2002-03-27 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002 Free Software Foundation, Inc.
4
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
41
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
48
49 /* We use two hash tables to hold information for linking PA ELF objects.
50
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
54
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
58
59 There are a number of different stubs generated by the linker.
60
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
64
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
76
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
83
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
93
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
103
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
115
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
119
120 static const bfd_byte plt_stub[] =
121 {
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
130 };
131
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
135
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
143
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
151 };
152
153 struct elf32_hppa_stub_hash_entry {
154
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
157
158 /* The stub section. */
159 asection *stub_sec;
160
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
163
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
168
169 enum elf32_hppa_stub_type stub_type;
170
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
173
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
177 };
178
179 struct elf32_hppa_link_hash_entry {
180
181 struct elf_link_hash_entry elf;
182
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
186
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
190
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
193
194 /* The input section of the reloc. */
195 asection *sec;
196
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
199
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
205
206 /* Set during a static link if we detect a function is PIC. */
207 unsigned int maybe_pic_call:1;
208
209 /* Set if the only reason we need a .plt entry is for a non-PIC to
210 PIC function call. */
211 unsigned int pic_call:1;
212
213 /* Set if this symbol is used by a plabel reloc. */
214 unsigned int plabel:1;
215 };
216
217 struct elf32_hppa_link_hash_table {
218
219 /* The main hash table. */
220 struct elf_link_hash_table elf;
221
222 /* The stub hash table. */
223 struct bfd_hash_table stub_hash_table;
224
225 /* Linker stub bfd. */
226 bfd *stub_bfd;
227
228 /* Linker call-backs. */
229 asection * (*add_stub_section) PARAMS ((const char *, asection *));
230 void (*layout_sections_again) PARAMS ((void));
231
232 /* Array to keep track of which stub sections have been created, and
233 information on stub grouping. */
234 struct map_stub {
235 /* This is the section to which stubs in the group will be
236 attached. */
237 asection *link_sec;
238 /* The stub section. */
239 asection *stub_sec;
240 } *stub_group;
241
242 /* Short-cuts to get to dynamic linker sections. */
243 asection *sgot;
244 asection *srelgot;
245 asection *splt;
246 asection *srelplt;
247 asection *sdynbss;
248 asection *srelbss;
249
250 /* Used during a final link to store the base of the text and data
251 segments so that we can perform SEGREL relocations. */
252 bfd_vma text_segment_base;
253 bfd_vma data_segment_base;
254
255 /* Whether we support multiple sub-spaces for shared libs. */
256 unsigned int multi_subspace:1;
257
258 /* Flags set when PCREL12F and PCREL17F branches detected. Used to
259 select suitable defaults for the stub group size. */
260 unsigned int has_12bit_branch:1;
261 unsigned int has_17bit_branch:1;
262
263 /* Set if we need a .plt stub to support lazy dynamic linking. */
264 unsigned int need_plt_stub:1;
265
266 /* Small local sym to section mapping cache. */
267 struct sym_sec_cache sym_sec;
268 };
269
270 /* Various hash macros and functions. */
271 #define hppa_link_hash_table(p) \
272 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
273
274 #define hppa_stub_hash_lookup(table, string, create, copy) \
275 ((struct elf32_hppa_stub_hash_entry *) \
276 bfd_hash_lookup ((table), (string), (create), (copy)))
277
278 static struct bfd_hash_entry *stub_hash_newfunc
279 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
280
281 static struct bfd_hash_entry *hppa_link_hash_newfunc
282 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
283
284 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
285 PARAMS ((bfd *));
286
287 /* Stub handling functions. */
288 static char *hppa_stub_name
289 PARAMS ((const asection *, const asection *,
290 const struct elf32_hppa_link_hash_entry *,
291 const Elf_Internal_Rela *));
292
293 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
294 PARAMS ((const asection *, const asection *,
295 struct elf32_hppa_link_hash_entry *,
296 const Elf_Internal_Rela *,
297 struct elf32_hppa_link_hash_table *));
298
299 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
300 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
301
302 static enum elf32_hppa_stub_type hppa_type_of_stub
303 PARAMS ((asection *, const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_entry *, bfd_vma));
305
306 static boolean hppa_build_one_stub
307 PARAMS ((struct bfd_hash_entry *, PTR));
308
309 static boolean hppa_size_one_stub
310 PARAMS ((struct bfd_hash_entry *, PTR));
311
312 /* BFD and elf backend functions. */
313 static boolean elf32_hppa_object_p PARAMS ((bfd *));
314
315 static boolean elf32_hppa_add_symbol_hook
316 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
317 const char **, flagword *, asection **, bfd_vma *));
318
319 static boolean elf32_hppa_create_dynamic_sections
320 PARAMS ((bfd *, struct bfd_link_info *));
321
322 static void elf32_hppa_copy_indirect_symbol
323 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
324
325 static boolean elf32_hppa_check_relocs
326 PARAMS ((bfd *, struct bfd_link_info *,
327 asection *, const Elf_Internal_Rela *));
328
329 static asection *elf32_hppa_gc_mark_hook
330 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
331 struct elf_link_hash_entry *, Elf_Internal_Sym *));
332
333 static boolean elf32_hppa_gc_sweep_hook
334 PARAMS ((bfd *, struct bfd_link_info *,
335 asection *, const Elf_Internal_Rela *));
336
337 static void elf32_hppa_hide_symbol
338 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, boolean));
339
340 static boolean elf32_hppa_adjust_dynamic_symbol
341 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
342
343 static boolean mark_PIC_calls
344 PARAMS ((struct elf_link_hash_entry *, PTR));
345
346 static boolean allocate_plt_static
347 PARAMS ((struct elf_link_hash_entry *, PTR));
348
349 static boolean allocate_dynrelocs
350 PARAMS ((struct elf_link_hash_entry *, PTR));
351
352 static boolean readonly_dynrelocs
353 PARAMS ((struct elf_link_hash_entry *, PTR));
354
355 static boolean clobber_millicode_symbols
356 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
357
358 static boolean elf32_hppa_size_dynamic_sections
359 PARAMS ((bfd *, struct bfd_link_info *));
360
361 static boolean elf32_hppa_final_link
362 PARAMS ((bfd *, struct bfd_link_info *));
363
364 static void hppa_record_segment_addr
365 PARAMS ((bfd *, asection *, PTR));
366
367 static bfd_reloc_status_type final_link_relocate
368 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
369 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
370 struct elf32_hppa_link_hash_entry *));
371
372 static boolean elf32_hppa_relocate_section
373 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
374 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
375
376 static int hppa_unwind_entry_compare
377 PARAMS ((const PTR, const PTR));
378
379 static boolean elf32_hppa_finish_dynamic_symbol
380 PARAMS ((bfd *, struct bfd_link_info *,
381 struct elf_link_hash_entry *, Elf_Internal_Sym *));
382
383 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
384 PARAMS ((const Elf_Internal_Rela *));
385
386 static boolean elf32_hppa_finish_dynamic_sections
387 PARAMS ((bfd *, struct bfd_link_info *));
388
389 static void elf32_hppa_post_process_headers
390 PARAMS ((bfd *, struct bfd_link_info *));
391
392 static int elf32_hppa_elf_get_symbol_type
393 PARAMS ((Elf_Internal_Sym *, int));
394
395 /* Assorted hash table functions. */
396
397 /* Initialize an entry in the stub hash table. */
398
399 static struct bfd_hash_entry *
400 stub_hash_newfunc (entry, table, string)
401 struct bfd_hash_entry *entry;
402 struct bfd_hash_table *table;
403 const char *string;
404 {
405 /* Allocate the structure if it has not already been allocated by a
406 subclass. */
407 if (entry == NULL)
408 {
409 entry = bfd_hash_allocate (table,
410 sizeof (struct elf32_hppa_stub_hash_entry));
411 if (entry == NULL)
412 return entry;
413 }
414
415 /* Call the allocation method of the superclass. */
416 entry = bfd_hash_newfunc (entry, table, string);
417 if (entry != NULL)
418 {
419 struct elf32_hppa_stub_hash_entry *eh;
420
421 /* Initialize the local fields. */
422 eh = (struct elf32_hppa_stub_hash_entry *) entry;
423 eh->stub_sec = NULL;
424 eh->stub_offset = 0;
425 eh->target_value = 0;
426 eh->target_section = NULL;
427 eh->stub_type = hppa_stub_long_branch;
428 eh->h = NULL;
429 eh->id_sec = NULL;
430 }
431
432 return entry;
433 }
434
435 /* Initialize an entry in the link hash table. */
436
437 static struct bfd_hash_entry *
438 hppa_link_hash_newfunc (entry, table, string)
439 struct bfd_hash_entry *entry;
440 struct bfd_hash_table *table;
441 const char *string;
442 {
443 /* Allocate the structure if it has not already been allocated by a
444 subclass. */
445 if (entry == NULL)
446 {
447 entry = bfd_hash_allocate (table,
448 sizeof (struct elf32_hppa_link_hash_entry));
449 if (entry == NULL)
450 return entry;
451 }
452
453 /* Call the allocation method of the superclass. */
454 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
455 if (entry != NULL)
456 {
457 struct elf32_hppa_link_hash_entry *eh;
458
459 /* Initialize the local fields. */
460 eh = (struct elf32_hppa_link_hash_entry *) entry;
461 eh->stub_cache = NULL;
462 eh->dyn_relocs = NULL;
463 eh->maybe_pic_call = 0;
464 eh->pic_call = 0;
465 eh->plabel = 0;
466 }
467
468 return entry;
469 }
470
471 /* Create the derived linker hash table. The PA ELF port uses the derived
472 hash table to keep information specific to the PA ELF linker (without
473 using static variables). */
474
475 static struct bfd_link_hash_table *
476 elf32_hppa_link_hash_table_create (abfd)
477 bfd *abfd;
478 {
479 struct elf32_hppa_link_hash_table *ret;
480 bfd_size_type amt = sizeof (*ret);
481
482 ret = (struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, amt);
483 if (ret == NULL)
484 return NULL;
485
486 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
487 {
488 bfd_release (abfd, ret);
489 return NULL;
490 }
491
492 /* Init the stub hash table too. */
493 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
494 return NULL;
495
496 ret->stub_bfd = NULL;
497 ret->add_stub_section = NULL;
498 ret->layout_sections_again = NULL;
499 ret->stub_group = NULL;
500 ret->sgot = NULL;
501 ret->srelgot = NULL;
502 ret->splt = NULL;
503 ret->srelplt = NULL;
504 ret->sdynbss = NULL;
505 ret->srelbss = NULL;
506 ret->text_segment_base = (bfd_vma) -1;
507 ret->data_segment_base = (bfd_vma) -1;
508 ret->multi_subspace = 0;
509 ret->has_12bit_branch = 0;
510 ret->has_17bit_branch = 0;
511 ret->need_plt_stub = 0;
512 ret->sym_sec.abfd = NULL;
513
514 return &ret->elf.root;
515 }
516
517 /* Build a name for an entry in the stub hash table. */
518
519 static char *
520 hppa_stub_name (input_section, sym_sec, hash, rel)
521 const asection *input_section;
522 const asection *sym_sec;
523 const struct elf32_hppa_link_hash_entry *hash;
524 const Elf_Internal_Rela *rel;
525 {
526 char *stub_name;
527 bfd_size_type len;
528
529 if (hash)
530 {
531 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
532 stub_name = bfd_malloc (len);
533 if (stub_name != NULL)
534 {
535 sprintf (stub_name, "%08x_%s+%x",
536 input_section->id & 0xffffffff,
537 hash->elf.root.root.string,
538 (int) rel->r_addend & 0xffffffff);
539 }
540 }
541 else
542 {
543 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
544 stub_name = bfd_malloc (len);
545 if (stub_name != NULL)
546 {
547 sprintf (stub_name, "%08x_%x:%x+%x",
548 input_section->id & 0xffffffff,
549 sym_sec->id & 0xffffffff,
550 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
551 (int) rel->r_addend & 0xffffffff);
552 }
553 }
554 return stub_name;
555 }
556
557 /* Look up an entry in the stub hash. Stub entries are cached because
558 creating the stub name takes a bit of time. */
559
560 static struct elf32_hppa_stub_hash_entry *
561 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
562 const asection *input_section;
563 const asection *sym_sec;
564 struct elf32_hppa_link_hash_entry *hash;
565 const Elf_Internal_Rela *rel;
566 struct elf32_hppa_link_hash_table *htab;
567 {
568 struct elf32_hppa_stub_hash_entry *stub_entry;
569 const asection *id_sec;
570
571 /* If this input section is part of a group of sections sharing one
572 stub section, then use the id of the first section in the group.
573 Stub names need to include a section id, as there may well be
574 more than one stub used to reach say, printf, and we need to
575 distinguish between them. */
576 id_sec = htab->stub_group[input_section->id].link_sec;
577
578 if (hash != NULL && hash->stub_cache != NULL
579 && hash->stub_cache->h == hash
580 && hash->stub_cache->id_sec == id_sec)
581 {
582 stub_entry = hash->stub_cache;
583 }
584 else
585 {
586 char *stub_name;
587
588 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
589 if (stub_name == NULL)
590 return NULL;
591
592 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
593 stub_name, false, false);
594 if (hash != NULL)
595 hash->stub_cache = stub_entry;
596
597 free (stub_name);
598 }
599
600 return stub_entry;
601 }
602
603 /* Add a new stub entry to the stub hash. Not all fields of the new
604 stub entry are initialised. */
605
606 static struct elf32_hppa_stub_hash_entry *
607 hppa_add_stub (stub_name, section, htab)
608 const char *stub_name;
609 asection *section;
610 struct elf32_hppa_link_hash_table *htab;
611 {
612 asection *link_sec;
613 asection *stub_sec;
614 struct elf32_hppa_stub_hash_entry *stub_entry;
615
616 link_sec = htab->stub_group[section->id].link_sec;
617 stub_sec = htab->stub_group[section->id].stub_sec;
618 if (stub_sec == NULL)
619 {
620 stub_sec = htab->stub_group[link_sec->id].stub_sec;
621 if (stub_sec == NULL)
622 {
623 bfd_size_type len;
624 char *s_name;
625
626 len = strlen (link_sec->name) + sizeof (STUB_SUFFIX);
627 s_name = bfd_alloc (htab->stub_bfd, len);
628 if (s_name == NULL)
629 return NULL;
630
631 strcpy (s_name, link_sec->name);
632 strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX);
633 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
634 if (stub_sec == NULL)
635 return NULL;
636 htab->stub_group[link_sec->id].stub_sec = stub_sec;
637 }
638 htab->stub_group[section->id].stub_sec = stub_sec;
639 }
640
641 /* Enter this entry into the linker stub hash table. */
642 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
643 true, false);
644 if (stub_entry == NULL)
645 {
646 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
647 bfd_archive_filename (section->owner),
648 stub_name);
649 return NULL;
650 }
651
652 stub_entry->stub_sec = stub_sec;
653 stub_entry->stub_offset = 0;
654 stub_entry->id_sec = link_sec;
655 return stub_entry;
656 }
657
658 /* Determine the type of stub needed, if any, for a call. */
659
660 static enum elf32_hppa_stub_type
661 hppa_type_of_stub (input_sec, rel, hash, destination)
662 asection *input_sec;
663 const Elf_Internal_Rela *rel;
664 struct elf32_hppa_link_hash_entry *hash;
665 bfd_vma destination;
666 {
667 bfd_vma location;
668 bfd_vma branch_offset;
669 bfd_vma max_branch_offset;
670 unsigned int r_type;
671
672 if (hash != NULL
673 && (((hash->elf.root.type == bfd_link_hash_defined
674 || hash->elf.root.type == bfd_link_hash_defweak)
675 && hash->elf.root.u.def.section->output_section == NULL)
676 || (hash->elf.root.type == bfd_link_hash_defweak
677 && hash->elf.dynindx != -1
678 && hash->elf.plt.offset != (bfd_vma) -1)
679 || hash->elf.root.type == bfd_link_hash_undefweak
680 || hash->elf.root.type == bfd_link_hash_undefined
681 || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF))))
682 {
683 /* If output_section is NULL, then it's a symbol defined in a
684 shared library. We will need an import stub. Decide between
685 hppa_stub_import and hppa_stub_import_shared later. For
686 shared links we need stubs for undefined or weak syms too;
687 They will presumably be resolved by the dynamic linker. */
688 return hppa_stub_import;
689 }
690
691 /* Determine where the call point is. */
692 location = (input_sec->output_offset
693 + input_sec->output_section->vma
694 + rel->r_offset);
695
696 branch_offset = destination - location - 8;
697 r_type = ELF32_R_TYPE (rel->r_info);
698
699 /* Determine if a long branch stub is needed. parisc branch offsets
700 are relative to the second instruction past the branch, ie. +8
701 bytes on from the branch instruction location. The offset is
702 signed and counts in units of 4 bytes. */
703 if (r_type == (unsigned int) R_PARISC_PCREL17F)
704 {
705 max_branch_offset = (1 << (17-1)) << 2;
706 }
707 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
708 {
709 max_branch_offset = (1 << (12-1)) << 2;
710 }
711 else /* R_PARISC_PCREL22F. */
712 {
713 max_branch_offset = (1 << (22-1)) << 2;
714 }
715
716 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
717 return hppa_stub_long_branch;
718
719 return hppa_stub_none;
720 }
721
722 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
723 IN_ARG contains the link info pointer. */
724
725 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
726 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
727
728 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
729 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
730 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
731
732 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
733 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
734 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
735 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
736
737 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
738 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
739
740 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
741 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
742 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
743 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
744
745 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
746 #define NOP 0x08000240 /* nop */
747 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
748 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
749 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
750
751 #ifndef R19_STUBS
752 #define R19_STUBS 1
753 #endif
754
755 #if R19_STUBS
756 #define LDW_R1_DLT LDW_R1_R19
757 #else
758 #define LDW_R1_DLT LDW_R1_DP
759 #endif
760
761 static boolean
762 hppa_build_one_stub (gen_entry, in_arg)
763 struct bfd_hash_entry *gen_entry;
764 PTR in_arg;
765 {
766 struct elf32_hppa_stub_hash_entry *stub_entry;
767 struct bfd_link_info *info;
768 struct elf32_hppa_link_hash_table *htab;
769 asection *stub_sec;
770 bfd *stub_bfd;
771 bfd_byte *loc;
772 bfd_vma sym_value;
773 bfd_vma insn;
774 bfd_vma off;
775 int val;
776 int size;
777
778 /* Massage our args to the form they really have. */
779 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
780 info = (struct bfd_link_info *) in_arg;
781
782 htab = hppa_link_hash_table (info);
783 stub_sec = stub_entry->stub_sec;
784
785 /* Make a note of the offset within the stubs for this entry. */
786 stub_entry->stub_offset = stub_sec->_raw_size;
787 loc = stub_sec->contents + stub_entry->stub_offset;
788
789 stub_bfd = stub_sec->owner;
790
791 switch (stub_entry->stub_type)
792 {
793 case hppa_stub_long_branch:
794 /* Create the long branch. A long branch is formed with "ldil"
795 loading the upper bits of the target address into a register,
796 then branching with "be" which adds in the lower bits.
797 The "be" has its delay slot nullified. */
798 sym_value = (stub_entry->target_value
799 + stub_entry->target_section->output_offset
800 + stub_entry->target_section->output_section->vma);
801
802 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
803 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
804 bfd_put_32 (stub_bfd, insn, loc);
805
806 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
807 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
808 bfd_put_32 (stub_bfd, insn, loc + 4);
809
810 size = 8;
811 break;
812
813 case hppa_stub_long_branch_shared:
814 /* Branches are relative. This is where we are going to. */
815 sym_value = (stub_entry->target_value
816 + stub_entry->target_section->output_offset
817 + stub_entry->target_section->output_section->vma);
818
819 /* And this is where we are coming from, more or less. */
820 sym_value -= (stub_entry->stub_offset
821 + stub_sec->output_offset
822 + stub_sec->output_section->vma);
823
824 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
825 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
826 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
827 bfd_put_32 (stub_bfd, insn, loc + 4);
828
829 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
830 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
831 bfd_put_32 (stub_bfd, insn, loc + 8);
832 size = 12;
833 break;
834
835 case hppa_stub_import:
836 case hppa_stub_import_shared:
837 off = stub_entry->h->elf.plt.offset;
838 if (off >= (bfd_vma) -2)
839 abort ();
840
841 off &= ~ (bfd_vma) 1;
842 sym_value = (off
843 + htab->splt->output_offset
844 + htab->splt->output_section->vma
845 - elf_gp (htab->splt->output_section->owner));
846
847 insn = ADDIL_DP;
848 #if R19_STUBS
849 if (stub_entry->stub_type == hppa_stub_import_shared)
850 insn = ADDIL_R19;
851 #endif
852 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
853 insn = hppa_rebuild_insn ((int) insn, val, 21);
854 bfd_put_32 (stub_bfd, insn, loc);
855
856 /* It is critical to use lrsel/rrsel here because we are using
857 two different offsets (+0 and +4) from sym_value. If we use
858 lsel/rsel then with unfortunate sym_values we will round
859 sym_value+4 up to the next 2k block leading to a mis-match
860 between the lsel and rsel value. */
861 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
862 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
863 bfd_put_32 (stub_bfd, insn, loc + 4);
864
865 if (htab->multi_subspace)
866 {
867 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
868 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
869 bfd_put_32 (stub_bfd, insn, loc + 8);
870
871 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
872 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
873 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
874 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
875
876 size = 28;
877 }
878 else
879 {
880 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
881 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
882 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
883 bfd_put_32 (stub_bfd, insn, loc + 12);
884
885 size = 16;
886 }
887
888 if (!info->shared
889 && stub_entry->h != NULL
890 && stub_entry->h->pic_call)
891 {
892 /* Build the .plt entry needed to call a PIC function from
893 statically linked code. We don't need any relocs. */
894 bfd *dynobj;
895 struct elf32_hppa_link_hash_entry *eh;
896 bfd_vma value;
897
898 dynobj = htab->elf.dynobj;
899 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
900
901 if (eh->elf.root.type != bfd_link_hash_defined
902 && eh->elf.root.type != bfd_link_hash_defweak)
903 abort ();
904
905 value = (eh->elf.root.u.def.value
906 + eh->elf.root.u.def.section->output_offset
907 + eh->elf.root.u.def.section->output_section->vma);
908
909 /* Fill in the entry in the procedure linkage table.
910
911 The format of a plt entry is
912 <funcaddr>
913 <__gp>. */
914
915 bfd_put_32 (htab->splt->owner, value,
916 htab->splt->contents + off);
917 value = elf_gp (htab->splt->output_section->owner);
918 bfd_put_32 (htab->splt->owner, value,
919 htab->splt->contents + off + 4);
920 }
921 break;
922
923 case hppa_stub_export:
924 /* Branches are relative. This is where we are going to. */
925 sym_value = (stub_entry->target_value
926 + stub_entry->target_section->output_offset
927 + stub_entry->target_section->output_section->vma);
928
929 /* And this is where we are coming from. */
930 sym_value -= (stub_entry->stub_offset
931 + stub_sec->output_offset
932 + stub_sec->output_section->vma);
933
934 if (sym_value - 8 + 0x40000 >= 0x80000)
935 {
936 (*_bfd_error_handler)
937 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
938 bfd_archive_filename (stub_entry->target_section->owner),
939 stub_sec->name,
940 (long) stub_entry->stub_offset,
941 stub_entry->root.string);
942 bfd_set_error (bfd_error_bad_value);
943 return false;
944 }
945
946 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
947 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
948 bfd_put_32 (stub_bfd, insn, loc);
949
950 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
951 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
952 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
953 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
954 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
955
956 /* Point the function symbol at the stub. */
957 stub_entry->h->elf.root.u.def.section = stub_sec;
958 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
959
960 size = 24;
961 break;
962
963 default:
964 BFD_FAIL ();
965 return false;
966 }
967
968 stub_sec->_raw_size += size;
969 return true;
970 }
971
972 #undef LDIL_R1
973 #undef BE_SR4_R1
974 #undef BL_R1
975 #undef ADDIL_R1
976 #undef DEPI_R1
977 #undef ADDIL_DP
978 #undef LDW_R1_R21
979 #undef LDW_R1_DLT
980 #undef LDW_R1_R19
981 #undef ADDIL_R19
982 #undef LDW_R1_DP
983 #undef LDSID_R21_R1
984 #undef MTSP_R1
985 #undef BE_SR0_R21
986 #undef STW_RP
987 #undef BV_R0_R21
988 #undef BL_RP
989 #undef NOP
990 #undef LDW_RP
991 #undef LDSID_RP_R1
992 #undef BE_SR0_RP
993
994 /* As above, but don't actually build the stub. Just bump offset so
995 we know stub section sizes. */
996
997 static boolean
998 hppa_size_one_stub (gen_entry, in_arg)
999 struct bfd_hash_entry *gen_entry;
1000 PTR in_arg;
1001 {
1002 struct elf32_hppa_stub_hash_entry *stub_entry;
1003 struct elf32_hppa_link_hash_table *htab;
1004 int size;
1005
1006 /* Massage our args to the form they really have. */
1007 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1008 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1009
1010 if (stub_entry->stub_type == hppa_stub_long_branch)
1011 size = 8;
1012 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1013 size = 12;
1014 else if (stub_entry->stub_type == hppa_stub_export)
1015 size = 24;
1016 else /* hppa_stub_import or hppa_stub_import_shared. */
1017 {
1018 if (htab->multi_subspace)
1019 size = 28;
1020 else
1021 size = 16;
1022 }
1023
1024 stub_entry->stub_sec->_raw_size += size;
1025 return true;
1026 }
1027
1028 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1029 Additionally we set the default architecture and machine. */
1030
1031 static boolean
1032 elf32_hppa_object_p (abfd)
1033 bfd *abfd;
1034 {
1035 Elf_Internal_Ehdr * i_ehdrp;
1036 unsigned int flags;
1037
1038 i_ehdrp = elf_elfheader (abfd);
1039 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1040 {
1041 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1042 return false;
1043 }
1044 else
1045 {
1046 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1047 return false;
1048 }
1049
1050 flags = i_ehdrp->e_flags;
1051 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1052 {
1053 case EFA_PARISC_1_0:
1054 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1055 case EFA_PARISC_1_1:
1056 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1057 case EFA_PARISC_2_0:
1058 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1059 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1060 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1061 }
1062 return true;
1063 }
1064
1065 /* Undo the generic ELF code's subtraction of section->vma from the
1066 value of each external symbol. */
1067
1068 static boolean
1069 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1070 bfd *abfd ATTRIBUTE_UNUSED;
1071 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1072 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1073 const char **namep ATTRIBUTE_UNUSED;
1074 flagword *flagsp ATTRIBUTE_UNUSED;
1075 asection **secp;
1076 bfd_vma *valp;
1077 {
1078 *valp += (*secp)->vma;
1079 return true;
1080 }
1081
1082 /* Create the .plt and .got sections, and set up our hash table
1083 short-cuts to various dynamic sections. */
1084
1085 static boolean
1086 elf32_hppa_create_dynamic_sections (abfd, info)
1087 bfd *abfd;
1088 struct bfd_link_info *info;
1089 {
1090 struct elf32_hppa_link_hash_table *htab;
1091
1092 /* Don't try to create the .plt and .got twice. */
1093 htab = hppa_link_hash_table (info);
1094 if (htab->splt != NULL)
1095 return true;
1096
1097 /* Call the generic code to do most of the work. */
1098 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1099 return false;
1100
1101 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1102 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1103
1104 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1105 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1106 if (htab->srelgot == NULL
1107 || ! bfd_set_section_flags (abfd, htab->srelgot,
1108 (SEC_ALLOC
1109 | SEC_LOAD
1110 | SEC_HAS_CONTENTS
1111 | SEC_IN_MEMORY
1112 | SEC_LINKER_CREATED
1113 | SEC_READONLY))
1114 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1115 return false;
1116
1117 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1118 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1119
1120 return true;
1121 }
1122
1123 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1124
1125 static void
1126 elf32_hppa_copy_indirect_symbol (dir, ind)
1127 struct elf_link_hash_entry *dir, *ind;
1128 {
1129 struct elf32_hppa_link_hash_entry *edir, *eind;
1130
1131 edir = (struct elf32_hppa_link_hash_entry *) dir;
1132 eind = (struct elf32_hppa_link_hash_entry *) ind;
1133
1134 if (eind->dyn_relocs != NULL)
1135 {
1136 if (edir->dyn_relocs != NULL)
1137 {
1138 struct elf32_hppa_dyn_reloc_entry **pp;
1139 struct elf32_hppa_dyn_reloc_entry *p;
1140
1141 if (ind->root.type == bfd_link_hash_indirect)
1142 abort ();
1143
1144 /* Add reloc counts against the weak sym to the strong sym
1145 list. Merge any entries against the same section. */
1146 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1147 {
1148 struct elf32_hppa_dyn_reloc_entry *q;
1149
1150 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1151 if (q->sec == p->sec)
1152 {
1153 #if RELATIVE_DYNRELOCS
1154 q->relative_count += p->relative_count;
1155 #endif
1156 q->count += p->count;
1157 *pp = p->next;
1158 break;
1159 }
1160 if (q == NULL)
1161 pp = &p->next;
1162 }
1163 *pp = edir->dyn_relocs;
1164 }
1165
1166 edir->dyn_relocs = eind->dyn_relocs;
1167 eind->dyn_relocs = NULL;
1168 }
1169
1170 _bfd_elf_link_hash_copy_indirect (dir, ind);
1171 }
1172
1173 /* Look through the relocs for a section during the first phase, and
1174 calculate needed space in the global offset table, procedure linkage
1175 table, and dynamic reloc sections. At this point we haven't
1176 necessarily read all the input files. */
1177
1178 static boolean
1179 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1180 bfd *abfd;
1181 struct bfd_link_info *info;
1182 asection *sec;
1183 const Elf_Internal_Rela *relocs;
1184 {
1185 Elf_Internal_Shdr *symtab_hdr;
1186 struct elf_link_hash_entry **sym_hashes;
1187 const Elf_Internal_Rela *rel;
1188 const Elf_Internal_Rela *rel_end;
1189 struct elf32_hppa_link_hash_table *htab;
1190 asection *sreloc;
1191 asection *stubreloc;
1192
1193 if (info->relocateable)
1194 return true;
1195
1196 htab = hppa_link_hash_table (info);
1197 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1198 sym_hashes = elf_sym_hashes (abfd);
1199 sreloc = NULL;
1200 stubreloc = NULL;
1201
1202 rel_end = relocs + sec->reloc_count;
1203 for (rel = relocs; rel < rel_end; rel++)
1204 {
1205 enum {
1206 NEED_GOT = 1,
1207 NEED_PLT = 2,
1208 NEED_DYNREL = 4,
1209 PLT_PLABEL = 8
1210 };
1211
1212 unsigned int r_symndx, r_type;
1213 struct elf32_hppa_link_hash_entry *h;
1214 int need_entry;
1215
1216 r_symndx = ELF32_R_SYM (rel->r_info);
1217
1218 if (r_symndx < symtab_hdr->sh_info)
1219 h = NULL;
1220 else
1221 h = ((struct elf32_hppa_link_hash_entry *)
1222 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1223
1224 r_type = ELF32_R_TYPE (rel->r_info);
1225
1226 switch (r_type)
1227 {
1228 case R_PARISC_DLTIND14F:
1229 case R_PARISC_DLTIND14R:
1230 case R_PARISC_DLTIND21L:
1231 /* This symbol requires a global offset table entry. */
1232 need_entry = NEED_GOT;
1233
1234 /* Mark this section as containing PIC code. */
1235 sec->flags |= SEC_HAS_GOT_REF;
1236 break;
1237
1238 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1239 case R_PARISC_PLABEL21L:
1240 case R_PARISC_PLABEL32:
1241 /* If the addend is non-zero, we break badly. */
1242 if (rel->r_addend != 0)
1243 abort ();
1244
1245 /* If we are creating a shared library, then we need to
1246 create a PLT entry for all PLABELs, because PLABELs with
1247 local symbols may be passed via a pointer to another
1248 object. Additionally, output a dynamic relocation
1249 pointing to the PLT entry.
1250 For executables, the original 32-bit ABI allowed two
1251 different styles of PLABELs (function pointers): For
1252 global functions, the PLABEL word points into the .plt
1253 two bytes past a (function address, gp) pair, and for
1254 local functions the PLABEL points directly at the
1255 function. The magic +2 for the first type allows us to
1256 differentiate between the two. As you can imagine, this
1257 is a real pain when it comes to generating code to call
1258 functions indirectly or to compare function pointers.
1259 We avoid the mess by always pointing a PLABEL into the
1260 .plt, even for local functions. */
1261 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1262 break;
1263
1264 case R_PARISC_PCREL12F:
1265 htab->has_12bit_branch = 1;
1266 /* Fall thru. */
1267 case R_PARISC_PCREL17C:
1268 case R_PARISC_PCREL17F:
1269 htab->has_17bit_branch = 1;
1270 /* Fall thru. */
1271 case R_PARISC_PCREL22F:
1272 /* Function calls might need to go through the .plt, and
1273 might require long branch stubs. */
1274 if (h == NULL)
1275 {
1276 /* We know local syms won't need a .plt entry, and if
1277 they need a long branch stub we can't guarantee that
1278 we can reach the stub. So just flag an error later
1279 if we're doing a shared link and find we need a long
1280 branch stub. */
1281 continue;
1282 }
1283 else
1284 {
1285 /* Global symbols will need a .plt entry if they remain
1286 global, and in most cases won't need a long branch
1287 stub. Unfortunately, we have to cater for the case
1288 where a symbol is forced local by versioning, or due
1289 to symbolic linking, and we lose the .plt entry. */
1290 need_entry = NEED_PLT;
1291 if (h->elf.type == STT_PARISC_MILLI)
1292 need_entry = 0;
1293 }
1294 break;
1295
1296 case R_PARISC_SEGBASE: /* Used to set segment base. */
1297 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1298 case R_PARISC_PCREL14F: /* PC relative load/store. */
1299 case R_PARISC_PCREL14R:
1300 case R_PARISC_PCREL17R: /* External branches. */
1301 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1302 /* We don't need to propagate the relocation if linking a
1303 shared object since these are section relative. */
1304 continue;
1305
1306 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1307 case R_PARISC_DPREL14R:
1308 case R_PARISC_DPREL21L:
1309 if (info->shared)
1310 {
1311 (*_bfd_error_handler)
1312 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1313 bfd_archive_filename (abfd),
1314 elf_hppa_howto_table[r_type].name);
1315 bfd_set_error (bfd_error_bad_value);
1316 return false;
1317 }
1318 /* Fall through. */
1319
1320 case R_PARISC_DIR17F: /* Used for external branches. */
1321 case R_PARISC_DIR17R:
1322 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1323 case R_PARISC_DIR14R:
1324 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1325 #if 1
1326 /* Help debug shared library creation. Any of the above
1327 relocs can be used in shared libs, but they may cause
1328 pages to become unshared. */
1329 if (info->shared)
1330 {
1331 (*_bfd_error_handler)
1332 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1333 bfd_archive_filename (abfd),
1334 elf_hppa_howto_table[r_type].name);
1335 }
1336 /* Fall through. */
1337 #endif
1338
1339 case R_PARISC_DIR32: /* .word relocs. */
1340 /* We may want to output a dynamic relocation later. */
1341 need_entry = NEED_DYNREL;
1342 break;
1343
1344 /* This relocation describes the C++ object vtable hierarchy.
1345 Reconstruct it for later use during GC. */
1346 case R_PARISC_GNU_VTINHERIT:
1347 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1348 &h->elf, rel->r_offset))
1349 return false;
1350 continue;
1351
1352 /* This relocation describes which C++ vtable entries are actually
1353 used. Record for later use during GC. */
1354 case R_PARISC_GNU_VTENTRY:
1355 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1356 &h->elf, rel->r_addend))
1357 return false;
1358 continue;
1359
1360 default:
1361 continue;
1362 }
1363
1364 /* Now carry out our orders. */
1365 if (need_entry & NEED_GOT)
1366 {
1367 /* Allocate space for a GOT entry, as well as a dynamic
1368 relocation for this entry. */
1369 if (htab->sgot == NULL)
1370 {
1371 if (htab->elf.dynobj == NULL)
1372 htab->elf.dynobj = abfd;
1373 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1374 return false;
1375 }
1376
1377 if (h != NULL)
1378 {
1379 h->elf.got.refcount += 1;
1380 }
1381 else
1382 {
1383 bfd_signed_vma *local_got_refcounts;
1384
1385 /* This is a global offset table entry for a local symbol. */
1386 local_got_refcounts = elf_local_got_refcounts (abfd);
1387 if (local_got_refcounts == NULL)
1388 {
1389 bfd_size_type size;
1390
1391 /* Allocate space for local got offsets and local
1392 plt offsets. Done this way to save polluting
1393 elf_obj_tdata with another target specific
1394 pointer. */
1395 size = symtab_hdr->sh_info;
1396 size *= 2 * sizeof (bfd_signed_vma);
1397 local_got_refcounts = ((bfd_signed_vma *)
1398 bfd_zalloc (abfd, size));
1399 if (local_got_refcounts == NULL)
1400 return false;
1401 elf_local_got_refcounts (abfd) = local_got_refcounts;
1402 }
1403 local_got_refcounts[r_symndx] += 1;
1404 }
1405 }
1406
1407 if (need_entry & NEED_PLT)
1408 {
1409 /* If we are creating a shared library, and this is a reloc
1410 against a weak symbol or a global symbol in a dynamic
1411 object, then we will be creating an import stub and a
1412 .plt entry for the symbol. Similarly, on a normal link
1413 to symbols defined in a dynamic object we'll need the
1414 import stub and a .plt entry. We don't know yet whether
1415 the symbol is defined or not, so make an entry anyway and
1416 clean up later in adjust_dynamic_symbol. */
1417 if ((sec->flags & SEC_ALLOC) != 0)
1418 {
1419 if (h != NULL)
1420 {
1421 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1422 h->elf.plt.refcount += 1;
1423
1424 /* If this .plt entry is for a plabel, mark it so
1425 that adjust_dynamic_symbol will keep the entry
1426 even if it appears to be local. */
1427 if (need_entry & PLT_PLABEL)
1428 h->plabel = 1;
1429 }
1430 else if (need_entry & PLT_PLABEL)
1431 {
1432 bfd_signed_vma *local_got_refcounts;
1433 bfd_signed_vma *local_plt_refcounts;
1434
1435 local_got_refcounts = elf_local_got_refcounts (abfd);
1436 if (local_got_refcounts == NULL)
1437 {
1438 bfd_size_type size;
1439
1440 /* Allocate space for local got offsets and local
1441 plt offsets. */
1442 size = symtab_hdr->sh_info;
1443 size *= 2 * sizeof (bfd_signed_vma);
1444 local_got_refcounts = ((bfd_signed_vma *)
1445 bfd_zalloc (abfd, size));
1446 if (local_got_refcounts == NULL)
1447 return false;
1448 elf_local_got_refcounts (abfd) = local_got_refcounts;
1449 }
1450 local_plt_refcounts = (local_got_refcounts
1451 + symtab_hdr->sh_info);
1452 local_plt_refcounts[r_symndx] += 1;
1453 }
1454 }
1455 }
1456
1457 if (need_entry & NEED_DYNREL)
1458 {
1459 /* Flag this symbol as having a non-got, non-plt reference
1460 so that we generate copy relocs if it turns out to be
1461 dynamic. */
1462 if (h != NULL && !info->shared)
1463 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1464
1465 /* If we are creating a shared library then we need to copy
1466 the reloc into the shared library. However, if we are
1467 linking with -Bsymbolic, we need only copy absolute
1468 relocs or relocs against symbols that are not defined in
1469 an object we are including in the link. PC- or DP- or
1470 DLT-relative relocs against any local sym or global sym
1471 with DEF_REGULAR set, can be discarded. At this point we
1472 have not seen all the input files, so it is possible that
1473 DEF_REGULAR is not set now but will be set later (it is
1474 never cleared). We account for that possibility below by
1475 storing information in the dyn_relocs field of the
1476 hash table entry.
1477
1478 A similar situation to the -Bsymbolic case occurs when
1479 creating shared libraries and symbol visibility changes
1480 render the symbol local.
1481
1482 As it turns out, all the relocs we will be creating here
1483 are absolute, so we cannot remove them on -Bsymbolic
1484 links or visibility changes anyway. A STUB_REL reloc
1485 is absolute too, as in that case it is the reloc in the
1486 stub we will be creating, rather than copying the PCREL
1487 reloc in the branch.
1488
1489 If on the other hand, we are creating an executable, we
1490 may need to keep relocations for symbols satisfied by a
1491 dynamic library if we manage to avoid copy relocs for the
1492 symbol. */
1493 if ((info->shared
1494 && (sec->flags & SEC_ALLOC) != 0
1495 && (IS_ABSOLUTE_RELOC (r_type)
1496 || (h != NULL
1497 && (!info->symbolic
1498 || h->elf.root.type == bfd_link_hash_defweak
1499 || (h->elf.elf_link_hash_flags
1500 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1501 || (!info->shared
1502 && (sec->flags & SEC_ALLOC) != 0
1503 && h != NULL
1504 && (h->elf.root.type == bfd_link_hash_defweak
1505 || (h->elf.elf_link_hash_flags
1506 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1507 {
1508 struct elf32_hppa_dyn_reloc_entry *p;
1509 struct elf32_hppa_dyn_reloc_entry **head;
1510
1511 /* Create a reloc section in dynobj and make room for
1512 this reloc. */
1513 if (sreloc == NULL)
1514 {
1515 char *name;
1516 bfd *dynobj;
1517
1518 name = (bfd_elf_string_from_elf_section
1519 (abfd,
1520 elf_elfheader (abfd)->e_shstrndx,
1521 elf_section_data (sec)->rel_hdr.sh_name));
1522 if (name == NULL)
1523 {
1524 (*_bfd_error_handler)
1525 (_("Could not find relocation section for %s"),
1526 sec->name);
1527 bfd_set_error (bfd_error_bad_value);
1528 return false;
1529 }
1530
1531 if (htab->elf.dynobj == NULL)
1532 htab->elf.dynobj = abfd;
1533
1534 dynobj = htab->elf.dynobj;
1535 sreloc = bfd_get_section_by_name (dynobj, name);
1536 if (sreloc == NULL)
1537 {
1538 flagword flags;
1539
1540 sreloc = bfd_make_section (dynobj, name);
1541 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1542 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1543 if ((sec->flags & SEC_ALLOC) != 0)
1544 flags |= SEC_ALLOC | SEC_LOAD;
1545 if (sreloc == NULL
1546 || !bfd_set_section_flags (dynobj, sreloc, flags)
1547 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1548 return false;
1549 }
1550
1551 elf_section_data (sec)->sreloc = sreloc;
1552 }
1553
1554 /* If this is a global symbol, we count the number of
1555 relocations we need for this symbol. */
1556 if (h != NULL)
1557 {
1558 head = &h->dyn_relocs;
1559 }
1560 else
1561 {
1562 /* Track dynamic relocs needed for local syms too.
1563 We really need local syms available to do this
1564 easily. Oh well. */
1565
1566 asection *s;
1567 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1568 sec, r_symndx);
1569 if (s == NULL)
1570 return false;
1571
1572 head = ((struct elf32_hppa_dyn_reloc_entry **)
1573 &elf_section_data (s)->local_dynrel);
1574 }
1575
1576 p = *head;
1577 if (p == NULL || p->sec != sec)
1578 {
1579 p = ((struct elf32_hppa_dyn_reloc_entry *)
1580 bfd_alloc (htab->elf.dynobj,
1581 (bfd_size_type) sizeof *p));
1582 if (p == NULL)
1583 return false;
1584 p->next = *head;
1585 *head = p;
1586 p->sec = sec;
1587 p->count = 0;
1588 #if RELATIVE_DYNRELOCS
1589 p->relative_count = 0;
1590 #endif
1591 }
1592
1593 p->count += 1;
1594 #if RELATIVE_DYNRELOCS
1595 if (!IS_ABSOLUTE_RELOC (rtype))
1596 p->relative_count += 1;
1597 #endif
1598 }
1599 }
1600 }
1601
1602 return true;
1603 }
1604
1605 /* Return the section that should be marked against garbage collection
1606 for a given relocation. */
1607
1608 static asection *
1609 elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym)
1610 bfd *abfd;
1611 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1612 Elf_Internal_Rela *rel;
1613 struct elf_link_hash_entry *h;
1614 Elf_Internal_Sym *sym;
1615 {
1616 if (h != NULL)
1617 {
1618 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1619 {
1620 case R_PARISC_GNU_VTINHERIT:
1621 case R_PARISC_GNU_VTENTRY:
1622 break;
1623
1624 default:
1625 switch (h->root.type)
1626 {
1627 case bfd_link_hash_defined:
1628 case bfd_link_hash_defweak:
1629 return h->root.u.def.section;
1630
1631 case bfd_link_hash_common:
1632 return h->root.u.c.p->section;
1633
1634 default:
1635 break;
1636 }
1637 }
1638 }
1639 else
1640 {
1641 return bfd_section_from_elf_index (abfd, sym->st_shndx);
1642 }
1643
1644 return NULL;
1645 }
1646
1647 /* Update the got and plt entry reference counts for the section being
1648 removed. */
1649
1650 static boolean
1651 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1652 bfd *abfd;
1653 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1654 asection *sec;
1655 const Elf_Internal_Rela *relocs;
1656 {
1657 Elf_Internal_Shdr *symtab_hdr;
1658 struct elf_link_hash_entry **sym_hashes;
1659 bfd_signed_vma *local_got_refcounts;
1660 bfd_signed_vma *local_plt_refcounts;
1661 const Elf_Internal_Rela *rel, *relend;
1662 unsigned long r_symndx;
1663 struct elf_link_hash_entry *h;
1664 struct elf32_hppa_link_hash_table *htab;
1665 bfd *dynobj;
1666
1667 elf_section_data (sec)->local_dynrel = NULL;
1668
1669 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1670 sym_hashes = elf_sym_hashes (abfd);
1671 local_got_refcounts = elf_local_got_refcounts (abfd);
1672 local_plt_refcounts = local_got_refcounts;
1673 if (local_plt_refcounts != NULL)
1674 local_plt_refcounts += symtab_hdr->sh_info;
1675 htab = hppa_link_hash_table (info);
1676 dynobj = htab->elf.dynobj;
1677 if (dynobj == NULL)
1678 return true;
1679
1680 relend = relocs + sec->reloc_count;
1681 for (rel = relocs; rel < relend; rel++)
1682 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1683 {
1684 case R_PARISC_DLTIND14F:
1685 case R_PARISC_DLTIND14R:
1686 case R_PARISC_DLTIND21L:
1687 r_symndx = ELF32_R_SYM (rel->r_info);
1688 if (r_symndx >= symtab_hdr->sh_info)
1689 {
1690 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1691 if (h->got.refcount > 0)
1692 h->got.refcount -= 1;
1693 }
1694 else if (local_got_refcounts != NULL)
1695 {
1696 if (local_got_refcounts[r_symndx] > 0)
1697 local_got_refcounts[r_symndx] -= 1;
1698 }
1699 break;
1700
1701 case R_PARISC_PCREL12F:
1702 case R_PARISC_PCREL17C:
1703 case R_PARISC_PCREL17F:
1704 case R_PARISC_PCREL22F:
1705 r_symndx = ELF32_R_SYM (rel->r_info);
1706 if (r_symndx >= symtab_hdr->sh_info)
1707 {
1708 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1709 if (h->plt.refcount > 0)
1710 h->plt.refcount -= 1;
1711 }
1712 break;
1713
1714 case R_PARISC_PLABEL14R:
1715 case R_PARISC_PLABEL21L:
1716 case R_PARISC_PLABEL32:
1717 r_symndx = ELF32_R_SYM (rel->r_info);
1718 if (r_symndx >= symtab_hdr->sh_info)
1719 {
1720 struct elf32_hppa_link_hash_entry *eh;
1721 struct elf32_hppa_dyn_reloc_entry **pp;
1722 struct elf32_hppa_dyn_reloc_entry *p;
1723
1724 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1725
1726 if (h->plt.refcount > 0)
1727 h->plt.refcount -= 1;
1728
1729 eh = (struct elf32_hppa_link_hash_entry *) h;
1730
1731 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1732 if (p->sec == sec)
1733 {
1734 #if RELATIVE_DYNRELOCS
1735 if (!IS_ABSOLUTE_RELOC (rtype))
1736 p->relative_count -= 1;
1737 #endif
1738 p->count -= 1;
1739 if (p->count == 0)
1740 *pp = p->next;
1741 break;
1742 }
1743 }
1744 else if (local_plt_refcounts != NULL)
1745 {
1746 if (local_plt_refcounts[r_symndx] > 0)
1747 local_plt_refcounts[r_symndx] -= 1;
1748 }
1749 break;
1750
1751 case R_PARISC_DIR32:
1752 r_symndx = ELF32_R_SYM (rel->r_info);
1753 if (r_symndx >= symtab_hdr->sh_info)
1754 {
1755 struct elf32_hppa_link_hash_entry *eh;
1756 struct elf32_hppa_dyn_reloc_entry **pp;
1757 struct elf32_hppa_dyn_reloc_entry *p;
1758
1759 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1760
1761 eh = (struct elf32_hppa_link_hash_entry *) h;
1762
1763 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1764 if (p->sec == sec)
1765 {
1766 #if RELATIVE_DYNRELOCS
1767 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1768 p->relative_count -= 1;
1769 #endif
1770 p->count -= 1;
1771 if (p->count == 0)
1772 *pp = p->next;
1773 break;
1774 }
1775 }
1776 break;
1777
1778 default:
1779 break;
1780 }
1781
1782 return true;
1783 }
1784
1785 /* Our own version of hide_symbol, so that we can keep plt entries for
1786 plabels. */
1787
1788 static void
1789 elf32_hppa_hide_symbol (info, h, force_local)
1790 struct bfd_link_info *info;
1791 struct elf_link_hash_entry *h;
1792 boolean force_local;
1793 {
1794 if (force_local)
1795 {
1796 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1797 if (h->dynindx != -1)
1798 {
1799 h->dynindx = -1;
1800 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1801 h->dynstr_index);
1802 }
1803 }
1804
1805 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1806 {
1807 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1808 h->plt.offset = (bfd_vma) -1;
1809 }
1810 }
1811
1812 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1813 will be called from elflink.h. If elflink.h doesn't call our
1814 finish_dynamic_symbol routine, we'll need to do something about
1815 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1816 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1817 ((DYN) \
1818 && ((INFO)->shared \
1819 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1820 && ((H)->dynindx != -1 \
1821 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1822
1823 /* Adjust a symbol defined by a dynamic object and referenced by a
1824 regular object. The current definition is in some section of the
1825 dynamic object, but we're not including those sections. We have to
1826 change the definition to something the rest of the link can
1827 understand. */
1828
1829 static boolean
1830 elf32_hppa_adjust_dynamic_symbol (info, h)
1831 struct bfd_link_info *info;
1832 struct elf_link_hash_entry *h;
1833 {
1834 struct elf32_hppa_link_hash_table *htab;
1835 struct elf32_hppa_link_hash_entry *eh;
1836 struct elf32_hppa_dyn_reloc_entry *p;
1837 asection *s;
1838 unsigned int power_of_two;
1839
1840 /* If this is a function, put it in the procedure linkage table. We
1841 will fill in the contents of the procedure linkage table later,
1842 when we know the address of the .got section. */
1843 if (h->type == STT_FUNC
1844 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1845 {
1846 if (!info->shared
1847 && h->plt.refcount > 0
1848 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1849 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1850 {
1851 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1852 }
1853
1854 if (h->plt.refcount <= 0
1855 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1856 && h->root.type != bfd_link_hash_defweak
1857 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1858 && (!info->shared || info->symbolic)))
1859 {
1860 /* The .plt entry is not needed when:
1861 a) Garbage collection has removed all references to the
1862 symbol, or
1863 b) We know for certain the symbol is defined in this
1864 object, and it's not a weak definition, nor is the symbol
1865 used by a plabel relocation. Either this object is the
1866 application or we are doing a shared symbolic link. */
1867
1868 /* As a special sop to the hppa ABI, we keep a .plt entry
1869 for functions in sections containing PIC code. */
1870 if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call)
1871 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1872 else
1873 {
1874 h->plt.offset = (bfd_vma) -1;
1875 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1876 }
1877 }
1878
1879 return true;
1880 }
1881 else
1882 h->plt.offset = (bfd_vma) -1;
1883
1884 /* If this is a weak symbol, and there is a real definition, the
1885 processor independent code will have arranged for us to see the
1886 real definition first, and we can just use the same value. */
1887 if (h->weakdef != NULL)
1888 {
1889 if (h->weakdef->root.type != bfd_link_hash_defined
1890 && h->weakdef->root.type != bfd_link_hash_defweak)
1891 abort ();
1892 h->root.u.def.section = h->weakdef->root.u.def.section;
1893 h->root.u.def.value = h->weakdef->root.u.def.value;
1894 return true;
1895 }
1896
1897 /* This is a reference to a symbol defined by a dynamic object which
1898 is not a function. */
1899
1900 /* If we are creating a shared library, we must presume that the
1901 only references to the symbol are via the global offset table.
1902 For such cases we need not do anything here; the relocations will
1903 be handled correctly by relocate_section. */
1904 if (info->shared)
1905 return true;
1906
1907 /* If there are no references to this symbol that do not use the
1908 GOT, we don't need to generate a copy reloc. */
1909 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1910 return true;
1911
1912 eh = (struct elf32_hppa_link_hash_entry *) h;
1913 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1914 {
1915 s = p->sec->output_section;
1916 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1917 break;
1918 }
1919
1920 /* If we didn't find any dynamic relocs in read-only sections, then
1921 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1922 if (p == NULL)
1923 {
1924 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1925 return true;
1926 }
1927
1928 /* We must allocate the symbol in our .dynbss section, which will
1929 become part of the .bss section of the executable. There will be
1930 an entry for this symbol in the .dynsym section. The dynamic
1931 object will contain position independent code, so all references
1932 from the dynamic object to this symbol will go through the global
1933 offset table. The dynamic linker will use the .dynsym entry to
1934 determine the address it must put in the global offset table, so
1935 both the dynamic object and the regular object will refer to the
1936 same memory location for the variable. */
1937
1938 htab = hppa_link_hash_table (info);
1939
1940 /* We must generate a COPY reloc to tell the dynamic linker to
1941 copy the initial value out of the dynamic object and into the
1942 runtime process image. */
1943 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1944 {
1945 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1946 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1947 }
1948
1949 /* We need to figure out the alignment required for this symbol. I
1950 have no idea how other ELF linkers handle this. */
1951
1952 power_of_two = bfd_log2 (h->size);
1953 if (power_of_two > 3)
1954 power_of_two = 3;
1955
1956 /* Apply the required alignment. */
1957 s = htab->sdynbss;
1958 s->_raw_size = BFD_ALIGN (s->_raw_size,
1959 (bfd_size_type) (1 << power_of_two));
1960 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1961 {
1962 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1963 return false;
1964 }
1965
1966 /* Define the symbol as being at this point in the section. */
1967 h->root.u.def.section = s;
1968 h->root.u.def.value = s->_raw_size;
1969
1970 /* Increment the section size to make room for the symbol. */
1971 s->_raw_size += h->size;
1972
1973 return true;
1974 }
1975
1976 /* Called via elf_link_hash_traverse to create .plt entries for an
1977 application that uses statically linked PIC functions. Similar to
1978 the first part of elf32_hppa_adjust_dynamic_symbol. */
1979
1980 static boolean
1981 mark_PIC_calls (h, inf)
1982 struct elf_link_hash_entry *h;
1983 PTR inf ATTRIBUTE_UNUSED;
1984 {
1985 if (! (h->plt.refcount > 0
1986 && (h->root.type == bfd_link_hash_defined
1987 || h->root.type == bfd_link_hash_defweak)
1988 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
1989 {
1990 h->plt.offset = (bfd_vma) -1;
1991 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1992 return true;
1993 }
1994
1995 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1996 ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1;
1997 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1998
1999 return true;
2000 }
2001
2002 /* Allocate space in the .plt for entries that won't have relocations.
2003 ie. pic_call and plabel entries. */
2004
2005 static boolean
2006 allocate_plt_static (h, inf)
2007 struct elf_link_hash_entry *h;
2008 PTR inf;
2009 {
2010 struct bfd_link_info *info;
2011 struct elf32_hppa_link_hash_table *htab;
2012 asection *s;
2013
2014 if (h->root.type == bfd_link_hash_indirect
2015 || h->root.type == bfd_link_hash_warning)
2016 return true;
2017
2018 info = (struct bfd_link_info *) inf;
2019 htab = hppa_link_hash_table (info);
2020 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2021 {
2022 /* Make an entry in the .plt section for non-pic code that is
2023 calling pic code. */
2024 s = htab->splt;
2025 h->plt.offset = s->_raw_size;
2026 s->_raw_size += PLT_ENTRY_SIZE;
2027 }
2028 else if (htab->elf.dynamic_sections_created
2029 && h->plt.refcount > 0)
2030 {
2031 /* Make sure this symbol is output as a dynamic symbol.
2032 Undefined weak syms won't yet be marked as dynamic. */
2033 if (h->dynindx == -1
2034 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2035 && h->type != STT_PARISC_MILLI)
2036 {
2037 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2038 return false;
2039 }
2040
2041 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2042 {
2043 /* Allocate these later. */
2044 }
2045 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2046 {
2047 /* Make an entry in the .plt section for plabel references
2048 that won't have a .plt entry for other reasons. */
2049 s = htab->splt;
2050 h->plt.offset = s->_raw_size;
2051 s->_raw_size += PLT_ENTRY_SIZE;
2052 }
2053 else
2054 {
2055 /* No .plt entry needed. */
2056 h->plt.offset = (bfd_vma) -1;
2057 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2058 }
2059 }
2060 else
2061 {
2062 h->plt.offset = (bfd_vma) -1;
2063 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2064 }
2065
2066 return true;
2067 }
2068
2069 /* Allocate space in .plt, .got and associated reloc sections for
2070 global syms. */
2071
2072 static boolean
2073 allocate_dynrelocs (h, inf)
2074 struct elf_link_hash_entry *h;
2075 PTR inf;
2076 {
2077 struct bfd_link_info *info;
2078 struct elf32_hppa_link_hash_table *htab;
2079 asection *s;
2080 struct elf32_hppa_link_hash_entry *eh;
2081 struct elf32_hppa_dyn_reloc_entry *p;
2082
2083 if (h->root.type == bfd_link_hash_indirect
2084 || h->root.type == bfd_link_hash_warning)
2085 return true;
2086
2087 info = (struct bfd_link_info *) inf;
2088 htab = hppa_link_hash_table (info);
2089 if (htab->elf.dynamic_sections_created
2090 && h->plt.offset != (bfd_vma) -1
2091 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2092 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2093 {
2094 /* Make an entry in the .plt section. */
2095 s = htab->splt;
2096 h->plt.offset = s->_raw_size;
2097 s->_raw_size += PLT_ENTRY_SIZE;
2098
2099 /* We also need to make an entry in the .rela.plt section. */
2100 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2101 htab->need_plt_stub = 1;
2102 }
2103
2104 if (h->got.refcount > 0)
2105 {
2106 /* Make sure this symbol is output as a dynamic symbol.
2107 Undefined weak syms won't yet be marked as dynamic. */
2108 if (h->dynindx == -1
2109 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2110 && h->type != STT_PARISC_MILLI)
2111 {
2112 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2113 return false;
2114 }
2115
2116 s = htab->sgot;
2117 h->got.offset = s->_raw_size;
2118 s->_raw_size += GOT_ENTRY_SIZE;
2119 if (htab->elf.dynamic_sections_created
2120 && (info->shared
2121 || (h->dynindx != -1
2122 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2123 {
2124 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2125 }
2126 }
2127 else
2128 h->got.offset = (bfd_vma) -1;
2129
2130 eh = (struct elf32_hppa_link_hash_entry *) h;
2131 if (eh->dyn_relocs == NULL)
2132 return true;
2133
2134 /* If this is a -Bsymbolic shared link, then we need to discard all
2135 space allocated for dynamic pc-relative relocs against symbols
2136 defined in a regular object. For the normal shared case, discard
2137 space for relocs that have become local due to symbol visibility
2138 changes. */
2139 if (info->shared)
2140 {
2141 #if RELATIVE_DYNRELOCS
2142 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2143 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2144 || info->symbolic))
2145 {
2146 struct elf32_hppa_dyn_reloc_entry **pp;
2147
2148 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2149 {
2150 p->count -= p->relative_count;
2151 p->relative_count = 0;
2152 if (p->count == 0)
2153 *pp = p->next;
2154 else
2155 pp = &p->next;
2156 }
2157 }
2158 #endif
2159 }
2160 else
2161 {
2162 /* For the non-shared case, discard space for relocs against
2163 symbols which turn out to need copy relocs or are not
2164 dynamic. */
2165 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2166 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2167 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2168 || (htab->elf.dynamic_sections_created
2169 && (h->root.type == bfd_link_hash_undefweak
2170 || h->root.type == bfd_link_hash_undefined))))
2171 {
2172 /* Make sure this symbol is output as a dynamic symbol.
2173 Undefined weak syms won't yet be marked as dynamic. */
2174 if (h->dynindx == -1
2175 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2176 && h->type != STT_PARISC_MILLI)
2177 {
2178 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2179 return false;
2180 }
2181
2182 /* If that succeeded, we know we'll be keeping all the
2183 relocs. */
2184 if (h->dynindx != -1)
2185 goto keep;
2186 }
2187
2188 eh->dyn_relocs = NULL;
2189 return true;
2190
2191 keep: ;
2192 }
2193
2194 /* Finally, allocate space. */
2195 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2196 {
2197 asection *sreloc = elf_section_data (p->sec)->sreloc;
2198 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2199 }
2200
2201 return true;
2202 }
2203
2204 /* This function is called via elf_link_hash_traverse to force
2205 millicode symbols local so they do not end up as globals in the
2206 dynamic symbol table. We ought to be able to do this in
2207 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2208 for all dynamic symbols. Arguably, this is a bug in
2209 elf_adjust_dynamic_symbol. */
2210
2211 static boolean
2212 clobber_millicode_symbols (h, info)
2213 struct elf_link_hash_entry *h;
2214 struct bfd_link_info *info;
2215 {
2216 if (h->type == STT_PARISC_MILLI
2217 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2218 {
2219 elf32_hppa_hide_symbol (info, h, true);
2220 }
2221 return true;
2222 }
2223
2224 /* Find any dynamic relocs that apply to read-only sections. */
2225
2226 static boolean
2227 readonly_dynrelocs (h, inf)
2228 struct elf_link_hash_entry *h;
2229 PTR inf;
2230 {
2231 struct elf32_hppa_link_hash_entry *eh;
2232 struct elf32_hppa_dyn_reloc_entry *p;
2233
2234 eh = (struct elf32_hppa_link_hash_entry *) h;
2235 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2236 {
2237 asection *s = p->sec->output_section;
2238
2239 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2240 {
2241 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2242
2243 info->flags |= DF_TEXTREL;
2244
2245 /* Not an error, just cut short the traversal. */
2246 return false;
2247 }
2248 }
2249 return true;
2250 }
2251
2252 /* Set the sizes of the dynamic sections. */
2253
2254 static boolean
2255 elf32_hppa_size_dynamic_sections (output_bfd, info)
2256 bfd *output_bfd ATTRIBUTE_UNUSED;
2257 struct bfd_link_info *info;
2258 {
2259 struct elf32_hppa_link_hash_table *htab;
2260 bfd *dynobj;
2261 bfd *ibfd;
2262 asection *s;
2263 boolean relocs;
2264
2265 htab = hppa_link_hash_table (info);
2266 dynobj = htab->elf.dynobj;
2267 if (dynobj == NULL)
2268 abort ();
2269
2270 if (htab->elf.dynamic_sections_created)
2271 {
2272 /* Set the contents of the .interp section to the interpreter. */
2273 if (! info->shared)
2274 {
2275 s = bfd_get_section_by_name (dynobj, ".interp");
2276 if (s == NULL)
2277 abort ();
2278 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2279 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2280 }
2281
2282 /* Force millicode symbols local. */
2283 elf_link_hash_traverse (&htab->elf,
2284 clobber_millicode_symbols,
2285 info);
2286 }
2287 else
2288 {
2289 /* Run through the function symbols, looking for any that are
2290 PIC, and mark them as needing .plt entries so that %r19 will
2291 be set up. */
2292 if (! info->shared)
2293 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2294 }
2295
2296 /* Set up .got and .plt offsets for local syms, and space for local
2297 dynamic relocs. */
2298 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2299 {
2300 bfd_signed_vma *local_got;
2301 bfd_signed_vma *end_local_got;
2302 bfd_signed_vma *local_plt;
2303 bfd_signed_vma *end_local_plt;
2304 bfd_size_type locsymcount;
2305 Elf_Internal_Shdr *symtab_hdr;
2306 asection *srel;
2307
2308 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2309 continue;
2310
2311 for (s = ibfd->sections; s != NULL; s = s->next)
2312 {
2313 struct elf32_hppa_dyn_reloc_entry *p;
2314
2315 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2316 elf_section_data (s)->local_dynrel);
2317 p != NULL;
2318 p = p->next)
2319 {
2320 if (!bfd_is_abs_section (p->sec)
2321 && bfd_is_abs_section (p->sec->output_section))
2322 {
2323 /* Input section has been discarded, either because
2324 it is a copy of a linkonce section or due to
2325 linker script /DISCARD/, so we'll be discarding
2326 the relocs too. */
2327 }
2328 else if (p->count != 0)
2329 {
2330 srel = elf_section_data (p->sec)->sreloc;
2331 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2332 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2333 info->flags |= DF_TEXTREL;
2334 }
2335 }
2336 }
2337
2338 local_got = elf_local_got_refcounts (ibfd);
2339 if (!local_got)
2340 continue;
2341
2342 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2343 locsymcount = symtab_hdr->sh_info;
2344 end_local_got = local_got + locsymcount;
2345 s = htab->sgot;
2346 srel = htab->srelgot;
2347 for (; local_got < end_local_got; ++local_got)
2348 {
2349 if (*local_got > 0)
2350 {
2351 *local_got = s->_raw_size;
2352 s->_raw_size += GOT_ENTRY_SIZE;
2353 if (info->shared)
2354 srel->_raw_size += sizeof (Elf32_External_Rela);
2355 }
2356 else
2357 *local_got = (bfd_vma) -1;
2358 }
2359
2360 local_plt = end_local_got;
2361 end_local_plt = local_plt + locsymcount;
2362 if (! htab->elf.dynamic_sections_created)
2363 {
2364 /* Won't be used, but be safe. */
2365 for (; local_plt < end_local_plt; ++local_plt)
2366 *local_plt = (bfd_vma) -1;
2367 }
2368 else
2369 {
2370 s = htab->splt;
2371 srel = htab->srelplt;
2372 for (; local_plt < end_local_plt; ++local_plt)
2373 {
2374 if (*local_plt > 0)
2375 {
2376 *local_plt = s->_raw_size;
2377 s->_raw_size += PLT_ENTRY_SIZE;
2378 if (info->shared)
2379 srel->_raw_size += sizeof (Elf32_External_Rela);
2380 }
2381 else
2382 *local_plt = (bfd_vma) -1;
2383 }
2384 }
2385 }
2386
2387 /* Do all the .plt entries without relocs first. The dynamic linker
2388 uses the last .plt reloc to find the end of the .plt (and hence
2389 the start of the .got) for lazy linking. */
2390 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2391
2392 /* Allocate global sym .plt and .got entries, and space for global
2393 sym dynamic relocs. */
2394 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2395
2396 /* The check_relocs and adjust_dynamic_symbol entry points have
2397 determined the sizes of the various dynamic sections. Allocate
2398 memory for them. */
2399 relocs = false;
2400 for (s = dynobj->sections; s != NULL; s = s->next)
2401 {
2402 if ((s->flags & SEC_LINKER_CREATED) == 0)
2403 continue;
2404
2405 if (s == htab->splt)
2406 {
2407 if (htab->need_plt_stub)
2408 {
2409 /* Make space for the plt stub at the end of the .plt
2410 section. We want this stub right at the end, up
2411 against the .got section. */
2412 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2413 int pltalign = bfd_section_alignment (dynobj, s);
2414 bfd_size_type mask;
2415
2416 if (gotalign > pltalign)
2417 bfd_set_section_alignment (dynobj, s, gotalign);
2418 mask = ((bfd_size_type) 1 << gotalign) - 1;
2419 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2420 }
2421 }
2422 else if (s == htab->sgot)
2423 ;
2424 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2425 {
2426 if (s->_raw_size != 0)
2427 {
2428 /* Remember whether there are any reloc sections other
2429 than .rela.plt. */
2430 if (s != htab->srelplt)
2431 relocs = true;
2432
2433 /* We use the reloc_count field as a counter if we need
2434 to copy relocs into the output file. */
2435 s->reloc_count = 0;
2436 }
2437 }
2438 else
2439 {
2440 /* It's not one of our sections, so don't allocate space. */
2441 continue;
2442 }
2443
2444 if (s->_raw_size == 0)
2445 {
2446 /* If we don't need this section, strip it from the
2447 output file. This is mostly to handle .rela.bss and
2448 .rela.plt. We must create both sections in
2449 create_dynamic_sections, because they must be created
2450 before the linker maps input sections to output
2451 sections. The linker does that before
2452 adjust_dynamic_symbol is called, and it is that
2453 function which decides whether anything needs to go
2454 into these sections. */
2455 _bfd_strip_section_from_output (info, s);
2456 continue;
2457 }
2458
2459 /* Allocate memory for the section contents. Zero it, because
2460 we may not fill in all the reloc sections. */
2461 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2462 if (s->contents == NULL && s->_raw_size != 0)
2463 return false;
2464 }
2465
2466 if (htab->elf.dynamic_sections_created)
2467 {
2468 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2469 actually has nothing to do with the PLT, it is how we
2470 communicate the LTP value of a load module to the dynamic
2471 linker. */
2472 #define add_dynamic_entry(TAG, VAL) \
2473 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2474
2475 if (!add_dynamic_entry (DT_PLTGOT, 0))
2476 return false;
2477
2478 /* Add some entries to the .dynamic section. We fill in the
2479 values later, in elf32_hppa_finish_dynamic_sections, but we
2480 must add the entries now so that we get the correct size for
2481 the .dynamic section. The DT_DEBUG entry is filled in by the
2482 dynamic linker and used by the debugger. */
2483 if (!info->shared)
2484 {
2485 if (!add_dynamic_entry (DT_DEBUG, 0))
2486 return false;
2487 }
2488
2489 if (htab->srelplt->_raw_size != 0)
2490 {
2491 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2492 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2493 || !add_dynamic_entry (DT_JMPREL, 0))
2494 return false;
2495 }
2496
2497 if (relocs)
2498 {
2499 if (!add_dynamic_entry (DT_RELA, 0)
2500 || !add_dynamic_entry (DT_RELASZ, 0)
2501 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2502 return false;
2503
2504 /* If any dynamic relocs apply to a read-only section,
2505 then we need a DT_TEXTREL entry. */
2506 if ((info->flags & DF_TEXTREL) == 0)
2507 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2508 (PTR) info);
2509
2510 if ((info->flags & DF_TEXTREL) != 0)
2511 {
2512 if (!add_dynamic_entry (DT_TEXTREL, 0))
2513 return false;
2514 }
2515 }
2516 }
2517 #undef add_dynamic_entry
2518
2519 return true;
2520 }
2521
2522 /* External entry points for sizing and building linker stubs. */
2523
2524 /* Determine and set the size of the stub section for a final link.
2525
2526 The basic idea here is to examine all the relocations looking for
2527 PC-relative calls to a target that is unreachable with a "bl"
2528 instruction. */
2529
2530 boolean
2531 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2532 add_stub_section, layout_sections_again)
2533 bfd *output_bfd;
2534 bfd *stub_bfd;
2535 struct bfd_link_info *info;
2536 boolean multi_subspace;
2537 bfd_signed_vma group_size;
2538 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2539 void (*layout_sections_again) PARAMS ((void));
2540 {
2541 bfd *input_bfd;
2542 asection *section;
2543 asection **input_list, **list;
2544 Elf_Internal_Sym *local_syms, **all_local_syms;
2545 unsigned int bfd_indx, bfd_count;
2546 int top_id, top_index;
2547 struct elf32_hppa_link_hash_table *htab;
2548 bfd_size_type stub_group_size;
2549 boolean stubs_always_before_branch;
2550 boolean stub_changed = 0;
2551 boolean ret = 0;
2552 bfd_size_type amt;
2553
2554 htab = hppa_link_hash_table (info);
2555
2556 /* Stash our params away. */
2557 htab->stub_bfd = stub_bfd;
2558 htab->multi_subspace = multi_subspace;
2559 htab->add_stub_section = add_stub_section;
2560 htab->layout_sections_again = layout_sections_again;
2561 stubs_always_before_branch = group_size < 0;
2562 if (group_size < 0)
2563 stub_group_size = -group_size;
2564 else
2565 stub_group_size = group_size;
2566 if (stub_group_size == 1)
2567 {
2568 /* Default values. */
2569 stub_group_size = 7680000;
2570 if (htab->has_17bit_branch || htab->multi_subspace)
2571 stub_group_size = 240000;
2572 if (htab->has_12bit_branch)
2573 stub_group_size = 7500;
2574 }
2575
2576 /* Count the number of input BFDs and find the top input section id. */
2577 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2578 input_bfd != NULL;
2579 input_bfd = input_bfd->link_next)
2580 {
2581 bfd_count += 1;
2582 for (section = input_bfd->sections;
2583 section != NULL;
2584 section = section->next)
2585 {
2586 if (top_id < section->id)
2587 top_id = section->id;
2588 }
2589 }
2590
2591 amt = sizeof (struct map_stub) * (top_id + 1);
2592 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2593 if (htab->stub_group == NULL)
2594 return false;
2595
2596 /* Make a list of input sections for each output section included in
2597 the link.
2598
2599 We can't use output_bfd->section_count here to find the top output
2600 section index as some sections may have been removed, and
2601 _bfd_strip_section_from_output doesn't renumber the indices. */
2602 for (section = output_bfd->sections, top_index = 0;
2603 section != NULL;
2604 section = section->next)
2605 {
2606 if (top_index < section->index)
2607 top_index = section->index;
2608 }
2609
2610 amt = sizeof (asection *) * (top_index + 1);
2611 input_list = (asection **) bfd_malloc (amt);
2612 if (input_list == NULL)
2613 return false;
2614
2615 /* For sections we aren't interested in, mark their entries with a
2616 value we can check later. */
2617 list = input_list + top_index;
2618 do
2619 *list = bfd_abs_section_ptr;
2620 while (list-- != input_list);
2621
2622 for (section = output_bfd->sections;
2623 section != NULL;
2624 section = section->next)
2625 {
2626 if ((section->flags & SEC_CODE) != 0)
2627 input_list[section->index] = NULL;
2628 }
2629
2630 /* Now actually build the lists. */
2631 for (input_bfd = info->input_bfds;
2632 input_bfd != NULL;
2633 input_bfd = input_bfd->link_next)
2634 {
2635 for (section = input_bfd->sections;
2636 section != NULL;
2637 section = section->next)
2638 {
2639 if (section->output_section != NULL
2640 && section->output_section->owner == output_bfd
2641 && section->output_section->index <= top_index)
2642 {
2643 list = input_list + section->output_section->index;
2644 if (*list != bfd_abs_section_ptr)
2645 {
2646 /* Steal the link_sec pointer for our list. */
2647 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2648 /* This happens to make the list in reverse order,
2649 which is what we want. */
2650 PREV_SEC (section) = *list;
2651 *list = section;
2652 }
2653 }
2654 }
2655 }
2656
2657 /* See whether we can group stub sections together. Grouping stub
2658 sections may result in fewer stubs. More importantly, we need to
2659 put all .init* and .fini* stubs at the beginning of the .init or
2660 .fini output sections respectively, because glibc splits the
2661 _init and _fini functions into multiple parts. Putting a stub in
2662 the middle of a function is not a good idea. */
2663 list = input_list + top_index;
2664 do
2665 {
2666 asection *tail = *list;
2667 if (tail == bfd_abs_section_ptr)
2668 continue;
2669 while (tail != NULL)
2670 {
2671 asection *curr;
2672 asection *prev;
2673 bfd_size_type total;
2674
2675 curr = tail;
2676 if (tail->_cooked_size)
2677 total = tail->_cooked_size;
2678 else
2679 total = tail->_raw_size;
2680 while ((prev = PREV_SEC (curr)) != NULL
2681 && ((total += curr->output_offset - prev->output_offset)
2682 < stub_group_size))
2683 curr = prev;
2684
2685 /* OK, the size from the start of CURR to the end is less
2686 than 240000 bytes and thus can be handled by one stub
2687 section. (or the tail section is itself larger than
2688 240000 bytes, in which case we may be toast.)
2689 We should really be keeping track of the total size of
2690 stubs added here, as stubs contribute to the final output
2691 section size. That's a little tricky, and this way will
2692 only break if stubs added total more than 22144 bytes, or
2693 2768 long branch stubs. It seems unlikely for more than
2694 2768 different functions to be called, especially from
2695 code only 240000 bytes long. This limit used to be
2696 250000, but c++ code tends to generate lots of little
2697 functions, and sometimes violated the assumption. */
2698 do
2699 {
2700 prev = PREV_SEC (tail);
2701 /* Set up this stub group. */
2702 htab->stub_group[tail->id].link_sec = curr;
2703 }
2704 while (tail != curr && (tail = prev) != NULL);
2705
2706 /* But wait, there's more! Input sections up to 240000
2707 bytes before the stub section can be handled by it too. */
2708 if (!stubs_always_before_branch)
2709 {
2710 total = 0;
2711 while (prev != NULL
2712 && ((total += tail->output_offset - prev->output_offset)
2713 < stub_group_size))
2714 {
2715 tail = prev;
2716 prev = PREV_SEC (tail);
2717 htab->stub_group[tail->id].link_sec = curr;
2718 }
2719 }
2720 tail = prev;
2721 }
2722 }
2723 while (list-- != input_list);
2724 free (input_list);
2725 #undef PREV_SEC
2726
2727 /* We want to read in symbol extension records only once. To do this
2728 we need to read in the local symbols in parallel and save them for
2729 later use; so hold pointers to the local symbols in an array. */
2730 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
2731 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2732 if (all_local_syms == NULL)
2733 return false;
2734
2735 /* Walk over all the input BFDs, swapping in local symbols.
2736 If we are creating a shared library, create hash entries for the
2737 export stubs. */
2738 for (input_bfd = info->input_bfds, bfd_indx = 0;
2739 input_bfd != NULL;
2740 input_bfd = input_bfd->link_next, bfd_indx++)
2741 {
2742 Elf_Internal_Shdr *symtab_hdr;
2743 Elf_Internal_Shdr *shndx_hdr;
2744 Elf_Internal_Sym *isym;
2745 Elf32_External_Sym *ext_syms, *esym, *end_sy;
2746 Elf_External_Sym_Shndx *shndx_buf, *shndx;
2747 bfd_size_type sec_size;
2748
2749 /* We'll need the symbol table in a second. */
2750 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2751 if (symtab_hdr->sh_info == 0)
2752 continue;
2753
2754 /* We need an array of the local symbols attached to the input bfd.
2755 Unfortunately, we're going to have to read & swap them in. */
2756 sec_size = symtab_hdr->sh_info;
2757 sec_size *= sizeof (Elf_Internal_Sym);
2758 local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size);
2759 if (local_syms == NULL)
2760 goto error_ret_free_local;
2761
2762 all_local_syms[bfd_indx] = local_syms;
2763 sec_size = symtab_hdr->sh_info;
2764 sec_size *= sizeof (Elf32_External_Sym);
2765 ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size);
2766 if (ext_syms == NULL)
2767 goto error_ret_free_local;
2768
2769 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2770 || bfd_bread ((PTR) ext_syms, sec_size, input_bfd) != sec_size)
2771 {
2772 error_ret_free_ext_syms:
2773 free (ext_syms);
2774 goto error_ret_free_local;
2775 }
2776
2777 shndx_buf = NULL;
2778 shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr;
2779 if (shndx_hdr->sh_size != 0)
2780 {
2781 sec_size = symtab_hdr->sh_info;
2782 sec_size *= sizeof (Elf_External_Sym_Shndx);
2783 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (sec_size);
2784 if (shndx_buf == NULL)
2785 goto error_ret_free_ext_syms;
2786
2787 if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0
2788 || bfd_bread ((PTR) shndx_buf, sec_size, input_bfd) != sec_size)
2789 {
2790 free (shndx_buf);
2791 goto error_ret_free_ext_syms;
2792 }
2793 }
2794
2795 /* Swap the local symbols in. */
2796 for (esym = ext_syms, end_sy = esym + symtab_hdr->sh_info,
2797 isym = local_syms, shndx = shndx_buf;
2798 esym < end_sy;
2799 esym++, isym++, shndx = (shndx ? shndx + 1 : NULL))
2800 bfd_elf32_swap_symbol_in (input_bfd, esym, shndx, isym);
2801
2802 /* Now we can free the external symbols. */
2803 free (shndx_buf);
2804 free (ext_syms);
2805
2806 if (info->shared && htab->multi_subspace)
2807 {
2808 struct elf_link_hash_entry **sym_hashes;
2809 struct elf_link_hash_entry **end_hashes;
2810 unsigned int symcount;
2811
2812 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2813 - symtab_hdr->sh_info);
2814 sym_hashes = elf_sym_hashes (input_bfd);
2815 end_hashes = sym_hashes + symcount;
2816
2817 /* Look through the global syms for functions; We need to
2818 build export stubs for all globally visible functions. */
2819 for (; sym_hashes < end_hashes; sym_hashes++)
2820 {
2821 struct elf32_hppa_link_hash_entry *hash;
2822
2823 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2824
2825 while (hash->elf.root.type == bfd_link_hash_indirect
2826 || hash->elf.root.type == bfd_link_hash_warning)
2827 hash = ((struct elf32_hppa_link_hash_entry *)
2828 hash->elf.root.u.i.link);
2829
2830 /* At this point in the link, undefined syms have been
2831 resolved, so we need to check that the symbol was
2832 defined in this BFD. */
2833 if ((hash->elf.root.type == bfd_link_hash_defined
2834 || hash->elf.root.type == bfd_link_hash_defweak)
2835 && hash->elf.type == STT_FUNC
2836 && hash->elf.root.u.def.section->output_section != NULL
2837 && (hash->elf.root.u.def.section->output_section->owner
2838 == output_bfd)
2839 && hash->elf.root.u.def.section->owner == input_bfd
2840 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2841 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2842 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2843 {
2844 asection *sec;
2845 const char *stub_name;
2846 struct elf32_hppa_stub_hash_entry *stub_entry;
2847
2848 sec = hash->elf.root.u.def.section;
2849 stub_name = hash->elf.root.root.string;
2850 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2851 stub_name,
2852 false, false);
2853 if (stub_entry == NULL)
2854 {
2855 stub_entry = hppa_add_stub (stub_name, sec, htab);
2856 if (!stub_entry)
2857 goto error_ret_free_local;
2858
2859 stub_entry->target_value = hash->elf.root.u.def.value;
2860 stub_entry->target_section = hash->elf.root.u.def.section;
2861 stub_entry->stub_type = hppa_stub_export;
2862 stub_entry->h = hash;
2863 stub_changed = 1;
2864 }
2865 else
2866 {
2867 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2868 bfd_archive_filename (input_bfd),
2869 stub_name);
2870 }
2871 }
2872 }
2873 }
2874 }
2875
2876 while (1)
2877 {
2878 asection *stub_sec;
2879
2880 for (input_bfd = info->input_bfds, bfd_indx = 0;
2881 input_bfd != NULL;
2882 input_bfd = input_bfd->link_next, bfd_indx++)
2883 {
2884 Elf_Internal_Shdr *symtab_hdr;
2885
2886 /* We'll need the symbol table in a second. */
2887 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2888 if (symtab_hdr->sh_info == 0)
2889 continue;
2890
2891 local_syms = all_local_syms[bfd_indx];
2892
2893 /* Walk over each section attached to the input bfd. */
2894 for (section = input_bfd->sections;
2895 section != NULL;
2896 section = section->next)
2897 {
2898 Elf_Internal_Shdr *input_rel_hdr;
2899 Elf32_External_Rela *external_relocs, *erelaend, *erela;
2900 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2901
2902 /* If there aren't any relocs, then there's nothing more
2903 to do. */
2904 if ((section->flags & SEC_RELOC) == 0
2905 || section->reloc_count == 0)
2906 continue;
2907
2908 /* If this section is a link-once section that will be
2909 discarded, then don't create any stubs. */
2910 if (section->output_section == NULL
2911 || section->output_section->owner != output_bfd)
2912 continue;
2913
2914 /* Allocate space for the external relocations. */
2915 amt = section->reloc_count;
2916 amt *= sizeof (Elf32_External_Rela);
2917 external_relocs = (Elf32_External_Rela *) bfd_malloc (amt);
2918 if (external_relocs == NULL)
2919 {
2920 goto error_ret_free_local;
2921 }
2922
2923 /* Likewise for the internal relocations. */
2924 amt = section->reloc_count;
2925 amt *= sizeof (Elf_Internal_Rela);
2926 internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
2927 if (internal_relocs == NULL)
2928 {
2929 free (external_relocs);
2930 goto error_ret_free_local;
2931 }
2932
2933 /* Read in the external relocs. */
2934 input_rel_hdr = &elf_section_data (section)->rel_hdr;
2935 if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
2936 || bfd_bread ((PTR) external_relocs,
2937 input_rel_hdr->sh_size,
2938 input_bfd) != input_rel_hdr->sh_size)
2939 {
2940 free (external_relocs);
2941 error_ret_free_internal:
2942 free (internal_relocs);
2943 goto error_ret_free_local;
2944 }
2945
2946 /* Swap in the relocs. */
2947 erela = external_relocs;
2948 erelaend = erela + section->reloc_count;
2949 irela = internal_relocs;
2950 for (; erela < erelaend; erela++, irela++)
2951 bfd_elf32_swap_reloca_in (input_bfd, erela, irela);
2952
2953 /* We're done with the external relocs, free them. */
2954 free (external_relocs);
2955
2956 /* Now examine each relocation. */
2957 irela = internal_relocs;
2958 irelaend = irela + section->reloc_count;
2959 for (; irela < irelaend; irela++)
2960 {
2961 unsigned int r_type, r_indx;
2962 enum elf32_hppa_stub_type stub_type;
2963 struct elf32_hppa_stub_hash_entry *stub_entry;
2964 asection *sym_sec;
2965 bfd_vma sym_value;
2966 bfd_vma destination;
2967 struct elf32_hppa_link_hash_entry *hash;
2968 char *stub_name;
2969 const asection *id_sec;
2970
2971 r_type = ELF32_R_TYPE (irela->r_info);
2972 r_indx = ELF32_R_SYM (irela->r_info);
2973
2974 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2975 {
2976 bfd_set_error (bfd_error_bad_value);
2977 goto error_ret_free_internal;
2978 }
2979
2980 /* Only look for stubs on call instructions. */
2981 if (r_type != (unsigned int) R_PARISC_PCREL12F
2982 && r_type != (unsigned int) R_PARISC_PCREL17F
2983 && r_type != (unsigned int) R_PARISC_PCREL22F)
2984 continue;
2985
2986 /* Now determine the call target, its name, value,
2987 section. */
2988 sym_sec = NULL;
2989 sym_value = 0;
2990 destination = 0;
2991 hash = NULL;
2992 if (r_indx < symtab_hdr->sh_info)
2993 {
2994 /* It's a local symbol. */
2995 Elf_Internal_Sym *sym;
2996 Elf_Internal_Shdr *hdr;
2997
2998 sym = local_syms + r_indx;
2999 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3000 sym_sec = hdr->bfd_section;
3001 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3002 sym_value = sym->st_value;
3003 destination = (sym_value + irela->r_addend
3004 + sym_sec->output_offset
3005 + sym_sec->output_section->vma);
3006 }
3007 else
3008 {
3009 /* It's an external symbol. */
3010 int e_indx;
3011
3012 e_indx = r_indx - symtab_hdr->sh_info;
3013 hash = ((struct elf32_hppa_link_hash_entry *)
3014 elf_sym_hashes (input_bfd)[e_indx]);
3015
3016 while (hash->elf.root.type == bfd_link_hash_indirect
3017 || hash->elf.root.type == bfd_link_hash_warning)
3018 hash = ((struct elf32_hppa_link_hash_entry *)
3019 hash->elf.root.u.i.link);
3020
3021 if (hash->elf.root.type == bfd_link_hash_defined
3022 || hash->elf.root.type == bfd_link_hash_defweak)
3023 {
3024 sym_sec = hash->elf.root.u.def.section;
3025 sym_value = hash->elf.root.u.def.value;
3026 if (sym_sec->output_section != NULL)
3027 destination = (sym_value + irela->r_addend
3028 + sym_sec->output_offset
3029 + sym_sec->output_section->vma);
3030 }
3031 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3032 {
3033 if (! info->shared)
3034 continue;
3035 }
3036 else if (hash->elf.root.type == bfd_link_hash_undefined)
3037 {
3038 if (! (info->shared
3039 && !info->no_undefined
3040 && (ELF_ST_VISIBILITY (hash->elf.other)
3041 == STV_DEFAULT)
3042 && hash->elf.type != STT_PARISC_MILLI))
3043 continue;
3044 }
3045 else
3046 {
3047 bfd_set_error (bfd_error_bad_value);
3048 goto error_ret_free_internal;
3049 }
3050 }
3051
3052 /* Determine what (if any) linker stub is needed. */
3053 stub_type = hppa_type_of_stub (section, irela, hash,
3054 destination);
3055 if (stub_type == hppa_stub_none)
3056 continue;
3057
3058 /* Support for grouping stub sections. */
3059 id_sec = htab->stub_group[section->id].link_sec;
3060
3061 /* Get the name of this stub. */
3062 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3063 if (!stub_name)
3064 goto error_ret_free_internal;
3065
3066 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3067 stub_name,
3068 false, false);
3069 if (stub_entry != NULL)
3070 {
3071 /* The proper stub has already been created. */
3072 free (stub_name);
3073 continue;
3074 }
3075
3076 stub_entry = hppa_add_stub (stub_name, section, htab);
3077 if (stub_entry == NULL)
3078 {
3079 free (stub_name);
3080 goto error_ret_free_local;
3081 }
3082
3083 stub_entry->target_value = sym_value;
3084 stub_entry->target_section = sym_sec;
3085 stub_entry->stub_type = stub_type;
3086 if (info->shared)
3087 {
3088 if (stub_type == hppa_stub_import)
3089 stub_entry->stub_type = hppa_stub_import_shared;
3090 else if (stub_type == hppa_stub_long_branch)
3091 stub_entry->stub_type = hppa_stub_long_branch_shared;
3092 }
3093 stub_entry->h = hash;
3094 stub_changed = 1;
3095 }
3096
3097 /* We're done with the internal relocs, free them. */
3098 free (internal_relocs);
3099 }
3100 }
3101
3102 if (!stub_changed)
3103 break;
3104
3105 /* OK, we've added some stubs. Find out the new size of the
3106 stub sections. */
3107 for (stub_sec = htab->stub_bfd->sections;
3108 stub_sec != NULL;
3109 stub_sec = stub_sec->next)
3110 {
3111 stub_sec->_raw_size = 0;
3112 stub_sec->_cooked_size = 0;
3113 }
3114
3115 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3116
3117 /* Ask the linker to do its stuff. */
3118 (*htab->layout_sections_again) ();
3119 stub_changed = 0;
3120 }
3121
3122 ret = 1;
3123
3124 error_ret_free_local:
3125 while (bfd_count-- > 0)
3126 if (all_local_syms[bfd_count])
3127 free (all_local_syms[bfd_count]);
3128 free (all_local_syms);
3129
3130 return ret;
3131 }
3132
3133 /* For a final link, this function is called after we have sized the
3134 stubs to provide a value for __gp. */
3135
3136 boolean
3137 elf32_hppa_set_gp (abfd, info)
3138 bfd *abfd;
3139 struct bfd_link_info *info;
3140 {
3141 struct elf32_hppa_link_hash_table *htab;
3142 struct elf_link_hash_entry *h;
3143 asection *sec;
3144 bfd_vma gp_val;
3145
3146 htab = hppa_link_hash_table (info);
3147 h = elf_link_hash_lookup (&htab->elf, "$global$", false, false, false);
3148
3149 if (h != NULL
3150 && (h->root.type == bfd_link_hash_defined
3151 || h->root.type == bfd_link_hash_defweak))
3152 {
3153 gp_val = h->root.u.def.value;
3154 sec = h->root.u.def.section;
3155 }
3156 else
3157 {
3158 /* Choose to point our LTP at, in this order, one of .plt, .got,
3159 or .data, if these sections exist. In the case of choosing
3160 .plt try to make the LTP ideal for addressing anywhere in the
3161 .plt or .got with a 14 bit signed offset. Typically, the end
3162 of the .plt is the start of the .got, so choose .plt + 0x2000
3163 if either the .plt or .got is larger than 0x2000. If both
3164 the .plt and .got are smaller than 0x2000, choose the end of
3165 the .plt section. */
3166
3167 sec = htab->splt;
3168 if (sec != NULL)
3169 {
3170 gp_val = sec->_raw_size;
3171 if (gp_val > 0x2000
3172 || (htab->sgot && htab->sgot->_raw_size > 0x2000))
3173 {
3174 gp_val = 0x2000;
3175 }
3176 }
3177 else
3178 {
3179 gp_val = 0;
3180 sec = htab->sgot;
3181 if (sec != NULL)
3182 {
3183 /* We know we don't have a .plt. If .got is large,
3184 offset our LTP. */
3185 if (sec->_raw_size > 0x2000)
3186 gp_val = 0x2000;
3187 }
3188 else
3189 {
3190 /* No .plt or .got. Who cares what the LTP is? */
3191 sec = bfd_get_section_by_name (abfd, ".data");
3192 }
3193 }
3194
3195 if (h != NULL)
3196 {
3197 h->root.type = bfd_link_hash_defined;
3198 h->root.u.def.value = gp_val;
3199 if (sec != NULL)
3200 h->root.u.def.section = sec;
3201 else
3202 h->root.u.def.section = bfd_abs_section_ptr;
3203 }
3204 }
3205
3206 if (sec != NULL && sec->output_section != NULL)
3207 gp_val += sec->output_section->vma + sec->output_offset;
3208
3209 elf_gp (abfd) = gp_val;
3210 return true;
3211 }
3212
3213 /* Build all the stubs associated with the current output file. The
3214 stubs are kept in a hash table attached to the main linker hash
3215 table. We also set up the .plt entries for statically linked PIC
3216 functions here. This function is called via hppaelf_finish in the
3217 linker. */
3218
3219 boolean
3220 elf32_hppa_build_stubs (info)
3221 struct bfd_link_info *info;
3222 {
3223 asection *stub_sec;
3224 struct bfd_hash_table *table;
3225 struct elf32_hppa_link_hash_table *htab;
3226
3227 htab = hppa_link_hash_table (info);
3228
3229 for (stub_sec = htab->stub_bfd->sections;
3230 stub_sec != NULL;
3231 stub_sec = stub_sec->next)
3232 {
3233 bfd_size_type size;
3234
3235 /* Allocate memory to hold the linker stubs. */
3236 size = stub_sec->_raw_size;
3237 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3238 if (stub_sec->contents == NULL && size != 0)
3239 return false;
3240 stub_sec->_raw_size = 0;
3241 }
3242
3243 /* Build the stubs as directed by the stub hash table. */
3244 table = &htab->stub_hash_table;
3245 bfd_hash_traverse (table, hppa_build_one_stub, info);
3246
3247 return true;
3248 }
3249
3250 /* Perform a final link. */
3251
3252 static boolean
3253 elf32_hppa_final_link (abfd, info)
3254 bfd *abfd;
3255 struct bfd_link_info *info;
3256 {
3257 asection *s;
3258
3259 /* Invoke the regular ELF linker to do all the work. */
3260 if (!bfd_elf32_bfd_final_link (abfd, info))
3261 return false;
3262
3263 /* If we're producing a final executable, sort the contents of the
3264 unwind section. Magic section names, but this is much safer than
3265 having elf32_hppa_relocate_section remember where SEGREL32 relocs
3266 occurred. Consider what happens if someone inept creates a
3267 linker script that puts unwind information in .text. */
3268 s = bfd_get_section_by_name (abfd, ".PARISC.unwind");
3269 if (s != NULL)
3270 {
3271 bfd_size_type size;
3272 char *contents;
3273
3274 size = s->_raw_size;
3275 contents = bfd_malloc (size);
3276 if (contents == NULL)
3277 return false;
3278
3279 if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size))
3280 return false;
3281
3282 qsort (contents, (size_t) (size / 16), 16, hppa_unwind_entry_compare);
3283
3284 if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size))
3285 return false;
3286 }
3287 return true;
3288 }
3289
3290 /* Record the lowest address for the data and text segments. */
3291
3292 static void
3293 hppa_record_segment_addr (abfd, section, data)
3294 bfd *abfd ATTRIBUTE_UNUSED;
3295 asection *section;
3296 PTR data;
3297 {
3298 struct elf32_hppa_link_hash_table *htab;
3299
3300 htab = (struct elf32_hppa_link_hash_table *) data;
3301
3302 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3303 {
3304 bfd_vma value = section->vma - section->filepos;
3305
3306 if ((section->flags & SEC_READONLY) != 0)
3307 {
3308 if (value < htab->text_segment_base)
3309 htab->text_segment_base = value;
3310 }
3311 else
3312 {
3313 if (value < htab->data_segment_base)
3314 htab->data_segment_base = value;
3315 }
3316 }
3317 }
3318
3319 /* Perform a relocation as part of a final link. */
3320
3321 static bfd_reloc_status_type
3322 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3323 asection *input_section;
3324 bfd_byte *contents;
3325 const Elf_Internal_Rela *rel;
3326 bfd_vma value;
3327 struct elf32_hppa_link_hash_table *htab;
3328 asection *sym_sec;
3329 struct elf32_hppa_link_hash_entry *h;
3330 {
3331 int insn;
3332 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3333 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3334 int r_format = howto->bitsize;
3335 enum hppa_reloc_field_selector_type_alt r_field;
3336 bfd *input_bfd = input_section->owner;
3337 bfd_vma offset = rel->r_offset;
3338 bfd_vma max_branch_offset = 0;
3339 bfd_byte *hit_data = contents + offset;
3340 bfd_signed_vma addend = rel->r_addend;
3341 bfd_vma location;
3342 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3343 int val;
3344
3345 if (r_type == R_PARISC_NONE)
3346 return bfd_reloc_ok;
3347
3348 insn = bfd_get_32 (input_bfd, hit_data);
3349
3350 /* Find out where we are and where we're going. */
3351 location = (offset +
3352 input_section->output_offset +
3353 input_section->output_section->vma);
3354
3355 switch (r_type)
3356 {
3357 case R_PARISC_PCREL12F:
3358 case R_PARISC_PCREL17F:
3359 case R_PARISC_PCREL22F:
3360 /* If this is a call to a function defined in another dynamic
3361 library, or if it is a call to a PIC function in the same
3362 object, or if this is a shared link and it is a call to a
3363 weak symbol which may or may not be in the same object, then
3364 find the import stub in the stub hash. */
3365 if (sym_sec == NULL
3366 || sym_sec->output_section == NULL
3367 || (h != NULL
3368 && ((h->maybe_pic_call
3369 && !(input_section->flags & SEC_HAS_GOT_REF))
3370 || (h->elf.root.type == bfd_link_hash_defweak
3371 && h->elf.dynindx != -1
3372 && h->elf.plt.offset != (bfd_vma) -1))))
3373 {
3374 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3375 h, rel, htab);
3376 if (stub_entry != NULL)
3377 {
3378 value = (stub_entry->stub_offset
3379 + stub_entry->stub_sec->output_offset
3380 + stub_entry->stub_sec->output_section->vma);
3381 addend = 0;
3382 }
3383 else if (sym_sec == NULL && h != NULL
3384 && h->elf.root.type == bfd_link_hash_undefweak)
3385 {
3386 /* It's OK if undefined weak. Calls to undefined weak
3387 symbols behave as if the "called" function
3388 immediately returns. We can thus call to a weak
3389 function without first checking whether the function
3390 is defined. */
3391 value = location;
3392 addend = 8;
3393 }
3394 else
3395 return bfd_reloc_undefined;
3396 }
3397 /* Fall thru. */
3398
3399 case R_PARISC_PCREL21L:
3400 case R_PARISC_PCREL17C:
3401 case R_PARISC_PCREL17R:
3402 case R_PARISC_PCREL14R:
3403 case R_PARISC_PCREL14F:
3404 /* Make it a pc relative offset. */
3405 value -= location;
3406 addend -= 8;
3407 break;
3408
3409 case R_PARISC_DPREL21L:
3410 case R_PARISC_DPREL14R:
3411 case R_PARISC_DPREL14F:
3412 /* For all the DP relative relocations, we need to examine the symbol's
3413 section. If it's a code section, then "data pointer relative" makes
3414 no sense. In that case we don't adjust the "value", and for 21 bit
3415 addil instructions, we change the source addend register from %dp to
3416 %r0. This situation commonly arises when a variable's "constness"
3417 is declared differently from the way the variable is defined. For
3418 instance: "extern int foo" with foo defined as "const int foo". */
3419 if (sym_sec == NULL)
3420 break;
3421 if ((sym_sec->flags & SEC_CODE) != 0)
3422 {
3423 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3424 == (((int) OP_ADDIL << 26) | (27 << 21)))
3425 {
3426 insn &= ~ (0x1f << 21);
3427 #if 1 /* debug them. */
3428 (*_bfd_error_handler)
3429 (_("%s(%s+0x%lx): fixing %s"),
3430 bfd_archive_filename (input_bfd),
3431 input_section->name,
3432 (long) rel->r_offset,
3433 howto->name);
3434 #endif
3435 }
3436 /* Now try to make things easy for the dynamic linker. */
3437
3438 break;
3439 }
3440 /* Fall thru. */
3441
3442 case R_PARISC_DLTIND21L:
3443 case R_PARISC_DLTIND14R:
3444 case R_PARISC_DLTIND14F:
3445 value -= elf_gp (input_section->output_section->owner);
3446 break;
3447
3448 case R_PARISC_SEGREL32:
3449 if ((sym_sec->flags & SEC_CODE) != 0)
3450 value -= htab->text_segment_base;
3451 else
3452 value -= htab->data_segment_base;
3453 break;
3454
3455 default:
3456 break;
3457 }
3458
3459 switch (r_type)
3460 {
3461 case R_PARISC_DIR32:
3462 case R_PARISC_DIR14F:
3463 case R_PARISC_DIR17F:
3464 case R_PARISC_PCREL17C:
3465 case R_PARISC_PCREL14F:
3466 case R_PARISC_DPREL14F:
3467 case R_PARISC_PLABEL32:
3468 case R_PARISC_DLTIND14F:
3469 case R_PARISC_SEGBASE:
3470 case R_PARISC_SEGREL32:
3471 r_field = e_fsel;
3472 break;
3473
3474 case R_PARISC_DLTIND21L:
3475 case R_PARISC_PCREL21L:
3476 case R_PARISC_PLABEL21L:
3477 r_field = e_lsel;
3478 break;
3479
3480 case R_PARISC_DIR21L:
3481 case R_PARISC_DPREL21L:
3482 r_field = e_lrsel;
3483 break;
3484
3485 case R_PARISC_PCREL17R:
3486 case R_PARISC_PCREL14R:
3487 case R_PARISC_PLABEL14R:
3488 case R_PARISC_DLTIND14R:
3489 r_field = e_rsel;
3490 break;
3491
3492 case R_PARISC_DIR17R:
3493 case R_PARISC_DIR14R:
3494 case R_PARISC_DPREL14R:
3495 r_field = e_rrsel;
3496 break;
3497
3498 case R_PARISC_PCREL12F:
3499 case R_PARISC_PCREL17F:
3500 case R_PARISC_PCREL22F:
3501 r_field = e_fsel;
3502
3503 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3504 {
3505 max_branch_offset = (1 << (17-1)) << 2;
3506 }
3507 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3508 {
3509 max_branch_offset = (1 << (12-1)) << 2;
3510 }
3511 else
3512 {
3513 max_branch_offset = (1 << (22-1)) << 2;
3514 }
3515
3516 /* sym_sec is NULL on undefined weak syms or when shared on
3517 undefined syms. We've already checked for a stub for the
3518 shared undefined case. */
3519 if (sym_sec == NULL)
3520 break;
3521
3522 /* If the branch is out of reach, then redirect the
3523 call to the local stub for this function. */
3524 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3525 {
3526 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3527 h, rel, htab);
3528 if (stub_entry == NULL)
3529 return bfd_reloc_undefined;
3530
3531 /* Munge up the value and addend so that we call the stub
3532 rather than the procedure directly. */
3533 value = (stub_entry->stub_offset
3534 + stub_entry->stub_sec->output_offset
3535 + stub_entry->stub_sec->output_section->vma
3536 - location);
3537 addend = -8;
3538 }
3539 break;
3540
3541 /* Something we don't know how to handle. */
3542 default:
3543 return bfd_reloc_notsupported;
3544 }
3545
3546 /* Make sure we can reach the stub. */
3547 if (max_branch_offset != 0
3548 && value + addend + max_branch_offset >= 2*max_branch_offset)
3549 {
3550 (*_bfd_error_handler)
3551 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3552 bfd_archive_filename (input_bfd),
3553 input_section->name,
3554 (long) rel->r_offset,
3555 stub_entry->root.string);
3556 bfd_set_error (bfd_error_bad_value);
3557 return bfd_reloc_notsupported;
3558 }
3559
3560 val = hppa_field_adjust (value, addend, r_field);
3561
3562 switch (r_type)
3563 {
3564 case R_PARISC_PCREL12F:
3565 case R_PARISC_PCREL17C:
3566 case R_PARISC_PCREL17F:
3567 case R_PARISC_PCREL17R:
3568 case R_PARISC_PCREL22F:
3569 case R_PARISC_DIR17F:
3570 case R_PARISC_DIR17R:
3571 /* This is a branch. Divide the offset by four.
3572 Note that we need to decide whether it's a branch or
3573 otherwise by inspecting the reloc. Inspecting insn won't
3574 work as insn might be from a .word directive. */
3575 val >>= 2;
3576 break;
3577
3578 default:
3579 break;
3580 }
3581
3582 insn = hppa_rebuild_insn (insn, val, r_format);
3583
3584 /* Update the instruction word. */
3585 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3586 return bfd_reloc_ok;
3587 }
3588
3589 /* Relocate an HPPA ELF section. */
3590
3591 static boolean
3592 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3593 contents, relocs, local_syms, local_sections)
3594 bfd *output_bfd;
3595 struct bfd_link_info *info;
3596 bfd *input_bfd;
3597 asection *input_section;
3598 bfd_byte *contents;
3599 Elf_Internal_Rela *relocs;
3600 Elf_Internal_Sym *local_syms;
3601 asection **local_sections;
3602 {
3603 bfd_vma *local_got_offsets;
3604 struct elf32_hppa_link_hash_table *htab;
3605 Elf_Internal_Shdr *symtab_hdr;
3606 Elf_Internal_Rela *rel;
3607 Elf_Internal_Rela *relend;
3608
3609 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3610
3611 htab = hppa_link_hash_table (info);
3612 local_got_offsets = elf_local_got_offsets (input_bfd);
3613
3614 rel = relocs;
3615 relend = relocs + input_section->reloc_count;
3616 for (; rel < relend; rel++)
3617 {
3618 unsigned int r_type;
3619 reloc_howto_type *howto;
3620 unsigned int r_symndx;
3621 struct elf32_hppa_link_hash_entry *h;
3622 Elf_Internal_Sym *sym;
3623 asection *sym_sec;
3624 bfd_vma relocation;
3625 bfd_reloc_status_type r;
3626 const char *sym_name;
3627 boolean plabel;
3628 boolean warned_undef;
3629
3630 r_type = ELF32_R_TYPE (rel->r_info);
3631 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3632 {
3633 bfd_set_error (bfd_error_bad_value);
3634 return false;
3635 }
3636 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3637 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3638 continue;
3639
3640 r_symndx = ELF32_R_SYM (rel->r_info);
3641
3642 if (info->relocateable)
3643 {
3644 /* This is a relocatable link. We don't have to change
3645 anything, unless the reloc is against a section symbol,
3646 in which case we have to adjust according to where the
3647 section symbol winds up in the output section. */
3648 if (r_symndx < symtab_hdr->sh_info)
3649 {
3650 sym = local_syms + r_symndx;
3651 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3652 {
3653 sym_sec = local_sections[r_symndx];
3654 rel->r_addend += sym_sec->output_offset;
3655 }
3656 }
3657 continue;
3658 }
3659
3660 /* This is a final link. */
3661 h = NULL;
3662 sym = NULL;
3663 sym_sec = NULL;
3664 warned_undef = false;
3665 if (r_symndx < symtab_hdr->sh_info)
3666 {
3667 /* This is a local symbol, h defaults to NULL. */
3668 sym = local_syms + r_symndx;
3669 sym_sec = local_sections[r_symndx];
3670 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3671 }
3672 else
3673 {
3674 int indx;
3675
3676 /* It's a global; Find its entry in the link hash. */
3677 indx = r_symndx - symtab_hdr->sh_info;
3678 h = ((struct elf32_hppa_link_hash_entry *)
3679 elf_sym_hashes (input_bfd)[indx]);
3680 while (h->elf.root.type == bfd_link_hash_indirect
3681 || h->elf.root.type == bfd_link_hash_warning)
3682 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3683
3684 relocation = 0;
3685 if (h->elf.root.type == bfd_link_hash_defined
3686 || h->elf.root.type == bfd_link_hash_defweak)
3687 {
3688 sym_sec = h->elf.root.u.def.section;
3689 /* If sym_sec->output_section is NULL, then it's a
3690 symbol defined in a shared library. */
3691 if (sym_sec->output_section != NULL)
3692 relocation = (h->elf.root.u.def.value
3693 + sym_sec->output_offset
3694 + sym_sec->output_section->vma);
3695 }
3696 else if (h->elf.root.type == bfd_link_hash_undefweak)
3697 ;
3698 else if (info->shared && !info->no_undefined
3699 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3700 && h->elf.type != STT_PARISC_MILLI)
3701 {
3702 if (info->symbolic && !info->allow_shlib_undefined)
3703 {
3704 if (!((*info->callbacks->undefined_symbol)
3705 (info, h->elf.root.root.string, input_bfd,
3706 input_section, rel->r_offset, false)))
3707 return false;
3708 warned_undef = true;
3709 }
3710 }
3711 else
3712 {
3713 if (!((*info->callbacks->undefined_symbol)
3714 (info, h->elf.root.root.string, input_bfd,
3715 input_section, rel->r_offset, true)))
3716 return false;
3717 warned_undef = true;
3718 }
3719 }
3720
3721 /* Do any required modifications to the relocation value, and
3722 determine what types of dynamic info we need to output, if
3723 any. */
3724 plabel = 0;
3725 switch (r_type)
3726 {
3727 case R_PARISC_DLTIND14F:
3728 case R_PARISC_DLTIND14R:
3729 case R_PARISC_DLTIND21L:
3730 {
3731 bfd_vma off;
3732 boolean do_got = 0;
3733
3734 /* Relocation is to the entry for this symbol in the
3735 global offset table. */
3736 if (h != NULL)
3737 {
3738 boolean dyn;
3739
3740 off = h->elf.got.offset;
3741 dyn = htab->elf.dynamic_sections_created;
3742 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3743 {
3744 /* If we aren't going to call finish_dynamic_symbol,
3745 then we need to handle initialisation of the .got
3746 entry and create needed relocs here. Since the
3747 offset must always be a multiple of 4, we use the
3748 least significant bit to record whether we have
3749 initialised it already. */
3750 if ((off & 1) != 0)
3751 off &= ~1;
3752 else
3753 {
3754 h->elf.got.offset |= 1;
3755 do_got = 1;
3756 }
3757 }
3758 }
3759 else
3760 {
3761 /* Local symbol case. */
3762 if (local_got_offsets == NULL)
3763 abort ();
3764
3765 off = local_got_offsets[r_symndx];
3766
3767 /* The offset must always be a multiple of 4. We use
3768 the least significant bit to record whether we have
3769 already generated the necessary reloc. */
3770 if ((off & 1) != 0)
3771 off &= ~1;
3772 else
3773 {
3774 local_got_offsets[r_symndx] |= 1;
3775 do_got = 1;
3776 }
3777 }
3778
3779 if (do_got)
3780 {
3781 if (info->shared)
3782 {
3783 /* Output a dynamic relocation for this GOT entry.
3784 In this case it is relative to the base of the
3785 object because the symbol index is zero. */
3786 Elf_Internal_Rela outrel;
3787 asection *srelgot = htab->srelgot;
3788 Elf32_External_Rela *loc;
3789
3790 outrel.r_offset = (off
3791 + htab->sgot->output_offset
3792 + htab->sgot->output_section->vma);
3793 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3794 outrel.r_addend = relocation;
3795 loc = (Elf32_External_Rela *) srelgot->contents;
3796 loc += srelgot->reloc_count++;
3797 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3798 }
3799 else
3800 bfd_put_32 (output_bfd, relocation,
3801 htab->sgot->contents + off);
3802 }
3803
3804 if (off >= (bfd_vma) -2)
3805 abort ();
3806
3807 /* Add the base of the GOT to the relocation value. */
3808 relocation = (off
3809 + htab->sgot->output_offset
3810 + htab->sgot->output_section->vma);
3811 }
3812 break;
3813
3814 case R_PARISC_SEGREL32:
3815 /* If this is the first SEGREL relocation, then initialize
3816 the segment base values. */
3817 if (htab->text_segment_base == (bfd_vma) -1)
3818 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3819 break;
3820
3821 case R_PARISC_PLABEL14R:
3822 case R_PARISC_PLABEL21L:
3823 case R_PARISC_PLABEL32:
3824 if (htab->elf.dynamic_sections_created)
3825 {
3826 bfd_vma off;
3827 boolean do_plt = 0;
3828
3829 /* If we have a global symbol with a PLT slot, then
3830 redirect this relocation to it. */
3831 if (h != NULL)
3832 {
3833 off = h->elf.plt.offset;
3834 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3835 {
3836 /* In a non-shared link, adjust_dynamic_symbols
3837 isn't called for symbols forced local. We
3838 need to write out the plt entry here. */
3839 if ((off & 1) != 0)
3840 off &= ~1;
3841 else
3842 {
3843 h->elf.plt.offset |= 1;
3844 do_plt = 1;
3845 }
3846 }
3847 }
3848 else
3849 {
3850 bfd_vma *local_plt_offsets;
3851
3852 if (local_got_offsets == NULL)
3853 abort ();
3854
3855 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3856 off = local_plt_offsets[r_symndx];
3857
3858 /* As for the local .got entry case, we use the last
3859 bit to record whether we've already initialised
3860 this local .plt entry. */
3861 if ((off & 1) != 0)
3862 off &= ~1;
3863 else
3864 {
3865 local_plt_offsets[r_symndx] |= 1;
3866 do_plt = 1;
3867 }
3868 }
3869
3870 if (do_plt)
3871 {
3872 if (info->shared)
3873 {
3874 /* Output a dynamic IPLT relocation for this
3875 PLT entry. */
3876 Elf_Internal_Rela outrel;
3877 asection *srelplt = htab->srelplt;
3878 Elf32_External_Rela *loc;
3879
3880 outrel.r_offset = (off
3881 + htab->splt->output_offset
3882 + htab->splt->output_section->vma);
3883 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3884 outrel.r_addend = relocation;
3885 loc = (Elf32_External_Rela *) srelplt->contents;
3886 loc += srelplt->reloc_count++;
3887 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3888 }
3889 else
3890 {
3891 bfd_put_32 (output_bfd,
3892 relocation,
3893 htab->splt->contents + off);
3894 bfd_put_32 (output_bfd,
3895 elf_gp (htab->splt->output_section->owner),
3896 htab->splt->contents + off + 4);
3897 }
3898 }
3899
3900 if (off >= (bfd_vma) -2)
3901 abort ();
3902
3903 /* PLABELs contain function pointers. Relocation is to
3904 the entry for the function in the .plt. The magic +2
3905 offset signals to $$dyncall that the function pointer
3906 is in the .plt and thus has a gp pointer too.
3907 Exception: Undefined PLABELs should have a value of
3908 zero. */
3909 if (h == NULL
3910 || (h->elf.root.type != bfd_link_hash_undefweak
3911 && h->elf.root.type != bfd_link_hash_undefined))
3912 {
3913 relocation = (off
3914 + htab->splt->output_offset
3915 + htab->splt->output_section->vma
3916 + 2);
3917 }
3918 plabel = 1;
3919 }
3920 /* Fall through and possibly emit a dynamic relocation. */
3921
3922 case R_PARISC_DIR17F:
3923 case R_PARISC_DIR17R:
3924 case R_PARISC_DIR14F:
3925 case R_PARISC_DIR14R:
3926 case R_PARISC_DIR21L:
3927 case R_PARISC_DPREL14F:
3928 case R_PARISC_DPREL14R:
3929 case R_PARISC_DPREL21L:
3930 case R_PARISC_DIR32:
3931 /* r_symndx will be zero only for relocs against symbols
3932 from removed linkonce sections, or sections discarded by
3933 a linker script. */
3934 if (r_symndx == 0
3935 || (input_section->flags & SEC_ALLOC) == 0)
3936 break;
3937
3938 /* The reloc types handled here and this conditional
3939 expression must match the code in ..check_relocs and
3940 allocate_dynrelocs. ie. We need exactly the same condition
3941 as in ..check_relocs, with some extra conditions (dynindx
3942 test in this case) to cater for relocs removed by
3943 allocate_dynrelocs. If you squint, the non-shared test
3944 here does indeed match the one in ..check_relocs, the
3945 difference being that here we test DEF_DYNAMIC as well as
3946 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3947 which is why we can't use just that test here.
3948 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3949 there all files have not been loaded. */
3950 if ((info->shared
3951 && (IS_ABSOLUTE_RELOC (r_type)
3952 || (h != NULL
3953 && h->elf.dynindx != -1
3954 && (!info->symbolic
3955 || (h->elf.elf_link_hash_flags
3956 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3957 || (!info->shared
3958 && h != NULL
3959 && h->elf.dynindx != -1
3960 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3961 && (((h->elf.elf_link_hash_flags
3962 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3963 && (h->elf.elf_link_hash_flags
3964 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3965 || h->elf.root.type == bfd_link_hash_undefweak
3966 || h->elf.root.type == bfd_link_hash_undefined)))
3967 {
3968 Elf_Internal_Rela outrel;
3969 boolean skip;
3970 asection *sreloc;
3971 Elf32_External_Rela *loc;
3972
3973 /* When generating a shared object, these relocations
3974 are copied into the output file to be resolved at run
3975 time. */
3976
3977 outrel.r_addend = rel->r_addend;
3978 outrel.r_offset =
3979 _bfd_elf_section_offset (output_bfd, info, input_section,
3980 rel->r_offset);
3981 skip = (outrel.r_offset == (bfd_vma) -1
3982 || outrel.r_offset == (bfd_vma) -2);
3983 outrel.r_offset += (input_section->output_offset
3984 + input_section->output_section->vma);
3985
3986 if (skip)
3987 {
3988 memset (&outrel, 0, sizeof (outrel));
3989 }
3990 else if (h != NULL
3991 && h->elf.dynindx != -1
3992 && (plabel
3993 || !IS_ABSOLUTE_RELOC (r_type)
3994 || !info->shared
3995 || !info->symbolic
3996 || (h->elf.elf_link_hash_flags
3997 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3998 {
3999 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
4000 }
4001 else /* It's a local symbol, or one marked to become local. */
4002 {
4003 int indx = 0;
4004
4005 /* Add the absolute offset of the symbol. */
4006 outrel.r_addend += relocation;
4007
4008 /* Global plabels need to be processed by the
4009 dynamic linker so that functions have at most one
4010 fptr. For this reason, we need to differentiate
4011 between global and local plabels, which we do by
4012 providing the function symbol for a global plabel
4013 reloc, and no symbol for local plabels. */
4014 if (! plabel
4015 && sym_sec != NULL
4016 && sym_sec->output_section != NULL
4017 && ! bfd_is_abs_section (sym_sec))
4018 {
4019 indx = elf_section_data (sym_sec->output_section)->dynindx;
4020 /* We are turning this relocation into one
4021 against a section symbol, so subtract out the
4022 output section's address but not the offset
4023 of the input section in the output section. */
4024 outrel.r_addend -= sym_sec->output_section->vma;
4025 }
4026
4027 outrel.r_info = ELF32_R_INFO (indx, r_type);
4028 }
4029 #if 0
4030 /* EH info can cause unaligned DIR32 relocs.
4031 Tweak the reloc type for the dynamic linker. */
4032 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4033 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4034 R_PARISC_DIR32U);
4035 #endif
4036 sreloc = elf_section_data (input_section)->sreloc;
4037 if (sreloc == NULL)
4038 abort ();
4039
4040 loc = (Elf32_External_Rela *) sreloc->contents;
4041 loc += sreloc->reloc_count++;
4042 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4043 }
4044 break;
4045
4046 default:
4047 break;
4048 }
4049
4050 r = final_link_relocate (input_section, contents, rel, relocation,
4051 htab, sym_sec, h);
4052
4053 if (r == bfd_reloc_ok)
4054 continue;
4055
4056 if (h != NULL)
4057 sym_name = h->elf.root.root.string;
4058 else
4059 {
4060 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4061 symtab_hdr->sh_link,
4062 sym->st_name);
4063 if (sym_name == NULL)
4064 return false;
4065 if (*sym_name == '\0')
4066 sym_name = bfd_section_name (input_bfd, sym_sec);
4067 }
4068
4069 howto = elf_hppa_howto_table + r_type;
4070
4071 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4072 {
4073 if (r == bfd_reloc_notsupported || !warned_undef)
4074 {
4075 (*_bfd_error_handler)
4076 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4077 bfd_archive_filename (input_bfd),
4078 input_section->name,
4079 (long) rel->r_offset,
4080 howto->name,
4081 sym_name);
4082 bfd_set_error (bfd_error_bad_value);
4083 return false;
4084 }
4085 }
4086 else
4087 {
4088 if (!((*info->callbacks->reloc_overflow)
4089 (info, sym_name, howto->name, (bfd_vma) 0,
4090 input_bfd, input_section, rel->r_offset)))
4091 return false;
4092 }
4093 }
4094
4095 return true;
4096 }
4097
4098 /* Comparison function for qsort to sort unwind section during a
4099 final link. */
4100
4101 static int
4102 hppa_unwind_entry_compare (a, b)
4103 const PTR a;
4104 const PTR b;
4105 {
4106 const bfd_byte *ap, *bp;
4107 unsigned long av, bv;
4108
4109 ap = (const bfd_byte *) a;
4110 av = (unsigned long) ap[0] << 24;
4111 av |= (unsigned long) ap[1] << 16;
4112 av |= (unsigned long) ap[2] << 8;
4113 av |= (unsigned long) ap[3];
4114
4115 bp = (const bfd_byte *) b;
4116 bv = (unsigned long) bp[0] << 24;
4117 bv |= (unsigned long) bp[1] << 16;
4118 bv |= (unsigned long) bp[2] << 8;
4119 bv |= (unsigned long) bp[3];
4120
4121 return av < bv ? -1 : av > bv ? 1 : 0;
4122 }
4123
4124 /* Finish up dynamic symbol handling. We set the contents of various
4125 dynamic sections here. */
4126
4127 static boolean
4128 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4129 bfd *output_bfd;
4130 struct bfd_link_info *info;
4131 struct elf_link_hash_entry *h;
4132 Elf_Internal_Sym *sym;
4133 {
4134 struct elf32_hppa_link_hash_table *htab;
4135
4136 htab = hppa_link_hash_table (info);
4137
4138 if (h->plt.offset != (bfd_vma) -1)
4139 {
4140 bfd_vma value;
4141
4142 if (h->plt.offset & 1)
4143 abort ();
4144
4145 /* This symbol has an entry in the procedure linkage table. Set
4146 it up.
4147
4148 The format of a plt entry is
4149 <funcaddr>
4150 <__gp>
4151 */
4152 value = 0;
4153 if (h->root.type == bfd_link_hash_defined
4154 || h->root.type == bfd_link_hash_defweak)
4155 {
4156 value = h->root.u.def.value;
4157 if (h->root.u.def.section->output_section != NULL)
4158 value += (h->root.u.def.section->output_offset
4159 + h->root.u.def.section->output_section->vma);
4160 }
4161
4162 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4163 {
4164 Elf_Internal_Rela rel;
4165 Elf32_External_Rela *loc;
4166
4167 /* Create a dynamic IPLT relocation for this entry. */
4168 rel.r_offset = (h->plt.offset
4169 + htab->splt->output_offset
4170 + htab->splt->output_section->vma);
4171 if (h->dynindx != -1)
4172 {
4173 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4174 rel.r_addend = 0;
4175 }
4176 else
4177 {
4178 /* This symbol has been marked to become local, and is
4179 used by a plabel so must be kept in the .plt. */
4180 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4181 rel.r_addend = value;
4182 }
4183
4184 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4185 loc += htab->srelplt->reloc_count++;
4186 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4187 &rel, loc);
4188 }
4189 else
4190 {
4191 bfd_put_32 (htab->splt->owner,
4192 value,
4193 htab->splt->contents + h->plt.offset);
4194 bfd_put_32 (htab->splt->owner,
4195 elf_gp (htab->splt->output_section->owner),
4196 htab->splt->contents + h->plt.offset + 4);
4197 }
4198
4199 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4200 {
4201 /* Mark the symbol as undefined, rather than as defined in
4202 the .plt section. Leave the value alone. */
4203 sym->st_shndx = SHN_UNDEF;
4204 }
4205 }
4206
4207 if (h->got.offset != (bfd_vma) -1)
4208 {
4209 Elf_Internal_Rela rel;
4210 Elf32_External_Rela *loc;
4211
4212 /* This symbol has an entry in the global offset table. Set it
4213 up. */
4214
4215 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4216 + htab->sgot->output_offset
4217 + htab->sgot->output_section->vma);
4218
4219 /* If this is a -Bsymbolic link and the symbol is defined
4220 locally or was forced to be local because of a version file,
4221 we just want to emit a RELATIVE reloc. The entry in the
4222 global offset table will already have been initialized in the
4223 relocate_section function. */
4224 if (info->shared
4225 && (info->symbolic || h->dynindx == -1)
4226 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4227 {
4228 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4229 rel.r_addend = (h->root.u.def.value
4230 + h->root.u.def.section->output_offset
4231 + h->root.u.def.section->output_section->vma);
4232 }
4233 else
4234 {
4235 if ((h->got.offset & 1) != 0)
4236 abort ();
4237 bfd_put_32 (output_bfd, (bfd_vma) 0,
4238 htab->sgot->contents + h->got.offset);
4239 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4240 rel.r_addend = 0;
4241 }
4242
4243 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4244 loc += htab->srelgot->reloc_count++;
4245 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4246 }
4247
4248 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4249 {
4250 asection *s;
4251 Elf_Internal_Rela rel;
4252 Elf32_External_Rela *loc;
4253
4254 /* This symbol needs a copy reloc. Set it up. */
4255
4256 if (! (h->dynindx != -1
4257 && (h->root.type == bfd_link_hash_defined
4258 || h->root.type == bfd_link_hash_defweak)))
4259 abort ();
4260
4261 s = htab->srelbss;
4262
4263 rel.r_offset = (h->root.u.def.value
4264 + h->root.u.def.section->output_offset
4265 + h->root.u.def.section->output_section->vma);
4266 rel.r_addend = 0;
4267 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4268 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4269 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4270 }
4271
4272 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4273 if (h->root.root.string[0] == '_'
4274 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4275 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4276 {
4277 sym->st_shndx = SHN_ABS;
4278 }
4279
4280 return true;
4281 }
4282
4283 /* Used to decide how to sort relocs in an optimal manner for the
4284 dynamic linker, before writing them out. */
4285
4286 static enum elf_reloc_type_class
4287 elf32_hppa_reloc_type_class (rela)
4288 const Elf_Internal_Rela *rela;
4289 {
4290 if (ELF32_R_SYM (rela->r_info) == 0)
4291 return reloc_class_relative;
4292
4293 switch ((int) ELF32_R_TYPE (rela->r_info))
4294 {
4295 case R_PARISC_IPLT:
4296 return reloc_class_plt;
4297 case R_PARISC_COPY:
4298 return reloc_class_copy;
4299 default:
4300 return reloc_class_normal;
4301 }
4302 }
4303
4304 /* Finish up the dynamic sections. */
4305
4306 static boolean
4307 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4308 bfd *output_bfd;
4309 struct bfd_link_info *info;
4310 {
4311 bfd *dynobj;
4312 struct elf32_hppa_link_hash_table *htab;
4313 asection *sdyn;
4314
4315 htab = hppa_link_hash_table (info);
4316 dynobj = htab->elf.dynobj;
4317
4318 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4319
4320 if (htab->elf.dynamic_sections_created)
4321 {
4322 Elf32_External_Dyn *dyncon, *dynconend;
4323
4324 if (sdyn == NULL)
4325 abort ();
4326
4327 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4328 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4329 for (; dyncon < dynconend; dyncon++)
4330 {
4331 Elf_Internal_Dyn dyn;
4332 asection *s;
4333
4334 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4335
4336 switch (dyn.d_tag)
4337 {
4338 default:
4339 continue;
4340
4341 case DT_PLTGOT:
4342 /* Use PLTGOT to set the GOT register. */
4343 dyn.d_un.d_ptr = elf_gp (output_bfd);
4344 break;
4345
4346 case DT_JMPREL:
4347 s = htab->srelplt;
4348 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4349 break;
4350
4351 case DT_PLTRELSZ:
4352 s = htab->srelplt;
4353 if (s->_cooked_size != 0)
4354 dyn.d_un.d_val = s->_cooked_size;
4355 else
4356 dyn.d_un.d_val = s->_raw_size;
4357 break;
4358
4359 case DT_RELASZ:
4360 /* Don't count procedure linkage table relocs in the
4361 overall reloc count. */
4362 if (htab->srelplt != NULL)
4363 {
4364 s = htab->srelplt->output_section;
4365 if (s->_cooked_size != 0)
4366 dyn.d_un.d_val -= s->_cooked_size;
4367 else
4368 dyn.d_un.d_val -= s->_raw_size;
4369 }
4370 break;
4371 }
4372
4373 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4374 }
4375 }
4376
4377 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4378 {
4379 /* Fill in the first entry in the global offset table.
4380 We use it to point to our dynamic section, if we have one. */
4381 bfd_put_32 (output_bfd,
4382 (sdyn != NULL
4383 ? sdyn->output_section->vma + sdyn->output_offset
4384 : (bfd_vma) 0),
4385 htab->sgot->contents);
4386
4387 /* The second entry is reserved for use by the dynamic linker. */
4388 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4389
4390 /* Set .got entry size. */
4391 elf_section_data (htab->sgot->output_section)
4392 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4393 }
4394
4395 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4396 {
4397 /* Set plt entry size. */
4398 elf_section_data (htab->splt->output_section)
4399 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4400
4401 if (htab->need_plt_stub)
4402 {
4403 /* Set up the .plt stub. */
4404 memcpy (htab->splt->contents
4405 + htab->splt->_raw_size - sizeof (plt_stub),
4406 plt_stub, sizeof (plt_stub));
4407
4408 if ((htab->splt->output_offset
4409 + htab->splt->output_section->vma
4410 + htab->splt->_raw_size)
4411 != (htab->sgot->output_offset
4412 + htab->sgot->output_section->vma))
4413 {
4414 (*_bfd_error_handler)
4415 (_(".got section not immediately after .plt section"));
4416 return false;
4417 }
4418 }
4419 }
4420
4421 return true;
4422 }
4423
4424 /* Tweak the OSABI field of the elf header. */
4425
4426 static void
4427 elf32_hppa_post_process_headers (abfd, link_info)
4428 bfd *abfd;
4429 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4430 {
4431 Elf_Internal_Ehdr * i_ehdrp;
4432
4433 i_ehdrp = elf_elfheader (abfd);
4434
4435 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4436 {
4437 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4438 }
4439 else
4440 {
4441 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4442 }
4443 }
4444
4445 /* Called when writing out an object file to decide the type of a
4446 symbol. */
4447 static int
4448 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4449 Elf_Internal_Sym *elf_sym;
4450 int type;
4451 {
4452 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4453 return STT_PARISC_MILLI;
4454 else
4455 return type;
4456 }
4457
4458 /* Misc BFD support code. */
4459 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4460 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4461 #define elf_info_to_howto elf_hppa_info_to_howto
4462 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4463
4464 /* Stuff for the BFD linker. */
4465 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4466 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4467 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4468 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4469 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4470 #define elf_backend_check_relocs elf32_hppa_check_relocs
4471 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4472 #define elf_backend_fake_sections elf_hppa_fake_sections
4473 #define elf_backend_relocate_section elf32_hppa_relocate_section
4474 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4475 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4476 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4477 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4478 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4479 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4480 #define elf_backend_object_p elf32_hppa_object_p
4481 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4482 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4483 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4484 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4485
4486 #define elf_backend_can_gc_sections 1
4487 #define elf_backend_can_refcount 1
4488 #define elf_backend_plt_alignment 2
4489 #define elf_backend_want_got_plt 0
4490 #define elf_backend_plt_readonly 0
4491 #define elf_backend_want_plt_sym 0
4492 #define elf_backend_got_header_size 8
4493
4494 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4495 #define TARGET_BIG_NAME "elf32-hppa"
4496 #define ELF_ARCH bfd_arch_hppa
4497 #define ELF_MACHINE_CODE EM_PARISC
4498 #define ELF_MAXPAGESIZE 0x1000
4499
4500 #include "elf32-target.h"
4501
4502 #undef TARGET_BIG_SYM
4503 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4504 #undef TARGET_BIG_NAME
4505 #define TARGET_BIG_NAME "elf32-hppa-linux"
4506
4507 #define INCLUDED_TARGET_FILE 1
4508 #include "elf32-target.h"
This page took 0.126462 seconds and 5 git commands to generate.