* elf32-i386.c (elf_i386_check_relocs): Update comment since we
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name
34 PARAMS ((bfd *, const char *));
35 static boolean elf_i386_grok_prstatus
36 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
37 static boolean elf_i386_grok_psinfo
38 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
39 static struct bfd_hash_entry *link_hash_newfunc
40 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
41 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
42 PARAMS ((bfd *));
43 static boolean create_got_section
44 PARAMS((bfd *, struct bfd_link_info *));
45 static boolean elf_i386_create_dynamic_sections
46 PARAMS((bfd *, struct bfd_link_info *));
47 static void
48 elf_i386_copy_indirect_symbol
49 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
50 static boolean elf_i386_check_relocs
51 PARAMS ((bfd *, struct bfd_link_info *, asection *,
52 const Elf_Internal_Rela *));
53 static asection *elf_i386_gc_mark_hook
54 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
55 struct elf_link_hash_entry *, Elf_Internal_Sym *));
56 static boolean elf_i386_gc_sweep_hook
57 PARAMS ((bfd *, struct bfd_link_info *, asection *,
58 const Elf_Internal_Rela *));
59 static boolean elf_i386_adjust_dynamic_symbol
60 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
61 static boolean allocate_dynrelocs
62 PARAMS ((struct elf_link_hash_entry *, PTR));
63 static boolean readonly_dynrelocs
64 PARAMS ((struct elf_link_hash_entry *, PTR));
65 static boolean elf_i386_fake_sections
66 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
67 static boolean elf_i386_size_dynamic_sections
68 PARAMS ((bfd *, struct bfd_link_info *));
69 static boolean elf_i386_relocate_section
70 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
71 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
72 static boolean elf_i386_finish_dynamic_symbol
73 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
74 Elf_Internal_Sym *));
75 static enum elf_reloc_type_class elf_i386_reloc_type_class
76 PARAMS ((const Elf_Internal_Rela *));
77 static boolean elf_i386_finish_dynamic_sections
78 PARAMS ((bfd *, struct bfd_link_info *));
79
80 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
81
82 #include "elf/i386.h"
83
84 static reloc_howto_type elf_howto_table[]=
85 {
86 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_386_NONE",
88 true, 0x00000000, 0x00000000, false),
89 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_386_32",
91 true, 0xffffffff, 0xffffffff, false),
92 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_386_PC32",
94 true, 0xffffffff, 0xffffffff, true),
95 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_386_GOT32",
97 true, 0xffffffff, 0xffffffff, false),
98 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
99 bfd_elf_generic_reloc, "R_386_PLT32",
100 true, 0xffffffff, 0xffffffff, true),
101 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_386_COPY",
103 true, 0xffffffff, 0xffffffff, false),
104 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
106 true, 0xffffffff, 0xffffffff, false),
107 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
109 true, 0xffffffff, 0xffffffff, false),
110 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_386_RELATIVE",
112 true, 0xffffffff, 0xffffffff, false),
113 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_386_GOTOFF",
115 true, 0xffffffff, 0xffffffff, false),
116 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
117 bfd_elf_generic_reloc, "R_386_GOTPC",
118 true, 0xffffffff, 0xffffffff, true),
119
120 /* We have a gap in the reloc numbers here.
121 R_386_standard counts the number up to this point, and
122 R_386_ext_offset is the value to subtract from a reloc type of
123 R_386_16 thru R_386_PC8 to form an index into this table. */
124 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
125 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
126
127 /* The remaining relocs are a GNU extension. */
128 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
129 bfd_elf_generic_reloc, "R_386_16",
130 true, 0xffff, 0xffff, false),
131 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
132 bfd_elf_generic_reloc, "R_386_PC16",
133 true, 0xffff, 0xffff, true),
134 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
135 bfd_elf_generic_reloc, "R_386_8",
136 true, 0xff, 0xff, false),
137 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_386_PC8",
139 true, 0xff, 0xff, true),
140
141 /* Another gap. */
142 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
143 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
144
145 /* GNU extension to record C++ vtable hierarchy. */
146 HOWTO (R_386_GNU_VTINHERIT, /* type */
147 0, /* rightshift */
148 2, /* size (0 = byte, 1 = short, 2 = long) */
149 0, /* bitsize */
150 false, /* pc_relative */
151 0, /* bitpos */
152 complain_overflow_dont, /* complain_on_overflow */
153 NULL, /* special_function */
154 "R_386_GNU_VTINHERIT", /* name */
155 false, /* partial_inplace */
156 0, /* src_mask */
157 0, /* dst_mask */
158 false),
159
160 /* GNU extension to record C++ vtable member usage. */
161 HOWTO (R_386_GNU_VTENTRY, /* type */
162 0, /* rightshift */
163 2, /* size (0 = byte, 1 = short, 2 = long) */
164 0, /* bitsize */
165 false, /* pc_relative */
166 0, /* bitpos */
167 complain_overflow_dont, /* complain_on_overflow */
168 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
169 "R_386_GNU_VTENTRY", /* name */
170 false, /* partial_inplace */
171 0, /* src_mask */
172 0, /* dst_mask */
173 false)
174
175 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
176
177 };
178
179 #ifdef DEBUG_GEN_RELOC
180 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
181 #else
182 #define TRACE(str)
183 #endif
184
185 static reloc_howto_type *
186 elf_i386_reloc_type_lookup (abfd, code)
187 bfd *abfd ATTRIBUTE_UNUSED;
188 bfd_reloc_code_real_type code;
189 {
190 switch (code)
191 {
192 case BFD_RELOC_NONE:
193 TRACE ("BFD_RELOC_NONE");
194 return &elf_howto_table[(unsigned int) R_386_NONE ];
195
196 case BFD_RELOC_32:
197 TRACE ("BFD_RELOC_32");
198 return &elf_howto_table[(unsigned int) R_386_32 ];
199
200 case BFD_RELOC_CTOR:
201 TRACE ("BFD_RELOC_CTOR");
202 return &elf_howto_table[(unsigned int) R_386_32 ];
203
204 case BFD_RELOC_32_PCREL:
205 TRACE ("BFD_RELOC_PC32");
206 return &elf_howto_table[(unsigned int) R_386_PC32 ];
207
208 case BFD_RELOC_386_GOT32:
209 TRACE ("BFD_RELOC_386_GOT32");
210 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
211
212 case BFD_RELOC_386_PLT32:
213 TRACE ("BFD_RELOC_386_PLT32");
214 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
215
216 case BFD_RELOC_386_COPY:
217 TRACE ("BFD_RELOC_386_COPY");
218 return &elf_howto_table[(unsigned int) R_386_COPY ];
219
220 case BFD_RELOC_386_GLOB_DAT:
221 TRACE ("BFD_RELOC_386_GLOB_DAT");
222 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
223
224 case BFD_RELOC_386_JUMP_SLOT:
225 TRACE ("BFD_RELOC_386_JUMP_SLOT");
226 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
227
228 case BFD_RELOC_386_RELATIVE:
229 TRACE ("BFD_RELOC_386_RELATIVE");
230 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
231
232 case BFD_RELOC_386_GOTOFF:
233 TRACE ("BFD_RELOC_386_GOTOFF");
234 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
235
236 case BFD_RELOC_386_GOTPC:
237 TRACE ("BFD_RELOC_386_GOTPC");
238 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
239
240 /* The remaining relocs are a GNU extension. */
241 case BFD_RELOC_16:
242 TRACE ("BFD_RELOC_16");
243 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
244
245 case BFD_RELOC_16_PCREL:
246 TRACE ("BFD_RELOC_16_PCREL");
247 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
248
249 case BFD_RELOC_8:
250 TRACE ("BFD_RELOC_8");
251 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
252
253 case BFD_RELOC_8_PCREL:
254 TRACE ("BFD_RELOC_8_PCREL");
255 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
256
257 case BFD_RELOC_VTABLE_INHERIT:
258 TRACE ("BFD_RELOC_VTABLE_INHERIT");
259 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
260 - R_386_vt_offset];
261
262 case BFD_RELOC_VTABLE_ENTRY:
263 TRACE ("BFD_RELOC_VTABLE_ENTRY");
264 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
265 - R_386_vt_offset];
266
267 default:
268 break;
269 }
270
271 TRACE ("Unknown");
272 return 0;
273 }
274
275 static void
276 elf_i386_info_to_howto (abfd, cache_ptr, dst)
277 bfd *abfd ATTRIBUTE_UNUSED;
278 arelent *cache_ptr ATTRIBUTE_UNUSED;
279 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
280 {
281 abort ();
282 }
283
284 static void
285 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
286 bfd *abfd ATTRIBUTE_UNUSED;
287 arelent *cache_ptr;
288 Elf32_Internal_Rel *dst;
289 {
290 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
291 unsigned int indx;
292
293 if ((indx = r_type) >= R_386_standard
294 && ((indx = r_type - R_386_ext_offset) - R_386_standard
295 >= R_386_ext - R_386_standard)
296 && ((indx = r_type - R_386_vt_offset) - R_386_ext
297 >= R_386_vt - R_386_ext))
298 {
299 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
300 bfd_archive_filename (abfd), (int) r_type);
301 indx = (unsigned int) R_386_NONE;
302 }
303 cache_ptr->howto = &elf_howto_table[indx];
304 }
305
306 /* Return whether a symbol name implies a local label. The UnixWare
307 2.1 cc generates temporary symbols that start with .X, so we
308 recognize them here. FIXME: do other SVR4 compilers also use .X?.
309 If so, we should move the .X recognition into
310 _bfd_elf_is_local_label_name. */
311
312 static boolean
313 elf_i386_is_local_label_name (abfd, name)
314 bfd *abfd;
315 const char *name;
316 {
317 if (name[0] == '.' && name[1] == 'X')
318 return true;
319
320 return _bfd_elf_is_local_label_name (abfd, name);
321 }
322 \f
323 /* Support for core dump NOTE sections. */
324 static boolean
325 elf_i386_grok_prstatus (abfd, note)
326 bfd *abfd;
327 Elf_Internal_Note *note;
328 {
329 int offset;
330 size_t raw_size;
331
332 switch (note->descsz)
333 {
334 default:
335 return false;
336
337 case 144: /* Linux/i386 */
338 /* pr_cursig */
339 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
340
341 /* pr_pid */
342 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
343
344 /* pr_reg */
345 offset = 72;
346 raw_size = 68;
347
348 break;
349 }
350
351 /* Make a ".reg/999" section. */
352 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
353 raw_size, note->descpos + offset);
354 }
355
356 static boolean
357 elf_i386_grok_psinfo (abfd, note)
358 bfd *abfd;
359 Elf_Internal_Note *note;
360 {
361 switch (note->descsz)
362 {
363 default:
364 return false;
365
366 case 128: /* Linux/MIPS elf_prpsinfo */
367 elf_tdata (abfd)->core_program
368 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
369 elf_tdata (abfd)->core_command
370 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
371 }
372
373 /* Note that for some reason, a spurious space is tacked
374 onto the end of the args in some (at least one anyway)
375 implementations, so strip it off if it exists. */
376
377 {
378 char *command = elf_tdata (abfd)->core_command;
379 int n = strlen (command);
380
381 if (0 < n && command[n - 1] == ' ')
382 command[n - 1] = '\0';
383 }
384
385 return true;
386 }
387 \f
388 /* Functions for the i386 ELF linker.
389
390 In order to gain some understanding of code in this file without
391 knowing all the intricate details of the linker, note the
392 following:
393
394 Functions named elf_i386_* are called by external routines, other
395 functions are only called locally. elf_i386_* functions appear
396 in this file more or less in the order in which they are called
397 from external routines. eg. elf_i386_check_relocs is called
398 early in the link process, elf_i386_finish_dynamic_sections is
399 one of the last functions. */
400
401
402 /* The name of the dynamic interpreter. This is put in the .interp
403 section. */
404
405 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
406
407 /* The size in bytes of an entry in the procedure linkage table. */
408
409 #define PLT_ENTRY_SIZE 16
410
411 /* The first entry in an absolute procedure linkage table looks like
412 this. See the SVR4 ABI i386 supplement to see how this works. */
413
414 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
415 {
416 0xff, 0x35, /* pushl contents of address */
417 0, 0, 0, 0, /* replaced with address of .got + 4. */
418 0xff, 0x25, /* jmp indirect */
419 0, 0, 0, 0, /* replaced with address of .got + 8. */
420 0, 0, 0, 0 /* pad out to 16 bytes. */
421 };
422
423 /* Subsequent entries in an absolute procedure linkage table look like
424 this. */
425
426 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
427 {
428 0xff, 0x25, /* jmp indirect */
429 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
430 0x68, /* pushl immediate */
431 0, 0, 0, 0, /* replaced with offset into relocation table. */
432 0xe9, /* jmp relative */
433 0, 0, 0, 0 /* replaced with offset to start of .plt. */
434 };
435
436 /* The first entry in a PIC procedure linkage table look like this. */
437
438 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
439 {
440 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
441 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
442 0, 0, 0, 0 /* pad out to 16 bytes. */
443 };
444
445 /* Subsequent entries in a PIC procedure linkage table look like this. */
446
447 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
448 {
449 0xff, 0xa3, /* jmp *offset(%ebx) */
450 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
451 0x68, /* pushl immediate */
452 0, 0, 0, 0, /* replaced with offset into relocation table. */
453 0xe9, /* jmp relative */
454 0, 0, 0, 0 /* replaced with offset to start of .plt. */
455 };
456
457 /* The i386 linker needs to keep track of the number of relocs that it
458 decides to copy as dynamic relocs in check_relocs for each symbol.
459 This is so that it can later discard them if they are found to be
460 unnecessary. We store the information in a field extending the
461 regular ELF linker hash table. */
462
463 struct elf_i386_dyn_relocs
464 {
465 struct elf_i386_dyn_relocs *next;
466
467 /* The input section of the reloc. */
468 asection *sec;
469
470 /* Total number of relocs copied for the input section. */
471 bfd_size_type count;
472
473 /* Number of pc-relative relocs copied for the input section. */
474 bfd_size_type pc_count;
475 };
476
477 /* i386 ELF linker hash entry. */
478
479 struct elf_i386_link_hash_entry
480 {
481 struct elf_link_hash_entry elf;
482
483 /* Track dynamic relocs copied for this symbol. */
484 struct elf_i386_dyn_relocs *dyn_relocs;
485 };
486
487 /* i386 ELF linker hash table. */
488
489 struct elf_i386_link_hash_table
490 {
491 struct elf_link_hash_table elf;
492
493 /* Short-cuts to get to dynamic linker sections. */
494 asection *sgot;
495 asection *sgotplt;
496 asection *srelgot;
497 asection *splt;
498 asection *srelplt;
499 asection *sdynbss;
500 asection *srelbss;
501 };
502
503 /* Get the i386 ELF linker hash table from a link_info structure. */
504
505 #define elf_i386_hash_table(p) \
506 ((struct elf_i386_link_hash_table *) ((p)->hash))
507
508 /* Create an entry in an i386 ELF linker hash table. */
509
510 static struct bfd_hash_entry *
511 link_hash_newfunc (entry, table, string)
512 struct bfd_hash_entry *entry;
513 struct bfd_hash_table *table;
514 const char *string;
515 {
516 /* Allocate the structure if it has not already been allocated by a
517 subclass. */
518 if (entry == NULL)
519 {
520 entry = bfd_hash_allocate (table,
521 sizeof (struct elf_i386_link_hash_entry));
522 if (entry == NULL)
523 return entry;
524 }
525
526 /* Call the allocation method of the superclass. */
527 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
528 if (entry != NULL)
529 {
530 struct elf_i386_link_hash_entry *eh;
531
532 eh = (struct elf_i386_link_hash_entry *) entry;
533 eh->dyn_relocs = NULL;
534 }
535
536 return entry;
537 }
538
539 /* Create an i386 ELF linker hash table. */
540
541 static struct bfd_link_hash_table *
542 elf_i386_link_hash_table_create (abfd)
543 bfd *abfd;
544 {
545 struct elf_i386_link_hash_table *ret;
546 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
547
548 ret = (struct elf_i386_link_hash_table *) bfd_alloc (abfd, amt);
549 if (ret == NULL)
550 return NULL;
551
552 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
553 {
554 bfd_release (abfd, ret);
555 return NULL;
556 }
557
558 ret->sgot = NULL;
559 ret->sgotplt = NULL;
560 ret->srelgot = NULL;
561 ret->splt = NULL;
562 ret->srelplt = NULL;
563 ret->sdynbss = NULL;
564 ret->srelbss = NULL;
565
566 return &ret->elf.root;
567 }
568
569 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
570 shortcuts to them in our hash table. */
571
572 static boolean
573 create_got_section (dynobj, info)
574 bfd *dynobj;
575 struct bfd_link_info *info;
576 {
577 struct elf_i386_link_hash_table *htab;
578
579 if (! _bfd_elf_create_got_section (dynobj, info))
580 return false;
581
582 htab = elf_i386_hash_table (info);
583 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
584 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
585 if (!htab->sgot || !htab->sgotplt)
586 abort ();
587
588 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
589 if (htab->srelgot == NULL
590 || ! bfd_set_section_flags (dynobj, htab->srelgot,
591 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
592 | SEC_IN_MEMORY | SEC_LINKER_CREATED
593 | SEC_READONLY))
594 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
595 return false;
596 return true;
597 }
598
599 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
600 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
601 hash table. */
602
603 static boolean
604 elf_i386_create_dynamic_sections (dynobj, info)
605 bfd *dynobj;
606 struct bfd_link_info *info;
607 {
608 struct elf_i386_link_hash_table *htab;
609
610 htab = elf_i386_hash_table (info);
611 if (!htab->sgot && !create_got_section (dynobj, info))
612 return false;
613
614 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
615 return false;
616
617 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
618 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
619 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
620 if (!info->shared)
621 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
622
623 if (!htab->splt || !htab->srelplt || !htab->sdynbss
624 || (!info->shared && !htab->srelbss))
625 abort ();
626
627 return true;
628 }
629
630 /* Copy the extra info we tack onto an elf_link_hash_entry. */
631
632 void
633 elf_i386_copy_indirect_symbol (dir, ind)
634 struct elf_link_hash_entry *dir, *ind;
635 {
636 struct elf_i386_link_hash_entry *edir, *eind;
637
638 edir = (struct elf_i386_link_hash_entry *) dir;
639 eind = (struct elf_i386_link_hash_entry *) ind;
640
641 if (edir->dyn_relocs == NULL)
642 {
643 edir->dyn_relocs = eind->dyn_relocs;
644 eind->dyn_relocs = NULL;
645 }
646 else if (eind->dyn_relocs != NULL)
647 abort ();
648
649 _bfd_elf_link_hash_copy_indirect (dir, ind);
650 }
651
652 /* Look through the relocs for a section during the first phase, and
653 calculate needed space in the global offset table, procedure linkage
654 table, and dynamic reloc sections. */
655
656 static boolean
657 elf_i386_check_relocs (abfd, info, sec, relocs)
658 bfd *abfd;
659 struct bfd_link_info *info;
660 asection *sec;
661 const Elf_Internal_Rela *relocs;
662 {
663 struct elf_i386_link_hash_table *htab;
664 Elf_Internal_Shdr *symtab_hdr;
665 struct elf_link_hash_entry **sym_hashes;
666 const Elf_Internal_Rela *rel;
667 const Elf_Internal_Rela *rel_end;
668 asection *sreloc;
669
670 if (info->relocateable)
671 return true;
672
673 htab = elf_i386_hash_table (info);
674 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
675 sym_hashes = elf_sym_hashes (abfd);
676
677 sreloc = NULL;
678
679 rel_end = relocs + sec->reloc_count;
680 for (rel = relocs; rel < rel_end; rel++)
681 {
682 unsigned long r_symndx;
683 struct elf_link_hash_entry *h;
684
685 r_symndx = ELF32_R_SYM (rel->r_info);
686
687 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
688 {
689 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
690 bfd_archive_filename (abfd),
691 r_symndx);
692 return false;
693 }
694
695 if (r_symndx < symtab_hdr->sh_info)
696 h = NULL;
697 else
698 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
699
700 switch (ELF32_R_TYPE (rel->r_info))
701 {
702 case R_386_GOT32:
703 /* This symbol requires a global offset table entry. */
704 if (h != NULL)
705 {
706 if (h->got.refcount == -1)
707 h->got.refcount = 1;
708 else
709 h->got.refcount += 1;
710 }
711 else
712 {
713 bfd_signed_vma *local_got_refcounts;
714
715 /* This is a global offset table entry for a local symbol. */
716 local_got_refcounts = elf_local_got_refcounts (abfd);
717 if (local_got_refcounts == NULL)
718 {
719 bfd_size_type size;
720
721 size = symtab_hdr->sh_info;
722 size *= sizeof (bfd_signed_vma);
723 local_got_refcounts = ((bfd_signed_vma *)
724 bfd_zalloc (abfd, size));
725 if (local_got_refcounts == NULL)
726 return false;
727 elf_local_got_refcounts (abfd) = local_got_refcounts;
728 }
729 local_got_refcounts[r_symndx] += 1;
730 }
731 /* Fall through */
732
733 case R_386_GOTOFF:
734 case R_386_GOTPC:
735 if (htab->sgot == NULL)
736 {
737 if (htab->elf.dynobj == NULL)
738 htab->elf.dynobj = abfd;
739 if (!create_got_section (htab->elf.dynobj, info))
740 return false;
741 }
742 break;
743
744 case R_386_PLT32:
745 /* This symbol requires a procedure linkage table entry. We
746 actually build the entry in adjust_dynamic_symbol,
747 because this might be a case of linking PIC code which is
748 never referenced by a dynamic object, in which case we
749 don't need to generate a procedure linkage table entry
750 after all. */
751
752 /* If this is a local symbol, we resolve it directly without
753 creating a procedure linkage table entry. */
754 if (h == NULL)
755 continue;
756
757 if (h->plt.refcount == -1)
758 {
759 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
760 h->plt.refcount = 1;
761 }
762 else
763 h->plt.refcount += 1;
764 break;
765
766 case R_386_32:
767 case R_386_PC32:
768 if (h != NULL && !info->shared)
769 {
770 /* If this reloc is in a read-only section, we might
771 need a copy reloc. We can't check reliably at this
772 stage whether the section is read-only, as input
773 sections have not yet been mapped to output sections.
774 Tentatively set the flag for now, and correct in
775 adjust_dynamic_symbol. */
776 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
777
778 /* We may need a .plt entry if the function this reloc
779 refers to is in a shared lib. */
780 if (h->plt.refcount == -1)
781 h->plt.refcount = 1;
782 else
783 h->plt.refcount += 1;
784 }
785
786 /* If we are creating a shared library, and this is a reloc
787 against a global symbol, or a non PC relative reloc
788 against a local symbol, then we need to copy the reloc
789 into the shared library. However, if we are linking with
790 -Bsymbolic, we do not need to copy a reloc against a
791 global symbol which is defined in an object we are
792 including in the link (i.e., DEF_REGULAR is set). At
793 this point we have not seen all the input files, so it is
794 possible that DEF_REGULAR is not set now but will be set
795 later (it is never cleared). In case of a weak definition,
796 DEF_REGULAR may be cleared later by a strong definition in
797 a shared library. We account for that possibility below by
798 storing information in the relocs_copied field of the hash
799 table entry. A similar situation occurs when creating
800 shared libraries and symbol visibility changes render the
801 symbol local.
802
803 If on the other hand, we are creating an executable, we
804 may need to keep relocations for symbols satisfied by a
805 dynamic library if we manage to avoid copy relocs for the
806 symbol. */
807 if ((info->shared
808 && (sec->flags & SEC_ALLOC) != 0
809 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
810 || (h != NULL
811 && (! info->symbolic
812 || h->root.type == bfd_link_hash_defweak
813 || (h->elf_link_hash_flags
814 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
815 || (!info->shared
816 && (sec->flags & SEC_ALLOC) != 0
817 && h != NULL
818 && (h->root.type == bfd_link_hash_defweak
819 || (h->elf_link_hash_flags
820 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
821 {
822 /* We must copy these reloc types into the output file.
823 Create a reloc section in dynobj and make room for
824 this reloc. */
825 if (sreloc == NULL)
826 {
827 const char *name;
828 bfd *dynobj;
829
830 name = (bfd_elf_string_from_elf_section
831 (abfd,
832 elf_elfheader (abfd)->e_shstrndx,
833 elf_section_data (sec)->rel_hdr.sh_name));
834 if (name == NULL)
835 return false;
836
837 if (strncmp (name, ".rel", 4) != 0
838 || strcmp (bfd_get_section_name (abfd, sec),
839 name + 4) != 0)
840 {
841 (*_bfd_error_handler)
842 (_("%s: bad relocation section name `%s\'"),
843 bfd_archive_filename (abfd), name);
844 }
845
846 if (htab->elf.dynobj == NULL)
847 htab->elf.dynobj = abfd;
848
849 dynobj = htab->elf.dynobj;
850 sreloc = bfd_get_section_by_name (dynobj, name);
851 if (sreloc == NULL)
852 {
853 flagword flags;
854
855 sreloc = bfd_make_section (dynobj, name);
856 flags = (SEC_HAS_CONTENTS | SEC_READONLY
857 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
858 if ((sec->flags & SEC_ALLOC) != 0)
859 flags |= SEC_ALLOC | SEC_LOAD;
860 if (sreloc == NULL
861 || ! bfd_set_section_flags (dynobj, sreloc, flags)
862 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
863 return false;
864 }
865 elf_section_data (sec)->sreloc = sreloc;
866 }
867
868 /* If this is a global symbol, we count the number of
869 relocations we need for this symbol. */
870 if (h != NULL)
871 {
872 struct elf_i386_link_hash_entry *eh;
873 struct elf_i386_dyn_relocs *p;
874
875 eh = (struct elf_i386_link_hash_entry *) h;
876 p = eh->dyn_relocs;
877
878 if (p == NULL || p->sec != sec)
879 {
880 bfd_size_type amt = sizeof *p;
881 p = ((struct elf_i386_dyn_relocs *)
882 bfd_alloc (htab->elf.dynobj, amt));
883 if (p == NULL)
884 return false;
885 p->next = eh->dyn_relocs;
886 eh->dyn_relocs = p;
887 p->sec = sec;
888 p->count = 0;
889 p->pc_count = 0;
890 }
891
892 p->count += 1;
893 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
894 p->pc_count += 1;
895 }
896 else
897 {
898 /* Track dynamic relocs needed for local syms too. */
899 elf_section_data (sec)->local_dynrel += 1;
900 }
901 }
902 break;
903
904 /* This relocation describes the C++ object vtable hierarchy.
905 Reconstruct it for later use during GC. */
906 case R_386_GNU_VTINHERIT:
907 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
908 return false;
909 break;
910
911 /* This relocation describes which C++ vtable entries are actually
912 used. Record for later use during GC. */
913 case R_386_GNU_VTENTRY:
914 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
915 return false;
916 break;
917
918 default:
919 break;
920 }
921 }
922
923 return true;
924 }
925
926 /* Return the section that should be marked against GC for a given
927 relocation. */
928
929 static asection *
930 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
931 bfd *abfd;
932 struct bfd_link_info *info ATTRIBUTE_UNUSED;
933 Elf_Internal_Rela *rel;
934 struct elf_link_hash_entry *h;
935 Elf_Internal_Sym *sym;
936 {
937 if (h != NULL)
938 {
939 switch (ELF32_R_TYPE (rel->r_info))
940 {
941 case R_386_GNU_VTINHERIT:
942 case R_386_GNU_VTENTRY:
943 break;
944
945 default:
946 switch (h->root.type)
947 {
948 case bfd_link_hash_defined:
949 case bfd_link_hash_defweak:
950 return h->root.u.def.section;
951
952 case bfd_link_hash_common:
953 return h->root.u.c.p->section;
954
955 default:
956 break;
957 }
958 }
959 }
960 else
961 {
962 if (!(elf_bad_symtab (abfd)
963 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
964 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
965 && sym->st_shndx != SHN_COMMON))
966 {
967 return bfd_section_from_elf_index (abfd, sym->st_shndx);
968 }
969 }
970
971 return NULL;
972 }
973
974 /* Update the got entry reference counts for the section being removed. */
975
976 static boolean
977 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
978 bfd *abfd;
979 struct bfd_link_info *info;
980 asection *sec;
981 const Elf_Internal_Rela *relocs;
982 {
983 Elf_Internal_Shdr *symtab_hdr;
984 struct elf_link_hash_entry **sym_hashes;
985 bfd_signed_vma *local_got_refcounts;
986 const Elf_Internal_Rela *rel, *relend;
987 unsigned long r_symndx;
988 struct elf_link_hash_entry *h;
989 bfd *dynobj;
990
991 elf_section_data (sec)->local_dynrel = 0;
992
993 dynobj = elf_hash_table (info)->dynobj;
994 if (dynobj == NULL)
995 return true;
996
997 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
998 sym_hashes = elf_sym_hashes (abfd);
999 local_got_refcounts = elf_local_got_refcounts (abfd);
1000
1001 relend = relocs + sec->reloc_count;
1002 for (rel = relocs; rel < relend; rel++)
1003 switch (ELF32_R_TYPE (rel->r_info))
1004 {
1005 case R_386_GOT32:
1006 case R_386_GOTOFF:
1007 case R_386_GOTPC:
1008 r_symndx = ELF32_R_SYM (rel->r_info);
1009 if (r_symndx >= symtab_hdr->sh_info)
1010 {
1011 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1012 if (h->got.refcount > 0)
1013 h->got.refcount -= 1;
1014 }
1015 else if (local_got_refcounts != NULL)
1016 {
1017 if (local_got_refcounts[r_symndx] > 0)
1018 local_got_refcounts[r_symndx] -= 1;
1019 }
1020 break;
1021
1022 case R_386_32:
1023 case R_386_PC32:
1024 r_symndx = ELF32_R_SYM (rel->r_info);
1025 if (r_symndx >= symtab_hdr->sh_info)
1026 {
1027 struct elf_i386_link_hash_entry *eh;
1028 struct elf_i386_dyn_relocs **pp;
1029 struct elf_i386_dyn_relocs *p;
1030
1031 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1032
1033 if (!info->shared && h->plt.refcount > 0)
1034 h->plt.refcount -= 1;
1035
1036 eh = (struct elf_i386_link_hash_entry *) h;
1037
1038 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1039 if (p->sec == sec)
1040 {
1041 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
1042 p->pc_count -= 1;
1043 p->count -= 1;
1044 if (p->count == 0)
1045 *pp = p->next;
1046 break;
1047 }
1048 }
1049 break;
1050
1051 case R_386_PLT32:
1052 r_symndx = ELF32_R_SYM (rel->r_info);
1053 if (r_symndx >= symtab_hdr->sh_info)
1054 {
1055 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1056 if (h->plt.refcount > 0)
1057 h->plt.refcount -= 1;
1058 }
1059 break;
1060
1061 default:
1062 break;
1063 }
1064
1065 return true;
1066 }
1067
1068 /* Adjust a symbol defined by a dynamic object and referenced by a
1069 regular object. The current definition is in some section of the
1070 dynamic object, but we're not including those sections. We have to
1071 change the definition to something the rest of the link can
1072 understand. */
1073
1074 static boolean
1075 elf_i386_adjust_dynamic_symbol (info, h)
1076 struct bfd_link_info *info;
1077 struct elf_link_hash_entry *h;
1078 {
1079 struct elf_i386_link_hash_table *htab;
1080 struct elf_i386_link_hash_entry * eh;
1081 struct elf_i386_dyn_relocs *p;
1082 asection *s;
1083 unsigned int power_of_two;
1084
1085 /* If this is a function, put it in the procedure linkage table. We
1086 will fill in the contents of the procedure linkage table later,
1087 when we know the address of the .got section. */
1088 if (h->type == STT_FUNC
1089 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1090 {
1091 if (h->plt.refcount <= 0
1092 || (! info->shared
1093 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1094 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
1095 {
1096 /* This case can occur if we saw a PLT32 reloc in an input
1097 file, but the symbol was never referred to by a dynamic
1098 object, or if all references were garbage collected. In
1099 such a case, we don't actually need to build a procedure
1100 linkage table, and we can just do a PC32 reloc instead. */
1101 h->plt.refcount = -1;
1102 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1103 }
1104
1105 return true;
1106 }
1107 else
1108 /* It's possible that we incorrectly decided a .plt reloc was
1109 needed for an R_386_PC32 reloc to a non-function sym in
1110 check_relocs. We can't decide accurately between function and
1111 non-function syms in check-relocs; Objects loaded later in
1112 the link may change h->type. So fix it now. */
1113 h->plt.refcount = -1;
1114
1115 /* If this is a weak symbol, and there is a real definition, the
1116 processor independent code will have arranged for us to see the
1117 real definition first, and we can just use the same value. */
1118 if (h->weakdef != NULL)
1119 {
1120 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1121 || h->weakdef->root.type == bfd_link_hash_defweak);
1122 h->root.u.def.section = h->weakdef->root.u.def.section;
1123 h->root.u.def.value = h->weakdef->root.u.def.value;
1124 }
1125
1126 /* This is a reference to a symbol defined by a dynamic object which
1127 is not a function. */
1128
1129 /* If we are creating a shared library, we must presume that the
1130 only references to the symbol are via the global offset table.
1131 For such cases we need not do anything here; the relocations will
1132 be handled correctly by relocate_section. */
1133 if (info->shared)
1134 return true;
1135
1136 /* If there are no references to this symbol that do not use the
1137 GOT, we don't need to generate a copy reloc. */
1138 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1139 return true;
1140
1141 eh = (struct elf_i386_link_hash_entry *) h;
1142 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1143 {
1144 s = p->sec->output_section;
1145 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1146 break;
1147 }
1148
1149 /* If we didn't find any dynamic relocs in read-only sections, then
1150 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1151 if (p == NULL)
1152 {
1153 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1154 return true;
1155 }
1156
1157 /* We must allocate the symbol in our .dynbss section, which will
1158 become part of the .bss section of the executable. There will be
1159 an entry for this symbol in the .dynsym section. The dynamic
1160 object will contain position independent code, so all references
1161 from the dynamic object to this symbol will go through the global
1162 offset table. The dynamic linker will use the .dynsym entry to
1163 determine the address it must put in the global offset table, so
1164 both the dynamic object and the regular object will refer to the
1165 same memory location for the variable. */
1166
1167 htab = elf_i386_hash_table (info);
1168
1169 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1170 copy the initial value out of the dynamic object and into the
1171 runtime process image. */
1172 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1173 {
1174 htab->srelbss->_raw_size += sizeof (Elf32_External_Rel);
1175 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1176 }
1177
1178 /* We need to figure out the alignment required for this symbol. I
1179 have no idea how ELF linkers handle this. */
1180 power_of_two = bfd_log2 (h->size);
1181 if (power_of_two > 3)
1182 power_of_two = 3;
1183
1184 /* Apply the required alignment. */
1185 s = htab->sdynbss;
1186 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1187 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1188 {
1189 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1190 return false;
1191 }
1192
1193 /* Define the symbol as being at this point in the section. */
1194 h->root.u.def.section = s;
1195 h->root.u.def.value = s->_raw_size;
1196
1197 /* Increment the section size to make room for the symbol. */
1198 s->_raw_size += h->size;
1199
1200 return true;
1201 }
1202
1203 /* This is the condition under which elf_i386_finish_dynamic_symbol
1204 will be called from elflink.h. If elflink.h doesn't call our
1205 finish_dynamic_symbol routine, we'll need to do something about
1206 initializing any .plt and .got entries in elf_i386_relocate_section. */
1207 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1208 ((DYN) \
1209 && ((INFO)->shared \
1210 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1211 && ((H)->dynindx != -1 \
1212 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1213
1214 /* Allocate space in .plt, .got and associated reloc sections for
1215 dynamic relocs. */
1216
1217 static boolean
1218 allocate_dynrelocs (h, inf)
1219 struct elf_link_hash_entry *h;
1220 PTR inf;
1221 {
1222 struct bfd_link_info *info;
1223 struct elf_i386_link_hash_table *htab;
1224 struct elf_i386_link_hash_entry *eh;
1225 struct elf_i386_dyn_relocs *p;
1226
1227 if (h->root.type == bfd_link_hash_indirect
1228 || h->root.type == bfd_link_hash_warning)
1229 return true;
1230
1231 info = (struct bfd_link_info *) inf;
1232 htab = elf_i386_hash_table (info);
1233
1234 if (htab->elf.dynamic_sections_created
1235 && h->plt.refcount > 0)
1236 {
1237 /* Make sure this symbol is output as a dynamic symbol.
1238 Undefined weak syms won't yet be marked as dynamic. */
1239 if (h->dynindx == -1
1240 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1241 {
1242 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1243 return false;
1244 }
1245
1246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1247 {
1248 asection *s = htab->splt;
1249
1250 /* If this is the first .plt entry, make room for the special
1251 first entry. */
1252 if (s->_raw_size == 0)
1253 s->_raw_size += PLT_ENTRY_SIZE;
1254
1255 h->plt.offset = s->_raw_size;
1256
1257 /* If this symbol is not defined in a regular file, and we are
1258 not generating a shared library, then set the symbol to this
1259 location in the .plt. This is required to make function
1260 pointers compare as equal between the normal executable and
1261 the shared library. */
1262 if (! info->shared
1263 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1264 {
1265 h->root.u.def.section = s;
1266 h->root.u.def.value = h->plt.offset;
1267 }
1268
1269 /* Make room for this entry. */
1270 s->_raw_size += PLT_ENTRY_SIZE;
1271
1272 /* We also need to make an entry in the .got.plt section, which
1273 will be placed in the .got section by the linker script. */
1274 htab->sgotplt->_raw_size += 4;
1275
1276 /* We also need to make an entry in the .rel.plt section. */
1277 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
1278 }
1279 else
1280 {
1281 h->plt.refcount = -1;
1282 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1283 }
1284 }
1285 else
1286 {
1287 h->plt.refcount = -1;
1288 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1289 }
1290
1291 if (h->got.refcount > 0)
1292 {
1293 asection *s;
1294 boolean dyn;
1295
1296 /* Make sure this symbol is output as a dynamic symbol.
1297 Undefined weak syms won't yet be marked as dynamic. */
1298 if (h->dynindx == -1
1299 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1300 {
1301 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1302 return false;
1303 }
1304
1305 s = htab->sgot;
1306 h->got.offset = s->_raw_size;
1307 s->_raw_size += 4;
1308 dyn = htab->elf.dynamic_sections_created;
1309 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1310 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1311 }
1312 else
1313 h->got.refcount = -1;
1314
1315 eh = (struct elf_i386_link_hash_entry *) h;
1316 if (eh->dyn_relocs == NULL)
1317 return true;
1318
1319 /* In the shared -Bsymbolic case, discard space allocated for
1320 dynamic pc-relative relocs against symbols which turn out to be
1321 defined in regular objects. For the normal shared case, discard
1322 space for pc-relative relocs that have become local due to symbol
1323 visibility changes. */
1324
1325 if (info->shared)
1326 {
1327 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1328 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1329 || info->symbolic))
1330 {
1331 struct elf_i386_dyn_relocs **pp;
1332
1333 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1334 {
1335 p->count -= p->pc_count;
1336 p->pc_count = 0;
1337 if (p->count == 0)
1338 *pp = p->next;
1339 else
1340 pp = &p->next;
1341 }
1342 }
1343 }
1344 else
1345 {
1346 /* For the non-shared case, discard space for relocs against
1347 symbols which turn out to need copy relocs or are not
1348 dynamic. */
1349
1350 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1351 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1352 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1353 || (htab->elf.dynamic_sections_created
1354 && (h->root.type == bfd_link_hash_undefweak
1355 || h->root.type == bfd_link_hash_undefined))))
1356 {
1357 /* Make sure this symbol is output as a dynamic symbol.
1358 Undefined weak syms won't yet be marked as dynamic. */
1359 if (h->dynindx == -1
1360 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1361 {
1362 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1363 return false;
1364 }
1365
1366 /* If that succeeded, we know we'll be keeping all the
1367 relocs. */
1368 if (h->dynindx != -1)
1369 goto keep;
1370 }
1371
1372 eh->dyn_relocs = NULL;
1373
1374 keep:
1375 }
1376
1377 /* Finally, allocate space. */
1378 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1379 {
1380 asection *sreloc = elf_section_data (p->sec)->sreloc;
1381 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
1382 }
1383
1384 return true;
1385 }
1386
1387 /* Find any dynamic relocs that apply to read-only sections. */
1388
1389 static boolean
1390 readonly_dynrelocs (h, inf)
1391 struct elf_link_hash_entry *h;
1392 PTR inf;
1393 {
1394 struct elf_i386_link_hash_entry *eh;
1395 struct elf_i386_dyn_relocs *p;
1396
1397 eh = (struct elf_i386_link_hash_entry *) h;
1398 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1399 {
1400 asection *s = p->sec->output_section;
1401
1402 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1403 {
1404 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1405
1406 info->flags |= DF_TEXTREL;
1407
1408 /* Not an error, just cut short the traversal. */
1409 return false;
1410 }
1411 }
1412 return true;
1413 }
1414
1415 /* Set the sizes of the dynamic sections. */
1416
1417 static boolean
1418 elf_i386_size_dynamic_sections (output_bfd, info)
1419 bfd *output_bfd ATTRIBUTE_UNUSED;
1420 struct bfd_link_info *info;
1421 {
1422 struct elf_i386_link_hash_table *htab;
1423 bfd *dynobj;
1424 asection *s;
1425 boolean relocs;
1426 bfd *ibfd;
1427
1428 htab = elf_i386_hash_table (info);
1429 dynobj = htab->elf.dynobj;
1430 if (dynobj == NULL)
1431 abort ();
1432
1433 if (htab->elf.dynamic_sections_created)
1434 {
1435 /* Set the contents of the .interp section to the interpreter. */
1436 if (! info->shared)
1437 {
1438 s = bfd_get_section_by_name (dynobj, ".interp");
1439 if (s == NULL)
1440 abort ();
1441 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1442 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1443 }
1444 }
1445
1446 /* Set up .got offsets for local syms, and space for local dynamic
1447 relocs. */
1448 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1449 {
1450 bfd_signed_vma *local_got;
1451 bfd_signed_vma *end_local_got;
1452 bfd_size_type locsymcount;
1453 Elf_Internal_Shdr *symtab_hdr;
1454 asection *srel;
1455
1456 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1457 continue;
1458
1459 for (s = ibfd->sections; s != NULL; s = s->next)
1460 {
1461 bfd_size_type count = elf_section_data (s)->local_dynrel;
1462
1463 if (count != 0)
1464 {
1465 srel = elf_section_data (s)->sreloc;
1466 srel->_raw_size += count * sizeof (Elf32_External_Rel);
1467 }
1468 }
1469
1470 local_got = elf_local_got_refcounts (ibfd);
1471 if (!local_got)
1472 continue;
1473
1474 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1475 locsymcount = symtab_hdr->sh_info;
1476 end_local_got = local_got + locsymcount;
1477 s = htab->sgot;
1478 srel = htab->srelgot;
1479 for (; local_got < end_local_got; ++local_got)
1480 {
1481 if (*local_got > 0)
1482 {
1483 *local_got = s->_raw_size;
1484 s->_raw_size += 4;
1485 if (info->shared)
1486 srel->_raw_size += sizeof (Elf32_External_Rel);
1487 }
1488 else
1489 *local_got = (bfd_vma) -1;
1490 }
1491 }
1492
1493 /* Allocate global sym .plt and .got entries, and space for global
1494 sym dynamic relocs. */
1495 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1496
1497 /* We now have determined the sizes of the various dynamic sections.
1498 Allocate memory for them. */
1499 relocs = false;
1500 for (s = dynobj->sections; s != NULL; s = s->next)
1501 {
1502 if ((s->flags & SEC_LINKER_CREATED) == 0)
1503 continue;
1504
1505 if (s == htab->splt
1506 || s == htab->sgot
1507 || s == htab->sgotplt)
1508 {
1509 /* Strip this section if we don't need it; see the
1510 comment below. */
1511 }
1512 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1513 {
1514 if (s->_raw_size != 0 && s != htab->srelplt)
1515 relocs = true;
1516
1517 /* We use the reloc_count field as a counter if we need
1518 to copy relocs into the output file. */
1519 s->reloc_count = 0;
1520 }
1521 else
1522 {
1523 /* It's not one of our sections, so don't allocate space. */
1524 continue;
1525 }
1526
1527 if (s->_raw_size == 0)
1528 {
1529 /* If we don't need this section, strip it from the
1530 output file. This is mostly to handle .rel.bss and
1531 .rel.plt. We must create both sections in
1532 create_dynamic_sections, because they must be created
1533 before the linker maps input sections to output
1534 sections. The linker does that before
1535 adjust_dynamic_symbol is called, and it is that
1536 function which decides whether anything needs to go
1537 into these sections. */
1538
1539 _bfd_strip_section_from_output (info, s);
1540 continue;
1541 }
1542
1543 /* Allocate memory for the section contents. We use bfd_zalloc
1544 here in case unused entries are not reclaimed before the
1545 section's contents are written out. This should not happen,
1546 but this way if it does, we get a R_386_NONE reloc instead
1547 of garbage. */
1548 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1549 if (s->contents == NULL)
1550 return false;
1551 }
1552
1553 if (htab->elf.dynamic_sections_created)
1554 {
1555 /* Add some entries to the .dynamic section. We fill in the
1556 values later, in elf_i386_finish_dynamic_sections, but we
1557 must add the entries now so that we get the correct size for
1558 the .dynamic section. The DT_DEBUG entry is filled in by the
1559 dynamic linker and used by the debugger. */
1560 #define add_dynamic_entry(TAG, VAL) \
1561 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1562
1563 if (! info->shared)
1564 {
1565 if (!add_dynamic_entry (DT_DEBUG, 0))
1566 return false;
1567 }
1568
1569 if (htab->splt->_raw_size != 0)
1570 {
1571 if (!add_dynamic_entry (DT_PLTGOT, 0)
1572 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1573 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1574 || !add_dynamic_entry (DT_JMPREL, 0))
1575 return false;
1576 }
1577
1578 if (relocs)
1579 {
1580 if (!add_dynamic_entry (DT_REL, 0)
1581 || !add_dynamic_entry (DT_RELSZ, 0)
1582 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1583 return false;
1584
1585 /* If any dynamic relocs apply to a read-only section,
1586 then we need a DT_TEXTREL entry. */
1587 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
1588
1589 if ((info->flags & DF_TEXTREL) != 0)
1590 {
1591 if (!add_dynamic_entry (DT_TEXTREL, 0))
1592 return false;
1593 }
1594 }
1595 }
1596 #undef add_dynamic_entry
1597
1598 return true;
1599 }
1600
1601 /* Set the correct type for an x86 ELF section. We do this by the
1602 section name, which is a hack, but ought to work. */
1603
1604 static boolean
1605 elf_i386_fake_sections (abfd, hdr, sec)
1606 bfd *abfd ATTRIBUTE_UNUSED;
1607 Elf32_Internal_Shdr *hdr;
1608 asection *sec;
1609 {
1610 register const char *name;
1611
1612 name = bfd_get_section_name (abfd, sec);
1613
1614 /* This is an ugly, but unfortunately necessary hack that is
1615 needed when producing EFI binaries on x86. It tells
1616 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1617 containing ELF relocation info. We need this hack in order to
1618 be able to generate ELF binaries that can be translated into
1619 EFI applications (which are essentially COFF objects). Those
1620 files contain a COFF ".reloc" section inside an ELFNN object,
1621 which would normally cause BFD to segfault because it would
1622 attempt to interpret this section as containing relocation
1623 entries for section "oc". With this hack enabled, ".reloc"
1624 will be treated as a normal data section, which will avoid the
1625 segfault. However, you won't be able to create an ELFNN binary
1626 with a section named "oc" that needs relocations, but that's
1627 the kind of ugly side-effects you get when detecting section
1628 types based on their names... In practice, this limitation is
1629 unlikely to bite. */
1630 if (strcmp (name, ".reloc") == 0)
1631 hdr->sh_type = SHT_PROGBITS;
1632
1633 return true;
1634 }
1635
1636 /* Relocate an i386 ELF section. */
1637
1638 static boolean
1639 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1640 contents, relocs, local_syms, local_sections)
1641 bfd *output_bfd;
1642 struct bfd_link_info *info;
1643 bfd *input_bfd;
1644 asection *input_section;
1645 bfd_byte *contents;
1646 Elf_Internal_Rela *relocs;
1647 Elf_Internal_Sym *local_syms;
1648 asection **local_sections;
1649 {
1650 struct elf_i386_link_hash_table *htab;
1651 bfd *dynobj;
1652 Elf_Internal_Shdr *symtab_hdr;
1653 struct elf_link_hash_entry **sym_hashes;
1654 bfd_vma *local_got_offsets;
1655 Elf_Internal_Rela *rel;
1656 Elf_Internal_Rela *relend;
1657
1658 htab = elf_i386_hash_table (info);
1659 dynobj = htab->elf.dynobj;
1660 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1661 sym_hashes = elf_sym_hashes (input_bfd);
1662 local_got_offsets = elf_local_got_offsets (input_bfd);
1663
1664 rel = relocs;
1665 relend = relocs + input_section->reloc_count;
1666 for (; rel < relend; rel++)
1667 {
1668 int r_type;
1669 reloc_howto_type *howto;
1670 unsigned long r_symndx;
1671 struct elf_link_hash_entry *h;
1672 Elf_Internal_Sym *sym;
1673 asection *sec;
1674 bfd_vma off;
1675 bfd_vma relocation;
1676 boolean unresolved_reloc;
1677 bfd_reloc_status_type r;
1678 unsigned int indx;
1679
1680 r_type = ELF32_R_TYPE (rel->r_info);
1681 if (r_type == (int) R_386_GNU_VTINHERIT
1682 || r_type == (int) R_386_GNU_VTENTRY)
1683 continue;
1684
1685 if ((indx = (unsigned) r_type) >= R_386_standard
1686 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1687 >= R_386_ext - R_386_standard))
1688 {
1689 bfd_set_error (bfd_error_bad_value);
1690 return false;
1691 }
1692 howto = elf_howto_table + indx;
1693
1694 r_symndx = ELF32_R_SYM (rel->r_info);
1695
1696 if (info->relocateable)
1697 {
1698 /* This is a relocatable link. We don't have to change
1699 anything, unless the reloc is against a section symbol,
1700 in which case we have to adjust according to where the
1701 section symbol winds up in the output section. */
1702 if (r_symndx < symtab_hdr->sh_info)
1703 {
1704 sym = local_syms + r_symndx;
1705 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1706 {
1707 bfd_vma val;
1708
1709 sec = local_sections[r_symndx];
1710 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1711 val += sec->output_offset + sym->st_value;
1712 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1713 }
1714 }
1715 continue;
1716 }
1717
1718 /* This is a final link. */
1719 h = NULL;
1720 sym = NULL;
1721 sec = NULL;
1722 unresolved_reloc = false;
1723 if (r_symndx < symtab_hdr->sh_info)
1724 {
1725 sym = local_syms + r_symndx;
1726 sec = local_sections[r_symndx];
1727 relocation = (sec->output_section->vma
1728 + sec->output_offset
1729 + sym->st_value);
1730 }
1731 else
1732 {
1733 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1734 while (h->root.type == bfd_link_hash_indirect
1735 || h->root.type == bfd_link_hash_warning)
1736 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1737
1738 relocation = 0;
1739 if (h->root.type == bfd_link_hash_defined
1740 || h->root.type == bfd_link_hash_defweak)
1741 {
1742 sec = h->root.u.def.section;
1743 if (sec->output_section == NULL)
1744 /* Set a flag that will be cleared later if we find a
1745 relocation value for this symbol. output_section
1746 is typically NULL for symbols satisfied by a shared
1747 library. */
1748 unresolved_reloc = true;
1749 else
1750 relocation = (h->root.u.def.value
1751 + sec->output_section->vma
1752 + sec->output_offset);
1753 }
1754 else if (h->root.type == bfd_link_hash_undefweak)
1755 ;
1756 else if (info->shared
1757 && (!info->symbolic || info->allow_shlib_undefined)
1758 && !info->no_undefined
1759 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1760 ;
1761 else
1762 {
1763 if (! ((*info->callbacks->undefined_symbol)
1764 (info, h->root.root.string, input_bfd,
1765 input_section, rel->r_offset,
1766 (!info->shared || info->no_undefined
1767 || ELF_ST_VISIBILITY (h->other)))))
1768 return false;
1769 }
1770 }
1771
1772 switch (r_type)
1773 {
1774 case R_386_GOT32:
1775 /* Relocation is to the entry for this symbol in the global
1776 offset table. */
1777 if (htab->sgot == NULL)
1778 abort ();
1779
1780 if (h != NULL)
1781 {
1782 boolean dyn;
1783
1784 off = h->got.offset;
1785 dyn = htab->elf.dynamic_sections_created;
1786 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1787 || (info->shared
1788 && (info->symbolic
1789 || h->dynindx == -1
1790 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1791 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1792 {
1793 /* This is actually a static link, or it is a
1794 -Bsymbolic link and the symbol is defined
1795 locally, or the symbol was forced to be local
1796 because of a version file. We must initialize
1797 this entry in the global offset table. Since the
1798 offset must always be a multiple of 4, we use the
1799 least significant bit to record whether we have
1800 initialized it already.
1801
1802 When doing a dynamic link, we create a .rel.got
1803 relocation entry to initialize the value. This
1804 is done in the finish_dynamic_symbol routine. */
1805 if ((off & 1) != 0)
1806 off &= ~1;
1807 else
1808 {
1809 bfd_put_32 (output_bfd, relocation,
1810 htab->sgot->contents + off);
1811 h->got.offset |= 1;
1812 }
1813 }
1814 else
1815 unresolved_reloc = false;
1816 }
1817 else
1818 {
1819 if (local_got_offsets == NULL)
1820 abort ();
1821
1822 off = local_got_offsets[r_symndx];
1823
1824 /* The offset must always be a multiple of 4. We use
1825 the least significant bit to record whether we have
1826 already generated the necessary reloc. */
1827 if ((off & 1) != 0)
1828 off &= ~1;
1829 else
1830 {
1831 bfd_put_32 (output_bfd, relocation,
1832 htab->sgot->contents + off);
1833
1834 if (info->shared)
1835 {
1836 asection *srelgot;
1837 Elf_Internal_Rel outrel;
1838 Elf32_External_Rel *loc;
1839
1840 srelgot = htab->srelgot;
1841 if (srelgot == NULL)
1842 abort ();
1843
1844 outrel.r_offset = (htab->sgot->output_section->vma
1845 + htab->sgot->output_offset
1846 + off);
1847 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1848 loc = (Elf32_External_Rel *) srelgot->contents;
1849 loc += srelgot->reloc_count++;
1850 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1851 }
1852
1853 local_got_offsets[r_symndx] |= 1;
1854 }
1855 }
1856
1857 if (off >= (bfd_vma) -2)
1858 abort ();
1859
1860 relocation = htab->sgot->output_offset + off;
1861 break;
1862
1863 case R_386_GOTOFF:
1864 /* Relocation is relative to the start of the global offset
1865 table. */
1866
1867 /* Note that sgot->output_offset is not involved in this
1868 calculation. We always want the start of .got. If we
1869 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1870 permitted by the ABI, we might have to change this
1871 calculation. */
1872 relocation -= htab->sgot->output_section->vma;
1873 break;
1874
1875 case R_386_GOTPC:
1876 /* Use global offset table as symbol value. */
1877 relocation = htab->sgot->output_section->vma;
1878 unresolved_reloc = false;
1879 break;
1880
1881 case R_386_PLT32:
1882 /* Relocation is to the entry for this symbol in the
1883 procedure linkage table. */
1884
1885 /* Resolve a PLT32 reloc against a local symbol directly,
1886 without using the procedure linkage table. */
1887 if (h == NULL)
1888 break;
1889
1890 if (h->plt.offset == (bfd_vma) -1
1891 || htab->splt == NULL)
1892 {
1893 /* We didn't make a PLT entry for this symbol. This
1894 happens when statically linking PIC code, or when
1895 using -Bsymbolic. */
1896 break;
1897 }
1898
1899 relocation = (htab->splt->output_section->vma
1900 + htab->splt->output_offset
1901 + h->plt.offset);
1902 unresolved_reloc = false;
1903 break;
1904
1905 case R_386_32:
1906 case R_386_PC32:
1907 if ((info->shared
1908 && (input_section->flags & SEC_ALLOC) != 0
1909 && (r_type != R_386_PC32
1910 || (h != NULL
1911 && h->dynindx != -1
1912 && (! info->symbolic
1913 || (h->elf_link_hash_flags
1914 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1915 || (!info->shared
1916 && (input_section->flags & SEC_ALLOC) != 0
1917 && h != NULL
1918 && h->dynindx != -1
1919 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1920 && (((h->elf_link_hash_flags
1921 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1922 && (h->elf_link_hash_flags
1923 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1924 || h->root.type == bfd_link_hash_undefweak
1925 || h->root.type == bfd_link_hash_undefined)))
1926 {
1927 Elf_Internal_Rel outrel;
1928 boolean skip, relocate;
1929 asection *sreloc;
1930 Elf32_External_Rel *loc;
1931
1932 /* When generating a shared object, these relocations
1933 are copied into the output file to be resolved at run
1934 time. */
1935
1936 skip = false;
1937
1938 if (elf_section_data (input_section)->stab_info == NULL)
1939 outrel.r_offset = rel->r_offset;
1940 else
1941 {
1942 off = (_bfd_stab_section_offset
1943 (output_bfd, htab->elf.stab_info, input_section,
1944 &elf_section_data (input_section)->stab_info,
1945 rel->r_offset));
1946 if (off == (bfd_vma) -1)
1947 skip = true;
1948 outrel.r_offset = off;
1949 }
1950
1951 outrel.r_offset += (input_section->output_section->vma
1952 + input_section->output_offset);
1953
1954 if (skip)
1955 {
1956 memset (&outrel, 0, sizeof outrel);
1957 relocate = false;
1958 }
1959 else if (h != NULL
1960 && h->dynindx != -1
1961 && (r_type == R_386_PC32
1962 || !info->shared
1963 || !info->symbolic
1964 || (h->elf_link_hash_flags
1965 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1966
1967 {
1968 relocate = false;
1969 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1970 }
1971 else
1972 {
1973 /* This symbol is local, or marked to become local. */
1974 relocate = true;
1975 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1976 }
1977
1978 sreloc = elf_section_data (input_section)->sreloc;
1979 if (sreloc == NULL)
1980 abort ();
1981
1982 loc = (Elf32_External_Rel *) sreloc->contents;
1983 loc += sreloc->reloc_count++;
1984 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1985
1986 /* If this reloc is against an external symbol, we do
1987 not want to fiddle with the addend. Otherwise, we
1988 need to include the symbol value so that it becomes
1989 an addend for the dynamic reloc. */
1990 if (! relocate)
1991 continue;
1992 }
1993
1994 break;
1995
1996 default:
1997 break;
1998 }
1999
2000 /* FIXME: Why do we allow debugging sections to escape this error?
2001 More importantly, why do we not emit dynamic relocs for
2002 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
2003 If we had emitted the dynamic reloc, we could remove the
2004 fudge here. */
2005 if (unresolved_reloc
2006 && !(info->shared
2007 && (input_section->flags & SEC_DEBUGGING) != 0
2008 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2009 (*_bfd_error_handler)
2010 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2011 bfd_archive_filename (input_bfd),
2012 bfd_get_section_name (input_bfd, input_section),
2013 (long) rel->r_offset,
2014 h->root.root.string);
2015
2016 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2017 contents, rel->r_offset,
2018 relocation, (bfd_vma) 0);
2019
2020 switch (r)
2021 {
2022 case bfd_reloc_ok:
2023 break;
2024
2025 case bfd_reloc_overflow:
2026 {
2027 const char *name;
2028
2029 if (h != NULL)
2030 name = h->root.root.string;
2031 else
2032 {
2033 name = bfd_elf_string_from_elf_section (input_bfd,
2034 symtab_hdr->sh_link,
2035 sym->st_name);
2036 if (name == NULL)
2037 return false;
2038 if (*name == '\0')
2039 name = bfd_section_name (input_bfd, sec);
2040 }
2041 if (! ((*info->callbacks->reloc_overflow)
2042 (info, name, howto->name, (bfd_vma) 0,
2043 input_bfd, input_section, rel->r_offset)))
2044 return false;
2045 }
2046 break;
2047
2048 default:
2049 case bfd_reloc_outofrange:
2050 abort ();
2051 break;
2052 }
2053 }
2054
2055 return true;
2056 }
2057
2058 /* Finish up dynamic symbol handling. We set the contents of various
2059 dynamic sections here. */
2060
2061 static boolean
2062 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
2063 bfd *output_bfd;
2064 struct bfd_link_info *info;
2065 struct elf_link_hash_entry *h;
2066 Elf_Internal_Sym *sym;
2067 {
2068 struct elf_i386_link_hash_table *htab;
2069 bfd *dynobj;
2070
2071 htab = elf_i386_hash_table (info);
2072 dynobj = htab->elf.dynobj;
2073
2074 if (h->plt.offset != (bfd_vma) -1)
2075 {
2076 bfd_vma plt_index;
2077 bfd_vma got_offset;
2078 Elf_Internal_Rel rel;
2079 Elf32_External_Rel *loc;
2080
2081 /* This symbol has an entry in the procedure linkage table. Set
2082 it up. */
2083
2084 if (h->dynindx == -1
2085 || htab->splt == NULL
2086 || htab->sgotplt == NULL
2087 || htab->srelplt == NULL)
2088 abort ();
2089
2090 /* Get the index in the procedure linkage table which
2091 corresponds to this symbol. This is the index of this symbol
2092 in all the symbols for which we are making plt entries. The
2093 first entry in the procedure linkage table is reserved. */
2094 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2095
2096 /* Get the offset into the .got table of the entry that
2097 corresponds to this function. Each .got entry is 4 bytes.
2098 The first three are reserved. */
2099 got_offset = (plt_index + 3) * 4;
2100
2101 /* Fill in the entry in the procedure linkage table. */
2102 if (! info->shared)
2103 {
2104 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
2105 PLT_ENTRY_SIZE);
2106 bfd_put_32 (output_bfd,
2107 (htab->sgotplt->output_section->vma
2108 + htab->sgotplt->output_offset
2109 + got_offset),
2110 htab->splt->contents + h->plt.offset + 2);
2111 }
2112 else
2113 {
2114 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
2115 PLT_ENTRY_SIZE);
2116 bfd_put_32 (output_bfd, got_offset,
2117 htab->splt->contents + h->plt.offset + 2);
2118 }
2119
2120 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
2121 htab->splt->contents + h->plt.offset + 7);
2122 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2123 htab->splt->contents + h->plt.offset + 12);
2124
2125 /* Fill in the entry in the global offset table. */
2126 bfd_put_32 (output_bfd,
2127 (htab->splt->output_section->vma
2128 + htab->splt->output_offset
2129 + h->plt.offset
2130 + 6),
2131 htab->sgotplt->contents + got_offset);
2132
2133 /* Fill in the entry in the .rel.plt section. */
2134 rel.r_offset = (htab->sgotplt->output_section->vma
2135 + htab->sgotplt->output_offset
2136 + got_offset);
2137 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
2138 loc = (Elf32_External_Rel *) htab->srelplt->contents + plt_index;
2139 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2140
2141 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2142 {
2143 /* Mark the symbol as undefined, rather than as defined in
2144 the .plt section. Leave the value alone. */
2145 sym->st_shndx = SHN_UNDEF;
2146 }
2147 }
2148
2149 if (h->got.offset != (bfd_vma) -1)
2150 {
2151 Elf_Internal_Rel rel;
2152 Elf32_External_Rel *loc;
2153
2154 /* This symbol has an entry in the global offset table. Set it
2155 up. */
2156
2157 if (htab->sgot == NULL || htab->srelgot == NULL)
2158 abort ();
2159
2160 rel.r_offset = (htab->sgot->output_section->vma
2161 + htab->sgot->output_offset
2162 + (h->got.offset & ~(bfd_vma) 1));
2163
2164 /* If this is a static link, or it is a -Bsymbolic link and the
2165 symbol is defined locally or was forced to be local because
2166 of a version file, we just want to emit a RELATIVE reloc.
2167 The entry in the global offset table will already have been
2168 initialized in the relocate_section function. */
2169 if (info->shared
2170 && (info->symbolic
2171 || h->dynindx == -1
2172 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2173 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2174 {
2175 BFD_ASSERT((h->got.offset & 1) != 0);
2176 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2177 }
2178 else
2179 {
2180 BFD_ASSERT((h->got.offset & 1) == 0);
2181 bfd_put_32 (output_bfd, (bfd_vma) 0,
2182 htab->sgot->contents + h->got.offset);
2183 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2184 }
2185
2186 loc = (Elf32_External_Rel *) htab->srelgot->contents;
2187 loc += htab->srelgot->reloc_count++;
2188 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2189 }
2190
2191 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2192 {
2193 Elf_Internal_Rel rel;
2194 Elf32_External_Rel *loc;
2195
2196 /* This symbol needs a copy reloc. Set it up. */
2197
2198 if (h->dynindx == -1
2199 || (h->root.type != bfd_link_hash_defined
2200 && h->root.type != bfd_link_hash_defweak)
2201 || htab->srelbss == NULL)
2202 abort ();
2203
2204 rel.r_offset = (h->root.u.def.value
2205 + h->root.u.def.section->output_section->vma
2206 + h->root.u.def.section->output_offset);
2207 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2208 loc = (Elf32_External_Rel *) htab->srelbss->contents;
2209 loc += htab->srelbss->reloc_count++;
2210 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2211 }
2212
2213 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2214 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2215 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2216 sym->st_shndx = SHN_ABS;
2217
2218 return true;
2219 }
2220
2221 /* Used to decide how to sort relocs in an optimal manner for the
2222 dynamic linker, before writing them out. */
2223
2224 static enum elf_reloc_type_class
2225 elf_i386_reloc_type_class (rela)
2226 const Elf_Internal_Rela *rela;
2227 {
2228 switch ((int) ELF32_R_TYPE (rela->r_info))
2229 {
2230 case R_386_RELATIVE:
2231 return reloc_class_relative;
2232 case R_386_JUMP_SLOT:
2233 return reloc_class_plt;
2234 case R_386_COPY:
2235 return reloc_class_copy;
2236 default:
2237 return reloc_class_normal;
2238 }
2239 }
2240
2241 /* Finish up the dynamic sections. */
2242
2243 static boolean
2244 elf_i386_finish_dynamic_sections (output_bfd, info)
2245 bfd *output_bfd;
2246 struct bfd_link_info *info;
2247 {
2248 struct elf_i386_link_hash_table *htab;
2249 bfd *dynobj;
2250 asection *sdyn;
2251
2252 htab = elf_i386_hash_table (info);
2253 dynobj = htab->elf.dynobj;
2254 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2255
2256 if (htab->elf.dynamic_sections_created)
2257 {
2258 Elf32_External_Dyn *dyncon, *dynconend;
2259
2260 if (sdyn == NULL || htab->sgot == NULL)
2261 abort ();
2262
2263 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2264 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2265 for (; dyncon < dynconend; dyncon++)
2266 {
2267 Elf_Internal_Dyn dyn;
2268
2269 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2270
2271 switch (dyn.d_tag)
2272 {
2273 default:
2274 continue;
2275
2276 case DT_PLTGOT:
2277 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2278 break;
2279
2280 case DT_JMPREL:
2281 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2282 break;
2283
2284 case DT_PLTRELSZ:
2285 if (htab->srelplt->output_section->_cooked_size != 0)
2286 dyn.d_un.d_val = htab->srelplt->output_section->_cooked_size;
2287 else
2288 dyn.d_un.d_val = htab->srelplt->output_section->_raw_size;
2289 break;
2290
2291 case DT_RELSZ:
2292 /* My reading of the SVR4 ABI indicates that the
2293 procedure linkage table relocs (DT_JMPREL) should be
2294 included in the overall relocs (DT_REL). This is
2295 what Solaris does. However, UnixWare can not handle
2296 that case. Therefore, we override the DT_RELSZ entry
2297 here to make it not include the JMPREL relocs. Since
2298 the linker script arranges for .rel.plt to follow all
2299 other relocation sections, we don't have to worry
2300 about changing the DT_REL entry. */
2301 if (htab->srelplt != NULL)
2302 {
2303 if (htab->srelplt->output_section->_cooked_size != 0)
2304 dyn.d_un.d_val -= htab->srelplt->output_section->_cooked_size;
2305 else
2306 dyn.d_un.d_val -= htab->srelplt->output_section->_raw_size;
2307 }
2308 break;
2309 }
2310
2311 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2312 }
2313
2314 /* Fill in the first entry in the procedure linkage table. */
2315 if (htab->splt && htab->splt->_raw_size > 0)
2316 {
2317 if (info->shared)
2318 memcpy (htab->splt->contents,
2319 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2320 else
2321 {
2322 memcpy (htab->splt->contents,
2323 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2324 bfd_put_32 (output_bfd,
2325 (htab->sgotplt->output_section->vma
2326 + htab->sgotplt->output_offset
2327 + 4),
2328 htab->splt->contents + 2);
2329 bfd_put_32 (output_bfd,
2330 (htab->sgotplt->output_section->vma
2331 + htab->sgotplt->output_offset
2332 + 8),
2333 htab->splt->contents + 8);
2334 }
2335
2336 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2337 really seem like the right value. */
2338 elf_section_data (htab->splt->output_section)
2339 ->this_hdr.sh_entsize = 4;
2340 }
2341 }
2342
2343 if (htab->sgotplt)
2344 {
2345 /* Fill in the first three entries in the global offset table. */
2346 if (htab->sgotplt->_raw_size > 0)
2347 {
2348 bfd_put_32 (output_bfd,
2349 (sdyn == NULL ? (bfd_vma) 0
2350 : sdyn->output_section->vma + sdyn->output_offset),
2351 htab->sgotplt->contents);
2352 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2353 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2354 }
2355
2356 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2357 }
2358 return true;
2359 }
2360
2361 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2362 #define TARGET_LITTLE_NAME "elf32-i386"
2363 #define ELF_ARCH bfd_arch_i386
2364 #define ELF_MACHINE_CODE EM_386
2365 #define ELF_MAXPAGESIZE 0x1000
2366
2367 #define elf_backend_can_gc_sections 1
2368 #define elf_backend_want_got_plt 1
2369 #define elf_backend_plt_readonly 1
2370 #define elf_backend_want_plt_sym 0
2371 #define elf_backend_got_header_size 12
2372 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2373
2374 #define elf_info_to_howto elf_i386_info_to_howto
2375 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2376
2377 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2378 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2379 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2380
2381 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2382 #define elf_backend_check_relocs elf_i386_check_relocs
2383 #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
2384 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2385 #define elf_backend_fake_sections elf_i386_fake_sections
2386 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2387 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2388 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2389 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2390 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2391 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2392 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2393 #define elf_backend_relocate_section elf_i386_relocate_section
2394 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2395
2396 #include "elf32-target.h"
This page took 0.136769 seconds and 5 git commands to generate.