (stub_bfd, insn, loc + 4);
964
965 if (hplink->multi_subspace)
966 {
967 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
968 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
969 bfd_put_32 (stub_bfd, insn, loc + 8);
970
971 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
972 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
973 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
974 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
975
976 size = 28;
977 }
978 else
979 {
980 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
981 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
982 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
983 bfd_put_32 (stub_bfd, insn, loc + 12);
984
985 size = 16;
986 }
987
988 if (!info->shared
989 && stub_entry->h != NULL
990 && stub_entry->h->pic_call)
991 {
992 /* Build the .plt entry needed to call a PIC function from
993 statically linked code. We don't need any relocs. */
994 bfd *dynobj;
995 struct elf32_hppa_link_hash_entry *eh;
996 bfd_vma value;
997
998 dynobj = hplink->root.dynobj;
999 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
1000
1001 if (eh->elf.root.type != bfd_link_hash_defined
1002 && eh->elf.root.type != bfd_link_hash_defweak)
1003 abort ();
1004
1005 value = (eh->elf.root.u.def.value
1006 + eh->elf.root.u.def.section->output_offset
1007 + eh->elf.root.u.def.section->output_section->vma);
1008
1009 /* Fill in the entry in the procedure linkage table.
1010
1011 The format of a plt entry is
1012 <funcaddr>
1013 <__gp>. */
1014
1015 bfd_put_32 (hplink->splt->owner, value,
1016 hplink->splt->contents + off);
1017 value = elf_gp (hplink->splt->output_section->owner);
1018 bfd_put_32 (hplink->splt->owner, value,
1019 hplink->splt->contents + off + 4);
1020 }
1021 break;
1022
1023 case hppa_stub_export:
1024 /* Branches are relative. This is where we are going to. */
1025 sym_value = (stub_entry->target_value
1026 + stub_entry->target_section->output_offset
1027 + stub_entry->target_section->output_section->vma);
1028
1029 /* And this is where we are coming from. */
1030 sym_value -= (stub_entry->stub_offset
1031 + stub_sec->output_offset
1032 + stub_sec->output_section->vma);
1033
1034 if (sym_value - 8 + 0x40000 >= 0x80000)
1035 {
1036 (*_bfd_error_handler)
1037 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
1038 bfd_get_filename (stub_entry->target_section->owner),
1039 stub_sec->name,
1040 (long) stub_entry->stub_offset,
1041 stub_entry->root.string);
1042 bfd_set_error (bfd_error_bad_value);
1043 return false;
1044 }
1045
1046 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
1047 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
1048 bfd_put_32 (stub_bfd, insn, loc);
1049
1050 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
1051 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
1052 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
1053 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
1054 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
1055
1056 /* Point the function symbol at the stub. */
1057 stub_entry->h->elf.root.u.def.section = stub_sec;
1058 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
1059
1060 size = 24;
1061 break;
1062
1063 default:
1064 BFD_FAIL ();
1065 return false;
1066 }
1067
1068 stub_sec->_raw_size += size;
1069 return true;
1070 }
1071
1072 #undef LDIL_R1
1073 #undef BE_SR4_R1
1074 #undef BL_R1
1075 #undef ADDIL_R1
1076 #undef DEPI_R1
1077 #undef ADDIL_DP
1078 #undef LDW_R1_R21
1079 #undef LDW_R1_DLT
1080 #undef LDW_R1_R19
1081 #undef ADDIL_R19
1082 #undef LDW_R1_DP
1083 #undef LDSID_R21_R1
1084 #undef MTSP_R1
1085 #undef BE_SR0_R21
1086 #undef STW_RP
1087 #undef BV_R0_R21
1088 #undef BL_RP
1089 #undef NOP
1090 #undef LDW_RP
1091 #undef LDSID_RP_R1
1092 #undef BE_SR0_RP
1093
1094 /* As above, but don't actually build the stub. Just bump offset so
1095 we know stub section sizes. */
1096
1097 static boolean
1098 hppa_size_one_stub (gen_entry, in_arg)
1099 struct bfd_hash_entry *gen_entry;
1100 PTR in_arg;
1101 {
1102 struct elf32_hppa_stub_hash_entry *stub_entry;
1103 struct elf32_hppa_link_hash_table *hplink;
1104 int size;
1105
1106 /* Massage our args to the form they really have. */
1107 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1108 hplink = (struct elf32_hppa_link_hash_table *) in_arg;
1109
1110 if (stub_entry->stub_type == hppa_stub_long_branch)
1111 {
1112 #if ! LONG_BRANCH_PIC_IN_SHLIB
1113 if (stub_entry->reloc_sec != NULL)
1114 stub_entry->reloc_sec->_raw_size += sizeof (Elf32_External_Rela);
1115 #endif
1116 size = 8;
1117 }
1118 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1119 size = 12;
1120 else if (stub_entry->stub_type == hppa_stub_export)
1121 size = 24;
1122 else /* hppa_stub_import or hppa_stub_import_shared. */
1123 {
1124 if (hplink->multi_subspace)
1125 size = 28;
1126 else
1127 size = 16;
1128 }
1129
1130 stub_entry->stub_sec->_raw_size += size;
1131 return true;
1132 }
1133
1134 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1135 Additionally we set the default architecture and machine. */
1136
1137 static boolean
1138 elf32_hppa_object_p (abfd)
1139 bfd *abfd;
1140 {
1141 Elf_Internal_Ehdr * i_ehdrp;
1142 unsigned int flags;
1143
1144 i_ehdrp = elf_elfheader (abfd);
1145 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1146 {
1147 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1148 return false;
1149 }
1150 else
1151 {
1152 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1153 return false;
1154 }
1155
1156 flags = i_ehdrp->e_flags;
1157 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1158 {
1159 case EFA_PARISC_1_0:
1160 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1161 case EFA_PARISC_1_1:
1162 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1163 case EFA_PARISC_2_0:
1164 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1165 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1166 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1167 }
1168 return true;
1169 }
1170
1171 /* Undo the generic ELF code's subtraction of section->vma from the
1172 value of each external symbol. */
1173
1174 static boolean
1175 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1176 bfd *abfd ATTRIBUTE_UNUSED;
1177 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1178 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1179 const char **namep ATTRIBUTE_UNUSED;
1180 flagword *flagsp ATTRIBUTE_UNUSED;
1181 asection **secp;
1182 bfd_vma *valp;
1183 {
1184 *valp += (*secp)->vma;
1185 return true;
1186 }
1187
1188 /* Create the .plt and .got sections, and set up our hash table
1189 short-cuts to various dynamic sections. */
1190
1191 static boolean
1192 elf32_hppa_create_dynamic_sections (abfd, info)
1193 bfd *abfd;
1194 struct bfd_link_info *info;
1195 {
1196 struct elf32_hppa_link_hash_table *hplink;
1197
1198 /* Don't try to create the .plt and .got twice. */
1199 hplink = hppa_link_hash_table (info);
1200 if (hplink->splt != NULL)
1201 return true;
1202
1203 /* Call the generic code to do most of the work. */
1204 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1205 return false;
1206
1207 hplink->splt = bfd_get_section_by_name (abfd, ".plt");
1208 hplink->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1209
1210 hplink->sgot = bfd_get_section_by_name (abfd, ".got");
1211 hplink->srelgot = bfd_make_section (abfd, ".rela.got");
1212 if (hplink->srelgot == NULL
1213 || ! bfd_set_section_flags (abfd, hplink->srelgot,
1214 (SEC_ALLOC
1215 | SEC_LOAD
1216 | SEC_HAS_CONTENTS
1217 | SEC_IN_MEMORY
1218 | SEC_LINKER_CREATED
1219 | SEC_READONLY))
1220 || ! bfd_set_section_alignment (abfd, hplink->srelgot, 2))
1221 return false;
1222
1223 hplink->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1224 hplink->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1225
1226 return true;
1227 }
1228
1229 /* Look through the relocs for a section during the first phase, and
1230 allocate space in the global offset table or procedure linkage
1231 table. At this point we haven't necessarily read all the input
1232 files. */
1233
1234 static boolean
1235 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1236 bfd *abfd;
1237 struct bfd_link_info *info;
1238 asection *sec;
1239 const Elf_Internal_Rela *relocs;
1240 {
1241 bfd *dynobj;
1242 Elf_Internal_Shdr *symtab_hdr;
1243 struct elf_link_hash_entry **sym_hashes;
1244 bfd_signed_vma *local_got_refcounts;
1245 const Elf_Internal_Rela *rel;
1246 const Elf_Internal_Rela *rel_end;
1247 struct elf32_hppa_link_hash_table *hplink;
1248 asection *sreloc;
1249 asection *stubreloc;
1250
1251 if (info->relocateable)
1252 return true;
1253
1254 hplink = hppa_link_hash_table (info);
1255 dynobj = hplink->root.dynobj;
1256 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1257 sym_hashes = elf_sym_hashes (abfd);
1258 local_got_refcounts = elf_local_got_refcounts (abfd);
1259 sreloc = NULL;
1260 stubreloc = NULL;
1261
1262 rel_end = relocs + sec->reloc_count;
1263 for (rel = relocs; rel < rel_end; rel++)
1264 {
1265 enum {
1266 NEED_GOT = 1,
1267 NEED_PLT = 2,
1268 NEED_DYNREL = 4,
1269 #if LONG_BRANCH_PIC_IN_SHLIB
1270 NEED_STUBREL = 0, /* We won't be needing them in this case. */
1271 #else
1272 NEED_STUBREL = 8,
1273 #endif
1274 PLT_PLABEL = 16
1275 };
1276
1277 unsigned int r_symndx, r_type;
1278 struct elf32_hppa_link_hash_entry *h;
1279 int need_entry;
1280
1281 r_symndx = ELF32_R_SYM (rel->r_info);
1282
1283 if (r_symndx < symtab_hdr->sh_info)
1284 h = NULL;
1285 else
1286 h = ((struct elf32_hppa_link_hash_entry *)
1287 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1288
1289 r_type = ELF32_R_TYPE (rel->r_info);
1290
1291 switch (r_type)
1292 {
1293 case R_PARISC_DLTIND14F:
1294 case R_PARISC_DLTIND14R:
1295 case R_PARISC_DLTIND21L:
1296 /* This symbol requires a global offset table entry. */
1297 need_entry = NEED_GOT;
1298
1299 /* Mark this section as containing PIC code. */
1300 sec->flags |= SEC_HAS_GOT_REF;
1301 break;
1302
1303 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1304 case R_PARISC_PLABEL21L:
1305 case R_PARISC_PLABEL32:
1306 /* If the addend is non-zero, we break badly. */
1307 if (rel->r_addend != 0)
1308 abort ();
1309
1310 /* If we are creating a shared library, then we need to
1311 create a PLT entry for all PLABELs, because PLABELs with
1312 local symbols may be passed via a pointer to another
1313 object. Additionally, output a dynamic relocation
1314 pointing to the PLT entry.
1315 For executables, the original 32-bit ABI allowed two
1316 different styles of PLABELs (function pointers): For
1317 global functions, the PLABEL word points into the .plt
1318 two bytes past a (function address, gp) pair, and for
1319 local functions the PLABEL points directly at the
1320 function. The magic +2 for the first type allows us to
1321 differentiate between the two. As you can imagine, this
1322 is a real pain when it comes to generating code to call
1323 functions indirectly or to compare function pointers.
1324 We avoid the mess by always pointing a PLABEL into the
1325 .plt, even for local functions. */
1326 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1327 break;
1328
1329 case R_PARISC_PCREL12F:
1330 hplink->has_12bit_branch = 1;
1331 /* Fall thru. */
1332 case R_PARISC_PCREL17C:
1333 case R_PARISC_PCREL17F:
1334 hplink->has_17bit_branch = 1;
1335 /* Fall thru. */
1336 case R_PARISC_PCREL22F:
1337 /* Function calls might need to go through the .plt, and
1338 might require long branch stubs. */
1339 if (h == NULL)
1340 {
1341 /* We know local syms won't need a .plt entry, and if
1342 they need a long branch stub we can't guarantee that
1343 we can reach the stub. So just flag an error later
1344 if we're doing a shared link and find we need a long
1345 branch stub. */
1346 continue;
1347 }
1348 else
1349 {
1350 /* Global symbols will need a .plt entry if they remain
1351 global, and in most cases won't need a long branch
1352 stub. Unfortunately, we have to cater for the case
1353 where a symbol is forced local by versioning, or due
1354 to symbolic linking, and we lose the .plt entry. */
1355 need_entry = NEED_PLT | NEED_STUBREL;
1356 if (h->elf.type == STT_PARISC_MILLI)
1357 need_entry = NEED_STUBREL;
1358 }
1359 break;
1360
1361 case R_PARISC_SEGBASE: /* Used to set segment base. */
1362 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1363 case R_PARISC_PCREL14F: /* PC relative load/store. */
1364 case R_PARISC_PCREL14R:
1365 case R_PARISC_PCREL17R: /* External branches. */
1366 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1367 /* We don't need to propagate the relocation if linking a
1368 shared object since these are section relative. */
1369 continue;
1370
1371 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1372 case R_PARISC_DPREL14R:
1373 case R_PARISC_DPREL21L:
1374 if (info->shared)
1375 {
1376 (*_bfd_error_handler)
1377 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1378 bfd_get_filename (abfd),
1379 elf_hppa_howto_table[r_type].name);
1380 bfd_set_error (bfd_error_bad_value);
1381 return false;
1382 }
1383 /* Fall through. */
1384
1385 case R_PARISC_DIR17F: /* Used for external branches. */
1386 case R_PARISC_DIR17R:
1387 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1388 case R_PARISC_DIR14R:
1389 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1390 #if 1
1391 /* Help debug shared library creation. Any of the above
1392 relocs can be used in shared libs, but they may cause
1393 pages to become unshared. */
1394 if (info->shared)
1395 {
1396 (*_bfd_error_handler)
1397 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1398 bfd_get_filename (abfd),
1399 elf_hppa_howto_table[r_type].name);
1400 }
1401 /* Fall through. */
1402 #endif
1403
1404 case R_PARISC_DIR32: /* .word relocs. */
1405 /* We may want to output a dynamic relocation later. */
1406 need_entry = NEED_DYNREL;
1407 break;
1408
1409 /* This relocation describes the C++ object vtable hierarchy.
1410 Reconstruct it for later use during GC. */
1411 case R_PARISC_GNU_VTINHERIT:
1412 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1413 &h->elf, rel->r_offset))
1414 return false;
1415 continue;
1416
1417 /* This relocation describes which C++ vtable entries are actually
1418 used. Record for later use during GC. */
1419 case R_PARISC_GNU_VTENTRY:
1420 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1421 &h->elf, rel->r_addend))
1422 return false;
1423 continue;
1424
1425 default:
1426 continue;
1427 }
1428
1429 /* Now carry out our orders. */
1430 if (need_entry & NEED_GOT)
1431 {
1432 /* Allocate space for a GOT entry, as well as a dynamic
1433 relocation for this entry. */
1434 if (dynobj == NULL)
1435 hplink->root.dynobj = dynobj = abfd;
1436
1437 if (hplink->sgot == NULL)
1438 {
1439 if (! elf32_hppa_create_dynamic_sections (dynobj, info))
1440 return false;
1441 }
1442
1443 if (h != NULL)
1444 {
1445 if (h->elf.got.refcount == -1)
1446 h->elf.got.refcount = 1;
1447 else
1448 h->elf.got.refcount += 1;
1449 }
1450 else
1451 {
1452 /* This is a global offset table entry for a local symbol. */
1453 if (local_got_refcounts == NULL)
1454 {
1455 size_t size;
1456
1457 /* Allocate space for local got offsets and local
1458 plt offsets. Done this way to save polluting
1459 elf_obj_tdata with another target specific
1460 pointer. */
1461 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1462 local_got_refcounts = ((bfd_signed_vma *)
1463 bfd_alloc (abfd, size));
1464 if (local_got_refcounts == NULL)
1465 return false;
1466 elf_local_got_refcounts (abfd) = local_got_refcounts;
1467 memset (local_got_refcounts, -1, size);
1468 }
1469 if (local_got_refcounts[r_symndx] == -1)
1470 local_got_refcounts[r_symndx] = 1;
1471 else
1472 local_got_refcounts[r_symndx] += 1;
1473 }
1474 }
1475
1476 if (need_entry & NEED_PLT)
1477 {
1478 /* If we are creating a shared library, and this is a reloc
1479 against a weak symbol or a global symbol in a dynamic
1480 object, then we will be creating an import stub and a
1481 .plt entry for the symbol. Similarly, on a normal link
1482 to symbols defined in a dynamic object we'll need the
1483 import stub and a .plt entry. We don't know yet whether
1484 the symbol is defined or not, so make an entry anyway and
1485 clean up later in adjust_dynamic_symbol. */
1486 if ((sec->flags & SEC_ALLOC) != 0)
1487 {
1488 if (h != NULL)
1489 {
1490 if (h->elf.plt.refcount == -1)
1491 {
1492 h->elf.plt.refcount = 1;
1493 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1494 }
1495 else
1496 h->elf.plt.refcount += 1;
1497
1498 /* If this .plt entry is for a plabel, mark it so
1499 that adjust_dynamic_symbol will keep the entry
1500 even if it appears to be local. */
1501 if (need_entry & PLT_PLABEL)
1502 h->plabel = 1;
1503 }
1504 else if (need_entry & PLT_PLABEL)
1505 {
1506 bfd_signed_vma *local_plt_refcounts;
1507
1508 if (local_got_refcounts == NULL)
1509 {
1510 size_t size;
1511
1512 /* Allocate space for local got offsets and local
1513 plt offsets. */
1514 size = symtab_hdr->sh_info * 2 * sizeof (bfd_signed_vma);
1515 local_got_refcounts = ((bfd_signed_vma *)
1516 bfd_alloc (abfd, size));
1517 if (local_got_refcounts == NULL)
1518 return false;
1519 elf_local_got_refcounts (abfd) = local_got_refcounts;
1520 memset (local_got_refcounts, -1, size);
1521 }
1522 local_plt_refcounts = (local_got_refcounts
1523 + symtab_hdr->sh_info);
1524 if (local_plt_refcounts[r_symndx] == -1)
1525 local_plt_refcounts[r_symndx] = 1;
1526 else
1527 local_plt_refcounts[r_symndx] += 1;
1528 }
1529 }
1530 }
1531
1532 if (need_entry & (NEED_DYNREL | NEED_STUBREL))
1533 {
1534 /* Flag this symbol as having a non-got, non-plt reference
1535 so that we generate copy relocs if it turns out to be
1536 dynamic. */
1537 if (need_entry == NEED_DYNREL
1538 && h != NULL
1539 && !info->shared
1540 && (sec->flags & SEC_READONLY) != 0)
1541 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1542
1543 /* If we are creating a shared library then we need to copy
1544 the reloc into the shared library. However, if we are
1545 linking with -Bsymbolic, we need only copy absolute
1546 relocs or relocs against symbols that are not defined in
1547 an object we are including in the link. PC- or DP- or
1548 DLT-relative relocs against any local sym or global sym
1549 with DEF_REGULAR set, can be discarded. At this point we
1550 have not seen all the input files, so it is possible that
1551 DEF_REGULAR is not set now but will be set later (it is
1552 never cleared). We account for that possibility below by
1553 storing information in the reloc_entries field of the
1554 hash table entry.
1555
1556 A similar situation to the -Bsymbolic case occurs when
1557 creating shared libraries and symbol visibility changes
1558 render the symbol local.
1559
1560 As it turns out, all the relocs we will be creating here
1561 are absolute, so we cannot remove them on -Bsymbolic
1562 links or visibility changes anyway. A STUB_REL reloc
1563 is absolute too, as in that case it is the reloc in the
1564 stub we will be creating, rather than copying the PCREL
1565 reloc in the branch. */
1566 if ((info->shared
1567 && (sec->flags & SEC_ALLOC) != 0
1568 && (IS_ABSOLUTE_RELOC (r_type)
1569 || (h != NULL
1570 && (!info->symbolic
1571 || h->elf.root.type == bfd_link_hash_defweak
1572 || (h->elf.elf_link_hash_flags
1573 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1574 || (!info->shared
1575 && (sec->flags & SEC_ALLOC) != 0
1576 && h != NULL
1577 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1578 && (h->elf.root.type == bfd_link_hash_defweak
1579 || (h->elf.elf_link_hash_flags
1580 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1581 {
1582 boolean doit;
1583 asection *srel;
1584
1585 srel = sreloc;
1586 if ((need_entry & NEED_STUBREL))
1587 srel = stubreloc;
1588
1589 /* Create a reloc section in dynobj and make room for
1590 this reloc. */
1591 if (srel == NULL)
1592 {
1593 char *name;
1594
1595 if (dynobj == NULL)
1596 hplink->root.dynobj = dynobj = abfd;
1597
1598 name = bfd_elf_string_from_elf_section
1599 (abfd,
1600 elf_elfheader (abfd)->e_shstrndx,
1601 elf_section_data (sec)->rel_hdr.sh_name);
1602 if (name == NULL)
1603 {
1604 (*_bfd_error_handler)
1605 (_("Could not find relocation section for %s"),
1606 sec->name);
1607 bfd_set_error (bfd_error_bad_value);
1608 return false;
1609 }
1610
1611 if ((need_entry & NEED_STUBREL))
1612 {
1613 size_t len = strlen (name) + sizeof (STUB_SUFFIX);
1614 char *newname = bfd_malloc (len);
1615
1616 if (newname == NULL)
1617 return false;
1618 strcpy (newname, name);
1619 strcpy (newname + len - sizeof (STUB_SUFFIX),
1620 STUB_SUFFIX);
1621 name = newname;
1622 }
1623
1624 srel = bfd_get_section_by_name (dynobj, name);
1625 if (srel == NULL)
1626 {
1627 flagword flags;
1628
1629 srel = bfd_make_section (dynobj, name);
1630 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1631 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1632 if ((sec->flags & SEC_ALLOC) != 0)
1633 flags |= SEC_ALLOC | SEC_LOAD;
1634 if (srel == NULL
1635 || !bfd_set_section_flags (dynobj, srel, flags)
1636 || !bfd_set_section_alignment (dynobj, srel, 2))
1637 return false;
1638 }
1639 else if ((need_entry & NEED_STUBREL))
1640 free (name);
1641
1642 if ((need_entry & NEED_STUBREL))
1643 stubreloc = srel;
1644 else
1645 sreloc = srel;
1646 }
1647
1648 #if ! LONG_BRANCH_PIC_IN_SHLIB
1649 /* If this is a function call, we only need one dynamic
1650 reloc for the stub as all calls to a particular
1651 function will go through the same stub. Actually, a
1652 long branch stub needs two relocations, but we count
1653 on some intelligence on the part of the dynamic
1654 linker. */
1655 if ((need_entry & NEED_STUBREL))
1656 {
1657 doit = h->stub_reloc_sec != stubreloc;
1658 h->stub_reloc_sec = stubreloc;
1659 }
1660 else
1661 #endif
1662 doit = 1;
1663
1664 if (doit)
1665 {
1666 srel->_raw_size += sizeof (Elf32_External_Rela);
1667
1668 /* Keep track of relocations we have entered for
1669 this global symbol, so that we can discard them
1670 later if necessary. */
1671 if (!info->shared
1672 || (h != NULL
1673 && (! IS_ABSOLUTE_RELOC (rtype)
1674 || (need_entry & NEED_STUBREL))))
1675 {
1676 struct elf32_hppa_dyn_reloc_entry *p;
1677
1678 for (p = h->reloc_entries; p != NULL; p = p->next)
1679 if (p->section == srel)
1680 break;
1681
1682 if (p == NULL)
1683 {
1684 p = ((struct elf32_hppa_dyn_reloc_entry *)
1685 bfd_alloc (dynobj, sizeof *p));
1686 if (p == NULL)
1687 return false;
1688 p->next = h->reloc_entries;
1689 h->reloc_entries = p;
1690 p->section = srel;
1691 p->count = 0;
1692 }
1693
1694 /* NEED_STUBREL and NEED_DYNREL are never both
1695 set. Leave the count at zero for the
1696 NEED_STUBREL case as we only ever have one
1697 stub reloc per section per symbol, and this
1698 simplifies code to discard unneeded relocs. */
1699 if (! (need_entry & NEED_STUBREL))
1700 ++p->count;
1701 }
1702 }
1703 }
1704 }
1705 }
1706
1707 return true;
1708 }
1709
1710 /* Return the section that should be marked against garbage collection
1711 for a given relocation. */
1712
1713 static asection *
1714 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1715 bfd *abfd;
1716 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1717 Elf_Internal_Rela *rel;
1718 struct elf_link_hash_entry *h;
1719 Elf_Internal_Sym *sym;
1720 {
1721 if (h != NULL)
1722 {
1723 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1724 {
1725 case R_PARISC_GNU_VTINHERIT:
1726 case R_PARISC_GNU_VTENTRY:
1727 break;
1728
1729 default:
1730 switch (h->root.type)
1731 {
1732 case bfd_link_hash_defined:
1733 case bfd_link_hash_defweak:
1734 return h->root.u.def.section;
1735
1736 case bfd_link_hash_common:
1737 return h->root.u.c.p->section;
1738
1739 default:
1740 break;
1741 }
1742 }
1743 }
1744 else
1745 {
1746 if (!(elf_bad_symtab (abfd)
1747 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
1748 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
1749 && sym->st_shndx != SHN_COMMON))
1750 {
1751 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1752 }
1753 }
1754
1755 return NULL;
1756 }
1757
1758 /* Update the got and plt entry reference counts for the section being
1759 removed. */
1760
1761 static boolean
1762 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1763 bfd *abfd;
1764 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1765 asection *sec;
1766 const Elf_Internal_Rela *relocs;
1767 {
1768 Elf_Internal_Shdr *symtab_hdr;
1769 struct elf_link_hash_entry **sym_hashes;
1770 bfd_signed_vma *local_got_refcounts;
1771 bfd_signed_vma *local_plt_refcounts;
1772 const Elf_Internal_Rela *rel, *relend;
1773 unsigned long r_symndx;
1774 struct elf_link_hash_entry *h;
1775 struct elf32_hppa_link_hash_table *hplink;
1776 bfd *dynobj;
1777
1778 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1779 sym_hashes = elf_sym_hashes (abfd);
1780 local_got_refcounts = elf_local_got_refcounts (abfd);
1781 local_plt_refcounts = local_got_refcounts;
1782 if (local_plt_refcounts != NULL)
1783 local_plt_refcounts += symtab_hdr->sh_info;
1784 hplink = hppa_link_hash_table (info);
1785 dynobj = hplink->root.dynobj;
1786 if (dynobj == NULL)
1787 return true;
1788
1789 relend = relocs + sec->reloc_count;
1790 for (rel = relocs; rel < relend; rel++)
1791 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1792 {
1793 case R_PARISC_DLTIND14F:
1794 case R_PARISC_DLTIND14R:
1795 case R_PARISC_DLTIND21L:
1796 r_symndx = ELF32_R_SYM (rel->r_info);
1797 if (r_symndx >= symtab_hdr->sh_info)
1798 {
1799 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1800 if (h->got.refcount > 0)
1801 h->got.refcount -= 1;
1802 }
1803 else if (local_got_refcounts != NULL)
1804 {
1805 if (local_got_refcounts[r_symndx] > 0)
1806 local_got_refcounts[r_symndx] -= 1;
1807 }
1808 break;
1809
1810 case R_PARISC_PCREL12F:
1811 case R_PARISC_PCREL17C:
1812 case R_PARISC_PCREL17F:
1813 case R_PARISC_PCREL22F:
1814 r_symndx = ELF32_R_SYM (rel->r_info);
1815 if (r_symndx >= symtab_hdr->sh_info)
1816 {
1817 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1818 if (h->plt.refcount > 0)
1819 h->plt.refcount -= 1;
1820 }
1821 break;
1822
1823 case R_PARISC_PLABEL14R:
1824 case R_PARISC_PLABEL21L:
1825 case R_PARISC_PLABEL32:
1826 r_symndx = ELF32_R_SYM (rel->r_info);
1827 if (r_symndx >= symtab_hdr->sh_info)
1828 {
1829 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1830 if (h->plt.refcount > 0)
1831 h->plt.refcount -= 1;
1832 }
1833 else if (local_plt_refcounts != NULL)
1834 {
1835 if (local_plt_refcounts[r_symndx] > 0)
1836 local_plt_refcounts[r_symndx] -= 1;
1837 }
1838 break;
1839
1840 default:
1841 break;
1842 }
1843
1844 return true;
1845 }
1846
1847 /* Our own version of hide_symbol, so that we can keep plt entries for
1848 plabels. */
1849
1850 static void
1851 elf32_hppa_hide_symbol (info, h)
1852 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1853 struct elf_link_hash_entry *h;
1854 {
1855 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
1856 h->dynindx = -1;
1857 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1858 {
1859 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1860 h->plt.offset = (bfd_vma) -1;
1861 }
1862 }
1863
1864 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1865 will be called from elflink.h. If elflink.h doesn't call our
1866 finish_dynamic_symbol routine, we'll need to do something about
1867 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1868 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1869 ((DYN) \
1870 && ((INFO)->shared \
1871 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1872 && ((H)->dynindx != -1 \
1873 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1874
1875 /* Adjust a symbol defined by a dynamic object and referenced by a
1876 regular object. The current definition is in some section of the
1877 dynamic object, but we're not including those sections. We have to
1878 change the definition to something the rest of the link can
1879 understand. */
1880
1881 static boolean
1882 elf32_hppa_adjust_dynamic_symbol (info, h)
1883 struct bfd_link_info *info;
1884 struct elf_link_hash_entry *h;
1885 {
1886 bfd *dynobj;
1887 struct elf32_hppa_link_hash_table *hplink;
1888 asection *s;
1889
1890 hplink = hppa_link_hash_table (info);
1891 dynobj = hplink->root.dynobj;
1892
1893 /* If this is a function, put it in the procedure linkage table. We
1894 will fill in the contents of the procedure linkage table later,
1895 when we know the address of the .got section. */
1896 if (h->type == STT_FUNC
1897 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1898 {
1899 if (!info->shared
1900 && h->plt.refcount > 0
1901 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1902 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1903 {
1904 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1905 }
1906
1907 if (h->plt.refcount <= 0
1908 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1909 && h->root.type != bfd_link_hash_defweak
1910 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1911 && (!info->shared || info->symbolic)))
1912 {
1913 /* The .plt entry is not needed when:
1914 a) Garbage collection has removed all references to the
1915 symbol, or
1916 b) We know for certain the symbol is defined in this
1917 object, and it's not a weak definition, nor is the symbol
1918 used by a plabel relocation. Either this object is the
1919 application or we are doing a shared symbolic link. */
1920
1921 /* As a special sop to the hppa ABI, we keep a .plt entry
1922 for functions in sections containing PIC code. */
1923 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1924 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1925 else
1926 {
1927 h->plt.offset = (bfd_vma) -1;
1928 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1929 }
1930 }
1931
1932 return true;
1933 }
1934
1935 /* If this is a weak symbol, and there is a real definition, the
1936 processor independent code will have arranged for us to see the
1937 real definition first, and we can just use the same value. */
1938 if (h->weakdef != NULL)
1939 {
1940 if (h->weakdef->root.type != bfd_link_hash_defined
1941 && h->weakdef->root.type != bfd_link_hash_defweak)
1942 abort ();
1943 h->root.u.def.section = h->weakdef->root.u.def.section;
1944 h->root.u.def.value = h->weakdef->root.u.def.value;
1945 return true;
1946 }
1947
1948 /* This is a reference to a symbol defined by a dynamic object which
1949 is not a function. */
1950
1951 /* If we are creating a shared library, we must presume that the
1952 only references to the symbol are via the global offset table.
1953 For such cases we need not do anything here; the relocations will
1954 be handled correctly by relocate_section. */
1955 if (info->shared)
1956 return true;
1957
1958 /* If there are no references to this symbol that do not use the
1959 GOT, we don't need to generate a copy reloc. */
1960 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1961 return true;
1962
1963 /* We must allocate the symbol in our .dynbss section, which will
1964 become part of the .bss section of the executable. There will be
1965 an entry for this symbol in the .dynsym section. The dynamic
1966 object will contain position independent code, so all references
1967 from the dynamic object to this symbol will go through the global
1968 offset table. The dynamic linker will use the .dynsym entry to
1969 determine the address it must put in the global offset table, so
1970 both the dynamic object and the regular object will refer to the
1971 same memory location for the variable. */
1972
1973 s = hplink->sdynbss;
1974
1975 /* We must generate a COPY reloc to tell the dynamic linker to
1976 copy the initial value out of the dynamic object and into the
1977 runtime process image. We need to remember the offset into the
1978 .rela.bss section we are going to use. */
1979 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1980 {
1981 asection *srel;
1982
1983 srel = hplink->srelbss;
1984 srel->_raw_size += sizeof (Elf32_External_Rela);
1985 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1986 }
1987
1988 {
1989 /* We need to figure out the alignment required for this symbol. I
1990 have no idea how other ELF linkers handle this. */
1991 unsigned int power_of_two;
1992
1993 power_of_two = bfd_log2 (h->size);
1994 if (power_of_two > 3)
1995 power_of_two = 3;
1996
1997 /* Apply the required alignment. */
1998 s->_raw_size = BFD_ALIGN (s->_raw_size,
1999 (bfd_size_type) (1 << power_of_two));
2000 if (power_of_two > bfd_get_section_alignment (dynobj, s))
2001 {
2002 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
2003 return false;
2004 }
2005 }
2006 /* Define the symbol as being at this point in the section. */
2007 h->root.u.def.section = s;
2008 h->root.u.def.value = s->_raw_size;
2009
2010 /* Increment the section size to make room for the symbol. */
2011 s->_raw_size += h->size;
2012
2013 return true;
2014 }
2015
2016 /* Called via elf_link_hash_traverse to create .plt entries for an
2017 application that uses statically linked PIC functions. Similar to
2018 the first part of elf32_hppa_adjust_dynamic_symbol. */
2019
2020 static boolean
2021 hppa_handle_PIC_calls (h, inf)
2022 struct elf_link_hash_entry *h;
2023 PTR inf ATTRIBUTE_UNUSED;
2024 {
2025 if (! (h->plt.refcount > 0
2026 && (h->root.type == bfd_link_hash_defined
2027 || h->root.type == bfd_link_hash_defweak)
2028 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2029 {
2030 h->plt.offset = (bfd_vma) -1;
2031 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2032 return true;
2033 }
2034
2035 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2036 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
2037 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2038
2039 return true;
2040 }
2041
2042 /* Allocate space in .plt, .got and associated reloc sections for
2043 global syms. */
2044
2045 static boolean
2046 allocate_plt_and_got_and_discard_relocs (h, inf)
2047 struct elf_link_hash_entry *h;
2048 PTR inf;
2049 {
2050 struct bfd_link_info *info;
2051 struct elf32_hppa_link_hash_table *hplink;
2052 asection *s;
2053 struct elf32_hppa_link_hash_entry *eh;
2054
2055 if (h->root.type == bfd_link_hash_indirect
2056 || h->root.type == bfd_link_hash_warning)
2057 return true;
2058
2059 info = (struct bfd_link_info *) inf;
2060 hplink = hppa_link_hash_table (info);
2061 if ((hplink->root.dynamic_sections_created
2062 && h->plt.refcount > 0)
2063 || ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2064 {
2065 /* Make sure this symbol is output as a dynamic symbol.
2066 Undefined weak syms won't yet be marked as dynamic. */
2067 if (h->dynindx == -1
2068 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2069 && h->type != STT_PARISC_MILLI
2070 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2071 {
2072 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2073 return false;
2074 }
2075
2076 /* Make an entry in the .plt section. */
2077 s = hplink->splt;
2078 h->plt.offset = s->_raw_size;
2079 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
2080 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
2081 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2082 {
2083 /* Add some extra space for the dynamic linker to use. */
2084 s->_raw_size += PLABEL_PLT_ENTRY_SIZE;
2085 }
2086 else
2087 s->_raw_size += PLT_ENTRY_SIZE;
2088
2089 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call
2090 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2091 {
2092 /* We also need to make an entry in the .rela.plt section. */
2093 hplink->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2094 hplink->need_plt_stub = 1;
2095 }
2096 }
2097 else
2098 {
2099 h->plt.offset = (bfd_vma) -1;
2100 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2101 }
2102
2103 if (h->got.refcount > 0)
2104 {
2105 boolean dyn;
2106
2107 /* Make sure this symbol is output as a dynamic symbol.
2108 Undefined weak syms won't yet be marked as dynamic. */
2109 if (h->dynindx == -1
2110 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2111 && h->type != STT_PARISC_MILLI)
2112 {
2113 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2114 return false;
2115 }
2116
2117 s = hplink->sgot;
2118 h->got.offset = s->_raw_size;
2119 s->_raw_size += GOT_ENTRY_SIZE;
2120 dyn = hplink->root.dynamic_sections_created;
2121 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
2122 hplink->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2123 }
2124 else
2125 h->got.offset = (bfd_vma) -1;
2126
2127 /* If this is a -Bsymbolic shared link, then we need to discard all
2128 space allocated for dynamic relocs against symbols defined in a
2129 regular object. For the normal shared case, discard space for
2130 relocs that have become local due to symbol visibility changes.
2131 For the non-shared case, discard space for symbols which turn out
2132 to need copy relocs or are not dynamic. We also need to lose
2133 relocs we've allocated for long branch stubs if we know we won't
2134 be generating a stub. */
2135
2136 eh = (struct elf32_hppa_link_hash_entry *) h;
2137 if (eh->reloc_entries == NULL)
2138 return true;
2139
2140 /* First handle the non-shared case. */
2141 if (!info->shared
2142 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2143 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2144 || h->root.type == bfd_link_hash_undefweak
2145 || h->root.type == bfd_link_hash_undefined))
2146 {
2147 /* Make sure this symbol is output as a dynamic symbol.
2148 Undefined weak syms won't yet be marked as dynamic. */
2149 if (h->dynindx == -1
2150 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2151 && h->type != STT_PARISC_MILLI)
2152 {
2153 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2154 return false;
2155 }
2156
2157 /* If that succeeded, we know we'll be keeping all the relocs. */
2158 if (h->dynindx != -1)
2159 return true;
2160 }
2161
2162 #if ! LONG_BRANCH_PIC_IN_SHLIB && LONG_BRANCH_VIA_PLT
2163 /* Handle the stub reloc case. If we have a plt entry for the
2164 function, we won't be needing long branch stubs. c->count will
2165 only be zero for stub relocs, which provides a handy way of
2166 flagging these relocs, and means we need do nothing special for
2167 the forced local and symbolic link case. */
2168 if (eh->stub_reloc_sec != NULL
2169 && eh->elf.plt.offset != (bfd_vma) -1)
2170 {
2171 struct elf32_hppa_dyn_reloc_entry *c;
2172
2173 for (c = eh->reloc_entries; c != NULL; c = c->next)
2174 if (c->count == 0)
2175 c->section->_raw_size -= sizeof (Elf32_External_Rela);
2176 }
2177 #endif
2178
2179 /* Discard any relocs in the non-shared case. For the shared case,
2180 if a symbol has been forced local or we have found a regular
2181 definition for the symbolic link case, then we won't be needing
2182 any relocs. */
2183 if (!info->shared
2184 || ((eh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2185 && ((eh->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2186 || info->symbolic)))
2187 {
2188 struct elf32_hppa_dyn_reloc_entry *c;
2189
2190 for (c = eh->reloc_entries; c != NULL; c = c->next)
2191 c->section->_raw_size -= c->count * sizeof (Elf32_External_Rela);
2192 }
2193
2194 return true;
2195 }
2196
2197 /* This function is called via elf_link_hash_traverse to force
2198 millicode symbols local so they do not end up as globals in the
2199 dynamic symbol table. We ought to be able to do this in
2200 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2201 for all dynamic symbols. Arguably, this is a bug in
2202 elf_adjust_dynamic_symbol. */
2203
2204 static boolean
2205 clobber_millicode_symbols (h, info)
2206 struct elf_link_hash_entry *h;
2207 struct bfd_link_info *info;
2208 {
2209 /* We only want to remove these from the dynamic symbol table.
2210 Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */
2211 if (h->type == STT_PARISC_MILLI)
2212 {
2213 unsigned short oldflags = h->elf_link_hash_flags;
2214 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
2215 elf32_hppa_hide_symbol (info, h);
2216 h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL;
2217 h->elf_link_hash_flags |= oldflags & ELF_LINK_FORCED_LOCAL;
2218 }
2219 return true;
2220 }
2221
2222 /* Set the sizes of the dynamic sections. */
2223
2224 static boolean
2225 elf32_hppa_size_dynamic_sections (output_bfd, info)
2226 bfd *output_bfd;
2227 struct bfd_link_info *info;
2228 {
2229 struct elf32_hppa_link_hash_table *hplink;
2230 bfd *dynobj;
2231 bfd *i;
2232 asection *s;
2233 boolean relocs;
2234 boolean reltext;
2235
2236 hplink = hppa_link_hash_table (info);
2237 dynobj = hplink->root.dynobj;
2238 if (dynobj == NULL)
2239 abort ();
2240
2241 if (hplink->root.dynamic_sections_created)
2242 {
2243 /* Set the contents of the .interp section to the interpreter. */
2244 if (! info->shared)
2245 {
2246 s = bfd_get_section_by_name (dynobj, ".interp");
2247 if (s == NULL)
2248 abort ();
2249 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2250 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2251 }
2252
2253 /* Force millicode symbols local. */
2254 elf_link_hash_traverse (&hplink->root,
2255 clobber_millicode_symbols,
2256 info);
2257 }
2258 else
2259 {
2260 /* Run through the function symbols, looking for any that are
2261 PIC, and allocate space for the necessary .plt entries so
2262 that %r19 will be set up. */
2263 if (! info->shared)
2264 elf_link_hash_traverse (&hplink->root,
2265 hppa_handle_PIC_calls,
2266 info);
2267 }
2268
2269 /* Set up .got and .plt offsets for local syms. */
2270 for (i = info->input_bfds; i; i = i->link_next)
2271 {
2272 bfd_signed_vma *local_got;
2273 bfd_signed_vma *end_local_got;
2274 bfd_signed_vma *local_plt;
2275 bfd_signed_vma *end_local_plt;
2276 bfd_size_type locsymcount;
2277 Elf_Internal_Shdr *symtab_hdr;
2278 asection *srel;
2279
2280 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
2281 continue;
2282
2283 local_got = elf_local_got_refcounts (i);
2284 if (!local_got)
2285 continue;
2286
2287 symtab_hdr = &elf_tdata (i)->symtab_hdr;
2288 locsymcount = symtab_hdr->sh_info;
2289 end_local_got = local_got + locsymcount;
2290 s = hplink->sgot;
2291 srel = hplink->srelgot;
2292 for (; local_got < end_local_got; ++local_got)
2293 {
2294 if (*local_got > 0)
2295 {
2296 *local_got = s->_raw_size;
2297 s->_raw_size += GOT_ENTRY_SIZE;
2298 if (info->shared)
2299 srel->_raw_size += sizeof (Elf32_External_Rela);
2300 }
2301 else
2302 *local_got = (bfd_vma) -1;
2303 }
2304
2305 local_plt = end_local_got;
2306 end_local_plt = local_plt + locsymcount;
2307 if (! hplink->root.dynamic_sections_created)
2308 {
2309 /* Won't be used, but be safe. */
2310 for (; local_plt < end_local_plt; ++local_plt)
2311 *local_plt = (bfd_vma) -1;
2312 }
2313 else
2314 {
2315 s = hplink->splt;
2316 srel = hplink->srelplt;
2317 for (; local_plt < end_local_plt; ++local_plt)
2318 {
2319 if (*local_plt > 0)
2320 {
2321 *local_plt = s->_raw_size;
2322 s->_raw_size += PLT_ENTRY_SIZE;
2323 if (info->shared)
2324 srel->_raw_size += sizeof (Elf32_External_Rela);
2325 }
2326 else
2327 *local_plt = (bfd_vma) -1;
2328 }
2329 }
2330 }
2331
2332 /* Allocate global sym .plt and .got entries. Also discard all
2333 unneeded relocs. */
2334 elf_link_hash_traverse (&hplink->root,
2335 allocate_plt_and_got_and_discard_relocs,
2336 (PTR) info);
2337
2338 /* The check_relocs and adjust_dynamic_symbol entry points have
2339 determined the sizes of the various dynamic sections. Allocate
2340 memory for them. */
2341 relocs = false;
2342 reltext = false;
2343 for (s = dynobj->sections; s != NULL; s = s->next)
2344 {
2345 if ((s->flags & SEC_LINKER_CREATED) == 0)
2346 continue;
2347
2348 if (s == hplink->splt)
2349 {
2350 if (hplink->need_plt_stub)
2351 {
2352 /* Make space for the plt stub at the end of the .plt
2353 section. We want this stub right at the end, up
2354 against the .got section. */
2355 int gotalign = bfd_section_alignment (dynobj, hplink->sgot);
2356 int pltalign = bfd_section_alignment (dynobj, s);
2357 bfd_size_type mask;
2358
2359 if (gotalign > pltalign)
2360 bfd_set_section_alignment (dynobj, s, gotalign);
2361 mask = ((bfd_size_type) 1 << gotalign) - 1;
2362 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2363 }
2364 }
2365 else if (s == hplink->sgot)
2366 ;
2367 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2368 {
2369 if (s->_raw_size != 0)
2370 {
2371 asection *target;
2372 const char *outname;
2373
2374 /* Remember whether there are any reloc sections other
2375 than .rela.plt. */
2376 if (s != hplink->srelplt)
2377 relocs = true;
2378
2379 /* If this relocation section applies to a read only
2380 section, then we probably need a DT_TEXTREL entry. */
2381 outname = bfd_get_section_name (output_bfd,
2382 s->output_section);
2383 target = bfd_get_section_by_name (output_bfd, outname + 5);
2384 if (target != NULL
2385 && (target->flags & SEC_READONLY) != 0
2386 && (target->flags & SEC_ALLOC) != 0)
2387 reltext = true;
2388
2389 /* We use the reloc_count field as a counter if we need
2390 to copy relocs into the output file. */
2391 s->reloc_count = 0;
2392 }
2393 }
2394 else
2395 {
2396 /* It's not one of our sections, so don't allocate space. */
2397 continue;
2398 }
2399
2400 if (s->_raw_size == 0)
2401 {
2402 /* If we don't need this section, strip it from the
2403 output file. This is mostly to handle .rela.bss and
2404 .rela.plt. We must create both sections in
2405 create_dynamic_sections, because they must be created
2406 before the linker maps input sections to output
2407 sections. The linker does that before
2408 adjust_dynamic_symbol is called, and it is that
2409 function which decides whether anything needs to go
2410 into these sections. */
2411 _bfd_strip_section_from_output (info, s);
2412 continue;
2413 }
2414
2415 /* Allocate memory for the section contents. Zero it, because
2416 we may not fill in all the reloc sections. */
2417 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2418 if (s->contents == NULL && s->_raw_size != 0)
2419 return false;
2420 }
2421
2422 if (hplink->root.dynamic_sections_created)
2423 {
2424 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2425 actually has nothing to do with the PLT, it is how we
2426 communicate the LTP value of a load module to the dynamic
2427 linker. */
2428 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0))
2429 return false;
2430
2431 /* Add some entries to the .dynamic section. We fill in the
2432 values later, in elf32_hppa_finish_dynamic_sections, but we
2433 must add the entries now so that we get the correct size for
2434 the .dynamic section. The DT_DEBUG entry is filled in by the
2435 dynamic linker and used by the debugger. */
2436 if (! info->shared)
2437 {
2438 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
2439 return false;
2440 }
2441
2442 if (hplink->srelplt->_raw_size != 0)
2443 {
2444 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
2445 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
2446 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
2447 return false;
2448 }
2449
2450 if (relocs)
2451 {
2452 if (! bfd_elf32_add_dynamic_entry (info, DT_RELA, 0)
2453 || ! bfd_elf32_add_dynamic_entry (info, DT_RELASZ, 0)
2454 || ! bfd_elf32_add_dynamic_entry (info, DT_RELAENT,
2455 sizeof (Elf32_External_Rela)))
2456 return false;
2457 }
2458
2459 if (reltext)
2460 {
2461 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
2462 return false;
2463 info->flags |= DF_TEXTREL;
2464 }
2465 }
2466
2467 return true;
2468 }
2469
2470 /* External entry points for sizing and building linker stubs. */
2471
2472 /* Determine and set the size of the stub section for a final link.
2473
2474 The basic idea here is to examine all the relocations looking for
2475 PC-relative calls to a target that is unreachable with a "bl"
2476 instruction. */
2477
2478 boolean
2479 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2480 add_stub_section, layout_sections_again)
2481 bfd *output_bfd;
2482 bfd *stub_bfd;
2483 struct bfd_link_info *info;
2484 boolean multi_subspace;
2485 bfd_signed_vma group_size;
2486 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2487 void (*layout_sections_again) PARAMS ((void));
2488 {
2489 bfd *input_bfd;
2490 asection *section;
2491 asection **input_list, **list;
2492 Elf_Internal_Sym *local_syms, **all_local_syms;
2493 unsigned int bfd_indx, bfd_count;
2494 int top_id, top_index;
2495 struct elf32_hppa_link_hash_table *hplink;
2496 bfd_size_type stub_group_size;
2497 boolean stubs_always_before_branch;
2498 boolean stub_changed = 0;
2499 boolean ret = 0;
2500
2501 hplink = hppa_link_hash_table (info);
2502
2503 /* Stash our params away. */
2504 hplink->stub_bfd = stub_bfd;
2505 hplink->multi_subspace = multi_subspace;
2506 hplink->add_stub_section = add_stub_section;
2507 hplink->layout_sections_again = layout_sections_again;
2508 stubs_always_before_branch = group_size < 0;
2509 if (group_size < 0)
2510 stub_group_size = -group_size;
2511 else
2512 stub_group_size = group_size;
2513 if (stub_group_size == 1)
2514 {
2515 /* Default values. */
2516 stub_group_size = 8000000;
2517 if (hplink->has_17bit_branch || hplink->multi_subspace)
2518 stub_group_size = 250000;
2519 if (hplink->has_12bit_branch)
2520 stub_group_size = 7812;
2521 }
2522
2523 /* Count the number of input BFDs and find the top input section id. */
2524 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2525 input_bfd != NULL;
2526 input_bfd = input_bfd->link_next)
2527 {
2528 bfd_count += 1;
2529 for (section = input_bfd->sections;
2530 section != NULL;
2531 section = section->next)
2532 {
2533 if (top_id < section->id)
2534 top_id = section->id;
2535 }
2536 }
2537
2538 hplink->stub_group
2539 = (struct map_stub *) bfd_zmalloc (sizeof (struct map_stub) * (top_id + 1));
2540 if (hplink->stub_group == NULL)
2541 return false;
2542
2543 /* Make a list of input sections for each output section included in
2544 the link.
2545
2546 We can't use output_bfd->section_count here to find the top output
2547 section index as some sections may have been removed, and
2548 _bfd_strip_section_from_output doesn't renumber the indices. */
2549 for (section = output_bfd->sections, top_index = 0;
2550 section != NULL;
2551 section = section->next)
2552 {
2553 if (top_index < section->index)
2554 top_index = section->index;
2555 }
2556
2557 input_list
2558 = (asection **) bfd_malloc (sizeof (asection *) * (top_index + 1));
2559 if (input_list == NULL)
2560 return false;
2561
2562 /* For sections we aren't interested in, mark their entries with a
2563 value we can check later. */
2564 list = input_list + top_index;
2565 do
2566 *list = bfd_abs_section_ptr;
2567 while (list-- != input_list);
2568
2569 for (section = output_bfd->sections;
2570 section != NULL;
2571 section = section->next)
2572 {
2573 if ((section->flags & SEC_CODE) != 0)
2574 input_list[section->index] = NULL;
2575 }
2576
2577 /* Now actually build the lists. */
2578 for (input_bfd = info->input_bfds;
2579 input_bfd != NULL;
2580 input_bfd = input_bfd->link_next)
2581 {
2582 for (section = input_bfd->sections;
2583 section != NULL;
2584 section = section->next)
2585 {
2586 if (section->output_section != NULL
2587 && section->output_section->owner == output_bfd
2588 && section->output_section->index <= top_index)
2589 {
2590 list = input_list + section->output_section->index;
2591 if (*list != bfd_abs_section_ptr)
2592 {
2593 /* Steal the link_sec pointer for our list. */
2594 #define PREV_SEC(sec) (hplink->stub_group[(sec)->id].link_sec)
2595 /* This happens to make the list in reverse order,
2596 which is what we want. */
2597 PREV_SEC (section) = *list;
2598 *list = section;
2599 }
2600 }
2601 }
2602 }
2603
2604 /* See whether we can group stub sections together. Grouping stub
2605 sections may result in fewer stubs. More importantly, we need to
2606 put all .init* and .fini* stubs at the beginning of the .init or
2607 .fini output sections respectively, because glibc splits the
2608 _init and _fini functions into multiple parts. Putting a stub in
2609 the middle of a function is not a good idea. */
2610 list = input_list + top_index;
2611 do
2612 {
2613 asection *tail = *list;
2614 if (tail == bfd_abs_section_ptr)
2615 continue;
2616 while (tail != NULL)
2617 {
2618 asection *curr;
2619 asection *prev;
2620 bfd_size_type total;
2621
2622 curr = tail;
2623 if (tail->_cooked_size)
2624 total = tail->_cooked_size;
2625 else
2626 total = tail->_raw_size;
2627 while ((prev = PREV_SEC (curr)) != NULL
2628 && ((total += curr->output_offset - prev->output_offset)
2629 < stub_group_size))
2630 curr = prev;
2631
2632 /* OK, the size from the start of CURR to the end is less
2633 than 250000 bytes and thus can be handled by one stub
2634 section. (or the tail section is itself larger than
2635 250000 bytes, in which case we may be toast.)
2636 We should really be keeping track of the total size of
2637 stubs added here, as stubs contribute to the final output
2638 section size. That's a little tricky, and this way will
2639 only break if stubs added total more than 12144 bytes, or
2640 1518 long branch stubs. It seems unlikely for more than
2641 1518 different functions to be called, especially from
2642 code only 250000 bytes long. */
2643 do
2644 {
2645 prev = PREV_SEC (tail);
2646 /* Set up this stub group. */
2647 hplink->stub_group[tail->id].link_sec = curr;
2648 }
2649 while (tail != curr && (tail = prev) != NULL);
2650
2651 /* But wait, there's more! Input sections up to 250000
2652 bytes before the stub section can be handled by it too. */
2653 if (!stubs_always_before_branch)
2654 {
2655 total = 0;
2656 while (prev != NULL
2657 && ((total += tail->output_offset - prev->output_offset)
2658 < stub_group_size))
2659 {
2660 tail = prev;
2661 prev = PREV_SEC (tail);
2662 hplink->stub_group[tail->id].link_sec = curr;
2663 }
2664 }
2665 tail = prev;
2666 }
2667 }
2668 while (list-- != input_list);
2669 free (input_list);
2670 #undef PREV_SEC
2671
2672 /* We want to read in symbol extension records only once. To do this
2673 we need to read in the local symbols in parallel and save them for
2674 later use; so hold pointers to the local symbols in an array. */
2675 all_local_syms
2676 = (Elf_Internal_Sym **) bfd_zmalloc (sizeof (Elf_Internal_Sym *)
2677 * bfd_count);
2678 if (all_local_syms == NULL)
2679 return false;
2680
2681 /* Walk over all the input BFDs, swapping in local symbols.
2682 If we are creating a shared library, create hash entries for the
2683 export stubs. */
2684 for (input_bfd = info->input_bfds, bfd_indx = 0;
2685 input_bfd != NULL;
2686 input_bfd = input_bfd->link_next, bfd_indx++)
2687 {
2688 Elf_Internal_Shdr *symtab_hdr;
2689 Elf_Internal_Sym *isym;
2690 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2691
2692 /* We'll need the symbol table in a second. */
2693 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2694 if (symtab_hdr->sh_info == 0)
2695 continue;
2696
2697 /* We need an array of the local symbols attached to the input bfd.
2698 Unfortunately, we're going to have to read & swap them in. */
2699 local_syms = (Elf_Internal_Sym *)
2700 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf_Internal_Sym));
2701 if (local_syms == NULL)
2702 {
2703 goto error_ret_free_local;
2704 }
2705 all_local_syms[bfd_indx] = local_syms;
2706 ext_syms = (Elf32_External_Sym *)
2707 bfd_malloc (symtab_hdr->sh_info * sizeof (Elf32_External_Sym));
2708 if (ext_syms == NULL)
2709 {
2710 goto error_ret_free_local;
2711 }
2712
2713 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2714 || (bfd_read (ext_syms, 1,
2715 (symtab_hdr->sh_info * sizeof (Elf32_External_Sym)),
2716 input_bfd)
2717 != (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
2718 {
2719 free (ext_syms);
2720 goto error_ret_free_local;
2721 }
2722
2723 /* Swap the local symbols in. */
2724 isym = local_syms;
2725 esym = ext_syms;
2726 for (end_sy = esym + symtab_hdr->sh_info; esym < end_sy; esym++, isym++)
2727 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);
2728
2729 /* Now we can free the external symbols. */
2730 free (ext_syms);
2731
2732 #if ! LONG_BRANCH_PIC_IN_SHLIB
2733 /* If this is a shared link, find all the stub reloc sections. */
2734 if (info->shared)
2735 for (section = input_bfd->sections;
2736 section != NULL;
2737 section = section->next)
2738 {
2739 char *name;
2740 asection *reloc_sec;
2741
2742 name = bfd_malloc (strlen (section->name)
2743 + sizeof STUB_SUFFIX
2744 + 5);
2745 if (name == NULL)
2746 return false;
2747 sprintf (name, ".rela%s%s", section->name, STUB_SUFFIX);
2748 reloc_sec = bfd_get_section_by_name (hplink->root.dynobj, name);
2749 hplink->stub_group[section->id].reloc_sec = reloc_sec;
2750 free (name);
2751 }
2752 #endif
2753
2754 if (info->shared && hplink->multi_subspace)
2755 {
2756 struct elf_link_hash_entry **sym_hashes;
2757 struct elf_link_hash_entry **end_hashes;
2758 unsigned int symcount;
2759
2760 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2761 - symtab_hdr->sh_info);
2762 sym_hashes = elf_sym_hashes (input_bfd);
2763 end_hashes = sym_hashes + symcount;
2764
2765 /* Look through the global syms for functions; We need to
2766 build export stubs for all globally visible functions. */
2767 for (; sym_hashes < end_hashes; sym_hashes++)
2768 {
2769 struct elf32_hppa_link_hash_entry *hash;
2770
2771 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2772
2773 while (hash->elf.root.type == bfd_link_hash_indirect
2774 || hash->elf.root.type == bfd_link_hash_warning)
2775 hash = ((struct elf32_hppa_link_hash_entry *)
2776 hash->elf.root.u.i.link);
2777
2778 /* At this point in the link, undefined syms have been
2779 resolved, so we need to check that the symbol was
2780 defined in this BFD. */
2781 if ((hash->elf.root.type == bfd_link_hash_defined
2782 || hash->elf.root.type == bfd_link_hash_defweak)
2783 && hash->elf.type == STT_FUNC
2784 && hash->elf.root.u.def.section->output_section != NULL
2785 && (hash->elf.root.u.def.section->output_section->owner
2786 == output_bfd)
2787 && hash->elf.root.u.def.section->owner == input_bfd
2788 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2789 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2790 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2791 {
2792 asection *sec;
2793 const char *stub_name;
2794 struct elf32_hppa_stub_hash_entry *stub_entry;
2795
2796 sec = hash->elf.root.u.def.section;
2797 stub_name = hash->elf.root.root.string;
2798 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
2799 stub_name,
2800 false, false);
2801 if (stub_entry == NULL)
2802 {
2803 stub_entry = hppa_add_stub (stub_name, sec, hplink);
2804 if (!stub_entry)
2805 goto error_ret_free_local;
2806
2807 stub_entry->target_value = hash->elf.root.u.def.value;
2808 stub_entry->target_section = hash->elf.root.u.def.section;
2809 stub_entry->stub_type = hppa_stub_export;
2810 stub_entry->h = hash;
2811 stub_changed = 1;
2812 }
2813 else
2814 {
2815 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2816 bfd_get_filename (input_bfd),
2817 stub_name);
2818 }
2819 }
2820 }
2821 }
2822 }
2823
2824 while (1)
2825 {
2826 asection *stub_sec;
2827
2828 for (input_bfd = info->input_bfds, bfd_indx = 0;
2829 input_bfd != NULL;
2830 input_bfd = input_bfd->link_next, bfd_indx++)
2831 {
2832 Elf_Internal_Shdr *symtab_hdr;
2833
2834 /* We'll need the symbol table in a second. */
2835 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2836 if (symtab_hdr->sh_info == 0)
2837 continue;
2838
2839 local_syms = all_local_syms[bfd_indx];
2840
2841 /* Walk over each section attached to the input bfd. */
2842 for (section = input_bfd->sections;
2843 section != NULL;
2844 section = section->next)
2845 {
2846 Elf_Internal_Shdr *input_rel_hdr;
2847 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2848 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2849
2850 /* If there aren't any relocs, then there's nothing more
2851 to do. */
2852 if ((section->flags & SEC_RELOC) == 0
2853 || section->reloc_count == 0)
2854 continue;
2855
2856 /* If this section is a link-once section that will be
2857 discarded, then don't create any stubs. */
2858 if (section->output_section == NULL
2859 || section->output_section->owner != output_bfd)
2860 continue;
2861
2862 /* Allocate space for the external relocations. */
2863 external_relocs
2864 = ((Elf32_External_Rela *)
2865 bfd_malloc (section->reloc_count
2866 * sizeof (Elf32_External_Rela)));
2867 if (external_relocs == NULL)
2868 {
2869 goto error_ret_free_local;
2870 }
2871
2872 /* Likewise for the internal relocations. */
2873 internal_relocs = ((Elf_Internal_Rela *)
2874 bfd_malloc (section->reloc_count
2875 * sizeof (Elf_Internal_Rela)));
2876 if (internal_relocs == NULL)
2877 {
2878 free (external_relocs);
2879 goto error_ret_free_local;
2880 }
2881
2882 /* Read in the external relocs. */
2883 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2884 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2885 || bfd_read (external_relocs, 1,
2886 input_rel_hdr->sh_size,
2887 input_bfd) != input_rel_hdr->sh_size)
2888 {
2889 free (external_relocs);
2890 error_ret_free_internal:
2891 free (internal_relocs);
2892 goto error_ret_free_local;
2893 }
2894
2895 /* Swap in the relocs. */
2896 erela = external_relocs;
2897 erelaend = erela + section->reloc_count;
2898 irela = internal_relocs;
2899 for (; erela < erelaend; erela++, irela++)
2900 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2901
2902 /* We're done with the external relocs, free them. */
2903 free (external_relocs);
2904
2905 /* Now examine each relocation. */
2906 irela = internal_relocs;
2907 irelaend = irela + section->reloc_count;
2908 for (; irela < irelaend; irela++)
2909 {
2910 unsigned int r_type, r_indx;
2911 enum elf32_hppa_stub_type stub_type;
2912 struct elf32_hppa_stub_hash_entry *stub_entry;
2913 asection *sym_sec;
2914 bfd_vma sym_value;
2915 bfd_vma destination;
2916 struct elf32_hppa_link_hash_entry *hash;
2917 char *stub_name;
2918 const asection *id_sec;
2919
2920 r_type = ELF32_R_TYPE (irela->r_info);
2921 r_indx = ELF32_R_SYM (irela->r_info);
2922
2923 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2924 {
2925 bfd_set_error (bfd_error_bad_value);
2926 goto error_ret_free_internal;
2927 }
2928
2929 /* Only look for stubs on call instructions. */
2930 if (r_type != (unsigned int) R_PARISC_PCREL12F
2931 && r_type != (unsigned int) R_PARISC_PCREL17F
2932 && r_type != (unsigned int) R_PARISC_PCREL22F)
2933 continue;
2934
2935 /* Now determine the call target, its name, value,
2936 section. */
2937 sym_sec = NULL;
2938 sym_value = 0;
2939 destination = 0;
2940 hash = NULL;
2941 if (r_indx < symtab_hdr->sh_info)
2942 {
2943 /* It's a local symbol. */
2944 Elf_Internal_Sym *sym;
2945 Elf_Internal_Shdr *hdr;
2946
2947 sym = local_syms + r_indx;
2948 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2949 sym_sec = hdr->bfd_section;
2950 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2951 sym_value = sym->st_value;
2952 destination = (sym_value + irela->r_addend
2953 + sym_sec->output_offset
2954 + sym_sec->output_section->vma);
2955 }
2956 else
2957 {
2958 /* It's an external symbol. */
2959 int e_indx;
2960
2961 e_indx = r_indx - symtab_hdr->sh_info;
2962 hash = ((struct elf32_hppa_link_hash_entry *)
2963 elf_sym_hashes (input_bfd)[e_indx]);
2964
2965 while (hash->elf.root.type == bfd_link_hash_indirect
2966 || hash->elf.root.type == bfd_link_hash_warning)
2967 hash = ((struct elf32_hppa_link_hash_entry *)
2968 hash->elf.root.u.i.link);
2969
2970 if (hash->elf.root.type == bfd_link_hash_defined
2971 || hash->elf.root.type == bfd_link_hash_defweak)
2972 {
2973 sym_sec = hash->elf.root.u.def.section;
2974 sym_value = hash->elf.root.u.def.value;
2975 if (sym_sec->output_section != NULL)
2976 destination = (sym_value + irela->r_addend
2977 + sym_sec->output_offset
2978 + sym_sec->output_section->vma);
2979 }
2980 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2981 {
2982 if (! info->shared)
2983 continue;
2984 }
2985 else if (hash->elf.root.type == bfd_link_hash_undefined)
2986 {
2987 if (! (info->shared
2988 && !info->no_undefined
2989 && (ELF_ST_VISIBILITY (hash->elf.other)
2990 == STV_DEFAULT)))
2991 continue;
2992 }
2993 else
2994 {
2995 bfd_set_error (bfd_error_bad_value);
2996 goto error_ret_free_internal;
2997 }
2998 }
2999
3000 /* Determine what (if any) linker stub is needed. */
3001 stub_type = hppa_type_of_stub (section, irela, hash,
3002 destination);
3003 if (stub_type == hppa_stub_none)
3004 continue;
3005
3006 /* Support for grouping stub sections. */
3007 id_sec = hplink->stub_group[section->id].link_sec;
3008
3009 /* Get the name of this stub. */
3010 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3011 if (!stub_name)
3012 goto error_ret_free_internal;
3013
3014 stub_entry = hppa_stub_hash_lookup (&hplink->stub_hash_table,
3015 stub_name,
3016 false, false);
3017 if (stub_entry != NULL)
3018 {
3019 /* The proper stub has already been created. */
3020 free (stub_name);
3021 continue;
3022 }
3023
3024 stub_entry = hppa_add_stub (stub_name, section, hplink);
3025 if (stub_entry == NULL)
3026 {
3027 free (stub_name);
3028 goto error_ret_free_local;
3029 }
3030
3031 stub_entry->target_value = sym_value;
3032 stub_entry->target_section = sym_sec;
3033 stub_entry->stub_type = stub_type;
3034 if (info->shared)
3035 {
3036 if (stub_type == hppa_stub_import)
3037 stub_entry->stub_type = hppa_stub_import_shared;
3038 else if (stub_type == hppa_stub_long_branch
3039 && (LONG_BRANCH_PIC_IN_SHLIB || hash == NULL))
3040 stub_entry->stub_type = hppa_stub_long_branch_shared;
3041 }
3042 stub_entry->h = hash;
3043 stub_changed = 1;
3044 }
3045
3046 /* We're done with the internal relocs, free them. */
3047 free (internal_relocs);
3048 }
3049 }
3050
3051 if (!stub_changed)
3052 break;
3053
3054 /* OK, we've added some stubs. Find out the new size of the
3055 stub sections. */
3056 for (stub_sec = hplink->stub_bfd->sections;
3057 stub_sec != NULL;
3058 stub_sec = stub_sec->next)
3059 {
3060 stub_sec->_raw_size = 0;
3061 stub_sec->_cooked_size = 0;
3062 }
3063 #if ! LONG_BRANCH_PIC_IN_SHLIB
3064 {
3065 int i;
3066
3067 for (i = top_id; i >= 0; --i)
3068 {
3069 /* This will probably hit the same section many times.. */
3070 stub_sec = hplink->stub_group[i].reloc_sec;
3071 if (stub_sec != NULL)
3072 {
3073 stub_sec->_raw_size = 0;
3074 stub_sec->_cooked_size = 0;
3075 }
3076 }
3077 }
3078 #endif
3079
3080 bfd_hash_traverse (&hplink->stub_hash_table,
3081 hppa_size_one_stub,
3082 hplink);
3083
3084 /* Ask the linker to do its stuff. */
3085 (*hplink->layout_sections_again) ();
3086 stub_changed = 0;
3087 }
3088
3089 ret = 1;
3090
3091 error_ret_free_local:
3092 while (bfd_count-- > 0)
3093 if (all_local_syms[bfd_count])
3094 free (all_local_syms[bfd_count]);
3095 free (all_local_syms);
3096
3097 return ret;
3098 }
3099
3100 /* For a final link, this function is called after we have sized the
3101 stubs to provide a value for __gp. */
3102
3103 boolean
3104 elf32_hppa_set_gp (abfd, info)
3105 bfd *abfd;
3106 struct bfd_link_info *info;
3107 {
3108 struct elf32_hppa_link_hash_table *hplink;
3109 struct elf_link_hash_entry *h;
3110 asection *sec;
3111 bfd_vma gp_val;
3112
3113 hplink = hppa_link_hash_table (info);
3114 h = elf_link_hash_lookup (&hplink->root, "$global$",
3115 false, false, false);
3116
3117 if (h != NULL
3118 && (h->root.type == bfd_link_hash_defined
3119 || h->root.type == bfd_link_hash_defweak))
3120 {
3121 gp_val = h->root.u.def.value;
3122 sec = h->root.u.def.section;
3123 }
3124 else
3125 {
3126 /* Choose to point our LTP at, in this order, one of .plt, .got,
3127 or .data, if these sections exist. In the case of choosing
3128 .plt try to make the LTP ideal for addressing anywhere in the
3129 .plt or .got with a 14 bit signed offset. Typically, the end
3130 of the .plt is the start of the .got, so choose .plt + 0x2000
3131 if either the .plt or .got is larger than 0x2000. If both
3132 the .plt and .got are smaller than 0x2000, choose the end of
3133 the .plt section. */
3134
3135 sec = hplink->splt;
3136 if (sec != NULL)
3137 {
3138 gp_val = sec->_raw_size;
3139 if (gp_val > 0x2000
3140 || (hplink->sgot && hplink->sgot->_raw_size > 0x2000))
3141 {
3142 gp_val = 0x2000;
3143 }
3144 }
3145 else
3146 {
3147 gp_val = 0;
3148 sec = hplink->sgot;
3149 if (sec != NULL)
3150 {
3151 /* We know we don't have a .plt. If .got is large,
3152 offset our LTP. */
3153 if (sec->_raw_size > 0x2000)
3154 gp_val = 0x2000;
3155 }
3156 else
3157 {
3158 /* No .plt or .got. Who cares what the LTP is? */
3159 sec = bfd_get_section_by_name (abfd, ".data");
3160 }
3161 }
3162
3163 if (h != NULL)
3164 {
3165 h->root.type = bfd_link_hash_defined;
3166 h->root.u.def.value = gp_val;
3167 if (sec != NULL)
3168 h->root.u.def.section = sec;
3169 else
3170 h->root.u.def.section = bfd_abs_section_ptr;
3171 }
3172 }
3173
3174 if (sec != NULL && sec->output_section != NULL)
3175 gp_val += sec->output_section->vma + sec->output_offset;
3176
3177 elf_gp (abfd) = gp_val;
3178 return true;
3179 }
3180
3181 /* Build all the stubs associated with the current output file. The
3182 stubs are kept in a hash table attached to the main linker hash
3183 table. We also set up the .plt entries for statically linked PIC
3184 functions here. This function is called via hppaelf_finish in the
3185 linker. */
3186
3187 boolean
3188 elf32_hppa_build_stubs (info)
3189 struct bfd_link_info *info;
3190 {
3191 asection *stub_sec;
3192 struct bfd_hash_table *table;
3193 struct elf32_hppa_link_hash_table *hplink;
3194
3195 hplink = hppa_link_hash_table (info);
3196
3197 for (stub_sec = hplink->stub_bfd->sections;
3198 stub_sec != NULL;
3199 stub_sec = stub_sec->next)
3200 {
3201 size_t size;
3202
3203 /* Allocate memory to hold the linker stubs. */
3204 size = stub_sec->_raw_size;
3205 stub_sec->contents = (unsigned char *) bfd_zalloc (hplink->stub_bfd,
3206 size);
3207 if (stub_sec->contents == NULL && size != 0)
3208 return false;
3209 stub_sec->_raw_size = 0;
3210 }
3211
3212 /* Build the stubs as directed by the stub hash table. */
3213 table = &hplink->stub_hash_table;
3214 bfd_hash_traverse (table, hppa_build_one_stub, info);
3215
3216 return true;
3217 }
3218
3219 /* Perform a final link. */
3220
3221 static boolean
3222 elf32_hppa_final_link (abfd, info)
3223 bfd *abfd;
3224 struct bfd_link_info *info;
3225 {
3226 asection *s;
3227
3228 /* Invoke the regular ELF linker to do all the work. */
3229 if (!bfd_elf32_bfd_final_link (abfd, info))
3230 return false;
3231
3232 /* If we're producing a final executable, sort the contents of the
3233 unwind section. Magic section names, but this is much safer than
3234 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3235 occurred. Consider what happens if someone inept creates a
3236 linker script that puts unwind information in .text. */
3237 s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3238 if (s != NULL)
3239 {
3240 bfd_size_type size;
3241 char *contents;
3242
3243 size = s->_raw_size;
3244 contents = bfd_malloc (size);
3245 if (contents == NULL)
3246 return false;
3247
3248 if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3249 return false;
3250
3251 qsort (contents, size / 16, 16, hppa_unwind_entry_compare);
3252
3253 if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3254 return false;
3255 }
3256 return true;
3257 }
3258
3259 /* Record the lowest address for the data and text segments. */
3260
3261 static void
3262 hppa_record_segment_addr (abfd, section, data)
3263 bfd *abfd ATTRIBUTE_UNUSED;
3264 asection *section;
3265 PTR data;
3266 {
3267 struct elf32_hppa_link_hash_table *hplink;
3268
3269 hplink = (struct elf32_hppa_link_hash_table *) data;
3270
3271 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3272 {
3273 bfd_vma value = section->vma - section->filepos;
3274
3275 if ((section->flags & SEC_READONLY) != 0)
3276 {
3277 if (value < hplink->text_segment_base)
3278 hplink->text_segment_base = value;
3279 }
3280 else
3281 {
3282 if (value < hplink->data_segment_base)
3283 hplink->data_segment_base = value;
3284 }
3285 }
3286 }
3287
3288 /* Perform a relocation as part of a final link. */
3289
3290 static bfd_reloc_status_type
3291 final_link_relocate (input_section, contents, rel, value, hplink, sym_sec, h)
3292 asection *input_section;
3293 bfd_byte *contents;
3294 const Elf_Internal_Rela *rel;
3295 bfd_vma value;
3296 struct elf32_hppa_link_hash_table *hplink;
3297 asection *sym_sec;
3298 struct elf32_hppa_link_hash_entry *h;
3299 {
3300 int insn;
3301 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3302 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3303 int r_format = howto->bitsize;
3304 enum hppa_reloc_field_selector_type_alt r_field;
3305 bfd *input_bfd = input_section->owner;
3306 bfd_vma offset = rel->r_offset;
3307 bfd_vma max_branch_offset = 0;
3308 bfd_byte *hit_data = contents + offset;
3309 bfd_signed_vma addend = rel->r_addend;
3310 bfd_vma location;
3311 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3312 int val;
3313
3314 if (r_type == R_PARISC_NONE)
3315 return bfd_reloc_ok;
3316
3317 insn = bfd_get_32 (input_bfd, hit_data);
3318
3319 /* Find out where we are and where we're going. */
3320 location = (offset +
3321 input_section->output_offset +
3322 input_section->output_section->vma);
3323
3324 switch (r_type)
3325 {
3326 case R_PARISC_PCREL12F:
3327 case R_PARISC_PCREL17F:
3328 case R_PARISC_PCREL22F:
3329 /* If this is a call to a function defined in another dynamic
3330 library, or if it is a call to a PIC function in the same
3331 object, or if this is a shared link and it is a call to a
3332 weak symbol which may or may not be in the same object, then
3333 find the import stub in the stub hash. */
3334 if (sym_sec == NULL
3335 || sym_sec->output_section == NULL
3336 || (h != NULL
3337 && ((h->maybe_pic_call
3338 && !(input_section->flags & SEC_HAS_GOT_REF))
3339 || (h->elf.root.type == bfd_link_hash_defweak
3340 && h->elf.dynindx != -1
3341 && h->elf.plt.offset != (bfd_vma) -1))))
3342 {
3343 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3344 h, rel, hplink);
3345 if (stub_entry != NULL)
3346 {
3347 value = (stub_entry->stub_offset
3348 + stub_entry->stub_sec->output_offset
3349 + stub_entry->stub_sec->output_section->vma);
3350 addend = 0;
3351 }
3352 else if (sym_sec == NULL && h != NULL
3353 && h->elf.root.type == bfd_link_hash_undefweak)
3354 {
3355 /* It's OK if undefined weak. Calls to undefined weak
3356 symbols behave as if the "called" function
3357 immediately returns. We can thus call to a weak
3358 function without first checking whether the function
3359 is defined. */
3360 value = location;
3361 addend = 8;
3362 }
3363 else
3364 return bfd_reloc_notsupported;
3365 }
3366 /* Fall thru. */
3367
3368 case R_PARISC_PCREL21L:
3369 case R_PARISC_PCREL17C:
3370 case R_PARISC_PCREL17R:
3371 case R_PARISC_PCREL14R:
3372 case R_PARISC_PCREL14F:
3373 /* Make it a pc relative offset. */
3374 value -= location;
3375 addend -= 8;
3376 break;
3377
3378 case R_PARISC_DPREL21L:
3379 case R_PARISC_DPREL14R:
3380 case R_PARISC_DPREL14F:
3381 /* For all the DP relative relocations, we need to examine the symbol's
3382 section. If it's a code section, then "data pointer relative" makes
3383 no sense. In that case we don't adjust the "value", and for 21 bit
3384 addil instructions, we change the source addend register from %dp to
3385 %r0. This situation commonly arises when a variable's "constness"
3386 is declared differently from the way the variable is defined. For
3387 instance: "extern int foo" with foo defined as "const int foo". */
3388 if (sym_sec == NULL)
3389 break;
3390 if ((sym_sec->flags & SEC_CODE) != 0)
3391 {
3392 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3393 == (((int) OP_ADDIL << 26) | (27 << 21)))
3394 {
3395 insn &= ~ (0x1f << 21);
3396 #if 1 /* debug them. */
3397 (*_bfd_error_handler)
3398 (_("%s(%s+0x%lx): fixing %s"),
3399 bfd_get_filename (input_bfd),
3400 input_section->name,
3401 (long) rel->r_offset,
3402 howto->name);
3403 #endif
3404 }
3405 /* Now try to make things easy for the dynamic linker. */
3406
3407 break;
3408 }
3409 /* Fall thru. */
3410
3411 case R_PARISC_DLTIND21L:
3412 case R_PARISC_DLTIND14R:
3413 case R_PARISC_DLTIND14F:
3414 value -= elf_gp (input_section->output_section->owner);
3415 break;
3416
3417 case R_PARISC_SEGREL32:
3418 if ((sym_sec->flags & SEC_CODE) != 0)
3419 value -= hplink->text_segment_base;
3420 else
3421 value -= hplink->data_segment_base;
3422 break;
3423
3424 default:
3425 break;
3426 }
3427
3428 switch (r_type)
3429 {
3430 case R_PARISC_DIR32:
3431 case R_PARISC_DIR14F:
3432 case R_PARISC_DIR17F:
3433 case R_PARISC_PCREL17C:
3434 case R_PARISC_PCREL14F:
3435 case R_PARISC_DPREL14F:
3436 case R_PARISC_PLABEL32:
3437 case R_PARISC_DLTIND14F:
3438 case R_PARISC_SEGBASE:
3439 case R_PARISC_SEGREL32:
3440 r_field = e_fsel;
3441 break;
3442
3443 case R_PARISC_DIR21L:
3444 case R_PARISC_PCREL21L:
3445 case R_PARISC_DPREL21L:
3446 case R_PARISC_PLABEL21L:
3447 case R_PARISC_DLTIND21L:
3448 r_field = e_lrsel;
3449 break;
3450
3451 case R_PARISC_DIR17R:
3452 case R_PARISC_PCREL17R:
3453 case R_PARISC_DIR14R:
3454 case R_PARISC_PCREL14R:
3455 case R_PARISC_DPREL14R:
3456 case R_PARISC_PLABEL14R:
3457 case R_PARISC_DLTIND14R:
3458 r_field = e_rrsel;
3459 break;
3460
3461 case R_PARISC_PCREL12F:
3462 case R_PARISC_PCREL17F:
3463 case R_PARISC_PCREL22F:
3464 r_field = e_fsel;
3465
3466 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3467 {
3468 max_branch_offset = (1 << (17-1)) << 2;
3469 }
3470 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3471 {
3472 max_branch_offset = (1 << (12-1)) << 2;
3473 }
3474 else
3475 {
3476 max_branch_offset = (1 << (22-1)) << 2;
3477 }
3478
3479 /* sym_sec is NULL on undefined weak syms or when shared on
3480 undefined syms. We've already checked for a stub for the
3481 shared undefined case. */
3482 if (sym_sec == NULL)
3483 break;
3484
3485 /* If the branch is out of reach, then redirect the
3486 call to the local stub for this function. */
3487 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3488 {
3489 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3490 h, rel, hplink);
3491 if (stub_entry == NULL)
3492 return bfd_reloc_notsupported;
3493
3494 /* Munge up the value and addend so that we call the stub
3495 rather than the procedure directly. */
3496 value = (stub_entry->stub_offset
3497 + stub_entry->stub_sec->output_offset
3498 + stub_entry->stub_sec->output_section->vma
3499 - location);
3500 addend = -8;
3501 }
3502 break;
3503
3504 /* Something we don't know how to handle. */
3505 default:
3506 return bfd_reloc_notsupported;
3507 }
3508
3509 /* Make sure we can reach the stub. */
3510 if (max_branch_offset != 0
3511 && value + addend + max_branch_offset >= 2*max_branch_offset)
3512 {
3513 (*_bfd_error_handler)
3514 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3515 bfd_get_filename (input_bfd),
3516 input_section->name,
3517 (long) rel->r_offset,
3518 stub_entry->root.string);
3519 return bfd_reloc_notsupported;
3520 }
3521
3522 val = hppa_field_adjust (value, addend, r_field);
3523
3524 switch (r_type)
3525 {
3526 case R_PARISC_PCREL12F:
3527 case R_PARISC_PCREL17C:
3528 case R_PARISC_PCREL17F:
3529 case R_PARISC_PCREL17R:
3530 case R_PARISC_PCREL22F:
3531 case R_PARISC_DIR17F:
3532 case R_PARISC_DIR17R:
3533 /* This is a branch. Divide the offset by four.
3534 Note that we need to decide whether it's a branch or
3535 otherwise by inspecting the reloc. Inspecting insn won't
3536 work as insn might be from a .word directive. */
3537 val >>= 2;
3538 break;
3539
3540 default:
3541 break;
3542 }
3543
3544 insn = hppa_rebuild_insn (insn, val, r_format);
3545
3546 /* Update the instruction word. */
3547 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3548 return bfd_reloc_ok;
3549 }
3550
3551 /* Relocate an HPPA ELF section. */
3552
3553 static boolean
3554 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3555 contents, relocs, local_syms, local_sections)
3556 bfd *output_bfd;
3557 struct bfd_link_info *info;
3558 bfd *input_bfd;
3559 asection *input_section;
3560 bfd_byte *contents;
3561 Elf_Internal_Rela *relocs;
3562 Elf_Internal_Sym *local_syms;
3563 asection **local_sections;
3564 {
3565 bfd *dynobj;
3566 bfd_vma *local_got_offsets;
3567 struct elf32_hppa_link_hash_table *hplink;
3568 Elf_Internal_Shdr *symtab_hdr;
3569 Elf_Internal_Rela *rel;
3570 Elf_Internal_Rela *relend;
3571 asection *sreloc;
3572
3573 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3574
3575 hplink = hppa_link_hash_table (info);
3576 dynobj = hplink->root.dynobj;
3577 local_got_offsets = elf_local_got_offsets (input_bfd);
3578 sreloc = NULL;
3579
3580 rel = relocs;
3581 relend = relocs + input_section->reloc_count;
3582 for (; rel < relend; rel++)
3583 {
3584 unsigned int r_type;
3585 reloc_howto_type *howto;
3586 unsigned int r_symndx;
3587 struct elf32_hppa_link_hash_entry *h;
3588 Elf_Internal_Sym *sym;
3589 asection *sym_sec;
3590 bfd_vma relocation;
3591 bfd_reloc_status_type r;
3592 const char *sym_name;
3593 boolean plabel;
3594 bfd_vma off;
3595
3596 r_type = ELF32_R_TYPE (rel->r_info);
3597 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3598 {
3599 bfd_set_error (bfd_error_bad_value);
3600 return false;
3601 }
3602 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3603 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3604 continue;
3605
3606 r_symndx = ELF32_R_SYM (rel->r_info);
3607
3608 if (info->relocateable)
3609 {
3610 /* This is a relocateable link. We don't have to change
3611 anything, unless the reloc is against a section symbol,
3612 in which case we have to adjust according to where the
3613 section symbol winds up in the output section. */
3614 if (r_symndx < symtab_hdr->sh_info)
3615 {
3616 sym = local_syms + r_symndx;
3617 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3618 {
3619 sym_sec = local_sections[r_symndx];
3620 rel->r_addend += sym_sec->output_offset;
3621 }
3622 }
3623 continue;
3624 }
3625
3626 /* This is a final link. */
3627 h = NULL;
3628 sym = NULL;
3629 sym_sec = NULL;
3630 if (r_symndx < symtab_hdr->sh_info)
3631 {
3632 /* This is a local symbol, h defaults to NULL. */
3633 sym = local_syms + r_symndx;
3634 sym_sec = local_sections[r_symndx];
3635 relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
3636 ? 0 : sym->st_value)
3637 + sym_sec->output_offset
3638 + sym_sec->output_section->vma);
3639 }
3640 else
3641 {
3642 int indx;
3643
3644 /* It's a global; Find its entry in the link hash. */
3645 indx = r_symndx - symtab_hdr->sh_info;
3646 h = ((struct elf32_hppa_link_hash_entry *)
3647 elf_sym_hashes (input_bfd)[indx]);
3648 while (h->elf.root.type == bfd_link_hash_indirect
3649 || h->elf.root.type == bfd_link_hash_warning)
3650 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3651
3652 relocation = 0;
3653 if (h->elf.root.type == bfd_link_hash_defined
3654 || h->elf.root.type == bfd_link_hash_defweak)
3655 {
3656 sym_sec = h->elf.root.u.def.section;
3657 /* If sym_sec->output_section is NULL, then it's a
3658 symbol defined in a shared library. */
3659 if (sym_sec->output_section != NULL)
3660 relocation = (h->elf.root.u.def.value
3661 + sym_sec->output_offset
3662 + sym_sec->output_section->vma);
3663 }
3664 else if (h->elf.root.type == bfd_link_hash_undefweak)
3665 ;
3666 else if (info->shared && !info->no_undefined
3667 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3668 && h->elf.type != STT_PARISC_MILLI)
3669 {
3670 if (info->symbolic)
3671 if (!((*info->callbacks->undefined_symbol)
3672 (info, h->elf.root.root.string, input_bfd,
3673 input_section, rel->r_offset, false)))
3674 return false;
3675 }
3676 else
3677 {
3678 if (!((*info->callbacks->undefined_symbol)
3679 (info, h->elf.root.root.string, input_bfd,
3680 input_section, rel->r_offset, true)))
3681 return false;
3682 }
3683 }
3684
3685 /* Do any required modifications to the relocation value, and
3686 determine what types of dynamic info we need to output, if
3687 any. */
3688 plabel = 0;
3689 switch (r_type)
3690 {
3691 case R_PARISC_DLTIND14F:
3692 case R_PARISC_DLTIND14R:
3693 case R_PARISC_DLTIND21L:
3694 /* Relocation is to the entry for this symbol in the global
3695 offset table. */
3696 if (h != NULL)
3697 {
3698 boolean dyn;
3699
3700 off = h->elf.got.offset;
3701 dyn = hplink->root.dynamic_sections_created;
3702 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3703 {
3704 /* This is actually a static link, or it is a
3705 -Bsymbolic link and the symbol is defined
3706 locally, or the symbol was forced to be local
3707 because of a version file. We must initialize
3708 this entry in the global offset table. Since the
3709 offset must always be a multiple of 4, we use the
3710 least significant bit to record whether we have
3711 initialized it already.
3712
3713 When doing a dynamic link, we create a .rela.got
3714 relocation entry to initialize the value. This
3715 is done in the finish_dynamic_symbol routine. */
3716 if ((off & 1) != 0)
3717 off &= ~1;
3718 else
3719 {
3720 bfd_put_32 (output_bfd, relocation,
3721 hplink->sgot->contents + off);
3722 h->elf.got.offset |= 1;
3723 }
3724 }
3725 }
3726 else
3727 {
3728 /* Local symbol case. */
3729 if (local_got_offsets == NULL)
3730 abort ();
3731
3732 off = local_got_offsets[r_symndx];
3733
3734 /* The offset must always be a multiple of 4. We use
3735 the least significant bit to record whether we have
3736 already generated the necessary reloc. */
3737 if ((off & 1) != 0)
3738 off &= ~1;
3739 else
3740 {
3741 bfd_put_32 (output_bfd, relocation,
3742 hplink->sgot->contents + off);
3743
3744 if (info->shared)
3745 {
3746 /* Output a dynamic relocation for this GOT
3747 entry. In this case it is relative to the
3748 base of the object because the symbol index
3749 is zero. */
3750 Elf_Internal_Rela outrel;
3751 asection *srelgot = hplink->srelgot;
3752
3753 outrel.r_offset = (off
3754 + hplink->sgot->output_offset
3755 + hplink->sgot->output_section->vma);
3756 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3757 outrel.r_addend = relocation;
3758 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3759 ((Elf32_External_Rela *)
3760 srelgot->contents
3761 + srelgot->reloc_count));
3762 ++srelgot->reloc_count;
3763 }
3764
3765 local_got_offsets[r_symndx] |= 1;
3766 }
3767 }
3768
3769 if (off >= (bfd_vma) -2)
3770 abort ();
3771
3772 /* Add the base of the GOT to the relocation value. */
3773 relocation = (off
3774 + hplink->sgot->output_offset
3775 + hplink->sgot->output_section->vma);
3776 break;
3777
3778 case R_PARISC_SEGREL32:
3779 /* If this is the first SEGREL relocation, then initialize
3780 the segment base values. */
3781 if (hplink->text_segment_base == (bfd_vma) -1)
3782 bfd_map_over_sections (output_bfd,
3783 hppa_record_segment_addr,
3784 hplink);
3785 break;
3786
3787 case R_PARISC_PLABEL14R:
3788 case R_PARISC_PLABEL21L:
3789 case R_PARISC_PLABEL32:
3790 if (hplink->root.dynamic_sections_created)
3791 {
3792 /* If we have a global symbol with a PLT slot, then
3793 redirect this relocation to it. */
3794 if (h != NULL)
3795 {
3796 off = h->elf.plt.offset;
3797 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3798 {
3799 /* In a non-shared link, adjust_dynamic_symbols
3800 isn't called for symbols forced local. We
3801 need to write out the plt entry here. */
3802 if ((off & 1) != 0)
3803 off &= ~1;
3804 else
3805 {
3806 bfd_put_32 (output_bfd,
3807 relocation,
3808 hplink->splt->contents + off);
3809 bfd_put_32 (output_bfd,
3810 elf_gp (hplink->splt->output_section->owner),
3811 hplink->splt->contents + off + 4);
3812 h->elf.plt.offset |= 1;
3813 }
3814 }
3815 }
3816 else
3817 {
3818 bfd_vma *local_plt_offsets;
3819
3820 if (local_got_offsets == NULL)
3821 abort ();
3822
3823 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3824 off = local_plt_offsets[r_symndx];
3825
3826 /* As for the local .got entry case, we use the last
3827 bit to record whether we've already initialised
3828 this local .plt entry. */
3829 if ((off & 1) != 0)
3830 off &= ~1;
3831 else
3832 {
3833 bfd_put_32 (output_bfd,
3834 relocation,
3835 hplink->splt->contents + off);
3836 bfd_put_32 (output_bfd,
3837 elf_gp (hplink->splt->output_section->owner),
3838 hplink->splt->contents + off + 4);
3839
3840 if (info->shared)
3841 {
3842 /* Output a dynamic IPLT relocation for this
3843 PLT entry. */
3844 Elf_Internal_Rela outrel;
3845 asection *srelplt = hplink->srelplt;
3846
3847 outrel.r_offset = (off
3848 + hplink->splt->output_offset
3849 + hplink->splt->output_section->vma);
3850 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3851 outrel.r_addend = relocation;
3852 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
3853 ((Elf32_External_Rela *)
3854 srelplt->contents
3855 + srelplt->reloc_count));
3856 ++srelplt->reloc_count;
3857 }
3858
3859 local_plt_offsets[r_symndx] |= 1;
3860 }
3861 }
3862
3863 if (off >= (bfd_vma) -2)
3864 abort ();
3865
3866 /* PLABELs contain function pointers. Relocation is to
3867 the entry for the function in the .plt. The magic +2
3868 offset signals to $$dyncall that the function pointer
3869 is in the .plt and thus has a gp pointer too.
3870 Exception: Undefined PLABELs should have a value of
3871 zero. */
3872 if (h == NULL
3873 || (h->elf.root.type != bfd_link_hash_undefweak
3874 && h->elf.root.type != bfd_link_hash_undefined))
3875 {
3876 relocation = (off
3877 + hplink->splt->output_offset
3878 + hplink->splt->output_section->vma
3879 + 2);
3880 }
3881 plabel = 1;
3882 }
3883 /* Fall through and possibly emit a dynamic relocation. */
3884
3885 case R_PARISC_DIR17F:
3886 case R_PARISC_DIR17R:
3887 case R_PARISC_DIR14F:
3888 case R_PARISC_DIR14R:
3889 case R_PARISC_DIR21L:
3890 case R_PARISC_DPREL14F:
3891 case R_PARISC_DPREL14R:
3892 case R_PARISC_DPREL21L:
3893 case R_PARISC_DIR32:
3894 /* The reloc types handled here and this conditional
3895 expression must match the code in check_relocs and
3896 hppa_discard_copies. ie. We need exactly the same
3897 condition as in check_relocs, with some extra conditions
3898 (dynindx test in this case) to cater for relocs removed
3899 by hppa_discard_copies. If you squint, the non-shared
3900 test here does indeed match the one in check_relocs, the
3901 difference being that here we test DEF_DYNAMIC rather
3902 than a maybe-DEF_DYNAMIC via !DEF_REGULAR. Common syms
3903 end up with !DEF_REGULAR, which is why we can't use that
3904 here. Conversely, DEF_DYNAMIC can't be used in
3905 check_relocs as there all files have not been loaded. */
3906 if ((info->shared
3907 && (input_section->flags & SEC_ALLOC) != 0
3908 && (IS_ABSOLUTE_RELOC (r_type)
3909 || (h != NULL
3910 && h->elf.dynindx != -1
3911 && (!info->symbolic
3912 || (h->elf.elf_link_hash_flags
3913 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3914 || (!info->shared
3915 && (input_section->flags & SEC_ALLOC) != 0
3916 && h != NULL
3917 && h->elf.dynindx != -1
3918 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3919 && ((h->elf.elf_link_hash_flags
3920 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3921 || h->elf.root.type == bfd_link_hash_undefweak
3922 || h->elf.root.type == bfd_link_hash_undefined)))
3923 {
3924 Elf_Internal_Rela outrel;
3925 boolean skip;
3926
3927 /* When generating a shared object, these relocations
3928 are copied into the output file to be resolved at run
3929 time. */
3930
3931 if (sreloc == NULL)
3932 {
3933 const char *name;
3934
3935 name = (bfd_elf_string_from_elf_section
3936 (input_bfd,
3937 elf_elfheader (input_bfd)->e_shstrndx,
3938 elf_section_data (input_section)->rel_hdr.sh_name));
3939 if (name == NULL)
3940 return false;
3941 sreloc = bfd_get_section_by_name (dynobj, name);
3942 if (sreloc == NULL)
3943 abort ();
3944 }
3945
3946 outrel.r_offset = rel->r_offset;
3947 outrel.r_addend = rel->r_addend;
3948 skip = false;
3949 if (elf_section_data (input_section)->stab_info != NULL)
3950 {
3951 bfd_vma off;
3952
3953 off = (_bfd_stab_section_offset
3954 (output_bfd, &hplink->root.stab_info,
3955 input_section,
3956 &elf_section_data (input_section)->stab_info,
3957 rel->r_offset));
3958 if (off == (bfd_vma) -1)
3959 skip = true;
3960 outrel.r_offset = off;
3961 }
3962
3963 outrel.r_offset += (input_section->output_offset
3964 + input_section->output_section->vma);
3965
3966 if (skip)
3967 {
3968 memset (&outrel, 0, sizeof (outrel));
3969 }
3970 else if (h != NULL
3971 && h->elf.dynindx != -1
3972 && (plabel
3973 || !IS_ABSOLUTE_RELOC (r_type)
3974 || !info->shared
3975 || !info->symbolic
3976 || (h->elf.elf_link_hash_flags
3977 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3978 {
3979 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3980 }
3981 else /* It's a local symbol, or one marked to become local. */
3982 {
3983 int indx = 0;
3984
3985 /* Add the absolute offset of the symbol. */
3986 outrel.r_addend += relocation;
3987
3988 /* Global plabels need to be processed by the
3989 dynamic linker so that functions have at most one
3990 fptr. For this reason, we need to differentiate
3991 between global and local plabels, which we do by
3992 providing the function symbol for a global plabel
3993 reloc, and no symbol for local plabels. */
3994 if (! plabel
3995 && sym_sec != NULL
3996 && sym_sec->output_section != NULL
3997 && ! bfd_is_abs_section (sym_sec))
3998 {
3999 indx = elf_section_data (sym_sec->output_section)->dynindx;
4000 /* We are turning this relocation into one
4001 against a section symbol, so subtract out the
4002 output section's address but not the offset
4003 of the input section in the output section. */
4004 outrel.r_addend -= sym_sec->output_section->vma;
4005 }
4006
4007 outrel.r_info = ELF32_R_INFO (indx, r_type);
4008 }
4009 #if 0
4010 /* EH info can cause unaligned DIR32 relocs.
4011 Tweak the reloc type for the dynamic linker. */
4012 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4013 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4014 R_PARISC_DIR32U);
4015 #endif
4016 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
4017 ((Elf32_External_Rela *)
4018 sreloc->contents
4019 + sreloc->reloc_count));
4020 ++sreloc->reloc_count;
4021 }
4022 break;
4023
4024 default:
4025 break;
4026 }
4027
4028 r = final_link_relocate (input_section, contents, rel, relocation,
4029 hplink, sym_sec, h);
4030
4031 if (r == bfd_reloc_ok)
4032 continue;
4033
4034 if (h != NULL)
4035 sym_name = h->elf.root.root.string;
4036 else
4037 {
4038 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4039 symtab_hdr->sh_link,
4040 sym->st_name);
4041 if (sym_name == NULL)
4042 return false;
4043 if (*sym_name == '\0')
4044 sym_name = bfd_section_name (input_bfd, sym_sec);
4045 }
4046
4047 howto = elf_hppa_howto_table + r_type;
4048
4049 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4050 {
4051 (*_bfd_error_handler)
4052 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4053 bfd_get_filename (input_bfd),
4054 input_section->name,
4055 (long) rel->r_offset,
4056 howto->name,
4057 sym_name);
4058 }
4059 else
4060 {
4061 if (!((*info->callbacks->reloc_overflow)
4062 (info, sym_name, howto->name, (bfd_vma) 0,
4063 input_bfd, input_section, rel->r_offset)))
4064 return false;
4065 }
4066 }
4067
4068 return true;
4069 }
4070
4071 /* Comparison function for qsort to sort unwind section during a
4072 final link. */
4073
4074 static int
4075 hppa_unwind_entry_compare (a, b)
4076 const PTR a;
4077 const PTR b;
4078 {
4079 const bfd_byte *ap, *bp;
4080 unsigned long av, bv;
4081
4082 ap = (const bfd_byte *) a;
4083 av = (unsigned long) ap[0] << 24;
4084 av |= (unsigned long) ap[1] << 16;
4085 av |= (unsigned long) ap[2] << 8;
4086 av |= (unsigned long) ap[3];
4087
4088 bp = (const bfd_byte *) b;
4089 bv = (unsigned long) bp[0] << 24;
4090 bv |= (unsigned long) bp[1] << 16;
4091 bv |= (unsigned long) bp[2] << 8;
4092 bv |= (unsigned long) bp[3];
4093
4094 return av < bv ? -1 : av > bv ? 1 : 0;
4095 }
4096
4097 /* Finish up dynamic symbol handling. We set the contents of various
4098 dynamic sections here. */
4099
4100 static boolean
4101 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4102 bfd *output_bfd;
4103 struct bfd_link_info *info;
4104 struct elf_link_hash_entry *h;
4105 Elf_Internal_Sym *sym;
4106 {
4107 struct elf32_hppa_link_hash_table *hplink;
4108 bfd *dynobj;
4109
4110 hplink = hppa_link_hash_table (info);
4111 dynobj = hplink->root.dynobj;
4112
4113 if (h->plt.offset != (bfd_vma) -1)
4114 {
4115 bfd_vma value;
4116
4117 if (h->plt.offset & 1)
4118 abort ();
4119
4120 /* This symbol has an entry in the procedure linkage table. Set
4121 it up.
4122
4123 The format of a plt entry is
4124 <funcaddr>
4125 <__gp>
4126 */
4127 value = 0;
4128 if (h->root.type == bfd_link_hash_defined
4129 || h->root.type == bfd_link_hash_defweak)
4130 {
4131 value = h->root.u.def.value;
4132 if (h->root.u.def.section->output_section != NULL)
4133 value += (h->root.u.def.section->output_offset
4134 + h->root.u.def.section->output_section->vma);
4135 }
4136
4137 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4138 {
4139 Elf_Internal_Rela rel;
4140
4141 /* Create a dynamic IPLT relocation for this entry. */
4142 rel.r_offset = (h->plt.offset
4143 + hplink->splt->output_offset
4144 + hplink->splt->output_section->vma);
4145 if (! ((struct elf32_hppa_link_hash_entry *) h)->plt_abs
4146 && h->dynindx != -1)
4147 {
4148 /* To support lazy linking, the function pointer is
4149 initialised to point to a special stub stored at the
4150 end of the .plt. This is not done for plt entries
4151 with a base-relative dynamic relocation. */
4152 value = (hplink->splt->output_offset
4153 + hplink->splt->output_section->vma
4154 + hplink->splt->_raw_size
4155 - sizeof (plt_stub)
4156 + PLT_STUB_ENTRY);
4157 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4158 rel.r_addend = 0;
4159 }
4160 else
4161 {
4162 /* This symbol has been marked to become local, and is
4163 used by a plabel so must be kept in the .plt. */
4164 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4165 rel.r_addend = value;
4166 }
4167
4168 bfd_elf32_swap_reloca_out (hplink->splt->output_section->owner,
4169 &rel,
4170 ((Elf32_External_Rela *)
4171 hplink->srelplt->contents
4172 + hplink->srelplt->reloc_count));
4173 hplink->srelplt->reloc_count++;
4174 }
4175
4176 bfd_put_32 (hplink->splt->owner,
4177 value,
4178 hplink->splt->contents + h->plt.offset);
4179 bfd_put_32 (hplink->splt->owner,
4180 elf_gp (hplink->splt->output_section->owner),
4181 hplink->splt->contents + h->plt.offset + 4);
4182 if (PLABEL_PLT_ENTRY_SIZE != PLT_ENTRY_SIZE
4183 && ((struct elf32_hppa_link_hash_entry *) h)->plabel
4184 && h->dynindx != -1)
4185 {
4186 memset (hplink->splt->contents + h->plt.offset + 8,
4187 0, PLABEL_PLT_ENTRY_SIZE - PLT_ENTRY_SIZE);
4188 }
4189
4190 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4191 {
4192 /* Mark the symbol as undefined, rather than as defined in
4193 the .plt section. Leave the value alone. */
4194 sym->st_shndx = SHN_UNDEF;
4195 }
4196 }
4197
4198 if (h->got.offset != (bfd_vma) -1)
4199 {
4200 Elf_Internal_Rela rel;
4201
4202 /* This symbol has an entry in the global offset table. Set it
4203 up. */
4204
4205 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4206 + hplink->sgot->output_offset
4207 + hplink->sgot->output_section->vma);
4208
4209 /* If this is a -Bsymbolic link and the symbol is defined
4210 locally or was forced to be local because of a version file,
4211 we just want to emit a RELATIVE reloc. The entry in the
4212 global offset table will already have been initialized in the
4213 relocate_section function. */
4214 if (info->shared
4215 && (info->symbolic || h->dynindx == -1)
4216 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4217 {
4218 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4219 rel.r_addend = (h->root.u.def.value
4220 + h->root.u.def.section->output_offset
4221 + h->root.u.def.section->output_section->vma);
4222 }
4223 else
4224 {
4225 if ((h->got.offset & 1) != 0)
4226 abort ();
4227 bfd_put_32 (output_bfd, (bfd_vma) 0,
4228 hplink->sgot->contents + h->got.offset);
4229 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4230 rel.r_addend = 0;
4231 }
4232
4233 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4234 ((Elf32_External_Rela *)
4235 hplink->srelgot->contents
4236 + hplink->srelgot->reloc_count));
4237 ++hplink->srelgot->reloc_count;
4238 }
4239
4240 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4241 {
4242 asection *s;
4243 Elf_Internal_Rela rel;
4244
4245 /* This symbol needs a copy reloc. Set it up. */
4246
4247 if (! (h->dynindx != -1
4248 && (h->root.type == bfd_link_hash_defined
4249 || h->root.type == bfd_link_hash_defweak)))
4250 abort ();
4251
4252 s = hplink->srelbss;
4253
4254 rel.r_offset = (h->root.u.def.value
4255 + h->root.u.def.section->output_offset
4256 + h->root.u.def.section->output_section->vma);
4257 rel.r_addend = 0;
4258 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4259 bfd_elf32_swap_reloca_out (output_bfd, &rel,
4260 ((Elf32_External_Rela *) s->contents
4261 + s->reloc_count));
4262 ++s->reloc_count;
4263 }
4264
4265 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4266 if (h->root.root.string[0] == '_'
4267 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4268 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4269 {
4270 sym->st_shndx = SHN_ABS;
4271 }
4272
4273 return true;
4274 }
4275
4276 /* Finish up the dynamic sections. */
4277
4278 static boolean
4279 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4280 bfd *output_bfd;
4281 struct bfd_link_info *info;
4282 {
4283 bfd *dynobj;
4284 struct elf32_hppa_link_hash_table *hplink;
4285 asection *sdyn;
4286
4287 hplink = hppa_link_hash_table (info);
4288 dynobj = hplink->root.dynobj;
4289
4290 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4291
4292 if (hplink->root.dynamic_sections_created)
4293 {
4294 Elf32_External_Dyn *dyncon, *dynconend;
4295
4296 if (sdyn == NULL)
4297 abort ();
4298
4299 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4300 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4301 for (; dyncon < dynconend; dyncon++)
4302 {
4303 Elf_Internal_Dyn dyn;
4304 asection *s;
4305
4306 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4307
4308 switch (dyn.d_tag)
4309 {
4310 default:
4311 break;
4312
4313 case DT_PLTGOT:
4314 /* Use PLTGOT to set the GOT register. */
4315 dyn.d_un.d_ptr = elf_gp (output_bfd);
4316 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4317 break;
4318
4319 case DT_JMPREL:
4320 s = hplink->srelplt;
4321 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4322 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4323 break;
4324
4325 case DT_PLTRELSZ:
4326 s = hplink->srelplt;
4327 if (s->_cooked_size != 0)
4328 dyn.d_un.d_val = s->_cooked_size;
4329 else
4330 dyn.d_un.d_val = s->_raw_size;
4331 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4332 break;
4333 }
4334 }
4335 }
4336
4337 if (hplink->sgot != NULL && hplink->sgot->_raw_size != 0)
4338 {
4339 /* Fill in the first entry in the global offset table.
4340 We use it to point to our dynamic section, if we have one. */
4341 bfd_put_32 (output_bfd,
4342 (sdyn != NULL
4343 ? sdyn->output_section->vma + sdyn->output_offset
4344 : (bfd_vma) 0),
4345 hplink->sgot->contents);
4346
4347 /* The second entry is reserved for use by the dynamic linker. */
4348 memset (hplink->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4349
4350 /* Set .got entry size. */
4351 elf_section_data (hplink->sgot->output_section)
4352 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4353 }
4354
4355 if (hplink->splt != NULL && hplink->splt->_raw_size != 0)
4356 {
4357 /* Set plt entry size. */
4358 elf_section_data (hplink->splt->output_section)
4359 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4360
4361 if (hplink->need_plt_stub)
4362 {
4363 /* Set up the .plt stub. */
4364 memcpy (hplink->splt->contents
4365 + hplink->splt->_raw_size - sizeof (plt_stub),
4366 plt_stub, sizeof (plt_stub));
4367
4368 if ((hplink->splt->output_offset
4369 + hplink->splt->output_section->vma
4370 + hplink->splt->_raw_size)
4371 != (hplink->sgot->output_offset
4372 + hplink->sgot->output_section->vma))
4373 {
4374 (*_bfd_error_handler)
4375 (_(".got section not immediately after .plt section"));
4376 return false;
4377 }
4378 }
4379 }
4380
4381 return true;
4382 }
4383
4384 /* Tweak the OSABI field of the elf header. */
4385
4386 static void
4387 elf32_hppa_post_process_headers (abfd, link_info)
4388 bfd *abfd;
4389 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4390 {
4391 Elf_Internal_Ehdr * i_ehdrp;
4392
4393 i_ehdrp = elf_elfheader (abfd);
4394
4395 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4396 {
4397 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4398 }
4399 else
4400 {
4401 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4402 }
4403 }
4404
4405 /* Called when writing out an object file to decide the type of a
4406 symbol. */
4407 static int
4408 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4409 Elf_Internal_Sym *elf_sym;
4410 int type;
4411 {
4412 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4413 return STT_PARISC_MILLI;
4414 else
4415 return type;
4416 }
4417
4418 /* Misc BFD support code. */
4419 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4420 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4421 #define elf_info_to_howto elf_hppa_info_to_howto
4422 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4423
4424 /* Stuff for the BFD linker. */
4425 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4426 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4427 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4428 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4429 #define elf_backend_check_relocs elf32_hppa_check_relocs
4430 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4431 #define elf_backend_fake_sections elf_hppa_fake_sections
4432 #define elf_backend_relocate_section elf32_hppa_relocate_section
4433 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4434 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4435 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4436 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4437 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4438 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4439 #define elf_backend_object_p elf32_hppa_object_p
4440 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4441 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4442 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4443
4444 #define elf_backend_can_gc_sections 1
4445 #define elf_backend_plt_alignment 2
4446 #define elf_backend_want_got_plt 0
4447 #define elf_backend_plt_readonly 0
4448 #define elf_backend_want_plt_sym 0
4449 #define elf_backend_got_header_size 8
4450
4451 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4452 #define TARGET_BIG_NAME "elf32-hppa"
4453 #define ELF_ARCH bfd_arch_hppa
4454 #define ELF_MACHINE_CODE EM_PARISC
4455 #define ELF_MAXPAGESIZE 0x1000
4456
4457 #include "elf32-target.h"
4458
4459 #undef TARGET_BIG_SYM
4460 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4461 #undef TARGET_BIG_NAME
4462 #define TARGET_BIG_NAME "elf32-hppa-linux"
4463
4464 #define INCLUDED_TARGET_FILE 1
4465 #include "elf32-target.h"
This page took 0.132167 seconds and 4 git commands to generate.