* elf32-i386.c (elf_i386_check_relocs): Don't make syms dynamic
[deliverable/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section PARAMS((bfd *, struct bfd_link_info *));
39 static boolean elf_i386_create_dynamic_sections
40 PARAMS((bfd *, struct bfd_link_info *));
41 static boolean elf_i386_check_relocs
42 PARAMS ((bfd *, struct bfd_link_info *, asection *,
43 const Elf_Internal_Rela *));
44 static boolean elf_i386_adjust_dynamic_symbol
45 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
46 static boolean allocate_plt_and_got_and_discard_relocs
47 PARAMS ((struct elf_link_hash_entry *, PTR));
48 static boolean elf_i386_size_dynamic_sections
49 PARAMS ((bfd *, struct bfd_link_info *));
50 static boolean elf_i386_relocate_section
51 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
52 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
53 static boolean elf_i386_finish_dynamic_symbol
54 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
55 Elf_Internal_Sym *));
56 static boolean elf_i386_finish_dynamic_sections
57 PARAMS ((bfd *, struct bfd_link_info *));
58
59 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
60
61 #include "elf/i386.h"
62
63 static reloc_howto_type elf_howto_table[]=
64 {
65 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
66 bfd_elf_generic_reloc, "R_386_NONE",
67 true, 0x00000000, 0x00000000, false),
68 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
69 bfd_elf_generic_reloc, "R_386_32",
70 true, 0xffffffff, 0xffffffff, false),
71 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
72 bfd_elf_generic_reloc, "R_386_PC32",
73 true, 0xffffffff, 0xffffffff, true),
74 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_386_GOT32",
76 true, 0xffffffff, 0xffffffff, false),
77 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_386_PLT32",
79 true, 0xffffffff, 0xffffffff, true),
80 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_386_COPY",
82 true, 0xffffffff, 0xffffffff, false),
83 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
85 true, 0xffffffff, 0xffffffff, false),
86 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
88 true, 0xffffffff, 0xffffffff, false),
89 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_386_RELATIVE",
91 true, 0xffffffff, 0xffffffff, false),
92 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
93 bfd_elf_generic_reloc, "R_386_GOTOFF",
94 true, 0xffffffff, 0xffffffff, false),
95 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_386_GOTPC",
97 true, 0xffffffff, 0xffffffff, true),
98
99 /* We have a gap in the reloc numbers here.
100 R_386_standard counts the number up to this point, and
101 R_386_ext_offset is the value to subtract from a reloc type of
102 R_386_16 thru R_386_PC8 to form an index into this table. */
103 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
104 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
105
106 /* The remaining relocs are a GNU extension. */
107 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_386_16",
109 true, 0xffff, 0xffff, false),
110 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_386_PC16",
112 true, 0xffff, 0xffff, true),
113 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
114 bfd_elf_generic_reloc, "R_386_8",
115 true, 0xff, 0xff, false),
116 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_386_PC8",
118 true, 0xff, 0xff, true),
119
120 /* Another gap. */
121 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
122 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
123
124 /* GNU extension to record C++ vtable hierarchy. */
125 HOWTO (R_386_GNU_VTINHERIT, /* type */
126 0, /* rightshift */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
128 0, /* bitsize */
129 false, /* pc_relative */
130 0, /* bitpos */
131 complain_overflow_dont, /* complain_on_overflow */
132 NULL, /* special_function */
133 "R_386_GNU_VTINHERIT", /* name */
134 false, /* partial_inplace */
135 0, /* src_mask */
136 0, /* dst_mask */
137 false),
138
139 /* GNU extension to record C++ vtable member usage. */
140 HOWTO (R_386_GNU_VTENTRY, /* type */
141 0, /* rightshift */
142 2, /* size (0 = byte, 1 = short, 2 = long) */
143 0, /* bitsize */
144 false, /* pc_relative */
145 0, /* bitpos */
146 complain_overflow_dont, /* complain_on_overflow */
147 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
148 "R_386_GNU_VTENTRY", /* name */
149 false, /* partial_inplace */
150 0, /* src_mask */
151 0, /* dst_mask */
152 false)
153
154 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
155
156 };
157
158 #ifdef DEBUG_GEN_RELOC
159 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
160 #else
161 #define TRACE(str)
162 #endif
163
164 static reloc_howto_type *
165 elf_i386_reloc_type_lookup (abfd, code)
166 bfd *abfd ATTRIBUTE_UNUSED;
167 bfd_reloc_code_real_type code;
168 {
169 switch (code)
170 {
171 case BFD_RELOC_NONE:
172 TRACE ("BFD_RELOC_NONE");
173 return &elf_howto_table[(unsigned int) R_386_NONE ];
174
175 case BFD_RELOC_32:
176 TRACE ("BFD_RELOC_32");
177 return &elf_howto_table[(unsigned int) R_386_32 ];
178
179 case BFD_RELOC_CTOR:
180 TRACE ("BFD_RELOC_CTOR");
181 return &elf_howto_table[(unsigned int) R_386_32 ];
182
183 case BFD_RELOC_32_PCREL:
184 TRACE ("BFD_RELOC_PC32");
185 return &elf_howto_table[(unsigned int) R_386_PC32 ];
186
187 case BFD_RELOC_386_GOT32:
188 TRACE ("BFD_RELOC_386_GOT32");
189 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
190
191 case BFD_RELOC_386_PLT32:
192 TRACE ("BFD_RELOC_386_PLT32");
193 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
194
195 case BFD_RELOC_386_COPY:
196 TRACE ("BFD_RELOC_386_COPY");
197 return &elf_howto_table[(unsigned int) R_386_COPY ];
198
199 case BFD_RELOC_386_GLOB_DAT:
200 TRACE ("BFD_RELOC_386_GLOB_DAT");
201 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
202
203 case BFD_RELOC_386_JUMP_SLOT:
204 TRACE ("BFD_RELOC_386_JUMP_SLOT");
205 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
206
207 case BFD_RELOC_386_RELATIVE:
208 TRACE ("BFD_RELOC_386_RELATIVE");
209 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
210
211 case BFD_RELOC_386_GOTOFF:
212 TRACE ("BFD_RELOC_386_GOTOFF");
213 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
214
215 case BFD_RELOC_386_GOTPC:
216 TRACE ("BFD_RELOC_386_GOTPC");
217 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
218
219 /* The remaining relocs are a GNU extension. */
220 case BFD_RELOC_16:
221 TRACE ("BFD_RELOC_16");
222 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
223
224 case BFD_RELOC_16_PCREL:
225 TRACE ("BFD_RELOC_16_PCREL");
226 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
227
228 case BFD_RELOC_8:
229 TRACE ("BFD_RELOC_8");
230 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
231
232 case BFD_RELOC_8_PCREL:
233 TRACE ("BFD_RELOC_8_PCREL");
234 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
235
236 case BFD_RELOC_VTABLE_INHERIT:
237 TRACE ("BFD_RELOC_VTABLE_INHERIT");
238 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
239 - R_386_vt_offset];
240
241 case BFD_RELOC_VTABLE_ENTRY:
242 TRACE ("BFD_RELOC_VTABLE_ENTRY");
243 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
244 - R_386_vt_offset];
245
246 default:
247 break;
248 }
249
250 TRACE ("Unknown");
251 return 0;
252 }
253
254 static void
255 elf_i386_info_to_howto (abfd, cache_ptr, dst)
256 bfd *abfd ATTRIBUTE_UNUSED;
257 arelent *cache_ptr ATTRIBUTE_UNUSED;
258 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
259 {
260 abort ();
261 }
262
263 static void
264 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
265 bfd *abfd ATTRIBUTE_UNUSED;
266 arelent *cache_ptr;
267 Elf32_Internal_Rel *dst;
268 {
269 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
270 unsigned int indx;
271
272 if ((indx = r_type) >= R_386_standard
273 && ((indx = r_type - R_386_ext_offset) - R_386_standard
274 >= R_386_ext - R_386_standard)
275 && ((indx = r_type - R_386_vt_offset) - R_386_ext
276 >= R_386_vt - R_386_ext))
277 {
278 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
279 bfd_get_filename (abfd), (int) r_type);
280 indx = (unsigned int) R_386_NONE;
281 }
282 cache_ptr->howto = &elf_howto_table[indx];
283 }
284
285 /* Return whether a symbol name implies a local label. The UnixWare
286 2.1 cc generates temporary symbols that start with .X, so we
287 recognize them here. FIXME: do other SVR4 compilers also use .X?.
288 If so, we should move the .X recognition into
289 _bfd_elf_is_local_label_name. */
290
291 static boolean
292 elf_i386_is_local_label_name (abfd, name)
293 bfd *abfd;
294 const char *name;
295 {
296 if (name[0] == '.' && name[1] == 'X')
297 return true;
298
299 return _bfd_elf_is_local_label_name (abfd, name);
300 }
301 \f
302 /* Functions for the i386 ELF linker. */
303
304 /* The name of the dynamic interpreter. This is put in the .interp
305 section. */
306
307 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
308
309 /* The size in bytes of an entry in the procedure linkage table. */
310
311 #define PLT_ENTRY_SIZE 16
312
313 /* The first entry in an absolute procedure linkage table looks like
314 this. See the SVR4 ABI i386 supplement to see how this works. */
315
316 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
317 {
318 0xff, 0x35, /* pushl contents of address */
319 0, 0, 0, 0, /* replaced with address of .got + 4. */
320 0xff, 0x25, /* jmp indirect */
321 0, 0, 0, 0, /* replaced with address of .got + 8. */
322 0, 0, 0, 0 /* pad out to 16 bytes. */
323 };
324
325 /* Subsequent entries in an absolute procedure linkage table look like
326 this. */
327
328 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
329 {
330 0xff, 0x25, /* jmp indirect */
331 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
332 0x68, /* pushl immediate */
333 0, 0, 0, 0, /* replaced with offset into relocation table. */
334 0xe9, /* jmp relative */
335 0, 0, 0, 0 /* replaced with offset to start of .plt. */
336 };
337
338 /* The first entry in a PIC procedure linkage table look like this. */
339
340 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
341 {
342 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
343 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
344 0, 0, 0, 0 /* pad out to 16 bytes. */
345 };
346
347 /* Subsequent entries in a PIC procedure linkage table look like this. */
348
349 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
350 {
351 0xff, 0xa3, /* jmp *offset(%ebx) */
352 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
353 0x68, /* pushl immediate */
354 0, 0, 0, 0, /* replaced with offset into relocation table. */
355 0xe9, /* jmp relative */
356 0, 0, 0, 0 /* replaced with offset to start of .plt. */
357 };
358
359 /* The i386 linker needs to keep track of the number of relocs that it
360 decides to copy as dynamic relocs in check_relocs for each symbol.
361 This is so that it can later discard them if they are found to be
362 unnecessary. We store the information in a field extending the
363 regular ELF linker hash table. */
364
365 struct elf_i386_dyn_relocs
366 {
367 /* Next section. */
368 struct elf_i386_dyn_relocs *next;
369 /* A section in dynobj. */
370 asection *section;
371 /* Number of relocs copied in this section. */
372 bfd_size_type count;
373 };
374
375 /* i386 ELF linker hash entry. */
376
377 struct elf_i386_link_hash_entry
378 {
379 struct elf_link_hash_entry root;
380
381 /* Number of PC relative relocs copied for this symbol. */
382 struct elf_i386_dyn_relocs *dyn_relocs;
383 };
384
385 /* i386 ELF linker hash table. */
386
387 struct elf_i386_link_hash_table
388 {
389 struct elf_link_hash_table root;
390
391 /* Short-cuts to get to dynamic linker sections. */
392 asection *sgot;
393 asection *sgotplt;
394 asection *srelgot;
395 asection *splt;
396 asection *srelplt;
397 asection *sdynbss;
398 asection *srelbss;
399 };
400
401 /* Get the i386 ELF linker hash table from a link_info structure. */
402
403 #define elf_i386_hash_table(p) \
404 ((struct elf_i386_link_hash_table *) ((p)->hash))
405
406 /* Create an entry in an i386 ELF linker hash table. */
407
408 static struct bfd_hash_entry *
409 elf_i386_link_hash_newfunc (entry, table, string)
410 struct bfd_hash_entry *entry;
411 struct bfd_hash_table *table;
412 const char *string;
413 {
414 struct elf_i386_link_hash_entry *ret =
415 (struct elf_i386_link_hash_entry *) entry;
416
417 /* Allocate the structure if it has not already been allocated by a
418 subclass. */
419 if (ret == (struct elf_i386_link_hash_entry *) NULL)
420 ret = ((struct elf_i386_link_hash_entry *)
421 bfd_hash_allocate (table,
422 sizeof (struct elf_i386_link_hash_entry)));
423 if (ret == (struct elf_i386_link_hash_entry *) NULL)
424 return (struct bfd_hash_entry *) ret;
425
426 /* Call the allocation method of the superclass. */
427 ret = ((struct elf_i386_link_hash_entry *)
428 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
429 table, string));
430 if (ret != (struct elf_i386_link_hash_entry *) NULL)
431 {
432 ret->dyn_relocs = NULL;
433 }
434
435 return (struct bfd_hash_entry *) ret;
436 }
437
438 /* Create an i386 ELF linker hash table. */
439
440 static struct bfd_link_hash_table *
441 elf_i386_link_hash_table_create (abfd)
442 bfd *abfd;
443 {
444 struct elf_i386_link_hash_table *ret;
445
446 ret = ((struct elf_i386_link_hash_table *)
447 bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
448 if (ret == (struct elf_i386_link_hash_table *) NULL)
449 return NULL;
450
451 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
452 elf_i386_link_hash_newfunc))
453 {
454 bfd_release (abfd, ret);
455 return NULL;
456 }
457
458 ret->sgot = NULL;
459 ret->sgotplt = NULL;
460 ret->srelgot = NULL;
461 ret->splt = NULL;
462 ret->srelplt = NULL;
463 ret->sdynbss = NULL;
464 ret->srelbss = NULL;
465
466 return &ret->root.root;
467 }
468
469 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
470 shortcuts to them in our hash table. */
471
472 static boolean
473 create_got_section (dynobj, info)
474 bfd *dynobj;
475 struct bfd_link_info *info;
476 {
477 struct elf_i386_link_hash_table *htab;
478
479 if (! _bfd_elf_create_got_section (dynobj, info))
480 return false;
481
482 htab = elf_i386_hash_table (info);
483 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
484 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
485 if (!htab->sgot || !htab->sgotplt)
486 abort ();
487
488 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
489 if (htab->srelgot == NULL
490 || ! bfd_set_section_flags (dynobj, htab->srelgot,
491 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
492 | SEC_IN_MEMORY | SEC_LINKER_CREATED
493 | SEC_READONLY))
494 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
495 return false;
496 return true;
497 }
498
499 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
500 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
501 hash table. */
502
503 static boolean
504 elf_i386_create_dynamic_sections (dynobj, info)
505 bfd *dynobj;
506 struct bfd_link_info *info;
507 {
508 struct elf_i386_link_hash_table *htab;
509
510 htab = elf_i386_hash_table (info);
511 if (!htab->sgot && !create_got_section (dynobj, info))
512 return false;
513
514 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
515 return false;
516
517 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
518 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
519 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
520 if (!info->shared)
521 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
522
523 if (!htab->splt || !htab->srelplt || !htab->sdynbss
524 || (!info->shared && !htab->srelbss))
525 abort ();
526
527 return true;
528 }
529
530 /* Look through the relocs for a section during the first phase, and
531 allocate space in the global offset table or procedure linkage
532 table. */
533
534 static boolean
535 elf_i386_check_relocs (abfd, info, sec, relocs)
536 bfd *abfd;
537 struct bfd_link_info *info;
538 asection *sec;
539 const Elf_Internal_Rela *relocs;
540 {
541 struct elf_i386_link_hash_table *htab;
542 bfd *dynobj;
543 Elf_Internal_Shdr *symtab_hdr;
544 struct elf_link_hash_entry **sym_hashes;
545 bfd_signed_vma *local_got_refcounts;
546 const Elf_Internal_Rela *rel;
547 const Elf_Internal_Rela *rel_end;
548 asection *sreloc;
549
550 if (info->relocateable)
551 return true;
552
553 htab = elf_i386_hash_table (info);
554 dynobj = htab->root.dynobj;
555 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
556 sym_hashes = elf_sym_hashes (abfd);
557 local_got_refcounts = elf_local_got_refcounts (abfd);
558
559 sreloc = NULL;
560
561 rel_end = relocs + sec->reloc_count;
562 for (rel = relocs; rel < rel_end; rel++)
563 {
564 unsigned long r_symndx;
565 struct elf_link_hash_entry *h;
566
567 r_symndx = ELF32_R_SYM (rel->r_info);
568
569 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
570 {
571 if (abfd->my_archive)
572 (*_bfd_error_handler) (_("%s(%s): bad symbol index: %d"),
573 bfd_get_filename (abfd->my_archive),
574 bfd_get_filename (abfd),
575 r_symndx);
576 else
577 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
578 bfd_get_filename (abfd),
579 r_symndx);
580 return false;
581 }
582
583 if (r_symndx < symtab_hdr->sh_info)
584 h = NULL;
585 else
586 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
587
588 /* Some relocs require a global offset table. */
589 if (htab->sgot == NULL)
590 {
591 switch (ELF32_R_TYPE (rel->r_info))
592 {
593 case R_386_GOT32:
594 case R_386_GOTOFF:
595 case R_386_GOTPC:
596 if (dynobj == NULL)
597 htab->root.dynobj = dynobj = abfd;
598 if (!create_got_section (dynobj, info))
599 return false;
600 break;
601
602 default:
603 break;
604 }
605 }
606
607 switch (ELF32_R_TYPE (rel->r_info))
608 {
609 case R_386_GOT32:
610 /* This symbol requires a global offset table entry. */
611 if (h != NULL)
612 {
613 if (h->got.refcount == -1)
614 h->got.refcount = 1;
615 else
616 h->got.refcount += 1;
617 }
618 else
619 {
620 /* This is a global offset table entry for a local symbol. */
621 if (local_got_refcounts == NULL)
622 {
623 size_t size;
624
625 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
626 local_got_refcounts = ((bfd_signed_vma *)
627 bfd_alloc (abfd, size));
628 if (local_got_refcounts == NULL)
629 return false;
630 elf_local_got_refcounts (abfd) = local_got_refcounts;
631 memset (local_got_refcounts, -1, size);
632 }
633 if (local_got_refcounts[r_symndx] == -1)
634 local_got_refcounts[r_symndx] = 1;
635 else
636 local_got_refcounts[r_symndx] += 1;
637 }
638 break;
639
640 case R_386_PLT32:
641 /* This symbol requires a procedure linkage table entry. We
642 actually build the entry in adjust_dynamic_symbol,
643 because this might be a case of linking PIC code which is
644 never referenced by a dynamic object, in which case we
645 don't need to generate a procedure linkage table entry
646 after all. */
647
648 /* If this is a local symbol, we resolve it directly without
649 creating a procedure linkage table entry. */
650 if (h == NULL)
651 continue;
652
653 if (h->plt.refcount == -1)
654 {
655 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
656 h->plt.refcount = 1;
657 }
658 else
659 h->plt.refcount += 1;
660 break;
661
662 case R_386_32:
663 case R_386_PC32:
664 if (h != NULL && !info->shared)
665 {
666 /* If this reloc is in a read-only section, we might
667 need a copy reloc. */
668 if ((sec->flags & SEC_READONLY) != 0)
669 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
670
671 /* We may need a .plt entry if the function this reloc
672 refers to is in a shared lib. */
673 if (h->plt.refcount == -1)
674 h->plt.refcount = 1;
675 else
676 h->plt.refcount += 1;
677 }
678
679 /* If we are creating a shared library, and this is a reloc
680 against a global symbol, or a non PC relative reloc
681 against a local symbol, then we need to copy the reloc
682 into the shared library. However, if we are linking with
683 -Bsymbolic, we do not need to copy a reloc against a
684 global symbol which is defined in an object we are
685 including in the link (i.e., DEF_REGULAR is set). At
686 this point we have not seen all the input files, so it is
687 possible that DEF_REGULAR is not set now but will be set
688 later (it is never cleared). In case of a weak definition,
689 DEF_REGULAR may be cleared later by a strong definition in
690 a shared library. We account for that possibility below by
691 storing information in the relocs_copied field of the hash
692 table entry. A similar situation occurs when creating
693 shared libraries and symbol visibility changes render the
694 symbol local.
695 If on the other hand, we are creating an executable, we
696 may need to keep relocations for symbols satisfied by a
697 dynamic library if we manage to avoid copy relocs for the
698 symbol. */
699 if ((info->shared
700 && (sec->flags & SEC_ALLOC) != 0
701 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
702 || (h != NULL
703 && (! info->symbolic
704 || h->root.type == bfd_link_hash_defweak
705 || (h->elf_link_hash_flags
706 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
707 || (!info->shared
708 && (sec->flags & SEC_ALLOC) != 0
709 && h != NULL
710 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
711 && (h->root.type == bfd_link_hash_defweak
712 || (h->elf_link_hash_flags
713 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
714 {
715 /* We must copy these reloc types into the output file.
716 Create a reloc section in dynobj and make room for
717 this reloc. */
718 if (dynobj == NULL)
719 htab->root.dynobj = dynobj = abfd;
720
721 if (sreloc == NULL)
722 {
723 const char *name;
724
725 name = (bfd_elf_string_from_elf_section
726 (abfd,
727 elf_elfheader (abfd)->e_shstrndx,
728 elf_section_data (sec)->rel_hdr.sh_name));
729 if (name == NULL)
730 return false;
731
732 if (strncmp (name, ".rel", 4) != 0
733 || strcmp (bfd_get_section_name (abfd, sec),
734 name + 4) != 0)
735 {
736 if (abfd->my_archive)
737 (*_bfd_error_handler) (_("%s(%s): bad relocation section name `%s\'"),
738 bfd_get_filename (abfd->my_archive),
739 bfd_get_filename (abfd),
740 name);
741 else
742 (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
743 bfd_get_filename (abfd),
744 name);
745 }
746
747 sreloc = bfd_get_section_by_name (dynobj, name);
748 if (sreloc == NULL)
749 {
750 flagword flags;
751
752 sreloc = bfd_make_section (dynobj, name);
753 flags = (SEC_HAS_CONTENTS | SEC_READONLY
754 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
755 if ((sec->flags & SEC_ALLOC) != 0)
756 flags |= SEC_ALLOC | SEC_LOAD;
757 if (sreloc == NULL
758 || ! bfd_set_section_flags (dynobj, sreloc, flags)
759 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
760 return false;
761 }
762 }
763
764 sreloc->_raw_size += sizeof (Elf32_External_Rel);
765
766 /* If this is a global symbol, we count the number of PC
767 relative relocations we have entered for this symbol,
768 so that we can discard them later as necessary. Note
769 that this function is only called if we are using an
770 elf_i386 linker hash table, which means that h is
771 really a pointer to an elf_i386_link_hash_entry. */
772 if (!info->shared
773 || (h != NULL
774 && ELF32_R_TYPE (rel->r_info) == R_386_PC32))
775 {
776 struct elf_i386_link_hash_entry *eh;
777 struct elf_i386_dyn_relocs *p;
778
779 eh = (struct elf_i386_link_hash_entry *) h;
780
781 for (p = eh->dyn_relocs; p != NULL; p = p->next)
782 if (p->section == sreloc)
783 break;
784
785 if (p == NULL)
786 {
787 p = ((struct elf_i386_dyn_relocs *)
788 bfd_alloc (dynobj, sizeof *p));
789 if (p == NULL)
790 return false;
791 p->next = eh->dyn_relocs;
792 eh->dyn_relocs = p;
793 p->section = sreloc;
794 p->count = 0;
795 }
796
797 ++p->count;
798 }
799 }
800
801 break;
802
803 /* This relocation describes the C++ object vtable hierarchy.
804 Reconstruct it for later use during GC. */
805 case R_386_GNU_VTINHERIT:
806 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
807 return false;
808 break;
809
810 /* This relocation describes which C++ vtable entries are actually
811 used. Record for later use during GC. */
812 case R_386_GNU_VTENTRY:
813 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
814 return false;
815 break;
816
817 default:
818 break;
819 }
820 }
821
822 return true;
823 }
824
825 /* Return the section that should be marked against GC for a given
826 relocation. */
827
828 static asection *
829 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
830 bfd *abfd;
831 struct bfd_link_info *info ATTRIBUTE_UNUSED;
832 Elf_Internal_Rela *rel;
833 struct elf_link_hash_entry *h;
834 Elf_Internal_Sym *sym;
835 {
836 if (h != NULL)
837 {
838 switch (ELF32_R_TYPE (rel->r_info))
839 {
840 case R_386_GNU_VTINHERIT:
841 case R_386_GNU_VTENTRY:
842 break;
843
844 default:
845 switch (h->root.type)
846 {
847 case bfd_link_hash_defined:
848 case bfd_link_hash_defweak:
849 return h->root.u.def.section;
850
851 case bfd_link_hash_common:
852 return h->root.u.c.p->section;
853
854 default:
855 break;
856 }
857 }
858 }
859 else
860 {
861 if (!(elf_bad_symtab (abfd)
862 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
863 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
864 && sym->st_shndx != SHN_COMMON))
865 {
866 return bfd_section_from_elf_index (abfd, sym->st_shndx);
867 }
868 }
869
870 return NULL;
871 }
872
873 /* Update the got entry reference counts for the section being removed. */
874
875 static boolean
876 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
877 bfd *abfd;
878 struct bfd_link_info *info;
879 asection *sec;
880 const Elf_Internal_Rela *relocs;
881 {
882 Elf_Internal_Shdr *symtab_hdr;
883 struct elf_link_hash_entry **sym_hashes;
884 bfd_signed_vma *local_got_refcounts;
885 const Elf_Internal_Rela *rel, *relend;
886 unsigned long r_symndx;
887 struct elf_link_hash_entry *h;
888 bfd *dynobj;
889
890 dynobj = elf_hash_table (info)->dynobj;
891 if (dynobj == NULL)
892 return true;
893
894 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
895 sym_hashes = elf_sym_hashes (abfd);
896 local_got_refcounts = elf_local_got_refcounts (abfd);
897
898 relend = relocs + sec->reloc_count;
899 for (rel = relocs; rel < relend; rel++)
900 switch (ELF32_R_TYPE (rel->r_info))
901 {
902 case R_386_GOT32:
903 case R_386_GOTOFF:
904 case R_386_GOTPC:
905 r_symndx = ELF32_R_SYM (rel->r_info);
906 if (r_symndx >= symtab_hdr->sh_info)
907 {
908 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
909 if (h->got.refcount > 0)
910 h->got.refcount -= 1;
911 }
912 else if (local_got_refcounts != NULL)
913 {
914 if (local_got_refcounts[r_symndx] > 0)
915 local_got_refcounts[r_symndx] -= 1;
916 }
917 break;
918
919 case R_386_32:
920 case R_386_PC32:
921 if (info->shared)
922 break;
923 /* Fall through. */
924
925 case R_386_PLT32:
926 r_symndx = ELF32_R_SYM (rel->r_info);
927 if (r_symndx >= symtab_hdr->sh_info)
928 {
929 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
930 if (h->plt.refcount > 0)
931 h->plt.refcount -= 1;
932 }
933 break;
934
935 default:
936 break;
937 }
938
939 return true;
940 }
941
942 /* Adjust a symbol defined by a dynamic object and referenced by a
943 regular object. The current definition is in some section of the
944 dynamic object, but we're not including those sections. We have to
945 change the definition to something the rest of the link can
946 understand. */
947
948 static boolean
949 elf_i386_adjust_dynamic_symbol (info, h)
950 struct bfd_link_info *info;
951 struct elf_link_hash_entry *h;
952 {
953 struct elf_i386_link_hash_table *htab;
954 bfd *dynobj;
955 asection *s;
956 unsigned int power_of_two;
957
958 htab = elf_i386_hash_table (info);
959 dynobj = htab->root.dynobj;
960
961 /* If this is a function, put it in the procedure linkage table. We
962 will fill in the contents of the procedure linkage table later,
963 when we know the address of the .got section. */
964 if (h->type == STT_FUNC
965 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
966 {
967 if (h->plt.refcount <= 0
968 || (! info->shared
969 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
970 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
971 {
972 /* This case can occur if we saw a PLT32 reloc in an input
973 file, but the symbol was never referred to by a dynamic
974 object, or if all references were garbage collected. In
975 such a case, we don't actually need to build a procedure
976 linkage table, and we can just do a PC32 reloc instead. */
977 h->plt.refcount = (bfd_vma) -1;
978 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
979 }
980
981 return true;
982 }
983 else
984 /* It's possible that we incorrectly decided a .plt reloc was
985 needed for an R_386_PC32 reloc to a non-function sym in
986 check_relocs. We can't decide accurately between function and
987 non-function syms in check-relocs; Objects loaded later in
988 the link may change h->type. So fix it now. */
989 h->plt.refcount = (bfd_vma) -1;
990
991 /* If this is a weak symbol, and there is a real definition, the
992 processor independent code will have arranged for us to see the
993 real definition first, and we can just use the same value. */
994 if (h->weakdef != NULL)
995 {
996 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
997 || h->weakdef->root.type == bfd_link_hash_defweak);
998 h->root.u.def.section = h->weakdef->root.u.def.section;
999 h->root.u.def.value = h->weakdef->root.u.def.value;
1000 return true;
1001 }
1002
1003 /* This is a reference to a symbol defined by a dynamic object which
1004 is not a function. */
1005
1006 /* If we are creating a shared library, we must presume that the
1007 only references to the symbol are via the global offset table.
1008 For such cases we need not do anything here; the relocations will
1009 be handled correctly by relocate_section. */
1010 if (info->shared)
1011 return true;
1012
1013 /* If there are no references to this symbol that do not use the
1014 GOT, we don't need to generate a copy reloc. */
1015 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1016 return true;
1017
1018 /* We must allocate the symbol in our .dynbss section, which will
1019 become part of the .bss section of the executable. There will be
1020 an entry for this symbol in the .dynsym section. The dynamic
1021 object will contain position independent code, so all references
1022 from the dynamic object to this symbol will go through the global
1023 offset table. The dynamic linker will use the .dynsym entry to
1024 determine the address it must put in the global offset table, so
1025 both the dynamic object and the regular object will refer to the
1026 same memory location for the variable. */
1027
1028 s = htab->sdynbss;
1029 if (s == NULL)
1030 abort ();
1031
1032 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1033 copy the initial value out of the dynamic object and into the
1034 runtime process image. We need to remember the offset into the
1035 .rel.bss section we are going to use. */
1036 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1037 {
1038 asection *srel;
1039
1040 srel = htab->srelbss;
1041 if (srel == NULL)
1042 abort ();
1043 srel->_raw_size += sizeof (Elf32_External_Rel);
1044 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1045 }
1046
1047 /* We need to figure out the alignment required for this symbol. I
1048 have no idea how ELF linkers handle this. */
1049 power_of_two = bfd_log2 (h->size);
1050 if (power_of_two > 3)
1051 power_of_two = 3;
1052
1053 /* Apply the required alignment. */
1054 s->_raw_size = BFD_ALIGN (s->_raw_size,
1055 (bfd_size_type) (1 << power_of_two));
1056 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1057 {
1058 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1059 return false;
1060 }
1061
1062 /* Define the symbol as being at this point in the section. */
1063 h->root.u.def.section = s;
1064 h->root.u.def.value = s->_raw_size;
1065
1066 /* Increment the section size to make room for the symbol. */
1067 s->_raw_size += h->size;
1068
1069 return true;
1070 }
1071
1072 /* This is the condition under which elf_i386_finish_dynamic_symbol
1073 will be called from elflink.h. If elflink.h doesn't call our
1074 finish_dynamic_symbol routine, we'll need to do something about
1075 initializing any .plt and .got entries in elf_i386_relocate_section. */
1076 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1077 ((DYN) \
1078 && ((INFO)->shared \
1079 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1080 && ((H)->dynindx != -1 \
1081 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1082
1083 /* Allocate space in .plt, .got and associated reloc sections for
1084 global syms. Also discards space allocated for relocs in the
1085 check_relocs function that we subsequently have found to be
1086 unneeded. */
1087
1088 static boolean
1089 allocate_plt_and_got_and_discard_relocs (h, inf)
1090 struct elf_link_hash_entry *h;
1091 PTR inf;
1092 {
1093 struct bfd_link_info *info;
1094 struct elf_i386_link_hash_table *htab;
1095 asection *s;
1096 struct elf_i386_link_hash_entry *eh;
1097
1098 if (h->root.type == bfd_link_hash_indirect
1099 || h->root.type == bfd_link_hash_warning)
1100 return true;
1101
1102 info = (struct bfd_link_info *) inf;
1103 htab = elf_i386_hash_table (info);
1104
1105 if (htab->root.dynamic_sections_created
1106 && h->plt.refcount > 0)
1107 {
1108 /* Make sure this symbol is output as a dynamic symbol.
1109 Undefined weak syms won't yet be marked as dynamic. */
1110 if (h->dynindx == -1
1111 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1112 {
1113 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1114 return false;
1115 }
1116
1117 s = htab->splt;
1118 if (s == NULL)
1119 abort ();
1120
1121 /* If this is the first .plt entry, make room for the special
1122 first entry. */
1123 if (s->_raw_size == 0)
1124 s->_raw_size += PLT_ENTRY_SIZE;
1125
1126 h->plt.offset = s->_raw_size;
1127
1128 /* If this symbol is not defined in a regular file, and we are
1129 not generating a shared library, then set the symbol to this
1130 location in the .plt. This is required to make function
1131 pointers compare as equal between the normal executable and
1132 the shared library. */
1133 if (! info->shared
1134 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1135 {
1136 h->root.u.def.section = s;
1137 h->root.u.def.value = h->plt.offset;
1138 }
1139
1140 /* Make room for this entry. */
1141 s->_raw_size += PLT_ENTRY_SIZE;
1142
1143 /* We also need to make an entry in the .got.plt section, which
1144 will be placed in the .got section by the linker script. */
1145 s = htab->sgotplt;
1146 if (s == NULL)
1147 abort ();
1148 s->_raw_size += 4;
1149
1150 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1151 {
1152 /* We also need to make an entry in the .rel.plt section. */
1153 s = htab->srelplt;
1154 if (s == NULL)
1155 abort ();
1156 s->_raw_size += sizeof (Elf32_External_Rel);
1157 }
1158 }
1159 else
1160 {
1161 h->plt.offset = (bfd_vma) -1;
1162 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1163 }
1164
1165 if (h->got.refcount > 0)
1166 {
1167 boolean dyn;
1168
1169 /* Make sure this symbol is output as a dynamic symbol.
1170 Undefined weak syms won't yet be marked as dynamic. */
1171 if (h->dynindx == -1
1172 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1173 {
1174 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1175 return false;
1176 }
1177
1178 s = htab->sgot;
1179 h->got.offset = s->_raw_size;
1180 s->_raw_size += 4;
1181 dyn = htab->root.dynamic_sections_created;
1182 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1183 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1184 }
1185 else
1186 h->got.offset = (bfd_vma) -1;
1187
1188 /* In the shared -Bsymbolic case, discard space allocated for
1189 dynamic relocs against symbols which turn out to be defined
1190 in regular objects. For the normal shared case, discard space
1191 for relocs that have become local due to symbol visibility
1192 changes. For the non-shared case, discard space for symbols
1193 which turn out to need copy relocs or are not dynamic. */
1194
1195 eh = (struct elf_i386_link_hash_entry *) h;
1196 if (eh->dyn_relocs == NULL)
1197 return true;
1198
1199 if (!info->shared
1200 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1201 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1202 || h->root.type == bfd_link_hash_undefweak
1203 || h->root.type == bfd_link_hash_undefined))
1204 {
1205 /* Make sure this symbol is output as a dynamic symbol.
1206 Undefined weak syms won't yet be marked as dynamic. */
1207 if (h->dynindx == -1
1208 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1209 {
1210 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1211 return false;
1212 }
1213
1214 /* If that succeeded, we know we'll be keeping all the relocs. */
1215 if (h->dynindx != -1)
1216 return true;
1217 }
1218
1219 if (!info->shared
1220 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1221 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1222 || info->symbolic)))
1223 {
1224 struct elf_i386_dyn_relocs *c;
1225
1226 for (c = eh->dyn_relocs; c != NULL; c = c->next)
1227 c->section->_raw_size -= c->count * sizeof (Elf32_External_Rel);
1228 }
1229
1230 return true;
1231 }
1232
1233 /* Set the sizes of the dynamic sections. */
1234
1235 static boolean
1236 elf_i386_size_dynamic_sections (output_bfd, info)
1237 bfd *output_bfd;
1238 struct bfd_link_info *info;
1239 {
1240 struct elf_i386_link_hash_table *htab;
1241 bfd *dynobj;
1242 asection *s;
1243 boolean relocs;
1244 boolean reltext;
1245 bfd *i;
1246
1247 htab = elf_i386_hash_table (info);
1248 dynobj = htab->root.dynobj;
1249 if (dynobj == NULL)
1250 abort ();
1251
1252 if (htab->root.dynamic_sections_created)
1253 {
1254 /* Set the contents of the .interp section to the interpreter. */
1255 if (! info->shared)
1256 {
1257 s = bfd_get_section_by_name (dynobj, ".interp");
1258 if (s == NULL)
1259 abort ();
1260 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1261 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1262 }
1263 }
1264
1265 /* Set up .got offsets for local syms. */
1266 for (i = info->input_bfds; i; i = i->link_next)
1267 {
1268 bfd_signed_vma *local_got;
1269 bfd_signed_vma *end_local_got;
1270 bfd_size_type locsymcount;
1271 Elf_Internal_Shdr *symtab_hdr;
1272 asection *srel;
1273
1274 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
1275 continue;
1276
1277 local_got = elf_local_got_refcounts (i);
1278 if (!local_got)
1279 continue;
1280
1281 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1282 locsymcount = symtab_hdr->sh_info;
1283 end_local_got = local_got + locsymcount;
1284 s = htab->sgot;
1285 srel = htab->srelgot;
1286 for (; local_got < end_local_got; ++local_got)
1287 {
1288 if (*local_got > 0)
1289 {
1290 *local_got = s->_raw_size;
1291 s->_raw_size += 4;
1292 if (info->shared)
1293 srel->_raw_size += sizeof (Elf32_External_Rel);
1294 }
1295 else
1296 *local_got = (bfd_vma) -1;
1297 }
1298 }
1299
1300 /* Allocate global sym .plt and .got entries. Also discard all
1301 unneeded relocs. */
1302 elf_link_hash_traverse (&htab->root,
1303 allocate_plt_and_got_and_discard_relocs,
1304 (PTR) info);
1305
1306 /* We now have determined the sizes of the various dynamic sections.
1307 Allocate memory for them. */
1308 relocs = false;
1309 reltext = false;
1310 for (s = dynobj->sections; s != NULL; s = s->next)
1311 {
1312 if ((s->flags & SEC_LINKER_CREATED) == 0)
1313 continue;
1314
1315 if (s == htab->splt
1316 || s == htab->sgot
1317 || s == htab->sgotplt)
1318 {
1319 /* Strip this section if we don't need it; see the
1320 comment below. */
1321 }
1322 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1323 {
1324 if (s->_raw_size == 0)
1325 {
1326 /* If we don't need this section, strip it from the
1327 output file. This is mostly to handle .rel.bss and
1328 .rel.plt. We must create both sections in
1329 create_dynamic_sections, because they must be created
1330 before the linker maps input sections to output
1331 sections. The linker does that before
1332 adjust_dynamic_symbol is called, and it is that
1333 function which decides whether anything needs to go
1334 into these sections. */
1335 }
1336 else
1337 {
1338 asection *target;
1339
1340 /* Remember whether there are any reloc sections other
1341 than .rel.plt. */
1342 if (s != htab->srelplt)
1343 {
1344 const char *outname;
1345
1346 relocs = true;
1347
1348 /* If this relocation section applies to a read only
1349 section, then we probably need a DT_TEXTREL
1350 entry. The entries in the .rel.plt section
1351 really apply to the .got section, which we
1352 created ourselves and so know is not readonly. */
1353 outname = bfd_get_section_name (output_bfd,
1354 s->output_section);
1355 target = bfd_get_section_by_name (output_bfd, outname + 4);
1356 if (target != NULL
1357 && (target->flags & SEC_READONLY) != 0
1358 && (target->flags & SEC_ALLOC) != 0)
1359 reltext = true;
1360 }
1361
1362 /* We use the reloc_count field as a counter if we need
1363 to copy relocs into the output file. */
1364 s->reloc_count = 0;
1365 }
1366 }
1367 else
1368 {
1369 /* It's not one of our sections, so don't allocate space. */
1370 continue;
1371 }
1372
1373 if (s->_raw_size == 0)
1374 {
1375 _bfd_strip_section_from_output (info, s);
1376 continue;
1377 }
1378
1379 /* Allocate memory for the section contents. We use bfd_zalloc
1380 here in case unused entries are not reclaimed before the
1381 section's contents are written out. This should not happen,
1382 but this way if it does, we get a R_386_NONE reloc instead
1383 of garbage. */
1384 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1385 if (s->contents == NULL)
1386 return false;
1387 }
1388
1389 if (htab->root.dynamic_sections_created)
1390 {
1391 /* Add some entries to the .dynamic section. We fill in the
1392 values later, in elf_i386_finish_dynamic_sections, but we
1393 must add the entries now so that we get the correct size for
1394 the .dynamic section. The DT_DEBUG entry is filled in by the
1395 dynamic linker and used by the debugger. */
1396 if (! info->shared)
1397 {
1398 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1399 return false;
1400 }
1401
1402 if (htab->splt->_raw_size != 0)
1403 {
1404 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1405 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1406 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
1407 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1408 return false;
1409 }
1410
1411 if (relocs)
1412 {
1413 if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
1414 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
1415 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
1416 sizeof (Elf32_External_Rel)))
1417 return false;
1418 }
1419
1420 if (reltext)
1421 {
1422 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1423 return false;
1424 info->flags |= DF_TEXTREL;
1425 }
1426 }
1427
1428 return true;
1429 }
1430
1431 /* Relocate an i386 ELF section. */
1432
1433 static boolean
1434 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1435 contents, relocs, local_syms, local_sections)
1436 bfd *output_bfd;
1437 struct bfd_link_info *info;
1438 bfd *input_bfd;
1439 asection *input_section;
1440 bfd_byte *contents;
1441 Elf_Internal_Rela *relocs;
1442 Elf_Internal_Sym *local_syms;
1443 asection **local_sections;
1444 {
1445 struct elf_i386_link_hash_table *htab;
1446 bfd *dynobj;
1447 Elf_Internal_Shdr *symtab_hdr;
1448 struct elf_link_hash_entry **sym_hashes;
1449 bfd_vma *local_got_offsets;
1450 asection *sreloc;
1451 Elf_Internal_Rela *rel;
1452 Elf_Internal_Rela *relend;
1453
1454 htab = elf_i386_hash_table (info);
1455 dynobj = htab->root.dynobj;
1456 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1457 sym_hashes = elf_sym_hashes (input_bfd);
1458 local_got_offsets = elf_local_got_offsets (input_bfd);
1459
1460 sreloc = NULL;
1461 rel = relocs;
1462 relend = relocs + input_section->reloc_count;
1463 for (; rel < relend; rel++)
1464 {
1465 int r_type;
1466 reloc_howto_type *howto;
1467 unsigned long r_symndx;
1468 struct elf_link_hash_entry *h;
1469 Elf_Internal_Sym *sym;
1470 asection *sec;
1471 bfd_vma off;
1472 bfd_vma relocation;
1473 boolean unresolved_reloc;
1474 bfd_reloc_status_type r;
1475 unsigned int indx;
1476
1477 r_type = ELF32_R_TYPE (rel->r_info);
1478 if (r_type == (int) R_386_GNU_VTINHERIT
1479 || r_type == (int) R_386_GNU_VTENTRY)
1480 continue;
1481
1482 if ((indx = (unsigned) r_type) >= R_386_standard
1483 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1484 >= R_386_ext - R_386_standard))
1485 {
1486 bfd_set_error (bfd_error_bad_value);
1487 return false;
1488 }
1489 howto = elf_howto_table + indx;
1490
1491 r_symndx = ELF32_R_SYM (rel->r_info);
1492
1493 if (info->relocateable)
1494 {
1495 /* This is a relocateable link. We don't have to change
1496 anything, unless the reloc is against a section symbol,
1497 in which case we have to adjust according to where the
1498 section symbol winds up in the output section. */
1499 if (r_symndx < symtab_hdr->sh_info)
1500 {
1501 sym = local_syms + r_symndx;
1502 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1503 {
1504 bfd_vma val;
1505
1506 sec = local_sections[r_symndx];
1507 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1508 val += sec->output_offset + sym->st_value;
1509 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1510 }
1511 }
1512
1513 continue;
1514 }
1515
1516 /* This is a final link. */
1517 h = NULL;
1518 sym = NULL;
1519 sec = NULL;
1520 unresolved_reloc = false;
1521 if (r_symndx < symtab_hdr->sh_info)
1522 {
1523 sym = local_syms + r_symndx;
1524 sec = local_sections[r_symndx];
1525 relocation = (sec->output_section->vma
1526 + sec->output_offset
1527 + sym->st_value);
1528 }
1529 else
1530 {
1531 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1532 while (h->root.type == bfd_link_hash_indirect
1533 || h->root.type == bfd_link_hash_warning)
1534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1535
1536 relocation = 0;
1537 if (h->root.type == bfd_link_hash_defined
1538 || h->root.type == bfd_link_hash_defweak)
1539 {
1540 sec = h->root.u.def.section;
1541 if (sec->output_section == NULL)
1542 /* Set a flag that will be cleared later if we find a
1543 relocation value for this symbol. output_section
1544 is typically NULL for symbols satisfied by a shared
1545 library. */
1546 unresolved_reloc = true;
1547 else
1548 relocation = (h->root.u.def.value
1549 + sec->output_section->vma
1550 + sec->output_offset);
1551 }
1552 else if (h->root.type == bfd_link_hash_undefweak)
1553 ;
1554 else if (info->shared && !info->symbolic
1555 && !info->no_undefined
1556 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1557 ;
1558 else
1559 {
1560 if (! ((*info->callbacks->undefined_symbol)
1561 (info, h->root.root.string, input_bfd,
1562 input_section, rel->r_offset,
1563 (!info->shared || info->no_undefined
1564 || ELF_ST_VISIBILITY (h->other)))))
1565 return false;
1566 }
1567 }
1568
1569 switch (r_type)
1570 {
1571 case R_386_GOT32:
1572 /* Relocation is to the entry for this symbol in the global
1573 offset table. */
1574 if (htab->sgot == NULL)
1575 abort ();
1576
1577 if (h != NULL)
1578 {
1579 boolean dyn;
1580
1581 off = h->got.offset;
1582 dyn = htab->root.dynamic_sections_created;
1583 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1584 || (info->shared
1585 && (info->symbolic
1586 || h->dynindx == -1
1587 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1588 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1589 {
1590 /* This is actually a static link, or it is a
1591 -Bsymbolic link and the symbol is defined
1592 locally, or the symbol was forced to be local
1593 because of a version file. We must initialize
1594 this entry in the global offset table. Since the
1595 offset must always be a multiple of 4, we use the
1596 least significant bit to record whether we have
1597 initialized it already.
1598
1599 When doing a dynamic link, we create a .rel.got
1600 relocation entry to initialize the value. This
1601 is done in the finish_dynamic_symbol routine. */
1602 if ((off & 1) != 0)
1603 off &= ~1;
1604 else
1605 {
1606 bfd_put_32 (output_bfd, relocation,
1607 htab->sgot->contents + off);
1608 h->got.offset |= 1;
1609 }
1610 }
1611 else
1612 unresolved_reloc = false;
1613 }
1614 else
1615 {
1616 if (local_got_offsets == NULL)
1617 abort ();
1618
1619 off = local_got_offsets[r_symndx];
1620
1621 /* The offset must always be a multiple of 4. We use
1622 the least significant bit to record whether we have
1623 already generated the necessary reloc. */
1624 if ((off & 1) != 0)
1625 off &= ~1;
1626 else
1627 {
1628 bfd_put_32 (output_bfd, relocation,
1629 htab->sgot->contents + off);
1630
1631 if (info->shared)
1632 {
1633 asection *srelgot;
1634 Elf_Internal_Rel outrel;
1635
1636 srelgot = htab->srelgot;
1637 if (srelgot == NULL)
1638 abort ();
1639
1640 outrel.r_offset = (htab->sgot->output_section->vma
1641 + htab->sgot->output_offset
1642 + off);
1643 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1644 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1645 (((Elf32_External_Rel *)
1646 srelgot->contents)
1647 + srelgot->reloc_count));
1648 ++srelgot->reloc_count;
1649 }
1650
1651 local_got_offsets[r_symndx] |= 1;
1652 }
1653 }
1654
1655 if (off >= (bfd_vma) -2)
1656 abort ();
1657
1658 relocation = htab->sgot->output_offset + off;
1659 break;
1660
1661 case R_386_GOTOFF:
1662 /* Relocation is relative to the start of the global offset
1663 table. */
1664
1665 /* Note that sgot->output_offset is not involved in this
1666 calculation. We always want the start of .got. If we
1667 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1668 permitted by the ABI, we might have to change this
1669 calculation. */
1670 relocation -= htab->sgot->output_section->vma;
1671 break;
1672
1673 case R_386_GOTPC:
1674 /* Use global offset table as symbol value. */
1675 relocation = htab->sgot->output_section->vma;
1676 unresolved_reloc = false;
1677 break;
1678
1679 case R_386_PLT32:
1680 /* Relocation is to the entry for this symbol in the
1681 procedure linkage table. */
1682
1683 /* Resolve a PLT32 reloc against a local symbol directly,
1684 without using the procedure linkage table. */
1685 if (h == NULL)
1686 break;
1687
1688 if (h->plt.offset == (bfd_vma) -1
1689 || htab->splt == NULL)
1690 {
1691 /* We didn't make a PLT entry for this symbol. This
1692 happens when statically linking PIC code, or when
1693 using -Bsymbolic. */
1694 break;
1695 }
1696
1697 relocation = (htab->splt->output_section->vma
1698 + htab->splt->output_offset
1699 + h->plt.offset);
1700 unresolved_reloc = false;
1701 break;
1702
1703 case R_386_32:
1704 case R_386_PC32:
1705 if ((info->shared
1706 && (input_section->flags & SEC_ALLOC) != 0
1707 && (r_type != R_386_PC32
1708 || (h != NULL
1709 && h->dynindx != -1
1710 && (! info->symbolic
1711 || (h->elf_link_hash_flags
1712 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1713 || (!info->shared
1714 && (input_section->flags & SEC_ALLOC) != 0
1715 && h != NULL
1716 && h->dynindx != -1
1717 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1718 && ((h->elf_link_hash_flags
1719 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1720 || h->root.type == bfd_link_hash_undefweak
1721 || h->root.type == bfd_link_hash_undefined)))
1722 {
1723 Elf_Internal_Rel outrel;
1724 boolean skip, relocate;
1725
1726 /* When generating a shared object, these relocations
1727 are copied into the output file to be resolved at run
1728 time. */
1729
1730 if (sreloc == NULL)
1731 {
1732 const char *name;
1733
1734 name = (bfd_elf_string_from_elf_section
1735 (input_bfd,
1736 elf_elfheader (input_bfd)->e_shstrndx,
1737 elf_section_data (input_section)->rel_hdr.sh_name));
1738 if (name == NULL)
1739 return false;
1740
1741 if (strncmp (name, ".rel", 4) != 0
1742 || strcmp (bfd_get_section_name (input_bfd,
1743 input_section),
1744 name + 4) != 0)
1745 {
1746 if (input_bfd->my_archive)
1747 (*_bfd_error_handler)\
1748 (_("%s(%s): bad relocation section name `%s\'"),
1749 bfd_get_filename (input_bfd->my_archive),
1750 bfd_get_filename (input_bfd),
1751 name);
1752 else
1753 (*_bfd_error_handler)
1754 (_("%s: bad relocation section name `%s\'"),
1755 bfd_get_filename (input_bfd),
1756 name);
1757 return false;
1758 }
1759
1760 sreloc = bfd_get_section_by_name (dynobj, name);
1761 if (sreloc == NULL)
1762 abort ();
1763 }
1764
1765 skip = false;
1766
1767 if (elf_section_data (input_section)->stab_info == NULL)
1768 outrel.r_offset = rel->r_offset;
1769 else
1770 {
1771 bfd_vma off;
1772
1773 off = (_bfd_stab_section_offset
1774 (output_bfd, htab->root.stab_info, input_section,
1775 &elf_section_data (input_section)->stab_info,
1776 rel->r_offset));
1777 if (off == (bfd_vma) -1)
1778 skip = true;
1779 outrel.r_offset = off;
1780 }
1781
1782 outrel.r_offset += (input_section->output_section->vma
1783 + input_section->output_offset);
1784
1785 if (skip)
1786 {
1787 memset (&outrel, 0, sizeof outrel);
1788 relocate = false;
1789 }
1790 else if (h != NULL
1791 && h->dynindx != -1
1792 && (r_type == R_386_PC32
1793 || !info->shared
1794 || !info->symbolic
1795 || (h->elf_link_hash_flags
1796 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1797
1798 {
1799 relocate = false;
1800 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1801 }
1802 else
1803 {
1804 /* This symbol is local, or marked to become local. */
1805 relocate = true;
1806 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1807 }
1808
1809 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1810 (((Elf32_External_Rel *)
1811 sreloc->contents)
1812 + sreloc->reloc_count));
1813 ++sreloc->reloc_count;
1814
1815 /* If this reloc is against an external symbol, we do
1816 not want to fiddle with the addend. Otherwise, we
1817 need to include the symbol value so that it becomes
1818 an addend for the dynamic reloc. */
1819 if (! relocate)
1820 continue;
1821 }
1822
1823 break;
1824
1825 default:
1826 break;
1827 }
1828
1829 /* FIXME: Why do we allow debugging sections to escape this error?
1830 More importantly, why do we not emit dynamic relocs for
1831 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
1832 If we had emitted the dynamic reloc, we could remove the
1833 fudge here. */
1834 if (unresolved_reloc
1835 && !(info->shared
1836 && (input_section->flags & SEC_DEBUGGING) != 0
1837 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1838 (*_bfd_error_handler)
1839 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1840 bfd_get_filename (input_bfd),
1841 bfd_get_section_name (input_bfd, input_section),
1842 (long) rel->r_offset,
1843 h->root.root.string);
1844
1845 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1846 contents, rel->r_offset,
1847 relocation, (bfd_vma) 0);
1848
1849 switch (r)
1850 {
1851 case bfd_reloc_ok:
1852 break;
1853
1854 case bfd_reloc_overflow:
1855 {
1856 const char *name;
1857
1858 if (h != NULL)
1859 name = h->root.root.string;
1860 else
1861 {
1862 name = bfd_elf_string_from_elf_section (input_bfd,
1863 symtab_hdr->sh_link,
1864 sym->st_name);
1865 if (name == NULL)
1866 return false;
1867 if (*name == '\0')
1868 name = bfd_section_name (input_bfd, sec);
1869 }
1870 if (! ((*info->callbacks->reloc_overflow)
1871 (info, name, howto->name, (bfd_vma) 0,
1872 input_bfd, input_section, rel->r_offset)))
1873 return false;
1874 }
1875 break;
1876
1877 default:
1878 case bfd_reloc_outofrange:
1879 abort ();
1880 break;
1881 }
1882 }
1883
1884 return true;
1885 }
1886
1887 /* Finish up dynamic symbol handling. We set the contents of various
1888 dynamic sections here. */
1889
1890 static boolean
1891 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1892 bfd *output_bfd;
1893 struct bfd_link_info *info;
1894 struct elf_link_hash_entry *h;
1895 Elf_Internal_Sym *sym;
1896 {
1897 struct elf_i386_link_hash_table *htab;
1898 bfd *dynobj;
1899
1900 htab = elf_i386_hash_table (info);
1901 dynobj = htab->root.dynobj;
1902
1903 if (h->plt.offset != (bfd_vma) -1)
1904 {
1905 bfd_vma plt_index;
1906 bfd_vma got_offset;
1907 Elf_Internal_Rel rel;
1908
1909 /* This symbol has an entry in the procedure linkage table. Set
1910 it up. */
1911
1912 if (h->dynindx == -1
1913 || htab->splt == NULL
1914 || htab->sgotplt == NULL
1915 || htab->srelplt == NULL)
1916 abort ();
1917
1918 /* Get the index in the procedure linkage table which
1919 corresponds to this symbol. This is the index of this symbol
1920 in all the symbols for which we are making plt entries. The
1921 first entry in the procedure linkage table is reserved. */
1922 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1923
1924 /* Get the offset into the .got table of the entry that
1925 corresponds to this function. Each .got entry is 4 bytes.
1926 The first three are reserved. */
1927 got_offset = (plt_index + 3) * 4;
1928
1929 /* Fill in the entry in the procedure linkage table. */
1930 if (! info->shared)
1931 {
1932 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
1933 PLT_ENTRY_SIZE);
1934 bfd_put_32 (output_bfd,
1935 (htab->sgotplt->output_section->vma
1936 + htab->sgotplt->output_offset
1937 + got_offset),
1938 htab->splt->contents + h->plt.offset + 2);
1939 }
1940 else
1941 {
1942 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1943 PLT_ENTRY_SIZE);
1944 bfd_put_32 (output_bfd, got_offset,
1945 htab->splt->contents + h->plt.offset + 2);
1946 }
1947
1948 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1949 htab->splt->contents + h->plt.offset + 7);
1950 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1951 htab->splt->contents + h->plt.offset + 12);
1952
1953 /* Fill in the entry in the global offset table. */
1954 bfd_put_32 (output_bfd,
1955 (htab->splt->output_section->vma
1956 + htab->splt->output_offset
1957 + h->plt.offset
1958 + 6),
1959 htab->sgotplt->contents + got_offset);
1960
1961 /* Fill in the entry in the .rel.plt section. */
1962 rel.r_offset = (htab->sgotplt->output_section->vma
1963 + htab->sgotplt->output_offset
1964 + got_offset);
1965 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1966 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1967 ((Elf32_External_Rel *) htab->srelplt->contents
1968 + plt_index));
1969
1970 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1971 {
1972 /* Mark the symbol as undefined, rather than as defined in
1973 the .plt section. Leave the value alone. */
1974 sym->st_shndx = SHN_UNDEF;
1975 }
1976 }
1977
1978 if (h->got.offset != (bfd_vma) -1)
1979 {
1980 Elf_Internal_Rel rel;
1981
1982 /* This symbol has an entry in the global offset table. Set it
1983 up. */
1984
1985 if (htab->sgot == NULL || htab->srelgot == NULL)
1986 abort ();
1987
1988 rel.r_offset = (htab->sgot->output_section->vma
1989 + htab->sgot->output_offset
1990 + (h->got.offset &~ 1));
1991
1992 /* If this is a static link, or it is a -Bsymbolic link and the
1993 symbol is defined locally or was forced to be local because
1994 of a version file, we just want to emit a RELATIVE reloc.
1995 The entry in the global offset table will already have been
1996 initialized in the relocate_section function. */
1997 if (info->shared
1998 && (info->symbolic
1999 || h->dynindx == -1
2000 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2001 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2002 {
2003 BFD_ASSERT((h->got.offset & 1) != 0);
2004 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2005 }
2006 else
2007 {
2008 BFD_ASSERT((h->got.offset & 1) == 0);
2009 bfd_put_32 (output_bfd, (bfd_vma) 0,
2010 htab->sgot->contents + h->got.offset);
2011 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2012 }
2013
2014 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2015 ((Elf32_External_Rel *) htab->srelgot->contents
2016 + htab->srelgot->reloc_count));
2017 ++htab->srelgot->reloc_count;
2018 }
2019
2020 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2021 {
2022 Elf_Internal_Rel rel;
2023
2024 /* This symbol needs a copy reloc. Set it up. */
2025
2026 if (h->dynindx == -1
2027 || (h->root.type != bfd_link_hash_defined
2028 && h->root.type != bfd_link_hash_defweak)
2029 || htab->srelbss == NULL)
2030 abort ();
2031
2032 rel.r_offset = (h->root.u.def.value
2033 + h->root.u.def.section->output_section->vma
2034 + h->root.u.def.section->output_offset);
2035 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2036 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2037 ((Elf32_External_Rel *) htab->srelbss->contents
2038 + htab->srelbss->reloc_count));
2039 ++htab->srelbss->reloc_count;
2040 }
2041
2042 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2043 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2044 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2045 sym->st_shndx = SHN_ABS;
2046
2047 return true;
2048 }
2049
2050 /* Finish up the dynamic sections. */
2051
2052 static boolean
2053 elf_i386_finish_dynamic_sections (output_bfd, info)
2054 bfd *output_bfd;
2055 struct bfd_link_info *info;
2056 {
2057 struct elf_i386_link_hash_table *htab;
2058 bfd *dynobj;
2059 asection *sdyn;
2060
2061 htab = elf_i386_hash_table (info);
2062 dynobj = htab->root.dynobj;
2063 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2064
2065 if (htab->root.dynamic_sections_created)
2066 {
2067 Elf32_External_Dyn *dyncon, *dynconend;
2068
2069 if (sdyn == NULL || htab->sgot == NULL)
2070 abort ();
2071
2072 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2073 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2074 for (; dyncon < dynconend; dyncon++)
2075 {
2076 Elf_Internal_Dyn dyn;
2077
2078 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2079
2080 switch (dyn.d_tag)
2081 {
2082 default:
2083 break;
2084
2085 case DT_PLTGOT:
2086 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2087 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2088 break;
2089
2090 case DT_JMPREL:
2091 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2092 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2093 break;
2094
2095 case DT_PLTRELSZ:
2096 if (htab->srelplt->output_section->_cooked_size != 0)
2097 dyn.d_un.d_val = htab->srelplt->output_section->_cooked_size;
2098 else
2099 dyn.d_un.d_val = htab->srelplt->output_section->_raw_size;
2100 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2101 break;
2102
2103 case DT_RELSZ:
2104 /* My reading of the SVR4 ABI indicates that the
2105 procedure linkage table relocs (DT_JMPREL) should be
2106 included in the overall relocs (DT_REL). This is
2107 what Solaris does. However, UnixWare can not handle
2108 that case. Therefore, we override the DT_RELSZ entry
2109 here to make it not include the JMPREL relocs. Since
2110 the linker script arranges for .rel.plt to follow all
2111 other relocation sections, we don't have to worry
2112 about changing the DT_REL entry. */
2113 if (htab->srelplt != NULL)
2114 {
2115 if (htab->srelplt->output_section->_cooked_size != 0)
2116 dyn.d_un.d_val -= htab->srelplt->output_section->_cooked_size;
2117 else
2118 dyn.d_un.d_val -= htab->srelplt->output_section->_raw_size;
2119 }
2120 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2121 break;
2122 }
2123 }
2124
2125 /* Fill in the first entry in the procedure linkage table. */
2126 if (htab->splt && htab->splt->_raw_size > 0)
2127 {
2128 if (info->shared)
2129 memcpy (htab->splt->contents,
2130 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2131 else
2132 {
2133 memcpy (htab->splt->contents,
2134 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2135 bfd_put_32 (output_bfd,
2136 (htab->sgotplt->output_section->vma
2137 + htab->sgotplt->output_offset
2138 + 4),
2139 htab->splt->contents + 2);
2140 bfd_put_32 (output_bfd,
2141 (htab->sgotplt->output_section->vma
2142 + htab->sgotplt->output_offset
2143 + 8),
2144 htab->splt->contents + 8);
2145 }
2146
2147 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2148 really seem like the right value. */
2149 elf_section_data (htab->splt->output_section)
2150 ->this_hdr.sh_entsize = 4;
2151 }
2152 }
2153
2154 if (htab->sgotplt)
2155 {
2156 /* Fill in the first three entries in the global offset table. */
2157 if (htab->sgotplt->_raw_size > 0)
2158 {
2159 bfd_put_32 (output_bfd,
2160 (sdyn == NULL ? (bfd_vma) 0
2161 : sdyn->output_section->vma + sdyn->output_offset),
2162 htab->sgotplt->contents);
2163 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2164 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2165 }
2166
2167 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2168 }
2169 return true;
2170 }
2171
2172 /* Set the correct type for an x86 ELF section. We do this by the
2173 section name, which is a hack, but ought to work. */
2174
2175 static boolean
2176 elf_i386_fake_sections (abfd, hdr, sec)
2177 bfd *abfd ATTRIBUTE_UNUSED;
2178 Elf32_Internal_Shdr *hdr;
2179 asection *sec;
2180 {
2181 register const char *name;
2182
2183 name = bfd_get_section_name (abfd, sec);
2184
2185 if (strcmp (name, ".reloc") == 0)
2186 /*
2187 * This is an ugly, but unfortunately necessary hack that is
2188 * needed when producing EFI binaries on x86. It tells
2189 * elf.c:elf_fake_sections() not to consider ".reloc" as a section
2190 * containing ELF relocation info. We need this hack in order to
2191 * be able to generate ELF binaries that can be translated into
2192 * EFI applications (which are essentially COFF objects). Those
2193 * files contain a COFF ".reloc" section inside an ELFNN object,
2194 * which would normally cause BFD to segfault because it would
2195 * attempt to interpret this section as containing relocation
2196 * entries for section "oc". With this hack enabled, ".reloc"
2197 * will be treated as a normal data section, which will avoid the
2198 * segfault. However, you won't be able to create an ELFNN binary
2199 * with a section named "oc" that needs relocations, but that's
2200 * the kind of ugly side-effects you get when detecting section
2201 * types based on their names... In practice, this limitation is
2202 * unlikely to bite.
2203 */
2204 hdr->sh_type = SHT_PROGBITS;
2205
2206 return true;
2207 }
2208
2209
2210 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2211 #define TARGET_LITTLE_NAME "elf32-i386"
2212 #define ELF_ARCH bfd_arch_i386
2213 #define ELF_MACHINE_CODE EM_386
2214 #define ELF_MAXPAGESIZE 0x1000
2215
2216 #define elf_backend_can_gc_sections 1
2217 #define elf_backend_want_got_plt 1
2218 #define elf_backend_plt_readonly 1
2219 #define elf_backend_want_plt_sym 0
2220 #define elf_backend_got_header_size 12
2221 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2222
2223 #define elf_info_to_howto elf_i386_info_to_howto
2224 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2225
2226 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2227 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2228 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2229
2230 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2231 #define elf_backend_check_relocs elf_i386_check_relocs
2232 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2233 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2234 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2235 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2236 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2237 #define elf_backend_relocate_section elf_i386_relocate_section
2238 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2239 #define elf_backend_fake_sections elf_i386_fake_sections
2240
2241 #include "elf32-target.h"
This page took 0.078668 seconds and 5 git commands to generate.