bfd:
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf-vxworks.h"
27
28 /* 386 uses REL relocations instead of RELA. */
29 #define USE_REL 1
30
31 #include "elf/i386.h"
32
33 static reloc_howto_type elf_howto_table[]=
34 {
35 HOWTO(R_386_NONE, 0, 0, 0, FALSE, 0, complain_overflow_bitfield,
36 bfd_elf_generic_reloc, "R_386_NONE",
37 TRUE, 0x00000000, 0x00000000, FALSE),
38 HOWTO(R_386_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
39 bfd_elf_generic_reloc, "R_386_32",
40 TRUE, 0xffffffff, 0xffffffff, FALSE),
41 HOWTO(R_386_PC32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
42 bfd_elf_generic_reloc, "R_386_PC32",
43 TRUE, 0xffffffff, 0xffffffff, TRUE),
44 HOWTO(R_386_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
45 bfd_elf_generic_reloc, "R_386_GOT32",
46 TRUE, 0xffffffff, 0xffffffff, FALSE),
47 HOWTO(R_386_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
48 bfd_elf_generic_reloc, "R_386_PLT32",
49 TRUE, 0xffffffff, 0xffffffff, TRUE),
50 HOWTO(R_386_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
51 bfd_elf_generic_reloc, "R_386_COPY",
52 TRUE, 0xffffffff, 0xffffffff, FALSE),
53 HOWTO(R_386_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
54 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
55 TRUE, 0xffffffff, 0xffffffff, FALSE),
56 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
57 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
58 TRUE, 0xffffffff, 0xffffffff, FALSE),
59 HOWTO(R_386_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
60 bfd_elf_generic_reloc, "R_386_RELATIVE",
61 TRUE, 0xffffffff, 0xffffffff, FALSE),
62 HOWTO(R_386_GOTOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_386_GOTOFF",
64 TRUE, 0xffffffff, 0xffffffff, FALSE),
65 HOWTO(R_386_GOTPC, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
66 bfd_elf_generic_reloc, "R_386_GOTPC",
67 TRUE, 0xffffffff, 0xffffffff, TRUE),
68
69 /* We have a gap in the reloc numbers here.
70 R_386_standard counts the number up to this point, and
71 R_386_ext_offset is the value to subtract from a reloc type of
72 R_386_16 thru R_386_PC8 to form an index into this table. */
73 #define R_386_standard (R_386_GOTPC + 1)
74 #define R_386_ext_offset (R_386_TLS_TPOFF - R_386_standard)
75
76 /* These relocs are a GNU extension. */
77 HOWTO(R_386_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_386_TLS_TPOFF",
79 TRUE, 0xffffffff, 0xffffffff, FALSE),
80 HOWTO(R_386_TLS_IE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_386_TLS_IE",
82 TRUE, 0xffffffff, 0xffffffff, FALSE),
83 HOWTO(R_386_TLS_GOTIE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_386_TLS_GOTIE",
85 TRUE, 0xffffffff, 0xffffffff, FALSE),
86 HOWTO(R_386_TLS_LE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_386_TLS_LE",
88 TRUE, 0xffffffff, 0xffffffff, FALSE),
89 HOWTO(R_386_TLS_GD, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_386_TLS_GD",
91 TRUE, 0xffffffff, 0xffffffff, FALSE),
92 HOWTO(R_386_TLS_LDM, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_386_TLS_LDM",
94 TRUE, 0xffffffff, 0xffffffff, FALSE),
95 HOWTO(R_386_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_386_16",
97 TRUE, 0xffff, 0xffff, FALSE),
98 HOWTO(R_386_PC16, 0, 1, 16, TRUE, 0, complain_overflow_bitfield,
99 bfd_elf_generic_reloc, "R_386_PC16",
100 TRUE, 0xffff, 0xffff, TRUE),
101 HOWTO(R_386_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_386_8",
103 TRUE, 0xff, 0xff, FALSE),
104 HOWTO(R_386_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
105 bfd_elf_generic_reloc, "R_386_PC8",
106 TRUE, 0xff, 0xff, TRUE),
107
108 #define R_386_ext (R_386_PC8 + 1 - R_386_ext_offset)
109 #define R_386_tls_offset (R_386_TLS_LDO_32 - R_386_ext)
110 /* These are common with Solaris TLS implementation. */
111 HOWTO(R_386_TLS_LDO_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
112 bfd_elf_generic_reloc, "R_386_TLS_LDO_32",
113 TRUE, 0xffffffff, 0xffffffff, FALSE),
114 HOWTO(R_386_TLS_IE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
115 bfd_elf_generic_reloc, "R_386_TLS_IE_32",
116 TRUE, 0xffffffff, 0xffffffff, FALSE),
117 HOWTO(R_386_TLS_LE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
118 bfd_elf_generic_reloc, "R_386_TLS_LE_32",
119 TRUE, 0xffffffff, 0xffffffff, FALSE),
120 HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
121 bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32",
122 TRUE, 0xffffffff, 0xffffffff, FALSE),
123 HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
124 bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32",
125 TRUE, 0xffffffff, 0xffffffff, FALSE),
126 HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
127 bfd_elf_generic_reloc, "R_386_TLS_TPOFF32",
128 TRUE, 0xffffffff, 0xffffffff, FALSE),
129 EMPTY_HOWTO (38),
130 HOWTO(R_386_TLS_GOTDESC, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_386_TLS_GOTDESC",
132 TRUE, 0xffffffff, 0xffffffff, FALSE),
133 HOWTO(R_386_TLS_DESC_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
134 bfd_elf_generic_reloc, "R_386_TLS_DESC_CALL",
135 FALSE, 0, 0, FALSE),
136 HOWTO(R_386_TLS_DESC, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
137 bfd_elf_generic_reloc, "R_386_TLS_DESC",
138 TRUE, 0xffffffff, 0xffffffff, FALSE),
139
140 /* Another gap. */
141 #define R_386_tls (R_386_TLS_DESC + 1 - R_386_tls_offset)
142 #define R_386_vt_offset (R_386_GNU_VTINHERIT - R_386_tls)
143
144 /* GNU extension to record C++ vtable hierarchy. */
145 HOWTO (R_386_GNU_VTINHERIT, /* type */
146 0, /* rightshift */
147 2, /* size (0 = byte, 1 = short, 2 = long) */
148 0, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_dont, /* complain_on_overflow */
152 NULL, /* special_function */
153 "R_386_GNU_VTINHERIT", /* name */
154 FALSE, /* partial_inplace */
155 0, /* src_mask */
156 0, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* GNU extension to record C++ vtable member usage. */
160 HOWTO (R_386_GNU_VTENTRY, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 0, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_dont, /* complain_on_overflow */
167 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
168 "R_386_GNU_VTENTRY", /* name */
169 FALSE, /* partial_inplace */
170 0, /* src_mask */
171 0, /* dst_mask */
172 FALSE) /* pcrel_offset */
173
174 #define R_386_vt (R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
175
176 };
177
178 #ifdef DEBUG_GEN_RELOC
179 #define TRACE(str) \
180 fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
181 #else
182 #define TRACE(str)
183 #endif
184
185 static reloc_howto_type *
186 elf_i386_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
187 bfd_reloc_code_real_type code)
188 {
189 switch (code)
190 {
191 case BFD_RELOC_NONE:
192 TRACE ("BFD_RELOC_NONE");
193 return &elf_howto_table[R_386_NONE];
194
195 case BFD_RELOC_32:
196 TRACE ("BFD_RELOC_32");
197 return &elf_howto_table[R_386_32];
198
199 case BFD_RELOC_CTOR:
200 TRACE ("BFD_RELOC_CTOR");
201 return &elf_howto_table[R_386_32];
202
203 case BFD_RELOC_32_PCREL:
204 TRACE ("BFD_RELOC_PC32");
205 return &elf_howto_table[R_386_PC32];
206
207 case BFD_RELOC_386_GOT32:
208 TRACE ("BFD_RELOC_386_GOT32");
209 return &elf_howto_table[R_386_GOT32];
210
211 case BFD_RELOC_386_PLT32:
212 TRACE ("BFD_RELOC_386_PLT32");
213 return &elf_howto_table[R_386_PLT32];
214
215 case BFD_RELOC_386_COPY:
216 TRACE ("BFD_RELOC_386_COPY");
217 return &elf_howto_table[R_386_COPY];
218
219 case BFD_RELOC_386_GLOB_DAT:
220 TRACE ("BFD_RELOC_386_GLOB_DAT");
221 return &elf_howto_table[R_386_GLOB_DAT];
222
223 case BFD_RELOC_386_JUMP_SLOT:
224 TRACE ("BFD_RELOC_386_JUMP_SLOT");
225 return &elf_howto_table[R_386_JUMP_SLOT];
226
227 case BFD_RELOC_386_RELATIVE:
228 TRACE ("BFD_RELOC_386_RELATIVE");
229 return &elf_howto_table[R_386_RELATIVE];
230
231 case BFD_RELOC_386_GOTOFF:
232 TRACE ("BFD_RELOC_386_GOTOFF");
233 return &elf_howto_table[R_386_GOTOFF];
234
235 case BFD_RELOC_386_GOTPC:
236 TRACE ("BFD_RELOC_386_GOTPC");
237 return &elf_howto_table[R_386_GOTPC];
238
239 /* These relocs are a GNU extension. */
240 case BFD_RELOC_386_TLS_TPOFF:
241 TRACE ("BFD_RELOC_386_TLS_TPOFF");
242 return &elf_howto_table[R_386_TLS_TPOFF - R_386_ext_offset];
243
244 case BFD_RELOC_386_TLS_IE:
245 TRACE ("BFD_RELOC_386_TLS_IE");
246 return &elf_howto_table[R_386_TLS_IE - R_386_ext_offset];
247
248 case BFD_RELOC_386_TLS_GOTIE:
249 TRACE ("BFD_RELOC_386_TLS_GOTIE");
250 return &elf_howto_table[R_386_TLS_GOTIE - R_386_ext_offset];
251
252 case BFD_RELOC_386_TLS_LE:
253 TRACE ("BFD_RELOC_386_TLS_LE");
254 return &elf_howto_table[R_386_TLS_LE - R_386_ext_offset];
255
256 case BFD_RELOC_386_TLS_GD:
257 TRACE ("BFD_RELOC_386_TLS_GD");
258 return &elf_howto_table[R_386_TLS_GD - R_386_ext_offset];
259
260 case BFD_RELOC_386_TLS_LDM:
261 TRACE ("BFD_RELOC_386_TLS_LDM");
262 return &elf_howto_table[R_386_TLS_LDM - R_386_ext_offset];
263
264 case BFD_RELOC_16:
265 TRACE ("BFD_RELOC_16");
266 return &elf_howto_table[R_386_16 - R_386_ext_offset];
267
268 case BFD_RELOC_16_PCREL:
269 TRACE ("BFD_RELOC_16_PCREL");
270 return &elf_howto_table[R_386_PC16 - R_386_ext_offset];
271
272 case BFD_RELOC_8:
273 TRACE ("BFD_RELOC_8");
274 return &elf_howto_table[R_386_8 - R_386_ext_offset];
275
276 case BFD_RELOC_8_PCREL:
277 TRACE ("BFD_RELOC_8_PCREL");
278 return &elf_howto_table[R_386_PC8 - R_386_ext_offset];
279
280 /* Common with Sun TLS implementation. */
281 case BFD_RELOC_386_TLS_LDO_32:
282 TRACE ("BFD_RELOC_386_TLS_LDO_32");
283 return &elf_howto_table[R_386_TLS_LDO_32 - R_386_tls_offset];
284
285 case BFD_RELOC_386_TLS_IE_32:
286 TRACE ("BFD_RELOC_386_TLS_IE_32");
287 return &elf_howto_table[R_386_TLS_IE_32 - R_386_tls_offset];
288
289 case BFD_RELOC_386_TLS_LE_32:
290 TRACE ("BFD_RELOC_386_TLS_LE_32");
291 return &elf_howto_table[R_386_TLS_LE_32 - R_386_tls_offset];
292
293 case BFD_RELOC_386_TLS_DTPMOD32:
294 TRACE ("BFD_RELOC_386_TLS_DTPMOD32");
295 return &elf_howto_table[R_386_TLS_DTPMOD32 - R_386_tls_offset];
296
297 case BFD_RELOC_386_TLS_DTPOFF32:
298 TRACE ("BFD_RELOC_386_TLS_DTPOFF32");
299 return &elf_howto_table[R_386_TLS_DTPOFF32 - R_386_tls_offset];
300
301 case BFD_RELOC_386_TLS_TPOFF32:
302 TRACE ("BFD_RELOC_386_TLS_TPOFF32");
303 return &elf_howto_table[R_386_TLS_TPOFF32 - R_386_tls_offset];
304
305 case BFD_RELOC_386_TLS_GOTDESC:
306 TRACE ("BFD_RELOC_386_TLS_GOTDESC");
307 return &elf_howto_table[R_386_TLS_GOTDESC - R_386_tls_offset];
308
309 case BFD_RELOC_386_TLS_DESC_CALL:
310 TRACE ("BFD_RELOC_386_TLS_DESC_CALL");
311 return &elf_howto_table[R_386_TLS_DESC_CALL - R_386_tls_offset];
312
313 case BFD_RELOC_386_TLS_DESC:
314 TRACE ("BFD_RELOC_386_TLS_DESC");
315 return &elf_howto_table[R_386_TLS_DESC - R_386_tls_offset];
316
317 case BFD_RELOC_VTABLE_INHERIT:
318 TRACE ("BFD_RELOC_VTABLE_INHERIT");
319 return &elf_howto_table[R_386_GNU_VTINHERIT - R_386_vt_offset];
320
321 case BFD_RELOC_VTABLE_ENTRY:
322 TRACE ("BFD_RELOC_VTABLE_ENTRY");
323 return &elf_howto_table[R_386_GNU_VTENTRY - R_386_vt_offset];
324
325 default:
326 break;
327 }
328
329 TRACE ("Unknown");
330 return 0;
331 }
332
333 static void
334 elf_i386_info_to_howto_rel (bfd *abfd ATTRIBUTE_UNUSED,
335 arelent *cache_ptr,
336 Elf_Internal_Rela *dst)
337 {
338 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
339 unsigned int indx;
340
341 if ((indx = r_type) >= R_386_standard
342 && ((indx = r_type - R_386_ext_offset) - R_386_standard
343 >= R_386_ext - R_386_standard)
344 && ((indx = r_type - R_386_tls_offset) - R_386_ext
345 >= R_386_tls - R_386_ext)
346 && ((indx = r_type - R_386_vt_offset) - R_386_tls
347 >= R_386_vt - R_386_tls))
348 {
349 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
350 abfd, (int) r_type);
351 indx = R_386_NONE;
352 }
353 cache_ptr->howto = &elf_howto_table[indx];
354 }
355
356 /* Return whether a symbol name implies a local label. The UnixWare
357 2.1 cc generates temporary symbols that start with .X, so we
358 recognize them here. FIXME: do other SVR4 compilers also use .X?.
359 If so, we should move the .X recognition into
360 _bfd_elf_is_local_label_name. */
361
362 static bfd_boolean
363 elf_i386_is_local_label_name (bfd *abfd, const char *name)
364 {
365 if (name[0] == '.' && name[1] == 'X')
366 return TRUE;
367
368 return _bfd_elf_is_local_label_name (abfd, name);
369 }
370 \f
371 /* Support for core dump NOTE sections. */
372
373 static bfd_boolean
374 elf_i386_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
375 {
376 int offset;
377 size_t size;
378
379 if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0)
380 {
381 int pr_version = bfd_get_32 (abfd, note->descdata);
382
383 if (pr_version != 1)
384 return FALSE;
385
386 /* pr_cursig */
387 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 20);
388
389 /* pr_pid */
390 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
391
392 /* pr_reg */
393 offset = 28;
394 size = bfd_get_32 (abfd, note->descdata + 8);
395 }
396 else
397 {
398 switch (note->descsz)
399 {
400 default:
401 return FALSE;
402
403 case 144: /* Linux/i386 */
404 /* pr_cursig */
405 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
406
407 /* pr_pid */
408 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
409
410 /* pr_reg */
411 offset = 72;
412 size = 68;
413
414 break;
415 }
416 }
417
418 /* Make a ".reg/999" section. */
419 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
420 size, note->descpos + offset);
421 }
422
423 static bfd_boolean
424 elf_i386_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
425 {
426 if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0)
427 {
428 int pr_version = bfd_get_32 (abfd, note->descdata);
429
430 if (pr_version != 1)
431 return FALSE;
432
433 elf_tdata (abfd)->core_program
434 = _bfd_elfcore_strndup (abfd, note->descdata + 8, 17);
435 elf_tdata (abfd)->core_command
436 = _bfd_elfcore_strndup (abfd, note->descdata + 25, 81);
437 }
438 else
439 {
440 switch (note->descsz)
441 {
442 default:
443 return FALSE;
444
445 case 124: /* Linux/i386 elf_prpsinfo. */
446 elf_tdata (abfd)->core_program
447 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
448 elf_tdata (abfd)->core_command
449 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
450 }
451 }
452
453 /* Note that for some reason, a spurious space is tacked
454 onto the end of the args in some (at least one anyway)
455 implementations, so strip it off if it exists. */
456 {
457 char *command = elf_tdata (abfd)->core_command;
458 int n = strlen (command);
459
460 if (0 < n && command[n - 1] == ' ')
461 command[n - 1] = '\0';
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Functions for the i386 ELF linker.
468
469 In order to gain some understanding of code in this file without
470 knowing all the intricate details of the linker, note the
471 following:
472
473 Functions named elf_i386_* are called by external routines, other
474 functions are only called locally. elf_i386_* functions appear
475 in this file more or less in the order in which they are called
476 from external routines. eg. elf_i386_check_relocs is called
477 early in the link process, elf_i386_finish_dynamic_sections is
478 one of the last functions. */
479
480
481 /* The name of the dynamic interpreter. This is put in the .interp
482 section. */
483
484 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
485
486 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
487 copying dynamic variables from a shared lib into an app's dynbss
488 section, and instead use a dynamic relocation to point into the
489 shared lib. */
490 #define ELIMINATE_COPY_RELOCS 1
491
492 /* The size in bytes of an entry in the procedure linkage table. */
493
494 #define PLT_ENTRY_SIZE 16
495
496 /* The first entry in an absolute procedure linkage table looks like
497 this. See the SVR4 ABI i386 supplement to see how this works.
498 Will be padded to PLT_ENTRY_SIZE with htab->plt0_pad_byte. */
499
500 static const bfd_byte elf_i386_plt0_entry[12] =
501 {
502 0xff, 0x35, /* pushl contents of address */
503 0, 0, 0, 0, /* replaced with address of .got + 4. */
504 0xff, 0x25, /* jmp indirect */
505 0, 0, 0, 0 /* replaced with address of .got + 8. */
506 };
507
508 /* Subsequent entries in an absolute procedure linkage table look like
509 this. */
510
511 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
512 {
513 0xff, 0x25, /* jmp indirect */
514 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
515 0x68, /* pushl immediate */
516 0, 0, 0, 0, /* replaced with offset into relocation table. */
517 0xe9, /* jmp relative */
518 0, 0, 0, 0 /* replaced with offset to start of .plt. */
519 };
520
521 /* The first entry in a PIC procedure linkage table look like this.
522 Will be padded to PLT_ENTRY_SIZE with htab->plt0_pad_byte. */
523
524 static const bfd_byte elf_i386_pic_plt0_entry[12] =
525 {
526 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
527 0xff, 0xa3, 8, 0, 0, 0 /* jmp *8(%ebx) */
528 };
529
530 /* Subsequent entries in a PIC procedure linkage table look like this. */
531
532 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
533 {
534 0xff, 0xa3, /* jmp *offset(%ebx) */
535 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
536 0x68, /* pushl immediate */
537 0, 0, 0, 0, /* replaced with offset into relocation table. */
538 0xe9, /* jmp relative */
539 0, 0, 0, 0 /* replaced with offset to start of .plt. */
540 };
541
542 /* On VxWorks, the .rel.plt.unloaded section has absolute relocations
543 for the PLTResolve stub and then for each PLT entry. */
544 #define PLTRESOLVE_RELOCS_SHLIB 0
545 #define PLTRESOLVE_RELOCS 2
546 #define PLT_NON_JUMP_SLOT_RELOCS 2
547
548 /* The i386 linker needs to keep track of the number of relocs that it
549 decides to copy as dynamic relocs in check_relocs for each symbol.
550 This is so that it can later discard them if they are found to be
551 unnecessary. We store the information in a field extending the
552 regular ELF linker hash table. */
553
554 struct elf_i386_dyn_relocs
555 {
556 struct elf_i386_dyn_relocs *next;
557
558 /* The input section of the reloc. */
559 asection *sec;
560
561 /* Total number of relocs copied for the input section. */
562 bfd_size_type count;
563
564 /* Number of pc-relative relocs copied for the input section. */
565 bfd_size_type pc_count;
566 };
567
568 /* i386 ELF linker hash entry. */
569
570 struct elf_i386_link_hash_entry
571 {
572 struct elf_link_hash_entry elf;
573
574 /* Track dynamic relocs copied for this symbol. */
575 struct elf_i386_dyn_relocs *dyn_relocs;
576
577 #define GOT_UNKNOWN 0
578 #define GOT_NORMAL 1
579 #define GOT_TLS_GD 2
580 #define GOT_TLS_IE 4
581 #define GOT_TLS_IE_POS 5
582 #define GOT_TLS_IE_NEG 6
583 #define GOT_TLS_IE_BOTH 7
584 #define GOT_TLS_GDESC 8
585 #define GOT_TLS_GD_BOTH_P(type) \
586 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
587 #define GOT_TLS_GD_P(type) \
588 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
589 #define GOT_TLS_GDESC_P(type) \
590 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
591 #define GOT_TLS_GD_ANY_P(type) \
592 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
593 unsigned char tls_type;
594
595 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
596 starting at the end of the jump table. */
597 bfd_vma tlsdesc_got;
598 };
599
600 #define elf_i386_hash_entry(ent) ((struct elf_i386_link_hash_entry *)(ent))
601
602 struct elf_i386_obj_tdata
603 {
604 struct elf_obj_tdata root;
605
606 /* tls_type for each local got entry. */
607 char *local_got_tls_type;
608
609 /* GOTPLT entries for TLS descriptors. */
610 bfd_vma *local_tlsdesc_gotent;
611 };
612
613 #define elf_i386_tdata(abfd) \
614 ((struct elf_i386_obj_tdata *) (abfd)->tdata.any)
615
616 #define elf_i386_local_got_tls_type(abfd) \
617 (elf_i386_tdata (abfd)->local_got_tls_type)
618
619 #define elf_i386_local_tlsdesc_gotent(abfd) \
620 (elf_i386_tdata (abfd)->local_tlsdesc_gotent)
621
622 static bfd_boolean
623 elf_i386_mkobject (bfd *abfd)
624 {
625 bfd_size_type amt = sizeof (struct elf_i386_obj_tdata);
626 abfd->tdata.any = bfd_zalloc (abfd, amt);
627 if (abfd->tdata.any == NULL)
628 return FALSE;
629 return TRUE;
630 }
631
632 /* i386 ELF linker hash table. */
633
634 struct elf_i386_link_hash_table
635 {
636 struct elf_link_hash_table elf;
637
638 /* Short-cuts to get to dynamic linker sections. */
639 asection *sgot;
640 asection *sgotplt;
641 asection *srelgot;
642 asection *splt;
643 asection *srelplt;
644 asection *sdynbss;
645 asection *srelbss;
646
647 /* The (unloaded but important) .rel.plt.unloaded section on VxWorks. */
648 asection *srelplt2;
649
650 /* True if the target system is VxWorks. */
651 int is_vxworks;
652
653 /* Value used to fill the last word of the first plt entry. */
654 bfd_byte plt0_pad_byte;
655
656 /* The index of the next unused R_386_TLS_DESC slot in .rel.plt. */
657 bfd_vma next_tls_desc_index;
658
659 union {
660 bfd_signed_vma refcount;
661 bfd_vma offset;
662 } tls_ldm_got;
663
664 /* The amount of space used by the reserved portion of the sgotplt
665 section, plus whatever space is used by the jump slots. */
666 bfd_vma sgotplt_jump_table_size;
667
668 /* Small local sym to section mapping cache. */
669 struct sym_sec_cache sym_sec;
670 };
671
672 /* Get the i386 ELF linker hash table from a link_info structure. */
673
674 #define elf_i386_hash_table(p) \
675 ((struct elf_i386_link_hash_table *) ((p)->hash))
676
677 #define elf_i386_compute_jump_table_size(htab) \
678 ((htab)->next_tls_desc_index * 4)
679
680 /* Create an entry in an i386 ELF linker hash table. */
681
682 static struct bfd_hash_entry *
683 link_hash_newfunc (struct bfd_hash_entry *entry,
684 struct bfd_hash_table *table,
685 const char *string)
686 {
687 /* Allocate the structure if it has not already been allocated by a
688 subclass. */
689 if (entry == NULL)
690 {
691 entry = bfd_hash_allocate (table,
692 sizeof (struct elf_i386_link_hash_entry));
693 if (entry == NULL)
694 return entry;
695 }
696
697 /* Call the allocation method of the superclass. */
698 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
699 if (entry != NULL)
700 {
701 struct elf_i386_link_hash_entry *eh;
702
703 eh = (struct elf_i386_link_hash_entry *) entry;
704 eh->dyn_relocs = NULL;
705 eh->tls_type = GOT_UNKNOWN;
706 eh->tlsdesc_got = (bfd_vma) -1;
707 }
708
709 return entry;
710 }
711
712 /* Create an i386 ELF linker hash table. */
713
714 static struct bfd_link_hash_table *
715 elf_i386_link_hash_table_create (bfd *abfd)
716 {
717 struct elf_i386_link_hash_table *ret;
718 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
719
720 ret = bfd_malloc (amt);
721 if (ret == NULL)
722 return NULL;
723
724 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
725 {
726 free (ret);
727 return NULL;
728 }
729
730 ret->sgot = NULL;
731 ret->sgotplt = NULL;
732 ret->srelgot = NULL;
733 ret->splt = NULL;
734 ret->srelplt = NULL;
735 ret->sdynbss = NULL;
736 ret->srelbss = NULL;
737 ret->tls_ldm_got.refcount = 0;
738 ret->next_tls_desc_index = 0;
739 ret->sgotplt_jump_table_size = 0;
740 ret->sym_sec.abfd = NULL;
741 ret->is_vxworks = 0;
742 ret->srelplt2 = NULL;
743 ret->plt0_pad_byte = 0;
744
745 return &ret->elf.root;
746 }
747
748 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
749 shortcuts to them in our hash table. */
750
751 static bfd_boolean
752 create_got_section (bfd *dynobj, struct bfd_link_info *info)
753 {
754 struct elf_i386_link_hash_table *htab;
755
756 if (! _bfd_elf_create_got_section (dynobj, info))
757 return FALSE;
758
759 htab = elf_i386_hash_table (info);
760 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
761 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
762 if (!htab->sgot || !htab->sgotplt)
763 abort ();
764
765 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rel.got",
766 (SEC_ALLOC | SEC_LOAD
767 | SEC_HAS_CONTENTS
768 | SEC_IN_MEMORY
769 | SEC_LINKER_CREATED
770 | SEC_READONLY));
771 if (htab->srelgot == NULL
772 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
773 return FALSE;
774 return TRUE;
775 }
776
777 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
778 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
779 hash table. */
780
781 static bfd_boolean
782 elf_i386_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
783 {
784 struct elf_i386_link_hash_table *htab;
785
786 htab = elf_i386_hash_table (info);
787 if (!htab->sgot && !create_got_section (dynobj, info))
788 return FALSE;
789
790 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
791 return FALSE;
792
793 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
794 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
795 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
796 if (!info->shared)
797 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
798
799 if (!htab->splt || !htab->srelplt || !htab->sdynbss
800 || (!info->shared && !htab->srelbss))
801 abort ();
802
803 if (htab->is_vxworks
804 && !elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
805 return FALSE;
806
807 return TRUE;
808 }
809
810 /* Copy the extra info we tack onto an elf_link_hash_entry. */
811
812 static void
813 elf_i386_copy_indirect_symbol (struct bfd_link_info *info,
814 struct elf_link_hash_entry *dir,
815 struct elf_link_hash_entry *ind)
816 {
817 struct elf_i386_link_hash_entry *edir, *eind;
818
819 edir = (struct elf_i386_link_hash_entry *) dir;
820 eind = (struct elf_i386_link_hash_entry *) ind;
821
822 if (eind->dyn_relocs != NULL)
823 {
824 if (edir->dyn_relocs != NULL)
825 {
826 struct elf_i386_dyn_relocs **pp;
827 struct elf_i386_dyn_relocs *p;
828
829 /* Add reloc counts against the indirect sym to the direct sym
830 list. Merge any entries against the same section. */
831 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
832 {
833 struct elf_i386_dyn_relocs *q;
834
835 for (q = edir->dyn_relocs; q != NULL; q = q->next)
836 if (q->sec == p->sec)
837 {
838 q->pc_count += p->pc_count;
839 q->count += p->count;
840 *pp = p->next;
841 break;
842 }
843 if (q == NULL)
844 pp = &p->next;
845 }
846 *pp = edir->dyn_relocs;
847 }
848
849 edir->dyn_relocs = eind->dyn_relocs;
850 eind->dyn_relocs = NULL;
851 }
852
853 if (ind->root.type == bfd_link_hash_indirect
854 && dir->got.refcount <= 0)
855 {
856 edir->tls_type = eind->tls_type;
857 eind->tls_type = GOT_UNKNOWN;
858 }
859
860 if (ELIMINATE_COPY_RELOCS
861 && ind->root.type != bfd_link_hash_indirect
862 && dir->dynamic_adjusted)
863 {
864 /* If called to transfer flags for a weakdef during processing
865 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
866 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
867 dir->ref_dynamic |= ind->ref_dynamic;
868 dir->ref_regular |= ind->ref_regular;
869 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
870 dir->needs_plt |= ind->needs_plt;
871 dir->pointer_equality_needed |= ind->pointer_equality_needed;
872 }
873 else
874 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
875 }
876
877 static int
878 elf_i386_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
879 {
880 if (info->shared)
881 return r_type;
882
883 switch (r_type)
884 {
885 case R_386_TLS_GD:
886 case R_386_TLS_GOTDESC:
887 case R_386_TLS_DESC_CALL:
888 case R_386_TLS_IE_32:
889 if (is_local)
890 return R_386_TLS_LE_32;
891 return R_386_TLS_IE_32;
892 case R_386_TLS_IE:
893 case R_386_TLS_GOTIE:
894 if (is_local)
895 return R_386_TLS_LE_32;
896 return r_type;
897 case R_386_TLS_LDM:
898 return R_386_TLS_LE_32;
899 }
900
901 return r_type;
902 }
903
904 /* Look through the relocs for a section during the first phase, and
905 calculate needed space in the global offset table, procedure linkage
906 table, and dynamic reloc sections. */
907
908 static bfd_boolean
909 elf_i386_check_relocs (bfd *abfd,
910 struct bfd_link_info *info,
911 asection *sec,
912 const Elf_Internal_Rela *relocs)
913 {
914 struct elf_i386_link_hash_table *htab;
915 Elf_Internal_Shdr *symtab_hdr;
916 struct elf_link_hash_entry **sym_hashes;
917 const Elf_Internal_Rela *rel;
918 const Elf_Internal_Rela *rel_end;
919 asection *sreloc;
920
921 if (info->relocatable)
922 return TRUE;
923
924 htab = elf_i386_hash_table (info);
925 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
926 sym_hashes = elf_sym_hashes (abfd);
927
928 sreloc = NULL;
929
930 rel_end = relocs + sec->reloc_count;
931 for (rel = relocs; rel < rel_end; rel++)
932 {
933 unsigned int r_type;
934 unsigned long r_symndx;
935 struct elf_link_hash_entry *h;
936
937 r_symndx = ELF32_R_SYM (rel->r_info);
938 r_type = ELF32_R_TYPE (rel->r_info);
939
940 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
941 {
942 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
943 abfd,
944 r_symndx);
945 return FALSE;
946 }
947
948 if (r_symndx < symtab_hdr->sh_info)
949 h = NULL;
950 else
951 {
952 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
953 while (h->root.type == bfd_link_hash_indirect
954 || h->root.type == bfd_link_hash_warning)
955 h = (struct elf_link_hash_entry *) h->root.u.i.link;
956 }
957
958 r_type = elf_i386_tls_transition (info, r_type, h == NULL);
959
960 switch (r_type)
961 {
962 case R_386_TLS_LDM:
963 htab->tls_ldm_got.refcount += 1;
964 goto create_got;
965
966 case R_386_PLT32:
967 /* This symbol requires a procedure linkage table entry. We
968 actually build the entry in adjust_dynamic_symbol,
969 because this might be a case of linking PIC code which is
970 never referenced by a dynamic object, in which case we
971 don't need to generate a procedure linkage table entry
972 after all. */
973
974 /* If this is a local symbol, we resolve it directly without
975 creating a procedure linkage table entry. */
976 if (h == NULL)
977 continue;
978
979 h->needs_plt = 1;
980 h->plt.refcount += 1;
981 break;
982
983 case R_386_TLS_IE_32:
984 case R_386_TLS_IE:
985 case R_386_TLS_GOTIE:
986 if (info->shared)
987 info->flags |= DF_STATIC_TLS;
988 /* Fall through */
989
990 case R_386_GOT32:
991 case R_386_TLS_GD:
992 case R_386_TLS_GOTDESC:
993 case R_386_TLS_DESC_CALL:
994 /* This symbol requires a global offset table entry. */
995 {
996 int tls_type, old_tls_type;
997
998 switch (r_type)
999 {
1000 default:
1001 case R_386_GOT32: tls_type = GOT_NORMAL; break;
1002 case R_386_TLS_GD: tls_type = GOT_TLS_GD; break;
1003 case R_386_TLS_GOTDESC:
1004 case R_386_TLS_DESC_CALL:
1005 tls_type = GOT_TLS_GDESC; break;
1006 case R_386_TLS_IE_32:
1007 if (ELF32_R_TYPE (rel->r_info) == r_type)
1008 tls_type = GOT_TLS_IE_NEG;
1009 else
1010 /* If this is a GD->IE transition, we may use either of
1011 R_386_TLS_TPOFF and R_386_TLS_TPOFF32. */
1012 tls_type = GOT_TLS_IE;
1013 break;
1014 case R_386_TLS_IE:
1015 case R_386_TLS_GOTIE:
1016 tls_type = GOT_TLS_IE_POS; break;
1017 }
1018
1019 if (h != NULL)
1020 {
1021 h->got.refcount += 1;
1022 old_tls_type = elf_i386_hash_entry(h)->tls_type;
1023 }
1024 else
1025 {
1026 bfd_signed_vma *local_got_refcounts;
1027
1028 /* This is a global offset table entry for a local symbol. */
1029 local_got_refcounts = elf_local_got_refcounts (abfd);
1030 if (local_got_refcounts == NULL)
1031 {
1032 bfd_size_type size;
1033
1034 size = symtab_hdr->sh_info;
1035 size *= (sizeof (bfd_signed_vma)
1036 + sizeof (bfd_vma) + sizeof(char));
1037 local_got_refcounts = bfd_zalloc (abfd, size);
1038 if (local_got_refcounts == NULL)
1039 return FALSE;
1040 elf_local_got_refcounts (abfd) = local_got_refcounts;
1041 elf_i386_local_tlsdesc_gotent (abfd)
1042 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1043 elf_i386_local_got_tls_type (abfd)
1044 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1045 }
1046 local_got_refcounts[r_symndx] += 1;
1047 old_tls_type = elf_i386_local_got_tls_type (abfd) [r_symndx];
1048 }
1049
1050 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1051 tls_type |= old_tls_type;
1052 /* If a TLS symbol is accessed using IE at least once,
1053 there is no point to use dynamic model for it. */
1054 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1055 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1056 || (tls_type & GOT_TLS_IE) == 0))
1057 {
1058 if ((old_tls_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (tls_type))
1059 tls_type = old_tls_type;
1060 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1061 && GOT_TLS_GD_ANY_P (tls_type))
1062 tls_type |= old_tls_type;
1063 else
1064 {
1065 (*_bfd_error_handler)
1066 (_("%B: `%s' accessed both as normal and "
1067 "thread local symbol"),
1068 abfd,
1069 h ? h->root.root.string : "<local>");
1070 return FALSE;
1071 }
1072 }
1073
1074 if (old_tls_type != tls_type)
1075 {
1076 if (h != NULL)
1077 elf_i386_hash_entry (h)->tls_type = tls_type;
1078 else
1079 elf_i386_local_got_tls_type (abfd) [r_symndx] = tls_type;
1080 }
1081 }
1082 /* Fall through */
1083
1084 case R_386_GOTOFF:
1085 case R_386_GOTPC:
1086 create_got:
1087 if (htab->sgot == NULL)
1088 {
1089 if (htab->elf.dynobj == NULL)
1090 htab->elf.dynobj = abfd;
1091 if (!create_got_section (htab->elf.dynobj, info))
1092 return FALSE;
1093 }
1094 if (r_type != R_386_TLS_IE)
1095 break;
1096 /* Fall through */
1097
1098 case R_386_TLS_LE_32:
1099 case R_386_TLS_LE:
1100 if (!info->shared)
1101 break;
1102 info->flags |= DF_STATIC_TLS;
1103 /* Fall through */
1104
1105 case R_386_32:
1106 case R_386_PC32:
1107 if (h != NULL && !info->shared)
1108 {
1109 /* If this reloc is in a read-only section, we might
1110 need a copy reloc. We can't check reliably at this
1111 stage whether the section is read-only, as input
1112 sections have not yet been mapped to output sections.
1113 Tentatively set the flag for now, and correct in
1114 adjust_dynamic_symbol. */
1115 h->non_got_ref = 1;
1116
1117 /* We may need a .plt entry if the function this reloc
1118 refers to is in a shared lib. */
1119 h->plt.refcount += 1;
1120 if (r_type != R_386_PC32)
1121 h->pointer_equality_needed = 1;
1122 }
1123
1124 /* If we are creating a shared library, and this is a reloc
1125 against a global symbol, or a non PC relative reloc
1126 against a local symbol, then we need to copy the reloc
1127 into the shared library. However, if we are linking with
1128 -Bsymbolic, we do not need to copy a reloc against a
1129 global symbol which is defined in an object we are
1130 including in the link (i.e., DEF_REGULAR is set). At
1131 this point we have not seen all the input files, so it is
1132 possible that DEF_REGULAR is not set now but will be set
1133 later (it is never cleared). In case of a weak definition,
1134 DEF_REGULAR may be cleared later by a strong definition in
1135 a shared library. We account for that possibility below by
1136 storing information in the relocs_copied field of the hash
1137 table entry. A similar situation occurs when creating
1138 shared libraries and symbol visibility changes render the
1139 symbol local.
1140
1141 If on the other hand, we are creating an executable, we
1142 may need to keep relocations for symbols satisfied by a
1143 dynamic library if we manage to avoid copy relocs for the
1144 symbol. */
1145 if ((info->shared
1146 && (sec->flags & SEC_ALLOC) != 0
1147 && (r_type != R_386_PC32
1148 || (h != NULL
1149 && (! info->symbolic
1150 || h->root.type == bfd_link_hash_defweak
1151 || !h->def_regular))))
1152 || (ELIMINATE_COPY_RELOCS
1153 && !info->shared
1154 && (sec->flags & SEC_ALLOC) != 0
1155 && h != NULL
1156 && (h->root.type == bfd_link_hash_defweak
1157 || !h->def_regular)))
1158 {
1159 struct elf_i386_dyn_relocs *p;
1160 struct elf_i386_dyn_relocs **head;
1161
1162 /* We must copy these reloc types into the output file.
1163 Create a reloc section in dynobj and make room for
1164 this reloc. */
1165 if (sreloc == NULL)
1166 {
1167 const char *name;
1168 bfd *dynobj;
1169 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
1170 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
1171
1172 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
1173 if (name == NULL)
1174 return FALSE;
1175
1176 if (strncmp (name, ".rel", 4) != 0
1177 || strcmp (bfd_get_section_name (abfd, sec),
1178 name + 4) != 0)
1179 {
1180 (*_bfd_error_handler)
1181 (_("%B: bad relocation section name `%s\'"),
1182 abfd, name);
1183 }
1184
1185 if (htab->elf.dynobj == NULL)
1186 htab->elf.dynobj = abfd;
1187
1188 dynobj = htab->elf.dynobj;
1189 sreloc = bfd_get_section_by_name (dynobj, name);
1190 if (sreloc == NULL)
1191 {
1192 flagword flags;
1193
1194 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1195 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1196 if ((sec->flags & SEC_ALLOC) != 0)
1197 flags |= SEC_ALLOC | SEC_LOAD;
1198 sreloc = bfd_make_section_with_flags (dynobj,
1199 name,
1200 flags);
1201 if (sreloc == NULL
1202 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
1203 return FALSE;
1204 }
1205 elf_section_data (sec)->sreloc = sreloc;
1206 }
1207
1208 /* If this is a global symbol, we count the number of
1209 relocations we need for this symbol. */
1210 if (h != NULL)
1211 {
1212 head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs;
1213 }
1214 else
1215 {
1216 void **vpp;
1217 /* Track dynamic relocs needed for local syms too.
1218 We really need local syms available to do this
1219 easily. Oh well. */
1220
1221 asection *s;
1222 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1223 sec, r_symndx);
1224 if (s == NULL)
1225 return FALSE;
1226
1227 vpp = &elf_section_data (s)->local_dynrel;
1228 head = (struct elf_i386_dyn_relocs **)vpp;
1229 }
1230
1231 p = *head;
1232 if (p == NULL || p->sec != sec)
1233 {
1234 bfd_size_type amt = sizeof *p;
1235 p = bfd_alloc (htab->elf.dynobj, amt);
1236 if (p == NULL)
1237 return FALSE;
1238 p->next = *head;
1239 *head = p;
1240 p->sec = sec;
1241 p->count = 0;
1242 p->pc_count = 0;
1243 }
1244
1245 p->count += 1;
1246 if (r_type == R_386_PC32)
1247 p->pc_count += 1;
1248 }
1249 break;
1250
1251 /* This relocation describes the C++ object vtable hierarchy.
1252 Reconstruct it for later use during GC. */
1253 case R_386_GNU_VTINHERIT:
1254 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1255 return FALSE;
1256 break;
1257
1258 /* This relocation describes which C++ vtable entries are actually
1259 used. Record for later use during GC. */
1260 case R_386_GNU_VTENTRY:
1261 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
1262 return FALSE;
1263 break;
1264
1265 default:
1266 break;
1267 }
1268 }
1269
1270 return TRUE;
1271 }
1272
1273 /* Return the section that should be marked against GC for a given
1274 relocation. */
1275
1276 static asection *
1277 elf_i386_gc_mark_hook (asection *sec,
1278 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1279 Elf_Internal_Rela *rel,
1280 struct elf_link_hash_entry *h,
1281 Elf_Internal_Sym *sym)
1282 {
1283 if (h != NULL)
1284 {
1285 switch (ELF32_R_TYPE (rel->r_info))
1286 {
1287 case R_386_GNU_VTINHERIT:
1288 case R_386_GNU_VTENTRY:
1289 break;
1290
1291 default:
1292 switch (h->root.type)
1293 {
1294 case bfd_link_hash_defined:
1295 case bfd_link_hash_defweak:
1296 return h->root.u.def.section;
1297
1298 case bfd_link_hash_common:
1299 return h->root.u.c.p->section;
1300
1301 default:
1302 break;
1303 }
1304 }
1305 }
1306 else
1307 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1308
1309 return NULL;
1310 }
1311
1312 /* Update the got entry reference counts for the section being removed. */
1313
1314 static bfd_boolean
1315 elf_i386_gc_sweep_hook (bfd *abfd,
1316 struct bfd_link_info *info,
1317 asection *sec,
1318 const Elf_Internal_Rela *relocs)
1319 {
1320 Elf_Internal_Shdr *symtab_hdr;
1321 struct elf_link_hash_entry **sym_hashes;
1322 bfd_signed_vma *local_got_refcounts;
1323 const Elf_Internal_Rela *rel, *relend;
1324
1325 elf_section_data (sec)->local_dynrel = NULL;
1326
1327 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1328 sym_hashes = elf_sym_hashes (abfd);
1329 local_got_refcounts = elf_local_got_refcounts (abfd);
1330
1331 relend = relocs + sec->reloc_count;
1332 for (rel = relocs; rel < relend; rel++)
1333 {
1334 unsigned long r_symndx;
1335 unsigned int r_type;
1336 struct elf_link_hash_entry *h = NULL;
1337
1338 r_symndx = ELF32_R_SYM (rel->r_info);
1339 if (r_symndx >= symtab_hdr->sh_info)
1340 {
1341 struct elf_i386_link_hash_entry *eh;
1342 struct elf_i386_dyn_relocs **pp;
1343 struct elf_i386_dyn_relocs *p;
1344
1345 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1346 while (h->root.type == bfd_link_hash_indirect
1347 || h->root.type == bfd_link_hash_warning)
1348 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1349 eh = (struct elf_i386_link_hash_entry *) h;
1350
1351 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1352 if (p->sec == sec)
1353 {
1354 /* Everything must go for SEC. */
1355 *pp = p->next;
1356 break;
1357 }
1358 }
1359
1360 r_type = ELF32_R_TYPE (rel->r_info);
1361 r_type = elf_i386_tls_transition (info, r_type, h != NULL);
1362 switch (r_type)
1363 {
1364 case R_386_TLS_LDM:
1365 if (elf_i386_hash_table (info)->tls_ldm_got.refcount > 0)
1366 elf_i386_hash_table (info)->tls_ldm_got.refcount -= 1;
1367 break;
1368
1369 case R_386_TLS_GD:
1370 case R_386_TLS_GOTDESC:
1371 case R_386_TLS_DESC_CALL:
1372 case R_386_TLS_IE_32:
1373 case R_386_TLS_IE:
1374 case R_386_TLS_GOTIE:
1375 case R_386_GOT32:
1376 if (h != NULL)
1377 {
1378 if (h->got.refcount > 0)
1379 h->got.refcount -= 1;
1380 }
1381 else if (local_got_refcounts != NULL)
1382 {
1383 if (local_got_refcounts[r_symndx] > 0)
1384 local_got_refcounts[r_symndx] -= 1;
1385 }
1386 break;
1387
1388 case R_386_32:
1389 case R_386_PC32:
1390 if (info->shared)
1391 break;
1392 /* Fall through */
1393
1394 case R_386_PLT32:
1395 if (h != NULL)
1396 {
1397 if (h->plt.refcount > 0)
1398 h->plt.refcount -= 1;
1399 }
1400 break;
1401
1402 default:
1403 break;
1404 }
1405 }
1406
1407 return TRUE;
1408 }
1409
1410 /* Adjust a symbol defined by a dynamic object and referenced by a
1411 regular object. The current definition is in some section of the
1412 dynamic object, but we're not including those sections. We have to
1413 change the definition to something the rest of the link can
1414 understand. */
1415
1416 static bfd_boolean
1417 elf_i386_adjust_dynamic_symbol (struct bfd_link_info *info,
1418 struct elf_link_hash_entry *h)
1419 {
1420 struct elf_i386_link_hash_table *htab;
1421 asection *s;
1422 unsigned int power_of_two;
1423
1424 /* If this is a function, put it in the procedure linkage table. We
1425 will fill in the contents of the procedure linkage table later,
1426 when we know the address of the .got section. */
1427 if (h->type == STT_FUNC
1428 || h->needs_plt)
1429 {
1430 if (h->plt.refcount <= 0
1431 || SYMBOL_CALLS_LOCAL (info, h)
1432 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1433 && h->root.type == bfd_link_hash_undefweak))
1434 {
1435 /* This case can occur if we saw a PLT32 reloc in an input
1436 file, but the symbol was never referred to by a dynamic
1437 object, or if all references were garbage collected. In
1438 such a case, we don't actually need to build a procedure
1439 linkage table, and we can just do a PC32 reloc instead. */
1440 h->plt.offset = (bfd_vma) -1;
1441 h->needs_plt = 0;
1442 }
1443
1444 return TRUE;
1445 }
1446 else
1447 /* It's possible that we incorrectly decided a .plt reloc was
1448 needed for an R_386_PC32 reloc to a non-function sym in
1449 check_relocs. We can't decide accurately between function and
1450 non-function syms in check-relocs; Objects loaded later in
1451 the link may change h->type. So fix it now. */
1452 h->plt.offset = (bfd_vma) -1;
1453
1454 /* If this is a weak symbol, and there is a real definition, the
1455 processor independent code will have arranged for us to see the
1456 real definition first, and we can just use the same value. */
1457 if (h->u.weakdef != NULL)
1458 {
1459 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1460 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1461 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1462 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1463 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1464 h->non_got_ref = h->u.weakdef->non_got_ref;
1465 return TRUE;
1466 }
1467
1468 /* This is a reference to a symbol defined by a dynamic object which
1469 is not a function. */
1470
1471 /* If we are creating a shared library, we must presume that the
1472 only references to the symbol are via the global offset table.
1473 For such cases we need not do anything here; the relocations will
1474 be handled correctly by relocate_section. */
1475 if (info->shared)
1476 return TRUE;
1477
1478 /* If there are no references to this symbol that do not use the
1479 GOT, we don't need to generate a copy reloc. */
1480 if (!h->non_got_ref)
1481 return TRUE;
1482
1483 /* If -z nocopyreloc was given, we won't generate them either. */
1484 if (info->nocopyreloc)
1485 {
1486 h->non_got_ref = 0;
1487 return TRUE;
1488 }
1489
1490 htab = elf_i386_hash_table (info);
1491
1492 /* If there aren't any dynamic relocs in read-only sections, then
1493 we can keep the dynamic relocs and avoid the copy reloc. This
1494 doesn't work on VxWorks, where we can not have dynamic relocations
1495 (other than copy and jump slot relocations) in an executable. */
1496 if (ELIMINATE_COPY_RELOCS && !htab->is_vxworks)
1497 {
1498 struct elf_i386_link_hash_entry * eh;
1499 struct elf_i386_dyn_relocs *p;
1500
1501 eh = (struct elf_i386_link_hash_entry *) h;
1502 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1503 {
1504 s = p->sec->output_section;
1505 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1506 break;
1507 }
1508
1509 if (p == NULL)
1510 {
1511 h->non_got_ref = 0;
1512 return TRUE;
1513 }
1514 }
1515
1516 if (h->size == 0)
1517 {
1518 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1519 h->root.root.string);
1520 return TRUE;
1521 }
1522
1523 /* We must allocate the symbol in our .dynbss section, which will
1524 become part of the .bss section of the executable. There will be
1525 an entry for this symbol in the .dynsym section. The dynamic
1526 object will contain position independent code, so all references
1527 from the dynamic object to this symbol will go through the global
1528 offset table. The dynamic linker will use the .dynsym entry to
1529 determine the address it must put in the global offset table, so
1530 both the dynamic object and the regular object will refer to the
1531 same memory location for the variable. */
1532
1533 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1534 copy the initial value out of the dynamic object and into the
1535 runtime process image. */
1536 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1537 {
1538 htab->srelbss->size += sizeof (Elf32_External_Rel);
1539 h->needs_copy = 1;
1540 }
1541
1542 /* We need to figure out the alignment required for this symbol. I
1543 have no idea how ELF linkers handle this. */
1544 power_of_two = bfd_log2 (h->size);
1545 if (power_of_two > 3)
1546 power_of_two = 3;
1547
1548 /* Apply the required alignment. */
1549 s = htab->sdynbss;
1550 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1551 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1552 {
1553 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1554 return FALSE;
1555 }
1556
1557 /* Define the symbol as being at this point in the section. */
1558 h->root.u.def.section = s;
1559 h->root.u.def.value = s->size;
1560
1561 /* Increment the section size to make room for the symbol. */
1562 s->size += h->size;
1563
1564 return TRUE;
1565 }
1566
1567 /* Allocate space in .plt, .got and associated reloc sections for
1568 dynamic relocs. */
1569
1570 static bfd_boolean
1571 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1572 {
1573 struct bfd_link_info *info;
1574 struct elf_i386_link_hash_table *htab;
1575 struct elf_i386_link_hash_entry *eh;
1576 struct elf_i386_dyn_relocs *p;
1577
1578 if (h->root.type == bfd_link_hash_indirect)
1579 return TRUE;
1580
1581 if (h->root.type == bfd_link_hash_warning)
1582 /* When warning symbols are created, they **replace** the "real"
1583 entry in the hash table, thus we never get to see the real
1584 symbol in a hash traversal. So look at it now. */
1585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1586
1587 info = (struct bfd_link_info *) inf;
1588 htab = elf_i386_hash_table (info);
1589
1590 if (htab->elf.dynamic_sections_created
1591 && h->plt.refcount > 0)
1592 {
1593 /* Make sure this symbol is output as a dynamic symbol.
1594 Undefined weak syms won't yet be marked as dynamic. */
1595 if (h->dynindx == -1
1596 && !h->forced_local)
1597 {
1598 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1599 return FALSE;
1600 }
1601
1602 if (info->shared
1603 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1604 {
1605 asection *s = htab->splt;
1606
1607 /* If this is the first .plt entry, make room for the special
1608 first entry. */
1609 if (s->size == 0)
1610 s->size += PLT_ENTRY_SIZE;
1611
1612 h->plt.offset = s->size;
1613
1614 /* If this symbol is not defined in a regular file, and we are
1615 not generating a shared library, then set the symbol to this
1616 location in the .plt. This is required to make function
1617 pointers compare as equal between the normal executable and
1618 the shared library. */
1619 if (! info->shared
1620 && !h->def_regular)
1621 {
1622 h->root.u.def.section = s;
1623 h->root.u.def.value = h->plt.offset;
1624 }
1625
1626 /* Make room for this entry. */
1627 s->size += PLT_ENTRY_SIZE;
1628
1629 /* We also need to make an entry in the .got.plt section, which
1630 will be placed in the .got section by the linker script. */
1631 htab->sgotplt->size += 4;
1632
1633 /* We also need to make an entry in the .rel.plt section. */
1634 htab->srelplt->size += sizeof (Elf32_External_Rel);
1635 htab->next_tls_desc_index++;
1636
1637 if (htab->is_vxworks && !info->shared)
1638 {
1639 /* VxWorks has a second set of relocations for each PLT entry
1640 in executables. They go in a separate relocation section,
1641 which is processed by the kernel loader. */
1642
1643 /* There are two relocations for the initial PLT entry: an
1644 R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 4 and an
1645 R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 8. */
1646
1647 if (h->plt.offset == PLT_ENTRY_SIZE)
1648 htab->srelplt2->size += (sizeof (Elf32_External_Rel) * 2);
1649
1650 /* There are two extra relocations for each subsequent PLT entry:
1651 an R_386_32 relocation for the GOT entry, and an R_386_32
1652 relocation for the PLT entry. */
1653
1654 htab->srelplt2->size += (sizeof (Elf32_External_Rel) * 2);
1655 }
1656 }
1657 else
1658 {
1659 h->plt.offset = (bfd_vma) -1;
1660 h->needs_plt = 0;
1661 }
1662 }
1663 else
1664 {
1665 h->plt.offset = (bfd_vma) -1;
1666 h->needs_plt = 0;
1667 }
1668
1669 eh = (struct elf_i386_link_hash_entry *) h;
1670 eh->tlsdesc_got = (bfd_vma) -1;
1671
1672 /* If R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the binary,
1673 make it a R_386_TLS_LE_32 requiring no TLS entry. */
1674 if (h->got.refcount > 0
1675 && !info->shared
1676 && h->dynindx == -1
1677 && (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE))
1678 h->got.offset = (bfd_vma) -1;
1679 else if (h->got.refcount > 0)
1680 {
1681 asection *s;
1682 bfd_boolean dyn;
1683 int tls_type = elf_i386_hash_entry(h)->tls_type;
1684
1685 /* Make sure this symbol is output as a dynamic symbol.
1686 Undefined weak syms won't yet be marked as dynamic. */
1687 if (h->dynindx == -1
1688 && !h->forced_local)
1689 {
1690 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1691 return FALSE;
1692 }
1693
1694 s = htab->sgot;
1695 if (GOT_TLS_GDESC_P (tls_type))
1696 {
1697 eh->tlsdesc_got = htab->sgotplt->size
1698 - elf_i386_compute_jump_table_size (htab);
1699 htab->sgotplt->size += 8;
1700 h->got.offset = (bfd_vma) -2;
1701 }
1702 if (! GOT_TLS_GDESC_P (tls_type)
1703 || GOT_TLS_GD_P (tls_type))
1704 {
1705 h->got.offset = s->size;
1706 s->size += 4;
1707 /* R_386_TLS_GD needs 2 consecutive GOT slots. */
1708 if (GOT_TLS_GD_P (tls_type) || tls_type == GOT_TLS_IE_BOTH)
1709 s->size += 4;
1710 }
1711 dyn = htab->elf.dynamic_sections_created;
1712 /* R_386_TLS_IE_32 needs one dynamic relocation,
1713 R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation,
1714 (but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we
1715 need two), R_386_TLS_GD needs one if local symbol and two if
1716 global. */
1717 if (tls_type == GOT_TLS_IE_BOTH)
1718 htab->srelgot->size += 2 * sizeof (Elf32_External_Rel);
1719 else if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1720 || (tls_type & GOT_TLS_IE))
1721 htab->srelgot->size += sizeof (Elf32_External_Rel);
1722 else if (GOT_TLS_GD_P (tls_type))
1723 htab->srelgot->size += 2 * sizeof (Elf32_External_Rel);
1724 else if (! GOT_TLS_GDESC_P (tls_type)
1725 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1726 || h->root.type != bfd_link_hash_undefweak)
1727 && (info->shared
1728 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1729 htab->srelgot->size += sizeof (Elf32_External_Rel);
1730 if (GOT_TLS_GDESC_P (tls_type))
1731 htab->srelplt->size += sizeof (Elf32_External_Rel);
1732 }
1733 else
1734 h->got.offset = (bfd_vma) -1;
1735
1736 if (eh->dyn_relocs == NULL)
1737 return TRUE;
1738
1739 /* In the shared -Bsymbolic case, discard space allocated for
1740 dynamic pc-relative relocs against symbols which turn out to be
1741 defined in regular objects. For the normal shared case, discard
1742 space for pc-relative relocs that have become local due to symbol
1743 visibility changes. */
1744
1745 if (info->shared)
1746 {
1747 /* The only reloc that uses pc_count is R_386_PC32, which will
1748 appear on a call or on something like ".long foo - .". We
1749 want calls to protected symbols to resolve directly to the
1750 function rather than going via the plt. If people want
1751 function pointer comparisons to work as expected then they
1752 should avoid writing assembly like ".long foo - .". */
1753 if (SYMBOL_CALLS_LOCAL (info, h))
1754 {
1755 struct elf_i386_dyn_relocs **pp;
1756
1757 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1758 {
1759 p->count -= p->pc_count;
1760 p->pc_count = 0;
1761 if (p->count == 0)
1762 *pp = p->next;
1763 else
1764 pp = &p->next;
1765 }
1766 }
1767
1768 /* Also discard relocs on undefined weak syms with non-default
1769 visibility. */
1770 if (eh->dyn_relocs != NULL
1771 && h->root.type == bfd_link_hash_undefweak)
1772 {
1773 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1774 eh->dyn_relocs = NULL;
1775
1776 /* Make sure undefined weak symbols are output as a dynamic
1777 symbol in PIEs. */
1778 else if (h->dynindx == -1
1779 && !h->forced_local)
1780 {
1781 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1782 return FALSE;
1783 }
1784 }
1785 }
1786 else if (ELIMINATE_COPY_RELOCS)
1787 {
1788 /* For the non-shared case, discard space for relocs against
1789 symbols which turn out to need copy relocs or are not
1790 dynamic. */
1791
1792 if (!h->non_got_ref
1793 && ((h->def_dynamic
1794 && !h->def_regular)
1795 || (htab->elf.dynamic_sections_created
1796 && (h->root.type == bfd_link_hash_undefweak
1797 || h->root.type == bfd_link_hash_undefined))))
1798 {
1799 /* Make sure this symbol is output as a dynamic symbol.
1800 Undefined weak syms won't yet be marked as dynamic. */
1801 if (h->dynindx == -1
1802 && !h->forced_local)
1803 {
1804 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1805 return FALSE;
1806 }
1807
1808 /* If that succeeded, we know we'll be keeping all the
1809 relocs. */
1810 if (h->dynindx != -1)
1811 goto keep;
1812 }
1813
1814 eh->dyn_relocs = NULL;
1815
1816 keep: ;
1817 }
1818
1819 /* Finally, allocate space. */
1820 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1821 {
1822 asection *sreloc = elf_section_data (p->sec)->sreloc;
1823 sreloc->size += p->count * sizeof (Elf32_External_Rel);
1824 }
1825
1826 return TRUE;
1827 }
1828
1829 /* Find any dynamic relocs that apply to read-only sections. */
1830
1831 static bfd_boolean
1832 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1833 {
1834 struct elf_i386_link_hash_entry *eh;
1835 struct elf_i386_dyn_relocs *p;
1836
1837 if (h->root.type == bfd_link_hash_warning)
1838 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1839
1840 eh = (struct elf_i386_link_hash_entry *) h;
1841 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1842 {
1843 asection *s = p->sec->output_section;
1844
1845 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1846 {
1847 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1848
1849 info->flags |= DF_TEXTREL;
1850
1851 /* Not an error, just cut short the traversal. */
1852 return FALSE;
1853 }
1854 }
1855 return TRUE;
1856 }
1857
1858 /* Set the sizes of the dynamic sections. */
1859
1860 static bfd_boolean
1861 elf_i386_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1862 struct bfd_link_info *info)
1863 {
1864 struct elf_i386_link_hash_table *htab;
1865 bfd *dynobj;
1866 asection *s;
1867 bfd_boolean relocs;
1868 bfd *ibfd;
1869
1870 htab = elf_i386_hash_table (info);
1871 dynobj = htab->elf.dynobj;
1872 if (dynobj == NULL)
1873 abort ();
1874
1875 if (htab->elf.dynamic_sections_created)
1876 {
1877 /* Set the contents of the .interp section to the interpreter. */
1878 if (info->executable)
1879 {
1880 s = bfd_get_section_by_name (dynobj, ".interp");
1881 if (s == NULL)
1882 abort ();
1883 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1884 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1885 }
1886 }
1887
1888 /* Set up .got offsets for local syms, and space for local dynamic
1889 relocs. */
1890 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1891 {
1892 bfd_signed_vma *local_got;
1893 bfd_signed_vma *end_local_got;
1894 char *local_tls_type;
1895 bfd_vma *local_tlsdesc_gotent;
1896 bfd_size_type locsymcount;
1897 Elf_Internal_Shdr *symtab_hdr;
1898 asection *srel;
1899
1900 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1901 continue;
1902
1903 for (s = ibfd->sections; s != NULL; s = s->next)
1904 {
1905 struct elf_i386_dyn_relocs *p;
1906
1907 for (p = ((struct elf_i386_dyn_relocs *)
1908 elf_section_data (s)->local_dynrel);
1909 p != NULL;
1910 p = p->next)
1911 {
1912 if (!bfd_is_abs_section (p->sec)
1913 && bfd_is_abs_section (p->sec->output_section))
1914 {
1915 /* Input section has been discarded, either because
1916 it is a copy of a linkonce section or due to
1917 linker script /DISCARD/, so we'll be discarding
1918 the relocs too. */
1919 }
1920 else if (p->count != 0)
1921 {
1922 srel = elf_section_data (p->sec)->sreloc;
1923 srel->size += p->count * sizeof (Elf32_External_Rel);
1924 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1925 info->flags |= DF_TEXTREL;
1926 }
1927 }
1928 }
1929
1930 local_got = elf_local_got_refcounts (ibfd);
1931 if (!local_got)
1932 continue;
1933
1934 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1935 locsymcount = symtab_hdr->sh_info;
1936 end_local_got = local_got + locsymcount;
1937 local_tls_type = elf_i386_local_got_tls_type (ibfd);
1938 local_tlsdesc_gotent = elf_i386_local_tlsdesc_gotent (ibfd);
1939 s = htab->sgot;
1940 srel = htab->srelgot;
1941 for (; local_got < end_local_got;
1942 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
1943 {
1944 *local_tlsdesc_gotent = (bfd_vma) -1;
1945 if (*local_got > 0)
1946 {
1947 if (GOT_TLS_GDESC_P (*local_tls_type))
1948 {
1949 *local_tlsdesc_gotent = htab->sgotplt->size
1950 - elf_i386_compute_jump_table_size (htab);
1951 htab->sgotplt->size += 8;
1952 *local_got = (bfd_vma) -2;
1953 }
1954 if (! GOT_TLS_GDESC_P (*local_tls_type)
1955 || GOT_TLS_GD_P (*local_tls_type))
1956 {
1957 *local_got = s->size;
1958 s->size += 4;
1959 if (GOT_TLS_GD_P (*local_tls_type)
1960 || *local_tls_type == GOT_TLS_IE_BOTH)
1961 s->size += 4;
1962 }
1963 if (info->shared
1964 || GOT_TLS_GD_ANY_P (*local_tls_type)
1965 || (*local_tls_type & GOT_TLS_IE))
1966 {
1967 if (*local_tls_type == GOT_TLS_IE_BOTH)
1968 srel->size += 2 * sizeof (Elf32_External_Rel);
1969 else if (GOT_TLS_GD_P (*local_tls_type)
1970 || ! GOT_TLS_GDESC_P (*local_tls_type))
1971 srel->size += sizeof (Elf32_External_Rel);
1972 if (GOT_TLS_GDESC_P (*local_tls_type))
1973 htab->srelplt->size += sizeof (Elf32_External_Rel);
1974 }
1975 }
1976 else
1977 *local_got = (bfd_vma) -1;
1978 }
1979 }
1980
1981 if (htab->tls_ldm_got.refcount > 0)
1982 {
1983 /* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM
1984 relocs. */
1985 htab->tls_ldm_got.offset = htab->sgot->size;
1986 htab->sgot->size += 8;
1987 htab->srelgot->size += sizeof (Elf32_External_Rel);
1988 }
1989 else
1990 htab->tls_ldm_got.offset = -1;
1991
1992 /* Allocate global sym .plt and .got entries, and space for global
1993 sym dynamic relocs. */
1994 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1995
1996 /* For every jump slot reserved in the sgotplt, reloc_count is
1997 incremented. However, when we reserve space for TLS descriptors,
1998 it's not incremented, so in order to compute the space reserved
1999 for them, it suffices to multiply the reloc count by the jump
2000 slot size. */
2001 if (htab->srelplt)
2002 htab->sgotplt_jump_table_size = htab->next_tls_desc_index * 4;
2003
2004 /* We now have determined the sizes of the various dynamic sections.
2005 Allocate memory for them. */
2006 relocs = FALSE;
2007 for (s = dynobj->sections; s != NULL; s = s->next)
2008 {
2009 bfd_boolean strip_section = TRUE;
2010
2011 if ((s->flags & SEC_LINKER_CREATED) == 0)
2012 continue;
2013
2014 if (s == htab->splt
2015 || s == htab->sgot
2016 || s == htab->sgotplt
2017 || s == htab->sdynbss)
2018 {
2019 /* Strip this section if we don't need it; see the
2020 comment below. */
2021 /* We'd like to strip these sections if they aren't needed, but if
2022 we've exported dynamic symbols from them we must leave them.
2023 It's too late to tell BFD to get rid of the symbols. */
2024
2025 if (htab->elf.hplt != NULL)
2026 strip_section = FALSE;
2027 }
2028 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
2029 {
2030 if (s->size != 0 && s != htab->srelplt && s != htab->srelplt2)
2031 relocs = TRUE;
2032
2033 /* We use the reloc_count field as a counter if we need
2034 to copy relocs into the output file. */
2035 s->reloc_count = 0;
2036 }
2037 else
2038 {
2039 /* It's not one of our sections, so don't allocate space. */
2040 continue;
2041 }
2042
2043 if (s->size == 0)
2044 {
2045 /* If we don't need this section, strip it from the
2046 output file. This is mostly to handle .rel.bss and
2047 .rel.plt. We must create both sections in
2048 create_dynamic_sections, because they must be created
2049 before the linker maps input sections to output
2050 sections. The linker does that before
2051 adjust_dynamic_symbol is called, and it is that
2052 function which decides whether anything needs to go
2053 into these sections. */
2054 if (strip_section)
2055 s->flags |= SEC_EXCLUDE;
2056 continue;
2057 }
2058
2059 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2060 continue;
2061
2062 /* Allocate memory for the section contents. We use bfd_zalloc
2063 here in case unused entries are not reclaimed before the
2064 section's contents are written out. This should not happen,
2065 but this way if it does, we get a R_386_NONE reloc instead
2066 of garbage. */
2067 s->contents = bfd_zalloc (dynobj, s->size);
2068 if (s->contents == NULL)
2069 return FALSE;
2070 }
2071
2072 if (htab->elf.dynamic_sections_created)
2073 {
2074 /* Add some entries to the .dynamic section. We fill in the
2075 values later, in elf_i386_finish_dynamic_sections, but we
2076 must add the entries now so that we get the correct size for
2077 the .dynamic section. The DT_DEBUG entry is filled in by the
2078 dynamic linker and used by the debugger. */
2079 #define add_dynamic_entry(TAG, VAL) \
2080 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2081
2082 if (info->executable)
2083 {
2084 if (!add_dynamic_entry (DT_DEBUG, 0))
2085 return FALSE;
2086 }
2087
2088 if (htab->splt->size != 0)
2089 {
2090 if (!add_dynamic_entry (DT_PLTGOT, 0)
2091 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2092 || !add_dynamic_entry (DT_PLTREL, DT_REL)
2093 || !add_dynamic_entry (DT_JMPREL, 0))
2094 return FALSE;
2095 }
2096
2097 if (relocs)
2098 {
2099 if (!add_dynamic_entry (DT_REL, 0)
2100 || !add_dynamic_entry (DT_RELSZ, 0)
2101 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
2102 return FALSE;
2103
2104 /* If any dynamic relocs apply to a read-only section,
2105 then we need a DT_TEXTREL entry. */
2106 if ((info->flags & DF_TEXTREL) == 0)
2107 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2108 (PTR) info);
2109
2110 if ((info->flags & DF_TEXTREL) != 0)
2111 {
2112 if (!add_dynamic_entry (DT_TEXTREL, 0))
2113 return FALSE;
2114 }
2115 }
2116 }
2117 #undef add_dynamic_entry
2118
2119 return TRUE;
2120 }
2121
2122 static bfd_boolean
2123 elf_i386_always_size_sections (bfd *output_bfd,
2124 struct bfd_link_info *info)
2125 {
2126 asection *tls_sec = elf_hash_table (info)->tls_sec;
2127
2128 if (tls_sec)
2129 {
2130 struct elf_link_hash_entry *tlsbase;
2131
2132 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2133 "_TLS_MODULE_BASE_",
2134 FALSE, FALSE, FALSE);
2135
2136 if (tlsbase && tlsbase->type == STT_TLS)
2137 {
2138 struct bfd_link_hash_entry *bh = NULL;
2139 const struct elf_backend_data *bed
2140 = get_elf_backend_data (output_bfd);
2141
2142 if (!(_bfd_generic_link_add_one_symbol
2143 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2144 tls_sec, 0, NULL, FALSE,
2145 bed->collect, &bh)))
2146 return FALSE;
2147 tlsbase = (struct elf_link_hash_entry *)bh;
2148 tlsbase->def_regular = 1;
2149 tlsbase->other = STV_HIDDEN;
2150 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2151 }
2152 }
2153
2154 return TRUE;
2155 }
2156
2157 /* Set the correct type for an x86 ELF section. We do this by the
2158 section name, which is a hack, but ought to work. */
2159
2160 static bfd_boolean
2161 elf_i386_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
2162 Elf_Internal_Shdr *hdr,
2163 asection *sec)
2164 {
2165 register const char *name;
2166
2167 name = bfd_get_section_name (abfd, sec);
2168
2169 /* This is an ugly, but unfortunately necessary hack that is
2170 needed when producing EFI binaries on x86. It tells
2171 elf.c:elf_fake_sections() not to consider ".reloc" as a section
2172 containing ELF relocation info. We need this hack in order to
2173 be able to generate ELF binaries that can be translated into
2174 EFI applications (which are essentially COFF objects). Those
2175 files contain a COFF ".reloc" section inside an ELFNN object,
2176 which would normally cause BFD to segfault because it would
2177 attempt to interpret this section as containing relocation
2178 entries for section "oc". With this hack enabled, ".reloc"
2179 will be treated as a normal data section, which will avoid the
2180 segfault. However, you won't be able to create an ELFNN binary
2181 with a section named "oc" that needs relocations, but that's
2182 the kind of ugly side-effects you get when detecting section
2183 types based on their names... In practice, this limitation is
2184 unlikely to bite. */
2185 if (strcmp (name, ".reloc") == 0)
2186 hdr->sh_type = SHT_PROGBITS;
2187
2188 return TRUE;
2189 }
2190
2191 /* Return the base VMA address which should be subtracted from real addresses
2192 when resolving @dtpoff relocation.
2193 This is PT_TLS segment p_vaddr. */
2194
2195 static bfd_vma
2196 dtpoff_base (struct bfd_link_info *info)
2197 {
2198 /* If tls_sec is NULL, we should have signalled an error already. */
2199 if (elf_hash_table (info)->tls_sec == NULL)
2200 return 0;
2201 return elf_hash_table (info)->tls_sec->vma;
2202 }
2203
2204 /* Return the relocation value for @tpoff relocation
2205 if STT_TLS virtual address is ADDRESS. */
2206
2207 static bfd_vma
2208 tpoff (struct bfd_link_info *info, bfd_vma address)
2209 {
2210 struct elf_link_hash_table *htab = elf_hash_table (info);
2211
2212 /* If tls_sec is NULL, we should have signalled an error already. */
2213 if (htab->tls_sec == NULL)
2214 return 0;
2215 return htab->tls_size + htab->tls_sec->vma - address;
2216 }
2217
2218 /* Relocate an i386 ELF section. */
2219
2220 static bfd_boolean
2221 elf_i386_relocate_section (bfd *output_bfd,
2222 struct bfd_link_info *info,
2223 bfd *input_bfd,
2224 asection *input_section,
2225 bfd_byte *contents,
2226 Elf_Internal_Rela *relocs,
2227 Elf_Internal_Sym *local_syms,
2228 asection **local_sections)
2229 {
2230 struct elf_i386_link_hash_table *htab;
2231 Elf_Internal_Shdr *symtab_hdr;
2232 struct elf_link_hash_entry **sym_hashes;
2233 bfd_vma *local_got_offsets;
2234 bfd_vma *local_tlsdesc_gotents;
2235 Elf_Internal_Rela *rel;
2236 Elf_Internal_Rela *relend;
2237
2238 htab = elf_i386_hash_table (info);
2239 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2240 sym_hashes = elf_sym_hashes (input_bfd);
2241 local_got_offsets = elf_local_got_offsets (input_bfd);
2242 local_tlsdesc_gotents = elf_i386_local_tlsdesc_gotent (input_bfd);
2243
2244 rel = relocs;
2245 relend = relocs + input_section->reloc_count;
2246 for (; rel < relend; rel++)
2247 {
2248 unsigned int r_type;
2249 reloc_howto_type *howto;
2250 unsigned long r_symndx;
2251 struct elf_link_hash_entry *h;
2252 Elf_Internal_Sym *sym;
2253 asection *sec;
2254 bfd_vma off, offplt;
2255 bfd_vma relocation;
2256 bfd_boolean unresolved_reloc;
2257 bfd_reloc_status_type r;
2258 unsigned int indx;
2259 int tls_type;
2260
2261 r_type = ELF32_R_TYPE (rel->r_info);
2262 if (r_type == R_386_GNU_VTINHERIT
2263 || r_type == R_386_GNU_VTENTRY)
2264 continue;
2265
2266 if ((indx = r_type) >= R_386_standard
2267 && ((indx = r_type - R_386_ext_offset) - R_386_standard
2268 >= R_386_ext - R_386_standard)
2269 && ((indx = r_type - R_386_tls_offset) - R_386_ext
2270 >= R_386_tls - R_386_ext))
2271 {
2272 (*_bfd_error_handler)
2273 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
2274 input_bfd, input_section, r_type);
2275 bfd_set_error (bfd_error_bad_value);
2276 return FALSE;
2277 }
2278 howto = elf_howto_table + indx;
2279
2280 r_symndx = ELF32_R_SYM (rel->r_info);
2281
2282 if (info->relocatable)
2283 {
2284 bfd_vma val;
2285 bfd_byte *where;
2286
2287 /* This is a relocatable link. We don't have to change
2288 anything, unless the reloc is against a section symbol,
2289 in which case we have to adjust according to where the
2290 section symbol winds up in the output section. */
2291 if (r_symndx >= symtab_hdr->sh_info)
2292 continue;
2293
2294 sym = local_syms + r_symndx;
2295 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2296 continue;
2297
2298 sec = local_sections[r_symndx];
2299 val = sec->output_offset;
2300 if (val == 0)
2301 continue;
2302
2303 where = contents + rel->r_offset;
2304 switch (howto->size)
2305 {
2306 /* FIXME: overflow checks. */
2307 case 0:
2308 val += bfd_get_8 (input_bfd, where);
2309 bfd_put_8 (input_bfd, val, where);
2310 break;
2311 case 1:
2312 val += bfd_get_16 (input_bfd, where);
2313 bfd_put_16 (input_bfd, val, where);
2314 break;
2315 case 2:
2316 val += bfd_get_32 (input_bfd, where);
2317 bfd_put_32 (input_bfd, val, where);
2318 break;
2319 default:
2320 abort ();
2321 }
2322 continue;
2323 }
2324
2325 /* This is a final link. */
2326 h = NULL;
2327 sym = NULL;
2328 sec = NULL;
2329 unresolved_reloc = FALSE;
2330 if (r_symndx < symtab_hdr->sh_info)
2331 {
2332 sym = local_syms + r_symndx;
2333 sec = local_sections[r_symndx];
2334 relocation = (sec->output_section->vma
2335 + sec->output_offset
2336 + sym->st_value);
2337 if ((sec->flags & SEC_MERGE)
2338 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2339 {
2340 asection *msec;
2341 bfd_vma addend;
2342 bfd_byte *where = contents + rel->r_offset;
2343
2344 switch (howto->size)
2345 {
2346 case 0:
2347 addend = bfd_get_8 (input_bfd, where);
2348 if (howto->pc_relative)
2349 {
2350 addend = (addend ^ 0x80) - 0x80;
2351 addend += 1;
2352 }
2353 break;
2354 case 1:
2355 addend = bfd_get_16 (input_bfd, where);
2356 if (howto->pc_relative)
2357 {
2358 addend = (addend ^ 0x8000) - 0x8000;
2359 addend += 2;
2360 }
2361 break;
2362 case 2:
2363 addend = bfd_get_32 (input_bfd, where);
2364 if (howto->pc_relative)
2365 {
2366 addend = (addend ^ 0x80000000) - 0x80000000;
2367 addend += 4;
2368 }
2369 break;
2370 default:
2371 abort ();
2372 }
2373
2374 msec = sec;
2375 addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend);
2376 addend -= relocation;
2377 addend += msec->output_section->vma + msec->output_offset;
2378
2379 switch (howto->size)
2380 {
2381 case 0:
2382 /* FIXME: overflow checks. */
2383 if (howto->pc_relative)
2384 addend -= 1;
2385 bfd_put_8 (input_bfd, addend, where);
2386 break;
2387 case 1:
2388 if (howto->pc_relative)
2389 addend -= 2;
2390 bfd_put_16 (input_bfd, addend, where);
2391 break;
2392 case 2:
2393 if (howto->pc_relative)
2394 addend -= 4;
2395 bfd_put_32 (input_bfd, addend, where);
2396 break;
2397 }
2398 }
2399 }
2400 else
2401 {
2402 bfd_boolean warned;
2403
2404 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2405 r_symndx, symtab_hdr, sym_hashes,
2406 h, sec, relocation,
2407 unresolved_reloc, warned);
2408 }
2409
2410 if (r_symndx == 0)
2411 {
2412 /* r_symndx will be zero only for relocs against symbols from
2413 removed linkonce sections, or sections discarded by a linker
2414 script. For these relocs, we just want the section contents
2415 zeroed. Avoid any special processing in the switch below. */
2416 r_type = R_386_NONE;
2417
2418 relocation = 0;
2419 if (howto->pc_relative)
2420 relocation = (input_section->output_section->vma
2421 + input_section->output_offset
2422 + rel->r_offset);
2423 }
2424
2425 switch (r_type)
2426 {
2427 case R_386_GOT32:
2428 /* Relocation is to the entry for this symbol in the global
2429 offset table. */
2430 if (htab->sgot == NULL)
2431 abort ();
2432
2433 if (h != NULL)
2434 {
2435 bfd_boolean dyn;
2436
2437 off = h->got.offset;
2438 dyn = htab->elf.dynamic_sections_created;
2439 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2440 || (info->shared
2441 && SYMBOL_REFERENCES_LOCAL (info, h))
2442 || (ELF_ST_VISIBILITY (h->other)
2443 && h->root.type == bfd_link_hash_undefweak))
2444 {
2445 /* This is actually a static link, or it is a
2446 -Bsymbolic link and the symbol is defined
2447 locally, or the symbol was forced to be local
2448 because of a version file. We must initialize
2449 this entry in the global offset table. Since the
2450 offset must always be a multiple of 4, we use the
2451 least significant bit to record whether we have
2452 initialized it already.
2453
2454 When doing a dynamic link, we create a .rel.got
2455 relocation entry to initialize the value. This
2456 is done in the finish_dynamic_symbol routine. */
2457 if ((off & 1) != 0)
2458 off &= ~1;
2459 else
2460 {
2461 bfd_put_32 (output_bfd, relocation,
2462 htab->sgot->contents + off);
2463 h->got.offset |= 1;
2464 }
2465 }
2466 else
2467 unresolved_reloc = FALSE;
2468 }
2469 else
2470 {
2471 if (local_got_offsets == NULL)
2472 abort ();
2473
2474 off = local_got_offsets[r_symndx];
2475
2476 /* The offset must always be a multiple of 4. We use
2477 the least significant bit to record whether we have
2478 already generated the necessary reloc. */
2479 if ((off & 1) != 0)
2480 off &= ~1;
2481 else
2482 {
2483 bfd_put_32 (output_bfd, relocation,
2484 htab->sgot->contents + off);
2485
2486 if (info->shared)
2487 {
2488 asection *s;
2489 Elf_Internal_Rela outrel;
2490 bfd_byte *loc;
2491
2492 s = htab->srelgot;
2493 if (s == NULL)
2494 abort ();
2495
2496 outrel.r_offset = (htab->sgot->output_section->vma
2497 + htab->sgot->output_offset
2498 + off);
2499 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2500 loc = s->contents;
2501 loc += s->reloc_count++ * sizeof (Elf32_External_Rel);
2502 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2503 }
2504
2505 local_got_offsets[r_symndx] |= 1;
2506 }
2507 }
2508
2509 if (off >= (bfd_vma) -2)
2510 abort ();
2511
2512 relocation = htab->sgot->output_section->vma
2513 + htab->sgot->output_offset + off
2514 - htab->sgotplt->output_section->vma
2515 - htab->sgotplt->output_offset;
2516 break;
2517
2518 case R_386_GOTOFF:
2519 /* Relocation is relative to the start of the global offset
2520 table. */
2521
2522 /* Check to make sure it isn't a protected function symbol
2523 for shared library since it may not be local when used
2524 as function address. */
2525 if (info->shared
2526 && !info->executable
2527 && h
2528 && h->def_regular
2529 && h->type == STT_FUNC
2530 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2531 {
2532 (*_bfd_error_handler)
2533 (_("%B: relocation R_386_GOTOFF against protected function `%s' can not be used when making a shared object"),
2534 input_bfd, h->root.root.string);
2535 bfd_set_error (bfd_error_bad_value);
2536 return FALSE;
2537 }
2538
2539 /* Note that sgot is not involved in this
2540 calculation. We always want the start of .got.plt. If we
2541 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2542 permitted by the ABI, we might have to change this
2543 calculation. */
2544 relocation -= htab->sgotplt->output_section->vma
2545 + htab->sgotplt->output_offset;
2546 break;
2547
2548 case R_386_GOTPC:
2549 /* Use global offset table as symbol value. */
2550 relocation = htab->sgotplt->output_section->vma
2551 + htab->sgotplt->output_offset;
2552 unresolved_reloc = FALSE;
2553 break;
2554
2555 case R_386_PLT32:
2556 /* Relocation is to the entry for this symbol in the
2557 procedure linkage table. */
2558
2559 /* Resolve a PLT32 reloc against a local symbol directly,
2560 without using the procedure linkage table. */
2561 if (h == NULL)
2562 break;
2563
2564 if (h->plt.offset == (bfd_vma) -1
2565 || htab->splt == NULL)
2566 {
2567 /* We didn't make a PLT entry for this symbol. This
2568 happens when statically linking PIC code, or when
2569 using -Bsymbolic. */
2570 break;
2571 }
2572
2573 relocation = (htab->splt->output_section->vma
2574 + htab->splt->output_offset
2575 + h->plt.offset);
2576 unresolved_reloc = FALSE;
2577 break;
2578
2579 case R_386_32:
2580 case R_386_PC32:
2581 if ((input_section->flags & SEC_ALLOC) == 0)
2582 break;
2583
2584 if ((info->shared
2585 && (h == NULL
2586 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2587 || h->root.type != bfd_link_hash_undefweak)
2588 && (r_type != R_386_PC32
2589 || !SYMBOL_CALLS_LOCAL (info, h)))
2590 || (ELIMINATE_COPY_RELOCS
2591 && !info->shared
2592 && h != NULL
2593 && h->dynindx != -1
2594 && !h->non_got_ref
2595 && ((h->def_dynamic
2596 && !h->def_regular)
2597 || h->root.type == bfd_link_hash_undefweak
2598 || h->root.type == bfd_link_hash_undefined)))
2599 {
2600 Elf_Internal_Rela outrel;
2601 bfd_byte *loc;
2602 bfd_boolean skip, relocate;
2603 asection *sreloc;
2604
2605 /* When generating a shared object, these relocations
2606 are copied into the output file to be resolved at run
2607 time. */
2608
2609 skip = FALSE;
2610 relocate = FALSE;
2611
2612 outrel.r_offset =
2613 _bfd_elf_section_offset (output_bfd, info, input_section,
2614 rel->r_offset);
2615 if (outrel.r_offset == (bfd_vma) -1)
2616 skip = TRUE;
2617 else if (outrel.r_offset == (bfd_vma) -2)
2618 skip = TRUE, relocate = TRUE;
2619 outrel.r_offset += (input_section->output_section->vma
2620 + input_section->output_offset);
2621
2622 if (skip)
2623 memset (&outrel, 0, sizeof outrel);
2624 else if (h != NULL
2625 && h->dynindx != -1
2626 && (r_type == R_386_PC32
2627 || !info->shared
2628 || !info->symbolic
2629 || !h->def_regular))
2630 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
2631 else
2632 {
2633 /* This symbol is local, or marked to become local. */
2634 relocate = TRUE;
2635 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2636 }
2637
2638 sreloc = elf_section_data (input_section)->sreloc;
2639 if (sreloc == NULL)
2640 abort ();
2641
2642 loc = sreloc->contents;
2643 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
2644 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2645
2646 /* If this reloc is against an external symbol, we do
2647 not want to fiddle with the addend. Otherwise, we
2648 need to include the symbol value so that it becomes
2649 an addend for the dynamic reloc. */
2650 if (! relocate)
2651 continue;
2652 }
2653 break;
2654
2655 case R_386_TLS_IE:
2656 if (info->shared)
2657 {
2658 Elf_Internal_Rela outrel;
2659 bfd_byte *loc;
2660 asection *sreloc;
2661
2662 outrel.r_offset = rel->r_offset
2663 + input_section->output_section->vma
2664 + input_section->output_offset;
2665 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2666 sreloc = elf_section_data (input_section)->sreloc;
2667 if (sreloc == NULL)
2668 abort ();
2669 loc = sreloc->contents;
2670 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
2671 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2672 }
2673 /* Fall through */
2674
2675 case R_386_TLS_GD:
2676 case R_386_TLS_GOTDESC:
2677 case R_386_TLS_DESC_CALL:
2678 case R_386_TLS_IE_32:
2679 case R_386_TLS_GOTIE:
2680 r_type = elf_i386_tls_transition (info, r_type, h == NULL);
2681 tls_type = GOT_UNKNOWN;
2682 if (h == NULL && local_got_offsets)
2683 tls_type = elf_i386_local_got_tls_type (input_bfd) [r_symndx];
2684 else if (h != NULL)
2685 {
2686 tls_type = elf_i386_hash_entry(h)->tls_type;
2687 if (!info->shared && h->dynindx == -1 && (tls_type & GOT_TLS_IE))
2688 r_type = R_386_TLS_LE_32;
2689 }
2690 if (tls_type == GOT_TLS_IE)
2691 tls_type = GOT_TLS_IE_NEG;
2692 if (r_type == R_386_TLS_GD
2693 || r_type == R_386_TLS_GOTDESC
2694 || r_type == R_386_TLS_DESC_CALL)
2695 {
2696 if (tls_type == GOT_TLS_IE_POS)
2697 r_type = R_386_TLS_GOTIE;
2698 else if (tls_type & GOT_TLS_IE)
2699 r_type = R_386_TLS_IE_32;
2700 }
2701
2702 if (r_type == R_386_TLS_LE_32)
2703 {
2704 BFD_ASSERT (! unresolved_reloc);
2705 if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD)
2706 {
2707 unsigned int val, type;
2708 bfd_vma roff;
2709
2710 /* GD->LE transition. */
2711 BFD_ASSERT (rel->r_offset >= 2);
2712 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2713 BFD_ASSERT (type == 0x8d || type == 0x04);
2714 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2715 BFD_ASSERT (bfd_get_8 (input_bfd,
2716 contents + rel->r_offset + 4)
2717 == 0xe8);
2718 BFD_ASSERT (rel + 1 < relend);
2719 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
2720 roff = rel->r_offset + 5;
2721 val = bfd_get_8 (input_bfd,
2722 contents + rel->r_offset - 1);
2723 if (type == 0x04)
2724 {
2725 /* leal foo(,%reg,1), %eax; call ___tls_get_addr
2726 Change it into:
2727 movl %gs:0, %eax; subl $foo@tpoff, %eax
2728 (6 byte form of subl). */
2729 BFD_ASSERT (rel->r_offset >= 3);
2730 BFD_ASSERT (bfd_get_8 (input_bfd,
2731 contents + rel->r_offset - 3)
2732 == 0x8d);
2733 BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
2734 memcpy (contents + rel->r_offset - 3,
2735 "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2736 }
2737 else
2738 {
2739 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
2740 if (rel->r_offset + 10 <= input_section->size
2741 && bfd_get_8 (input_bfd,
2742 contents + rel->r_offset + 9) == 0x90)
2743 {
2744 /* leal foo(%reg), %eax; call ___tls_get_addr; nop
2745 Change it into:
2746 movl %gs:0, %eax; subl $foo@tpoff, %eax
2747 (6 byte form of subl). */
2748 memcpy (contents + rel->r_offset - 2,
2749 "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2750 roff = rel->r_offset + 6;
2751 }
2752 else
2753 {
2754 /* leal foo(%reg), %eax; call ___tls_get_addr
2755 Change it into:
2756 movl %gs:0, %eax; subl $foo@tpoff, %eax
2757 (5 byte form of subl). */
2758 memcpy (contents + rel->r_offset - 2,
2759 "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2760 }
2761 }
2762 bfd_put_32 (output_bfd, tpoff (info, relocation),
2763 contents + roff);
2764 /* Skip R_386_PLT32. */
2765 rel++;
2766 continue;
2767 }
2768 else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTDESC)
2769 {
2770 /* GDesc -> LE transition.
2771 It's originally something like:
2772 leal x@tlsdesc(%ebx), %eax
2773
2774 leal x@ntpoff, %eax
2775
2776 Registers other than %eax may be set up here. */
2777
2778 unsigned int val, type;
2779 bfd_vma roff;
2780
2781 /* First, make sure it's a leal adding ebx to a
2782 32-bit offset into any register, although it's
2783 probably almost always going to be eax. */
2784 roff = rel->r_offset;
2785 BFD_ASSERT (roff >= 2);
2786 type = bfd_get_8 (input_bfd, contents + roff - 2);
2787 BFD_ASSERT (type == 0x8d);
2788 val = bfd_get_8 (input_bfd, contents + roff - 1);
2789 BFD_ASSERT ((val & 0xc7) == 0x83);
2790 BFD_ASSERT (roff + 4 <= input_section->size);
2791
2792 /* Now modify the instruction as appropriate. */
2793 /* aoliva FIXME: remove the above and xor the byte
2794 below with 0x86. */
2795 bfd_put_8 (output_bfd, val ^ 0x86,
2796 contents + roff - 1);
2797 bfd_put_32 (output_bfd, -tpoff (info, relocation),
2798 contents + roff);
2799 continue;
2800 }
2801 else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_DESC_CALL)
2802 {
2803 /* GDesc -> LE transition.
2804 It's originally:
2805 call *(%eax)
2806 Turn it into:
2807 nop; nop */
2808
2809 unsigned int val, type;
2810 bfd_vma roff;
2811
2812 /* First, make sure it's a call *(%eax). */
2813 roff = rel->r_offset;
2814 BFD_ASSERT (roff + 2 <= input_section->size);
2815 type = bfd_get_8 (input_bfd, contents + roff);
2816 BFD_ASSERT (type == 0xff);
2817 val = bfd_get_8 (input_bfd, contents + roff + 1);
2818 BFD_ASSERT (val == 0x10);
2819
2820 /* Now modify the instruction as appropriate. */
2821 bfd_put_8 (output_bfd, 0x90, contents + roff);
2822 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2823 continue;
2824 }
2825 else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_IE)
2826 {
2827 unsigned int val, type;
2828
2829 /* IE->LE transition:
2830 Originally it can be one of:
2831 movl foo, %eax
2832 movl foo, %reg
2833 addl foo, %reg
2834 We change it into:
2835 movl $foo, %eax
2836 movl $foo, %reg
2837 addl $foo, %reg. */
2838 BFD_ASSERT (rel->r_offset >= 1);
2839 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2840 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2841 if (val == 0xa1)
2842 {
2843 /* movl foo, %eax. */
2844 bfd_put_8 (output_bfd, 0xb8,
2845 contents + rel->r_offset - 1);
2846 }
2847 else
2848 {
2849 BFD_ASSERT (rel->r_offset >= 2);
2850 type = bfd_get_8 (input_bfd,
2851 contents + rel->r_offset - 2);
2852 switch (type)
2853 {
2854 case 0x8b:
2855 /* movl */
2856 BFD_ASSERT ((val & 0xc7) == 0x05);
2857 bfd_put_8 (output_bfd, 0xc7,
2858 contents + rel->r_offset - 2);
2859 bfd_put_8 (output_bfd,
2860 0xc0 | ((val >> 3) & 7),
2861 contents + rel->r_offset - 1);
2862 break;
2863 case 0x03:
2864 /* addl */
2865 BFD_ASSERT ((val & 0xc7) == 0x05);
2866 bfd_put_8 (output_bfd, 0x81,
2867 contents + rel->r_offset - 2);
2868 bfd_put_8 (output_bfd,
2869 0xc0 | ((val >> 3) & 7),
2870 contents + rel->r_offset - 1);
2871 break;
2872 default:
2873 BFD_FAIL ();
2874 break;
2875 }
2876 }
2877 bfd_put_32 (output_bfd, -tpoff (info, relocation),
2878 contents + rel->r_offset);
2879 continue;
2880 }
2881 else
2882 {
2883 unsigned int val, type;
2884
2885 /* {IE_32,GOTIE}->LE transition:
2886 Originally it can be one of:
2887 subl foo(%reg1), %reg2
2888 movl foo(%reg1), %reg2
2889 addl foo(%reg1), %reg2
2890 We change it into:
2891 subl $foo, %reg2
2892 movl $foo, %reg2 (6 byte form)
2893 addl $foo, %reg2. */
2894 BFD_ASSERT (rel->r_offset >= 2);
2895 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2896 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2897 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2898 BFD_ASSERT ((val & 0xc0) == 0x80 && (val & 7) != 4);
2899 if (type == 0x8b)
2900 {
2901 /* movl */
2902 bfd_put_8 (output_bfd, 0xc7,
2903 contents + rel->r_offset - 2);
2904 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2905 contents + rel->r_offset - 1);
2906 }
2907 else if (type == 0x2b)
2908 {
2909 /* subl */
2910 bfd_put_8 (output_bfd, 0x81,
2911 contents + rel->r_offset - 2);
2912 bfd_put_8 (output_bfd, 0xe8 | ((val >> 3) & 7),
2913 contents + rel->r_offset - 1);
2914 }
2915 else if (type == 0x03)
2916 {
2917 /* addl */
2918 bfd_put_8 (output_bfd, 0x81,
2919 contents + rel->r_offset - 2);
2920 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2921 contents + rel->r_offset - 1);
2922 }
2923 else
2924 BFD_FAIL ();
2925 if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTIE)
2926 bfd_put_32 (output_bfd, -tpoff (info, relocation),
2927 contents + rel->r_offset);
2928 else
2929 bfd_put_32 (output_bfd, tpoff (info, relocation),
2930 contents + rel->r_offset);
2931 continue;
2932 }
2933 }
2934
2935 if (htab->sgot == NULL)
2936 abort ();
2937
2938 if (h != NULL)
2939 {
2940 off = h->got.offset;
2941 offplt = elf_i386_hash_entry (h)->tlsdesc_got;
2942 }
2943 else
2944 {
2945 if (local_got_offsets == NULL)
2946 abort ();
2947
2948 off = local_got_offsets[r_symndx];
2949 offplt = local_tlsdesc_gotents[r_symndx];
2950 }
2951
2952 if ((off & 1) != 0)
2953 off &= ~1;
2954 else
2955 {
2956 Elf_Internal_Rela outrel;
2957 bfd_byte *loc;
2958 int dr_type, indx;
2959 asection *sreloc;
2960
2961 if (htab->srelgot == NULL)
2962 abort ();
2963
2964 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2965
2966 if (GOT_TLS_GDESC_P (tls_type))
2967 {
2968 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_DESC);
2969 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt + 8
2970 <= htab->sgotplt->size);
2971 outrel.r_offset = (htab->sgotplt->output_section->vma
2972 + htab->sgotplt->output_offset
2973 + offplt
2974 + htab->sgotplt_jump_table_size);
2975 sreloc = htab->srelplt;
2976 loc = sreloc->contents;
2977 loc += (htab->next_tls_desc_index++
2978 * sizeof (Elf32_External_Rel));
2979 BFD_ASSERT (loc + sizeof (Elf32_External_Rel)
2980 <= sreloc->contents + sreloc->size);
2981 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2982 if (indx == 0)
2983 {
2984 BFD_ASSERT (! unresolved_reloc);
2985 bfd_put_32 (output_bfd,
2986 relocation - dtpoff_base (info),
2987 htab->sgotplt->contents + offplt
2988 + htab->sgotplt_jump_table_size + 4);
2989 }
2990 else
2991 {
2992 bfd_put_32 (output_bfd, 0,
2993 htab->sgotplt->contents + offplt
2994 + htab->sgotplt_jump_table_size + 4);
2995 }
2996 }
2997
2998 sreloc = htab->srelgot;
2999
3000 outrel.r_offset = (htab->sgot->output_section->vma
3001 + htab->sgot->output_offset + off);
3002
3003 if (GOT_TLS_GD_P (tls_type))
3004 dr_type = R_386_TLS_DTPMOD32;
3005 else if (GOT_TLS_GDESC_P (tls_type))
3006 goto dr_done;
3007 else if (tls_type == GOT_TLS_IE_POS)
3008 dr_type = R_386_TLS_TPOFF;
3009 else
3010 dr_type = R_386_TLS_TPOFF32;
3011
3012 if (dr_type == R_386_TLS_TPOFF && indx == 0)
3013 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3014 htab->sgot->contents + off);
3015 else if (dr_type == R_386_TLS_TPOFF32 && indx == 0)
3016 bfd_put_32 (output_bfd, dtpoff_base (info) - relocation,
3017 htab->sgot->contents + off);
3018 else if (dr_type != R_386_TLS_DESC)
3019 bfd_put_32 (output_bfd, 0,
3020 htab->sgot->contents + off);
3021 outrel.r_info = ELF32_R_INFO (indx, dr_type);
3022
3023 loc = sreloc->contents;
3024 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
3025 BFD_ASSERT (loc + sizeof (Elf32_External_Rel)
3026 <= sreloc->contents + sreloc->size);
3027 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
3028
3029 if (GOT_TLS_GD_P (tls_type))
3030 {
3031 if (indx == 0)
3032 {
3033 BFD_ASSERT (! unresolved_reloc);
3034 bfd_put_32 (output_bfd,
3035 relocation - dtpoff_base (info),
3036 htab->sgot->contents + off + 4);
3037 }
3038 else
3039 {
3040 bfd_put_32 (output_bfd, 0,
3041 htab->sgot->contents + off + 4);
3042 outrel.r_info = ELF32_R_INFO (indx,
3043 R_386_TLS_DTPOFF32);
3044 outrel.r_offset += 4;
3045 sreloc->reloc_count++;
3046 loc += sizeof (Elf32_External_Rel);
3047 BFD_ASSERT (loc + sizeof (Elf32_External_Rel)
3048 <= sreloc->contents + sreloc->size);
3049 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
3050 }
3051 }
3052 else if (tls_type == GOT_TLS_IE_BOTH)
3053 {
3054 bfd_put_32 (output_bfd,
3055 indx == 0 ? relocation - dtpoff_base (info) : 0,
3056 htab->sgot->contents + off + 4);
3057 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF);
3058 outrel.r_offset += 4;
3059 sreloc->reloc_count++;
3060 loc += sizeof (Elf32_External_Rel);
3061 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
3062 }
3063
3064 dr_done:
3065 if (h != NULL)
3066 h->got.offset |= 1;
3067 else
3068 local_got_offsets[r_symndx] |= 1;
3069 }
3070
3071 if (off >= (bfd_vma) -2
3072 && ! GOT_TLS_GDESC_P (tls_type))
3073 abort ();
3074 if (r_type == R_386_TLS_GOTDESC
3075 || r_type == R_386_TLS_DESC_CALL)
3076 {
3077 relocation = htab->sgotplt_jump_table_size + offplt;
3078 unresolved_reloc = FALSE;
3079 }
3080 else if (r_type == ELF32_R_TYPE (rel->r_info))
3081 {
3082 bfd_vma g_o_t = htab->sgotplt->output_section->vma
3083 + htab->sgotplt->output_offset;
3084 relocation = htab->sgot->output_section->vma
3085 + htab->sgot->output_offset + off - g_o_t;
3086 if ((r_type == R_386_TLS_IE || r_type == R_386_TLS_GOTIE)
3087 && tls_type == GOT_TLS_IE_BOTH)
3088 relocation += 4;
3089 if (r_type == R_386_TLS_IE)
3090 relocation += g_o_t;
3091 unresolved_reloc = FALSE;
3092 }
3093 else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD)
3094 {
3095 unsigned int val, type;
3096 bfd_vma roff;
3097
3098 /* GD->IE transition. */
3099 BFD_ASSERT (rel->r_offset >= 2);
3100 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
3101 BFD_ASSERT (type == 0x8d || type == 0x04);
3102 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
3103 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
3104 == 0xe8);
3105 BFD_ASSERT (rel + 1 < relend);
3106 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
3107 roff = rel->r_offset - 3;
3108 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
3109 if (type == 0x04)
3110 {
3111 /* leal foo(,%reg,1), %eax; call ___tls_get_addr
3112 Change it into:
3113 movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
3114 BFD_ASSERT (rel->r_offset >= 3);
3115 BFD_ASSERT (bfd_get_8 (input_bfd,
3116 contents + rel->r_offset - 3)
3117 == 0x8d);
3118 BFD_ASSERT ((val & 0xc7) == 0x05 && val != (4 << 3));
3119 val >>= 3;
3120 }
3121 else
3122 {
3123 /* leal foo(%reg), %eax; call ___tls_get_addr; nop
3124 Change it into:
3125 movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */
3126 BFD_ASSERT (rel->r_offset + 10 <= input_section->size);
3127 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
3128 BFD_ASSERT (bfd_get_8 (input_bfd,
3129 contents + rel->r_offset + 9)
3130 == 0x90);
3131 roff = rel->r_offset - 2;
3132 }
3133 memcpy (contents + roff,
3134 "\x65\xa1\0\0\0\0\x2b\x80\0\0\0", 12);
3135 contents[roff + 7] = 0x80 | (val & 7);
3136 /* If foo is used only with foo@gotntpoff(%reg) and
3137 foo@indntpoff, but not with foo@gottpoff(%reg), change
3138 subl $foo@gottpoff(%reg), %eax
3139 into:
3140 addl $foo@gotntpoff(%reg), %eax. */
3141 if (r_type == R_386_TLS_GOTIE)
3142 {
3143 contents[roff + 6] = 0x03;
3144 if (tls_type == GOT_TLS_IE_BOTH)
3145 off += 4;
3146 }
3147 bfd_put_32 (output_bfd,
3148 htab->sgot->output_section->vma
3149 + htab->sgot->output_offset + off
3150 - htab->sgotplt->output_section->vma
3151 - htab->sgotplt->output_offset,
3152 contents + roff + 8);
3153 /* Skip R_386_PLT32. */
3154 rel++;
3155 continue;
3156 }
3157 else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTDESC)
3158 {
3159 /* GDesc -> IE transition.
3160 It's originally something like:
3161 leal x@tlsdesc(%ebx), %eax
3162
3163 Change it to:
3164 movl x@gotntpoff(%ebx), %eax # before nop; nop
3165 or:
3166 movl x@gottpoff(%ebx), %eax # before negl %eax
3167
3168 Registers other than %eax may be set up here. */
3169
3170 unsigned int val, type;
3171 bfd_vma roff;
3172
3173 /* First, make sure it's a leal adding ebx to a 32-bit
3174 offset into any register, although it's probably
3175 almost always going to be eax. */
3176 roff = rel->r_offset;
3177 BFD_ASSERT (roff >= 2);
3178 type = bfd_get_8 (input_bfd, contents + roff - 2);
3179 BFD_ASSERT (type == 0x8d);
3180 val = bfd_get_8 (input_bfd, contents + roff - 1);
3181 BFD_ASSERT ((val & 0xc7) == 0x83);
3182 BFD_ASSERT (roff + 4 <= input_section->size);
3183
3184 /* Now modify the instruction as appropriate. */
3185 /* To turn a leal into a movl in the form we use it, it
3186 suffices to change the first byte from 0x8d to 0x8b.
3187 aoliva FIXME: should we decide to keep the leal, all
3188 we have to do is remove the statement below, and
3189 adjust the relaxation of R_386_TLS_DESC_CALL. */
3190 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3191
3192 if (tls_type == GOT_TLS_IE_BOTH)
3193 off += 4;
3194
3195 bfd_put_32 (output_bfd,
3196 htab->sgot->output_section->vma
3197 + htab->sgot->output_offset + off
3198 - htab->sgotplt->output_section->vma
3199 - htab->sgotplt->output_offset,
3200 contents + roff);
3201 continue;
3202 }
3203 else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_DESC_CALL)
3204 {
3205 /* GDesc -> IE transition.
3206 It's originally:
3207 call *(%eax)
3208
3209 Change it to:
3210 nop; nop
3211 or
3212 negl %eax
3213 depending on how we transformed the TLS_GOTDESC above.
3214 */
3215
3216 unsigned int val, type;
3217 bfd_vma roff;
3218
3219 /* First, make sure it's a call *(%eax). */
3220 roff = rel->r_offset;
3221 BFD_ASSERT (roff + 2 <= input_section->size);
3222 type = bfd_get_8 (input_bfd, contents + roff);
3223 BFD_ASSERT (type == 0xff);
3224 val = bfd_get_8 (input_bfd, contents + roff + 1);
3225 BFD_ASSERT (val == 0x10);
3226
3227 /* Now modify the instruction as appropriate. */
3228 if (tls_type != GOT_TLS_IE_NEG)
3229 {
3230 /* nop; nop */
3231 bfd_put_8 (output_bfd, 0x90, contents + roff);
3232 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3233 }
3234 else
3235 {
3236 /* negl %eax */
3237 bfd_put_8 (output_bfd, 0xf7, contents + roff);
3238 bfd_put_8 (output_bfd, 0xd8, contents + roff + 1);
3239 }
3240
3241 continue;
3242 }
3243 else
3244 BFD_ASSERT (FALSE);
3245 break;
3246
3247 case R_386_TLS_LDM:
3248 if (! info->shared)
3249 {
3250 unsigned int val;
3251
3252 /* LD->LE transition:
3253 Ensure it is:
3254 leal foo(%reg), %eax; call ___tls_get_addr.
3255 We change it into:
3256 movl %gs:0, %eax; nop; leal 0(%esi,1), %esi. */
3257 BFD_ASSERT (rel->r_offset >= 2);
3258 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
3259 == 0x8d);
3260 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
3261 BFD_ASSERT ((val & 0xf8) == 0x80 && (val & 7) != 4);
3262 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
3263 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
3264 == 0xe8);
3265 BFD_ASSERT (rel + 1 < relend);
3266 BFD_ASSERT (ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32);
3267 memcpy (contents + rel->r_offset - 2,
3268 "\x65\xa1\0\0\0\0\x90\x8d\x74\x26", 11);
3269 /* Skip R_386_PLT32. */
3270 rel++;
3271 continue;
3272 }
3273
3274 if (htab->sgot == NULL)
3275 abort ();
3276
3277 off = htab->tls_ldm_got.offset;
3278 if (off & 1)
3279 off &= ~1;
3280 else
3281 {
3282 Elf_Internal_Rela outrel;
3283 bfd_byte *loc;
3284
3285 if (htab->srelgot == NULL)
3286 abort ();
3287
3288 outrel.r_offset = (htab->sgot->output_section->vma
3289 + htab->sgot->output_offset + off);
3290
3291 bfd_put_32 (output_bfd, 0,
3292 htab->sgot->contents + off);
3293 bfd_put_32 (output_bfd, 0,
3294 htab->sgot->contents + off + 4);
3295 outrel.r_info = ELF32_R_INFO (0, R_386_TLS_DTPMOD32);
3296 loc = htab->srelgot->contents;
3297 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
3298 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
3299 htab->tls_ldm_got.offset |= 1;
3300 }
3301 relocation = htab->sgot->output_section->vma
3302 + htab->sgot->output_offset + off
3303 - htab->sgotplt->output_section->vma
3304 - htab->sgotplt->output_offset;
3305 unresolved_reloc = FALSE;
3306 break;
3307
3308 case R_386_TLS_LDO_32:
3309 if (info->shared || (input_section->flags & SEC_CODE) == 0)
3310 relocation -= dtpoff_base (info);
3311 else
3312 /* When converting LDO to LE, we must negate. */
3313 relocation = -tpoff (info, relocation);
3314 break;
3315
3316 case R_386_TLS_LE_32:
3317 case R_386_TLS_LE:
3318 if (info->shared)
3319 {
3320 Elf_Internal_Rela outrel;
3321 asection *sreloc;
3322 bfd_byte *loc;
3323 int indx;
3324
3325 outrel.r_offset = rel->r_offset
3326 + input_section->output_section->vma
3327 + input_section->output_offset;
3328 if (h != NULL && h->dynindx != -1)
3329 indx = h->dynindx;
3330 else
3331 indx = 0;
3332 if (r_type == R_386_TLS_LE_32)
3333 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF32);
3334 else
3335 outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF);
3336 sreloc = elf_section_data (input_section)->sreloc;
3337 if (sreloc == NULL)
3338 abort ();
3339 loc = sreloc->contents;
3340 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel);
3341 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
3342 if (indx)
3343 continue;
3344 else if (r_type == R_386_TLS_LE_32)
3345 relocation = dtpoff_base (info) - relocation;
3346 else
3347 relocation -= dtpoff_base (info);
3348 }
3349 else if (r_type == R_386_TLS_LE_32)
3350 relocation = tpoff (info, relocation);
3351 else
3352 relocation = -tpoff (info, relocation);
3353 break;
3354
3355 default:
3356 break;
3357 }
3358
3359 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3360 because such sections are not SEC_ALLOC and thus ld.so will
3361 not process them. */
3362 if (unresolved_reloc
3363 && !((input_section->flags & SEC_DEBUGGING) != 0
3364 && h->def_dynamic))
3365 {
3366 (*_bfd_error_handler)
3367 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3368 input_bfd,
3369 input_section,
3370 (long) rel->r_offset,
3371 howto->name,
3372 h->root.root.string);
3373 return FALSE;
3374 }
3375
3376 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3377 contents, rel->r_offset,
3378 relocation, 0);
3379
3380 if (r != bfd_reloc_ok)
3381 {
3382 const char *name;
3383
3384 if (h != NULL)
3385 name = h->root.root.string;
3386 else
3387 {
3388 name = bfd_elf_string_from_elf_section (input_bfd,
3389 symtab_hdr->sh_link,
3390 sym->st_name);
3391 if (name == NULL)
3392 return FALSE;
3393 if (*name == '\0')
3394 name = bfd_section_name (input_bfd, sec);
3395 }
3396
3397 if (r == bfd_reloc_overflow)
3398 {
3399 if (! ((*info->callbacks->reloc_overflow)
3400 (info, (h ? &h->root : NULL), name, howto->name,
3401 (bfd_vma) 0, input_bfd, input_section,
3402 rel->r_offset)))
3403 return FALSE;
3404 }
3405 else
3406 {
3407 (*_bfd_error_handler)
3408 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3409 input_bfd, input_section,
3410 (long) rel->r_offset, name, (int) r);
3411 return FALSE;
3412 }
3413 }
3414 }
3415
3416 return TRUE;
3417 }
3418
3419 /* Finish up dynamic symbol handling. We set the contents of various
3420 dynamic sections here. */
3421
3422 static bfd_boolean
3423 elf_i386_finish_dynamic_symbol (bfd *output_bfd,
3424 struct bfd_link_info *info,
3425 struct elf_link_hash_entry *h,
3426 Elf_Internal_Sym *sym)
3427 {
3428 struct elf_i386_link_hash_table *htab;
3429
3430 htab = elf_i386_hash_table (info);
3431
3432 if (h->plt.offset != (bfd_vma) -1)
3433 {
3434 bfd_vma plt_index;
3435 bfd_vma got_offset;
3436 Elf_Internal_Rela rel;
3437 bfd_byte *loc;
3438
3439 /* This symbol has an entry in the procedure linkage table. Set
3440 it up. */
3441
3442 if (h->dynindx == -1
3443 || htab->splt == NULL
3444 || htab->sgotplt == NULL
3445 || htab->srelplt == NULL)
3446 abort ();
3447
3448 /* Get the index in the procedure linkage table which
3449 corresponds to this symbol. This is the index of this symbol
3450 in all the symbols for which we are making plt entries. The
3451 first entry in the procedure linkage table is reserved. */
3452 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3453
3454 /* Get the offset into the .got table of the entry that
3455 corresponds to this function. Each .got entry is 4 bytes.
3456 The first three are reserved. */
3457 got_offset = (plt_index + 3) * 4;
3458
3459 /* Fill in the entry in the procedure linkage table. */
3460 if (! info->shared)
3461 {
3462 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
3463 PLT_ENTRY_SIZE);
3464 bfd_put_32 (output_bfd,
3465 (htab->sgotplt->output_section->vma
3466 + htab->sgotplt->output_offset
3467 + got_offset),
3468 htab->splt->contents + h->plt.offset + 2);
3469
3470 if (htab->is_vxworks)
3471 {
3472 int s, k, reloc_index;
3473
3474 /* Create the R_386_32 relocation referencing the GOT
3475 for this PLT entry. */
3476
3477 /* S: Current slot number (zero-based). */
3478 s = (h->plt.offset - PLT_ENTRY_SIZE) / PLT_ENTRY_SIZE;
3479 /* K: Number of relocations for PLTResolve. */
3480 if (info->shared)
3481 k = PLTRESOLVE_RELOCS_SHLIB;
3482 else
3483 k = PLTRESOLVE_RELOCS;
3484 /* Skip the PLTresolve relocations, and the relocations for
3485 the other PLT slots. */
3486 reloc_index = k + s * PLT_NON_JUMP_SLOT_RELOCS;
3487 loc = (htab->srelplt2->contents + reloc_index
3488 * sizeof (Elf32_External_Rel));
3489
3490 rel.r_offset = (htab->splt->output_section->vma
3491 + htab->splt->output_offset
3492 + h->plt.offset + 2),
3493 rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32);
3494 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3495
3496 /* Create the R_386_32 relocation referencing the beginning of
3497 the PLT for this GOT entry. */
3498 rel.r_offset = (htab->sgotplt->output_section->vma
3499 + htab->sgotplt->output_offset
3500 + got_offset);
3501 rel.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_386_32);
3502 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3503 loc + sizeof (Elf32_External_Rel));
3504 }
3505 }
3506 else
3507 {
3508 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
3509 PLT_ENTRY_SIZE);
3510 bfd_put_32 (output_bfd, got_offset,
3511 htab->splt->contents + h->plt.offset + 2);
3512 }
3513
3514 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
3515 htab->splt->contents + h->plt.offset + 7);
3516 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3517 htab->splt->contents + h->plt.offset + 12);
3518
3519 /* Fill in the entry in the global offset table. */
3520 bfd_put_32 (output_bfd,
3521 (htab->splt->output_section->vma
3522 + htab->splt->output_offset
3523 + h->plt.offset
3524 + 6),
3525 htab->sgotplt->contents + got_offset);
3526
3527 /* Fill in the entry in the .rel.plt section. */
3528 rel.r_offset = (htab->sgotplt->output_section->vma
3529 + htab->sgotplt->output_offset
3530 + got_offset);
3531 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
3532 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rel);
3533 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3534
3535 if (!h->def_regular)
3536 {
3537 /* Mark the symbol as undefined, rather than as defined in
3538 the .plt section. Leave the value if there were any
3539 relocations where pointer equality matters (this is a clue
3540 for the dynamic linker, to make function pointer
3541 comparisons work between an application and shared
3542 library), otherwise set it to zero. If a function is only
3543 called from a binary, there is no need to slow down
3544 shared libraries because of that. */
3545 sym->st_shndx = SHN_UNDEF;
3546 if (!h->pointer_equality_needed)
3547 sym->st_value = 0;
3548 }
3549 }
3550
3551 if (h->got.offset != (bfd_vma) -1
3552 && ! GOT_TLS_GD_ANY_P (elf_i386_hash_entry(h)->tls_type)
3553 && (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE) == 0)
3554 {
3555 Elf_Internal_Rela rel;
3556 bfd_byte *loc;
3557
3558 /* This symbol has an entry in the global offset table. Set it
3559 up. */
3560
3561 if (htab->sgot == NULL || htab->srelgot == NULL)
3562 abort ();
3563
3564 rel.r_offset = (htab->sgot->output_section->vma
3565 + htab->sgot->output_offset
3566 + (h->got.offset & ~(bfd_vma) 1));
3567
3568 /* If this is a static link, or it is a -Bsymbolic link and the
3569 symbol is defined locally or was forced to be local because
3570 of a version file, we just want to emit a RELATIVE reloc.
3571 The entry in the global offset table will already have been
3572 initialized in the relocate_section function. */
3573 if (info->shared
3574 && SYMBOL_REFERENCES_LOCAL (info, h))
3575 {
3576 BFD_ASSERT((h->got.offset & 1) != 0);
3577 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
3578 }
3579 else
3580 {
3581 BFD_ASSERT((h->got.offset & 1) == 0);
3582 bfd_put_32 (output_bfd, (bfd_vma) 0,
3583 htab->sgot->contents + h->got.offset);
3584 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
3585 }
3586
3587 loc = htab->srelgot->contents;
3588 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rel);
3589 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3590 }
3591
3592 if (h->needs_copy)
3593 {
3594 Elf_Internal_Rela rel;
3595 bfd_byte *loc;
3596
3597 /* This symbol needs a copy reloc. Set it up. */
3598
3599 if (h->dynindx == -1
3600 || (h->root.type != bfd_link_hash_defined
3601 && h->root.type != bfd_link_hash_defweak)
3602 || htab->srelbss == NULL)
3603 abort ();
3604
3605 rel.r_offset = (h->root.u.def.value
3606 + h->root.u.def.section->output_section->vma
3607 + h->root.u.def.section->output_offset);
3608 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
3609 loc = htab->srelbss->contents;
3610 loc += htab->srelbss->reloc_count++ * sizeof (Elf32_External_Rel);
3611 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
3612 }
3613
3614 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.
3615 On VxWorks, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it
3616 is relative to the ".got" section. */
3617 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3618 || (!htab->is_vxworks && h == htab->elf.hgot))
3619 sym->st_shndx = SHN_ABS;
3620
3621 return TRUE;
3622 }
3623
3624 /* Used to decide how to sort relocs in an optimal manner for the
3625 dynamic linker, before writing them out. */
3626
3627 static enum elf_reloc_type_class
3628 elf_i386_reloc_type_class (const Elf_Internal_Rela *rela)
3629 {
3630 switch (ELF32_R_TYPE (rela->r_info))
3631 {
3632 case R_386_RELATIVE:
3633 return reloc_class_relative;
3634 case R_386_JUMP_SLOT:
3635 return reloc_class_plt;
3636 case R_386_COPY:
3637 return reloc_class_copy;
3638 default:
3639 return reloc_class_normal;
3640 }
3641 }
3642
3643 /* Finish up the dynamic sections. */
3644
3645 static bfd_boolean
3646 elf_i386_finish_dynamic_sections (bfd *output_bfd,
3647 struct bfd_link_info *info)
3648 {
3649 struct elf_i386_link_hash_table *htab;
3650 bfd *dynobj;
3651 asection *sdyn;
3652
3653 htab = elf_i386_hash_table (info);
3654 dynobj = htab->elf.dynobj;
3655 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3656
3657 if (htab->elf.dynamic_sections_created)
3658 {
3659 Elf32_External_Dyn *dyncon, *dynconend;
3660
3661 if (sdyn == NULL || htab->sgot == NULL)
3662 abort ();
3663
3664 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3665 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3666 for (; dyncon < dynconend; dyncon++)
3667 {
3668 Elf_Internal_Dyn dyn;
3669 asection *s;
3670
3671 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3672
3673 switch (dyn.d_tag)
3674 {
3675 default:
3676 continue;
3677
3678 case DT_PLTGOT:
3679 s = htab->sgotplt;
3680 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3681 break;
3682
3683 case DT_JMPREL:
3684 s = htab->srelplt;
3685 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3686 break;
3687
3688 case DT_PLTRELSZ:
3689 s = htab->srelplt;
3690 dyn.d_un.d_val = s->size;
3691 break;
3692
3693 case DT_RELSZ:
3694 /* My reading of the SVR4 ABI indicates that the
3695 procedure linkage table relocs (DT_JMPREL) should be
3696 included in the overall relocs (DT_REL). This is
3697 what Solaris does. However, UnixWare can not handle
3698 that case. Therefore, we override the DT_RELSZ entry
3699 here to make it not include the JMPREL relocs. */
3700 s = htab->srelplt;
3701 if (s == NULL)
3702 continue;
3703 dyn.d_un.d_val -= s->size;
3704 break;
3705
3706 case DT_REL:
3707 /* We may not be using the standard ELF linker script.
3708 If .rel.plt is the first .rel section, we adjust
3709 DT_REL to not include it. */
3710 s = htab->srelplt;
3711 if (s == NULL)
3712 continue;
3713 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
3714 continue;
3715 dyn.d_un.d_ptr += s->size;
3716 break;
3717 }
3718
3719 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3720 }
3721
3722 /* Fill in the first entry in the procedure linkage table. */
3723 if (htab->splt && htab->splt->size > 0)
3724 {
3725 if (info->shared)
3726 {
3727 memcpy (htab->splt->contents, elf_i386_pic_plt0_entry,
3728 sizeof (elf_i386_pic_plt0_entry));
3729 memset (htab->splt->contents + sizeof (elf_i386_pic_plt0_entry),
3730 htab->plt0_pad_byte,
3731 PLT_ENTRY_SIZE - sizeof (elf_i386_pic_plt0_entry));
3732 }
3733 else
3734 {
3735 memcpy (htab->splt->contents, elf_i386_plt0_entry,
3736 sizeof(elf_i386_plt0_entry));
3737 memset (htab->splt->contents + sizeof (elf_i386_plt0_entry),
3738 htab->plt0_pad_byte,
3739 PLT_ENTRY_SIZE - sizeof (elf_i386_plt0_entry));
3740 bfd_put_32 (output_bfd,
3741 (htab->sgotplt->output_section->vma
3742 + htab->sgotplt->output_offset
3743 + 4),
3744 htab->splt->contents + 2);
3745 bfd_put_32 (output_bfd,
3746 (htab->sgotplt->output_section->vma
3747 + htab->sgotplt->output_offset
3748 + 8),
3749 htab->splt->contents + 8);
3750
3751 if (htab->is_vxworks)
3752 {
3753 Elf_Internal_Rela rel;
3754
3755 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_ + 4.
3756 On IA32 we use REL relocations so the addend goes in
3757 the PLT directly. */
3758 rel.r_offset = (htab->splt->output_section->vma
3759 + htab->splt->output_offset
3760 + 2);
3761 rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32);
3762 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3763 htab->srelplt2->contents);
3764 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_ + 8. */
3765 rel.r_offset = (htab->splt->output_section->vma
3766 + htab->splt->output_offset
3767 + 8);
3768 rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32);
3769 bfd_elf32_swap_reloc_out (output_bfd, &rel,
3770 htab->srelplt2->contents +
3771 sizeof (Elf32_External_Rel));
3772 }
3773 }
3774
3775 /* UnixWare sets the entsize of .plt to 4, although that doesn't
3776 really seem like the right value. */
3777 elf_section_data (htab->splt->output_section)
3778 ->this_hdr.sh_entsize = 4;
3779
3780 /* Correct the .rel.plt.unloaded relocations. */
3781 if (htab->is_vxworks && !info->shared)
3782 {
3783 int num_plts = (htab->splt->size / PLT_ENTRY_SIZE) - 1;
3784 unsigned char *p;
3785
3786 p = htab->srelplt2->contents;
3787 if (info->shared)
3788 p += PLTRESOLVE_RELOCS_SHLIB * sizeof (Elf32_External_Rel);
3789 else
3790 p += PLTRESOLVE_RELOCS * sizeof (Elf32_External_Rel);
3791
3792 for (; num_plts; num_plts--)
3793 {
3794 Elf_Internal_Rela rel;
3795 bfd_elf32_swap_reloc_in (output_bfd, p, &rel);
3796 rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32);
3797 bfd_elf32_swap_reloc_out (output_bfd, &rel, p);
3798 p += sizeof (Elf32_External_Rel);
3799
3800 bfd_elf32_swap_reloc_in (output_bfd, p, &rel);
3801 rel.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_386_32);
3802 bfd_elf32_swap_reloc_out (output_bfd, &rel, p);
3803 p += sizeof (Elf32_External_Rel);
3804 }
3805 }
3806 }
3807 }
3808
3809 if (htab->sgotplt)
3810 {
3811 /* Fill in the first three entries in the global offset table. */
3812 if (htab->sgotplt->size > 0)
3813 {
3814 bfd_put_32 (output_bfd,
3815 (sdyn == NULL ? 0
3816 : sdyn->output_section->vma + sdyn->output_offset),
3817 htab->sgotplt->contents);
3818 bfd_put_32 (output_bfd, 0, htab->sgotplt->contents + 4);
3819 bfd_put_32 (output_bfd, 0, htab->sgotplt->contents + 8);
3820 }
3821
3822 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
3823 }
3824
3825 if (htab->sgot && htab->sgot->size > 0)
3826 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize = 4;
3827
3828 return TRUE;
3829 }
3830
3831 /* Return address for Ith PLT stub in section PLT, for relocation REL
3832 or (bfd_vma) -1 if it should not be included. */
3833
3834 static bfd_vma
3835 elf_i386_plt_sym_val (bfd_vma i, const asection *plt,
3836 const arelent *rel ATTRIBUTE_UNUSED)
3837 {
3838 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3839 }
3840
3841
3842 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
3843 #define TARGET_LITTLE_NAME "elf32-i386"
3844 #define ELF_ARCH bfd_arch_i386
3845 #define ELF_MACHINE_CODE EM_386
3846 #define ELF_MAXPAGESIZE 0x1000
3847
3848 #define elf_backend_can_gc_sections 1
3849 #define elf_backend_can_refcount 1
3850 #define elf_backend_want_got_plt 1
3851 #define elf_backend_plt_readonly 1
3852 #define elf_backend_want_plt_sym 0
3853 #define elf_backend_got_header_size 12
3854
3855 /* Support RELA for objdump of prelink objects. */
3856 #define elf_info_to_howto elf_i386_info_to_howto_rel
3857 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
3858
3859 #define bfd_elf32_mkobject elf_i386_mkobject
3860
3861 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
3862 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
3863 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
3864
3865 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
3866 #define elf_backend_check_relocs elf_i386_check_relocs
3867 #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
3868 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
3869 #define elf_backend_fake_sections elf_i386_fake_sections
3870 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
3871 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
3872 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
3873 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
3874 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
3875 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
3876 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
3877 #define elf_backend_relocate_section elf_i386_relocate_section
3878 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
3879 #define elf_backend_always_size_sections elf_i386_always_size_sections
3880 #define elf_backend_plt_sym_val elf_i386_plt_sym_val
3881
3882 #include "elf32-target.h"
3883
3884 /* FreeBSD support. */
3885
3886 #undef TARGET_LITTLE_SYM
3887 #define TARGET_LITTLE_SYM bfd_elf32_i386_freebsd_vec
3888 #undef TARGET_LITTLE_NAME
3889 #define TARGET_LITTLE_NAME "elf32-i386-freebsd"
3890
3891 /* The kernel recognizes executables as valid only if they carry a
3892 "FreeBSD" label in the ELF header. So we put this label on all
3893 executables and (for simplicity) also all other object files. */
3894
3895 static void
3896 elf_i386_post_process_headers (bfd *abfd,
3897 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3898 {
3899 Elf_Internal_Ehdr *i_ehdrp;
3900
3901 i_ehdrp = elf_elfheader (abfd);
3902
3903 /* Put an ABI label supported by FreeBSD >= 4.1. */
3904 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
3905 #ifdef OLD_FREEBSD_ABI_LABEL
3906 /* The ABI label supported by FreeBSD <= 4.0 is quite nonstandard. */
3907 memcpy (&i_ehdrp->e_ident[EI_ABIVERSION], "FreeBSD", 8);
3908 #endif
3909 }
3910
3911 #undef elf_backend_post_process_headers
3912 #define elf_backend_post_process_headers elf_i386_post_process_headers
3913 #undef elf32_bed
3914 #define elf32_bed elf32_i386_fbsd_bed
3915
3916 #include "elf32-target.h"
3917
3918 /* VxWorks support. */
3919
3920 #undef TARGET_LITTLE_SYM
3921 #define TARGET_LITTLE_SYM bfd_elf32_i386_vxworks_vec
3922 #undef TARGET_LITTLE_NAME
3923 #define TARGET_LITTLE_NAME "elf32-i386-vxworks"
3924
3925
3926 /* Like elf_i386_link_hash_table_create but with tweaks for VxWorks. */
3927
3928 static struct bfd_link_hash_table *
3929 elf_i386_vxworks_link_hash_table_create (bfd *abfd)
3930 {
3931 struct bfd_link_hash_table *ret;
3932 struct elf_i386_link_hash_table *htab;
3933
3934 ret = elf_i386_link_hash_table_create (abfd);
3935 if (ret)
3936 {
3937 htab = (struct elf_i386_link_hash_table *) ret;
3938 htab->is_vxworks = 1;
3939 htab->plt0_pad_byte = 0x90;
3940 }
3941
3942 return ret;
3943 }
3944
3945
3946 #undef elf_backend_post_process_headers
3947 #undef bfd_elf32_bfd_link_hash_table_create
3948 #define bfd_elf32_bfd_link_hash_table_create \
3949 elf_i386_vxworks_link_hash_table_create
3950 #undef elf_backend_add_symbol_hook
3951 #define elf_backend_add_symbol_hook \
3952 elf_vxworks_add_symbol_hook
3953 #undef elf_backend_link_output_symbol_hook
3954 #define elf_backend_link_output_symbol_hook \
3955 elf_vxworks_link_output_symbol_hook
3956 #undef elf_backend_emit_relocs
3957 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
3958 #undef elf_backend_final_write_processing
3959 #define elf_backend_final_write_processing \
3960 elf_vxworks_final_write_processing
3961
3962 /* On VxWorks, we emit relocations against _PROCEDURE_LINKAGE_TABLE_, so
3963 define it. */
3964 #undef elf_backend_want_plt_sym
3965 #define elf_backend_want_plt_sym 1
3966
3967 #undef elf32_bed
3968 #define elf32_bed elf32_i386_vxworks_bed
3969
3970 #include "elf32-target.h"
This page took 0.111478 seconds and 4 git commands to generate.