Check corrupt VTENTRY entry in bfd_elf_gc_record_vtentry
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27 #include "opcode/m68k.h"
28
29 static bfd_boolean
30 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
31
32 static reloc_howto_type howto_table[] =
33 {
34 HOWTO(R_68K_NONE, 0, 3, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
35 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
36 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
37 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
38 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
39 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
40 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
41 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
42 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
43 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
44 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
45 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
46 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
47 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
48 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
49 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
50 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
51 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
52 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
53 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
54 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
55 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
56 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
57 /* GNU extension to record C++ vtable hierarchy. */
58 HOWTO (R_68K_GNU_VTINHERIT, /* type */
59 0, /* rightshift */
60 2, /* size (0 = byte, 1 = short, 2 = long) */
61 0, /* bitsize */
62 FALSE, /* pc_relative */
63 0, /* bitpos */
64 complain_overflow_dont, /* complain_on_overflow */
65 NULL, /* special_function */
66 "R_68K_GNU_VTINHERIT", /* name */
67 FALSE, /* partial_inplace */
68 0, /* src_mask */
69 0, /* dst_mask */
70 FALSE),
71 /* GNU extension to record C++ vtable member usage. */
72 HOWTO (R_68K_GNU_VTENTRY, /* type */
73 0, /* rightshift */
74 2, /* size (0 = byte, 1 = short, 2 = long) */
75 0, /* bitsize */
76 FALSE, /* pc_relative */
77 0, /* bitpos */
78 complain_overflow_dont, /* complain_on_overflow */
79 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
80 "R_68K_GNU_VTENTRY", /* name */
81 FALSE, /* partial_inplace */
82 0, /* src_mask */
83 0, /* dst_mask */
84 FALSE),
85
86 /* TLS general dynamic variable reference. */
87 HOWTO (R_68K_TLS_GD32, /* type */
88 0, /* rightshift */
89 2, /* size (0 = byte, 1 = short, 2 = long) */
90 32, /* bitsize */
91 FALSE, /* pc_relative */
92 0, /* bitpos */
93 complain_overflow_bitfield, /* complain_on_overflow */
94 bfd_elf_generic_reloc, /* special_function */
95 "R_68K_TLS_GD32", /* name */
96 FALSE, /* partial_inplace */
97 0, /* src_mask */
98 0xffffffff, /* dst_mask */
99 FALSE), /* pcrel_offset */
100
101 HOWTO (R_68K_TLS_GD16, /* type */
102 0, /* rightshift */
103 1, /* size (0 = byte, 1 = short, 2 = long) */
104 16, /* bitsize */
105 FALSE, /* pc_relative */
106 0, /* bitpos */
107 complain_overflow_signed, /* complain_on_overflow */
108 bfd_elf_generic_reloc, /* special_function */
109 "R_68K_TLS_GD16", /* name */
110 FALSE, /* partial_inplace */
111 0, /* src_mask */
112 0x0000ffff, /* dst_mask */
113 FALSE), /* pcrel_offset */
114
115 HOWTO (R_68K_TLS_GD8, /* type */
116 0, /* rightshift */
117 0, /* size (0 = byte, 1 = short, 2 = long) */
118 8, /* bitsize */
119 FALSE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_signed, /* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_68K_TLS_GD8", /* name */
124 FALSE, /* partial_inplace */
125 0, /* src_mask */
126 0x000000ff, /* dst_mask */
127 FALSE), /* pcrel_offset */
128
129 /* TLS local dynamic variable reference. */
130 HOWTO (R_68K_TLS_LDM32, /* type */
131 0, /* rightshift */
132 2, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 FALSE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_bitfield, /* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_68K_TLS_LDM32", /* name */
139 FALSE, /* partial_inplace */
140 0, /* src_mask */
141 0xffffffff, /* dst_mask */
142 FALSE), /* pcrel_offset */
143
144 HOWTO (R_68K_TLS_LDM16, /* type */
145 0, /* rightshift */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
147 16, /* bitsize */
148 FALSE, /* pc_relative */
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 bfd_elf_generic_reloc, /* special_function */
152 "R_68K_TLS_LDM16", /* name */
153 FALSE, /* partial_inplace */
154 0, /* src_mask */
155 0x0000ffff, /* dst_mask */
156 FALSE), /* pcrel_offset */
157
158 HOWTO (R_68K_TLS_LDM8, /* type */
159 0, /* rightshift */
160 0, /* size (0 = byte, 1 = short, 2 = long) */
161 8, /* bitsize */
162 FALSE, /* pc_relative */
163 0, /* bitpos */
164 complain_overflow_signed, /* complain_on_overflow */
165 bfd_elf_generic_reloc, /* special_function */
166 "R_68K_TLS_LDM8", /* name */
167 FALSE, /* partial_inplace */
168 0, /* src_mask */
169 0x000000ff, /* dst_mask */
170 FALSE), /* pcrel_offset */
171
172 HOWTO (R_68K_TLS_LDO32, /* type */
173 0, /* rightshift */
174 2, /* size (0 = byte, 1 = short, 2 = long) */
175 32, /* bitsize */
176 FALSE, /* pc_relative */
177 0, /* bitpos */
178 complain_overflow_bitfield, /* complain_on_overflow */
179 bfd_elf_generic_reloc, /* special_function */
180 "R_68K_TLS_LDO32", /* name */
181 FALSE, /* partial_inplace */
182 0, /* src_mask */
183 0xffffffff, /* dst_mask */
184 FALSE), /* pcrel_offset */
185
186 HOWTO (R_68K_TLS_LDO16, /* type */
187 0, /* rightshift */
188 1, /* size (0 = byte, 1 = short, 2 = long) */
189 16, /* bitsize */
190 FALSE, /* pc_relative */
191 0, /* bitpos */
192 complain_overflow_signed, /* complain_on_overflow */
193 bfd_elf_generic_reloc, /* special_function */
194 "R_68K_TLS_LDO16", /* name */
195 FALSE, /* partial_inplace */
196 0, /* src_mask */
197 0x0000ffff, /* dst_mask */
198 FALSE), /* pcrel_offset */
199
200 HOWTO (R_68K_TLS_LDO8, /* type */
201 0, /* rightshift */
202 0, /* size (0 = byte, 1 = short, 2 = long) */
203 8, /* bitsize */
204 FALSE, /* pc_relative */
205 0, /* bitpos */
206 complain_overflow_signed, /* complain_on_overflow */
207 bfd_elf_generic_reloc, /* special_function */
208 "R_68K_TLS_LDO8", /* name */
209 FALSE, /* partial_inplace */
210 0, /* src_mask */
211 0x000000ff, /* dst_mask */
212 FALSE), /* pcrel_offset */
213
214 /* TLS initial execution variable reference. */
215 HOWTO (R_68K_TLS_IE32, /* type */
216 0, /* rightshift */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
218 32, /* bitsize */
219 FALSE, /* pc_relative */
220 0, /* bitpos */
221 complain_overflow_bitfield, /* complain_on_overflow */
222 bfd_elf_generic_reloc, /* special_function */
223 "R_68K_TLS_IE32", /* name */
224 FALSE, /* partial_inplace */
225 0, /* src_mask */
226 0xffffffff, /* dst_mask */
227 FALSE), /* pcrel_offset */
228
229 HOWTO (R_68K_TLS_IE16, /* type */
230 0, /* rightshift */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
232 16, /* bitsize */
233 FALSE, /* pc_relative */
234 0, /* bitpos */
235 complain_overflow_signed, /* complain_on_overflow */
236 bfd_elf_generic_reloc, /* special_function */
237 "R_68K_TLS_IE16", /* name */
238 FALSE, /* partial_inplace */
239 0, /* src_mask */
240 0x0000ffff, /* dst_mask */
241 FALSE), /* pcrel_offset */
242
243 HOWTO (R_68K_TLS_IE8, /* type */
244 0, /* rightshift */
245 0, /* size (0 = byte, 1 = short, 2 = long) */
246 8, /* bitsize */
247 FALSE, /* pc_relative */
248 0, /* bitpos */
249 complain_overflow_signed, /* complain_on_overflow */
250 bfd_elf_generic_reloc, /* special_function */
251 "R_68K_TLS_IE8", /* name */
252 FALSE, /* partial_inplace */
253 0, /* src_mask */
254 0x000000ff, /* dst_mask */
255 FALSE), /* pcrel_offset */
256
257 /* TLS local execution variable reference. */
258 HOWTO (R_68K_TLS_LE32, /* type */
259 0, /* rightshift */
260 2, /* size (0 = byte, 1 = short, 2 = long) */
261 32, /* bitsize */
262 FALSE, /* pc_relative */
263 0, /* bitpos */
264 complain_overflow_bitfield, /* complain_on_overflow */
265 bfd_elf_generic_reloc, /* special_function */
266 "R_68K_TLS_LE32", /* name */
267 FALSE, /* partial_inplace */
268 0, /* src_mask */
269 0xffffffff, /* dst_mask */
270 FALSE), /* pcrel_offset */
271
272 HOWTO (R_68K_TLS_LE16, /* type */
273 0, /* rightshift */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
275 16, /* bitsize */
276 FALSE, /* pc_relative */
277 0, /* bitpos */
278 complain_overflow_signed, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_68K_TLS_LE16", /* name */
281 FALSE, /* partial_inplace */
282 0, /* src_mask */
283 0x0000ffff, /* dst_mask */
284 FALSE), /* pcrel_offset */
285
286 HOWTO (R_68K_TLS_LE8, /* type */
287 0, /* rightshift */
288 0, /* size (0 = byte, 1 = short, 2 = long) */
289 8, /* bitsize */
290 FALSE, /* pc_relative */
291 0, /* bitpos */
292 complain_overflow_signed, /* complain_on_overflow */
293 bfd_elf_generic_reloc, /* special_function */
294 "R_68K_TLS_LE8", /* name */
295 FALSE, /* partial_inplace */
296 0, /* src_mask */
297 0x000000ff, /* dst_mask */
298 FALSE), /* pcrel_offset */
299
300 /* TLS GD/LD dynamic relocations. */
301 HOWTO (R_68K_TLS_DTPMOD32, /* type */
302 0, /* rightshift */
303 2, /* size (0 = byte, 1 = short, 2 = long) */
304 32, /* bitsize */
305 FALSE, /* pc_relative */
306 0, /* bitpos */
307 complain_overflow_dont, /* complain_on_overflow */
308 bfd_elf_generic_reloc, /* special_function */
309 "R_68K_TLS_DTPMOD32", /* name */
310 FALSE, /* partial_inplace */
311 0, /* src_mask */
312 0xffffffff, /* dst_mask */
313 FALSE), /* pcrel_offset */
314
315 HOWTO (R_68K_TLS_DTPREL32, /* type */
316 0, /* rightshift */
317 2, /* size (0 = byte, 1 = short, 2 = long) */
318 32, /* bitsize */
319 FALSE, /* pc_relative */
320 0, /* bitpos */
321 complain_overflow_dont, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_68K_TLS_DTPREL32", /* name */
324 FALSE, /* partial_inplace */
325 0, /* src_mask */
326 0xffffffff, /* dst_mask */
327 FALSE), /* pcrel_offset */
328
329 HOWTO (R_68K_TLS_TPREL32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_dont, /* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_68K_TLS_TPREL32", /* name */
338 FALSE, /* partial_inplace */
339 0, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
342 };
343
344 static bfd_boolean
345 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
346 {
347 unsigned int indx = ELF32_R_TYPE (dst->r_info);
348
349 if (indx >= (unsigned int) R_68K_max)
350 {
351 /* xgettext:c-format */
352 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
353 abfd, indx);
354 bfd_set_error (bfd_error_bad_value);
355 return FALSE;
356 }
357 cache_ptr->howto = &howto_table[indx];
358 return TRUE;
359 }
360
361 #define elf_info_to_howto rtype_to_howto
362
363 static const struct
364 {
365 bfd_reloc_code_real_type bfd_val;
366 int elf_val;
367 }
368 reloc_map[] =
369 {
370 { BFD_RELOC_NONE, R_68K_NONE },
371 { BFD_RELOC_32, R_68K_32 },
372 { BFD_RELOC_16, R_68K_16 },
373 { BFD_RELOC_8, R_68K_8 },
374 { BFD_RELOC_32_PCREL, R_68K_PC32 },
375 { BFD_RELOC_16_PCREL, R_68K_PC16 },
376 { BFD_RELOC_8_PCREL, R_68K_PC8 },
377 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
378 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
379 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
380 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
381 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
382 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
383 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
384 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
385 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
386 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
387 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
388 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
389 { BFD_RELOC_NONE, R_68K_COPY },
390 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
391 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
392 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
393 { BFD_RELOC_CTOR, R_68K_32 },
394 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
395 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
396 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
397 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
398 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
399 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
400 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
401 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
402 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
403 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
404 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
405 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
406 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
407 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
408 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
409 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
410 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
411 };
412
413 static reloc_howto_type *
414 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
415 bfd_reloc_code_real_type code)
416 {
417 unsigned int i;
418 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
419 {
420 if (reloc_map[i].bfd_val == code)
421 return &howto_table[reloc_map[i].elf_val];
422 }
423 return 0;
424 }
425
426 static reloc_howto_type *
427 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
428 {
429 unsigned int i;
430
431 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
432 if (howto_table[i].name != NULL
433 && strcasecmp (howto_table[i].name, r_name) == 0)
434 return &howto_table[i];
435
436 return NULL;
437 }
438
439 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
440 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
441 #define ELF_ARCH bfd_arch_m68k
442 #define ELF_TARGET_ID M68K_ELF_DATA
443 \f
444 /* Functions for the m68k ELF linker. */
445
446 /* The name of the dynamic interpreter. This is put in the .interp
447 section. */
448
449 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
450
451 /* Describes one of the various PLT styles. */
452
453 struct elf_m68k_plt_info
454 {
455 /* The size of each PLT entry. */
456 bfd_vma size;
457
458 /* The template for the first PLT entry. */
459 const bfd_byte *plt0_entry;
460
461 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
462 The comments by each member indicate the value that the relocation
463 is against. */
464 struct {
465 unsigned int got4; /* .got + 4 */
466 unsigned int got8; /* .got + 8 */
467 } plt0_relocs;
468
469 /* The template for a symbol's PLT entry. */
470 const bfd_byte *symbol_entry;
471
472 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
473 The comments by each member indicate the value that the relocation
474 is against. */
475 struct {
476 unsigned int got; /* the symbol's .got.plt entry */
477 unsigned int plt; /* .plt */
478 } symbol_relocs;
479
480 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
481 The stub starts with "move.l #relocoffset,%d0". */
482 bfd_vma symbol_resolve_entry;
483 };
484
485 /* The size in bytes of an entry in the procedure linkage table. */
486
487 #define PLT_ENTRY_SIZE 20
488
489 /* The first entry in a procedure linkage table looks like this. See
490 the SVR4 ABI m68k supplement to see how this works. */
491
492 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
493 {
494 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
495 0, 0, 0, 2, /* + (.got + 4) - . */
496 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
497 0, 0, 0, 2, /* + (.got + 8) - . */
498 0, 0, 0, 0 /* pad out to 20 bytes. */
499 };
500
501 /* Subsequent entries in a procedure linkage table look like this. */
502
503 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
504 {
505 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
506 0, 0, 0, 2, /* + (.got.plt entry) - . */
507 0x2f, 0x3c, /* move.l #offset,-(%sp) */
508 0, 0, 0, 0, /* + reloc index */
509 0x60, 0xff, /* bra.l .plt */
510 0, 0, 0, 0 /* + .plt - . */
511 };
512
513 static const struct elf_m68k_plt_info elf_m68k_plt_info =
514 {
515 PLT_ENTRY_SIZE,
516 elf_m68k_plt0_entry, { 4, 12 },
517 elf_m68k_plt_entry, { 4, 16 }, 8
518 };
519
520 #define ISAB_PLT_ENTRY_SIZE 24
521
522 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
523 {
524 0x20, 0x3c, /* move.l #offset,%d0 */
525 0, 0, 0, 0, /* + (.got + 4) - . */
526 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
527 0x20, 0x3c, /* move.l #offset,%d0 */
528 0, 0, 0, 0, /* + (.got + 8) - . */
529 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
530 0x4e, 0xd0, /* jmp (%a0) */
531 0x4e, 0x71 /* nop */
532 };
533
534 /* Subsequent entries in a procedure linkage table look like this. */
535
536 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
537 {
538 0x20, 0x3c, /* move.l #offset,%d0 */
539 0, 0, 0, 0, /* + (.got.plt entry) - . */
540 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
541 0x4e, 0xd0, /* jmp (%a0) */
542 0x2f, 0x3c, /* move.l #offset,-(%sp) */
543 0, 0, 0, 0, /* + reloc index */
544 0x60, 0xff, /* bra.l .plt */
545 0, 0, 0, 0 /* + .plt - . */
546 };
547
548 static const struct elf_m68k_plt_info elf_isab_plt_info =
549 {
550 ISAB_PLT_ENTRY_SIZE,
551 elf_isab_plt0_entry, { 2, 12 },
552 elf_isab_plt_entry, { 2, 20 }, 12
553 };
554
555 #define ISAC_PLT_ENTRY_SIZE 24
556
557 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
558 {
559 0x20, 0x3c, /* move.l #offset,%d0 */
560 0, 0, 0, 0, /* replaced with .got + 4 - . */
561 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
562 0x20, 0x3c, /* move.l #offset,%d0 */
563 0, 0, 0, 0, /* replaced with .got + 8 - . */
564 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
565 0x4e, 0xd0, /* jmp (%a0) */
566 0x4e, 0x71 /* nop */
567 };
568
569 /* Subsequent entries in a procedure linkage table look like this. */
570
571 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
572 {
573 0x20, 0x3c, /* move.l #offset,%d0 */
574 0, 0, 0, 0, /* replaced with (.got entry) - . */
575 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
576 0x4e, 0xd0, /* jmp (%a0) */
577 0x2f, 0x3c, /* move.l #offset,-(%sp) */
578 0, 0, 0, 0, /* replaced with offset into relocation table */
579 0x61, 0xff, /* bsr.l .plt */
580 0, 0, 0, 0 /* replaced with .plt - . */
581 };
582
583 static const struct elf_m68k_plt_info elf_isac_plt_info =
584 {
585 ISAC_PLT_ENTRY_SIZE,
586 elf_isac_plt0_entry, { 2, 12},
587 elf_isac_plt_entry, { 2, 20 }, 12
588 };
589
590 #define CPU32_PLT_ENTRY_SIZE 24
591 /* Procedure linkage table entries for the cpu32 */
592 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
593 {
594 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
595 0, 0, 0, 2, /* + (.got + 4) - . */
596 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
597 0, 0, 0, 2, /* + (.got + 8) - . */
598 0x4e, 0xd1, /* jmp %a1@ */
599 0, 0, 0, 0, /* pad out to 24 bytes. */
600 0, 0
601 };
602
603 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
604 {
605 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
606 0, 0, 0, 2, /* + (.got.plt entry) - . */
607 0x4e, 0xd1, /* jmp %a1@ */
608 0x2f, 0x3c, /* move.l #offset,-(%sp) */
609 0, 0, 0, 0, /* + reloc index */
610 0x60, 0xff, /* bra.l .plt */
611 0, 0, 0, 0, /* + .plt - . */
612 0, 0
613 };
614
615 static const struct elf_m68k_plt_info elf_cpu32_plt_info =
616 {
617 CPU32_PLT_ENTRY_SIZE,
618 elf_cpu32_plt0_entry, { 4, 12 },
619 elf_cpu32_plt_entry, { 4, 18 }, 10
620 };
621
622 /* The m68k linker needs to keep track of the number of relocs that it
623 decides to copy in check_relocs for each symbol. This is so that it
624 can discard PC relative relocs if it doesn't need them when linking
625 with -Bsymbolic. We store the information in a field extending the
626 regular ELF linker hash table. */
627
628 /* This structure keeps track of the number of PC relative relocs we have
629 copied for a given symbol. */
630
631 struct elf_m68k_pcrel_relocs_copied
632 {
633 /* Next section. */
634 struct elf_m68k_pcrel_relocs_copied *next;
635 /* A section in dynobj. */
636 asection *section;
637 /* Number of relocs copied in this section. */
638 bfd_size_type count;
639 };
640
641 /* Forward declaration. */
642 struct elf_m68k_got_entry;
643
644 /* m68k ELF linker hash entry. */
645
646 struct elf_m68k_link_hash_entry
647 {
648 struct elf_link_hash_entry root;
649
650 /* Number of PC relative relocs copied for this symbol. */
651 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
652
653 /* Key to got_entries. */
654 unsigned long got_entry_key;
655
656 /* List of GOT entries for this symbol. This list is build during
657 offset finalization and is used within elf_m68k_finish_dynamic_symbol
658 to traverse all GOT entries for a particular symbol.
659
660 ??? We could've used root.got.glist field instead, but having
661 a separate field is cleaner. */
662 struct elf_m68k_got_entry *glist;
663 };
664
665 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
666
667 /* Key part of GOT entry in hashtable. */
668 struct elf_m68k_got_entry_key
669 {
670 /* BFD in which this symbol was defined. NULL for global symbols. */
671 const bfd *bfd;
672
673 /* Symbol index. Either local symbol index or h->got_entry_key. */
674 unsigned long symndx;
675
676 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
677 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
678
679 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
680 matters. That is, we distinguish between, say, R_68K_GOT16O
681 and R_68K_GOT32O when allocating offsets, but they are considered to be
682 the same when searching got->entries. */
683 enum elf_m68k_reloc_type type;
684 };
685
686 /* Size of the GOT offset suitable for relocation. */
687 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
688
689 /* Entry of the GOT. */
690 struct elf_m68k_got_entry
691 {
692 /* GOT entries are put into a got->entries hashtable. This is the key. */
693 struct elf_m68k_got_entry_key key_;
694
695 /* GOT entry data. We need s1 before offset finalization and s2 after. */
696 union
697 {
698 struct
699 {
700 /* Number of times this entry is referenced. */
701 bfd_vma refcount;
702 } s1;
703
704 struct
705 {
706 /* Offset from the start of .got section. To calculate offset relative
707 to GOT pointer one should subtract got->offset from this value. */
708 bfd_vma offset;
709
710 /* Pointer to the next GOT entry for this global symbol.
711 Symbols have at most one entry in one GOT, but might
712 have entries in more than one GOT.
713 Root of this list is h->glist.
714 NULL for local symbols. */
715 struct elf_m68k_got_entry *next;
716 } s2;
717 } u;
718 };
719
720 /* Return representative type for relocation R_TYPE.
721 This is used to avoid enumerating many relocations in comparisons,
722 switches etc. */
723
724 static enum elf_m68k_reloc_type
725 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
726 {
727 switch (r_type)
728 {
729 /* In most cases R_68K_GOTx relocations require the very same
730 handling as R_68K_GOT32O relocation. In cases when we need
731 to distinguish between the two, we use explicitly compare against
732 r_type. */
733 case R_68K_GOT32:
734 case R_68K_GOT16:
735 case R_68K_GOT8:
736 case R_68K_GOT32O:
737 case R_68K_GOT16O:
738 case R_68K_GOT8O:
739 return R_68K_GOT32O;
740
741 case R_68K_TLS_GD32:
742 case R_68K_TLS_GD16:
743 case R_68K_TLS_GD8:
744 return R_68K_TLS_GD32;
745
746 case R_68K_TLS_LDM32:
747 case R_68K_TLS_LDM16:
748 case R_68K_TLS_LDM8:
749 return R_68K_TLS_LDM32;
750
751 case R_68K_TLS_IE32:
752 case R_68K_TLS_IE16:
753 case R_68K_TLS_IE8:
754 return R_68K_TLS_IE32;
755
756 default:
757 BFD_ASSERT (FALSE);
758 return 0;
759 }
760 }
761
762 /* Return size of the GOT entry offset for relocation R_TYPE. */
763
764 static enum elf_m68k_got_offset_size
765 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
766 {
767 switch (r_type)
768 {
769 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
770 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
771 case R_68K_TLS_IE32:
772 return R_32;
773
774 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
775 case R_68K_TLS_IE16:
776 return R_16;
777
778 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
779 case R_68K_TLS_IE8:
780 return R_8;
781
782 default:
783 BFD_ASSERT (FALSE);
784 return 0;
785 }
786 }
787
788 /* Return number of GOT entries we need to allocate in GOT for
789 relocation R_TYPE. */
790
791 static bfd_vma
792 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
793 {
794 switch (elf_m68k_reloc_got_type (r_type))
795 {
796 case R_68K_GOT32O:
797 case R_68K_TLS_IE32:
798 return 1;
799
800 case R_68K_TLS_GD32:
801 case R_68K_TLS_LDM32:
802 return 2;
803
804 default:
805 BFD_ASSERT (FALSE);
806 return 0;
807 }
808 }
809
810 /* Return TRUE if relocation R_TYPE is a TLS one. */
811
812 static bfd_boolean
813 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
814 {
815 switch (r_type)
816 {
817 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
818 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
819 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
820 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
821 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
822 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
823 return TRUE;
824
825 default:
826 return FALSE;
827 }
828 }
829
830 /* Data structure representing a single GOT. */
831 struct elf_m68k_got
832 {
833 /* Hashtable of 'struct elf_m68k_got_entry's.
834 Starting size of this table is the maximum number of
835 R_68K_GOT8O entries. */
836 htab_t entries;
837
838 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
839 several GOT slots.
840
841 n_slots[R_8] is the count of R_8 slots in this GOT.
842 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
843 in this GOT.
844 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
845 in this GOT. This is the total number of slots. */
846 bfd_vma n_slots[R_LAST];
847
848 /* Number of local (entry->key_.h == NULL) slots in this GOT.
849 This is only used to properly calculate size of .rela.got section;
850 see elf_m68k_partition_multi_got. */
851 bfd_vma local_n_slots;
852
853 /* Offset of this GOT relative to beginning of .got section. */
854 bfd_vma offset;
855 };
856
857 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
858 struct elf_m68k_bfd2got_entry
859 {
860 /* BFD. */
861 const bfd *bfd;
862
863 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
864 GOT structure. After partitioning several BFD's might [and often do]
865 share a single GOT. */
866 struct elf_m68k_got *got;
867 };
868
869 /* The main data structure holding all the pieces. */
870 struct elf_m68k_multi_got
871 {
872 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
873 here, then it doesn't need a GOT (this includes the case of a BFD
874 having an empty GOT).
875
876 ??? This hashtable can be replaced by an array indexed by bfd->id. */
877 htab_t bfd2got;
878
879 /* Next symndx to assign a global symbol.
880 h->got_entry_key is initialized from this counter. */
881 unsigned long global_symndx;
882 };
883
884 /* m68k ELF linker hash table. */
885
886 struct elf_m68k_link_hash_table
887 {
888 struct elf_link_hash_table root;
889
890 /* Small local sym cache. */
891 struct sym_cache sym_cache;
892
893 /* The PLT format used by this link, or NULL if the format has not
894 yet been chosen. */
895 const struct elf_m68k_plt_info *plt_info;
896
897 /* True, if GP is loaded within each function which uses it.
898 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
899 bfd_boolean local_gp_p;
900
901 /* Switch controlling use of negative offsets to double the size of GOTs. */
902 bfd_boolean use_neg_got_offsets_p;
903
904 /* Switch controlling generation of multiple GOTs. */
905 bfd_boolean allow_multigot_p;
906
907 /* Multi-GOT data structure. */
908 struct elf_m68k_multi_got multi_got_;
909 };
910
911 /* Get the m68k ELF linker hash table from a link_info structure. */
912
913 #define elf_m68k_hash_table(p) \
914 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
915 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
916
917 /* Shortcut to multi-GOT data. */
918 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
919
920 /* Create an entry in an m68k ELF linker hash table. */
921
922 static struct bfd_hash_entry *
923 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
924 struct bfd_hash_table *table,
925 const char *string)
926 {
927 struct bfd_hash_entry *ret = entry;
928
929 /* Allocate the structure if it has not already been allocated by a
930 subclass. */
931 if (ret == NULL)
932 ret = bfd_hash_allocate (table,
933 sizeof (struct elf_m68k_link_hash_entry));
934 if (ret == NULL)
935 return ret;
936
937 /* Call the allocation method of the superclass. */
938 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
939 if (ret != NULL)
940 {
941 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
942 elf_m68k_hash_entry (ret)->got_entry_key = 0;
943 elf_m68k_hash_entry (ret)->glist = NULL;
944 }
945
946 return ret;
947 }
948
949 /* Destroy an m68k ELF linker hash table. */
950
951 static void
952 elf_m68k_link_hash_table_free (bfd *obfd)
953 {
954 struct elf_m68k_link_hash_table *htab;
955
956 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
957
958 if (htab->multi_got_.bfd2got != NULL)
959 {
960 htab_delete (htab->multi_got_.bfd2got);
961 htab->multi_got_.bfd2got = NULL;
962 }
963 _bfd_elf_link_hash_table_free (obfd);
964 }
965
966 /* Create an m68k ELF linker hash table. */
967
968 static struct bfd_link_hash_table *
969 elf_m68k_link_hash_table_create (bfd *abfd)
970 {
971 struct elf_m68k_link_hash_table *ret;
972 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
973
974 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
975 if (ret == (struct elf_m68k_link_hash_table *) NULL)
976 return NULL;
977
978 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
979 elf_m68k_link_hash_newfunc,
980 sizeof (struct elf_m68k_link_hash_entry),
981 M68K_ELF_DATA))
982 {
983 free (ret);
984 return NULL;
985 }
986 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
987
988 ret->multi_got_.global_symndx = 1;
989
990 return &ret->root.root;
991 }
992
993 /* Set the right machine number. */
994
995 static bfd_boolean
996 elf32_m68k_object_p (bfd *abfd)
997 {
998 unsigned int mach = 0;
999 unsigned features = 0;
1000 flagword eflags = elf_elfheader (abfd)->e_flags;
1001
1002 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1003 features |= m68000;
1004 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1005 features |= cpu32;
1006 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1007 features |= fido_a;
1008 else
1009 {
1010 switch (eflags & EF_M68K_CF_ISA_MASK)
1011 {
1012 case EF_M68K_CF_ISA_A_NODIV:
1013 features |= mcfisa_a;
1014 break;
1015 case EF_M68K_CF_ISA_A:
1016 features |= mcfisa_a|mcfhwdiv;
1017 break;
1018 case EF_M68K_CF_ISA_A_PLUS:
1019 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1020 break;
1021 case EF_M68K_CF_ISA_B_NOUSP:
1022 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1023 break;
1024 case EF_M68K_CF_ISA_B:
1025 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1026 break;
1027 case EF_M68K_CF_ISA_C:
1028 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1029 break;
1030 case EF_M68K_CF_ISA_C_NODIV:
1031 features |= mcfisa_a|mcfisa_c|mcfusp;
1032 break;
1033 }
1034 switch (eflags & EF_M68K_CF_MAC_MASK)
1035 {
1036 case EF_M68K_CF_MAC:
1037 features |= mcfmac;
1038 break;
1039 case EF_M68K_CF_EMAC:
1040 features |= mcfemac;
1041 break;
1042 }
1043 if (eflags & EF_M68K_CF_FLOAT)
1044 features |= cfloat;
1045 }
1046
1047 mach = bfd_m68k_features_to_mach (features);
1048 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1049
1050 return TRUE;
1051 }
1052
1053 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1054 field based on the machine number. */
1055
1056 static void
1057 elf_m68k_final_write_processing (bfd *abfd,
1058 bfd_boolean linker ATTRIBUTE_UNUSED)
1059 {
1060 int mach = bfd_get_mach (abfd);
1061 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1062
1063 if (!e_flags)
1064 {
1065 unsigned int arch_mask;
1066
1067 arch_mask = bfd_m68k_mach_to_features (mach);
1068
1069 if (arch_mask & m68000)
1070 e_flags = EF_M68K_M68000;
1071 else if (arch_mask & cpu32)
1072 e_flags = EF_M68K_CPU32;
1073 else if (arch_mask & fido_a)
1074 e_flags = EF_M68K_FIDO;
1075 else
1076 {
1077 switch (arch_mask
1078 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1079 {
1080 case mcfisa_a:
1081 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1082 break;
1083 case mcfisa_a | mcfhwdiv:
1084 e_flags |= EF_M68K_CF_ISA_A;
1085 break;
1086 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1087 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1088 break;
1089 case mcfisa_a | mcfisa_b | mcfhwdiv:
1090 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1091 break;
1092 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1093 e_flags |= EF_M68K_CF_ISA_B;
1094 break;
1095 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1096 e_flags |= EF_M68K_CF_ISA_C;
1097 break;
1098 case mcfisa_a | mcfisa_c | mcfusp:
1099 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1100 break;
1101 }
1102 if (arch_mask & mcfmac)
1103 e_flags |= EF_M68K_CF_MAC;
1104 else if (arch_mask & mcfemac)
1105 e_flags |= EF_M68K_CF_EMAC;
1106 if (arch_mask & cfloat)
1107 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1108 }
1109 elf_elfheader (abfd)->e_flags = e_flags;
1110 }
1111 }
1112
1113 /* Keep m68k-specific flags in the ELF header. */
1114
1115 static bfd_boolean
1116 elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1117 {
1118 elf_elfheader (abfd)->e_flags = flags;
1119 elf_flags_init (abfd) = TRUE;
1120 return TRUE;
1121 }
1122
1123 /* Merge backend specific data from an object file to the output
1124 object file when linking. */
1125 static bfd_boolean
1126 elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1127 {
1128 bfd *obfd = info->output_bfd;
1129 flagword out_flags;
1130 flagword in_flags;
1131 flagword out_isa;
1132 flagword in_isa;
1133 const bfd_arch_info_type *arch_info;
1134
1135 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1136 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1137 return FALSE;
1138
1139 /* Get the merged machine. This checks for incompatibility between
1140 Coldfire & non-Coldfire flags, incompability between different
1141 Coldfire ISAs, and incompability between different MAC types. */
1142 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1143 if (!arch_info)
1144 return FALSE;
1145
1146 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1147
1148 in_flags = elf_elfheader (ibfd)->e_flags;
1149 if (!elf_flags_init (obfd))
1150 {
1151 elf_flags_init (obfd) = TRUE;
1152 out_flags = in_flags;
1153 }
1154 else
1155 {
1156 out_flags = elf_elfheader (obfd)->e_flags;
1157 unsigned int variant_mask;
1158
1159 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1160 variant_mask = 0;
1161 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1162 variant_mask = 0;
1163 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1164 variant_mask = 0;
1165 else
1166 variant_mask = EF_M68K_CF_ISA_MASK;
1167
1168 in_isa = (in_flags & variant_mask);
1169 out_isa = (out_flags & variant_mask);
1170 if (in_isa > out_isa)
1171 out_flags ^= in_isa ^ out_isa;
1172 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1173 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1174 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1175 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1176 out_flags = EF_M68K_FIDO;
1177 else
1178 out_flags |= in_flags ^ in_isa;
1179 }
1180 elf_elfheader (obfd)->e_flags = out_flags;
1181
1182 return TRUE;
1183 }
1184
1185 /* Display the flags field. */
1186
1187 static bfd_boolean
1188 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1189 {
1190 FILE *file = (FILE *) ptr;
1191 flagword eflags = elf_elfheader (abfd)->e_flags;
1192
1193 BFD_ASSERT (abfd != NULL && ptr != NULL);
1194
1195 /* Print normal ELF private data. */
1196 _bfd_elf_print_private_bfd_data (abfd, ptr);
1197
1198 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1199
1200 /* xgettext:c-format */
1201 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1202
1203 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1204 fprintf (file, " [m68000]");
1205 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1206 fprintf (file, " [cpu32]");
1207 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1208 fprintf (file, " [fido]");
1209 else
1210 {
1211 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1212 fprintf (file, " [cfv4e]");
1213
1214 if (eflags & EF_M68K_CF_ISA_MASK)
1215 {
1216 char const *isa = _("unknown");
1217 char const *mac = _("unknown");
1218 char const *additional = "";
1219
1220 switch (eflags & EF_M68K_CF_ISA_MASK)
1221 {
1222 case EF_M68K_CF_ISA_A_NODIV:
1223 isa = "A";
1224 additional = " [nodiv]";
1225 break;
1226 case EF_M68K_CF_ISA_A:
1227 isa = "A";
1228 break;
1229 case EF_M68K_CF_ISA_A_PLUS:
1230 isa = "A+";
1231 break;
1232 case EF_M68K_CF_ISA_B_NOUSP:
1233 isa = "B";
1234 additional = " [nousp]";
1235 break;
1236 case EF_M68K_CF_ISA_B:
1237 isa = "B";
1238 break;
1239 case EF_M68K_CF_ISA_C:
1240 isa = "C";
1241 break;
1242 case EF_M68K_CF_ISA_C_NODIV:
1243 isa = "C";
1244 additional = " [nodiv]";
1245 break;
1246 }
1247 fprintf (file, " [isa %s]%s", isa, additional);
1248
1249 if (eflags & EF_M68K_CF_FLOAT)
1250 fprintf (file, " [float]");
1251
1252 switch (eflags & EF_M68K_CF_MAC_MASK)
1253 {
1254 case 0:
1255 mac = NULL;
1256 break;
1257 case EF_M68K_CF_MAC:
1258 mac = "mac";
1259 break;
1260 case EF_M68K_CF_EMAC:
1261 mac = "emac";
1262 break;
1263 case EF_M68K_CF_EMAC_B:
1264 mac = "emac_b";
1265 break;
1266 }
1267 if (mac)
1268 fprintf (file, " [%s]", mac);
1269 }
1270 }
1271
1272 fputc ('\n', file);
1273
1274 return TRUE;
1275 }
1276
1277 /* Multi-GOT support implementation design:
1278
1279 Multi-GOT starts in check_relocs hook. There we scan all
1280 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1281 for it. If a single BFD appears to require too many GOT slots with
1282 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1283 to user.
1284 After check_relocs has been invoked for each input BFD, we have
1285 constructed a GOT for each input BFD.
1286
1287 To minimize total number of GOTs required for a particular output BFD
1288 (as some environments support only 1 GOT per output object) we try
1289 to merge some of the GOTs to share an offset space. Ideally [and in most
1290 cases] we end up with a single GOT. In cases when there are too many
1291 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1292 several GOTs, assuming the environment can handle them.
1293
1294 Partitioning is done in elf_m68k_partition_multi_got. We start with
1295 an empty GOT and traverse bfd2got hashtable putting got_entries from
1296 local GOTs to the new 'big' one. We do that by constructing an
1297 intermediate GOT holding all the entries the local GOT has and the big
1298 GOT lacks. Then we check if there is room in the big GOT to accomodate
1299 all the entries from diff. On success we add those entries to the big
1300 GOT; on failure we start the new 'big' GOT and retry the adding of
1301 entries from the local GOT. Note that this retry will always succeed as
1302 each local GOT doesn't overflow the limits. After partitioning we
1303 end up with each bfd assigned one of the big GOTs. GOT entries in the
1304 big GOTs are initialized with GOT offsets. Note that big GOTs are
1305 positioned consequently in program space and represent a single huge GOT
1306 to the outside world.
1307
1308 After that we get to elf_m68k_relocate_section. There we
1309 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1310 relocations to refer to appropriate [assigned to current input_bfd]
1311 big GOT.
1312
1313 Notes:
1314
1315 GOT entry type: We have several types of GOT entries.
1316 * R_8 type is used in entries for symbols that have at least one
1317 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1318 such entries in one GOT.
1319 * R_16 type is used in entries for symbols that have at least one
1320 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1321 We can have at most 0x4000 such entries in one GOT.
1322 * R_32 type is used in all other cases. We can have as many
1323 such entries in one GOT as we'd like.
1324 When counting relocations we have to include the count of the smaller
1325 ranged relocations in the counts of the larger ranged ones in order
1326 to correctly detect overflow.
1327
1328 Sorting the GOT: In each GOT starting offsets are assigned to
1329 R_8 entries, which are followed by R_16 entries, and
1330 R_32 entries go at the end. See finalize_got_offsets for details.
1331
1332 Negative GOT offsets: To double usable offset range of GOTs we use
1333 negative offsets. As we assign entries with GOT offsets relative to
1334 start of .got section, the offset values are positive. They become
1335 negative only in relocate_section where got->offset value is
1336 subtracted from them.
1337
1338 3 special GOT entries: There are 3 special GOT entries used internally
1339 by loader. These entries happen to be placed to .got.plt section,
1340 so we don't do anything about them in multi-GOT support.
1341
1342 Memory management: All data except for hashtables
1343 multi_got->bfd2got and got->entries are allocated on
1344 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1345 to most functions), so we don't need to care to free them. At the
1346 moment of allocation hashtables are being linked into main data
1347 structure (multi_got), all pieces of which are reachable from
1348 elf_m68k_multi_got (info). We deallocate them in
1349 elf_m68k_link_hash_table_free. */
1350
1351 /* Initialize GOT. */
1352
1353 static void
1354 elf_m68k_init_got (struct elf_m68k_got *got)
1355 {
1356 got->entries = NULL;
1357 got->n_slots[R_8] = 0;
1358 got->n_slots[R_16] = 0;
1359 got->n_slots[R_32] = 0;
1360 got->local_n_slots = 0;
1361 got->offset = (bfd_vma) -1;
1362 }
1363
1364 /* Destruct GOT. */
1365
1366 static void
1367 elf_m68k_clear_got (struct elf_m68k_got *got)
1368 {
1369 if (got->entries != NULL)
1370 {
1371 htab_delete (got->entries);
1372 got->entries = NULL;
1373 }
1374 }
1375
1376 /* Create and empty GOT structure. INFO is the context where memory
1377 should be allocated. */
1378
1379 static struct elf_m68k_got *
1380 elf_m68k_create_empty_got (struct bfd_link_info *info)
1381 {
1382 struct elf_m68k_got *got;
1383
1384 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1385 if (got == NULL)
1386 return NULL;
1387
1388 elf_m68k_init_got (got);
1389
1390 return got;
1391 }
1392
1393 /* Initialize KEY. */
1394
1395 static void
1396 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1397 struct elf_link_hash_entry *h,
1398 const bfd *abfd, unsigned long symndx,
1399 enum elf_m68k_reloc_type reloc_type)
1400 {
1401 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1402 /* All TLS_LDM relocations share a single GOT entry. */
1403 {
1404 key->bfd = NULL;
1405 key->symndx = 0;
1406 }
1407 else if (h != NULL)
1408 /* Global symbols are identified with their got_entry_key. */
1409 {
1410 key->bfd = NULL;
1411 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1412 BFD_ASSERT (key->symndx != 0);
1413 }
1414 else
1415 /* Local symbols are identified by BFD they appear in and symndx. */
1416 {
1417 key->bfd = abfd;
1418 key->symndx = symndx;
1419 }
1420
1421 key->type = reloc_type;
1422 }
1423
1424 /* Calculate hash of got_entry.
1425 ??? Is it good? */
1426
1427 static hashval_t
1428 elf_m68k_got_entry_hash (const void *_entry)
1429 {
1430 const struct elf_m68k_got_entry_key *key;
1431
1432 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1433
1434 return (key->symndx
1435 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1436 + elf_m68k_reloc_got_type (key->type));
1437 }
1438
1439 /* Check if two got entries are equal. */
1440
1441 static int
1442 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1443 {
1444 const struct elf_m68k_got_entry_key *key1;
1445 const struct elf_m68k_got_entry_key *key2;
1446
1447 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1448 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1449
1450 return (key1->bfd == key2->bfd
1451 && key1->symndx == key2->symndx
1452 && (elf_m68k_reloc_got_type (key1->type)
1453 == elf_m68k_reloc_got_type (key2->type)));
1454 }
1455
1456 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1457 and one extra R_32 slots to simplify handling of 2-slot entries during
1458 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1459
1460 /* Maximal number of R_8 slots in a single GOT. */
1461 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1462 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1463 ? (0x40 - 1) \
1464 : 0x20)
1465
1466 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1467 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1468 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1469 ? (0x4000 - 2) \
1470 : 0x2000)
1471
1472 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1473 the entry cannot be found.
1474 FIND_OR_CREATE - search for an existing entry, but create new if there's
1475 no such.
1476 MUST_FIND - search for an existing entry and assert that it exist.
1477 MUST_CREATE - assert that there's no such entry and create new one. */
1478 enum elf_m68k_get_entry_howto
1479 {
1480 SEARCH,
1481 FIND_OR_CREATE,
1482 MUST_FIND,
1483 MUST_CREATE
1484 };
1485
1486 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1487 INFO is context in which memory should be allocated (can be NULL if
1488 HOWTO is SEARCH or MUST_FIND). */
1489
1490 static struct elf_m68k_got_entry *
1491 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1492 const struct elf_m68k_got_entry_key *key,
1493 enum elf_m68k_get_entry_howto howto,
1494 struct bfd_link_info *info)
1495 {
1496 struct elf_m68k_got_entry entry_;
1497 struct elf_m68k_got_entry *entry;
1498 void **ptr;
1499
1500 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1501
1502 if (got->entries == NULL)
1503 /* This is the first entry in ABFD. Initialize hashtable. */
1504 {
1505 if (howto == SEARCH)
1506 return NULL;
1507
1508 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1509 (info),
1510 elf_m68k_got_entry_hash,
1511 elf_m68k_got_entry_eq, NULL);
1512 if (got->entries == NULL)
1513 {
1514 bfd_set_error (bfd_error_no_memory);
1515 return NULL;
1516 }
1517 }
1518
1519 entry_.key_ = *key;
1520 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1521 ? INSERT : NO_INSERT));
1522 if (ptr == NULL)
1523 {
1524 if (howto == SEARCH)
1525 /* Entry not found. */
1526 return NULL;
1527
1528 /* We're out of memory. */
1529 bfd_set_error (bfd_error_no_memory);
1530 return NULL;
1531 }
1532
1533 if (*ptr == NULL)
1534 /* We didn't find the entry and we're asked to create a new one. */
1535 {
1536 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1537
1538 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1539 if (entry == NULL)
1540 return NULL;
1541
1542 /* Initialize new entry. */
1543 entry->key_ = *key;
1544
1545 entry->u.s1.refcount = 0;
1546
1547 /* Mark the entry as not initialized. */
1548 entry->key_.type = R_68K_max;
1549
1550 *ptr = entry;
1551 }
1552 else
1553 /* We found the entry. */
1554 {
1555 BFD_ASSERT (howto != MUST_CREATE);
1556
1557 entry = *ptr;
1558 }
1559
1560 return entry;
1561 }
1562
1563 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1564 Return the value to which ENTRY's type should be set. */
1565
1566 static enum elf_m68k_reloc_type
1567 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1568 enum elf_m68k_reloc_type was,
1569 enum elf_m68k_reloc_type new_reloc)
1570 {
1571 enum elf_m68k_got_offset_size was_size;
1572 enum elf_m68k_got_offset_size new_size;
1573 bfd_vma n_slots;
1574
1575 if (was == R_68K_max)
1576 /* The type of the entry is not initialized yet. */
1577 {
1578 /* Update all got->n_slots counters, including n_slots[R_32]. */
1579 was_size = R_LAST;
1580
1581 was = new_reloc;
1582 }
1583 else
1584 {
1585 /* !!! We, probably, should emit an error rather then fail on assert
1586 in such a case. */
1587 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1588 == elf_m68k_reloc_got_type (new_reloc));
1589
1590 was_size = elf_m68k_reloc_got_offset_size (was);
1591 }
1592
1593 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1594 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1595
1596 while (was_size > new_size)
1597 {
1598 --was_size;
1599 got->n_slots[was_size] += n_slots;
1600 }
1601
1602 if (new_reloc > was)
1603 /* Relocations are ordered from bigger got offset size to lesser,
1604 so choose the relocation type with lesser offset size. */
1605 was = new_reloc;
1606
1607 return was;
1608 }
1609
1610 /* Add new or update existing entry to GOT.
1611 H, ABFD, TYPE and SYMNDX is data for the entry.
1612 INFO is a context where memory should be allocated. */
1613
1614 static struct elf_m68k_got_entry *
1615 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1616 struct elf_link_hash_entry *h,
1617 const bfd *abfd,
1618 enum elf_m68k_reloc_type reloc_type,
1619 unsigned long symndx,
1620 struct bfd_link_info *info)
1621 {
1622 struct elf_m68k_got_entry_key key_;
1623 struct elf_m68k_got_entry *entry;
1624
1625 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1626 elf_m68k_hash_entry (h)->got_entry_key
1627 = elf_m68k_multi_got (info)->global_symndx++;
1628
1629 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1630
1631 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1632 if (entry == NULL)
1633 return NULL;
1634
1635 /* Determine entry's type and update got->n_slots counters. */
1636 entry->key_.type = elf_m68k_update_got_entry_type (got,
1637 entry->key_.type,
1638 reloc_type);
1639
1640 /* Update refcount. */
1641 ++entry->u.s1.refcount;
1642
1643 if (entry->u.s1.refcount == 1)
1644 /* We see this entry for the first time. */
1645 {
1646 if (entry->key_.bfd != NULL)
1647 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1648 }
1649
1650 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1651
1652 if ((got->n_slots[R_8]
1653 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1654 || (got->n_slots[R_16]
1655 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1656 /* This BFD has too many relocation. */
1657 {
1658 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1659 /* xgettext:c-format */
1660 _bfd_error_handler (_("%pB: GOT overflow: "
1661 "number of relocations with 8-bit "
1662 "offset > %d"),
1663 abfd,
1664 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1665 else
1666 /* xgettext:c-format */
1667 _bfd_error_handler (_("%pB: GOT overflow: "
1668 "number of relocations with 8- or 16-bit "
1669 "offset > %d"),
1670 abfd,
1671 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1672
1673 return NULL;
1674 }
1675
1676 return entry;
1677 }
1678
1679 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1680
1681 static hashval_t
1682 elf_m68k_bfd2got_entry_hash (const void *entry)
1683 {
1684 const struct elf_m68k_bfd2got_entry *e;
1685
1686 e = (const struct elf_m68k_bfd2got_entry *) entry;
1687
1688 return e->bfd->id;
1689 }
1690
1691 /* Check whether two hash entries have the same bfd. */
1692
1693 static int
1694 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1695 {
1696 const struct elf_m68k_bfd2got_entry *e1;
1697 const struct elf_m68k_bfd2got_entry *e2;
1698
1699 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1700 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1701
1702 return e1->bfd == e2->bfd;
1703 }
1704
1705 /* Destruct a bfd2got entry. */
1706
1707 static void
1708 elf_m68k_bfd2got_entry_del (void *_entry)
1709 {
1710 struct elf_m68k_bfd2got_entry *entry;
1711
1712 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1713
1714 BFD_ASSERT (entry->got != NULL);
1715 elf_m68k_clear_got (entry->got);
1716 }
1717
1718 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1719 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1720 memory should be allocated. */
1721
1722 static struct elf_m68k_bfd2got_entry *
1723 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1724 const bfd *abfd,
1725 enum elf_m68k_get_entry_howto howto,
1726 struct bfd_link_info *info)
1727 {
1728 struct elf_m68k_bfd2got_entry entry_;
1729 void **ptr;
1730 struct elf_m68k_bfd2got_entry *entry;
1731
1732 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1733
1734 if (multi_got->bfd2got == NULL)
1735 /* This is the first GOT. Initialize bfd2got. */
1736 {
1737 if (howto == SEARCH)
1738 return NULL;
1739
1740 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1741 elf_m68k_bfd2got_entry_eq,
1742 elf_m68k_bfd2got_entry_del);
1743 if (multi_got->bfd2got == NULL)
1744 {
1745 bfd_set_error (bfd_error_no_memory);
1746 return NULL;
1747 }
1748 }
1749
1750 entry_.bfd = abfd;
1751 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1752 ? INSERT : NO_INSERT));
1753 if (ptr == NULL)
1754 {
1755 if (howto == SEARCH)
1756 /* Entry not found. */
1757 return NULL;
1758
1759 /* We're out of memory. */
1760 bfd_set_error (bfd_error_no_memory);
1761 return NULL;
1762 }
1763
1764 if (*ptr == NULL)
1765 /* Entry was not found. Create new one. */
1766 {
1767 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1768
1769 entry = ((struct elf_m68k_bfd2got_entry *)
1770 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1771 if (entry == NULL)
1772 return NULL;
1773
1774 entry->bfd = abfd;
1775
1776 entry->got = elf_m68k_create_empty_got (info);
1777 if (entry->got == NULL)
1778 return NULL;
1779
1780 *ptr = entry;
1781 }
1782 else
1783 {
1784 BFD_ASSERT (howto != MUST_CREATE);
1785
1786 /* Return existing entry. */
1787 entry = *ptr;
1788 }
1789
1790 return entry;
1791 }
1792
1793 struct elf_m68k_can_merge_gots_arg
1794 {
1795 /* A current_got that we constructing a DIFF against. */
1796 struct elf_m68k_got *big;
1797
1798 /* GOT holding entries not present or that should be changed in
1799 BIG. */
1800 struct elf_m68k_got *diff;
1801
1802 /* Context where to allocate memory. */
1803 struct bfd_link_info *info;
1804
1805 /* Error flag. */
1806 bfd_boolean error_p;
1807 };
1808
1809 /* Process a single entry from the small GOT to see if it should be added
1810 or updated in the big GOT. */
1811
1812 static int
1813 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1814 {
1815 const struct elf_m68k_got_entry *entry1;
1816 struct elf_m68k_can_merge_gots_arg *arg;
1817 const struct elf_m68k_got_entry *entry2;
1818 enum elf_m68k_reloc_type type;
1819
1820 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1821 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1822
1823 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1824
1825 if (entry2 != NULL)
1826 /* We found an existing entry. Check if we should update it. */
1827 {
1828 type = elf_m68k_update_got_entry_type (arg->diff,
1829 entry2->key_.type,
1830 entry1->key_.type);
1831
1832 if (type == entry2->key_.type)
1833 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1834 To skip creation of difference entry we use the type,
1835 which we won't see in GOT entries for sure. */
1836 type = R_68K_max;
1837 }
1838 else
1839 /* We didn't find the entry. Add entry1 to DIFF. */
1840 {
1841 BFD_ASSERT (entry1->key_.type != R_68K_max);
1842
1843 type = elf_m68k_update_got_entry_type (arg->diff,
1844 R_68K_max, entry1->key_.type);
1845
1846 if (entry1->key_.bfd != NULL)
1847 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1848 }
1849
1850 if (type != R_68K_max)
1851 /* Create an entry in DIFF. */
1852 {
1853 struct elf_m68k_got_entry *entry;
1854
1855 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1856 arg->info);
1857 if (entry == NULL)
1858 {
1859 arg->error_p = TRUE;
1860 return 0;
1861 }
1862
1863 entry->key_.type = type;
1864 }
1865
1866 return 1;
1867 }
1868
1869 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1870 Construct DIFF GOT holding the entries which should be added or updated
1871 in BIG GOT to accumulate information from SMALL.
1872 INFO is the context where memory should be allocated. */
1873
1874 static bfd_boolean
1875 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1876 const struct elf_m68k_got *small,
1877 struct bfd_link_info *info,
1878 struct elf_m68k_got *diff)
1879 {
1880 struct elf_m68k_can_merge_gots_arg arg_;
1881
1882 BFD_ASSERT (small->offset == (bfd_vma) -1);
1883
1884 arg_.big = big;
1885 arg_.diff = diff;
1886 arg_.info = info;
1887 arg_.error_p = FALSE;
1888 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1889 if (arg_.error_p)
1890 {
1891 diff->offset = 0;
1892 return FALSE;
1893 }
1894
1895 /* Check for overflow. */
1896 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1897 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1898 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1899 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1900 return FALSE;
1901
1902 return TRUE;
1903 }
1904
1905 struct elf_m68k_merge_gots_arg
1906 {
1907 /* The BIG got. */
1908 struct elf_m68k_got *big;
1909
1910 /* Context where memory should be allocated. */
1911 struct bfd_link_info *info;
1912
1913 /* Error flag. */
1914 bfd_boolean error_p;
1915 };
1916
1917 /* Process a single entry from DIFF got. Add or update corresponding
1918 entry in the BIG got. */
1919
1920 static int
1921 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1922 {
1923 const struct elf_m68k_got_entry *from;
1924 struct elf_m68k_merge_gots_arg *arg;
1925 struct elf_m68k_got_entry *to;
1926
1927 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1928 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1929
1930 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1931 arg->info);
1932 if (to == NULL)
1933 {
1934 arg->error_p = TRUE;
1935 return 0;
1936 }
1937
1938 BFD_ASSERT (to->u.s1.refcount == 0);
1939 /* All we need to merge is TYPE. */
1940 to->key_.type = from->key_.type;
1941
1942 return 1;
1943 }
1944
1945 /* Merge data from DIFF to BIG. INFO is context where memory should be
1946 allocated. */
1947
1948 static bfd_boolean
1949 elf_m68k_merge_gots (struct elf_m68k_got *big,
1950 struct elf_m68k_got *diff,
1951 struct bfd_link_info *info)
1952 {
1953 if (diff->entries != NULL)
1954 /* DIFF is not empty. Merge it into BIG GOT. */
1955 {
1956 struct elf_m68k_merge_gots_arg arg_;
1957
1958 /* Merge entries. */
1959 arg_.big = big;
1960 arg_.info = info;
1961 arg_.error_p = FALSE;
1962 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1963 if (arg_.error_p)
1964 return FALSE;
1965
1966 /* Merge counters. */
1967 big->n_slots[R_8] += diff->n_slots[R_8];
1968 big->n_slots[R_16] += diff->n_slots[R_16];
1969 big->n_slots[R_32] += diff->n_slots[R_32];
1970 big->local_n_slots += diff->local_n_slots;
1971 }
1972 else
1973 /* DIFF is empty. */
1974 {
1975 BFD_ASSERT (diff->n_slots[R_8] == 0);
1976 BFD_ASSERT (diff->n_slots[R_16] == 0);
1977 BFD_ASSERT (diff->n_slots[R_32] == 0);
1978 BFD_ASSERT (diff->local_n_slots == 0);
1979 }
1980
1981 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
1982 || ((big->n_slots[R_8]
1983 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1984 && (big->n_slots[R_16]
1985 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
1986
1987 return TRUE;
1988 }
1989
1990 struct elf_m68k_finalize_got_offsets_arg
1991 {
1992 /* Ranges of the offsets for GOT entries.
1993 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
1994 R_x is R_8, R_16 and R_32. */
1995 bfd_vma *offset1;
1996 bfd_vma *offset2;
1997
1998 /* Mapping from global symndx to global symbols.
1999 This is used to build lists of got entries for global symbols. */
2000 struct elf_m68k_link_hash_entry **symndx2h;
2001
2002 bfd_vma n_ldm_entries;
2003 };
2004
2005 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2006 along the way. */
2007
2008 static int
2009 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2010 {
2011 struct elf_m68k_got_entry *entry;
2012 struct elf_m68k_finalize_got_offsets_arg *arg;
2013
2014 enum elf_m68k_got_offset_size got_offset_size;
2015 bfd_vma entry_size;
2016
2017 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2018 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2019
2020 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2021 BFD_ASSERT (entry->u.s1.refcount == 0);
2022
2023 /* Get GOT offset size for the entry . */
2024 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2025
2026 /* Calculate entry size in bytes. */
2027 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2028
2029 /* Check if we should switch to negative range of the offsets. */
2030 if (arg->offset1[got_offset_size] + entry_size
2031 > arg->offset2[got_offset_size])
2032 {
2033 /* Verify that this is the only switch to negative range for
2034 got_offset_size. If this assertion fails, then we've miscalculated
2035 range for got_offset_size entries in
2036 elf_m68k_finalize_got_offsets. */
2037 BFD_ASSERT (arg->offset2[got_offset_size]
2038 != arg->offset2[-(int) got_offset_size - 1]);
2039
2040 /* Switch. */
2041 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2042 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2043
2044 /* Verify that now we have enough room for the entry. */
2045 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2046 <= arg->offset2[got_offset_size]);
2047 }
2048
2049 /* Assign offset to entry. */
2050 entry->u.s2.offset = arg->offset1[got_offset_size];
2051 arg->offset1[got_offset_size] += entry_size;
2052
2053 if (entry->key_.bfd == NULL)
2054 /* Hook up this entry into the list of got_entries of H. */
2055 {
2056 struct elf_m68k_link_hash_entry *h;
2057
2058 h = arg->symndx2h[entry->key_.symndx];
2059 if (h != NULL)
2060 {
2061 entry->u.s2.next = h->glist;
2062 h->glist = entry;
2063 }
2064 else
2065 /* This should be the entry for TLS_LDM relocation then. */
2066 {
2067 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2068 == R_68K_TLS_LDM32)
2069 && entry->key_.symndx == 0);
2070
2071 ++arg->n_ldm_entries;
2072 }
2073 }
2074 else
2075 /* This entry is for local symbol. */
2076 entry->u.s2.next = NULL;
2077
2078 return 1;
2079 }
2080
2081 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2082 should use negative offsets.
2083 Build list of GOT entries for global symbols along the way.
2084 SYMNDX2H is mapping from global symbol indices to actual
2085 global symbols.
2086 Return offset at which next GOT should start. */
2087
2088 static void
2089 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2090 bfd_boolean use_neg_got_offsets_p,
2091 struct elf_m68k_link_hash_entry **symndx2h,
2092 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2093 {
2094 struct elf_m68k_finalize_got_offsets_arg arg_;
2095 bfd_vma offset1_[2 * R_LAST];
2096 bfd_vma offset2_[2 * R_LAST];
2097 int i;
2098 bfd_vma start_offset;
2099
2100 BFD_ASSERT (got->offset != (bfd_vma) -1);
2101
2102 /* We set entry offsets relative to the .got section (and not the
2103 start of a particular GOT), so that we can use them in
2104 finish_dynamic_symbol without needing to know the GOT which they come
2105 from. */
2106
2107 /* Put offset1 in the middle of offset1_, same for offset2. */
2108 arg_.offset1 = offset1_ + R_LAST;
2109 arg_.offset2 = offset2_ + R_LAST;
2110
2111 start_offset = got->offset;
2112
2113 if (use_neg_got_offsets_p)
2114 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2115 i = -(int) R_32 - 1;
2116 else
2117 /* Setup positives ranges for R_8, R_16 and R_32. */
2118 i = (int) R_8;
2119
2120 for (; i <= (int) R_32; ++i)
2121 {
2122 int j;
2123 size_t n;
2124
2125 /* Set beginning of the range of offsets I. */
2126 arg_.offset1[i] = start_offset;
2127
2128 /* Calculate number of slots that require I offsets. */
2129 j = (i >= 0) ? i : -i - 1;
2130 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2131 n = got->n_slots[j] - n;
2132
2133 if (use_neg_got_offsets_p && n != 0)
2134 {
2135 if (i < 0)
2136 /* We first fill the positive side of the range, so we might
2137 end up with one empty slot at that side when we can't fit
2138 whole 2-slot entry. Account for that at negative side of
2139 the interval with one additional entry. */
2140 n = n / 2 + 1;
2141 else
2142 /* When the number of slots is odd, make positive side of the
2143 range one entry bigger. */
2144 n = (n + 1) / 2;
2145 }
2146
2147 /* N is the number of slots that require I offsets.
2148 Calculate length of the range for I offsets. */
2149 n = 4 * n;
2150
2151 /* Set end of the range. */
2152 arg_.offset2[i] = start_offset + n;
2153
2154 start_offset = arg_.offset2[i];
2155 }
2156
2157 if (!use_neg_got_offsets_p)
2158 /* Make sure that if we try to switch to negative offsets in
2159 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2160 the bug. */
2161 for (i = R_8; i <= R_32; ++i)
2162 arg_.offset2[-i - 1] = arg_.offset2[i];
2163
2164 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2165 beginning of GOT depending on use_neg_got_offsets_p. */
2166 got->offset = arg_.offset1[R_8];
2167
2168 arg_.symndx2h = symndx2h;
2169 arg_.n_ldm_entries = 0;
2170
2171 /* Assign offsets. */
2172 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2173
2174 /* Check offset ranges we have actually assigned. */
2175 for (i = (int) R_8; i <= (int) R_32; ++i)
2176 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2177
2178 *final_offset = start_offset;
2179 *n_ldm_entries = arg_.n_ldm_entries;
2180 }
2181
2182 struct elf_m68k_partition_multi_got_arg
2183 {
2184 /* The GOT we are adding entries to. Aka big got. */
2185 struct elf_m68k_got *current_got;
2186
2187 /* Offset to assign the next CURRENT_GOT. */
2188 bfd_vma offset;
2189
2190 /* Context where memory should be allocated. */
2191 struct bfd_link_info *info;
2192
2193 /* Total number of slots in the .got section.
2194 This is used to calculate size of the .got and .rela.got sections. */
2195 bfd_vma n_slots;
2196
2197 /* Difference in numbers of allocated slots in the .got section
2198 and necessary relocations in the .rela.got section.
2199 This is used to calculate size of the .rela.got section. */
2200 bfd_vma slots_relas_diff;
2201
2202 /* Error flag. */
2203 bfd_boolean error_p;
2204
2205 /* Mapping from global symndx to global symbols.
2206 This is used to build lists of got entries for global symbols. */
2207 struct elf_m68k_link_hash_entry **symndx2h;
2208 };
2209
2210 static void
2211 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2212 {
2213 bfd_vma n_ldm_entries;
2214
2215 elf_m68k_finalize_got_offsets (arg->current_got,
2216 (elf_m68k_hash_table (arg->info)
2217 ->use_neg_got_offsets_p),
2218 arg->symndx2h,
2219 &arg->offset, &n_ldm_entries);
2220
2221 arg->n_slots += arg->current_got->n_slots[R_32];
2222
2223 if (!bfd_link_pic (arg->info))
2224 /* If we are generating a shared object, we need to
2225 output a R_68K_RELATIVE reloc so that the dynamic
2226 linker can adjust this GOT entry. Overwise we
2227 don't need space in .rela.got for local symbols. */
2228 arg->slots_relas_diff += arg->current_got->local_n_slots;
2229
2230 /* @LDM relocations require a 2-slot GOT entry, but only
2231 one relocation. Account for that. */
2232 arg->slots_relas_diff += n_ldm_entries;
2233
2234 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2235 }
2236
2237
2238 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2239 or start a new CURRENT_GOT. */
2240
2241 static int
2242 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2243 {
2244 struct elf_m68k_bfd2got_entry *entry;
2245 struct elf_m68k_partition_multi_got_arg *arg;
2246 struct elf_m68k_got *got;
2247 struct elf_m68k_got diff_;
2248 struct elf_m68k_got *diff;
2249
2250 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2251 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2252
2253 got = entry->got;
2254 BFD_ASSERT (got != NULL);
2255 BFD_ASSERT (got->offset == (bfd_vma) -1);
2256
2257 diff = NULL;
2258
2259 if (arg->current_got != NULL)
2260 /* Construct diff. */
2261 {
2262 diff = &diff_;
2263 elf_m68k_init_got (diff);
2264
2265 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2266 {
2267 if (diff->offset == 0)
2268 /* Offset set to 0 in the diff_ indicates an error. */
2269 {
2270 arg->error_p = TRUE;
2271 goto final_return;
2272 }
2273
2274 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2275 {
2276 elf_m68k_clear_got (diff);
2277 /* Schedule to finish up current_got and start new one. */
2278 diff = NULL;
2279 }
2280 /* else
2281 Merge GOTs no matter what. If big GOT overflows,
2282 we'll fail in relocate_section due to truncated relocations.
2283
2284 ??? May be fail earlier? E.g., in can_merge_gots. */
2285 }
2286 }
2287 else
2288 /* Diff of got against empty current_got is got itself. */
2289 {
2290 /* Create empty current_got to put subsequent GOTs to. */
2291 arg->current_got = elf_m68k_create_empty_got (arg->info);
2292 if (arg->current_got == NULL)
2293 {
2294 arg->error_p = TRUE;
2295 goto final_return;
2296 }
2297
2298 arg->current_got->offset = arg->offset;
2299
2300 diff = got;
2301 }
2302
2303 if (diff != NULL)
2304 {
2305 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2306 {
2307 arg->error_p = TRUE;
2308 goto final_return;
2309 }
2310
2311 /* Now we can free GOT. */
2312 elf_m68k_clear_got (got);
2313
2314 entry->got = arg->current_got;
2315 }
2316 else
2317 {
2318 /* Finish up current_got. */
2319 elf_m68k_partition_multi_got_2 (arg);
2320
2321 /* Schedule to start a new current_got. */
2322 arg->current_got = NULL;
2323
2324 /* Retry. */
2325 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2326 {
2327 BFD_ASSERT (arg->error_p);
2328 goto final_return;
2329 }
2330 }
2331
2332 final_return:
2333 if (diff != NULL)
2334 elf_m68k_clear_got (diff);
2335
2336 return !arg->error_p;
2337 }
2338
2339 /* Helper function to build symndx2h mapping. */
2340
2341 static bfd_boolean
2342 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2343 void *_arg)
2344 {
2345 struct elf_m68k_link_hash_entry *h;
2346
2347 h = elf_m68k_hash_entry (_h);
2348
2349 if (h->got_entry_key != 0)
2350 /* H has at least one entry in the GOT. */
2351 {
2352 struct elf_m68k_partition_multi_got_arg *arg;
2353
2354 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2355
2356 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2357 arg->symndx2h[h->got_entry_key] = h;
2358 }
2359
2360 return TRUE;
2361 }
2362
2363 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2364 lists of GOT entries for global symbols.
2365 Calculate sizes of .got and .rela.got sections. */
2366
2367 static bfd_boolean
2368 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2369 {
2370 struct elf_m68k_multi_got *multi_got;
2371 struct elf_m68k_partition_multi_got_arg arg_;
2372
2373 multi_got = elf_m68k_multi_got (info);
2374
2375 arg_.current_got = NULL;
2376 arg_.offset = 0;
2377 arg_.info = info;
2378 arg_.n_slots = 0;
2379 arg_.slots_relas_diff = 0;
2380 arg_.error_p = FALSE;
2381
2382 if (multi_got->bfd2got != NULL)
2383 {
2384 /* Initialize symndx2h mapping. */
2385 {
2386 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2387 * sizeof (*arg_.symndx2h));
2388 if (arg_.symndx2h == NULL)
2389 return FALSE;
2390
2391 elf_link_hash_traverse (elf_hash_table (info),
2392 elf_m68k_init_symndx2h_1, &arg_);
2393 }
2394
2395 /* Partition. */
2396 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2397 &arg_);
2398 if (arg_.error_p)
2399 {
2400 free (arg_.symndx2h);
2401 arg_.symndx2h = NULL;
2402
2403 return FALSE;
2404 }
2405
2406 /* Finish up last current_got. */
2407 elf_m68k_partition_multi_got_2 (&arg_);
2408
2409 free (arg_.symndx2h);
2410 }
2411
2412 if (elf_hash_table (info)->dynobj != NULL)
2413 /* Set sizes of .got and .rela.got sections. */
2414 {
2415 asection *s;
2416
2417 s = elf_hash_table (info)->sgot;
2418 if (s != NULL)
2419 s->size = arg_.offset;
2420 else
2421 BFD_ASSERT (arg_.offset == 0);
2422
2423 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2424 arg_.n_slots -= arg_.slots_relas_diff;
2425
2426 s = elf_hash_table (info)->srelgot;
2427 if (s != NULL)
2428 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2429 else
2430 BFD_ASSERT (arg_.n_slots == 0);
2431 }
2432 else
2433 BFD_ASSERT (multi_got->bfd2got == NULL);
2434
2435 return TRUE;
2436 }
2437
2438 /* Copy any information related to dynamic linking from a pre-existing
2439 symbol to a newly created symbol. Also called to copy flags and
2440 other back-end info to a weakdef, in which case the symbol is not
2441 newly created and plt/got refcounts and dynamic indices should not
2442 be copied. */
2443
2444 static void
2445 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2446 struct elf_link_hash_entry *_dir,
2447 struct elf_link_hash_entry *_ind)
2448 {
2449 struct elf_m68k_link_hash_entry *dir;
2450 struct elf_m68k_link_hash_entry *ind;
2451
2452 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2453
2454 if (_ind->root.type != bfd_link_hash_indirect)
2455 return;
2456
2457 dir = elf_m68k_hash_entry (_dir);
2458 ind = elf_m68k_hash_entry (_ind);
2459
2460 /* Any absolute non-dynamic relocations against an indirect or weak
2461 definition will be against the target symbol. */
2462 _dir->non_got_ref |= _ind->non_got_ref;
2463
2464 /* We might have a direct symbol already having entries in the GOTs.
2465 Update its key only in case indirect symbol has GOT entries and
2466 assert that both indirect and direct symbols don't have GOT entries
2467 at the same time. */
2468 if (ind->got_entry_key != 0)
2469 {
2470 BFD_ASSERT (dir->got_entry_key == 0);
2471 /* Assert that GOTs aren't partioned yet. */
2472 BFD_ASSERT (ind->glist == NULL);
2473
2474 dir->got_entry_key = ind->got_entry_key;
2475 ind->got_entry_key = 0;
2476 }
2477 }
2478
2479 /* Look through the relocs for a section during the first phase, and
2480 allocate space in the global offset table or procedure linkage
2481 table. */
2482
2483 static bfd_boolean
2484 elf_m68k_check_relocs (bfd *abfd,
2485 struct bfd_link_info *info,
2486 asection *sec,
2487 const Elf_Internal_Rela *relocs)
2488 {
2489 bfd *dynobj;
2490 Elf_Internal_Shdr *symtab_hdr;
2491 struct elf_link_hash_entry **sym_hashes;
2492 const Elf_Internal_Rela *rel;
2493 const Elf_Internal_Rela *rel_end;
2494 asection *sreloc;
2495 struct elf_m68k_got *got;
2496
2497 if (bfd_link_relocatable (info))
2498 return TRUE;
2499
2500 dynobj = elf_hash_table (info)->dynobj;
2501 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2502 sym_hashes = elf_sym_hashes (abfd);
2503
2504 sreloc = NULL;
2505
2506 got = NULL;
2507
2508 rel_end = relocs + sec->reloc_count;
2509 for (rel = relocs; rel < rel_end; rel++)
2510 {
2511 unsigned long r_symndx;
2512 struct elf_link_hash_entry *h;
2513
2514 r_symndx = ELF32_R_SYM (rel->r_info);
2515
2516 if (r_symndx < symtab_hdr->sh_info)
2517 h = NULL;
2518 else
2519 {
2520 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2521 while (h->root.type == bfd_link_hash_indirect
2522 || h->root.type == bfd_link_hash_warning)
2523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2524 }
2525
2526 switch (ELF32_R_TYPE (rel->r_info))
2527 {
2528 case R_68K_GOT8:
2529 case R_68K_GOT16:
2530 case R_68K_GOT32:
2531 if (h != NULL
2532 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2533 break;
2534 /* Fall through. */
2535
2536 /* Relative GOT relocations. */
2537 case R_68K_GOT8O:
2538 case R_68K_GOT16O:
2539 case R_68K_GOT32O:
2540 /* Fall through. */
2541
2542 /* TLS relocations. */
2543 case R_68K_TLS_GD8:
2544 case R_68K_TLS_GD16:
2545 case R_68K_TLS_GD32:
2546 case R_68K_TLS_LDM8:
2547 case R_68K_TLS_LDM16:
2548 case R_68K_TLS_LDM32:
2549 case R_68K_TLS_IE8:
2550 case R_68K_TLS_IE16:
2551 case R_68K_TLS_IE32:
2552
2553 case R_68K_TLS_TPREL32:
2554 case R_68K_TLS_DTPREL32:
2555
2556 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2557 && bfd_link_pic (info))
2558 /* Do the special chorus for libraries with static TLS. */
2559 info->flags |= DF_STATIC_TLS;
2560
2561 /* This symbol requires a global offset table entry. */
2562
2563 if (dynobj == NULL)
2564 {
2565 /* Create the .got section. */
2566 elf_hash_table (info)->dynobj = dynobj = abfd;
2567 if (!_bfd_elf_create_got_section (dynobj, info))
2568 return FALSE;
2569 }
2570
2571 if (got == NULL)
2572 {
2573 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2574
2575 bfd2got_entry
2576 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2577 abfd, FIND_OR_CREATE, info);
2578 if (bfd2got_entry == NULL)
2579 return FALSE;
2580
2581 got = bfd2got_entry->got;
2582 BFD_ASSERT (got != NULL);
2583 }
2584
2585 {
2586 struct elf_m68k_got_entry *got_entry;
2587
2588 /* Add entry to got. */
2589 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2590 ELF32_R_TYPE (rel->r_info),
2591 r_symndx, info);
2592 if (got_entry == NULL)
2593 return FALSE;
2594
2595 if (got_entry->u.s1.refcount == 1)
2596 {
2597 /* Make sure this symbol is output as a dynamic symbol. */
2598 if (h != NULL
2599 && h->dynindx == -1
2600 && !h->forced_local)
2601 {
2602 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2603 return FALSE;
2604 }
2605 }
2606 }
2607
2608 break;
2609
2610 case R_68K_PLT8:
2611 case R_68K_PLT16:
2612 case R_68K_PLT32:
2613 /* This symbol requires a procedure linkage table entry. We
2614 actually build the entry in adjust_dynamic_symbol,
2615 because this might be a case of linking PIC code which is
2616 never referenced by a dynamic object, in which case we
2617 don't need to generate a procedure linkage table entry
2618 after all. */
2619
2620 /* If this is a local symbol, we resolve it directly without
2621 creating a procedure linkage table entry. */
2622 if (h == NULL)
2623 continue;
2624
2625 h->needs_plt = 1;
2626 h->plt.refcount++;
2627 break;
2628
2629 case R_68K_PLT8O:
2630 case R_68K_PLT16O:
2631 case R_68K_PLT32O:
2632 /* This symbol requires a procedure linkage table entry. */
2633
2634 if (h == NULL)
2635 {
2636 /* It does not make sense to have this relocation for a
2637 local symbol. FIXME: does it? How to handle it if
2638 it does make sense? */
2639 bfd_set_error (bfd_error_bad_value);
2640 return FALSE;
2641 }
2642
2643 /* Make sure this symbol is output as a dynamic symbol. */
2644 if (h->dynindx == -1
2645 && !h->forced_local)
2646 {
2647 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2648 return FALSE;
2649 }
2650
2651 h->needs_plt = 1;
2652 h->plt.refcount++;
2653 break;
2654
2655 case R_68K_PC8:
2656 case R_68K_PC16:
2657 case R_68K_PC32:
2658 /* If we are creating a shared library and this is not a local
2659 symbol, we need to copy the reloc into the shared library.
2660 However when linking with -Bsymbolic and this is a global
2661 symbol which is defined in an object we are including in the
2662 link (i.e., DEF_REGULAR is set), then we can resolve the
2663 reloc directly. At this point we have not seen all the input
2664 files, so it is possible that DEF_REGULAR is not set now but
2665 will be set later (it is never cleared). We account for that
2666 possibility below by storing information in the
2667 pcrel_relocs_copied field of the hash table entry. */
2668 if (!(bfd_link_pic (info)
2669 && (sec->flags & SEC_ALLOC) != 0
2670 && h != NULL
2671 && (!SYMBOLIC_BIND (info, h)
2672 || h->root.type == bfd_link_hash_defweak
2673 || !h->def_regular)))
2674 {
2675 if (h != NULL)
2676 {
2677 /* Make sure a plt entry is created for this symbol if
2678 it turns out to be a function defined by a dynamic
2679 object. */
2680 h->plt.refcount++;
2681 }
2682 break;
2683 }
2684 /* Fall through. */
2685 case R_68K_8:
2686 case R_68K_16:
2687 case R_68K_32:
2688 /* We don't need to handle relocs into sections not going into
2689 the "real" output. */
2690 if ((sec->flags & SEC_ALLOC) == 0)
2691 break;
2692
2693 if (h != NULL)
2694 {
2695 /* Make sure a plt entry is created for this symbol if it
2696 turns out to be a function defined by a dynamic object. */
2697 h->plt.refcount++;
2698
2699 if (bfd_link_executable (info))
2700 /* This symbol needs a non-GOT reference. */
2701 h->non_got_ref = 1;
2702 }
2703
2704 /* If we are creating a shared library, we need to copy the
2705 reloc into the shared library. */
2706 if (bfd_link_pic (info)
2707 && (h == NULL
2708 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2709 {
2710 /* When creating a shared object, we must copy these
2711 reloc types into the output file. We create a reloc
2712 section in dynobj and make room for this reloc. */
2713 if (sreloc == NULL)
2714 {
2715 sreloc = _bfd_elf_make_dynamic_reloc_section
2716 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2717
2718 if (sreloc == NULL)
2719 return FALSE;
2720 }
2721
2722 if (sec->flags & SEC_READONLY
2723 /* Don't set DF_TEXTREL yet for PC relative
2724 relocations, they might be discarded later. */
2725 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2726 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2727 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2728 info->flags |= DF_TEXTREL;
2729
2730 sreloc->size += sizeof (Elf32_External_Rela);
2731
2732 /* We count the number of PC relative relocations we have
2733 entered for this symbol, so that we can discard them
2734 again if, in the -Bsymbolic case, the symbol is later
2735 defined by a regular object, or, in the normal shared
2736 case, the symbol is forced to be local. Note that this
2737 function is only called if we are using an m68kelf linker
2738 hash table, which means that h is really a pointer to an
2739 elf_m68k_link_hash_entry. */
2740 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2741 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2742 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2743 {
2744 struct elf_m68k_pcrel_relocs_copied *p;
2745 struct elf_m68k_pcrel_relocs_copied **head;
2746
2747 if (h != NULL)
2748 {
2749 struct elf_m68k_link_hash_entry *eh
2750 = elf_m68k_hash_entry (h);
2751 head = &eh->pcrel_relocs_copied;
2752 }
2753 else
2754 {
2755 asection *s;
2756 void *vpp;
2757 Elf_Internal_Sym *isym;
2758
2759 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2760 abfd, r_symndx);
2761 if (isym == NULL)
2762 return FALSE;
2763
2764 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2765 if (s == NULL)
2766 s = sec;
2767
2768 vpp = &elf_section_data (s)->local_dynrel;
2769 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2770 }
2771
2772 for (p = *head; p != NULL; p = p->next)
2773 if (p->section == sreloc)
2774 break;
2775
2776 if (p == NULL)
2777 {
2778 p = ((struct elf_m68k_pcrel_relocs_copied *)
2779 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2780 if (p == NULL)
2781 return FALSE;
2782 p->next = *head;
2783 *head = p;
2784 p->section = sreloc;
2785 p->count = 0;
2786 }
2787
2788 ++p->count;
2789 }
2790 }
2791
2792 break;
2793
2794 /* This relocation describes the C++ object vtable hierarchy.
2795 Reconstruct it for later use during GC. */
2796 case R_68K_GNU_VTINHERIT:
2797 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2798 return FALSE;
2799 break;
2800
2801 /* This relocation describes which C++ vtable entries are actually
2802 used. Record for later use during GC. */
2803 case R_68K_GNU_VTENTRY:
2804 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2805 return FALSE;
2806 break;
2807
2808 default:
2809 break;
2810 }
2811 }
2812
2813 return TRUE;
2814 }
2815
2816 /* Return the section that should be marked against GC for a given
2817 relocation. */
2818
2819 static asection *
2820 elf_m68k_gc_mark_hook (asection *sec,
2821 struct bfd_link_info *info,
2822 Elf_Internal_Rela *rel,
2823 struct elf_link_hash_entry *h,
2824 Elf_Internal_Sym *sym)
2825 {
2826 if (h != NULL)
2827 switch (ELF32_R_TYPE (rel->r_info))
2828 {
2829 case R_68K_GNU_VTINHERIT:
2830 case R_68K_GNU_VTENTRY:
2831 return NULL;
2832 }
2833
2834 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2835 }
2836 \f
2837 /* Return the type of PLT associated with OUTPUT_BFD. */
2838
2839 static const struct elf_m68k_plt_info *
2840 elf_m68k_get_plt_info (bfd *output_bfd)
2841 {
2842 unsigned int features;
2843
2844 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2845 if (features & cpu32)
2846 return &elf_cpu32_plt_info;
2847 if (features & mcfisa_b)
2848 return &elf_isab_plt_info;
2849 if (features & mcfisa_c)
2850 return &elf_isac_plt_info;
2851 return &elf_m68k_plt_info;
2852 }
2853
2854 /* This function is called after all the input files have been read,
2855 and the input sections have been assigned to output sections.
2856 It's a convenient place to determine the PLT style. */
2857
2858 static bfd_boolean
2859 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2860 {
2861 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2862 sections. */
2863 if (!elf_m68k_partition_multi_got (info))
2864 return FALSE;
2865
2866 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2867 return TRUE;
2868 }
2869
2870 /* Adjust a symbol defined by a dynamic object and referenced by a
2871 regular object. The current definition is in some section of the
2872 dynamic object, but we're not including those sections. We have to
2873 change the definition to something the rest of the link can
2874 understand. */
2875
2876 static bfd_boolean
2877 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2878 struct elf_link_hash_entry *h)
2879 {
2880 struct elf_m68k_link_hash_table *htab;
2881 bfd *dynobj;
2882 asection *s;
2883
2884 htab = elf_m68k_hash_table (info);
2885 dynobj = htab->root.dynobj;
2886
2887 /* Make sure we know what is going on here. */
2888 BFD_ASSERT (dynobj != NULL
2889 && (h->needs_plt
2890 || h->is_weakalias
2891 || (h->def_dynamic
2892 && h->ref_regular
2893 && !h->def_regular)));
2894
2895 /* If this is a function, put it in the procedure linkage table. We
2896 will fill in the contents of the procedure linkage table later,
2897 when we know the address of the .got section. */
2898 if (h->type == STT_FUNC
2899 || h->needs_plt)
2900 {
2901 if ((h->plt.refcount <= 0
2902 || SYMBOL_CALLS_LOCAL (info, h)
2903 || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2904 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2905 && h->root.type == bfd_link_hash_undefweak))
2906 /* We must always create the plt entry if it was referenced
2907 by a PLTxxO relocation. In this case we already recorded
2908 it as a dynamic symbol. */
2909 && h->dynindx == -1)
2910 {
2911 /* This case can occur if we saw a PLTxx reloc in an input
2912 file, but the symbol was never referred to by a dynamic
2913 object, or if all references were garbage collected. In
2914 such a case, we don't actually need to build a procedure
2915 linkage table, and we can just do a PCxx reloc instead. */
2916 h->plt.offset = (bfd_vma) -1;
2917 h->needs_plt = 0;
2918 return TRUE;
2919 }
2920
2921 /* Make sure this symbol is output as a dynamic symbol. */
2922 if (h->dynindx == -1
2923 && !h->forced_local)
2924 {
2925 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2926 return FALSE;
2927 }
2928
2929 s = htab->root.splt;
2930 BFD_ASSERT (s != NULL);
2931
2932 /* If this is the first .plt entry, make room for the special
2933 first entry. */
2934 if (s->size == 0)
2935 s->size = htab->plt_info->size;
2936
2937 /* If this symbol is not defined in a regular file, and we are
2938 not generating a shared library, then set the symbol to this
2939 location in the .plt. This is required to make function
2940 pointers compare as equal between the normal executable and
2941 the shared library. */
2942 if (!bfd_link_pic (info)
2943 && !h->def_regular)
2944 {
2945 h->root.u.def.section = s;
2946 h->root.u.def.value = s->size;
2947 }
2948
2949 h->plt.offset = s->size;
2950
2951 /* Make room for this entry. */
2952 s->size += htab->plt_info->size;
2953
2954 /* We also need to make an entry in the .got.plt section, which
2955 will be placed in the .got section by the linker script. */
2956 s = htab->root.sgotplt;
2957 BFD_ASSERT (s != NULL);
2958 s->size += 4;
2959
2960 /* We also need to make an entry in the .rela.plt section. */
2961 s = htab->root.srelplt;
2962 BFD_ASSERT (s != NULL);
2963 s->size += sizeof (Elf32_External_Rela);
2964
2965 return TRUE;
2966 }
2967
2968 /* Reinitialize the plt offset now that it is not used as a reference
2969 count any more. */
2970 h->plt.offset = (bfd_vma) -1;
2971
2972 /* If this is a weak symbol, and there is a real definition, the
2973 processor independent code will have arranged for us to see the
2974 real definition first, and we can just use the same value. */
2975 if (h->is_weakalias)
2976 {
2977 struct elf_link_hash_entry *def = weakdef (h);
2978 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2979 h->root.u.def.section = def->root.u.def.section;
2980 h->root.u.def.value = def->root.u.def.value;
2981 return TRUE;
2982 }
2983
2984 /* This is a reference to a symbol defined by a dynamic object which
2985 is not a function. */
2986
2987 /* If we are creating a shared library, we must presume that the
2988 only references to the symbol are via the global offset table.
2989 For such cases we need not do anything here; the relocations will
2990 be handled correctly by relocate_section. */
2991 if (bfd_link_pic (info))
2992 return TRUE;
2993
2994 /* If there are no references to this symbol that do not use the
2995 GOT, we don't need to generate a copy reloc. */
2996 if (!h->non_got_ref)
2997 return TRUE;
2998
2999 /* We must allocate the symbol in our .dynbss section, which will
3000 become part of the .bss section of the executable. There will be
3001 an entry for this symbol in the .dynsym section. The dynamic
3002 object will contain position independent code, so all references
3003 from the dynamic object to this symbol will go through the global
3004 offset table. The dynamic linker will use the .dynsym entry to
3005 determine the address it must put in the global offset table, so
3006 both the dynamic object and the regular object will refer to the
3007 same memory location for the variable. */
3008
3009 s = bfd_get_linker_section (dynobj, ".dynbss");
3010 BFD_ASSERT (s != NULL);
3011
3012 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3013 copy the initial value out of the dynamic object and into the
3014 runtime process image. We need to remember the offset into the
3015 .rela.bss section we are going to use. */
3016 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3017 {
3018 asection *srel;
3019
3020 srel = bfd_get_linker_section (dynobj, ".rela.bss");
3021 BFD_ASSERT (srel != NULL);
3022 srel->size += sizeof (Elf32_External_Rela);
3023 h->needs_copy = 1;
3024 }
3025
3026 return _bfd_elf_adjust_dynamic_copy (info, h, s);
3027 }
3028
3029 /* Set the sizes of the dynamic sections. */
3030
3031 static bfd_boolean
3032 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3033 struct bfd_link_info *info)
3034 {
3035 bfd *dynobj;
3036 asection *s;
3037 bfd_boolean plt;
3038 bfd_boolean relocs;
3039
3040 dynobj = elf_hash_table (info)->dynobj;
3041 BFD_ASSERT (dynobj != NULL);
3042
3043 if (elf_hash_table (info)->dynamic_sections_created)
3044 {
3045 /* Set the contents of the .interp section to the interpreter. */
3046 if (bfd_link_executable (info) && !info->nointerp)
3047 {
3048 s = bfd_get_linker_section (dynobj, ".interp");
3049 BFD_ASSERT (s != NULL);
3050 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3051 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3052 }
3053 }
3054 else
3055 {
3056 /* We may have created entries in the .rela.got section.
3057 However, if we are not creating the dynamic sections, we will
3058 not actually use these entries. Reset the size of .rela.got,
3059 which will cause it to get stripped from the output file
3060 below. */
3061 s = elf_hash_table (info)->srelgot;
3062 if (s != NULL)
3063 s->size = 0;
3064 }
3065
3066 /* If this is a -Bsymbolic shared link, then we need to discard all
3067 PC relative relocs against symbols defined in a regular object.
3068 For the normal shared case we discard the PC relative relocs
3069 against symbols that have become local due to visibility changes.
3070 We allocated space for them in the check_relocs routine, but we
3071 will not fill them in in the relocate_section routine. */
3072 if (bfd_link_pic (info))
3073 elf_link_hash_traverse (elf_hash_table (info),
3074 elf_m68k_discard_copies,
3075 info);
3076
3077 /* The check_relocs and adjust_dynamic_symbol entry points have
3078 determined the sizes of the various dynamic sections. Allocate
3079 memory for them. */
3080 plt = FALSE;
3081 relocs = FALSE;
3082 for (s = dynobj->sections; s != NULL; s = s->next)
3083 {
3084 const char *name;
3085
3086 if ((s->flags & SEC_LINKER_CREATED) == 0)
3087 continue;
3088
3089 /* It's OK to base decisions on the section name, because none
3090 of the dynobj section names depend upon the input files. */
3091 name = bfd_get_section_name (dynobj, s);
3092
3093 if (strcmp (name, ".plt") == 0)
3094 {
3095 /* Remember whether there is a PLT. */
3096 plt = s->size != 0;
3097 }
3098 else if (CONST_STRNEQ (name, ".rela"))
3099 {
3100 if (s->size != 0)
3101 {
3102 relocs = TRUE;
3103
3104 /* We use the reloc_count field as a counter if we need
3105 to copy relocs into the output file. */
3106 s->reloc_count = 0;
3107 }
3108 }
3109 else if (! CONST_STRNEQ (name, ".got")
3110 && strcmp (name, ".dynbss") != 0)
3111 {
3112 /* It's not one of our sections, so don't allocate space. */
3113 continue;
3114 }
3115
3116 if (s->size == 0)
3117 {
3118 /* If we don't need this section, strip it from the
3119 output file. This is mostly to handle .rela.bss and
3120 .rela.plt. We must create both sections in
3121 create_dynamic_sections, because they must be created
3122 before the linker maps input sections to output
3123 sections. The linker does that before
3124 adjust_dynamic_symbol is called, and it is that
3125 function which decides whether anything needs to go
3126 into these sections. */
3127 s->flags |= SEC_EXCLUDE;
3128 continue;
3129 }
3130
3131 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3132 continue;
3133
3134 /* Allocate memory for the section contents. */
3135 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3136 Unused entries should be reclaimed before the section's contents
3137 are written out, but at the moment this does not happen. Thus in
3138 order to prevent writing out garbage, we initialise the section's
3139 contents to zero. */
3140 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3141 if (s->contents == NULL)
3142 return FALSE;
3143 }
3144
3145 if (elf_hash_table (info)->dynamic_sections_created)
3146 {
3147 /* Add some entries to the .dynamic section. We fill in the
3148 values later, in elf_m68k_finish_dynamic_sections, but we
3149 must add the entries now so that we get the correct size for
3150 the .dynamic section. The DT_DEBUG entry is filled in by the
3151 dynamic linker and used by the debugger. */
3152 #define add_dynamic_entry(TAG, VAL) \
3153 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3154
3155 if (bfd_link_executable (info))
3156 {
3157 if (!add_dynamic_entry (DT_DEBUG, 0))
3158 return FALSE;
3159 }
3160
3161 if (plt)
3162 {
3163 if (!add_dynamic_entry (DT_PLTGOT, 0)
3164 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3165 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3166 || !add_dynamic_entry (DT_JMPREL, 0))
3167 return FALSE;
3168 }
3169
3170 if (relocs)
3171 {
3172 if (!add_dynamic_entry (DT_RELA, 0)
3173 || !add_dynamic_entry (DT_RELASZ, 0)
3174 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3175 return FALSE;
3176 }
3177
3178 if ((info->flags & DF_TEXTREL) != 0)
3179 {
3180 if (!add_dynamic_entry (DT_TEXTREL, 0))
3181 return FALSE;
3182 }
3183 }
3184 #undef add_dynamic_entry
3185
3186 return TRUE;
3187 }
3188
3189 /* This function is called via elf_link_hash_traverse if we are
3190 creating a shared object. In the -Bsymbolic case it discards the
3191 space allocated to copy PC relative relocs against symbols which
3192 are defined in regular objects. For the normal shared case, it
3193 discards space for pc-relative relocs that have become local due to
3194 symbol visibility changes. We allocated space for them in the
3195 check_relocs routine, but we won't fill them in in the
3196 relocate_section routine.
3197
3198 We also check whether any of the remaining relocations apply
3199 against a readonly section, and set the DF_TEXTREL flag in this
3200 case. */
3201
3202 static bfd_boolean
3203 elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3204 void * inf)
3205 {
3206 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3207 struct elf_m68k_pcrel_relocs_copied *s;
3208
3209 if (!SYMBOL_CALLS_LOCAL (info, h))
3210 {
3211 if ((info->flags & DF_TEXTREL) == 0)
3212 {
3213 /* Look for relocations against read-only sections. */
3214 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3215 s != NULL;
3216 s = s->next)
3217 if ((s->section->flags & SEC_READONLY) != 0)
3218 {
3219 info->flags |= DF_TEXTREL;
3220 break;
3221 }
3222 }
3223
3224 /* Make sure undefined weak symbols are output as a dynamic symbol
3225 in PIEs. */
3226 if (h->non_got_ref
3227 && h->root.type == bfd_link_hash_undefweak
3228 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3229 && h->dynindx == -1
3230 && !h->forced_local)
3231 {
3232 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3233 return FALSE;
3234 }
3235
3236 return TRUE;
3237 }
3238
3239 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3240 s != NULL;
3241 s = s->next)
3242 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3243
3244 return TRUE;
3245 }
3246
3247
3248 /* Install relocation RELA. */
3249
3250 static void
3251 elf_m68k_install_rela (bfd *output_bfd,
3252 asection *srela,
3253 Elf_Internal_Rela *rela)
3254 {
3255 bfd_byte *loc;
3256
3257 loc = srela->contents;
3258 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3259 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3260 }
3261
3262 /* Find the base offsets for thread-local storage in this object,
3263 for GD/LD and IE/LE respectively. */
3264
3265 #define DTP_OFFSET 0x8000
3266 #define TP_OFFSET 0x7000
3267
3268 static bfd_vma
3269 dtpoff_base (struct bfd_link_info *info)
3270 {
3271 /* If tls_sec is NULL, we should have signalled an error already. */
3272 if (elf_hash_table (info)->tls_sec == NULL)
3273 return 0;
3274 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3275 }
3276
3277 static bfd_vma
3278 tpoff_base (struct bfd_link_info *info)
3279 {
3280 /* If tls_sec is NULL, we should have signalled an error already. */
3281 if (elf_hash_table (info)->tls_sec == NULL)
3282 return 0;
3283 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3284 }
3285
3286 /* Output necessary relocation to handle a symbol during static link.
3287 This function is called from elf_m68k_relocate_section. */
3288
3289 static void
3290 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3291 bfd *output_bfd,
3292 enum elf_m68k_reloc_type r_type,
3293 asection *sgot,
3294 bfd_vma got_entry_offset,
3295 bfd_vma relocation)
3296 {
3297 switch (elf_m68k_reloc_got_type (r_type))
3298 {
3299 case R_68K_GOT32O:
3300 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3301 break;
3302
3303 case R_68K_TLS_GD32:
3304 /* We know the offset within the module,
3305 put it into the second GOT slot. */
3306 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3307 sgot->contents + got_entry_offset + 4);
3308 /* FALLTHRU */
3309
3310 case R_68K_TLS_LDM32:
3311 /* Mark it as belonging to module 1, the executable. */
3312 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3313 break;
3314
3315 case R_68K_TLS_IE32:
3316 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3317 sgot->contents + got_entry_offset);
3318 break;
3319
3320 default:
3321 BFD_ASSERT (FALSE);
3322 }
3323 }
3324
3325 /* Output necessary relocation to handle a local symbol
3326 during dynamic link.
3327 This function is called either from elf_m68k_relocate_section
3328 or from elf_m68k_finish_dynamic_symbol. */
3329
3330 static void
3331 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3332 bfd *output_bfd,
3333 enum elf_m68k_reloc_type r_type,
3334 asection *sgot,
3335 bfd_vma got_entry_offset,
3336 bfd_vma relocation,
3337 asection *srela)
3338 {
3339 Elf_Internal_Rela outrel;
3340
3341 switch (elf_m68k_reloc_got_type (r_type))
3342 {
3343 case R_68K_GOT32O:
3344 /* Emit RELATIVE relocation to initialize GOT slot
3345 at run-time. */
3346 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3347 outrel.r_addend = relocation;
3348 break;
3349
3350 case R_68K_TLS_GD32:
3351 /* We know the offset within the module,
3352 put it into the second GOT slot. */
3353 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3354 sgot->contents + got_entry_offset + 4);
3355 /* FALLTHRU */
3356
3357 case R_68K_TLS_LDM32:
3358 /* We don't know the module number,
3359 create a relocation for it. */
3360 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3361 outrel.r_addend = 0;
3362 break;
3363
3364 case R_68K_TLS_IE32:
3365 /* Emit TPREL relocation to initialize GOT slot
3366 at run-time. */
3367 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3368 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3369 break;
3370
3371 default:
3372 BFD_ASSERT (FALSE);
3373 }
3374
3375 /* Offset of the GOT entry. */
3376 outrel.r_offset = (sgot->output_section->vma
3377 + sgot->output_offset
3378 + got_entry_offset);
3379
3380 /* Install one of the above relocations. */
3381 elf_m68k_install_rela (output_bfd, srela, &outrel);
3382
3383 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3384 }
3385
3386 /* Relocate an M68K ELF section. */
3387
3388 static bfd_boolean
3389 elf_m68k_relocate_section (bfd *output_bfd,
3390 struct bfd_link_info *info,
3391 bfd *input_bfd,
3392 asection *input_section,
3393 bfd_byte *contents,
3394 Elf_Internal_Rela *relocs,
3395 Elf_Internal_Sym *local_syms,
3396 asection **local_sections)
3397 {
3398 Elf_Internal_Shdr *symtab_hdr;
3399 struct elf_link_hash_entry **sym_hashes;
3400 asection *sgot;
3401 asection *splt;
3402 asection *sreloc;
3403 asection *srela;
3404 struct elf_m68k_got *got;
3405 Elf_Internal_Rela *rel;
3406 Elf_Internal_Rela *relend;
3407
3408 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3409 sym_hashes = elf_sym_hashes (input_bfd);
3410
3411 sgot = NULL;
3412 splt = NULL;
3413 sreloc = NULL;
3414 srela = NULL;
3415
3416 got = NULL;
3417
3418 rel = relocs;
3419 relend = relocs + input_section->reloc_count;
3420 for (; rel < relend; rel++)
3421 {
3422 int r_type;
3423 reloc_howto_type *howto;
3424 unsigned long r_symndx;
3425 struct elf_link_hash_entry *h;
3426 Elf_Internal_Sym *sym;
3427 asection *sec;
3428 bfd_vma relocation;
3429 bfd_boolean unresolved_reloc;
3430 bfd_reloc_status_type r;
3431 bfd_boolean resolved_to_zero;
3432
3433 r_type = ELF32_R_TYPE (rel->r_info);
3434 if (r_type < 0 || r_type >= (int) R_68K_max)
3435 {
3436 bfd_set_error (bfd_error_bad_value);
3437 return FALSE;
3438 }
3439 howto = howto_table + r_type;
3440
3441 r_symndx = ELF32_R_SYM (rel->r_info);
3442
3443 h = NULL;
3444 sym = NULL;
3445 sec = NULL;
3446 unresolved_reloc = FALSE;
3447
3448 if (r_symndx < symtab_hdr->sh_info)
3449 {
3450 sym = local_syms + r_symndx;
3451 sec = local_sections[r_symndx];
3452 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3453 }
3454 else
3455 {
3456 bfd_boolean warned, ignored;
3457
3458 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3459 r_symndx, symtab_hdr, sym_hashes,
3460 h, sec, relocation,
3461 unresolved_reloc, warned, ignored);
3462 }
3463
3464 if (sec != NULL && discarded_section (sec))
3465 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3466 rel, 1, relend, howto, 0, contents);
3467
3468 if (bfd_link_relocatable (info))
3469 continue;
3470
3471 resolved_to_zero = (h != NULL
3472 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3473
3474 switch (r_type)
3475 {
3476 case R_68K_GOT8:
3477 case R_68K_GOT16:
3478 case R_68K_GOT32:
3479 /* Relocation is to the address of the entry for this symbol
3480 in the global offset table. */
3481 if (h != NULL
3482 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3483 {
3484 if (elf_m68k_hash_table (info)->local_gp_p)
3485 {
3486 bfd_vma sgot_output_offset;
3487 bfd_vma got_offset;
3488
3489 sgot = elf_hash_table (info)->sgot;
3490
3491 if (sgot != NULL)
3492 sgot_output_offset = sgot->output_offset;
3493 else
3494 /* In this case we have a reference to
3495 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3496 empty.
3497 ??? Issue a warning? */
3498 sgot_output_offset = 0;
3499
3500 if (got == NULL)
3501 {
3502 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3503
3504 bfd2got_entry
3505 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3506 input_bfd, SEARCH, NULL);
3507
3508 if (bfd2got_entry != NULL)
3509 {
3510 got = bfd2got_entry->got;
3511 BFD_ASSERT (got != NULL);
3512
3513 got_offset = got->offset;
3514 }
3515 else
3516 /* In this case we have a reference to
3517 _GLOBAL_OFFSET_TABLE_, but no other references
3518 accessing any GOT entries.
3519 ??? Issue a warning? */
3520 got_offset = 0;
3521 }
3522 else
3523 got_offset = got->offset;
3524
3525 /* Adjust GOT pointer to point to the GOT
3526 assigned to input_bfd. */
3527 rel->r_addend += sgot_output_offset + got_offset;
3528 }
3529 else
3530 BFD_ASSERT (got == NULL || got->offset == 0);
3531
3532 break;
3533 }
3534 /* Fall through. */
3535 case R_68K_GOT8O:
3536 case R_68K_GOT16O:
3537 case R_68K_GOT32O:
3538
3539 case R_68K_TLS_LDM32:
3540 case R_68K_TLS_LDM16:
3541 case R_68K_TLS_LDM8:
3542
3543 case R_68K_TLS_GD8:
3544 case R_68K_TLS_GD16:
3545 case R_68K_TLS_GD32:
3546
3547 case R_68K_TLS_IE8:
3548 case R_68K_TLS_IE16:
3549 case R_68K_TLS_IE32:
3550
3551 /* Relocation is the offset of the entry for this symbol in
3552 the global offset table. */
3553
3554 {
3555 struct elf_m68k_got_entry_key key_;
3556 bfd_vma *off_ptr;
3557 bfd_vma off;
3558
3559 sgot = elf_hash_table (info)->sgot;
3560 BFD_ASSERT (sgot != NULL);
3561
3562 if (got == NULL)
3563 {
3564 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3565 input_bfd, MUST_FIND,
3566 NULL)->got;
3567 BFD_ASSERT (got != NULL);
3568 }
3569
3570 /* Get GOT offset for this symbol. */
3571 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3572 r_type);
3573 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3574 NULL)->u.s2.offset;
3575 off = *off_ptr;
3576
3577 /* The offset must always be a multiple of 4. We use
3578 the least significant bit to record whether we have
3579 already generated the necessary reloc. */
3580 if ((off & 1) != 0)
3581 off &= ~1;
3582 else
3583 {
3584 if (h != NULL
3585 /* @TLSLDM relocations are bounded to the module, in
3586 which the symbol is defined -- not to the symbol
3587 itself. */
3588 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3589 {
3590 bfd_boolean dyn;
3591
3592 dyn = elf_hash_table (info)->dynamic_sections_created;
3593 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3594 bfd_link_pic (info),
3595 h)
3596 || (bfd_link_pic (info)
3597 && SYMBOL_REFERENCES_LOCAL (info, h))
3598 || ((ELF_ST_VISIBILITY (h->other)
3599 || resolved_to_zero)
3600 && h->root.type == bfd_link_hash_undefweak))
3601 {
3602 /* This is actually a static link, or it is a
3603 -Bsymbolic link and the symbol is defined
3604 locally, or the symbol was forced to be local
3605 because of a version file. We must initialize
3606 this entry in the global offset table. Since
3607 the offset must always be a multiple of 4, we
3608 use the least significant bit to record whether
3609 we have initialized it already.
3610
3611 When doing a dynamic link, we create a .rela.got
3612 relocation entry to initialize the value. This
3613 is done in the finish_dynamic_symbol routine. */
3614
3615 elf_m68k_init_got_entry_static (info,
3616 output_bfd,
3617 r_type,
3618 sgot,
3619 off,
3620 relocation);
3621
3622 *off_ptr |= 1;
3623 }
3624 else
3625 unresolved_reloc = FALSE;
3626 }
3627 else if (bfd_link_pic (info)) /* && h == NULL */
3628 /* Process local symbol during dynamic link. */
3629 {
3630 srela = elf_hash_table (info)->srelgot;
3631 BFD_ASSERT (srela != NULL);
3632
3633 elf_m68k_init_got_entry_local_shared (info,
3634 output_bfd,
3635 r_type,
3636 sgot,
3637 off,
3638 relocation,
3639 srela);
3640
3641 *off_ptr |= 1;
3642 }
3643 else /* h == NULL && !bfd_link_pic (info) */
3644 {
3645 elf_m68k_init_got_entry_static (info,
3646 output_bfd,
3647 r_type,
3648 sgot,
3649 off,
3650 relocation);
3651
3652 *off_ptr |= 1;
3653 }
3654 }
3655
3656 /* We don't use elf_m68k_reloc_got_type in the condition below
3657 because this is the only place where difference between
3658 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3659 if (r_type == R_68K_GOT32O
3660 || r_type == R_68K_GOT16O
3661 || r_type == R_68K_GOT8O
3662 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3663 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3664 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3665 {
3666 /* GOT pointer is adjusted to point to the start/middle
3667 of local GOT. Adjust the offset accordingly. */
3668 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3669 || off >= got->offset);
3670
3671 if (elf_m68k_hash_table (info)->local_gp_p)
3672 relocation = off - got->offset;
3673 else
3674 {
3675 BFD_ASSERT (got->offset == 0);
3676 relocation = sgot->output_offset + off;
3677 }
3678
3679 /* This relocation does not use the addend. */
3680 rel->r_addend = 0;
3681 }
3682 else
3683 relocation = (sgot->output_section->vma + sgot->output_offset
3684 + off);
3685 }
3686 break;
3687
3688 case R_68K_TLS_LDO32:
3689 case R_68K_TLS_LDO16:
3690 case R_68K_TLS_LDO8:
3691 relocation -= dtpoff_base (info);
3692 break;
3693
3694 case R_68K_TLS_LE32:
3695 case R_68K_TLS_LE16:
3696 case R_68K_TLS_LE8:
3697 if (bfd_link_dll (info))
3698 {
3699 _bfd_error_handler
3700 /* xgettext:c-format */
3701 (_("%pB(%pA+%#" PRIx64 "): "
3702 "%s relocation not permitted in shared object"),
3703 input_bfd, input_section, (uint64_t) rel->r_offset,
3704 howto->name);
3705
3706 return FALSE;
3707 }
3708 else
3709 relocation -= tpoff_base (info);
3710
3711 break;
3712
3713 case R_68K_PLT8:
3714 case R_68K_PLT16:
3715 case R_68K_PLT32:
3716 /* Relocation is to the entry for this symbol in the
3717 procedure linkage table. */
3718
3719 /* Resolve a PLTxx reloc against a local symbol directly,
3720 without using the procedure linkage table. */
3721 if (h == NULL)
3722 break;
3723
3724 if (h->plt.offset == (bfd_vma) -1
3725 || !elf_hash_table (info)->dynamic_sections_created)
3726 {
3727 /* We didn't make a PLT entry for this symbol. This
3728 happens when statically linking PIC code, or when
3729 using -Bsymbolic. */
3730 break;
3731 }
3732
3733 splt = elf_hash_table (info)->splt;
3734 BFD_ASSERT (splt != NULL);
3735
3736 relocation = (splt->output_section->vma
3737 + splt->output_offset
3738 + h->plt.offset);
3739 unresolved_reloc = FALSE;
3740 break;
3741
3742 case R_68K_PLT8O:
3743 case R_68K_PLT16O:
3744 case R_68K_PLT32O:
3745 /* Relocation is the offset of the entry for this symbol in
3746 the procedure linkage table. */
3747 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3748
3749 splt = elf_hash_table (info)->splt;
3750 BFD_ASSERT (splt != NULL);
3751
3752 relocation = h->plt.offset;
3753 unresolved_reloc = FALSE;
3754
3755 /* This relocation does not use the addend. */
3756 rel->r_addend = 0;
3757
3758 break;
3759
3760 case R_68K_8:
3761 case R_68K_16:
3762 case R_68K_32:
3763 case R_68K_PC8:
3764 case R_68K_PC16:
3765 case R_68K_PC32:
3766 if (bfd_link_pic (info)
3767 && r_symndx != STN_UNDEF
3768 && (input_section->flags & SEC_ALLOC) != 0
3769 && (h == NULL
3770 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3771 && !resolved_to_zero)
3772 || h->root.type != bfd_link_hash_undefweak)
3773 && ((r_type != R_68K_PC8
3774 && r_type != R_68K_PC16
3775 && r_type != R_68K_PC32)
3776 || !SYMBOL_CALLS_LOCAL (info, h)))
3777 {
3778 Elf_Internal_Rela outrel;
3779 bfd_byte *loc;
3780 bfd_boolean skip, relocate;
3781
3782 /* When generating a shared object, these relocations
3783 are copied into the output file to be resolved at run
3784 time. */
3785
3786 skip = FALSE;
3787 relocate = FALSE;
3788
3789 outrel.r_offset =
3790 _bfd_elf_section_offset (output_bfd, info, input_section,
3791 rel->r_offset);
3792 if (outrel.r_offset == (bfd_vma) -1)
3793 skip = TRUE;
3794 else if (outrel.r_offset == (bfd_vma) -2)
3795 skip = TRUE, relocate = TRUE;
3796 outrel.r_offset += (input_section->output_section->vma
3797 + input_section->output_offset);
3798
3799 if (skip)
3800 memset (&outrel, 0, sizeof outrel);
3801 else if (h != NULL
3802 && h->dynindx != -1
3803 && (r_type == R_68K_PC8
3804 || r_type == R_68K_PC16
3805 || r_type == R_68K_PC32
3806 || !bfd_link_pic (info)
3807 || !SYMBOLIC_BIND (info, h)
3808 || !h->def_regular))
3809 {
3810 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3811 outrel.r_addend = rel->r_addend;
3812 }
3813 else
3814 {
3815 /* This symbol is local, or marked to become local. */
3816 outrel.r_addend = relocation + rel->r_addend;
3817
3818 if (r_type == R_68K_32)
3819 {
3820 relocate = TRUE;
3821 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3822 }
3823 else
3824 {
3825 long indx;
3826
3827 if (bfd_is_abs_section (sec))
3828 indx = 0;
3829 else if (sec == NULL || sec->owner == NULL)
3830 {
3831 bfd_set_error (bfd_error_bad_value);
3832 return FALSE;
3833 }
3834 else
3835 {
3836 asection *osec;
3837
3838 /* We are turning this relocation into one
3839 against a section symbol. It would be
3840 proper to subtract the symbol's value,
3841 osec->vma, from the emitted reloc addend,
3842 but ld.so expects buggy relocs. */
3843 osec = sec->output_section;
3844 indx = elf_section_data (osec)->dynindx;
3845 if (indx == 0)
3846 {
3847 struct elf_link_hash_table *htab;
3848 htab = elf_hash_table (info);
3849 osec = htab->text_index_section;
3850 indx = elf_section_data (osec)->dynindx;
3851 }
3852 BFD_ASSERT (indx != 0);
3853 }
3854
3855 outrel.r_info = ELF32_R_INFO (indx, r_type);
3856 }
3857 }
3858
3859 sreloc = elf_section_data (input_section)->sreloc;
3860 if (sreloc == NULL)
3861 abort ();
3862
3863 loc = sreloc->contents;
3864 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3865 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3866
3867 /* This reloc will be computed at runtime, so there's no
3868 need to do anything now, except for R_68K_32
3869 relocations that have been turned into
3870 R_68K_RELATIVE. */
3871 if (!relocate)
3872 continue;
3873 }
3874
3875 break;
3876
3877 case R_68K_GNU_VTINHERIT:
3878 case R_68K_GNU_VTENTRY:
3879 /* These are no-ops in the end. */
3880 continue;
3881
3882 default:
3883 break;
3884 }
3885
3886 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3887 because such sections are not SEC_ALLOC and thus ld.so will
3888 not process them. */
3889 if (unresolved_reloc
3890 && !((input_section->flags & SEC_DEBUGGING) != 0
3891 && h->def_dynamic)
3892 && _bfd_elf_section_offset (output_bfd, info, input_section,
3893 rel->r_offset) != (bfd_vma) -1)
3894 {
3895 _bfd_error_handler
3896 /* xgettext:c-format */
3897 (_("%pB(%pA+%#" PRIx64 "): "
3898 "unresolvable %s relocation against symbol `%s'"),
3899 input_bfd,
3900 input_section,
3901 (uint64_t) rel->r_offset,
3902 howto->name,
3903 h->root.root.string);
3904 return FALSE;
3905 }
3906
3907 if (r_symndx != STN_UNDEF
3908 && r_type != R_68K_NONE
3909 && (h == NULL
3910 || h->root.type == bfd_link_hash_defined
3911 || h->root.type == bfd_link_hash_defweak))
3912 {
3913 char sym_type;
3914
3915 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3916
3917 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3918 {
3919 const char *name;
3920
3921 if (h != NULL)
3922 name = h->root.root.string;
3923 else
3924 {
3925 name = (bfd_elf_string_from_elf_section
3926 (input_bfd, symtab_hdr->sh_link, sym->st_name));
3927 if (name == NULL || *name == '\0')
3928 name = bfd_section_name (input_bfd, sec);
3929 }
3930
3931 _bfd_error_handler
3932 ((sym_type == STT_TLS
3933 /* xgettext:c-format */
3934 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
3935 /* xgettext:c-format */
3936 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
3937 input_bfd,
3938 input_section,
3939 (uint64_t) rel->r_offset,
3940 howto->name,
3941 name);
3942 }
3943 }
3944
3945 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3946 contents, rel->r_offset,
3947 relocation, rel->r_addend);
3948
3949 if (r != bfd_reloc_ok)
3950 {
3951 const char *name;
3952
3953 if (h != NULL)
3954 name = h->root.root.string;
3955 else
3956 {
3957 name = bfd_elf_string_from_elf_section (input_bfd,
3958 symtab_hdr->sh_link,
3959 sym->st_name);
3960 if (name == NULL)
3961 return FALSE;
3962 if (*name == '\0')
3963 name = bfd_section_name (input_bfd, sec);
3964 }
3965
3966 if (r == bfd_reloc_overflow)
3967 (*info->callbacks->reloc_overflow)
3968 (info, (h ? &h->root : NULL), name, howto->name,
3969 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3970 else
3971 {
3972 _bfd_error_handler
3973 /* xgettext:c-format */
3974 (_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
3975 input_bfd, input_section,
3976 (uint64_t) rel->r_offset, name, (int) r);
3977 return FALSE;
3978 }
3979 }
3980 }
3981
3982 return TRUE;
3983 }
3984
3985 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
3986 into section SEC. */
3987
3988 static void
3989 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
3990 {
3991 /* Make VALUE PC-relative. */
3992 value -= sec->output_section->vma + offset;
3993
3994 /* Apply any in-place addend. */
3995 value += bfd_get_32 (sec->owner, sec->contents + offset);
3996
3997 bfd_put_32 (sec->owner, value, sec->contents + offset);
3998 }
3999
4000 /* Finish up dynamic symbol handling. We set the contents of various
4001 dynamic sections here. */
4002
4003 static bfd_boolean
4004 elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4005 struct bfd_link_info *info,
4006 struct elf_link_hash_entry *h,
4007 Elf_Internal_Sym *sym)
4008 {
4009 bfd *dynobj;
4010
4011 dynobj = elf_hash_table (info)->dynobj;
4012
4013 if (h->plt.offset != (bfd_vma) -1)
4014 {
4015 const struct elf_m68k_plt_info *plt_info;
4016 asection *splt;
4017 asection *sgot;
4018 asection *srela;
4019 bfd_vma plt_index;
4020 bfd_vma got_offset;
4021 Elf_Internal_Rela rela;
4022 bfd_byte *loc;
4023
4024 /* This symbol has an entry in the procedure linkage table. Set
4025 it up. */
4026
4027 BFD_ASSERT (h->dynindx != -1);
4028
4029 plt_info = elf_m68k_hash_table (info)->plt_info;
4030 splt = elf_hash_table (info)->splt;
4031 sgot = elf_hash_table (info)->sgotplt;
4032 srela = elf_hash_table (info)->srelplt;
4033 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4034
4035 /* Get the index in the procedure linkage table which
4036 corresponds to this symbol. This is the index of this symbol
4037 in all the symbols for which we are making plt entries. The
4038 first entry in the procedure linkage table is reserved. */
4039 plt_index = (h->plt.offset / plt_info->size) - 1;
4040
4041 /* Get the offset into the .got table of the entry that
4042 corresponds to this function. Each .got entry is 4 bytes.
4043 The first three are reserved. */
4044 got_offset = (plt_index + 3) * 4;
4045
4046 memcpy (splt->contents + h->plt.offset,
4047 plt_info->symbol_entry,
4048 plt_info->size);
4049
4050 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4051 (sgot->output_section->vma
4052 + sgot->output_offset
4053 + got_offset));
4054
4055 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4056 splt->contents
4057 + h->plt.offset
4058 + plt_info->symbol_resolve_entry + 2);
4059
4060 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4061 splt->output_section->vma);
4062
4063 /* Fill in the entry in the global offset table. */
4064 bfd_put_32 (output_bfd,
4065 (splt->output_section->vma
4066 + splt->output_offset
4067 + h->plt.offset
4068 + plt_info->symbol_resolve_entry),
4069 sgot->contents + got_offset);
4070
4071 /* Fill in the entry in the .rela.plt section. */
4072 rela.r_offset = (sgot->output_section->vma
4073 + sgot->output_offset
4074 + got_offset);
4075 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4076 rela.r_addend = 0;
4077 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4078 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4079
4080 if (!h->def_regular)
4081 {
4082 /* Mark the symbol as undefined, rather than as defined in
4083 the .plt section. Leave the value alone. */
4084 sym->st_shndx = SHN_UNDEF;
4085 }
4086 }
4087
4088 if (elf_m68k_hash_entry (h)->glist != NULL)
4089 {
4090 asection *sgot;
4091 asection *srela;
4092 struct elf_m68k_got_entry *got_entry;
4093
4094 /* This symbol has an entry in the global offset table. Set it
4095 up. */
4096
4097 sgot = elf_hash_table (info)->sgot;
4098 srela = elf_hash_table (info)->srelgot;
4099 BFD_ASSERT (sgot != NULL && srela != NULL);
4100
4101 got_entry = elf_m68k_hash_entry (h)->glist;
4102
4103 while (got_entry != NULL)
4104 {
4105 enum elf_m68k_reloc_type r_type;
4106 bfd_vma got_entry_offset;
4107
4108 r_type = got_entry->key_.type;
4109 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4110
4111 /* If this is a -Bsymbolic link, and the symbol is defined
4112 locally, we just want to emit a RELATIVE reloc. Likewise if
4113 the symbol was forced to be local because of a version file.
4114 The entry in the global offset table already have been
4115 initialized in the relocate_section function. */
4116 if (bfd_link_pic (info)
4117 && SYMBOL_REFERENCES_LOCAL (info, h))
4118 {
4119 bfd_vma relocation;
4120
4121 relocation = bfd_get_signed_32 (output_bfd,
4122 (sgot->contents
4123 + got_entry_offset));
4124
4125 /* Undo TP bias. */
4126 switch (elf_m68k_reloc_got_type (r_type))
4127 {
4128 case R_68K_GOT32O:
4129 case R_68K_TLS_LDM32:
4130 break;
4131
4132 case R_68K_TLS_GD32:
4133 /* The value for this relocation is actually put in
4134 the second GOT slot. */
4135 relocation = bfd_get_signed_32 (output_bfd,
4136 (sgot->contents
4137 + got_entry_offset + 4));
4138 relocation += dtpoff_base (info);
4139 break;
4140
4141 case R_68K_TLS_IE32:
4142 relocation += tpoff_base (info);
4143 break;
4144
4145 default:
4146 BFD_ASSERT (FALSE);
4147 }
4148
4149 elf_m68k_init_got_entry_local_shared (info,
4150 output_bfd,
4151 r_type,
4152 sgot,
4153 got_entry_offset,
4154 relocation,
4155 srela);
4156 }
4157 else
4158 {
4159 Elf_Internal_Rela rela;
4160
4161 /* Put zeros to GOT slots that will be initialized
4162 at run-time. */
4163 {
4164 bfd_vma n_slots;
4165
4166 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4167 while (n_slots--)
4168 bfd_put_32 (output_bfd, (bfd_vma) 0,
4169 (sgot->contents + got_entry_offset
4170 + 4 * n_slots));
4171 }
4172
4173 rela.r_addend = 0;
4174 rela.r_offset = (sgot->output_section->vma
4175 + sgot->output_offset
4176 + got_entry_offset);
4177
4178 switch (elf_m68k_reloc_got_type (r_type))
4179 {
4180 case R_68K_GOT32O:
4181 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4182 elf_m68k_install_rela (output_bfd, srela, &rela);
4183 break;
4184
4185 case R_68K_TLS_GD32:
4186 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4187 elf_m68k_install_rela (output_bfd, srela, &rela);
4188
4189 rela.r_offset += 4;
4190 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4191 elf_m68k_install_rela (output_bfd, srela, &rela);
4192 break;
4193
4194 case R_68K_TLS_IE32:
4195 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4196 elf_m68k_install_rela (output_bfd, srela, &rela);
4197 break;
4198
4199 default:
4200 BFD_ASSERT (FALSE);
4201 break;
4202 }
4203 }
4204
4205 got_entry = got_entry->u.s2.next;
4206 }
4207 }
4208
4209 if (h->needs_copy)
4210 {
4211 asection *s;
4212 Elf_Internal_Rela rela;
4213 bfd_byte *loc;
4214
4215 /* This symbol needs a copy reloc. Set it up. */
4216
4217 BFD_ASSERT (h->dynindx != -1
4218 && (h->root.type == bfd_link_hash_defined
4219 || h->root.type == bfd_link_hash_defweak));
4220
4221 s = bfd_get_linker_section (dynobj, ".rela.bss");
4222 BFD_ASSERT (s != NULL);
4223
4224 rela.r_offset = (h->root.u.def.value
4225 + h->root.u.def.section->output_section->vma
4226 + h->root.u.def.section->output_offset);
4227 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4228 rela.r_addend = 0;
4229 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4230 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4231 }
4232
4233 return TRUE;
4234 }
4235
4236 /* Finish up the dynamic sections. */
4237
4238 static bfd_boolean
4239 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4240 {
4241 bfd *dynobj;
4242 asection *sgot;
4243 asection *sdyn;
4244
4245 dynobj = elf_hash_table (info)->dynobj;
4246
4247 sgot = elf_hash_table (info)->sgotplt;
4248 BFD_ASSERT (sgot != NULL);
4249 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4250
4251 if (elf_hash_table (info)->dynamic_sections_created)
4252 {
4253 asection *splt;
4254 Elf32_External_Dyn *dyncon, *dynconend;
4255
4256 splt = elf_hash_table (info)->splt;
4257 BFD_ASSERT (splt != NULL && sdyn != NULL);
4258
4259 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4260 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4261 for (; dyncon < dynconend; dyncon++)
4262 {
4263 Elf_Internal_Dyn dyn;
4264 asection *s;
4265
4266 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4267
4268 switch (dyn.d_tag)
4269 {
4270 default:
4271 break;
4272
4273 case DT_PLTGOT:
4274 s = elf_hash_table (info)->sgotplt;
4275 goto get_vma;
4276 case DT_JMPREL:
4277 s = elf_hash_table (info)->srelplt;
4278 get_vma:
4279 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4280 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4281 break;
4282
4283 case DT_PLTRELSZ:
4284 s = elf_hash_table (info)->srelplt;
4285 dyn.d_un.d_val = s->size;
4286 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4287 break;
4288 }
4289 }
4290
4291 /* Fill in the first entry in the procedure linkage table. */
4292 if (splt->size > 0)
4293 {
4294 const struct elf_m68k_plt_info *plt_info;
4295
4296 plt_info = elf_m68k_hash_table (info)->plt_info;
4297 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4298
4299 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4300 (sgot->output_section->vma
4301 + sgot->output_offset
4302 + 4));
4303
4304 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4305 (sgot->output_section->vma
4306 + sgot->output_offset
4307 + 8));
4308
4309 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4310 = plt_info->size;
4311 }
4312 }
4313
4314 /* Fill in the first three entries in the global offset table. */
4315 if (sgot->size > 0)
4316 {
4317 if (sdyn == NULL)
4318 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4319 else
4320 bfd_put_32 (output_bfd,
4321 sdyn->output_section->vma + sdyn->output_offset,
4322 sgot->contents);
4323 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4324 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4325 }
4326
4327 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4328
4329 return TRUE;
4330 }
4331
4332 /* Given a .data section and a .emreloc in-memory section, store
4333 relocation information into the .emreloc section which can be
4334 used at runtime to relocate the section. This is called by the
4335 linker when the --embedded-relocs switch is used. This is called
4336 after the add_symbols entry point has been called for all the
4337 objects, and before the final_link entry point is called. */
4338
4339 bfd_boolean
4340 bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4341 asection *datasec, asection *relsec,
4342 char **errmsg)
4343 {
4344 Elf_Internal_Shdr *symtab_hdr;
4345 Elf_Internal_Sym *isymbuf = NULL;
4346 Elf_Internal_Rela *internal_relocs = NULL;
4347 Elf_Internal_Rela *irel, *irelend;
4348 bfd_byte *p;
4349 bfd_size_type amt;
4350
4351 BFD_ASSERT (! bfd_link_relocatable (info));
4352
4353 *errmsg = NULL;
4354
4355 if (datasec->reloc_count == 0)
4356 return TRUE;
4357
4358 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4359
4360 /* Get a copy of the native relocations. */
4361 internal_relocs = (_bfd_elf_link_read_relocs
4362 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4363 info->keep_memory));
4364 if (internal_relocs == NULL)
4365 goto error_return;
4366
4367 amt = (bfd_size_type) datasec->reloc_count * 12;
4368 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4369 if (relsec->contents == NULL)
4370 goto error_return;
4371
4372 p = relsec->contents;
4373
4374 irelend = internal_relocs + datasec->reloc_count;
4375 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4376 {
4377 asection *targetsec;
4378
4379 /* We are going to write a four byte longword into the runtime
4380 reloc section. The longword will be the address in the data
4381 section which must be relocated. It is followed by the name
4382 of the target section NUL-padded or truncated to 8
4383 characters. */
4384
4385 /* We can only relocate absolute longword relocs at run time. */
4386 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4387 {
4388 *errmsg = _("unsupported relocation type");
4389 bfd_set_error (bfd_error_bad_value);
4390 goto error_return;
4391 }
4392
4393 /* Get the target section referred to by the reloc. */
4394 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4395 {
4396 /* A local symbol. */
4397 Elf_Internal_Sym *isym;
4398
4399 /* Read this BFD's local symbols if we haven't done so already. */
4400 if (isymbuf == NULL)
4401 {
4402 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4403 if (isymbuf == NULL)
4404 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4405 symtab_hdr->sh_info, 0,
4406 NULL, NULL, NULL);
4407 if (isymbuf == NULL)
4408 goto error_return;
4409 }
4410
4411 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4412 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4413 }
4414 else
4415 {
4416 unsigned long indx;
4417 struct elf_link_hash_entry *h;
4418
4419 /* An external symbol. */
4420 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4421 h = elf_sym_hashes (abfd)[indx];
4422 BFD_ASSERT (h != NULL);
4423 if (h->root.type == bfd_link_hash_defined
4424 || h->root.type == bfd_link_hash_defweak)
4425 targetsec = h->root.u.def.section;
4426 else
4427 targetsec = NULL;
4428 }
4429
4430 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4431 memset (p + 4, 0, 8);
4432 if (targetsec != NULL)
4433 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4434 }
4435
4436 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4437 free (isymbuf);
4438 if (internal_relocs != NULL
4439 && elf_section_data (datasec)->relocs != internal_relocs)
4440 free (internal_relocs);
4441 return TRUE;
4442
4443 error_return:
4444 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4445 free (isymbuf);
4446 if (internal_relocs != NULL
4447 && elf_section_data (datasec)->relocs != internal_relocs)
4448 free (internal_relocs);
4449 return FALSE;
4450 }
4451
4452 /* Set target options. */
4453
4454 void
4455 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4456 {
4457 struct elf_m68k_link_hash_table *htab;
4458 bfd_boolean use_neg_got_offsets_p;
4459 bfd_boolean allow_multigot_p;
4460 bfd_boolean local_gp_p;
4461
4462 switch (got_handling)
4463 {
4464 case 0:
4465 /* --got=single. */
4466 local_gp_p = FALSE;
4467 use_neg_got_offsets_p = FALSE;
4468 allow_multigot_p = FALSE;
4469 break;
4470
4471 case 1:
4472 /* --got=negative. */
4473 local_gp_p = TRUE;
4474 use_neg_got_offsets_p = TRUE;
4475 allow_multigot_p = FALSE;
4476 break;
4477
4478 case 2:
4479 /* --got=multigot. */
4480 local_gp_p = TRUE;
4481 use_neg_got_offsets_p = TRUE;
4482 allow_multigot_p = TRUE;
4483 break;
4484
4485 default:
4486 BFD_ASSERT (FALSE);
4487 return;
4488 }
4489
4490 htab = elf_m68k_hash_table (info);
4491 if (htab != NULL)
4492 {
4493 htab->local_gp_p = local_gp_p;
4494 htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4495 htab->allow_multigot_p = allow_multigot_p;
4496 }
4497 }
4498
4499 static enum elf_reloc_type_class
4500 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4501 const asection *rel_sec ATTRIBUTE_UNUSED,
4502 const Elf_Internal_Rela *rela)
4503 {
4504 switch ((int) ELF32_R_TYPE (rela->r_info))
4505 {
4506 case R_68K_RELATIVE:
4507 return reloc_class_relative;
4508 case R_68K_JMP_SLOT:
4509 return reloc_class_plt;
4510 case R_68K_COPY:
4511 return reloc_class_copy;
4512 default:
4513 return reloc_class_normal;
4514 }
4515 }
4516
4517 /* Return address for Ith PLT stub in section PLT, for relocation REL
4518 or (bfd_vma) -1 if it should not be included. */
4519
4520 static bfd_vma
4521 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4522 const arelent *rel ATTRIBUTE_UNUSED)
4523 {
4524 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4525 }
4526
4527 /* Support for core dump NOTE sections. */
4528
4529 static bfd_boolean
4530 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4531 {
4532 int offset;
4533 size_t size;
4534
4535 switch (note->descsz)
4536 {
4537 default:
4538 return FALSE;
4539
4540 case 154: /* Linux/m68k */
4541 /* pr_cursig */
4542 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4543
4544 /* pr_pid */
4545 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4546
4547 /* pr_reg */
4548 offset = 70;
4549 size = 80;
4550
4551 break;
4552 }
4553
4554 /* Make a ".reg/999" section. */
4555 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4556 size, note->descpos + offset);
4557 }
4558
4559 static bfd_boolean
4560 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4561 {
4562 switch (note->descsz)
4563 {
4564 default:
4565 return FALSE;
4566
4567 case 124: /* Linux/m68k elf_prpsinfo. */
4568 elf_tdata (abfd)->core->pid
4569 = bfd_get_32 (abfd, note->descdata + 12);
4570 elf_tdata (abfd)->core->program
4571 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4572 elf_tdata (abfd)->core->command
4573 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4574 }
4575
4576 /* Note that for some reason, a spurious space is tacked
4577 onto the end of the args in some (at least one anyway)
4578 implementations, so strip it off if it exists. */
4579 {
4580 char *command = elf_tdata (abfd)->core->command;
4581 int n = strlen (command);
4582
4583 if (n > 0 && command[n - 1] == ' ')
4584 command[n - 1] = '\0';
4585 }
4586
4587 return TRUE;
4588 }
4589
4590 #define TARGET_BIG_SYM m68k_elf32_vec
4591 #define TARGET_BIG_NAME "elf32-m68k"
4592 #define ELF_MACHINE_CODE EM_68K
4593 #define ELF_MAXPAGESIZE 0x2000
4594 #define elf_backend_create_dynamic_sections \
4595 _bfd_elf_create_dynamic_sections
4596 #define bfd_elf32_bfd_link_hash_table_create \
4597 elf_m68k_link_hash_table_create
4598 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4599
4600 #define elf_backend_check_relocs elf_m68k_check_relocs
4601 #define elf_backend_always_size_sections \
4602 elf_m68k_always_size_sections
4603 #define elf_backend_adjust_dynamic_symbol \
4604 elf_m68k_adjust_dynamic_symbol
4605 #define elf_backend_size_dynamic_sections \
4606 elf_m68k_size_dynamic_sections
4607 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4608 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4609 #define elf_backend_relocate_section elf_m68k_relocate_section
4610 #define elf_backend_finish_dynamic_symbol \
4611 elf_m68k_finish_dynamic_symbol
4612 #define elf_backend_finish_dynamic_sections \
4613 elf_m68k_finish_dynamic_sections
4614 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4615 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4616 #define bfd_elf32_bfd_merge_private_bfd_data \
4617 elf32_m68k_merge_private_bfd_data
4618 #define bfd_elf32_bfd_set_private_flags \
4619 elf32_m68k_set_private_flags
4620 #define bfd_elf32_bfd_print_private_bfd_data \
4621 elf32_m68k_print_private_bfd_data
4622 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4623 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4624 #define elf_backend_object_p elf32_m68k_object_p
4625 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4626 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo
4627
4628 #define elf_backend_can_gc_sections 1
4629 #define elf_backend_can_refcount 1
4630 #define elf_backend_want_got_plt 1
4631 #define elf_backend_plt_readonly 1
4632 #define elf_backend_want_plt_sym 0
4633 #define elf_backend_got_header_size 12
4634 #define elf_backend_rela_normal 1
4635 #define elf_backend_dtrel_excludes_plt 1
4636
4637 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
4638
4639 #include "elf32-target.h"
This page took 0.131363 seconds and 4 git commands to generate.