Create sdynrelro for elfn32 mips too
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2016 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 unsigned int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Used during a final link to store the base of the text and data
278 segments so that we can perform SEGREL relocations. */
279 bfd_vma text_segment_base;
280 bfd_vma data_segment_base;
281
282 /* Whether we support multiple sub-spaces for shared libs. */
283 unsigned int multi_subspace:1;
284
285 /* Flags set when various size branches are detected. Used to
286 select suitable defaults for the stub group size. */
287 unsigned int has_12bit_branch:1;
288 unsigned int has_17bit_branch:1;
289 unsigned int has_22bit_branch:1;
290
291 /* Set if we need a .plt stub to support lazy dynamic linking. */
292 unsigned int need_plt_stub:1;
293
294 /* Small local sym cache. */
295 struct sym_cache sym_cache;
296
297 /* Data for LDM relocations. */
298 union
299 {
300 bfd_signed_vma refcount;
301 bfd_vma offset;
302 } tls_ldm_got;
303 };
304
305 /* Various hash macros and functions. */
306 #define hppa_link_hash_table(p) \
307 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
308 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
309
310 #define hppa_elf_hash_entry(ent) \
311 ((struct elf32_hppa_link_hash_entry *)(ent))
312
313 #define hppa_stub_hash_entry(ent) \
314 ((struct elf32_hppa_stub_hash_entry *)(ent))
315
316 #define hppa_stub_hash_lookup(table, string, create, copy) \
317 ((struct elf32_hppa_stub_hash_entry *) \
318 bfd_hash_lookup ((table), (string), (create), (copy)))
319
320 #define hppa_elf_local_got_tls_type(abfd) \
321 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
322
323 #define hh_name(hh) \
324 (hh ? hh->eh.root.root.string : "<undef>")
325
326 #define eh_name(eh) \
327 (eh ? eh->root.root.string : "<undef>")
328
329 /* Assorted hash table functions. */
330
331 /* Initialize an entry in the stub hash table. */
332
333 static struct bfd_hash_entry *
334 stub_hash_newfunc (struct bfd_hash_entry *entry,
335 struct bfd_hash_table *table,
336 const char *string)
337 {
338 /* Allocate the structure if it has not already been allocated by a
339 subclass. */
340 if (entry == NULL)
341 {
342 entry = bfd_hash_allocate (table,
343 sizeof (struct elf32_hppa_stub_hash_entry));
344 if (entry == NULL)
345 return entry;
346 }
347
348 /* Call the allocation method of the superclass. */
349 entry = bfd_hash_newfunc (entry, table, string);
350 if (entry != NULL)
351 {
352 struct elf32_hppa_stub_hash_entry *hsh;
353
354 /* Initialize the local fields. */
355 hsh = hppa_stub_hash_entry (entry);
356 hsh->stub_sec = NULL;
357 hsh->stub_offset = 0;
358 hsh->target_value = 0;
359 hsh->target_section = NULL;
360 hsh->stub_type = hppa_stub_long_branch;
361 hsh->hh = NULL;
362 hsh->id_sec = NULL;
363 }
364
365 return entry;
366 }
367
368 /* Initialize an entry in the link hash table. */
369
370 static struct bfd_hash_entry *
371 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
372 struct bfd_hash_table *table,
373 const char *string)
374 {
375 /* Allocate the structure if it has not already been allocated by a
376 subclass. */
377 if (entry == NULL)
378 {
379 entry = bfd_hash_allocate (table,
380 sizeof (struct elf32_hppa_link_hash_entry));
381 if (entry == NULL)
382 return entry;
383 }
384
385 /* Call the allocation method of the superclass. */
386 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
387 if (entry != NULL)
388 {
389 struct elf32_hppa_link_hash_entry *hh;
390
391 /* Initialize the local fields. */
392 hh = hppa_elf_hash_entry (entry);
393 hh->hsh_cache = NULL;
394 hh->dyn_relocs = NULL;
395 hh->plabel = 0;
396 hh->tls_type = GOT_UNKNOWN;
397 }
398
399 return entry;
400 }
401
402 /* Free the derived linker hash table. */
403
404 static void
405 elf32_hppa_link_hash_table_free (bfd *obfd)
406 {
407 struct elf32_hppa_link_hash_table *htab
408 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
409
410 bfd_hash_table_free (&htab->bstab);
411 _bfd_elf_link_hash_table_free (obfd);
412 }
413
414 /* Create the derived linker hash table. The PA ELF port uses the derived
415 hash table to keep information specific to the PA ELF linker (without
416 using static variables). */
417
418 static struct bfd_link_hash_table *
419 elf32_hppa_link_hash_table_create (bfd *abfd)
420 {
421 struct elf32_hppa_link_hash_table *htab;
422 bfd_size_type amt = sizeof (*htab);
423
424 htab = bfd_zmalloc (amt);
425 if (htab == NULL)
426 return NULL;
427
428 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
429 sizeof (struct elf32_hppa_link_hash_entry),
430 HPPA32_ELF_DATA))
431 {
432 free (htab);
433 return NULL;
434 }
435
436 /* Init the stub hash table too. */
437 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
438 sizeof (struct elf32_hppa_stub_hash_entry)))
439 {
440 _bfd_elf_link_hash_table_free (abfd);
441 return NULL;
442 }
443 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
444
445 htab->text_segment_base = (bfd_vma) -1;
446 htab->data_segment_base = (bfd_vma) -1;
447 return &htab->etab.root;
448 }
449
450 /* Initialize the linker stubs BFD so that we can use it for linker
451 created dynamic sections. */
452
453 void
454 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
455 {
456 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
457
458 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
459 htab->etab.dynobj = abfd;
460 }
461
462 /* Build a name for an entry in the stub hash table. */
463
464 static char *
465 hppa_stub_name (const asection *input_section,
466 const asection *sym_sec,
467 const struct elf32_hppa_link_hash_entry *hh,
468 const Elf_Internal_Rela *rela)
469 {
470 char *stub_name;
471 bfd_size_type len;
472
473 if (hh)
474 {
475 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
476 stub_name = bfd_malloc (len);
477 if (stub_name != NULL)
478 sprintf (stub_name, "%08x_%s+%x",
479 input_section->id & 0xffffffff,
480 hh_name (hh),
481 (int) rela->r_addend & 0xffffffff);
482 }
483 else
484 {
485 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
486 stub_name = bfd_malloc (len);
487 if (stub_name != NULL)
488 sprintf (stub_name, "%08x_%x:%x+%x",
489 input_section->id & 0xffffffff,
490 sym_sec->id & 0xffffffff,
491 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
492 (int) rela->r_addend & 0xffffffff);
493 }
494 return stub_name;
495 }
496
497 /* Look up an entry in the stub hash. Stub entries are cached because
498 creating the stub name takes a bit of time. */
499
500 static struct elf32_hppa_stub_hash_entry *
501 hppa_get_stub_entry (const asection *input_section,
502 const asection *sym_sec,
503 struct elf32_hppa_link_hash_entry *hh,
504 const Elf_Internal_Rela *rela,
505 struct elf32_hppa_link_hash_table *htab)
506 {
507 struct elf32_hppa_stub_hash_entry *hsh_entry;
508 const asection *id_sec;
509
510 /* If this input section is part of a group of sections sharing one
511 stub section, then use the id of the first section in the group.
512 Stub names need to include a section id, as there may well be
513 more than one stub used to reach say, printf, and we need to
514 distinguish between them. */
515 id_sec = htab->stub_group[input_section->id].link_sec;
516
517 if (hh != NULL && hh->hsh_cache != NULL
518 && hh->hsh_cache->hh == hh
519 && hh->hsh_cache->id_sec == id_sec)
520 {
521 hsh_entry = hh->hsh_cache;
522 }
523 else
524 {
525 char *stub_name;
526
527 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
528 if (stub_name == NULL)
529 return NULL;
530
531 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
532 stub_name, FALSE, FALSE);
533 if (hh != NULL)
534 hh->hsh_cache = hsh_entry;
535
536 free (stub_name);
537 }
538
539 return hsh_entry;
540 }
541
542 /* Add a new stub entry to the stub hash. Not all fields of the new
543 stub entry are initialised. */
544
545 static struct elf32_hppa_stub_hash_entry *
546 hppa_add_stub (const char *stub_name,
547 asection *section,
548 struct elf32_hppa_link_hash_table *htab)
549 {
550 asection *link_sec;
551 asection *stub_sec;
552 struct elf32_hppa_stub_hash_entry *hsh;
553
554 link_sec = htab->stub_group[section->id].link_sec;
555 stub_sec = htab->stub_group[section->id].stub_sec;
556 if (stub_sec == NULL)
557 {
558 stub_sec = htab->stub_group[link_sec->id].stub_sec;
559 if (stub_sec == NULL)
560 {
561 size_t namelen;
562 bfd_size_type len;
563 char *s_name;
564
565 namelen = strlen (link_sec->name);
566 len = namelen + sizeof (STUB_SUFFIX);
567 s_name = bfd_alloc (htab->stub_bfd, len);
568 if (s_name == NULL)
569 return NULL;
570
571 memcpy (s_name, link_sec->name, namelen);
572 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
573 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
574 if (stub_sec == NULL)
575 return NULL;
576 htab->stub_group[link_sec->id].stub_sec = stub_sec;
577 }
578 htab->stub_group[section->id].stub_sec = stub_sec;
579 }
580
581 /* Enter this entry into the linker stub hash table. */
582 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
583 TRUE, FALSE);
584 if (hsh == NULL)
585 {
586 /* xgettext:c-format */
587 _bfd_error_handler (_("%B: cannot create stub entry %s"),
588 section->owner, stub_name);
589 return NULL;
590 }
591
592 hsh->stub_sec = stub_sec;
593 hsh->stub_offset = 0;
594 hsh->id_sec = link_sec;
595 return hsh;
596 }
597
598 /* Determine the type of stub needed, if any, for a call. */
599
600 static enum elf32_hppa_stub_type
601 hppa_type_of_stub (asection *input_sec,
602 const Elf_Internal_Rela *rela,
603 struct elf32_hppa_link_hash_entry *hh,
604 bfd_vma destination,
605 struct bfd_link_info *info)
606 {
607 bfd_vma location;
608 bfd_vma branch_offset;
609 bfd_vma max_branch_offset;
610 unsigned int r_type;
611
612 if (hh != NULL
613 && hh->eh.plt.offset != (bfd_vma) -1
614 && hh->eh.dynindx != -1
615 && !hh->plabel
616 && (bfd_link_pic (info)
617 || !hh->eh.def_regular
618 || hh->eh.root.type == bfd_link_hash_defweak))
619 {
620 /* We need an import stub. Decide between hppa_stub_import
621 and hppa_stub_import_shared later. */
622 return hppa_stub_import;
623 }
624
625 /* Determine where the call point is. */
626 location = (input_sec->output_offset
627 + input_sec->output_section->vma
628 + rela->r_offset);
629
630 branch_offset = destination - location - 8;
631 r_type = ELF32_R_TYPE (rela->r_info);
632
633 /* Determine if a long branch stub is needed. parisc branch offsets
634 are relative to the second instruction past the branch, ie. +8
635 bytes on from the branch instruction location. The offset is
636 signed and counts in units of 4 bytes. */
637 if (r_type == (unsigned int) R_PARISC_PCREL17F)
638 max_branch_offset = (1 << (17 - 1)) << 2;
639
640 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
641 max_branch_offset = (1 << (12 - 1)) << 2;
642
643 else /* R_PARISC_PCREL22F. */
644 max_branch_offset = (1 << (22 - 1)) << 2;
645
646 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
647 return hppa_stub_long_branch;
648
649 return hppa_stub_none;
650 }
651
652 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
653 IN_ARG contains the link info pointer. */
654
655 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
656 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
657
658 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
659 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
660 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
661
662 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
663 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
664 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
665 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
666
667 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
668 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
669
670 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
671 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
672 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
673 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
674
675 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
676 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
677 #define NOP 0x08000240 /* nop */
678 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
679 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
680 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
681
682 #ifndef R19_STUBS
683 #define R19_STUBS 1
684 #endif
685
686 #if R19_STUBS
687 #define LDW_R1_DLT LDW_R1_R19
688 #else
689 #define LDW_R1_DLT LDW_R1_DP
690 #endif
691
692 static bfd_boolean
693 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
694 {
695 struct elf32_hppa_stub_hash_entry *hsh;
696 struct bfd_link_info *info;
697 struct elf32_hppa_link_hash_table *htab;
698 asection *stub_sec;
699 bfd *stub_bfd;
700 bfd_byte *loc;
701 bfd_vma sym_value;
702 bfd_vma insn;
703 bfd_vma off;
704 int val;
705 int size;
706
707 /* Massage our args to the form they really have. */
708 hsh = hppa_stub_hash_entry (bh);
709 info = (struct bfd_link_info *)in_arg;
710
711 htab = hppa_link_hash_table (info);
712 if (htab == NULL)
713 return FALSE;
714
715 stub_sec = hsh->stub_sec;
716
717 /* Make a note of the offset within the stubs for this entry. */
718 hsh->stub_offset = stub_sec->size;
719 loc = stub_sec->contents + hsh->stub_offset;
720
721 stub_bfd = stub_sec->owner;
722
723 switch (hsh->stub_type)
724 {
725 case hppa_stub_long_branch:
726 /* Create the long branch. A long branch is formed with "ldil"
727 loading the upper bits of the target address into a register,
728 then branching with "be" which adds in the lower bits.
729 The "be" has its delay slot nullified. */
730 sym_value = (hsh->target_value
731 + hsh->target_section->output_offset
732 + hsh->target_section->output_section->vma);
733
734 val = hppa_field_adjust (sym_value, 0, e_lrsel);
735 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
736 bfd_put_32 (stub_bfd, insn, loc);
737
738 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
739 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
740 bfd_put_32 (stub_bfd, insn, loc + 4);
741
742 size = 8;
743 break;
744
745 case hppa_stub_long_branch_shared:
746 /* Branches are relative. This is where we are going to. */
747 sym_value = (hsh->target_value
748 + hsh->target_section->output_offset
749 + hsh->target_section->output_section->vma);
750
751 /* And this is where we are coming from, more or less. */
752 sym_value -= (hsh->stub_offset
753 + stub_sec->output_offset
754 + stub_sec->output_section->vma);
755
756 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
757 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
758 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
759 bfd_put_32 (stub_bfd, insn, loc + 4);
760
761 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
762 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
763 bfd_put_32 (stub_bfd, insn, loc + 8);
764 size = 12;
765 break;
766
767 case hppa_stub_import:
768 case hppa_stub_import_shared:
769 off = hsh->hh->eh.plt.offset;
770 if (off >= (bfd_vma) -2)
771 abort ();
772
773 off &= ~ (bfd_vma) 1;
774 sym_value = (off
775 + htab->etab.splt->output_offset
776 + htab->etab.splt->output_section->vma
777 - elf_gp (htab->etab.splt->output_section->owner));
778
779 insn = ADDIL_DP;
780 #if R19_STUBS
781 if (hsh->stub_type == hppa_stub_import_shared)
782 insn = ADDIL_R19;
783 #endif
784 val = hppa_field_adjust (sym_value, 0, e_lrsel),
785 insn = hppa_rebuild_insn ((int) insn, val, 21);
786 bfd_put_32 (stub_bfd, insn, loc);
787
788 /* It is critical to use lrsel/rrsel here because we are using
789 two different offsets (+0 and +4) from sym_value. If we use
790 lsel/rsel then with unfortunate sym_values we will round
791 sym_value+4 up to the next 2k block leading to a mis-match
792 between the lsel and rsel value. */
793 val = hppa_field_adjust (sym_value, 0, e_rrsel);
794 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
795 bfd_put_32 (stub_bfd, insn, loc + 4);
796
797 if (htab->multi_subspace)
798 {
799 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 8);
802
803 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
804 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
805 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
806 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
807
808 size = 28;
809 }
810 else
811 {
812 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
813 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
814 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
815 bfd_put_32 (stub_bfd, insn, loc + 12);
816
817 size = 16;
818 }
819
820 break;
821
822 case hppa_stub_export:
823 /* Branches are relative. This is where we are going to. */
824 sym_value = (hsh->target_value
825 + hsh->target_section->output_offset
826 + hsh->target_section->output_section->vma);
827
828 /* And this is where we are coming from. */
829 sym_value -= (hsh->stub_offset
830 + stub_sec->output_offset
831 + stub_sec->output_section->vma);
832
833 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
834 && (!htab->has_22bit_branch
835 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
836 {
837 _bfd_error_handler
838 /* xgettext:c-format */
839 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
840 hsh->target_section->owner,
841 stub_sec,
842 (long) hsh->stub_offset,
843 hsh->bh_root.string);
844 bfd_set_error (bfd_error_bad_value);
845 return FALSE;
846 }
847
848 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
849 if (!htab->has_22bit_branch)
850 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
851 else
852 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
853 bfd_put_32 (stub_bfd, insn, loc);
854
855 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
856 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
857 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
858 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
859 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
860
861 /* Point the function symbol at the stub. */
862 hsh->hh->eh.root.u.def.section = stub_sec;
863 hsh->hh->eh.root.u.def.value = stub_sec->size;
864
865 size = 24;
866 break;
867
868 default:
869 BFD_FAIL ();
870 return FALSE;
871 }
872
873 stub_sec->size += size;
874 return TRUE;
875 }
876
877 #undef LDIL_R1
878 #undef BE_SR4_R1
879 #undef BL_R1
880 #undef ADDIL_R1
881 #undef DEPI_R1
882 #undef LDW_R1_R21
883 #undef LDW_R1_DLT
884 #undef LDW_R1_R19
885 #undef ADDIL_R19
886 #undef LDW_R1_DP
887 #undef LDSID_R21_R1
888 #undef MTSP_R1
889 #undef BE_SR0_R21
890 #undef STW_RP
891 #undef BV_R0_R21
892 #undef BL_RP
893 #undef NOP
894 #undef LDW_RP
895 #undef LDSID_RP_R1
896 #undef BE_SR0_RP
897
898 /* As above, but don't actually build the stub. Just bump offset so
899 we know stub section sizes. */
900
901 static bfd_boolean
902 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
903 {
904 struct elf32_hppa_stub_hash_entry *hsh;
905 struct elf32_hppa_link_hash_table *htab;
906 int size;
907
908 /* Massage our args to the form they really have. */
909 hsh = hppa_stub_hash_entry (bh);
910 htab = in_arg;
911
912 if (hsh->stub_type == hppa_stub_long_branch)
913 size = 8;
914 else if (hsh->stub_type == hppa_stub_long_branch_shared)
915 size = 12;
916 else if (hsh->stub_type == hppa_stub_export)
917 size = 24;
918 else /* hppa_stub_import or hppa_stub_import_shared. */
919 {
920 if (htab->multi_subspace)
921 size = 28;
922 else
923 size = 16;
924 }
925
926 hsh->stub_sec->size += size;
927 return TRUE;
928 }
929
930 /* Return nonzero if ABFD represents an HPPA ELF32 file.
931 Additionally we set the default architecture and machine. */
932
933 static bfd_boolean
934 elf32_hppa_object_p (bfd *abfd)
935 {
936 Elf_Internal_Ehdr * i_ehdrp;
937 unsigned int flags;
938
939 i_ehdrp = elf_elfheader (abfd);
940 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
941 {
942 /* GCC on hppa-linux produces binaries with OSABI=GNU,
943 but the kernel produces corefiles with OSABI=SysV. */
944 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
945 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
946 return FALSE;
947 }
948 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
949 {
950 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
951 but the kernel produces corefiles with OSABI=SysV. */
952 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
953 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
954 return FALSE;
955 }
956 else
957 {
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
959 return FALSE;
960 }
961
962 flags = i_ehdrp->e_flags;
963 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
964 {
965 case EFA_PARISC_1_0:
966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
967 case EFA_PARISC_1_1:
968 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
969 case EFA_PARISC_2_0:
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
971 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
973 }
974 return TRUE;
975 }
976
977 /* Create the .plt and .got sections, and set up our hash table
978 short-cuts to various dynamic sections. */
979
980 static bfd_boolean
981 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
982 {
983 struct elf32_hppa_link_hash_table *htab;
984 struct elf_link_hash_entry *eh;
985
986 /* Don't try to create the .plt and .got twice. */
987 htab = hppa_link_hash_table (info);
988 if (htab == NULL)
989 return FALSE;
990 if (htab->etab.splt != NULL)
991 return TRUE;
992
993 /* Call the generic code to do most of the work. */
994 if (! _bfd_elf_create_dynamic_sections (abfd, info))
995 return FALSE;
996
997 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
998 application, because __canonicalize_funcptr_for_compare needs it. */
999 eh = elf_hash_table (info)->hgot;
1000 eh->forced_local = 0;
1001 eh->other = STV_DEFAULT;
1002 return bfd_elf_link_record_dynamic_symbol (info, eh);
1003 }
1004
1005 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1006
1007 static void
1008 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1009 struct elf_link_hash_entry *eh_dir,
1010 struct elf_link_hash_entry *eh_ind)
1011 {
1012 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1013
1014 hh_dir = hppa_elf_hash_entry (eh_dir);
1015 hh_ind = hppa_elf_hash_entry (eh_ind);
1016
1017 if (hh_ind->dyn_relocs != NULL)
1018 {
1019 if (hh_dir->dyn_relocs != NULL)
1020 {
1021 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1022 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1023
1024 /* Add reloc counts against the indirect sym to the direct sym
1025 list. Merge any entries against the same section. */
1026 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1027 {
1028 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1029
1030 for (hdh_q = hh_dir->dyn_relocs;
1031 hdh_q != NULL;
1032 hdh_q = hdh_q->hdh_next)
1033 if (hdh_q->sec == hdh_p->sec)
1034 {
1035 #if RELATIVE_DYNRELOCS
1036 hdh_q->relative_count += hdh_p->relative_count;
1037 #endif
1038 hdh_q->count += hdh_p->count;
1039 *hdh_pp = hdh_p->hdh_next;
1040 break;
1041 }
1042 if (hdh_q == NULL)
1043 hdh_pp = &hdh_p->hdh_next;
1044 }
1045 *hdh_pp = hh_dir->dyn_relocs;
1046 }
1047
1048 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1049 hh_ind->dyn_relocs = NULL;
1050 }
1051
1052 if (ELIMINATE_COPY_RELOCS
1053 && eh_ind->root.type != bfd_link_hash_indirect
1054 && eh_dir->dynamic_adjusted)
1055 {
1056 /* If called to transfer flags for a weakdef during processing
1057 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1058 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1059 if (eh_dir->versioned != versioned_hidden)
1060 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1061 eh_dir->ref_regular |= eh_ind->ref_regular;
1062 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1063 eh_dir->needs_plt |= eh_ind->needs_plt;
1064 }
1065 else
1066 {
1067 if (eh_ind->root.type == bfd_link_hash_indirect)
1068 {
1069 hh_dir->plabel |= hh_ind->plabel;
1070 hh_dir->tls_type |= hh_ind->tls_type;
1071 hh_ind->tls_type = GOT_UNKNOWN;
1072 }
1073
1074 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1075 }
1076 }
1077
1078 static int
1079 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1080 int r_type, int is_local ATTRIBUTE_UNUSED)
1081 {
1082 /* For now we don't support linker optimizations. */
1083 return r_type;
1084 }
1085
1086 /* Return a pointer to the local GOT, PLT and TLS reference counts
1087 for ABFD. Returns NULL if the storage allocation fails. */
1088
1089 static bfd_signed_vma *
1090 hppa32_elf_local_refcounts (bfd *abfd)
1091 {
1092 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1093 bfd_signed_vma *local_refcounts;
1094
1095 local_refcounts = elf_local_got_refcounts (abfd);
1096 if (local_refcounts == NULL)
1097 {
1098 bfd_size_type size;
1099
1100 /* Allocate space for local GOT and PLT reference
1101 counts. Done this way to save polluting elf_obj_tdata
1102 with another target specific pointer. */
1103 size = symtab_hdr->sh_info;
1104 size *= 2 * sizeof (bfd_signed_vma);
1105 /* Add in space to store the local GOT TLS types. */
1106 size += symtab_hdr->sh_info;
1107 local_refcounts = bfd_zalloc (abfd, size);
1108 if (local_refcounts == NULL)
1109 return NULL;
1110 elf_local_got_refcounts (abfd) = local_refcounts;
1111 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1112 symtab_hdr->sh_info);
1113 }
1114 return local_refcounts;
1115 }
1116
1117
1118 /* Look through the relocs for a section during the first phase, and
1119 calculate needed space in the global offset table, procedure linkage
1120 table, and dynamic reloc sections. At this point we haven't
1121 necessarily read all the input files. */
1122
1123 static bfd_boolean
1124 elf32_hppa_check_relocs (bfd *abfd,
1125 struct bfd_link_info *info,
1126 asection *sec,
1127 const Elf_Internal_Rela *relocs)
1128 {
1129 Elf_Internal_Shdr *symtab_hdr;
1130 struct elf_link_hash_entry **eh_syms;
1131 const Elf_Internal_Rela *rela;
1132 const Elf_Internal_Rela *rela_end;
1133 struct elf32_hppa_link_hash_table *htab;
1134 asection *sreloc;
1135 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1136
1137 if (bfd_link_relocatable (info))
1138 return TRUE;
1139
1140 htab = hppa_link_hash_table (info);
1141 if (htab == NULL)
1142 return FALSE;
1143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1144 eh_syms = elf_sym_hashes (abfd);
1145 sreloc = NULL;
1146
1147 rela_end = relocs + sec->reloc_count;
1148 for (rela = relocs; rela < rela_end; rela++)
1149 {
1150 enum {
1151 NEED_GOT = 1,
1152 NEED_PLT = 2,
1153 NEED_DYNREL = 4,
1154 PLT_PLABEL = 8
1155 };
1156
1157 unsigned int r_symndx, r_type;
1158 struct elf32_hppa_link_hash_entry *hh;
1159 int need_entry = 0;
1160
1161 r_symndx = ELF32_R_SYM (rela->r_info);
1162
1163 if (r_symndx < symtab_hdr->sh_info)
1164 hh = NULL;
1165 else
1166 {
1167 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1168 while (hh->eh.root.type == bfd_link_hash_indirect
1169 || hh->eh.root.type == bfd_link_hash_warning)
1170 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1171
1172 /* PR15323, ref flags aren't set for references in the same
1173 object. */
1174 hh->eh.root.non_ir_ref = 1;
1175 }
1176
1177 r_type = ELF32_R_TYPE (rela->r_info);
1178 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1179
1180 switch (r_type)
1181 {
1182 case R_PARISC_DLTIND14F:
1183 case R_PARISC_DLTIND14R:
1184 case R_PARISC_DLTIND21L:
1185 /* This symbol requires a global offset table entry. */
1186 need_entry = NEED_GOT;
1187 break;
1188
1189 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1190 case R_PARISC_PLABEL21L:
1191 case R_PARISC_PLABEL32:
1192 /* If the addend is non-zero, we break badly. */
1193 if (rela->r_addend != 0)
1194 abort ();
1195
1196 /* If we are creating a shared library, then we need to
1197 create a PLT entry for all PLABELs, because PLABELs with
1198 local symbols may be passed via a pointer to another
1199 object. Additionally, output a dynamic relocation
1200 pointing to the PLT entry.
1201
1202 For executables, the original 32-bit ABI allowed two
1203 different styles of PLABELs (function pointers): For
1204 global functions, the PLABEL word points into the .plt
1205 two bytes past a (function address, gp) pair, and for
1206 local functions the PLABEL points directly at the
1207 function. The magic +2 for the first type allows us to
1208 differentiate between the two. As you can imagine, this
1209 is a real pain when it comes to generating code to call
1210 functions indirectly or to compare function pointers.
1211 We avoid the mess by always pointing a PLABEL into the
1212 .plt, even for local functions. */
1213 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1214 break;
1215
1216 case R_PARISC_PCREL12F:
1217 htab->has_12bit_branch = 1;
1218 goto branch_common;
1219
1220 case R_PARISC_PCREL17C:
1221 case R_PARISC_PCREL17F:
1222 htab->has_17bit_branch = 1;
1223 goto branch_common;
1224
1225 case R_PARISC_PCREL22F:
1226 htab->has_22bit_branch = 1;
1227 branch_common:
1228 /* Function calls might need to go through the .plt, and
1229 might require long branch stubs. */
1230 if (hh == NULL)
1231 {
1232 /* We know local syms won't need a .plt entry, and if
1233 they need a long branch stub we can't guarantee that
1234 we can reach the stub. So just flag an error later
1235 if we're doing a shared link and find we need a long
1236 branch stub. */
1237 continue;
1238 }
1239 else
1240 {
1241 /* Global symbols will need a .plt entry if they remain
1242 global, and in most cases won't need a long branch
1243 stub. Unfortunately, we have to cater for the case
1244 where a symbol is forced local by versioning, or due
1245 to symbolic linking, and we lose the .plt entry. */
1246 need_entry = NEED_PLT;
1247 if (hh->eh.type == STT_PARISC_MILLI)
1248 need_entry = 0;
1249 }
1250 break;
1251
1252 case R_PARISC_SEGBASE: /* Used to set segment base. */
1253 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1254 case R_PARISC_PCREL14F: /* PC relative load/store. */
1255 case R_PARISC_PCREL14R:
1256 case R_PARISC_PCREL17R: /* External branches. */
1257 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1258 case R_PARISC_PCREL32:
1259 /* We don't need to propagate the relocation if linking a
1260 shared object since these are section relative. */
1261 continue;
1262
1263 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1264 case R_PARISC_DPREL14R:
1265 case R_PARISC_DPREL21L:
1266 if (bfd_link_pic (info))
1267 {
1268 _bfd_error_handler
1269 /* xgettext:c-format */
1270 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1271 abfd,
1272 elf_hppa_howto_table[r_type].name);
1273 bfd_set_error (bfd_error_bad_value);
1274 return FALSE;
1275 }
1276 /* Fall through. */
1277
1278 case R_PARISC_DIR17F: /* Used for external branches. */
1279 case R_PARISC_DIR17R:
1280 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1281 case R_PARISC_DIR14R:
1282 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1283 case R_PARISC_DIR32: /* .word relocs. */
1284 /* We may want to output a dynamic relocation later. */
1285 need_entry = NEED_DYNREL;
1286 break;
1287
1288 /* This relocation describes the C++ object vtable hierarchy.
1289 Reconstruct it for later use during GC. */
1290 case R_PARISC_GNU_VTINHERIT:
1291 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1292 return FALSE;
1293 continue;
1294
1295 /* This relocation describes which C++ vtable entries are actually
1296 used. Record for later use during GC. */
1297 case R_PARISC_GNU_VTENTRY:
1298 BFD_ASSERT (hh != NULL);
1299 if (hh != NULL
1300 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1301 return FALSE;
1302 continue;
1303
1304 case R_PARISC_TLS_GD21L:
1305 case R_PARISC_TLS_GD14R:
1306 case R_PARISC_TLS_LDM21L:
1307 case R_PARISC_TLS_LDM14R:
1308 need_entry = NEED_GOT;
1309 break;
1310
1311 case R_PARISC_TLS_IE21L:
1312 case R_PARISC_TLS_IE14R:
1313 if (bfd_link_pic (info))
1314 info->flags |= DF_STATIC_TLS;
1315 need_entry = NEED_GOT;
1316 break;
1317
1318 default:
1319 continue;
1320 }
1321
1322 /* Now carry out our orders. */
1323 if (need_entry & NEED_GOT)
1324 {
1325 switch (r_type)
1326 {
1327 default:
1328 tls_type = GOT_NORMAL;
1329 break;
1330 case R_PARISC_TLS_GD21L:
1331 case R_PARISC_TLS_GD14R:
1332 tls_type |= GOT_TLS_GD;
1333 break;
1334 case R_PARISC_TLS_LDM21L:
1335 case R_PARISC_TLS_LDM14R:
1336 tls_type |= GOT_TLS_LDM;
1337 break;
1338 case R_PARISC_TLS_IE21L:
1339 case R_PARISC_TLS_IE14R:
1340 tls_type |= GOT_TLS_IE;
1341 break;
1342 }
1343
1344 /* Allocate space for a GOT entry, as well as a dynamic
1345 relocation for this entry. */
1346 if (htab->etab.sgot == NULL)
1347 {
1348 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1349 return FALSE;
1350 }
1351
1352 if (r_type == R_PARISC_TLS_LDM21L
1353 || r_type == R_PARISC_TLS_LDM14R)
1354 htab->tls_ldm_got.refcount += 1;
1355 else
1356 {
1357 if (hh != NULL)
1358 {
1359 hh->eh.got.refcount += 1;
1360 old_tls_type = hh->tls_type;
1361 }
1362 else
1363 {
1364 bfd_signed_vma *local_got_refcounts;
1365
1366 /* This is a global offset table entry for a local symbol. */
1367 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1368 if (local_got_refcounts == NULL)
1369 return FALSE;
1370 local_got_refcounts[r_symndx] += 1;
1371
1372 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1373 }
1374
1375 tls_type |= old_tls_type;
1376
1377 if (old_tls_type != tls_type)
1378 {
1379 if (hh != NULL)
1380 hh->tls_type = tls_type;
1381 else
1382 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1383 }
1384
1385 }
1386 }
1387
1388 if (need_entry & NEED_PLT)
1389 {
1390 /* If we are creating a shared library, and this is a reloc
1391 against a weak symbol or a global symbol in a dynamic
1392 object, then we will be creating an import stub and a
1393 .plt entry for the symbol. Similarly, on a normal link
1394 to symbols defined in a dynamic object we'll need the
1395 import stub and a .plt entry. We don't know yet whether
1396 the symbol is defined or not, so make an entry anyway and
1397 clean up later in adjust_dynamic_symbol. */
1398 if ((sec->flags & SEC_ALLOC) != 0)
1399 {
1400 if (hh != NULL)
1401 {
1402 hh->eh.needs_plt = 1;
1403 hh->eh.plt.refcount += 1;
1404
1405 /* If this .plt entry is for a plabel, mark it so
1406 that adjust_dynamic_symbol will keep the entry
1407 even if it appears to be local. */
1408 if (need_entry & PLT_PLABEL)
1409 hh->plabel = 1;
1410 }
1411 else if (need_entry & PLT_PLABEL)
1412 {
1413 bfd_signed_vma *local_got_refcounts;
1414 bfd_signed_vma *local_plt_refcounts;
1415
1416 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1417 if (local_got_refcounts == NULL)
1418 return FALSE;
1419 local_plt_refcounts = (local_got_refcounts
1420 + symtab_hdr->sh_info);
1421 local_plt_refcounts[r_symndx] += 1;
1422 }
1423 }
1424 }
1425
1426 if (need_entry & NEED_DYNREL)
1427 {
1428 /* Flag this symbol as having a non-got, non-plt reference
1429 so that we generate copy relocs if it turns out to be
1430 dynamic. */
1431 if (hh != NULL && !bfd_link_pic (info))
1432 hh->eh.non_got_ref = 1;
1433
1434 /* If we are creating a shared library then we need to copy
1435 the reloc into the shared library. However, if we are
1436 linking with -Bsymbolic, we need only copy absolute
1437 relocs or relocs against symbols that are not defined in
1438 an object we are including in the link. PC- or DP- or
1439 DLT-relative relocs against any local sym or global sym
1440 with DEF_REGULAR set, can be discarded. At this point we
1441 have not seen all the input files, so it is possible that
1442 DEF_REGULAR is not set now but will be set later (it is
1443 never cleared). We account for that possibility below by
1444 storing information in the dyn_relocs field of the
1445 hash table entry.
1446
1447 A similar situation to the -Bsymbolic case occurs when
1448 creating shared libraries and symbol visibility changes
1449 render the symbol local.
1450
1451 As it turns out, all the relocs we will be creating here
1452 are absolute, so we cannot remove them on -Bsymbolic
1453 links or visibility changes anyway. A STUB_REL reloc
1454 is absolute too, as in that case it is the reloc in the
1455 stub we will be creating, rather than copying the PCREL
1456 reloc in the branch.
1457
1458 If on the other hand, we are creating an executable, we
1459 may need to keep relocations for symbols satisfied by a
1460 dynamic library if we manage to avoid copy relocs for the
1461 symbol. */
1462 if ((bfd_link_pic (info)
1463 && (sec->flags & SEC_ALLOC) != 0
1464 && (IS_ABSOLUTE_RELOC (r_type)
1465 || (hh != NULL
1466 && (!SYMBOLIC_BIND (info, &hh->eh)
1467 || hh->eh.root.type == bfd_link_hash_defweak
1468 || !hh->eh.def_regular))))
1469 || (ELIMINATE_COPY_RELOCS
1470 && !bfd_link_pic (info)
1471 && (sec->flags & SEC_ALLOC) != 0
1472 && hh != NULL
1473 && (hh->eh.root.type == bfd_link_hash_defweak
1474 || !hh->eh.def_regular)))
1475 {
1476 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1477 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1478
1479 /* Create a reloc section in dynobj and make room for
1480 this reloc. */
1481 if (sreloc == NULL)
1482 {
1483 sreloc = _bfd_elf_make_dynamic_reloc_section
1484 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1485
1486 if (sreloc == NULL)
1487 {
1488 bfd_set_error (bfd_error_bad_value);
1489 return FALSE;
1490 }
1491 }
1492
1493 /* If this is a global symbol, we count the number of
1494 relocations we need for this symbol. */
1495 if (hh != NULL)
1496 {
1497 hdh_head = &hh->dyn_relocs;
1498 }
1499 else
1500 {
1501 /* Track dynamic relocs needed for local syms too.
1502 We really need local syms available to do this
1503 easily. Oh well. */
1504 asection *sr;
1505 void *vpp;
1506 Elf_Internal_Sym *isym;
1507
1508 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1509 abfd, r_symndx);
1510 if (isym == NULL)
1511 return FALSE;
1512
1513 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1514 if (sr == NULL)
1515 sr = sec;
1516
1517 vpp = &elf_section_data (sr)->local_dynrel;
1518 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1519 }
1520
1521 hdh_p = *hdh_head;
1522 if (hdh_p == NULL || hdh_p->sec != sec)
1523 {
1524 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1525 if (hdh_p == NULL)
1526 return FALSE;
1527 hdh_p->hdh_next = *hdh_head;
1528 *hdh_head = hdh_p;
1529 hdh_p->sec = sec;
1530 hdh_p->count = 0;
1531 #if RELATIVE_DYNRELOCS
1532 hdh_p->relative_count = 0;
1533 #endif
1534 }
1535
1536 hdh_p->count += 1;
1537 #if RELATIVE_DYNRELOCS
1538 if (!IS_ABSOLUTE_RELOC (rtype))
1539 hdh_p->relative_count += 1;
1540 #endif
1541 }
1542 }
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* Return the section that should be marked against garbage collection
1549 for a given relocation. */
1550
1551 static asection *
1552 elf32_hppa_gc_mark_hook (asection *sec,
1553 struct bfd_link_info *info,
1554 Elf_Internal_Rela *rela,
1555 struct elf_link_hash_entry *hh,
1556 Elf_Internal_Sym *sym)
1557 {
1558 if (hh != NULL)
1559 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1560 {
1561 case R_PARISC_GNU_VTINHERIT:
1562 case R_PARISC_GNU_VTENTRY:
1563 return NULL;
1564 }
1565
1566 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1567 }
1568
1569 /* Update the got and plt entry reference counts for the section being
1570 removed. */
1571
1572 static bfd_boolean
1573 elf32_hppa_gc_sweep_hook (bfd *abfd,
1574 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1575 asection *sec,
1576 const Elf_Internal_Rela *relocs)
1577 {
1578 Elf_Internal_Shdr *symtab_hdr;
1579 struct elf_link_hash_entry **eh_syms;
1580 bfd_signed_vma *local_got_refcounts;
1581 bfd_signed_vma *local_plt_refcounts;
1582 const Elf_Internal_Rela *rela, *relend;
1583 struct elf32_hppa_link_hash_table *htab;
1584
1585 if (bfd_link_relocatable (info))
1586 return TRUE;
1587
1588 htab = hppa_link_hash_table (info);
1589 if (htab == NULL)
1590 return FALSE;
1591
1592 elf_section_data (sec)->local_dynrel = NULL;
1593
1594 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1595 eh_syms = elf_sym_hashes (abfd);
1596 local_got_refcounts = elf_local_got_refcounts (abfd);
1597 local_plt_refcounts = local_got_refcounts;
1598 if (local_plt_refcounts != NULL)
1599 local_plt_refcounts += symtab_hdr->sh_info;
1600
1601 relend = relocs + sec->reloc_count;
1602 for (rela = relocs; rela < relend; rela++)
1603 {
1604 unsigned long r_symndx;
1605 unsigned int r_type;
1606 struct elf_link_hash_entry *eh = NULL;
1607
1608 r_symndx = ELF32_R_SYM (rela->r_info);
1609 if (r_symndx >= symtab_hdr->sh_info)
1610 {
1611 struct elf32_hppa_link_hash_entry *hh;
1612 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1613 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1614
1615 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1616 while (eh->root.type == bfd_link_hash_indirect
1617 || eh->root.type == bfd_link_hash_warning)
1618 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1619 hh = hppa_elf_hash_entry (eh);
1620
1621 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1622 if (hdh_p->sec == sec)
1623 {
1624 /* Everything must go for SEC. */
1625 *hdh_pp = hdh_p->hdh_next;
1626 break;
1627 }
1628 }
1629
1630 r_type = ELF32_R_TYPE (rela->r_info);
1631 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1632
1633 switch (r_type)
1634 {
1635 case R_PARISC_DLTIND14F:
1636 case R_PARISC_DLTIND14R:
1637 case R_PARISC_DLTIND21L:
1638 case R_PARISC_TLS_GD21L:
1639 case R_PARISC_TLS_GD14R:
1640 case R_PARISC_TLS_IE21L:
1641 case R_PARISC_TLS_IE14R:
1642 if (eh != NULL)
1643 {
1644 if (eh->got.refcount > 0)
1645 eh->got.refcount -= 1;
1646 }
1647 else if (local_got_refcounts != NULL)
1648 {
1649 if (local_got_refcounts[r_symndx] > 0)
1650 local_got_refcounts[r_symndx] -= 1;
1651 }
1652 break;
1653
1654 case R_PARISC_TLS_LDM21L:
1655 case R_PARISC_TLS_LDM14R:
1656 htab->tls_ldm_got.refcount -= 1;
1657 break;
1658
1659 case R_PARISC_PCREL12F:
1660 case R_PARISC_PCREL17C:
1661 case R_PARISC_PCREL17F:
1662 case R_PARISC_PCREL22F:
1663 if (eh != NULL)
1664 {
1665 if (eh->plt.refcount > 0)
1666 eh->plt.refcount -= 1;
1667 }
1668 break;
1669
1670 case R_PARISC_PLABEL14R:
1671 case R_PARISC_PLABEL21L:
1672 case R_PARISC_PLABEL32:
1673 if (eh != NULL)
1674 {
1675 if (eh->plt.refcount > 0)
1676 eh->plt.refcount -= 1;
1677 }
1678 else if (local_plt_refcounts != NULL)
1679 {
1680 if (local_plt_refcounts[r_symndx] > 0)
1681 local_plt_refcounts[r_symndx] -= 1;
1682 }
1683 break;
1684
1685 default:
1686 break;
1687 }
1688 }
1689
1690 return TRUE;
1691 }
1692
1693 /* Support for core dump NOTE sections. */
1694
1695 static bfd_boolean
1696 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1697 {
1698 int offset;
1699 size_t size;
1700
1701 switch (note->descsz)
1702 {
1703 default:
1704 return FALSE;
1705
1706 case 396: /* Linux/hppa */
1707 /* pr_cursig */
1708 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1709
1710 /* pr_pid */
1711 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1712
1713 /* pr_reg */
1714 offset = 72;
1715 size = 320;
1716
1717 break;
1718 }
1719
1720 /* Make a ".reg/999" section. */
1721 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1722 size, note->descpos + offset);
1723 }
1724
1725 static bfd_boolean
1726 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1727 {
1728 switch (note->descsz)
1729 {
1730 default:
1731 return FALSE;
1732
1733 case 124: /* Linux/hppa elf_prpsinfo. */
1734 elf_tdata (abfd)->core->program
1735 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1736 elf_tdata (abfd)->core->command
1737 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1738 }
1739
1740 /* Note that for some reason, a spurious space is tacked
1741 onto the end of the args in some (at least one anyway)
1742 implementations, so strip it off if it exists. */
1743 {
1744 char *command = elf_tdata (abfd)->core->command;
1745 int n = strlen (command);
1746
1747 if (0 < n && command[n - 1] == ' ')
1748 command[n - 1] = '\0';
1749 }
1750
1751 return TRUE;
1752 }
1753
1754 /* Our own version of hide_symbol, so that we can keep plt entries for
1755 plabels. */
1756
1757 static void
1758 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1759 struct elf_link_hash_entry *eh,
1760 bfd_boolean force_local)
1761 {
1762 if (force_local)
1763 {
1764 eh->forced_local = 1;
1765 if (eh->dynindx != -1)
1766 {
1767 eh->dynindx = -1;
1768 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1769 eh->dynstr_index);
1770 }
1771
1772 /* PR 16082: Remove version information from hidden symbol. */
1773 eh->verinfo.verdef = NULL;
1774 eh->verinfo.vertree = NULL;
1775 }
1776
1777 /* STT_GNU_IFUNC symbol must go through PLT. */
1778 if (! hppa_elf_hash_entry (eh)->plabel
1779 && eh->type != STT_GNU_IFUNC)
1780 {
1781 eh->needs_plt = 0;
1782 eh->plt = elf_hash_table (info)->init_plt_offset;
1783 }
1784 }
1785
1786 /* Adjust a symbol defined by a dynamic object and referenced by a
1787 regular object. The current definition is in some section of the
1788 dynamic object, but we're not including those sections. We have to
1789 change the definition to something the rest of the link can
1790 understand. */
1791
1792 static bfd_boolean
1793 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1794 struct elf_link_hash_entry *eh)
1795 {
1796 struct elf32_hppa_link_hash_table *htab;
1797 asection *sec, *srel;
1798
1799 /* If this is a function, put it in the procedure linkage table. We
1800 will fill in the contents of the procedure linkage table later. */
1801 if (eh->type == STT_FUNC
1802 || eh->needs_plt)
1803 {
1804 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1805 The refcounts are not reliable when it has been hidden since
1806 hide_symbol can be called before the plabel flag is set. */
1807 if (hppa_elf_hash_entry (eh)->plabel
1808 && eh->plt.refcount <= 0)
1809 eh->plt.refcount = 1;
1810
1811 if (eh->plt.refcount <= 0
1812 || (eh->def_regular
1813 && eh->root.type != bfd_link_hash_defweak
1814 && ! hppa_elf_hash_entry (eh)->plabel
1815 && (!bfd_link_pic (info) || SYMBOLIC_BIND (info, eh))))
1816 {
1817 /* The .plt entry is not needed when:
1818 a) Garbage collection has removed all references to the
1819 symbol, or
1820 b) We know for certain the symbol is defined in this
1821 object, and it's not a weak definition, nor is the symbol
1822 used by a plabel relocation. Either this object is the
1823 application or we are doing a shared symbolic link. */
1824
1825 eh->plt.offset = (bfd_vma) -1;
1826 eh->needs_plt = 0;
1827 }
1828
1829 return TRUE;
1830 }
1831 else
1832 eh->plt.offset = (bfd_vma) -1;
1833
1834 /* If this is a weak symbol, and there is a real definition, the
1835 processor independent code will have arranged for us to see the
1836 real definition first, and we can just use the same value. */
1837 if (eh->u.weakdef != NULL)
1838 {
1839 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1840 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1841 abort ();
1842 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1843 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1844 if (ELIMINATE_COPY_RELOCS)
1845 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1846 return TRUE;
1847 }
1848
1849 /* This is a reference to a symbol defined by a dynamic object which
1850 is not a function. */
1851
1852 /* If we are creating a shared library, we must presume that the
1853 only references to the symbol are via the global offset table.
1854 For such cases we need not do anything here; the relocations will
1855 be handled correctly by relocate_section. */
1856 if (bfd_link_pic (info))
1857 return TRUE;
1858
1859 /* If there are no references to this symbol that do not use the
1860 GOT, we don't need to generate a copy reloc. */
1861 if (!eh->non_got_ref)
1862 return TRUE;
1863
1864 if (ELIMINATE_COPY_RELOCS)
1865 {
1866 struct elf32_hppa_link_hash_entry *hh;
1867 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1868
1869 hh = hppa_elf_hash_entry (eh);
1870 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1871 {
1872 sec = hdh_p->sec->output_section;
1873 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1874 break;
1875 }
1876
1877 /* If we didn't find any dynamic relocs in read-only sections, then
1878 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1879 if (hdh_p == NULL)
1880 {
1881 eh->non_got_ref = 0;
1882 return TRUE;
1883 }
1884 }
1885
1886 /* We must allocate the symbol in our .dynbss section, which will
1887 become part of the .bss section of the executable. There will be
1888 an entry for this symbol in the .dynsym section. The dynamic
1889 object will contain position independent code, so all references
1890 from the dynamic object to this symbol will go through the global
1891 offset table. The dynamic linker will use the .dynsym entry to
1892 determine the address it must put in the global offset table, so
1893 both the dynamic object and the regular object will refer to the
1894 same memory location for the variable. */
1895
1896 htab = hppa_link_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* We must generate a COPY reloc to tell the dynamic linker to
1901 copy the initial value out of the dynamic object and into the
1902 runtime process image. */
1903 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1904 {
1905 sec = htab->etab.sdynrelro;
1906 srel = htab->etab.sreldynrelro;
1907 }
1908 else
1909 {
1910 sec = htab->etab.sdynbss;
1911 srel = htab->etab.srelbss;
1912 }
1913 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1914 {
1915 srel->size += sizeof (Elf32_External_Rela);
1916 eh->needs_copy = 1;
1917 }
1918
1919 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1920 }
1921
1922 /* Allocate space in the .plt for entries that won't have relocations.
1923 ie. plabel entries. */
1924
1925 static bfd_boolean
1926 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1927 {
1928 struct bfd_link_info *info;
1929 struct elf32_hppa_link_hash_table *htab;
1930 struct elf32_hppa_link_hash_entry *hh;
1931 asection *sec;
1932
1933 if (eh->root.type == bfd_link_hash_indirect)
1934 return TRUE;
1935
1936 info = (struct bfd_link_info *) inf;
1937 hh = hppa_elf_hash_entry (eh);
1938 htab = hppa_link_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 if (htab->etab.dynamic_sections_created
1943 && eh->plt.refcount > 0)
1944 {
1945 /* Make sure this symbol is output as a dynamic symbol.
1946 Undefined weak syms won't yet be marked as dynamic. */
1947 if (eh->dynindx == -1
1948 && !eh->forced_local
1949 && eh->type != STT_PARISC_MILLI)
1950 {
1951 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1952 return FALSE;
1953 }
1954
1955 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1956 {
1957 /* Allocate these later. From this point on, h->plabel
1958 means that the plt entry is only used by a plabel.
1959 We'll be using a normal plt entry for this symbol, so
1960 clear the plabel indicator. */
1961
1962 hh->plabel = 0;
1963 }
1964 else if (hh->plabel)
1965 {
1966 /* Make an entry in the .plt section for plabel references
1967 that won't have a .plt entry for other reasons. */
1968 sec = htab->etab.splt;
1969 eh->plt.offset = sec->size;
1970 sec->size += PLT_ENTRY_SIZE;
1971 }
1972 else
1973 {
1974 /* No .plt entry needed. */
1975 eh->plt.offset = (bfd_vma) -1;
1976 eh->needs_plt = 0;
1977 }
1978 }
1979 else
1980 {
1981 eh->plt.offset = (bfd_vma) -1;
1982 eh->needs_plt = 0;
1983 }
1984
1985 return TRUE;
1986 }
1987
1988 /* Allocate space in .plt, .got and associated reloc sections for
1989 global syms. */
1990
1991 static bfd_boolean
1992 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1993 {
1994 struct bfd_link_info *info;
1995 struct elf32_hppa_link_hash_table *htab;
1996 asection *sec;
1997 struct elf32_hppa_link_hash_entry *hh;
1998 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1999
2000 if (eh->root.type == bfd_link_hash_indirect)
2001 return TRUE;
2002
2003 info = inf;
2004 htab = hppa_link_hash_table (info);
2005 if (htab == NULL)
2006 return FALSE;
2007
2008 hh = hppa_elf_hash_entry (eh);
2009
2010 if (htab->etab.dynamic_sections_created
2011 && eh->plt.offset != (bfd_vma) -1
2012 && !hh->plabel
2013 && eh->plt.refcount > 0)
2014 {
2015 /* Make an entry in the .plt section. */
2016 sec = htab->etab.splt;
2017 eh->plt.offset = sec->size;
2018 sec->size += PLT_ENTRY_SIZE;
2019
2020 /* We also need to make an entry in the .rela.plt section. */
2021 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
2022 htab->need_plt_stub = 1;
2023 }
2024
2025 if (eh->got.refcount > 0)
2026 {
2027 /* Make sure this symbol is output as a dynamic symbol.
2028 Undefined weak syms won't yet be marked as dynamic. */
2029 if (eh->dynindx == -1
2030 && !eh->forced_local
2031 && eh->type != STT_PARISC_MILLI)
2032 {
2033 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2034 return FALSE;
2035 }
2036
2037 sec = htab->etab.sgot;
2038 eh->got.offset = sec->size;
2039 sec->size += GOT_ENTRY_SIZE;
2040 /* R_PARISC_TLS_GD* needs two GOT entries */
2041 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2042 sec->size += GOT_ENTRY_SIZE * 2;
2043 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2044 sec->size += GOT_ENTRY_SIZE;
2045 if (htab->etab.dynamic_sections_created
2046 && (bfd_link_pic (info)
2047 || (eh->dynindx != -1
2048 && !eh->forced_local)))
2049 {
2050 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2051 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2052 htab->etab.srelgot->size += 2 * sizeof (Elf32_External_Rela);
2053 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2054 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2055 }
2056 }
2057 else
2058 eh->got.offset = (bfd_vma) -1;
2059
2060 if (hh->dyn_relocs == NULL)
2061 return TRUE;
2062
2063 /* If this is a -Bsymbolic shared link, then we need to discard all
2064 space allocated for dynamic pc-relative relocs against symbols
2065 defined in a regular object. For the normal shared case, discard
2066 space for relocs that have become local due to symbol visibility
2067 changes. */
2068 if (bfd_link_pic (info))
2069 {
2070 #if RELATIVE_DYNRELOCS
2071 if (SYMBOL_CALLS_LOCAL (info, eh))
2072 {
2073 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2074
2075 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2076 {
2077 hdh_p->count -= hdh_p->relative_count;
2078 hdh_p->relative_count = 0;
2079 if (hdh_p->count == 0)
2080 *hdh_pp = hdh_p->hdh_next;
2081 else
2082 hdh_pp = &hdh_p->hdh_next;
2083 }
2084 }
2085 #endif
2086
2087 /* Also discard relocs on undefined weak syms with non-default
2088 visibility. */
2089 if (hh->dyn_relocs != NULL
2090 && eh->root.type == bfd_link_hash_undefweak)
2091 {
2092 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2093 hh->dyn_relocs = NULL;
2094
2095 /* Make sure undefined weak symbols are output as a dynamic
2096 symbol in PIEs. */
2097 else if (eh->dynindx == -1
2098 && !eh->forced_local)
2099 {
2100 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2101 return FALSE;
2102 }
2103 }
2104 }
2105 else
2106 {
2107 /* For the non-shared case, discard space for relocs against
2108 symbols which turn out to need copy relocs or are not
2109 dynamic. */
2110
2111 if (!eh->non_got_ref
2112 && ((ELIMINATE_COPY_RELOCS
2113 && eh->def_dynamic
2114 && !eh->def_regular)
2115 || (htab->etab.dynamic_sections_created
2116 && (eh->root.type == bfd_link_hash_undefweak
2117 || eh->root.type == bfd_link_hash_undefined))))
2118 {
2119 /* Make sure this symbol is output as a dynamic symbol.
2120 Undefined weak syms won't yet be marked as dynamic. */
2121 if (eh->dynindx == -1
2122 && !eh->forced_local
2123 && eh->type != STT_PARISC_MILLI)
2124 {
2125 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2126 return FALSE;
2127 }
2128
2129 /* If that succeeded, we know we'll be keeping all the
2130 relocs. */
2131 if (eh->dynindx != -1)
2132 goto keep;
2133 }
2134
2135 hh->dyn_relocs = NULL;
2136 return TRUE;
2137
2138 keep: ;
2139 }
2140
2141 /* Finally, allocate space. */
2142 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2143 {
2144 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2145 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2146 }
2147
2148 return TRUE;
2149 }
2150
2151 /* This function is called via elf_link_hash_traverse to force
2152 millicode symbols local so they do not end up as globals in the
2153 dynamic symbol table. We ought to be able to do this in
2154 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2155 for all dynamic symbols. Arguably, this is a bug in
2156 elf_adjust_dynamic_symbol. */
2157
2158 static bfd_boolean
2159 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2160 struct bfd_link_info *info)
2161 {
2162 if (eh->type == STT_PARISC_MILLI
2163 && !eh->forced_local)
2164 {
2165 elf32_hppa_hide_symbol (info, eh, TRUE);
2166 }
2167 return TRUE;
2168 }
2169
2170 /* Find any dynamic relocs that apply to read-only sections. */
2171
2172 static bfd_boolean
2173 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2174 {
2175 struct elf32_hppa_link_hash_entry *hh;
2176 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2177
2178 hh = hppa_elf_hash_entry (eh);
2179 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2180 {
2181 asection *sec = hdh_p->sec->output_section;
2182
2183 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2184 {
2185 struct bfd_link_info *info = inf;
2186
2187 info->flags |= DF_TEXTREL;
2188
2189 /* Not an error, just cut short the traversal. */
2190 return FALSE;
2191 }
2192 }
2193 return TRUE;
2194 }
2195
2196 /* Set the sizes of the dynamic sections. */
2197
2198 static bfd_boolean
2199 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2200 struct bfd_link_info *info)
2201 {
2202 struct elf32_hppa_link_hash_table *htab;
2203 bfd *dynobj;
2204 bfd *ibfd;
2205 asection *sec;
2206 bfd_boolean relocs;
2207
2208 htab = hppa_link_hash_table (info);
2209 if (htab == NULL)
2210 return FALSE;
2211
2212 dynobj = htab->etab.dynobj;
2213 if (dynobj == NULL)
2214 abort ();
2215
2216 if (htab->etab.dynamic_sections_created)
2217 {
2218 /* Set the contents of the .interp section to the interpreter. */
2219 if (bfd_link_executable (info) && !info->nointerp)
2220 {
2221 sec = bfd_get_linker_section (dynobj, ".interp");
2222 if (sec == NULL)
2223 abort ();
2224 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2225 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2226 }
2227
2228 /* Force millicode symbols local. */
2229 elf_link_hash_traverse (&htab->etab,
2230 clobber_millicode_symbols,
2231 info);
2232 }
2233
2234 /* Set up .got and .plt offsets for local syms, and space for local
2235 dynamic relocs. */
2236 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2237 {
2238 bfd_signed_vma *local_got;
2239 bfd_signed_vma *end_local_got;
2240 bfd_signed_vma *local_plt;
2241 bfd_signed_vma *end_local_plt;
2242 bfd_size_type locsymcount;
2243 Elf_Internal_Shdr *symtab_hdr;
2244 asection *srel;
2245 char *local_tls_type;
2246
2247 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2248 continue;
2249
2250 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2251 {
2252 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2253
2254 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2255 elf_section_data (sec)->local_dynrel);
2256 hdh_p != NULL;
2257 hdh_p = hdh_p->hdh_next)
2258 {
2259 if (!bfd_is_abs_section (hdh_p->sec)
2260 && bfd_is_abs_section (hdh_p->sec->output_section))
2261 {
2262 /* Input section has been discarded, either because
2263 it is a copy of a linkonce section or due to
2264 linker script /DISCARD/, so we'll be discarding
2265 the relocs too. */
2266 }
2267 else if (hdh_p->count != 0)
2268 {
2269 srel = elf_section_data (hdh_p->sec)->sreloc;
2270 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2271 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2272 info->flags |= DF_TEXTREL;
2273 }
2274 }
2275 }
2276
2277 local_got = elf_local_got_refcounts (ibfd);
2278 if (!local_got)
2279 continue;
2280
2281 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2282 locsymcount = symtab_hdr->sh_info;
2283 end_local_got = local_got + locsymcount;
2284 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2285 sec = htab->etab.sgot;
2286 srel = htab->etab.srelgot;
2287 for (; local_got < end_local_got; ++local_got)
2288 {
2289 if (*local_got > 0)
2290 {
2291 *local_got = sec->size;
2292 sec->size += GOT_ENTRY_SIZE;
2293 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2294 sec->size += 2 * GOT_ENTRY_SIZE;
2295 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2296 sec->size += GOT_ENTRY_SIZE;
2297 if (bfd_link_pic (info))
2298 {
2299 srel->size += sizeof (Elf32_External_Rela);
2300 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2301 srel->size += 2 * sizeof (Elf32_External_Rela);
2302 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2303 srel->size += sizeof (Elf32_External_Rela);
2304 }
2305 }
2306 else
2307 *local_got = (bfd_vma) -1;
2308
2309 ++local_tls_type;
2310 }
2311
2312 local_plt = end_local_got;
2313 end_local_plt = local_plt + locsymcount;
2314 if (! htab->etab.dynamic_sections_created)
2315 {
2316 /* Won't be used, but be safe. */
2317 for (; local_plt < end_local_plt; ++local_plt)
2318 *local_plt = (bfd_vma) -1;
2319 }
2320 else
2321 {
2322 sec = htab->etab.splt;
2323 srel = htab->etab.srelplt;
2324 for (; local_plt < end_local_plt; ++local_plt)
2325 {
2326 if (*local_plt > 0)
2327 {
2328 *local_plt = sec->size;
2329 sec->size += PLT_ENTRY_SIZE;
2330 if (bfd_link_pic (info))
2331 srel->size += sizeof (Elf32_External_Rela);
2332 }
2333 else
2334 *local_plt = (bfd_vma) -1;
2335 }
2336 }
2337 }
2338
2339 if (htab->tls_ldm_got.refcount > 0)
2340 {
2341 /* Allocate 2 got entries and 1 dynamic reloc for
2342 R_PARISC_TLS_DTPMOD32 relocs. */
2343 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2344 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2345 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2346 }
2347 else
2348 htab->tls_ldm_got.offset = -1;
2349
2350 /* Do all the .plt entries without relocs first. The dynamic linker
2351 uses the last .plt reloc to find the end of the .plt (and hence
2352 the start of the .got) for lazy linking. */
2353 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2354
2355 /* Allocate global sym .plt and .got entries, and space for global
2356 sym dynamic relocs. */
2357 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2358
2359 /* The check_relocs and adjust_dynamic_symbol entry points have
2360 determined the sizes of the various dynamic sections. Allocate
2361 memory for them. */
2362 relocs = FALSE;
2363 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2364 {
2365 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2366 continue;
2367
2368 if (sec == htab->etab.splt)
2369 {
2370 if (htab->need_plt_stub)
2371 {
2372 /* Make space for the plt stub at the end of the .plt
2373 section. We want this stub right at the end, up
2374 against the .got section. */
2375 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2376 int pltalign = bfd_section_alignment (dynobj, sec);
2377 bfd_size_type mask;
2378
2379 if (gotalign > pltalign)
2380 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2381 mask = ((bfd_size_type) 1 << gotalign) - 1;
2382 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2383 }
2384 }
2385 else if (sec == htab->etab.sgot
2386 || sec == htab->etab.sdynbss
2387 || sec == htab->etab.sdynrelro)
2388 ;
2389 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2390 {
2391 if (sec->size != 0)
2392 {
2393 /* Remember whether there are any reloc sections other
2394 than .rela.plt. */
2395 if (sec != htab->etab.srelplt)
2396 relocs = TRUE;
2397
2398 /* We use the reloc_count field as a counter if we need
2399 to copy relocs into the output file. */
2400 sec->reloc_count = 0;
2401 }
2402 }
2403 else
2404 {
2405 /* It's not one of our sections, so don't allocate space. */
2406 continue;
2407 }
2408
2409 if (sec->size == 0)
2410 {
2411 /* If we don't need this section, strip it from the
2412 output file. This is mostly to handle .rela.bss and
2413 .rela.plt. We must create both sections in
2414 create_dynamic_sections, because they must be created
2415 before the linker maps input sections to output
2416 sections. The linker does that before
2417 adjust_dynamic_symbol is called, and it is that
2418 function which decides whether anything needs to go
2419 into these sections. */
2420 sec->flags |= SEC_EXCLUDE;
2421 continue;
2422 }
2423
2424 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2425 continue;
2426
2427 /* Allocate memory for the section contents. Zero it, because
2428 we may not fill in all the reloc sections. */
2429 sec->contents = bfd_zalloc (dynobj, sec->size);
2430 if (sec->contents == NULL)
2431 return FALSE;
2432 }
2433
2434 if (htab->etab.dynamic_sections_created)
2435 {
2436 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2437 actually has nothing to do with the PLT, it is how we
2438 communicate the LTP value of a load module to the dynamic
2439 linker. */
2440 #define add_dynamic_entry(TAG, VAL) \
2441 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2442
2443 if (!add_dynamic_entry (DT_PLTGOT, 0))
2444 return FALSE;
2445
2446 /* Add some entries to the .dynamic section. We fill in the
2447 values later, in elf32_hppa_finish_dynamic_sections, but we
2448 must add the entries now so that we get the correct size for
2449 the .dynamic section. The DT_DEBUG entry is filled in by the
2450 dynamic linker and used by the debugger. */
2451 if (bfd_link_executable (info))
2452 {
2453 if (!add_dynamic_entry (DT_DEBUG, 0))
2454 return FALSE;
2455 }
2456
2457 if (htab->etab.srelplt->size != 0)
2458 {
2459 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2460 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2461 || !add_dynamic_entry (DT_JMPREL, 0))
2462 return FALSE;
2463 }
2464
2465 if (relocs)
2466 {
2467 if (!add_dynamic_entry (DT_RELA, 0)
2468 || !add_dynamic_entry (DT_RELASZ, 0)
2469 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2470 return FALSE;
2471
2472 /* If any dynamic relocs apply to a read-only section,
2473 then we need a DT_TEXTREL entry. */
2474 if ((info->flags & DF_TEXTREL) == 0)
2475 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2476
2477 if ((info->flags & DF_TEXTREL) != 0)
2478 {
2479 if (!add_dynamic_entry (DT_TEXTREL, 0))
2480 return FALSE;
2481 }
2482 }
2483 }
2484 #undef add_dynamic_entry
2485
2486 return TRUE;
2487 }
2488
2489 /* External entry points for sizing and building linker stubs. */
2490
2491 /* Set up various things so that we can make a list of input sections
2492 for each output section included in the link. Returns -1 on error,
2493 0 when no stubs will be needed, and 1 on success. */
2494
2495 int
2496 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2497 {
2498 bfd *input_bfd;
2499 unsigned int bfd_count;
2500 unsigned int top_id, top_index;
2501 asection *section;
2502 asection **input_list, **list;
2503 bfd_size_type amt;
2504 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2505
2506 if (htab == NULL)
2507 return -1;
2508
2509 /* Count the number of input BFDs and find the top input section id. */
2510 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2511 input_bfd != NULL;
2512 input_bfd = input_bfd->link.next)
2513 {
2514 bfd_count += 1;
2515 for (section = input_bfd->sections;
2516 section != NULL;
2517 section = section->next)
2518 {
2519 if (top_id < section->id)
2520 top_id = section->id;
2521 }
2522 }
2523 htab->bfd_count = bfd_count;
2524
2525 amt = sizeof (struct map_stub) * (top_id + 1);
2526 htab->stub_group = bfd_zmalloc (amt);
2527 if (htab->stub_group == NULL)
2528 return -1;
2529
2530 /* We can't use output_bfd->section_count here to find the top output
2531 section index as some sections may have been removed, and
2532 strip_excluded_output_sections doesn't renumber the indices. */
2533 for (section = output_bfd->sections, top_index = 0;
2534 section != NULL;
2535 section = section->next)
2536 {
2537 if (top_index < section->index)
2538 top_index = section->index;
2539 }
2540
2541 htab->top_index = top_index;
2542 amt = sizeof (asection *) * (top_index + 1);
2543 input_list = bfd_malloc (amt);
2544 htab->input_list = input_list;
2545 if (input_list == NULL)
2546 return -1;
2547
2548 /* For sections we aren't interested in, mark their entries with a
2549 value we can check later. */
2550 list = input_list + top_index;
2551 do
2552 *list = bfd_abs_section_ptr;
2553 while (list-- != input_list);
2554
2555 for (section = output_bfd->sections;
2556 section != NULL;
2557 section = section->next)
2558 {
2559 if ((section->flags & SEC_CODE) != 0)
2560 input_list[section->index] = NULL;
2561 }
2562
2563 return 1;
2564 }
2565
2566 /* The linker repeatedly calls this function for each input section,
2567 in the order that input sections are linked into output sections.
2568 Build lists of input sections to determine groupings between which
2569 we may insert linker stubs. */
2570
2571 void
2572 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2573 {
2574 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2575
2576 if (htab == NULL)
2577 return;
2578
2579 if (isec->output_section->index <= htab->top_index)
2580 {
2581 asection **list = htab->input_list + isec->output_section->index;
2582 if (*list != bfd_abs_section_ptr)
2583 {
2584 /* Steal the link_sec pointer for our list. */
2585 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2586 /* This happens to make the list in reverse order,
2587 which is what we want. */
2588 PREV_SEC (isec) = *list;
2589 *list = isec;
2590 }
2591 }
2592 }
2593
2594 /* See whether we can group stub sections together. Grouping stub
2595 sections may result in fewer stubs. More importantly, we need to
2596 put all .init* and .fini* stubs at the beginning of the .init or
2597 .fini output sections respectively, because glibc splits the
2598 _init and _fini functions into multiple parts. Putting a stub in
2599 the middle of a function is not a good idea. */
2600
2601 static void
2602 group_sections (struct elf32_hppa_link_hash_table *htab,
2603 bfd_size_type stub_group_size,
2604 bfd_boolean stubs_always_before_branch)
2605 {
2606 asection **list = htab->input_list + htab->top_index;
2607 do
2608 {
2609 asection *tail = *list;
2610 if (tail == bfd_abs_section_ptr)
2611 continue;
2612 while (tail != NULL)
2613 {
2614 asection *curr;
2615 asection *prev;
2616 bfd_size_type total;
2617 bfd_boolean big_sec;
2618
2619 curr = tail;
2620 total = tail->size;
2621 big_sec = total >= stub_group_size;
2622
2623 while ((prev = PREV_SEC (curr)) != NULL
2624 && ((total += curr->output_offset - prev->output_offset)
2625 < stub_group_size))
2626 curr = prev;
2627
2628 /* OK, the size from the start of CURR to the end is less
2629 than 240000 bytes and thus can be handled by one stub
2630 section. (or the tail section is itself larger than
2631 240000 bytes, in which case we may be toast.)
2632 We should really be keeping track of the total size of
2633 stubs added here, as stubs contribute to the final output
2634 section size. That's a little tricky, and this way will
2635 only break if stubs added total more than 22144 bytes, or
2636 2768 long branch stubs. It seems unlikely for more than
2637 2768 different functions to be called, especially from
2638 code only 240000 bytes long. This limit used to be
2639 250000, but c++ code tends to generate lots of little
2640 functions, and sometimes violated the assumption. */
2641 do
2642 {
2643 prev = PREV_SEC (tail);
2644 /* Set up this stub group. */
2645 htab->stub_group[tail->id].link_sec = curr;
2646 }
2647 while (tail != curr && (tail = prev) != NULL);
2648
2649 /* But wait, there's more! Input sections up to 240000
2650 bytes before the stub section can be handled by it too.
2651 Don't do this if we have a really large section after the
2652 stubs, as adding more stubs increases the chance that
2653 branches may not reach into the stub section. */
2654 if (!stubs_always_before_branch && !big_sec)
2655 {
2656 total = 0;
2657 while (prev != NULL
2658 && ((total += tail->output_offset - prev->output_offset)
2659 < stub_group_size))
2660 {
2661 tail = prev;
2662 prev = PREV_SEC (tail);
2663 htab->stub_group[tail->id].link_sec = curr;
2664 }
2665 }
2666 tail = prev;
2667 }
2668 }
2669 while (list-- != htab->input_list);
2670 free (htab->input_list);
2671 #undef PREV_SEC
2672 }
2673
2674 /* Read in all local syms for all input bfds, and create hash entries
2675 for export stubs if we are building a multi-subspace shared lib.
2676 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2677
2678 static int
2679 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2680 {
2681 unsigned int bfd_indx;
2682 Elf_Internal_Sym *local_syms, **all_local_syms;
2683 int stub_changed = 0;
2684 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2685
2686 if (htab == NULL)
2687 return -1;
2688
2689 /* We want to read in symbol extension records only once. To do this
2690 we need to read in the local symbols in parallel and save them for
2691 later use; so hold pointers to the local symbols in an array. */
2692 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2693 all_local_syms = bfd_zmalloc (amt);
2694 htab->all_local_syms = all_local_syms;
2695 if (all_local_syms == NULL)
2696 return -1;
2697
2698 /* Walk over all the input BFDs, swapping in local symbols.
2699 If we are creating a shared library, create hash entries for the
2700 export stubs. */
2701 for (bfd_indx = 0;
2702 input_bfd != NULL;
2703 input_bfd = input_bfd->link.next, bfd_indx++)
2704 {
2705 Elf_Internal_Shdr *symtab_hdr;
2706
2707 /* We'll need the symbol table in a second. */
2708 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2709 if (symtab_hdr->sh_info == 0)
2710 continue;
2711
2712 /* We need an array of the local symbols attached to the input bfd. */
2713 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2714 if (local_syms == NULL)
2715 {
2716 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2717 symtab_hdr->sh_info, 0,
2718 NULL, NULL, NULL);
2719 /* Cache them for elf_link_input_bfd. */
2720 symtab_hdr->contents = (unsigned char *) local_syms;
2721 }
2722 if (local_syms == NULL)
2723 return -1;
2724
2725 all_local_syms[bfd_indx] = local_syms;
2726
2727 if (bfd_link_pic (info) && htab->multi_subspace)
2728 {
2729 struct elf_link_hash_entry **eh_syms;
2730 struct elf_link_hash_entry **eh_symend;
2731 unsigned int symcount;
2732
2733 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2734 - symtab_hdr->sh_info);
2735 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2736 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2737
2738 /* Look through the global syms for functions; We need to
2739 build export stubs for all globally visible functions. */
2740 for (; eh_syms < eh_symend; eh_syms++)
2741 {
2742 struct elf32_hppa_link_hash_entry *hh;
2743
2744 hh = hppa_elf_hash_entry (*eh_syms);
2745
2746 while (hh->eh.root.type == bfd_link_hash_indirect
2747 || hh->eh.root.type == bfd_link_hash_warning)
2748 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2749
2750 /* At this point in the link, undefined syms have been
2751 resolved, so we need to check that the symbol was
2752 defined in this BFD. */
2753 if ((hh->eh.root.type == bfd_link_hash_defined
2754 || hh->eh.root.type == bfd_link_hash_defweak)
2755 && hh->eh.type == STT_FUNC
2756 && hh->eh.root.u.def.section->output_section != NULL
2757 && (hh->eh.root.u.def.section->output_section->owner
2758 == output_bfd)
2759 && hh->eh.root.u.def.section->owner == input_bfd
2760 && hh->eh.def_regular
2761 && !hh->eh.forced_local
2762 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2763 {
2764 asection *sec;
2765 const char *stub_name;
2766 struct elf32_hppa_stub_hash_entry *hsh;
2767
2768 sec = hh->eh.root.u.def.section;
2769 stub_name = hh_name (hh);
2770 hsh = hppa_stub_hash_lookup (&htab->bstab,
2771 stub_name,
2772 FALSE, FALSE);
2773 if (hsh == NULL)
2774 {
2775 hsh = hppa_add_stub (stub_name, sec, htab);
2776 if (!hsh)
2777 return -1;
2778
2779 hsh->target_value = hh->eh.root.u.def.value;
2780 hsh->target_section = hh->eh.root.u.def.section;
2781 hsh->stub_type = hppa_stub_export;
2782 hsh->hh = hh;
2783 stub_changed = 1;
2784 }
2785 else
2786 {
2787 /* xgettext:c-format */
2788 _bfd_error_handler (_("%B: duplicate export stub %s"),
2789 input_bfd, stub_name);
2790 }
2791 }
2792 }
2793 }
2794 }
2795
2796 return stub_changed;
2797 }
2798
2799 /* Determine and set the size of the stub section for a final link.
2800
2801 The basic idea here is to examine all the relocations looking for
2802 PC-relative calls to a target that is unreachable with a "bl"
2803 instruction. */
2804
2805 bfd_boolean
2806 elf32_hppa_size_stubs
2807 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2808 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2809 asection * (*add_stub_section) (const char *, asection *),
2810 void (*layout_sections_again) (void))
2811 {
2812 bfd_size_type stub_group_size;
2813 bfd_boolean stubs_always_before_branch;
2814 bfd_boolean stub_changed;
2815 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2816
2817 if (htab == NULL)
2818 return FALSE;
2819
2820 /* Stash our params away. */
2821 htab->stub_bfd = stub_bfd;
2822 htab->multi_subspace = multi_subspace;
2823 htab->add_stub_section = add_stub_section;
2824 htab->layout_sections_again = layout_sections_again;
2825 stubs_always_before_branch = group_size < 0;
2826 if (group_size < 0)
2827 stub_group_size = -group_size;
2828 else
2829 stub_group_size = group_size;
2830 if (stub_group_size == 1)
2831 {
2832 /* Default values. */
2833 if (stubs_always_before_branch)
2834 {
2835 stub_group_size = 7680000;
2836 if (htab->has_17bit_branch || htab->multi_subspace)
2837 stub_group_size = 240000;
2838 if (htab->has_12bit_branch)
2839 stub_group_size = 7500;
2840 }
2841 else
2842 {
2843 stub_group_size = 6971392;
2844 if (htab->has_17bit_branch || htab->multi_subspace)
2845 stub_group_size = 217856;
2846 if (htab->has_12bit_branch)
2847 stub_group_size = 6808;
2848 }
2849 }
2850
2851 group_sections (htab, stub_group_size, stubs_always_before_branch);
2852
2853 switch (get_local_syms (output_bfd, info->input_bfds, info))
2854 {
2855 default:
2856 if (htab->all_local_syms)
2857 goto error_ret_free_local;
2858 return FALSE;
2859
2860 case 0:
2861 stub_changed = FALSE;
2862 break;
2863
2864 case 1:
2865 stub_changed = TRUE;
2866 break;
2867 }
2868
2869 while (1)
2870 {
2871 bfd *input_bfd;
2872 unsigned int bfd_indx;
2873 asection *stub_sec;
2874
2875 for (input_bfd = info->input_bfds, bfd_indx = 0;
2876 input_bfd != NULL;
2877 input_bfd = input_bfd->link.next, bfd_indx++)
2878 {
2879 Elf_Internal_Shdr *symtab_hdr;
2880 asection *section;
2881 Elf_Internal_Sym *local_syms;
2882
2883 /* We'll need the symbol table in a second. */
2884 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2885 if (symtab_hdr->sh_info == 0)
2886 continue;
2887
2888 local_syms = htab->all_local_syms[bfd_indx];
2889
2890 /* Walk over each section attached to the input bfd. */
2891 for (section = input_bfd->sections;
2892 section != NULL;
2893 section = section->next)
2894 {
2895 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2896
2897 /* If there aren't any relocs, then there's nothing more
2898 to do. */
2899 if ((section->flags & SEC_RELOC) == 0
2900 || section->reloc_count == 0)
2901 continue;
2902
2903 /* If this section is a link-once section that will be
2904 discarded, then don't create any stubs. */
2905 if (section->output_section == NULL
2906 || section->output_section->owner != output_bfd)
2907 continue;
2908
2909 /* Get the relocs. */
2910 internal_relocs
2911 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2912 info->keep_memory);
2913 if (internal_relocs == NULL)
2914 goto error_ret_free_local;
2915
2916 /* Now examine each relocation. */
2917 irela = internal_relocs;
2918 irelaend = irela + section->reloc_count;
2919 for (; irela < irelaend; irela++)
2920 {
2921 unsigned int r_type, r_indx;
2922 enum elf32_hppa_stub_type stub_type;
2923 struct elf32_hppa_stub_hash_entry *hsh;
2924 asection *sym_sec;
2925 bfd_vma sym_value;
2926 bfd_vma destination;
2927 struct elf32_hppa_link_hash_entry *hh;
2928 char *stub_name;
2929 const asection *id_sec;
2930
2931 r_type = ELF32_R_TYPE (irela->r_info);
2932 r_indx = ELF32_R_SYM (irela->r_info);
2933
2934 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2935 {
2936 bfd_set_error (bfd_error_bad_value);
2937 error_ret_free_internal:
2938 if (elf_section_data (section)->relocs == NULL)
2939 free (internal_relocs);
2940 goto error_ret_free_local;
2941 }
2942
2943 /* Only look for stubs on call instructions. */
2944 if (r_type != (unsigned int) R_PARISC_PCREL12F
2945 && r_type != (unsigned int) R_PARISC_PCREL17F
2946 && r_type != (unsigned int) R_PARISC_PCREL22F)
2947 continue;
2948
2949 /* Now determine the call target, its name, value,
2950 section. */
2951 sym_sec = NULL;
2952 sym_value = 0;
2953 destination = 0;
2954 hh = NULL;
2955 if (r_indx < symtab_hdr->sh_info)
2956 {
2957 /* It's a local symbol. */
2958 Elf_Internal_Sym *sym;
2959 Elf_Internal_Shdr *hdr;
2960 unsigned int shndx;
2961
2962 sym = local_syms + r_indx;
2963 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2964 sym_value = sym->st_value;
2965 shndx = sym->st_shndx;
2966 if (shndx < elf_numsections (input_bfd))
2967 {
2968 hdr = elf_elfsections (input_bfd)[shndx];
2969 sym_sec = hdr->bfd_section;
2970 destination = (sym_value + irela->r_addend
2971 + sym_sec->output_offset
2972 + sym_sec->output_section->vma);
2973 }
2974 }
2975 else
2976 {
2977 /* It's an external symbol. */
2978 int e_indx;
2979
2980 e_indx = r_indx - symtab_hdr->sh_info;
2981 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2982
2983 while (hh->eh.root.type == bfd_link_hash_indirect
2984 || hh->eh.root.type == bfd_link_hash_warning)
2985 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2986
2987 if (hh->eh.root.type == bfd_link_hash_defined
2988 || hh->eh.root.type == bfd_link_hash_defweak)
2989 {
2990 sym_sec = hh->eh.root.u.def.section;
2991 sym_value = hh->eh.root.u.def.value;
2992 if (sym_sec->output_section != NULL)
2993 destination = (sym_value + irela->r_addend
2994 + sym_sec->output_offset
2995 + sym_sec->output_section->vma);
2996 }
2997 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2998 {
2999 if (! bfd_link_pic (info))
3000 continue;
3001 }
3002 else if (hh->eh.root.type == bfd_link_hash_undefined)
3003 {
3004 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3005 && (ELF_ST_VISIBILITY (hh->eh.other)
3006 == STV_DEFAULT)
3007 && hh->eh.type != STT_PARISC_MILLI))
3008 continue;
3009 }
3010 else
3011 {
3012 bfd_set_error (bfd_error_bad_value);
3013 goto error_ret_free_internal;
3014 }
3015 }
3016
3017 /* Determine what (if any) linker stub is needed. */
3018 stub_type = hppa_type_of_stub (section, irela, hh,
3019 destination, info);
3020 if (stub_type == hppa_stub_none)
3021 continue;
3022
3023 /* Support for grouping stub sections. */
3024 id_sec = htab->stub_group[section->id].link_sec;
3025
3026 /* Get the name of this stub. */
3027 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3028 if (!stub_name)
3029 goto error_ret_free_internal;
3030
3031 hsh = hppa_stub_hash_lookup (&htab->bstab,
3032 stub_name,
3033 FALSE, FALSE);
3034 if (hsh != NULL)
3035 {
3036 /* The proper stub has already been created. */
3037 free (stub_name);
3038 continue;
3039 }
3040
3041 hsh = hppa_add_stub (stub_name, section, htab);
3042 if (hsh == NULL)
3043 {
3044 free (stub_name);
3045 goto error_ret_free_internal;
3046 }
3047
3048 hsh->target_value = sym_value;
3049 hsh->target_section = sym_sec;
3050 hsh->stub_type = stub_type;
3051 if (bfd_link_pic (info))
3052 {
3053 if (stub_type == hppa_stub_import)
3054 hsh->stub_type = hppa_stub_import_shared;
3055 else if (stub_type == hppa_stub_long_branch)
3056 hsh->stub_type = hppa_stub_long_branch_shared;
3057 }
3058 hsh->hh = hh;
3059 stub_changed = TRUE;
3060 }
3061
3062 /* We're done with the internal relocs, free them. */
3063 if (elf_section_data (section)->relocs == NULL)
3064 free (internal_relocs);
3065 }
3066 }
3067
3068 if (!stub_changed)
3069 break;
3070
3071 /* OK, we've added some stubs. Find out the new size of the
3072 stub sections. */
3073 for (stub_sec = htab->stub_bfd->sections;
3074 stub_sec != NULL;
3075 stub_sec = stub_sec->next)
3076 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3077 stub_sec->size = 0;
3078
3079 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3080
3081 /* Ask the linker to do its stuff. */
3082 (*htab->layout_sections_again) ();
3083 stub_changed = FALSE;
3084 }
3085
3086 free (htab->all_local_syms);
3087 return TRUE;
3088
3089 error_ret_free_local:
3090 free (htab->all_local_syms);
3091 return FALSE;
3092 }
3093
3094 /* For a final link, this function is called after we have sized the
3095 stubs to provide a value for __gp. */
3096
3097 bfd_boolean
3098 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3099 {
3100 struct bfd_link_hash_entry *h;
3101 asection *sec = NULL;
3102 bfd_vma gp_val = 0;
3103 struct elf32_hppa_link_hash_table *htab;
3104
3105 htab = hppa_link_hash_table (info);
3106 if (htab == NULL)
3107 return FALSE;
3108
3109 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3110
3111 if (h != NULL
3112 && (h->type == bfd_link_hash_defined
3113 || h->type == bfd_link_hash_defweak))
3114 {
3115 gp_val = h->u.def.value;
3116 sec = h->u.def.section;
3117 }
3118 else
3119 {
3120 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3121 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3122
3123 /* Choose to point our LTP at, in this order, one of .plt, .got,
3124 or .data, if these sections exist. In the case of choosing
3125 .plt try to make the LTP ideal for addressing anywhere in the
3126 .plt or .got with a 14 bit signed offset. Typically, the end
3127 of the .plt is the start of the .got, so choose .plt + 0x2000
3128 if either the .plt or .got is larger than 0x2000. If both
3129 the .plt and .got are smaller than 0x2000, choose the end of
3130 the .plt section. */
3131 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3132 ? NULL : splt;
3133 if (sec != NULL)
3134 {
3135 gp_val = sec->size;
3136 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3137 {
3138 gp_val = 0x2000;
3139 }
3140 }
3141 else
3142 {
3143 sec = sgot;
3144 if (sec != NULL)
3145 {
3146 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3147 {
3148 /* We know we don't have a .plt. If .got is large,
3149 offset our LTP. */
3150 if (sec->size > 0x2000)
3151 gp_val = 0x2000;
3152 }
3153 }
3154 else
3155 {
3156 /* No .plt or .got. Who cares what the LTP is? */
3157 sec = bfd_get_section_by_name (abfd, ".data");
3158 }
3159 }
3160
3161 if (h != NULL)
3162 {
3163 h->type = bfd_link_hash_defined;
3164 h->u.def.value = gp_val;
3165 if (sec != NULL)
3166 h->u.def.section = sec;
3167 else
3168 h->u.def.section = bfd_abs_section_ptr;
3169 }
3170 }
3171
3172 if (sec != NULL && sec->output_section != NULL)
3173 gp_val += sec->output_section->vma + sec->output_offset;
3174
3175 elf_gp (abfd) = gp_val;
3176 return TRUE;
3177 }
3178
3179 /* Build all the stubs associated with the current output file. The
3180 stubs are kept in a hash table attached to the main linker hash
3181 table. We also set up the .plt entries for statically linked PIC
3182 functions here. This function is called via hppaelf_finish in the
3183 linker. */
3184
3185 bfd_boolean
3186 elf32_hppa_build_stubs (struct bfd_link_info *info)
3187 {
3188 asection *stub_sec;
3189 struct bfd_hash_table *table;
3190 struct elf32_hppa_link_hash_table *htab;
3191
3192 htab = hppa_link_hash_table (info);
3193 if (htab == NULL)
3194 return FALSE;
3195
3196 for (stub_sec = htab->stub_bfd->sections;
3197 stub_sec != NULL;
3198 stub_sec = stub_sec->next)
3199 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3200 && stub_sec->size != 0)
3201 {
3202 /* Allocate memory to hold the linker stubs. */
3203 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3204 if (stub_sec->contents == NULL)
3205 return FALSE;
3206 stub_sec->size = 0;
3207 }
3208
3209 /* Build the stubs as directed by the stub hash table. */
3210 table = &htab->bstab;
3211 bfd_hash_traverse (table, hppa_build_one_stub, info);
3212
3213 return TRUE;
3214 }
3215
3216 /* Return the base vma address which should be subtracted from the real
3217 address when resolving a dtpoff relocation.
3218 This is PT_TLS segment p_vaddr. */
3219
3220 static bfd_vma
3221 dtpoff_base (struct bfd_link_info *info)
3222 {
3223 /* If tls_sec is NULL, we should have signalled an error already. */
3224 if (elf_hash_table (info)->tls_sec == NULL)
3225 return 0;
3226 return elf_hash_table (info)->tls_sec->vma;
3227 }
3228
3229 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3230
3231 static bfd_vma
3232 tpoff (struct bfd_link_info *info, bfd_vma address)
3233 {
3234 struct elf_link_hash_table *htab = elf_hash_table (info);
3235
3236 /* If tls_sec is NULL, we should have signalled an error already. */
3237 if (htab->tls_sec == NULL)
3238 return 0;
3239 /* hppa TLS ABI is variant I and static TLS block start just after
3240 tcbhead structure which has 2 pointer fields. */
3241 return (address - htab->tls_sec->vma
3242 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3243 }
3244
3245 /* Perform a final link. */
3246
3247 static bfd_boolean
3248 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3249 {
3250 struct stat buf;
3251
3252 /* Invoke the regular ELF linker to do all the work. */
3253 if (!bfd_elf_final_link (abfd, info))
3254 return FALSE;
3255
3256 /* If we're producing a final executable, sort the contents of the
3257 unwind section. */
3258 if (bfd_link_relocatable (info))
3259 return TRUE;
3260
3261 /* Do not attempt to sort non-regular files. This is here
3262 especially for configure scripts and kernel builds which run
3263 tests with "ld [...] -o /dev/null". */
3264 if (stat (abfd->filename, &buf) != 0
3265 || !S_ISREG(buf.st_mode))
3266 return TRUE;
3267
3268 return elf_hppa_sort_unwind (abfd);
3269 }
3270
3271 /* Record the lowest address for the data and text segments. */
3272
3273 static void
3274 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3275 {
3276 struct elf32_hppa_link_hash_table *htab;
3277
3278 htab = (struct elf32_hppa_link_hash_table*) data;
3279 if (htab == NULL)
3280 return;
3281
3282 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3283 {
3284 bfd_vma value;
3285 Elf_Internal_Phdr *p;
3286
3287 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3288 BFD_ASSERT (p != NULL);
3289 value = p->p_vaddr;
3290
3291 if ((section->flags & SEC_READONLY) != 0)
3292 {
3293 if (value < htab->text_segment_base)
3294 htab->text_segment_base = value;
3295 }
3296 else
3297 {
3298 if (value < htab->data_segment_base)
3299 htab->data_segment_base = value;
3300 }
3301 }
3302 }
3303
3304 /* Perform a relocation as part of a final link. */
3305
3306 static bfd_reloc_status_type
3307 final_link_relocate (asection *input_section,
3308 bfd_byte *contents,
3309 const Elf_Internal_Rela *rela,
3310 bfd_vma value,
3311 struct elf32_hppa_link_hash_table *htab,
3312 asection *sym_sec,
3313 struct elf32_hppa_link_hash_entry *hh,
3314 struct bfd_link_info *info)
3315 {
3316 int insn;
3317 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3318 unsigned int orig_r_type = r_type;
3319 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3320 int r_format = howto->bitsize;
3321 enum hppa_reloc_field_selector_type_alt r_field;
3322 bfd *input_bfd = input_section->owner;
3323 bfd_vma offset = rela->r_offset;
3324 bfd_vma max_branch_offset = 0;
3325 bfd_byte *hit_data = contents + offset;
3326 bfd_signed_vma addend = rela->r_addend;
3327 bfd_vma location;
3328 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3329 int val;
3330
3331 if (r_type == R_PARISC_NONE)
3332 return bfd_reloc_ok;
3333
3334 insn = bfd_get_32 (input_bfd, hit_data);
3335
3336 /* Find out where we are and where we're going. */
3337 location = (offset +
3338 input_section->output_offset +
3339 input_section->output_section->vma);
3340
3341 /* If we are not building a shared library, convert DLTIND relocs to
3342 DPREL relocs. */
3343 if (!bfd_link_pic (info))
3344 {
3345 switch (r_type)
3346 {
3347 case R_PARISC_DLTIND21L:
3348 case R_PARISC_TLS_GD21L:
3349 case R_PARISC_TLS_LDM21L:
3350 case R_PARISC_TLS_IE21L:
3351 r_type = R_PARISC_DPREL21L;
3352 break;
3353
3354 case R_PARISC_DLTIND14R:
3355 case R_PARISC_TLS_GD14R:
3356 case R_PARISC_TLS_LDM14R:
3357 case R_PARISC_TLS_IE14R:
3358 r_type = R_PARISC_DPREL14R;
3359 break;
3360
3361 case R_PARISC_DLTIND14F:
3362 r_type = R_PARISC_DPREL14F;
3363 break;
3364 }
3365 }
3366
3367 switch (r_type)
3368 {
3369 case R_PARISC_PCREL12F:
3370 case R_PARISC_PCREL17F:
3371 case R_PARISC_PCREL22F:
3372 /* If this call should go via the plt, find the import stub in
3373 the stub hash. */
3374 if (sym_sec == NULL
3375 || sym_sec->output_section == NULL
3376 || (hh != NULL
3377 && hh->eh.plt.offset != (bfd_vma) -1
3378 && hh->eh.dynindx != -1
3379 && !hh->plabel
3380 && (bfd_link_pic (info)
3381 || !hh->eh.def_regular
3382 || hh->eh.root.type == bfd_link_hash_defweak)))
3383 {
3384 hsh = hppa_get_stub_entry (input_section, sym_sec,
3385 hh, rela, htab);
3386 if (hsh != NULL)
3387 {
3388 value = (hsh->stub_offset
3389 + hsh->stub_sec->output_offset
3390 + hsh->stub_sec->output_section->vma);
3391 addend = 0;
3392 }
3393 else if (sym_sec == NULL && hh != NULL
3394 && hh->eh.root.type == bfd_link_hash_undefweak)
3395 {
3396 /* It's OK if undefined weak. Calls to undefined weak
3397 symbols behave as if the "called" function
3398 immediately returns. We can thus call to a weak
3399 function without first checking whether the function
3400 is defined. */
3401 value = location;
3402 addend = 8;
3403 }
3404 else
3405 return bfd_reloc_undefined;
3406 }
3407 /* Fall thru. */
3408
3409 case R_PARISC_PCREL21L:
3410 case R_PARISC_PCREL17C:
3411 case R_PARISC_PCREL17R:
3412 case R_PARISC_PCREL14R:
3413 case R_PARISC_PCREL14F:
3414 case R_PARISC_PCREL32:
3415 /* Make it a pc relative offset. */
3416 value -= location;
3417 addend -= 8;
3418 break;
3419
3420 case R_PARISC_DPREL21L:
3421 case R_PARISC_DPREL14R:
3422 case R_PARISC_DPREL14F:
3423 /* Convert instructions that use the linkage table pointer (r19) to
3424 instructions that use the global data pointer (dp). This is the
3425 most efficient way of using PIC code in an incomplete executable,
3426 but the user must follow the standard runtime conventions for
3427 accessing data for this to work. */
3428 if (orig_r_type != r_type)
3429 {
3430 if (r_type == R_PARISC_DPREL21L)
3431 {
3432 /* GCC sometimes uses a register other than r19 for the
3433 operation, so we must convert any addil instruction
3434 that uses this relocation. */
3435 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3436 insn = ADDIL_DP;
3437 else
3438 /* We must have a ldil instruction. It's too hard to find
3439 and convert the associated add instruction, so issue an
3440 error. */
3441 _bfd_error_handler
3442 /* xgettext:c-format */
3443 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3444 input_bfd,
3445 input_section,
3446 (long) offset,
3447 howto->name,
3448 insn);
3449 }
3450 else if (r_type == R_PARISC_DPREL14F)
3451 {
3452 /* This must be a format 1 load/store. Change the base
3453 register to dp. */
3454 insn = (insn & 0xfc1ffff) | (27 << 21);
3455 }
3456 }
3457
3458 /* For all the DP relative relocations, we need to examine the symbol's
3459 section. If it has no section or if it's a code section, then
3460 "data pointer relative" makes no sense. In that case we don't
3461 adjust the "value", and for 21 bit addil instructions, we change the
3462 source addend register from %dp to %r0. This situation commonly
3463 arises for undefined weak symbols and when a variable's "constness"
3464 is declared differently from the way the variable is defined. For
3465 instance: "extern int foo" with foo defined as "const int foo". */
3466 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3467 {
3468 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3469 == (((int) OP_ADDIL << 26) | (27 << 21)))
3470 {
3471 insn &= ~ (0x1f << 21);
3472 }
3473 /* Now try to make things easy for the dynamic linker. */
3474
3475 break;
3476 }
3477 /* Fall thru. */
3478
3479 case R_PARISC_DLTIND21L:
3480 case R_PARISC_DLTIND14R:
3481 case R_PARISC_DLTIND14F:
3482 case R_PARISC_TLS_GD21L:
3483 case R_PARISC_TLS_LDM21L:
3484 case R_PARISC_TLS_IE21L:
3485 case R_PARISC_TLS_GD14R:
3486 case R_PARISC_TLS_LDM14R:
3487 case R_PARISC_TLS_IE14R:
3488 value -= elf_gp (input_section->output_section->owner);
3489 break;
3490
3491 case R_PARISC_SEGREL32:
3492 if ((sym_sec->flags & SEC_CODE) != 0)
3493 value -= htab->text_segment_base;
3494 else
3495 value -= htab->data_segment_base;
3496 break;
3497
3498 default:
3499 break;
3500 }
3501
3502 switch (r_type)
3503 {
3504 case R_PARISC_DIR32:
3505 case R_PARISC_DIR14F:
3506 case R_PARISC_DIR17F:
3507 case R_PARISC_PCREL17C:
3508 case R_PARISC_PCREL14F:
3509 case R_PARISC_PCREL32:
3510 case R_PARISC_DPREL14F:
3511 case R_PARISC_PLABEL32:
3512 case R_PARISC_DLTIND14F:
3513 case R_PARISC_SEGBASE:
3514 case R_PARISC_SEGREL32:
3515 case R_PARISC_TLS_DTPMOD32:
3516 case R_PARISC_TLS_DTPOFF32:
3517 case R_PARISC_TLS_TPREL32:
3518 r_field = e_fsel;
3519 break;
3520
3521 case R_PARISC_DLTIND21L:
3522 case R_PARISC_PCREL21L:
3523 case R_PARISC_PLABEL21L:
3524 r_field = e_lsel;
3525 break;
3526
3527 case R_PARISC_DIR21L:
3528 case R_PARISC_DPREL21L:
3529 case R_PARISC_TLS_GD21L:
3530 case R_PARISC_TLS_LDM21L:
3531 case R_PARISC_TLS_LDO21L:
3532 case R_PARISC_TLS_IE21L:
3533 case R_PARISC_TLS_LE21L:
3534 r_field = e_lrsel;
3535 break;
3536
3537 case R_PARISC_PCREL17R:
3538 case R_PARISC_PCREL14R:
3539 case R_PARISC_PLABEL14R:
3540 case R_PARISC_DLTIND14R:
3541 r_field = e_rsel;
3542 break;
3543
3544 case R_PARISC_DIR17R:
3545 case R_PARISC_DIR14R:
3546 case R_PARISC_DPREL14R:
3547 case R_PARISC_TLS_GD14R:
3548 case R_PARISC_TLS_LDM14R:
3549 case R_PARISC_TLS_LDO14R:
3550 case R_PARISC_TLS_IE14R:
3551 case R_PARISC_TLS_LE14R:
3552 r_field = e_rrsel;
3553 break;
3554
3555 case R_PARISC_PCREL12F:
3556 case R_PARISC_PCREL17F:
3557 case R_PARISC_PCREL22F:
3558 r_field = e_fsel;
3559
3560 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3561 {
3562 max_branch_offset = (1 << (17-1)) << 2;
3563 }
3564 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3565 {
3566 max_branch_offset = (1 << (12-1)) << 2;
3567 }
3568 else
3569 {
3570 max_branch_offset = (1 << (22-1)) << 2;
3571 }
3572
3573 /* sym_sec is NULL on undefined weak syms or when shared on
3574 undefined syms. We've already checked for a stub for the
3575 shared undefined case. */
3576 if (sym_sec == NULL)
3577 break;
3578
3579 /* If the branch is out of reach, then redirect the
3580 call to the local stub for this function. */
3581 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3582 {
3583 hsh = hppa_get_stub_entry (input_section, sym_sec,
3584 hh, rela, htab);
3585 if (hsh == NULL)
3586 return bfd_reloc_undefined;
3587
3588 /* Munge up the value and addend so that we call the stub
3589 rather than the procedure directly. */
3590 value = (hsh->stub_offset
3591 + hsh->stub_sec->output_offset
3592 + hsh->stub_sec->output_section->vma
3593 - location);
3594 addend = -8;
3595 }
3596 break;
3597
3598 /* Something we don't know how to handle. */
3599 default:
3600 return bfd_reloc_notsupported;
3601 }
3602
3603 /* Make sure we can reach the stub. */
3604 if (max_branch_offset != 0
3605 && value + addend + max_branch_offset >= 2*max_branch_offset)
3606 {
3607 _bfd_error_handler
3608 /* xgettext:c-format */
3609 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3610 input_bfd,
3611 input_section,
3612 (long) offset,
3613 hsh->bh_root.string);
3614 bfd_set_error (bfd_error_bad_value);
3615 return bfd_reloc_notsupported;
3616 }
3617
3618 val = hppa_field_adjust (value, addend, r_field);
3619
3620 switch (r_type)
3621 {
3622 case R_PARISC_PCREL12F:
3623 case R_PARISC_PCREL17C:
3624 case R_PARISC_PCREL17F:
3625 case R_PARISC_PCREL17R:
3626 case R_PARISC_PCREL22F:
3627 case R_PARISC_DIR17F:
3628 case R_PARISC_DIR17R:
3629 /* This is a branch. Divide the offset by four.
3630 Note that we need to decide whether it's a branch or
3631 otherwise by inspecting the reloc. Inspecting insn won't
3632 work as insn might be from a .word directive. */
3633 val >>= 2;
3634 break;
3635
3636 default:
3637 break;
3638 }
3639
3640 insn = hppa_rebuild_insn (insn, val, r_format);
3641
3642 /* Update the instruction word. */
3643 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3644 return bfd_reloc_ok;
3645 }
3646
3647 /* Relocate an HPPA ELF section. */
3648
3649 static bfd_boolean
3650 elf32_hppa_relocate_section (bfd *output_bfd,
3651 struct bfd_link_info *info,
3652 bfd *input_bfd,
3653 asection *input_section,
3654 bfd_byte *contents,
3655 Elf_Internal_Rela *relocs,
3656 Elf_Internal_Sym *local_syms,
3657 asection **local_sections)
3658 {
3659 bfd_vma *local_got_offsets;
3660 struct elf32_hppa_link_hash_table *htab;
3661 Elf_Internal_Shdr *symtab_hdr;
3662 Elf_Internal_Rela *rela;
3663 Elf_Internal_Rela *relend;
3664
3665 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3666
3667 htab = hppa_link_hash_table (info);
3668 if (htab == NULL)
3669 return FALSE;
3670
3671 local_got_offsets = elf_local_got_offsets (input_bfd);
3672
3673 rela = relocs;
3674 relend = relocs + input_section->reloc_count;
3675 for (; rela < relend; rela++)
3676 {
3677 unsigned int r_type;
3678 reloc_howto_type *howto;
3679 unsigned int r_symndx;
3680 struct elf32_hppa_link_hash_entry *hh;
3681 Elf_Internal_Sym *sym;
3682 asection *sym_sec;
3683 bfd_vma relocation;
3684 bfd_reloc_status_type rstatus;
3685 const char *sym_name;
3686 bfd_boolean plabel;
3687 bfd_boolean warned_undef;
3688
3689 r_type = ELF32_R_TYPE (rela->r_info);
3690 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3691 {
3692 bfd_set_error (bfd_error_bad_value);
3693 return FALSE;
3694 }
3695 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3696 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3697 continue;
3698
3699 r_symndx = ELF32_R_SYM (rela->r_info);
3700 hh = NULL;
3701 sym = NULL;
3702 sym_sec = NULL;
3703 warned_undef = FALSE;
3704 if (r_symndx < symtab_hdr->sh_info)
3705 {
3706 /* This is a local symbol, h defaults to NULL. */
3707 sym = local_syms + r_symndx;
3708 sym_sec = local_sections[r_symndx];
3709 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3710 }
3711 else
3712 {
3713 struct elf_link_hash_entry *eh;
3714 bfd_boolean unresolved_reloc, ignored;
3715 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3716
3717 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3718 r_symndx, symtab_hdr, sym_hashes,
3719 eh, sym_sec, relocation,
3720 unresolved_reloc, warned_undef,
3721 ignored);
3722
3723 if (!bfd_link_relocatable (info)
3724 && relocation == 0
3725 && eh->root.type != bfd_link_hash_defined
3726 && eh->root.type != bfd_link_hash_defweak
3727 && eh->root.type != bfd_link_hash_undefweak)
3728 {
3729 if (info->unresolved_syms_in_objects == RM_IGNORE
3730 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3731 && eh->type == STT_PARISC_MILLI)
3732 {
3733 (*info->callbacks->undefined_symbol)
3734 (info, eh_name (eh), input_bfd,
3735 input_section, rela->r_offset, FALSE);
3736 warned_undef = TRUE;
3737 }
3738 }
3739 hh = hppa_elf_hash_entry (eh);
3740 }
3741
3742 if (sym_sec != NULL && discarded_section (sym_sec))
3743 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3744 rela, 1, relend,
3745 elf_hppa_howto_table + r_type, 0,
3746 contents);
3747
3748 if (bfd_link_relocatable (info))
3749 continue;
3750
3751 /* Do any required modifications to the relocation value, and
3752 determine what types of dynamic info we need to output, if
3753 any. */
3754 plabel = 0;
3755 switch (r_type)
3756 {
3757 case R_PARISC_DLTIND14F:
3758 case R_PARISC_DLTIND14R:
3759 case R_PARISC_DLTIND21L:
3760 {
3761 bfd_vma off;
3762 bfd_boolean do_got = 0;
3763
3764 /* Relocation is to the entry for this symbol in the
3765 global offset table. */
3766 if (hh != NULL)
3767 {
3768 bfd_boolean dyn;
3769
3770 off = hh->eh.got.offset;
3771 dyn = htab->etab.dynamic_sections_created;
3772 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3773 bfd_link_pic (info),
3774 &hh->eh))
3775 {
3776 /* If we aren't going to call finish_dynamic_symbol,
3777 then we need to handle initialisation of the .got
3778 entry and create needed relocs here. Since the
3779 offset must always be a multiple of 4, we use the
3780 least significant bit to record whether we have
3781 initialised it already. */
3782 if ((off & 1) != 0)
3783 off &= ~1;
3784 else
3785 {
3786 hh->eh.got.offset |= 1;
3787 do_got = 1;
3788 }
3789 }
3790 }
3791 else
3792 {
3793 /* Local symbol case. */
3794 if (local_got_offsets == NULL)
3795 abort ();
3796
3797 off = local_got_offsets[r_symndx];
3798
3799 /* The offset must always be a multiple of 4. We use
3800 the least significant bit to record whether we have
3801 already generated the necessary reloc. */
3802 if ((off & 1) != 0)
3803 off &= ~1;
3804 else
3805 {
3806 local_got_offsets[r_symndx] |= 1;
3807 do_got = 1;
3808 }
3809 }
3810
3811 if (do_got)
3812 {
3813 if (bfd_link_pic (info))
3814 {
3815 /* Output a dynamic relocation for this GOT entry.
3816 In this case it is relative to the base of the
3817 object because the symbol index is zero. */
3818 Elf_Internal_Rela outrel;
3819 bfd_byte *loc;
3820 asection *sec = htab->etab.srelgot;
3821
3822 outrel.r_offset = (off
3823 + htab->etab.sgot->output_offset
3824 + htab->etab.sgot->output_section->vma);
3825 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3826 outrel.r_addend = relocation;
3827 loc = sec->contents;
3828 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3829 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3830 }
3831 else
3832 bfd_put_32 (output_bfd, relocation,
3833 htab->etab.sgot->contents + off);
3834 }
3835
3836 if (off >= (bfd_vma) -2)
3837 abort ();
3838
3839 /* Add the base of the GOT to the relocation value. */
3840 relocation = (off
3841 + htab->etab.sgot->output_offset
3842 + htab->etab.sgot->output_section->vma);
3843 }
3844 break;
3845
3846 case R_PARISC_SEGREL32:
3847 /* If this is the first SEGREL relocation, then initialize
3848 the segment base values. */
3849 if (htab->text_segment_base == (bfd_vma) -1)
3850 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3851 break;
3852
3853 case R_PARISC_PLABEL14R:
3854 case R_PARISC_PLABEL21L:
3855 case R_PARISC_PLABEL32:
3856 if (htab->etab.dynamic_sections_created)
3857 {
3858 bfd_vma off;
3859 bfd_boolean do_plt = 0;
3860 /* If we have a global symbol with a PLT slot, then
3861 redirect this relocation to it. */
3862 if (hh != NULL)
3863 {
3864 off = hh->eh.plt.offset;
3865 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3866 bfd_link_pic (info),
3867 &hh->eh))
3868 {
3869 /* In a non-shared link, adjust_dynamic_symbols
3870 isn't called for symbols forced local. We
3871 need to write out the plt entry here. */
3872 if ((off & 1) != 0)
3873 off &= ~1;
3874 else
3875 {
3876 hh->eh.plt.offset |= 1;
3877 do_plt = 1;
3878 }
3879 }
3880 }
3881 else
3882 {
3883 bfd_vma *local_plt_offsets;
3884
3885 if (local_got_offsets == NULL)
3886 abort ();
3887
3888 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3889 off = local_plt_offsets[r_symndx];
3890
3891 /* As for the local .got entry case, we use the last
3892 bit to record whether we've already initialised
3893 this local .plt entry. */
3894 if ((off & 1) != 0)
3895 off &= ~1;
3896 else
3897 {
3898 local_plt_offsets[r_symndx] |= 1;
3899 do_plt = 1;
3900 }
3901 }
3902
3903 if (do_plt)
3904 {
3905 if (bfd_link_pic (info))
3906 {
3907 /* Output a dynamic IPLT relocation for this
3908 PLT entry. */
3909 Elf_Internal_Rela outrel;
3910 bfd_byte *loc;
3911 asection *s = htab->etab.srelplt;
3912
3913 outrel.r_offset = (off
3914 + htab->etab.splt->output_offset
3915 + htab->etab.splt->output_section->vma);
3916 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3917 outrel.r_addend = relocation;
3918 loc = s->contents;
3919 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3920 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3921 }
3922 else
3923 {
3924 bfd_put_32 (output_bfd,
3925 relocation,
3926 htab->etab.splt->contents + off);
3927 bfd_put_32 (output_bfd,
3928 elf_gp (htab->etab.splt->output_section->owner),
3929 htab->etab.splt->contents + off + 4);
3930 }
3931 }
3932
3933 if (off >= (bfd_vma) -2)
3934 abort ();
3935
3936 /* PLABELs contain function pointers. Relocation is to
3937 the entry for the function in the .plt. The magic +2
3938 offset signals to $$dyncall that the function pointer
3939 is in the .plt and thus has a gp pointer too.
3940 Exception: Undefined PLABELs should have a value of
3941 zero. */
3942 if (hh == NULL
3943 || (hh->eh.root.type != bfd_link_hash_undefweak
3944 && hh->eh.root.type != bfd_link_hash_undefined))
3945 {
3946 relocation = (off
3947 + htab->etab.splt->output_offset
3948 + htab->etab.splt->output_section->vma
3949 + 2);
3950 }
3951 plabel = 1;
3952 }
3953 /* Fall through. */
3954
3955 case R_PARISC_DIR17F:
3956 case R_PARISC_DIR17R:
3957 case R_PARISC_DIR14F:
3958 case R_PARISC_DIR14R:
3959 case R_PARISC_DIR21L:
3960 case R_PARISC_DPREL14F:
3961 case R_PARISC_DPREL14R:
3962 case R_PARISC_DPREL21L:
3963 case R_PARISC_DIR32:
3964 if ((input_section->flags & SEC_ALLOC) == 0)
3965 break;
3966
3967 /* The reloc types handled here and this conditional
3968 expression must match the code in ..check_relocs and
3969 allocate_dynrelocs. ie. We need exactly the same condition
3970 as in ..check_relocs, with some extra conditions (dynindx
3971 test in this case) to cater for relocs removed by
3972 allocate_dynrelocs. If you squint, the non-shared test
3973 here does indeed match the one in ..check_relocs, the
3974 difference being that here we test DEF_DYNAMIC as well as
3975 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3976 which is why we can't use just that test here.
3977 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3978 there all files have not been loaded. */
3979 if ((bfd_link_pic (info)
3980 && (hh == NULL
3981 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3982 || hh->eh.root.type != bfd_link_hash_undefweak)
3983 && (IS_ABSOLUTE_RELOC (r_type)
3984 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3985 || (!bfd_link_pic (info)
3986 && hh != NULL
3987 && hh->eh.dynindx != -1
3988 && !hh->eh.non_got_ref
3989 && ((ELIMINATE_COPY_RELOCS
3990 && hh->eh.def_dynamic
3991 && !hh->eh.def_regular)
3992 || hh->eh.root.type == bfd_link_hash_undefweak
3993 || hh->eh.root.type == bfd_link_hash_undefined)))
3994 {
3995 Elf_Internal_Rela outrel;
3996 bfd_boolean skip;
3997 asection *sreloc;
3998 bfd_byte *loc;
3999
4000 /* When generating a shared object, these relocations
4001 are copied into the output file to be resolved at run
4002 time. */
4003
4004 outrel.r_addend = rela->r_addend;
4005 outrel.r_offset =
4006 _bfd_elf_section_offset (output_bfd, info, input_section,
4007 rela->r_offset);
4008 skip = (outrel.r_offset == (bfd_vma) -1
4009 || outrel.r_offset == (bfd_vma) -2);
4010 outrel.r_offset += (input_section->output_offset
4011 + input_section->output_section->vma);
4012
4013 if (skip)
4014 {
4015 memset (&outrel, 0, sizeof (outrel));
4016 }
4017 else if (hh != NULL
4018 && hh->eh.dynindx != -1
4019 && (plabel
4020 || !IS_ABSOLUTE_RELOC (r_type)
4021 || !bfd_link_pic (info)
4022 || !SYMBOLIC_BIND (info, &hh->eh)
4023 || !hh->eh.def_regular))
4024 {
4025 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4026 }
4027 else /* It's a local symbol, or one marked to become local. */
4028 {
4029 int indx = 0;
4030
4031 /* Add the absolute offset of the symbol. */
4032 outrel.r_addend += relocation;
4033
4034 /* Global plabels need to be processed by the
4035 dynamic linker so that functions have at most one
4036 fptr. For this reason, we need to differentiate
4037 between global and local plabels, which we do by
4038 providing the function symbol for a global plabel
4039 reloc, and no symbol for local plabels. */
4040 if (! plabel
4041 && sym_sec != NULL
4042 && sym_sec->output_section != NULL
4043 && ! bfd_is_abs_section (sym_sec))
4044 {
4045 asection *osec;
4046
4047 osec = sym_sec->output_section;
4048 indx = elf_section_data (osec)->dynindx;
4049 if (indx == 0)
4050 {
4051 osec = htab->etab.text_index_section;
4052 indx = elf_section_data (osec)->dynindx;
4053 }
4054 BFD_ASSERT (indx != 0);
4055
4056 /* We are turning this relocation into one
4057 against a section symbol, so subtract out the
4058 output section's address but not the offset
4059 of the input section in the output section. */
4060 outrel.r_addend -= osec->vma;
4061 }
4062
4063 outrel.r_info = ELF32_R_INFO (indx, r_type);
4064 }
4065 sreloc = elf_section_data (input_section)->sreloc;
4066 if (sreloc == NULL)
4067 abort ();
4068
4069 loc = sreloc->contents;
4070 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4071 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4072 }
4073 break;
4074
4075 case R_PARISC_TLS_LDM21L:
4076 case R_PARISC_TLS_LDM14R:
4077 {
4078 bfd_vma off;
4079
4080 off = htab->tls_ldm_got.offset;
4081 if (off & 1)
4082 off &= ~1;
4083 else
4084 {
4085 Elf_Internal_Rela outrel;
4086 bfd_byte *loc;
4087
4088 outrel.r_offset = (off
4089 + htab->etab.sgot->output_section->vma
4090 + htab->etab.sgot->output_offset);
4091 outrel.r_addend = 0;
4092 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4093 loc = htab->etab.srelgot->contents;
4094 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4095
4096 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4097 htab->tls_ldm_got.offset |= 1;
4098 }
4099
4100 /* Add the base of the GOT to the relocation value. */
4101 relocation = (off
4102 + htab->etab.sgot->output_offset
4103 + htab->etab.sgot->output_section->vma);
4104
4105 break;
4106 }
4107
4108 case R_PARISC_TLS_LDO21L:
4109 case R_PARISC_TLS_LDO14R:
4110 relocation -= dtpoff_base (info);
4111 break;
4112
4113 case R_PARISC_TLS_GD21L:
4114 case R_PARISC_TLS_GD14R:
4115 case R_PARISC_TLS_IE21L:
4116 case R_PARISC_TLS_IE14R:
4117 {
4118 bfd_vma off;
4119 int indx;
4120 char tls_type;
4121
4122 indx = 0;
4123 if (hh != NULL)
4124 {
4125 bfd_boolean dyn;
4126 dyn = htab->etab.dynamic_sections_created;
4127
4128 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4129 bfd_link_pic (info),
4130 &hh->eh)
4131 && (!bfd_link_pic (info)
4132 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4133 {
4134 indx = hh->eh.dynindx;
4135 }
4136 off = hh->eh.got.offset;
4137 tls_type = hh->tls_type;
4138 }
4139 else
4140 {
4141 off = local_got_offsets[r_symndx];
4142 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4143 }
4144
4145 if (tls_type == GOT_UNKNOWN)
4146 abort ();
4147
4148 if ((off & 1) != 0)
4149 off &= ~1;
4150 else
4151 {
4152 bfd_boolean need_relocs = FALSE;
4153 Elf_Internal_Rela outrel;
4154 bfd_byte *loc = NULL;
4155 int cur_off = off;
4156
4157 /* The GOT entries have not been initialized yet. Do it
4158 now, and emit any relocations. If both an IE GOT and a
4159 GD GOT are necessary, we emit the GD first. */
4160
4161 if ((bfd_link_pic (info) || indx != 0)
4162 && (hh == NULL
4163 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4164 || hh->eh.root.type != bfd_link_hash_undefweak))
4165 {
4166 need_relocs = TRUE;
4167 loc = htab->etab.srelgot->contents;
4168 /* FIXME (CAO): Should this be reloc_count++ ? */
4169 loc += htab->etab.srelgot->reloc_count * sizeof (Elf32_External_Rela);
4170 }
4171
4172 if (tls_type & GOT_TLS_GD)
4173 {
4174 if (need_relocs)
4175 {
4176 outrel.r_offset = (cur_off
4177 + htab->etab.sgot->output_section->vma
4178 + htab->etab.sgot->output_offset);
4179 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4180 outrel.r_addend = 0;
4181 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + cur_off);
4182 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4183 htab->etab.srelgot->reloc_count++;
4184 loc += sizeof (Elf32_External_Rela);
4185
4186 if (indx == 0)
4187 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4188 htab->etab.sgot->contents + cur_off + 4);
4189 else
4190 {
4191 bfd_put_32 (output_bfd, 0,
4192 htab->etab.sgot->contents + cur_off + 4);
4193 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4194 outrel.r_offset += 4;
4195 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4196 htab->etab.srelgot->reloc_count++;
4197 loc += sizeof (Elf32_External_Rela);
4198 }
4199 }
4200 else
4201 {
4202 /* If we are not emitting relocations for a
4203 general dynamic reference, then we must be in a
4204 static link or an executable link with the
4205 symbol binding locally. Mark it as belonging
4206 to module 1, the executable. */
4207 bfd_put_32 (output_bfd, 1,
4208 htab->etab.sgot->contents + cur_off);
4209 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4210 htab->etab.sgot->contents + cur_off + 4);
4211 }
4212
4213
4214 cur_off += 8;
4215 }
4216
4217 if (tls_type & GOT_TLS_IE)
4218 {
4219 if (need_relocs)
4220 {
4221 outrel.r_offset = (cur_off
4222 + htab->etab.sgot->output_section->vma
4223 + htab->etab.sgot->output_offset);
4224 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4225
4226 if (indx == 0)
4227 outrel.r_addend = relocation - dtpoff_base (info);
4228 else
4229 outrel.r_addend = 0;
4230
4231 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4232 htab->etab.srelgot->reloc_count++;
4233 loc += sizeof (Elf32_External_Rela);
4234 }
4235 else
4236 bfd_put_32 (output_bfd, tpoff (info, relocation),
4237 htab->etab.sgot->contents + cur_off);
4238
4239 cur_off += 4;
4240 }
4241
4242 if (hh != NULL)
4243 hh->eh.got.offset |= 1;
4244 else
4245 local_got_offsets[r_symndx] |= 1;
4246 }
4247
4248 if ((tls_type & GOT_TLS_GD)
4249 && r_type != R_PARISC_TLS_GD21L
4250 && r_type != R_PARISC_TLS_GD14R)
4251 off += 2 * GOT_ENTRY_SIZE;
4252
4253 /* Add the base of the GOT to the relocation value. */
4254 relocation = (off
4255 + htab->etab.sgot->output_offset
4256 + htab->etab.sgot->output_section->vma);
4257
4258 break;
4259 }
4260
4261 case R_PARISC_TLS_LE21L:
4262 case R_PARISC_TLS_LE14R:
4263 {
4264 relocation = tpoff (info, relocation);
4265 break;
4266 }
4267 break;
4268
4269 default:
4270 break;
4271 }
4272
4273 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4274 htab, sym_sec, hh, info);
4275
4276 if (rstatus == bfd_reloc_ok)
4277 continue;
4278
4279 if (hh != NULL)
4280 sym_name = hh_name (hh);
4281 else
4282 {
4283 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4284 symtab_hdr->sh_link,
4285 sym->st_name);
4286 if (sym_name == NULL)
4287 return FALSE;
4288 if (*sym_name == '\0')
4289 sym_name = bfd_section_name (input_bfd, sym_sec);
4290 }
4291
4292 howto = elf_hppa_howto_table + r_type;
4293
4294 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4295 {
4296 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4297 {
4298 _bfd_error_handler
4299 /* xgettext:c-format */
4300 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4301 input_bfd,
4302 input_section,
4303 (long) rela->r_offset,
4304 howto->name,
4305 sym_name);
4306 bfd_set_error (bfd_error_bad_value);
4307 return FALSE;
4308 }
4309 }
4310 else
4311 (*info->callbacks->reloc_overflow)
4312 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4313 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4314 }
4315
4316 return TRUE;
4317 }
4318
4319 /* Finish up dynamic symbol handling. We set the contents of various
4320 dynamic sections here. */
4321
4322 static bfd_boolean
4323 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4324 struct bfd_link_info *info,
4325 struct elf_link_hash_entry *eh,
4326 Elf_Internal_Sym *sym)
4327 {
4328 struct elf32_hppa_link_hash_table *htab;
4329 Elf_Internal_Rela rela;
4330 bfd_byte *loc;
4331
4332 htab = hppa_link_hash_table (info);
4333 if (htab == NULL)
4334 return FALSE;
4335
4336 if (eh->plt.offset != (bfd_vma) -1)
4337 {
4338 bfd_vma value;
4339
4340 if (eh->plt.offset & 1)
4341 abort ();
4342
4343 /* This symbol has an entry in the procedure linkage table. Set
4344 it up.
4345
4346 The format of a plt entry is
4347 <funcaddr>
4348 <__gp>
4349 */
4350 value = 0;
4351 if (eh->root.type == bfd_link_hash_defined
4352 || eh->root.type == bfd_link_hash_defweak)
4353 {
4354 value = eh->root.u.def.value;
4355 if (eh->root.u.def.section->output_section != NULL)
4356 value += (eh->root.u.def.section->output_offset
4357 + eh->root.u.def.section->output_section->vma);
4358 }
4359
4360 /* Create a dynamic IPLT relocation for this entry. */
4361 rela.r_offset = (eh->plt.offset
4362 + htab->etab.splt->output_offset
4363 + htab->etab.splt->output_section->vma);
4364 if (eh->dynindx != -1)
4365 {
4366 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4367 rela.r_addend = 0;
4368 }
4369 else
4370 {
4371 /* This symbol has been marked to become local, and is
4372 used by a plabel so must be kept in the .plt. */
4373 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4374 rela.r_addend = value;
4375 }
4376
4377 loc = htab->etab.srelplt->contents;
4378 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4379 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4380
4381 if (!eh->def_regular)
4382 {
4383 /* Mark the symbol as undefined, rather than as defined in
4384 the .plt section. Leave the value alone. */
4385 sym->st_shndx = SHN_UNDEF;
4386 }
4387 }
4388
4389 if (eh->got.offset != (bfd_vma) -1
4390 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4391 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4392 {
4393 /* This symbol has an entry in the global offset table. Set it
4394 up. */
4395
4396 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4397 + htab->etab.sgot->output_offset
4398 + htab->etab.sgot->output_section->vma);
4399
4400 /* If this is a -Bsymbolic link and the symbol is defined
4401 locally or was forced to be local because of a version file,
4402 we just want to emit a RELATIVE reloc. The entry in the
4403 global offset table will already have been initialized in the
4404 relocate_section function. */
4405 if (bfd_link_pic (info)
4406 && (SYMBOLIC_BIND (info, eh) || eh->dynindx == -1)
4407 && eh->def_regular)
4408 {
4409 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4410 rela.r_addend = (eh->root.u.def.value
4411 + eh->root.u.def.section->output_offset
4412 + eh->root.u.def.section->output_section->vma);
4413 }
4414 else
4415 {
4416 if ((eh->got.offset & 1) != 0)
4417 abort ();
4418
4419 bfd_put_32 (output_bfd, 0, htab->etab.sgot->contents + (eh->got.offset & ~1));
4420 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4421 rela.r_addend = 0;
4422 }
4423
4424 loc = htab->etab.srelgot->contents;
4425 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4426 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4427 }
4428
4429 if (eh->needs_copy)
4430 {
4431 asection *sec;
4432
4433 /* This symbol needs a copy reloc. Set it up. */
4434
4435 if (! (eh->dynindx != -1
4436 && (eh->root.type == bfd_link_hash_defined
4437 || eh->root.type == bfd_link_hash_defweak)))
4438 abort ();
4439
4440 rela.r_offset = (eh->root.u.def.value
4441 + eh->root.u.def.section->output_offset
4442 + eh->root.u.def.section->output_section->vma);
4443 rela.r_addend = 0;
4444 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4445 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
4446 sec = htab->etab.sreldynrelro;
4447 else
4448 sec = htab->etab.srelbss;
4449 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4450 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4451 }
4452
4453 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4454 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4455 {
4456 sym->st_shndx = SHN_ABS;
4457 }
4458
4459 return TRUE;
4460 }
4461
4462 /* Used to decide how to sort relocs in an optimal manner for the
4463 dynamic linker, before writing them out. */
4464
4465 static enum elf_reloc_type_class
4466 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4467 const asection *rel_sec ATTRIBUTE_UNUSED,
4468 const Elf_Internal_Rela *rela)
4469 {
4470 /* Handle TLS relocs first; we don't want them to be marked
4471 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4472 check below. */
4473 switch ((int) ELF32_R_TYPE (rela->r_info))
4474 {
4475 case R_PARISC_TLS_DTPMOD32:
4476 case R_PARISC_TLS_DTPOFF32:
4477 case R_PARISC_TLS_TPREL32:
4478 return reloc_class_normal;
4479 }
4480
4481 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4482 return reloc_class_relative;
4483
4484 switch ((int) ELF32_R_TYPE (rela->r_info))
4485 {
4486 case R_PARISC_IPLT:
4487 return reloc_class_plt;
4488 case R_PARISC_COPY:
4489 return reloc_class_copy;
4490 default:
4491 return reloc_class_normal;
4492 }
4493 }
4494
4495 /* Finish up the dynamic sections. */
4496
4497 static bfd_boolean
4498 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4499 struct bfd_link_info *info)
4500 {
4501 bfd *dynobj;
4502 struct elf32_hppa_link_hash_table *htab;
4503 asection *sdyn;
4504 asection * sgot;
4505
4506 htab = hppa_link_hash_table (info);
4507 if (htab == NULL)
4508 return FALSE;
4509
4510 dynobj = htab->etab.dynobj;
4511
4512 sgot = htab->etab.sgot;
4513 /* A broken linker script might have discarded the dynamic sections.
4514 Catch this here so that we do not seg-fault later on. */
4515 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4516 return FALSE;
4517
4518 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4519
4520 if (htab->etab.dynamic_sections_created)
4521 {
4522 Elf32_External_Dyn *dyncon, *dynconend;
4523
4524 if (sdyn == NULL)
4525 abort ();
4526
4527 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4528 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4529 for (; dyncon < dynconend; dyncon++)
4530 {
4531 Elf_Internal_Dyn dyn;
4532 asection *s;
4533
4534 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4535
4536 switch (dyn.d_tag)
4537 {
4538 default:
4539 continue;
4540
4541 case DT_PLTGOT:
4542 /* Use PLTGOT to set the GOT register. */
4543 dyn.d_un.d_ptr = elf_gp (output_bfd);
4544 break;
4545
4546 case DT_JMPREL:
4547 s = htab->etab.srelplt;
4548 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4549 break;
4550
4551 case DT_PLTRELSZ:
4552 s = htab->etab.srelplt;
4553 dyn.d_un.d_val = s->size;
4554 break;
4555 }
4556
4557 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4558 }
4559 }
4560
4561 if (sgot != NULL && sgot->size != 0)
4562 {
4563 /* Fill in the first entry in the global offset table.
4564 We use it to point to our dynamic section, if we have one. */
4565 bfd_put_32 (output_bfd,
4566 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4567 sgot->contents);
4568
4569 /* The second entry is reserved for use by the dynamic linker. */
4570 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4571
4572 /* Set .got entry size. */
4573 elf_section_data (sgot->output_section)
4574 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4575 }
4576
4577 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4578 {
4579 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4580 plt stubs and as such the section does not hold a table of fixed-size
4581 entries. */
4582 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4583
4584 if (htab->need_plt_stub)
4585 {
4586 /* Set up the .plt stub. */
4587 memcpy (htab->etab.splt->contents
4588 + htab->etab.splt->size - sizeof (plt_stub),
4589 plt_stub, sizeof (plt_stub));
4590
4591 if ((htab->etab.splt->output_offset
4592 + htab->etab.splt->output_section->vma
4593 + htab->etab.splt->size)
4594 != (sgot->output_offset
4595 + sgot->output_section->vma))
4596 {
4597 _bfd_error_handler
4598 (_(".got section not immediately after .plt section"));
4599 return FALSE;
4600 }
4601 }
4602 }
4603
4604 return TRUE;
4605 }
4606
4607 /* Called when writing out an object file to decide the type of a
4608 symbol. */
4609 static int
4610 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4611 {
4612 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4613 return STT_PARISC_MILLI;
4614 else
4615 return type;
4616 }
4617
4618 /* Misc BFD support code. */
4619 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4620 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4621 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4622 #define elf_info_to_howto elf_hppa_info_to_howto
4623 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4624
4625 /* Stuff for the BFD linker. */
4626 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4627 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4628 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4629 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4630 #define elf_backend_check_relocs elf32_hppa_check_relocs
4631 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4632 #define elf_backend_fake_sections elf_hppa_fake_sections
4633 #define elf_backend_relocate_section elf32_hppa_relocate_section
4634 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4635 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4636 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4637 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4638 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4639 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4640 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4641 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4642 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4643 #define elf_backend_object_p elf32_hppa_object_p
4644 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4645 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4646 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4647 #define elf_backend_action_discarded elf_hppa_action_discarded
4648
4649 #define elf_backend_can_gc_sections 1
4650 #define elf_backend_can_refcount 1
4651 #define elf_backend_plt_alignment 2
4652 #define elf_backend_want_got_plt 0
4653 #define elf_backend_plt_readonly 0
4654 #define elf_backend_want_plt_sym 0
4655 #define elf_backend_got_header_size 8
4656 #define elf_backend_want_dynrelro 1
4657 #define elf_backend_rela_normal 1
4658 #define elf_backend_dtrel_excludes_plt 1
4659
4660 #define TARGET_BIG_SYM hppa_elf32_vec
4661 #define TARGET_BIG_NAME "elf32-hppa"
4662 #define ELF_ARCH bfd_arch_hppa
4663 #define ELF_TARGET_ID HPPA32_ELF_DATA
4664 #define ELF_MACHINE_CODE EM_PARISC
4665 #define ELF_MAXPAGESIZE 0x1000
4666 #define ELF_OSABI ELFOSABI_HPUX
4667 #define elf32_bed elf32_hppa_hpux_bed
4668
4669 #include "elf32-target.h"
4670
4671 #undef TARGET_BIG_SYM
4672 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4673 #undef TARGET_BIG_NAME
4674 #define TARGET_BIG_NAME "elf32-hppa-linux"
4675 #undef ELF_OSABI
4676 #define ELF_OSABI ELFOSABI_GNU
4677 #undef elf32_bed
4678 #define elf32_bed elf32_hppa_linux_bed
4679
4680 #include "elf32-target.h"
4681
4682 #undef TARGET_BIG_SYM
4683 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4684 #undef TARGET_BIG_NAME
4685 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4686 #undef ELF_OSABI
4687 #define ELF_OSABI ELFOSABI_NETBSD
4688 #undef elf32_bed
4689 #define elf32_bed elf32_hppa_netbsd_bed
4690
4691 #include "elf32-target.h"
This page took 0.172173 seconds and 4 git commands to generate.