ffa810c938c2052b2bb3eff1e34ce5a3bfb61444
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section PARAMS((bfd *, struct bfd_link_info *));
39 static boolean elf_i386_create_dynamic_sections
40 PARAMS((bfd *, struct bfd_link_info *));
41 static boolean elf_i386_check_relocs
42 PARAMS ((bfd *, struct bfd_link_info *, asection *,
43 const Elf_Internal_Rela *));
44 static asection *elf_i386_gc_mark_hook
45 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
46 struct elf_link_hash_entry *, Elf_Internal_Sym *));
47 static boolean elf_i386_gc_sweep_hook
48 PARAMS ((bfd *, struct bfd_link_info *, asection *,
49 const Elf_Internal_Rela *));
50 static boolean elf_i386_adjust_dynamic_symbol
51 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
52 static boolean allocate_plt_and_got_and_discard_relocs
53 PARAMS ((struct elf_link_hash_entry *, PTR));
54 static boolean elf_i386_size_dynamic_sections
55 PARAMS ((bfd *, struct bfd_link_info *));
56 static boolean elf_i386_relocate_section
57 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
58 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
59 static boolean elf_i386_finish_dynamic_symbol
60 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
61 Elf_Internal_Sym *));
62 static boolean elf_i386_finish_dynamic_sections
63 PARAMS ((bfd *, struct bfd_link_info *));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static enum elf_reloc_type_class elf_i386_reloc_type_class PARAMS ((int));
67 static boolean elf_i386_grok_prstatus
68 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
69 static boolean elf_i386_grok_psinfo
70 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
71
72 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
73
74 #include "elf/i386.h"
75
76 static reloc_howto_type elf_howto_table[]=
77 {
78 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_386_NONE",
80 true, 0x00000000, 0x00000000, false),
81 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_386_32",
83 true, 0xffffffff, 0xffffffff, false),
84 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_386_PC32",
86 true, 0xffffffff, 0xffffffff, true),
87 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_386_GOT32",
89 true, 0xffffffff, 0xffffffff, false),
90 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_386_PLT32",
92 true, 0xffffffff, 0xffffffff, true),
93 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_386_COPY",
95 true, 0xffffffff, 0xffffffff, false),
96 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
98 true, 0xffffffff, 0xffffffff, false),
99 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
101 true, 0xffffffff, 0xffffffff, false),
102 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
103 bfd_elf_generic_reloc, "R_386_RELATIVE",
104 true, 0xffffffff, 0xffffffff, false),
105 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
106 bfd_elf_generic_reloc, "R_386_GOTOFF",
107 true, 0xffffffff, 0xffffffff, false),
108 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_386_GOTPC",
110 true, 0xffffffff, 0xffffffff, true),
111
112 /* We have a gap in the reloc numbers here.
113 R_386_standard counts the number up to this point, and
114 R_386_ext_offset is the value to subtract from a reloc type of
115 R_386_16 thru R_386_PC8 to form an index into this table. */
116 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
117 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
118
119 /* The remaining relocs are a GNU extension. */
120 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
121 bfd_elf_generic_reloc, "R_386_16",
122 true, 0xffff, 0xffff, false),
123 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
124 bfd_elf_generic_reloc, "R_386_PC16",
125 true, 0xffff, 0xffff, true),
126 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
127 bfd_elf_generic_reloc, "R_386_8",
128 true, 0xff, 0xff, false),
129 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
130 bfd_elf_generic_reloc, "R_386_PC8",
131 true, 0xff, 0xff, true),
132
133 /* Another gap. */
134 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
135 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
136
137 /* GNU extension to record C++ vtable hierarchy. */
138 HOWTO (R_386_GNU_VTINHERIT, /* type */
139 0, /* rightshift */
140 2, /* size (0 = byte, 1 = short, 2 = long) */
141 0, /* bitsize */
142 false, /* pc_relative */
143 0, /* bitpos */
144 complain_overflow_dont, /* complain_on_overflow */
145 NULL, /* special_function */
146 "R_386_GNU_VTINHERIT", /* name */
147 false, /* partial_inplace */
148 0, /* src_mask */
149 0, /* dst_mask */
150 false),
151
152 /* GNU extension to record C++ vtable member usage. */
153 HOWTO (R_386_GNU_VTENTRY, /* type */
154 0, /* rightshift */
155 2, /* size (0 = byte, 1 = short, 2 = long) */
156 0, /* bitsize */
157 false, /* pc_relative */
158 0, /* bitpos */
159 complain_overflow_dont, /* complain_on_overflow */
160 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
161 "R_386_GNU_VTENTRY", /* name */
162 false, /* partial_inplace */
163 0, /* src_mask */
164 0, /* dst_mask */
165 false)
166
167 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
168
169 };
170
171 #ifdef DEBUG_GEN_RELOC
172 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
173 #else
174 #define TRACE(str)
175 #endif
176
177 static reloc_howto_type *
178 elf_i386_reloc_type_lookup (abfd, code)
179 bfd *abfd ATTRIBUTE_UNUSED;
180 bfd_reloc_code_real_type code;
181 {
182 switch (code)
183 {
184 case BFD_RELOC_NONE:
185 TRACE ("BFD_RELOC_NONE");
186 return &elf_howto_table[(unsigned int) R_386_NONE ];
187
188 case BFD_RELOC_32:
189 TRACE ("BFD_RELOC_32");
190 return &elf_howto_table[(unsigned int) R_386_32 ];
191
192 case BFD_RELOC_CTOR:
193 TRACE ("BFD_RELOC_CTOR");
194 return &elf_howto_table[(unsigned int) R_386_32 ];
195
196 case BFD_RELOC_32_PCREL:
197 TRACE ("BFD_RELOC_PC32");
198 return &elf_howto_table[(unsigned int) R_386_PC32 ];
199
200 case BFD_RELOC_386_GOT32:
201 TRACE ("BFD_RELOC_386_GOT32");
202 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
203
204 case BFD_RELOC_386_PLT32:
205 TRACE ("BFD_RELOC_386_PLT32");
206 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
207
208 case BFD_RELOC_386_COPY:
209 TRACE ("BFD_RELOC_386_COPY");
210 return &elf_howto_table[(unsigned int) R_386_COPY ];
211
212 case BFD_RELOC_386_GLOB_DAT:
213 TRACE ("BFD_RELOC_386_GLOB_DAT");
214 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
215
216 case BFD_RELOC_386_JUMP_SLOT:
217 TRACE ("BFD_RELOC_386_JUMP_SLOT");
218 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
219
220 case BFD_RELOC_386_RELATIVE:
221 TRACE ("BFD_RELOC_386_RELATIVE");
222 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
223
224 case BFD_RELOC_386_GOTOFF:
225 TRACE ("BFD_RELOC_386_GOTOFF");
226 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
227
228 case BFD_RELOC_386_GOTPC:
229 TRACE ("BFD_RELOC_386_GOTPC");
230 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
231
232 /* The remaining relocs are a GNU extension. */
233 case BFD_RELOC_16:
234 TRACE ("BFD_RELOC_16");
235 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
236
237 case BFD_RELOC_16_PCREL:
238 TRACE ("BFD_RELOC_16_PCREL");
239 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
240
241 case BFD_RELOC_8:
242 TRACE ("BFD_RELOC_8");
243 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
244
245 case BFD_RELOC_8_PCREL:
246 TRACE ("BFD_RELOC_8_PCREL");
247 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
248
249 case BFD_RELOC_VTABLE_INHERIT:
250 TRACE ("BFD_RELOC_VTABLE_INHERIT");
251 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
252 - R_386_vt_offset];
253
254 case BFD_RELOC_VTABLE_ENTRY:
255 TRACE ("BFD_RELOC_VTABLE_ENTRY");
256 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
257 - R_386_vt_offset];
258
259 default:
260 break;
261 }
262
263 TRACE ("Unknown");
264 return 0;
265 }
266
267 static void
268 elf_i386_info_to_howto (abfd, cache_ptr, dst)
269 bfd *abfd ATTRIBUTE_UNUSED;
270 arelent *cache_ptr ATTRIBUTE_UNUSED;
271 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
272 {
273 abort ();
274 }
275
276 static void
277 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
278 bfd *abfd ATTRIBUTE_UNUSED;
279 arelent *cache_ptr;
280 Elf32_Internal_Rel *dst;
281 {
282 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
283 unsigned int indx;
284
285 if ((indx = r_type) >= R_386_standard
286 && ((indx = r_type - R_386_ext_offset) - R_386_standard
287 >= R_386_ext - R_386_standard)
288 && ((indx = r_type - R_386_vt_offset) - R_386_ext
289 >= R_386_vt - R_386_ext))
290 {
291 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
292 bfd_get_filename (abfd), (int) r_type);
293 indx = (unsigned int) R_386_NONE;
294 }
295 cache_ptr->howto = &elf_howto_table[indx];
296 }
297
298 /* Return whether a symbol name implies a local label. The UnixWare
299 2.1 cc generates temporary symbols that start with .X, so we
300 recognize them here. FIXME: do other SVR4 compilers also use .X?.
301 If so, we should move the .X recognition into
302 _bfd_elf_is_local_label_name. */
303
304 static boolean
305 elf_i386_is_local_label_name (abfd, name)
306 bfd *abfd;
307 const char *name;
308 {
309 if (name[0] == '.' && name[1] == 'X')
310 return true;
311
312 return _bfd_elf_is_local_label_name (abfd, name);
313 }
314 \f
315 /* Functions for the i386 ELF linker. */
316
317 /* The name of the dynamic interpreter. This is put in the .interp
318 section. */
319
320 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
321
322 /* The size in bytes of an entry in the procedure linkage table. */
323
324 #define PLT_ENTRY_SIZE 16
325
326 /* The first entry in an absolute procedure linkage table looks like
327 this. See the SVR4 ABI i386 supplement to see how this works. */
328
329 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
330 {
331 0xff, 0x35, /* pushl contents of address */
332 0, 0, 0, 0, /* replaced with address of .got + 4. */
333 0xff, 0x25, /* jmp indirect */
334 0, 0, 0, 0, /* replaced with address of .got + 8. */
335 0, 0, 0, 0 /* pad out to 16 bytes. */
336 };
337
338 /* Subsequent entries in an absolute procedure linkage table look like
339 this. */
340
341 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
342 {
343 0xff, 0x25, /* jmp indirect */
344 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
345 0x68, /* pushl immediate */
346 0, 0, 0, 0, /* replaced with offset into relocation table. */
347 0xe9, /* jmp relative */
348 0, 0, 0, 0 /* replaced with offset to start of .plt. */
349 };
350
351 /* The first entry in a PIC procedure linkage table look like this. */
352
353 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
354 {
355 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
356 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
357 0, 0, 0, 0 /* pad out to 16 bytes. */
358 };
359
360 /* Subsequent entries in a PIC procedure linkage table look like this. */
361
362 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
363 {
364 0xff, 0xa3, /* jmp *offset(%ebx) */
365 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
366 0x68, /* pushl immediate */
367 0, 0, 0, 0, /* replaced with offset into relocation table. */
368 0xe9, /* jmp relative */
369 0, 0, 0, 0 /* replaced with offset to start of .plt. */
370 };
371
372 /* The i386 linker needs to keep track of the number of relocs that it
373 decides to copy as dynamic relocs in check_relocs for each symbol.
374 This is so that it can later discard them if they are found to be
375 unnecessary. We store the information in a field extending the
376 regular ELF linker hash table. */
377
378 struct elf_i386_dyn_relocs
379 {
380 /* Next section. */
381 struct elf_i386_dyn_relocs *next;
382 /* A section in dynobj. */
383 asection *section;
384 /* Number of relocs copied in this section. */
385 bfd_size_type count;
386 };
387
388 /* i386 ELF linker hash entry. */
389
390 struct elf_i386_link_hash_entry
391 {
392 struct elf_link_hash_entry root;
393
394 /* Number of PC relative relocs copied for this symbol. */
395 struct elf_i386_dyn_relocs *dyn_relocs;
396 };
397
398 /* i386 ELF linker hash table. */
399
400 struct elf_i386_link_hash_table
401 {
402 struct elf_link_hash_table root;
403
404 /* Short-cuts to get to dynamic linker sections. */
405 asection *sgot;
406 asection *sgotplt;
407 asection *srelgot;
408 asection *splt;
409 asection *srelplt;
410 asection *sdynbss;
411 asection *srelbss;
412 };
413
414 /* Get the i386 ELF linker hash table from a link_info structure. */
415
416 #define elf_i386_hash_table(p) \
417 ((struct elf_i386_link_hash_table *) ((p)->hash))
418
419 /* Create an entry in an i386 ELF linker hash table. */
420
421 static struct bfd_hash_entry *
422 elf_i386_link_hash_newfunc (entry, table, string)
423 struct bfd_hash_entry *entry;
424 struct bfd_hash_table *table;
425 const char *string;
426 {
427 struct elf_i386_link_hash_entry *ret =
428 (struct elf_i386_link_hash_entry *) entry;
429
430 /* Allocate the structure if it has not already been allocated by a
431 subclass. */
432 if (ret == (struct elf_i386_link_hash_entry *) NULL)
433 ret = ((struct elf_i386_link_hash_entry *)
434 bfd_hash_allocate (table,
435 sizeof (struct elf_i386_link_hash_entry)));
436 if (ret == (struct elf_i386_link_hash_entry *) NULL)
437 return (struct bfd_hash_entry *) ret;
438
439 /* Call the allocation method of the superclass. */
440 ret = ((struct elf_i386_link_hash_entry *)
441 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
442 table, string));
443 if (ret != (struct elf_i386_link_hash_entry *) NULL)
444 {
445 ret->dyn_relocs = NULL;
446 }
447
448 return (struct bfd_hash_entry *) ret;
449 }
450
451 /* Create an i386 ELF linker hash table. */
452
453 static struct bfd_link_hash_table *
454 elf_i386_link_hash_table_create (abfd)
455 bfd *abfd;
456 {
457 struct elf_i386_link_hash_table *ret;
458
459 ret = ((struct elf_i386_link_hash_table *)
460 bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
461 if (ret == (struct elf_i386_link_hash_table *) NULL)
462 return NULL;
463
464 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
465 elf_i386_link_hash_newfunc))
466 {
467 bfd_release (abfd, ret);
468 return NULL;
469 }
470
471 ret->sgot = NULL;
472 ret->sgotplt = NULL;
473 ret->srelgot = NULL;
474 ret->splt = NULL;
475 ret->srelplt = NULL;
476 ret->sdynbss = NULL;
477 ret->srelbss = NULL;
478
479 return &ret->root.root;
480 }
481
482 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
483 shortcuts to them in our hash table. */
484
485 static boolean
486 create_got_section (dynobj, info)
487 bfd *dynobj;
488 struct bfd_link_info *info;
489 {
490 struct elf_i386_link_hash_table *htab;
491
492 if (! _bfd_elf_create_got_section (dynobj, info))
493 return false;
494
495 htab = elf_i386_hash_table (info);
496 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
497 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
498 if (!htab->sgot || !htab->sgotplt)
499 abort ();
500
501 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
502 if (htab->srelgot == NULL
503 || ! bfd_set_section_flags (dynobj, htab->srelgot,
504 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
505 | SEC_IN_MEMORY | SEC_LINKER_CREATED
506 | SEC_READONLY))
507 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
508 return false;
509 return true;
510 }
511
512 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
513 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
514 hash table. */
515
516 static boolean
517 elf_i386_create_dynamic_sections (dynobj, info)
518 bfd *dynobj;
519 struct bfd_link_info *info;
520 {
521 struct elf_i386_link_hash_table *htab;
522
523 htab = elf_i386_hash_table (info);
524 if (!htab->sgot && !create_got_section (dynobj, info))
525 return false;
526
527 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
528 return false;
529
530 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
531 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
532 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
533 if (!info->shared)
534 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
535
536 if (!htab->splt || !htab->srelplt || !htab->sdynbss
537 || (!info->shared && !htab->srelbss))
538 abort ();
539
540 return true;
541 }
542
543 /* Look through the relocs for a section during the first phase, and
544 allocate space in the global offset table or procedure linkage
545 table. */
546
547 static boolean
548 elf_i386_check_relocs (abfd, info, sec, relocs)
549 bfd *abfd;
550 struct bfd_link_info *info;
551 asection *sec;
552 const Elf_Internal_Rela *relocs;
553 {
554 struct elf_i386_link_hash_table *htab;
555 bfd *dynobj;
556 Elf_Internal_Shdr *symtab_hdr;
557 struct elf_link_hash_entry **sym_hashes;
558 bfd_signed_vma *local_got_refcounts;
559 const Elf_Internal_Rela *rel;
560 const Elf_Internal_Rela *rel_end;
561 asection *sreloc;
562
563 if (info->relocateable)
564 return true;
565
566 htab = elf_i386_hash_table (info);
567 dynobj = htab->root.dynobj;
568 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
569 sym_hashes = elf_sym_hashes (abfd);
570 local_got_refcounts = elf_local_got_refcounts (abfd);
571
572 sreloc = NULL;
573
574 rel_end = relocs + sec->reloc_count;
575 for (rel = relocs; rel < rel_end; rel++)
576 {
577 unsigned long r_symndx;
578 struct elf_link_hash_entry *h;
579
580 r_symndx = ELF32_R_SYM (rel->r_info);
581
582 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
583 {
584 if (abfd->my_archive)
585 (*_bfd_error_handler) (_("%s(%s): bad symbol index: %d"),
586 bfd_get_filename (abfd->my_archive),
587 bfd_get_filename (abfd),
588 r_symndx);
589 else
590 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
591 bfd_get_filename (abfd),
592 r_symndx);
593 return false;
594 }
595
596 if (r_symndx < symtab_hdr->sh_info)
597 h = NULL;
598 else
599 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
600
601 /* Some relocs require a global offset table. */
602 if (htab->sgot == NULL)
603 {
604 switch (ELF32_R_TYPE (rel->r_info))
605 {
606 case R_386_GOT32:
607 case R_386_GOTOFF:
608 case R_386_GOTPC:
609 if (dynobj == NULL)
610 htab->root.dynobj = dynobj = abfd;
611 if (!create_got_section (dynobj, info))
612 return false;
613 break;
614
615 default:
616 break;
617 }
618 }
619
620 switch (ELF32_R_TYPE (rel->r_info))
621 {
622 case R_386_GOT32:
623 /* This symbol requires a global offset table entry. */
624 if (h != NULL)
625 {
626 if (h->got.refcount == -1)
627 h->got.refcount = 1;
628 else
629 h->got.refcount += 1;
630 }
631 else
632 {
633 /* This is a global offset table entry for a local symbol. */
634 if (local_got_refcounts == NULL)
635 {
636 size_t size;
637
638 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
639 local_got_refcounts = ((bfd_signed_vma *)
640 bfd_alloc (abfd, size));
641 if (local_got_refcounts == NULL)
642 return false;
643 elf_local_got_refcounts (abfd) = local_got_refcounts;
644 memset (local_got_refcounts, -1, size);
645 }
646 if (local_got_refcounts[r_symndx] == -1)
647 local_got_refcounts[r_symndx] = 1;
648 else
649 local_got_refcounts[r_symndx] += 1;
650 }
651 break;
652
653 case R_386_PLT32:
654 /* This symbol requires a procedure linkage table entry. We
655 actually build the entry in adjust_dynamic_symbol,
656 because this might be a case of linking PIC code which is
657 never referenced by a dynamic object, in which case we
658 don't need to generate a procedure linkage table entry
659 after all. */
660
661 /* If this is a local symbol, we resolve it directly without
662 creating a procedure linkage table entry. */
663 if (h == NULL)
664 continue;
665
666 if (h->plt.refcount == -1)
667 {
668 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
669 h->plt.refcount = 1;
670 }
671 else
672 h->plt.refcount += 1;
673 break;
674
675 case R_386_32:
676 case R_386_PC32:
677 if (h != NULL && !info->shared)
678 {
679 /* If this reloc is in a read-only section, we might
680 need a copy reloc. */
681 if ((sec->flags & SEC_READONLY) != 0)
682 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
683
684 /* We may need a .plt entry if the function this reloc
685 refers to is in a shared lib. */
686 if (h->plt.refcount == -1)
687 h->plt.refcount = 1;
688 else
689 h->plt.refcount += 1;
690 }
691
692 /* If we are creating a shared library, and this is a reloc
693 against a global symbol, or a non PC relative reloc
694 against a local symbol, then we need to copy the reloc
695 into the shared library. However, if we are linking with
696 -Bsymbolic, we do not need to copy a reloc against a
697 global symbol which is defined in an object we are
698 including in the link (i.e., DEF_REGULAR is set). At
699 this point we have not seen all the input files, so it is
700 possible that DEF_REGULAR is not set now but will be set
701 later (it is never cleared). In case of a weak definition,
702 DEF_REGULAR may be cleared later by a strong definition in
703 a shared library. We account for that possibility below by
704 storing information in the relocs_copied field of the hash
705 table entry. A similar situation occurs when creating
706 shared libraries and symbol visibility changes render the
707 symbol local.
708
709 If on the other hand, we are creating an executable, we
710 may need to keep relocations for symbols satisfied by a
711 dynamic library if we manage to avoid copy relocs for the
712 symbol. */
713 if ((info->shared
714 && (sec->flags & SEC_ALLOC) != 0
715 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
716 || (h != NULL
717 && (! info->symbolic
718 || h->root.type == bfd_link_hash_defweak
719 || (h->elf_link_hash_flags
720 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
721 || (!info->shared
722 && (sec->flags & SEC_ALLOC) != 0
723 && h != NULL
724 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
725 && (h->root.type == bfd_link_hash_defweak
726 || (h->elf_link_hash_flags
727 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
728 {
729 /* We must copy these reloc types into the output file.
730 Create a reloc section in dynobj and make room for
731 this reloc. */
732 if (dynobj == NULL)
733 htab->root.dynobj = dynobj = abfd;
734
735 if (sreloc == NULL)
736 {
737 const char *name;
738
739 name = (bfd_elf_string_from_elf_section
740 (abfd,
741 elf_elfheader (abfd)->e_shstrndx,
742 elf_section_data (sec)->rel_hdr.sh_name));
743 if (name == NULL)
744 return false;
745
746 if (strncmp (name, ".rel", 4) != 0
747 || strcmp (bfd_get_section_name (abfd, sec),
748 name + 4) != 0)
749 {
750 if (abfd->my_archive)
751 (*_bfd_error_handler) (_("%s(%s): bad relocation section name `%s\'"),
752 bfd_get_filename (abfd->my_archive),
753 bfd_get_filename (abfd),
754 name);
755 else
756 (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
757 bfd_get_filename (abfd),
758 name);
759 }
760
761 sreloc = bfd_get_section_by_name (dynobj, name);
762 if (sreloc == NULL)
763 {
764 flagword flags;
765
766 sreloc = bfd_make_section (dynobj, name);
767 flags = (SEC_HAS_CONTENTS | SEC_READONLY
768 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
769 if ((sec->flags & SEC_ALLOC) != 0)
770 flags |= SEC_ALLOC | SEC_LOAD;
771 if (sreloc == NULL
772 || ! bfd_set_section_flags (dynobj, sreloc, flags)
773 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
774 return false;
775 }
776 if (sec->flags & SEC_READONLY)
777 info->flags |= DF_TEXTREL;
778 }
779
780 sreloc->_raw_size += sizeof (Elf32_External_Rel);
781
782 /* If this is a global symbol, we count the number of PC
783 relative relocations we have entered for this symbol,
784 so that we can discard them later as necessary. Note
785 that this function is only called if we are using an
786 elf_i386 linker hash table, which means that h is
787 really a pointer to an elf_i386_link_hash_entry. */
788 if (!info->shared
789 || (h != NULL
790 && ELF32_R_TYPE (rel->r_info) == R_386_PC32))
791 {
792 struct elf_i386_link_hash_entry *eh;
793 struct elf_i386_dyn_relocs *p;
794
795 eh = (struct elf_i386_link_hash_entry *) h;
796
797 for (p = eh->dyn_relocs; p != NULL; p = p->next)
798 if (p->section == sreloc)
799 break;
800
801 if (p == NULL)
802 {
803 p = ((struct elf_i386_dyn_relocs *)
804 bfd_alloc (dynobj, sizeof *p));
805 if (p == NULL)
806 return false;
807 p->next = eh->dyn_relocs;
808 eh->dyn_relocs = p;
809 p->section = sreloc;
810 p->count = 0;
811 }
812
813 ++p->count;
814 }
815 }
816
817 break;
818
819 /* This relocation describes the C++ object vtable hierarchy.
820 Reconstruct it for later use during GC. */
821 case R_386_GNU_VTINHERIT:
822 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
823 return false;
824 break;
825
826 /* This relocation describes which C++ vtable entries are actually
827 used. Record for later use during GC. */
828 case R_386_GNU_VTENTRY:
829 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
830 return false;
831 break;
832
833 default:
834 break;
835 }
836 }
837
838 return true;
839 }
840
841 /* Return the section that should be marked against GC for a given
842 relocation. */
843
844 static asection *
845 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
846 bfd *abfd;
847 struct bfd_link_info *info ATTRIBUTE_UNUSED;
848 Elf_Internal_Rela *rel;
849 struct elf_link_hash_entry *h;
850 Elf_Internal_Sym *sym;
851 {
852 if (h != NULL)
853 {
854 switch (ELF32_R_TYPE (rel->r_info))
855 {
856 case R_386_GNU_VTINHERIT:
857 case R_386_GNU_VTENTRY:
858 break;
859
860 default:
861 switch (h->root.type)
862 {
863 case bfd_link_hash_defined:
864 case bfd_link_hash_defweak:
865 return h->root.u.def.section;
866
867 case bfd_link_hash_common:
868 return h->root.u.c.p->section;
869
870 default:
871 break;
872 }
873 }
874 }
875 else
876 {
877 if (!(elf_bad_symtab (abfd)
878 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
879 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
880 && sym->st_shndx != SHN_COMMON))
881 {
882 return bfd_section_from_elf_index (abfd, sym->st_shndx);
883 }
884 }
885
886 return NULL;
887 }
888
889 /* Update the got entry reference counts for the section being removed. */
890
891 static boolean
892 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
893 bfd *abfd;
894 struct bfd_link_info *info;
895 asection *sec;
896 const Elf_Internal_Rela *relocs;
897 {
898 Elf_Internal_Shdr *symtab_hdr;
899 struct elf_link_hash_entry **sym_hashes;
900 bfd_signed_vma *local_got_refcounts;
901 const Elf_Internal_Rela *rel, *relend;
902 unsigned long r_symndx;
903 struct elf_link_hash_entry *h;
904 bfd *dynobj;
905
906 dynobj = elf_hash_table (info)->dynobj;
907 if (dynobj == NULL)
908 return true;
909
910 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
911 sym_hashes = elf_sym_hashes (abfd);
912 local_got_refcounts = elf_local_got_refcounts (abfd);
913
914 relend = relocs + sec->reloc_count;
915 for (rel = relocs; rel < relend; rel++)
916 switch (ELF32_R_TYPE (rel->r_info))
917 {
918 case R_386_GOT32:
919 case R_386_GOTOFF:
920 case R_386_GOTPC:
921 r_symndx = ELF32_R_SYM (rel->r_info);
922 if (r_symndx >= symtab_hdr->sh_info)
923 {
924 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
925 if (h->got.refcount > 0)
926 h->got.refcount -= 1;
927 }
928 else if (local_got_refcounts != NULL)
929 {
930 if (local_got_refcounts[r_symndx] > 0)
931 local_got_refcounts[r_symndx] -= 1;
932 }
933 break;
934
935 case R_386_32:
936 case R_386_PC32:
937 if (info->shared)
938 break;
939 /* Fall through. */
940
941 case R_386_PLT32:
942 r_symndx = ELF32_R_SYM (rel->r_info);
943 if (r_symndx >= symtab_hdr->sh_info)
944 {
945 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
946 if (h->plt.refcount > 0)
947 h->plt.refcount -= 1;
948 }
949 break;
950
951 default:
952 break;
953 }
954
955 return true;
956 }
957
958 /* Adjust a symbol defined by a dynamic object and referenced by a
959 regular object. The current definition is in some section of the
960 dynamic object, but we're not including those sections. We have to
961 change the definition to something the rest of the link can
962 understand. */
963
964 static boolean
965 elf_i386_adjust_dynamic_symbol (info, h)
966 struct bfd_link_info *info;
967 struct elf_link_hash_entry *h;
968 {
969 struct elf_i386_link_hash_table *htab;
970 bfd *dynobj;
971 asection *s;
972 unsigned int power_of_two;
973
974 htab = elf_i386_hash_table (info);
975 dynobj = htab->root.dynobj;
976
977 /* If this is a function, put it in the procedure linkage table. We
978 will fill in the contents of the procedure linkage table later,
979 when we know the address of the .got section. */
980 if (h->type == STT_FUNC
981 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
982 {
983 if (h->plt.refcount <= 0
984 || (! info->shared
985 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
986 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
987 {
988 /* This case can occur if we saw a PLT32 reloc in an input
989 file, but the symbol was never referred to by a dynamic
990 object, or if all references were garbage collected. In
991 such a case, we don't actually need to build a procedure
992 linkage table, and we can just do a PC32 reloc instead. */
993 h->plt.refcount = (bfd_vma) -1;
994 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
995 }
996
997 return true;
998 }
999 else
1000 /* It's possible that we incorrectly decided a .plt reloc was
1001 needed for an R_386_PC32 reloc to a non-function sym in
1002 check_relocs. We can't decide accurately between function and
1003 non-function syms in check-relocs; Objects loaded later in
1004 the link may change h->type. So fix it now. */
1005 h->plt.refcount = (bfd_vma) -1;
1006
1007 /* If this is a weak symbol, and there is a real definition, the
1008 processor independent code will have arranged for us to see the
1009 real definition first, and we can just use the same value. */
1010 if (h->weakdef != NULL)
1011 {
1012 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1013 || h->weakdef->root.type == bfd_link_hash_defweak);
1014 h->root.u.def.section = h->weakdef->root.u.def.section;
1015 h->root.u.def.value = h->weakdef->root.u.def.value;
1016 return true;
1017 }
1018
1019 /* This is a reference to a symbol defined by a dynamic object which
1020 is not a function. */
1021
1022 /* If we are creating a shared library, we must presume that the
1023 only references to the symbol are via the global offset table.
1024 For such cases we need not do anything here; the relocations will
1025 be handled correctly by relocate_section. */
1026 if (info->shared)
1027 return true;
1028
1029 /* If there are no references to this symbol that do not use the
1030 GOT, we don't need to generate a copy reloc. */
1031 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1032 return true;
1033
1034 /* We must allocate the symbol in our .dynbss section, which will
1035 become part of the .bss section of the executable. There will be
1036 an entry for this symbol in the .dynsym section. The dynamic
1037 object will contain position independent code, so all references
1038 from the dynamic object to this symbol will go through the global
1039 offset table. The dynamic linker will use the .dynsym entry to
1040 determine the address it must put in the global offset table, so
1041 both the dynamic object and the regular object will refer to the
1042 same memory location for the variable. */
1043
1044 s = htab->sdynbss;
1045 if (s == NULL)
1046 abort ();
1047
1048 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1049 copy the initial value out of the dynamic object and into the
1050 runtime process image. We need to remember the offset into the
1051 .rel.bss section we are going to use. */
1052 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1053 {
1054 asection *srel;
1055
1056 srel = htab->srelbss;
1057 if (srel == NULL)
1058 abort ();
1059 srel->_raw_size += sizeof (Elf32_External_Rel);
1060 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1061 }
1062
1063 /* We need to figure out the alignment required for this symbol. I
1064 have no idea how ELF linkers handle this. */
1065 power_of_two = bfd_log2 (h->size);
1066 if (power_of_two > 3)
1067 power_of_two = 3;
1068
1069 /* Apply the required alignment. */
1070 s->_raw_size = BFD_ALIGN (s->_raw_size,
1071 (bfd_size_type) (1 << power_of_two));
1072 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1073 {
1074 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1075 return false;
1076 }
1077
1078 /* Define the symbol as being at this point in the section. */
1079 h->root.u.def.section = s;
1080 h->root.u.def.value = s->_raw_size;
1081
1082 /* Increment the section size to make room for the symbol. */
1083 s->_raw_size += h->size;
1084
1085 return true;
1086 }
1087
1088 /* This is the condition under which elf_i386_finish_dynamic_symbol
1089 will be called from elflink.h. If elflink.h doesn't call our
1090 finish_dynamic_symbol routine, we'll need to do something about
1091 initializing any .plt and .got entries in elf_i386_relocate_section. */
1092 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1093 ((DYN) \
1094 && ((INFO)->shared \
1095 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1096 && ((H)->dynindx != -1 \
1097 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1098
1099 /* Allocate space in .plt, .got and associated reloc sections for
1100 global syms. Also discards space allocated for relocs in the
1101 check_relocs function that we subsequently have found to be
1102 unneeded. */
1103
1104 static boolean
1105 allocate_plt_and_got_and_discard_relocs (h, inf)
1106 struct elf_link_hash_entry *h;
1107 PTR inf;
1108 {
1109 struct bfd_link_info *info;
1110 struct elf_i386_link_hash_table *htab;
1111 asection *s;
1112 struct elf_i386_link_hash_entry *eh;
1113
1114 if (h->root.type == bfd_link_hash_indirect
1115 || h->root.type == bfd_link_hash_warning)
1116 return true;
1117
1118 info = (struct bfd_link_info *) inf;
1119 htab = elf_i386_hash_table (info);
1120
1121 if (htab->root.dynamic_sections_created
1122 && h->plt.refcount > 0)
1123 {
1124 /* Make sure this symbol is output as a dynamic symbol.
1125 Undefined weak syms won't yet be marked as dynamic. */
1126 if (h->dynindx == -1
1127 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1128 {
1129 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1130 return false;
1131 }
1132
1133 s = htab->splt;
1134 if (s == NULL)
1135 abort ();
1136
1137 /* If this is the first .plt entry, make room for the special
1138 first entry. */
1139 if (s->_raw_size == 0)
1140 s->_raw_size += PLT_ENTRY_SIZE;
1141
1142 h->plt.offset = s->_raw_size;
1143
1144 /* If this symbol is not defined in a regular file, and we are
1145 not generating a shared library, then set the symbol to this
1146 location in the .plt. This is required to make function
1147 pointers compare as equal between the normal executable and
1148 the shared library. */
1149 if (! info->shared
1150 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1151 {
1152 h->root.u.def.section = s;
1153 h->root.u.def.value = h->plt.offset;
1154 }
1155
1156 /* Make room for this entry. */
1157 s->_raw_size += PLT_ENTRY_SIZE;
1158
1159 /* We also need to make an entry in the .got.plt section, which
1160 will be placed in the .got section by the linker script. */
1161 s = htab->sgotplt;
1162 if (s == NULL)
1163 abort ();
1164 s->_raw_size += 4;
1165
1166 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1167 {
1168 /* We also need to make an entry in the .rel.plt section. */
1169 s = htab->srelplt;
1170 if (s == NULL)
1171 abort ();
1172 s->_raw_size += sizeof (Elf32_External_Rel);
1173 }
1174 }
1175 else
1176 {
1177 h->plt.offset = (bfd_vma) -1;
1178 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1179 }
1180
1181 if (h->got.refcount > 0)
1182 {
1183 boolean dyn;
1184
1185 /* Make sure this symbol is output as a dynamic symbol.
1186 Undefined weak syms won't yet be marked as dynamic. */
1187 if (h->dynindx == -1
1188 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1189 {
1190 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1191 return false;
1192 }
1193
1194 s = htab->sgot;
1195 h->got.offset = s->_raw_size;
1196 s->_raw_size += 4;
1197 dyn = htab->root.dynamic_sections_created;
1198 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1199 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1200 }
1201 else
1202 h->got.offset = (bfd_vma) -1;
1203
1204 /* In the shared -Bsymbolic case, discard space allocated for
1205 dynamic relocs against symbols which turn out to be defined
1206 in regular objects. For the normal shared case, discard space
1207 for relocs that have become local due to symbol visibility
1208 changes. For the non-shared case, discard space for symbols
1209 which turn out to need copy relocs or are not dynamic. */
1210
1211 eh = (struct elf_i386_link_hash_entry *) h;
1212 if (eh->dyn_relocs == NULL)
1213 return true;
1214
1215 if (!info->shared
1216 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1217 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1218 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1219 || (htab->root.dynamic_sections_created
1220 && (h->root.type == bfd_link_hash_undefweak
1221 || h->root.type == bfd_link_hash_undefined))))
1222 {
1223 /* Make sure this symbol is output as a dynamic symbol.
1224 Undefined weak syms won't yet be marked as dynamic. */
1225 if (h->dynindx == -1
1226 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1227 {
1228 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1229 return false;
1230 }
1231
1232 /* If that succeeded, we know we'll be keeping all the relocs. */
1233 if (h->dynindx != -1)
1234 return true;
1235 }
1236
1237 if (!info->shared
1238 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1239 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1240 || info->symbolic)))
1241 {
1242 struct elf_i386_dyn_relocs *c;
1243
1244 for (c = eh->dyn_relocs; c != NULL; c = c->next)
1245 c->section->_raw_size -= c->count * sizeof (Elf32_External_Rel);
1246 }
1247
1248 return true;
1249 }
1250
1251 /* Set the sizes of the dynamic sections. */
1252
1253 static boolean
1254 elf_i386_size_dynamic_sections (output_bfd, info)
1255 bfd *output_bfd ATTRIBUTE_UNUSED;
1256 struct bfd_link_info *info;
1257 {
1258 struct elf_i386_link_hash_table *htab;
1259 bfd *dynobj;
1260 asection *s;
1261 boolean relocs;
1262 bfd *i;
1263
1264 htab = elf_i386_hash_table (info);
1265 dynobj = htab->root.dynobj;
1266 if (dynobj == NULL)
1267 abort ();
1268
1269 if (htab->root.dynamic_sections_created)
1270 {
1271 /* Set the contents of the .interp section to the interpreter. */
1272 if (! info->shared)
1273 {
1274 s = bfd_get_section_by_name (dynobj, ".interp");
1275 if (s == NULL)
1276 abort ();
1277 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1278 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1279 }
1280 }
1281
1282 /* Set up .got offsets for local syms. */
1283 for (i = info->input_bfds; i; i = i->link_next)
1284 {
1285 bfd_signed_vma *local_got;
1286 bfd_signed_vma *end_local_got;
1287 bfd_size_type locsymcount;
1288 Elf_Internal_Shdr *symtab_hdr;
1289 asection *srel;
1290
1291 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
1292 continue;
1293
1294 local_got = elf_local_got_refcounts (i);
1295 if (!local_got)
1296 continue;
1297
1298 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1299 locsymcount = symtab_hdr->sh_info;
1300 end_local_got = local_got + locsymcount;
1301 s = htab->sgot;
1302 srel = htab->srelgot;
1303 for (; local_got < end_local_got; ++local_got)
1304 {
1305 if (*local_got > 0)
1306 {
1307 *local_got = s->_raw_size;
1308 s->_raw_size += 4;
1309 if (info->shared)
1310 srel->_raw_size += sizeof (Elf32_External_Rel);
1311 }
1312 else
1313 *local_got = (bfd_vma) -1;
1314 }
1315 }
1316
1317 /* Allocate global sym .plt and .got entries. Also discard all
1318 unneeded relocs. */
1319 elf_link_hash_traverse (&htab->root,
1320 allocate_plt_and_got_and_discard_relocs,
1321 (PTR) info);
1322
1323 /* We now have determined the sizes of the various dynamic sections.
1324 Allocate memory for them. */
1325 relocs = false;
1326 for (s = dynobj->sections; s != NULL; s = s->next)
1327 {
1328 if ((s->flags & SEC_LINKER_CREATED) == 0)
1329 continue;
1330
1331 if (s == htab->splt
1332 || s == htab->sgot
1333 || s == htab->sgotplt)
1334 {
1335 /* Strip this section if we don't need it; see the
1336 comment below. */
1337 }
1338 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1339 {
1340 if (s->_raw_size == 0)
1341 {
1342 /* If we don't need this section, strip it from the
1343 output file. This is mostly to handle .rel.bss and
1344 .rel.plt. We must create both sections in
1345 create_dynamic_sections, because they must be created
1346 before the linker maps input sections to output
1347 sections. The linker does that before
1348 adjust_dynamic_symbol is called, and it is that
1349 function which decides whether anything needs to go
1350 into these sections. */
1351 }
1352 else
1353 {
1354 if (s != htab->srelplt)
1355 relocs = true;
1356
1357 /* We use the reloc_count field as a counter if we need
1358 to copy relocs into the output file. */
1359 s->reloc_count = 0;
1360 }
1361 }
1362 else
1363 {
1364 /* It's not one of our sections, so don't allocate space. */
1365 continue;
1366 }
1367
1368 if (s->_raw_size == 0)
1369 {
1370 _bfd_strip_section_from_output (info, s);
1371 continue;
1372 }
1373
1374 /* Allocate memory for the section contents. We use bfd_zalloc
1375 here in case unused entries are not reclaimed before the
1376 section's contents are written out. This should not happen,
1377 but this way if it does, we get a R_386_NONE reloc instead
1378 of garbage. */
1379 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1380 if (s->contents == NULL)
1381 return false;
1382 }
1383
1384 if (htab->root.dynamic_sections_created)
1385 {
1386 /* Add some entries to the .dynamic section. We fill in the
1387 values later, in elf_i386_finish_dynamic_sections, but we
1388 must add the entries now so that we get the correct size for
1389 the .dynamic section. The DT_DEBUG entry is filled in by the
1390 dynamic linker and used by the debugger. */
1391 if (! info->shared)
1392 {
1393 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1394 return false;
1395 }
1396
1397 if (htab->splt->_raw_size != 0)
1398 {
1399 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1400 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1401 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
1402 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1403 return false;
1404 }
1405
1406 if (relocs)
1407 {
1408 if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
1409 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
1410 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
1411 sizeof (Elf32_External_Rel)))
1412 return false;
1413 }
1414
1415 if ((info->flags & DF_TEXTREL) != 0)
1416 {
1417 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1418 return false;
1419 }
1420 }
1421
1422 return true;
1423 }
1424
1425 /* Relocate an i386 ELF section. */
1426
1427 static boolean
1428 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1429 contents, relocs, local_syms, local_sections)
1430 bfd *output_bfd;
1431 struct bfd_link_info *info;
1432 bfd *input_bfd;
1433 asection *input_section;
1434 bfd_byte *contents;
1435 Elf_Internal_Rela *relocs;
1436 Elf_Internal_Sym *local_syms;
1437 asection **local_sections;
1438 {
1439 struct elf_i386_link_hash_table *htab;
1440 bfd *dynobj;
1441 Elf_Internal_Shdr *symtab_hdr;
1442 struct elf_link_hash_entry **sym_hashes;
1443 bfd_vma *local_got_offsets;
1444 asection *sreloc;
1445 Elf_Internal_Rela *rel;
1446 Elf_Internal_Rela *relend;
1447
1448 htab = elf_i386_hash_table (info);
1449 dynobj = htab->root.dynobj;
1450 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1451 sym_hashes = elf_sym_hashes (input_bfd);
1452 local_got_offsets = elf_local_got_offsets (input_bfd);
1453
1454 sreloc = NULL;
1455 rel = relocs;
1456 relend = relocs + input_section->reloc_count;
1457 for (; rel < relend; rel++)
1458 {
1459 int r_type;
1460 reloc_howto_type *howto;
1461 unsigned long r_symndx;
1462 struct elf_link_hash_entry *h;
1463 Elf_Internal_Sym *sym;
1464 asection *sec;
1465 bfd_vma off;
1466 bfd_vma relocation;
1467 boolean unresolved_reloc;
1468 bfd_reloc_status_type r;
1469 unsigned int indx;
1470
1471 r_type = ELF32_R_TYPE (rel->r_info);
1472 if (r_type == (int) R_386_GNU_VTINHERIT
1473 || r_type == (int) R_386_GNU_VTENTRY)
1474 continue;
1475
1476 if ((indx = (unsigned) r_type) >= R_386_standard
1477 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1478 >= R_386_ext - R_386_standard))
1479 {
1480 bfd_set_error (bfd_error_bad_value);
1481 return false;
1482 }
1483 howto = elf_howto_table + indx;
1484
1485 r_symndx = ELF32_R_SYM (rel->r_info);
1486
1487 if (info->relocateable)
1488 {
1489 /* This is a relocateable link. We don't have to change
1490 anything, unless the reloc is against a section symbol,
1491 in which case we have to adjust according to where the
1492 section symbol winds up in the output section. */
1493 if (r_symndx < symtab_hdr->sh_info)
1494 {
1495 sym = local_syms + r_symndx;
1496 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1497 {
1498 bfd_vma val;
1499
1500 sec = local_sections[r_symndx];
1501 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1502 val += sec->output_offset + sym->st_value;
1503 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1504 }
1505 }
1506
1507 continue;
1508 }
1509
1510 /* This is a final link. */
1511 h = NULL;
1512 sym = NULL;
1513 sec = NULL;
1514 unresolved_reloc = false;
1515 if (r_symndx < symtab_hdr->sh_info)
1516 {
1517 sym = local_syms + r_symndx;
1518 sec = local_sections[r_symndx];
1519 relocation = (sec->output_section->vma
1520 + sec->output_offset
1521 + sym->st_value);
1522 }
1523 else
1524 {
1525 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1526 while (h->root.type == bfd_link_hash_indirect
1527 || h->root.type == bfd_link_hash_warning)
1528 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1529
1530 relocation = 0;
1531 if (h->root.type == bfd_link_hash_defined
1532 || h->root.type == bfd_link_hash_defweak)
1533 {
1534 sec = h->root.u.def.section;
1535 if (sec->output_section == NULL)
1536 /* Set a flag that will be cleared later if we find a
1537 relocation value for this symbol. output_section
1538 is typically NULL for symbols satisfied by a shared
1539 library. */
1540 unresolved_reloc = true;
1541 else
1542 relocation = (h->root.u.def.value
1543 + sec->output_section->vma
1544 + sec->output_offset);
1545 }
1546 else if (h->root.type == bfd_link_hash_undefweak)
1547 ;
1548 else if (info->shared && !info->symbolic
1549 && !info->no_undefined
1550 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1551 ;
1552 else
1553 {
1554 if (! ((*info->callbacks->undefined_symbol)
1555 (info, h->root.root.string, input_bfd,
1556 input_section, rel->r_offset,
1557 (!info->shared || info->no_undefined
1558 || ELF_ST_VISIBILITY (h->other)))))
1559 return false;
1560 }
1561 }
1562
1563 switch (r_type)
1564 {
1565 case R_386_GOT32:
1566 /* Relocation is to the entry for this symbol in the global
1567 offset table. */
1568 if (htab->sgot == NULL)
1569 abort ();
1570
1571 if (h != NULL)
1572 {
1573 boolean dyn;
1574
1575 off = h->got.offset;
1576 dyn = htab->root.dynamic_sections_created;
1577 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1578 || (info->shared
1579 && (info->symbolic
1580 || h->dynindx == -1
1581 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1582 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1583 {
1584 /* This is actually a static link, or it is a
1585 -Bsymbolic link and the symbol is defined
1586 locally, or the symbol was forced to be local
1587 because of a version file. We must initialize
1588 this entry in the global offset table. Since the
1589 offset must always be a multiple of 4, we use the
1590 least significant bit to record whether we have
1591 initialized it already.
1592
1593 When doing a dynamic link, we create a .rel.got
1594 relocation entry to initialize the value. This
1595 is done in the finish_dynamic_symbol routine. */
1596 if ((off & 1) != 0)
1597 off &= ~1;
1598 else
1599 {
1600 bfd_put_32 (output_bfd, relocation,
1601 htab->sgot->contents + off);
1602 h->got.offset |= 1;
1603 }
1604 }
1605 else
1606 unresolved_reloc = false;
1607 }
1608 else
1609 {
1610 if (local_got_offsets == NULL)
1611 abort ();
1612
1613 off = local_got_offsets[r_symndx];
1614
1615 /* The offset must always be a multiple of 4. We use
1616 the least significant bit to record whether we have
1617 already generated the necessary reloc. */
1618 if ((off & 1) != 0)
1619 off &= ~1;
1620 else
1621 {
1622 bfd_put_32 (output_bfd, relocation,
1623 htab->sgot->contents + off);
1624
1625 if (info->shared)
1626 {
1627 asection *srelgot;
1628 Elf_Internal_Rel outrel;
1629
1630 srelgot = htab->srelgot;
1631 if (srelgot == NULL)
1632 abort ();
1633
1634 outrel.r_offset = (htab->sgot->output_section->vma
1635 + htab->sgot->output_offset
1636 + off);
1637 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1638 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1639 (((Elf32_External_Rel *)
1640 srelgot->contents)
1641 + srelgot->reloc_count));
1642 ++srelgot->reloc_count;
1643 }
1644
1645 local_got_offsets[r_symndx] |= 1;
1646 }
1647 }
1648
1649 if (off >= (bfd_vma) -2)
1650 abort ();
1651
1652 relocation = htab->sgot->output_offset + off;
1653 break;
1654
1655 case R_386_GOTOFF:
1656 /* Relocation is relative to the start of the global offset
1657 table. */
1658
1659 /* Note that sgot->output_offset is not involved in this
1660 calculation. We always want the start of .got. If we
1661 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1662 permitted by the ABI, we might have to change this
1663 calculation. */
1664 relocation -= htab->sgot->output_section->vma;
1665 break;
1666
1667 case R_386_GOTPC:
1668 /* Use global offset table as symbol value. */
1669 relocation = htab->sgot->output_section->vma;
1670 unresolved_reloc = false;
1671 break;
1672
1673 case R_386_PLT32:
1674 /* Relocation is to the entry for this symbol in the
1675 procedure linkage table. */
1676
1677 /* Resolve a PLT32 reloc against a local symbol directly,
1678 without using the procedure linkage table. */
1679 if (h == NULL)
1680 break;
1681
1682 if (h->plt.offset == (bfd_vma) -1
1683 || htab->splt == NULL)
1684 {
1685 /* We didn't make a PLT entry for this symbol. This
1686 happens when statically linking PIC code, or when
1687 using -Bsymbolic. */
1688 break;
1689 }
1690
1691 relocation = (htab->splt->output_section->vma
1692 + htab->splt->output_offset
1693 + h->plt.offset);
1694 unresolved_reloc = false;
1695 break;
1696
1697 case R_386_32:
1698 case R_386_PC32:
1699 if ((info->shared
1700 && (input_section->flags & SEC_ALLOC) != 0
1701 && (r_type != R_386_PC32
1702 || (h != NULL
1703 && h->dynindx != -1
1704 && (! info->symbolic
1705 || (h->elf_link_hash_flags
1706 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1707 || (!info->shared
1708 && (input_section->flags & SEC_ALLOC) != 0
1709 && h != NULL
1710 && h->dynindx != -1
1711 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1712 && (((h->elf_link_hash_flags
1713 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1714 && (h->elf_link_hash_flags
1715 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1716 || h->root.type == bfd_link_hash_undefweak
1717 || h->root.type == bfd_link_hash_undefined)))
1718 {
1719 Elf_Internal_Rel outrel;
1720 boolean skip, relocate;
1721
1722 /* When generating a shared object, these relocations
1723 are copied into the output file to be resolved at run
1724 time. */
1725
1726 if (sreloc == NULL)
1727 {
1728 const char *name;
1729
1730 name = (bfd_elf_string_from_elf_section
1731 (input_bfd,
1732 elf_elfheader (input_bfd)->e_shstrndx,
1733 elf_section_data (input_section)->rel_hdr.sh_name));
1734 if (name == NULL)
1735 return false;
1736
1737 if (strncmp (name, ".rel", 4) != 0
1738 || strcmp (bfd_get_section_name (input_bfd,
1739 input_section),
1740 name + 4) != 0)
1741 {
1742 if (input_bfd->my_archive)
1743 (*_bfd_error_handler)\
1744 (_("%s(%s): bad relocation section name `%s\'"),
1745 bfd_get_filename (input_bfd->my_archive),
1746 bfd_get_filename (input_bfd),
1747 name);
1748 else
1749 (*_bfd_error_handler)
1750 (_("%s: bad relocation section name `%s\'"),
1751 bfd_get_filename (input_bfd),
1752 name);
1753 return false;
1754 }
1755
1756 sreloc = bfd_get_section_by_name (dynobj, name);
1757 if (sreloc == NULL)
1758 abort ();
1759 }
1760
1761 skip = false;
1762
1763 if (elf_section_data (input_section)->stab_info == NULL)
1764 outrel.r_offset = rel->r_offset;
1765 else
1766 {
1767 bfd_vma off;
1768
1769 off = (_bfd_stab_section_offset
1770 (output_bfd, htab->root.stab_info, input_section,
1771 &elf_section_data (input_section)->stab_info,
1772 rel->r_offset));
1773 if (off == (bfd_vma) -1)
1774 skip = true;
1775 outrel.r_offset = off;
1776 }
1777
1778 outrel.r_offset += (input_section->output_section->vma
1779 + input_section->output_offset);
1780
1781 if (skip)
1782 {
1783 memset (&outrel, 0, sizeof outrel);
1784 relocate = false;
1785 }
1786 else if (h != NULL
1787 && h->dynindx != -1
1788 && (r_type == R_386_PC32
1789 || !info->shared
1790 || !info->symbolic
1791 || (h->elf_link_hash_flags
1792 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1793
1794 {
1795 relocate = false;
1796 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1797 }
1798 else
1799 {
1800 /* This symbol is local, or marked to become local. */
1801 relocate = true;
1802 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1803 }
1804
1805 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1806 (((Elf32_External_Rel *)
1807 sreloc->contents)
1808 + sreloc->reloc_count));
1809 ++sreloc->reloc_count;
1810
1811 /* If this reloc is against an external symbol, we do
1812 not want to fiddle with the addend. Otherwise, we
1813 need to include the symbol value so that it becomes
1814 an addend for the dynamic reloc. */
1815 if (! relocate)
1816 continue;
1817 }
1818
1819 break;
1820
1821 default:
1822 break;
1823 }
1824
1825 /* FIXME: Why do we allow debugging sections to escape this error?
1826 More importantly, why do we not emit dynamic relocs for
1827 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
1828 If we had emitted the dynamic reloc, we could remove the
1829 fudge here. */
1830 if (unresolved_reloc
1831 && !(info->shared
1832 && (input_section->flags & SEC_DEBUGGING) != 0
1833 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1834 (*_bfd_error_handler)
1835 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1836 bfd_get_filename (input_bfd),
1837 bfd_get_section_name (input_bfd, input_section),
1838 (long) rel->r_offset,
1839 h->root.root.string);
1840
1841 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1842 contents, rel->r_offset,
1843 relocation, (bfd_vma) 0);
1844
1845 switch (r)
1846 {
1847 case bfd_reloc_ok:
1848 break;
1849
1850 case bfd_reloc_overflow:
1851 {
1852 const char *name;
1853
1854 if (h != NULL)
1855 name = h->root.root.string;
1856 else
1857 {
1858 name = bfd_elf_string_from_elf_section (input_bfd,
1859 symtab_hdr->sh_link,
1860 sym->st_name);
1861 if (name == NULL)
1862 return false;
1863 if (*name == '\0')
1864 name = bfd_section_name (input_bfd, sec);
1865 }
1866 if (! ((*info->callbacks->reloc_overflow)
1867 (info, name, howto->name, (bfd_vma) 0,
1868 input_bfd, input_section, rel->r_offset)))
1869 return false;
1870 }
1871 break;
1872
1873 default:
1874 case bfd_reloc_outofrange:
1875 abort ();
1876 break;
1877 }
1878 }
1879
1880 return true;
1881 }
1882
1883 /* Finish up dynamic symbol handling. We set the contents of various
1884 dynamic sections here. */
1885
1886 static boolean
1887 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1888 bfd *output_bfd;
1889 struct bfd_link_info *info;
1890 struct elf_link_hash_entry *h;
1891 Elf_Internal_Sym *sym;
1892 {
1893 struct elf_i386_link_hash_table *htab;
1894 bfd *dynobj;
1895
1896 htab = elf_i386_hash_table (info);
1897 dynobj = htab->root.dynobj;
1898
1899 if (h->plt.offset != (bfd_vma) -1)
1900 {
1901 bfd_vma plt_index;
1902 bfd_vma got_offset;
1903 Elf_Internal_Rel rel;
1904
1905 /* This symbol has an entry in the procedure linkage table. Set
1906 it up. */
1907
1908 if (h->dynindx == -1
1909 || htab->splt == NULL
1910 || htab->sgotplt == NULL
1911 || htab->srelplt == NULL)
1912 abort ();
1913
1914 /* Get the index in the procedure linkage table which
1915 corresponds to this symbol. This is the index of this symbol
1916 in all the symbols for which we are making plt entries. The
1917 first entry in the procedure linkage table is reserved. */
1918 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1919
1920 /* Get the offset into the .got table of the entry that
1921 corresponds to this function. Each .got entry is 4 bytes.
1922 The first three are reserved. */
1923 got_offset = (plt_index + 3) * 4;
1924
1925 /* Fill in the entry in the procedure linkage table. */
1926 if (! info->shared)
1927 {
1928 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
1929 PLT_ENTRY_SIZE);
1930 bfd_put_32 (output_bfd,
1931 (htab->sgotplt->output_section->vma
1932 + htab->sgotplt->output_offset
1933 + got_offset),
1934 htab->splt->contents + h->plt.offset + 2);
1935 }
1936 else
1937 {
1938 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1939 PLT_ENTRY_SIZE);
1940 bfd_put_32 (output_bfd, got_offset,
1941 htab->splt->contents + h->plt.offset + 2);
1942 }
1943
1944 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1945 htab->splt->contents + h->plt.offset + 7);
1946 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1947 htab->splt->contents + h->plt.offset + 12);
1948
1949 /* Fill in the entry in the global offset table. */
1950 bfd_put_32 (output_bfd,
1951 (htab->splt->output_section->vma
1952 + htab->splt->output_offset
1953 + h->plt.offset
1954 + 6),
1955 htab->sgotplt->contents + got_offset);
1956
1957 /* Fill in the entry in the .rel.plt section. */
1958 rel.r_offset = (htab->sgotplt->output_section->vma
1959 + htab->sgotplt->output_offset
1960 + got_offset);
1961 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1962 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1963 ((Elf32_External_Rel *) htab->srelplt->contents
1964 + plt_index));
1965
1966 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1967 {
1968 /* Mark the symbol as undefined, rather than as defined in
1969 the .plt section. Leave the value alone. */
1970 sym->st_shndx = SHN_UNDEF;
1971 }
1972 }
1973
1974 if (h->got.offset != (bfd_vma) -1)
1975 {
1976 Elf_Internal_Rel rel;
1977
1978 /* This symbol has an entry in the global offset table. Set it
1979 up. */
1980
1981 if (htab->sgot == NULL || htab->srelgot == NULL)
1982 abort ();
1983
1984 rel.r_offset = (htab->sgot->output_section->vma
1985 + htab->sgot->output_offset
1986 + (h->got.offset &~ 1));
1987
1988 /* If this is a static link, or it is a -Bsymbolic link and the
1989 symbol is defined locally or was forced to be local because
1990 of a version file, we just want to emit a RELATIVE reloc.
1991 The entry in the global offset table will already have been
1992 initialized in the relocate_section function. */
1993 if (info->shared
1994 && (info->symbolic
1995 || h->dynindx == -1
1996 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1997 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1998 {
1999 BFD_ASSERT((h->got.offset & 1) != 0);
2000 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2001 }
2002 else
2003 {
2004 BFD_ASSERT((h->got.offset & 1) == 0);
2005 bfd_put_32 (output_bfd, (bfd_vma) 0,
2006 htab->sgot->contents + h->got.offset);
2007 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2008 }
2009
2010 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2011 ((Elf32_External_Rel *) htab->srelgot->contents
2012 + htab->srelgot->reloc_count));
2013 ++htab->srelgot->reloc_count;
2014 }
2015
2016 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2017 {
2018 Elf_Internal_Rel rel;
2019
2020 /* This symbol needs a copy reloc. Set it up. */
2021
2022 if (h->dynindx == -1
2023 || (h->root.type != bfd_link_hash_defined
2024 && h->root.type != bfd_link_hash_defweak)
2025 || htab->srelbss == NULL)
2026 abort ();
2027
2028 rel.r_offset = (h->root.u.def.value
2029 + h->root.u.def.section->output_section->vma
2030 + h->root.u.def.section->output_offset);
2031 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2032 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2033 ((Elf32_External_Rel *) htab->srelbss->contents
2034 + htab->srelbss->reloc_count));
2035 ++htab->srelbss->reloc_count;
2036 }
2037
2038 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2039 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2040 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2041 sym->st_shndx = SHN_ABS;
2042
2043 return true;
2044 }
2045
2046 /* Finish up the dynamic sections. */
2047
2048 static boolean
2049 elf_i386_finish_dynamic_sections (output_bfd, info)
2050 bfd *output_bfd;
2051 struct bfd_link_info *info;
2052 {
2053 struct elf_i386_link_hash_table *htab;
2054 bfd *dynobj;
2055 asection *sdyn;
2056
2057 htab = elf_i386_hash_table (info);
2058 dynobj = htab->root.dynobj;
2059 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2060
2061 if (htab->root.dynamic_sections_created)
2062 {
2063 Elf32_External_Dyn *dyncon, *dynconend;
2064
2065 if (sdyn == NULL || htab->sgot == NULL)
2066 abort ();
2067
2068 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2069 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2070 for (; dyncon < dynconend; dyncon++)
2071 {
2072 Elf_Internal_Dyn dyn;
2073
2074 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2075
2076 switch (dyn.d_tag)
2077 {
2078 default:
2079 break;
2080
2081 case DT_PLTGOT:
2082 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2083 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2084 break;
2085
2086 case DT_JMPREL:
2087 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2088 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2089 break;
2090
2091 case DT_PLTRELSZ:
2092 if (htab->srelplt->output_section->_cooked_size != 0)
2093 dyn.d_un.d_val = htab->srelplt->output_section->_cooked_size;
2094 else
2095 dyn.d_un.d_val = htab->srelplt->output_section->_raw_size;
2096 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2097 break;
2098
2099 case DT_RELSZ:
2100 /* My reading of the SVR4 ABI indicates that the
2101 procedure linkage table relocs (DT_JMPREL) should be
2102 included in the overall relocs (DT_REL). This is
2103 what Solaris does. However, UnixWare can not handle
2104 that case. Therefore, we override the DT_RELSZ entry
2105 here to make it not include the JMPREL relocs. Since
2106 the linker script arranges for .rel.plt to follow all
2107 other relocation sections, we don't have to worry
2108 about changing the DT_REL entry. */
2109 if (htab->srelplt != NULL)
2110 {
2111 if (htab->srelplt->output_section->_cooked_size != 0)
2112 dyn.d_un.d_val -= htab->srelplt->output_section->_cooked_size;
2113 else
2114 dyn.d_un.d_val -= htab->srelplt->output_section->_raw_size;
2115 }
2116 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2117 break;
2118 }
2119 }
2120
2121 /* Fill in the first entry in the procedure linkage table. */
2122 if (htab->splt && htab->splt->_raw_size > 0)
2123 {
2124 if (info->shared)
2125 memcpy (htab->splt->contents,
2126 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2127 else
2128 {
2129 memcpy (htab->splt->contents,
2130 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2131 bfd_put_32 (output_bfd,
2132 (htab->sgotplt->output_section->vma
2133 + htab->sgotplt->output_offset
2134 + 4),
2135 htab->splt->contents + 2);
2136 bfd_put_32 (output_bfd,
2137 (htab->sgotplt->output_section->vma
2138 + htab->sgotplt->output_offset
2139 + 8),
2140 htab->splt->contents + 8);
2141 }
2142
2143 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2144 really seem like the right value. */
2145 elf_section_data (htab->splt->output_section)
2146 ->this_hdr.sh_entsize = 4;
2147 }
2148 }
2149
2150 if (htab->sgotplt)
2151 {
2152 /* Fill in the first three entries in the global offset table. */
2153 if (htab->sgotplt->_raw_size > 0)
2154 {
2155 bfd_put_32 (output_bfd,
2156 (sdyn == NULL ? (bfd_vma) 0
2157 : sdyn->output_section->vma + sdyn->output_offset),
2158 htab->sgotplt->contents);
2159 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2160 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2161 }
2162
2163 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2164 }
2165 return true;
2166 }
2167
2168 /* Set the correct type for an x86 ELF section. We do this by the
2169 section name, which is a hack, but ought to work. */
2170
2171 static boolean
2172 elf_i386_fake_sections (abfd, hdr, sec)
2173 bfd *abfd ATTRIBUTE_UNUSED;
2174 Elf32_Internal_Shdr *hdr;
2175 asection *sec;
2176 {
2177 register const char *name;
2178
2179 name = bfd_get_section_name (abfd, sec);
2180
2181 if (strcmp (name, ".reloc") == 0)
2182 /*
2183 * This is an ugly, but unfortunately necessary hack that is
2184 * needed when producing EFI binaries on x86. It tells
2185 * elf.c:elf_fake_sections() not to consider ".reloc" as a section
2186 * containing ELF relocation info. We need this hack in order to
2187 * be able to generate ELF binaries that can be translated into
2188 * EFI applications (which are essentially COFF objects). Those
2189 * files contain a COFF ".reloc" section inside an ELFNN object,
2190 * which would normally cause BFD to segfault because it would
2191 * attempt to interpret this section as containing relocation
2192 * entries for section "oc". With this hack enabled, ".reloc"
2193 * will be treated as a normal data section, which will avoid the
2194 * segfault. However, you won't be able to create an ELFNN binary
2195 * with a section named "oc" that needs relocations, but that's
2196 * the kind of ugly side-effects you get when detecting section
2197 * types based on their names... In practice, this limitation is
2198 * unlikely to bite.
2199 */
2200 hdr->sh_type = SHT_PROGBITS;
2201
2202 return true;
2203 }
2204
2205 static enum elf_reloc_type_class
2206 elf_i386_reloc_type_class (type)
2207 int type;
2208 {
2209 switch (type)
2210 {
2211 case R_386_RELATIVE:
2212 return reloc_class_relative;
2213 case R_386_JUMP_SLOT:
2214 return reloc_class_plt;
2215 case R_386_COPY:
2216 return reloc_class_copy;
2217 default:
2218 return reloc_class_normal;
2219 }
2220 }
2221
2222 /* Support for core dump NOTE sections */
2223 static boolean
2224 elf_i386_grok_prstatus (abfd, note)
2225 bfd *abfd;
2226 Elf_Internal_Note *note;
2227 {
2228 int offset;
2229 int raw_size;
2230
2231 switch (note->descsz)
2232 {
2233 default:
2234 return false;
2235
2236 case 144: /* Linux/i386 */
2237 /* pr_cursig */
2238 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2239
2240 /* pr_pid */
2241 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2242
2243 /* pr_reg */
2244 offset = 72;
2245 raw_size = 68;
2246
2247 break;
2248 }
2249
2250 /* Make a ".reg/999" section. */
2251 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2252 raw_size, note->descpos + offset);
2253 }
2254
2255 static boolean
2256 elf_i386_grok_psinfo (abfd, note)
2257 bfd *abfd;
2258 Elf_Internal_Note *note;
2259 {
2260 switch (note->descsz)
2261 {
2262 default:
2263 return false;
2264
2265 case 128: /* Linux/MIPS elf_prpsinfo */
2266 elf_tdata (abfd)->core_program
2267 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2268 elf_tdata (abfd)->core_command
2269 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2270 }
2271
2272 /* Note that for some reason, a spurious space is tacked
2273 onto the end of the args in some (at least one anyway)
2274 implementations, so strip it off if it exists. */
2275
2276 {
2277 char *command = elf_tdata (abfd)->core_command;
2278 int n = strlen (command);
2279
2280 if (0 < n && command[n - 1] == ' ')
2281 command[n - 1] = '\0';
2282 }
2283
2284 return true;
2285 }
2286
2287 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2288 #define TARGET_LITTLE_NAME "elf32-i386"
2289 #define ELF_ARCH bfd_arch_i386
2290 #define ELF_MACHINE_CODE EM_386
2291 #define ELF_MAXPAGESIZE 0x1000
2292
2293 #define elf_backend_can_gc_sections 1
2294 #define elf_backend_want_got_plt 1
2295 #define elf_backend_plt_readonly 1
2296 #define elf_backend_want_plt_sym 0
2297 #define elf_backend_got_header_size 12
2298 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2299
2300 #define elf_info_to_howto elf_i386_info_to_howto
2301 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2302
2303 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2304 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2305 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2306
2307 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2308 #define elf_backend_check_relocs elf_i386_check_relocs
2309 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2310 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2311 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2312 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2313 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2314 #define elf_backend_relocate_section elf_i386_relocate_section
2315 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2316 #define elf_backend_fake_sections elf_i386_fake_sections
2317 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2318 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2319 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2320
2321 #include "elf32-target.h"
This page took 0.08177 seconds and 4 git commands to generate.