Rename u.weakdef and make it a circular list
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2017 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 enum _tls_type
210 {
211 GOT_UNKNOWN = 0,
212 GOT_NORMAL = 1,
213 GOT_TLS_GD = 2,
214 GOT_TLS_LDM = 4,
215 GOT_TLS_IE = 8
216 };
217
218 struct elf32_hppa_link_hash_entry
219 {
220 struct elf_link_hash_entry eh;
221
222 /* A pointer to the most recently used stub hash entry against this
223 symbol. */
224 struct elf32_hppa_stub_hash_entry *hsh_cache;
225
226 /* Used to count relocations for delayed sizing of relocation
227 sections. */
228 struct elf32_hppa_dyn_reloc_entry
229 {
230 /* Next relocation in the chain. */
231 struct elf32_hppa_dyn_reloc_entry *hdh_next;
232
233 /* The input section of the reloc. */
234 asection *sec;
235
236 /* Number of relocs copied in this section. */
237 bfd_size_type count;
238
239 #if RELATIVE_DYNRELOCS
240 /* Number of relative relocs copied for the input section. */
241 bfd_size_type relative_count;
242 #endif
243 } *dyn_relocs;
244
245 ENUM_BITFIELD (_tls_type) tls_type : 8;
246
247 /* Set if this symbol is used by a plabel reloc. */
248 unsigned int plabel:1;
249 };
250
251 struct elf32_hppa_link_hash_table
252 {
253 /* The main hash table. */
254 struct elf_link_hash_table etab;
255
256 /* The stub hash table. */
257 struct bfd_hash_table bstab;
258
259 /* Linker stub bfd. */
260 bfd *stub_bfd;
261
262 /* Linker call-backs. */
263 asection * (*add_stub_section) (const char *, asection *);
264 void (*layout_sections_again) (void);
265
266 /* Array to keep track of which stub sections have been created, and
267 information on stub grouping. */
268 struct map_stub
269 {
270 /* This is the section to which stubs in the group will be
271 attached. */
272 asection *link_sec;
273 /* The stub section. */
274 asection *stub_sec;
275 } *stub_group;
276
277 /* Assorted information used by elf32_hppa_size_stubs. */
278 unsigned int bfd_count;
279 unsigned int top_index;
280 asection **input_list;
281 Elf_Internal_Sym **all_local_syms;
282
283 /* Used during a final link to store the base of the text and data
284 segments so that we can perform SEGREL relocations. */
285 bfd_vma text_segment_base;
286 bfd_vma data_segment_base;
287
288 /* Whether we support multiple sub-spaces for shared libs. */
289 unsigned int multi_subspace:1;
290
291 /* Flags set when various size branches are detected. Used to
292 select suitable defaults for the stub group size. */
293 unsigned int has_12bit_branch:1;
294 unsigned int has_17bit_branch:1;
295 unsigned int has_22bit_branch:1;
296
297 /* Set if we need a .plt stub to support lazy dynamic linking. */
298 unsigned int need_plt_stub:1;
299
300 /* Small local sym cache. */
301 struct sym_cache sym_cache;
302
303 /* Data for LDM relocations. */
304 union
305 {
306 bfd_signed_vma refcount;
307 bfd_vma offset;
308 } tls_ldm_got;
309 };
310
311 /* Various hash macros and functions. */
312 #define hppa_link_hash_table(p) \
313 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
314 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
315
316 #define hppa_elf_hash_entry(ent) \
317 ((struct elf32_hppa_link_hash_entry *)(ent))
318
319 #define hppa_stub_hash_entry(ent) \
320 ((struct elf32_hppa_stub_hash_entry *)(ent))
321
322 #define hppa_stub_hash_lookup(table, string, create, copy) \
323 ((struct elf32_hppa_stub_hash_entry *) \
324 bfd_hash_lookup ((table), (string), (create), (copy)))
325
326 #define hppa_elf_local_got_tls_type(abfd) \
327 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
328
329 #define hh_name(hh) \
330 (hh ? hh->eh.root.root.string : "<undef>")
331
332 #define eh_name(eh) \
333 (eh ? eh->root.root.string : "<undef>")
334
335 /* Assorted hash table functions. */
336
337 /* Initialize an entry in the stub hash table. */
338
339 static struct bfd_hash_entry *
340 stub_hash_newfunc (struct bfd_hash_entry *entry,
341 struct bfd_hash_table *table,
342 const char *string)
343 {
344 /* Allocate the structure if it has not already been allocated by a
345 subclass. */
346 if (entry == NULL)
347 {
348 entry = bfd_hash_allocate (table,
349 sizeof (struct elf32_hppa_stub_hash_entry));
350 if (entry == NULL)
351 return entry;
352 }
353
354 /* Call the allocation method of the superclass. */
355 entry = bfd_hash_newfunc (entry, table, string);
356 if (entry != NULL)
357 {
358 struct elf32_hppa_stub_hash_entry *hsh;
359
360 /* Initialize the local fields. */
361 hsh = hppa_stub_hash_entry (entry);
362 hsh->stub_sec = NULL;
363 hsh->stub_offset = 0;
364 hsh->target_value = 0;
365 hsh->target_section = NULL;
366 hsh->stub_type = hppa_stub_long_branch;
367 hsh->hh = NULL;
368 hsh->id_sec = NULL;
369 }
370
371 return entry;
372 }
373
374 /* Initialize an entry in the link hash table. */
375
376 static struct bfd_hash_entry *
377 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
378 struct bfd_hash_table *table,
379 const char *string)
380 {
381 /* Allocate the structure if it has not already been allocated by a
382 subclass. */
383 if (entry == NULL)
384 {
385 entry = bfd_hash_allocate (table,
386 sizeof (struct elf32_hppa_link_hash_entry));
387 if (entry == NULL)
388 return entry;
389 }
390
391 /* Call the allocation method of the superclass. */
392 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
393 if (entry != NULL)
394 {
395 struct elf32_hppa_link_hash_entry *hh;
396
397 /* Initialize the local fields. */
398 hh = hppa_elf_hash_entry (entry);
399 hh->hsh_cache = NULL;
400 hh->dyn_relocs = NULL;
401 hh->plabel = 0;
402 hh->tls_type = GOT_UNKNOWN;
403 }
404
405 return entry;
406 }
407
408 /* Free the derived linker hash table. */
409
410 static void
411 elf32_hppa_link_hash_table_free (bfd *obfd)
412 {
413 struct elf32_hppa_link_hash_table *htab
414 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
415
416 bfd_hash_table_free (&htab->bstab);
417 _bfd_elf_link_hash_table_free (obfd);
418 }
419
420 /* Create the derived linker hash table. The PA ELF port uses the derived
421 hash table to keep information specific to the PA ELF linker (without
422 using static variables). */
423
424 static struct bfd_link_hash_table *
425 elf32_hppa_link_hash_table_create (bfd *abfd)
426 {
427 struct elf32_hppa_link_hash_table *htab;
428 bfd_size_type amt = sizeof (*htab);
429
430 htab = bfd_zmalloc (amt);
431 if (htab == NULL)
432 return NULL;
433
434 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
435 sizeof (struct elf32_hppa_link_hash_entry),
436 HPPA32_ELF_DATA))
437 {
438 free (htab);
439 return NULL;
440 }
441
442 /* Init the stub hash table too. */
443 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
444 sizeof (struct elf32_hppa_stub_hash_entry)))
445 {
446 _bfd_elf_link_hash_table_free (abfd);
447 return NULL;
448 }
449 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
450
451 htab->text_segment_base = (bfd_vma) -1;
452 htab->data_segment_base = (bfd_vma) -1;
453 return &htab->etab.root;
454 }
455
456 /* Initialize the linker stubs BFD so that we can use it for linker
457 created dynamic sections. */
458
459 void
460 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
461 {
462 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
463
464 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
465 htab->etab.dynobj = abfd;
466 }
467
468 /* Build a name for an entry in the stub hash table. */
469
470 static char *
471 hppa_stub_name (const asection *input_section,
472 const asection *sym_sec,
473 const struct elf32_hppa_link_hash_entry *hh,
474 const Elf_Internal_Rela *rela)
475 {
476 char *stub_name;
477 bfd_size_type len;
478
479 if (hh)
480 {
481 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
482 stub_name = bfd_malloc (len);
483 if (stub_name != NULL)
484 sprintf (stub_name, "%08x_%s+%x",
485 input_section->id & 0xffffffff,
486 hh_name (hh),
487 (int) rela->r_addend & 0xffffffff);
488 }
489 else
490 {
491 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
492 stub_name = bfd_malloc (len);
493 if (stub_name != NULL)
494 sprintf (stub_name, "%08x_%x:%x+%x",
495 input_section->id & 0xffffffff,
496 sym_sec->id & 0xffffffff,
497 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
498 (int) rela->r_addend & 0xffffffff);
499 }
500 return stub_name;
501 }
502
503 /* Look up an entry in the stub hash. Stub entries are cached because
504 creating the stub name takes a bit of time. */
505
506 static struct elf32_hppa_stub_hash_entry *
507 hppa_get_stub_entry (const asection *input_section,
508 const asection *sym_sec,
509 struct elf32_hppa_link_hash_entry *hh,
510 const Elf_Internal_Rela *rela,
511 struct elf32_hppa_link_hash_table *htab)
512 {
513 struct elf32_hppa_stub_hash_entry *hsh_entry;
514 const asection *id_sec;
515
516 /* If this input section is part of a group of sections sharing one
517 stub section, then use the id of the first section in the group.
518 Stub names need to include a section id, as there may well be
519 more than one stub used to reach say, printf, and we need to
520 distinguish between them. */
521 id_sec = htab->stub_group[input_section->id].link_sec;
522
523 if (hh != NULL && hh->hsh_cache != NULL
524 && hh->hsh_cache->hh == hh
525 && hh->hsh_cache->id_sec == id_sec)
526 {
527 hsh_entry = hh->hsh_cache;
528 }
529 else
530 {
531 char *stub_name;
532
533 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
534 if (stub_name == NULL)
535 return NULL;
536
537 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
538 stub_name, FALSE, FALSE);
539 if (hh != NULL)
540 hh->hsh_cache = hsh_entry;
541
542 free (stub_name);
543 }
544
545 return hsh_entry;
546 }
547
548 /* Add a new stub entry to the stub hash. Not all fields of the new
549 stub entry are initialised. */
550
551 static struct elf32_hppa_stub_hash_entry *
552 hppa_add_stub (const char *stub_name,
553 asection *section,
554 struct elf32_hppa_link_hash_table *htab)
555 {
556 asection *link_sec;
557 asection *stub_sec;
558 struct elf32_hppa_stub_hash_entry *hsh;
559
560 link_sec = htab->stub_group[section->id].link_sec;
561 stub_sec = htab->stub_group[section->id].stub_sec;
562 if (stub_sec == NULL)
563 {
564 stub_sec = htab->stub_group[link_sec->id].stub_sec;
565 if (stub_sec == NULL)
566 {
567 size_t namelen;
568 bfd_size_type len;
569 char *s_name;
570
571 namelen = strlen (link_sec->name);
572 len = namelen + sizeof (STUB_SUFFIX);
573 s_name = bfd_alloc (htab->stub_bfd, len);
574 if (s_name == NULL)
575 return NULL;
576
577 memcpy (s_name, link_sec->name, namelen);
578 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
579 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
580 if (stub_sec == NULL)
581 return NULL;
582 htab->stub_group[link_sec->id].stub_sec = stub_sec;
583 }
584 htab->stub_group[section->id].stub_sec = stub_sec;
585 }
586
587 /* Enter this entry into the linker stub hash table. */
588 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
589 TRUE, FALSE);
590 if (hsh == NULL)
591 {
592 /* xgettext:c-format */
593 _bfd_error_handler (_("%B: cannot create stub entry %s"),
594 section->owner, stub_name);
595 return NULL;
596 }
597
598 hsh->stub_sec = stub_sec;
599 hsh->stub_offset = 0;
600 hsh->id_sec = link_sec;
601 return hsh;
602 }
603
604 /* Determine the type of stub needed, if any, for a call. */
605
606 static enum elf32_hppa_stub_type
607 hppa_type_of_stub (asection *input_sec,
608 const Elf_Internal_Rela *rela,
609 struct elf32_hppa_link_hash_entry *hh,
610 bfd_vma destination,
611 struct bfd_link_info *info)
612 {
613 bfd_vma location;
614 bfd_vma branch_offset;
615 bfd_vma max_branch_offset;
616 unsigned int r_type;
617
618 if (hh != NULL
619 && hh->eh.plt.offset != (bfd_vma) -1
620 && hh->eh.dynindx != -1
621 && !hh->plabel
622 && (bfd_link_pic (info)
623 || !hh->eh.def_regular
624 || hh->eh.root.type == bfd_link_hash_defweak))
625 {
626 /* We need an import stub. Decide between hppa_stub_import
627 and hppa_stub_import_shared later. */
628 return hppa_stub_import;
629 }
630
631 /* Determine where the call point is. */
632 location = (input_sec->output_offset
633 + input_sec->output_section->vma
634 + rela->r_offset);
635
636 branch_offset = destination - location - 8;
637 r_type = ELF32_R_TYPE (rela->r_info);
638
639 /* Determine if a long branch stub is needed. parisc branch offsets
640 are relative to the second instruction past the branch, ie. +8
641 bytes on from the branch instruction location. The offset is
642 signed and counts in units of 4 bytes. */
643 if (r_type == (unsigned int) R_PARISC_PCREL17F)
644 max_branch_offset = (1 << (17 - 1)) << 2;
645
646 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
647 max_branch_offset = (1 << (12 - 1)) << 2;
648
649 else /* R_PARISC_PCREL22F. */
650 max_branch_offset = (1 << (22 - 1)) << 2;
651
652 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
653 return hppa_stub_long_branch;
654
655 return hppa_stub_none;
656 }
657
658 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
659 IN_ARG contains the link info pointer. */
660
661 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
662 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
663
664 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
665 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
666 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
667
668 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
669 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
670 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
671 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
672
673 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
674 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
675
676 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
677 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
678 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
679 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
680
681 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
682 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
683 #define NOP 0x08000240 /* nop */
684 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
685 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
686 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
687
688 #ifndef R19_STUBS
689 #define R19_STUBS 1
690 #endif
691
692 #if R19_STUBS
693 #define LDW_R1_DLT LDW_R1_R19
694 #else
695 #define LDW_R1_DLT LDW_R1_DP
696 #endif
697
698 static bfd_boolean
699 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
700 {
701 struct elf32_hppa_stub_hash_entry *hsh;
702 struct bfd_link_info *info;
703 struct elf32_hppa_link_hash_table *htab;
704 asection *stub_sec;
705 bfd *stub_bfd;
706 bfd_byte *loc;
707 bfd_vma sym_value;
708 bfd_vma insn;
709 bfd_vma off;
710 int val;
711 int size;
712
713 /* Massage our args to the form they really have. */
714 hsh = hppa_stub_hash_entry (bh);
715 info = (struct bfd_link_info *)in_arg;
716
717 htab = hppa_link_hash_table (info);
718 if (htab == NULL)
719 return FALSE;
720
721 stub_sec = hsh->stub_sec;
722
723 /* Make a note of the offset within the stubs for this entry. */
724 hsh->stub_offset = stub_sec->size;
725 loc = stub_sec->contents + hsh->stub_offset;
726
727 stub_bfd = stub_sec->owner;
728
729 switch (hsh->stub_type)
730 {
731 case hppa_stub_long_branch:
732 /* Create the long branch. A long branch is formed with "ldil"
733 loading the upper bits of the target address into a register,
734 then branching with "be" which adds in the lower bits.
735 The "be" has its delay slot nullified. */
736 sym_value = (hsh->target_value
737 + hsh->target_section->output_offset
738 + hsh->target_section->output_section->vma);
739
740 val = hppa_field_adjust (sym_value, 0, e_lrsel);
741 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
742 bfd_put_32 (stub_bfd, insn, loc);
743
744 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
745 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
746 bfd_put_32 (stub_bfd, insn, loc + 4);
747
748 size = 8;
749 break;
750
751 case hppa_stub_long_branch_shared:
752 /* Branches are relative. This is where we are going to. */
753 sym_value = (hsh->target_value
754 + hsh->target_section->output_offset
755 + hsh->target_section->output_section->vma);
756
757 /* And this is where we are coming from, more or less. */
758 sym_value -= (hsh->stub_offset
759 + stub_sec->output_offset
760 + stub_sec->output_section->vma);
761
762 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
763 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
764 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
765 bfd_put_32 (stub_bfd, insn, loc + 4);
766
767 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
768 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
769 bfd_put_32 (stub_bfd, insn, loc + 8);
770 size = 12;
771 break;
772
773 case hppa_stub_import:
774 case hppa_stub_import_shared:
775 off = hsh->hh->eh.plt.offset;
776 if (off >= (bfd_vma) -2)
777 abort ();
778
779 off &= ~ (bfd_vma) 1;
780 sym_value = (off
781 + htab->etab.splt->output_offset
782 + htab->etab.splt->output_section->vma
783 - elf_gp (htab->etab.splt->output_section->owner));
784
785 insn = ADDIL_DP;
786 #if R19_STUBS
787 if (hsh->stub_type == hppa_stub_import_shared)
788 insn = ADDIL_R19;
789 #endif
790 val = hppa_field_adjust (sym_value, 0, e_lrsel),
791 insn = hppa_rebuild_insn ((int) insn, val, 21);
792 bfd_put_32 (stub_bfd, insn, loc);
793
794 /* It is critical to use lrsel/rrsel here because we are using
795 two different offsets (+0 and +4) from sym_value. If we use
796 lsel/rsel then with unfortunate sym_values we will round
797 sym_value+4 up to the next 2k block leading to a mis-match
798 between the lsel and rsel value. */
799 val = hppa_field_adjust (sym_value, 0, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 4);
802
803 if (htab->multi_subspace)
804 {
805 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
806 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
807 bfd_put_32 (stub_bfd, insn, loc + 8);
808
809 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
810 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
811 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
812 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
813
814 size = 28;
815 }
816 else
817 {
818 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
819 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
820 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
821 bfd_put_32 (stub_bfd, insn, loc + 12);
822
823 size = 16;
824 }
825
826 break;
827
828 case hppa_stub_export:
829 /* Branches are relative. This is where we are going to. */
830 sym_value = (hsh->target_value
831 + hsh->target_section->output_offset
832 + hsh->target_section->output_section->vma);
833
834 /* And this is where we are coming from. */
835 sym_value -= (hsh->stub_offset
836 + stub_sec->output_offset
837 + stub_sec->output_section->vma);
838
839 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
840 && (!htab->has_22bit_branch
841 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
842 {
843 _bfd_error_handler
844 /* xgettext:c-format */
845 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
846 hsh->target_section->owner,
847 stub_sec,
848 hsh->stub_offset,
849 hsh->bh_root.string);
850 bfd_set_error (bfd_error_bad_value);
851 return FALSE;
852 }
853
854 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
855 if (!htab->has_22bit_branch)
856 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
857 else
858 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
859 bfd_put_32 (stub_bfd, insn, loc);
860
861 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
862 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
863 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
864 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
865 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
866
867 /* Point the function symbol at the stub. */
868 hsh->hh->eh.root.u.def.section = stub_sec;
869 hsh->hh->eh.root.u.def.value = stub_sec->size;
870
871 size = 24;
872 break;
873
874 default:
875 BFD_FAIL ();
876 return FALSE;
877 }
878
879 stub_sec->size += size;
880 return TRUE;
881 }
882
883 #undef LDIL_R1
884 #undef BE_SR4_R1
885 #undef BL_R1
886 #undef ADDIL_R1
887 #undef DEPI_R1
888 #undef LDW_R1_R21
889 #undef LDW_R1_DLT
890 #undef LDW_R1_R19
891 #undef ADDIL_R19
892 #undef LDW_R1_DP
893 #undef LDSID_R21_R1
894 #undef MTSP_R1
895 #undef BE_SR0_R21
896 #undef STW_RP
897 #undef BV_R0_R21
898 #undef BL_RP
899 #undef NOP
900 #undef LDW_RP
901 #undef LDSID_RP_R1
902 #undef BE_SR0_RP
903
904 /* As above, but don't actually build the stub. Just bump offset so
905 we know stub section sizes. */
906
907 static bfd_boolean
908 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
909 {
910 struct elf32_hppa_stub_hash_entry *hsh;
911 struct elf32_hppa_link_hash_table *htab;
912 int size;
913
914 /* Massage our args to the form they really have. */
915 hsh = hppa_stub_hash_entry (bh);
916 htab = in_arg;
917
918 if (hsh->stub_type == hppa_stub_long_branch)
919 size = 8;
920 else if (hsh->stub_type == hppa_stub_long_branch_shared)
921 size = 12;
922 else if (hsh->stub_type == hppa_stub_export)
923 size = 24;
924 else /* hppa_stub_import or hppa_stub_import_shared. */
925 {
926 if (htab->multi_subspace)
927 size = 28;
928 else
929 size = 16;
930 }
931
932 hsh->stub_sec->size += size;
933 return TRUE;
934 }
935
936 /* Return nonzero if ABFD represents an HPPA ELF32 file.
937 Additionally we set the default architecture and machine. */
938
939 static bfd_boolean
940 elf32_hppa_object_p (bfd *abfd)
941 {
942 Elf_Internal_Ehdr * i_ehdrp;
943 unsigned int flags;
944
945 i_ehdrp = elf_elfheader (abfd);
946 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
947 {
948 /* GCC on hppa-linux produces binaries with OSABI=GNU,
949 but the kernel produces corefiles with OSABI=SysV. */
950 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
951 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
952 return FALSE;
953 }
954 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
955 {
956 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
957 but the kernel produces corefiles with OSABI=SysV. */
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
959 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
960 return FALSE;
961 }
962 else
963 {
964 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
965 return FALSE;
966 }
967
968 flags = i_ehdrp->e_flags;
969 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
970 {
971 case EFA_PARISC_1_0:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
973 case EFA_PARISC_1_1:
974 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
975 case EFA_PARISC_2_0:
976 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
977 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
978 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
979 }
980 return TRUE;
981 }
982
983 /* Create the .plt and .got sections, and set up our hash table
984 short-cuts to various dynamic sections. */
985
986 static bfd_boolean
987 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
988 {
989 struct elf32_hppa_link_hash_table *htab;
990 struct elf_link_hash_entry *eh;
991
992 /* Don't try to create the .plt and .got twice. */
993 htab = hppa_link_hash_table (info);
994 if (htab == NULL)
995 return FALSE;
996 if (htab->etab.splt != NULL)
997 return TRUE;
998
999 /* Call the generic code to do most of the work. */
1000 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1001 return FALSE;
1002
1003 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1004 application, because __canonicalize_funcptr_for_compare needs it. */
1005 eh = elf_hash_table (info)->hgot;
1006 eh->forced_local = 0;
1007 eh->other = STV_DEFAULT;
1008 return bfd_elf_link_record_dynamic_symbol (info, eh);
1009 }
1010
1011 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1012
1013 static void
1014 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1015 struct elf_link_hash_entry *eh_dir,
1016 struct elf_link_hash_entry *eh_ind)
1017 {
1018 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1019
1020 hh_dir = hppa_elf_hash_entry (eh_dir);
1021 hh_ind = hppa_elf_hash_entry (eh_ind);
1022
1023 if (hh_ind->dyn_relocs != NULL)
1024 {
1025 if (hh_dir->dyn_relocs != NULL)
1026 {
1027 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1028 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1029
1030 /* Add reloc counts against the indirect sym to the direct sym
1031 list. Merge any entries against the same section. */
1032 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1033 {
1034 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1035
1036 for (hdh_q = hh_dir->dyn_relocs;
1037 hdh_q != NULL;
1038 hdh_q = hdh_q->hdh_next)
1039 if (hdh_q->sec == hdh_p->sec)
1040 {
1041 #if RELATIVE_DYNRELOCS
1042 hdh_q->relative_count += hdh_p->relative_count;
1043 #endif
1044 hdh_q->count += hdh_p->count;
1045 *hdh_pp = hdh_p->hdh_next;
1046 break;
1047 }
1048 if (hdh_q == NULL)
1049 hdh_pp = &hdh_p->hdh_next;
1050 }
1051 *hdh_pp = hh_dir->dyn_relocs;
1052 }
1053
1054 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1055 hh_ind->dyn_relocs = NULL;
1056 }
1057
1058 if (ELIMINATE_COPY_RELOCS
1059 && eh_ind->root.type != bfd_link_hash_indirect
1060 && eh_dir->dynamic_adjusted)
1061 {
1062 /* If called to transfer flags for a weakdef during processing
1063 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1064 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1065 if (eh_dir->versioned != versioned_hidden)
1066 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1067 eh_dir->ref_regular |= eh_ind->ref_regular;
1068 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1069 eh_dir->needs_plt |= eh_ind->needs_plt;
1070 }
1071 else
1072 {
1073 if (eh_ind->root.type == bfd_link_hash_indirect)
1074 {
1075 hh_dir->plabel |= hh_ind->plabel;
1076 hh_dir->tls_type |= hh_ind->tls_type;
1077 hh_ind->tls_type = GOT_UNKNOWN;
1078 }
1079
1080 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1081 }
1082 }
1083
1084 static int
1085 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1086 int r_type, int is_local ATTRIBUTE_UNUSED)
1087 {
1088 /* For now we don't support linker optimizations. */
1089 return r_type;
1090 }
1091
1092 /* Return a pointer to the local GOT, PLT and TLS reference counts
1093 for ABFD. Returns NULL if the storage allocation fails. */
1094
1095 static bfd_signed_vma *
1096 hppa32_elf_local_refcounts (bfd *abfd)
1097 {
1098 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1099 bfd_signed_vma *local_refcounts;
1100
1101 local_refcounts = elf_local_got_refcounts (abfd);
1102 if (local_refcounts == NULL)
1103 {
1104 bfd_size_type size;
1105
1106 /* Allocate space for local GOT and PLT reference
1107 counts. Done this way to save polluting elf_obj_tdata
1108 with another target specific pointer. */
1109 size = symtab_hdr->sh_info;
1110 size *= 2 * sizeof (bfd_signed_vma);
1111 /* Add in space to store the local GOT TLS types. */
1112 size += symtab_hdr->sh_info;
1113 local_refcounts = bfd_zalloc (abfd, size);
1114 if (local_refcounts == NULL)
1115 return NULL;
1116 elf_local_got_refcounts (abfd) = local_refcounts;
1117 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1118 symtab_hdr->sh_info);
1119 }
1120 return local_refcounts;
1121 }
1122
1123
1124 /* Look through the relocs for a section during the first phase, and
1125 calculate needed space in the global offset table, procedure linkage
1126 table, and dynamic reloc sections. At this point we haven't
1127 necessarily read all the input files. */
1128
1129 static bfd_boolean
1130 elf32_hppa_check_relocs (bfd *abfd,
1131 struct bfd_link_info *info,
1132 asection *sec,
1133 const Elf_Internal_Rela *relocs)
1134 {
1135 Elf_Internal_Shdr *symtab_hdr;
1136 struct elf_link_hash_entry **eh_syms;
1137 const Elf_Internal_Rela *rela;
1138 const Elf_Internal_Rela *rela_end;
1139 struct elf32_hppa_link_hash_table *htab;
1140 asection *sreloc;
1141
1142 if (bfd_link_relocatable (info))
1143 return TRUE;
1144
1145 htab = hppa_link_hash_table (info);
1146 if (htab == NULL)
1147 return FALSE;
1148 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1149 eh_syms = elf_sym_hashes (abfd);
1150 sreloc = NULL;
1151
1152 rela_end = relocs + sec->reloc_count;
1153 for (rela = relocs; rela < rela_end; rela++)
1154 {
1155 enum {
1156 NEED_GOT = 1,
1157 NEED_PLT = 2,
1158 NEED_DYNREL = 4,
1159 PLT_PLABEL = 8
1160 };
1161
1162 unsigned int r_symndx, r_type;
1163 struct elf32_hppa_link_hash_entry *hh;
1164 int need_entry = 0;
1165
1166 r_symndx = ELF32_R_SYM (rela->r_info);
1167
1168 if (r_symndx < symtab_hdr->sh_info)
1169 hh = NULL;
1170 else
1171 {
1172 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1173 while (hh->eh.root.type == bfd_link_hash_indirect
1174 || hh->eh.root.type == bfd_link_hash_warning)
1175 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1176
1177 /* PR15323, ref flags aren't set for references in the same
1178 object. */
1179 hh->eh.root.non_ir_ref_regular = 1;
1180 }
1181
1182 r_type = ELF32_R_TYPE (rela->r_info);
1183 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1184
1185 switch (r_type)
1186 {
1187 case R_PARISC_DLTIND14F:
1188 case R_PARISC_DLTIND14R:
1189 case R_PARISC_DLTIND21L:
1190 /* This symbol requires a global offset table entry. */
1191 need_entry = NEED_GOT;
1192 break;
1193
1194 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1195 case R_PARISC_PLABEL21L:
1196 case R_PARISC_PLABEL32:
1197 /* If the addend is non-zero, we break badly. */
1198 if (rela->r_addend != 0)
1199 abort ();
1200
1201 /* If we are creating a shared library, then we need to
1202 create a PLT entry for all PLABELs, because PLABELs with
1203 local symbols may be passed via a pointer to another
1204 object. Additionally, output a dynamic relocation
1205 pointing to the PLT entry.
1206
1207 For executables, the original 32-bit ABI allowed two
1208 different styles of PLABELs (function pointers): For
1209 global functions, the PLABEL word points into the .plt
1210 two bytes past a (function address, gp) pair, and for
1211 local functions the PLABEL points directly at the
1212 function. The magic +2 for the first type allows us to
1213 differentiate between the two. As you can imagine, this
1214 is a real pain when it comes to generating code to call
1215 functions indirectly or to compare function pointers.
1216 We avoid the mess by always pointing a PLABEL into the
1217 .plt, even for local functions. */
1218 need_entry = PLT_PLABEL | NEED_PLT;
1219 if (bfd_link_pic (info))
1220 need_entry |= NEED_DYNREL;
1221 break;
1222
1223 case R_PARISC_PCREL12F:
1224 htab->has_12bit_branch = 1;
1225 goto branch_common;
1226
1227 case R_PARISC_PCREL17C:
1228 case R_PARISC_PCREL17F:
1229 htab->has_17bit_branch = 1;
1230 goto branch_common;
1231
1232 case R_PARISC_PCREL22F:
1233 htab->has_22bit_branch = 1;
1234 branch_common:
1235 /* Function calls might need to go through the .plt, and
1236 might require long branch stubs. */
1237 if (hh == NULL)
1238 {
1239 /* We know local syms won't need a .plt entry, and if
1240 they need a long branch stub we can't guarantee that
1241 we can reach the stub. So just flag an error later
1242 if we're doing a shared link and find we need a long
1243 branch stub. */
1244 continue;
1245 }
1246 else
1247 {
1248 /* Global symbols will need a .plt entry if they remain
1249 global, and in most cases won't need a long branch
1250 stub. Unfortunately, we have to cater for the case
1251 where a symbol is forced local by versioning, or due
1252 to symbolic linking, and we lose the .plt entry. */
1253 need_entry = NEED_PLT;
1254 if (hh->eh.type == STT_PARISC_MILLI)
1255 need_entry = 0;
1256 }
1257 break;
1258
1259 case R_PARISC_SEGBASE: /* Used to set segment base. */
1260 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1261 case R_PARISC_PCREL14F: /* PC relative load/store. */
1262 case R_PARISC_PCREL14R:
1263 case R_PARISC_PCREL17R: /* External branches. */
1264 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1265 case R_PARISC_PCREL32:
1266 /* We don't need to propagate the relocation if linking a
1267 shared object since these are section relative. */
1268 continue;
1269
1270 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1271 case R_PARISC_DPREL14R:
1272 case R_PARISC_DPREL21L:
1273 if (bfd_link_pic (info))
1274 {
1275 _bfd_error_handler
1276 /* xgettext:c-format */
1277 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1278 abfd,
1279 elf_hppa_howto_table[r_type].name);
1280 bfd_set_error (bfd_error_bad_value);
1281 return FALSE;
1282 }
1283 /* Fall through. */
1284
1285 case R_PARISC_DIR17F: /* Used for external branches. */
1286 case R_PARISC_DIR17R:
1287 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1288 case R_PARISC_DIR14R:
1289 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1290 case R_PARISC_DIR32: /* .word relocs. */
1291 /* We may want to output a dynamic relocation later. */
1292 need_entry = NEED_DYNREL;
1293 break;
1294
1295 /* This relocation describes the C++ object vtable hierarchy.
1296 Reconstruct it for later use during GC. */
1297 case R_PARISC_GNU_VTINHERIT:
1298 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1299 return FALSE;
1300 continue;
1301
1302 /* This relocation describes which C++ vtable entries are actually
1303 used. Record for later use during GC. */
1304 case R_PARISC_GNU_VTENTRY:
1305 BFD_ASSERT (hh != NULL);
1306 if (hh != NULL
1307 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1308 return FALSE;
1309 continue;
1310
1311 case R_PARISC_TLS_GD21L:
1312 case R_PARISC_TLS_GD14R:
1313 case R_PARISC_TLS_LDM21L:
1314 case R_PARISC_TLS_LDM14R:
1315 need_entry = NEED_GOT;
1316 break;
1317
1318 case R_PARISC_TLS_IE21L:
1319 case R_PARISC_TLS_IE14R:
1320 if (bfd_link_dll (info))
1321 info->flags |= DF_STATIC_TLS;
1322 need_entry = NEED_GOT;
1323 break;
1324
1325 default:
1326 continue;
1327 }
1328
1329 /* Now carry out our orders. */
1330 if (need_entry & NEED_GOT)
1331 {
1332 int tls_type = GOT_NORMAL;
1333
1334 switch (r_type)
1335 {
1336 default:
1337 break;
1338 case R_PARISC_TLS_GD21L:
1339 case R_PARISC_TLS_GD14R:
1340 tls_type = GOT_TLS_GD;
1341 break;
1342 case R_PARISC_TLS_LDM21L:
1343 case R_PARISC_TLS_LDM14R:
1344 tls_type = GOT_TLS_LDM;
1345 break;
1346 case R_PARISC_TLS_IE21L:
1347 case R_PARISC_TLS_IE14R:
1348 tls_type = GOT_TLS_IE;
1349 break;
1350 }
1351
1352 /* Allocate space for a GOT entry, as well as a dynamic
1353 relocation for this entry. */
1354 if (htab->etab.sgot == NULL)
1355 {
1356 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1357 return FALSE;
1358 }
1359
1360 if (hh != NULL)
1361 {
1362 if (tls_type == GOT_TLS_LDM)
1363 htab->tls_ldm_got.refcount += 1;
1364 else
1365 hh->eh.got.refcount += 1;
1366 hh->tls_type |= tls_type;
1367 }
1368 else
1369 {
1370 bfd_signed_vma *local_got_refcounts;
1371
1372 /* This is a global offset table entry for a local symbol. */
1373 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1374 if (local_got_refcounts == NULL)
1375 return FALSE;
1376 if (tls_type == GOT_TLS_LDM)
1377 htab->tls_ldm_got.refcount += 1;
1378 else
1379 local_got_refcounts[r_symndx] += 1;
1380
1381 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1382 }
1383 }
1384
1385 if (need_entry & NEED_PLT)
1386 {
1387 /* If we are creating a shared library, and this is a reloc
1388 against a weak symbol or a global symbol in a dynamic
1389 object, then we will be creating an import stub and a
1390 .plt entry for the symbol. Similarly, on a normal link
1391 to symbols defined in a dynamic object we'll need the
1392 import stub and a .plt entry. We don't know yet whether
1393 the symbol is defined or not, so make an entry anyway and
1394 clean up later in adjust_dynamic_symbol. */
1395 if ((sec->flags & SEC_ALLOC) != 0)
1396 {
1397 if (hh != NULL)
1398 {
1399 hh->eh.needs_plt = 1;
1400 hh->eh.plt.refcount += 1;
1401
1402 /* If this .plt entry is for a plabel, mark it so
1403 that adjust_dynamic_symbol will keep the entry
1404 even if it appears to be local. */
1405 if (need_entry & PLT_PLABEL)
1406 hh->plabel = 1;
1407 }
1408 else if (need_entry & PLT_PLABEL)
1409 {
1410 bfd_signed_vma *local_got_refcounts;
1411 bfd_signed_vma *local_plt_refcounts;
1412
1413 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1414 if (local_got_refcounts == NULL)
1415 return FALSE;
1416 local_plt_refcounts = (local_got_refcounts
1417 + symtab_hdr->sh_info);
1418 local_plt_refcounts[r_symndx] += 1;
1419 }
1420 }
1421 }
1422
1423 if ((need_entry & NEED_DYNREL) != 0
1424 && (sec->flags & SEC_ALLOC) != 0)
1425 {
1426 /* Flag this symbol as having a non-got, non-plt reference
1427 so that we generate copy relocs if it turns out to be
1428 dynamic. */
1429 if (hh != NULL && !bfd_link_pic (info))
1430 hh->eh.non_got_ref = 1;
1431
1432 /* If we are creating a shared library then we need to copy
1433 the reloc into the shared library. However, if we are
1434 linking with -Bsymbolic, we need only copy absolute
1435 relocs or relocs against symbols that are not defined in
1436 an object we are including in the link. PC- or DP- or
1437 DLT-relative relocs against any local sym or global sym
1438 with DEF_REGULAR set, can be discarded. At this point we
1439 have not seen all the input files, so it is possible that
1440 DEF_REGULAR is not set now but will be set later (it is
1441 never cleared). We account for that possibility below by
1442 storing information in the dyn_relocs field of the
1443 hash table entry.
1444
1445 A similar situation to the -Bsymbolic case occurs when
1446 creating shared libraries and symbol visibility changes
1447 render the symbol local.
1448
1449 As it turns out, all the relocs we will be creating here
1450 are absolute, so we cannot remove them on -Bsymbolic
1451 links or visibility changes anyway. A STUB_REL reloc
1452 is absolute too, as in that case it is the reloc in the
1453 stub we will be creating, rather than copying the PCREL
1454 reloc in the branch.
1455
1456 If on the other hand, we are creating an executable, we
1457 may need to keep relocations for symbols satisfied by a
1458 dynamic library if we manage to avoid copy relocs for the
1459 symbol. */
1460 if ((bfd_link_pic (info)
1461 && (IS_ABSOLUTE_RELOC (r_type)
1462 || (hh != NULL
1463 && (!SYMBOLIC_BIND (info, &hh->eh)
1464 || hh->eh.root.type == bfd_link_hash_defweak
1465 || !hh->eh.def_regular))))
1466 || (ELIMINATE_COPY_RELOCS
1467 && !bfd_link_pic (info)
1468 && hh != NULL
1469 && (hh->eh.root.type == bfd_link_hash_defweak
1470 || !hh->eh.def_regular)))
1471 {
1472 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1473 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1474
1475 /* Create a reloc section in dynobj and make room for
1476 this reloc. */
1477 if (sreloc == NULL)
1478 {
1479 sreloc = _bfd_elf_make_dynamic_reloc_section
1480 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1481
1482 if (sreloc == NULL)
1483 {
1484 bfd_set_error (bfd_error_bad_value);
1485 return FALSE;
1486 }
1487 }
1488
1489 /* If this is a global symbol, we count the number of
1490 relocations we need for this symbol. */
1491 if (hh != NULL)
1492 {
1493 hdh_head = &hh->dyn_relocs;
1494 }
1495 else
1496 {
1497 /* Track dynamic relocs needed for local syms too.
1498 We really need local syms available to do this
1499 easily. Oh well. */
1500 asection *sr;
1501 void *vpp;
1502 Elf_Internal_Sym *isym;
1503
1504 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1505 abfd, r_symndx);
1506 if (isym == NULL)
1507 return FALSE;
1508
1509 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1510 if (sr == NULL)
1511 sr = sec;
1512
1513 vpp = &elf_section_data (sr)->local_dynrel;
1514 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1515 }
1516
1517 hdh_p = *hdh_head;
1518 if (hdh_p == NULL || hdh_p->sec != sec)
1519 {
1520 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1521 if (hdh_p == NULL)
1522 return FALSE;
1523 hdh_p->hdh_next = *hdh_head;
1524 *hdh_head = hdh_p;
1525 hdh_p->sec = sec;
1526 hdh_p->count = 0;
1527 #if RELATIVE_DYNRELOCS
1528 hdh_p->relative_count = 0;
1529 #endif
1530 }
1531
1532 hdh_p->count += 1;
1533 #if RELATIVE_DYNRELOCS
1534 if (!IS_ABSOLUTE_RELOC (rtype))
1535 hdh_p->relative_count += 1;
1536 #endif
1537 }
1538 }
1539 }
1540
1541 return TRUE;
1542 }
1543
1544 /* Return the section that should be marked against garbage collection
1545 for a given relocation. */
1546
1547 static asection *
1548 elf32_hppa_gc_mark_hook (asection *sec,
1549 struct bfd_link_info *info,
1550 Elf_Internal_Rela *rela,
1551 struct elf_link_hash_entry *hh,
1552 Elf_Internal_Sym *sym)
1553 {
1554 if (hh != NULL)
1555 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1556 {
1557 case R_PARISC_GNU_VTINHERIT:
1558 case R_PARISC_GNU_VTENTRY:
1559 return NULL;
1560 }
1561
1562 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1563 }
1564
1565 /* Support for core dump NOTE sections. */
1566
1567 static bfd_boolean
1568 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1569 {
1570 int offset;
1571 size_t size;
1572
1573 switch (note->descsz)
1574 {
1575 default:
1576 return FALSE;
1577
1578 case 396: /* Linux/hppa */
1579 /* pr_cursig */
1580 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1581
1582 /* pr_pid */
1583 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1584
1585 /* pr_reg */
1586 offset = 72;
1587 size = 320;
1588
1589 break;
1590 }
1591
1592 /* Make a ".reg/999" section. */
1593 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1594 size, note->descpos + offset);
1595 }
1596
1597 static bfd_boolean
1598 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1599 {
1600 switch (note->descsz)
1601 {
1602 default:
1603 return FALSE;
1604
1605 case 124: /* Linux/hppa elf_prpsinfo. */
1606 elf_tdata (abfd)->core->program
1607 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1608 elf_tdata (abfd)->core->command
1609 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1610 }
1611
1612 /* Note that for some reason, a spurious space is tacked
1613 onto the end of the args in some (at least one anyway)
1614 implementations, so strip it off if it exists. */
1615 {
1616 char *command = elf_tdata (abfd)->core->command;
1617 int n = strlen (command);
1618
1619 if (0 < n && command[n - 1] == ' ')
1620 command[n - 1] = '\0';
1621 }
1622
1623 return TRUE;
1624 }
1625
1626 /* Our own version of hide_symbol, so that we can keep plt entries for
1627 plabels. */
1628
1629 static void
1630 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1631 struct elf_link_hash_entry *eh,
1632 bfd_boolean force_local)
1633 {
1634 if (force_local)
1635 {
1636 eh->forced_local = 1;
1637 if (eh->dynindx != -1)
1638 {
1639 eh->dynindx = -1;
1640 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1641 eh->dynstr_index);
1642 }
1643
1644 /* PR 16082: Remove version information from hidden symbol. */
1645 eh->verinfo.verdef = NULL;
1646 eh->verinfo.vertree = NULL;
1647 }
1648
1649 /* STT_GNU_IFUNC symbol must go through PLT. */
1650 if (! hppa_elf_hash_entry (eh)->plabel
1651 && eh->type != STT_GNU_IFUNC)
1652 {
1653 eh->needs_plt = 0;
1654 eh->plt = elf_hash_table (info)->init_plt_offset;
1655 }
1656 }
1657
1658 /* Find any dynamic relocs that apply to read-only sections. */
1659
1660 static asection *
1661 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1662 {
1663 struct elf32_hppa_link_hash_entry *hh;
1664 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1665
1666 hh = hppa_elf_hash_entry (eh);
1667 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1668 {
1669 asection *sec = hdh_p->sec->output_section;
1670
1671 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1672 return hdh_p->sec;
1673 }
1674 return NULL;
1675 }
1676
1677 /* Adjust a symbol defined by a dynamic object and referenced by a
1678 regular object. The current definition is in some section of the
1679 dynamic object, but we're not including those sections. We have to
1680 change the definition to something the rest of the link can
1681 understand. */
1682
1683 static bfd_boolean
1684 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1685 struct elf_link_hash_entry *eh)
1686 {
1687 struct elf32_hppa_link_hash_table *htab;
1688 asection *sec, *srel;
1689
1690 /* If this is a function, put it in the procedure linkage table. We
1691 will fill in the contents of the procedure linkage table later. */
1692 if (eh->type == STT_FUNC
1693 || eh->needs_plt)
1694 {
1695 /* Prior to adjust_dynamic_symbol, non_got_ref set means that
1696 check_relocs generated dyn_relocs for this symbol.
1697 After adjust_dynamic_symbol, non_got_ref clear in the non-pic
1698 case means that dyn_relocs for this symbol should be
1699 discarded; We either want the symbol to remain undefined, or
1700 we have a local definition of some sort. The "local
1701 definition" for non-function symbols may be due to creating a
1702 local definition in .dynbss.
1703 Unlike other targets, elf32-hppa.c does not define a function
1704 symbol in a non-pic executable on PLT stub code, so we don't
1705 have a local definition in that case. */
1706 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1707 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1708 /* Arrange to discard dyn_relocs if we've decided that a
1709 function symbol is local. */
1710 if (local)
1711 eh->non_got_ref = 0;
1712
1713 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1714 The refcounts are not reliable when it has been hidden since
1715 hide_symbol can be called before the plabel flag is set. */
1716 if (hppa_elf_hash_entry (eh)->plabel)
1717 eh->plt.refcount = 1;
1718
1719 /* Note that unlike some other backends, the refcount is not
1720 incremented for a non-call (and non-plabel) function reference. */
1721 else if (eh->plt.refcount <= 0
1722 || local)
1723 {
1724 /* The .plt entry is not needed when:
1725 a) Garbage collection has removed all references to the
1726 symbol, or
1727 b) We know for certain the symbol is defined in this
1728 object, and it's not a weak definition, nor is the symbol
1729 used by a plabel relocation. Either this object is the
1730 application or we are doing a shared symbolic link. */
1731 eh->plt.offset = (bfd_vma) -1;
1732 eh->needs_plt = 0;
1733 }
1734
1735 /* Function symbols can't have copy relocs. */
1736 return TRUE;
1737 }
1738 else
1739 eh->plt.offset = (bfd_vma) -1;
1740
1741 /* If this is a weak symbol, and there is a real definition, the
1742 processor independent code will have arranged for us to see the
1743 real definition first, and we can just use the same value. */
1744 if (eh->is_weakalias)
1745 {
1746 struct elf_link_hash_entry *def = weakdef (eh);
1747 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1748 eh->root.u.def.section = def->root.u.def.section;
1749 eh->root.u.def.value = def->root.u.def.value;
1750 if (ELIMINATE_COPY_RELOCS)
1751 eh->non_got_ref = def->non_got_ref;
1752 return TRUE;
1753 }
1754
1755 /* This is a reference to a symbol defined by a dynamic object which
1756 is not a function. */
1757
1758 /* If we are creating a shared library, we must presume that the
1759 only references to the symbol are via the global offset table.
1760 For such cases we need not do anything here; the relocations will
1761 be handled correctly by relocate_section. */
1762 if (bfd_link_pic (info))
1763 return TRUE;
1764
1765 /* If there are no references to this symbol that do not use the
1766 GOT, we don't need to generate a copy reloc. */
1767 if (!eh->non_got_ref)
1768 return TRUE;
1769
1770 /* If -z nocopyreloc was given, we won't generate them either. */
1771 if (info->nocopyreloc)
1772 return TRUE;
1773
1774 if (ELIMINATE_COPY_RELOCS
1775 && !readonly_dynrelocs (eh))
1776 {
1777 /* If we didn't find any dynamic relocs in read-only sections, then
1778 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1779 return TRUE;
1780 }
1781
1782 /* We must allocate the symbol in our .dynbss section, which will
1783 become part of the .bss section of the executable. There will be
1784 an entry for this symbol in the .dynsym section. The dynamic
1785 object will contain position independent code, so all references
1786 from the dynamic object to this symbol will go through the global
1787 offset table. The dynamic linker will use the .dynsym entry to
1788 determine the address it must put in the global offset table, so
1789 both the dynamic object and the regular object will refer to the
1790 same memory location for the variable. */
1791
1792 htab = hppa_link_hash_table (info);
1793 if (htab == NULL)
1794 return FALSE;
1795
1796 /* We must generate a COPY reloc to tell the dynamic linker to
1797 copy the initial value out of the dynamic object and into the
1798 runtime process image. */
1799 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1800 {
1801 sec = htab->etab.sdynrelro;
1802 srel = htab->etab.sreldynrelro;
1803 }
1804 else
1805 {
1806 sec = htab->etab.sdynbss;
1807 srel = htab->etab.srelbss;
1808 }
1809 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1810 {
1811 srel->size += sizeof (Elf32_External_Rela);
1812 eh->needs_copy = 1;
1813 }
1814
1815 /* We no longer want dyn_relocs. */
1816 eh->non_got_ref = 0;
1817 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1818 }
1819
1820 /* If EH is undefined, make it dynamic if that makes sense. */
1821
1822 static bfd_boolean
1823 ensure_undef_dynamic (struct bfd_link_info *info,
1824 struct elf_link_hash_entry *eh)
1825 {
1826 struct elf_link_hash_table *htab = elf_hash_table (info);
1827
1828 if (htab->dynamic_sections_created
1829 && (eh->root.type == bfd_link_hash_undefweak
1830 || eh->root.type == bfd_link_hash_undefined)
1831 && eh->dynindx == -1
1832 && !eh->forced_local
1833 && eh->type != STT_PARISC_MILLI
1834 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1835 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1836 return bfd_elf_link_record_dynamic_symbol (info, eh);
1837 return TRUE;
1838 }
1839
1840 /* Allocate space in the .plt for entries that won't have relocations.
1841 ie. plabel entries. */
1842
1843 static bfd_boolean
1844 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1845 {
1846 struct bfd_link_info *info;
1847 struct elf32_hppa_link_hash_table *htab;
1848 struct elf32_hppa_link_hash_entry *hh;
1849 asection *sec;
1850
1851 if (eh->root.type == bfd_link_hash_indirect)
1852 return TRUE;
1853
1854 info = (struct bfd_link_info *) inf;
1855 hh = hppa_elf_hash_entry (eh);
1856 htab = hppa_link_hash_table (info);
1857 if (htab == NULL)
1858 return FALSE;
1859
1860 if (htab->etab.dynamic_sections_created
1861 && eh->plt.refcount > 0)
1862 {
1863 if (!ensure_undef_dynamic (info, eh))
1864 return FALSE;
1865
1866 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1867 {
1868 /* Allocate these later. From this point on, h->plabel
1869 means that the plt entry is only used by a plabel.
1870 We'll be using a normal plt entry for this symbol, so
1871 clear the plabel indicator. */
1872
1873 hh->plabel = 0;
1874 }
1875 else if (hh->plabel)
1876 {
1877 /* Make an entry in the .plt section for plabel references
1878 that won't have a .plt entry for other reasons. */
1879 sec = htab->etab.splt;
1880 eh->plt.offset = sec->size;
1881 sec->size += PLT_ENTRY_SIZE;
1882 if (bfd_link_pic (info))
1883 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1884 }
1885 else
1886 {
1887 /* No .plt entry needed. */
1888 eh->plt.offset = (bfd_vma) -1;
1889 eh->needs_plt = 0;
1890 }
1891 }
1892 else
1893 {
1894 eh->plt.offset = (bfd_vma) -1;
1895 eh->needs_plt = 0;
1896 }
1897
1898 return TRUE;
1899 }
1900
1901 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1902
1903 static inline unsigned int
1904 got_entries_needed (int tls_type)
1905 {
1906 unsigned int need = 0;
1907
1908 if ((tls_type & GOT_NORMAL) != 0)
1909 need += GOT_ENTRY_SIZE;
1910 if ((tls_type & GOT_TLS_GD) != 0)
1911 need += GOT_ENTRY_SIZE * 2;
1912 if ((tls_type & GOT_TLS_IE) != 0)
1913 need += GOT_ENTRY_SIZE;
1914 return need;
1915 }
1916
1917 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1918 NEEDed GOT entries. KNOWN says a TPREL offset can be calculated
1919 at link time. */
1920
1921 static inline unsigned int
1922 got_relocs_needed (int tls_type, unsigned int need, bfd_boolean known)
1923 {
1924 /* All the entries we allocated need relocs.
1925 Except IE in executable with a local symbol. We could also omit
1926 the DTPOFF reloc on the second word of a GD entry under the same
1927 condition as that for IE, but ld.so might want to differentiate
1928 LD and GD entries at some stage. */
1929 if ((tls_type & GOT_TLS_IE) != 0 && known)
1930 need -= GOT_ENTRY_SIZE;
1931 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1932 }
1933
1934 /* Allocate space in .plt, .got and associated reloc sections for
1935 global syms. */
1936
1937 static bfd_boolean
1938 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1939 {
1940 struct bfd_link_info *info;
1941 struct elf32_hppa_link_hash_table *htab;
1942 asection *sec;
1943 struct elf32_hppa_link_hash_entry *hh;
1944 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1945
1946 if (eh->root.type == bfd_link_hash_indirect)
1947 return TRUE;
1948
1949 info = inf;
1950 htab = hppa_link_hash_table (info);
1951 if (htab == NULL)
1952 return FALSE;
1953
1954 hh = hppa_elf_hash_entry (eh);
1955
1956 if (htab->etab.dynamic_sections_created
1957 && eh->plt.offset != (bfd_vma) -1
1958 && !hh->plabel
1959 && eh->plt.refcount > 0)
1960 {
1961 /* Make an entry in the .plt section. */
1962 sec = htab->etab.splt;
1963 eh->plt.offset = sec->size;
1964 sec->size += PLT_ENTRY_SIZE;
1965
1966 /* We also need to make an entry in the .rela.plt section. */
1967 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1968 htab->need_plt_stub = 1;
1969 }
1970
1971 if (eh->got.refcount > 0)
1972 {
1973 unsigned int need;
1974
1975 if (!ensure_undef_dynamic (info, eh))
1976 return FALSE;
1977
1978 sec = htab->etab.sgot;
1979 eh->got.offset = sec->size;
1980 need = got_entries_needed (hh->tls_type);
1981 sec->size += need;
1982 if (htab->etab.dynamic_sections_created
1983 && (bfd_link_pic (info)
1984 || (eh->dynindx != -1
1985 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1986 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1987 {
1988 bfd_boolean tprel_known = (bfd_link_executable (info)
1989 && SYMBOL_REFERENCES_LOCAL (info, eh));
1990 htab->etab.srelgot->size
1991 += got_relocs_needed (hh->tls_type, need, tprel_known);
1992 }
1993 }
1994 else
1995 eh->got.offset = (bfd_vma) -1;
1996
1997 /* If no dynamic sections we can't have dynamic relocs. */
1998 if (!htab->etab.dynamic_sections_created)
1999 hh->dyn_relocs = NULL;
2000
2001 /* Discard relocs on undefined syms with non-default visibility. */
2002 else if ((eh->root.type == bfd_link_hash_undefined
2003 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2004 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
2005 hh->dyn_relocs = NULL;
2006
2007 if (hh->dyn_relocs == NULL)
2008 {
2009 eh->non_got_ref = 0;
2010 return TRUE;
2011 }
2012
2013 /* If this is a -Bsymbolic shared link, then we need to discard all
2014 space allocated for dynamic pc-relative relocs against symbols
2015 defined in a regular object. For the normal shared case, discard
2016 space for relocs that have become local due to symbol visibility
2017 changes. */
2018 if (bfd_link_pic (info))
2019 {
2020 #if RELATIVE_DYNRELOCS
2021 if (SYMBOL_CALLS_LOCAL (info, eh))
2022 {
2023 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2024
2025 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2026 {
2027 hdh_p->count -= hdh_p->relative_count;
2028 hdh_p->relative_count = 0;
2029 if (hdh_p->count == 0)
2030 *hdh_pp = hdh_p->hdh_next;
2031 else
2032 hdh_pp = &hdh_p->hdh_next;
2033 }
2034 }
2035 #endif
2036
2037 if (hh->dyn_relocs != NULL)
2038 {
2039 if (!ensure_undef_dynamic (info, eh))
2040 return FALSE;
2041 }
2042 }
2043 else if (ELIMINATE_COPY_RELOCS)
2044 {
2045 /* For the non-shared case, discard space for relocs against
2046 symbols which turn out to need copy relocs or are not
2047 dynamic. */
2048
2049 if (eh->dynamic_adjusted
2050 && eh->non_got_ref
2051 && !eh->def_regular
2052 && !ELF_COMMON_DEF_P (eh))
2053 {
2054 if (!ensure_undef_dynamic (info, eh))
2055 return FALSE;
2056
2057 if (eh->dynindx == -1)
2058 {
2059 eh->non_got_ref = 0;
2060 hh->dyn_relocs = NULL;
2061 }
2062 }
2063 else
2064 {
2065 eh->non_got_ref = 0;
2066 hh->dyn_relocs = NULL;
2067 }
2068 }
2069
2070 /* Finally, allocate space. */
2071 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2072 {
2073 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2074 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2075 }
2076
2077 return TRUE;
2078 }
2079
2080 /* This function is called via elf_link_hash_traverse to force
2081 millicode symbols local so they do not end up as globals in the
2082 dynamic symbol table. We ought to be able to do this in
2083 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2084 for all dynamic symbols. Arguably, this is a bug in
2085 elf_adjust_dynamic_symbol. */
2086
2087 static bfd_boolean
2088 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2089 struct bfd_link_info *info)
2090 {
2091 if (eh->type == STT_PARISC_MILLI
2092 && !eh->forced_local)
2093 {
2094 elf32_hppa_hide_symbol (info, eh, TRUE);
2095 }
2096 return TRUE;
2097 }
2098
2099 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2100 read-only sections. */
2101
2102 static bfd_boolean
2103 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2104 {
2105 asection *sec;
2106
2107 if (eh->root.type == bfd_link_hash_indirect)
2108 return TRUE;
2109
2110 sec = readonly_dynrelocs (eh);
2111 if (sec != NULL)
2112 {
2113 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2114
2115 info->flags |= DF_TEXTREL;
2116 info->callbacks->minfo
2117 (_("%B: dynamic relocation in read-only section `%A'\n"),
2118 sec->owner, sec);
2119
2120 /* Not an error, just cut short the traversal. */
2121 return FALSE;
2122 }
2123 return TRUE;
2124 }
2125
2126 /* Set the sizes of the dynamic sections. */
2127
2128 static bfd_boolean
2129 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2130 struct bfd_link_info *info)
2131 {
2132 struct elf32_hppa_link_hash_table *htab;
2133 bfd *dynobj;
2134 bfd *ibfd;
2135 asection *sec;
2136 bfd_boolean relocs;
2137
2138 htab = hppa_link_hash_table (info);
2139 if (htab == NULL)
2140 return FALSE;
2141
2142 dynobj = htab->etab.dynobj;
2143 if (dynobj == NULL)
2144 abort ();
2145
2146 if (htab->etab.dynamic_sections_created)
2147 {
2148 /* Set the contents of the .interp section to the interpreter. */
2149 if (bfd_link_executable (info) && !info->nointerp)
2150 {
2151 sec = bfd_get_linker_section (dynobj, ".interp");
2152 if (sec == NULL)
2153 abort ();
2154 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2155 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2156 }
2157
2158 /* Force millicode symbols local. */
2159 elf_link_hash_traverse (&htab->etab,
2160 clobber_millicode_symbols,
2161 info);
2162 }
2163
2164 /* Set up .got and .plt offsets for local syms, and space for local
2165 dynamic relocs. */
2166 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2167 {
2168 bfd_signed_vma *local_got;
2169 bfd_signed_vma *end_local_got;
2170 bfd_signed_vma *local_plt;
2171 bfd_signed_vma *end_local_plt;
2172 bfd_size_type locsymcount;
2173 Elf_Internal_Shdr *symtab_hdr;
2174 asection *srel;
2175 char *local_tls_type;
2176
2177 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2178 continue;
2179
2180 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2181 {
2182 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2183
2184 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2185 elf_section_data (sec)->local_dynrel);
2186 hdh_p != NULL;
2187 hdh_p = hdh_p->hdh_next)
2188 {
2189 if (!bfd_is_abs_section (hdh_p->sec)
2190 && bfd_is_abs_section (hdh_p->sec->output_section))
2191 {
2192 /* Input section has been discarded, either because
2193 it is a copy of a linkonce section or due to
2194 linker script /DISCARD/, so we'll be discarding
2195 the relocs too. */
2196 }
2197 else if (hdh_p->count != 0)
2198 {
2199 srel = elf_section_data (hdh_p->sec)->sreloc;
2200 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2201 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2202 info->flags |= DF_TEXTREL;
2203 }
2204 }
2205 }
2206
2207 local_got = elf_local_got_refcounts (ibfd);
2208 if (!local_got)
2209 continue;
2210
2211 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2212 locsymcount = symtab_hdr->sh_info;
2213 end_local_got = local_got + locsymcount;
2214 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2215 sec = htab->etab.sgot;
2216 srel = htab->etab.srelgot;
2217 for (; local_got < end_local_got; ++local_got)
2218 {
2219 if (*local_got > 0)
2220 {
2221 unsigned int need;
2222
2223 *local_got = sec->size;
2224 need = got_entries_needed (*local_tls_type);
2225 sec->size += need;
2226 if (bfd_link_pic (info))
2227 {
2228 bfd_boolean tprel_known = bfd_link_executable (info);
2229 htab->etab.srelgot->size
2230 += got_relocs_needed (*local_tls_type, need, tprel_known);
2231 }
2232 }
2233 else
2234 *local_got = (bfd_vma) -1;
2235
2236 ++local_tls_type;
2237 }
2238
2239 local_plt = end_local_got;
2240 end_local_plt = local_plt + locsymcount;
2241 if (! htab->etab.dynamic_sections_created)
2242 {
2243 /* Won't be used, but be safe. */
2244 for (; local_plt < end_local_plt; ++local_plt)
2245 *local_plt = (bfd_vma) -1;
2246 }
2247 else
2248 {
2249 sec = htab->etab.splt;
2250 srel = htab->etab.srelplt;
2251 for (; local_plt < end_local_plt; ++local_plt)
2252 {
2253 if (*local_plt > 0)
2254 {
2255 *local_plt = sec->size;
2256 sec->size += PLT_ENTRY_SIZE;
2257 if (bfd_link_pic (info))
2258 srel->size += sizeof (Elf32_External_Rela);
2259 }
2260 else
2261 *local_plt = (bfd_vma) -1;
2262 }
2263 }
2264 }
2265
2266 if (htab->tls_ldm_got.refcount > 0)
2267 {
2268 /* Allocate 2 got entries and 1 dynamic reloc for
2269 R_PARISC_TLS_DTPMOD32 relocs. */
2270 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2271 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2272 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2273 }
2274 else
2275 htab->tls_ldm_got.offset = -1;
2276
2277 /* Do all the .plt entries without relocs first. The dynamic linker
2278 uses the last .plt reloc to find the end of the .plt (and hence
2279 the start of the .got) for lazy linking. */
2280 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2281
2282 /* Allocate global sym .plt and .got entries, and space for global
2283 sym dynamic relocs. */
2284 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2285
2286 /* The check_relocs and adjust_dynamic_symbol entry points have
2287 determined the sizes of the various dynamic sections. Allocate
2288 memory for them. */
2289 relocs = FALSE;
2290 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2291 {
2292 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2293 continue;
2294
2295 if (sec == htab->etab.splt)
2296 {
2297 if (htab->need_plt_stub)
2298 {
2299 /* Make space for the plt stub at the end of the .plt
2300 section. We want this stub right at the end, up
2301 against the .got section. */
2302 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2303 int pltalign = bfd_section_alignment (dynobj, sec);
2304 bfd_size_type mask;
2305
2306 if (gotalign > pltalign)
2307 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2308 mask = ((bfd_size_type) 1 << gotalign) - 1;
2309 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2310 }
2311 }
2312 else if (sec == htab->etab.sgot
2313 || sec == htab->etab.sdynbss
2314 || sec == htab->etab.sdynrelro)
2315 ;
2316 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2317 {
2318 if (sec->size != 0)
2319 {
2320 /* Remember whether there are any reloc sections other
2321 than .rela.plt. */
2322 if (sec != htab->etab.srelplt)
2323 relocs = TRUE;
2324
2325 /* We use the reloc_count field as a counter if we need
2326 to copy relocs into the output file. */
2327 sec->reloc_count = 0;
2328 }
2329 }
2330 else
2331 {
2332 /* It's not one of our sections, so don't allocate space. */
2333 continue;
2334 }
2335
2336 if (sec->size == 0)
2337 {
2338 /* If we don't need this section, strip it from the
2339 output file. This is mostly to handle .rela.bss and
2340 .rela.plt. We must create both sections in
2341 create_dynamic_sections, because they must be created
2342 before the linker maps input sections to output
2343 sections. The linker does that before
2344 adjust_dynamic_symbol is called, and it is that
2345 function which decides whether anything needs to go
2346 into these sections. */
2347 sec->flags |= SEC_EXCLUDE;
2348 continue;
2349 }
2350
2351 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2352 continue;
2353
2354 /* Allocate memory for the section contents. Zero it, because
2355 we may not fill in all the reloc sections. */
2356 sec->contents = bfd_zalloc (dynobj, sec->size);
2357 if (sec->contents == NULL)
2358 return FALSE;
2359 }
2360
2361 if (htab->etab.dynamic_sections_created)
2362 {
2363 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2364 actually has nothing to do with the PLT, it is how we
2365 communicate the LTP value of a load module to the dynamic
2366 linker. */
2367 #define add_dynamic_entry(TAG, VAL) \
2368 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2369
2370 if (!add_dynamic_entry (DT_PLTGOT, 0))
2371 return FALSE;
2372
2373 /* Add some entries to the .dynamic section. We fill in the
2374 values later, in elf32_hppa_finish_dynamic_sections, but we
2375 must add the entries now so that we get the correct size for
2376 the .dynamic section. The DT_DEBUG entry is filled in by the
2377 dynamic linker and used by the debugger. */
2378 if (bfd_link_executable (info))
2379 {
2380 if (!add_dynamic_entry (DT_DEBUG, 0))
2381 return FALSE;
2382 }
2383
2384 if (htab->etab.srelplt->size != 0)
2385 {
2386 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2387 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2388 || !add_dynamic_entry (DT_JMPREL, 0))
2389 return FALSE;
2390 }
2391
2392 if (relocs)
2393 {
2394 if (!add_dynamic_entry (DT_RELA, 0)
2395 || !add_dynamic_entry (DT_RELASZ, 0)
2396 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2397 return FALSE;
2398
2399 /* If any dynamic relocs apply to a read-only section,
2400 then we need a DT_TEXTREL entry. */
2401 if ((info->flags & DF_TEXTREL) == 0)
2402 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2403
2404 if ((info->flags & DF_TEXTREL) != 0)
2405 {
2406 if (!add_dynamic_entry (DT_TEXTREL, 0))
2407 return FALSE;
2408 }
2409 }
2410 }
2411 #undef add_dynamic_entry
2412
2413 return TRUE;
2414 }
2415
2416 /* External entry points for sizing and building linker stubs. */
2417
2418 /* Set up various things so that we can make a list of input sections
2419 for each output section included in the link. Returns -1 on error,
2420 0 when no stubs will be needed, and 1 on success. */
2421
2422 int
2423 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2424 {
2425 bfd *input_bfd;
2426 unsigned int bfd_count;
2427 unsigned int top_id, top_index;
2428 asection *section;
2429 asection **input_list, **list;
2430 bfd_size_type amt;
2431 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2432
2433 if (htab == NULL)
2434 return -1;
2435
2436 /* Count the number of input BFDs and find the top input section id. */
2437 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2438 input_bfd != NULL;
2439 input_bfd = input_bfd->link.next)
2440 {
2441 bfd_count += 1;
2442 for (section = input_bfd->sections;
2443 section != NULL;
2444 section = section->next)
2445 {
2446 if (top_id < section->id)
2447 top_id = section->id;
2448 }
2449 }
2450 htab->bfd_count = bfd_count;
2451
2452 amt = sizeof (struct map_stub) * (top_id + 1);
2453 htab->stub_group = bfd_zmalloc (amt);
2454 if (htab->stub_group == NULL)
2455 return -1;
2456
2457 /* We can't use output_bfd->section_count here to find the top output
2458 section index as some sections may have been removed, and
2459 strip_excluded_output_sections doesn't renumber the indices. */
2460 for (section = output_bfd->sections, top_index = 0;
2461 section != NULL;
2462 section = section->next)
2463 {
2464 if (top_index < section->index)
2465 top_index = section->index;
2466 }
2467
2468 htab->top_index = top_index;
2469 amt = sizeof (asection *) * (top_index + 1);
2470 input_list = bfd_malloc (amt);
2471 htab->input_list = input_list;
2472 if (input_list == NULL)
2473 return -1;
2474
2475 /* For sections we aren't interested in, mark their entries with a
2476 value we can check later. */
2477 list = input_list + top_index;
2478 do
2479 *list = bfd_abs_section_ptr;
2480 while (list-- != input_list);
2481
2482 for (section = output_bfd->sections;
2483 section != NULL;
2484 section = section->next)
2485 {
2486 if ((section->flags & SEC_CODE) != 0)
2487 input_list[section->index] = NULL;
2488 }
2489
2490 return 1;
2491 }
2492
2493 /* The linker repeatedly calls this function for each input section,
2494 in the order that input sections are linked into output sections.
2495 Build lists of input sections to determine groupings between which
2496 we may insert linker stubs. */
2497
2498 void
2499 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2500 {
2501 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2502
2503 if (htab == NULL)
2504 return;
2505
2506 if (isec->output_section->index <= htab->top_index)
2507 {
2508 asection **list = htab->input_list + isec->output_section->index;
2509 if (*list != bfd_abs_section_ptr)
2510 {
2511 /* Steal the link_sec pointer for our list. */
2512 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2513 /* This happens to make the list in reverse order,
2514 which is what we want. */
2515 PREV_SEC (isec) = *list;
2516 *list = isec;
2517 }
2518 }
2519 }
2520
2521 /* See whether we can group stub sections together. Grouping stub
2522 sections may result in fewer stubs. More importantly, we need to
2523 put all .init* and .fini* stubs at the beginning of the .init or
2524 .fini output sections respectively, because glibc splits the
2525 _init and _fini functions into multiple parts. Putting a stub in
2526 the middle of a function is not a good idea. */
2527
2528 static void
2529 group_sections (struct elf32_hppa_link_hash_table *htab,
2530 bfd_size_type stub_group_size,
2531 bfd_boolean stubs_always_before_branch)
2532 {
2533 asection **list = htab->input_list + htab->top_index;
2534 do
2535 {
2536 asection *tail = *list;
2537 if (tail == bfd_abs_section_ptr)
2538 continue;
2539 while (tail != NULL)
2540 {
2541 asection *curr;
2542 asection *prev;
2543 bfd_size_type total;
2544 bfd_boolean big_sec;
2545
2546 curr = tail;
2547 total = tail->size;
2548 big_sec = total >= stub_group_size;
2549
2550 while ((prev = PREV_SEC (curr)) != NULL
2551 && ((total += curr->output_offset - prev->output_offset)
2552 < stub_group_size))
2553 curr = prev;
2554
2555 /* OK, the size from the start of CURR to the end is less
2556 than 240000 bytes and thus can be handled by one stub
2557 section. (or the tail section is itself larger than
2558 240000 bytes, in which case we may be toast.)
2559 We should really be keeping track of the total size of
2560 stubs added here, as stubs contribute to the final output
2561 section size. That's a little tricky, and this way will
2562 only break if stubs added total more than 22144 bytes, or
2563 2768 long branch stubs. It seems unlikely for more than
2564 2768 different functions to be called, especially from
2565 code only 240000 bytes long. This limit used to be
2566 250000, but c++ code tends to generate lots of little
2567 functions, and sometimes violated the assumption. */
2568 do
2569 {
2570 prev = PREV_SEC (tail);
2571 /* Set up this stub group. */
2572 htab->stub_group[tail->id].link_sec = curr;
2573 }
2574 while (tail != curr && (tail = prev) != NULL);
2575
2576 /* But wait, there's more! Input sections up to 240000
2577 bytes before the stub section can be handled by it too.
2578 Don't do this if we have a really large section after the
2579 stubs, as adding more stubs increases the chance that
2580 branches may not reach into the stub section. */
2581 if (!stubs_always_before_branch && !big_sec)
2582 {
2583 total = 0;
2584 while (prev != NULL
2585 && ((total += tail->output_offset - prev->output_offset)
2586 < stub_group_size))
2587 {
2588 tail = prev;
2589 prev = PREV_SEC (tail);
2590 htab->stub_group[tail->id].link_sec = curr;
2591 }
2592 }
2593 tail = prev;
2594 }
2595 }
2596 while (list-- != htab->input_list);
2597 free (htab->input_list);
2598 #undef PREV_SEC
2599 }
2600
2601 /* Read in all local syms for all input bfds, and create hash entries
2602 for export stubs if we are building a multi-subspace shared lib.
2603 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2604
2605 static int
2606 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2607 {
2608 unsigned int bfd_indx;
2609 Elf_Internal_Sym *local_syms, **all_local_syms;
2610 int stub_changed = 0;
2611 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2612
2613 if (htab == NULL)
2614 return -1;
2615
2616 /* We want to read in symbol extension records only once. To do this
2617 we need to read in the local symbols in parallel and save them for
2618 later use; so hold pointers to the local symbols in an array. */
2619 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2620 all_local_syms = bfd_zmalloc (amt);
2621 htab->all_local_syms = all_local_syms;
2622 if (all_local_syms == NULL)
2623 return -1;
2624
2625 /* Walk over all the input BFDs, swapping in local symbols.
2626 If we are creating a shared library, create hash entries for the
2627 export stubs. */
2628 for (bfd_indx = 0;
2629 input_bfd != NULL;
2630 input_bfd = input_bfd->link.next, bfd_indx++)
2631 {
2632 Elf_Internal_Shdr *symtab_hdr;
2633
2634 /* We'll need the symbol table in a second. */
2635 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2636 if (symtab_hdr->sh_info == 0)
2637 continue;
2638
2639 /* We need an array of the local symbols attached to the input bfd. */
2640 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2641 if (local_syms == NULL)
2642 {
2643 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2644 symtab_hdr->sh_info, 0,
2645 NULL, NULL, NULL);
2646 /* Cache them for elf_link_input_bfd. */
2647 symtab_hdr->contents = (unsigned char *) local_syms;
2648 }
2649 if (local_syms == NULL)
2650 return -1;
2651
2652 all_local_syms[bfd_indx] = local_syms;
2653
2654 if (bfd_link_pic (info) && htab->multi_subspace)
2655 {
2656 struct elf_link_hash_entry **eh_syms;
2657 struct elf_link_hash_entry **eh_symend;
2658 unsigned int symcount;
2659
2660 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2661 - symtab_hdr->sh_info);
2662 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2663 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2664
2665 /* Look through the global syms for functions; We need to
2666 build export stubs for all globally visible functions. */
2667 for (; eh_syms < eh_symend; eh_syms++)
2668 {
2669 struct elf32_hppa_link_hash_entry *hh;
2670
2671 hh = hppa_elf_hash_entry (*eh_syms);
2672
2673 while (hh->eh.root.type == bfd_link_hash_indirect
2674 || hh->eh.root.type == bfd_link_hash_warning)
2675 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2676
2677 /* At this point in the link, undefined syms have been
2678 resolved, so we need to check that the symbol was
2679 defined in this BFD. */
2680 if ((hh->eh.root.type == bfd_link_hash_defined
2681 || hh->eh.root.type == bfd_link_hash_defweak)
2682 && hh->eh.type == STT_FUNC
2683 && hh->eh.root.u.def.section->output_section != NULL
2684 && (hh->eh.root.u.def.section->output_section->owner
2685 == output_bfd)
2686 && hh->eh.root.u.def.section->owner == input_bfd
2687 && hh->eh.def_regular
2688 && !hh->eh.forced_local
2689 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2690 {
2691 asection *sec;
2692 const char *stub_name;
2693 struct elf32_hppa_stub_hash_entry *hsh;
2694
2695 sec = hh->eh.root.u.def.section;
2696 stub_name = hh_name (hh);
2697 hsh = hppa_stub_hash_lookup (&htab->bstab,
2698 stub_name,
2699 FALSE, FALSE);
2700 if (hsh == NULL)
2701 {
2702 hsh = hppa_add_stub (stub_name, sec, htab);
2703 if (!hsh)
2704 return -1;
2705
2706 hsh->target_value = hh->eh.root.u.def.value;
2707 hsh->target_section = hh->eh.root.u.def.section;
2708 hsh->stub_type = hppa_stub_export;
2709 hsh->hh = hh;
2710 stub_changed = 1;
2711 }
2712 else
2713 {
2714 /* xgettext:c-format */
2715 _bfd_error_handler (_("%B: duplicate export stub %s"),
2716 input_bfd, stub_name);
2717 }
2718 }
2719 }
2720 }
2721 }
2722
2723 return stub_changed;
2724 }
2725
2726 /* Determine and set the size of the stub section for a final link.
2727
2728 The basic idea here is to examine all the relocations looking for
2729 PC-relative calls to a target that is unreachable with a "bl"
2730 instruction. */
2731
2732 bfd_boolean
2733 elf32_hppa_size_stubs
2734 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2735 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2736 asection * (*add_stub_section) (const char *, asection *),
2737 void (*layout_sections_again) (void))
2738 {
2739 bfd_size_type stub_group_size;
2740 bfd_boolean stubs_always_before_branch;
2741 bfd_boolean stub_changed;
2742 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2743
2744 if (htab == NULL)
2745 return FALSE;
2746
2747 /* Stash our params away. */
2748 htab->stub_bfd = stub_bfd;
2749 htab->multi_subspace = multi_subspace;
2750 htab->add_stub_section = add_stub_section;
2751 htab->layout_sections_again = layout_sections_again;
2752 stubs_always_before_branch = group_size < 0;
2753 if (group_size < 0)
2754 stub_group_size = -group_size;
2755 else
2756 stub_group_size = group_size;
2757 if (stub_group_size == 1)
2758 {
2759 /* Default values. */
2760 if (stubs_always_before_branch)
2761 {
2762 stub_group_size = 7680000;
2763 if (htab->has_17bit_branch || htab->multi_subspace)
2764 stub_group_size = 240000;
2765 if (htab->has_12bit_branch)
2766 stub_group_size = 7500;
2767 }
2768 else
2769 {
2770 stub_group_size = 6971392;
2771 if (htab->has_17bit_branch || htab->multi_subspace)
2772 stub_group_size = 217856;
2773 if (htab->has_12bit_branch)
2774 stub_group_size = 6808;
2775 }
2776 }
2777
2778 group_sections (htab, stub_group_size, stubs_always_before_branch);
2779
2780 switch (get_local_syms (output_bfd, info->input_bfds, info))
2781 {
2782 default:
2783 if (htab->all_local_syms)
2784 goto error_ret_free_local;
2785 return FALSE;
2786
2787 case 0:
2788 stub_changed = FALSE;
2789 break;
2790
2791 case 1:
2792 stub_changed = TRUE;
2793 break;
2794 }
2795
2796 while (1)
2797 {
2798 bfd *input_bfd;
2799 unsigned int bfd_indx;
2800 asection *stub_sec;
2801
2802 for (input_bfd = info->input_bfds, bfd_indx = 0;
2803 input_bfd != NULL;
2804 input_bfd = input_bfd->link.next, bfd_indx++)
2805 {
2806 Elf_Internal_Shdr *symtab_hdr;
2807 asection *section;
2808 Elf_Internal_Sym *local_syms;
2809
2810 /* We'll need the symbol table in a second. */
2811 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2812 if (symtab_hdr->sh_info == 0)
2813 continue;
2814
2815 local_syms = htab->all_local_syms[bfd_indx];
2816
2817 /* Walk over each section attached to the input bfd. */
2818 for (section = input_bfd->sections;
2819 section != NULL;
2820 section = section->next)
2821 {
2822 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2823
2824 /* If there aren't any relocs, then there's nothing more
2825 to do. */
2826 if ((section->flags & SEC_RELOC) == 0
2827 || section->reloc_count == 0)
2828 continue;
2829
2830 /* If this section is a link-once section that will be
2831 discarded, then don't create any stubs. */
2832 if (section->output_section == NULL
2833 || section->output_section->owner != output_bfd)
2834 continue;
2835
2836 /* Get the relocs. */
2837 internal_relocs
2838 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2839 info->keep_memory);
2840 if (internal_relocs == NULL)
2841 goto error_ret_free_local;
2842
2843 /* Now examine each relocation. */
2844 irela = internal_relocs;
2845 irelaend = irela + section->reloc_count;
2846 for (; irela < irelaend; irela++)
2847 {
2848 unsigned int r_type, r_indx;
2849 enum elf32_hppa_stub_type stub_type;
2850 struct elf32_hppa_stub_hash_entry *hsh;
2851 asection *sym_sec;
2852 bfd_vma sym_value;
2853 bfd_vma destination;
2854 struct elf32_hppa_link_hash_entry *hh;
2855 char *stub_name;
2856 const asection *id_sec;
2857
2858 r_type = ELF32_R_TYPE (irela->r_info);
2859 r_indx = ELF32_R_SYM (irela->r_info);
2860
2861 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2862 {
2863 bfd_set_error (bfd_error_bad_value);
2864 error_ret_free_internal:
2865 if (elf_section_data (section)->relocs == NULL)
2866 free (internal_relocs);
2867 goto error_ret_free_local;
2868 }
2869
2870 /* Only look for stubs on call instructions. */
2871 if (r_type != (unsigned int) R_PARISC_PCREL12F
2872 && r_type != (unsigned int) R_PARISC_PCREL17F
2873 && r_type != (unsigned int) R_PARISC_PCREL22F)
2874 continue;
2875
2876 /* Now determine the call target, its name, value,
2877 section. */
2878 sym_sec = NULL;
2879 sym_value = 0;
2880 destination = 0;
2881 hh = NULL;
2882 if (r_indx < symtab_hdr->sh_info)
2883 {
2884 /* It's a local symbol. */
2885 Elf_Internal_Sym *sym;
2886 Elf_Internal_Shdr *hdr;
2887 unsigned int shndx;
2888
2889 sym = local_syms + r_indx;
2890 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2891 sym_value = sym->st_value;
2892 shndx = sym->st_shndx;
2893 if (shndx < elf_numsections (input_bfd))
2894 {
2895 hdr = elf_elfsections (input_bfd)[shndx];
2896 sym_sec = hdr->bfd_section;
2897 destination = (sym_value + irela->r_addend
2898 + sym_sec->output_offset
2899 + sym_sec->output_section->vma);
2900 }
2901 }
2902 else
2903 {
2904 /* It's an external symbol. */
2905 int e_indx;
2906
2907 e_indx = r_indx - symtab_hdr->sh_info;
2908 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2909
2910 while (hh->eh.root.type == bfd_link_hash_indirect
2911 || hh->eh.root.type == bfd_link_hash_warning)
2912 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2913
2914 if (hh->eh.root.type == bfd_link_hash_defined
2915 || hh->eh.root.type == bfd_link_hash_defweak)
2916 {
2917 sym_sec = hh->eh.root.u.def.section;
2918 sym_value = hh->eh.root.u.def.value;
2919 if (sym_sec->output_section != NULL)
2920 destination = (sym_value + irela->r_addend
2921 + sym_sec->output_offset
2922 + sym_sec->output_section->vma);
2923 }
2924 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2925 {
2926 if (! bfd_link_pic (info))
2927 continue;
2928 }
2929 else if (hh->eh.root.type == bfd_link_hash_undefined)
2930 {
2931 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2932 && (ELF_ST_VISIBILITY (hh->eh.other)
2933 == STV_DEFAULT)
2934 && hh->eh.type != STT_PARISC_MILLI))
2935 continue;
2936 }
2937 else
2938 {
2939 bfd_set_error (bfd_error_bad_value);
2940 goto error_ret_free_internal;
2941 }
2942 }
2943
2944 /* Determine what (if any) linker stub is needed. */
2945 stub_type = hppa_type_of_stub (section, irela, hh,
2946 destination, info);
2947 if (stub_type == hppa_stub_none)
2948 continue;
2949
2950 /* Support for grouping stub sections. */
2951 id_sec = htab->stub_group[section->id].link_sec;
2952
2953 /* Get the name of this stub. */
2954 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2955 if (!stub_name)
2956 goto error_ret_free_internal;
2957
2958 hsh = hppa_stub_hash_lookup (&htab->bstab,
2959 stub_name,
2960 FALSE, FALSE);
2961 if (hsh != NULL)
2962 {
2963 /* The proper stub has already been created. */
2964 free (stub_name);
2965 continue;
2966 }
2967
2968 hsh = hppa_add_stub (stub_name, section, htab);
2969 if (hsh == NULL)
2970 {
2971 free (stub_name);
2972 goto error_ret_free_internal;
2973 }
2974
2975 hsh->target_value = sym_value;
2976 hsh->target_section = sym_sec;
2977 hsh->stub_type = stub_type;
2978 if (bfd_link_pic (info))
2979 {
2980 if (stub_type == hppa_stub_import)
2981 hsh->stub_type = hppa_stub_import_shared;
2982 else if (stub_type == hppa_stub_long_branch)
2983 hsh->stub_type = hppa_stub_long_branch_shared;
2984 }
2985 hsh->hh = hh;
2986 stub_changed = TRUE;
2987 }
2988
2989 /* We're done with the internal relocs, free them. */
2990 if (elf_section_data (section)->relocs == NULL)
2991 free (internal_relocs);
2992 }
2993 }
2994
2995 if (!stub_changed)
2996 break;
2997
2998 /* OK, we've added some stubs. Find out the new size of the
2999 stub sections. */
3000 for (stub_sec = htab->stub_bfd->sections;
3001 stub_sec != NULL;
3002 stub_sec = stub_sec->next)
3003 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3004 stub_sec->size = 0;
3005
3006 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3007
3008 /* Ask the linker to do its stuff. */
3009 (*htab->layout_sections_again) ();
3010 stub_changed = FALSE;
3011 }
3012
3013 free (htab->all_local_syms);
3014 return TRUE;
3015
3016 error_ret_free_local:
3017 free (htab->all_local_syms);
3018 return FALSE;
3019 }
3020
3021 /* For a final link, this function is called after we have sized the
3022 stubs to provide a value for __gp. */
3023
3024 bfd_boolean
3025 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3026 {
3027 struct bfd_link_hash_entry *h;
3028 asection *sec = NULL;
3029 bfd_vma gp_val = 0;
3030
3031 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3032
3033 if (h != NULL
3034 && (h->type == bfd_link_hash_defined
3035 || h->type == bfd_link_hash_defweak))
3036 {
3037 gp_val = h->u.def.value;
3038 sec = h->u.def.section;
3039 }
3040 else
3041 {
3042 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3043 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3044
3045 /* Choose to point our LTP at, in this order, one of .plt, .got,
3046 or .data, if these sections exist. In the case of choosing
3047 .plt try to make the LTP ideal for addressing anywhere in the
3048 .plt or .got with a 14 bit signed offset. Typically, the end
3049 of the .plt is the start of the .got, so choose .plt + 0x2000
3050 if either the .plt or .got is larger than 0x2000. If both
3051 the .plt and .got are smaller than 0x2000, choose the end of
3052 the .plt section. */
3053 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3054 ? NULL : splt;
3055 if (sec != NULL)
3056 {
3057 gp_val = sec->size;
3058 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3059 {
3060 gp_val = 0x2000;
3061 }
3062 }
3063 else
3064 {
3065 sec = sgot;
3066 if (sec != NULL)
3067 {
3068 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3069 {
3070 /* We know we don't have a .plt. If .got is large,
3071 offset our LTP. */
3072 if (sec->size > 0x2000)
3073 gp_val = 0x2000;
3074 }
3075 }
3076 else
3077 {
3078 /* No .plt or .got. Who cares what the LTP is? */
3079 sec = bfd_get_section_by_name (abfd, ".data");
3080 }
3081 }
3082
3083 if (h != NULL)
3084 {
3085 h->type = bfd_link_hash_defined;
3086 h->u.def.value = gp_val;
3087 if (sec != NULL)
3088 h->u.def.section = sec;
3089 else
3090 h->u.def.section = bfd_abs_section_ptr;
3091 }
3092 }
3093
3094 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3095 {
3096 if (sec != NULL && sec->output_section != NULL)
3097 gp_val += sec->output_section->vma + sec->output_offset;
3098
3099 elf_gp (abfd) = gp_val;
3100 }
3101 return TRUE;
3102 }
3103
3104 /* Build all the stubs associated with the current output file. The
3105 stubs are kept in a hash table attached to the main linker hash
3106 table. We also set up the .plt entries for statically linked PIC
3107 functions here. This function is called via hppaelf_finish in the
3108 linker. */
3109
3110 bfd_boolean
3111 elf32_hppa_build_stubs (struct bfd_link_info *info)
3112 {
3113 asection *stub_sec;
3114 struct bfd_hash_table *table;
3115 struct elf32_hppa_link_hash_table *htab;
3116
3117 htab = hppa_link_hash_table (info);
3118 if (htab == NULL)
3119 return FALSE;
3120
3121 for (stub_sec = htab->stub_bfd->sections;
3122 stub_sec != NULL;
3123 stub_sec = stub_sec->next)
3124 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3125 && stub_sec->size != 0)
3126 {
3127 /* Allocate memory to hold the linker stubs. */
3128 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3129 if (stub_sec->contents == NULL)
3130 return FALSE;
3131 stub_sec->size = 0;
3132 }
3133
3134 /* Build the stubs as directed by the stub hash table. */
3135 table = &htab->bstab;
3136 bfd_hash_traverse (table, hppa_build_one_stub, info);
3137
3138 return TRUE;
3139 }
3140
3141 /* Return the base vma address which should be subtracted from the real
3142 address when resolving a dtpoff relocation.
3143 This is PT_TLS segment p_vaddr. */
3144
3145 static bfd_vma
3146 dtpoff_base (struct bfd_link_info *info)
3147 {
3148 /* If tls_sec is NULL, we should have signalled an error already. */
3149 if (elf_hash_table (info)->tls_sec == NULL)
3150 return 0;
3151 return elf_hash_table (info)->tls_sec->vma;
3152 }
3153
3154 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3155
3156 static bfd_vma
3157 tpoff (struct bfd_link_info *info, bfd_vma address)
3158 {
3159 struct elf_link_hash_table *htab = elf_hash_table (info);
3160
3161 /* If tls_sec is NULL, we should have signalled an error already. */
3162 if (htab->tls_sec == NULL)
3163 return 0;
3164 /* hppa TLS ABI is variant I and static TLS block start just after
3165 tcbhead structure which has 2 pointer fields. */
3166 return (address - htab->tls_sec->vma
3167 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3168 }
3169
3170 /* Perform a final link. */
3171
3172 static bfd_boolean
3173 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3174 {
3175 struct stat buf;
3176
3177 /* Invoke the regular ELF linker to do all the work. */
3178 if (!bfd_elf_final_link (abfd, info))
3179 return FALSE;
3180
3181 /* If we're producing a final executable, sort the contents of the
3182 unwind section. */
3183 if (bfd_link_relocatable (info))
3184 return TRUE;
3185
3186 /* Do not attempt to sort non-regular files. This is here
3187 especially for configure scripts and kernel builds which run
3188 tests with "ld [...] -o /dev/null". */
3189 if (stat (abfd->filename, &buf) != 0
3190 || !S_ISREG(buf.st_mode))
3191 return TRUE;
3192
3193 return elf_hppa_sort_unwind (abfd);
3194 }
3195
3196 /* Record the lowest address for the data and text segments. */
3197
3198 static void
3199 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3200 {
3201 struct elf32_hppa_link_hash_table *htab;
3202
3203 htab = (struct elf32_hppa_link_hash_table*) data;
3204 if (htab == NULL)
3205 return;
3206
3207 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3208 {
3209 bfd_vma value;
3210 Elf_Internal_Phdr *p;
3211
3212 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3213 BFD_ASSERT (p != NULL);
3214 value = p->p_vaddr;
3215
3216 if ((section->flags & SEC_READONLY) != 0)
3217 {
3218 if (value < htab->text_segment_base)
3219 htab->text_segment_base = value;
3220 }
3221 else
3222 {
3223 if (value < htab->data_segment_base)
3224 htab->data_segment_base = value;
3225 }
3226 }
3227 }
3228
3229 /* Perform a relocation as part of a final link. */
3230
3231 static bfd_reloc_status_type
3232 final_link_relocate (asection *input_section,
3233 bfd_byte *contents,
3234 const Elf_Internal_Rela *rela,
3235 bfd_vma value,
3236 struct elf32_hppa_link_hash_table *htab,
3237 asection *sym_sec,
3238 struct elf32_hppa_link_hash_entry *hh,
3239 struct bfd_link_info *info)
3240 {
3241 int insn;
3242 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3243 unsigned int orig_r_type = r_type;
3244 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3245 int r_format = howto->bitsize;
3246 enum hppa_reloc_field_selector_type_alt r_field;
3247 bfd *input_bfd = input_section->owner;
3248 bfd_vma offset = rela->r_offset;
3249 bfd_vma max_branch_offset = 0;
3250 bfd_byte *hit_data = contents + offset;
3251 bfd_signed_vma addend = rela->r_addend;
3252 bfd_vma location;
3253 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3254 int val;
3255
3256 if (r_type == R_PARISC_NONE)
3257 return bfd_reloc_ok;
3258
3259 insn = bfd_get_32 (input_bfd, hit_data);
3260
3261 /* Find out where we are and where we're going. */
3262 location = (offset +
3263 input_section->output_offset +
3264 input_section->output_section->vma);
3265
3266 /* If we are not building a shared library, convert DLTIND relocs to
3267 DPREL relocs. */
3268 if (!bfd_link_pic (info))
3269 {
3270 switch (r_type)
3271 {
3272 case R_PARISC_DLTIND21L:
3273 case R_PARISC_TLS_GD21L:
3274 case R_PARISC_TLS_LDM21L:
3275 case R_PARISC_TLS_IE21L:
3276 r_type = R_PARISC_DPREL21L;
3277 break;
3278
3279 case R_PARISC_DLTIND14R:
3280 case R_PARISC_TLS_GD14R:
3281 case R_PARISC_TLS_LDM14R:
3282 case R_PARISC_TLS_IE14R:
3283 r_type = R_PARISC_DPREL14R;
3284 break;
3285
3286 case R_PARISC_DLTIND14F:
3287 r_type = R_PARISC_DPREL14F;
3288 break;
3289 }
3290 }
3291
3292 switch (r_type)
3293 {
3294 case R_PARISC_PCREL12F:
3295 case R_PARISC_PCREL17F:
3296 case R_PARISC_PCREL22F:
3297 /* If this call should go via the plt, find the import stub in
3298 the stub hash. */
3299 if (sym_sec == NULL
3300 || sym_sec->output_section == NULL
3301 || (hh != NULL
3302 && hh->eh.plt.offset != (bfd_vma) -1
3303 && hh->eh.dynindx != -1
3304 && !hh->plabel
3305 && (bfd_link_pic (info)
3306 || !hh->eh.def_regular
3307 || hh->eh.root.type == bfd_link_hash_defweak)))
3308 {
3309 hsh = hppa_get_stub_entry (input_section, sym_sec,
3310 hh, rela, htab);
3311 if (hsh != NULL)
3312 {
3313 value = (hsh->stub_offset
3314 + hsh->stub_sec->output_offset
3315 + hsh->stub_sec->output_section->vma);
3316 addend = 0;
3317 }
3318 else if (sym_sec == NULL && hh != NULL
3319 && hh->eh.root.type == bfd_link_hash_undefweak)
3320 {
3321 /* It's OK if undefined weak. Calls to undefined weak
3322 symbols behave as if the "called" function
3323 immediately returns. We can thus call to a weak
3324 function without first checking whether the function
3325 is defined. */
3326 value = location;
3327 addend = 8;
3328 }
3329 else
3330 return bfd_reloc_undefined;
3331 }
3332 /* Fall thru. */
3333
3334 case R_PARISC_PCREL21L:
3335 case R_PARISC_PCREL17C:
3336 case R_PARISC_PCREL17R:
3337 case R_PARISC_PCREL14R:
3338 case R_PARISC_PCREL14F:
3339 case R_PARISC_PCREL32:
3340 /* Make it a pc relative offset. */
3341 value -= location;
3342 addend -= 8;
3343 break;
3344
3345 case R_PARISC_DPREL21L:
3346 case R_PARISC_DPREL14R:
3347 case R_PARISC_DPREL14F:
3348 /* Convert instructions that use the linkage table pointer (r19) to
3349 instructions that use the global data pointer (dp). This is the
3350 most efficient way of using PIC code in an incomplete executable,
3351 but the user must follow the standard runtime conventions for
3352 accessing data for this to work. */
3353 if (orig_r_type != r_type)
3354 {
3355 if (r_type == R_PARISC_DPREL21L)
3356 {
3357 /* GCC sometimes uses a register other than r19 for the
3358 operation, so we must convert any addil instruction
3359 that uses this relocation. */
3360 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3361 insn = ADDIL_DP;
3362 else
3363 /* We must have a ldil instruction. It's too hard to find
3364 and convert the associated add instruction, so issue an
3365 error. */
3366 _bfd_error_handler
3367 /* xgettext:c-format */
3368 (_("%B(%A+%#Lx): %s fixup for insn %#x is not supported in a non-shared link"),
3369 input_bfd,
3370 input_section,
3371 offset,
3372 howto->name,
3373 insn);
3374 }
3375 else if (r_type == R_PARISC_DPREL14F)
3376 {
3377 /* This must be a format 1 load/store. Change the base
3378 register to dp. */
3379 insn = (insn & 0xfc1ffff) | (27 << 21);
3380 }
3381 }
3382
3383 /* For all the DP relative relocations, we need to examine the symbol's
3384 section. If it has no section or if it's a code section, then
3385 "data pointer relative" makes no sense. In that case we don't
3386 adjust the "value", and for 21 bit addil instructions, we change the
3387 source addend register from %dp to %r0. This situation commonly
3388 arises for undefined weak symbols and when a variable's "constness"
3389 is declared differently from the way the variable is defined. For
3390 instance: "extern int foo" with foo defined as "const int foo". */
3391 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3392 {
3393 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3394 == (((int) OP_ADDIL << 26) | (27 << 21)))
3395 {
3396 insn &= ~ (0x1f << 21);
3397 }
3398 /* Now try to make things easy for the dynamic linker. */
3399
3400 break;
3401 }
3402 /* Fall thru. */
3403
3404 case R_PARISC_DLTIND21L:
3405 case R_PARISC_DLTIND14R:
3406 case R_PARISC_DLTIND14F:
3407 case R_PARISC_TLS_GD21L:
3408 case R_PARISC_TLS_LDM21L:
3409 case R_PARISC_TLS_IE21L:
3410 case R_PARISC_TLS_GD14R:
3411 case R_PARISC_TLS_LDM14R:
3412 case R_PARISC_TLS_IE14R:
3413 value -= elf_gp (input_section->output_section->owner);
3414 break;
3415
3416 case R_PARISC_SEGREL32:
3417 if ((sym_sec->flags & SEC_CODE) != 0)
3418 value -= htab->text_segment_base;
3419 else
3420 value -= htab->data_segment_base;
3421 break;
3422
3423 default:
3424 break;
3425 }
3426
3427 switch (r_type)
3428 {
3429 case R_PARISC_DIR32:
3430 case R_PARISC_DIR14F:
3431 case R_PARISC_DIR17F:
3432 case R_PARISC_PCREL17C:
3433 case R_PARISC_PCREL14F:
3434 case R_PARISC_PCREL32:
3435 case R_PARISC_DPREL14F:
3436 case R_PARISC_PLABEL32:
3437 case R_PARISC_DLTIND14F:
3438 case R_PARISC_SEGBASE:
3439 case R_PARISC_SEGREL32:
3440 case R_PARISC_TLS_DTPMOD32:
3441 case R_PARISC_TLS_DTPOFF32:
3442 case R_PARISC_TLS_TPREL32:
3443 r_field = e_fsel;
3444 break;
3445
3446 case R_PARISC_DLTIND21L:
3447 case R_PARISC_PCREL21L:
3448 case R_PARISC_PLABEL21L:
3449 r_field = e_lsel;
3450 break;
3451
3452 case R_PARISC_DIR21L:
3453 case R_PARISC_DPREL21L:
3454 case R_PARISC_TLS_GD21L:
3455 case R_PARISC_TLS_LDM21L:
3456 case R_PARISC_TLS_LDO21L:
3457 case R_PARISC_TLS_IE21L:
3458 case R_PARISC_TLS_LE21L:
3459 r_field = e_lrsel;
3460 break;
3461
3462 case R_PARISC_PCREL17R:
3463 case R_PARISC_PCREL14R:
3464 case R_PARISC_PLABEL14R:
3465 case R_PARISC_DLTIND14R:
3466 r_field = e_rsel;
3467 break;
3468
3469 case R_PARISC_DIR17R:
3470 case R_PARISC_DIR14R:
3471 case R_PARISC_DPREL14R:
3472 case R_PARISC_TLS_GD14R:
3473 case R_PARISC_TLS_LDM14R:
3474 case R_PARISC_TLS_LDO14R:
3475 case R_PARISC_TLS_IE14R:
3476 case R_PARISC_TLS_LE14R:
3477 r_field = e_rrsel;
3478 break;
3479
3480 case R_PARISC_PCREL12F:
3481 case R_PARISC_PCREL17F:
3482 case R_PARISC_PCREL22F:
3483 r_field = e_fsel;
3484
3485 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3486 {
3487 max_branch_offset = (1 << (17-1)) << 2;
3488 }
3489 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3490 {
3491 max_branch_offset = (1 << (12-1)) << 2;
3492 }
3493 else
3494 {
3495 max_branch_offset = (1 << (22-1)) << 2;
3496 }
3497
3498 /* sym_sec is NULL on undefined weak syms or when shared on
3499 undefined syms. We've already checked for a stub for the
3500 shared undefined case. */
3501 if (sym_sec == NULL)
3502 break;
3503
3504 /* If the branch is out of reach, then redirect the
3505 call to the local stub for this function. */
3506 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3507 {
3508 hsh = hppa_get_stub_entry (input_section, sym_sec,
3509 hh, rela, htab);
3510 if (hsh == NULL)
3511 return bfd_reloc_undefined;
3512
3513 /* Munge up the value and addend so that we call the stub
3514 rather than the procedure directly. */
3515 value = (hsh->stub_offset
3516 + hsh->stub_sec->output_offset
3517 + hsh->stub_sec->output_section->vma
3518 - location);
3519 addend = -8;
3520 }
3521 break;
3522
3523 /* Something we don't know how to handle. */
3524 default:
3525 return bfd_reloc_notsupported;
3526 }
3527
3528 /* Make sure we can reach the stub. */
3529 if (max_branch_offset != 0
3530 && value + addend + max_branch_offset >= 2*max_branch_offset)
3531 {
3532 _bfd_error_handler
3533 /* xgettext:c-format */
3534 (_("%B(%A+%#Lx): cannot reach %s, recompile with -ffunction-sections"),
3535 input_bfd,
3536 input_section,
3537 offset,
3538 hsh->bh_root.string);
3539 bfd_set_error (bfd_error_bad_value);
3540 return bfd_reloc_notsupported;
3541 }
3542
3543 val = hppa_field_adjust (value, addend, r_field);
3544
3545 switch (r_type)
3546 {
3547 case R_PARISC_PCREL12F:
3548 case R_PARISC_PCREL17C:
3549 case R_PARISC_PCREL17F:
3550 case R_PARISC_PCREL17R:
3551 case R_PARISC_PCREL22F:
3552 case R_PARISC_DIR17F:
3553 case R_PARISC_DIR17R:
3554 /* This is a branch. Divide the offset by four.
3555 Note that we need to decide whether it's a branch or
3556 otherwise by inspecting the reloc. Inspecting insn won't
3557 work as insn might be from a .word directive. */
3558 val >>= 2;
3559 break;
3560
3561 default:
3562 break;
3563 }
3564
3565 insn = hppa_rebuild_insn (insn, val, r_format);
3566
3567 /* Update the instruction word. */
3568 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3569 return bfd_reloc_ok;
3570 }
3571
3572 /* Relocate an HPPA ELF section. */
3573
3574 static bfd_boolean
3575 elf32_hppa_relocate_section (bfd *output_bfd,
3576 struct bfd_link_info *info,
3577 bfd *input_bfd,
3578 asection *input_section,
3579 bfd_byte *contents,
3580 Elf_Internal_Rela *relocs,
3581 Elf_Internal_Sym *local_syms,
3582 asection **local_sections)
3583 {
3584 bfd_vma *local_got_offsets;
3585 struct elf32_hppa_link_hash_table *htab;
3586 Elf_Internal_Shdr *symtab_hdr;
3587 Elf_Internal_Rela *rela;
3588 Elf_Internal_Rela *relend;
3589
3590 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3591
3592 htab = hppa_link_hash_table (info);
3593 if (htab == NULL)
3594 return FALSE;
3595
3596 local_got_offsets = elf_local_got_offsets (input_bfd);
3597
3598 rela = relocs;
3599 relend = relocs + input_section->reloc_count;
3600 for (; rela < relend; rela++)
3601 {
3602 unsigned int r_type;
3603 reloc_howto_type *howto;
3604 unsigned int r_symndx;
3605 struct elf32_hppa_link_hash_entry *hh;
3606 Elf_Internal_Sym *sym;
3607 asection *sym_sec;
3608 bfd_vma relocation;
3609 bfd_reloc_status_type rstatus;
3610 const char *sym_name;
3611 bfd_boolean plabel;
3612 bfd_boolean warned_undef;
3613
3614 r_type = ELF32_R_TYPE (rela->r_info);
3615 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3616 {
3617 bfd_set_error (bfd_error_bad_value);
3618 return FALSE;
3619 }
3620 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3621 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3622 continue;
3623
3624 r_symndx = ELF32_R_SYM (rela->r_info);
3625 hh = NULL;
3626 sym = NULL;
3627 sym_sec = NULL;
3628 warned_undef = FALSE;
3629 if (r_symndx < symtab_hdr->sh_info)
3630 {
3631 /* This is a local symbol, h defaults to NULL. */
3632 sym = local_syms + r_symndx;
3633 sym_sec = local_sections[r_symndx];
3634 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3635 }
3636 else
3637 {
3638 struct elf_link_hash_entry *eh;
3639 bfd_boolean unresolved_reloc, ignored;
3640 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3641
3642 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3643 r_symndx, symtab_hdr, sym_hashes,
3644 eh, sym_sec, relocation,
3645 unresolved_reloc, warned_undef,
3646 ignored);
3647
3648 if (!bfd_link_relocatable (info)
3649 && relocation == 0
3650 && eh->root.type != bfd_link_hash_defined
3651 && eh->root.type != bfd_link_hash_defweak
3652 && eh->root.type != bfd_link_hash_undefweak)
3653 {
3654 if (info->unresolved_syms_in_objects == RM_IGNORE
3655 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3656 && eh->type == STT_PARISC_MILLI)
3657 {
3658 (*info->callbacks->undefined_symbol)
3659 (info, eh_name (eh), input_bfd,
3660 input_section, rela->r_offset, FALSE);
3661 warned_undef = TRUE;
3662 }
3663 }
3664 hh = hppa_elf_hash_entry (eh);
3665 }
3666
3667 if (sym_sec != NULL && discarded_section (sym_sec))
3668 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3669 rela, 1, relend,
3670 elf_hppa_howto_table + r_type, 0,
3671 contents);
3672
3673 if (bfd_link_relocatable (info))
3674 continue;
3675
3676 /* Do any required modifications to the relocation value, and
3677 determine what types of dynamic info we need to output, if
3678 any. */
3679 plabel = 0;
3680 switch (r_type)
3681 {
3682 case R_PARISC_DLTIND14F:
3683 case R_PARISC_DLTIND14R:
3684 case R_PARISC_DLTIND21L:
3685 {
3686 bfd_vma off;
3687 bfd_boolean do_got = FALSE;
3688 bfd_boolean reloc = bfd_link_pic (info);
3689
3690 /* Relocation is to the entry for this symbol in the
3691 global offset table. */
3692 if (hh != NULL)
3693 {
3694 bfd_boolean dyn;
3695
3696 off = hh->eh.got.offset;
3697 dyn = htab->etab.dynamic_sections_created;
3698 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3699 && (reloc
3700 || (hh->eh.dynindx != -1
3701 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3702 if (!reloc
3703 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3704 bfd_link_pic (info),
3705 &hh->eh))
3706 {
3707 /* If we aren't going to call finish_dynamic_symbol,
3708 then we need to handle initialisation of the .got
3709 entry and create needed relocs here. Since the
3710 offset must always be a multiple of 4, we use the
3711 least significant bit to record whether we have
3712 initialised it already. */
3713 if ((off & 1) != 0)
3714 off &= ~1;
3715 else
3716 {
3717 hh->eh.got.offset |= 1;
3718 do_got = TRUE;
3719 }
3720 }
3721 }
3722 else
3723 {
3724 /* Local symbol case. */
3725 if (local_got_offsets == NULL)
3726 abort ();
3727
3728 off = local_got_offsets[r_symndx];
3729
3730 /* The offset must always be a multiple of 4. We use
3731 the least significant bit to record whether we have
3732 already generated the necessary reloc. */
3733 if ((off & 1) != 0)
3734 off &= ~1;
3735 else
3736 {
3737 local_got_offsets[r_symndx] |= 1;
3738 do_got = TRUE;
3739 }
3740 }
3741
3742 if (do_got)
3743 {
3744 if (reloc)
3745 {
3746 /* Output a dynamic relocation for this GOT entry.
3747 In this case it is relative to the base of the
3748 object because the symbol index is zero. */
3749 Elf_Internal_Rela outrel;
3750 bfd_byte *loc;
3751 asection *sec = htab->etab.srelgot;
3752
3753 outrel.r_offset = (off
3754 + htab->etab.sgot->output_offset
3755 + htab->etab.sgot->output_section->vma);
3756 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3757 outrel.r_addend = relocation;
3758 loc = sec->contents;
3759 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3760 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3761 }
3762 else
3763 bfd_put_32 (output_bfd, relocation,
3764 htab->etab.sgot->contents + off);
3765 }
3766
3767 if (off >= (bfd_vma) -2)
3768 abort ();
3769
3770 /* Add the base of the GOT to the relocation value. */
3771 relocation = (off
3772 + htab->etab.sgot->output_offset
3773 + htab->etab.sgot->output_section->vma);
3774 }
3775 break;
3776
3777 case R_PARISC_SEGREL32:
3778 /* If this is the first SEGREL relocation, then initialize
3779 the segment base values. */
3780 if (htab->text_segment_base == (bfd_vma) -1)
3781 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3782 break;
3783
3784 case R_PARISC_PLABEL14R:
3785 case R_PARISC_PLABEL21L:
3786 case R_PARISC_PLABEL32:
3787 if (htab->etab.dynamic_sections_created)
3788 {
3789 bfd_vma off;
3790 bfd_boolean do_plt = 0;
3791 /* If we have a global symbol with a PLT slot, then
3792 redirect this relocation to it. */
3793 if (hh != NULL)
3794 {
3795 off = hh->eh.plt.offset;
3796 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3797 bfd_link_pic (info),
3798 &hh->eh))
3799 {
3800 /* In a non-shared link, adjust_dynamic_symbols
3801 isn't called for symbols forced local. We
3802 need to write out the plt entry here. */
3803 if ((off & 1) != 0)
3804 off &= ~1;
3805 else
3806 {
3807 hh->eh.plt.offset |= 1;
3808 do_plt = 1;
3809 }
3810 }
3811 }
3812 else
3813 {
3814 bfd_vma *local_plt_offsets;
3815
3816 if (local_got_offsets == NULL)
3817 abort ();
3818
3819 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3820 off = local_plt_offsets[r_symndx];
3821
3822 /* As for the local .got entry case, we use the last
3823 bit to record whether we've already initialised
3824 this local .plt entry. */
3825 if ((off & 1) != 0)
3826 off &= ~1;
3827 else
3828 {
3829 local_plt_offsets[r_symndx] |= 1;
3830 do_plt = 1;
3831 }
3832 }
3833
3834 if (do_plt)
3835 {
3836 if (bfd_link_pic (info))
3837 {
3838 /* Output a dynamic IPLT relocation for this
3839 PLT entry. */
3840 Elf_Internal_Rela outrel;
3841 bfd_byte *loc;
3842 asection *s = htab->etab.srelplt;
3843
3844 outrel.r_offset = (off
3845 + htab->etab.splt->output_offset
3846 + htab->etab.splt->output_section->vma);
3847 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3848 outrel.r_addend = relocation;
3849 loc = s->contents;
3850 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3851 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3852 }
3853 else
3854 {
3855 bfd_put_32 (output_bfd,
3856 relocation,
3857 htab->etab.splt->contents + off);
3858 bfd_put_32 (output_bfd,
3859 elf_gp (htab->etab.splt->output_section->owner),
3860 htab->etab.splt->contents + off + 4);
3861 }
3862 }
3863
3864 if (off >= (bfd_vma) -2)
3865 abort ();
3866
3867 /* PLABELs contain function pointers. Relocation is to
3868 the entry for the function in the .plt. The magic +2
3869 offset signals to $$dyncall that the function pointer
3870 is in the .plt and thus has a gp pointer too.
3871 Exception: Undefined PLABELs should have a value of
3872 zero. */
3873 if (hh == NULL
3874 || (hh->eh.root.type != bfd_link_hash_undefweak
3875 && hh->eh.root.type != bfd_link_hash_undefined))
3876 {
3877 relocation = (off
3878 + htab->etab.splt->output_offset
3879 + htab->etab.splt->output_section->vma
3880 + 2);
3881 }
3882 plabel = 1;
3883 }
3884 /* Fall through. */
3885
3886 case R_PARISC_DIR17F:
3887 case R_PARISC_DIR17R:
3888 case R_PARISC_DIR14F:
3889 case R_PARISC_DIR14R:
3890 case R_PARISC_DIR21L:
3891 case R_PARISC_DPREL14F:
3892 case R_PARISC_DPREL14R:
3893 case R_PARISC_DPREL21L:
3894 case R_PARISC_DIR32:
3895 if ((input_section->flags & SEC_ALLOC) == 0)
3896 break;
3897
3898 /* The reloc types handled here and this conditional
3899 expression must match the code in ..check_relocs and
3900 allocate_dynrelocs. ie. We need exactly the same condition
3901 as in ..check_relocs, with some extra conditions (dynindx
3902 test in this case) to cater for relocs removed by
3903 allocate_dynrelocs. */
3904 if ((bfd_link_pic (info)
3905 && !(hh != NULL
3906 && ((hh->eh.root.type == bfd_link_hash_undefined
3907 && ELF_ST_VISIBILITY (hh->eh.other) != STV_DEFAULT)
3908 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)))
3909 && (IS_ABSOLUTE_RELOC (r_type)
3910 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3911 || (ELIMINATE_COPY_RELOCS
3912 && !bfd_link_pic (info)
3913 && hh != NULL
3914 && hh->eh.non_got_ref))
3915 {
3916 Elf_Internal_Rela outrel;
3917 bfd_boolean skip;
3918 asection *sreloc;
3919 bfd_byte *loc;
3920
3921 /* When generating a shared object, these relocations
3922 are copied into the output file to be resolved at run
3923 time. */
3924
3925 outrel.r_addend = rela->r_addend;
3926 outrel.r_offset =
3927 _bfd_elf_section_offset (output_bfd, info, input_section,
3928 rela->r_offset);
3929 skip = (outrel.r_offset == (bfd_vma) -1
3930 || outrel.r_offset == (bfd_vma) -2);
3931 outrel.r_offset += (input_section->output_offset
3932 + input_section->output_section->vma);
3933
3934 if (skip)
3935 {
3936 memset (&outrel, 0, sizeof (outrel));
3937 }
3938 else if (hh != NULL
3939 && hh->eh.dynindx != -1
3940 && (plabel
3941 || !IS_ABSOLUTE_RELOC (r_type)
3942 || !bfd_link_pic (info)
3943 || !SYMBOLIC_BIND (info, &hh->eh)
3944 || !hh->eh.def_regular))
3945 {
3946 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3947 }
3948 else /* It's a local symbol, or one marked to become local. */
3949 {
3950 int indx = 0;
3951
3952 /* Add the absolute offset of the symbol. */
3953 outrel.r_addend += relocation;
3954
3955 /* Global plabels need to be processed by the
3956 dynamic linker so that functions have at most one
3957 fptr. For this reason, we need to differentiate
3958 between global and local plabels, which we do by
3959 providing the function symbol for a global plabel
3960 reloc, and no symbol for local plabels. */
3961 if (! plabel
3962 && sym_sec != NULL
3963 && sym_sec->output_section != NULL
3964 && ! bfd_is_abs_section (sym_sec))
3965 {
3966 asection *osec;
3967
3968 osec = sym_sec->output_section;
3969 indx = elf_section_data (osec)->dynindx;
3970 if (indx == 0)
3971 {
3972 osec = htab->etab.text_index_section;
3973 indx = elf_section_data (osec)->dynindx;
3974 }
3975 BFD_ASSERT (indx != 0);
3976
3977 /* We are turning this relocation into one
3978 against a section symbol, so subtract out the
3979 output section's address but not the offset
3980 of the input section in the output section. */
3981 outrel.r_addend -= osec->vma;
3982 }
3983
3984 outrel.r_info = ELF32_R_INFO (indx, r_type);
3985 }
3986 sreloc = elf_section_data (input_section)->sreloc;
3987 if (sreloc == NULL)
3988 abort ();
3989
3990 loc = sreloc->contents;
3991 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3992 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3993 }
3994 break;
3995
3996 case R_PARISC_TLS_LDM21L:
3997 case R_PARISC_TLS_LDM14R:
3998 {
3999 bfd_vma off;
4000
4001 off = htab->tls_ldm_got.offset;
4002 if (off & 1)
4003 off &= ~1;
4004 else
4005 {
4006 Elf_Internal_Rela outrel;
4007 bfd_byte *loc;
4008
4009 outrel.r_offset = (off
4010 + htab->etab.sgot->output_section->vma
4011 + htab->etab.sgot->output_offset);
4012 outrel.r_addend = 0;
4013 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4014 loc = htab->etab.srelgot->contents;
4015 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4016
4017 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4018 htab->tls_ldm_got.offset |= 1;
4019 }
4020
4021 /* Add the base of the GOT to the relocation value. */
4022 relocation = (off
4023 + htab->etab.sgot->output_offset
4024 + htab->etab.sgot->output_section->vma);
4025
4026 break;
4027 }
4028
4029 case R_PARISC_TLS_LDO21L:
4030 case R_PARISC_TLS_LDO14R:
4031 relocation -= dtpoff_base (info);
4032 break;
4033
4034 case R_PARISC_TLS_GD21L:
4035 case R_PARISC_TLS_GD14R:
4036 case R_PARISC_TLS_IE21L:
4037 case R_PARISC_TLS_IE14R:
4038 {
4039 bfd_vma off;
4040 int indx;
4041 char tls_type;
4042
4043 indx = 0;
4044 if (hh != NULL)
4045 {
4046 if (!htab->etab.dynamic_sections_created
4047 || hh->eh.dynindx == -1
4048 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4049 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4050 /* This is actually a static link, or it is a
4051 -Bsymbolic link and the symbol is defined
4052 locally, or the symbol was forced to be local
4053 because of a version file. */
4054 ;
4055 else
4056 indx = hh->eh.dynindx;
4057 off = hh->eh.got.offset;
4058 tls_type = hh->tls_type;
4059 }
4060 else
4061 {
4062 off = local_got_offsets[r_symndx];
4063 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4064 }
4065
4066 if (tls_type == GOT_UNKNOWN)
4067 abort ();
4068
4069 if ((off & 1) != 0)
4070 off &= ~1;
4071 else
4072 {
4073 bfd_boolean need_relocs = FALSE;
4074 Elf_Internal_Rela outrel;
4075 bfd_byte *loc = NULL;
4076 int cur_off = off;
4077
4078 /* The GOT entries have not been initialized yet. Do it
4079 now, and emit any relocations. If both an IE GOT and a
4080 GD GOT are necessary, we emit the GD first. */
4081
4082 if (indx != 0
4083 || (bfd_link_pic (info)
4084 && (hh == NULL
4085 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4086 {
4087 need_relocs = TRUE;
4088 loc = htab->etab.srelgot->contents;
4089 loc += (htab->etab.srelgot->reloc_count
4090 * sizeof (Elf32_External_Rela));
4091 }
4092
4093 if (tls_type & GOT_TLS_GD)
4094 {
4095 if (need_relocs)
4096 {
4097 outrel.r_offset
4098 = (cur_off
4099 + htab->etab.sgot->output_section->vma
4100 + htab->etab.sgot->output_offset);
4101 outrel.r_info
4102 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4103 outrel.r_addend = 0;
4104 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4105 htab->etab.srelgot->reloc_count++;
4106 loc += sizeof (Elf32_External_Rela);
4107 outrel.r_info
4108 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4109 outrel.r_offset += 4;
4110 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4111 htab->etab.srelgot->reloc_count++;
4112 loc += sizeof (Elf32_External_Rela);
4113 bfd_put_32 (output_bfd, 0,
4114 htab->etab.sgot->contents + cur_off);
4115 bfd_put_32 (output_bfd, 0,
4116 htab->etab.sgot->contents + cur_off + 4);
4117 }
4118 else
4119 {
4120 /* If we are not emitting relocations for a
4121 general dynamic reference, then we must be in a
4122 static link or an executable link with the
4123 symbol binding locally. Mark it as belonging
4124 to module 1, the executable. */
4125 bfd_put_32 (output_bfd, 1,
4126 htab->etab.sgot->contents + cur_off);
4127 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4128 htab->etab.sgot->contents + cur_off + 4);
4129 }
4130 cur_off += 8;
4131 }
4132
4133 if (tls_type & GOT_TLS_IE)
4134 {
4135 if (need_relocs
4136 && !(bfd_link_executable (info)
4137 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4138 {
4139 outrel.r_offset
4140 = (cur_off
4141 + htab->etab.sgot->output_section->vma
4142 + htab->etab.sgot->output_offset);
4143 outrel.r_info = ELF32_R_INFO (indx,
4144 R_PARISC_TLS_TPREL32);
4145 if (indx == 0)
4146 outrel.r_addend = relocation - dtpoff_base (info);
4147 else
4148 outrel.r_addend = 0;
4149 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4150 htab->etab.srelgot->reloc_count++;
4151 loc += sizeof (Elf32_External_Rela);
4152 }
4153 else
4154 bfd_put_32 (output_bfd, tpoff (info, relocation),
4155 htab->etab.sgot->contents + cur_off);
4156 cur_off += 4;
4157 }
4158
4159 if (hh != NULL)
4160 hh->eh.got.offset |= 1;
4161 else
4162 local_got_offsets[r_symndx] |= 1;
4163 }
4164
4165 if ((tls_type & GOT_NORMAL) != 0
4166 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4167 {
4168 if (hh != NULL)
4169 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4170 hh_name (hh));
4171 else
4172 {
4173 Elf_Internal_Sym *isym
4174 = bfd_sym_from_r_symndx (&htab->sym_cache,
4175 input_bfd, r_symndx);
4176 if (isym == NULL)
4177 return FALSE;
4178 sym_name
4179 = bfd_elf_string_from_elf_section (input_bfd,
4180 symtab_hdr->sh_link,
4181 isym->st_name);
4182 if (sym_name == NULL)
4183 return FALSE;
4184 if (*sym_name == '\0')
4185 sym_name = bfd_section_name (input_bfd, sym_sec);
4186 _bfd_error_handler
4187 (_("%B:%s has both normal and TLS relocs"),
4188 input_bfd, sym_name);
4189 }
4190 bfd_set_error (bfd_error_bad_value);
4191 return FALSE;
4192 }
4193
4194 if ((tls_type & GOT_TLS_GD)
4195 && r_type != R_PARISC_TLS_GD21L
4196 && r_type != R_PARISC_TLS_GD14R)
4197 off += 2 * GOT_ENTRY_SIZE;
4198
4199 /* Add the base of the GOT to the relocation value. */
4200 relocation = (off
4201 + htab->etab.sgot->output_offset
4202 + htab->etab.sgot->output_section->vma);
4203
4204 break;
4205 }
4206
4207 case R_PARISC_TLS_LE21L:
4208 case R_PARISC_TLS_LE14R:
4209 {
4210 relocation = tpoff (info, relocation);
4211 break;
4212 }
4213 break;
4214
4215 default:
4216 break;
4217 }
4218
4219 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4220 htab, sym_sec, hh, info);
4221
4222 if (rstatus == bfd_reloc_ok)
4223 continue;
4224
4225 if (hh != NULL)
4226 sym_name = hh_name (hh);
4227 else
4228 {
4229 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4230 symtab_hdr->sh_link,
4231 sym->st_name);
4232 if (sym_name == NULL)
4233 return FALSE;
4234 if (*sym_name == '\0')
4235 sym_name = bfd_section_name (input_bfd, sym_sec);
4236 }
4237
4238 howto = elf_hppa_howto_table + r_type;
4239
4240 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4241 {
4242 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4243 {
4244 _bfd_error_handler
4245 /* xgettext:c-format */
4246 (_("%B(%A+%#Lx): cannot handle %s for %s"),
4247 input_bfd,
4248 input_section,
4249 rela->r_offset,
4250 howto->name,
4251 sym_name);
4252 bfd_set_error (bfd_error_bad_value);
4253 return FALSE;
4254 }
4255 }
4256 else
4257 (*info->callbacks->reloc_overflow)
4258 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4259 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4260 }
4261
4262 return TRUE;
4263 }
4264
4265 /* Finish up dynamic symbol handling. We set the contents of various
4266 dynamic sections here. */
4267
4268 static bfd_boolean
4269 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4270 struct bfd_link_info *info,
4271 struct elf_link_hash_entry *eh,
4272 Elf_Internal_Sym *sym)
4273 {
4274 struct elf32_hppa_link_hash_table *htab;
4275 Elf_Internal_Rela rela;
4276 bfd_byte *loc;
4277
4278 htab = hppa_link_hash_table (info);
4279 if (htab == NULL)
4280 return FALSE;
4281
4282 if (eh->plt.offset != (bfd_vma) -1)
4283 {
4284 bfd_vma value;
4285
4286 if (eh->plt.offset & 1)
4287 abort ();
4288
4289 /* This symbol has an entry in the procedure linkage table. Set
4290 it up.
4291
4292 The format of a plt entry is
4293 <funcaddr>
4294 <__gp>
4295 */
4296 value = 0;
4297 if (eh->root.type == bfd_link_hash_defined
4298 || eh->root.type == bfd_link_hash_defweak)
4299 {
4300 value = eh->root.u.def.value;
4301 if (eh->root.u.def.section->output_section != NULL)
4302 value += (eh->root.u.def.section->output_offset
4303 + eh->root.u.def.section->output_section->vma);
4304 }
4305
4306 /* Create a dynamic IPLT relocation for this entry. */
4307 rela.r_offset = (eh->plt.offset
4308 + htab->etab.splt->output_offset
4309 + htab->etab.splt->output_section->vma);
4310 if (eh->dynindx != -1)
4311 {
4312 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4313 rela.r_addend = 0;
4314 }
4315 else
4316 {
4317 /* This symbol has been marked to become local, and is
4318 used by a plabel so must be kept in the .plt. */
4319 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4320 rela.r_addend = value;
4321 }
4322
4323 loc = htab->etab.srelplt->contents;
4324 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4325 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4326
4327 if (!eh->def_regular)
4328 {
4329 /* Mark the symbol as undefined, rather than as defined in
4330 the .plt section. Leave the value alone. */
4331 sym->st_shndx = SHN_UNDEF;
4332 }
4333 }
4334
4335 if (eh->got.offset != (bfd_vma) -1
4336 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4337 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4338 {
4339 bfd_boolean is_dyn = (eh->dynindx != -1
4340 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4341
4342 if (is_dyn || bfd_link_pic (info))
4343 {
4344 /* This symbol has an entry in the global offset table. Set
4345 it up. */
4346
4347 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4348 + htab->etab.sgot->output_offset
4349 + htab->etab.sgot->output_section->vma);
4350
4351 /* If this is a -Bsymbolic link and the symbol is defined
4352 locally or was forced to be local because of a version
4353 file, we just want to emit a RELATIVE reloc. The entry
4354 in the global offset table will already have been
4355 initialized in the relocate_section function. */
4356 if (!is_dyn)
4357 {
4358 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4359 rela.r_addend = (eh->root.u.def.value
4360 + eh->root.u.def.section->output_offset
4361 + eh->root.u.def.section->output_section->vma);
4362 }
4363 else
4364 {
4365 if ((eh->got.offset & 1) != 0)
4366 abort ();
4367
4368 bfd_put_32 (output_bfd, 0,
4369 htab->etab.sgot->contents + (eh->got.offset & ~1));
4370 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4371 rela.r_addend = 0;
4372 }
4373
4374 loc = htab->etab.srelgot->contents;
4375 loc += (htab->etab.srelgot->reloc_count++
4376 * sizeof (Elf32_External_Rela));
4377 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4378 }
4379 }
4380
4381 if (eh->needs_copy)
4382 {
4383 asection *sec;
4384
4385 /* This symbol needs a copy reloc. Set it up. */
4386
4387 if (! (eh->dynindx != -1
4388 && (eh->root.type == bfd_link_hash_defined
4389 || eh->root.type == bfd_link_hash_defweak)))
4390 abort ();
4391
4392 rela.r_offset = (eh->root.u.def.value
4393 + eh->root.u.def.section->output_offset
4394 + eh->root.u.def.section->output_section->vma);
4395 rela.r_addend = 0;
4396 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4397 if (eh->root.u.def.section == htab->etab.sdynrelro)
4398 sec = htab->etab.sreldynrelro;
4399 else
4400 sec = htab->etab.srelbss;
4401 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4402 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4403 }
4404
4405 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4406 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4407 {
4408 sym->st_shndx = SHN_ABS;
4409 }
4410
4411 return TRUE;
4412 }
4413
4414 /* Used to decide how to sort relocs in an optimal manner for the
4415 dynamic linker, before writing them out. */
4416
4417 static enum elf_reloc_type_class
4418 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4419 const asection *rel_sec ATTRIBUTE_UNUSED,
4420 const Elf_Internal_Rela *rela)
4421 {
4422 /* Handle TLS relocs first; we don't want them to be marked
4423 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4424 check below. */
4425 switch ((int) ELF32_R_TYPE (rela->r_info))
4426 {
4427 case R_PARISC_TLS_DTPMOD32:
4428 case R_PARISC_TLS_DTPOFF32:
4429 case R_PARISC_TLS_TPREL32:
4430 return reloc_class_normal;
4431 }
4432
4433 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4434 return reloc_class_relative;
4435
4436 switch ((int) ELF32_R_TYPE (rela->r_info))
4437 {
4438 case R_PARISC_IPLT:
4439 return reloc_class_plt;
4440 case R_PARISC_COPY:
4441 return reloc_class_copy;
4442 default:
4443 return reloc_class_normal;
4444 }
4445 }
4446
4447 /* Finish up the dynamic sections. */
4448
4449 static bfd_boolean
4450 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4451 struct bfd_link_info *info)
4452 {
4453 bfd *dynobj;
4454 struct elf32_hppa_link_hash_table *htab;
4455 asection *sdyn;
4456 asection * sgot;
4457
4458 htab = hppa_link_hash_table (info);
4459 if (htab == NULL)
4460 return FALSE;
4461
4462 dynobj = htab->etab.dynobj;
4463
4464 sgot = htab->etab.sgot;
4465 /* A broken linker script might have discarded the dynamic sections.
4466 Catch this here so that we do not seg-fault later on. */
4467 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4468 return FALSE;
4469
4470 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4471
4472 if (htab->etab.dynamic_sections_created)
4473 {
4474 Elf32_External_Dyn *dyncon, *dynconend;
4475
4476 if (sdyn == NULL)
4477 abort ();
4478
4479 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4480 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4481 for (; dyncon < dynconend; dyncon++)
4482 {
4483 Elf_Internal_Dyn dyn;
4484 asection *s;
4485
4486 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4487
4488 switch (dyn.d_tag)
4489 {
4490 default:
4491 continue;
4492
4493 case DT_PLTGOT:
4494 /* Use PLTGOT to set the GOT register. */
4495 dyn.d_un.d_ptr = elf_gp (output_bfd);
4496 break;
4497
4498 case DT_JMPREL:
4499 s = htab->etab.srelplt;
4500 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4501 break;
4502
4503 case DT_PLTRELSZ:
4504 s = htab->etab.srelplt;
4505 dyn.d_un.d_val = s->size;
4506 break;
4507 }
4508
4509 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4510 }
4511 }
4512
4513 if (sgot != NULL && sgot->size != 0)
4514 {
4515 /* Fill in the first entry in the global offset table.
4516 We use it to point to our dynamic section, if we have one. */
4517 bfd_put_32 (output_bfd,
4518 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4519 sgot->contents);
4520
4521 /* The second entry is reserved for use by the dynamic linker. */
4522 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4523
4524 /* Set .got entry size. */
4525 elf_section_data (sgot->output_section)
4526 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4527 }
4528
4529 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4530 {
4531 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4532 plt stubs and as such the section does not hold a table of fixed-size
4533 entries. */
4534 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4535
4536 if (htab->need_plt_stub)
4537 {
4538 /* Set up the .plt stub. */
4539 memcpy (htab->etab.splt->contents
4540 + htab->etab.splt->size - sizeof (plt_stub),
4541 plt_stub, sizeof (plt_stub));
4542
4543 if ((htab->etab.splt->output_offset
4544 + htab->etab.splt->output_section->vma
4545 + htab->etab.splt->size)
4546 != (sgot->output_offset
4547 + sgot->output_section->vma))
4548 {
4549 _bfd_error_handler
4550 (_(".got section not immediately after .plt section"));
4551 return FALSE;
4552 }
4553 }
4554 }
4555
4556 return TRUE;
4557 }
4558
4559 /* Called when writing out an object file to decide the type of a
4560 symbol. */
4561 static int
4562 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4563 {
4564 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4565 return STT_PARISC_MILLI;
4566 else
4567 return type;
4568 }
4569
4570 /* Misc BFD support code. */
4571 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4572 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4573 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4574 #define elf_info_to_howto elf_hppa_info_to_howto
4575 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4576
4577 /* Stuff for the BFD linker. */
4578 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4579 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4580 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4581 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4582 #define elf_backend_check_relocs elf32_hppa_check_relocs
4583 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4584 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4585 #define elf_backend_fake_sections elf_hppa_fake_sections
4586 #define elf_backend_relocate_section elf32_hppa_relocate_section
4587 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4588 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4589 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4590 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4591 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4592 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4593 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4594 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4595 #define elf_backend_object_p elf32_hppa_object_p
4596 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4597 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4598 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4599 #define elf_backend_action_discarded elf_hppa_action_discarded
4600
4601 #define elf_backend_can_gc_sections 1
4602 #define elf_backend_can_refcount 1
4603 #define elf_backend_plt_alignment 2
4604 #define elf_backend_want_got_plt 0
4605 #define elf_backend_plt_readonly 0
4606 #define elf_backend_want_plt_sym 0
4607 #define elf_backend_got_header_size 8
4608 #define elf_backend_want_dynrelro 1
4609 #define elf_backend_rela_normal 1
4610 #define elf_backend_dtrel_excludes_plt 1
4611 #define elf_backend_no_page_alias 1
4612
4613 #define TARGET_BIG_SYM hppa_elf32_vec
4614 #define TARGET_BIG_NAME "elf32-hppa"
4615 #define ELF_ARCH bfd_arch_hppa
4616 #define ELF_TARGET_ID HPPA32_ELF_DATA
4617 #define ELF_MACHINE_CODE EM_PARISC
4618 #define ELF_MAXPAGESIZE 0x1000
4619 #define ELF_OSABI ELFOSABI_HPUX
4620 #define elf32_bed elf32_hppa_hpux_bed
4621
4622 #include "elf32-target.h"
4623
4624 #undef TARGET_BIG_SYM
4625 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4626 #undef TARGET_BIG_NAME
4627 #define TARGET_BIG_NAME "elf32-hppa-linux"
4628 #undef ELF_OSABI
4629 #define ELF_OSABI ELFOSABI_GNU
4630 #undef elf32_bed
4631 #define elf32_bed elf32_hppa_linux_bed
4632
4633 #include "elf32-target.h"
4634
4635 #undef TARGET_BIG_SYM
4636 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4637 #undef TARGET_BIG_NAME
4638 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4639 #undef ELF_OSABI
4640 #define ELF_OSABI ELFOSABI_NETBSD
4641 #undef elf32_bed
4642 #define elf32_bed elf32_hppa_netbsd_bed
4643
4644 #include "elf32-target.h"
This page took 0.121056 seconds and 5 git commands to generate.