* elf-bfd.h (elf_backend_reloc_type_class): Pass in the entire
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section PARAMS((bfd *, struct bfd_link_info *));
39 static boolean elf_i386_create_dynamic_sections
40 PARAMS((bfd *, struct bfd_link_info *));
41 static boolean elf_i386_check_relocs
42 PARAMS ((bfd *, struct bfd_link_info *, asection *,
43 const Elf_Internal_Rela *));
44 static asection *elf_i386_gc_mark_hook
45 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
46 struct elf_link_hash_entry *, Elf_Internal_Sym *));
47 static boolean elf_i386_gc_sweep_hook
48 PARAMS ((bfd *, struct bfd_link_info *, asection *,
49 const Elf_Internal_Rela *));
50 static boolean elf_i386_adjust_dynamic_symbol
51 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
52 static boolean allocate_plt_and_got_and_discard_relocs
53 PARAMS ((struct elf_link_hash_entry *, PTR));
54 static boolean elf_i386_size_dynamic_sections
55 PARAMS ((bfd *, struct bfd_link_info *));
56 static boolean elf_i386_relocate_section
57 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
58 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
59 static boolean elf_i386_finish_dynamic_symbol
60 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
61 Elf_Internal_Sym *));
62 static boolean elf_i386_finish_dynamic_sections
63 PARAMS ((bfd *, struct bfd_link_info *));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static enum elf_reloc_type_class elf_i386_reloc_type_class
67 PARAMS ((const Elf_Internal_Rela *));
68 static boolean elf_i386_grok_prstatus
69 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
70 static boolean elf_i386_grok_psinfo
71 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
72
73 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
74
75 #include "elf/i386.h"
76
77 static reloc_howto_type elf_howto_table[]=
78 {
79 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
80 bfd_elf_generic_reloc, "R_386_NONE",
81 true, 0x00000000, 0x00000000, false),
82 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_386_32",
84 true, 0xffffffff, 0xffffffff, false),
85 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_386_PC32",
87 true, 0xffffffff, 0xffffffff, true),
88 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_386_GOT32",
90 true, 0xffffffff, 0xffffffff, false),
91 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
92 bfd_elf_generic_reloc, "R_386_PLT32",
93 true, 0xffffffff, 0xffffffff, true),
94 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_386_COPY",
96 true, 0xffffffff, 0xffffffff, false),
97 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
99 true, 0xffffffff, 0xffffffff, false),
100 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
102 true, 0xffffffff, 0xffffffff, false),
103 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_386_RELATIVE",
105 true, 0xffffffff, 0xffffffff, false),
106 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_386_GOTOFF",
108 true, 0xffffffff, 0xffffffff, false),
109 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_386_GOTPC",
111 true, 0xffffffff, 0xffffffff, true),
112
113 /* We have a gap in the reloc numbers here.
114 R_386_standard counts the number up to this point, and
115 R_386_ext_offset is the value to subtract from a reloc type of
116 R_386_16 thru R_386_PC8 to form an index into this table. */
117 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
118 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
119
120 /* The remaining relocs are a GNU extension. */
121 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
122 bfd_elf_generic_reloc, "R_386_16",
123 true, 0xffff, 0xffff, false),
124 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
125 bfd_elf_generic_reloc, "R_386_PC16",
126 true, 0xffff, 0xffff, true),
127 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_386_8",
129 true, 0xff, 0xff, false),
130 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
131 bfd_elf_generic_reloc, "R_386_PC8",
132 true, 0xff, 0xff, true),
133
134 /* Another gap. */
135 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
136 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
137
138 /* GNU extension to record C++ vtable hierarchy. */
139 HOWTO (R_386_GNU_VTINHERIT, /* type */
140 0, /* rightshift */
141 2, /* size (0 = byte, 1 = short, 2 = long) */
142 0, /* bitsize */
143 false, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont, /* complain_on_overflow */
146 NULL, /* special_function */
147 "R_386_GNU_VTINHERIT", /* name */
148 false, /* partial_inplace */
149 0, /* src_mask */
150 0, /* dst_mask */
151 false),
152
153 /* GNU extension to record C++ vtable member usage. */
154 HOWTO (R_386_GNU_VTENTRY, /* type */
155 0, /* rightshift */
156 2, /* size (0 = byte, 1 = short, 2 = long) */
157 0, /* bitsize */
158 false, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_dont, /* complain_on_overflow */
161 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
162 "R_386_GNU_VTENTRY", /* name */
163 false, /* partial_inplace */
164 0, /* src_mask */
165 0, /* dst_mask */
166 false)
167
168 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
169
170 };
171
172 #ifdef DEBUG_GEN_RELOC
173 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
174 #else
175 #define TRACE(str)
176 #endif
177
178 static reloc_howto_type *
179 elf_i386_reloc_type_lookup (abfd, code)
180 bfd *abfd ATTRIBUTE_UNUSED;
181 bfd_reloc_code_real_type code;
182 {
183 switch (code)
184 {
185 case BFD_RELOC_NONE:
186 TRACE ("BFD_RELOC_NONE");
187 return &elf_howto_table[(unsigned int) R_386_NONE ];
188
189 case BFD_RELOC_32:
190 TRACE ("BFD_RELOC_32");
191 return &elf_howto_table[(unsigned int) R_386_32 ];
192
193 case BFD_RELOC_CTOR:
194 TRACE ("BFD_RELOC_CTOR");
195 return &elf_howto_table[(unsigned int) R_386_32 ];
196
197 case BFD_RELOC_32_PCREL:
198 TRACE ("BFD_RELOC_PC32");
199 return &elf_howto_table[(unsigned int) R_386_PC32 ];
200
201 case BFD_RELOC_386_GOT32:
202 TRACE ("BFD_RELOC_386_GOT32");
203 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
204
205 case BFD_RELOC_386_PLT32:
206 TRACE ("BFD_RELOC_386_PLT32");
207 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
208
209 case BFD_RELOC_386_COPY:
210 TRACE ("BFD_RELOC_386_COPY");
211 return &elf_howto_table[(unsigned int) R_386_COPY ];
212
213 case BFD_RELOC_386_GLOB_DAT:
214 TRACE ("BFD_RELOC_386_GLOB_DAT");
215 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
216
217 case BFD_RELOC_386_JUMP_SLOT:
218 TRACE ("BFD_RELOC_386_JUMP_SLOT");
219 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
220
221 case BFD_RELOC_386_RELATIVE:
222 TRACE ("BFD_RELOC_386_RELATIVE");
223 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
224
225 case BFD_RELOC_386_GOTOFF:
226 TRACE ("BFD_RELOC_386_GOTOFF");
227 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
228
229 case BFD_RELOC_386_GOTPC:
230 TRACE ("BFD_RELOC_386_GOTPC");
231 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
232
233 /* The remaining relocs are a GNU extension. */
234 case BFD_RELOC_16:
235 TRACE ("BFD_RELOC_16");
236 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
237
238 case BFD_RELOC_16_PCREL:
239 TRACE ("BFD_RELOC_16_PCREL");
240 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
241
242 case BFD_RELOC_8:
243 TRACE ("BFD_RELOC_8");
244 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
245
246 case BFD_RELOC_8_PCREL:
247 TRACE ("BFD_RELOC_8_PCREL");
248 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
249
250 case BFD_RELOC_VTABLE_INHERIT:
251 TRACE ("BFD_RELOC_VTABLE_INHERIT");
252 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
253 - R_386_vt_offset];
254
255 case BFD_RELOC_VTABLE_ENTRY:
256 TRACE ("BFD_RELOC_VTABLE_ENTRY");
257 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
258 - R_386_vt_offset];
259
260 default:
261 break;
262 }
263
264 TRACE ("Unknown");
265 return 0;
266 }
267
268 static void
269 elf_i386_info_to_howto (abfd, cache_ptr, dst)
270 bfd *abfd ATTRIBUTE_UNUSED;
271 arelent *cache_ptr ATTRIBUTE_UNUSED;
272 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
273 {
274 abort ();
275 }
276
277 static void
278 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
279 bfd *abfd ATTRIBUTE_UNUSED;
280 arelent *cache_ptr;
281 Elf32_Internal_Rel *dst;
282 {
283 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
284 unsigned int indx;
285
286 if ((indx = r_type) >= R_386_standard
287 && ((indx = r_type - R_386_ext_offset) - R_386_standard
288 >= R_386_ext - R_386_standard)
289 && ((indx = r_type - R_386_vt_offset) - R_386_ext
290 >= R_386_vt - R_386_ext))
291 {
292 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
293 bfd_archive_filename (abfd), (int) r_type);
294 indx = (unsigned int) R_386_NONE;
295 }
296 cache_ptr->howto = &elf_howto_table[indx];
297 }
298
299 /* Return whether a symbol name implies a local label. The UnixWare
300 2.1 cc generates temporary symbols that start with .X, so we
301 recognize them here. FIXME: do other SVR4 compilers also use .X?.
302 If so, we should move the .X recognition into
303 _bfd_elf_is_local_label_name. */
304
305 static boolean
306 elf_i386_is_local_label_name (abfd, name)
307 bfd *abfd;
308 const char *name;
309 {
310 if (name[0] == '.' && name[1] == 'X')
311 return true;
312
313 return _bfd_elf_is_local_label_name (abfd, name);
314 }
315 \f
316 /* Functions for the i386 ELF linker. */
317
318 /* The name of the dynamic interpreter. This is put in the .interp
319 section. */
320
321 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
322
323 /* The size in bytes of an entry in the procedure linkage table. */
324
325 #define PLT_ENTRY_SIZE 16
326
327 /* The first entry in an absolute procedure linkage table looks like
328 this. See the SVR4 ABI i386 supplement to see how this works. */
329
330 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
331 {
332 0xff, 0x35, /* pushl contents of address */
333 0, 0, 0, 0, /* replaced with address of .got + 4. */
334 0xff, 0x25, /* jmp indirect */
335 0, 0, 0, 0, /* replaced with address of .got + 8. */
336 0, 0, 0, 0 /* pad out to 16 bytes. */
337 };
338
339 /* Subsequent entries in an absolute procedure linkage table look like
340 this. */
341
342 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
343 {
344 0xff, 0x25, /* jmp indirect */
345 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
346 0x68, /* pushl immediate */
347 0, 0, 0, 0, /* replaced with offset into relocation table. */
348 0xe9, /* jmp relative */
349 0, 0, 0, 0 /* replaced with offset to start of .plt. */
350 };
351
352 /* The first entry in a PIC procedure linkage table look like this. */
353
354 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
355 {
356 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
357 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
358 0, 0, 0, 0 /* pad out to 16 bytes. */
359 };
360
361 /* Subsequent entries in a PIC procedure linkage table look like this. */
362
363 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
364 {
365 0xff, 0xa3, /* jmp *offset(%ebx) */
366 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
367 0x68, /* pushl immediate */
368 0, 0, 0, 0, /* replaced with offset into relocation table. */
369 0xe9, /* jmp relative */
370 0, 0, 0, 0 /* replaced with offset to start of .plt. */
371 };
372
373 /* The i386 linker needs to keep track of the number of relocs that it
374 decides to copy as dynamic relocs in check_relocs for each symbol.
375 This is so that it can later discard them if they are found to be
376 unnecessary. We store the information in a field extending the
377 regular ELF linker hash table. */
378
379 struct elf_i386_dyn_relocs
380 {
381 /* Next section. */
382 struct elf_i386_dyn_relocs *next;
383 /* A section in dynobj. */
384 asection *section;
385 /* Number of relocs copied in this section. */
386 bfd_size_type count;
387 };
388
389 /* i386 ELF linker hash entry. */
390
391 struct elf_i386_link_hash_entry
392 {
393 struct elf_link_hash_entry root;
394
395 /* Number of PC relative relocs copied for this symbol. */
396 struct elf_i386_dyn_relocs *dyn_relocs;
397 };
398
399 /* i386 ELF linker hash table. */
400
401 struct elf_i386_link_hash_table
402 {
403 struct elf_link_hash_table root;
404
405 /* Short-cuts to get to dynamic linker sections. */
406 asection *sgot;
407 asection *sgotplt;
408 asection *srelgot;
409 asection *splt;
410 asection *srelplt;
411 asection *sdynbss;
412 asection *srelbss;
413 };
414
415 /* Get the i386 ELF linker hash table from a link_info structure. */
416
417 #define elf_i386_hash_table(p) \
418 ((struct elf_i386_link_hash_table *) ((p)->hash))
419
420 /* Create an entry in an i386 ELF linker hash table. */
421
422 static struct bfd_hash_entry *
423 elf_i386_link_hash_newfunc (entry, table, string)
424 struct bfd_hash_entry *entry;
425 struct bfd_hash_table *table;
426 const char *string;
427 {
428 struct elf_i386_link_hash_entry *ret =
429 (struct elf_i386_link_hash_entry *) entry;
430
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (ret == (struct elf_i386_link_hash_entry *) NULL)
434 ret = ((struct elf_i386_link_hash_entry *)
435 bfd_hash_allocate (table,
436 sizeof (struct elf_i386_link_hash_entry)));
437 if (ret == (struct elf_i386_link_hash_entry *) NULL)
438 return (struct bfd_hash_entry *) ret;
439
440 /* Call the allocation method of the superclass. */
441 ret = ((struct elf_i386_link_hash_entry *)
442 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
443 table, string));
444 if (ret != (struct elf_i386_link_hash_entry *) NULL)
445 {
446 ret->dyn_relocs = NULL;
447 }
448
449 return (struct bfd_hash_entry *) ret;
450 }
451
452 /* Create an i386 ELF linker hash table. */
453
454 static struct bfd_link_hash_table *
455 elf_i386_link_hash_table_create (abfd)
456 bfd *abfd;
457 {
458 struct elf_i386_link_hash_table *ret;
459 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
460
461 ret = (struct elf_i386_link_hash_table *) bfd_alloc (abfd, amt);
462 if (ret == (struct elf_i386_link_hash_table *) NULL)
463 return NULL;
464
465 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
466 elf_i386_link_hash_newfunc))
467 {
468 bfd_release (abfd, ret);
469 return NULL;
470 }
471
472 ret->sgot = NULL;
473 ret->sgotplt = NULL;
474 ret->srelgot = NULL;
475 ret->splt = NULL;
476 ret->srelplt = NULL;
477 ret->sdynbss = NULL;
478 ret->srelbss = NULL;
479
480 return &ret->root.root;
481 }
482
483 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
484 shortcuts to them in our hash table. */
485
486 static boolean
487 create_got_section (dynobj, info)
488 bfd *dynobj;
489 struct bfd_link_info *info;
490 {
491 struct elf_i386_link_hash_table *htab;
492
493 if (! _bfd_elf_create_got_section (dynobj, info))
494 return false;
495
496 htab = elf_i386_hash_table (info);
497 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
498 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
499 if (!htab->sgot || !htab->sgotplt)
500 abort ();
501
502 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
503 if (htab->srelgot == NULL
504 || ! bfd_set_section_flags (dynobj, htab->srelgot,
505 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
506 | SEC_IN_MEMORY | SEC_LINKER_CREATED
507 | SEC_READONLY))
508 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
509 return false;
510 return true;
511 }
512
513 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
514 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
515 hash table. */
516
517 static boolean
518 elf_i386_create_dynamic_sections (dynobj, info)
519 bfd *dynobj;
520 struct bfd_link_info *info;
521 {
522 struct elf_i386_link_hash_table *htab;
523
524 htab = elf_i386_hash_table (info);
525 if (!htab->sgot && !create_got_section (dynobj, info))
526 return false;
527
528 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
529 return false;
530
531 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
532 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
533 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
534 if (!info->shared)
535 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
536
537 if (!htab->splt || !htab->srelplt || !htab->sdynbss
538 || (!info->shared && !htab->srelbss))
539 abort ();
540
541 return true;
542 }
543
544 /* Look through the relocs for a section during the first phase, and
545 allocate space in the global offset table or procedure linkage
546 table. */
547
548 static boolean
549 elf_i386_check_relocs (abfd, info, sec, relocs)
550 bfd *abfd;
551 struct bfd_link_info *info;
552 asection *sec;
553 const Elf_Internal_Rela *relocs;
554 {
555 struct elf_i386_link_hash_table *htab;
556 bfd *dynobj;
557 Elf_Internal_Shdr *symtab_hdr;
558 struct elf_link_hash_entry **sym_hashes;
559 bfd_signed_vma *local_got_refcounts;
560 const Elf_Internal_Rela *rel;
561 const Elf_Internal_Rela *rel_end;
562 asection *sreloc;
563
564 if (info->relocateable)
565 return true;
566
567 htab = elf_i386_hash_table (info);
568 dynobj = htab->root.dynobj;
569 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
570 sym_hashes = elf_sym_hashes (abfd);
571 local_got_refcounts = elf_local_got_refcounts (abfd);
572
573 sreloc = NULL;
574
575 rel_end = relocs + sec->reloc_count;
576 for (rel = relocs; rel < rel_end; rel++)
577 {
578 unsigned long r_symndx;
579 struct elf_link_hash_entry *h;
580
581 r_symndx = ELF32_R_SYM (rel->r_info);
582
583 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
584 {
585 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
586 bfd_archive_filename (abfd),
587 r_symndx);
588 return false;
589 }
590
591 if (r_symndx < symtab_hdr->sh_info)
592 h = NULL;
593 else
594 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
595
596 /* Some relocs require a global offset table. */
597 if (htab->sgot == NULL)
598 {
599 switch (ELF32_R_TYPE (rel->r_info))
600 {
601 case R_386_GOT32:
602 case R_386_GOTOFF:
603 case R_386_GOTPC:
604 if (dynobj == NULL)
605 htab->root.dynobj = dynobj = abfd;
606 if (!create_got_section (dynobj, info))
607 return false;
608 break;
609
610 default:
611 break;
612 }
613 }
614
615 switch (ELF32_R_TYPE (rel->r_info))
616 {
617 case R_386_GOT32:
618 /* This symbol requires a global offset table entry. */
619 if (h != NULL)
620 {
621 if (h->got.refcount == -1)
622 h->got.refcount = 1;
623 else
624 h->got.refcount += 1;
625 }
626 else
627 {
628 /* This is a global offset table entry for a local symbol. */
629 if (local_got_refcounts == NULL)
630 {
631 bfd_size_type size;
632
633 size = symtab_hdr->sh_info;
634 size *= sizeof (bfd_signed_vma);
635 local_got_refcounts = ((bfd_signed_vma *)
636 bfd_alloc (abfd, size));
637 if (local_got_refcounts == NULL)
638 return false;
639 elf_local_got_refcounts (abfd) = local_got_refcounts;
640 memset (local_got_refcounts, -1, (size_t) size);
641 }
642 if (local_got_refcounts[r_symndx] == -1)
643 local_got_refcounts[r_symndx] = 1;
644 else
645 local_got_refcounts[r_symndx] += 1;
646 }
647 break;
648
649 case R_386_PLT32:
650 /* This symbol requires a procedure linkage table entry. We
651 actually build the entry in adjust_dynamic_symbol,
652 because this might be a case of linking PIC code which is
653 never referenced by a dynamic object, in which case we
654 don't need to generate a procedure linkage table entry
655 after all. */
656
657 /* If this is a local symbol, we resolve it directly without
658 creating a procedure linkage table entry. */
659 if (h == NULL)
660 continue;
661
662 if (h->plt.refcount == -1)
663 {
664 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
665 h->plt.refcount = 1;
666 }
667 else
668 h->plt.refcount += 1;
669 break;
670
671 case R_386_32:
672 case R_386_PC32:
673 if (h != NULL && !info->shared)
674 {
675 /* If this reloc is in a read-only section, we might
676 need a copy reloc. */
677 if ((sec->flags & SEC_READONLY) != 0)
678 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
679
680 /* We may need a .plt entry if the function this reloc
681 refers to is in a shared lib. */
682 if (h->plt.refcount == -1)
683 h->plt.refcount = 1;
684 else
685 h->plt.refcount += 1;
686 }
687
688 /* If we are creating a shared library, and this is a reloc
689 against a global symbol, or a non PC relative reloc
690 against a local symbol, then we need to copy the reloc
691 into the shared library. However, if we are linking with
692 -Bsymbolic, we do not need to copy a reloc against a
693 global symbol which is defined in an object we are
694 including in the link (i.e., DEF_REGULAR is set). At
695 this point we have not seen all the input files, so it is
696 possible that DEF_REGULAR is not set now but will be set
697 later (it is never cleared). In case of a weak definition,
698 DEF_REGULAR may be cleared later by a strong definition in
699 a shared library. We account for that possibility below by
700 storing information in the relocs_copied field of the hash
701 table entry. A similar situation occurs when creating
702 shared libraries and symbol visibility changes render the
703 symbol local.
704
705 If on the other hand, we are creating an executable, we
706 may need to keep relocations for symbols satisfied by a
707 dynamic library if we manage to avoid copy relocs for the
708 symbol. */
709 if ((info->shared
710 && (sec->flags & SEC_ALLOC) != 0
711 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
712 || (h != NULL
713 && (! info->symbolic
714 || h->root.type == bfd_link_hash_defweak
715 || (h->elf_link_hash_flags
716 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
717 || (!info->shared
718 && (sec->flags & SEC_ALLOC) != 0
719 && h != NULL
720 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
721 && (h->root.type == bfd_link_hash_defweak
722 || (h->elf_link_hash_flags
723 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
724 {
725 /* We must copy these reloc types into the output file.
726 Create a reloc section in dynobj and make room for
727 this reloc. */
728 if (dynobj == NULL)
729 htab->root.dynobj = dynobj = abfd;
730
731 if (sreloc == NULL)
732 {
733 const char *name;
734
735 name = (bfd_elf_string_from_elf_section
736 (abfd,
737 elf_elfheader (abfd)->e_shstrndx,
738 elf_section_data (sec)->rel_hdr.sh_name));
739 if (name == NULL)
740 return false;
741
742 if (strncmp (name, ".rel", 4) != 0
743 || strcmp (bfd_get_section_name (abfd, sec),
744 name + 4) != 0)
745 {
746 (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
747 bfd_archive_filename (abfd),
748 name);
749 }
750
751 sreloc = bfd_get_section_by_name (dynobj, name);
752 if (sreloc == NULL)
753 {
754 flagword flags;
755
756 sreloc = bfd_make_section (dynobj, name);
757 flags = (SEC_HAS_CONTENTS | SEC_READONLY
758 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
759 if ((sec->flags & SEC_ALLOC) != 0)
760 flags |= SEC_ALLOC | SEC_LOAD;
761 if (sreloc == NULL
762 || ! bfd_set_section_flags (dynobj, sreloc, flags)
763 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
764 return false;
765 }
766 if (sec->flags & SEC_READONLY)
767 info->flags |= DF_TEXTREL;
768 }
769
770 sreloc->_raw_size += sizeof (Elf32_External_Rel);
771
772 /* If this is a global symbol, we count the number of PC
773 relative relocations we have entered for this symbol,
774 so that we can discard them later as necessary. Note
775 that this function is only called if we are using an
776 elf_i386 linker hash table, which means that h is
777 really a pointer to an elf_i386_link_hash_entry. */
778 if (!info->shared
779 || (h != NULL
780 && ELF32_R_TYPE (rel->r_info) == R_386_PC32))
781 {
782 struct elf_i386_link_hash_entry *eh;
783 struct elf_i386_dyn_relocs *p;
784
785 eh = (struct elf_i386_link_hash_entry *) h;
786
787 for (p = eh->dyn_relocs; p != NULL; p = p->next)
788 if (p->section == sreloc)
789 break;
790
791 if (p == NULL)
792 {
793 p = ((struct elf_i386_dyn_relocs *)
794 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
795 if (p == NULL)
796 return false;
797 p->next = eh->dyn_relocs;
798 eh->dyn_relocs = p;
799 p->section = sreloc;
800 p->count = 0;
801 }
802
803 ++p->count;
804 }
805 }
806
807 break;
808
809 /* This relocation describes the C++ object vtable hierarchy.
810 Reconstruct it for later use during GC. */
811 case R_386_GNU_VTINHERIT:
812 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
813 return false;
814 break;
815
816 /* This relocation describes which C++ vtable entries are actually
817 used. Record for later use during GC. */
818 case R_386_GNU_VTENTRY:
819 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
820 return false;
821 break;
822
823 default:
824 break;
825 }
826 }
827
828 return true;
829 }
830
831 /* Return the section that should be marked against GC for a given
832 relocation. */
833
834 static asection *
835 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
836 bfd *abfd;
837 struct bfd_link_info *info ATTRIBUTE_UNUSED;
838 Elf_Internal_Rela *rel;
839 struct elf_link_hash_entry *h;
840 Elf_Internal_Sym *sym;
841 {
842 if (h != NULL)
843 {
844 switch (ELF32_R_TYPE (rel->r_info))
845 {
846 case R_386_GNU_VTINHERIT:
847 case R_386_GNU_VTENTRY:
848 break;
849
850 default:
851 switch (h->root.type)
852 {
853 case bfd_link_hash_defined:
854 case bfd_link_hash_defweak:
855 return h->root.u.def.section;
856
857 case bfd_link_hash_common:
858 return h->root.u.c.p->section;
859
860 default:
861 break;
862 }
863 }
864 }
865 else
866 {
867 if (!(elf_bad_symtab (abfd)
868 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
869 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
870 && sym->st_shndx != SHN_COMMON))
871 {
872 return bfd_section_from_elf_index (abfd, sym->st_shndx);
873 }
874 }
875
876 return NULL;
877 }
878
879 /* Update the got entry reference counts for the section being removed. */
880
881 static boolean
882 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
883 bfd *abfd;
884 struct bfd_link_info *info;
885 asection *sec;
886 const Elf_Internal_Rela *relocs;
887 {
888 Elf_Internal_Shdr *symtab_hdr;
889 struct elf_link_hash_entry **sym_hashes;
890 bfd_signed_vma *local_got_refcounts;
891 const Elf_Internal_Rela *rel, *relend;
892 unsigned long r_symndx;
893 struct elf_link_hash_entry *h;
894 bfd *dynobj;
895
896 dynobj = elf_hash_table (info)->dynobj;
897 if (dynobj == NULL)
898 return true;
899
900 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
901 sym_hashes = elf_sym_hashes (abfd);
902 local_got_refcounts = elf_local_got_refcounts (abfd);
903
904 relend = relocs + sec->reloc_count;
905 for (rel = relocs; rel < relend; rel++)
906 switch (ELF32_R_TYPE (rel->r_info))
907 {
908 case R_386_GOT32:
909 case R_386_GOTOFF:
910 case R_386_GOTPC:
911 r_symndx = ELF32_R_SYM (rel->r_info);
912 if (r_symndx >= symtab_hdr->sh_info)
913 {
914 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
915 if (h->got.refcount > 0)
916 h->got.refcount -= 1;
917 }
918 else if (local_got_refcounts != NULL)
919 {
920 if (local_got_refcounts[r_symndx] > 0)
921 local_got_refcounts[r_symndx] -= 1;
922 }
923 break;
924
925 case R_386_32:
926 case R_386_PC32:
927 if (info->shared)
928 break;
929 /* Fall through. */
930
931 case R_386_PLT32:
932 r_symndx = ELF32_R_SYM (rel->r_info);
933 if (r_symndx >= symtab_hdr->sh_info)
934 {
935 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
936 if (h->plt.refcount > 0)
937 h->plt.refcount -= 1;
938 }
939 break;
940
941 default:
942 break;
943 }
944
945 return true;
946 }
947
948 /* Adjust a symbol defined by a dynamic object and referenced by a
949 regular object. The current definition is in some section of the
950 dynamic object, but we're not including those sections. We have to
951 change the definition to something the rest of the link can
952 understand. */
953
954 static boolean
955 elf_i386_adjust_dynamic_symbol (info, h)
956 struct bfd_link_info *info;
957 struct elf_link_hash_entry *h;
958 {
959 struct elf_i386_link_hash_table *htab;
960 bfd *dynobj;
961 asection *s;
962 unsigned int power_of_two;
963
964 htab = elf_i386_hash_table (info);
965 dynobj = htab->root.dynobj;
966
967 /* If this is a function, put it in the procedure linkage table. We
968 will fill in the contents of the procedure linkage table later,
969 when we know the address of the .got section. */
970 if (h->type == STT_FUNC
971 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
972 {
973 if (h->plt.refcount <= 0
974 || (! info->shared
975 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
976 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
977 {
978 /* This case can occur if we saw a PLT32 reloc in an input
979 file, but the symbol was never referred to by a dynamic
980 object, or if all references were garbage collected. In
981 such a case, we don't actually need to build a procedure
982 linkage table, and we can just do a PC32 reloc instead. */
983 h->plt.refcount = (bfd_vma) -1;
984 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
985 }
986
987 return true;
988 }
989 else
990 /* It's possible that we incorrectly decided a .plt reloc was
991 needed for an R_386_PC32 reloc to a non-function sym in
992 check_relocs. We can't decide accurately between function and
993 non-function syms in check-relocs; Objects loaded later in
994 the link may change h->type. So fix it now. */
995 h->plt.refcount = (bfd_vma) -1;
996
997 /* If this is a weak symbol, and there is a real definition, the
998 processor independent code will have arranged for us to see the
999 real definition first, and we can just use the same value. */
1000 if (h->weakdef != NULL)
1001 {
1002 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1003 || h->weakdef->root.type == bfd_link_hash_defweak);
1004 h->root.u.def.section = h->weakdef->root.u.def.section;
1005 h->root.u.def.value = h->weakdef->root.u.def.value;
1006 return true;
1007 }
1008
1009 /* This is a reference to a symbol defined by a dynamic object which
1010 is not a function. */
1011
1012 /* If we are creating a shared library, we must presume that the
1013 only references to the symbol are via the global offset table.
1014 For such cases we need not do anything here; the relocations will
1015 be handled correctly by relocate_section. */
1016 if (info->shared)
1017 return true;
1018
1019 /* If there are no references to this symbol that do not use the
1020 GOT, we don't need to generate a copy reloc. */
1021 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1022 return true;
1023
1024 /* We must allocate the symbol in our .dynbss section, which will
1025 become part of the .bss section of the executable. There will be
1026 an entry for this symbol in the .dynsym section. The dynamic
1027 object will contain position independent code, so all references
1028 from the dynamic object to this symbol will go through the global
1029 offset table. The dynamic linker will use the .dynsym entry to
1030 determine the address it must put in the global offset table, so
1031 both the dynamic object and the regular object will refer to the
1032 same memory location for the variable. */
1033
1034 s = htab->sdynbss;
1035 if (s == NULL)
1036 abort ();
1037
1038 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1039 copy the initial value out of the dynamic object and into the
1040 runtime process image. We need to remember the offset into the
1041 .rel.bss section we are going to use. */
1042 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1043 {
1044 asection *srel;
1045
1046 srel = htab->srelbss;
1047 if (srel == NULL)
1048 abort ();
1049 srel->_raw_size += sizeof (Elf32_External_Rel);
1050 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1051 }
1052
1053 /* We need to figure out the alignment required for this symbol. I
1054 have no idea how ELF linkers handle this. */
1055 power_of_two = bfd_log2 (h->size);
1056 if (power_of_two > 3)
1057 power_of_two = 3;
1058
1059 /* Apply the required alignment. */
1060 s->_raw_size = BFD_ALIGN (s->_raw_size,
1061 (bfd_size_type) (1 << power_of_two));
1062 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1063 {
1064 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1065 return false;
1066 }
1067
1068 /* Define the symbol as being at this point in the section. */
1069 h->root.u.def.section = s;
1070 h->root.u.def.value = s->_raw_size;
1071
1072 /* Increment the section size to make room for the symbol. */
1073 s->_raw_size += h->size;
1074
1075 return true;
1076 }
1077
1078 /* This is the condition under which elf_i386_finish_dynamic_symbol
1079 will be called from elflink.h. If elflink.h doesn't call our
1080 finish_dynamic_symbol routine, we'll need to do something about
1081 initializing any .plt and .got entries in elf_i386_relocate_section. */
1082 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1083 ((DYN) \
1084 && ((INFO)->shared \
1085 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1086 && ((H)->dynindx != -1 \
1087 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1088
1089 /* Allocate space in .plt, .got and associated reloc sections for
1090 global syms. Also discards space allocated for relocs in the
1091 check_relocs function that we subsequently have found to be
1092 unneeded. */
1093
1094 static boolean
1095 allocate_plt_and_got_and_discard_relocs (h, inf)
1096 struct elf_link_hash_entry *h;
1097 PTR inf;
1098 {
1099 struct bfd_link_info *info;
1100 struct elf_i386_link_hash_table *htab;
1101 asection *s;
1102 struct elf_i386_link_hash_entry *eh;
1103
1104 if (h->root.type == bfd_link_hash_indirect
1105 || h->root.type == bfd_link_hash_warning)
1106 return true;
1107
1108 info = (struct bfd_link_info *) inf;
1109 htab = elf_i386_hash_table (info);
1110
1111 if (htab->root.dynamic_sections_created
1112 && h->plt.refcount > 0)
1113 {
1114 /* Make sure this symbol is output as a dynamic symbol.
1115 Undefined weak syms won't yet be marked as dynamic. */
1116 if (h->dynindx == -1
1117 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1118 {
1119 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1120 return false;
1121 }
1122
1123 s = htab->splt;
1124 if (s == NULL)
1125 abort ();
1126
1127 /* If this is the first .plt entry, make room for the special
1128 first entry. */
1129 if (s->_raw_size == 0)
1130 s->_raw_size += PLT_ENTRY_SIZE;
1131
1132 h->plt.offset = s->_raw_size;
1133
1134 /* If this symbol is not defined in a regular file, and we are
1135 not generating a shared library, then set the symbol to this
1136 location in the .plt. This is required to make function
1137 pointers compare as equal between the normal executable and
1138 the shared library. */
1139 if (! info->shared
1140 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1141 {
1142 h->root.u.def.section = s;
1143 h->root.u.def.value = h->plt.offset;
1144 }
1145
1146 /* Make room for this entry. */
1147 s->_raw_size += PLT_ENTRY_SIZE;
1148
1149 /* We also need to make an entry in the .got.plt section, which
1150 will be placed in the .got section by the linker script. */
1151 s = htab->sgotplt;
1152 if (s == NULL)
1153 abort ();
1154 s->_raw_size += 4;
1155
1156 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1157 {
1158 /* We also need to make an entry in the .rel.plt section. */
1159 s = htab->srelplt;
1160 if (s == NULL)
1161 abort ();
1162 s->_raw_size += sizeof (Elf32_External_Rel);
1163 }
1164 }
1165 else
1166 {
1167 h->plt.offset = (bfd_vma) -1;
1168 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1169 }
1170
1171 if (h->got.refcount > 0)
1172 {
1173 boolean dyn;
1174
1175 /* Make sure this symbol is output as a dynamic symbol.
1176 Undefined weak syms won't yet be marked as dynamic. */
1177 if (h->dynindx == -1
1178 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1179 {
1180 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1181 return false;
1182 }
1183
1184 s = htab->sgot;
1185 h->got.offset = s->_raw_size;
1186 s->_raw_size += 4;
1187 dyn = htab->root.dynamic_sections_created;
1188 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1189 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1190 }
1191 else
1192 h->got.offset = (bfd_vma) -1;
1193
1194 /* In the shared -Bsymbolic case, discard space allocated for
1195 dynamic relocs against symbols which turn out to be defined
1196 in regular objects. For the normal shared case, discard space
1197 for relocs that have become local due to symbol visibility
1198 changes. For the non-shared case, discard space for symbols
1199 which turn out to need copy relocs or are not dynamic. */
1200
1201 eh = (struct elf_i386_link_hash_entry *) h;
1202 if (eh->dyn_relocs == NULL)
1203 return true;
1204
1205 if (!info->shared
1206 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1207 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1208 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1209 || (htab->root.dynamic_sections_created
1210 && (h->root.type == bfd_link_hash_undefweak
1211 || h->root.type == bfd_link_hash_undefined))))
1212 {
1213 /* Make sure this symbol is output as a dynamic symbol.
1214 Undefined weak syms won't yet be marked as dynamic. */
1215 if (h->dynindx == -1
1216 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1217 {
1218 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1219 return false;
1220 }
1221
1222 /* If that succeeded, we know we'll be keeping all the relocs. */
1223 if (h->dynindx != -1)
1224 return true;
1225 }
1226
1227 if (!info->shared
1228 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1229 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1230 || info->symbolic)))
1231 {
1232 struct elf_i386_dyn_relocs *c;
1233
1234 for (c = eh->dyn_relocs; c != NULL; c = c->next)
1235 c->section->_raw_size -= c->count * sizeof (Elf32_External_Rel);
1236 }
1237
1238 return true;
1239 }
1240
1241 /* Set the sizes of the dynamic sections. */
1242
1243 static boolean
1244 elf_i386_size_dynamic_sections (output_bfd, info)
1245 bfd *output_bfd ATTRIBUTE_UNUSED;
1246 struct bfd_link_info *info;
1247 {
1248 struct elf_i386_link_hash_table *htab;
1249 bfd *dynobj;
1250 asection *s;
1251 boolean relocs;
1252 bfd *i;
1253
1254 htab = elf_i386_hash_table (info);
1255 dynobj = htab->root.dynobj;
1256 if (dynobj == NULL)
1257 abort ();
1258
1259 if (htab->root.dynamic_sections_created)
1260 {
1261 /* Set the contents of the .interp section to the interpreter. */
1262 if (! info->shared)
1263 {
1264 s = bfd_get_section_by_name (dynobj, ".interp");
1265 if (s == NULL)
1266 abort ();
1267 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1268 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1269 }
1270 }
1271
1272 /* Set up .got offsets for local syms. */
1273 for (i = info->input_bfds; i; i = i->link_next)
1274 {
1275 bfd_signed_vma *local_got;
1276 bfd_signed_vma *end_local_got;
1277 bfd_size_type locsymcount;
1278 Elf_Internal_Shdr *symtab_hdr;
1279 asection *srel;
1280
1281 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
1282 continue;
1283
1284 local_got = elf_local_got_refcounts (i);
1285 if (!local_got)
1286 continue;
1287
1288 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1289 locsymcount = symtab_hdr->sh_info;
1290 end_local_got = local_got + locsymcount;
1291 s = htab->sgot;
1292 srel = htab->srelgot;
1293 for (; local_got < end_local_got; ++local_got)
1294 {
1295 if (*local_got > 0)
1296 {
1297 *local_got = s->_raw_size;
1298 s->_raw_size += 4;
1299 if (info->shared)
1300 srel->_raw_size += sizeof (Elf32_External_Rel);
1301 }
1302 else
1303 *local_got = (bfd_vma) -1;
1304 }
1305 }
1306
1307 /* Allocate global sym .plt and .got entries. Also discard all
1308 unneeded relocs. */
1309 elf_link_hash_traverse (&htab->root,
1310 allocate_plt_and_got_and_discard_relocs,
1311 (PTR) info);
1312
1313 /* We now have determined the sizes of the various dynamic sections.
1314 Allocate memory for them. */
1315 relocs = false;
1316 for (s = dynobj->sections; s != NULL; s = s->next)
1317 {
1318 if ((s->flags & SEC_LINKER_CREATED) == 0)
1319 continue;
1320
1321 if (s == htab->splt
1322 || s == htab->sgot
1323 || s == htab->sgotplt)
1324 {
1325 /* Strip this section if we don't need it; see the
1326 comment below. */
1327 }
1328 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1329 {
1330 if (s->_raw_size == 0)
1331 {
1332 /* If we don't need this section, strip it from the
1333 output file. This is mostly to handle .rel.bss and
1334 .rel.plt. We must create both sections in
1335 create_dynamic_sections, because they must be created
1336 before the linker maps input sections to output
1337 sections. The linker does that before
1338 adjust_dynamic_symbol is called, and it is that
1339 function which decides whether anything needs to go
1340 into these sections. */
1341 }
1342 else
1343 {
1344 if (s != htab->srelplt)
1345 relocs = true;
1346
1347 /* We use the reloc_count field as a counter if we need
1348 to copy relocs into the output file. */
1349 s->reloc_count = 0;
1350 }
1351 }
1352 else
1353 {
1354 /* It's not one of our sections, so don't allocate space. */
1355 continue;
1356 }
1357
1358 if (s->_raw_size == 0)
1359 {
1360 _bfd_strip_section_from_output (info, s);
1361 continue;
1362 }
1363
1364 /* Allocate memory for the section contents. We use bfd_zalloc
1365 here in case unused entries are not reclaimed before the
1366 section's contents are written out. This should not happen,
1367 but this way if it does, we get a R_386_NONE reloc instead
1368 of garbage. */
1369 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1370 if (s->contents == NULL)
1371 return false;
1372 }
1373
1374 if (htab->root.dynamic_sections_created)
1375 {
1376 /* Add some entries to the .dynamic section. We fill in the
1377 values later, in elf_i386_finish_dynamic_sections, but we
1378 must add the entries now so that we get the correct size for
1379 the .dynamic section. The DT_DEBUG entry is filled in by the
1380 dynamic linker and used by the debugger. */
1381 #define add_dynamic_entry(TAG, VAL) \
1382 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1383
1384 if (! info->shared)
1385 {
1386 if (!add_dynamic_entry (DT_DEBUG, 0))
1387 return false;
1388 }
1389
1390 if (htab->splt->_raw_size != 0)
1391 {
1392 if (!add_dynamic_entry (DT_PLTGOT, 0)
1393 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1394 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1395 || !add_dynamic_entry (DT_JMPREL, 0))
1396 return false;
1397 }
1398
1399 if (relocs)
1400 {
1401 if (!add_dynamic_entry (DT_REL, 0)
1402 || !add_dynamic_entry (DT_RELSZ, 0)
1403 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1404 return false;
1405 }
1406
1407 if ((info->flags & DF_TEXTREL) != 0)
1408 {
1409 if (!add_dynamic_entry (DT_TEXTREL, 0))
1410 return false;
1411 }
1412 }
1413 #undef add_dynamic_entry
1414
1415 return true;
1416 }
1417
1418 /* Relocate an i386 ELF section. */
1419
1420 static boolean
1421 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1422 contents, relocs, local_syms, local_sections)
1423 bfd *output_bfd;
1424 struct bfd_link_info *info;
1425 bfd *input_bfd;
1426 asection *input_section;
1427 bfd_byte *contents;
1428 Elf_Internal_Rela *relocs;
1429 Elf_Internal_Sym *local_syms;
1430 asection **local_sections;
1431 {
1432 struct elf_i386_link_hash_table *htab;
1433 bfd *dynobj;
1434 Elf_Internal_Shdr *symtab_hdr;
1435 struct elf_link_hash_entry **sym_hashes;
1436 bfd_vma *local_got_offsets;
1437 asection *sreloc;
1438 Elf_Internal_Rela *rel;
1439 Elf_Internal_Rela *relend;
1440
1441 htab = elf_i386_hash_table (info);
1442 dynobj = htab->root.dynobj;
1443 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1444 sym_hashes = elf_sym_hashes (input_bfd);
1445 local_got_offsets = elf_local_got_offsets (input_bfd);
1446
1447 sreloc = NULL;
1448 rel = relocs;
1449 relend = relocs + input_section->reloc_count;
1450 for (; rel < relend; rel++)
1451 {
1452 int r_type;
1453 reloc_howto_type *howto;
1454 unsigned long r_symndx;
1455 struct elf_link_hash_entry *h;
1456 Elf_Internal_Sym *sym;
1457 asection *sec;
1458 bfd_vma off;
1459 bfd_vma relocation;
1460 boolean unresolved_reloc;
1461 bfd_reloc_status_type r;
1462 unsigned int indx;
1463
1464 r_type = ELF32_R_TYPE (rel->r_info);
1465 if (r_type == (int) R_386_GNU_VTINHERIT
1466 || r_type == (int) R_386_GNU_VTENTRY)
1467 continue;
1468
1469 if ((indx = (unsigned) r_type) >= R_386_standard
1470 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1471 >= R_386_ext - R_386_standard))
1472 {
1473 bfd_set_error (bfd_error_bad_value);
1474 return false;
1475 }
1476 howto = elf_howto_table + indx;
1477
1478 r_symndx = ELF32_R_SYM (rel->r_info);
1479
1480 if (info->relocateable)
1481 {
1482 /* This is a relocateable link. We don't have to change
1483 anything, unless the reloc is against a section symbol,
1484 in which case we have to adjust according to where the
1485 section symbol winds up in the output section. */
1486 if (r_symndx < symtab_hdr->sh_info)
1487 {
1488 sym = local_syms + r_symndx;
1489 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1490 {
1491 bfd_vma val;
1492
1493 sec = local_sections[r_symndx];
1494 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1495 val += sec->output_offset + sym->st_value;
1496 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1497 }
1498 }
1499
1500 continue;
1501 }
1502
1503 /* This is a final link. */
1504 h = NULL;
1505 sym = NULL;
1506 sec = NULL;
1507 unresolved_reloc = false;
1508 if (r_symndx < symtab_hdr->sh_info)
1509 {
1510 sym = local_syms + r_symndx;
1511 sec = local_sections[r_symndx];
1512 relocation = (sec->output_section->vma
1513 + sec->output_offset
1514 + sym->st_value);
1515 }
1516 else
1517 {
1518 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1519 while (h->root.type == bfd_link_hash_indirect
1520 || h->root.type == bfd_link_hash_warning)
1521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1522
1523 relocation = 0;
1524 if (h->root.type == bfd_link_hash_defined
1525 || h->root.type == bfd_link_hash_defweak)
1526 {
1527 sec = h->root.u.def.section;
1528 if (sec->output_section == NULL)
1529 /* Set a flag that will be cleared later if we find a
1530 relocation value for this symbol. output_section
1531 is typically NULL for symbols satisfied by a shared
1532 library. */
1533 unresolved_reloc = true;
1534 else
1535 relocation = (h->root.u.def.value
1536 + sec->output_section->vma
1537 + sec->output_offset);
1538 }
1539 else if (h->root.type == bfd_link_hash_undefweak)
1540 ;
1541 else if (info->shared
1542 && (!info->symbolic || info->allow_shlib_undefined)
1543 && !info->no_undefined
1544 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1545 ;
1546 else
1547 {
1548 if (! ((*info->callbacks->undefined_symbol)
1549 (info, h->root.root.string, input_bfd,
1550 input_section, rel->r_offset,
1551 (!info->shared || info->no_undefined
1552 || ELF_ST_VISIBILITY (h->other)))))
1553 return false;
1554 }
1555 }
1556
1557 switch (r_type)
1558 {
1559 case R_386_GOT32:
1560 /* Relocation is to the entry for this symbol in the global
1561 offset table. */
1562 if (htab->sgot == NULL)
1563 abort ();
1564
1565 if (h != NULL)
1566 {
1567 boolean dyn;
1568
1569 off = h->got.offset;
1570 dyn = htab->root.dynamic_sections_created;
1571 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1572 || (info->shared
1573 && (info->symbolic
1574 || h->dynindx == -1
1575 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1576 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1577 {
1578 /* This is actually a static link, or it is a
1579 -Bsymbolic link and the symbol is defined
1580 locally, or the symbol was forced to be local
1581 because of a version file. We must initialize
1582 this entry in the global offset table. Since the
1583 offset must always be a multiple of 4, we use the
1584 least significant bit to record whether we have
1585 initialized it already.
1586
1587 When doing a dynamic link, we create a .rel.got
1588 relocation entry to initialize the value. This
1589 is done in the finish_dynamic_symbol routine. */
1590 if ((off & 1) != 0)
1591 off &= ~1;
1592 else
1593 {
1594 bfd_put_32 (output_bfd, relocation,
1595 htab->sgot->contents + off);
1596 h->got.offset |= 1;
1597 }
1598 }
1599 else
1600 unresolved_reloc = false;
1601 }
1602 else
1603 {
1604 if (local_got_offsets == NULL)
1605 abort ();
1606
1607 off = local_got_offsets[r_symndx];
1608
1609 /* The offset must always be a multiple of 4. We use
1610 the least significant bit to record whether we have
1611 already generated the necessary reloc. */
1612 if ((off & 1) != 0)
1613 off &= ~1;
1614 else
1615 {
1616 bfd_put_32 (output_bfd, relocation,
1617 htab->sgot->contents + off);
1618
1619 if (info->shared)
1620 {
1621 asection *srelgot;
1622 Elf_Internal_Rel outrel;
1623
1624 srelgot = htab->srelgot;
1625 if (srelgot == NULL)
1626 abort ();
1627
1628 outrel.r_offset = (htab->sgot->output_section->vma
1629 + htab->sgot->output_offset
1630 + off);
1631 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1632 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1633 (((Elf32_External_Rel *)
1634 srelgot->contents)
1635 + srelgot->reloc_count));
1636 ++srelgot->reloc_count;
1637 }
1638
1639 local_got_offsets[r_symndx] |= 1;
1640 }
1641 }
1642
1643 if (off >= (bfd_vma) -2)
1644 abort ();
1645
1646 relocation = htab->sgot->output_offset + off;
1647 break;
1648
1649 case R_386_GOTOFF:
1650 /* Relocation is relative to the start of the global offset
1651 table. */
1652
1653 /* Note that sgot->output_offset is not involved in this
1654 calculation. We always want the start of .got. If we
1655 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1656 permitted by the ABI, we might have to change this
1657 calculation. */
1658 relocation -= htab->sgot->output_section->vma;
1659 break;
1660
1661 case R_386_GOTPC:
1662 /* Use global offset table as symbol value. */
1663 relocation = htab->sgot->output_section->vma;
1664 unresolved_reloc = false;
1665 break;
1666
1667 case R_386_PLT32:
1668 /* Relocation is to the entry for this symbol in the
1669 procedure linkage table. */
1670
1671 /* Resolve a PLT32 reloc against a local symbol directly,
1672 without using the procedure linkage table. */
1673 if (h == NULL)
1674 break;
1675
1676 if (h->plt.offset == (bfd_vma) -1
1677 || htab->splt == NULL)
1678 {
1679 /* We didn't make a PLT entry for this symbol. This
1680 happens when statically linking PIC code, or when
1681 using -Bsymbolic. */
1682 break;
1683 }
1684
1685 relocation = (htab->splt->output_section->vma
1686 + htab->splt->output_offset
1687 + h->plt.offset);
1688 unresolved_reloc = false;
1689 break;
1690
1691 case R_386_32:
1692 case R_386_PC32:
1693 if ((info->shared
1694 && (input_section->flags & SEC_ALLOC) != 0
1695 && (r_type != R_386_PC32
1696 || (h != NULL
1697 && h->dynindx != -1
1698 && (! info->symbolic
1699 || (h->elf_link_hash_flags
1700 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1701 || (!info->shared
1702 && (input_section->flags & SEC_ALLOC) != 0
1703 && h != NULL
1704 && h->dynindx != -1
1705 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1706 && (((h->elf_link_hash_flags
1707 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1708 && (h->elf_link_hash_flags
1709 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1710 || h->root.type == bfd_link_hash_undefweak
1711 || h->root.type == bfd_link_hash_undefined)))
1712 {
1713 Elf_Internal_Rel outrel;
1714 boolean skip, relocate;
1715
1716 /* When generating a shared object, these relocations
1717 are copied into the output file to be resolved at run
1718 time. */
1719
1720 if (sreloc == NULL)
1721 {
1722 const char *name;
1723
1724 name = (bfd_elf_string_from_elf_section
1725 (input_bfd,
1726 elf_elfheader (input_bfd)->e_shstrndx,
1727 elf_section_data (input_section)->rel_hdr.sh_name));
1728 if (name == NULL)
1729 return false;
1730
1731 if (strncmp (name, ".rel", 4) != 0
1732 || strcmp (bfd_get_section_name (input_bfd,
1733 input_section),
1734 name + 4) != 0)
1735 {
1736 (*_bfd_error_handler)
1737 (_("%s: bad relocation section name `%s\'"),
1738 bfd_archive_filename (input_bfd), name);
1739 return false;
1740 }
1741
1742 sreloc = bfd_get_section_by_name (dynobj, name);
1743 if (sreloc == NULL)
1744 abort ();
1745 }
1746
1747 skip = false;
1748
1749 if (elf_section_data (input_section)->stab_info == NULL)
1750 outrel.r_offset = rel->r_offset;
1751 else
1752 {
1753 off = (_bfd_stab_section_offset
1754 (output_bfd, htab->root.stab_info, input_section,
1755 &elf_section_data (input_section)->stab_info,
1756 rel->r_offset));
1757 if (off == (bfd_vma) -1)
1758 skip = true;
1759 outrel.r_offset = off;
1760 }
1761
1762 outrel.r_offset += (input_section->output_section->vma
1763 + input_section->output_offset);
1764
1765 if (skip)
1766 {
1767 memset (&outrel, 0, sizeof outrel);
1768 relocate = false;
1769 }
1770 else if (h != NULL
1771 && h->dynindx != -1
1772 && (r_type == R_386_PC32
1773 || !info->shared
1774 || !info->symbolic
1775 || (h->elf_link_hash_flags
1776 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1777
1778 {
1779 relocate = false;
1780 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1781 }
1782 else
1783 {
1784 /* This symbol is local, or marked to become local. */
1785 relocate = true;
1786 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1787 }
1788
1789 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1790 (((Elf32_External_Rel *)
1791 sreloc->contents)
1792 + sreloc->reloc_count));
1793 ++sreloc->reloc_count;
1794
1795 /* If this reloc is against an external symbol, we do
1796 not want to fiddle with the addend. Otherwise, we
1797 need to include the symbol value so that it becomes
1798 an addend for the dynamic reloc. */
1799 if (! relocate)
1800 continue;
1801 }
1802
1803 break;
1804
1805 default:
1806 break;
1807 }
1808
1809 /* FIXME: Why do we allow debugging sections to escape this error?
1810 More importantly, why do we not emit dynamic relocs for
1811 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
1812 If we had emitted the dynamic reloc, we could remove the
1813 fudge here. */
1814 if (unresolved_reloc
1815 && !(info->shared
1816 && (input_section->flags & SEC_DEBUGGING) != 0
1817 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1818 (*_bfd_error_handler)
1819 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1820 bfd_archive_filename (input_bfd),
1821 bfd_get_section_name (input_bfd, input_section),
1822 (long) rel->r_offset,
1823 h->root.root.string);
1824
1825 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1826 contents, rel->r_offset,
1827 relocation, (bfd_vma) 0);
1828
1829 switch (r)
1830 {
1831 case bfd_reloc_ok:
1832 break;
1833
1834 case bfd_reloc_overflow:
1835 {
1836 const char *name;
1837
1838 if (h != NULL)
1839 name = h->root.root.string;
1840 else
1841 {
1842 name = bfd_elf_string_from_elf_section (input_bfd,
1843 symtab_hdr->sh_link,
1844 sym->st_name);
1845 if (name == NULL)
1846 return false;
1847 if (*name == '\0')
1848 name = bfd_section_name (input_bfd, sec);
1849 }
1850 if (! ((*info->callbacks->reloc_overflow)
1851 (info, name, howto->name, (bfd_vma) 0,
1852 input_bfd, input_section, rel->r_offset)))
1853 return false;
1854 }
1855 break;
1856
1857 default:
1858 case bfd_reloc_outofrange:
1859 abort ();
1860 break;
1861 }
1862 }
1863
1864 return true;
1865 }
1866
1867 /* Finish up dynamic symbol handling. We set the contents of various
1868 dynamic sections here. */
1869
1870 static boolean
1871 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1872 bfd *output_bfd;
1873 struct bfd_link_info *info;
1874 struct elf_link_hash_entry *h;
1875 Elf_Internal_Sym *sym;
1876 {
1877 struct elf_i386_link_hash_table *htab;
1878 bfd *dynobj;
1879
1880 htab = elf_i386_hash_table (info);
1881 dynobj = htab->root.dynobj;
1882
1883 if (h->plt.offset != (bfd_vma) -1)
1884 {
1885 bfd_vma plt_index;
1886 bfd_vma got_offset;
1887 Elf_Internal_Rel rel;
1888
1889 /* This symbol has an entry in the procedure linkage table. Set
1890 it up. */
1891
1892 if (h->dynindx == -1
1893 || htab->splt == NULL
1894 || htab->sgotplt == NULL
1895 || htab->srelplt == NULL)
1896 abort ();
1897
1898 /* Get the index in the procedure linkage table which
1899 corresponds to this symbol. This is the index of this symbol
1900 in all the symbols for which we are making plt entries. The
1901 first entry in the procedure linkage table is reserved. */
1902 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1903
1904 /* Get the offset into the .got table of the entry that
1905 corresponds to this function. Each .got entry is 4 bytes.
1906 The first three are reserved. */
1907 got_offset = (plt_index + 3) * 4;
1908
1909 /* Fill in the entry in the procedure linkage table. */
1910 if (! info->shared)
1911 {
1912 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
1913 PLT_ENTRY_SIZE);
1914 bfd_put_32 (output_bfd,
1915 (htab->sgotplt->output_section->vma
1916 + htab->sgotplt->output_offset
1917 + got_offset),
1918 htab->splt->contents + h->plt.offset + 2);
1919 }
1920 else
1921 {
1922 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1923 PLT_ENTRY_SIZE);
1924 bfd_put_32 (output_bfd, got_offset,
1925 htab->splt->contents + h->plt.offset + 2);
1926 }
1927
1928 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1929 htab->splt->contents + h->plt.offset + 7);
1930 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1931 htab->splt->contents + h->plt.offset + 12);
1932
1933 /* Fill in the entry in the global offset table. */
1934 bfd_put_32 (output_bfd,
1935 (htab->splt->output_section->vma
1936 + htab->splt->output_offset
1937 + h->plt.offset
1938 + 6),
1939 htab->sgotplt->contents + got_offset);
1940
1941 /* Fill in the entry in the .rel.plt section. */
1942 rel.r_offset = (htab->sgotplt->output_section->vma
1943 + htab->sgotplt->output_offset
1944 + got_offset);
1945 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1946 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1947 ((Elf32_External_Rel *) htab->srelplt->contents
1948 + plt_index));
1949
1950 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1951 {
1952 /* Mark the symbol as undefined, rather than as defined in
1953 the .plt section. Leave the value alone. */
1954 sym->st_shndx = SHN_UNDEF;
1955 }
1956 }
1957
1958 if (h->got.offset != (bfd_vma) -1)
1959 {
1960 Elf_Internal_Rel rel;
1961
1962 /* This symbol has an entry in the global offset table. Set it
1963 up. */
1964
1965 if (htab->sgot == NULL || htab->srelgot == NULL)
1966 abort ();
1967
1968 rel.r_offset = (htab->sgot->output_section->vma
1969 + htab->sgot->output_offset
1970 + (h->got.offset & ~(bfd_vma) 1));
1971
1972 /* If this is a static link, or it is a -Bsymbolic link and the
1973 symbol is defined locally or was forced to be local because
1974 of a version file, we just want to emit a RELATIVE reloc.
1975 The entry in the global offset table will already have been
1976 initialized in the relocate_section function. */
1977 if (info->shared
1978 && (info->symbolic
1979 || h->dynindx == -1
1980 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1981 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1982 {
1983 BFD_ASSERT((h->got.offset & 1) != 0);
1984 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1985 }
1986 else
1987 {
1988 BFD_ASSERT((h->got.offset & 1) == 0);
1989 bfd_put_32 (output_bfd, (bfd_vma) 0,
1990 htab->sgot->contents + h->got.offset);
1991 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
1992 }
1993
1994 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1995 ((Elf32_External_Rel *) htab->srelgot->contents
1996 + htab->srelgot->reloc_count));
1997 ++htab->srelgot->reloc_count;
1998 }
1999
2000 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2001 {
2002 Elf_Internal_Rel rel;
2003
2004 /* This symbol needs a copy reloc. Set it up. */
2005
2006 if (h->dynindx == -1
2007 || (h->root.type != bfd_link_hash_defined
2008 && h->root.type != bfd_link_hash_defweak)
2009 || htab->srelbss == NULL)
2010 abort ();
2011
2012 rel.r_offset = (h->root.u.def.value
2013 + h->root.u.def.section->output_section->vma
2014 + h->root.u.def.section->output_offset);
2015 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2016 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2017 ((Elf32_External_Rel *) htab->srelbss->contents
2018 + htab->srelbss->reloc_count));
2019 ++htab->srelbss->reloc_count;
2020 }
2021
2022 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2023 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2024 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2025 sym->st_shndx = SHN_ABS;
2026
2027 return true;
2028 }
2029
2030 /* Finish up the dynamic sections. */
2031
2032 static boolean
2033 elf_i386_finish_dynamic_sections (output_bfd, info)
2034 bfd *output_bfd;
2035 struct bfd_link_info *info;
2036 {
2037 struct elf_i386_link_hash_table *htab;
2038 bfd *dynobj;
2039 asection *sdyn;
2040
2041 htab = elf_i386_hash_table (info);
2042 dynobj = htab->root.dynobj;
2043 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2044
2045 if (htab->root.dynamic_sections_created)
2046 {
2047 Elf32_External_Dyn *dyncon, *dynconend;
2048
2049 if (sdyn == NULL || htab->sgot == NULL)
2050 abort ();
2051
2052 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2053 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2054 for (; dyncon < dynconend; dyncon++)
2055 {
2056 Elf_Internal_Dyn dyn;
2057
2058 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2059
2060 switch (dyn.d_tag)
2061 {
2062 default:
2063 break;
2064
2065 case DT_PLTGOT:
2066 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2067 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2068 break;
2069
2070 case DT_JMPREL:
2071 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2072 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2073 break;
2074
2075 case DT_PLTRELSZ:
2076 if (htab->srelplt->output_section->_cooked_size != 0)
2077 dyn.d_un.d_val = htab->srelplt->output_section->_cooked_size;
2078 else
2079 dyn.d_un.d_val = htab->srelplt->output_section->_raw_size;
2080 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2081 break;
2082
2083 case DT_RELSZ:
2084 /* My reading of the SVR4 ABI indicates that the
2085 procedure linkage table relocs (DT_JMPREL) should be
2086 included in the overall relocs (DT_REL). This is
2087 what Solaris does. However, UnixWare can not handle
2088 that case. Therefore, we override the DT_RELSZ entry
2089 here to make it not include the JMPREL relocs. Since
2090 the linker script arranges for .rel.plt to follow all
2091 other relocation sections, we don't have to worry
2092 about changing the DT_REL entry. */
2093 if (htab->srelplt != NULL)
2094 {
2095 if (htab->srelplt->output_section->_cooked_size != 0)
2096 dyn.d_un.d_val -= htab->srelplt->output_section->_cooked_size;
2097 else
2098 dyn.d_un.d_val -= htab->srelplt->output_section->_raw_size;
2099 }
2100 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2101 break;
2102 }
2103 }
2104
2105 /* Fill in the first entry in the procedure linkage table. */
2106 if (htab->splt && htab->splt->_raw_size > 0)
2107 {
2108 if (info->shared)
2109 memcpy (htab->splt->contents,
2110 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2111 else
2112 {
2113 memcpy (htab->splt->contents,
2114 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2115 bfd_put_32 (output_bfd,
2116 (htab->sgotplt->output_section->vma
2117 + htab->sgotplt->output_offset
2118 + 4),
2119 htab->splt->contents + 2);
2120 bfd_put_32 (output_bfd,
2121 (htab->sgotplt->output_section->vma
2122 + htab->sgotplt->output_offset
2123 + 8),
2124 htab->splt->contents + 8);
2125 }
2126
2127 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2128 really seem like the right value. */
2129 elf_section_data (htab->splt->output_section)
2130 ->this_hdr.sh_entsize = 4;
2131 }
2132 }
2133
2134 if (htab->sgotplt)
2135 {
2136 /* Fill in the first three entries in the global offset table. */
2137 if (htab->sgotplt->_raw_size > 0)
2138 {
2139 bfd_put_32 (output_bfd,
2140 (sdyn == NULL ? (bfd_vma) 0
2141 : sdyn->output_section->vma + sdyn->output_offset),
2142 htab->sgotplt->contents);
2143 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2144 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2145 }
2146
2147 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2148 }
2149 return true;
2150 }
2151
2152 /* Set the correct type for an x86 ELF section. We do this by the
2153 section name, which is a hack, but ought to work. */
2154
2155 static boolean
2156 elf_i386_fake_sections (abfd, hdr, sec)
2157 bfd *abfd ATTRIBUTE_UNUSED;
2158 Elf32_Internal_Shdr *hdr;
2159 asection *sec;
2160 {
2161 register const char *name;
2162
2163 name = bfd_get_section_name (abfd, sec);
2164
2165 if (strcmp (name, ".reloc") == 0)
2166 /*
2167 * This is an ugly, but unfortunately necessary hack that is
2168 * needed when producing EFI binaries on x86. It tells
2169 * elf.c:elf_fake_sections() not to consider ".reloc" as a section
2170 * containing ELF relocation info. We need this hack in order to
2171 * be able to generate ELF binaries that can be translated into
2172 * EFI applications (which are essentially COFF objects). Those
2173 * files contain a COFF ".reloc" section inside an ELFNN object,
2174 * which would normally cause BFD to segfault because it would
2175 * attempt to interpret this section as containing relocation
2176 * entries for section "oc". With this hack enabled, ".reloc"
2177 * will be treated as a normal data section, which will avoid the
2178 * segfault. However, you won't be able to create an ELFNN binary
2179 * with a section named "oc" that needs relocations, but that's
2180 * the kind of ugly side-effects you get when detecting section
2181 * types based on their names... In practice, this limitation is
2182 * unlikely to bite.
2183 */
2184 hdr->sh_type = SHT_PROGBITS;
2185
2186 return true;
2187 }
2188
2189 static enum elf_reloc_type_class
2190 elf_i386_reloc_type_class (rela)
2191 const Elf_Internal_Rela *rela;
2192 {
2193 switch ((int) ELF32_R_TYPE (rela->r_info))
2194 {
2195 case R_386_RELATIVE:
2196 return reloc_class_relative;
2197 case R_386_JUMP_SLOT:
2198 return reloc_class_plt;
2199 case R_386_COPY:
2200 return reloc_class_copy;
2201 default:
2202 return reloc_class_normal;
2203 }
2204 }
2205
2206 /* Support for core dump NOTE sections */
2207 static boolean
2208 elf_i386_grok_prstatus (abfd, note)
2209 bfd *abfd;
2210 Elf_Internal_Note *note;
2211 {
2212 int offset;
2213 size_t raw_size;
2214
2215 switch (note->descsz)
2216 {
2217 default:
2218 return false;
2219
2220 case 144: /* Linux/i386 */
2221 /* pr_cursig */
2222 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2223
2224 /* pr_pid */
2225 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2226
2227 /* pr_reg */
2228 offset = 72;
2229 raw_size = 68;
2230
2231 break;
2232 }
2233
2234 /* Make a ".reg/999" section. */
2235 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2236 raw_size, note->descpos + offset);
2237 }
2238
2239 static boolean
2240 elf_i386_grok_psinfo (abfd, note)
2241 bfd *abfd;
2242 Elf_Internal_Note *note;
2243 {
2244 switch (note->descsz)
2245 {
2246 default:
2247 return false;
2248
2249 case 128: /* Linux/MIPS elf_prpsinfo */
2250 elf_tdata (abfd)->core_program
2251 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2252 elf_tdata (abfd)->core_command
2253 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2254 }
2255
2256 /* Note that for some reason, a spurious space is tacked
2257 onto the end of the args in some (at least one anyway)
2258 implementations, so strip it off if it exists. */
2259
2260 {
2261 char *command = elf_tdata (abfd)->core_command;
2262 int n = strlen (command);
2263
2264 if (0 < n && command[n - 1] == ' ')
2265 command[n - 1] = '\0';
2266 }
2267
2268 return true;
2269 }
2270
2271 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2272 #define TARGET_LITTLE_NAME "elf32-i386"
2273 #define ELF_ARCH bfd_arch_i386
2274 #define ELF_MACHINE_CODE EM_386
2275 #define ELF_MAXPAGESIZE 0x1000
2276
2277 #define elf_backend_can_gc_sections 1
2278 #define elf_backend_want_got_plt 1
2279 #define elf_backend_plt_readonly 1
2280 #define elf_backend_want_plt_sym 0
2281 #define elf_backend_got_header_size 12
2282 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2283
2284 #define elf_info_to_howto elf_i386_info_to_howto
2285 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2286
2287 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2288 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2289 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2290
2291 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2292 #define elf_backend_check_relocs elf_i386_check_relocs
2293 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2294 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2295 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2296 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2297 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2298 #define elf_backend_relocate_section elf_i386_relocate_section
2299 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2300 #define elf_backend_fake_sections elf_i386_fake_sections
2301 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2302 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2303 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2304
2305 #include "elf32-target.h"
This page took 0.08514 seconds and 4 git commands to generate.