PR ld/2218
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
115
116
117 /* Variable names follow a coding style.
118 Please follow this (Apps Hungarian) style:
119
120 Structure/Variable Prefix
121 elf_link_hash_table "etab"
122 elf_link_hash_entry "eh"
123
124 elf32_hppa_link_hash_table "htab"
125 elf32_hppa_link_hash_entry "hh"
126
127 bfd_hash_table "btab"
128 bfd_hash_entry "bh"
129
130 bfd_hash_table containing stubs "bstab"
131 elf32_hppa_stub_hash_entry "hsh"
132
133 elf32_hppa_dyn_reloc_entry "hdh"
134
135 Always remember to use GNU Coding Style. */
136
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140
141 static const bfd_byte plt_stub[] =
142 {
143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
146 #define PLT_STUB_ENTRY (3*4)
147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
151 };
152
153 /* Section name for stubs is the associated section name plus this
154 string. */
155 #define STUB_SUFFIX ".stub"
156
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158 into a shared object's dynamic section. All the relocs of the
159 limited class we are interested in, are absolute. */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #endif
164
165 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
166 copying dynamic variables from a shared lib into an app's dynbss
167 section, and instead use a dynamic relocation to point into the
168 shared lib. */
169 #define ELIMINATE_COPY_RELOCS 1
170
171 enum elf32_hppa_stub_type {
172 hppa_stub_long_branch,
173 hppa_stub_long_branch_shared,
174 hppa_stub_import,
175 hppa_stub_import_shared,
176 hppa_stub_export,
177 hppa_stub_none
178 };
179
180 struct elf32_hppa_stub_hash_entry {
181
182 /* Base hash table entry structure. */
183 struct bfd_hash_entry bh_root;
184
185 /* The stub section. */
186 asection *stub_sec;
187
188 /* Offset within stub_sec of the beginning of this stub. */
189 bfd_vma stub_offset;
190
191 /* Given the symbol's value and its section we can determine its final
192 value when building the stubs (so the stub knows where to jump. */
193 bfd_vma target_value;
194 asection *target_section;
195
196 enum elf32_hppa_stub_type stub_type;
197
198 /* The symbol table entry, if any, that this was derived from. */
199 struct elf32_hppa_link_hash_entry *hh;
200
201 /* Where this stub is being called from, or, in the case of combined
202 stub sections, the first input section in the group. */
203 asection *id_sec;
204 };
205
206 struct elf32_hppa_link_hash_entry {
207
208 struct elf_link_hash_entry eh;
209
210 /* A pointer to the most recently used stub hash entry against this
211 symbol. */
212 struct elf32_hppa_stub_hash_entry *hsh_cache;
213
214 /* Used to count relocations for delayed sizing of relocation
215 sections. */
216 struct elf32_hppa_dyn_reloc_entry {
217
218 /* Next relocation in the chain. */
219 struct elf32_hppa_dyn_reloc_entry *hdh_next;
220
221 /* The input section of the reloc. */
222 asection *sec;
223
224 /* Number of relocs copied in this section. */
225 bfd_size_type count;
226
227 #if RELATIVE_DYNRELOCS
228 /* Number of relative relocs copied for the input section. */
229 bfd_size_type relative_count;
230 #endif
231 } *dyn_relocs;
232
233 /* Set if this symbol is used by a plabel reloc. */
234 unsigned int plabel:1;
235 };
236
237 struct elf32_hppa_link_hash_table {
238
239 /* The main hash table. */
240 struct elf_link_hash_table etab;
241
242 /* The stub hash table. */
243 struct bfd_hash_table bstab;
244
245 /* Linker stub bfd. */
246 bfd *stub_bfd;
247
248 /* Linker call-backs. */
249 asection * (*add_stub_section) (const char *, asection *);
250 void (*layout_sections_again) (void);
251
252 /* Array to keep track of which stub sections have been created, and
253 information on stub grouping. */
254 struct map_stub {
255 /* This is the section to which stubs in the group will be
256 attached. */
257 asection *link_sec;
258 /* The stub section. */
259 asection *stub_sec;
260 } *stub_group;
261
262 /* Assorted information used by elf32_hppa_size_stubs. */
263 unsigned int bfd_count;
264 int top_index;
265 asection **input_list;
266 Elf_Internal_Sym **all_local_syms;
267
268 /* Short-cuts to get to dynamic linker sections. */
269 asection *sgot;
270 asection *srelgot;
271 asection *splt;
272 asection *srelplt;
273 asection *sdynbss;
274 asection *srelbss;
275
276 /* Used during a final link to store the base of the text and data
277 segments so that we can perform SEGREL relocations. */
278 bfd_vma text_segment_base;
279 bfd_vma data_segment_base;
280
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
284 /* Flags set when various size branches are detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288 unsigned int has_22bit_branch:1;
289
290 /* Set if we need a .plt stub to support lazy dynamic linking. */
291 unsigned int need_plt_stub:1;
292
293 /* Small local sym to section mapping cache. */
294 struct sym_sec_cache sym_sec;
295 };
296
297 /* Various hash macros and functions. */
298 #define hppa_link_hash_table(p) \
299 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
300
301 #define hppa_elf_hash_entry(ent) \
302 ((struct elf32_hppa_link_hash_entry *)(ent))
303
304 #define hppa_stub_hash_entry(ent) \
305 ((struct elf32_hppa_stub_hash_entry *)(ent))
306
307 #define hppa_stub_hash_lookup(table, string, create, copy) \
308 ((struct elf32_hppa_stub_hash_entry *) \
309 bfd_hash_lookup ((table), (string), (create), (copy)))
310
311 /* Assorted hash table functions. */
312
313 /* Initialize an entry in the stub hash table. */
314
315 static struct bfd_hash_entry *
316 stub_hash_newfunc (struct bfd_hash_entry *entry,
317 struct bfd_hash_table *table,
318 const char *string)
319 {
320 /* Allocate the structure if it has not already been allocated by a
321 subclass. */
322 if (entry == NULL)
323 {
324 entry = bfd_hash_allocate (table,
325 sizeof (struct elf32_hppa_stub_hash_entry));
326 if (entry == NULL)
327 return entry;
328 }
329
330 /* Call the allocation method of the superclass. */
331 entry = bfd_hash_newfunc (entry, table, string);
332 if (entry != NULL)
333 {
334 struct elf32_hppa_stub_hash_entry *hsh;
335
336 /* Initialize the local fields. */
337 hsh = hppa_stub_hash_entry (entry);
338 hsh->stub_sec = NULL;
339 hsh->stub_offset = 0;
340 hsh->target_value = 0;
341 hsh->target_section = NULL;
342 hsh->stub_type = hppa_stub_long_branch;
343 hsh->hh = NULL;
344 hsh->id_sec = NULL;
345 }
346
347 return entry;
348 }
349
350 /* Initialize an entry in the link hash table. */
351
352 static struct bfd_hash_entry *
353 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
354 struct bfd_hash_table *table,
355 const char *string)
356 {
357 /* Allocate the structure if it has not already been allocated by a
358 subclass. */
359 if (entry == NULL)
360 {
361 entry = bfd_hash_allocate (table,
362 sizeof (struct elf32_hppa_link_hash_entry));
363 if (entry == NULL)
364 return entry;
365 }
366
367 /* Call the allocation method of the superclass. */
368 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
369 if (entry != NULL)
370 {
371 struct elf32_hppa_link_hash_entry *hh;
372
373 /* Initialize the local fields. */
374 hh = hppa_elf_hash_entry (entry);
375 hh->hsh_cache = NULL;
376 hh->dyn_relocs = NULL;
377 hh->plabel = 0;
378 }
379
380 return entry;
381 }
382
383 /* Create the derived linker hash table. The PA ELF port uses the derived
384 hash table to keep information specific to the PA ELF linker (without
385 using static variables). */
386
387 static struct bfd_link_hash_table *
388 elf32_hppa_link_hash_table_create (bfd *abfd)
389 {
390 struct elf32_hppa_link_hash_table *htab;
391 bfd_size_type amt = sizeof (*htab);
392
393 htab = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
394 if (htab == NULL)
395 return NULL;
396
397 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc))
398 {
399 free (htab);
400 return NULL;
401 }
402
403 /* Init the stub hash table too. */
404 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc))
405 return NULL;
406
407 htab->stub_bfd = NULL;
408 htab->add_stub_section = NULL;
409 htab->layout_sections_again = NULL;
410 htab->stub_group = NULL;
411 htab->sgot = NULL;
412 htab->srelgot = NULL;
413 htab->splt = NULL;
414 htab->srelplt = NULL;
415 htab->sdynbss = NULL;
416 htab->srelbss = NULL;
417 htab->text_segment_base = (bfd_vma) -1;
418 htab->data_segment_base = (bfd_vma) -1;
419 htab->multi_subspace = 0;
420 htab->has_12bit_branch = 0;
421 htab->has_17bit_branch = 0;
422 htab->has_22bit_branch = 0;
423 htab->need_plt_stub = 0;
424 htab->sym_sec.abfd = NULL;
425
426 return &htab->etab.root;
427 }
428
429 /* Free the derived linker hash table. */
430
431 static void
432 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
433 {
434 struct elf32_hppa_link_hash_table *htab
435 = (struct elf32_hppa_link_hash_table *) btab;
436
437 bfd_hash_table_free (&htab->bstab);
438 _bfd_generic_link_hash_table_free (btab);
439 }
440
441 /* Build a name for an entry in the stub hash table. */
442
443 static char *
444 hppa_stub_name (const asection *input_section,
445 const asection *sym_sec,
446 const struct elf32_hppa_link_hash_entry *hh,
447 const Elf_Internal_Rela *rela)
448 {
449 char *stub_name;
450 bfd_size_type len;
451
452 if (hh)
453 {
454 len = 8 + 1 + strlen (hh->eh.root.root.string) + 1 + 8 + 1;
455 stub_name = bfd_malloc (len);
456 if (stub_name != NULL)
457 {
458 sprintf (stub_name, "%08x_%s+%x",
459 input_section->id & 0xffffffff,
460 hh->eh.root.root.string,
461 (int) rela->r_addend & 0xffffffff);
462 }
463 }
464 else
465 {
466 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
467 stub_name = bfd_malloc (len);
468 if (stub_name != NULL)
469 {
470 sprintf (stub_name, "%08x_%x:%x+%x",
471 input_section->id & 0xffffffff,
472 sym_sec->id & 0xffffffff,
473 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
474 (int) rela->r_addend & 0xffffffff);
475 }
476 }
477 return stub_name;
478 }
479
480 /* Look up an entry in the stub hash. Stub entries are cached because
481 creating the stub name takes a bit of time. */
482
483 static struct elf32_hppa_stub_hash_entry *
484 hppa_get_stub_entry (const asection *input_section,
485 const asection *sym_sec,
486 struct elf32_hppa_link_hash_entry *hh,
487 const Elf_Internal_Rela *rela,
488 struct elf32_hppa_link_hash_table *htab)
489 {
490 struct elf32_hppa_stub_hash_entry *hsh_entry;
491 const asection *id_sec;
492
493 /* If this input section is part of a group of sections sharing one
494 stub section, then use the id of the first section in the group.
495 Stub names need to include a section id, as there may well be
496 more than one stub used to reach say, printf, and we need to
497 distinguish between them. */
498 id_sec = htab->stub_group[input_section->id].link_sec;
499
500 if (hh != NULL && hh->hsh_cache != NULL
501 && hh->hsh_cache->hh == hh
502 && hh->hsh_cache->id_sec == id_sec)
503 {
504 hsh_entry = hh->hsh_cache;
505 }
506 else
507 {
508 char *stub_name;
509
510 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
511 if (stub_name == NULL)
512 return NULL;
513
514 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
515 stub_name, FALSE, FALSE);
516 if (hh != NULL)
517 hh->hsh_cache = hsh_entry;
518
519 free (stub_name);
520 }
521
522 return hsh_entry;
523 }
524
525 /* Add a new stub entry to the stub hash. Not all fields of the new
526 stub entry are initialised. */
527
528 static struct elf32_hppa_stub_hash_entry *
529 hppa_add_stub (const char *stub_name,
530 asection *section,
531 struct elf32_hppa_link_hash_table *htab)
532 {
533 asection *link_sec;
534 asection *stub_sec;
535 struct elf32_hppa_stub_hash_entry *hsh;
536
537 link_sec = htab->stub_group[section->id].link_sec;
538 stub_sec = htab->stub_group[section->id].stub_sec;
539 if (stub_sec == NULL)
540 {
541 stub_sec = htab->stub_group[link_sec->id].stub_sec;
542 if (stub_sec == NULL)
543 {
544 size_t namelen;
545 bfd_size_type len;
546 char *s_name;
547
548 namelen = strlen (link_sec->name);
549 len = namelen + sizeof (STUB_SUFFIX);
550 s_name = bfd_alloc (htab->stub_bfd, len);
551 if (s_name == NULL)
552 return NULL;
553
554 memcpy (s_name, link_sec->name, namelen);
555 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
556 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
557 if (stub_sec == NULL)
558 return NULL;
559 htab->stub_group[link_sec->id].stub_sec = stub_sec;
560 }
561 htab->stub_group[section->id].stub_sec = stub_sec;
562 }
563
564 /* Enter this entry into the linker stub hash table. */
565 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
566 TRUE, FALSE);
567 if (hsh == NULL)
568 {
569 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
570 section->owner,
571 stub_name);
572 return NULL;
573 }
574
575 hsh->stub_sec = stub_sec;
576 hsh->stub_offset = 0;
577 hsh->id_sec = link_sec;
578 return hsh;
579 }
580
581 /* Determine the type of stub needed, if any, for a call. */
582
583 static enum elf32_hppa_stub_type
584 hppa_type_of_stub (asection *input_sec,
585 const Elf_Internal_Rela *rela,
586 struct elf32_hppa_link_hash_entry *hh,
587 bfd_vma destination,
588 struct bfd_link_info *info)
589 {
590 bfd_vma location;
591 bfd_vma branch_offset;
592 bfd_vma max_branch_offset;
593 unsigned int r_type;
594
595 if (hh != NULL
596 && hh->eh.plt.offset != (bfd_vma) -1
597 && hh->eh.dynindx != -1
598 && !hh->plabel
599 && (info->shared
600 || !hh->eh.def_regular
601 || hh->eh.root.type == bfd_link_hash_defweak))
602 {
603 /* We need an import stub. Decide between hppa_stub_import
604 and hppa_stub_import_shared later. */
605 return hppa_stub_import;
606 }
607
608 /* Determine where the call point is. */
609 location = (input_sec->output_offset
610 + input_sec->output_section->vma
611 + rela->r_offset);
612
613 branch_offset = destination - location - 8;
614 r_type = ELF32_R_TYPE (rela->r_info);
615
616 /* Determine if a long branch stub is needed. parisc branch offsets
617 are relative to the second instruction past the branch, ie. +8
618 bytes on from the branch instruction location. The offset is
619 signed and counts in units of 4 bytes. */
620 if (r_type == (unsigned int) R_PARISC_PCREL17F)
621 {
622 max_branch_offset = (1 << (17-1)) << 2;
623 }
624 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
625 {
626 max_branch_offset = (1 << (12-1)) << 2;
627 }
628 else /* R_PARISC_PCREL22F. */
629 {
630 max_branch_offset = (1 << (22-1)) << 2;
631 }
632
633 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
634 return hppa_stub_long_branch;
635
636 return hppa_stub_none;
637 }
638
639 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
640 IN_ARG contains the link info pointer. */
641
642 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
643 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
644
645 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
646 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
647 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
648
649 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
650 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
651 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
652 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
653
654 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
655 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
656
657 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
658 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
659 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
660 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
661
662 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
663 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
664 #define NOP 0x08000240 /* nop */
665 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
666 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
667 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
668
669 #ifndef R19_STUBS
670 #define R19_STUBS 1
671 #endif
672
673 #if R19_STUBS
674 #define LDW_R1_DLT LDW_R1_R19
675 #else
676 #define LDW_R1_DLT LDW_R1_DP
677 #endif
678
679 static bfd_boolean
680 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
681 {
682 struct elf32_hppa_stub_hash_entry *hsh;
683 struct bfd_link_info *info;
684 struct elf32_hppa_link_hash_table *htab;
685 asection *stub_sec;
686 bfd *stub_bfd;
687 bfd_byte *loc;
688 bfd_vma sym_value;
689 bfd_vma insn;
690 bfd_vma off;
691 int val;
692 int size;
693
694 /* Massage our args to the form they really have. */
695 hsh = hppa_stub_hash_entry (bh);
696 info = (struct bfd_link_info *)in_arg;
697
698 htab = hppa_link_hash_table (info);
699 stub_sec = hsh->stub_sec;
700
701 /* Make a note of the offset within the stubs for this entry. */
702 hsh->stub_offset = stub_sec->size;
703 loc = stub_sec->contents + hsh->stub_offset;
704
705 stub_bfd = stub_sec->owner;
706
707 switch (hsh->stub_type)
708 {
709 case hppa_stub_long_branch:
710 /* Create the long branch. A long branch is formed with "ldil"
711 loading the upper bits of the target address into a register,
712 then branching with "be" which adds in the lower bits.
713 The "be" has its delay slot nullified. */
714 sym_value = (hsh->target_value
715 + hsh->target_section->output_offset
716 + hsh->target_section->output_section->vma);
717
718 val = hppa_field_adjust (sym_value, 0, e_lrsel);
719 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
720 bfd_put_32 (stub_bfd, insn, loc);
721
722 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
723 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
724 bfd_put_32 (stub_bfd, insn, loc + 4);
725
726 size = 8;
727 break;
728
729 case hppa_stub_long_branch_shared:
730 /* Branches are relative. This is where we are going to. */
731 sym_value = (hsh->target_value
732 + hsh->target_section->output_offset
733 + hsh->target_section->output_section->vma);
734
735 /* And this is where we are coming from, more or less. */
736 sym_value -= (hsh->stub_offset
737 + stub_sec->output_offset
738 + stub_sec->output_section->vma);
739
740 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
741 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
742 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc + 4);
744
745 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
746 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
747 bfd_put_32 (stub_bfd, insn, loc + 8);
748 size = 12;
749 break;
750
751 case hppa_stub_import:
752 case hppa_stub_import_shared:
753 off = hsh->hh->eh.plt.offset;
754 if (off >= (bfd_vma) -2)
755 abort ();
756
757 off &= ~ (bfd_vma) 1;
758 sym_value = (off
759 + htab->splt->output_offset
760 + htab->splt->output_section->vma
761 - elf_gp (htab->splt->output_section->owner));
762
763 insn = ADDIL_DP;
764 #if R19_STUBS
765 if (hsh->stub_type == hppa_stub_import_shared)
766 insn = ADDIL_R19;
767 #endif
768 val = hppa_field_adjust (sym_value, 0, e_lrsel),
769 insn = hppa_rebuild_insn ((int) insn, val, 21);
770 bfd_put_32 (stub_bfd, insn, loc);
771
772 /* It is critical to use lrsel/rrsel here because we are using
773 two different offsets (+0 and +4) from sym_value. If we use
774 lsel/rsel then with unfortunate sym_values we will round
775 sym_value+4 up to the next 2k block leading to a mis-match
776 between the lsel and rsel value. */
777 val = hppa_field_adjust (sym_value, 0, e_rrsel);
778 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
779 bfd_put_32 (stub_bfd, insn, loc + 4);
780
781 if (htab->multi_subspace)
782 {
783 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
784 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
785 bfd_put_32 (stub_bfd, insn, loc + 8);
786
787 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
788 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
789 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
790 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
791
792 size = 28;
793 }
794 else
795 {
796 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
797 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
798 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
799 bfd_put_32 (stub_bfd, insn, loc + 12);
800
801 size = 16;
802 }
803
804 break;
805
806 case hppa_stub_export:
807 /* Branches are relative. This is where we are going to. */
808 sym_value = (hsh->target_value
809 + hsh->target_section->output_offset
810 + hsh->target_section->output_section->vma);
811
812 /* And this is where we are coming from. */
813 sym_value -= (hsh->stub_offset
814 + stub_sec->output_offset
815 + stub_sec->output_section->vma);
816
817 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
818 && (!htab->has_22bit_branch
819 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
820 {
821 (*_bfd_error_handler)
822 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
823 hsh->target_section->owner,
824 stub_sec,
825 (long) hsh->stub_offset,
826 hsh->bh_root.string);
827 bfd_set_error (bfd_error_bad_value);
828 return FALSE;
829 }
830
831 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
832 if (!htab->has_22bit_branch)
833 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
834 else
835 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
836 bfd_put_32 (stub_bfd, insn, loc);
837
838 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
839 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
840 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
841 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
842 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
843
844 /* Point the function symbol at the stub. */
845 hsh->hh->eh.root.u.def.section = stub_sec;
846 hsh->hh->eh.root.u.def.value = stub_sec->size;
847
848 size = 24;
849 break;
850
851 default:
852 BFD_FAIL ();
853 return FALSE;
854 }
855
856 stub_sec->size += size;
857 return TRUE;
858 }
859
860 #undef LDIL_R1
861 #undef BE_SR4_R1
862 #undef BL_R1
863 #undef ADDIL_R1
864 #undef DEPI_R1
865 #undef LDW_R1_R21
866 #undef LDW_R1_DLT
867 #undef LDW_R1_R19
868 #undef ADDIL_R19
869 #undef LDW_R1_DP
870 #undef LDSID_R21_R1
871 #undef MTSP_R1
872 #undef BE_SR0_R21
873 #undef STW_RP
874 #undef BV_R0_R21
875 #undef BL_RP
876 #undef NOP
877 #undef LDW_RP
878 #undef LDSID_RP_R1
879 #undef BE_SR0_RP
880
881 /* As above, but don't actually build the stub. Just bump offset so
882 we know stub section sizes. */
883
884 static bfd_boolean
885 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
886 {
887 struct elf32_hppa_stub_hash_entry *hsh;
888 struct elf32_hppa_link_hash_table *htab;
889 int size;
890
891 /* Massage our args to the form they really have. */
892 hsh = hppa_stub_hash_entry (bh);
893 htab = in_arg;
894
895 if (hsh->stub_type == hppa_stub_long_branch)
896 size = 8;
897 else if (hsh->stub_type == hppa_stub_long_branch_shared)
898 size = 12;
899 else if (hsh->stub_type == hppa_stub_export)
900 size = 24;
901 else /* hppa_stub_import or hppa_stub_import_shared. */
902 {
903 if (htab->multi_subspace)
904 size = 28;
905 else
906 size = 16;
907 }
908
909 hsh->stub_sec->size += size;
910 return TRUE;
911 }
912
913 /* Return nonzero if ABFD represents an HPPA ELF32 file.
914 Additionally we set the default architecture and machine. */
915
916 static bfd_boolean
917 elf32_hppa_object_p (bfd *abfd)
918 {
919 Elf_Internal_Ehdr * i_ehdrp;
920 unsigned int flags;
921
922 i_ehdrp = elf_elfheader (abfd);
923 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
924 {
925 /* GCC on hppa-linux produces binaries with OSABI=Linux,
926 but the kernel produces corefiles with OSABI=SysV. */
927 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
928 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
929 return FALSE;
930 }
931 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
932 {
933 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
934 but the kernel produces corefiles with OSABI=SysV. */
935 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
936 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
937 return FALSE;
938 }
939 else
940 {
941 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
942 return FALSE;
943 }
944
945 flags = i_ehdrp->e_flags;
946 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
947 {
948 case EFA_PARISC_1_0:
949 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
950 case EFA_PARISC_1_1:
951 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
952 case EFA_PARISC_2_0:
953 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
954 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
955 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
956 }
957 return TRUE;
958 }
959
960 /* Create the .plt and .got sections, and set up our hash table
961 short-cuts to various dynamic sections. */
962
963 static bfd_boolean
964 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
965 {
966 struct elf32_hppa_link_hash_table *htab;
967 struct elf_link_hash_entry *eh;
968
969 /* Don't try to create the .plt and .got twice. */
970 htab = hppa_link_hash_table (info);
971 if (htab->splt != NULL)
972 return TRUE;
973
974 /* Call the generic code to do most of the work. */
975 if (! _bfd_elf_create_dynamic_sections (abfd, info))
976 return FALSE;
977
978 htab->splt = bfd_get_section_by_name (abfd, ".plt");
979 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
980
981 htab->sgot = bfd_get_section_by_name (abfd, ".got");
982 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
983 (SEC_ALLOC
984 | SEC_LOAD
985 | SEC_HAS_CONTENTS
986 | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED
988 | SEC_READONLY));
989 if (htab->srelgot == NULL
990 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
991 return FALSE;
992
993 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
994 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
995
996 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
997 application, because __canonicalize_funcptr_for_compare needs it. */
998 eh = elf_hash_table (info)->hgot;
999 eh->forced_local = 0;
1000 eh->other = STV_DEFAULT;
1001 return bfd_elf_link_record_dynamic_symbol (info, eh);
1002 }
1003
1004 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1005
1006 static void
1007 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1008 struct elf_link_hash_entry *eh_dir,
1009 struct elf_link_hash_entry *eh_ind)
1010 {
1011 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1012
1013 hh_dir = hppa_elf_hash_entry (eh_dir);
1014 hh_ind = hppa_elf_hash_entry (eh_ind);
1015
1016 if (hh_ind->dyn_relocs != NULL)
1017 {
1018 if (hh_dir->dyn_relocs != NULL)
1019 {
1020 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1021 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1022
1023 /* Add reloc counts against the indirect sym to the direct sym
1024 list. Merge any entries against the same section. */
1025 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1026 {
1027 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1028
1029 for (hdh_q = hh_dir->dyn_relocs;
1030 hdh_q != NULL;
1031 hdh_q = hdh_q->hdh_next)
1032 if (hdh_q->sec == hdh_p->sec)
1033 {
1034 #if RELATIVE_DYNRELOCS
1035 hdh_q->relative_count += hdh_p->relative_count;
1036 #endif
1037 hdh_q->count += hdh_p->count;
1038 *hdh_pp = hdh_p->hdh_next;
1039 break;
1040 }
1041 if (hdh_q == NULL)
1042 hdh_pp = &hdh_p->hdh_next;
1043 }
1044 *hdh_pp = hh_dir->dyn_relocs;
1045 }
1046
1047 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1048 hh_ind->dyn_relocs = NULL;
1049 }
1050
1051 if (ELIMINATE_COPY_RELOCS
1052 && eh_ind->root.type != bfd_link_hash_indirect
1053 && eh_dir->dynamic_adjusted)
1054 {
1055 /* If called to transfer flags for a weakdef during processing
1056 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1057 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1058 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1059 eh_dir->ref_regular |= eh_ind->ref_regular;
1060 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1061 eh_dir->needs_plt |= eh_ind->needs_plt;
1062 }
1063 else
1064 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1065 }
1066
1067 /* Look through the relocs for a section during the first phase, and
1068 calculate needed space in the global offset table, procedure linkage
1069 table, and dynamic reloc sections. At this point we haven't
1070 necessarily read all the input files. */
1071
1072 static bfd_boolean
1073 elf32_hppa_check_relocs (bfd *abfd,
1074 struct bfd_link_info *info,
1075 asection *sec,
1076 const Elf_Internal_Rela *relocs)
1077 {
1078 Elf_Internal_Shdr *symtab_hdr;
1079 struct elf_link_hash_entry **eh_syms;
1080 const Elf_Internal_Rela *rela;
1081 const Elf_Internal_Rela *rela_end;
1082 struct elf32_hppa_link_hash_table *htab;
1083 asection *sreloc;
1084 asection *stubreloc;
1085
1086 if (info->relocatable)
1087 return TRUE;
1088
1089 htab = hppa_link_hash_table (info);
1090 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1091 eh_syms = elf_sym_hashes (abfd);
1092 sreloc = NULL;
1093 stubreloc = NULL;
1094
1095 rela_end = relocs + sec->reloc_count;
1096 for (rela = relocs; rela < rela_end; rela++)
1097 {
1098 enum {
1099 NEED_GOT = 1,
1100 NEED_PLT = 2,
1101 NEED_DYNREL = 4,
1102 PLT_PLABEL = 8
1103 };
1104
1105 unsigned int r_symndx, r_type;
1106 struct elf32_hppa_link_hash_entry *hh;
1107 int need_entry = 0;
1108
1109 r_symndx = ELF32_R_SYM (rela->r_info);
1110
1111 if (r_symndx < symtab_hdr->sh_info)
1112 hh = NULL;
1113 else
1114 {
1115 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1116 while (hh->eh.root.type == bfd_link_hash_indirect
1117 || hh->eh.root.type == bfd_link_hash_warning)
1118 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1119 }
1120
1121 r_type = ELF32_R_TYPE (rela->r_info);
1122
1123 switch (r_type)
1124 {
1125 case R_PARISC_DLTIND14F:
1126 case R_PARISC_DLTIND14R:
1127 case R_PARISC_DLTIND21L:
1128 /* This symbol requires a global offset table entry. */
1129 need_entry = NEED_GOT;
1130 break;
1131
1132 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1133 case R_PARISC_PLABEL21L:
1134 case R_PARISC_PLABEL32:
1135 /* If the addend is non-zero, we break badly. */
1136 if (rela->r_addend != 0)
1137 abort ();
1138
1139 /* If we are creating a shared library, then we need to
1140 create a PLT entry for all PLABELs, because PLABELs with
1141 local symbols may be passed via a pointer to another
1142 object. Additionally, output a dynamic relocation
1143 pointing to the PLT entry.
1144
1145 For executables, the original 32-bit ABI allowed two
1146 different styles of PLABELs (function pointers): For
1147 global functions, the PLABEL word points into the .plt
1148 two bytes past a (function address, gp) pair, and for
1149 local functions the PLABEL points directly at the
1150 function. The magic +2 for the first type allows us to
1151 differentiate between the two. As you can imagine, this
1152 is a real pain when it comes to generating code to call
1153 functions indirectly or to compare function pointers.
1154 We avoid the mess by always pointing a PLABEL into the
1155 .plt, even for local functions. */
1156 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1157 break;
1158
1159 case R_PARISC_PCREL12F:
1160 htab->has_12bit_branch = 1;
1161 goto branch_common;
1162
1163 case R_PARISC_PCREL17C:
1164 case R_PARISC_PCREL17F:
1165 htab->has_17bit_branch = 1;
1166 goto branch_common;
1167
1168 case R_PARISC_PCREL22F:
1169 htab->has_22bit_branch = 1;
1170 branch_common:
1171 /* Function calls might need to go through the .plt, and
1172 might require long branch stubs. */
1173 if (hh == NULL)
1174 {
1175 /* We know local syms won't need a .plt entry, and if
1176 they need a long branch stub we can't guarantee that
1177 we can reach the stub. So just flag an error later
1178 if we're doing a shared link and find we need a long
1179 branch stub. */
1180 continue;
1181 }
1182 else
1183 {
1184 /* Global symbols will need a .plt entry if they remain
1185 global, and in most cases won't need a long branch
1186 stub. Unfortunately, we have to cater for the case
1187 where a symbol is forced local by versioning, or due
1188 to symbolic linking, and we lose the .plt entry. */
1189 need_entry = NEED_PLT;
1190 if (hh->eh.type == STT_PARISC_MILLI)
1191 need_entry = 0;
1192 }
1193 break;
1194
1195 case R_PARISC_SEGBASE: /* Used to set segment base. */
1196 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1197 case R_PARISC_PCREL14F: /* PC relative load/store. */
1198 case R_PARISC_PCREL14R:
1199 case R_PARISC_PCREL17R: /* External branches. */
1200 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1201 case R_PARISC_PCREL32:
1202 /* We don't need to propagate the relocation if linking a
1203 shared object since these are section relative. */
1204 continue;
1205
1206 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1207 case R_PARISC_DPREL14R:
1208 case R_PARISC_DPREL21L:
1209 if (info->shared)
1210 {
1211 (*_bfd_error_handler)
1212 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1213 abfd,
1214 elf_hppa_howto_table[r_type].name);
1215 bfd_set_error (bfd_error_bad_value);
1216 return FALSE;
1217 }
1218 /* Fall through. */
1219
1220 case R_PARISC_DIR17F: /* Used for external branches. */
1221 case R_PARISC_DIR17R:
1222 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1223 case R_PARISC_DIR14R:
1224 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1225 case R_PARISC_DIR32: /* .word relocs. */
1226 /* We may want to output a dynamic relocation later. */
1227 need_entry = NEED_DYNREL;
1228 break;
1229
1230 /* This relocation describes the C++ object vtable hierarchy.
1231 Reconstruct it for later use during GC. */
1232 case R_PARISC_GNU_VTINHERIT:
1233 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1234 return FALSE;
1235 continue;
1236
1237 /* This relocation describes which C++ vtable entries are actually
1238 used. Record for later use during GC. */
1239 case R_PARISC_GNU_VTENTRY:
1240 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1241 return FALSE;
1242 continue;
1243
1244 default:
1245 continue;
1246 }
1247
1248 /* Now carry out our orders. */
1249 if (need_entry & NEED_GOT)
1250 {
1251 /* Allocate space for a GOT entry, as well as a dynamic
1252 relocation for this entry. */
1253 if (htab->sgot == NULL)
1254 {
1255 if (htab->etab.dynobj == NULL)
1256 htab->etab.dynobj = abfd;
1257 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1258 return FALSE;
1259 }
1260
1261 if (hh != NULL)
1262 {
1263 hh->eh.got.refcount += 1;
1264 }
1265 else
1266 {
1267 bfd_signed_vma *local_got_refcounts;
1268 /* This is a global offset table entry for a local symbol. */
1269 local_got_refcounts = elf_local_got_refcounts (abfd);
1270 if (local_got_refcounts == NULL)
1271 {
1272 bfd_size_type size;
1273
1274 /* Allocate space for local got offsets and local
1275 plt offsets. Done this way to save polluting
1276 elf_obj_tdata with another target specific
1277 pointer. */
1278 size = symtab_hdr->sh_info;
1279 size *= 2 * sizeof (bfd_signed_vma);
1280 local_got_refcounts = bfd_zalloc (abfd, size);
1281 if (local_got_refcounts == NULL)
1282 return FALSE;
1283 elf_local_got_refcounts (abfd) = local_got_refcounts;
1284 }
1285 local_got_refcounts[r_symndx] += 1;
1286 }
1287 }
1288
1289 if (need_entry & NEED_PLT)
1290 {
1291 /* If we are creating a shared library, and this is a reloc
1292 against a weak symbol or a global symbol in a dynamic
1293 object, then we will be creating an import stub and a
1294 .plt entry for the symbol. Similarly, on a normal link
1295 to symbols defined in a dynamic object we'll need the
1296 import stub and a .plt entry. We don't know yet whether
1297 the symbol is defined or not, so make an entry anyway and
1298 clean up later in adjust_dynamic_symbol. */
1299 if ((sec->flags & SEC_ALLOC) != 0)
1300 {
1301 if (hh != NULL)
1302 {
1303 hh->eh.needs_plt = 1;
1304 hh->eh.plt.refcount += 1;
1305
1306 /* If this .plt entry is for a plabel, mark it so
1307 that adjust_dynamic_symbol will keep the entry
1308 even if it appears to be local. */
1309 if (need_entry & PLT_PLABEL)
1310 hh->plabel = 1;
1311 }
1312 else if (need_entry & PLT_PLABEL)
1313 {
1314 bfd_signed_vma *local_got_refcounts;
1315 bfd_signed_vma *local_plt_refcounts;
1316
1317 local_got_refcounts = elf_local_got_refcounts (abfd);
1318 if (local_got_refcounts == NULL)
1319 {
1320 bfd_size_type size;
1321
1322 /* Allocate space for local got offsets and local
1323 plt offsets. */
1324 size = symtab_hdr->sh_info;
1325 size *= 2 * sizeof (bfd_signed_vma);
1326 local_got_refcounts = bfd_zalloc (abfd, size);
1327 if (local_got_refcounts == NULL)
1328 return FALSE;
1329 elf_local_got_refcounts (abfd) = local_got_refcounts;
1330 }
1331 local_plt_refcounts = (local_got_refcounts
1332 + symtab_hdr->sh_info);
1333 local_plt_refcounts[r_symndx] += 1;
1334 }
1335 }
1336 }
1337
1338 if (need_entry & NEED_DYNREL)
1339 {
1340 /* Flag this symbol as having a non-got, non-plt reference
1341 so that we generate copy relocs if it turns out to be
1342 dynamic. */
1343 if (hh != NULL && !info->shared)
1344 hh->eh.non_got_ref = 1;
1345
1346 /* If we are creating a shared library then we need to copy
1347 the reloc into the shared library. However, if we are
1348 linking with -Bsymbolic, we need only copy absolute
1349 relocs or relocs against symbols that are not defined in
1350 an object we are including in the link. PC- or DP- or
1351 DLT-relative relocs against any local sym or global sym
1352 with DEF_REGULAR set, can be discarded. At this point we
1353 have not seen all the input files, so it is possible that
1354 DEF_REGULAR is not set now but will be set later (it is
1355 never cleared). We account for that possibility below by
1356 storing information in the dyn_relocs field of the
1357 hash table entry.
1358
1359 A similar situation to the -Bsymbolic case occurs when
1360 creating shared libraries and symbol visibility changes
1361 render the symbol local.
1362
1363 As it turns out, all the relocs we will be creating here
1364 are absolute, so we cannot remove them on -Bsymbolic
1365 links or visibility changes anyway. A STUB_REL reloc
1366 is absolute too, as in that case it is the reloc in the
1367 stub we will be creating, rather than copying the PCREL
1368 reloc in the branch.
1369
1370 If on the other hand, we are creating an executable, we
1371 may need to keep relocations for symbols satisfied by a
1372 dynamic library if we manage to avoid copy relocs for the
1373 symbol. */
1374 if ((info->shared
1375 && (sec->flags & SEC_ALLOC) != 0
1376 && (IS_ABSOLUTE_RELOC (r_type)
1377 || (hh != NULL
1378 && (!info->symbolic
1379 || hh->eh.root.type == bfd_link_hash_defweak
1380 || !hh->eh.def_regular))))
1381 || (ELIMINATE_COPY_RELOCS
1382 && !info->shared
1383 && (sec->flags & SEC_ALLOC) != 0
1384 && hh != NULL
1385 && (hh->eh.root.type == bfd_link_hash_defweak
1386 || !hh->eh.def_regular)))
1387 {
1388 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1389 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1390
1391 /* Create a reloc section in dynobj and make room for
1392 this reloc. */
1393 if (sreloc == NULL)
1394 {
1395 char *name;
1396 bfd *dynobj;
1397
1398 name = (bfd_elf_string_from_elf_section
1399 (abfd,
1400 elf_elfheader (abfd)->e_shstrndx,
1401 elf_section_data (sec)->rel_hdr.sh_name));
1402 if (name == NULL)
1403 {
1404 (*_bfd_error_handler)
1405 (_("Could not find relocation section for %s"),
1406 sec->name);
1407 bfd_set_error (bfd_error_bad_value);
1408 return FALSE;
1409 }
1410
1411 if (htab->etab.dynobj == NULL)
1412 htab->etab.dynobj = abfd;
1413
1414 dynobj = htab->etab.dynobj;
1415 sreloc = bfd_get_section_by_name (dynobj, name);
1416 if (sreloc == NULL)
1417 {
1418 flagword flags;
1419
1420 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1421 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1422 if ((sec->flags & SEC_ALLOC) != 0)
1423 flags |= SEC_ALLOC | SEC_LOAD;
1424 sreloc = bfd_make_section_with_flags (dynobj,
1425 name,
1426 flags);
1427 if (sreloc == NULL
1428 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1429 return FALSE;
1430 }
1431
1432 elf_section_data (sec)->sreloc = sreloc;
1433 }
1434
1435 /* If this is a global symbol, we count the number of
1436 relocations we need for this symbol. */
1437 if (hh != NULL)
1438 {
1439 hdh_head = &hh->dyn_relocs;
1440 }
1441 else
1442 {
1443 /* Track dynamic relocs needed for local syms too.
1444 We really need local syms available to do this
1445 easily. Oh well. */
1446
1447 asection *sr;
1448 void *vpp;
1449
1450 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1451 sec, r_symndx);
1452 if (sr == NULL)
1453 return FALSE;
1454
1455 vpp = &elf_section_data (sr)->local_dynrel;
1456 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1457 }
1458
1459 hdh_p = *hdh_head;
1460 if (hdh_p == NULL || hdh_p->sec != sec)
1461 {
1462 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1463 if (hdh_p == NULL)
1464 return FALSE;
1465 hdh_p->hdh_next = *hdh_head;
1466 *hdh_head = hdh_p;
1467 hdh_p->sec = sec;
1468 hdh_p->count = 0;
1469 #if RELATIVE_DYNRELOCS
1470 hdh_p->relative_count = 0;
1471 #endif
1472 }
1473
1474 hdh_p->count += 1;
1475 #if RELATIVE_DYNRELOCS
1476 if (!IS_ABSOLUTE_RELOC (rtype))
1477 hdh_p->relative_count += 1;
1478 #endif
1479 }
1480 }
1481 }
1482
1483 return TRUE;
1484 }
1485
1486 /* Return the section that should be marked against garbage collection
1487 for a given relocation. */
1488
1489 static asection *
1490 elf32_hppa_gc_mark_hook (asection *sec,
1491 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1492 Elf_Internal_Rela *rela,
1493 struct elf_link_hash_entry *hh,
1494 Elf_Internal_Sym *sym)
1495 {
1496 if (hh != NULL)
1497 {
1498 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1499 {
1500 case R_PARISC_GNU_VTINHERIT:
1501 case R_PARISC_GNU_VTENTRY:
1502 break;
1503
1504 default:
1505 switch (hh->root.type)
1506 {
1507 case bfd_link_hash_defined:
1508 case bfd_link_hash_defweak:
1509 return hh->root.u.def.section;
1510
1511 case bfd_link_hash_common:
1512 return hh->root.u.c.p->section;
1513
1514 default:
1515 break;
1516 }
1517 }
1518 }
1519 else
1520 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1521
1522 return NULL;
1523 }
1524
1525 /* Update the got and plt entry reference counts for the section being
1526 removed. */
1527
1528 static bfd_boolean
1529 elf32_hppa_gc_sweep_hook (bfd *abfd,
1530 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1531 asection *sec,
1532 const Elf_Internal_Rela *relocs)
1533 {
1534 Elf_Internal_Shdr *symtab_hdr;
1535 struct elf_link_hash_entry **eh_syms;
1536 bfd_signed_vma *local_got_refcounts;
1537 bfd_signed_vma *local_plt_refcounts;
1538 const Elf_Internal_Rela *rela, *relend;
1539
1540 elf_section_data (sec)->local_dynrel = NULL;
1541
1542 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1543 eh_syms = elf_sym_hashes (abfd);
1544 local_got_refcounts = elf_local_got_refcounts (abfd);
1545 local_plt_refcounts = local_got_refcounts;
1546 if (local_plt_refcounts != NULL)
1547 local_plt_refcounts += symtab_hdr->sh_info;
1548
1549 relend = relocs + sec->reloc_count;
1550 for (rela = relocs; rela < relend; rela++)
1551 {
1552 unsigned long r_symndx;
1553 unsigned int r_type;
1554 struct elf_link_hash_entry *eh = NULL;
1555
1556 r_symndx = ELF32_R_SYM (rela->r_info);
1557 if (r_symndx >= symtab_hdr->sh_info)
1558 {
1559 struct elf32_hppa_link_hash_entry *hh;
1560 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1561 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1562
1563 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1564 while (eh->root.type == bfd_link_hash_indirect
1565 || eh->root.type == bfd_link_hash_warning)
1566 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1567 hh = hppa_elf_hash_entry (eh);
1568
1569 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1570 if (hdh_p->sec == sec)
1571 {
1572 /* Everything must go for SEC. */
1573 *hdh_pp = hdh_p->hdh_next;
1574 break;
1575 }
1576 }
1577
1578 r_type = ELF32_R_TYPE (rela->r_info);
1579 switch (r_type)
1580 {
1581 case R_PARISC_DLTIND14F:
1582 case R_PARISC_DLTIND14R:
1583 case R_PARISC_DLTIND21L:
1584 if (eh != NULL)
1585 {
1586 if (eh->got.refcount > 0)
1587 eh->got.refcount -= 1;
1588 }
1589 else if (local_got_refcounts != NULL)
1590 {
1591 if (local_got_refcounts[r_symndx] > 0)
1592 local_got_refcounts[r_symndx] -= 1;
1593 }
1594 break;
1595
1596 case R_PARISC_PCREL12F:
1597 case R_PARISC_PCREL17C:
1598 case R_PARISC_PCREL17F:
1599 case R_PARISC_PCREL22F:
1600 if (eh != NULL)
1601 {
1602 if (eh->plt.refcount > 0)
1603 eh->plt.refcount -= 1;
1604 }
1605 break;
1606
1607 case R_PARISC_PLABEL14R:
1608 case R_PARISC_PLABEL21L:
1609 case R_PARISC_PLABEL32:
1610 if (eh != NULL)
1611 {
1612 if (eh->plt.refcount > 0)
1613 eh->plt.refcount -= 1;
1614 }
1615 else if (local_plt_refcounts != NULL)
1616 {
1617 if (local_plt_refcounts[r_symndx] > 0)
1618 local_plt_refcounts[r_symndx] -= 1;
1619 }
1620 break;
1621
1622 default:
1623 break;
1624 }
1625 }
1626
1627 return TRUE;
1628 }
1629
1630 /* Support for core dump NOTE sections. */
1631
1632 static bfd_boolean
1633 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1634 {
1635 int offset;
1636 size_t size;
1637
1638 switch (note->descsz)
1639 {
1640 default:
1641 return FALSE;
1642
1643 case 396: /* Linux/hppa */
1644 /* pr_cursig */
1645 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1646
1647 /* pr_pid */
1648 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1649
1650 /* pr_reg */
1651 offset = 72;
1652 size = 320;
1653
1654 break;
1655 }
1656
1657 /* Make a ".reg/999" section. */
1658 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1659 size, note->descpos + offset);
1660 }
1661
1662 static bfd_boolean
1663 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1664 {
1665 switch (note->descsz)
1666 {
1667 default:
1668 return FALSE;
1669
1670 case 124: /* Linux/hppa elf_prpsinfo. */
1671 elf_tdata (abfd)->core_program
1672 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1673 elf_tdata (abfd)->core_command
1674 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1675 }
1676
1677 /* Note that for some reason, a spurious space is tacked
1678 onto the end of the args in some (at least one anyway)
1679 implementations, so strip it off if it exists. */
1680 {
1681 char *command = elf_tdata (abfd)->core_command;
1682 int n = strlen (command);
1683
1684 if (0 < n && command[n - 1] == ' ')
1685 command[n - 1] = '\0';
1686 }
1687
1688 return TRUE;
1689 }
1690
1691 /* Our own version of hide_symbol, so that we can keep plt entries for
1692 plabels. */
1693
1694 static void
1695 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1696 struct elf_link_hash_entry *eh,
1697 bfd_boolean force_local)
1698 {
1699 if (force_local)
1700 {
1701 eh->forced_local = 1;
1702 if (eh->dynindx != -1)
1703 {
1704 eh->dynindx = -1;
1705 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1706 eh->dynstr_index);
1707 }
1708 }
1709
1710 if (! hppa_elf_hash_entry(eh)->plabel)
1711 {
1712 eh->needs_plt = 0;
1713 eh->plt = elf_hash_table (info)->init_plt_refcount;
1714 }
1715 }
1716
1717 /* Adjust a symbol defined by a dynamic object and referenced by a
1718 regular object. The current definition is in some section of the
1719 dynamic object, but we're not including those sections. We have to
1720 change the definition to something the rest of the link can
1721 understand. */
1722
1723 static bfd_boolean
1724 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1725 struct elf_link_hash_entry *eh)
1726 {
1727 struct elf32_hppa_link_hash_table *htab;
1728 asection *sec;
1729 unsigned int power_of_two;
1730
1731 /* If this is a function, put it in the procedure linkage table. We
1732 will fill in the contents of the procedure linkage table later. */
1733 if (eh->type == STT_FUNC
1734 || eh->needs_plt)
1735 {
1736 if (eh->plt.refcount <= 0
1737 || (eh->def_regular
1738 && eh->root.type != bfd_link_hash_defweak
1739 && ! hppa_elf_hash_entry (eh)->plabel
1740 && (!info->shared || info->symbolic)))
1741 {
1742 /* The .plt entry is not needed when:
1743 a) Garbage collection has removed all references to the
1744 symbol, or
1745 b) We know for certain the symbol is defined in this
1746 object, and it's not a weak definition, nor is the symbol
1747 used by a plabel relocation. Either this object is the
1748 application or we are doing a shared symbolic link. */
1749
1750 eh->plt.offset = (bfd_vma) -1;
1751 eh->needs_plt = 0;
1752 }
1753
1754 return TRUE;
1755 }
1756 else
1757 eh->plt.offset = (bfd_vma) -1;
1758
1759 /* If this is a weak symbol, and there is a real definition, the
1760 processor independent code will have arranged for us to see the
1761 real definition first, and we can just use the same value. */
1762 if (eh->u.weakdef != NULL)
1763 {
1764 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1765 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1766 abort ();
1767 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1768 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1769 if (ELIMINATE_COPY_RELOCS)
1770 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1771 return TRUE;
1772 }
1773
1774 /* This is a reference to a symbol defined by a dynamic object which
1775 is not a function. */
1776
1777 /* If we are creating a shared library, we must presume that the
1778 only references to the symbol are via the global offset table.
1779 For such cases we need not do anything here; the relocations will
1780 be handled correctly by relocate_section. */
1781 if (info->shared)
1782 return TRUE;
1783
1784 /* If there are no references to this symbol that do not use the
1785 GOT, we don't need to generate a copy reloc. */
1786 if (!eh->non_got_ref)
1787 return TRUE;
1788
1789 if (ELIMINATE_COPY_RELOCS)
1790 {
1791 struct elf32_hppa_link_hash_entry *hh;
1792 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1793
1794 hh = hppa_elf_hash_entry (eh);
1795 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1796 {
1797 sec = hdh_p->sec->output_section;
1798 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1799 break;
1800 }
1801
1802 /* If we didn't find any dynamic relocs in read-only sections, then
1803 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1804 if (hdh_p == NULL)
1805 {
1806 eh->non_got_ref = 0;
1807 return TRUE;
1808 }
1809 }
1810
1811 if (eh->size == 0)
1812 {
1813 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1814 eh->root.root.string);
1815 return TRUE;
1816 }
1817
1818 /* We must allocate the symbol in our .dynbss section, which will
1819 become part of the .bss section of the executable. There will be
1820 an entry for this symbol in the .dynsym section. The dynamic
1821 object will contain position independent code, so all references
1822 from the dynamic object to this symbol will go through the global
1823 offset table. The dynamic linker will use the .dynsym entry to
1824 determine the address it must put in the global offset table, so
1825 both the dynamic object and the regular object will refer to the
1826 same memory location for the variable. */
1827
1828 htab = hppa_link_hash_table (info);
1829
1830 /* We must generate a COPY reloc to tell the dynamic linker to
1831 copy the initial value out of the dynamic object and into the
1832 runtime process image. */
1833 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1834 {
1835 htab->srelbss->size += sizeof (Elf32_External_Rela);
1836 eh->needs_copy = 1;
1837 }
1838
1839 /* We need to figure out the alignment required for this symbol. I
1840 have no idea how other ELF linkers handle this. */
1841
1842 power_of_two = bfd_log2 (eh->size);
1843 if (power_of_two > 3)
1844 power_of_two = 3;
1845
1846 /* Apply the required alignment. */
1847 sec = htab->sdynbss;
1848 sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
1849 if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
1850 {
1851 if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
1852 return FALSE;
1853 }
1854
1855 /* Define the symbol as being at this point in the section. */
1856 eh->root.u.def.section = sec;
1857 eh->root.u.def.value = sec->size;
1858
1859 /* Increment the section size to make room for the symbol. */
1860 sec->size += eh->size;
1861
1862 return TRUE;
1863 }
1864
1865 /* Allocate space in the .plt for entries that won't have relocations.
1866 ie. plabel entries. */
1867
1868 static bfd_boolean
1869 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1870 {
1871 struct bfd_link_info *info;
1872 struct elf32_hppa_link_hash_table *htab;
1873 struct elf32_hppa_link_hash_entry *hh;
1874 asection *sec;
1875
1876 if (eh->root.type == bfd_link_hash_indirect)
1877 return TRUE;
1878
1879 if (eh->root.type == bfd_link_hash_warning)
1880 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1881
1882 info = (struct bfd_link_info *) inf;
1883 hh = hppa_elf_hash_entry(eh);
1884 htab = hppa_link_hash_table (info);
1885 if (htab->etab.dynamic_sections_created
1886 && eh->plt.refcount > 0)
1887 {
1888 /* Make sure this symbol is output as a dynamic symbol.
1889 Undefined weak syms won't yet be marked as dynamic. */
1890 if (eh->dynindx == -1
1891 && !eh->forced_local
1892 && eh->type != STT_PARISC_MILLI)
1893 {
1894 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1895 return FALSE;
1896 }
1897
1898 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1899 {
1900 /* Allocate these later. From this point on, h->plabel
1901 means that the plt entry is only used by a plabel.
1902 We'll be using a normal plt entry for this symbol, so
1903 clear the plabel indicator. */
1904
1905 hh->plabel = 0;
1906 }
1907 else if (hh->plabel)
1908 {
1909 /* Make an entry in the .plt section for plabel references
1910 that won't have a .plt entry for other reasons. */
1911 sec = htab->splt;
1912 eh->plt.offset = sec->size;
1913 sec->size += PLT_ENTRY_SIZE;
1914 }
1915 else
1916 {
1917 /* No .plt entry needed. */
1918 eh->plt.offset = (bfd_vma) -1;
1919 eh->needs_plt = 0;
1920 }
1921 }
1922 else
1923 {
1924 eh->plt.offset = (bfd_vma) -1;
1925 eh->needs_plt = 0;
1926 }
1927
1928 return TRUE;
1929 }
1930
1931 /* Allocate space in .plt, .got and associated reloc sections for
1932 global syms. */
1933
1934 static bfd_boolean
1935 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1936 {
1937 struct bfd_link_info *info;
1938 struct elf32_hppa_link_hash_table *htab;
1939 asection *sec;
1940 struct elf32_hppa_link_hash_entry *hh;
1941 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1942
1943 if (eh->root.type == bfd_link_hash_indirect)
1944 return TRUE;
1945
1946 if (eh->root.type == bfd_link_hash_warning)
1947 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1948
1949 info = inf;
1950 htab = hppa_link_hash_table (info);
1951 hh = hppa_elf_hash_entry (eh);
1952
1953 if (htab->etab.dynamic_sections_created
1954 && eh->plt.offset != (bfd_vma) -1
1955 && !hh->plabel
1956 && eh->plt.refcount > 0)
1957 {
1958 /* Make an entry in the .plt section. */
1959 sec = htab->splt;
1960 eh->plt.offset = sec->size;
1961 sec->size += PLT_ENTRY_SIZE;
1962
1963 /* We also need to make an entry in the .rela.plt section. */
1964 htab->srelplt->size += sizeof (Elf32_External_Rela);
1965 htab->need_plt_stub = 1;
1966 }
1967
1968 if (eh->got.refcount > 0)
1969 {
1970 /* Make sure this symbol is output as a dynamic symbol.
1971 Undefined weak syms won't yet be marked as dynamic. */
1972 if (eh->dynindx == -1
1973 && !eh->forced_local
1974 && eh->type != STT_PARISC_MILLI)
1975 {
1976 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1977 return FALSE;
1978 }
1979
1980 sec = htab->sgot;
1981 eh->got.offset = sec->size;
1982 sec->size += GOT_ENTRY_SIZE;
1983 if (htab->etab.dynamic_sections_created
1984 && (info->shared
1985 || (eh->dynindx != -1
1986 && !eh->forced_local)))
1987 {
1988 htab->srelgot->size += sizeof (Elf32_External_Rela);
1989 }
1990 }
1991 else
1992 eh->got.offset = (bfd_vma) -1;
1993
1994 if (hh->dyn_relocs == NULL)
1995 return TRUE;
1996
1997 /* If this is a -Bsymbolic shared link, then we need to discard all
1998 space allocated for dynamic pc-relative relocs against symbols
1999 defined in a regular object. For the normal shared case, discard
2000 space for relocs that have become local due to symbol visibility
2001 changes. */
2002 if (info->shared)
2003 {
2004 #if RELATIVE_DYNRELOCS
2005 if (SYMBOL_CALLS_LOCAL (info, eh))
2006 {
2007 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2008
2009 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2010 {
2011 hdh_p->count -= hdh_p->relative_count;
2012 hdh_p->relative_count = 0;
2013 if (hdh_p->count == 0)
2014 *hdh_pp = hdh_p->hdh_next;
2015 else
2016 hdh_pp = &hdh_p->hdh_next;
2017 }
2018 }
2019 #endif
2020
2021 /* Also discard relocs on undefined weak syms with non-default
2022 visibility. */
2023 if (hh->dyn_relocs != NULL
2024 && eh->root.type == bfd_link_hash_undefweak)
2025 {
2026 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2027 hh->dyn_relocs = NULL;
2028
2029 /* Make sure undefined weak symbols are output as a dynamic
2030 symbol in PIEs. */
2031 else if (eh->dynindx == -1
2032 && !eh->forced_local)
2033 {
2034 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2035 return FALSE;
2036 }
2037 }
2038 }
2039 else
2040 {
2041 /* For the non-shared case, discard space for relocs against
2042 symbols which turn out to need copy relocs or are not
2043 dynamic. */
2044
2045 if (!eh->non_got_ref
2046 && ((ELIMINATE_COPY_RELOCS
2047 && eh->def_dynamic
2048 && !eh->def_regular)
2049 || (htab->etab.dynamic_sections_created
2050 && (eh->root.type == bfd_link_hash_undefweak
2051 || eh->root.type == bfd_link_hash_undefined))))
2052 {
2053 /* Make sure this symbol is output as a dynamic symbol.
2054 Undefined weak syms won't yet be marked as dynamic. */
2055 if (eh->dynindx == -1
2056 && !eh->forced_local
2057 && eh->type != STT_PARISC_MILLI)
2058 {
2059 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2060 return FALSE;
2061 }
2062
2063 /* If that succeeded, we know we'll be keeping all the
2064 relocs. */
2065 if (eh->dynindx != -1)
2066 goto keep;
2067 }
2068
2069 hh->dyn_relocs = NULL;
2070 return TRUE;
2071
2072 keep: ;
2073 }
2074
2075 /* Finally, allocate space. */
2076 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2077 {
2078 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2079 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2080 }
2081
2082 return TRUE;
2083 }
2084
2085 /* This function is called via elf_link_hash_traverse to force
2086 millicode symbols local so they do not end up as globals in the
2087 dynamic symbol table. We ought to be able to do this in
2088 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2089 for all dynamic symbols. Arguably, this is a bug in
2090 elf_adjust_dynamic_symbol. */
2091
2092 static bfd_boolean
2093 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2094 struct bfd_link_info *info)
2095 {
2096 if (eh->root.type == bfd_link_hash_warning)
2097 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2098
2099 if (eh->type == STT_PARISC_MILLI
2100 && !eh->forced_local)
2101 {
2102 elf32_hppa_hide_symbol (info, eh, TRUE);
2103 }
2104 return TRUE;
2105 }
2106
2107 /* Find any dynamic relocs that apply to read-only sections. */
2108
2109 static bfd_boolean
2110 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2111 {
2112 struct elf32_hppa_link_hash_entry *hh;
2113 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2114
2115 if (eh->root.type == bfd_link_hash_warning)
2116 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2117
2118 hh = hppa_elf_hash_entry (eh);
2119 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2120 {
2121 asection *sec = hdh_p->sec->output_section;
2122
2123 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2124 {
2125 struct bfd_link_info *info = inf;
2126
2127 info->flags |= DF_TEXTREL;
2128
2129 /* Not an error, just cut short the traversal. */
2130 return FALSE;
2131 }
2132 }
2133 return TRUE;
2134 }
2135
2136 /* Set the sizes of the dynamic sections. */
2137
2138 static bfd_boolean
2139 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2140 struct bfd_link_info *info)
2141 {
2142 struct elf32_hppa_link_hash_table *htab;
2143 bfd *dynobj;
2144 bfd *ibfd;
2145 asection *sec;
2146 bfd_boolean relocs;
2147
2148 htab = hppa_link_hash_table (info);
2149 dynobj = htab->etab.dynobj;
2150 if (dynobj == NULL)
2151 abort ();
2152
2153 if (htab->etab.dynamic_sections_created)
2154 {
2155 /* Set the contents of the .interp section to the interpreter. */
2156 if (info->executable)
2157 {
2158 sec = bfd_get_section_by_name (dynobj, ".interp");
2159 if (sec == NULL)
2160 abort ();
2161 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2162 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2163 }
2164
2165 /* Force millicode symbols local. */
2166 elf_link_hash_traverse (&htab->etab,
2167 clobber_millicode_symbols,
2168 info);
2169 }
2170
2171 /* Set up .got and .plt offsets for local syms, and space for local
2172 dynamic relocs. */
2173 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2174 {
2175 bfd_signed_vma *local_got;
2176 bfd_signed_vma *end_local_got;
2177 bfd_signed_vma *local_plt;
2178 bfd_signed_vma *end_local_plt;
2179 bfd_size_type locsymcount;
2180 Elf_Internal_Shdr *symtab_hdr;
2181 asection *srel;
2182
2183 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2184 continue;
2185
2186 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2187 {
2188 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2189
2190 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2191 elf_section_data (sec)->local_dynrel);
2192 hdh_p != NULL;
2193 hdh_p = hdh_p->hdh_next)
2194 {
2195 if (!bfd_is_abs_section (hdh_p->sec)
2196 && bfd_is_abs_section (hdh_p->sec->output_section))
2197 {
2198 /* Input section has been discarded, either because
2199 it is a copy of a linkonce section or due to
2200 linker script /DISCARD/, so we'll be discarding
2201 the relocs too. */
2202 }
2203 else if (hdh_p->count != 0)
2204 {
2205 srel = elf_section_data (hdh_p->sec)->sreloc;
2206 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2207 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2208 info->flags |= DF_TEXTREL;
2209 }
2210 }
2211 }
2212
2213 local_got = elf_local_got_refcounts (ibfd);
2214 if (!local_got)
2215 continue;
2216
2217 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2218 locsymcount = symtab_hdr->sh_info;
2219 end_local_got = local_got + locsymcount;
2220 sec = htab->sgot;
2221 srel = htab->srelgot;
2222 for (; local_got < end_local_got; ++local_got)
2223 {
2224 if (*local_got > 0)
2225 {
2226 *local_got = sec->size;
2227 sec->size += GOT_ENTRY_SIZE;
2228 if (info->shared)
2229 srel->size += sizeof (Elf32_External_Rela);
2230 }
2231 else
2232 *local_got = (bfd_vma) -1;
2233 }
2234
2235 local_plt = end_local_got;
2236 end_local_plt = local_plt + locsymcount;
2237 if (! htab->etab.dynamic_sections_created)
2238 {
2239 /* Won't be used, but be safe. */
2240 for (; local_plt < end_local_plt; ++local_plt)
2241 *local_plt = (bfd_vma) -1;
2242 }
2243 else
2244 {
2245 sec = htab->splt;
2246 srel = htab->srelplt;
2247 for (; local_plt < end_local_plt; ++local_plt)
2248 {
2249 if (*local_plt > 0)
2250 {
2251 *local_plt = sec->size;
2252 sec->size += PLT_ENTRY_SIZE;
2253 if (info->shared)
2254 srel->size += sizeof (Elf32_External_Rela);
2255 }
2256 else
2257 *local_plt = (bfd_vma) -1;
2258 }
2259 }
2260 }
2261
2262 /* Do all the .plt entries without relocs first. The dynamic linker
2263 uses the last .plt reloc to find the end of the .plt (and hence
2264 the start of the .got) for lazy linking. */
2265 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2266
2267 /* Allocate global sym .plt and .got entries, and space for global
2268 sym dynamic relocs. */
2269 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2270
2271 /* The check_relocs and adjust_dynamic_symbol entry points have
2272 determined the sizes of the various dynamic sections. Allocate
2273 memory for them. */
2274 relocs = FALSE;
2275 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2276 {
2277 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2278 continue;
2279
2280 if (sec == htab->splt)
2281 {
2282 if (htab->need_plt_stub)
2283 {
2284 /* Make space for the plt stub at the end of the .plt
2285 section. We want this stub right at the end, up
2286 against the .got section. */
2287 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2288 int pltalign = bfd_section_alignment (dynobj, sec);
2289 bfd_size_type mask;
2290
2291 if (gotalign > pltalign)
2292 bfd_set_section_alignment (dynobj, sec, gotalign);
2293 mask = ((bfd_size_type) 1 << gotalign) - 1;
2294 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2295 }
2296 }
2297 else if (sec == htab->sgot
2298 || sec == htab->sdynbss)
2299 ;
2300 else if (strncmp (bfd_get_section_name (dynobj, sec), ".rela", 5) == 0)
2301 {
2302 if (sec->size != 0)
2303 {
2304 /* Remember whether there are any reloc sections other
2305 than .rela.plt. */
2306 if (sec != htab->srelplt)
2307 relocs = TRUE;
2308
2309 /* We use the reloc_count field as a counter if we need
2310 to copy relocs into the output file. */
2311 sec->reloc_count = 0;
2312 }
2313 }
2314 else
2315 {
2316 /* It's not one of our sections, so don't allocate space. */
2317 continue;
2318 }
2319
2320 if (sec->size == 0)
2321 {
2322 /* If we don't need this section, strip it from the
2323 output file. This is mostly to handle .rela.bss and
2324 .rela.plt. We must create both sections in
2325 create_dynamic_sections, because they must be created
2326 before the linker maps input sections to output
2327 sections. The linker does that before
2328 adjust_dynamic_symbol is called, and it is that
2329 function which decides whether anything needs to go
2330 into these sections. */
2331 sec->flags |= SEC_EXCLUDE;
2332 continue;
2333 }
2334
2335 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2336 continue;
2337
2338 /* Allocate memory for the section contents. Zero it, because
2339 we may not fill in all the reloc sections. */
2340 sec->contents = bfd_zalloc (dynobj, sec->size);
2341 if (sec->contents == NULL)
2342 return FALSE;
2343 }
2344
2345 if (htab->etab.dynamic_sections_created)
2346 {
2347 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2348 actually has nothing to do with the PLT, it is how we
2349 communicate the LTP value of a load module to the dynamic
2350 linker. */
2351 #define add_dynamic_entry(TAG, VAL) \
2352 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2353
2354 if (!add_dynamic_entry (DT_PLTGOT, 0))
2355 return FALSE;
2356
2357 /* Add some entries to the .dynamic section. We fill in the
2358 values later, in elf32_hppa_finish_dynamic_sections, but we
2359 must add the entries now so that we get the correct size for
2360 the .dynamic section. The DT_DEBUG entry is filled in by the
2361 dynamic linker and used by the debugger. */
2362 if (info->executable)
2363 {
2364 if (!add_dynamic_entry (DT_DEBUG, 0))
2365 return FALSE;
2366 }
2367
2368 if (htab->srelplt->size != 0)
2369 {
2370 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2371 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2372 || !add_dynamic_entry (DT_JMPREL, 0))
2373 return FALSE;
2374 }
2375
2376 if (relocs)
2377 {
2378 if (!add_dynamic_entry (DT_RELA, 0)
2379 || !add_dynamic_entry (DT_RELASZ, 0)
2380 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2381 return FALSE;
2382
2383 /* If any dynamic relocs apply to a read-only section,
2384 then we need a DT_TEXTREL entry. */
2385 if ((info->flags & DF_TEXTREL) == 0)
2386 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2387
2388 if ((info->flags & DF_TEXTREL) != 0)
2389 {
2390 if (!add_dynamic_entry (DT_TEXTREL, 0))
2391 return FALSE;
2392 }
2393 }
2394 }
2395 #undef add_dynamic_entry
2396
2397 return TRUE;
2398 }
2399
2400 /* External entry points for sizing and building linker stubs. */
2401
2402 /* Set up various things so that we can make a list of input sections
2403 for each output section included in the link. Returns -1 on error,
2404 0 when no stubs will be needed, and 1 on success. */
2405
2406 int
2407 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2408 {
2409 bfd *input_bfd;
2410 unsigned int bfd_count;
2411 int top_id, top_index;
2412 asection *section;
2413 asection **input_list, **list;
2414 bfd_size_type amt;
2415 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2416
2417 /* Count the number of input BFDs and find the top input section id. */
2418 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2419 input_bfd != NULL;
2420 input_bfd = input_bfd->link_next)
2421 {
2422 bfd_count += 1;
2423 for (section = input_bfd->sections;
2424 section != NULL;
2425 section = section->next)
2426 {
2427 if (top_id < section->id)
2428 top_id = section->id;
2429 }
2430 }
2431 htab->bfd_count = bfd_count;
2432
2433 amt = sizeof (struct map_stub) * (top_id + 1);
2434 htab->stub_group = bfd_zmalloc (amt);
2435 if (htab->stub_group == NULL)
2436 return -1;
2437
2438 /* We can't use output_bfd->section_count here to find the top output
2439 section index as some sections may have been removed, and
2440 strip_excluded_output_sections doesn't renumber the indices. */
2441 for (section = output_bfd->sections, top_index = 0;
2442 section != NULL;
2443 section = section->next)
2444 {
2445 if (top_index < section->index)
2446 top_index = section->index;
2447 }
2448
2449 htab->top_index = top_index;
2450 amt = sizeof (asection *) * (top_index + 1);
2451 input_list = bfd_malloc (amt);
2452 htab->input_list = input_list;
2453 if (input_list == NULL)
2454 return -1;
2455
2456 /* For sections we aren't interested in, mark their entries with a
2457 value we can check later. */
2458 list = input_list + top_index;
2459 do
2460 *list = bfd_abs_section_ptr;
2461 while (list-- != input_list);
2462
2463 for (section = output_bfd->sections;
2464 section != NULL;
2465 section = section->next)
2466 {
2467 if ((section->flags & SEC_CODE) != 0)
2468 input_list[section->index] = NULL;
2469 }
2470
2471 return 1;
2472 }
2473
2474 /* The linker repeatedly calls this function for each input section,
2475 in the order that input sections are linked into output sections.
2476 Build lists of input sections to determine groupings between which
2477 we may insert linker stubs. */
2478
2479 void
2480 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2481 {
2482 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2483
2484 if (isec->output_section->index <= htab->top_index)
2485 {
2486 asection **list = htab->input_list + isec->output_section->index;
2487 if (*list != bfd_abs_section_ptr)
2488 {
2489 /* Steal the link_sec pointer for our list. */
2490 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2491 /* This happens to make the list in reverse order,
2492 which is what we want. */
2493 PREV_SEC (isec) = *list;
2494 *list = isec;
2495 }
2496 }
2497 }
2498
2499 /* See whether we can group stub sections together. Grouping stub
2500 sections may result in fewer stubs. More importantly, we need to
2501 put all .init* and .fini* stubs at the beginning of the .init or
2502 .fini output sections respectively, because glibc splits the
2503 _init and _fini functions into multiple parts. Putting a stub in
2504 the middle of a function is not a good idea. */
2505
2506 static void
2507 group_sections (struct elf32_hppa_link_hash_table *htab,
2508 bfd_size_type stub_group_size,
2509 bfd_boolean stubs_always_before_branch)
2510 {
2511 asection **list = htab->input_list + htab->top_index;
2512 do
2513 {
2514 asection *tail = *list;
2515 if (tail == bfd_abs_section_ptr)
2516 continue;
2517 while (tail != NULL)
2518 {
2519 asection *curr;
2520 asection *prev;
2521 bfd_size_type total;
2522 bfd_boolean big_sec;
2523
2524 curr = tail;
2525 total = tail->size;
2526 big_sec = total >= stub_group_size;
2527
2528 while ((prev = PREV_SEC (curr)) != NULL
2529 && ((total += curr->output_offset - prev->output_offset)
2530 < stub_group_size))
2531 curr = prev;
2532
2533 /* OK, the size from the start of CURR to the end is less
2534 than 240000 bytes and thus can be handled by one stub
2535 section. (or the tail section is itself larger than
2536 240000 bytes, in which case we may be toast.)
2537 We should really be keeping track of the total size of
2538 stubs added here, as stubs contribute to the final output
2539 section size. That's a little tricky, and this way will
2540 only break if stubs added total more than 22144 bytes, or
2541 2768 long branch stubs. It seems unlikely for more than
2542 2768 different functions to be called, especially from
2543 code only 240000 bytes long. This limit used to be
2544 250000, but c++ code tends to generate lots of little
2545 functions, and sometimes violated the assumption. */
2546 do
2547 {
2548 prev = PREV_SEC (tail);
2549 /* Set up this stub group. */
2550 htab->stub_group[tail->id].link_sec = curr;
2551 }
2552 while (tail != curr && (tail = prev) != NULL);
2553
2554 /* But wait, there's more! Input sections up to 240000
2555 bytes before the stub section can be handled by it too.
2556 Don't do this if we have a really large section after the
2557 stubs, as adding more stubs increases the chance that
2558 branches may not reach into the stub section. */
2559 if (!stubs_always_before_branch && !big_sec)
2560 {
2561 total = 0;
2562 while (prev != NULL
2563 && ((total += tail->output_offset - prev->output_offset)
2564 < stub_group_size))
2565 {
2566 tail = prev;
2567 prev = PREV_SEC (tail);
2568 htab->stub_group[tail->id].link_sec = curr;
2569 }
2570 }
2571 tail = prev;
2572 }
2573 }
2574 while (list-- != htab->input_list);
2575 free (htab->input_list);
2576 #undef PREV_SEC
2577 }
2578
2579 /* Read in all local syms for all input bfds, and create hash entries
2580 for export stubs if we are building a multi-subspace shared lib.
2581 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2582
2583 static int
2584 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2585 {
2586 unsigned int bfd_indx;
2587 Elf_Internal_Sym *local_syms, **all_local_syms;
2588 int stub_changed = 0;
2589 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2590
2591 /* We want to read in symbol extension records only once. To do this
2592 we need to read in the local symbols in parallel and save them for
2593 later use; so hold pointers to the local symbols in an array. */
2594 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2595 all_local_syms = bfd_zmalloc (amt);
2596 htab->all_local_syms = all_local_syms;
2597 if (all_local_syms == NULL)
2598 return -1;
2599
2600 /* Walk over all the input BFDs, swapping in local symbols.
2601 If we are creating a shared library, create hash entries for the
2602 export stubs. */
2603 for (bfd_indx = 0;
2604 input_bfd != NULL;
2605 input_bfd = input_bfd->link_next, bfd_indx++)
2606 {
2607 Elf_Internal_Shdr *symtab_hdr;
2608
2609 /* We'll need the symbol table in a second. */
2610 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2611 if (symtab_hdr->sh_info == 0)
2612 continue;
2613
2614 /* We need an array of the local symbols attached to the input bfd. */
2615 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2616 if (local_syms == NULL)
2617 {
2618 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2619 symtab_hdr->sh_info, 0,
2620 NULL, NULL, NULL);
2621 /* Cache them for elf_link_input_bfd. */
2622 symtab_hdr->contents = (unsigned char *) local_syms;
2623 }
2624 if (local_syms == NULL)
2625 return -1;
2626
2627 all_local_syms[bfd_indx] = local_syms;
2628
2629 if (info->shared && htab->multi_subspace)
2630 {
2631 struct elf_link_hash_entry **eh_syms;
2632 struct elf_link_hash_entry **eh_symend;
2633 unsigned int symcount;
2634
2635 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2636 - symtab_hdr->sh_info);
2637 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2638 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2639
2640 /* Look through the global syms for functions; We need to
2641 build export stubs for all globally visible functions. */
2642 for (; eh_syms < eh_symend; eh_syms++)
2643 {
2644 struct elf32_hppa_link_hash_entry *hh;
2645
2646 hh = hppa_elf_hash_entry (*eh_syms);
2647
2648 while (hh->eh.root.type == bfd_link_hash_indirect
2649 || hh->eh.root.type == bfd_link_hash_warning)
2650 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2651
2652 /* At this point in the link, undefined syms have been
2653 resolved, so we need to check that the symbol was
2654 defined in this BFD. */
2655 if ((hh->eh.root.type == bfd_link_hash_defined
2656 || hh->eh.root.type == bfd_link_hash_defweak)
2657 && hh->eh.type == STT_FUNC
2658 && hh->eh.root.u.def.section->output_section != NULL
2659 && (hh->eh.root.u.def.section->output_section->owner
2660 == output_bfd)
2661 && hh->eh.root.u.def.section->owner == input_bfd
2662 && hh->eh.def_regular
2663 && !hh->eh.forced_local
2664 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2665 {
2666 asection *sec;
2667 const char *stub_name;
2668 struct elf32_hppa_stub_hash_entry *hsh;
2669
2670 sec = hh->eh.root.u.def.section;
2671 stub_name = hh->eh.root.root.string;
2672 hsh = hppa_stub_hash_lookup (&htab->bstab,
2673 stub_name,
2674 FALSE, FALSE);
2675 if (hsh == NULL)
2676 {
2677 hsh = hppa_add_stub (stub_name, sec, htab);
2678 if (!hsh)
2679 return -1;
2680
2681 hsh->target_value = hh->eh.root.u.def.value;
2682 hsh->target_section = hh->eh.root.u.def.section;
2683 hsh->stub_type = hppa_stub_export;
2684 hsh->hh = hh;
2685 stub_changed = 1;
2686 }
2687 else
2688 {
2689 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2690 input_bfd,
2691 stub_name);
2692 }
2693 }
2694 }
2695 }
2696 }
2697
2698 return stub_changed;
2699 }
2700
2701 /* Determine and set the size of the stub section for a final link.
2702
2703 The basic idea here is to examine all the relocations looking for
2704 PC-relative calls to a target that is unreachable with a "bl"
2705 instruction. */
2706
2707 bfd_boolean
2708 elf32_hppa_size_stubs
2709 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2710 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2711 asection * (*add_stub_section) (const char *, asection *),
2712 void (*layout_sections_again) (void))
2713 {
2714 bfd_size_type stub_group_size;
2715 bfd_boolean stubs_always_before_branch;
2716 bfd_boolean stub_changed;
2717 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2718
2719 /* Stash our params away. */
2720 htab->stub_bfd = stub_bfd;
2721 htab->multi_subspace = multi_subspace;
2722 htab->add_stub_section = add_stub_section;
2723 htab->layout_sections_again = layout_sections_again;
2724 stubs_always_before_branch = group_size < 0;
2725 if (group_size < 0)
2726 stub_group_size = -group_size;
2727 else
2728 stub_group_size = group_size;
2729 if (stub_group_size == 1)
2730 {
2731 /* Default values. */
2732 if (stubs_always_before_branch)
2733 {
2734 stub_group_size = 7680000;
2735 if (htab->has_17bit_branch || htab->multi_subspace)
2736 stub_group_size = 240000;
2737 if (htab->has_12bit_branch)
2738 stub_group_size = 7500;
2739 }
2740 else
2741 {
2742 stub_group_size = 6971392;
2743 if (htab->has_17bit_branch || htab->multi_subspace)
2744 stub_group_size = 217856;
2745 if (htab->has_12bit_branch)
2746 stub_group_size = 6808;
2747 }
2748 }
2749
2750 group_sections (htab, stub_group_size, stubs_always_before_branch);
2751
2752 switch (get_local_syms (output_bfd, info->input_bfds, info))
2753 {
2754 default:
2755 if (htab->all_local_syms)
2756 goto error_ret_free_local;
2757 return FALSE;
2758
2759 case 0:
2760 stub_changed = FALSE;
2761 break;
2762
2763 case 1:
2764 stub_changed = TRUE;
2765 break;
2766 }
2767
2768 while (1)
2769 {
2770 bfd *input_bfd;
2771 unsigned int bfd_indx;
2772 asection *stub_sec;
2773
2774 for (input_bfd = info->input_bfds, bfd_indx = 0;
2775 input_bfd != NULL;
2776 input_bfd = input_bfd->link_next, bfd_indx++)
2777 {
2778 Elf_Internal_Shdr *symtab_hdr;
2779 asection *section;
2780 Elf_Internal_Sym *local_syms;
2781
2782 /* We'll need the symbol table in a second. */
2783 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2784 if (symtab_hdr->sh_info == 0)
2785 continue;
2786
2787 local_syms = htab->all_local_syms[bfd_indx];
2788
2789 /* Walk over each section attached to the input bfd. */
2790 for (section = input_bfd->sections;
2791 section != NULL;
2792 section = section->next)
2793 {
2794 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2795
2796 /* If there aren't any relocs, then there's nothing more
2797 to do. */
2798 if ((section->flags & SEC_RELOC) == 0
2799 || section->reloc_count == 0)
2800 continue;
2801
2802 /* If this section is a link-once section that will be
2803 discarded, then don't create any stubs. */
2804 if (section->output_section == NULL
2805 || section->output_section->owner != output_bfd)
2806 continue;
2807
2808 /* Get the relocs. */
2809 internal_relocs
2810 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2811 info->keep_memory);
2812 if (internal_relocs == NULL)
2813 goto error_ret_free_local;
2814
2815 /* Now examine each relocation. */
2816 irela = internal_relocs;
2817 irelaend = irela + section->reloc_count;
2818 for (; irela < irelaend; irela++)
2819 {
2820 unsigned int r_type, r_indx;
2821 enum elf32_hppa_stub_type stub_type;
2822 struct elf32_hppa_stub_hash_entry *hsh;
2823 asection *sym_sec;
2824 bfd_vma sym_value;
2825 bfd_vma destination;
2826 struct elf32_hppa_link_hash_entry *hh;
2827 char *stub_name;
2828 const asection *id_sec;
2829
2830 r_type = ELF32_R_TYPE (irela->r_info);
2831 r_indx = ELF32_R_SYM (irela->r_info);
2832
2833 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2834 {
2835 bfd_set_error (bfd_error_bad_value);
2836 error_ret_free_internal:
2837 if (elf_section_data (section)->relocs == NULL)
2838 free (internal_relocs);
2839 goto error_ret_free_local;
2840 }
2841
2842 /* Only look for stubs on call instructions. */
2843 if (r_type != (unsigned int) R_PARISC_PCREL12F
2844 && r_type != (unsigned int) R_PARISC_PCREL17F
2845 && r_type != (unsigned int) R_PARISC_PCREL22F)
2846 continue;
2847
2848 /* Now determine the call target, its name, value,
2849 section. */
2850 sym_sec = NULL;
2851 sym_value = 0;
2852 destination = 0;
2853 hh = NULL;
2854 if (r_indx < symtab_hdr->sh_info)
2855 {
2856 /* It's a local symbol. */
2857 Elf_Internal_Sym *sym;
2858 Elf_Internal_Shdr *hdr;
2859
2860 sym = local_syms + r_indx;
2861 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2862 sym_sec = hdr->bfd_section;
2863 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2864 sym_value = sym->st_value;
2865 destination = (sym_value + irela->r_addend
2866 + sym_sec->output_offset
2867 + sym_sec->output_section->vma);
2868 }
2869 else
2870 {
2871 /* It's an external symbol. */
2872 int e_indx;
2873
2874 e_indx = r_indx - symtab_hdr->sh_info;
2875 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2876
2877 while (hh->eh.root.type == bfd_link_hash_indirect
2878 || hh->eh.root.type == bfd_link_hash_warning)
2879 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2880
2881 if (hh->eh.root.type == bfd_link_hash_defined
2882 || hh->eh.root.type == bfd_link_hash_defweak)
2883 {
2884 sym_sec = hh->eh.root.u.def.section;
2885 sym_value = hh->eh.root.u.def.value;
2886 if (sym_sec->output_section != NULL)
2887 destination = (sym_value + irela->r_addend
2888 + sym_sec->output_offset
2889 + sym_sec->output_section->vma);
2890 }
2891 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2892 {
2893 if (! info->shared)
2894 continue;
2895 }
2896 else if (hh->eh.root.type == bfd_link_hash_undefined)
2897 {
2898 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2899 && (ELF_ST_VISIBILITY (hh->eh.other)
2900 == STV_DEFAULT)
2901 && hh->eh.type != STT_PARISC_MILLI))
2902 continue;
2903 }
2904 else
2905 {
2906 bfd_set_error (bfd_error_bad_value);
2907 goto error_ret_free_internal;
2908 }
2909 }
2910
2911 /* Determine what (if any) linker stub is needed. */
2912 stub_type = hppa_type_of_stub (section, irela, hh,
2913 destination, info);
2914 if (stub_type == hppa_stub_none)
2915 continue;
2916
2917 /* Support for grouping stub sections. */
2918 id_sec = htab->stub_group[section->id].link_sec;
2919
2920 /* Get the name of this stub. */
2921 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2922 if (!stub_name)
2923 goto error_ret_free_internal;
2924
2925 hsh = hppa_stub_hash_lookup (&htab->bstab,
2926 stub_name,
2927 FALSE, FALSE);
2928 if (hsh != NULL)
2929 {
2930 /* The proper stub has already been created. */
2931 free (stub_name);
2932 continue;
2933 }
2934
2935 hsh = hppa_add_stub (stub_name, section, htab);
2936 if (hsh == NULL)
2937 {
2938 free (stub_name);
2939 goto error_ret_free_internal;
2940 }
2941
2942 hsh->target_value = sym_value;
2943 hsh->target_section = sym_sec;
2944 hsh->stub_type = stub_type;
2945 if (info->shared)
2946 {
2947 if (stub_type == hppa_stub_import)
2948 hsh->stub_type = hppa_stub_import_shared;
2949 else if (stub_type == hppa_stub_long_branch)
2950 hsh->stub_type = hppa_stub_long_branch_shared;
2951 }
2952 hsh->hh = hh;
2953 stub_changed = TRUE;
2954 }
2955
2956 /* We're done with the internal relocs, free them. */
2957 if (elf_section_data (section)->relocs == NULL)
2958 free (internal_relocs);
2959 }
2960 }
2961
2962 if (!stub_changed)
2963 break;
2964
2965 /* OK, we've added some stubs. Find out the new size of the
2966 stub sections. */
2967 for (stub_sec = htab->stub_bfd->sections;
2968 stub_sec != NULL;
2969 stub_sec = stub_sec->next)
2970 stub_sec->size = 0;
2971
2972 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2973
2974 /* Ask the linker to do its stuff. */
2975 (*htab->layout_sections_again) ();
2976 stub_changed = FALSE;
2977 }
2978
2979 free (htab->all_local_syms);
2980 return TRUE;
2981
2982 error_ret_free_local:
2983 free (htab->all_local_syms);
2984 return FALSE;
2985 }
2986
2987 /* For a final link, this function is called after we have sized the
2988 stubs to provide a value for __gp. */
2989
2990 bfd_boolean
2991 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2992 {
2993 struct bfd_link_hash_entry *h;
2994 asection *sec = NULL;
2995 bfd_vma gp_val = 0;
2996 struct elf32_hppa_link_hash_table *htab;
2997
2998 htab = hppa_link_hash_table (info);
2999 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3000
3001 if (h != NULL
3002 && (h->type == bfd_link_hash_defined
3003 || h->type == bfd_link_hash_defweak))
3004 {
3005 gp_val = h->u.def.value;
3006 sec = h->u.def.section;
3007 }
3008 else
3009 {
3010 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3011 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3012
3013 /* Choose to point our LTP at, in this order, one of .plt, .got,
3014 or .data, if these sections exist. In the case of choosing
3015 .plt try to make the LTP ideal for addressing anywhere in the
3016 .plt or .got with a 14 bit signed offset. Typically, the end
3017 of the .plt is the start of the .got, so choose .plt + 0x2000
3018 if either the .plt or .got is larger than 0x2000. If both
3019 the .plt and .got are smaller than 0x2000, choose the end of
3020 the .plt section. */
3021 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3022 ? NULL : splt;
3023 if (sec != NULL)
3024 {
3025 gp_val = sec->size;
3026 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3027 {
3028 gp_val = 0x2000;
3029 }
3030 }
3031 else
3032 {
3033 sec = sgot;
3034 if (sec != NULL)
3035 {
3036 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3037 {
3038 /* We know we don't have a .plt. If .got is large,
3039 offset our LTP. */
3040 if (sec->size > 0x2000)
3041 gp_val = 0x2000;
3042 }
3043 }
3044 else
3045 {
3046 /* No .plt or .got. Who cares what the LTP is? */
3047 sec = bfd_get_section_by_name (abfd, ".data");
3048 }
3049 }
3050
3051 if (h != NULL)
3052 {
3053 h->type = bfd_link_hash_defined;
3054 h->u.def.value = gp_val;
3055 if (sec != NULL)
3056 h->u.def.section = sec;
3057 else
3058 h->u.def.section = bfd_abs_section_ptr;
3059 }
3060 }
3061
3062 if (sec != NULL && sec->output_section != NULL)
3063 gp_val += sec->output_section->vma + sec->output_offset;
3064
3065 elf_gp (abfd) = gp_val;
3066 return TRUE;
3067 }
3068
3069 /* Build all the stubs associated with the current output file. The
3070 stubs are kept in a hash table attached to the main linker hash
3071 table. We also set up the .plt entries for statically linked PIC
3072 functions here. This function is called via hppaelf_finish in the
3073 linker. */
3074
3075 bfd_boolean
3076 elf32_hppa_build_stubs (struct bfd_link_info *info)
3077 {
3078 asection *stub_sec;
3079 struct bfd_hash_table *table;
3080 struct elf32_hppa_link_hash_table *htab;
3081
3082 htab = hppa_link_hash_table (info);
3083
3084 for (stub_sec = htab->stub_bfd->sections;
3085 stub_sec != NULL;
3086 stub_sec = stub_sec->next)
3087 {
3088 bfd_size_type size;
3089
3090 /* Allocate memory to hold the linker stubs. */
3091 size = stub_sec->size;
3092 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3093 if (stub_sec->contents == NULL && size != 0)
3094 return FALSE;
3095 stub_sec->size = 0;
3096 }
3097
3098 /* Build the stubs as directed by the stub hash table. */
3099 table = &htab->bstab;
3100 bfd_hash_traverse (table, hppa_build_one_stub, info);
3101
3102 return TRUE;
3103 }
3104
3105 /* Perform a final link. */
3106
3107 static bfd_boolean
3108 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3109 {
3110 /* Invoke the regular ELF linker to do all the work. */
3111 if (!bfd_elf_final_link (abfd, info))
3112 return FALSE;
3113
3114 /* If we're producing a final executable, sort the contents of the
3115 unwind section. */
3116 return elf_hppa_sort_unwind (abfd);
3117 }
3118
3119 /* Record the lowest address for the data and text segments. */
3120
3121 static void
3122 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3123 asection *section,
3124 void *data)
3125 {
3126 struct elf32_hppa_link_hash_table *htab;
3127
3128 htab = (struct elf32_hppa_link_hash_table*) data;
3129
3130 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3131 {
3132 bfd_vma value = section->vma - section->filepos;
3133
3134 if ((section->flags & SEC_READONLY) != 0)
3135 {
3136 if (value < htab->text_segment_base)
3137 htab->text_segment_base = value;
3138 }
3139 else
3140 {
3141 if (value < htab->data_segment_base)
3142 htab->data_segment_base = value;
3143 }
3144 }
3145 }
3146
3147 /* Perform a relocation as part of a final link. */
3148
3149 static bfd_reloc_status_type
3150 final_link_relocate (asection *input_section,
3151 bfd_byte *contents,
3152 const Elf_Internal_Rela *rela,
3153 bfd_vma value,
3154 struct elf32_hppa_link_hash_table *htab,
3155 asection *sym_sec,
3156 struct elf32_hppa_link_hash_entry *hh,
3157 struct bfd_link_info *info)
3158 {
3159 int insn;
3160 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3161 unsigned int orig_r_type = r_type;
3162 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3163 int r_format = howto->bitsize;
3164 enum hppa_reloc_field_selector_type_alt r_field;
3165 bfd *input_bfd = input_section->owner;
3166 bfd_vma offset = rela->r_offset;
3167 bfd_vma max_branch_offset = 0;
3168 bfd_byte *hit_data = contents + offset;
3169 bfd_signed_vma addend = rela->r_addend;
3170 bfd_vma location;
3171 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3172 int val;
3173
3174 if (r_type == R_PARISC_NONE)
3175 return bfd_reloc_ok;
3176
3177 insn = bfd_get_32 (input_bfd, hit_data);
3178
3179 /* Find out where we are and where we're going. */
3180 location = (offset +
3181 input_section->output_offset +
3182 input_section->output_section->vma);
3183
3184 /* If we are not building a shared library, convert DLTIND relocs to
3185 DPREL relocs. */
3186 if (!info->shared)
3187 {
3188 switch (r_type)
3189 {
3190 case R_PARISC_DLTIND21L:
3191 r_type = R_PARISC_DPREL21L;
3192 break;
3193
3194 case R_PARISC_DLTIND14R:
3195 r_type = R_PARISC_DPREL14R;
3196 break;
3197
3198 case R_PARISC_DLTIND14F:
3199 r_type = R_PARISC_DPREL14F;
3200 break;
3201 }
3202 }
3203
3204 switch (r_type)
3205 {
3206 case R_PARISC_PCREL12F:
3207 case R_PARISC_PCREL17F:
3208 case R_PARISC_PCREL22F:
3209 /* If this call should go via the plt, find the import stub in
3210 the stub hash. */
3211 if (sym_sec == NULL
3212 || sym_sec->output_section == NULL
3213 || (hh != NULL
3214 && hh->eh.plt.offset != (bfd_vma) -1
3215 && hh->eh.dynindx != -1
3216 && !hh->plabel
3217 && (info->shared
3218 || !hh->eh.def_regular
3219 || hh->eh.root.type == bfd_link_hash_defweak)))
3220 {
3221 hsh = hppa_get_stub_entry (input_section, sym_sec,
3222 hh, rela, htab);
3223 if (hsh != NULL)
3224 {
3225 value = (hsh->stub_offset
3226 + hsh->stub_sec->output_offset
3227 + hsh->stub_sec->output_section->vma);
3228 addend = 0;
3229 }
3230 else if (sym_sec == NULL && hh != NULL
3231 && hh->eh.root.type == bfd_link_hash_undefweak)
3232 {
3233 /* It's OK if undefined weak. Calls to undefined weak
3234 symbols behave as if the "called" function
3235 immediately returns. We can thus call to a weak
3236 function without first checking whether the function
3237 is defined. */
3238 value = location;
3239 addend = 8;
3240 }
3241 else
3242 return bfd_reloc_undefined;
3243 }
3244 /* Fall thru. */
3245
3246 case R_PARISC_PCREL21L:
3247 case R_PARISC_PCREL17C:
3248 case R_PARISC_PCREL17R:
3249 case R_PARISC_PCREL14R:
3250 case R_PARISC_PCREL14F:
3251 case R_PARISC_PCREL32:
3252 /* Make it a pc relative offset. */
3253 value -= location;
3254 addend -= 8;
3255 break;
3256
3257 case R_PARISC_DPREL21L:
3258 case R_PARISC_DPREL14R:
3259 case R_PARISC_DPREL14F:
3260 /* Convert instructions that use the linkage table pointer (r19) to
3261 instructions that use the global data pointer (dp). This is the
3262 most efficient way of using PIC code in an incomplete executable,
3263 but the user must follow the standard runtime conventions for
3264 accessing data for this to work. */
3265 if (orig_r_type == R_PARISC_DLTIND21L)
3266 {
3267 /* Convert addil instructions if the original reloc was a
3268 DLTIND21L. GCC sometimes uses a register other than r19 for
3269 the operation, so we must convert any addil instruction
3270 that uses this relocation. */
3271 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3272 insn = ADDIL_DP;
3273 else
3274 /* We must have a ldil instruction. It's too hard to find
3275 and convert the associated add instruction, so issue an
3276 error. */
3277 (*_bfd_error_handler)
3278 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3279 input_bfd,
3280 input_section,
3281 offset,
3282 howto->name,
3283 insn);
3284 }
3285 else if (orig_r_type == R_PARISC_DLTIND14F)
3286 {
3287 /* This must be a format 1 load/store. Change the base
3288 register to dp. */
3289 insn = (insn & 0xfc1ffff) | (27 << 21);
3290 }
3291
3292 /* For all the DP relative relocations, we need to examine the symbol's
3293 section. If it has no section or if it's a code section, then
3294 "data pointer relative" makes no sense. In that case we don't
3295 adjust the "value", and for 21 bit addil instructions, we change the
3296 source addend register from %dp to %r0. This situation commonly
3297 arises for undefined weak symbols and when a variable's "constness"
3298 is declared differently from the way the variable is defined. For
3299 instance: "extern int foo" with foo defined as "const int foo". */
3300 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3301 {
3302 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3303 == (((int) OP_ADDIL << 26) | (27 << 21)))
3304 {
3305 insn &= ~ (0x1f << 21);
3306 }
3307 /* Now try to make things easy for the dynamic linker. */
3308
3309 break;
3310 }
3311 /* Fall thru. */
3312
3313 case R_PARISC_DLTIND21L:
3314 case R_PARISC_DLTIND14R:
3315 case R_PARISC_DLTIND14F:
3316 value -= elf_gp (input_section->output_section->owner);
3317 break;
3318
3319 case R_PARISC_SEGREL32:
3320 if ((sym_sec->flags & SEC_CODE) != 0)
3321 value -= htab->text_segment_base;
3322 else
3323 value -= htab->data_segment_base;
3324 break;
3325
3326 default:
3327 break;
3328 }
3329
3330 switch (r_type)
3331 {
3332 case R_PARISC_DIR32:
3333 case R_PARISC_DIR14F:
3334 case R_PARISC_DIR17F:
3335 case R_PARISC_PCREL17C:
3336 case R_PARISC_PCREL14F:
3337 case R_PARISC_PCREL32:
3338 case R_PARISC_DPREL14F:
3339 case R_PARISC_PLABEL32:
3340 case R_PARISC_DLTIND14F:
3341 case R_PARISC_SEGBASE:
3342 case R_PARISC_SEGREL32:
3343 r_field = e_fsel;
3344 break;
3345
3346 case R_PARISC_DLTIND21L:
3347 case R_PARISC_PCREL21L:
3348 case R_PARISC_PLABEL21L:
3349 r_field = e_lsel;
3350 break;
3351
3352 case R_PARISC_DIR21L:
3353 case R_PARISC_DPREL21L:
3354 r_field = e_lrsel;
3355 break;
3356
3357 case R_PARISC_PCREL17R:
3358 case R_PARISC_PCREL14R:
3359 case R_PARISC_PLABEL14R:
3360 case R_PARISC_DLTIND14R:
3361 r_field = e_rsel;
3362 break;
3363
3364 case R_PARISC_DIR17R:
3365 case R_PARISC_DIR14R:
3366 case R_PARISC_DPREL14R:
3367 r_field = e_rrsel;
3368 break;
3369
3370 case R_PARISC_PCREL12F:
3371 case R_PARISC_PCREL17F:
3372 case R_PARISC_PCREL22F:
3373 r_field = e_fsel;
3374
3375 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3376 {
3377 max_branch_offset = (1 << (17-1)) << 2;
3378 }
3379 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3380 {
3381 max_branch_offset = (1 << (12-1)) << 2;
3382 }
3383 else
3384 {
3385 max_branch_offset = (1 << (22-1)) << 2;
3386 }
3387
3388 /* sym_sec is NULL on undefined weak syms or when shared on
3389 undefined syms. We've already checked for a stub for the
3390 shared undefined case. */
3391 if (sym_sec == NULL)
3392 break;
3393
3394 /* If the branch is out of reach, then redirect the
3395 call to the local stub for this function. */
3396 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3397 {
3398 hsh = hppa_get_stub_entry (input_section, sym_sec,
3399 hh, rela, htab);
3400 if (hsh == NULL)
3401 return bfd_reloc_undefined;
3402
3403 /* Munge up the value and addend so that we call the stub
3404 rather than the procedure directly. */
3405 value = (hsh->stub_offset
3406 + hsh->stub_sec->output_offset
3407 + hsh->stub_sec->output_section->vma
3408 - location);
3409 addend = -8;
3410 }
3411 break;
3412
3413 /* Something we don't know how to handle. */
3414 default:
3415 return bfd_reloc_notsupported;
3416 }
3417
3418 /* Make sure we can reach the stub. */
3419 if (max_branch_offset != 0
3420 && value + addend + max_branch_offset >= 2*max_branch_offset)
3421 {
3422 (*_bfd_error_handler)
3423 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3424 input_bfd,
3425 input_section,
3426 offset,
3427 hsh->bh_root.string);
3428 bfd_set_error (bfd_error_bad_value);
3429 return bfd_reloc_notsupported;
3430 }
3431
3432 val = hppa_field_adjust (value, addend, r_field);
3433
3434 switch (r_type)
3435 {
3436 case R_PARISC_PCREL12F:
3437 case R_PARISC_PCREL17C:
3438 case R_PARISC_PCREL17F:
3439 case R_PARISC_PCREL17R:
3440 case R_PARISC_PCREL22F:
3441 case R_PARISC_DIR17F:
3442 case R_PARISC_DIR17R:
3443 /* This is a branch. Divide the offset by four.
3444 Note that we need to decide whether it's a branch or
3445 otherwise by inspecting the reloc. Inspecting insn won't
3446 work as insn might be from a .word directive. */
3447 val >>= 2;
3448 break;
3449
3450 default:
3451 break;
3452 }
3453
3454 insn = hppa_rebuild_insn (insn, val, r_format);
3455
3456 /* Update the instruction word. */
3457 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3458 return bfd_reloc_ok;
3459 }
3460
3461 /* Relocate an HPPA ELF section. */
3462
3463 static bfd_boolean
3464 elf32_hppa_relocate_section (bfd *output_bfd,
3465 struct bfd_link_info *info,
3466 bfd *input_bfd,
3467 asection *input_section,
3468 bfd_byte *contents,
3469 Elf_Internal_Rela *relocs,
3470 Elf_Internal_Sym *local_syms,
3471 asection **local_sections)
3472 {
3473 bfd_vma *local_got_offsets;
3474 struct elf32_hppa_link_hash_table *htab;
3475 Elf_Internal_Shdr *symtab_hdr;
3476 Elf_Internal_Rela *rela;
3477 Elf_Internal_Rela *relend;
3478
3479 if (info->relocatable)
3480 return TRUE;
3481
3482 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3483
3484 htab = hppa_link_hash_table (info);
3485 local_got_offsets = elf_local_got_offsets (input_bfd);
3486
3487 rela = relocs;
3488 relend = relocs + input_section->reloc_count;
3489 for (; rela < relend; rela++)
3490 {
3491 unsigned int r_type;
3492 reloc_howto_type *howto;
3493 unsigned int r_symndx;
3494 struct elf32_hppa_link_hash_entry *hh;
3495 Elf_Internal_Sym *sym;
3496 asection *sym_sec;
3497 bfd_vma relocation;
3498 bfd_reloc_status_type rstatus;
3499 const char *sym_name;
3500 bfd_boolean plabel;
3501 bfd_boolean warned_undef;
3502
3503 r_type = ELF32_R_TYPE (rela->r_info);
3504 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3505 {
3506 bfd_set_error (bfd_error_bad_value);
3507 return FALSE;
3508 }
3509 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3510 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3511 continue;
3512
3513 /* This is a final link. */
3514 r_symndx = ELF32_R_SYM (rela->r_info);
3515 hh = NULL;
3516 sym = NULL;
3517 sym_sec = NULL;
3518 warned_undef = FALSE;
3519 if (r_symndx < symtab_hdr->sh_info)
3520 {
3521 /* This is a local symbol, h defaults to NULL. */
3522 sym = local_syms + r_symndx;
3523 sym_sec = local_sections[r_symndx];
3524 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3525 }
3526 else
3527 {
3528 struct elf_link_hash_entry *eh;
3529 bfd_boolean unresolved_reloc;
3530 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3531
3532 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3533 r_symndx, symtab_hdr, sym_hashes,
3534 eh, sym_sec, relocation,
3535 unresolved_reloc, warned_undef);
3536
3537 if (relocation == 0
3538 && eh->root.type != bfd_link_hash_defined
3539 && eh->root.type != bfd_link_hash_defweak
3540 && eh->root.type != bfd_link_hash_undefweak)
3541 {
3542 if (info->unresolved_syms_in_objects == RM_IGNORE
3543 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3544 && eh->type == STT_PARISC_MILLI)
3545 {
3546 if (! info->callbacks->undefined_symbol
3547 (info, eh->root.root.string, input_bfd,
3548 input_section, rela->r_offset, FALSE))
3549 return FALSE;
3550 warned_undef = TRUE;
3551 }
3552 }
3553 hh = hppa_elf_hash_entry (eh);
3554 }
3555
3556 /* Do any required modifications to the relocation value, and
3557 determine what types of dynamic info we need to output, if
3558 any. */
3559 plabel = 0;
3560 switch (r_type)
3561 {
3562 case R_PARISC_DLTIND14F:
3563 case R_PARISC_DLTIND14R:
3564 case R_PARISC_DLTIND21L:
3565 {
3566 bfd_vma off;
3567 bfd_boolean do_got = 0;
3568
3569 /* Relocation is to the entry for this symbol in the
3570 global offset table. */
3571 if (hh != NULL)
3572 {
3573 bfd_boolean dyn;
3574
3575 off = hh->eh.got.offset;
3576 dyn = htab->etab.dynamic_sections_created;
3577 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3578 &hh->eh))
3579 {
3580 /* If we aren't going to call finish_dynamic_symbol,
3581 then we need to handle initialisation of the .got
3582 entry and create needed relocs here. Since the
3583 offset must always be a multiple of 4, we use the
3584 least significant bit to record whether we have
3585 initialised it already. */
3586 if ((off & 1) != 0)
3587 off &= ~1;
3588 else
3589 {
3590 hh->eh.got.offset |= 1;
3591 do_got = 1;
3592 }
3593 }
3594 }
3595 else
3596 {
3597 /* Local symbol case. */
3598 if (local_got_offsets == NULL)
3599 abort ();
3600
3601 off = local_got_offsets[r_symndx];
3602
3603 /* The offset must always be a multiple of 4. We use
3604 the least significant bit to record whether we have
3605 already generated the necessary reloc. */
3606 if ((off & 1) != 0)
3607 off &= ~1;
3608 else
3609 {
3610 local_got_offsets[r_symndx] |= 1;
3611 do_got = 1;
3612 }
3613 }
3614
3615 if (do_got)
3616 {
3617 if (info->shared)
3618 {
3619 /* Output a dynamic relocation for this GOT entry.
3620 In this case it is relative to the base of the
3621 object because the symbol index is zero. */
3622 Elf_Internal_Rela outrel;
3623 bfd_byte *loc;
3624 asection *sec = htab->srelgot;
3625
3626 outrel.r_offset = (off
3627 + htab->sgot->output_offset
3628 + htab->sgot->output_section->vma);
3629 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3630 outrel.r_addend = relocation;
3631 loc = sec->contents;
3632 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3633 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3634 }
3635 else
3636 bfd_put_32 (output_bfd, relocation,
3637 htab->sgot->contents + off);
3638 }
3639
3640 if (off >= (bfd_vma) -2)
3641 abort ();
3642
3643 /* Add the base of the GOT to the relocation value. */
3644 relocation = (off
3645 + htab->sgot->output_offset
3646 + htab->sgot->output_section->vma);
3647 }
3648 break;
3649
3650 case R_PARISC_SEGREL32:
3651 /* If this is the first SEGREL relocation, then initialize
3652 the segment base values. */
3653 if (htab->text_segment_base == (bfd_vma) -1)
3654 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3655 break;
3656
3657 case R_PARISC_PLABEL14R:
3658 case R_PARISC_PLABEL21L:
3659 case R_PARISC_PLABEL32:
3660 if (htab->etab.dynamic_sections_created)
3661 {
3662 bfd_vma off;
3663 bfd_boolean do_plt = 0;
3664 /* If we have a global symbol with a PLT slot, then
3665 redirect this relocation to it. */
3666 if (hh != NULL)
3667 {
3668 off = hh->eh.plt.offset;
3669 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3670 &hh->eh))
3671 {
3672 /* In a non-shared link, adjust_dynamic_symbols
3673 isn't called for symbols forced local. We
3674 need to write out the plt entry here. */
3675 if ((off & 1) != 0)
3676 off &= ~1;
3677 else
3678 {
3679 hh->eh.plt.offset |= 1;
3680 do_plt = 1;
3681 }
3682 }
3683 }
3684 else
3685 {
3686 bfd_vma *local_plt_offsets;
3687
3688 if (local_got_offsets == NULL)
3689 abort ();
3690
3691 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3692 off = local_plt_offsets[r_symndx];
3693
3694 /* As for the local .got entry case, we use the last
3695 bit to record whether we've already initialised
3696 this local .plt entry. */
3697 if ((off & 1) != 0)
3698 off &= ~1;
3699 else
3700 {
3701 local_plt_offsets[r_symndx] |= 1;
3702 do_plt = 1;
3703 }
3704 }
3705
3706 if (do_plt)
3707 {
3708 if (info->shared)
3709 {
3710 /* Output a dynamic IPLT relocation for this
3711 PLT entry. */
3712 Elf_Internal_Rela outrel;
3713 bfd_byte *loc;
3714 asection *s = htab->srelplt;
3715
3716 outrel.r_offset = (off
3717 + htab->splt->output_offset
3718 + htab->splt->output_section->vma);
3719 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3720 outrel.r_addend = relocation;
3721 loc = s->contents;
3722 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3723 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3724 }
3725 else
3726 {
3727 bfd_put_32 (output_bfd,
3728 relocation,
3729 htab->splt->contents + off);
3730 bfd_put_32 (output_bfd,
3731 elf_gp (htab->splt->output_section->owner),
3732 htab->splt->contents + off + 4);
3733 }
3734 }
3735
3736 if (off >= (bfd_vma) -2)
3737 abort ();
3738
3739 /* PLABELs contain function pointers. Relocation is to
3740 the entry for the function in the .plt. The magic +2
3741 offset signals to $$dyncall that the function pointer
3742 is in the .plt and thus has a gp pointer too.
3743 Exception: Undefined PLABELs should have a value of
3744 zero. */
3745 if (hh == NULL
3746 || (hh->eh.root.type != bfd_link_hash_undefweak
3747 && hh->eh.root.type != bfd_link_hash_undefined))
3748 {
3749 relocation = (off
3750 + htab->splt->output_offset
3751 + htab->splt->output_section->vma
3752 + 2);
3753 }
3754 plabel = 1;
3755 }
3756 /* Fall through and possibly emit a dynamic relocation. */
3757
3758 case R_PARISC_DIR17F:
3759 case R_PARISC_DIR17R:
3760 case R_PARISC_DIR14F:
3761 case R_PARISC_DIR14R:
3762 case R_PARISC_DIR21L:
3763 case R_PARISC_DPREL14F:
3764 case R_PARISC_DPREL14R:
3765 case R_PARISC_DPREL21L:
3766 case R_PARISC_DIR32:
3767 /* r_symndx will be zero only for relocs against symbols
3768 from removed linkonce sections, or sections discarded by
3769 a linker script. */
3770 if (r_symndx == 0
3771 || (input_section->flags & SEC_ALLOC) == 0)
3772 break;
3773
3774 /* The reloc types handled here and this conditional
3775 expression must match the code in ..check_relocs and
3776 allocate_dynrelocs. ie. We need exactly the same condition
3777 as in ..check_relocs, with some extra conditions (dynindx
3778 test in this case) to cater for relocs removed by
3779 allocate_dynrelocs. If you squint, the non-shared test
3780 here does indeed match the one in ..check_relocs, the
3781 difference being that here we test DEF_DYNAMIC as well as
3782 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3783 which is why we can't use just that test here.
3784 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3785 there all files have not been loaded. */
3786 if ((info->shared
3787 && (hh == NULL
3788 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3789 || hh->eh.root.type != bfd_link_hash_undefweak)
3790 && (IS_ABSOLUTE_RELOC (r_type)
3791 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3792 || (!info->shared
3793 && hh != NULL
3794 && hh->eh.dynindx != -1
3795 && !hh->eh.non_got_ref
3796 && ((ELIMINATE_COPY_RELOCS
3797 && hh->eh.def_dynamic
3798 && !hh->eh.def_regular)
3799 || hh->eh.root.type == bfd_link_hash_undefweak
3800 || hh->eh.root.type == bfd_link_hash_undefined)))
3801 {
3802 Elf_Internal_Rela outrel;
3803 bfd_boolean skip;
3804 asection *sreloc;
3805 bfd_byte *loc;
3806
3807 /* When generating a shared object, these relocations
3808 are copied into the output file to be resolved at run
3809 time. */
3810
3811 outrel.r_addend = rela->r_addend;
3812 outrel.r_offset =
3813 _bfd_elf_section_offset (output_bfd, info, input_section,
3814 rela->r_offset);
3815 skip = (outrel.r_offset == (bfd_vma) -1
3816 || outrel.r_offset == (bfd_vma) -2);
3817 outrel.r_offset += (input_section->output_offset
3818 + input_section->output_section->vma);
3819
3820 if (skip)
3821 {
3822 memset (&outrel, 0, sizeof (outrel));
3823 }
3824 else if (hh != NULL
3825 && hh->eh.dynindx != -1
3826 && (plabel
3827 || !IS_ABSOLUTE_RELOC (r_type)
3828 || !info->shared
3829 || !info->symbolic
3830 || !hh->eh.def_regular))
3831 {
3832 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3833 }
3834 else /* It's a local symbol, or one marked to become local. */
3835 {
3836 int indx = 0;
3837
3838 /* Add the absolute offset of the symbol. */
3839 outrel.r_addend += relocation;
3840
3841 /* Global plabels need to be processed by the
3842 dynamic linker so that functions have at most one
3843 fptr. For this reason, we need to differentiate
3844 between global and local plabels, which we do by
3845 providing the function symbol for a global plabel
3846 reloc, and no symbol for local plabels. */
3847 if (! plabel
3848 && sym_sec != NULL
3849 && sym_sec->output_section != NULL
3850 && ! bfd_is_abs_section (sym_sec))
3851 {
3852 /* Skip this relocation if the output section has
3853 been discarded. */
3854 if (bfd_is_abs_section (sym_sec->output_section))
3855 break;
3856
3857 indx = elf_section_data (sym_sec->output_section)->dynindx;
3858 /* We are turning this relocation into one
3859 against a section symbol, so subtract out the
3860 output section's address but not the offset
3861 of the input section in the output section. */
3862 outrel.r_addend -= sym_sec->output_section->vma;
3863 }
3864
3865 outrel.r_info = ELF32_R_INFO (indx, r_type);
3866 }
3867 sreloc = elf_section_data (input_section)->sreloc;
3868 if (sreloc == NULL)
3869 abort ();
3870
3871 loc = sreloc->contents;
3872 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3873 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3874 }
3875 break;
3876
3877 default:
3878 break;
3879 }
3880
3881 rstatus = final_link_relocate (input_section, contents, rela, relocation,
3882 htab, sym_sec, hh, info);
3883
3884 if (rstatus == bfd_reloc_ok)
3885 continue;
3886
3887 if (hh != NULL)
3888 sym_name = hh->eh.root.root.string;
3889 else
3890 {
3891 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3892 symtab_hdr->sh_link,
3893 sym->st_name);
3894 if (sym_name == NULL)
3895 return FALSE;
3896 if (*sym_name == '\0')
3897 sym_name = bfd_section_name (input_bfd, sym_sec);
3898 }
3899
3900 howto = elf_hppa_howto_table + r_type;
3901
3902 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
3903 {
3904 if (rstatus == bfd_reloc_notsupported || !warned_undef)
3905 {
3906 (*_bfd_error_handler)
3907 (_("%B(%A+0x%lx): cannot handle %s for %s"),
3908 input_bfd,
3909 input_section,
3910 (long) rela->r_offset,
3911 howto->name,
3912 sym_name);
3913 bfd_set_error (bfd_error_bad_value);
3914 return FALSE;
3915 }
3916 }
3917 else
3918 {
3919 if (!((*info->callbacks->reloc_overflow)
3920 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
3921 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
3922 return FALSE;
3923 }
3924 }
3925
3926 return TRUE;
3927 }
3928
3929 /* Finish up dynamic symbol handling. We set the contents of various
3930 dynamic sections here. */
3931
3932 static bfd_boolean
3933 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3934 struct bfd_link_info *info,
3935 struct elf_link_hash_entry *eh,
3936 Elf_Internal_Sym *sym)
3937 {
3938 struct elf32_hppa_link_hash_table *htab;
3939 Elf_Internal_Rela rela;
3940 bfd_byte *loc;
3941
3942 htab = hppa_link_hash_table (info);
3943
3944 if (eh->plt.offset != (bfd_vma) -1)
3945 {
3946 bfd_vma value;
3947
3948 if (eh->plt.offset & 1)
3949 abort ();
3950
3951 /* This symbol has an entry in the procedure linkage table. Set
3952 it up.
3953
3954 The format of a plt entry is
3955 <funcaddr>
3956 <__gp>
3957 */
3958 value = 0;
3959 if (eh->root.type == bfd_link_hash_defined
3960 || eh->root.type == bfd_link_hash_defweak)
3961 {
3962 value = eh->root.u.def.value;
3963 if (eh->root.u.def.section->output_section != NULL)
3964 value += (eh->root.u.def.section->output_offset
3965 + eh->root.u.def.section->output_section->vma);
3966 }
3967
3968 /* Create a dynamic IPLT relocation for this entry. */
3969 rela.r_offset = (eh->plt.offset
3970 + htab->splt->output_offset
3971 + htab->splt->output_section->vma);
3972 if (eh->dynindx != -1)
3973 {
3974 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
3975 rela.r_addend = 0;
3976 }
3977 else
3978 {
3979 /* This symbol has been marked to become local, and is
3980 used by a plabel so must be kept in the .plt. */
3981 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3982 rela.r_addend = value;
3983 }
3984
3985 loc = htab->srelplt->contents;
3986 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3987 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
3988
3989 if (!eh->def_regular)
3990 {
3991 /* Mark the symbol as undefined, rather than as defined in
3992 the .plt section. Leave the value alone. */
3993 sym->st_shndx = SHN_UNDEF;
3994 }
3995 }
3996
3997 if (eh->got.offset != (bfd_vma) -1)
3998 {
3999 /* This symbol has an entry in the global offset table. Set it
4000 up. */
4001
4002 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4003 + htab->sgot->output_offset
4004 + htab->sgot->output_section->vma);
4005
4006 /* If this is a -Bsymbolic link and the symbol is defined
4007 locally or was forced to be local because of a version file,
4008 we just want to emit a RELATIVE reloc. The entry in the
4009 global offset table will already have been initialized in the
4010 relocate_section function. */
4011 if (info->shared
4012 && (info->symbolic || eh->dynindx == -1)
4013 && eh->def_regular)
4014 {
4015 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4016 rela.r_addend = (eh->root.u.def.value
4017 + eh->root.u.def.section->output_offset
4018 + eh->root.u.def.section->output_section->vma);
4019 }
4020 else
4021 {
4022 if ((eh->got.offset & 1) != 0)
4023 abort ();
4024
4025 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4026 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4027 rela.r_addend = 0;
4028 }
4029
4030 loc = htab->srelgot->contents;
4031 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4032 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4033 }
4034
4035 if (eh->needs_copy)
4036 {
4037 asection *sec;
4038
4039 /* This symbol needs a copy reloc. Set it up. */
4040
4041 if (! (eh->dynindx != -1
4042 && (eh->root.type == bfd_link_hash_defined
4043 || eh->root.type == bfd_link_hash_defweak)))
4044 abort ();
4045
4046 sec = htab->srelbss;
4047
4048 rela.r_offset = (eh->root.u.def.value
4049 + eh->root.u.def.section->output_offset
4050 + eh->root.u.def.section->output_section->vma);
4051 rela.r_addend = 0;
4052 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4053 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4054 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4055 }
4056
4057 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4058 if (eh->root.root.string[0] == '_'
4059 && (strcmp (eh->root.root.string, "_DYNAMIC") == 0
4060 || strcmp (eh->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4061 {
4062 sym->st_shndx = SHN_ABS;
4063 }
4064
4065 return TRUE;
4066 }
4067
4068 /* Used to decide how to sort relocs in an optimal manner for the
4069 dynamic linker, before writing them out. */
4070
4071 static enum elf_reloc_type_class
4072 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4073 {
4074 if (ELF32_R_SYM (rela->r_info) == 0)
4075 return reloc_class_relative;
4076
4077 switch ((int) ELF32_R_TYPE (rela->r_info))
4078 {
4079 case R_PARISC_IPLT:
4080 return reloc_class_plt;
4081 case R_PARISC_COPY:
4082 return reloc_class_copy;
4083 default:
4084 return reloc_class_normal;
4085 }
4086 }
4087
4088 /* Finish up the dynamic sections. */
4089
4090 static bfd_boolean
4091 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4092 struct bfd_link_info *info)
4093 {
4094 bfd *dynobj;
4095 struct elf32_hppa_link_hash_table *htab;
4096 asection *sdyn;
4097
4098 htab = hppa_link_hash_table (info);
4099 dynobj = htab->etab.dynobj;
4100
4101 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4102
4103 if (htab->etab.dynamic_sections_created)
4104 {
4105 Elf32_External_Dyn *dyncon, *dynconend;
4106
4107 if (sdyn == NULL)
4108 abort ();
4109
4110 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4111 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4112 for (; dyncon < dynconend; dyncon++)
4113 {
4114 Elf_Internal_Dyn dyn;
4115 asection *s;
4116
4117 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4118
4119 switch (dyn.d_tag)
4120 {
4121 default:
4122 continue;
4123
4124 case DT_PLTGOT:
4125 /* Use PLTGOT to set the GOT register. */
4126 dyn.d_un.d_ptr = elf_gp (output_bfd);
4127 break;
4128
4129 case DT_JMPREL:
4130 s = htab->srelplt;
4131 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4132 break;
4133
4134 case DT_PLTRELSZ:
4135 s = htab->srelplt;
4136 dyn.d_un.d_val = s->size;
4137 break;
4138
4139 case DT_RELASZ:
4140 /* Don't count procedure linkage table relocs in the
4141 overall reloc count. */
4142 s = htab->srelplt;
4143 if (s == NULL)
4144 continue;
4145 dyn.d_un.d_val -= s->size;
4146 break;
4147
4148 case DT_RELA:
4149 /* We may not be using the standard ELF linker script.
4150 If .rela.plt is the first .rela section, we adjust
4151 DT_RELA to not include it. */
4152 s = htab->srelplt;
4153 if (s == NULL)
4154 continue;
4155 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4156 continue;
4157 dyn.d_un.d_ptr += s->size;
4158 break;
4159 }
4160
4161 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4162 }
4163 }
4164
4165 if (htab->sgot != NULL && htab->sgot->size != 0)
4166 {
4167 /* Fill in the first entry in the global offset table.
4168 We use it to point to our dynamic section, if we have one. */
4169 bfd_put_32 (output_bfd,
4170 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4171 htab->sgot->contents);
4172
4173 /* The second entry is reserved for use by the dynamic linker. */
4174 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4175
4176 /* Set .got entry size. */
4177 elf_section_data (htab->sgot->output_section)
4178 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4179 }
4180
4181 if (htab->splt != NULL && htab->splt->size != 0)
4182 {
4183 /* Set plt entry size. */
4184 elf_section_data (htab->splt->output_section)
4185 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4186
4187 if (htab->need_plt_stub)
4188 {
4189 /* Set up the .plt stub. */
4190 memcpy (htab->splt->contents
4191 + htab->splt->size - sizeof (plt_stub),
4192 plt_stub, sizeof (plt_stub));
4193
4194 if ((htab->splt->output_offset
4195 + htab->splt->output_section->vma
4196 + htab->splt->size)
4197 != (htab->sgot->output_offset
4198 + htab->sgot->output_section->vma))
4199 {
4200 (*_bfd_error_handler)
4201 (_(".got section not immediately after .plt section"));
4202 return FALSE;
4203 }
4204 }
4205 }
4206
4207 return TRUE;
4208 }
4209
4210 /* Tweak the OSABI field of the elf header. */
4211
4212 static void
4213 elf32_hppa_post_process_headers (bfd *abfd,
4214 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4215 {
4216 Elf_Internal_Ehdr * i_ehdrp;
4217
4218 i_ehdrp = elf_elfheader (abfd);
4219
4220 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4221 {
4222 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4223 }
4224 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4225 {
4226 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4227 }
4228 else
4229 {
4230 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4231 }
4232 }
4233
4234 /* Called when writing out an object file to decide the type of a
4235 symbol. */
4236 static int
4237 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4238 {
4239 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4240 return STT_PARISC_MILLI;
4241 else
4242 return type;
4243 }
4244
4245 /* Misc BFD support code. */
4246 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4247 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4248 #define elf_info_to_howto elf_hppa_info_to_howto
4249 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4250
4251 /* Stuff for the BFD linker. */
4252 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4253 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4254 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4255 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4256 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4257 #define elf_backend_check_relocs elf32_hppa_check_relocs
4258 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4259 #define elf_backend_fake_sections elf_hppa_fake_sections
4260 #define elf_backend_relocate_section elf32_hppa_relocate_section
4261 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4262 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4263 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4264 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4265 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4266 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4267 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4268 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4269 #define elf_backend_object_p elf32_hppa_object_p
4270 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4271 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4272 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4273 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4274 #define elf_backend_action_discarded elf_hppa_action_discarded
4275
4276 #define elf_backend_can_gc_sections 1
4277 #define elf_backend_can_refcount 1
4278 #define elf_backend_plt_alignment 2
4279 #define elf_backend_want_got_plt 0
4280 #define elf_backend_plt_readonly 0
4281 #define elf_backend_want_plt_sym 0
4282 #define elf_backend_got_header_size 8
4283 #define elf_backend_rela_normal 1
4284
4285 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4286 #define TARGET_BIG_NAME "elf32-hppa"
4287 #define ELF_ARCH bfd_arch_hppa
4288 #define ELF_MACHINE_CODE EM_PARISC
4289 #define ELF_MAXPAGESIZE 0x1000
4290
4291 #include "elf32-target.h"
4292
4293 #undef TARGET_BIG_SYM
4294 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4295 #undef TARGET_BIG_NAME
4296 #define TARGET_BIG_NAME "elf32-hppa-linux"
4297
4298 #define INCLUDED_TARGET_FILE 1
4299 #include "elf32-target.h"
4300
4301 #undef TARGET_BIG_SYM
4302 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4303 #undef TARGET_BIG_NAME
4304 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4305
4306 #include "elf32-target.h"
This page took 0.188103 seconds and 5 git commands to generate.