4785552187a76f40ad59dcaf1ab890d655b04001
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 /* 386 uses REL relocations instead of RELA. */
28 #define USE_REL 1
29
30 #include "elf/i386.h"
31
32 static reloc_howto_type elf_howto_table[]=
33 {
34 HOWTO(R_386_NONE, 0, 0, 0, FALSE, 0, complain_overflow_bitfield,
35 bfd_elf_generic_reloc, "R_386_NONE",
36 TRUE, 0x00000000, 0x00000000, FALSE),
37 HOWTO(R_386_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
38 bfd_elf_generic_reloc, "R_386_32",
39 TRUE, 0xffffffff, 0xffffffff, FALSE),
40 HOWTO(R_386_PC32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
41 bfd_elf_generic_reloc, "R_386_PC32",
42 TRUE, 0xffffffff, 0xffffffff, TRUE),
43 HOWTO(R_386_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
44 bfd_elf_generic_reloc, "R_386_GOT32",
45 TRUE, 0xffffffff, 0xffffffff, FALSE),
46 HOWTO(R_386_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
47 bfd_elf_generic_reloc, "R_386_PLT32",
48 TRUE, 0xffffffff, 0xffffffff, TRUE),
49 HOWTO(R_386_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
50 bfd_elf_generic_reloc, "R_386_COPY",
51 TRUE, 0xffffffff, 0xffffffff, FALSE),
52 HOWTO(R_386_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
53 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
54 TRUE, 0xffffffff, 0xffffffff, FALSE),
55 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
57 TRUE, 0xffffffff, 0xffffffff, FALSE),
58 HOWTO(R_386_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_386_RELATIVE",
60 TRUE, 0xffffffff, 0xffffffff, FALSE),
61 HOWTO(R_386_GOTOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_386_GOTOFF",
63 TRUE, 0xffffffff, 0xffffffff, FALSE),
64 HOWTO(R_386_GOTPC, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
65 bfd_elf_generic_reloc, "R_386_GOTPC",
66 TRUE, 0xffffffff, 0xffffffff, TRUE),
67
68 /* We have a gap in the reloc numbers here.
69 R_386_standard counts the number up to this point, and
70 R_386_ext_offset is the value to subtract from a reloc type of
71 R_386_16 thru R_386_PC8 to form an index into this table. */
72 #define R_386_standard (R_386_GOTPC + 1)
73 #define R_386_ext_offset (R_386_TLS_TPOFF - R_386_standard)
74
75 /* These relocs are a GNU extension. */
76 HOWTO(R_386_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_386_TLS_TPOFF",
78 TRUE, 0xffffffff, 0xffffffff, FALSE),
79 HOWTO(R_386_TLS_IE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
80 bfd_elf_generic_reloc, "R_386_TLS_IE",
81 TRUE, 0xffffffff, 0xffffffff, FALSE),
82 HOWTO(R_386_TLS_GOTIE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_386_TLS_GOTIE",
84 TRUE, 0xffffffff, 0xffffffff, FALSE),
85 HOWTO(R_386_TLS_LE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_386_TLS_LE",
87 TRUE, 0xffffffff, 0xffffffff, FALSE),
88 HOWTO(R_386_TLS_GD, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_386_TLS_GD",
90 TRUE, 0xffffffff, 0xffffffff, FALSE),
91 HOWTO(R_386_TLS_LDM, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
92 bfd_elf_generic_reloc, "R_386_TLS_LDM",
93 TRUE, 0xffffffff, 0xffffffff, FALSE),
94 HOWTO(R_386_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_386_16",
96 TRUE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_386_PC16, 0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_386_PC16",
99 TRUE, 0xffff, 0xffff, TRUE),
100 HOWTO(R_386_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_386_8",
102 TRUE, 0xff, 0xff, FALSE),
103 HOWTO(R_386_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
104 bfd_elf_generic_reloc, "R_386_PC8",
105 TRUE, 0xff, 0xff, TRUE),
106
107 #define R_386_ext (R_386_PC8 + 1 - R_386_ext_offset)
108 #define R_386_tls_offset (R_386_TLS_LDO_32 - R_386_ext)
109 /* These are common with Solaris TLS implementation. */
110 HOWTO(R_386_TLS_LDO_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_386_TLS_LDO_32",
112 TRUE, 0xffffffff, 0xffffffff, FALSE),
113 HOWTO(R_386_TLS_IE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_386_TLS_IE_32",
115 TRUE, 0xffffffff, 0xffffffff, FALSE),
116 HOWTO(R_386_TLS_LE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
117 bfd_elf_generic_reloc, "R_386_TLS_LE_32",
118 TRUE, 0xffffffff, 0xffffffff, FALSE),
119 HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
120 bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32",
121 TRUE, 0xffffffff, 0xffffffff, FALSE),
122 HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
123 bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32",
124 TRUE, 0xffffffff, 0xffffffff, FALSE),
125 HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_386_TLS_TPOFF32",
127 TRUE, 0xffffffff, 0xffffffff, FALSE),
128
129 /* Another gap. */
130 #define R_386_tls (R_386_TLS_TPOFF32 + 1 - R_386_tls_offset)
131 #define R_386_vt_offset (R_386_GNU_VTINHERIT - R_386_tls)
132
133 /* GNU extension to record C++ vtable hierarchy. */
134 HOWTO (R_386_GNU_VTINHERIT, /* type */
135 0, /* rightshift */
136 2, /* size (0 = byte, 1 = short, 2 = long) */
137 0, /* bitsize */
138 FALSE, /* pc_relative */
139 0, /* bitpos */
140 complain_overflow_dont, /* complain_on_overflow */
141 NULL, /* special_function */
142 "R_386_GNU_VTINHERIT", /* name */
143 FALSE, /* partial_inplace */
144 0, /* src_mask */
145 0, /* dst_mask */
146 FALSE), /* pcrel_offset */
147
148 /* GNU extension to record C++ vtable member usage. */
149 HOWTO (R_386_GNU_VTENTRY, /* type */
150 0, /* rightshift */
151 2, /* size (0 = byte, 1 = short, 2 = long) */
152 0, /* bitsize */
153 FALSE, /* pc_relative */
154 0, /* bitpos */
155 complain_overflow_dont, /* complain_on_overflow */
156 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
157 "R_386_GNU_VTENTRY", /* name */
158 FALSE, /* partial_inplace */
159 0, /* src_mask */
160 0, /* dst_mask */
161 FALSE) /* pcrel_offset */
162
163 #define R_386_vt (R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
164
165 };
166
167 #ifdef DEBUG_GEN_RELOC
168 #define TRACE(str) \
169 fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
170 #else
171 #define TRACE(str)
172 #endif
173
174 static reloc_howto_type *
175 elf_i386_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
176 bfd_reloc_code_real_type code)
177 {
178 switch (code)
179 {
180 case BFD_RELOC_NONE:
181 TRACE ("BFD_RELOC_NONE");
182 return &elf_howto_table[R_386_NONE];
183
184 case BFD_RELOC_32:
185 TRACE ("BFD_RELOC_32");
186 return &elf_howto_table[R_386_32];
187
188 case BFD_RELOC_CTOR:
189 TRACE ("BFD_RELOC_CTOR");
190 return &elf_howto_table[R_386_32];
191
192 case BFD_RELOC_32_PCREL:
193 TRACE ("BFD_RELOC_PC32");
194 return &elf_howto_table[R_386_PC32];
195
196 case BFD_RELOC_386_GOT32:
197 TRACE ("BFD_RELOC_386_GOT32");
198 return &elf_howto_table[R_386_GOT32];
199
200 case BFD_RELOC_386_PLT32:
201 TRACE ("BFD_RELOC_386_PLT32");
202 return &elf_howto_table[R_386_PLT32];
203
204 case BFD_RELOC_386_COPY:
205 TRACE ("BFD_RELOC_386_COPY");
206 return &elf_howto_table[R_386_COPY];
207
208 case BFD_RELOC_386_GLOB_DAT:
209 TRACE ("BFD_RELOC_386_GLOB_DAT");
210 return &elf_howto_table[R_386_GLOB_DAT];
211
212 case BFD_RELOC_386_JUMP_SLOT:
213 TRACE ("BFD_RELOC_386_JUMP_SLOT");
214 return &elf_howto_table[R_386_JUMP_SLOT];
215
216 case BFD_RELOC_386_RELATIVE:
217 TRACE ("BFD_RELOC_386_RELATIVE");
218 return &elf_howto_table[R_386_RELATIVE];
219
220 case BFD_RELOC_386_GOTOFF:
221 TRACE ("BFD_RELOC_386_GOTOFF");
222 return &elf_howto_table[R_386_GOTOFF];
223
224 case BFD_RELOC_386_GOTPC:
225 TRACE ("BFD_RELOC_386_GOTPC");
226 return &elf_howto_table[R_386_GOTPC];
227
228 /* These relocs are a GNU extension. */
229 case BFD_RELOC_386_TLS_TPOFF:
230 TRACE ("BFD_RELOC_386_TLS_TPOFF");
231 return &elf_howto_table[R_386_TLS_TPOFF - R_386_ext_offset];
232
233 case BFD_RELOC_386_TLS_IE:
234 TRACE ("BFD_RELOC_386_TLS_IE");
235 return &elf_howto_table[R_386_TLS_IE - R_386_ext_offset];
236
237 case BFD_RELOC_386_TLS_GOTIE:
238 TRACE ("BFD_RELOC_386_TLS_GOTIE");
239 return &elf_howto_table[R_386_TLS_GOTIE - R_386_ext_offset];
240
241 case BFD_RELOC_386_TLS_LE:
242 TRACE ("BFD_RELOC_386_TLS_LE");
243 return &elf_howto_table[R_386_TLS_LE - R_386_ext_offset];
244
245 case BFD_RELOC_386_TLS_GD:
246 TRACE ("BFD_RELOC_386_TLS_GD");
247 return &elf_howto_table[R_386_TLS_GD - R_386_ext_offset];
248
249 case BFD_RELOC_386_TLS_LDM:
250 TRACE ("BFD_RELOC_386_TLS_LDM");
251 return &elf_howto_table[R_386_TLS_LDM - R_386_ext_offset];
252
253 case BFD_RELOC_16:
254 TRACE ("BFD_RELOC_16");
255 return &elf_howto_table[R_386_16 - R_386_ext_offset];
256
257 case BFD_RELOC_16_PCREL:
258 TRACE ("BFD_RELOC_16_PCREL");
259 return &elf_howto_table[R_386_PC16 - R_386_ext_offset];
260
261 case BFD_RELOC_8:
262 TRACE ("BFD_RELOC_8");
263 return &elf_howto_table[R_386_8 - R_386_ext_offset];
264
265 case BFD_RELOC_8_PCREL:
266 TRACE ("BFD_RELOC_8_PCREL");
267 return &elf_howto_table[R_386_PC8 - R_386_ext_offset];
268
269 /* Common with Sun TLS implementation. */
270 case BFD_RELOC_386_TLS_LDO_32:
271 TRACE ("BFD_RELOC_386_TLS_LDO_32");
272 return &elf_howto_table[R_386_TLS_LDO_32 - R_386_tls_offset];
273
274 case BFD_RELOC_386_TLS_IE_32:
275 TRACE ("BFD_RELOC_386_TLS_IE_32");
276 return &elf_howto_table[R_386_TLS_IE_32 - R_386_tls_offset];
277
278 case BFD_RELOC_386_TLS_LE_32:
279 TRACE ("BFD_RELOC_386_TLS_LE_32");
280 return &elf_howto_table[R_386_TLS_LE_32 - R_386_tls_offset];
281
282 case BFD_RELOC_386_TLS_DTPMOD32:
283 TRACE ("BFD_RELOC_386_TLS_DTPMOD32");
284 return &elf_howto_table[R_386_TLS_DTPMOD32 - R_386_tls_offset];
285
286 case BFD_RELOC_386_TLS_DTPOFF32:
287 TRACE ("BFD_RELOC_386_TLS_DTPOFF32");
288 return &elf_howto_table[R_386_TLS_DTPOFF32 - R_386_tls_offset];
289
290 case BFD_RELOC_386_TLS_TPOFF32:
291 TRACE ("BFD_RELOC_386_TLS_TPOFF32");
292 return &elf_howto_table[R_386_TLS_TPOFF32 - R_386_tls_offset];
293
294 case BFD_RELOC_VTABLE_INHERIT:
295 TRACE ("BFD_RELOC_VTABLE_INHERIT");
296 return &elf_howto_table[R_386_GNU_VTINHERIT - R_386_vt_offset];
297
298 case BFD_RELOC_VTABLE_ENTRY:
299 TRACE ("BFD_RELOC_VTABLE_ENTRY");
300 return &elf_howto_table[R_386_GNU_VTENTRY - R_386_vt_offset];
301
302 default:
303 break;
304 }
305
306 TRACE ("Unknown");
307 return 0;
308 }
309
310 static void
311 elf_i386_info_to_howto_rel (bfd *abfd ATTRIBUTE_UNUSED,
312 arelent *cache_ptr,
313 Elf_Internal_Rela *dst)
314 {
315 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
316 unsigned int indx;
317
318 if ((indx = r_type) >= R_386_standard
319 && ((indx = r_type - R_386_ext_offset) - R_386_standard
320 >= R_386_ext - R_386_standard)
321 && ((indx = r_type - R_386_tls_offset) - R_386_ext
322 >= R_386_tls - R_386_ext)
323 && ((indx = r_type - R_386_vt_offset) - R_386_tls
324 >= R_386_vt - R_386_tls))
325 {
326 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
327 abfd, (int) r_type);
328 indx = R_386_NONE;
329 }
330 cache_ptr->howto = &elf_howto_table[indx];
331 }
332
333 /* Return whether a symbol name implies a local label. The UnixWare
334 2.1 cc generates temporary symbols that start with .X, so we
335 recognize them here. FIXME: do other SVR4 compilers also use .X?.
336 If so, we should move the .X recognition into
337 _bfd_elf_is_local_label_name. */
338
339 static bfd_boolean
340 elf_i386_is_local_label_name (bfd *abfd, const char *name)
341 {
342 if (name[0] == '.' && name[1] == 'X')
343 return TRUE;
344
345 return _bfd_elf_is_local_label_name (abfd, name);
346 }
347 \f
348 /* Support for core dump NOTE sections. */
349
350 static bfd_boolean
351 elf_i386_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
352 {
353 int offset;
354 size_t size;
355
356 if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0)
357 {
358 int pr_version = bfd_get_32 (abfd, note->descdata);
359
360 if (pr_version != 1)
361 return FALSE;
362
363 /* pr_cursig */
364 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 20);
365
366 /* pr_pid */
367 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
368
369 /* pr_reg */
370 offset = 28;
371 size = bfd_get_32 (abfd, note->descdata + 8);
372 }
373 else
374 {
375 switch (note->descsz)
376 {
377 default:
378 return FALSE;
379
380 case 144: /* Linux/i386 */
381 /* pr_cursig */
382 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
383
384 /* pr_pid */
385 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
386
387 /* pr_reg */
388 offset = 72;
389 size = 68;
390
391 break;
392 }
393 }
394
395 /* Make a ".reg/999" section. */
396 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
397 size, note->descpos + offset);
398 }
399
400 static bfd_boolean
401 elf_i386_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
402 {
403 if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0)
404 {
405 int pr_version = bfd_get_32 (abfd, note->descdata);
406
407 if (pr_version != 1)
408 return FALSE;
409
410 elf_tdata (abfd)->core_program
411 = _bfd_elfcore_strndup (abfd, note->descdata + 8, 17);
412 elf_tdata (abfd)->core_command
413 = _bfd_elfcore_strndup (abfd, note->descdata + 25, 81);
414 }
415 else
416 {
417 switch (note->descsz)
418 {
419 default:
420 return FALSE;
421
422 case 124: /* Linux/i386 elf_prpsinfo. */
423 elf_tdata (abfd)->core_program
424 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
425 elf_tdata (abfd)->core_command
426 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
427 }
428 }
429
430 /* Note that for some reason, a spurious space is tacked
431 onto the end of the args in some (at least one anyway)
432 implementations, so strip it off if it exists. */
433 {
434 char *command = elf_tdata (abfd)->core_command;
435 int n = strlen (command);
436
437 if (0 < n && command[n - 1] == ' ')
438 command[n - 1] = '\0';
439 }
440
441 return TRUE;
442 }
443 \f
444 /* Functions for the i386 ELF linker.
445
446 In order to gain some understanding of code in this file without
447 knowing all the intricate details of the linker, note the
448 following:
449
450 Functions named elf_i386_* are called by external routines, other
451 functions are only called locally. elf_i386_* functions appear
452 in this file more or less in the order in which they are called
453 from external routines. eg. elf_i386_check_relocs is called
454 early in the link process, elf_i386_finish_dynamic_sections is
455 one of the last functions. */
456
457
458 /* The name of the dynamic interpreter. This is put in the .interp
459 section. */
460
461 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
462
463 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
464 copying dynamic variables from a shared lib into an app's dynbss
465 section, and instead use a dynamic relocation to point into the
466 shared lib. */
467 #define ELIMINATE_COPY_RELOCS 1
468
469 /* The size in bytes of an entry in the procedure linkage table. */
470
471 #define PLT_ENTRY_SIZE 16
472
473 /* The first entry in an absolute procedure linkage table looks like
474 this. See the SVR4 ABI i386 supplement to see how this works. */
475
476 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
477 {
478 0xff, 0x35, /* pushl contents of address */
479 0, 0, 0, 0, /* replaced with address of .got + 4. */
480 0xff, 0x25, /* jmp indirect */
481 0, 0, 0, 0, /* replaced with address of .got + 8. */
482 0, 0, 0, 0 /* pad out to 16 bytes. */
483 };
484
485 /* Subsequent entries in an absolute procedure linkage table look like
486 this. */
487
488 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
489 {
490 0xff, 0x25, /* jmp indirect */
491 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
492 0x68, /* pushl immediate */
493 0, 0, 0, 0, /* replaced with offset into relocation table. */
494 0xe9, /* jmp relative */
495 0, 0, 0, 0 /* replaced with offset to start of .plt. */
496 };
497
498 /* The first entry in a PIC procedure linkage table look like this. */
499
500 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
501 {
502 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
503 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
504 0, 0, 0, 0 /* pad out to 16 bytes. */
505 };
506
507 /* Subsequent entries in a PIC procedure linkage table look like this. */
508
509 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
510 {
511 0xff, 0xa3, /* jmp *offset(%ebx) */
512 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
513 0x68, /* pushl immediate */
514 0, 0, 0, 0, /* replaced with offset into relocation table. */
515 0xe9, /* jmp relative */
516 0, 0, 0, 0 /* replaced with offset to start of .plt. */
517 };
518
519 /* The i386 linker needs to keep track of the number of relocs that it
520 decides to copy as dynamic relocs in check_relocs for each symbol.
521 This is so that it can later discard them if they are found to be
522 unnecessary. We store the information in a field extending the
523 regular ELF linker hash table. */
524
525 struct elf_i386_dyn_relocs
526 {
527 struct elf_i386_dyn_relocs *next;
528
529 /* The input section of the reloc. */
530 asection *sec;
531
532 /* Total number of relocs copied for the input section. */
533 bfd_size_type count;
534
535 /* Number of pc-relative relocs copied for the input section. */
536 bfd_size_type pc_count;
537 };
538
539 /* i386 ELF linker hash entry. */
540
541 struct elf_i386_link_hash_entry
542 {
543 struct elf_link_hash_entry elf;
544
545 /* Track dynamic relocs copied for this symbol. */
546 struct elf_i386_dyn_relocs *dyn_relocs;
547
548 #define GOT_UNKNOWN 0
549 #define GOT_NORMAL 1
550 #define GOT_TLS_GD 2
551 #define GOT_TLS_IE 4
552 #define GOT_TLS_IE_POS 5
553 #define GOT_TLS_IE_NEG 6
554 #define GOT_TLS_IE_BOTH 7
555 unsigned char tls_type;
556 };
557
558 #define elf_i386_hash_entry(ent) ((struct elf_i386_link_hash_entry *)(ent))
559
560 struct elf_i386_obj_tdata
561 {
562 struct elf_obj_tdata root;
563
564 /* tls_type for each local got entry. */
565 char *local_got_tls_type;
566 };
567
568 #define elf_i386_tdata(abfd) \
569 ((struct elf_i386_obj_tdata *) (abfd)->tdata.any)
570
571 #define elf_i386_local_got_tls_type(abfd) \
572 (elf_i386_tdata (abfd)->local_got_tls_type)
573
574 static bfd_boolean
575 elf_i386_mkobject (bfd *abfd)
576 {
577 bfd_size_type amt = sizeof (struct elf_i386_obj_tdata);
578 abfd->tdata.any = bfd_zalloc (abfd, amt);
579 if (abfd->tdata.any == NULL)
580 return FALSE;
581 return TRUE;
582 }
583
584 /* i386 ELF linker hash table. */
585
586 struct elf_i386_link_hash_table
587 {
588 struct elf_link_hash_table elf;
589
590 /* Short-cuts to get to dynamic linker sections. */
591 asection *sgot;
592 asection *sgotplt;
593 asection *srelgot;
594 asection *splt;
595 asection *srelplt;
596 asection *sdynbss;
597 asection *srelbss;
598
599 union {
600 bfd_signed_vma refcount;
601 bfd_vma offset;
602 } tls_ldm_got;
603
604 /* Small local sym to section mapping cache. */
605 struct sym_sec_cache sym_sec;
606 };
607
608 /* Get the i386 ELF linker hash table from a link_info structure. */
609
610 #define elf_i386_hash_table(p) \
611 ((struct elf_i386_link_hash_table *) ((p)->hash))
612
613 /* Create an entry in an i386 ELF linker hash table. */
614
615 static struct bfd_hash_entry *
616 link_hash_newfunc (struct bfd_hash_entry *entry,
617 struct bfd_hash_table *table,
618 const char *string)
619 {
620 /* Allocate the structure if it has not already been allocated by a
621 subclass. */
622 if (entry == NULL)
623 {
624 entry = bfd_hash_allocate (table,
625 sizeof (struct elf_i386_link_hash_entry));
626 if (entry == NULL)
627 return entry;
628 }
629
630 /* Call the allocation method of the superclass. */
631 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
632 if (entry != NULL)
633 {
634 struct elf_i386_link_hash_entry *eh;
635
636 eh = (struct elf_i386_link_hash_entry *) entry;
637 eh->dyn_relocs = NULL;
638 eh->tls_type = GOT_UNKNOWN;
639 }
640
641 return entry;
642 }
643
644 /* Create an i386 ELF linker hash table. */
645
646 static struct bfd_link_hash_table *
647 elf_i386_link_hash_table_create (bfd *abfd)
648 {
649 struct elf_i386_link_hash_table *ret;
650 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
651
652 ret = bfd_malloc (amt);
653 if (ret == NULL)
654 return NULL;
655
656 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
657 {
658 free (ret);
659 return NULL;
660 }
661
662 ret->sgot = NULL;
663 ret->sgotplt = NULL;
664 ret->srelgot = NULL;
665 ret->splt = NULL;
666 ret->srelplt = NULL;
667 ret->sdynbss = NULL;
668 ret->srelbss = NULL;
669 ret->tls_ldm_got.refcount = 0;
670 ret->sym_sec.abfd = NULL;
671
672 return &ret->elf.root;
673 }
674
675 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
676 shortcuts to them in our hash table. */
677
678 static bfd_boolean
679 create_got_section (bfd *dynobj, struct bfd_link_info *info)
680 {
681 struct elf_i386_link_hash_table *htab;
682
683 if (! _bfd_elf_create_got_section (dynobj, info))
684 return FALSE;
685
686 htab = elf_i386_hash_table (info);
687 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
688 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
689 if (!htab->sgot || !htab->sgotplt)
690 abort ();
691
692 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
693 if (htab->srelgot == NULL
694 || ! bfd_set_section_flags (dynobj, htab->srelgot,
695 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
696 | SEC_IN_MEMORY | SEC_LINKER_CREATED
697 | SEC_READONLY))
698 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
699 return FALSE;
700 return TRUE;
701 }
702
703 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
704 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
705 hash table. */
706
707 static bfd_boolean
708 elf_i386_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
709 {
710 struct elf_i386_link_hash_table *htab;
711
712 htab = elf_i386_hash_table (info);
713 if (!htab->sgot && !create_got_section (dynobj, info))
714 return FALSE;
715
716 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
717 return FALSE;
718
719 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
720 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
721 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
722 if (!info->shared)
723 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
724
725 if (!htab->splt || !htab->srelplt || !htab->sdynbss
726 || (!info->shared && !htab->srelbss))
727 abort ();
728
729 return TRUE;
730 }
731
732 /* Copy the extra info we tack onto an elf_link_hash_entry. */
733
734 static void
735 elf_i386_copy_indirect_symbol (const struct elf_backend_data *bed,
736 struct elf_link_hash_entry *dir,
737 struct elf_link_hash_entry *ind)
738 {
739 struct elf_i386_link_hash_entry *edir, *eind;
740
741 edir = (struct elf_i386_link_hash_entry *) dir;
742 eind = (struct elf_i386_link_hash_entry *) ind;
743
744 if (eind->dyn_relocs != NULL)
745 {
746 if (edir->dyn_relocs != NULL)
747 {
748 struct elf_i386_dyn_relocs **pp;
749 struct elf_i386_dyn_relocs *p;
750
751 if (ind->root.type == bfd_link_hash_indirect)
752 abort ();
753
754 /* Add reloc counts against the weak sym to the strong sym
755 list. Merge any entries against the same section. */
756 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
757 {
758 struct elf_i386_dyn_relocs *q;
759
760 for (q = edir->dyn_relocs; q != NULL; q = q->next)
761 if (q->sec == p->sec)
762 {
763 q->pc_count += p->pc_count;
764 q->count += p->count;
765 *pp = p->next;
766 break;
767 }
768 if (q == NULL)
769 pp = &p->next;
770 }
771 *pp = edir->dyn_relocs;
772 }
773
774 edir->dyn_relocs = eind->dyn_relocs;
775 eind->dyn_relocs = NULL;
776 }
777
778 if (ind->root.type == bfd_link_hash_indirect
779 && dir->got.refcount <= 0)
780 {
781 edir->tls_type = eind->tls_type;
782 eind->tls_type = GOT_UNKNOWN;
783 }
784
785 if (ELIMINATE_COPY_RELOCS
786 && ind->root.type != bfd_link_hash_indirect
787 && dir->dynamic_adjusted)
788 {
789 /* If called to transfer flags for a weakdef during processing
790 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
791 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
792 dir->ref_dynamic |= ind->ref_dynamic;
793 dir->ref_regular |= ind->ref_regular;
794 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
795 dir->needs_plt |= ind->needs_plt;
796 dir->pointer_equality_needed |= ind->pointer_equality_needed;
797 }
798 else
799 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
800 }
801
802 static int
803 elf_i386_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
804 {
805 if (info->shared)
806 return r_type;
807
808 switch (r_type)
809 {
810 case R_386_TLS_GD:
811 case R_386_TLS_IE_32:
812 if (is_local)
813 return R_386_TLS_LE_32;
814 return R_386_TLS_IE_32;
815 case R_386_TLS_IE:
816 case R_386_TLS_GOTIE:
817 if (is_local)
818 return R_386_TLS_LE_32;
819 return r_type;
820 case R_386_TLS_LDM:
821 return R_386_TLS_LE_32;
822 }
823
824 return r_type;
825 }
826
827 /* Look through the relocs for a section during the first phase, and
828 calculate needed space in the global offset table, procedure linkage
829 table, and dynamic reloc sections. */
830
831 static bfd_boolean
832 elf_i386_check_relocs (bfd *abfd,
833 struct bfd_link_info *info,
834 asection *sec,
835 const Elf_Internal_Rela *relocs)
836 {
837 struct elf_i386_link_hash_table *htab;
838 Elf_Internal_Shdr *symtab_hdr;
839 struct elf_link_hash_entry **sym_hashes;
840 const Elf_Internal_Rela *rel;
841 const Elf_Internal_Rela *rel_end;
842 asection *sreloc;
843
844 if (info->relocatable)
845 return TRUE;
846
847 htab = elf_i386_hash_table (info);
848 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
849 sym_hashes = elf_sym_hashes (abfd);
850
851 sreloc = NULL;
852
853 rel_end = relocs + sec->reloc_count;
854 for (rel = relocs; rel < rel_end; rel++)
855 {
856 unsigned int r_type;
857 unsigned long r_symndx;
858 struct elf_link_hash_entry *h;
859
860 r_symndx = ELF32_R_SYM (rel->r_info);
861 r_type = ELF32_R_TYPE (rel->r_info);
862
863 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
864 {
865 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
866 abfd,
867 r_symndx);
868 return FALSE;
869 }
870
871 if (r_symndx < symtab_hdr->sh_info)
872 h = NULL;
873 else
874 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
875
876 r_type = elf_i386_tls_transition (info, r_type, h == NULL);
877
878 switch (r_type)
879 {
880 case R_386_TLS_LDM:
881 htab->tls_ldm_got.refcount += 1;
882 goto create_got;
883
884 case R_386_PLT32:
885 /* This symbol requires a procedure linkage table entry. We
886 actually build the entry in adjust_dynamic_symbol,
887 because this might be a case of linking PIC code which is
888 never referenced by a dynamic object, in which case we
889 don't need to generate a procedure linkage table entry
890 after all. */
891
892 /* If this is a local symbol, we resolve it directly without
893 creating a procedure linkage table entry. */
894 if (h == NULL)
895 continue;
896
897 h->needs_plt = 1;
898 h->plt.refcount += 1;
899 break;
900
901 case R_386_TLS_IE_32:
902 case R_386_TLS_IE:
903 case R_386_TLS_GOTIE:
904 if (info->shared)
905 info->flags |= DF_STATIC_TLS;
906 /* Fall through */
907
908 case R_386_GOT32:
909 case R_386_TLS_GD:
910 /* This symbol requires a global offset table entry. */
911 {
912 int tls_type, old_tls_type;
913
914 switch (r_type)
915 {
916 default:
917 case R_386_GOT32: tls_type = GOT_NORMAL; break;
918 case R_386_TLS_GD: tls_type = GOT_TLS_GD; break;
919 case R_386_TLS_IE_32:
920 if (ELF32_R_TYPE (rel->r_info) == r_type)
921 tls_type = GOT_TLS_IE_NEG;
922 else
923 /* If this is a GD->IE transition, we may use either of
924 R_386_TLS_TPOFF and R_386_TLS_TPOFF32. */
925 tls_type = GOT_TLS_IE;
926 break;
927 case R_386_TLS_IE:
928 case R_386_TLS_GOTIE:
929 tls_type = GOT_TLS_IE_POS; break;
930 }
931
932 if (h != NULL)
933 {
934 h->got.refcount += 1;
935 old_tls_type = elf_i386_hash_entry(h)->tls_type;
936 }
937 else
938 {
939 bfd_signed_vma *local_got_refcounts;
940
941 /* This is a global offset table entry for a local symbol. */
942 local_got_refcounts = elf_local_got_refcounts (abfd);
943 if (local_got_refcounts == NULL)
944 {
945 bfd_size_type size;
946
947 size = symtab_hdr->sh_info;
948 size *= (sizeof (bfd_signed_vma) + sizeof(char));
949 local_got_refcounts = bfd_zalloc (abfd, size);
950 if (local_got_refcounts == NULL)
951 return FALSE;
952 elf_local_got_refcounts (abfd) = local_got_refcounts;
953 elf_i386_local_got_tls_type (abfd)
954 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
955 }
956 local_got_refcounts[r_symndx] += 1;
957 old_tls_type = elf_i386_local_got_tls_type (abfd) [r_symndx];
958 }
959
960 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
961 tls_type |= old_tls_type;
962 /* If a TLS symbol is accessed using IE at least once,
963 there is no point to use dynamic model for it. */
964 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
965 && (old_tls_type != GOT_TLS_GD
966 || (tls_type & GOT_TLS_IE) == 0))
967 {
968 if ((old_tls_type & GOT_TLS_IE) && tls_type == GOT_TLS_GD)
969 tls_type = old_tls_type;
970 else
971 {
972 (*_bfd_error_handler)
973 (_("%B: `%s' accessed both as normal and "
974 "thread local symbol"),
975 abfd,
976 h ? h->root.root.string : "<local>");
977 return FALSE;
978 }
979 }
980
981 if (old_tls_type != tls_type)
982 {
983 if (h != NULL)
984 elf_i386_hash_entry (h)->tls_type = tls_type;
985 else
986 elf_i386_local_got_tls_type (abfd) [r_symndx] = tls_type;
987 }
988 }
989 /* Fall through */
990
991 case R_386_GOTOFF:
992 case R_386_GOTPC:
993 create_got:
994 if (htab->sgot == NULL)
995 {
996 if (htab->elf.dynobj == NULL)
997 htab->elf.dynobj = abfd;
998 if (!create_got_section (htab->elf.dynobj, info))
999 return FALSE;
1000 }
1001 if (r_type != R_386_TLS_IE)
1002 break;
1003 /* Fall through */
1004
1005 case R_386_TLS_LE_32:
1006 case R_386_TLS_LE:
1007 if (!info->shared)
1008 break;
1009 info->flags |= DF_STATIC_TLS;
1010 /* Fall through */
1011
1012 case R_386_32:
1013 case R_386_PC32:
1014 if (h != NULL && !info->shared)
1015 {
1016 /* If this reloc is in a read-only section, we might
1017 need a copy reloc. We can't check reliably at this
1018 stage whether the section is read-only, as input
1019 sections have not yet been mapped to output sections.
1020 Tentatively set the flag for now, and correct in
1021 adjust_dynamic_symbol. */
1022 h->non_got_ref = 1;
1023
1024 /* We may need a .plt entry if the function this reloc
1025 refers to is in a shared lib. */
1026 h->plt.refcount += 1;
1027 if (r_type != R_386_PC32)
1028 h->pointer_equality_needed = 1;
1029 }
1030
1031 /* If we are creating a shared library, and this is a reloc
1032 against a global symbol, or a non PC relative reloc
1033 against a local symbol, then we need to copy the reloc
1034 into the shared library. However, if we are linking with
1035 -Bsymbolic, we do not need to copy a reloc against a
1036 global symbol which is defined in an object we are
1037 including in the link (i.e., DEF_REGULAR is set). At
1038 this point we have not seen all the input files, so it is
1039 possible that DEF_REGULAR is not set now but will be set
1040 later (it is never cleared). In case of a weak definition,
1041 DEF_REGULAR may be cleared later by a strong definition in
1042 a shared library. We account for that possibility below by
1043 storing information in the relocs_copied field of the hash
1044 table entry. A similar situation occurs when creating
1045 shared libraries and symbol visibility changes render the
1046 symbol local.
1047
1048 If on the other hand, we are creating an executable, we
1049 may need to keep relocations for symbols satisfied by a
1050 dynamic library if we manage to avoid copy relocs for the
1051 symbol. */
1052 if ((info->shared
1053 && (sec->flags & SEC_ALLOC) != 0
1054 && (r_type != R_386_PC32
1055 || (h != NULL
1056 && (! info->symbolic
1057 || h->root.type == bfd_link_hash_defweak
1058 || !h->def_regular))))
1059 || (ELIMINATE_COPY_RELOCS
1060 && !info->shared
1061 && (sec->flags & SEC_ALLOC) != 0
1062 && h != NULL
1063 && (h->root.type == bfd_link_hash_defweak
1064 || !h->def_regular)))
1065 {
1066 struct elf_i386_dyn_relocs *p;
1067 struct elf_i386_dyn_relocs **head;
1068
1069 /* We must copy these reloc types into the output file.
1070 Create a reloc section in dynobj and make room for
1071 this reloc. */
1072 if (sreloc == NULL)
1073 {
1074 const char *name;
1075 bfd *dynobj;
1076 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
1077 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
1078
1079 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
1080 if (name == NULL)
1081 return FALSE;
1082
1083 if (strncmp (name, ".rel", 4) != 0
1084 || strcmp (bfd_get_section_name (abfd, sec),
1085 name + 4) != 0)
1086 {
1087 (*_bfd_error_handler)
1088 (_("%B: bad relocation section name `%s\'"),
1089 abfd, name);
1090 }
1091
1092 if (htab->elf.dynobj == NULL)
1093 htab->elf.dynobj = abfd;
1094
1095 dynobj = htab->elf.dynobj;
1096 sreloc = bfd_get_section_by_name (dynobj, name);
1097 if (sreloc == NULL)
1098 {
1099 flagword flags;
1100
1101 sreloc = bfd_make_section (dynobj, name);
1102 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1103 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1104 if ((sec->flags & SEC_ALLOC) != 0)
1105 flags |= SEC_ALLOC | SEC_LOAD;
1106 if (sreloc == NULL
1107 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1108 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
1109 return FALSE;
1110 }
1111 elf_section_data (sec)->sreloc = sreloc;
1112 }
1113
1114 /* If this is a global symbol, we count the number of
1115 relocations we need for this symbol. */
1116 if (h != NULL)
1117 {
1118 head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs;
1119 }
1120 else
1121 {
1122 /* Track dynamic relocs needed for local syms too.
1123 We really need local syms available to do this
1124 easily. Oh well. */
1125
1126 asection *s;
1127 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1128 sec, r_symndx);
1129 if (s == NULL)
1130 return FALSE;
1131
1132 head = ((struct elf_i386_dyn_relocs **)
1133 &elf_section_data (s)->local_dynrel);
1134 }
1135
1136 p = *head;
1137 if (p == NULL || p->sec != sec)
1138 {
1139 bfd_size_type amt = sizeof *p;
1140 p = bfd_alloc (htab->elf.dynobj, amt);
1141 if (p == NULL)
1142 return FALSE;
1143 p->next = *head;
1144 *head = p;
1145 p->sec = sec;
1146 p->count = 0;
1147 p->pc_count = 0;
1148 }
1149
1150 p->count += 1;
1151 if (r_type == R_386_PC32)
1152 p->pc_count += 1;
1153 }
1154 break;
1155
1156 /* This relocation describes the C++ object vtable hierarchy.
1157 Reconstruct it for later use during GC. */
1158 case R_386_GNU_VTINHERIT:
1159 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1160 return FALSE;
1161 break;
1162
1163 /* This relocation describes which C++ vtable entries are actually
1164 used. Record for later use during GC. */
1165 case R_386_GNU_VTENTRY:
1166 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
1167 return FALSE;
1168 break;
1169
1170 default:
1171 break;
1172 }
1173 }
1174
1175 return TRUE;
1176 }
1177
1178 /* Return the section that should be marked against GC for a given
1179 relocation. */
1180
1181 static asection *
1182 elf_i386_gc_mark_hook (asection *sec,
1183 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1184 Elf_Internal_Rela *rel,
1185 struct elf_link_hash_entry *h,
1186 Elf_Internal_Sym *sym)
1187 {
1188 if (h != NULL)
1189 {
1190 switch (ELF32_R_TYPE (rel->r_info))
1191 {
1192 case R_386_GNU_VTINHERIT:
1193 case R_386_GNU_VTENTRY:
1194 break;
1195
1196 default:
1197 switch (h->root.type)
1198 {
1199 case bfd_link_hash_defined:
1200 case bfd_link_hash_defweak:
1201 return h->root.u.def.section;
1202
1203 case bfd_link_hash_common:
1204 return h->root.u.c.p->section;
1205
1206 default:
1207 break;
1208 }
1209 }
1210 }
1211 else
1212 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1213
1214 return NULL;
1215 }
1216
1217 /* Update the got entry reference counts for the section being removed. */
1218
1219 static bfd_boolean
1220 elf_i386_gc_sweep_hook (bfd *abfd,
1221 struct bfd_link_info *info,
1222 asection *sec,
1223 const Elf_Internal_Rela *relocs)
1224 {
1225 Elf_Internal_Shdr *symtab_hdr;
1226 struct elf_link_hash_entry **sym_hashes;
1227 bfd_signed_vma *local_got_refcounts;
1228 const Elf_Internal_Rela *rel, *relend;
1229
1230 elf_section_data (sec)->local_dynrel = NULL;
1231
1232 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1233 sym_hashes = elf_sym_hashes (abfd);
1234 local_got_refcounts = elf_local_got_refcounts (abfd);
1235
1236 relend = relocs + sec->reloc_count;
1237 for (rel = relocs; rel < relend; rel++)
1238 {
1239 unsigned long r_symndx;
1240 unsigned int r_type;
1241 struct elf_link_hash_entry *h = NULL;
1242
1243 r_symndx = ELF32_R_SYM (rel->r_info);
1244 if (r_symndx >= symtab_hdr->sh_info)
1245 {
1246 struct elf_i386_link_hash_entry *eh;
1247 struct elf_i386_dyn_relocs **pp;
1248 struct elf_i386_dyn_relocs *p;
1249
1250 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1251 while (h->root.type == bfd_link_hash_indirect
1252 || h->root.type == bfd_link_hash_warning)
1253 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1254 eh = (struct elf_i386_link_hash_entry *) h;
1255
1256 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1257 if (p->sec == sec)
1258 {
1259 /* Everything must go for SEC. */
1260 *pp = p->next;
1261 break;
1262 }
1263 }
1264
1265 r_type = ELF32_R_TYPE (rel->r_info);
1266 r_type = elf_i386_tls_transition (info, r_type, h != NULL);
1267 switch (r_type)
1268 {
1269 case R_386_TLS_LDM:
1270 if (elf_i386_hash_table (info)->tls_ldm_got.refcount > 0)
1271 elf_i386_hash_table (info)->tls_ldm_got.refcount -= 1;
1272 break;
1273
1274 case R_386_TLS_GD:
1275 case R_386_TLS_IE_32:
1276 case R_386_TLS_IE:
1277 case R_386_TLS_GOTIE:
1278 case R_386_GOT32:
1279 if (h != NULL)
1280 {
1281 if (h->got.refcount > 0)
1282 h->got.refcount -= 1;
1283 }
1284 else if (local_got_refcounts != NULL)
1285 {
1286 if (local_got_refcounts[r_symndx] > 0)
1287 local_got_refcounts[r_symndx] -= 1;
1288 }
1289 break;
1290
1291 case R_386_32:
1292 case R_386_PC32:
1293 if (info->shared)
1294 break;
1295 /* Fall through */
1296
1297 case R_386_PLT32:
1298 if (h != NULL)
1299 {
1300 if (h->plt.refcount > 0)
1301 h->plt.refcount -= 1;
1302 }
1303 break;
1304
1305 default:
1306 break;
1307 }
1308 }
1309
1310 return TRUE;
1311 }
1312
1313 /* Adjust a symbol defined by a dynamic object and referenced by a
1314 regular object. The current definition is in some section of the
1315 dynamic object, but we're not including those sections. We have to
1316 change the definition to something the rest of the link can
1317 understand. */
1318
1319 static bfd_boolean
1320 elf_i386_adjust_dynamic_symbol (struct bfd_link_info *info,
1321 struct elf_link_hash_entry *h)
1322 {
1323 struct elf_i386_link_hash_table *htab;
1324 asection *s;
1325 unsigned int power_of_two;
1326
1327 /* If this is a function, put it in the procedure linkage table. We
1328 will fill in the contents of the procedure linkage table later,
1329 when we know the address of the .got section. */
1330 if (h->type == STT_FUNC
1331 || h->needs_plt)
1332 {
1333 if (h->plt.refcount <= 0
1334 || SYMBOL_CALLS_LOCAL (info, h)
1335 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1336 && h->root.type == bfd_link_hash_undefweak))
1337 {
1338 /* This case can occur if we saw a PLT32 reloc in an input
1339 file, but the symbol was never referred to by a dynamic
1340 object, or if all references were garbage collected. In
1341 such a case, we don't actually need to build a procedure
1342 linkage table, and we can just do a PC32 reloc instead. */
1343 h->plt.offset = (bfd_vma) -1;
1344 h->needs_plt = 0;
1345 }
1346
1347 return TRUE;
1348 }
1349 else
1350 /* It's possible that we incorrectly decided a .plt reloc was
1351 needed for an R_386_PC32 reloc to a non-function sym in
1352 check_relocs. We can't decide accurately between function and
1353 non-function syms in check-relocs; Objects loaded later in
1354 the link may change h->type. So fix it now. */
1355 h->plt.offset = (bfd_vma) -1;
1356
1357 /* If this is a weak symbol, and there is a real definition, the
1358 processor independent code will have arranged for us to see the
1359 real definition first, and we can just use the same value. */
1360 if (h->u.weakdef != NULL)
1361 {
1362 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1363 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1364 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1365 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1366 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1367 h->non_got_ref = h->u.weakdef->non_got_ref;
1368 return TRUE;
1369 }
1370
1371 /* This is a reference to a symbol defined by a dynamic object which
1372 is not a function. */
1373
1374 /* If we are creating a shared library, we must presume that the
1375 only references to the symbol are via the global offset table.
1376 For such cases we need not do anything here; the relocations will
1377 be handled correctly by relocate_section. */
1378 if (info->shared)
1379 return TRUE;
1380
1381 /* If there are no references to this symbol that do not use the
1382 GOT, we don't need to generate a copy reloc. */
1383 if (!h->non_got_ref)
1384 return TRUE;
1385
1386 /* If -z nocopyreloc was given, we won't generate them either. */
1387 if (info->nocopyreloc)
1388 {
1389 h->non_got_ref = 0;
1390 return TRUE;
1391 }
1392
1393 if (ELIMINATE_COPY_RELOCS)
1394 {
1395 struct elf_i386_link_hash_entry * eh;
1396 struct elf_i386_dyn_relocs *p;
1397
1398 eh = (struct elf_i386_link_hash_entry *) h;
1399 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1400 {
1401 s = p->sec->output_section;
1402 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1403 break;
1404 }
1405
1406 /* If we didn't find any dynamic relocs in read-only sections, then
1407 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1408 if (p == NULL)
1409 {
1410 h->non_got_ref = 0;
1411 return TRUE;
1412 }
1413 }
1414
1415 /* We must allocate the symbol in our .dynbss section, which will
1416 become part of the .bss section of the executable. There will be
1417 an entry for this symbol in the .dynsym section. The dynamic
1418 object will contain position independent code, so all references
1419 from the dynamic object to this symbol will go through the global
1420 offset table. The dynamic linker will use the .dynsym entry to
1421 determine the address it must put in the global offset table, so
1422 both the dynamic object and the regular object will refer to the
1423 same memory location for the variable. */
1424
1425 htab = elf_i386_hash_table (info);
1426
1427 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1428 copy the initial value out of the dynamic object and into the
1429 runtime process image. */
1430 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1431 {
1432 htab->srelbss->size += sizeof (Elf32_External_Rel);
1433 h->needs_copy = 1;
1434 }
1435
1436 /* We need to figure out the alignment required for this symbol. I
1437 have no idea how ELF linkers handle this. */
1438 power_of_two = bfd_log2 (h->size);
1439 if (power_of_two > 3)
1440 power_of_two = 3;
1441
1442 /* Apply the required alignment. */
1443 s = htab->sdynbss;
1444 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1445 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1446 {
1447 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1448 return FALSE;
1449 }
1450
1451 /* Define the symbol as being at this point in the section. */
1452 h->root.u.def.section = s;
1453 h->root.u.def.value = s->size;
1454
1455 /* Increment the section size to make room for the symbol. */
1456 s->size += h->size;
1457
1458 return TRUE;
1459 }
1460
1461 /* Allocate space in .plt, .got and associated reloc sections for
1462 dynamic relocs. */
1463
1464 static bfd_boolean
1465 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1466 {
1467 struct bfd_link_info *info;
1468 struct elf_i386_link_hash_table *htab;
1469 struct elf_i386_link_hash_entry *eh;
1470 struct elf_i386_dyn_relocs *p;
1471
1472 if (h->root.type == bfd_link_hash_indirect)
1473 return TRUE;
1474
1475 if (h->root.type == bfd_link_hash_warning)
1476 /* When warning symbols are created, they **replace** the "real"
1477 entry in the hash table, thus we never get to see the real
1478 symbol in a hash traversal. So look at it now. */
1479 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1480
1481 info = (struct bfd_link_info *) inf;
1482 htab = elf_i386_hash_table (info);
1483
1484 if (htab->elf.dynamic_sections_created
1485 && h->plt.refcount > 0)
1486 {
1487 /* Make sure this symbol is output as a dynamic symbol.
1488 Undefined weak syms won't yet be marked as dynamic. */
1489 if (h->dynindx == -1
1490 && !h->forced_local)
1491 {
1492 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1493 return FALSE;
1494 }
1495
1496 if (info->shared
1497 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1498 {
1499 asection *s = htab->splt;
1500
1501 /* If this is the first .plt entry, make room for the special
1502 first entry. */
1503 if (s->size == 0)
1504 s->size += PLT_ENTRY_SIZE;
1505
1506 h->plt.offset = s->size;
1507
1508 /* If this symbol is not defined in a regular file, and we are
1509 not generating a shared library, then set the symbol to this
1510 location in the .plt. This is required to make function
1511 pointers compare as equal between the normal executable and
1512 the shared library. */
1513 if (! info->shared
1514 && !h->def_regular)
1515 {
1516 h->root.u.def.section = s;
1517 h->root.u.def.value = h->plt.offset;
1518 }
1519
1520 /* Make room for this entry. */
1521 s->size += PLT_ENTRY_SIZE;
1522
1523 /* We also need to make an entry in the .got.plt section, which
1524 will be placed in the .got section by the linker script. */
1525 htab->sgotplt->size += 4;
1526
1527 /* We also need to make an entry in the .rel.plt section. */
1528 htab->srelplt->size += sizeof (Elf32_External_Rel);
1529 }
1530 else
1531 {
1532 h->plt.offset = (bfd_vma) -1;
1533 h->needs_plt = 0;
1534 }
1535 }
1536 else
1537 {
1538 h->plt.offset = (bfd_vma) -1;
1539 h->needs_plt = 0;
1540 }
1541
1542 /* If R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the binary,
1543 make it a R_386_TLS_LE_32 requiring no TLS entry. */
1544 if (h->got.refcount > 0
1545 && !info->shared
1546 && h->dynindx == -1
1547 && (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE))
1548 h->got.offset = (bfd_vma) -1;
1549 else if (h->got.refcount > 0)
1550 {
1551 asection *s;
1552 bfd_boolean dyn;
1553 int tls_type = elf_i386_hash_entry(h)->tls_type;
1554
1555 /* Make sure this symbol is output as a dynamic symbol.
1556 Undefined weak syms won't yet be marked as dynamic. */
1557 if (h->dynindx == -1
1558 && !h->forced_local)
1559 {
1560 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1561 return FALSE;
1562 }
1563
1564 s = htab->sgot;
1565 h->got.offset = s->size;
1566 s->size += 4;
1567 /* R_386_TLS_GD needs 2 consecutive GOT slots. */
1568 if (tls_type == GOT_TLS_GD || tls_type == GOT_TLS_IE_BOTH)
1569 s->size += 4;
1570 dyn = htab->elf.dynamic_sections_created;
1571 /* R_386_TLS_IE_32 needs one dynamic relocation,
1572 R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation,
1573 (but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we
1574 need two), R_386_TLS_GD needs one if local symbol and two if
1575 global. */
1576 if (tls_type == GOT_TLS_IE_BOTH)
1577 htab->srelgot->size += 2 * sizeof (Elf32_External_Rel);
1578 else if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1579 || (tls_type & GOT_TLS_IE))
1580 htab->srelgot->size += sizeof (Elf32_External_Rel);
1581 else if (tls_type == GOT_TLS_GD)
1582 htab->srelgot->size += 2 * sizeof (Elf32_External_Rel);
1583 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1584 || h->root.type != bfd_link_hash_undefweak)
1585 && (info->shared
1586 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1587 htab->srelgot->size += sizeof (Elf32_External_Rel);
1588 }
1589 else
1590 h->got.offset = (bfd_vma) -1;
1591
1592 eh = (struct elf_i386_link_hash_entry *) h;
1593 if (eh->dyn_relocs == NULL)
1594 return TRUE;
1595
1596 /* In the shared -Bsymbolic case, discard space allocated for
1597 dynamic pc-relative relocs against symbols which turn out to be
1598 defined in regular objects. For the normal shared case, discard
1599 space for pc-relative relocs that have become local due to symbol
1600 visibility changes. */
1601
1602 if (info->shared)
1603 {
1604 /* The only reloc that uses pc_count is R_386_PC32, which will
1605 appear on a call or on something like ".long foo - .". We
1606 want calls to protected symbols to resolve directly to the
1607 function rather than going via the plt. If people want
1608 function pointer comparisons to work as expected then they
1609 should avoid writing assembly like ".long foo - .". */
1610 if (SYMBOL_CALLS_LOCAL (info, h))
1611 {
1612 struct elf_i386_dyn_relocs **pp;
1613
1614 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1615 {
1616 p->count -= p->pc_count;
1617 p->pc_count = 0;
1618 if (p->count == 0)
1619 *pp = p->next;
1620 else
1621 pp = &p->next;
1622 }
1623 }
1624
1625 /* Also discard relocs on undefined weak syms with non-default
1626 visibility. */
1627 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1628 && h->root.type == bfd_link_hash_undefweak)
1629 eh->dyn_relocs = NULL;
1630 }
1631 else if (ELIMINATE_COPY_RELOCS)
1632 {
1633 /* For the non-shared case, discard space for relocs against
1634 symbols which turn out to need copy relocs or are not
1635 dynamic. */
1636
1637 if (!h->non_got_ref
1638 && ((h->def_dynamic
1639 && !h->def_regular)
1640 || (htab->elf.dynamic_sections_created
1641 && (h->root.type == bfd_link_hash_undefweak
1642 || h->root.type == bfd_link_hash_undefined))))
1643 {
1644 /* Make sure this symbol is output as a dynamic symbol.
1645 Undefined weak syms won't yet be marked as dynamic. */
1646 if (h->dynindx == -1
1647 && !h->forced_local)
1648 {
1649 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1650 return FALSE;
1651 }
1652
1653 /* If that succeeded, we know we'll be keeping all the
1654 relocs. */
1655 if (h->dynindx != -1)
1656 goto keep;
1657 }
1658
1659 eh->dyn_relocs = NULL;
1660
1661 keep: ;
1662 }
1663
1664 /* Finally, allocate space. */
1665 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1666 {
1667 asection *sreloc = elf_section_data (p->sec)->sreloc;
1668 sreloc->size += p->count * sizeof (Elf32_External_Rel);
1669 }
1670
1671 return TRUE;
1672 }
1673
1674 /* Find any dynamic relocs that apply to read-only sections. */
1675
1676 static bfd_boolean
1677 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1678 {
1679 struct elf_i386_link_hash_entry *eh;
1680 struct elf_i386_dyn_relocs *p;
1681
1682 if (h->root.type == bfd_link_hash_warning)
1683 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1684
1685 eh = (struct elf_i386_link_hash_entry *) h;
1686 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1687 {
1688 asection *s = p->sec->output_section;
1689
1690 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1691 {
1692 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1693
1694 info->flags |= DF_TEXTREL;
1695
1696 /* Not an error, just cut short the traversal. */
1697 return FALSE;
1698 }
1699 }
1700 return TRUE;
1701 }
1702
1703 /* Set the sizes of the dynamic sections. */
1704
1705 static bfd_boolean
1706 elf_i386_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1707 struct bfd_link_info *info)
1708 {
1709 struct elf_i386_link_hash_table *htab;
1710 bfd *dynobj;
1711 asection *s;
1712 bfd_boolean relocs;
1713 bfd *ibfd;
1714
1715 htab = elf_i386_hash_table (info);
1716 dynobj = htab->elf.dynobj;
1717 if (dynobj == NULL)
1718 abort ();
1719
1720 if (htab->elf.dynamic_sections_created)
1721 {
1722 /* Set the contents of the .interp section to the interpreter. */
1723 if (info->executable)
1724 {
1725 s = bfd_get_section_by_name (dynobj, ".interp");
1726 if (s == NULL)
1727 abort ();
1728 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1729 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1730 }
1731 }
1732
1733 /* Set up .got offsets for local syms, and space for local dynamic
1734 relocs. */
1735 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1736 {
1737 bfd_signed_vma *local_got;
1738 bfd_signed_vma *end_local_got;
1739 char *local_tls_type;
1740 bfd_size_type locsymcount;
1741 Elf_Internal_Shdr *symtab_hdr;
1742 asection *srel;
1743
1744 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1745 continue;
1746
1747 for (s = ibfd->sections; s != NULL; s = s->next)
1748 {
1749 struct elf_i386_dyn_relocs *p;
1750
1751 for (p = *((struct elf_i386_dyn_relocs **)
1752 &elf_section_data (s)->local_dynrel);
1753 p != NULL;
1754 p = p->next)
1755 {
1756 if (!bfd_is_abs_section (p->sec)
1757 && bfd_is_abs_section (p->sec->output_section))
1758 {
1759 /* Input section has been discarded, either because
1760 it is a copy of a linkonce section or due to
1761 linker script /DISCARD/, so we'll be discarding
1762 the relocs too. */
1763 }
1764 else if (p->count != 0)
1765 {
1766 srel = elf_section_data (p->sec)->sreloc;
1767 srel->size += p->count * sizeof (Elf32_External_Rel);
1768 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1769 info->flags |= DF_TEXTREL;
1770 }
1771 }
1772 }
1773
1774 local_got = elf_local_got_refcounts (ibfd);
1775 if (!local_got)
1776 continue;
1777
1778 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1779 locsymcount = symtab_hdr->sh_info;
1780 end_local_got = local_got + locsymcount;
1781 local_tls_type = elf_i386_local_got_tls_type (ibfd);
1782 s = htab->sgot;
1783 srel = htab->srelgot;
1784 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1785 {
1786 if (*local_got > 0)
1787 {
1788 *local_got = s->size;
1789 s->size += 4;
1790 if (*local_tls_type == GOT_TLS_GD
1791 || *local_tls_type == GOT_TLS_IE_BOTH)
1792 s->size += 4;
1793 if (info->shared
1794 || *local_tls_type == GOT_TLS_GD
1795 || (*local_tls_type & GOT_TLS_IE))
1796 {
1797 if (*local_tls_type == GOT_TLS_IE_BOTH)
1798 srel->size += 2 * sizeof (Elf32_External_Rel);
1799 else
1800 srel->size += sizeof (Elf32_External_Rel);
1801 }
1802 }
1803 else
1804 *local_got = (bfd_vma) -1;
1805 }
1806 }
1807
1808 if (htab->tls_ldm_got.refcount > 0)
1809 {
1810 /* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM
1811 relocs. */
1812 htab->tls_ldm_got.offset = htab->sgot->size;
1813 htab->sgot->size += 8;
1814 htab->srelgot->size += sizeof (Elf32_External_Rel);
1815 }
1816 else
1817 htab->tls_ldm_got.offset = -1;
1818
1819 /* Allocate global sym .plt and .got entries, and space for global
1820 sym dynamic relocs. */
1821 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1822
1823 /* We now have determined the sizes of the various dynamic sections.
1824 Allocate memory for them. */
1825 relocs = FALSE;
1826 for (s = dynobj->sections; s != NULL; s = s->next)
1827 {
1828 if ((s->flags & SEC_LINKER_CREATED) == 0)
1829 continue;
1830
1831 if (s == htab->splt
1832 || s == htab->sgot
1833 || s == htab->sgotplt)
1834 {
1835 /* Strip this section if we don't need it; see the
1836 comment below. */
1837 }
1838 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1839 {
1840 if (s->size != 0 && s != htab->srelplt)
1841 relocs = TRUE;
1842
1843 /* We use the reloc_count field as a counter if we need
1844 to copy relocs into the output file. */
1845 s->reloc_count = 0;
1846 }
1847 else
1848 {
1849 /* It's not one of our sections, so don't allocate space. */
1850 continue;
1851 }
1852
1853 if (s->size == 0)
1854 {
1855 /* If we don't need this section, strip it from the
1856 output file. This is mostly to handle .rel.bss and
1857 .rel.plt. We must create both sections in
1858 create_dynamic_sections, because they must be created
1859 before the linker maps input sections to output
1860 sections. The linker does that before
1861 adjust_dynamic_symbol is called, and it is that
1862 function which decides whether anything needs to go
1863 into these sections. */
1864
1865 _bfd_strip_section_from_output (info, s);
1866 continue;
1867 }
1868
1869 /* Allocate memory for the section contents. We use bfd_zalloc
1870 here in case unused entries are not reclaimed before the
1871 section's contents are written out. This should not happen,
1872 but this way if it does, we get a R_386_NONE reloc instead
1873 of garbage. */
1874 s->contents = bfd_zalloc (dynobj, s->size);
1875 if (s->contents == NULL)
1876 return FALSE;
1877 }
1878
1879 if (htab->elf.dynamic_sections_created)
1880 {
1881 /* Add some entries to the .dynamic section. We fill in the
1882 values later, in elf_i386_finish_dynamic_sections, but we
1883 must add the entries now so that we get the correct size for
1884 the .dynamic section. The DT_DEBUG entry is filled in by the
1885 dynamic linker and used by the debugger. */
1886 #define add_dynamic_entry(TAG, VAL) \
1887 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1888
1889 if (info->executable)
1890 {
1891 if (!add_dynamic_entry (DT_DEBUG, 0))
1892 return FALSE;
1893 }
1894
1895 if (htab->splt->size != 0)
1896 {
1897 if (!add_dynamic_entry (DT_PLTGOT, 0)
1898 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1899 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1900 || !add_dynamic_entry (DT_JMPREL, 0))
1901 return FALSE;
1902 }
1903
1904 if (relocs)
1905 {
1906 if (!add_dynamic_entry (DT_REL, 0)
1907 || !add_dynamic_entry (DT_RELSZ, 0)
1908 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1909 return FALSE;
1910
1911 /* If any dynamic relocs apply to a read-only section,
1912 then we need a DT_TEXTREL entry. */
1913 if ((info->flags & DF_TEXTREL) == 0)
1914 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1915 (PTR) info);
1916
1917 if ((info->flags & DF_TEXTREL) != 0)
1918 {
1919 if (!add_dynamic_entry (DT_TEXTREL, 0))
1920 return FALSE;
1921 }
1922 }
1923 }
1924 #undef add_dynamic_entry
1925
1926 return TRUE;
1927 }
1928
1929 /* Set the correct type for an x86 ELF section. We do this by the
1930 section name, which is a hack, but ought to work. */
1931
1932 static bfd_boolean
1933 elf_i386_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
1934 Elf_Internal_Shdr *hdr,
1935 asection *sec)
1936 {
1937 register const char *name;
1938
1939 name = bfd_get_section_name (abfd, sec);
1940
1941 /* This is an ugly, but unfortunately necessary hack that is
1942 needed when producing EFI binaries on x86. It tells
1943 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1944 containing ELF relocation info. We need this hack in order to
1945 be able to generate ELF binaries that can be translated into
1946 EFI applications (which are essentially COFF objects). Those
1947 files contain a COFF ".reloc" section inside an ELFNN object,
1948 which would normally cause BFD to segfault because it would
1949 attempt to interpret this section as containing relocation
1950 entries for section "oc". With this hack enabled, ".reloc"
1951 will be treated as a normal data section, which will avoid the
1952 segfault. However, you won't be able to create an ELFNN binary
1953 with a section named "oc" that needs relocations, but that's
1954 the kind of ugly side-effects you get when detecting section
1955 types based on their names... In practice, this limitation is
1956 unlikely to bite. */
1957 if (strcmp (name, ".reloc") == 0)
1958 hdr->sh_type = SHT_PROGBITS;
1959
1960 return TRUE;
1961 }
1962
1963 /* Return the base VMA address which should be subtracted from real addresses
1964 when resolving @dtpoff relocation.
1965 This is PT_TLS segment p_vaddr. */
1966
1967 static bfd_vma
1968 dtpoff_base (struct bfd_link_info *info)
1969 {
1970 /* If tls_sec is NULL, we should have signalled an error already. */
1971 if (elf_hash_table (info)->tls_sec == NULL)
1972 return 0;
1973 return elf_hash_table (info)->tls_sec->vma;
1974 }
1975
1976 /* Return the relocation value for @tpoff relocation
1977 if STT_TLS virtual address is ADDRESS. */
1978
1979 static bfd_vma
1980 tpoff (struct bfd_link_info *info, bfd_vma address)
1981 {
1982 struct elf_link_hash_table *htab = elf_hash_table (info);
1983
1984 /* If tls_sec is NULL, we should have signalled an error already. */
1985 if (htab->tls_sec == NULL)
1986 return 0;
1987 return htab->tls_size + htab->tls_sec->vma - address;
1988 }
1989
1990 /* Relocate an i386 ELF section. */
1991
1992 static bfd_boolean
1993 elf_i386_relocate_section (bfd *output_bfd,
1994 struct bfd_link_info *info,
1995 bfd *input_bfd,
1996 asection *input_section,
1997 bfd_byte *contents,
1998 Elf_Internal_Rela *relocs,
1999 Elf_Internal_Sym *local_syms,
2000 asection **local_sections)
2001 {
2002 struct elf_i386_link_hash_table *htab;
2003 Elf_Internal_Shdr *symtab_hdr;
2004 struct elf_link_hash_entry **sym_hashes;
2005 bfd_vma *local_got_offsets;
2006 Elf_Internal_Rela *rel;
2007 Elf_Internal_Rela *relend;
2008
2009 htab = elf_i386_hash_table (info);
2010 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2011 sym_hashes = elf_sym_hashes (input_bfd);
2012 local_got_offsets = elf_local_got_offsets (input_bfd);
2013
2014 rel = relocs;
2015 relend = relocs + input_section->reloc_count;
2016 for (; rel < relend; rel++)
2017 {
2018 unsigned int r_type;
2019 reloc_howto_type *howto;
2020 unsigned long r_symndx;
2021 struct elf_link_hash_entry *h;
2022 Elf_Internal_Sym *sym;
2023 asection *sec;
2024 bfd_vma off;
2025 bfd_vma relocation;
2026 bfd_boolean unresolved_reloc;
2027 bfd_reloc_status_type r;
2028 unsigned int indx;
2029 int tls_type;
2030
2031 r_type = ELF32_R_TYPE (rel->r_info);
2032 if (r_type == R_386_GNU_VTINHERIT
2033 || r_type == R_386_GNU_VTENTRY)
2034 continue;
2035
2036 if ((indx = r_type) >= R_386_standard
2037 && ((indx = r_type - R_386_ext_offset) - R_386_standard
2038 >= R_386_ext - R_386_standard)
2039 && ((indx = r_type - R_386_tls_offset) - R_386_ext
2040 >= R_386_tls - R_386_ext))
2041 {
2042 (*_bfd_error_handler)
2043 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
2044 input_bfd, input_section, r_type);
2045 bfd_set_error (bfd_error_bad_value);
2046 return FALSE;
2047 }
2048 howto = elf_howto_table + indx;
2049
2050 r_symndx = ELF32_R_SYM (rel->r_info);
2051
2052 if (info->relocatable)
2053 {
2054 bfd_vma val;
2055 bfd_byte *where;
2056
2057 /* This is a relocatable link. We don't have to change
2058 anything, unless the reloc is against a section symbol,
2059 in which case we have to adjust according to where the
2060 section symbol winds up in the output section. */
2061 if (r_symndx >= symtab_hdr->sh_info)
2062 continue;
2063
2064 sym = local_syms + r_symndx;
2065 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2066 continue;
2067
2068 sec = local_sections[r_symndx];
2069 val = sec->output_offset;
2070 if (val == 0)
2071 continue;
2072
2073 where = contents + rel->r_offset;
2074 switch (howto->size)
2075 {
2076 /* FIXME: overflow checks. */
2077 case 0:
2078 val += bfd_get_8 (input_bfd, where);
2079 bfd_put_8 (input_bfd, val, where);
2080 break;
2081 case 1:
2082 val += bfd_get_16 (input_bfd, where);
2083 bfd_put_16 (input_bfd, val, where);
2084 break;
2085 case 2:
2086 val += bfd_get_32 (input_bfd, where);
2087 bfd_put_32 (input_bfd, val, where);
2088 break;
2089 default:
2090 abort ();
2091 }
2092 continue;
2093 }
2094
2095 /* This is a final link. */
2096 h = NULL;
2097 sym = NULL;
2098 sec = NULL;
2099 unresolved_reloc = FALSE;
2100 if (r_symndx < symtab_hdr->sh_info)
2101 {
2102 sym = local_syms + r_symndx;
2103 sec = local_sections[r_symndx];
2104 relocation = (sec->output_section->vma
2105 + sec->output_offset
2106 + sym->st_value);
2107 if ((sec->flags & SEC_MERGE)
2108 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2109 {
2110 asection *msec;
2111 bfd_vma addend;
2112 bfd_byte *where = contents + rel->r_offset;
2113
2114 switch (howto->size)
2115 {
2116 case 0:
2117 addend = bfd_get_8 (input_bfd, where);
2118 if (howto->pc_relative)
2119 {
2120 addend = (addend ^ 0x80) - 0x80;
2121 addend += 1;
2122 }
2123 break;
2124 case 1:
2125 addend = bfd_get_16 (input_bfd, where);
2126 if (howto->pc_relative)
2127 {
2128 addend = (addend ^ 0x8000) - 0x8000;
2129 addend += 2;
2130 }
2131 break;
2132 case 2:
2133 addend = bfd_get_32 (input_bfd, where);
2134 if (howto->pc_relative)
2135 {
2136 addend = (addend ^ 0x80000000) - 0x80000000;
2137 addend += 4;
2138 }
2139 break;
2140 default:
2141 abort ();
2142 }
2143
2144 msec = sec;
2145 addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend);
2146 addend -= relocation;
2147 addend += msec->output_section->vma + msec->output_offset;
2148
2149 switch (howto->size)
2150 {
2151 case 0:
2152 /* FIXME: overflow checks. */
2153 if (howto->pc_relative)
2154 addend -= 1;
2155 bfd_put_8 (input_bfd, addend, where);
2156 break;
2157 case 1:
2158 if (howto->pc_relative)
2159 addend -= 2;
2160 bfd_put_16 (input_bfd, addend, where);
2161 break;
2162 case 2:
2163 if (howto->pc_relative)
2164 addend -= 4;
2165 bfd_put_32 (input_bfd, addend, where);
2166 break;
2167 }
2168 }
2169 }
2170 else
2171 {
2172 bfd_boolean warned;
2173
2174 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2175 r_symndx, symtab_hdr, sym_hashes,
2176 h, sec, relocation,
2177 unresolved_reloc, warned);
2178 }
2179
2180 switch (r_type)
2181 {
2182 case R_386_GOT32:
2183 /* Relocation is to the entry for this symbol in the global
2184 offset table. */
2185 if (htab->sgot == NULL)
2186 abort ();
2187
2188 if (h != NULL)
2189 {
2190 bfd_boolean dyn;
2191
2192 off = h->got.offset;
2193 dyn = htab->elf.dynamic_sections_created;
2194 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2195 || (info->shared
2196 && SYMBOL_REFERENCES_LOCAL (info, h))
2197 || (ELF_ST_VISIBILITY (h->other)
2198 && h->root.type == bfd_link_hash_undefweak))
2199 {
2200 /* This is actually a static link, or it is a
2201 -Bsymbolic link and the symbol is defined
2202 locally, or the symbol was forced to be local
2203 because of a version file. We must initialize
2204 this entry in the global offset table. Since the
2205 offset must always be a multiple of 4, we use the
2206 least significant bit to record whether we have
2207 initialized it already.
2208
2209 When doing a dynamic link, we create a .rel.got
2210 relocation entry to initialize the value. This
2211 is done in the finish_dynamic_symbol routine. */
2212 if ((off & 1) != 0)
2213 off &= ~1;
2214 else
2215 {
2216 bfd_put_32 (output_bfd, relocation,
2217 htab->sgot->contents + off);
2218 h->got.offset |= 1;
2219 }
2220 }
2221 else
2222 unresolved_reloc = FALSE;
2223 }
2224 else
2225 {
2226 if (local_got_offsets == NULL)
2227 abort ();
2228
2229 off = local_got_offsets[r_symndx];
2230
2231 /* The offset must always be a multiple of 4. We use
2232 the least significant bit to record whether we have
2233 already generated the necessary reloc. */
2234 if ((off & 1) != 0)
2235 off &= ~1;
2236 else
2237 {
2238 bfd_put_32 (output_bfd, relocation,
2239 htab->sgot->contents + off);
2240
2241 if (info->shared)
2242 {
2243 asection *s;
2244 Elf_Internal_Rela outrel;
2245 bfd_byte *loc;
2246
2247 s = htab->srelgot;
2248 if (s == NULL)
2249 abort ();
2250
2251 outrel.r_offset = (htab->sgot->output_section->vma
2252 + htab->sgot->output_offset
2253 + off);
2254 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2255 loc = s->contents;
2256 loc += s->reloc_count++ * sizeof (Elf32_External_Rel);
2257 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2258 }
2259
2260 local_got_offsets[r_symndx] |= 1;
2261 }
2262 }
2263
2264 if (off >= (bfd_vma) -2)
2265 abort ();
2266
2267 relocation = htab->sgot->output_section->vma
2268 + htab->sgot->output_offset + off
2269 - htab->sgotplt->output_section->vma
2270 - htab->sgotplt->output_offset;
2271 break;
2272
2273 case R_386_GOTOFF:
2274 /* Relocation is relative to the start of the global offset
2275 table. */
2276
2277 /* Note that sgot is not involved in this
2278 calculation. We always want the start of .got.plt. If we
2279 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2280 permitted by the ABI, we might have to change this
2281 calculation. */
2282 relocation -= htab->sgotplt->output_section->vma
2283 + htab->sgotplt->output_offset;
2284 break;
2285
2286 case R_386_GOTPC:
2287 /* Use global offset table as symbol value. */
2288 relocation = htab->sgotplt->output_section->vma
2289 + htab->sgotplt->output_offset;
2290 unresolved_reloc = FALSE;
2291 break;
2292
2293 case R_386_PLT32:
2294 /* Relocation is to the entry for this symbol in the
2295 procedure linkage table. */
2296
2297 /* Resolve a PLT32 reloc against a local symbol directly,
2298 without using the procedure linkage table. */
2299 if (h == NULL)
2300 break;
2301
2302 if (h->plt.offset == (bfd_vma) -1
2303 || htab->splt == NULL)
2304 {
2305 /* We didn't make a PLT entry for this symbol. This
2306 happens when statically linking PIC code, or when
2307 using -Bsymbolic. */
2308 break;
2309 }
2310
2311 relocation = (htab->splt->output_section->vma
2312 + htab->splt->output_offset
2313 + h->plt.offset);
2314 unresolved_reloc = FALSE;
2315 break;
2316
2317 case R_386_32:
2318 case R_386_PC32:
2319 /* r_symndx will be zero only for relocs against symbols
2320 from removed linkonce sections, or sections discarded by
2321 a linker script. */
2322 if (r_symndx == 0)
2323 {
2324 /* Zero the section contents. eh_frame generated by old
2325 versions of gcc isn't edited by elf-eh-frame.c, so
2326 FDEs for discarded linkonce functions might remain.
2327 Putting zeros here will zero such FDE's address range.
2328 This is a hint to unwinders and other consumers of
2329 exception handling info that the FDE is invalid. */
2330 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2331 break;
2332 }
2333
2334 if ((input_section->flags & SEC_ALLOC) == 0)
2335 break;
2336
2337 if ((info->shared
2338 && (h == NULL
2339 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2340 || h->root.type != bfd_link_hash_undefweak)
2341 && (r_type != R_386_PC32
2342 || !SYMBOL_CALLS_LOCAL (info, h)))
2343 || (ELIMINATE_COPY_RELOCS
2344 && !info->shared
2345 && h != NULL
2346 && h->dynindx != -1
2347 && !h->non_got_ref
2348 && ((h->def_dynamic
2349 && !h->def_regular)
2350 || h->root.type == bfd_link_hash_undefweak
2351 || h->root.type == bfd_link_hash_undefined)))
2352 {
2353 Elf_Internal_Rela outrel;
2354 bfd_byte *loc;
2355 bfd_boolean skip, relocate;
2356 asection *sreloc;
2357
2358 /* When generating a shared object, these relocations
2359 are copied into the output file to be resolved at run
2360 time. */
2361
2362 skip = FALSE;
2363 relocate = FALSE;
2364
2365 outrel.r_offset =
2366 _bfd_elf_section_offset (output_bfd, info, input_section,
2367 rel->r_offset);
2368 if (outrel.r_offset == (bfd_vma) -1)
2369 skip = TRUE;
2370 else if (outrel.r_offset == (bfd_vma) -2)
2371 skip = TRUE, relocate = TRUE;
2372 outrel.r_offset += (input_section->output_section->vma
2373 + input_section->output_offset);
2374
2375 if (skip)
2376 memset (&outrel, 0, sizeof outrel);
2377 else if (h != NULL
2378 && h->dynindx != -1
2379 && (r_type == R_386_PC32
2380 || !info->shared
2381 || !info->symbolic
2382 || !h->def_regular))
2383 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
2384 else
2385 {
2386 /* This symbol is local, or marked to become local. */
2387 relocate = TRUE;
2388 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2389 }
2390
2391 sreloc = elf_section_data (input_section)->sreloc;
2392 if (sreloc == NULL)
2393 abort ();
2394
2395 loc = sreloc->contents;
2396 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
2397 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2398
2399 /* If this reloc is against an external symbol, we do
2400 not want to fiddle with the addend. Otherwise, we
2401 need to include the symbol value so that it becomes
2402 an addend for the dynamic reloc. */
2403 if (! relocate)
2404 continue;
2405 }
2406 break;
2407
2408 case R_386_TLS_IE:
2409 if (info->shared)
2410 {
2411 Elf_Internal_Rela outrel;
2412 bfd_byte *loc;
2413 asection *sreloc;
2414
2415 outrel.r_offset = rel->r_offset
2416 + input_section->output_section->vma
2417 + input_section->output_offset;
2418 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2419 sreloc = elf_section_data (input_section)->sreloc;
2420 if (sreloc == NULL)
2421 abort ();
2422 loc = sreloc->contents;
2423 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
2424 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2425 }
2426 /* Fall through */
2427
2428 case R_386_TLS_GD:
2429 case R_386_TLS_IE_32:
2430 case R_386_TLS_GOTIE:
2431 r_type = elf_i386_tls_transition (info, r_type, h == NULL);
2432 tls_type = GOT_UNKNOWN;
2433 if (h == NULL && local_got_offsets)
2434 tls_type = elf_i386_local_got_tls_type (input_bfd) [r_symndx];
2435 else if (h != NULL)
2436 {
2437 tls_type = elf_i386_hash_entry(h)->tls_type;
2438 if (!info->shared && h->dynindx == -1 && (tls_type & GOT_TLS_IE))
2439 r_type = R_386_TLS_LE_32;
2440 }
2441 if (tls_type == GOT_TLS_IE)
2442 tls_type = GOT_TLS_IE_NEG;
2443 if (r_type == R_386_TLS_GD)
2444 {
2445 if (tls_type == GOT_TLS_IE_POS)
2446 r_type = R_386_TLS_GOTIE;
2447 else if (tls_type & GOT_TLS_IE)
2448 r_type = R_386_TLS_IE_32;
2449 }
2450
2451 if (r_type == R_386_TLS_LE_32)
2452 {
2453 BFD_ASSERT (! unresolved_reloc);
2454 if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD)
2455 {
2456 unsigned int val, type;
2457 bfd_vma roff;
2458
2459 /* GD->LE transition. */
2460 BFD_ASSERT (rel->r_offset >= 2);
2461 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2462 BFD_ASSERT (type == 0x8d || type == 0x04);
2463 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2464 BFD_ASSERT (bfd_get_8 (input_bfd,
2465 contents + rel->r_offset + 4)
2466 == 0xe8);
2467 BFD_ASSERT (rel + 1 < relend);
2468 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
2469 roff = rel->r_offset + 5;
2470 val = bfd_get_8 (input_bfd,
2471 contents + rel->r_offset - 1);
2472 if (type == 0x04)
2473 {
2474 /* leal foo(,%reg,1), %eax; call ___tls_get_addr
2475 Change it into:
2476 movl %gs:0, %eax; subl $foo@tpoff, %eax
2477 (6 byte form of subl). */
2478 BFD_ASSERT (rel->r_offset >= 3);
2479 BFD_ASSERT (bfd_get_8 (input_bfd,
2480 contents + rel->r_offset - 3)
2481 == 0x8d);
2482 BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
2483 memcpy (contents + rel->r_offset - 3,
2484 "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2485 }
2486 else
2487 {
2488 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
2489 if (rel->r_offset + 10 <= input_section->size
2490 && bfd_get_8 (input_bfd,
2491 contents + rel->r_offset + 9) == 0x90)
2492 {
2493 /* leal foo(%reg), %eax; call ___tls_get_addr; nop
2494 Change it into:
2495 movl %gs:0, %eax; subl $foo@tpoff, %eax
2496 (6 byte form of subl). */
2497 memcpy (contents + rel->r_offset - 2,
2498 "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2499 roff = rel->r_offset + 6;
2500 }
2501 else
2502 {
2503 /* leal foo(%reg), %eax; call ___tls_get_addr
2504 Change it into:
2505 movl %gs:0, %eax; subl $foo@tpoff, %eax
2506 (5 byte form of subl). */
2507 memcpy (contents + rel->r_offset - 2,
2508 "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2509 }
2510 }
2511 bfd_put_32 (output_bfd, tpoff (info, relocation),
2512 contents + roff);
2513 /* Skip R_386_PLT32. */
2514 rel++;
2515 continue;
2516 }
2517 else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_IE)
2518 {
2519 unsigned int val, type;
2520
2521 /* IE->LE transition:
2522 Originally it can be one of:
2523 movl foo, %eax
2524 movl foo, %reg
2525 addl foo, %reg
2526 We change it into:
2527 movl $foo, %eax
2528 movl $foo, %reg
2529 addl $foo, %reg. */
2530 BFD_ASSERT (rel->r_offset >= 1);
2531 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2532 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2533 if (val == 0xa1)
2534 {
2535 /* movl foo, %eax. */
2536 bfd_put_8 (output_bfd, 0xb8,
2537 contents + rel->r_offset - 1);
2538 }
2539 else
2540 {
2541 BFD_ASSERT (rel->r_offset >= 2);
2542 type = bfd_get_8 (input_bfd,
2543 contents + rel->r_offset - 2);
2544 switch (type)
2545 {
2546 case 0x8b:
2547 /* movl */
2548 BFD_ASSERT ((val & 0xc7) == 0x05);
2549 bfd_put_8 (output_bfd, 0xc7,
2550 contents + rel->r_offset - 2);
2551 bfd_put_8 (output_bfd,
2552 0xc0 | ((val >> 3) & 7),
2553 contents + rel->r_offset - 1);
2554 break;
2555 case 0x03:
2556 /* addl */
2557 BFD_ASSERT ((val & 0xc7) == 0x05);
2558 bfd_put_8 (output_bfd, 0x81,
2559 contents + rel->r_offset - 2);
2560 bfd_put_8 (output_bfd,
2561 0xc0 | ((val >> 3) & 7),
2562 contents + rel->r_offset - 1);
2563 break;
2564 default:
2565 BFD_FAIL ();
2566 break;
2567 }
2568 }
2569 bfd_put_32 (output_bfd, -tpoff (info, relocation),
2570 contents + rel->r_offset);
2571 continue;
2572 }
2573 else
2574 {
2575 unsigned int val, type;
2576
2577 /* {IE_32,GOTIE}->LE transition:
2578 Originally it can be one of:
2579 subl foo(%reg1), %reg2
2580 movl foo(%reg1), %reg2
2581 addl foo(%reg1), %reg2
2582 We change it into:
2583 subl $foo, %reg2
2584 movl $foo, %reg2 (6 byte form)
2585 addl $foo, %reg2. */
2586 BFD_ASSERT (rel->r_offset >= 2);
2587 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2588 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2589 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2590 BFD_ASSERT ((val & 0xc0) == 0x80 && (val & 7) != 4);
2591 if (type == 0x8b)
2592 {
2593 /* movl */
2594 bfd_put_8 (output_bfd, 0xc7,
2595 contents + rel->r_offset - 2);
2596 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2597 contents + rel->r_offset - 1);
2598 }
2599 else if (type == 0x2b)
2600 {
2601 /* subl */
2602 bfd_put_8 (output_bfd, 0x81,
2603 contents + rel->r_offset - 2);
2604 bfd_put_8 (output_bfd, 0xe8 | ((val >> 3) & 7),
2605 contents + rel->r_offset - 1);
2606 }
2607 else if (type == 0x03)
2608 {
2609 /* addl */
2610 bfd_put_8 (output_bfd, 0x81,
2611 contents + rel->r_offset - 2);
2612 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2613 contents + rel->r_offset - 1);
2614 }
2615 else
2616 BFD_FAIL ();
2617 if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTIE)
2618 bfd_put_32 (output_bfd, -tpoff (info, relocation),
2619 contents + rel->r_offset);
2620 else
2621 bfd_put_32 (output_bfd, tpoff (info, relocation),
2622 contents + rel->r_offset);
2623 continue;
2624 }
2625 }
2626
2627 if (htab->sgot == NULL)
2628 abort ();
2629
2630 if (h != NULL)
2631 off = h->got.offset;
2632 else
2633 {
2634 if (local_got_offsets == NULL)
2635 abort ();
2636
2637 off = local_got_offsets[r_symndx];
2638 }
2639
2640 if ((off & 1) != 0)
2641 off &= ~1;
2642 else
2643 {
2644 Elf_Internal_Rela outrel;
2645 bfd_byte *loc;
2646 int dr_type, indx;
2647
2648 if (htab->srelgot == NULL)
2649 abort ();
2650
2651 outrel.r_offset = (htab->sgot->output_section->vma
2652 + htab->sgot->output_offset + off);
2653
2654 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2655 if (r_type == R_386_TLS_GD)
2656 dr_type = R_386_TLS_DTPMOD32;
2657 else if (tls_type == GOT_TLS_IE_POS)
2658 dr_type = R_386_TLS_TPOFF;
2659 else
2660 dr_type = R_386_TLS_TPOFF32;
2661 if (dr_type == R_386_TLS_TPOFF && indx == 0)
2662 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
2663 htab->sgot->contents + off);
2664 else if (dr_type == R_386_TLS_TPOFF32 && indx == 0)
2665 bfd_put_32 (output_bfd, dtpoff_base (info) - relocation,
2666 htab->sgot->contents + off);
2667 else
2668 bfd_put_32 (output_bfd, 0,
2669 htab->sgot->contents + off);
2670 outrel.r_info = ELF32_R_INFO (indx, dr_type);
2671 loc = htab->srelgot->contents;
2672 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
2673 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2674
2675 if (r_type == R_386_TLS_GD)
2676 {
2677 if (indx == 0)
2678 {
2679 BFD_ASSERT (! unresolved_reloc);
2680 bfd_put_32 (output_bfd,
2681 relocation - dtpoff_base (info),
2682 htab->sgot->contents + off + 4);
2683 }
2684 else
2685 {
2686 bfd_put_32 (output_bfd, 0,
2687 htab->sgot->contents + off + 4);
2688 outrel.r_info = ELF32_R_INFO (indx,
2689 R_386_TLS_DTPOFF32);
2690 outrel.r_offset += 4;
2691 htab->srelgot->reloc_count++;
2692 loc += sizeof (Elf32_External_Rel);
2693 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2694 }
2695 }
2696 else if (tls_type == GOT_TLS_IE_BOTH)
2697 {
2698 bfd_put_32 (output_bfd,
2699 indx == 0 ? relocation - dtpoff_base (info) : 0,
2700 htab->sgot->contents + off + 4);
2701 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF);
2702 outrel.r_offset += 4;
2703 htab->srelgot->reloc_count++;
2704 loc += sizeof (Elf32_External_Rel);
2705 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2706 }
2707
2708 if (h != NULL)
2709 h->got.offset |= 1;
2710 else
2711 local_got_offsets[r_symndx] |= 1;
2712 }
2713
2714 if (off >= (bfd_vma) -2)
2715 abort ();
2716 if (r_type == ELF32_R_TYPE (rel->r_info))
2717 {
2718 bfd_vma g_o_t = htab->sgotplt->output_section->vma
2719 + htab->sgotplt->output_offset;
2720 relocation = htab->sgot->output_section->vma
2721 + htab->sgot->output_offset + off - g_o_t;
2722 if ((r_type == R_386_TLS_IE || r_type == R_386_TLS_GOTIE)
2723 && tls_type == GOT_TLS_IE_BOTH)
2724 relocation += 4;
2725 if (r_type == R_386_TLS_IE)
2726 relocation += g_o_t;
2727 unresolved_reloc = FALSE;
2728 }
2729 else
2730 {
2731 unsigned int val, type;
2732 bfd_vma roff;
2733
2734 /* GD->IE transition. */
2735 BFD_ASSERT (rel->r_offset >= 2);
2736 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2737 BFD_ASSERT (type == 0x8d || type == 0x04);
2738 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2739 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2740 == 0xe8);
2741 BFD_ASSERT (rel + 1 < relend);
2742 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
2743 roff = rel->r_offset - 3;
2744 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2745 if (type == 0x04)
2746 {
2747 /* leal foo(,%reg,1), %eax; call ___tls_get_addr
2748 Change it into:
2749 movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
2750 BFD_ASSERT (rel->r_offset >= 3);
2751 BFD_ASSERT (bfd_get_8 (input_bfd,
2752 contents + rel->r_offset - 3)
2753 == 0x8d);
2754 BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
2755 val >>= 3;
2756 }
2757 else
2758 {
2759 /* leal foo(%reg), %eax; call ___tls_get_addr; nop
2760 Change it into:
2761 movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
2762 BFD_ASSERT (rel->r_offset + 10 <= input_section->size);
2763 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
2764 BFD_ASSERT (bfd_get_8 (input_bfd,
2765 contents + rel->r_offset + 9)
2766 == 0x90);
2767 roff = rel->r_offset - 2;
2768 }
2769 memcpy (contents + roff,
2770 "\x65\xa1\0\0\0\0\x2b\x80\0\0\0", 12);
2771 contents[roff + 7] = 0x80 | (val & 7);
2772 /* If foo is used only with foo@gotntpoff(%reg) and
2773 foo@indntpoff, but not with foo@gottpoff(%reg), change
2774 subl $foo@gottpoff(%reg), %eax
2775 into:
2776 addl $foo@gotntpoff(%reg), %eax. */
2777 if (r_type == R_386_TLS_GOTIE)
2778 {
2779 contents[roff + 6] = 0x03;
2780 if (tls_type == GOT_TLS_IE_BOTH)
2781 off += 4;
2782 }
2783 bfd_put_32 (output_bfd,
2784 htab->sgot->output_section->vma
2785 + htab->sgot->output_offset + off
2786 - htab->sgotplt->output_section->vma
2787 - htab->sgotplt->output_offset,
2788 contents + roff + 8);
2789 /* Skip R_386_PLT32. */
2790 rel++;
2791 continue;
2792 }
2793 break;
2794
2795 case R_386_TLS_LDM:
2796 if (! info->shared)
2797 {
2798 unsigned int val;
2799
2800 /* LD->LE transition:
2801 Ensure it is:
2802 leal foo(%reg), %eax; call ___tls_get_addr.
2803 We change it into:
2804 movl %gs:0, %eax; nop; leal 0(%esi,1), %esi. */
2805 BFD_ASSERT (rel->r_offset >= 2);
2806 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2807 == 0x8d);
2808 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2809 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
2810 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2811 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2812 == 0xe8);
2813 BFD_ASSERT (rel + 1 < relend);
2814 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
2815 memcpy (contents + rel->r_offset - 2,
2816 "\x65\xa1\0\0\0\0\x90\x8d\x74\x26", 11);
2817 /* Skip R_386_PLT32. */
2818 rel++;
2819 continue;
2820 }
2821
2822 if (htab->sgot == NULL)
2823 abort ();
2824
2825 off = htab->tls_ldm_got.offset;
2826 if (off & 1)
2827 off &= ~1;
2828 else
2829 {
2830 Elf_Internal_Rela outrel;
2831 bfd_byte *loc;
2832
2833 if (htab->srelgot == NULL)
2834 abort ();
2835
2836 outrel.r_offset = (htab->sgot->output_section->vma
2837 + htab->sgot->output_offset + off);
2838
2839 bfd_put_32 (output_bfd, 0,
2840 htab->sgot->contents + off);
2841 bfd_put_32 (output_bfd, 0,
2842 htab->sgot->contents + off + 4);
2843 outrel.r_info = ELF32_R_INFO (0, R_386_TLS_DTPMOD32);
2844 loc = htab->srelgot->contents;
2845 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
2846 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2847 htab->tls_ldm_got.offset |= 1;
2848 }
2849 relocation = htab->sgot->output_section->vma
2850 + htab->sgot->output_offset + off
2851 - htab->sgotplt->output_section->vma
2852 - htab->sgotplt->output_offset;
2853 unresolved_reloc = FALSE;
2854 break;
2855
2856 case R_386_TLS_LDO_32:
2857 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2858 relocation -= dtpoff_base (info);
2859 else
2860 /* When converting LDO to LE, we must negate. */
2861 relocation = -tpoff (info, relocation);
2862 break;
2863
2864 case R_386_TLS_LE_32:
2865 case R_386_TLS_LE:
2866 if (info->shared)
2867 {
2868 Elf_Internal_Rela outrel;
2869 asection *sreloc;
2870 bfd_byte *loc;
2871 int indx;
2872
2873 outrel.r_offset = rel->r_offset
2874 + input_section->output_section->vma
2875 + input_section->output_offset;
2876 if (h != NULL && h->dynindx != -1)
2877 indx = h->dynindx;
2878 else
2879 indx = 0;
2880 if (r_type == R_386_TLS_LE_32)
2881 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF32);
2882 else
2883 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF);
2884 sreloc = elf_section_data (input_section)->sreloc;
2885 if (sreloc == NULL)
2886 abort ();
2887 loc = sreloc->contents;
2888 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
2889 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2890 if (indx)
2891 continue;
2892 else if (r_type == R_386_TLS_LE_32)
2893 relocation = dtpoff_base (info) - relocation;
2894 else
2895 relocation -= dtpoff_base (info);
2896 }
2897 else if (r_type == R_386_TLS_LE_32)
2898 relocation = tpoff (info, relocation);
2899 else
2900 relocation = -tpoff (info, relocation);
2901 break;
2902
2903 default:
2904 break;
2905 }
2906
2907 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2908 because such sections are not SEC_ALLOC and thus ld.so will
2909 not process them. */
2910 if (unresolved_reloc
2911 && !((input_section->flags & SEC_DEBUGGING) != 0
2912 && h->def_dynamic))
2913 {
2914 (*_bfd_error_handler)
2915 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2916 input_bfd,
2917 input_section,
2918 (long) rel->r_offset,
2919 h->root.root.string);
2920 return FALSE;
2921 }
2922
2923 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2924 contents, rel->r_offset,
2925 relocation, 0);
2926
2927 if (r != bfd_reloc_ok)
2928 {
2929 const char *name;
2930
2931 if (h != NULL)
2932 name = h->root.root.string;
2933 else
2934 {
2935 name = bfd_elf_string_from_elf_section (input_bfd,
2936 symtab_hdr->sh_link,
2937 sym->st_name);
2938 if (name == NULL)
2939 return FALSE;
2940 if (*name == '\0')
2941 name = bfd_section_name (input_bfd, sec);
2942 }
2943
2944 if (r == bfd_reloc_overflow)
2945 {
2946 if (! ((*info->callbacks->reloc_overflow)
2947 (info, (h ? &h->root : NULL), name, howto->name,
2948 (bfd_vma) 0, input_bfd, input_section,
2949 rel->r_offset)))
2950 return FALSE;
2951 }
2952 else
2953 {
2954 (*_bfd_error_handler)
2955 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
2956 input_bfd, input_section,
2957 (long) rel->r_offset, name, (int) r);
2958 return FALSE;
2959 }
2960 }
2961 }
2962
2963 return TRUE;
2964 }
2965
2966 /* Finish up dynamic symbol handling. We set the contents of various
2967 dynamic sections here. */
2968
2969 static bfd_boolean
2970 elf_i386_finish_dynamic_symbol (bfd *output_bfd,
2971 struct bfd_link_info *info,
2972 struct elf_link_hash_entry *h,
2973 Elf_Internal_Sym *sym)
2974 {
2975 struct elf_i386_link_hash_table *htab;
2976
2977 htab = elf_i386_hash_table (info);
2978
2979 if (h->plt.offset != (bfd_vma) -1)
2980 {
2981 bfd_vma plt_index;
2982 bfd_vma got_offset;
2983 Elf_Internal_Rela rel;
2984 bfd_byte *loc;
2985
2986 /* This symbol has an entry in the procedure linkage table. Set
2987 it up. */
2988
2989 if (h->dynindx == -1
2990 || htab->splt == NULL
2991 || htab->sgotplt == NULL
2992 || htab->srelplt == NULL)
2993 abort ();
2994
2995 /* Get the index in the procedure linkage table which
2996 corresponds to this symbol. This is the index of this symbol
2997 in all the symbols for which we are making plt entries. The
2998 first entry in the procedure linkage table is reserved. */
2999 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3000
3001 /* Get the offset into the .got table of the entry that
3002 corresponds to this function. Each .got entry is 4 bytes.
3003 The first three are reserved. */
3004 got_offset = (plt_index + 3) * 4;
3005
3006 /* Fill in the entry in the procedure linkage table. */
3007 if (! info->shared)
3008 {
3009 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
3010 PLT_ENTRY_SIZE);
3011 bfd_put_32 (output_bfd,
3012 (htab->sgotplt->output_section->vma
3013 + htab->sgotplt->output_offset
3014 + got_offset),
3015 htab->splt->contents + h->plt.offset + 2);
3016 }
3017 else
3018 {
3019 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
3020 PLT_ENTRY_SIZE);
3021 bfd_put_32 (output_bfd, got_offset,
3022 htab->splt->contents + h->plt.offset + 2);
3023 }
3024
3025 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
3026 htab->splt->contents + h->plt.offset + 7);
3027 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3028 htab->splt->contents + h->plt.offset + 12);
3029
3030 /* Fill in the entry in the global offset table. */
3031 bfd_put_32 (output_bfd,
3032 (htab->splt->output_section->vma
3033 + htab->splt->output_offset
3034 + h->plt.offset
3035 + 6),
3036 htab->sgotplt->contents + got_offset);
3037
3038 /* Fill in the entry in the .rel.plt section. */
3039 rel.r_offset = (htab->sgotplt->output_section->vma
3040 + htab->sgotplt->output_offset
3041 + got_offset);
3042 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
3043 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rel);
3044 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3045
3046 if (!h->def_regular)
3047 {
3048 /* Mark the symbol as undefined, rather than as defined in
3049 the .plt section. Leave the value if there were any
3050 relocations where pointer equality matters (this is a clue
3051 for the dynamic linker, to make function pointer
3052 comparisons work between an application and shared
3053 library), otherwise set it to zero. If a function is only
3054 called from a binary, there is no need to slow down
3055 shared libraries because of that. */
3056 sym->st_shndx = SHN_UNDEF;
3057 if (!h->pointer_equality_needed)
3058 sym->st_value = 0;
3059 }
3060 }
3061
3062 if (h->got.offset != (bfd_vma) -1
3063 && elf_i386_hash_entry(h)->tls_type != GOT_TLS_GD
3064 && (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE) == 0)
3065 {
3066 Elf_Internal_Rela rel;
3067 bfd_byte *loc;
3068
3069 /* This symbol has an entry in the global offset table. Set it
3070 up. */
3071
3072 if (htab->sgot == NULL || htab->srelgot == NULL)
3073 abort ();
3074
3075 rel.r_offset = (htab->sgot->output_section->vma
3076 + htab->sgot->output_offset
3077 + (h->got.offset & ~(bfd_vma) 1));
3078
3079 /* If this is a static link, or it is a -Bsymbolic link and the
3080 symbol is defined locally or was forced to be local because
3081 of a version file, we just want to emit a RELATIVE reloc.
3082 The entry in the global offset table will already have been
3083 initialized in the relocate_section function. */
3084 if (info->shared
3085 && SYMBOL_REFERENCES_LOCAL (info, h))
3086 {
3087 BFD_ASSERT((h->got.offset & 1) != 0);
3088 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
3089 }
3090 else
3091 {
3092 BFD_ASSERT((h->got.offset & 1) == 0);
3093 bfd_put_32 (output_bfd, (bfd_vma) 0,
3094 htab->sgot->contents + h->got.offset);
3095 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
3096 }
3097
3098 loc = htab->srelgot->contents;
3099 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
3100 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3101 }
3102
3103 if (h->needs_copy)
3104 {
3105 Elf_Internal_Rela rel;
3106 bfd_byte *loc;
3107
3108 /* This symbol needs a copy reloc. Set it up. */
3109
3110 if (h->dynindx == -1
3111 || (h->root.type != bfd_link_hash_defined
3112 && h->root.type != bfd_link_hash_defweak)
3113 || htab->srelbss == NULL)
3114 abort ();
3115
3116 rel.r_offset = (h->root.u.def.value
3117 + h->root.u.def.section->output_section->vma
3118 + h->root.u.def.section->output_offset);
3119 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
3120 loc = htab->srelbss->contents;
3121 loc += htab->srelbss->reloc_count++ * sizeof (Elf32_External_Rel);
3122 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3123 }
3124
3125 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3126 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3127 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3128 sym->st_shndx = SHN_ABS;
3129
3130 return TRUE;
3131 }
3132
3133 /* Used to decide how to sort relocs in an optimal manner for the
3134 dynamic linker, before writing them out. */
3135
3136 static enum elf_reloc_type_class
3137 elf_i386_reloc_type_class (const Elf_Internal_Rela *rela)
3138 {
3139 switch (ELF32_R_TYPE (rela->r_info))
3140 {
3141 case R_386_RELATIVE:
3142 return reloc_class_relative;
3143 case R_386_JUMP_SLOT:
3144 return reloc_class_plt;
3145 case R_386_COPY:
3146 return reloc_class_copy;
3147 default:
3148 return reloc_class_normal;
3149 }
3150 }
3151
3152 /* Finish up the dynamic sections. */
3153
3154 static bfd_boolean
3155 elf_i386_finish_dynamic_sections (bfd *output_bfd,
3156 struct bfd_link_info *info)
3157 {
3158 struct elf_i386_link_hash_table *htab;
3159 bfd *dynobj;
3160 asection *sdyn;
3161
3162 htab = elf_i386_hash_table (info);
3163 dynobj = htab->elf.dynobj;
3164 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3165
3166 if (htab->elf.dynamic_sections_created)
3167 {
3168 Elf32_External_Dyn *dyncon, *dynconend;
3169
3170 if (sdyn == NULL || htab->sgot == NULL)
3171 abort ();
3172
3173 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3174 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3175 for (; dyncon < dynconend; dyncon++)
3176 {
3177 Elf_Internal_Dyn dyn;
3178 asection *s;
3179
3180 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3181
3182 switch (dyn.d_tag)
3183 {
3184 default:
3185 continue;
3186
3187 case DT_PLTGOT:
3188 s = htab->sgotplt;
3189 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3190 break;
3191
3192 case DT_JMPREL:
3193 s = htab->srelplt;
3194 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3195 break;
3196
3197 case DT_PLTRELSZ:
3198 s = htab->srelplt;
3199 dyn.d_un.d_val = s->size;
3200 break;
3201
3202 case DT_RELSZ:
3203 /* My reading of the SVR4 ABI indicates that the
3204 procedure linkage table relocs (DT_JMPREL) should be
3205 included in the overall relocs (DT_REL). This is
3206 what Solaris does. However, UnixWare can not handle
3207 that case. Therefore, we override the DT_RELSZ entry
3208 here to make it not include the JMPREL relocs. */
3209 s = htab->srelplt;
3210 if (s == NULL)
3211 continue;
3212 dyn.d_un.d_val -= s->size;
3213 break;
3214
3215 case DT_REL:
3216 /* We may not be using the standard ELF linker script.
3217 If .rel.plt is the first .rel section, we adjust
3218 DT_REL to not include it. */
3219 s = htab->srelplt;
3220 if (s == NULL)
3221 continue;
3222 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
3223 continue;
3224 dyn.d_un.d_ptr += s->size;
3225 break;
3226 }
3227
3228 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3229 }
3230
3231 /* Fill in the first entry in the procedure linkage table. */
3232 if (htab->splt && htab->splt->size > 0)
3233 {
3234 if (info->shared)
3235 memcpy (htab->splt->contents,
3236 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
3237 else
3238 {
3239 memcpy (htab->splt->contents,
3240 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
3241 bfd_put_32 (output_bfd,
3242 (htab->sgotplt->output_section->vma
3243 + htab->sgotplt->output_offset
3244 + 4),
3245 htab->splt->contents + 2);
3246 bfd_put_32 (output_bfd,
3247 (htab->sgotplt->output_section->vma
3248 + htab->sgotplt->output_offset
3249 + 8),
3250 htab->splt->contents + 8);
3251 }
3252
3253 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3254 really seem like the right value. */
3255 elf_section_data (htab->splt->output_section)
3256 ->this_hdr.sh_entsize = 4;
3257 }
3258 }
3259
3260 if (htab->sgotplt)
3261 {
3262 /* Fill in the first three entries in the global offset table. */
3263 if (htab->sgotplt->size > 0)
3264 {
3265 bfd_put_32 (output_bfd,
3266 (sdyn == NULL ? 0
3267 : sdyn->output_section->vma + sdyn->output_offset),
3268 htab->sgotplt->contents);
3269 bfd_put_32 (output_bfd, 0, htab->sgotplt->contents + 4);
3270 bfd_put_32 (output_bfd, 0, htab->sgotplt->contents + 8);
3271 }
3272
3273 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
3274 }
3275
3276 if (htab->sgot && htab->sgot->size > 0)
3277 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize = 4;
3278
3279 return TRUE;
3280 }
3281
3282 /* Return address for Ith PLT stub in section PLT, for relocation REL
3283 or (bfd_vma) -1 if it should not be included. */
3284
3285 static bfd_vma
3286 elf_i386_plt_sym_val (bfd_vma i, const asection *plt,
3287 const arelent *rel ATTRIBUTE_UNUSED)
3288 {
3289 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3290 }
3291
3292
3293 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
3294 #define TARGET_LITTLE_NAME "elf32-i386"
3295 #define ELF_ARCH bfd_arch_i386
3296 #define ELF_MACHINE_CODE EM_386
3297 #define ELF_MAXPAGESIZE 0x1000
3298
3299 #define elf_backend_can_gc_sections 1
3300 #define elf_backend_can_refcount 1
3301 #define elf_backend_want_got_plt 1
3302 #define elf_backend_plt_readonly 1
3303 #define elf_backend_want_plt_sym 0
3304 #define elf_backend_got_header_size 12
3305
3306 /* Support RELA for objdump of prelink objects. */
3307 #define elf_info_to_howto elf_i386_info_to_howto_rel
3308 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
3309
3310 #define bfd_elf32_mkobject elf_i386_mkobject
3311
3312 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
3313 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
3314 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
3315
3316 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
3317 #define elf_backend_check_relocs elf_i386_check_relocs
3318 #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
3319 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
3320 #define elf_backend_fake_sections elf_i386_fake_sections
3321 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
3322 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
3323 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
3324 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
3325 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
3326 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
3327 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
3328 #define elf_backend_relocate_section elf_i386_relocate_section
3329 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
3330 #define elf_backend_plt_sym_val elf_i386_plt_sym_val
3331
3332 #include "elf32-target.h"
3333
3334 /* FreeBSD support. */
3335
3336 #undef TARGET_LITTLE_SYM
3337 #define TARGET_LITTLE_SYM bfd_elf32_i386_freebsd_vec
3338 #undef TARGET_LITTLE_NAME
3339 #define TARGET_LITTLE_NAME "elf32-i386-freebsd"
3340
3341 /* The kernel recognizes executables as valid only if they carry a
3342 "FreeBSD" label in the ELF header. So we put this label on all
3343 executables and (for simplicity) also all other object files. */
3344
3345 static void
3346 elf_i386_post_process_headers (bfd *abfd,
3347 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3348 {
3349 Elf_Internal_Ehdr *i_ehdrp;
3350
3351 i_ehdrp = elf_elfheader (abfd);
3352
3353 /* Put an ABI label supported by FreeBSD >= 4.1. */
3354 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
3355 #ifdef OLD_FREEBSD_ABI_LABEL
3356 /* The ABI label supported by FreeBSD <= 4.0 is quite nonstandard. */
3357 memcpy (&i_ehdrp->e_ident[EI_ABIVERSION], "FreeBSD", 8);
3358 #endif
3359 }
3360
3361 #undef elf_backend_post_process_headers
3362 #define elf_backend_post_process_headers elf_i386_post_process_headers
3363 #undef elf32_bed
3364 #define elf32_bed elf32_i386_fbsd_bed
3365
3366 #include "elf32-target.h"
This page took 0.21031 seconds and 4 git commands to generate.