f5e64555b101492b583b8774b1a34075817bcd33
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name
34 PARAMS ((bfd *, const char *));
35 static boolean elf_i386_grok_prstatus
36 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
37 static boolean elf_i386_grok_psinfo
38 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
39 static struct bfd_hash_entry *link_hash_newfunc
40 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
41 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
42 PARAMS ((bfd *));
43 static boolean create_got_section
44 PARAMS((bfd *, struct bfd_link_info *));
45 static boolean elf_i386_create_dynamic_sections
46 PARAMS((bfd *, struct bfd_link_info *));
47 static void elf_i386_copy_indirect_symbol
48 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
49 static boolean elf_i386_check_relocs
50 PARAMS ((bfd *, struct bfd_link_info *, asection *,
51 const Elf_Internal_Rela *));
52 static asection *elf_i386_gc_mark_hook
53 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
54 struct elf_link_hash_entry *, Elf_Internal_Sym *));
55 static boolean elf_i386_gc_sweep_hook
56 PARAMS ((bfd *, struct bfd_link_info *, asection *,
57 const Elf_Internal_Rela *));
58 static boolean elf_i386_adjust_dynamic_symbol
59 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
60 static boolean allocate_dynrelocs
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean readonly_dynrelocs
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static boolean elf_i386_size_dynamic_sections
67 PARAMS ((bfd *, struct bfd_link_info *));
68 static boolean elf_i386_relocate_section
69 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
70 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
71 static boolean elf_i386_finish_dynamic_symbol
72 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
73 Elf_Internal_Sym *));
74 static enum elf_reloc_type_class elf_i386_reloc_type_class
75 PARAMS ((const Elf_Internal_Rela *));
76 static boolean elf_i386_finish_dynamic_sections
77 PARAMS ((bfd *, struct bfd_link_info *));
78
79 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
80
81 #include "elf/i386.h"
82
83 static reloc_howto_type elf_howto_table[]=
84 {
85 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_386_NONE",
87 true, 0x00000000, 0x00000000, false),
88 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_386_32",
90 true, 0xffffffff, 0xffffffff, false),
91 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
92 bfd_elf_generic_reloc, "R_386_PC32",
93 true, 0xffffffff, 0xffffffff, true),
94 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_386_GOT32",
96 true, 0xffffffff, 0xffffffff, false),
97 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_386_PLT32",
99 true, 0xffffffff, 0xffffffff, true),
100 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_386_COPY",
102 true, 0xffffffff, 0xffffffff, false),
103 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
105 true, 0xffffffff, 0xffffffff, false),
106 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
108 true, 0xffffffff, 0xffffffff, false),
109 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_386_RELATIVE",
111 true, 0xffffffff, 0xffffffff, false),
112 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
113 bfd_elf_generic_reloc, "R_386_GOTOFF",
114 true, 0xffffffff, 0xffffffff, false),
115 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
116 bfd_elf_generic_reloc, "R_386_GOTPC",
117 true, 0xffffffff, 0xffffffff, true),
118
119 /* We have a gap in the reloc numbers here.
120 R_386_standard counts the number up to this point, and
121 R_386_ext_offset is the value to subtract from a reloc type of
122 R_386_16 thru R_386_PC8 to form an index into this table. */
123 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
124 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
125
126 /* The remaining relocs are a GNU extension. */
127 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_386_16",
129 true, 0xffff, 0xffff, false),
130 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_386_PC16",
132 true, 0xffff, 0xffff, true),
133 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
134 bfd_elf_generic_reloc, "R_386_8",
135 true, 0xff, 0xff, false),
136 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_386_PC8",
138 true, 0xff, 0xff, true),
139
140 /* Another gap. */
141 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
142 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
143
144 /* GNU extension to record C++ vtable hierarchy. */
145 HOWTO (R_386_GNU_VTINHERIT, /* type */
146 0, /* rightshift */
147 2, /* size (0 = byte, 1 = short, 2 = long) */
148 0, /* bitsize */
149 false, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_dont, /* complain_on_overflow */
152 NULL, /* special_function */
153 "R_386_GNU_VTINHERIT", /* name */
154 false, /* partial_inplace */
155 0, /* src_mask */
156 0, /* dst_mask */
157 false),
158
159 /* GNU extension to record C++ vtable member usage. */
160 HOWTO (R_386_GNU_VTENTRY, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 0, /* bitsize */
164 false, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_dont, /* complain_on_overflow */
167 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
168 "R_386_GNU_VTENTRY", /* name */
169 false, /* partial_inplace */
170 0, /* src_mask */
171 0, /* dst_mask */
172 false)
173
174 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
175
176 };
177
178 #ifdef DEBUG_GEN_RELOC
179 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
180 #else
181 #define TRACE(str)
182 #endif
183
184 static reloc_howto_type *
185 elf_i386_reloc_type_lookup (abfd, code)
186 bfd *abfd ATTRIBUTE_UNUSED;
187 bfd_reloc_code_real_type code;
188 {
189 switch (code)
190 {
191 case BFD_RELOC_NONE:
192 TRACE ("BFD_RELOC_NONE");
193 return &elf_howto_table[(unsigned int) R_386_NONE ];
194
195 case BFD_RELOC_32:
196 TRACE ("BFD_RELOC_32");
197 return &elf_howto_table[(unsigned int) R_386_32 ];
198
199 case BFD_RELOC_CTOR:
200 TRACE ("BFD_RELOC_CTOR");
201 return &elf_howto_table[(unsigned int) R_386_32 ];
202
203 case BFD_RELOC_32_PCREL:
204 TRACE ("BFD_RELOC_PC32");
205 return &elf_howto_table[(unsigned int) R_386_PC32 ];
206
207 case BFD_RELOC_386_GOT32:
208 TRACE ("BFD_RELOC_386_GOT32");
209 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
210
211 case BFD_RELOC_386_PLT32:
212 TRACE ("BFD_RELOC_386_PLT32");
213 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
214
215 case BFD_RELOC_386_COPY:
216 TRACE ("BFD_RELOC_386_COPY");
217 return &elf_howto_table[(unsigned int) R_386_COPY ];
218
219 case BFD_RELOC_386_GLOB_DAT:
220 TRACE ("BFD_RELOC_386_GLOB_DAT");
221 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
222
223 case BFD_RELOC_386_JUMP_SLOT:
224 TRACE ("BFD_RELOC_386_JUMP_SLOT");
225 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
226
227 case BFD_RELOC_386_RELATIVE:
228 TRACE ("BFD_RELOC_386_RELATIVE");
229 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
230
231 case BFD_RELOC_386_GOTOFF:
232 TRACE ("BFD_RELOC_386_GOTOFF");
233 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
234
235 case BFD_RELOC_386_GOTPC:
236 TRACE ("BFD_RELOC_386_GOTPC");
237 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
238
239 /* The remaining relocs are a GNU extension. */
240 case BFD_RELOC_16:
241 TRACE ("BFD_RELOC_16");
242 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
243
244 case BFD_RELOC_16_PCREL:
245 TRACE ("BFD_RELOC_16_PCREL");
246 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
247
248 case BFD_RELOC_8:
249 TRACE ("BFD_RELOC_8");
250 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
251
252 case BFD_RELOC_8_PCREL:
253 TRACE ("BFD_RELOC_8_PCREL");
254 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
255
256 case BFD_RELOC_VTABLE_INHERIT:
257 TRACE ("BFD_RELOC_VTABLE_INHERIT");
258 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
259 - R_386_vt_offset];
260
261 case BFD_RELOC_VTABLE_ENTRY:
262 TRACE ("BFD_RELOC_VTABLE_ENTRY");
263 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
264 - R_386_vt_offset];
265
266 default:
267 break;
268 }
269
270 TRACE ("Unknown");
271 return 0;
272 }
273
274 static void
275 elf_i386_info_to_howto (abfd, cache_ptr, dst)
276 bfd *abfd ATTRIBUTE_UNUSED;
277 arelent *cache_ptr ATTRIBUTE_UNUSED;
278 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
279 {
280 abort ();
281 }
282
283 static void
284 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
285 bfd *abfd ATTRIBUTE_UNUSED;
286 arelent *cache_ptr;
287 Elf32_Internal_Rel *dst;
288 {
289 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
290 unsigned int indx;
291
292 if ((indx = r_type) >= R_386_standard
293 && ((indx = r_type - R_386_ext_offset) - R_386_standard
294 >= R_386_ext - R_386_standard)
295 && ((indx = r_type - R_386_vt_offset) - R_386_ext
296 >= R_386_vt - R_386_ext))
297 {
298 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
299 bfd_archive_filename (abfd), (int) r_type);
300 indx = (unsigned int) R_386_NONE;
301 }
302 cache_ptr->howto = &elf_howto_table[indx];
303 }
304
305 /* Return whether a symbol name implies a local label. The UnixWare
306 2.1 cc generates temporary symbols that start with .X, so we
307 recognize them here. FIXME: do other SVR4 compilers also use .X?.
308 If so, we should move the .X recognition into
309 _bfd_elf_is_local_label_name. */
310
311 static boolean
312 elf_i386_is_local_label_name (abfd, name)
313 bfd *abfd;
314 const char *name;
315 {
316 if (name[0] == '.' && name[1] == 'X')
317 return true;
318
319 return _bfd_elf_is_local_label_name (abfd, name);
320 }
321 \f
322 /* Support for core dump NOTE sections. */
323 static boolean
324 elf_i386_grok_prstatus (abfd, note)
325 bfd *abfd;
326 Elf_Internal_Note *note;
327 {
328 int offset;
329 size_t raw_size;
330
331 switch (note->descsz)
332 {
333 default:
334 return false;
335
336 case 144: /* Linux/i386 */
337 /* pr_cursig */
338 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
339
340 /* pr_pid */
341 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
342
343 /* pr_reg */
344 offset = 72;
345 raw_size = 68;
346
347 break;
348 }
349
350 /* Make a ".reg/999" section. */
351 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
352 raw_size, note->descpos + offset);
353 }
354
355 static boolean
356 elf_i386_grok_psinfo (abfd, note)
357 bfd *abfd;
358 Elf_Internal_Note *note;
359 {
360 switch (note->descsz)
361 {
362 default:
363 return false;
364
365 case 128: /* Linux/MIPS elf_prpsinfo */
366 elf_tdata (abfd)->core_program
367 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
368 elf_tdata (abfd)->core_command
369 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
370 }
371
372 /* Note that for some reason, a spurious space is tacked
373 onto the end of the args in some (at least one anyway)
374 implementations, so strip it off if it exists. */
375
376 {
377 char *command = elf_tdata (abfd)->core_command;
378 int n = strlen (command);
379
380 if (0 < n && command[n - 1] == ' ')
381 command[n - 1] = '\0';
382 }
383
384 return true;
385 }
386 \f
387 /* Functions for the i386 ELF linker.
388
389 In order to gain some understanding of code in this file without
390 knowing all the intricate details of the linker, note the
391 following:
392
393 Functions named elf_i386_* are called by external routines, other
394 functions are only called locally. elf_i386_* functions appear
395 in this file more or less in the order in which they are called
396 from external routines. eg. elf_i386_check_relocs is called
397 early in the link process, elf_i386_finish_dynamic_sections is
398 one of the last functions. */
399
400
401 /* The name of the dynamic interpreter. This is put in the .interp
402 section. */
403
404 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
405
406 /* The size in bytes of an entry in the procedure linkage table. */
407
408 #define PLT_ENTRY_SIZE 16
409
410 /* The first entry in an absolute procedure linkage table looks like
411 this. See the SVR4 ABI i386 supplement to see how this works. */
412
413 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
414 {
415 0xff, 0x35, /* pushl contents of address */
416 0, 0, 0, 0, /* replaced with address of .got + 4. */
417 0xff, 0x25, /* jmp indirect */
418 0, 0, 0, 0, /* replaced with address of .got + 8. */
419 0, 0, 0, 0 /* pad out to 16 bytes. */
420 };
421
422 /* Subsequent entries in an absolute procedure linkage table look like
423 this. */
424
425 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
426 {
427 0xff, 0x25, /* jmp indirect */
428 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
429 0x68, /* pushl immediate */
430 0, 0, 0, 0, /* replaced with offset into relocation table. */
431 0xe9, /* jmp relative */
432 0, 0, 0, 0 /* replaced with offset to start of .plt. */
433 };
434
435 /* The first entry in a PIC procedure linkage table look like this. */
436
437 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
438 {
439 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
440 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
441 0, 0, 0, 0 /* pad out to 16 bytes. */
442 };
443
444 /* Subsequent entries in a PIC procedure linkage table look like this. */
445
446 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
447 {
448 0xff, 0xa3, /* jmp *offset(%ebx) */
449 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
450 0x68, /* pushl immediate */
451 0, 0, 0, 0, /* replaced with offset into relocation table. */
452 0xe9, /* jmp relative */
453 0, 0, 0, 0 /* replaced with offset to start of .plt. */
454 };
455
456 /* The i386 linker needs to keep track of the number of relocs that it
457 decides to copy as dynamic relocs in check_relocs for each symbol.
458 This is so that it can later discard them if they are found to be
459 unnecessary. We store the information in a field extending the
460 regular ELF linker hash table. */
461
462 struct elf_i386_dyn_relocs
463 {
464 struct elf_i386_dyn_relocs *next;
465
466 /* The input section of the reloc. */
467 asection *sec;
468
469 /* Total number of relocs copied for the input section. */
470 bfd_size_type count;
471
472 /* Number of pc-relative relocs copied for the input section. */
473 bfd_size_type pc_count;
474 };
475
476 /* i386 ELF linker hash entry. */
477
478 struct elf_i386_link_hash_entry
479 {
480 struct elf_link_hash_entry elf;
481
482 /* Track dynamic relocs copied for this symbol. */
483 struct elf_i386_dyn_relocs *dyn_relocs;
484 };
485
486 /* i386 ELF linker hash table. */
487
488 struct elf_i386_link_hash_table
489 {
490 struct elf_link_hash_table elf;
491
492 /* Short-cuts to get to dynamic linker sections. */
493 asection *sgot;
494 asection *sgotplt;
495 asection *srelgot;
496 asection *splt;
497 asection *srelplt;
498 asection *sdynbss;
499 asection *srelbss;
500 };
501
502 /* Get the i386 ELF linker hash table from a link_info structure. */
503
504 #define elf_i386_hash_table(p) \
505 ((struct elf_i386_link_hash_table *) ((p)->hash))
506
507 /* Create an entry in an i386 ELF linker hash table. */
508
509 static struct bfd_hash_entry *
510 link_hash_newfunc (entry, table, string)
511 struct bfd_hash_entry *entry;
512 struct bfd_hash_table *table;
513 const char *string;
514 {
515 /* Allocate the structure if it has not already been allocated by a
516 subclass. */
517 if (entry == NULL)
518 {
519 entry = bfd_hash_allocate (table,
520 sizeof (struct elf_i386_link_hash_entry));
521 if (entry == NULL)
522 return entry;
523 }
524
525 /* Call the allocation method of the superclass. */
526 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
527 if (entry != NULL)
528 {
529 struct elf_i386_link_hash_entry *eh;
530
531 eh = (struct elf_i386_link_hash_entry *) entry;
532 eh->dyn_relocs = NULL;
533 }
534
535 return entry;
536 }
537
538 /* Create an i386 ELF linker hash table. */
539
540 static struct bfd_link_hash_table *
541 elf_i386_link_hash_table_create (abfd)
542 bfd *abfd;
543 {
544 struct elf_i386_link_hash_table *ret;
545 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
546
547 ret = (struct elf_i386_link_hash_table *) bfd_alloc (abfd, amt);
548 if (ret == NULL)
549 return NULL;
550
551 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
552 {
553 bfd_release (abfd, ret);
554 return NULL;
555 }
556
557 ret->sgot = NULL;
558 ret->sgotplt = NULL;
559 ret->srelgot = NULL;
560 ret->splt = NULL;
561 ret->srelplt = NULL;
562 ret->sdynbss = NULL;
563 ret->srelbss = NULL;
564
565 return &ret->elf.root;
566 }
567
568 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
569 shortcuts to them in our hash table. */
570
571 static boolean
572 create_got_section (dynobj, info)
573 bfd *dynobj;
574 struct bfd_link_info *info;
575 {
576 struct elf_i386_link_hash_table *htab;
577
578 if (! _bfd_elf_create_got_section (dynobj, info))
579 return false;
580
581 htab = elf_i386_hash_table (info);
582 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
583 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
584 if (!htab->sgot || !htab->sgotplt)
585 abort ();
586
587 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
588 if (htab->srelgot == NULL
589 || ! bfd_set_section_flags (dynobj, htab->srelgot,
590 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
591 | SEC_IN_MEMORY | SEC_LINKER_CREATED
592 | SEC_READONLY))
593 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
594 return false;
595 return true;
596 }
597
598 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
599 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
600 hash table. */
601
602 static boolean
603 elf_i386_create_dynamic_sections (dynobj, info)
604 bfd *dynobj;
605 struct bfd_link_info *info;
606 {
607 struct elf_i386_link_hash_table *htab;
608
609 htab = elf_i386_hash_table (info);
610 if (!htab->sgot && !create_got_section (dynobj, info))
611 return false;
612
613 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
614 return false;
615
616 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
617 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
618 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
619 if (!info->shared)
620 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
621
622 if (!htab->splt || !htab->srelplt || !htab->sdynbss
623 || (!info->shared && !htab->srelbss))
624 abort ();
625
626 return true;
627 }
628
629 /* Copy the extra info we tack onto an elf_link_hash_entry. */
630
631 static void
632 elf_i386_copy_indirect_symbol (dir, ind)
633 struct elf_link_hash_entry *dir, *ind;
634 {
635 struct elf_i386_link_hash_entry *edir, *eind;
636
637 edir = (struct elf_i386_link_hash_entry *) dir;
638 eind = (struct elf_i386_link_hash_entry *) ind;
639
640 if (eind->dyn_relocs != NULL)
641 {
642 if (edir->dyn_relocs != NULL)
643 {
644 struct elf_i386_dyn_relocs **pp;
645 struct elf_i386_dyn_relocs *p;
646
647 if (dir != ind->weakdef)
648 abort ();
649
650 /* Add reloc counts against the weak sym to the strong sym
651 list. Merge any entries against the same section. */
652 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
653 {
654 struct elf_i386_dyn_relocs *q;
655
656 for (q = edir->dyn_relocs; q != NULL; q = q->next)
657 if (q->sec == p->sec)
658 {
659 q->pc_count += p->pc_count;
660 q->count += p->count;
661 *pp = p->next;
662 break;
663 }
664 if (q == NULL)
665 pp = &p->next;
666 }
667 *pp = edir->dyn_relocs;
668 }
669
670 edir->dyn_relocs = eind->dyn_relocs;
671 eind->dyn_relocs = NULL;
672 }
673
674 _bfd_elf_link_hash_copy_indirect (dir, ind);
675 }
676
677 /* Look through the relocs for a section during the first phase, and
678 calculate needed space in the global offset table, procedure linkage
679 table, and dynamic reloc sections. */
680
681 static boolean
682 elf_i386_check_relocs (abfd, info, sec, relocs)
683 bfd *abfd;
684 struct bfd_link_info *info;
685 asection *sec;
686 const Elf_Internal_Rela *relocs;
687 {
688 struct elf_i386_link_hash_table *htab;
689 Elf_Internal_Shdr *symtab_hdr;
690 struct elf_link_hash_entry **sym_hashes;
691 const Elf_Internal_Rela *rel;
692 const Elf_Internal_Rela *rel_end;
693 asection *sreloc;
694
695 if (info->relocateable)
696 return true;
697
698 htab = elf_i386_hash_table (info);
699 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
700 sym_hashes = elf_sym_hashes (abfd);
701
702 sreloc = NULL;
703
704 rel_end = relocs + sec->reloc_count;
705 for (rel = relocs; rel < rel_end; rel++)
706 {
707 unsigned long r_symndx;
708 struct elf_link_hash_entry *h;
709
710 r_symndx = ELF32_R_SYM (rel->r_info);
711
712 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
713 {
714 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
715 bfd_archive_filename (abfd),
716 r_symndx);
717 return false;
718 }
719
720 if (r_symndx < symtab_hdr->sh_info)
721 h = NULL;
722 else
723 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
724
725 switch (ELF32_R_TYPE (rel->r_info))
726 {
727 case R_386_GOT32:
728 /* This symbol requires a global offset table entry. */
729 if (h != NULL)
730 {
731 h->got.refcount += 1;
732 }
733 else
734 {
735 bfd_signed_vma *local_got_refcounts;
736
737 /* This is a global offset table entry for a local symbol. */
738 local_got_refcounts = elf_local_got_refcounts (abfd);
739 if (local_got_refcounts == NULL)
740 {
741 bfd_size_type size;
742
743 size = symtab_hdr->sh_info;
744 size *= sizeof (bfd_signed_vma);
745 local_got_refcounts = ((bfd_signed_vma *)
746 bfd_zalloc (abfd, size));
747 if (local_got_refcounts == NULL)
748 return false;
749 elf_local_got_refcounts (abfd) = local_got_refcounts;
750 }
751 local_got_refcounts[r_symndx] += 1;
752 }
753 /* Fall through */
754
755 case R_386_GOTOFF:
756 case R_386_GOTPC:
757 if (htab->sgot == NULL)
758 {
759 if (htab->elf.dynobj == NULL)
760 htab->elf.dynobj = abfd;
761 if (!create_got_section (htab->elf.dynobj, info))
762 return false;
763 }
764 break;
765
766 case R_386_PLT32:
767 /* This symbol requires a procedure linkage table entry. We
768 actually build the entry in adjust_dynamic_symbol,
769 because this might be a case of linking PIC code which is
770 never referenced by a dynamic object, in which case we
771 don't need to generate a procedure linkage table entry
772 after all. */
773
774 /* If this is a local symbol, we resolve it directly without
775 creating a procedure linkage table entry. */
776 if (h == NULL)
777 continue;
778
779 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
780 h->plt.refcount += 1;
781 break;
782
783 case R_386_32:
784 case R_386_PC32:
785 if (h != NULL && !info->shared)
786 {
787 /* If this reloc is in a read-only section, we might
788 need a copy reloc. We can't check reliably at this
789 stage whether the section is read-only, as input
790 sections have not yet been mapped to output sections.
791 Tentatively set the flag for now, and correct in
792 adjust_dynamic_symbol. */
793 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
794
795 /* We may need a .plt entry if the function this reloc
796 refers to is in a shared lib. */
797 h->plt.refcount += 1;
798 }
799
800 /* If we are creating a shared library, and this is a reloc
801 against a global symbol, or a non PC relative reloc
802 against a local symbol, then we need to copy the reloc
803 into the shared library. However, if we are linking with
804 -Bsymbolic, we do not need to copy a reloc against a
805 global symbol which is defined in an object we are
806 including in the link (i.e., DEF_REGULAR is set). At
807 this point we have not seen all the input files, so it is
808 possible that DEF_REGULAR is not set now but will be set
809 later (it is never cleared). In case of a weak definition,
810 DEF_REGULAR may be cleared later by a strong definition in
811 a shared library. We account for that possibility below by
812 storing information in the relocs_copied field of the hash
813 table entry. A similar situation occurs when creating
814 shared libraries and symbol visibility changes render the
815 symbol local.
816
817 If on the other hand, we are creating an executable, we
818 may need to keep relocations for symbols satisfied by a
819 dynamic library if we manage to avoid copy relocs for the
820 symbol. */
821 if ((info->shared
822 && (sec->flags & SEC_ALLOC) != 0
823 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
824 || (h != NULL
825 && (! info->symbolic
826 || h->root.type == bfd_link_hash_defweak
827 || (h->elf_link_hash_flags
828 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
829 || (!info->shared
830 && (sec->flags & SEC_ALLOC) != 0
831 && h != NULL
832 && (h->root.type == bfd_link_hash_defweak
833 || (h->elf_link_hash_flags
834 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
835 {
836 /* We must copy these reloc types into the output file.
837 Create a reloc section in dynobj and make room for
838 this reloc. */
839 if (sreloc == NULL)
840 {
841 const char *name;
842 bfd *dynobj;
843
844 name = (bfd_elf_string_from_elf_section
845 (abfd,
846 elf_elfheader (abfd)->e_shstrndx,
847 elf_section_data (sec)->rel_hdr.sh_name));
848 if (name == NULL)
849 return false;
850
851 if (strncmp (name, ".rel", 4) != 0
852 || strcmp (bfd_get_section_name (abfd, sec),
853 name + 4) != 0)
854 {
855 (*_bfd_error_handler)
856 (_("%s: bad relocation section name `%s\'"),
857 bfd_archive_filename (abfd), name);
858 }
859
860 if (htab->elf.dynobj == NULL)
861 htab->elf.dynobj = abfd;
862
863 dynobj = htab->elf.dynobj;
864 sreloc = bfd_get_section_by_name (dynobj, name);
865 if (sreloc == NULL)
866 {
867 flagword flags;
868
869 sreloc = bfd_make_section (dynobj, name);
870 flags = (SEC_HAS_CONTENTS | SEC_READONLY
871 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
872 if ((sec->flags & SEC_ALLOC) != 0)
873 flags |= SEC_ALLOC | SEC_LOAD;
874 if (sreloc == NULL
875 || ! bfd_set_section_flags (dynobj, sreloc, flags)
876 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
877 return false;
878 }
879 elf_section_data (sec)->sreloc = sreloc;
880 }
881
882 /* If this is a global symbol, we count the number of
883 relocations we need for this symbol. */
884 if (h != NULL)
885 {
886 struct elf_i386_link_hash_entry *eh;
887 struct elf_i386_dyn_relocs *p;
888
889 eh = (struct elf_i386_link_hash_entry *) h;
890 p = eh->dyn_relocs;
891
892 if (p == NULL || p->sec != sec)
893 {
894 bfd_size_type amt = sizeof *p;
895 p = ((struct elf_i386_dyn_relocs *)
896 bfd_alloc (htab->elf.dynobj, amt));
897 if (p == NULL)
898 return false;
899 p->next = eh->dyn_relocs;
900 eh->dyn_relocs = p;
901 p->sec = sec;
902 p->count = 0;
903 p->pc_count = 0;
904 }
905
906 p->count += 1;
907 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
908 p->pc_count += 1;
909 }
910 else
911 {
912 /* Track dynamic relocs needed for local syms too. */
913 elf_section_data (sec)->local_dynrel += 1;
914 }
915 }
916 break;
917
918 /* This relocation describes the C++ object vtable hierarchy.
919 Reconstruct it for later use during GC. */
920 case R_386_GNU_VTINHERIT:
921 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
922 return false;
923 break;
924
925 /* This relocation describes which C++ vtable entries are actually
926 used. Record for later use during GC. */
927 case R_386_GNU_VTENTRY:
928 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
929 return false;
930 break;
931
932 default:
933 break;
934 }
935 }
936
937 return true;
938 }
939
940 /* Return the section that should be marked against GC for a given
941 relocation. */
942
943 static asection *
944 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
945 bfd *abfd;
946 struct bfd_link_info *info ATTRIBUTE_UNUSED;
947 Elf_Internal_Rela *rel;
948 struct elf_link_hash_entry *h;
949 Elf_Internal_Sym *sym;
950 {
951 if (h != NULL)
952 {
953 switch (ELF32_R_TYPE (rel->r_info))
954 {
955 case R_386_GNU_VTINHERIT:
956 case R_386_GNU_VTENTRY:
957 break;
958
959 default:
960 switch (h->root.type)
961 {
962 case bfd_link_hash_defined:
963 case bfd_link_hash_defweak:
964 return h->root.u.def.section;
965
966 case bfd_link_hash_common:
967 return h->root.u.c.p->section;
968
969 default:
970 break;
971 }
972 }
973 }
974 else
975 {
976 if (!(elf_bad_symtab (abfd)
977 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
978 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
979 && sym->st_shndx != SHN_COMMON))
980 {
981 return bfd_section_from_elf_index (abfd, sym->st_shndx);
982 }
983 }
984
985 return NULL;
986 }
987
988 /* Update the got entry reference counts for the section being removed. */
989
990 static boolean
991 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
992 bfd *abfd;
993 struct bfd_link_info *info;
994 asection *sec;
995 const Elf_Internal_Rela *relocs;
996 {
997 Elf_Internal_Shdr *symtab_hdr;
998 struct elf_link_hash_entry **sym_hashes;
999 bfd_signed_vma *local_got_refcounts;
1000 const Elf_Internal_Rela *rel, *relend;
1001 unsigned long r_symndx;
1002 struct elf_link_hash_entry *h;
1003 bfd *dynobj;
1004
1005 elf_section_data (sec)->local_dynrel = 0;
1006
1007 dynobj = elf_hash_table (info)->dynobj;
1008 if (dynobj == NULL)
1009 return true;
1010
1011 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1012 sym_hashes = elf_sym_hashes (abfd);
1013 local_got_refcounts = elf_local_got_refcounts (abfd);
1014
1015 relend = relocs + sec->reloc_count;
1016 for (rel = relocs; rel < relend; rel++)
1017 switch (ELF32_R_TYPE (rel->r_info))
1018 {
1019 case R_386_GOT32:
1020 case R_386_GOTOFF:
1021 case R_386_GOTPC:
1022 r_symndx = ELF32_R_SYM (rel->r_info);
1023 if (r_symndx >= symtab_hdr->sh_info)
1024 {
1025 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1026 if (h->got.refcount > 0)
1027 h->got.refcount -= 1;
1028 }
1029 else if (local_got_refcounts != NULL)
1030 {
1031 if (local_got_refcounts[r_symndx] > 0)
1032 local_got_refcounts[r_symndx] -= 1;
1033 }
1034 break;
1035
1036 case R_386_32:
1037 case R_386_PC32:
1038 r_symndx = ELF32_R_SYM (rel->r_info);
1039 if (r_symndx >= symtab_hdr->sh_info)
1040 {
1041 struct elf_i386_link_hash_entry *eh;
1042 struct elf_i386_dyn_relocs **pp;
1043 struct elf_i386_dyn_relocs *p;
1044
1045 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1046
1047 if (!info->shared && h->plt.refcount > 0)
1048 h->plt.refcount -= 1;
1049
1050 eh = (struct elf_i386_link_hash_entry *) h;
1051
1052 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1053 if (p->sec == sec)
1054 {
1055 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
1056 p->pc_count -= 1;
1057 p->count -= 1;
1058 if (p->count == 0)
1059 *pp = p->next;
1060 break;
1061 }
1062 }
1063 break;
1064
1065 case R_386_PLT32:
1066 r_symndx = ELF32_R_SYM (rel->r_info);
1067 if (r_symndx >= symtab_hdr->sh_info)
1068 {
1069 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1070 if (h->plt.refcount > 0)
1071 h->plt.refcount -= 1;
1072 }
1073 break;
1074
1075 default:
1076 break;
1077 }
1078
1079 return true;
1080 }
1081
1082 /* Adjust a symbol defined by a dynamic object and referenced by a
1083 regular object. The current definition is in some section of the
1084 dynamic object, but we're not including those sections. We have to
1085 change the definition to something the rest of the link can
1086 understand. */
1087
1088 static boolean
1089 elf_i386_adjust_dynamic_symbol (info, h)
1090 struct bfd_link_info *info;
1091 struct elf_link_hash_entry *h;
1092 {
1093 struct elf_i386_link_hash_table *htab;
1094 struct elf_i386_link_hash_entry * eh;
1095 struct elf_i386_dyn_relocs *p;
1096 asection *s;
1097 unsigned int power_of_two;
1098
1099 /* If this is a function, put it in the procedure linkage table. We
1100 will fill in the contents of the procedure linkage table later,
1101 when we know the address of the .got section. */
1102 if (h->type == STT_FUNC
1103 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1104 {
1105 if (h->plt.refcount <= 0
1106 || (! info->shared
1107 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1108 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
1109 {
1110 /* This case can occur if we saw a PLT32 reloc in an input
1111 file, but the symbol was never referred to by a dynamic
1112 object, or if all references were garbage collected. In
1113 such a case, we don't actually need to build a procedure
1114 linkage table, and we can just do a PC32 reloc instead. */
1115 h->plt.offset = (bfd_vma) -1;
1116 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1117 }
1118
1119 return true;
1120 }
1121 else
1122 /* It's possible that we incorrectly decided a .plt reloc was
1123 needed for an R_386_PC32 reloc to a non-function sym in
1124 check_relocs. We can't decide accurately between function and
1125 non-function syms in check-relocs; Objects loaded later in
1126 the link may change h->type. So fix it now. */
1127 h->plt.offset = (bfd_vma) -1;
1128
1129 /* If this is a weak symbol, and there is a real definition, the
1130 processor independent code will have arranged for us to see the
1131 real definition first, and we can just use the same value. */
1132 if (h->weakdef != NULL)
1133 {
1134 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1135 || h->weakdef->root.type == bfd_link_hash_defweak);
1136 h->root.u.def.section = h->weakdef->root.u.def.section;
1137 h->root.u.def.value = h->weakdef->root.u.def.value;
1138 return true;
1139 }
1140
1141 /* This is a reference to a symbol defined by a dynamic object which
1142 is not a function. */
1143
1144 /* If we are creating a shared library, we must presume that the
1145 only references to the symbol are via the global offset table.
1146 For such cases we need not do anything here; the relocations will
1147 be handled correctly by relocate_section. */
1148 if (info->shared)
1149 return true;
1150
1151 /* If there are no references to this symbol that do not use the
1152 GOT, we don't need to generate a copy reloc. */
1153 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1154 return true;
1155
1156 /* If -z nocopyreloc was given, we won't generate them either. */
1157 if (info->nocopyreloc)
1158 {
1159 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1160 return true;
1161 }
1162
1163 eh = (struct elf_i386_link_hash_entry *) h;
1164 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1165 {
1166 s = p->sec->output_section;
1167 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1168 break;
1169 }
1170
1171 /* If we didn't find any dynamic relocs in read-only sections, then
1172 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1173 if (p == NULL)
1174 {
1175 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1176 return true;
1177 }
1178
1179 /* We must allocate the symbol in our .dynbss section, which will
1180 become part of the .bss section of the executable. There will be
1181 an entry for this symbol in the .dynsym section. The dynamic
1182 object will contain position independent code, so all references
1183 from the dynamic object to this symbol will go through the global
1184 offset table. The dynamic linker will use the .dynsym entry to
1185 determine the address it must put in the global offset table, so
1186 both the dynamic object and the regular object will refer to the
1187 same memory location for the variable. */
1188
1189 htab = elf_i386_hash_table (info);
1190
1191 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1192 copy the initial value out of the dynamic object and into the
1193 runtime process image. */
1194 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1195 {
1196 htab->srelbss->_raw_size += sizeof (Elf32_External_Rel);
1197 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1198 }
1199
1200 /* We need to figure out the alignment required for this symbol. I
1201 have no idea how ELF linkers handle this. */
1202 power_of_two = bfd_log2 (h->size);
1203 if (power_of_two > 3)
1204 power_of_two = 3;
1205
1206 /* Apply the required alignment. */
1207 s = htab->sdynbss;
1208 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1209 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1210 {
1211 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1212 return false;
1213 }
1214
1215 /* Define the symbol as being at this point in the section. */
1216 h->root.u.def.section = s;
1217 h->root.u.def.value = s->_raw_size;
1218
1219 /* Increment the section size to make room for the symbol. */
1220 s->_raw_size += h->size;
1221
1222 return true;
1223 }
1224
1225 /* This is the condition under which elf_i386_finish_dynamic_symbol
1226 will be called from elflink.h. If elflink.h doesn't call our
1227 finish_dynamic_symbol routine, we'll need to do something about
1228 initializing any .plt and .got entries in elf_i386_relocate_section. */
1229 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1230 ((DYN) \
1231 && ((INFO)->shared \
1232 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1233 && ((H)->dynindx != -1 \
1234 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1235
1236 /* Allocate space in .plt, .got and associated reloc sections for
1237 dynamic relocs. */
1238
1239 static boolean
1240 allocate_dynrelocs (h, inf)
1241 struct elf_link_hash_entry *h;
1242 PTR inf;
1243 {
1244 struct bfd_link_info *info;
1245 struct elf_i386_link_hash_table *htab;
1246 struct elf_i386_link_hash_entry *eh;
1247 struct elf_i386_dyn_relocs *p;
1248
1249 if (h->root.type == bfd_link_hash_indirect
1250 || h->root.type == bfd_link_hash_warning)
1251 return true;
1252
1253 info = (struct bfd_link_info *) inf;
1254 htab = elf_i386_hash_table (info);
1255
1256 if (htab->elf.dynamic_sections_created
1257 && h->plt.refcount > 0)
1258 {
1259 /* Make sure this symbol is output as a dynamic symbol.
1260 Undefined weak syms won't yet be marked as dynamic. */
1261 if (h->dynindx == -1
1262 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1263 {
1264 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1265 return false;
1266 }
1267
1268 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1269 {
1270 asection *s = htab->splt;
1271
1272 /* If this is the first .plt entry, make room for the special
1273 first entry. */
1274 if (s->_raw_size == 0)
1275 s->_raw_size += PLT_ENTRY_SIZE;
1276
1277 h->plt.offset = s->_raw_size;
1278
1279 /* If this symbol is not defined in a regular file, and we are
1280 not generating a shared library, then set the symbol to this
1281 location in the .plt. This is required to make function
1282 pointers compare as equal between the normal executable and
1283 the shared library. */
1284 if (! info->shared
1285 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1286 {
1287 h->root.u.def.section = s;
1288 h->root.u.def.value = h->plt.offset;
1289 }
1290
1291 /* Make room for this entry. */
1292 s->_raw_size += PLT_ENTRY_SIZE;
1293
1294 /* We also need to make an entry in the .got.plt section, which
1295 will be placed in the .got section by the linker script. */
1296 htab->sgotplt->_raw_size += 4;
1297
1298 /* We also need to make an entry in the .rel.plt section. */
1299 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
1300 }
1301 else
1302 {
1303 h->plt.offset = (bfd_vma) -1;
1304 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1305 }
1306 }
1307 else
1308 {
1309 h->plt.offset = (bfd_vma) -1;
1310 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1311 }
1312
1313 if (h->got.refcount > 0)
1314 {
1315 asection *s;
1316 boolean dyn;
1317
1318 /* Make sure this symbol is output as a dynamic symbol.
1319 Undefined weak syms won't yet be marked as dynamic. */
1320 if (h->dynindx == -1
1321 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1322 {
1323 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1324 return false;
1325 }
1326
1327 s = htab->sgot;
1328 h->got.offset = s->_raw_size;
1329 s->_raw_size += 4;
1330 dyn = htab->elf.dynamic_sections_created;
1331 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1332 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1333 }
1334 else
1335 h->got.offset = (bfd_vma) -1;
1336
1337 eh = (struct elf_i386_link_hash_entry *) h;
1338 if (eh->dyn_relocs == NULL)
1339 return true;
1340
1341 /* In the shared -Bsymbolic case, discard space allocated for
1342 dynamic pc-relative relocs against symbols which turn out to be
1343 defined in regular objects. For the normal shared case, discard
1344 space for pc-relative relocs that have become local due to symbol
1345 visibility changes. */
1346
1347 if (info->shared)
1348 {
1349 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1350 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1351 || info->symbolic))
1352 {
1353 struct elf_i386_dyn_relocs **pp;
1354
1355 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1356 {
1357 p->count -= p->pc_count;
1358 p->pc_count = 0;
1359 if (p->count == 0)
1360 *pp = p->next;
1361 else
1362 pp = &p->next;
1363 }
1364 }
1365 }
1366 else
1367 {
1368 /* For the non-shared case, discard space for relocs against
1369 symbols which turn out to need copy relocs or are not
1370 dynamic. */
1371
1372 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1373 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1374 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1375 || (htab->elf.dynamic_sections_created
1376 && (h->root.type == bfd_link_hash_undefweak
1377 || h->root.type == bfd_link_hash_undefined))))
1378 {
1379 /* Make sure this symbol is output as a dynamic symbol.
1380 Undefined weak syms won't yet be marked as dynamic. */
1381 if (h->dynindx == -1
1382 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1383 {
1384 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1385 return false;
1386 }
1387
1388 /* If that succeeded, we know we'll be keeping all the
1389 relocs. */
1390 if (h->dynindx != -1)
1391 goto keep;
1392 }
1393
1394 eh->dyn_relocs = NULL;
1395
1396 keep:
1397 }
1398
1399 /* Finally, allocate space. */
1400 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1401 {
1402 asection *sreloc = elf_section_data (p->sec)->sreloc;
1403 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
1404 }
1405
1406 return true;
1407 }
1408
1409 /* Find any dynamic relocs that apply to read-only sections. */
1410
1411 static boolean
1412 readonly_dynrelocs (h, inf)
1413 struct elf_link_hash_entry *h;
1414 PTR inf;
1415 {
1416 struct elf_i386_link_hash_entry *eh;
1417 struct elf_i386_dyn_relocs *p;
1418
1419 eh = (struct elf_i386_link_hash_entry *) h;
1420 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1421 {
1422 asection *s = p->sec->output_section;
1423
1424 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1425 {
1426 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1427
1428 info->flags |= DF_TEXTREL;
1429
1430 /* Not an error, just cut short the traversal. */
1431 return false;
1432 }
1433 }
1434 return true;
1435 }
1436
1437 /* Set the sizes of the dynamic sections. */
1438
1439 static boolean
1440 elf_i386_size_dynamic_sections (output_bfd, info)
1441 bfd *output_bfd ATTRIBUTE_UNUSED;
1442 struct bfd_link_info *info;
1443 {
1444 struct elf_i386_link_hash_table *htab;
1445 bfd *dynobj;
1446 asection *s;
1447 boolean relocs;
1448 bfd *ibfd;
1449
1450 htab = elf_i386_hash_table (info);
1451 dynobj = htab->elf.dynobj;
1452 if (dynobj == NULL)
1453 abort ();
1454
1455 if (htab->elf.dynamic_sections_created)
1456 {
1457 /* Set the contents of the .interp section to the interpreter. */
1458 if (! info->shared)
1459 {
1460 s = bfd_get_section_by_name (dynobj, ".interp");
1461 if (s == NULL)
1462 abort ();
1463 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1464 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1465 }
1466 }
1467
1468 /* Set up .got offsets for local syms, and space for local dynamic
1469 relocs. */
1470 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1471 {
1472 bfd_signed_vma *local_got;
1473 bfd_signed_vma *end_local_got;
1474 bfd_size_type locsymcount;
1475 Elf_Internal_Shdr *symtab_hdr;
1476 asection *srel;
1477
1478 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1479 continue;
1480
1481 for (s = ibfd->sections; s != NULL; s = s->next)
1482 {
1483 bfd_size_type count = elf_section_data (s)->local_dynrel;
1484
1485 if (count != 0)
1486 {
1487 srel = elf_section_data (s)->sreloc;
1488 srel->_raw_size += count * sizeof (Elf32_External_Rel);
1489 }
1490 }
1491
1492 local_got = elf_local_got_refcounts (ibfd);
1493 if (!local_got)
1494 continue;
1495
1496 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1497 locsymcount = symtab_hdr->sh_info;
1498 end_local_got = local_got + locsymcount;
1499 s = htab->sgot;
1500 srel = htab->srelgot;
1501 for (; local_got < end_local_got; ++local_got)
1502 {
1503 if (*local_got > 0)
1504 {
1505 *local_got = s->_raw_size;
1506 s->_raw_size += 4;
1507 if (info->shared)
1508 srel->_raw_size += sizeof (Elf32_External_Rel);
1509 }
1510 else
1511 *local_got = (bfd_vma) -1;
1512 }
1513 }
1514
1515 /* Allocate global sym .plt and .got entries, and space for global
1516 sym dynamic relocs. */
1517 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1518
1519 /* We now have determined the sizes of the various dynamic sections.
1520 Allocate memory for them. */
1521 relocs = false;
1522 for (s = dynobj->sections; s != NULL; s = s->next)
1523 {
1524 if ((s->flags & SEC_LINKER_CREATED) == 0)
1525 continue;
1526
1527 if (s == htab->splt
1528 || s == htab->sgot
1529 || s == htab->sgotplt)
1530 {
1531 /* Strip this section if we don't need it; see the
1532 comment below. */
1533 }
1534 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1535 {
1536 if (s->_raw_size != 0 && s != htab->srelplt)
1537 relocs = true;
1538
1539 /* We use the reloc_count field as a counter if we need
1540 to copy relocs into the output file. */
1541 s->reloc_count = 0;
1542 }
1543 else
1544 {
1545 /* It's not one of our sections, so don't allocate space. */
1546 continue;
1547 }
1548
1549 if (s->_raw_size == 0)
1550 {
1551 /* If we don't need this section, strip it from the
1552 output file. This is mostly to handle .rel.bss and
1553 .rel.plt. We must create both sections in
1554 create_dynamic_sections, because they must be created
1555 before the linker maps input sections to output
1556 sections. The linker does that before
1557 adjust_dynamic_symbol is called, and it is that
1558 function which decides whether anything needs to go
1559 into these sections. */
1560
1561 _bfd_strip_section_from_output (info, s);
1562 continue;
1563 }
1564
1565 /* Allocate memory for the section contents. We use bfd_zalloc
1566 here in case unused entries are not reclaimed before the
1567 section's contents are written out. This should not happen,
1568 but this way if it does, we get a R_386_NONE reloc instead
1569 of garbage. */
1570 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1571 if (s->contents == NULL)
1572 return false;
1573 }
1574
1575 if (htab->elf.dynamic_sections_created)
1576 {
1577 /* Add some entries to the .dynamic section. We fill in the
1578 values later, in elf_i386_finish_dynamic_sections, but we
1579 must add the entries now so that we get the correct size for
1580 the .dynamic section. The DT_DEBUG entry is filled in by the
1581 dynamic linker and used by the debugger. */
1582 #define add_dynamic_entry(TAG, VAL) \
1583 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1584
1585 if (! info->shared)
1586 {
1587 if (!add_dynamic_entry (DT_DEBUG, 0))
1588 return false;
1589 }
1590
1591 if (htab->splt->_raw_size != 0)
1592 {
1593 if (!add_dynamic_entry (DT_PLTGOT, 0)
1594 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1595 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1596 || !add_dynamic_entry (DT_JMPREL, 0))
1597 return false;
1598 }
1599
1600 if (relocs)
1601 {
1602 if (!add_dynamic_entry (DT_REL, 0)
1603 || !add_dynamic_entry (DT_RELSZ, 0)
1604 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1605 return false;
1606
1607 /* If any dynamic relocs apply to a read-only section,
1608 then we need a DT_TEXTREL entry. */
1609 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
1610
1611 if ((info->flags & DF_TEXTREL) != 0)
1612 {
1613 if (!add_dynamic_entry (DT_TEXTREL, 0))
1614 return false;
1615 }
1616 }
1617 }
1618 #undef add_dynamic_entry
1619
1620 return true;
1621 }
1622
1623 /* Set the correct type for an x86 ELF section. We do this by the
1624 section name, which is a hack, but ought to work. */
1625
1626 static boolean
1627 elf_i386_fake_sections (abfd, hdr, sec)
1628 bfd *abfd ATTRIBUTE_UNUSED;
1629 Elf32_Internal_Shdr *hdr;
1630 asection *sec;
1631 {
1632 register const char *name;
1633
1634 name = bfd_get_section_name (abfd, sec);
1635
1636 /* This is an ugly, but unfortunately necessary hack that is
1637 needed when producing EFI binaries on x86. It tells
1638 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1639 containing ELF relocation info. We need this hack in order to
1640 be able to generate ELF binaries that can be translated into
1641 EFI applications (which are essentially COFF objects). Those
1642 files contain a COFF ".reloc" section inside an ELFNN object,
1643 which would normally cause BFD to segfault because it would
1644 attempt to interpret this section as containing relocation
1645 entries for section "oc". With this hack enabled, ".reloc"
1646 will be treated as a normal data section, which will avoid the
1647 segfault. However, you won't be able to create an ELFNN binary
1648 with a section named "oc" that needs relocations, but that's
1649 the kind of ugly side-effects you get when detecting section
1650 types based on their names... In practice, this limitation is
1651 unlikely to bite. */
1652 if (strcmp (name, ".reloc") == 0)
1653 hdr->sh_type = SHT_PROGBITS;
1654
1655 return true;
1656 }
1657
1658 /* Relocate an i386 ELF section. */
1659
1660 static boolean
1661 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1662 contents, relocs, local_syms, local_sections)
1663 bfd *output_bfd;
1664 struct bfd_link_info *info;
1665 bfd *input_bfd;
1666 asection *input_section;
1667 bfd_byte *contents;
1668 Elf_Internal_Rela *relocs;
1669 Elf_Internal_Sym *local_syms;
1670 asection **local_sections;
1671 {
1672 struct elf_i386_link_hash_table *htab;
1673 Elf_Internal_Shdr *symtab_hdr;
1674 struct elf_link_hash_entry **sym_hashes;
1675 bfd_vma *local_got_offsets;
1676 Elf_Internal_Rela *rel;
1677 Elf_Internal_Rela *relend;
1678
1679 htab = elf_i386_hash_table (info);
1680 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1681 sym_hashes = elf_sym_hashes (input_bfd);
1682 local_got_offsets = elf_local_got_offsets (input_bfd);
1683
1684 rel = relocs;
1685 relend = relocs + input_section->reloc_count;
1686 for (; rel < relend; rel++)
1687 {
1688 int r_type;
1689 reloc_howto_type *howto;
1690 unsigned long r_symndx;
1691 struct elf_link_hash_entry *h;
1692 Elf_Internal_Sym *sym;
1693 asection *sec;
1694 bfd_vma off;
1695 bfd_vma relocation;
1696 boolean unresolved_reloc;
1697 bfd_reloc_status_type r;
1698 unsigned int indx;
1699
1700 r_type = ELF32_R_TYPE (rel->r_info);
1701 if (r_type == (int) R_386_GNU_VTINHERIT
1702 || r_type == (int) R_386_GNU_VTENTRY)
1703 continue;
1704
1705 if ((indx = (unsigned) r_type) >= R_386_standard
1706 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1707 >= R_386_ext - R_386_standard))
1708 {
1709 bfd_set_error (bfd_error_bad_value);
1710 return false;
1711 }
1712 howto = elf_howto_table + indx;
1713
1714 r_symndx = ELF32_R_SYM (rel->r_info);
1715
1716 if (info->relocateable)
1717 {
1718 /* This is a relocatable link. We don't have to change
1719 anything, unless the reloc is against a section symbol,
1720 in which case we have to adjust according to where the
1721 section symbol winds up in the output section. */
1722 if (r_symndx < symtab_hdr->sh_info)
1723 {
1724 sym = local_syms + r_symndx;
1725 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1726 {
1727 bfd_vma val;
1728
1729 sec = local_sections[r_symndx];
1730 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1731 val += sec->output_offset + sym->st_value;
1732 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1733 }
1734 }
1735 continue;
1736 }
1737
1738 /* This is a final link. */
1739 h = NULL;
1740 sym = NULL;
1741 sec = NULL;
1742 unresolved_reloc = false;
1743 if (r_symndx < symtab_hdr->sh_info)
1744 {
1745 sym = local_syms + r_symndx;
1746 sec = local_sections[r_symndx];
1747 relocation = (sec->output_section->vma
1748 + sec->output_offset
1749 + sym->st_value);
1750 }
1751 else
1752 {
1753 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1754 while (h->root.type == bfd_link_hash_indirect
1755 || h->root.type == bfd_link_hash_warning)
1756 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1757
1758 relocation = 0;
1759 if (h->root.type == bfd_link_hash_defined
1760 || h->root.type == bfd_link_hash_defweak)
1761 {
1762 sec = h->root.u.def.section;
1763 if (sec->output_section == NULL)
1764 /* Set a flag that will be cleared later if we find a
1765 relocation value for this symbol. output_section
1766 is typically NULL for symbols satisfied by a shared
1767 library. */
1768 unresolved_reloc = true;
1769 else
1770 relocation = (h->root.u.def.value
1771 + sec->output_section->vma
1772 + sec->output_offset);
1773 }
1774 else if (h->root.type == bfd_link_hash_undefweak)
1775 ;
1776 else if (info->shared
1777 && (!info->symbolic || info->allow_shlib_undefined)
1778 && !info->no_undefined
1779 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1780 ;
1781 else
1782 {
1783 if (! ((*info->callbacks->undefined_symbol)
1784 (info, h->root.root.string, input_bfd,
1785 input_section, rel->r_offset,
1786 (!info->shared || info->no_undefined
1787 || ELF_ST_VISIBILITY (h->other)))))
1788 return false;
1789 }
1790 }
1791
1792 switch (r_type)
1793 {
1794 case R_386_GOT32:
1795 /* Relocation is to the entry for this symbol in the global
1796 offset table. */
1797 if (htab->sgot == NULL)
1798 abort ();
1799
1800 if (h != NULL)
1801 {
1802 boolean dyn;
1803
1804 off = h->got.offset;
1805 dyn = htab->elf.dynamic_sections_created;
1806 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1807 || (info->shared
1808 && (info->symbolic
1809 || h->dynindx == -1
1810 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1811 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1812 {
1813 /* This is actually a static link, or it is a
1814 -Bsymbolic link and the symbol is defined
1815 locally, or the symbol was forced to be local
1816 because of a version file. We must initialize
1817 this entry in the global offset table. Since the
1818 offset must always be a multiple of 4, we use the
1819 least significant bit to record whether we have
1820 initialized it already.
1821
1822 When doing a dynamic link, we create a .rel.got
1823 relocation entry to initialize the value. This
1824 is done in the finish_dynamic_symbol routine. */
1825 if ((off & 1) != 0)
1826 off &= ~1;
1827 else
1828 {
1829 bfd_put_32 (output_bfd, relocation,
1830 htab->sgot->contents + off);
1831 h->got.offset |= 1;
1832 }
1833 }
1834 else
1835 unresolved_reloc = false;
1836 }
1837 else
1838 {
1839 if (local_got_offsets == NULL)
1840 abort ();
1841
1842 off = local_got_offsets[r_symndx];
1843
1844 /* The offset must always be a multiple of 4. We use
1845 the least significant bit to record whether we have
1846 already generated the necessary reloc. */
1847 if ((off & 1) != 0)
1848 off &= ~1;
1849 else
1850 {
1851 bfd_put_32 (output_bfd, relocation,
1852 htab->sgot->contents + off);
1853
1854 if (info->shared)
1855 {
1856 asection *srelgot;
1857 Elf_Internal_Rel outrel;
1858 Elf32_External_Rel *loc;
1859
1860 srelgot = htab->srelgot;
1861 if (srelgot == NULL)
1862 abort ();
1863
1864 outrel.r_offset = (htab->sgot->output_section->vma
1865 + htab->sgot->output_offset
1866 + off);
1867 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1868 loc = (Elf32_External_Rel *) srelgot->contents;
1869 loc += srelgot->reloc_count++;
1870 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1871 }
1872
1873 local_got_offsets[r_symndx] |= 1;
1874 }
1875 }
1876
1877 if (off >= (bfd_vma) -2)
1878 abort ();
1879
1880 relocation = htab->sgot->output_offset + off;
1881 break;
1882
1883 case R_386_GOTOFF:
1884 /* Relocation is relative to the start of the global offset
1885 table. */
1886
1887 /* Note that sgot->output_offset is not involved in this
1888 calculation. We always want the start of .got. If we
1889 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1890 permitted by the ABI, we might have to change this
1891 calculation. */
1892 relocation -= htab->sgot->output_section->vma;
1893 break;
1894
1895 case R_386_GOTPC:
1896 /* Use global offset table as symbol value. */
1897 relocation = htab->sgot->output_section->vma;
1898 unresolved_reloc = false;
1899 break;
1900
1901 case R_386_PLT32:
1902 /* Relocation is to the entry for this symbol in the
1903 procedure linkage table. */
1904
1905 /* Resolve a PLT32 reloc against a local symbol directly,
1906 without using the procedure linkage table. */
1907 if (h == NULL)
1908 break;
1909
1910 if (h->plt.offset == (bfd_vma) -1
1911 || htab->splt == NULL)
1912 {
1913 /* We didn't make a PLT entry for this symbol. This
1914 happens when statically linking PIC code, or when
1915 using -Bsymbolic. */
1916 break;
1917 }
1918
1919 relocation = (htab->splt->output_section->vma
1920 + htab->splt->output_offset
1921 + h->plt.offset);
1922 unresolved_reloc = false;
1923 break;
1924
1925 case R_386_32:
1926 case R_386_PC32:
1927 if ((info->shared
1928 && (input_section->flags & SEC_ALLOC) != 0
1929 && (r_type != R_386_PC32
1930 || (h != NULL
1931 && h->dynindx != -1
1932 && (! info->symbolic
1933 || (h->elf_link_hash_flags
1934 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1935 || (!info->shared
1936 && (input_section->flags & SEC_ALLOC) != 0
1937 && h != NULL
1938 && h->dynindx != -1
1939 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1940 && (((h->elf_link_hash_flags
1941 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1942 && (h->elf_link_hash_flags
1943 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1944 || h->root.type == bfd_link_hash_undefweak
1945 || h->root.type == bfd_link_hash_undefined)))
1946 {
1947 Elf_Internal_Rel outrel;
1948 boolean skip, relocate;
1949 asection *sreloc;
1950 Elf32_External_Rel *loc;
1951
1952 /* When generating a shared object, these relocations
1953 are copied into the output file to be resolved at run
1954 time. */
1955
1956 skip = false;
1957
1958 if (elf_section_data (input_section)->stab_info == NULL)
1959 outrel.r_offset = rel->r_offset;
1960 else
1961 {
1962 off = (_bfd_stab_section_offset
1963 (output_bfd, htab->elf.stab_info, input_section,
1964 &elf_section_data (input_section)->stab_info,
1965 rel->r_offset));
1966 if (off == (bfd_vma) -1)
1967 skip = true;
1968 outrel.r_offset = off;
1969 }
1970
1971 outrel.r_offset += (input_section->output_section->vma
1972 + input_section->output_offset);
1973
1974 if (skip)
1975 {
1976 memset (&outrel, 0, sizeof outrel);
1977 relocate = false;
1978 }
1979 else if (h != NULL
1980 && h->dynindx != -1
1981 && (r_type == R_386_PC32
1982 || !info->shared
1983 || !info->symbolic
1984 || (h->elf_link_hash_flags
1985 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1986
1987 {
1988 relocate = false;
1989 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1990 }
1991 else
1992 {
1993 /* This symbol is local, or marked to become local. */
1994 relocate = true;
1995 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1996 }
1997
1998 sreloc = elf_section_data (input_section)->sreloc;
1999 if (sreloc == NULL)
2000 abort ();
2001
2002 loc = (Elf32_External_Rel *) sreloc->contents;
2003 loc += sreloc->reloc_count++;
2004 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2005
2006 /* If this reloc is against an external symbol, we do
2007 not want to fiddle with the addend. Otherwise, we
2008 need to include the symbol value so that it becomes
2009 an addend for the dynamic reloc. */
2010 if (! relocate)
2011 continue;
2012 }
2013
2014 break;
2015
2016 default:
2017 break;
2018 }
2019
2020 /* FIXME: Why do we allow debugging sections to escape this error?
2021 More importantly, why do we not emit dynamic relocs for
2022 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
2023 If we had emitted the dynamic reloc, we could remove the
2024 fudge here. */
2025 if (unresolved_reloc
2026 && !(info->shared
2027 && (input_section->flags & SEC_DEBUGGING) != 0
2028 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2029 (*_bfd_error_handler)
2030 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2031 bfd_archive_filename (input_bfd),
2032 bfd_get_section_name (input_bfd, input_section),
2033 (long) rel->r_offset,
2034 h->root.root.string);
2035
2036 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2037 contents, rel->r_offset,
2038 relocation, (bfd_vma) 0);
2039
2040 switch (r)
2041 {
2042 case bfd_reloc_ok:
2043 break;
2044
2045 case bfd_reloc_overflow:
2046 {
2047 const char *name;
2048
2049 if (h != NULL)
2050 name = h->root.root.string;
2051 else
2052 {
2053 name = bfd_elf_string_from_elf_section (input_bfd,
2054 symtab_hdr->sh_link,
2055 sym->st_name);
2056 if (name == NULL)
2057 return false;
2058 if (*name == '\0')
2059 name = bfd_section_name (input_bfd, sec);
2060 }
2061 if (! ((*info->callbacks->reloc_overflow)
2062 (info, name, howto->name, (bfd_vma) 0,
2063 input_bfd, input_section, rel->r_offset)))
2064 return false;
2065 }
2066 break;
2067
2068 default:
2069 case bfd_reloc_outofrange:
2070 abort ();
2071 break;
2072 }
2073 }
2074
2075 return true;
2076 }
2077
2078 /* Finish up dynamic symbol handling. We set the contents of various
2079 dynamic sections here. */
2080
2081 static boolean
2082 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
2083 bfd *output_bfd;
2084 struct bfd_link_info *info;
2085 struct elf_link_hash_entry *h;
2086 Elf_Internal_Sym *sym;
2087 {
2088 struct elf_i386_link_hash_table *htab;
2089
2090 htab = elf_i386_hash_table (info);
2091
2092 if (h->plt.offset != (bfd_vma) -1)
2093 {
2094 bfd_vma plt_index;
2095 bfd_vma got_offset;
2096 Elf_Internal_Rel rel;
2097 Elf32_External_Rel *loc;
2098
2099 /* This symbol has an entry in the procedure linkage table. Set
2100 it up. */
2101
2102 if (h->dynindx == -1
2103 || htab->splt == NULL
2104 || htab->sgotplt == NULL
2105 || htab->srelplt == NULL)
2106 abort ();
2107
2108 /* Get the index in the procedure linkage table which
2109 corresponds to this symbol. This is the index of this symbol
2110 in all the symbols for which we are making plt entries. The
2111 first entry in the procedure linkage table is reserved. */
2112 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2113
2114 /* Get the offset into the .got table of the entry that
2115 corresponds to this function. Each .got entry is 4 bytes.
2116 The first three are reserved. */
2117 got_offset = (plt_index + 3) * 4;
2118
2119 /* Fill in the entry in the procedure linkage table. */
2120 if (! info->shared)
2121 {
2122 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
2123 PLT_ENTRY_SIZE);
2124 bfd_put_32 (output_bfd,
2125 (htab->sgotplt->output_section->vma
2126 + htab->sgotplt->output_offset
2127 + got_offset),
2128 htab->splt->contents + h->plt.offset + 2);
2129 }
2130 else
2131 {
2132 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
2133 PLT_ENTRY_SIZE);
2134 bfd_put_32 (output_bfd, got_offset,
2135 htab->splt->contents + h->plt.offset + 2);
2136 }
2137
2138 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
2139 htab->splt->contents + h->plt.offset + 7);
2140 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2141 htab->splt->contents + h->plt.offset + 12);
2142
2143 /* Fill in the entry in the global offset table. */
2144 bfd_put_32 (output_bfd,
2145 (htab->splt->output_section->vma
2146 + htab->splt->output_offset
2147 + h->plt.offset
2148 + 6),
2149 htab->sgotplt->contents + got_offset);
2150
2151 /* Fill in the entry in the .rel.plt section. */
2152 rel.r_offset = (htab->sgotplt->output_section->vma
2153 + htab->sgotplt->output_offset
2154 + got_offset);
2155 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
2156 loc = (Elf32_External_Rel *) htab->srelplt->contents + plt_index;
2157 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2158
2159 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2160 {
2161 /* Mark the symbol as undefined, rather than as defined in
2162 the .plt section. Leave the value alone. This is a clue
2163 for the dynamic linker, to make function pointer
2164 comparisons work between an application and shared
2165 library. */
2166 sym->st_shndx = SHN_UNDEF;
2167 }
2168 }
2169
2170 if (h->got.offset != (bfd_vma) -1)
2171 {
2172 Elf_Internal_Rel rel;
2173 Elf32_External_Rel *loc;
2174
2175 /* This symbol has an entry in the global offset table. Set it
2176 up. */
2177
2178 if (htab->sgot == NULL || htab->srelgot == NULL)
2179 abort ();
2180
2181 rel.r_offset = (htab->sgot->output_section->vma
2182 + htab->sgot->output_offset
2183 + (h->got.offset & ~(bfd_vma) 1));
2184
2185 /* If this is a static link, or it is a -Bsymbolic link and the
2186 symbol is defined locally or was forced to be local because
2187 of a version file, we just want to emit a RELATIVE reloc.
2188 The entry in the global offset table will already have been
2189 initialized in the relocate_section function. */
2190 if (info->shared
2191 && (info->symbolic
2192 || h->dynindx == -1
2193 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2194 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2195 {
2196 BFD_ASSERT((h->got.offset & 1) != 0);
2197 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2198 }
2199 else
2200 {
2201 BFD_ASSERT((h->got.offset & 1) == 0);
2202 bfd_put_32 (output_bfd, (bfd_vma) 0,
2203 htab->sgot->contents + h->got.offset);
2204 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2205 }
2206
2207 loc = (Elf32_External_Rel *) htab->srelgot->contents;
2208 loc += htab->srelgot->reloc_count++;
2209 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2210 }
2211
2212 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2213 {
2214 Elf_Internal_Rel rel;
2215 Elf32_External_Rel *loc;
2216
2217 /* This symbol needs a copy reloc. Set it up. */
2218
2219 if (h->dynindx == -1
2220 || (h->root.type != bfd_link_hash_defined
2221 && h->root.type != bfd_link_hash_defweak)
2222 || htab->srelbss == NULL)
2223 abort ();
2224
2225 rel.r_offset = (h->root.u.def.value
2226 + h->root.u.def.section->output_section->vma
2227 + h->root.u.def.section->output_offset);
2228 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2229 loc = (Elf32_External_Rel *) htab->srelbss->contents;
2230 loc += htab->srelbss->reloc_count++;
2231 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2232 }
2233
2234 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2235 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2236 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2237 sym->st_shndx = SHN_ABS;
2238
2239 return true;
2240 }
2241
2242 /* Used to decide how to sort relocs in an optimal manner for the
2243 dynamic linker, before writing them out. */
2244
2245 static enum elf_reloc_type_class
2246 elf_i386_reloc_type_class (rela)
2247 const Elf_Internal_Rela *rela;
2248 {
2249 switch ((int) ELF32_R_TYPE (rela->r_info))
2250 {
2251 case R_386_RELATIVE:
2252 return reloc_class_relative;
2253 case R_386_JUMP_SLOT:
2254 return reloc_class_plt;
2255 case R_386_COPY:
2256 return reloc_class_copy;
2257 default:
2258 return reloc_class_normal;
2259 }
2260 }
2261
2262 /* Finish up the dynamic sections. */
2263
2264 static boolean
2265 elf_i386_finish_dynamic_sections (output_bfd, info)
2266 bfd *output_bfd;
2267 struct bfd_link_info *info;
2268 {
2269 struct elf_i386_link_hash_table *htab;
2270 bfd *dynobj;
2271 asection *sdyn;
2272
2273 htab = elf_i386_hash_table (info);
2274 dynobj = htab->elf.dynobj;
2275 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2276
2277 if (htab->elf.dynamic_sections_created)
2278 {
2279 Elf32_External_Dyn *dyncon, *dynconend;
2280
2281 if (sdyn == NULL || htab->sgot == NULL)
2282 abort ();
2283
2284 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2285 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2286 for (; dyncon < dynconend; dyncon++)
2287 {
2288 Elf_Internal_Dyn dyn;
2289 asection *s;
2290
2291 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2292
2293 switch (dyn.d_tag)
2294 {
2295 default:
2296 continue;
2297
2298 case DT_PLTGOT:
2299 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2300 break;
2301
2302 case DT_JMPREL:
2303 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2304 break;
2305
2306 case DT_PLTRELSZ:
2307 s = htab->srelplt->output_section;
2308 if (s->_cooked_size != 0)
2309 dyn.d_un.d_val = s->_cooked_size;
2310 else
2311 dyn.d_un.d_val = s->_raw_size;
2312 break;
2313
2314 case DT_RELSZ:
2315 /* My reading of the SVR4 ABI indicates that the
2316 procedure linkage table relocs (DT_JMPREL) should be
2317 included in the overall relocs (DT_REL). This is
2318 what Solaris does. However, UnixWare can not handle
2319 that case. Therefore, we override the DT_RELSZ entry
2320 here to make it not include the JMPREL relocs. Since
2321 the linker script arranges for .rel.plt to follow all
2322 other relocation sections, we don't have to worry
2323 about changing the DT_REL entry. */
2324 if (htab->srelplt != NULL)
2325 {
2326 s = htab->srelplt->output_section;
2327 if (s->_cooked_size != 0)
2328 dyn.d_un.d_val -= s->_cooked_size;
2329 else
2330 dyn.d_un.d_val -= s->_raw_size;
2331 }
2332 break;
2333 }
2334
2335 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2336 }
2337
2338 /* Fill in the first entry in the procedure linkage table. */
2339 if (htab->splt && htab->splt->_raw_size > 0)
2340 {
2341 if (info->shared)
2342 memcpy (htab->splt->contents,
2343 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2344 else
2345 {
2346 memcpy (htab->splt->contents,
2347 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2348 bfd_put_32 (output_bfd,
2349 (htab->sgotplt->output_section->vma
2350 + htab->sgotplt->output_offset
2351 + 4),
2352 htab->splt->contents + 2);
2353 bfd_put_32 (output_bfd,
2354 (htab->sgotplt->output_section->vma
2355 + htab->sgotplt->output_offset
2356 + 8),
2357 htab->splt->contents + 8);
2358 }
2359
2360 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2361 really seem like the right value. */
2362 elf_section_data (htab->splt->output_section)
2363 ->this_hdr.sh_entsize = 4;
2364 }
2365 }
2366
2367 if (htab->sgotplt)
2368 {
2369 /* Fill in the first three entries in the global offset table. */
2370 if (htab->sgotplt->_raw_size > 0)
2371 {
2372 bfd_put_32 (output_bfd,
2373 (sdyn == NULL ? (bfd_vma) 0
2374 : sdyn->output_section->vma + sdyn->output_offset),
2375 htab->sgotplt->contents);
2376 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2377 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2378 }
2379
2380 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2381 }
2382 return true;
2383 }
2384
2385 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2386 #define TARGET_LITTLE_NAME "elf32-i386"
2387 #define ELF_ARCH bfd_arch_i386
2388 #define ELF_MACHINE_CODE EM_386
2389 #define ELF_MAXPAGESIZE 0x1000
2390
2391 #define elf_backend_can_gc_sections 1
2392 #define elf_backend_can_refcount 1
2393 #define elf_backend_want_got_plt 1
2394 #define elf_backend_plt_readonly 1
2395 #define elf_backend_want_plt_sym 0
2396 #define elf_backend_got_header_size 12
2397 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2398
2399 #define elf_info_to_howto elf_i386_info_to_howto
2400 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2401
2402 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2403 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2404 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2405
2406 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2407 #define elf_backend_check_relocs elf_i386_check_relocs
2408 #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
2409 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2410 #define elf_backend_fake_sections elf_i386_fake_sections
2411 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2412 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2413 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2414 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2415 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2416 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2417 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2418 #define elf_backend_relocate_section elf_i386_relocate_section
2419 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2420
2421 #include "elf32-target.h"
This page took 0.119075 seconds and 4 git commands to generate.