* serial.h (gdb_pipe, serial_pipe): Declare.
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf/m68k.h"
28 #include "opcode/m68k.h"
29
30 static reloc_howto_type *reloc_type_lookup
31 PARAMS ((bfd *, bfd_reloc_code_real_type));
32 static void rtype_to_howto
33 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
34 static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
37 PARAMS ((bfd *));
38 static bfd_boolean elf_m68k_check_relocs
39 PARAMS ((bfd *, struct bfd_link_info *, asection *,
40 const Elf_Internal_Rela *));
41 static bfd_boolean elf_m68k_adjust_dynamic_symbol
42 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
43 static bfd_boolean elf_m68k_size_dynamic_sections
44 PARAMS ((bfd *, struct bfd_link_info *));
45 static bfd_boolean elf_m68k_discard_copies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static bfd_boolean elf_m68k_relocate_section
48 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
49 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
50 static bfd_boolean elf_m68k_finish_dynamic_symbol
51 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
52 Elf_Internal_Sym *));
53 static bfd_boolean elf_m68k_finish_dynamic_sections
54 PARAMS ((bfd *, struct bfd_link_info *));
55
56 static bfd_boolean elf32_m68k_set_private_flags
57 PARAMS ((bfd *, flagword));
58 static bfd_boolean elf32_m68k_merge_private_bfd_data
59 PARAMS ((bfd *, bfd *));
60 static bfd_boolean elf32_m68k_print_private_bfd_data
61 PARAMS ((bfd *, PTR));
62 static enum elf_reloc_type_class elf32_m68k_reloc_type_class
63 PARAMS ((const Elf_Internal_Rela *));
64
65 static reloc_howto_type howto_table[] = {
66 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
67 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
68 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
69 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
70 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
71 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
72 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
73 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
74 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
75 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
76 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
77 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
78 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
79 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
80 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
81 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
82 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
83 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
84 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
85 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
86 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
87 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
88 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
89 /* GNU extension to record C++ vtable hierarchy. */
90 HOWTO (R_68K_GNU_VTINHERIT, /* type */
91 0, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 0, /* bitsize */
94 FALSE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_dont, /* complain_on_overflow */
97 NULL, /* special_function */
98 "R_68K_GNU_VTINHERIT", /* name */
99 FALSE, /* partial_inplace */
100 0, /* src_mask */
101 0, /* dst_mask */
102 FALSE),
103 /* GNU extension to record C++ vtable member usage. */
104 HOWTO (R_68K_GNU_VTENTRY, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 0, /* bitsize */
108 FALSE, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_dont, /* complain_on_overflow */
111 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
112 "R_68K_GNU_VTENTRY", /* name */
113 FALSE, /* partial_inplace */
114 0, /* src_mask */
115 0, /* dst_mask */
116 FALSE),
117
118 /* TLS general dynamic variable reference. */
119 HOWTO (R_68K_TLS_GD32, /* type */
120 0, /* rightshift */
121 2, /* size (0 = byte, 1 = short, 2 = long) */
122 32, /* bitsize */
123 FALSE, /* pc_relative */
124 0, /* bitpos */
125 complain_overflow_bitfield, /* complain_on_overflow */
126 bfd_elf_generic_reloc, /* special_function */
127 "R_68K_TLS_GD32", /* name */
128 FALSE, /* partial_inplace */
129 0, /* src_mask */
130 0xffffffff, /* dst_mask */
131 FALSE), /* pcrel_offset */
132
133 HOWTO (R_68K_TLS_GD16, /* type */
134 0, /* rightshift */
135 1, /* size (0 = byte, 1 = short, 2 = long) */
136 16, /* bitsize */
137 FALSE, /* pc_relative */
138 0, /* bitpos */
139 complain_overflow_signed, /* complain_on_overflow */
140 bfd_elf_generic_reloc, /* special_function */
141 "R_68K_TLS_GD16", /* name */
142 FALSE, /* partial_inplace */
143 0, /* src_mask */
144 0x0000ffff, /* dst_mask */
145 FALSE), /* pcrel_offset */
146
147 HOWTO (R_68K_TLS_GD8, /* type */
148 0, /* rightshift */
149 0, /* size (0 = byte, 1 = short, 2 = long) */
150 8, /* bitsize */
151 FALSE, /* pc_relative */
152 0, /* bitpos */
153 complain_overflow_signed, /* complain_on_overflow */
154 bfd_elf_generic_reloc, /* special_function */
155 "R_68K_TLS_GD8", /* name */
156 FALSE, /* partial_inplace */
157 0, /* src_mask */
158 0x000000ff, /* dst_mask */
159 FALSE), /* pcrel_offset */
160
161 /* TLS local dynamic variable reference. */
162 HOWTO (R_68K_TLS_LDM32, /* type */
163 0, /* rightshift */
164 2, /* size (0 = byte, 1 = short, 2 = long) */
165 32, /* bitsize */
166 FALSE, /* pc_relative */
167 0, /* bitpos */
168 complain_overflow_bitfield, /* complain_on_overflow */
169 bfd_elf_generic_reloc, /* special_function */
170 "R_68K_TLS_LDM32", /* name */
171 FALSE, /* partial_inplace */
172 0, /* src_mask */
173 0xffffffff, /* dst_mask */
174 FALSE), /* pcrel_offset */
175
176 HOWTO (R_68K_TLS_LDM16, /* type */
177 0, /* rightshift */
178 1, /* size (0 = byte, 1 = short, 2 = long) */
179 16, /* bitsize */
180 FALSE, /* pc_relative */
181 0, /* bitpos */
182 complain_overflow_signed, /* complain_on_overflow */
183 bfd_elf_generic_reloc, /* special_function */
184 "R_68K_TLS_LDM16", /* name */
185 FALSE, /* partial_inplace */
186 0, /* src_mask */
187 0x0000ffff, /* dst_mask */
188 FALSE), /* pcrel_offset */
189
190 HOWTO (R_68K_TLS_LDM8, /* type */
191 0, /* rightshift */
192 0, /* size (0 = byte, 1 = short, 2 = long) */
193 8, /* bitsize */
194 FALSE, /* pc_relative */
195 0, /* bitpos */
196 complain_overflow_signed, /* complain_on_overflow */
197 bfd_elf_generic_reloc, /* special_function */
198 "R_68K_TLS_LDM8", /* name */
199 FALSE, /* partial_inplace */
200 0, /* src_mask */
201 0x000000ff, /* dst_mask */
202 FALSE), /* pcrel_offset */
203
204 HOWTO (R_68K_TLS_LDO32, /* type */
205 0, /* rightshift */
206 2, /* size (0 = byte, 1 = short, 2 = long) */
207 32, /* bitsize */
208 FALSE, /* pc_relative */
209 0, /* bitpos */
210 complain_overflow_bitfield, /* complain_on_overflow */
211 bfd_elf_generic_reloc, /* special_function */
212 "R_68K_TLS_LDO32", /* name */
213 FALSE, /* partial_inplace */
214 0, /* src_mask */
215 0xffffffff, /* dst_mask */
216 FALSE), /* pcrel_offset */
217
218 HOWTO (R_68K_TLS_LDO16, /* type */
219 0, /* rightshift */
220 1, /* size (0 = byte, 1 = short, 2 = long) */
221 16, /* bitsize */
222 FALSE, /* pc_relative */
223 0, /* bitpos */
224 complain_overflow_signed, /* complain_on_overflow */
225 bfd_elf_generic_reloc, /* special_function */
226 "R_68K_TLS_LDO16", /* name */
227 FALSE, /* partial_inplace */
228 0, /* src_mask */
229 0x0000ffff, /* dst_mask */
230 FALSE), /* pcrel_offset */
231
232 HOWTO (R_68K_TLS_LDO8, /* type */
233 0, /* rightshift */
234 0, /* size (0 = byte, 1 = short, 2 = long) */
235 8, /* bitsize */
236 FALSE, /* pc_relative */
237 0, /* bitpos */
238 complain_overflow_signed, /* complain_on_overflow */
239 bfd_elf_generic_reloc, /* special_function */
240 "R_68K_TLS_LDO8", /* name */
241 FALSE, /* partial_inplace */
242 0, /* src_mask */
243 0x000000ff, /* dst_mask */
244 FALSE), /* pcrel_offset */
245
246 /* TLS initial execution variable reference. */
247 HOWTO (R_68K_TLS_IE32, /* type */
248 0, /* rightshift */
249 2, /* size (0 = byte, 1 = short, 2 = long) */
250 32, /* bitsize */
251 FALSE, /* pc_relative */
252 0, /* bitpos */
253 complain_overflow_bitfield, /* complain_on_overflow */
254 bfd_elf_generic_reloc, /* special_function */
255 "R_68K_TLS_IE32", /* name */
256 FALSE, /* partial_inplace */
257 0, /* src_mask */
258 0xffffffff, /* dst_mask */
259 FALSE), /* pcrel_offset */
260
261 HOWTO (R_68K_TLS_IE16, /* type */
262 0, /* rightshift */
263 1, /* size (0 = byte, 1 = short, 2 = long) */
264 16, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_signed, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_68K_TLS_IE16", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x0000ffff, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 HOWTO (R_68K_TLS_IE8, /* type */
276 0, /* rightshift */
277 0, /* size (0 = byte, 1 = short, 2 = long) */
278 8, /* bitsize */
279 FALSE, /* pc_relative */
280 0, /* bitpos */
281 complain_overflow_signed, /* complain_on_overflow */
282 bfd_elf_generic_reloc, /* special_function */
283 "R_68K_TLS_IE8", /* name */
284 FALSE, /* partial_inplace */
285 0, /* src_mask */
286 0x000000ff, /* dst_mask */
287 FALSE), /* pcrel_offset */
288
289 /* TLS local execution variable reference. */
290 HOWTO (R_68K_TLS_LE32, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 32, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_68K_TLS_LE32", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0xffffffff, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 HOWTO (R_68K_TLS_LE16, /* type */
305 0, /* rightshift */
306 1, /* size (0 = byte, 1 = short, 2 = long) */
307 16, /* bitsize */
308 FALSE, /* pc_relative */
309 0, /* bitpos */
310 complain_overflow_signed, /* complain_on_overflow */
311 bfd_elf_generic_reloc, /* special_function */
312 "R_68K_TLS_LE16", /* name */
313 FALSE, /* partial_inplace */
314 0, /* src_mask */
315 0x0000ffff, /* dst_mask */
316 FALSE), /* pcrel_offset */
317
318 HOWTO (R_68K_TLS_LE8, /* type */
319 0, /* rightshift */
320 0, /* size (0 = byte, 1 = short, 2 = long) */
321 8, /* bitsize */
322 FALSE, /* pc_relative */
323 0, /* bitpos */
324 complain_overflow_signed, /* complain_on_overflow */
325 bfd_elf_generic_reloc, /* special_function */
326 "R_68K_TLS_LE8", /* name */
327 FALSE, /* partial_inplace */
328 0, /* src_mask */
329 0x000000ff, /* dst_mask */
330 FALSE), /* pcrel_offset */
331
332 /* TLS GD/LD dynamic relocations. */
333 HOWTO (R_68K_TLS_DTPMOD32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_dont, /* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_68K_TLS_DTPMOD32", /* name */
342 FALSE, /* partial_inplace */
343 0, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_68K_TLS_DTPREL32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_dont, /* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_68K_TLS_DTPREL32", /* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 HOWTO (R_68K_TLS_TPREL32, /* type */
362 0, /* rightshift */
363 2, /* size (0 = byte, 1 = short, 2 = long) */
364 32, /* bitsize */
365 FALSE, /* pc_relative */
366 0, /* bitpos */
367 complain_overflow_dont, /* complain_on_overflow */
368 bfd_elf_generic_reloc, /* special_function */
369 "R_68K_TLS_TPREL32", /* name */
370 FALSE, /* partial_inplace */
371 0, /* src_mask */
372 0xffffffff, /* dst_mask */
373 FALSE), /* pcrel_offset */
374 };
375
376 static void
377 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
378 {
379 unsigned int indx = ELF32_R_TYPE (dst->r_info);
380
381 if (indx >= (unsigned int) R_68K_max)
382 {
383 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
384 abfd, (int) indx);
385 indx = R_68K_NONE;
386 }
387 cache_ptr->howto = &howto_table[indx];
388 }
389
390 #define elf_info_to_howto rtype_to_howto
391
392 static const struct
393 {
394 bfd_reloc_code_real_type bfd_val;
395 int elf_val;
396 }
397 reloc_map[] =
398 {
399 { BFD_RELOC_NONE, R_68K_NONE },
400 { BFD_RELOC_32, R_68K_32 },
401 { BFD_RELOC_16, R_68K_16 },
402 { BFD_RELOC_8, R_68K_8 },
403 { BFD_RELOC_32_PCREL, R_68K_PC32 },
404 { BFD_RELOC_16_PCREL, R_68K_PC16 },
405 { BFD_RELOC_8_PCREL, R_68K_PC8 },
406 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
407 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
408 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
409 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
410 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
411 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
412 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
413 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
414 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
415 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
416 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
417 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
418 { BFD_RELOC_NONE, R_68K_COPY },
419 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
420 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
421 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
422 { BFD_RELOC_CTOR, R_68K_32 },
423 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
424 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
425 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
426 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
427 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
428 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
429 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
430 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
431 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
432 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
433 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
434 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
435 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
436 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
437 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
438 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
439 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
440 };
441
442 static reloc_howto_type *
443 reloc_type_lookup (abfd, code)
444 bfd *abfd ATTRIBUTE_UNUSED;
445 bfd_reloc_code_real_type code;
446 {
447 unsigned int i;
448 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
449 {
450 if (reloc_map[i].bfd_val == code)
451 return &howto_table[reloc_map[i].elf_val];
452 }
453 return 0;
454 }
455
456 static reloc_howto_type *
457 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
458 {
459 unsigned int i;
460
461 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
462 if (howto_table[i].name != NULL
463 && strcasecmp (howto_table[i].name, r_name) == 0)
464 return &howto_table[i];
465
466 return NULL;
467 }
468
469 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
470 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
471 #define ELF_ARCH bfd_arch_m68k
472 \f
473 /* Functions for the m68k ELF linker. */
474
475 /* The name of the dynamic interpreter. This is put in the .interp
476 section. */
477
478 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
479
480 /* Describes one of the various PLT styles. */
481
482 struct elf_m68k_plt_info
483 {
484 /* The size of each PLT entry. */
485 bfd_vma size;
486
487 /* The template for the first PLT entry. */
488 const bfd_byte *plt0_entry;
489
490 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
491 The comments by each member indicate the value that the relocation
492 is against. */
493 struct {
494 unsigned int got4; /* .got + 4 */
495 unsigned int got8; /* .got + 8 */
496 } plt0_relocs;
497
498 /* The template for a symbol's PLT entry. */
499 const bfd_byte *symbol_entry;
500
501 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
502 The comments by each member indicate the value that the relocation
503 is against. */
504 struct {
505 unsigned int got; /* the symbol's .got.plt entry */
506 unsigned int plt; /* .plt */
507 } symbol_relocs;
508
509 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
510 The stub starts with "move.l #relocoffset,%d0". */
511 bfd_vma symbol_resolve_entry;
512 };
513
514 /* The size in bytes of an entry in the procedure linkage table. */
515
516 #define PLT_ENTRY_SIZE 20
517
518 /* The first entry in a procedure linkage table looks like this. See
519 the SVR4 ABI m68k supplement to see how this works. */
520
521 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
522 {
523 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
524 0, 0, 0, 2, /* + (.got + 4) - . */
525 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
526 0, 0, 0, 2, /* + (.got + 8) - . */
527 0, 0, 0, 0 /* pad out to 20 bytes. */
528 };
529
530 /* Subsequent entries in a procedure linkage table look like this. */
531
532 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
533 {
534 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
535 0, 0, 0, 2, /* + (.got.plt entry) - . */
536 0x2f, 0x3c, /* move.l #offset,-(%sp) */
537 0, 0, 0, 0, /* + reloc index */
538 0x60, 0xff, /* bra.l .plt */
539 0, 0, 0, 0 /* + .plt - . */
540 };
541
542 static const struct elf_m68k_plt_info elf_m68k_plt_info = {
543 PLT_ENTRY_SIZE,
544 elf_m68k_plt0_entry, { 4, 12 },
545 elf_m68k_plt_entry, { 4, 16 }, 8
546 };
547
548 #define ISAB_PLT_ENTRY_SIZE 24
549
550 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
551 {
552 0x20, 0x3c, /* move.l #offset,%d0 */
553 0, 0, 0, 0, /* + (.got + 4) - . */
554 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
555 0x20, 0x3c, /* move.l #offset,%d0 */
556 0, 0, 0, 0, /* + (.got + 8) - . */
557 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
558 0x4e, 0xd0, /* jmp (%a0) */
559 0x4e, 0x71 /* nop */
560 };
561
562 /* Subsequent entries in a procedure linkage table look like this. */
563
564 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
565 {
566 0x20, 0x3c, /* move.l #offset,%d0 */
567 0, 0, 0, 0, /* + (.got.plt entry) - . */
568 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
569 0x4e, 0xd0, /* jmp (%a0) */
570 0x2f, 0x3c, /* move.l #offset,-(%sp) */
571 0, 0, 0, 0, /* + reloc index */
572 0x60, 0xff, /* bra.l .plt */
573 0, 0, 0, 0 /* + .plt - . */
574 };
575
576 static const struct elf_m68k_plt_info elf_isab_plt_info = {
577 ISAB_PLT_ENTRY_SIZE,
578 elf_isab_plt0_entry, { 2, 12 },
579 elf_isab_plt_entry, { 2, 20 }, 12
580 };
581
582 #define ISAC_PLT_ENTRY_SIZE 24
583
584 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
585 {
586 0x20, 0x3c, /* move.l #offset,%d0 */
587 0, 0, 0, 0, /* replaced with .got + 4 - . */
588 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
589 0x20, 0x3c, /* move.l #offset,%d0 */
590 0, 0, 0, 0, /* replaced with .got + 8 - . */
591 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
592 0x4e, 0xd0, /* jmp (%a0) */
593 0x4e, 0x71 /* nop */
594 };
595
596 /* Subsequent entries in a procedure linkage table look like this. */
597
598 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
599 {
600 0x20, 0x3c, /* move.l #offset,%d0 */
601 0, 0, 0, 0, /* replaced with (.got entry) - . */
602 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
603 0x4e, 0xd0, /* jmp (%a0) */
604 0x2f, 0x3c, /* move.l #offset,-(%sp) */
605 0, 0, 0, 0, /* replaced with offset into relocation table */
606 0x61, 0xff, /* bsr.l .plt */
607 0, 0, 0, 0 /* replaced with .plt - . */
608 };
609
610 static const struct elf_m68k_plt_info elf_isac_plt_info = {
611 ISAC_PLT_ENTRY_SIZE,
612 elf_isac_plt0_entry, { 2, 12},
613 elf_isac_plt_entry, { 2, 20 }, 12
614 };
615
616 #define CPU32_PLT_ENTRY_SIZE 24
617 /* Procedure linkage table entries for the cpu32 */
618 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
619 {
620 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
621 0, 0, 0, 2, /* + (.got + 4) - . */
622 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
623 0, 0, 0, 2, /* + (.got + 8) - . */
624 0x4e, 0xd1, /* jmp %a1@ */
625 0, 0, 0, 0, /* pad out to 24 bytes. */
626 0, 0
627 };
628
629 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
630 {
631 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
632 0, 0, 0, 2, /* + (.got.plt entry) - . */
633 0x4e, 0xd1, /* jmp %a1@ */
634 0x2f, 0x3c, /* move.l #offset,-(%sp) */
635 0, 0, 0, 0, /* + reloc index */
636 0x60, 0xff, /* bra.l .plt */
637 0, 0, 0, 0, /* + .plt - . */
638 0, 0
639 };
640
641 static const struct elf_m68k_plt_info elf_cpu32_plt_info = {
642 CPU32_PLT_ENTRY_SIZE,
643 elf_cpu32_plt0_entry, { 4, 12 },
644 elf_cpu32_plt_entry, { 4, 18 }, 10
645 };
646
647 /* The m68k linker needs to keep track of the number of relocs that it
648 decides to copy in check_relocs for each symbol. This is so that it
649 can discard PC relative relocs if it doesn't need them when linking
650 with -Bsymbolic. We store the information in a field extending the
651 regular ELF linker hash table. */
652
653 /* This structure keeps track of the number of PC relative relocs we have
654 copied for a given symbol. */
655
656 struct elf_m68k_pcrel_relocs_copied
657 {
658 /* Next section. */
659 struct elf_m68k_pcrel_relocs_copied *next;
660 /* A section in dynobj. */
661 asection *section;
662 /* Number of relocs copied in this section. */
663 bfd_size_type count;
664 };
665
666 /* Forward declaration. */
667 struct elf_m68k_got_entry;
668
669 /* m68k ELF linker hash entry. */
670
671 struct elf_m68k_link_hash_entry
672 {
673 struct elf_link_hash_entry root;
674
675 /* Number of PC relative relocs copied for this symbol. */
676 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
677
678 /* Key to got_entries. */
679 unsigned long got_entry_key;
680
681 /* List of GOT entries for this symbol. This list is build during
682 offset finalization and is used within elf_m68k_finish_dynamic_symbol
683 to traverse all GOT entries for a particular symbol.
684
685 ??? We could've used root.got.glist field instead, but having
686 a separate field is cleaner. */
687 struct elf_m68k_got_entry *glist;
688 };
689
690 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
691
692 /* Key part of GOT entry in hashtable. */
693 struct elf_m68k_got_entry_key
694 {
695 /* BFD in which this symbol was defined. NULL for global symbols. */
696 const bfd *bfd;
697
698 /* Symbol index. Either local symbol index or h->got_entry_key. */
699 unsigned long symndx;
700
701 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
702 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
703
704 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
705 matters. That is, we distinguish between, say, R_68K_GOT16O
706 and R_68K_GOT32O when allocating offsets, but they are considered to be
707 the same when searching got->entries. */
708 enum elf_m68k_reloc_type type;
709 };
710
711 /* Size of the GOT offset suitable for relocation. */
712 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
713
714 /* Entry of the GOT. */
715 struct elf_m68k_got_entry
716 {
717 /* GOT entries are put into a got->entries hashtable. This is the key. */
718 struct elf_m68k_got_entry_key key_;
719
720 /* GOT entry data. We need s1 before offset finalization and s2 after. */
721 union
722 {
723 struct
724 {
725 /* Number of times this entry is referenced. It is used to
726 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */
727 bfd_vma refcount;
728 } s1;
729
730 struct
731 {
732 /* Offset from the start of .got section. To calculate offset relative
733 to GOT pointer one should substract got->offset from this value. */
734 bfd_vma offset;
735
736 /* Pointer to the next GOT entry for this global symbol.
737 Symbols have at most one entry in one GOT, but might
738 have entries in more than one GOT.
739 Root of this list is h->glist.
740 NULL for local symbols. */
741 struct elf_m68k_got_entry *next;
742 } s2;
743 } u;
744 };
745
746 /* Return representative type for relocation R_TYPE.
747 This is used to avoid enumerating many relocations in comparisons,
748 switches etc. */
749
750 static enum elf_m68k_reloc_type
751 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
752 {
753 switch (r_type)
754 {
755 /* In most cases R_68K_GOTx relocations require the very same
756 handling as R_68K_GOT32O relocation. In cases when we need
757 to distinguish between the two, we use explicitly compare against
758 r_type. */
759 case R_68K_GOT32:
760 case R_68K_GOT16:
761 case R_68K_GOT8:
762 case R_68K_GOT32O:
763 case R_68K_GOT16O:
764 case R_68K_GOT8O:
765 return R_68K_GOT32O;
766
767 case R_68K_TLS_GD32:
768 case R_68K_TLS_GD16:
769 case R_68K_TLS_GD8:
770 return R_68K_TLS_GD32;
771
772 case R_68K_TLS_LDM32:
773 case R_68K_TLS_LDM16:
774 case R_68K_TLS_LDM8:
775 return R_68K_TLS_LDM32;
776
777 case R_68K_TLS_IE32:
778 case R_68K_TLS_IE16:
779 case R_68K_TLS_IE8:
780 return R_68K_TLS_IE32;
781
782 default:
783 BFD_ASSERT (FALSE);
784 return 0;
785 }
786 }
787
788 /* Return size of the GOT entry offset for relocation R_TYPE. */
789
790 static enum elf_m68k_got_offset_size
791 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
792 {
793 switch (r_type)
794 {
795 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
796 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
797 case R_68K_TLS_IE32:
798 return R_32;
799
800 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
801 case R_68K_TLS_IE16:
802 return R_16;
803
804 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
805 case R_68K_TLS_IE8:
806 return R_8;
807
808 default:
809 BFD_ASSERT (FALSE);
810 return 0;
811 }
812 }
813
814 /* Return number of GOT entries we need to allocate in GOT for
815 relocation R_TYPE. */
816
817 static bfd_vma
818 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
819 {
820 switch (elf_m68k_reloc_got_type (r_type))
821 {
822 case R_68K_GOT32O:
823 case R_68K_TLS_IE32:
824 return 1;
825
826 case R_68K_TLS_GD32:
827 case R_68K_TLS_LDM32:
828 return 2;
829
830 default:
831 BFD_ASSERT (FALSE);
832 return 0;
833 }
834 }
835
836 /* Return TRUE if relocation R_TYPE is a TLS one. */
837
838 static bfd_boolean
839 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
840 {
841 switch (r_type)
842 {
843 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
844 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
845 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
846 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
847 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
848 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
849 return TRUE;
850
851 default:
852 return FALSE;
853 }
854 }
855
856 /* Data structure representing a single GOT. */
857 struct elf_m68k_got
858 {
859 /* Hashtable of 'struct elf_m68k_got_entry's.
860 Starting size of this table is the maximum number of
861 R_68K_GOT8O entries. */
862 htab_t entries;
863
864 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
865 several GOT slots.
866
867 n_slots[R_8] is the count of R_8 slots in this GOT.
868 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
869 in this GOT.
870 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
871 in this GOT. This is the total number of slots. */
872 bfd_vma n_slots[R_LAST];
873
874 /* Number of local (entry->key_.h == NULL) slots in this GOT.
875 This is only used to properly calculate size of .rela.got section;
876 see elf_m68k_partition_multi_got. */
877 bfd_vma local_n_slots;
878
879 /* Offset of this GOT relative to beginning of .got section. */
880 bfd_vma offset;
881 };
882
883 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
884 struct elf_m68k_bfd2got_entry
885 {
886 /* BFD. */
887 const bfd *bfd;
888
889 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
890 GOT structure. After partitioning several BFD's might [and often do]
891 share a single GOT. */
892 struct elf_m68k_got *got;
893 };
894
895 /* The main data structure holding all the pieces. */
896 struct elf_m68k_multi_got
897 {
898 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
899 here, then it doesn't need a GOT (this includes the case of a BFD
900 having an empty GOT).
901
902 ??? This hashtable can be replaced by an array indexed by bfd->id. */
903 htab_t bfd2got;
904
905 /* Next symndx to assign a global symbol.
906 h->got_entry_key is initialized from this counter. */
907 unsigned long global_symndx;
908 };
909
910 /* m68k ELF linker hash table. */
911
912 struct elf_m68k_link_hash_table
913 {
914 struct elf_link_hash_table root;
915
916 /* Small local sym cache. */
917 struct sym_cache sym_cache;
918
919 /* The PLT format used by this link, or NULL if the format has not
920 yet been chosen. */
921 const struct elf_m68k_plt_info *plt_info;
922
923 /* True, if GP is loaded within each function which uses it.
924 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
925 bfd_boolean local_gp_p;
926
927 /* Switch controlling use of negative offsets to double the size of GOTs. */
928 bfd_boolean use_neg_got_offsets_p;
929
930 /* Switch controlling generation of multiple GOTs. */
931 bfd_boolean allow_multigot_p;
932
933 /* Multi-GOT data structure. */
934 struct elf_m68k_multi_got multi_got_;
935 };
936
937 /* Get the m68k ELF linker hash table from a link_info structure. */
938
939 #define elf_m68k_hash_table(p) \
940 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
941 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
942
943 /* Shortcut to multi-GOT data. */
944 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
945
946 /* Create an entry in an m68k ELF linker hash table. */
947
948 static struct bfd_hash_entry *
949 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
950 struct bfd_hash_table *table,
951 const char *string)
952 {
953 struct bfd_hash_entry *ret = entry;
954
955 /* Allocate the structure if it has not already been allocated by a
956 subclass. */
957 if (ret == NULL)
958 ret = bfd_hash_allocate (table,
959 sizeof (struct elf_m68k_link_hash_entry));
960 if (ret == NULL)
961 return ret;
962
963 /* Call the allocation method of the superclass. */
964 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
965 if (ret != NULL)
966 {
967 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
968 elf_m68k_hash_entry (ret)->got_entry_key = 0;
969 elf_m68k_hash_entry (ret)->glist = NULL;
970 }
971
972 return ret;
973 }
974
975 /* Create an m68k ELF linker hash table. */
976
977 static struct bfd_link_hash_table *
978 elf_m68k_link_hash_table_create (bfd *abfd)
979 {
980 struct elf_m68k_link_hash_table *ret;
981 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
982
983 ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt);
984 if (ret == (struct elf_m68k_link_hash_table *) NULL)
985 return NULL;
986
987 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
988 elf_m68k_link_hash_newfunc,
989 sizeof (struct elf_m68k_link_hash_entry),
990 M68K_ELF_DATA))
991 {
992 free (ret);
993 return NULL;
994 }
995
996 ret->sym_cache.abfd = NULL;
997 ret->plt_info = NULL;
998 ret->local_gp_p = FALSE;
999 ret->use_neg_got_offsets_p = FALSE;
1000 ret->allow_multigot_p = FALSE;
1001 ret->multi_got_.bfd2got = NULL;
1002 ret->multi_got_.global_symndx = 1;
1003
1004 return &ret->root.root;
1005 }
1006
1007 /* Destruct local data. */
1008
1009 static void
1010 elf_m68k_link_hash_table_free (struct bfd_link_hash_table *_htab)
1011 {
1012 struct elf_m68k_link_hash_table *htab;
1013
1014 htab = (struct elf_m68k_link_hash_table *) _htab;
1015
1016 if (htab->multi_got_.bfd2got != NULL)
1017 {
1018 htab_delete (htab->multi_got_.bfd2got);
1019 htab->multi_got_.bfd2got = NULL;
1020 }
1021 }
1022
1023 /* Set the right machine number. */
1024
1025 static bfd_boolean
1026 elf32_m68k_object_p (bfd *abfd)
1027 {
1028 unsigned int mach = 0;
1029 unsigned features = 0;
1030 flagword eflags = elf_elfheader (abfd)->e_flags;
1031
1032 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1033 features |= m68000;
1034 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1035 features |= cpu32;
1036 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1037 features |= fido_a;
1038 else
1039 {
1040 switch (eflags & EF_M68K_CF_ISA_MASK)
1041 {
1042 case EF_M68K_CF_ISA_A_NODIV:
1043 features |= mcfisa_a;
1044 break;
1045 case EF_M68K_CF_ISA_A:
1046 features |= mcfisa_a|mcfhwdiv;
1047 break;
1048 case EF_M68K_CF_ISA_A_PLUS:
1049 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1050 break;
1051 case EF_M68K_CF_ISA_B_NOUSP:
1052 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1053 break;
1054 case EF_M68K_CF_ISA_B:
1055 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1056 break;
1057 case EF_M68K_CF_ISA_C:
1058 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1059 break;
1060 case EF_M68K_CF_ISA_C_NODIV:
1061 features |= mcfisa_a|mcfisa_c|mcfusp;
1062 break;
1063 }
1064 switch (eflags & EF_M68K_CF_MAC_MASK)
1065 {
1066 case EF_M68K_CF_MAC:
1067 features |= mcfmac;
1068 break;
1069 case EF_M68K_CF_EMAC:
1070 features |= mcfemac;
1071 break;
1072 }
1073 if (eflags & EF_M68K_CF_FLOAT)
1074 features |= cfloat;
1075 }
1076
1077 mach = bfd_m68k_features_to_mach (features);
1078 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1079
1080 return TRUE;
1081 }
1082
1083 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1084 field based on the machine number. */
1085
1086 static void
1087 elf_m68k_final_write_processing (bfd *abfd,
1088 bfd_boolean linker ATTRIBUTE_UNUSED)
1089 {
1090 int mach = bfd_get_mach (abfd);
1091 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1092
1093 if (!e_flags)
1094 {
1095 unsigned int arch_mask;
1096
1097 arch_mask = bfd_m68k_mach_to_features (mach);
1098
1099 if (arch_mask & m68000)
1100 e_flags = EF_M68K_M68000;
1101 else if (arch_mask & cpu32)
1102 e_flags = EF_M68K_CPU32;
1103 else if (arch_mask & fido_a)
1104 e_flags = EF_M68K_FIDO;
1105 else
1106 {
1107 switch (arch_mask
1108 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1109 {
1110 case mcfisa_a:
1111 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1112 break;
1113 case mcfisa_a | mcfhwdiv:
1114 e_flags |= EF_M68K_CF_ISA_A;
1115 break;
1116 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1117 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1118 break;
1119 case mcfisa_a | mcfisa_b | mcfhwdiv:
1120 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1121 break;
1122 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1123 e_flags |= EF_M68K_CF_ISA_B;
1124 break;
1125 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1126 e_flags |= EF_M68K_CF_ISA_C;
1127 break;
1128 case mcfisa_a | mcfisa_c | mcfusp:
1129 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1130 break;
1131 }
1132 if (arch_mask & mcfmac)
1133 e_flags |= EF_M68K_CF_MAC;
1134 else if (arch_mask & mcfemac)
1135 e_flags |= EF_M68K_CF_EMAC;
1136 if (arch_mask & cfloat)
1137 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1138 }
1139 elf_elfheader (abfd)->e_flags = e_flags;
1140 }
1141 }
1142
1143 /* Keep m68k-specific flags in the ELF header. */
1144
1145 static bfd_boolean
1146 elf32_m68k_set_private_flags (abfd, flags)
1147 bfd *abfd;
1148 flagword flags;
1149 {
1150 elf_elfheader (abfd)->e_flags = flags;
1151 elf_flags_init (abfd) = TRUE;
1152 return TRUE;
1153 }
1154
1155 /* Merge backend specific data from an object file to the output
1156 object file when linking. */
1157 static bfd_boolean
1158 elf32_m68k_merge_private_bfd_data (ibfd, obfd)
1159 bfd *ibfd;
1160 bfd *obfd;
1161 {
1162 flagword out_flags;
1163 flagword in_flags;
1164 flagword out_isa;
1165 flagword in_isa;
1166 const bfd_arch_info_type *arch_info;
1167
1168 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1169 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1170 return FALSE;
1171
1172 /* Get the merged machine. This checks for incompatibility between
1173 Coldfire & non-Coldfire flags, incompability between different
1174 Coldfire ISAs, and incompability between different MAC types. */
1175 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1176 if (!arch_info)
1177 return FALSE;
1178
1179 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1180
1181 in_flags = elf_elfheader (ibfd)->e_flags;
1182 if (!elf_flags_init (obfd))
1183 {
1184 elf_flags_init (obfd) = TRUE;
1185 out_flags = in_flags;
1186 }
1187 else
1188 {
1189 out_flags = elf_elfheader (obfd)->e_flags;
1190 unsigned int variant_mask;
1191
1192 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1193 variant_mask = 0;
1194 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1195 variant_mask = 0;
1196 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1197 variant_mask = 0;
1198 else
1199 variant_mask = EF_M68K_CF_ISA_MASK;
1200
1201 in_isa = (in_flags & variant_mask);
1202 out_isa = (out_flags & variant_mask);
1203 if (in_isa > out_isa)
1204 out_flags ^= in_isa ^ out_isa;
1205 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1206 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1207 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1208 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1209 out_flags = EF_M68K_FIDO;
1210 else
1211 out_flags |= in_flags ^ in_isa;
1212 }
1213 elf_elfheader (obfd)->e_flags = out_flags;
1214
1215 return TRUE;
1216 }
1217
1218 /* Display the flags field. */
1219
1220 static bfd_boolean
1221 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1222 {
1223 FILE *file = (FILE *) ptr;
1224 flagword eflags = elf_elfheader (abfd)->e_flags;
1225
1226 BFD_ASSERT (abfd != NULL && ptr != NULL);
1227
1228 /* Print normal ELF private data. */
1229 _bfd_elf_print_private_bfd_data (abfd, ptr);
1230
1231 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1232
1233 /* xgettext:c-format */
1234 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1235
1236 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1237 fprintf (file, " [m68000]");
1238 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1239 fprintf (file, " [cpu32]");
1240 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1241 fprintf (file, " [fido]");
1242 else
1243 {
1244 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1245 fprintf (file, " [cfv4e]");
1246
1247 if (eflags & EF_M68K_CF_ISA_MASK)
1248 {
1249 char const *isa = _("unknown");
1250 char const *mac = _("unknown");
1251 char const *additional = "";
1252
1253 switch (eflags & EF_M68K_CF_ISA_MASK)
1254 {
1255 case EF_M68K_CF_ISA_A_NODIV:
1256 isa = "A";
1257 additional = " [nodiv]";
1258 break;
1259 case EF_M68K_CF_ISA_A:
1260 isa = "A";
1261 break;
1262 case EF_M68K_CF_ISA_A_PLUS:
1263 isa = "A+";
1264 break;
1265 case EF_M68K_CF_ISA_B_NOUSP:
1266 isa = "B";
1267 additional = " [nousp]";
1268 break;
1269 case EF_M68K_CF_ISA_B:
1270 isa = "B";
1271 break;
1272 case EF_M68K_CF_ISA_C:
1273 isa = "C";
1274 break;
1275 case EF_M68K_CF_ISA_C_NODIV:
1276 isa = "C";
1277 additional = " [nodiv]";
1278 break;
1279 }
1280 fprintf (file, " [isa %s]%s", isa, additional);
1281
1282 if (eflags & EF_M68K_CF_FLOAT)
1283 fprintf (file, " [float]");
1284
1285 switch (eflags & EF_M68K_CF_MAC_MASK)
1286 {
1287 case 0:
1288 mac = NULL;
1289 break;
1290 case EF_M68K_CF_MAC:
1291 mac = "mac";
1292 break;
1293 case EF_M68K_CF_EMAC:
1294 mac = "emac";
1295 break;
1296 case EF_M68K_CF_EMAC_B:
1297 mac = "emac_b";
1298 break;
1299 }
1300 if (mac)
1301 fprintf (file, " [%s]", mac);
1302 }
1303 }
1304
1305 fputc ('\n', file);
1306
1307 return TRUE;
1308 }
1309
1310 /* Multi-GOT support implementation design:
1311
1312 Multi-GOT starts in check_relocs hook. There we scan all
1313 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1314 for it. If a single BFD appears to require too many GOT slots with
1315 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1316 to user.
1317 After check_relocs has been invoked for each input BFD, we have
1318 constructed a GOT for each input BFD.
1319
1320 To minimize total number of GOTs required for a particular output BFD
1321 (as some environments support only 1 GOT per output object) we try
1322 to merge some of the GOTs to share an offset space. Ideally [and in most
1323 cases] we end up with a single GOT. In cases when there are too many
1324 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1325 several GOTs, assuming the environment can handle them.
1326
1327 Partitioning is done in elf_m68k_partition_multi_got. We start with
1328 an empty GOT and traverse bfd2got hashtable putting got_entries from
1329 local GOTs to the new 'big' one. We do that by constructing an
1330 intermediate GOT holding all the entries the local GOT has and the big
1331 GOT lacks. Then we check if there is room in the big GOT to accomodate
1332 all the entries from diff. On success we add those entries to the big
1333 GOT; on failure we start the new 'big' GOT and retry the adding of
1334 entries from the local GOT. Note that this retry will always succeed as
1335 each local GOT doesn't overflow the limits. After partitioning we
1336 end up with each bfd assigned one of the big GOTs. GOT entries in the
1337 big GOTs are initialized with GOT offsets. Note that big GOTs are
1338 positioned consequently in program space and represent a single huge GOT
1339 to the outside world.
1340
1341 After that we get to elf_m68k_relocate_section. There we
1342 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1343 relocations to refer to appropriate [assigned to current input_bfd]
1344 big GOT.
1345
1346 Notes:
1347
1348 GOT entry type: We have several types of GOT entries.
1349 * R_8 type is used in entries for symbols that have at least one
1350 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1351 such entries in one GOT.
1352 * R_16 type is used in entries for symbols that have at least one
1353 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1354 We can have at most 0x4000 such entries in one GOT.
1355 * R_32 type is used in all other cases. We can have as many
1356 such entries in one GOT as we'd like.
1357 When counting relocations we have to include the count of the smaller
1358 ranged relocations in the counts of the larger ranged ones in order
1359 to correctly detect overflow.
1360
1361 Sorting the GOT: In each GOT starting offsets are assigned to
1362 R_8 entries, which are followed by R_16 entries, and
1363 R_32 entries go at the end. See finalize_got_offsets for details.
1364
1365 Negative GOT offsets: To double usable offset range of GOTs we use
1366 negative offsets. As we assign entries with GOT offsets relative to
1367 start of .got section, the offset values are positive. They become
1368 negative only in relocate_section where got->offset value is
1369 subtracted from them.
1370
1371 3 special GOT entries: There are 3 special GOT entries used internally
1372 by loader. These entries happen to be placed to .got.plt section,
1373 so we don't do anything about them in multi-GOT support.
1374
1375 Memory management: All data except for hashtables
1376 multi_got->bfd2got and got->entries are allocated on
1377 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1378 to most functions), so we don't need to care to free them. At the
1379 moment of allocation hashtables are being linked into main data
1380 structure (multi_got), all pieces of which are reachable from
1381 elf_m68k_multi_got (info). We deallocate them in
1382 elf_m68k_link_hash_table_free. */
1383
1384 /* Initialize GOT. */
1385
1386 static void
1387 elf_m68k_init_got (struct elf_m68k_got *got)
1388 {
1389 got->entries = NULL;
1390 got->n_slots[R_8] = 0;
1391 got->n_slots[R_16] = 0;
1392 got->n_slots[R_32] = 0;
1393 got->local_n_slots = 0;
1394 got->offset = (bfd_vma) -1;
1395 }
1396
1397 /* Destruct GOT. */
1398
1399 static void
1400 elf_m68k_clear_got (struct elf_m68k_got *got)
1401 {
1402 if (got->entries != NULL)
1403 {
1404 htab_delete (got->entries);
1405 got->entries = NULL;
1406 }
1407 }
1408
1409 /* Create and empty GOT structure. INFO is the context where memory
1410 should be allocated. */
1411
1412 static struct elf_m68k_got *
1413 elf_m68k_create_empty_got (struct bfd_link_info *info)
1414 {
1415 struct elf_m68k_got *got;
1416
1417 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1418 if (got == NULL)
1419 return NULL;
1420
1421 elf_m68k_init_got (got);
1422
1423 return got;
1424 }
1425
1426 /* Initialize KEY. */
1427
1428 static void
1429 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1430 struct elf_link_hash_entry *h,
1431 const bfd *abfd, unsigned long symndx,
1432 enum elf_m68k_reloc_type reloc_type)
1433 {
1434 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1435 /* All TLS_LDM relocations share a single GOT entry. */
1436 {
1437 key->bfd = NULL;
1438 key->symndx = 0;
1439 }
1440 else if (h != NULL)
1441 /* Global symbols are identified with their got_entry_key. */
1442 {
1443 key->bfd = NULL;
1444 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1445 BFD_ASSERT (key->symndx != 0);
1446 }
1447 else
1448 /* Local symbols are identified by BFD they appear in and symndx. */
1449 {
1450 key->bfd = abfd;
1451 key->symndx = symndx;
1452 }
1453
1454 key->type = reloc_type;
1455 }
1456
1457 /* Calculate hash of got_entry.
1458 ??? Is it good? */
1459
1460 static hashval_t
1461 elf_m68k_got_entry_hash (const void *_entry)
1462 {
1463 const struct elf_m68k_got_entry_key *key;
1464
1465 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1466
1467 return (key->symndx
1468 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1469 + elf_m68k_reloc_got_type (key->type));
1470 }
1471
1472 /* Check if two got entries are equal. */
1473
1474 static int
1475 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1476 {
1477 const struct elf_m68k_got_entry_key *key1;
1478 const struct elf_m68k_got_entry_key *key2;
1479
1480 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1481 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1482
1483 return (key1->bfd == key2->bfd
1484 && key1->symndx == key2->symndx
1485 && (elf_m68k_reloc_got_type (key1->type)
1486 == elf_m68k_reloc_got_type (key2->type)));
1487 }
1488
1489 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1490 and one extra R_32 slots to simplify handling of 2-slot entries during
1491 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1492
1493 /* Maximal number of R_8 slots in a single GOT. */
1494 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1495 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1496 ? (0x40 - 1) \
1497 : 0x20)
1498
1499 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1500 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1501 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1502 ? (0x4000 - 2) \
1503 : 0x2000)
1504
1505 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1506 the entry cannot be found.
1507 FIND_OR_CREATE - search for an existing entry, but create new if there's
1508 no such.
1509 MUST_FIND - search for an existing entry and assert that it exist.
1510 MUST_CREATE - assert that there's no such entry and create new one. */
1511 enum elf_m68k_get_entry_howto
1512 {
1513 SEARCH,
1514 FIND_OR_CREATE,
1515 MUST_FIND,
1516 MUST_CREATE
1517 };
1518
1519 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1520 INFO is context in which memory should be allocated (can be NULL if
1521 HOWTO is SEARCH or MUST_FIND). */
1522
1523 static struct elf_m68k_got_entry *
1524 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1525 const struct elf_m68k_got_entry_key *key,
1526 enum elf_m68k_get_entry_howto howto,
1527 struct bfd_link_info *info)
1528 {
1529 struct elf_m68k_got_entry entry_;
1530 struct elf_m68k_got_entry *entry;
1531 void **ptr;
1532
1533 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1534
1535 if (got->entries == NULL)
1536 /* This is the first entry in ABFD. Initialize hashtable. */
1537 {
1538 if (howto == SEARCH)
1539 return NULL;
1540
1541 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1542 (info),
1543 elf_m68k_got_entry_hash,
1544 elf_m68k_got_entry_eq, NULL);
1545 if (got->entries == NULL)
1546 {
1547 bfd_set_error (bfd_error_no_memory);
1548 return NULL;
1549 }
1550 }
1551
1552 entry_.key_ = *key;
1553 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1554 ? INSERT : NO_INSERT));
1555 if (ptr == NULL)
1556 {
1557 if (howto == SEARCH)
1558 /* Entry not found. */
1559 return NULL;
1560
1561 /* We're out of memory. */
1562 bfd_set_error (bfd_error_no_memory);
1563 return NULL;
1564 }
1565
1566 if (*ptr == NULL)
1567 /* We didn't find the entry and we're asked to create a new one. */
1568 {
1569 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1570
1571 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1572 if (entry == NULL)
1573 return NULL;
1574
1575 /* Initialize new entry. */
1576 entry->key_ = *key;
1577
1578 entry->u.s1.refcount = 0;
1579
1580 /* Mark the entry as not initialized. */
1581 entry->key_.type = R_68K_max;
1582
1583 *ptr = entry;
1584 }
1585 else
1586 /* We found the entry. */
1587 {
1588 BFD_ASSERT (howto != MUST_CREATE);
1589
1590 entry = *ptr;
1591 }
1592
1593 return entry;
1594 }
1595
1596 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1597 Return the value to which ENTRY's type should be set. */
1598
1599 static enum elf_m68k_reloc_type
1600 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1601 enum elf_m68k_reloc_type was,
1602 enum elf_m68k_reloc_type new_reloc)
1603 {
1604 enum elf_m68k_got_offset_size was_size;
1605 enum elf_m68k_got_offset_size new_size;
1606 bfd_vma n_slots;
1607
1608 if (was == R_68K_max)
1609 /* The type of the entry is not initialized yet. */
1610 {
1611 /* Update all got->n_slots counters, including n_slots[R_32]. */
1612 was_size = R_LAST;
1613
1614 was = new_reloc;
1615 }
1616 else
1617 {
1618 /* !!! We, probably, should emit an error rather then fail on assert
1619 in such a case. */
1620 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1621 == elf_m68k_reloc_got_type (new_reloc));
1622
1623 was_size = elf_m68k_reloc_got_offset_size (was);
1624 }
1625
1626 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1627 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1628
1629 while (was_size > new_size)
1630 {
1631 --was_size;
1632 got->n_slots[was_size] += n_slots;
1633 }
1634
1635 if (new_reloc > was)
1636 /* Relocations are ordered from bigger got offset size to lesser,
1637 so choose the relocation type with lesser offset size. */
1638 was = new_reloc;
1639
1640 return was;
1641 }
1642
1643 /* Update GOT counters when removing an entry of type TYPE. */
1644
1645 static void
1646 elf_m68k_remove_got_entry_type (struct elf_m68k_got *got,
1647 enum elf_m68k_reloc_type type)
1648 {
1649 enum elf_m68k_got_offset_size os;
1650 bfd_vma n_slots;
1651
1652 n_slots = elf_m68k_reloc_got_n_slots (type);
1653
1654 /* Decrese counter of slots with offset size corresponding to TYPE
1655 and all greater offset sizes. */
1656 for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os)
1657 {
1658 BFD_ASSERT (got->n_slots[os] >= n_slots);
1659
1660 got->n_slots[os] -= n_slots;
1661 }
1662 }
1663
1664 /* Add new or update existing entry to GOT.
1665 H, ABFD, TYPE and SYMNDX is data for the entry.
1666 INFO is a context where memory should be allocated. */
1667
1668 static struct elf_m68k_got_entry *
1669 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1670 struct elf_link_hash_entry *h,
1671 const bfd *abfd,
1672 enum elf_m68k_reloc_type reloc_type,
1673 unsigned long symndx,
1674 struct bfd_link_info *info)
1675 {
1676 struct elf_m68k_got_entry_key key_;
1677 struct elf_m68k_got_entry *entry;
1678
1679 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1680 elf_m68k_hash_entry (h)->got_entry_key
1681 = elf_m68k_multi_got (info)->global_symndx++;
1682
1683 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1684
1685 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1686 if (entry == NULL)
1687 return NULL;
1688
1689 /* Determine entry's type and update got->n_slots counters. */
1690 entry->key_.type = elf_m68k_update_got_entry_type (got,
1691 entry->key_.type,
1692 reloc_type);
1693
1694 /* Update refcount. */
1695 ++entry->u.s1.refcount;
1696
1697 if (entry->u.s1.refcount == 1)
1698 /* We see this entry for the first time. */
1699 {
1700 if (entry->key_.bfd != NULL)
1701 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1702 }
1703
1704 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1705
1706 if ((got->n_slots[R_8]
1707 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1708 || (got->n_slots[R_16]
1709 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1710 /* This BFD has too many relocation. */
1711 {
1712 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1713 (*_bfd_error_handler) (_("%B: GOT overflow: "
1714 "Number of relocations with 8-bit "
1715 "offset > %d"),
1716 abfd,
1717 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1718 else
1719 (*_bfd_error_handler) (_("%B: GOT overflow: "
1720 "Number of relocations with 8- or 16-bit "
1721 "offset > %d"),
1722 abfd,
1723 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1724
1725 return NULL;
1726 }
1727
1728 return entry;
1729 }
1730
1731 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1732
1733 static hashval_t
1734 elf_m68k_bfd2got_entry_hash (const void *entry)
1735 {
1736 const struct elf_m68k_bfd2got_entry *e;
1737
1738 e = (const struct elf_m68k_bfd2got_entry *) entry;
1739
1740 return e->bfd->id;
1741 }
1742
1743 /* Check whether two hash entries have the same bfd. */
1744
1745 static int
1746 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1747 {
1748 const struct elf_m68k_bfd2got_entry *e1;
1749 const struct elf_m68k_bfd2got_entry *e2;
1750
1751 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1752 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1753
1754 return e1->bfd == e2->bfd;
1755 }
1756
1757 /* Destruct a bfd2got entry. */
1758
1759 static void
1760 elf_m68k_bfd2got_entry_del (void *_entry)
1761 {
1762 struct elf_m68k_bfd2got_entry *entry;
1763
1764 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1765
1766 BFD_ASSERT (entry->got != NULL);
1767 elf_m68k_clear_got (entry->got);
1768 }
1769
1770 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1771 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1772 memory should be allocated. */
1773
1774 static struct elf_m68k_bfd2got_entry *
1775 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1776 const bfd *abfd,
1777 enum elf_m68k_get_entry_howto howto,
1778 struct bfd_link_info *info)
1779 {
1780 struct elf_m68k_bfd2got_entry entry_;
1781 void **ptr;
1782 struct elf_m68k_bfd2got_entry *entry;
1783
1784 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1785
1786 if (multi_got->bfd2got == NULL)
1787 /* This is the first GOT. Initialize bfd2got. */
1788 {
1789 if (howto == SEARCH)
1790 return NULL;
1791
1792 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1793 elf_m68k_bfd2got_entry_eq,
1794 elf_m68k_bfd2got_entry_del);
1795 if (multi_got->bfd2got == NULL)
1796 {
1797 bfd_set_error (bfd_error_no_memory);
1798 return NULL;
1799 }
1800 }
1801
1802 entry_.bfd = abfd;
1803 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1804 ? INSERT : NO_INSERT));
1805 if (ptr == NULL)
1806 {
1807 if (howto == SEARCH)
1808 /* Entry not found. */
1809 return NULL;
1810
1811 /* We're out of memory. */
1812 bfd_set_error (bfd_error_no_memory);
1813 return NULL;
1814 }
1815
1816 if (*ptr == NULL)
1817 /* Entry was not found. Create new one. */
1818 {
1819 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1820
1821 entry = ((struct elf_m68k_bfd2got_entry *)
1822 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1823 if (entry == NULL)
1824 return NULL;
1825
1826 entry->bfd = abfd;
1827
1828 entry->got = elf_m68k_create_empty_got (info);
1829 if (entry->got == NULL)
1830 return NULL;
1831
1832 *ptr = entry;
1833 }
1834 else
1835 {
1836 BFD_ASSERT (howto != MUST_CREATE);
1837
1838 /* Return existing entry. */
1839 entry = *ptr;
1840 }
1841
1842 return entry;
1843 }
1844
1845 struct elf_m68k_can_merge_gots_arg
1846 {
1847 /* A current_got that we constructing a DIFF against. */
1848 struct elf_m68k_got *big;
1849
1850 /* GOT holding entries not present or that should be changed in
1851 BIG. */
1852 struct elf_m68k_got *diff;
1853
1854 /* Context where to allocate memory. */
1855 struct bfd_link_info *info;
1856
1857 /* Error flag. */
1858 bfd_boolean error_p;
1859 };
1860
1861 /* Process a single entry from the small GOT to see if it should be added
1862 or updated in the big GOT. */
1863
1864 static int
1865 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1866 {
1867 const struct elf_m68k_got_entry *entry1;
1868 struct elf_m68k_can_merge_gots_arg *arg;
1869 const struct elf_m68k_got_entry *entry2;
1870 enum elf_m68k_reloc_type type;
1871
1872 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1873 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1874
1875 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1876
1877 if (entry2 != NULL)
1878 /* We found an existing entry. Check if we should update it. */
1879 {
1880 type = elf_m68k_update_got_entry_type (arg->diff,
1881 entry2->key_.type,
1882 entry1->key_.type);
1883
1884 if (type == entry2->key_.type)
1885 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1886 To skip creation of difference entry we use the type,
1887 which we won't see in GOT entries for sure. */
1888 type = R_68K_max;
1889 }
1890 else
1891 /* We didn't find the entry. Add entry1 to DIFF. */
1892 {
1893 BFD_ASSERT (entry1->key_.type != R_68K_max);
1894
1895 type = elf_m68k_update_got_entry_type (arg->diff,
1896 R_68K_max, entry1->key_.type);
1897
1898 if (entry1->key_.bfd != NULL)
1899 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1900 }
1901
1902 if (type != R_68K_max)
1903 /* Create an entry in DIFF. */
1904 {
1905 struct elf_m68k_got_entry *entry;
1906
1907 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1908 arg->info);
1909 if (entry == NULL)
1910 {
1911 arg->error_p = TRUE;
1912 return 0;
1913 }
1914
1915 entry->key_.type = type;
1916 }
1917
1918 return 1;
1919 }
1920
1921 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1922 Construct DIFF GOT holding the entries which should be added or updated
1923 in BIG GOT to accumulate information from SMALL.
1924 INFO is the context where memory should be allocated. */
1925
1926 static bfd_boolean
1927 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1928 const struct elf_m68k_got *small,
1929 struct bfd_link_info *info,
1930 struct elf_m68k_got *diff)
1931 {
1932 struct elf_m68k_can_merge_gots_arg arg_;
1933
1934 BFD_ASSERT (small->offset == (bfd_vma) -1);
1935
1936 arg_.big = big;
1937 arg_.diff = diff;
1938 arg_.info = info;
1939 arg_.error_p = FALSE;
1940 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1941 if (arg_.error_p)
1942 {
1943 diff->offset = 0;
1944 return FALSE;
1945 }
1946
1947 /* Check for overflow. */
1948 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1949 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1950 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1951 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1952 return FALSE;
1953
1954 return TRUE;
1955 }
1956
1957 struct elf_m68k_merge_gots_arg
1958 {
1959 /* The BIG got. */
1960 struct elf_m68k_got *big;
1961
1962 /* Context where memory should be allocated. */
1963 struct bfd_link_info *info;
1964
1965 /* Error flag. */
1966 bfd_boolean error_p;
1967 };
1968
1969 /* Process a single entry from DIFF got. Add or update corresponding
1970 entry in the BIG got. */
1971
1972 static int
1973 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1974 {
1975 const struct elf_m68k_got_entry *from;
1976 struct elf_m68k_merge_gots_arg *arg;
1977 struct elf_m68k_got_entry *to;
1978
1979 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1980 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1981
1982 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1983 arg->info);
1984 if (to == NULL)
1985 {
1986 arg->error_p = TRUE;
1987 return 0;
1988 }
1989
1990 BFD_ASSERT (to->u.s1.refcount == 0);
1991 /* All we need to merge is TYPE. */
1992 to->key_.type = from->key_.type;
1993
1994 return 1;
1995 }
1996
1997 /* Merge data from DIFF to BIG. INFO is context where memory should be
1998 allocated. */
1999
2000 static bfd_boolean
2001 elf_m68k_merge_gots (struct elf_m68k_got *big,
2002 struct elf_m68k_got *diff,
2003 struct bfd_link_info *info)
2004 {
2005 if (diff->entries != NULL)
2006 /* DIFF is not empty. Merge it into BIG GOT. */
2007 {
2008 struct elf_m68k_merge_gots_arg arg_;
2009
2010 /* Merge entries. */
2011 arg_.big = big;
2012 arg_.info = info;
2013 arg_.error_p = FALSE;
2014 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
2015 if (arg_.error_p)
2016 return FALSE;
2017
2018 /* Merge counters. */
2019 big->n_slots[R_8] += diff->n_slots[R_8];
2020 big->n_slots[R_16] += diff->n_slots[R_16];
2021 big->n_slots[R_32] += diff->n_slots[R_32];
2022 big->local_n_slots += diff->local_n_slots;
2023 }
2024 else
2025 /* DIFF is empty. */
2026 {
2027 BFD_ASSERT (diff->n_slots[R_8] == 0);
2028 BFD_ASSERT (diff->n_slots[R_16] == 0);
2029 BFD_ASSERT (diff->n_slots[R_32] == 0);
2030 BFD_ASSERT (diff->local_n_slots == 0);
2031 }
2032
2033 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
2034 || ((big->n_slots[R_8]
2035 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2036 && (big->n_slots[R_16]
2037 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2038
2039 return TRUE;
2040 }
2041
2042 struct elf_m68k_finalize_got_offsets_arg
2043 {
2044 /* Ranges of the offsets for GOT entries.
2045 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2046 R_x is R_8, R_16 and R_32. */
2047 bfd_vma *offset1;
2048 bfd_vma *offset2;
2049
2050 /* Mapping from global symndx to global symbols.
2051 This is used to build lists of got entries for global symbols. */
2052 struct elf_m68k_link_hash_entry **symndx2h;
2053
2054 bfd_vma n_ldm_entries;
2055 };
2056
2057 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2058 along the way. */
2059
2060 static int
2061 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2062 {
2063 struct elf_m68k_got_entry *entry;
2064 struct elf_m68k_finalize_got_offsets_arg *arg;
2065
2066 enum elf_m68k_got_offset_size got_offset_size;
2067 bfd_vma entry_size;
2068
2069 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2070 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2071
2072 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2073 BFD_ASSERT (entry->u.s1.refcount == 0);
2074
2075 /* Get GOT offset size for the entry . */
2076 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2077
2078 /* Calculate entry size in bytes. */
2079 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2080
2081 /* Check if we should switch to negative range of the offsets. */
2082 if (arg->offset1[got_offset_size] + entry_size
2083 > arg->offset2[got_offset_size])
2084 {
2085 /* Verify that this is the only switch to negative range for
2086 got_offset_size. If this assertion fails, then we've miscalculated
2087 range for got_offset_size entries in
2088 elf_m68k_finalize_got_offsets. */
2089 BFD_ASSERT (arg->offset2[got_offset_size]
2090 != arg->offset2[-(int) got_offset_size - 1]);
2091
2092 /* Switch. */
2093 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2094 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2095
2096 /* Verify that now we have enough room for the entry. */
2097 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2098 <= arg->offset2[got_offset_size]);
2099 }
2100
2101 /* Assign offset to entry. */
2102 entry->u.s2.offset = arg->offset1[got_offset_size];
2103 arg->offset1[got_offset_size] += entry_size;
2104
2105 if (entry->key_.bfd == NULL)
2106 /* Hook up this entry into the list of got_entries of H. */
2107 {
2108 struct elf_m68k_link_hash_entry *h;
2109
2110 h = arg->symndx2h[entry->key_.symndx];
2111 if (h != NULL)
2112 {
2113 entry->u.s2.next = h->glist;
2114 h->glist = entry;
2115 }
2116 else
2117 /* This should be the entry for TLS_LDM relocation then. */
2118 {
2119 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2120 == R_68K_TLS_LDM32)
2121 && entry->key_.symndx == 0);
2122
2123 ++arg->n_ldm_entries;
2124 }
2125 }
2126 else
2127 /* This entry is for local symbol. */
2128 entry->u.s2.next = NULL;
2129
2130 return 1;
2131 }
2132
2133 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2134 should use negative offsets.
2135 Build list of GOT entries for global symbols along the way.
2136 SYMNDX2H is mapping from global symbol indices to actual
2137 global symbols.
2138 Return offset at which next GOT should start. */
2139
2140 static void
2141 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2142 bfd_boolean use_neg_got_offsets_p,
2143 struct elf_m68k_link_hash_entry **symndx2h,
2144 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2145 {
2146 struct elf_m68k_finalize_got_offsets_arg arg_;
2147 bfd_vma offset1_[2 * R_LAST];
2148 bfd_vma offset2_[2 * R_LAST];
2149 int i;
2150 bfd_vma start_offset;
2151
2152 BFD_ASSERT (got->offset != (bfd_vma) -1);
2153
2154 /* We set entry offsets relative to the .got section (and not the
2155 start of a particular GOT), so that we can use them in
2156 finish_dynamic_symbol without needing to know the GOT which they come
2157 from. */
2158
2159 /* Put offset1 in the middle of offset1_, same for offset2. */
2160 arg_.offset1 = offset1_ + R_LAST;
2161 arg_.offset2 = offset2_ + R_LAST;
2162
2163 start_offset = got->offset;
2164
2165 if (use_neg_got_offsets_p)
2166 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2167 i = -(int) R_32 - 1;
2168 else
2169 /* Setup positives ranges for R_8, R_16 and R_32. */
2170 i = (int) R_8;
2171
2172 for (; i <= (int) R_32; ++i)
2173 {
2174 int j;
2175 size_t n;
2176
2177 /* Set beginning of the range of offsets I. */
2178 arg_.offset1[i] = start_offset;
2179
2180 /* Calculate number of slots that require I offsets. */
2181 j = (i >= 0) ? i : -i - 1;
2182 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2183 n = got->n_slots[j] - n;
2184
2185 if (use_neg_got_offsets_p && n != 0)
2186 {
2187 if (i < 0)
2188 /* We first fill the positive side of the range, so we might
2189 end up with one empty slot at that side when we can't fit
2190 whole 2-slot entry. Account for that at negative side of
2191 the interval with one additional entry. */
2192 n = n / 2 + 1;
2193 else
2194 /* When the number of slots is odd, make positive side of the
2195 range one entry bigger. */
2196 n = (n + 1) / 2;
2197 }
2198
2199 /* N is the number of slots that require I offsets.
2200 Calculate length of the range for I offsets. */
2201 n = 4 * n;
2202
2203 /* Set end of the range. */
2204 arg_.offset2[i] = start_offset + n;
2205
2206 start_offset = arg_.offset2[i];
2207 }
2208
2209 if (!use_neg_got_offsets_p)
2210 /* Make sure that if we try to switch to negative offsets in
2211 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2212 the bug. */
2213 for (i = R_8; i <= R_32; ++i)
2214 arg_.offset2[-i - 1] = arg_.offset2[i];
2215
2216 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2217 beginning of GOT depending on use_neg_got_offsets_p. */
2218 got->offset = arg_.offset1[R_8];
2219
2220 arg_.symndx2h = symndx2h;
2221 arg_.n_ldm_entries = 0;
2222
2223 /* Assign offsets. */
2224 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2225
2226 /* Check offset ranges we have actually assigned. */
2227 for (i = (int) R_8; i <= (int) R_32; ++i)
2228 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2229
2230 *final_offset = start_offset;
2231 *n_ldm_entries = arg_.n_ldm_entries;
2232 }
2233
2234 struct elf_m68k_partition_multi_got_arg
2235 {
2236 /* The GOT we are adding entries to. Aka big got. */
2237 struct elf_m68k_got *current_got;
2238
2239 /* Offset to assign the next CURRENT_GOT. */
2240 bfd_vma offset;
2241
2242 /* Context where memory should be allocated. */
2243 struct bfd_link_info *info;
2244
2245 /* Total number of slots in the .got section.
2246 This is used to calculate size of the .got and .rela.got sections. */
2247 bfd_vma n_slots;
2248
2249 /* Difference in numbers of allocated slots in the .got section
2250 and necessary relocations in the .rela.got section.
2251 This is used to calculate size of the .rela.got section. */
2252 bfd_vma slots_relas_diff;
2253
2254 /* Error flag. */
2255 bfd_boolean error_p;
2256
2257 /* Mapping from global symndx to global symbols.
2258 This is used to build lists of got entries for global symbols. */
2259 struct elf_m68k_link_hash_entry **symndx2h;
2260 };
2261
2262 static void
2263 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2264 {
2265 bfd_vma n_ldm_entries;
2266
2267 elf_m68k_finalize_got_offsets (arg->current_got,
2268 (elf_m68k_hash_table (arg->info)
2269 ->use_neg_got_offsets_p),
2270 arg->symndx2h,
2271 &arg->offset, &n_ldm_entries);
2272
2273 arg->n_slots += arg->current_got->n_slots[R_32];
2274
2275 if (!arg->info->shared)
2276 /* If we are generating a shared object, we need to
2277 output a R_68K_RELATIVE reloc so that the dynamic
2278 linker can adjust this GOT entry. Overwise we
2279 don't need space in .rela.got for local symbols. */
2280 arg->slots_relas_diff += arg->current_got->local_n_slots;
2281
2282 /* @LDM relocations require a 2-slot GOT entry, but only
2283 one relocation. Account for that. */
2284 arg->slots_relas_diff += n_ldm_entries;
2285
2286 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2287 }
2288
2289
2290 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2291 or start a new CURRENT_GOT. */
2292
2293 static int
2294 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2295 {
2296 struct elf_m68k_bfd2got_entry *entry;
2297 struct elf_m68k_partition_multi_got_arg *arg;
2298 struct elf_m68k_got *got;
2299 struct elf_m68k_got diff_;
2300 struct elf_m68k_got *diff;
2301
2302 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2303 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2304
2305 got = entry->got;
2306 BFD_ASSERT (got != NULL);
2307 BFD_ASSERT (got->offset == (bfd_vma) -1);
2308
2309 diff = NULL;
2310
2311 if (arg->current_got != NULL)
2312 /* Construct diff. */
2313 {
2314 diff = &diff_;
2315 elf_m68k_init_got (diff);
2316
2317 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2318 {
2319 if (diff->offset == 0)
2320 /* Offset set to 0 in the diff_ indicates an error. */
2321 {
2322 arg->error_p = TRUE;
2323 goto final_return;
2324 }
2325
2326 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2327 {
2328 elf_m68k_clear_got (diff);
2329 /* Schedule to finish up current_got and start new one. */
2330 diff = NULL;
2331 }
2332 /* else
2333 Merge GOTs no matter what. If big GOT overflows,
2334 we'll fail in relocate_section due to truncated relocations.
2335
2336 ??? May be fail earlier? E.g., in can_merge_gots. */
2337 }
2338 }
2339 else
2340 /* Diff of got against empty current_got is got itself. */
2341 {
2342 /* Create empty current_got to put subsequent GOTs to. */
2343 arg->current_got = elf_m68k_create_empty_got (arg->info);
2344 if (arg->current_got == NULL)
2345 {
2346 arg->error_p = TRUE;
2347 goto final_return;
2348 }
2349
2350 arg->current_got->offset = arg->offset;
2351
2352 diff = got;
2353 }
2354
2355 if (diff != NULL)
2356 {
2357 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2358 {
2359 arg->error_p = TRUE;
2360 goto final_return;
2361 }
2362
2363 /* Now we can free GOT. */
2364 elf_m68k_clear_got (got);
2365
2366 entry->got = arg->current_got;
2367 }
2368 else
2369 {
2370 /* Finish up current_got. */
2371 elf_m68k_partition_multi_got_2 (arg);
2372
2373 /* Schedule to start a new current_got. */
2374 arg->current_got = NULL;
2375
2376 /* Retry. */
2377 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2378 {
2379 BFD_ASSERT (arg->error_p);
2380 goto final_return;
2381 }
2382 }
2383
2384 final_return:
2385 if (diff != NULL)
2386 elf_m68k_clear_got (diff);
2387
2388 return arg->error_p == FALSE ? 1 : 0;
2389 }
2390
2391 /* Helper function to build symndx2h mapping. */
2392
2393 static bfd_boolean
2394 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2395 void *_arg)
2396 {
2397 struct elf_m68k_link_hash_entry *h;
2398
2399 h = elf_m68k_hash_entry (_h);
2400
2401 if (h->got_entry_key != 0)
2402 /* H has at least one entry in the GOT. */
2403 {
2404 struct elf_m68k_partition_multi_got_arg *arg;
2405
2406 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2407
2408 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2409 arg->symndx2h[h->got_entry_key] = h;
2410 }
2411
2412 return TRUE;
2413 }
2414
2415 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2416 lists of GOT entries for global symbols.
2417 Calculate sizes of .got and .rela.got sections. */
2418
2419 static bfd_boolean
2420 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2421 {
2422 struct elf_m68k_multi_got *multi_got;
2423 struct elf_m68k_partition_multi_got_arg arg_;
2424
2425 multi_got = elf_m68k_multi_got (info);
2426
2427 arg_.current_got = NULL;
2428 arg_.offset = 0;
2429 arg_.info = info;
2430 arg_.n_slots = 0;
2431 arg_.slots_relas_diff = 0;
2432 arg_.error_p = FALSE;
2433
2434 if (multi_got->bfd2got != NULL)
2435 {
2436 /* Initialize symndx2h mapping. */
2437 {
2438 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2439 * sizeof (*arg_.symndx2h));
2440 if (arg_.symndx2h == NULL)
2441 return FALSE;
2442
2443 elf_link_hash_traverse (elf_hash_table (info),
2444 elf_m68k_init_symndx2h_1, &arg_);
2445 }
2446
2447 /* Partition. */
2448 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2449 &arg_);
2450 if (arg_.error_p)
2451 {
2452 free (arg_.symndx2h);
2453 arg_.symndx2h = NULL;
2454
2455 return FALSE;
2456 }
2457
2458 /* Finish up last current_got. */
2459 elf_m68k_partition_multi_got_2 (&arg_);
2460
2461 free (arg_.symndx2h);
2462 }
2463
2464 if (elf_hash_table (info)->dynobj != NULL)
2465 /* Set sizes of .got and .rela.got sections. */
2466 {
2467 asection *s;
2468
2469 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".got");
2470 if (s != NULL)
2471 s->size = arg_.offset;
2472 else
2473 BFD_ASSERT (arg_.offset == 0);
2474
2475 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2476 arg_.n_slots -= arg_.slots_relas_diff;
2477
2478 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".rela.got");
2479 if (s != NULL)
2480 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2481 else
2482 BFD_ASSERT (arg_.n_slots == 0);
2483 }
2484 else
2485 BFD_ASSERT (multi_got->bfd2got == NULL);
2486
2487 return TRUE;
2488 }
2489
2490 /* Specialized version of elf_m68k_get_got_entry that returns pointer
2491 to hashtable slot, thus allowing removal of entry via
2492 elf_m68k_remove_got_entry. */
2493
2494 static struct elf_m68k_got_entry **
2495 elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
2496 struct elf_m68k_got_entry_key *key)
2497 {
2498 void **ptr;
2499 struct elf_m68k_got_entry entry_;
2500 struct elf_m68k_got_entry **entry_ptr;
2501
2502 entry_.key_ = *key;
2503 ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
2504 BFD_ASSERT (ptr != NULL);
2505
2506 entry_ptr = (struct elf_m68k_got_entry **) ptr;
2507
2508 return entry_ptr;
2509 }
2510
2511 /* Remove entry pointed to by ENTRY_PTR from GOT. */
2512
2513 static void
2514 elf_m68k_remove_got_entry (struct elf_m68k_got *got,
2515 struct elf_m68k_got_entry **entry_ptr)
2516 {
2517 struct elf_m68k_got_entry *entry;
2518
2519 entry = *entry_ptr;
2520
2521 /* Check that offsets have not been finalized yet. */
2522 BFD_ASSERT (got->offset == (bfd_vma) -1);
2523 /* Check that this entry is indeed unused. */
2524 BFD_ASSERT (entry->u.s1.refcount == 0);
2525
2526 elf_m68k_remove_got_entry_type (got, entry->key_.type);
2527
2528 if (entry->key_.bfd != NULL)
2529 got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type);
2530
2531 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
2532
2533 htab_clear_slot (got->entries, (void **) entry_ptr);
2534 }
2535
2536 /* Copy any information related to dynamic linking from a pre-existing
2537 symbol to a newly created symbol. Also called to copy flags and
2538 other back-end info to a weakdef, in which case the symbol is not
2539 newly created and plt/got refcounts and dynamic indices should not
2540 be copied. */
2541
2542 static void
2543 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2544 struct elf_link_hash_entry *_dir,
2545 struct elf_link_hash_entry *_ind)
2546 {
2547 struct elf_m68k_link_hash_entry *dir;
2548 struct elf_m68k_link_hash_entry *ind;
2549
2550 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2551
2552 if (_ind->root.type != bfd_link_hash_indirect)
2553 return;
2554
2555 dir = elf_m68k_hash_entry (_dir);
2556 ind = elf_m68k_hash_entry (_ind);
2557
2558 /* Any absolute non-dynamic relocations against an indirect or weak
2559 definition will be against the target symbol. */
2560 _dir->non_got_ref |= _ind->non_got_ref;
2561
2562 /* We might have a direct symbol already having entries in the GOTs.
2563 Update its key only in case indirect symbol has GOT entries and
2564 assert that both indirect and direct symbols don't have GOT entries
2565 at the same time. */
2566 if (ind->got_entry_key != 0)
2567 {
2568 BFD_ASSERT (dir->got_entry_key == 0);
2569 /* Assert that GOTs aren't partioned yet. */
2570 BFD_ASSERT (ind->glist == NULL);
2571
2572 dir->got_entry_key = ind->got_entry_key;
2573 ind->got_entry_key = 0;
2574 }
2575 }
2576
2577 /* Look through the relocs for a section during the first phase, and
2578 allocate space in the global offset table or procedure linkage
2579 table. */
2580
2581 static bfd_boolean
2582 elf_m68k_check_relocs (abfd, info, sec, relocs)
2583 bfd *abfd;
2584 struct bfd_link_info *info;
2585 asection *sec;
2586 const Elf_Internal_Rela *relocs;
2587 {
2588 bfd *dynobj;
2589 Elf_Internal_Shdr *symtab_hdr;
2590 struct elf_link_hash_entry **sym_hashes;
2591 const Elf_Internal_Rela *rel;
2592 const Elf_Internal_Rela *rel_end;
2593 asection *sgot;
2594 asection *srelgot;
2595 asection *sreloc;
2596 struct elf_m68k_got *got;
2597
2598 if (info->relocatable)
2599 return TRUE;
2600
2601 dynobj = elf_hash_table (info)->dynobj;
2602 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2603 sym_hashes = elf_sym_hashes (abfd);
2604
2605 sgot = NULL;
2606 srelgot = NULL;
2607 sreloc = NULL;
2608
2609 got = NULL;
2610
2611 rel_end = relocs + sec->reloc_count;
2612 for (rel = relocs; rel < rel_end; rel++)
2613 {
2614 unsigned long r_symndx;
2615 struct elf_link_hash_entry *h;
2616
2617 r_symndx = ELF32_R_SYM (rel->r_info);
2618
2619 if (r_symndx < symtab_hdr->sh_info)
2620 h = NULL;
2621 else
2622 {
2623 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2624 while (h->root.type == bfd_link_hash_indirect
2625 || h->root.type == bfd_link_hash_warning)
2626 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2627 }
2628
2629 switch (ELF32_R_TYPE (rel->r_info))
2630 {
2631 case R_68K_GOT8:
2632 case R_68K_GOT16:
2633 case R_68K_GOT32:
2634 if (h != NULL
2635 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2636 break;
2637 /* Fall through. */
2638
2639 /* Relative GOT relocations. */
2640 case R_68K_GOT8O:
2641 case R_68K_GOT16O:
2642 case R_68K_GOT32O:
2643 /* Fall through. */
2644
2645 /* TLS relocations. */
2646 case R_68K_TLS_GD8:
2647 case R_68K_TLS_GD16:
2648 case R_68K_TLS_GD32:
2649 case R_68K_TLS_LDM8:
2650 case R_68K_TLS_LDM16:
2651 case R_68K_TLS_LDM32:
2652 case R_68K_TLS_IE8:
2653 case R_68K_TLS_IE16:
2654 case R_68K_TLS_IE32:
2655
2656 case R_68K_TLS_TPREL32:
2657 case R_68K_TLS_DTPREL32:
2658
2659 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2660 && info->shared)
2661 /* Do the special chorus for libraries with static TLS. */
2662 info->flags |= DF_STATIC_TLS;
2663
2664 /* This symbol requires a global offset table entry. */
2665
2666 if (dynobj == NULL)
2667 {
2668 /* Create the .got section. */
2669 elf_hash_table (info)->dynobj = dynobj = abfd;
2670 if (!_bfd_elf_create_got_section (dynobj, info))
2671 return FALSE;
2672 }
2673
2674 if (sgot == NULL)
2675 {
2676 sgot = bfd_get_section_by_name (dynobj, ".got");
2677 BFD_ASSERT (sgot != NULL);
2678 }
2679
2680 if (srelgot == NULL
2681 && (h != NULL || info->shared))
2682 {
2683 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
2684 if (srelgot == NULL)
2685 {
2686 srelgot = bfd_make_section_with_flags (dynobj,
2687 ".rela.got",
2688 (SEC_ALLOC
2689 | SEC_LOAD
2690 | SEC_HAS_CONTENTS
2691 | SEC_IN_MEMORY
2692 | SEC_LINKER_CREATED
2693 | SEC_READONLY));
2694 if (srelgot == NULL
2695 || !bfd_set_section_alignment (dynobj, srelgot, 2))
2696 return FALSE;
2697 }
2698 }
2699
2700 if (got == NULL)
2701 {
2702 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2703
2704 bfd2got_entry
2705 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2706 abfd, FIND_OR_CREATE, info);
2707 if (bfd2got_entry == NULL)
2708 return FALSE;
2709
2710 got = bfd2got_entry->got;
2711 BFD_ASSERT (got != NULL);
2712 }
2713
2714 {
2715 struct elf_m68k_got_entry *got_entry;
2716
2717 /* Add entry to got. */
2718 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2719 ELF32_R_TYPE (rel->r_info),
2720 r_symndx, info);
2721 if (got_entry == NULL)
2722 return FALSE;
2723
2724 if (got_entry->u.s1.refcount == 1)
2725 {
2726 /* Make sure this symbol is output as a dynamic symbol. */
2727 if (h != NULL
2728 && h->dynindx == -1
2729 && !h->forced_local)
2730 {
2731 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2732 return FALSE;
2733 }
2734 }
2735 }
2736
2737 break;
2738
2739 case R_68K_PLT8:
2740 case R_68K_PLT16:
2741 case R_68K_PLT32:
2742 /* This symbol requires a procedure linkage table entry. We
2743 actually build the entry in adjust_dynamic_symbol,
2744 because this might be a case of linking PIC code which is
2745 never referenced by a dynamic object, in which case we
2746 don't need to generate a procedure linkage table entry
2747 after all. */
2748
2749 /* If this is a local symbol, we resolve it directly without
2750 creating a procedure linkage table entry. */
2751 if (h == NULL)
2752 continue;
2753
2754 h->needs_plt = 1;
2755 h->plt.refcount++;
2756 break;
2757
2758 case R_68K_PLT8O:
2759 case R_68K_PLT16O:
2760 case R_68K_PLT32O:
2761 /* This symbol requires a procedure linkage table entry. */
2762
2763 if (h == NULL)
2764 {
2765 /* It does not make sense to have this relocation for a
2766 local symbol. FIXME: does it? How to handle it if
2767 it does make sense? */
2768 bfd_set_error (bfd_error_bad_value);
2769 return FALSE;
2770 }
2771
2772 /* Make sure this symbol is output as a dynamic symbol. */
2773 if (h->dynindx == -1
2774 && !h->forced_local)
2775 {
2776 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2777 return FALSE;
2778 }
2779
2780 h->needs_plt = 1;
2781 h->plt.refcount++;
2782 break;
2783
2784 case R_68K_PC8:
2785 case R_68K_PC16:
2786 case R_68K_PC32:
2787 /* If we are creating a shared library and this is not a local
2788 symbol, we need to copy the reloc into the shared library.
2789 However when linking with -Bsymbolic and this is a global
2790 symbol which is defined in an object we are including in the
2791 link (i.e., DEF_REGULAR is set), then we can resolve the
2792 reloc directly. At this point we have not seen all the input
2793 files, so it is possible that DEF_REGULAR is not set now but
2794 will be set later (it is never cleared). We account for that
2795 possibility below by storing information in the
2796 pcrel_relocs_copied field of the hash table entry. */
2797 if (!(info->shared
2798 && (sec->flags & SEC_ALLOC) != 0
2799 && h != NULL
2800 && (!info->symbolic
2801 || h->root.type == bfd_link_hash_defweak
2802 || !h->def_regular)))
2803 {
2804 if (h != NULL)
2805 {
2806 /* Make sure a plt entry is created for this symbol if
2807 it turns out to be a function defined by a dynamic
2808 object. */
2809 h->plt.refcount++;
2810 }
2811 break;
2812 }
2813 /* Fall through. */
2814 case R_68K_8:
2815 case R_68K_16:
2816 case R_68K_32:
2817 if (h != NULL)
2818 {
2819 /* Make sure a plt entry is created for this symbol if it
2820 turns out to be a function defined by a dynamic object. */
2821 h->plt.refcount++;
2822
2823 if (!info->shared)
2824 /* This symbol needs a non-GOT reference. */
2825 h->non_got_ref = 1;
2826 }
2827
2828 /* If we are creating a shared library, we need to copy the
2829 reloc into the shared library. */
2830 if (info->shared
2831 && (sec->flags & SEC_ALLOC) != 0)
2832 {
2833 /* When creating a shared object, we must copy these
2834 reloc types into the output file. We create a reloc
2835 section in dynobj and make room for this reloc. */
2836 if (sreloc == NULL)
2837 {
2838 sreloc = _bfd_elf_make_dynamic_reloc_section
2839 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2840
2841 if (sreloc == NULL)
2842 return FALSE;
2843 }
2844
2845 if (sec->flags & SEC_READONLY
2846 /* Don't set DF_TEXTREL yet for PC relative
2847 relocations, they might be discarded later. */
2848 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2849 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2850 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2851 info->flags |= DF_TEXTREL;
2852
2853 sreloc->size += sizeof (Elf32_External_Rela);
2854
2855 /* We count the number of PC relative relocations we have
2856 entered for this symbol, so that we can discard them
2857 again if, in the -Bsymbolic case, the symbol is later
2858 defined by a regular object, or, in the normal shared
2859 case, the symbol is forced to be local. Note that this
2860 function is only called if we are using an m68kelf linker
2861 hash table, which means that h is really a pointer to an
2862 elf_m68k_link_hash_entry. */
2863 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2864 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2865 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2866 {
2867 struct elf_m68k_pcrel_relocs_copied *p;
2868 struct elf_m68k_pcrel_relocs_copied **head;
2869
2870 if (h != NULL)
2871 {
2872 struct elf_m68k_link_hash_entry *eh
2873 = elf_m68k_hash_entry (h);
2874 head = &eh->pcrel_relocs_copied;
2875 }
2876 else
2877 {
2878 asection *s;
2879 void *vpp;
2880 Elf_Internal_Sym *isym;
2881
2882 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2883 abfd, r_symndx);
2884 if (isym == NULL)
2885 return FALSE;
2886
2887 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2888 if (s == NULL)
2889 s = sec;
2890
2891 vpp = &elf_section_data (s)->local_dynrel;
2892 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2893 }
2894
2895 for (p = *head; p != NULL; p = p->next)
2896 if (p->section == sreloc)
2897 break;
2898
2899 if (p == NULL)
2900 {
2901 p = ((struct elf_m68k_pcrel_relocs_copied *)
2902 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2903 if (p == NULL)
2904 return FALSE;
2905 p->next = *head;
2906 *head = p;
2907 p->section = sreloc;
2908 p->count = 0;
2909 }
2910
2911 ++p->count;
2912 }
2913 }
2914
2915 break;
2916
2917 /* This relocation describes the C++ object vtable hierarchy.
2918 Reconstruct it for later use during GC. */
2919 case R_68K_GNU_VTINHERIT:
2920 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2921 return FALSE;
2922 break;
2923
2924 /* This relocation describes which C++ vtable entries are actually
2925 used. Record for later use during GC. */
2926 case R_68K_GNU_VTENTRY:
2927 BFD_ASSERT (h != NULL);
2928 if (h != NULL
2929 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2930 return FALSE;
2931 break;
2932
2933 default:
2934 break;
2935 }
2936 }
2937
2938 return TRUE;
2939 }
2940
2941 /* Return the section that should be marked against GC for a given
2942 relocation. */
2943
2944 static asection *
2945 elf_m68k_gc_mark_hook (asection *sec,
2946 struct bfd_link_info *info,
2947 Elf_Internal_Rela *rel,
2948 struct elf_link_hash_entry *h,
2949 Elf_Internal_Sym *sym)
2950 {
2951 if (h != NULL)
2952 switch (ELF32_R_TYPE (rel->r_info))
2953 {
2954 case R_68K_GNU_VTINHERIT:
2955 case R_68K_GNU_VTENTRY:
2956 return NULL;
2957 }
2958
2959 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2960 }
2961
2962 /* Update the got entry reference counts for the section being removed. */
2963
2964 static bfd_boolean
2965 elf_m68k_gc_sweep_hook (bfd *abfd,
2966 struct bfd_link_info *info,
2967 asection *sec,
2968 const Elf_Internal_Rela *relocs)
2969 {
2970 Elf_Internal_Shdr *symtab_hdr;
2971 struct elf_link_hash_entry **sym_hashes;
2972 const Elf_Internal_Rela *rel, *relend;
2973 bfd *dynobj;
2974 struct elf_m68k_got *got;
2975
2976 if (info->relocatable)
2977 return TRUE;
2978
2979 dynobj = elf_hash_table (info)->dynobj;
2980 if (dynobj == NULL)
2981 return TRUE;
2982
2983 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2984 sym_hashes = elf_sym_hashes (abfd);
2985 got = NULL;
2986
2987 relend = relocs + sec->reloc_count;
2988 for (rel = relocs; rel < relend; rel++)
2989 {
2990 unsigned long r_symndx;
2991 struct elf_link_hash_entry *h = NULL;
2992
2993 r_symndx = ELF32_R_SYM (rel->r_info);
2994 if (r_symndx >= symtab_hdr->sh_info)
2995 {
2996 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2997 while (h->root.type == bfd_link_hash_indirect
2998 || h->root.type == bfd_link_hash_warning)
2999 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3000 }
3001
3002 switch (ELF32_R_TYPE (rel->r_info))
3003 {
3004 case R_68K_GOT8:
3005 case R_68K_GOT16:
3006 case R_68K_GOT32:
3007 if (h != NULL
3008 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3009 break;
3010
3011 /* FALLTHRU */
3012 case R_68K_GOT8O:
3013 case R_68K_GOT16O:
3014 case R_68K_GOT32O:
3015 /* Fall through. */
3016
3017 /* TLS relocations. */
3018 case R_68K_TLS_GD8:
3019 case R_68K_TLS_GD16:
3020 case R_68K_TLS_GD32:
3021 case R_68K_TLS_LDM8:
3022 case R_68K_TLS_LDM16:
3023 case R_68K_TLS_LDM32:
3024 case R_68K_TLS_IE8:
3025 case R_68K_TLS_IE16:
3026 case R_68K_TLS_IE32:
3027
3028 case R_68K_TLS_TPREL32:
3029 case R_68K_TLS_DTPREL32:
3030
3031 if (got == NULL)
3032 {
3033 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3034 abfd, MUST_FIND, NULL)->got;
3035 BFD_ASSERT (got != NULL);
3036 }
3037
3038 {
3039 struct elf_m68k_got_entry_key key_;
3040 struct elf_m68k_got_entry **got_entry_ptr;
3041 struct elf_m68k_got_entry *got_entry;
3042
3043 elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx,
3044 ELF32_R_TYPE (rel->r_info));
3045 got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
3046
3047 got_entry = *got_entry_ptr;
3048
3049 if (got_entry->u.s1.refcount > 0)
3050 {
3051 --got_entry->u.s1.refcount;
3052
3053 if (got_entry->u.s1.refcount == 0)
3054 /* We don't need the .got entry any more. */
3055 elf_m68k_remove_got_entry (got, got_entry_ptr);
3056 }
3057 }
3058 break;
3059
3060 case R_68K_PLT8:
3061 case R_68K_PLT16:
3062 case R_68K_PLT32:
3063 case R_68K_PLT8O:
3064 case R_68K_PLT16O:
3065 case R_68K_PLT32O:
3066 case R_68K_PC8:
3067 case R_68K_PC16:
3068 case R_68K_PC32:
3069 case R_68K_8:
3070 case R_68K_16:
3071 case R_68K_32:
3072 if (h != NULL)
3073 {
3074 if (h->plt.refcount > 0)
3075 --h->plt.refcount;
3076 }
3077 break;
3078
3079 default:
3080 break;
3081 }
3082 }
3083
3084 return TRUE;
3085 }
3086 \f
3087 /* Return the type of PLT associated with OUTPUT_BFD. */
3088
3089 static const struct elf_m68k_plt_info *
3090 elf_m68k_get_plt_info (bfd *output_bfd)
3091 {
3092 unsigned int features;
3093
3094 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
3095 if (features & cpu32)
3096 return &elf_cpu32_plt_info;
3097 if (features & mcfisa_b)
3098 return &elf_isab_plt_info;
3099 if (features & mcfisa_c)
3100 return &elf_isac_plt_info;
3101 return &elf_m68k_plt_info;
3102 }
3103
3104 /* This function is called after all the input files have been read,
3105 and the input sections have been assigned to output sections.
3106 It's a convenient place to determine the PLT style. */
3107
3108 static bfd_boolean
3109 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
3110 {
3111 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
3112 sections. */
3113 if (!elf_m68k_partition_multi_got (info))
3114 return FALSE;
3115
3116 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
3117 return TRUE;
3118 }
3119
3120 /* Adjust a symbol defined by a dynamic object and referenced by a
3121 regular object. The current definition is in some section of the
3122 dynamic object, but we're not including those sections. We have to
3123 change the definition to something the rest of the link can
3124 understand. */
3125
3126 static bfd_boolean
3127 elf_m68k_adjust_dynamic_symbol (info, h)
3128 struct bfd_link_info *info;
3129 struct elf_link_hash_entry *h;
3130 {
3131 struct elf_m68k_link_hash_table *htab;
3132 bfd *dynobj;
3133 asection *s;
3134
3135 htab = elf_m68k_hash_table (info);
3136 dynobj = elf_hash_table (info)->dynobj;
3137
3138 /* Make sure we know what is going on here. */
3139 BFD_ASSERT (dynobj != NULL
3140 && (h->needs_plt
3141 || h->u.weakdef != NULL
3142 || (h->def_dynamic
3143 && h->ref_regular
3144 && !h->def_regular)));
3145
3146 /* If this is a function, put it in the procedure linkage table. We
3147 will fill in the contents of the procedure linkage table later,
3148 when we know the address of the .got section. */
3149 if (h->type == STT_FUNC
3150 || h->needs_plt)
3151 {
3152 if ((h->plt.refcount <= 0
3153 || SYMBOL_CALLS_LOCAL (info, h)
3154 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3155 && h->root.type == bfd_link_hash_undefweak))
3156 /* We must always create the plt entry if it was referenced
3157 by a PLTxxO relocation. In this case we already recorded
3158 it as a dynamic symbol. */
3159 && h->dynindx == -1)
3160 {
3161 /* This case can occur if we saw a PLTxx reloc in an input
3162 file, but the symbol was never referred to by a dynamic
3163 object, or if all references were garbage collected. In
3164 such a case, we don't actually need to build a procedure
3165 linkage table, and we can just do a PCxx reloc instead. */
3166 h->plt.offset = (bfd_vma) -1;
3167 h->needs_plt = 0;
3168 return TRUE;
3169 }
3170
3171 /* Make sure this symbol is output as a dynamic symbol. */
3172 if (h->dynindx == -1
3173 && !h->forced_local)
3174 {
3175 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3176 return FALSE;
3177 }
3178
3179 s = bfd_get_section_by_name (dynobj, ".plt");
3180 BFD_ASSERT (s != NULL);
3181
3182 /* If this is the first .plt entry, make room for the special
3183 first entry. */
3184 if (s->size == 0)
3185 s->size = htab->plt_info->size;
3186
3187 /* If this symbol is not defined in a regular file, and we are
3188 not generating a shared library, then set the symbol to this
3189 location in the .plt. This is required to make function
3190 pointers compare as equal between the normal executable and
3191 the shared library. */
3192 if (!info->shared
3193 && !h->def_regular)
3194 {
3195 h->root.u.def.section = s;
3196 h->root.u.def.value = s->size;
3197 }
3198
3199 h->plt.offset = s->size;
3200
3201 /* Make room for this entry. */
3202 s->size += htab->plt_info->size;
3203
3204 /* We also need to make an entry in the .got.plt section, which
3205 will be placed in the .got section by the linker script. */
3206 s = bfd_get_section_by_name (dynobj, ".got.plt");
3207 BFD_ASSERT (s != NULL);
3208 s->size += 4;
3209
3210 /* We also need to make an entry in the .rela.plt section. */
3211 s = bfd_get_section_by_name (dynobj, ".rela.plt");
3212 BFD_ASSERT (s != NULL);
3213 s->size += sizeof (Elf32_External_Rela);
3214
3215 return TRUE;
3216 }
3217
3218 /* Reinitialize the plt offset now that it is not used as a reference
3219 count any more. */
3220 h->plt.offset = (bfd_vma) -1;
3221
3222 /* If this is a weak symbol, and there is a real definition, the
3223 processor independent code will have arranged for us to see the
3224 real definition first, and we can just use the same value. */
3225 if (h->u.weakdef != NULL)
3226 {
3227 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3228 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3229 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3230 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3231 return TRUE;
3232 }
3233
3234 /* This is a reference to a symbol defined by a dynamic object which
3235 is not a function. */
3236
3237 /* If we are creating a shared library, we must presume that the
3238 only references to the symbol are via the global offset table.
3239 For such cases we need not do anything here; the relocations will
3240 be handled correctly by relocate_section. */
3241 if (info->shared)
3242 return TRUE;
3243
3244 /* If there are no references to this symbol that do not use the
3245 GOT, we don't need to generate a copy reloc. */
3246 if (!h->non_got_ref)
3247 return TRUE;
3248
3249 if (h->size == 0)
3250 {
3251 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
3252 h->root.root.string);
3253 return TRUE;
3254 }
3255
3256 /* We must allocate the symbol in our .dynbss section, which will
3257 become part of the .bss section of the executable. There will be
3258 an entry for this symbol in the .dynsym section. The dynamic
3259 object will contain position independent code, so all references
3260 from the dynamic object to this symbol will go through the global
3261 offset table. The dynamic linker will use the .dynsym entry to
3262 determine the address it must put in the global offset table, so
3263 both the dynamic object and the regular object will refer to the
3264 same memory location for the variable. */
3265
3266 s = bfd_get_section_by_name (dynobj, ".dynbss");
3267 BFD_ASSERT (s != NULL);
3268
3269 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3270 copy the initial value out of the dynamic object and into the
3271 runtime process image. We need to remember the offset into the
3272 .rela.bss section we are going to use. */
3273 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3274 {
3275 asection *srel;
3276
3277 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
3278 BFD_ASSERT (srel != NULL);
3279 srel->size += sizeof (Elf32_External_Rela);
3280 h->needs_copy = 1;
3281 }
3282
3283 return _bfd_elf_adjust_dynamic_copy (h, s);
3284 }
3285
3286 /* Set the sizes of the dynamic sections. */
3287
3288 static bfd_boolean
3289 elf_m68k_size_dynamic_sections (output_bfd, info)
3290 bfd *output_bfd ATTRIBUTE_UNUSED;
3291 struct bfd_link_info *info;
3292 {
3293 bfd *dynobj;
3294 asection *s;
3295 bfd_boolean plt;
3296 bfd_boolean relocs;
3297
3298 dynobj = elf_hash_table (info)->dynobj;
3299 BFD_ASSERT (dynobj != NULL);
3300
3301 if (elf_hash_table (info)->dynamic_sections_created)
3302 {
3303 /* Set the contents of the .interp section to the interpreter. */
3304 if (info->executable)
3305 {
3306 s = bfd_get_section_by_name (dynobj, ".interp");
3307 BFD_ASSERT (s != NULL);
3308 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3309 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3310 }
3311 }
3312 else
3313 {
3314 /* We may have created entries in the .rela.got section.
3315 However, if we are not creating the dynamic sections, we will
3316 not actually use these entries. Reset the size of .rela.got,
3317 which will cause it to get stripped from the output file
3318 below. */
3319 s = bfd_get_section_by_name (dynobj, ".rela.got");
3320 if (s != NULL)
3321 s->size = 0;
3322 }
3323
3324 /* If this is a -Bsymbolic shared link, then we need to discard all
3325 PC relative relocs against symbols defined in a regular object.
3326 For the normal shared case we discard the PC relative relocs
3327 against symbols that have become local due to visibility changes.
3328 We allocated space for them in the check_relocs routine, but we
3329 will not fill them in in the relocate_section routine. */
3330 if (info->shared)
3331 elf_link_hash_traverse (elf_hash_table (info),
3332 elf_m68k_discard_copies,
3333 (PTR) info);
3334
3335 /* The check_relocs and adjust_dynamic_symbol entry points have
3336 determined the sizes of the various dynamic sections. Allocate
3337 memory for them. */
3338 plt = FALSE;
3339 relocs = FALSE;
3340 for (s = dynobj->sections; s != NULL; s = s->next)
3341 {
3342 const char *name;
3343
3344 if ((s->flags & SEC_LINKER_CREATED) == 0)
3345 continue;
3346
3347 /* It's OK to base decisions on the section name, because none
3348 of the dynobj section names depend upon the input files. */
3349 name = bfd_get_section_name (dynobj, s);
3350
3351 if (strcmp (name, ".plt") == 0)
3352 {
3353 /* Remember whether there is a PLT. */
3354 plt = s->size != 0;
3355 }
3356 else if (CONST_STRNEQ (name, ".rela"))
3357 {
3358 if (s->size != 0)
3359 {
3360 relocs = TRUE;
3361
3362 /* We use the reloc_count field as a counter if we need
3363 to copy relocs into the output file. */
3364 s->reloc_count = 0;
3365 }
3366 }
3367 else if (! CONST_STRNEQ (name, ".got")
3368 && strcmp (name, ".dynbss") != 0)
3369 {
3370 /* It's not one of our sections, so don't allocate space. */
3371 continue;
3372 }
3373
3374 if (s->size == 0)
3375 {
3376 /* If we don't need this section, strip it from the
3377 output file. This is mostly to handle .rela.bss and
3378 .rela.plt. We must create both sections in
3379 create_dynamic_sections, because they must be created
3380 before the linker maps input sections to output
3381 sections. The linker does that before
3382 adjust_dynamic_symbol is called, and it is that
3383 function which decides whether anything needs to go
3384 into these sections. */
3385 s->flags |= SEC_EXCLUDE;
3386 continue;
3387 }
3388
3389 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3390 continue;
3391
3392 /* Allocate memory for the section contents. */
3393 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3394 Unused entries should be reclaimed before the section's contents
3395 are written out, but at the moment this does not happen. Thus in
3396 order to prevent writing out garbage, we initialise the section's
3397 contents to zero. */
3398 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3399 if (s->contents == NULL)
3400 return FALSE;
3401 }
3402
3403 if (elf_hash_table (info)->dynamic_sections_created)
3404 {
3405 /* Add some entries to the .dynamic section. We fill in the
3406 values later, in elf_m68k_finish_dynamic_sections, but we
3407 must add the entries now so that we get the correct size for
3408 the .dynamic section. The DT_DEBUG entry is filled in by the
3409 dynamic linker and used by the debugger. */
3410 #define add_dynamic_entry(TAG, VAL) \
3411 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3412
3413 if (!info->shared)
3414 {
3415 if (!add_dynamic_entry (DT_DEBUG, 0))
3416 return FALSE;
3417 }
3418
3419 if (plt)
3420 {
3421 if (!add_dynamic_entry (DT_PLTGOT, 0)
3422 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3423 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3424 || !add_dynamic_entry (DT_JMPREL, 0))
3425 return FALSE;
3426 }
3427
3428 if (relocs)
3429 {
3430 if (!add_dynamic_entry (DT_RELA, 0)
3431 || !add_dynamic_entry (DT_RELASZ, 0)
3432 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3433 return FALSE;
3434 }
3435
3436 if ((info->flags & DF_TEXTREL) != 0)
3437 {
3438 if (!add_dynamic_entry (DT_TEXTREL, 0))
3439 return FALSE;
3440 }
3441 }
3442 #undef add_dynamic_entry
3443
3444 return TRUE;
3445 }
3446
3447 /* This function is called via elf_link_hash_traverse if we are
3448 creating a shared object. In the -Bsymbolic case it discards the
3449 space allocated to copy PC relative relocs against symbols which
3450 are defined in regular objects. For the normal shared case, it
3451 discards space for pc-relative relocs that have become local due to
3452 symbol visibility changes. We allocated space for them in the
3453 check_relocs routine, but we won't fill them in in the
3454 relocate_section routine.
3455
3456 We also check whether any of the remaining relocations apply
3457 against a readonly section, and set the DF_TEXTREL flag in this
3458 case. */
3459
3460 static bfd_boolean
3461 elf_m68k_discard_copies (h, inf)
3462 struct elf_link_hash_entry *h;
3463 PTR inf;
3464 {
3465 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3466 struct elf_m68k_pcrel_relocs_copied *s;
3467
3468 if (h->root.type == bfd_link_hash_warning)
3469 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3470
3471 if (!SYMBOL_CALLS_LOCAL (info, h))
3472 {
3473 if ((info->flags & DF_TEXTREL) == 0)
3474 {
3475 /* Look for relocations against read-only sections. */
3476 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3477 s != NULL;
3478 s = s->next)
3479 if ((s->section->flags & SEC_READONLY) != 0)
3480 {
3481 info->flags |= DF_TEXTREL;
3482 break;
3483 }
3484 }
3485
3486 return TRUE;
3487 }
3488
3489 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3490 s != NULL;
3491 s = s->next)
3492 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3493
3494 return TRUE;
3495 }
3496
3497
3498 /* Install relocation RELA. */
3499
3500 static void
3501 elf_m68k_install_rela (bfd *output_bfd,
3502 asection *srela,
3503 Elf_Internal_Rela *rela)
3504 {
3505 bfd_byte *loc;
3506
3507 loc = srela->contents;
3508 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3509 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3510 }
3511
3512 /* Find the base offsets for thread-local storage in this object,
3513 for GD/LD and IE/LE respectively. */
3514
3515 #define DTP_OFFSET 0x8000
3516 #define TP_OFFSET 0x7000
3517
3518 static bfd_vma
3519 dtpoff_base (struct bfd_link_info *info)
3520 {
3521 /* If tls_sec is NULL, we should have signalled an error already. */
3522 if (elf_hash_table (info)->tls_sec == NULL)
3523 return 0;
3524 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3525 }
3526
3527 static bfd_vma
3528 tpoff_base (struct bfd_link_info *info)
3529 {
3530 /* If tls_sec is NULL, we should have signalled an error already. */
3531 if (elf_hash_table (info)->tls_sec == NULL)
3532 return 0;
3533 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3534 }
3535
3536 /* Output necessary relocation to handle a symbol during static link.
3537 This function is called from elf_m68k_relocate_section. */
3538
3539 static void
3540 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3541 bfd *output_bfd,
3542 enum elf_m68k_reloc_type r_type,
3543 asection *sgot,
3544 bfd_vma got_entry_offset,
3545 bfd_vma relocation)
3546 {
3547 switch (elf_m68k_reloc_got_type (r_type))
3548 {
3549 case R_68K_GOT32O:
3550 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3551 break;
3552
3553 case R_68K_TLS_GD32:
3554 /* We know the offset within the module,
3555 put it into the second GOT slot. */
3556 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3557 sgot->contents + got_entry_offset + 4);
3558 /* FALLTHRU */
3559
3560 case R_68K_TLS_LDM32:
3561 /* Mark it as belonging to module 1, the executable. */
3562 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3563 break;
3564
3565 case R_68K_TLS_IE32:
3566 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3567 sgot->contents + got_entry_offset);
3568 break;
3569
3570 default:
3571 BFD_ASSERT (FALSE);
3572 }
3573 }
3574
3575 /* Output necessary relocation to handle a local symbol
3576 during dynamic link.
3577 This function is called either from elf_m68k_relocate_section
3578 or from elf_m68k_finish_dynamic_symbol. */
3579
3580 static void
3581 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3582 bfd *output_bfd,
3583 enum elf_m68k_reloc_type r_type,
3584 asection *sgot,
3585 bfd_vma got_entry_offset,
3586 bfd_vma relocation,
3587 asection *srela)
3588 {
3589 Elf_Internal_Rela outrel;
3590
3591 switch (elf_m68k_reloc_got_type (r_type))
3592 {
3593 case R_68K_GOT32O:
3594 /* Emit RELATIVE relocation to initialize GOT slot
3595 at run-time. */
3596 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3597 outrel.r_addend = relocation;
3598 break;
3599
3600 case R_68K_TLS_GD32:
3601 /* We know the offset within the module,
3602 put it into the second GOT slot. */
3603 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3604 sgot->contents + got_entry_offset + 4);
3605 /* FALLTHRU */
3606
3607 case R_68K_TLS_LDM32:
3608 /* We don't know the module number,
3609 create a relocation for it. */
3610 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3611 outrel.r_addend = 0;
3612 break;
3613
3614 case R_68K_TLS_IE32:
3615 /* Emit TPREL relocation to initialize GOT slot
3616 at run-time. */
3617 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3618 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3619 break;
3620
3621 default:
3622 BFD_ASSERT (FALSE);
3623 }
3624
3625 /* Offset of the GOT entry. */
3626 outrel.r_offset = (sgot->output_section->vma
3627 + sgot->output_offset
3628 + got_entry_offset);
3629
3630 /* Install one of the above relocations. */
3631 elf_m68k_install_rela (output_bfd, srela, &outrel);
3632
3633 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3634 }
3635
3636 /* Relocate an M68K ELF section. */
3637
3638 static bfd_boolean
3639 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
3640 contents, relocs, local_syms, local_sections)
3641 bfd *output_bfd;
3642 struct bfd_link_info *info;
3643 bfd *input_bfd;
3644 asection *input_section;
3645 bfd_byte *contents;
3646 Elf_Internal_Rela *relocs;
3647 Elf_Internal_Sym *local_syms;
3648 asection **local_sections;
3649 {
3650 bfd *dynobj;
3651 Elf_Internal_Shdr *symtab_hdr;
3652 struct elf_link_hash_entry **sym_hashes;
3653 asection *sgot;
3654 asection *splt;
3655 asection *sreloc;
3656 asection *srela;
3657 struct elf_m68k_got *got;
3658 Elf_Internal_Rela *rel;
3659 Elf_Internal_Rela *relend;
3660
3661 dynobj = elf_hash_table (info)->dynobj;
3662 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3663 sym_hashes = elf_sym_hashes (input_bfd);
3664
3665 sgot = NULL;
3666 splt = NULL;
3667 sreloc = NULL;
3668 srela = NULL;
3669
3670 got = NULL;
3671
3672 rel = relocs;
3673 relend = relocs + input_section->reloc_count;
3674 for (; rel < relend; rel++)
3675 {
3676 int r_type;
3677 reloc_howto_type *howto;
3678 unsigned long r_symndx;
3679 struct elf_link_hash_entry *h;
3680 Elf_Internal_Sym *sym;
3681 asection *sec;
3682 bfd_vma relocation;
3683 bfd_boolean unresolved_reloc;
3684 bfd_reloc_status_type r;
3685
3686 r_type = ELF32_R_TYPE (rel->r_info);
3687 if (r_type < 0 || r_type >= (int) R_68K_max)
3688 {
3689 bfd_set_error (bfd_error_bad_value);
3690 return FALSE;
3691 }
3692 howto = howto_table + r_type;
3693
3694 r_symndx = ELF32_R_SYM (rel->r_info);
3695
3696 h = NULL;
3697 sym = NULL;
3698 sec = NULL;
3699 unresolved_reloc = FALSE;
3700
3701 if (r_symndx < symtab_hdr->sh_info)
3702 {
3703 sym = local_syms + r_symndx;
3704 sec = local_sections[r_symndx];
3705 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3706 }
3707 else
3708 {
3709 bfd_boolean warned;
3710
3711 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3712 r_symndx, symtab_hdr, sym_hashes,
3713 h, sec, relocation,
3714 unresolved_reloc, warned);
3715 }
3716
3717 if (sec != NULL && elf_discarded_section (sec))
3718 {
3719 /* For relocs against symbols from removed linkonce sections,
3720 or sections discarded by a linker script, we just want the
3721 section contents zeroed. Avoid any special processing. */
3722 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
3723 rel->r_info = 0;
3724 rel->r_addend = 0;
3725 continue;
3726 }
3727
3728 if (info->relocatable)
3729 continue;
3730
3731 switch (r_type)
3732 {
3733 case R_68K_GOT8:
3734 case R_68K_GOT16:
3735 case R_68K_GOT32:
3736 /* Relocation is to the address of the entry for this symbol
3737 in the global offset table. */
3738 if (h != NULL
3739 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3740 {
3741 if (elf_m68k_hash_table (info)->local_gp_p)
3742 {
3743 bfd_vma sgot_output_offset;
3744 bfd_vma got_offset;
3745
3746 if (sgot == NULL)
3747 {
3748 sgot = bfd_get_section_by_name (dynobj, ".got");
3749
3750 if (sgot != NULL)
3751 sgot_output_offset = sgot->output_offset;
3752 else
3753 /* In this case we have a reference to
3754 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3755 empty.
3756 ??? Issue a warning? */
3757 sgot_output_offset = 0;
3758 }
3759 else
3760 sgot_output_offset = sgot->output_offset;
3761
3762 if (got == NULL)
3763 {
3764 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3765
3766 bfd2got_entry
3767 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3768 input_bfd, SEARCH, NULL);
3769
3770 if (bfd2got_entry != NULL)
3771 {
3772 got = bfd2got_entry->got;
3773 BFD_ASSERT (got != NULL);
3774
3775 got_offset = got->offset;
3776 }
3777 else
3778 /* In this case we have a reference to
3779 _GLOBAL_OFFSET_TABLE_, but no other references
3780 accessing any GOT entries.
3781 ??? Issue a warning? */
3782 got_offset = 0;
3783 }
3784 else
3785 got_offset = got->offset;
3786
3787 /* Adjust GOT pointer to point to the GOT
3788 assigned to input_bfd. */
3789 rel->r_addend += sgot_output_offset + got_offset;
3790 }
3791 else
3792 BFD_ASSERT (got == NULL || got->offset == 0);
3793
3794 break;
3795 }
3796 /* Fall through. */
3797 case R_68K_GOT8O:
3798 case R_68K_GOT16O:
3799 case R_68K_GOT32O:
3800
3801 case R_68K_TLS_LDM32:
3802 case R_68K_TLS_LDM16:
3803 case R_68K_TLS_LDM8:
3804
3805 case R_68K_TLS_GD8:
3806 case R_68K_TLS_GD16:
3807 case R_68K_TLS_GD32:
3808
3809 case R_68K_TLS_IE8:
3810 case R_68K_TLS_IE16:
3811 case R_68K_TLS_IE32:
3812
3813 /* Relocation is the offset of the entry for this symbol in
3814 the global offset table. */
3815
3816 {
3817 struct elf_m68k_got_entry_key key_;
3818 bfd_vma *off_ptr;
3819 bfd_vma off;
3820
3821 if (sgot == NULL)
3822 {
3823 sgot = bfd_get_section_by_name (dynobj, ".got");
3824 BFD_ASSERT (sgot != NULL);
3825 }
3826
3827 if (got == NULL)
3828 {
3829 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3830 input_bfd, MUST_FIND,
3831 NULL)->got;
3832 BFD_ASSERT (got != NULL);
3833 }
3834
3835 /* Get GOT offset for this symbol. */
3836 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3837 r_type);
3838 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3839 NULL)->u.s2.offset;
3840 off = *off_ptr;
3841
3842 /* The offset must always be a multiple of 4. We use
3843 the least significant bit to record whether we have
3844 already generated the necessary reloc. */
3845 if ((off & 1) != 0)
3846 off &= ~1;
3847 else
3848 {
3849 if (h != NULL
3850 /* @TLSLDM relocations are bounded to the module, in
3851 which the symbol is defined -- not to the symbol
3852 itself. */
3853 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3854 {
3855 bfd_boolean dyn;
3856
3857 dyn = elf_hash_table (info)->dynamic_sections_created;
3858 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3859 || (info->shared
3860 && SYMBOL_REFERENCES_LOCAL (info, h))
3861 || (ELF_ST_VISIBILITY (h->other)
3862 && h->root.type == bfd_link_hash_undefweak))
3863 {
3864 /* This is actually a static link, or it is a
3865 -Bsymbolic link and the symbol is defined
3866 locally, or the symbol was forced to be local
3867 because of a version file. We must initialize
3868 this entry in the global offset table. Since
3869 the offset must always be a multiple of 4, we
3870 use the least significant bit to record whether
3871 we have initialized it already.
3872
3873 When doing a dynamic link, we create a .rela.got
3874 relocation entry to initialize the value. This
3875 is done in the finish_dynamic_symbol routine. */
3876
3877 elf_m68k_init_got_entry_static (info,
3878 output_bfd,
3879 r_type,
3880 sgot,
3881 off,
3882 relocation);
3883
3884 *off_ptr |= 1;
3885 }
3886 else
3887 unresolved_reloc = FALSE;
3888 }
3889 else if (info->shared) /* && h == NULL */
3890 /* Process local symbol during dynamic link. */
3891 {
3892 if (srela == NULL)
3893 {
3894 srela = bfd_get_section_by_name (dynobj, ".rela.got");
3895 BFD_ASSERT (srela != NULL);
3896 }
3897
3898 elf_m68k_init_got_entry_local_shared (info,
3899 output_bfd,
3900 r_type,
3901 sgot,
3902 off,
3903 relocation,
3904 srela);
3905
3906 *off_ptr |= 1;
3907 }
3908 else /* h == NULL && !info->shared */
3909 {
3910 elf_m68k_init_got_entry_static (info,
3911 output_bfd,
3912 r_type,
3913 sgot,
3914 off,
3915 relocation);
3916
3917 *off_ptr |= 1;
3918 }
3919 }
3920
3921 /* We don't use elf_m68k_reloc_got_type in the condition below
3922 because this is the only place where difference between
3923 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3924 if (r_type == R_68K_GOT32O
3925 || r_type == R_68K_GOT16O
3926 || r_type == R_68K_GOT8O
3927 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3928 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3929 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3930 {
3931 /* GOT pointer is adjusted to point to the start/middle
3932 of local GOT. Adjust the offset accordingly. */
3933 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3934 || off >= got->offset);
3935
3936 if (elf_m68k_hash_table (info)->local_gp_p)
3937 relocation = off - got->offset;
3938 else
3939 {
3940 BFD_ASSERT (got->offset == 0);
3941 relocation = sgot->output_offset + off;
3942 }
3943
3944 /* This relocation does not use the addend. */
3945 rel->r_addend = 0;
3946 }
3947 else
3948 relocation = (sgot->output_section->vma + sgot->output_offset
3949 + off);
3950 }
3951 break;
3952
3953 case R_68K_TLS_LDO32:
3954 case R_68K_TLS_LDO16:
3955 case R_68K_TLS_LDO8:
3956 relocation -= dtpoff_base (info);
3957 break;
3958
3959 case R_68K_TLS_LE32:
3960 case R_68K_TLS_LE16:
3961 case R_68K_TLS_LE8:
3962 if (info->shared)
3963 {
3964 (*_bfd_error_handler)
3965 (_("%B(%A+0x%lx): R_68K_TLS_LE32 relocation not permitted "
3966 "in shared object"),
3967 input_bfd, input_section, (long) rel->r_offset, howto->name);
3968
3969 return FALSE;
3970 }
3971 else
3972 relocation -= tpoff_base (info);
3973
3974 break;
3975
3976 case R_68K_PLT8:
3977 case R_68K_PLT16:
3978 case R_68K_PLT32:
3979 /* Relocation is to the entry for this symbol in the
3980 procedure linkage table. */
3981
3982 /* Resolve a PLTxx reloc against a local symbol directly,
3983 without using the procedure linkage table. */
3984 if (h == NULL)
3985 break;
3986
3987 if (h->plt.offset == (bfd_vma) -1
3988 || !elf_hash_table (info)->dynamic_sections_created)
3989 {
3990 /* We didn't make a PLT entry for this symbol. This
3991 happens when statically linking PIC code, or when
3992 using -Bsymbolic. */
3993 break;
3994 }
3995
3996 if (splt == NULL)
3997 {
3998 splt = bfd_get_section_by_name (dynobj, ".plt");
3999 BFD_ASSERT (splt != NULL);
4000 }
4001
4002 relocation = (splt->output_section->vma
4003 + splt->output_offset
4004 + h->plt.offset);
4005 unresolved_reloc = FALSE;
4006 break;
4007
4008 case R_68K_PLT8O:
4009 case R_68K_PLT16O:
4010 case R_68K_PLT32O:
4011 /* Relocation is the offset of the entry for this symbol in
4012 the procedure linkage table. */
4013 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
4014
4015 if (splt == NULL)
4016 {
4017 splt = bfd_get_section_by_name (dynobj, ".plt");
4018 BFD_ASSERT (splt != NULL);
4019 }
4020
4021 relocation = h->plt.offset;
4022 unresolved_reloc = FALSE;
4023
4024 /* This relocation does not use the addend. */
4025 rel->r_addend = 0;
4026
4027 break;
4028
4029 case R_68K_8:
4030 case R_68K_16:
4031 case R_68K_32:
4032 case R_68K_PC8:
4033 case R_68K_PC16:
4034 case R_68K_PC32:
4035 if (info->shared
4036 && r_symndx != 0
4037 && (input_section->flags & SEC_ALLOC) != 0
4038 && (h == NULL
4039 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4040 || h->root.type != bfd_link_hash_undefweak)
4041 && ((r_type != R_68K_PC8
4042 && r_type != R_68K_PC16
4043 && r_type != R_68K_PC32)
4044 || !SYMBOL_CALLS_LOCAL (info, h)))
4045 {
4046 Elf_Internal_Rela outrel;
4047 bfd_byte *loc;
4048 bfd_boolean skip, relocate;
4049
4050 /* When generating a shared object, these relocations
4051 are copied into the output file to be resolved at run
4052 time. */
4053
4054 skip = FALSE;
4055 relocate = FALSE;
4056
4057 outrel.r_offset =
4058 _bfd_elf_section_offset (output_bfd, info, input_section,
4059 rel->r_offset);
4060 if (outrel.r_offset == (bfd_vma) -1)
4061 skip = TRUE;
4062 else if (outrel.r_offset == (bfd_vma) -2)
4063 skip = TRUE, relocate = TRUE;
4064 outrel.r_offset += (input_section->output_section->vma
4065 + input_section->output_offset);
4066
4067 if (skip)
4068 memset (&outrel, 0, sizeof outrel);
4069 else if (h != NULL
4070 && h->dynindx != -1
4071 && (r_type == R_68K_PC8
4072 || r_type == R_68K_PC16
4073 || r_type == R_68K_PC32
4074 || !info->shared
4075 || !info->symbolic
4076 || !h->def_regular))
4077 {
4078 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4079 outrel.r_addend = rel->r_addend;
4080 }
4081 else
4082 {
4083 /* This symbol is local, or marked to become local. */
4084 outrel.r_addend = relocation + rel->r_addend;
4085
4086 if (r_type == R_68K_32)
4087 {
4088 relocate = TRUE;
4089 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
4090 }
4091 else
4092 {
4093 long indx;
4094
4095 if (bfd_is_abs_section (sec))
4096 indx = 0;
4097 else if (sec == NULL || sec->owner == NULL)
4098 {
4099 bfd_set_error (bfd_error_bad_value);
4100 return FALSE;
4101 }
4102 else
4103 {
4104 asection *osec;
4105
4106 /* We are turning this relocation into one
4107 against a section symbol. It would be
4108 proper to subtract the symbol's value,
4109 osec->vma, from the emitted reloc addend,
4110 but ld.so expects buggy relocs. */
4111 osec = sec->output_section;
4112 indx = elf_section_data (osec)->dynindx;
4113 if (indx == 0)
4114 {
4115 struct elf_link_hash_table *htab;
4116 htab = elf_hash_table (info);
4117 osec = htab->text_index_section;
4118 indx = elf_section_data (osec)->dynindx;
4119 }
4120 BFD_ASSERT (indx != 0);
4121 }
4122
4123 outrel.r_info = ELF32_R_INFO (indx, r_type);
4124 }
4125 }
4126
4127 sreloc = elf_section_data (input_section)->sreloc;
4128 if (sreloc == NULL)
4129 abort ();
4130
4131 loc = sreloc->contents;
4132 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4133 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4134
4135 /* This reloc will be computed at runtime, so there's no
4136 need to do anything now, except for R_68K_32
4137 relocations that have been turned into
4138 R_68K_RELATIVE. */
4139 if (!relocate)
4140 continue;
4141 }
4142
4143 break;
4144
4145 case R_68K_GNU_VTINHERIT:
4146 case R_68K_GNU_VTENTRY:
4147 /* These are no-ops in the end. */
4148 continue;
4149
4150 default:
4151 break;
4152 }
4153
4154 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4155 because such sections are not SEC_ALLOC and thus ld.so will
4156 not process them. */
4157 if (unresolved_reloc
4158 && !((input_section->flags & SEC_DEBUGGING) != 0
4159 && h->def_dynamic))
4160 {
4161 (*_bfd_error_handler)
4162 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4163 input_bfd,
4164 input_section,
4165 (long) rel->r_offset,
4166 howto->name,
4167 h->root.root.string);
4168 return FALSE;
4169 }
4170
4171 if (r_symndx != 0
4172 && r_type != R_68K_NONE
4173 && (h == NULL
4174 || h->root.type == bfd_link_hash_defined
4175 || h->root.type == bfd_link_hash_defweak))
4176 {
4177 char sym_type;
4178
4179 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
4180
4181 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
4182 {
4183 const char *name;
4184
4185 if (h != NULL)
4186 name = h->root.root.string;
4187 else
4188 {
4189 name = (bfd_elf_string_from_elf_section
4190 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4191 if (name == NULL || *name == '\0')
4192 name = bfd_section_name (input_bfd, sec);
4193 }
4194
4195 (*_bfd_error_handler)
4196 ((sym_type == STT_TLS
4197 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4198 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4199 input_bfd,
4200 input_section,
4201 (long) rel->r_offset,
4202 howto->name,
4203 name);
4204 }
4205 }
4206
4207 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4208 contents, rel->r_offset,
4209 relocation, rel->r_addend);
4210
4211 if (r != bfd_reloc_ok)
4212 {
4213 const char *name;
4214
4215 if (h != NULL)
4216 name = h->root.root.string;
4217 else
4218 {
4219 name = bfd_elf_string_from_elf_section (input_bfd,
4220 symtab_hdr->sh_link,
4221 sym->st_name);
4222 if (name == NULL)
4223 return FALSE;
4224 if (*name == '\0')
4225 name = bfd_section_name (input_bfd, sec);
4226 }
4227
4228 if (r == bfd_reloc_overflow)
4229 {
4230 if (!(info->callbacks->reloc_overflow
4231 (info, (h ? &h->root : NULL), name, howto->name,
4232 (bfd_vma) 0, input_bfd, input_section,
4233 rel->r_offset)))
4234 return FALSE;
4235 }
4236 else
4237 {
4238 (*_bfd_error_handler)
4239 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4240 input_bfd, input_section,
4241 (long) rel->r_offset, name, (int) r);
4242 return FALSE;
4243 }
4244 }
4245 }
4246
4247 return TRUE;
4248 }
4249
4250 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4251 into section SEC. */
4252
4253 static void
4254 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4255 {
4256 /* Make VALUE PC-relative. */
4257 value -= sec->output_section->vma + offset;
4258
4259 /* Apply any in-place addend. */
4260 value += bfd_get_32 (sec->owner, sec->contents + offset);
4261
4262 bfd_put_32 (sec->owner, value, sec->contents + offset);
4263 }
4264
4265 /* Finish up dynamic symbol handling. We set the contents of various
4266 dynamic sections here. */
4267
4268 static bfd_boolean
4269 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
4270 bfd *output_bfd;
4271 struct bfd_link_info *info;
4272 struct elf_link_hash_entry *h;
4273 Elf_Internal_Sym *sym;
4274 {
4275 bfd *dynobj;
4276
4277 dynobj = elf_hash_table (info)->dynobj;
4278
4279 if (h->plt.offset != (bfd_vma) -1)
4280 {
4281 const struct elf_m68k_plt_info *plt_info;
4282 asection *splt;
4283 asection *sgot;
4284 asection *srela;
4285 bfd_vma plt_index;
4286 bfd_vma got_offset;
4287 Elf_Internal_Rela rela;
4288 bfd_byte *loc;
4289
4290 /* This symbol has an entry in the procedure linkage table. Set
4291 it up. */
4292
4293 BFD_ASSERT (h->dynindx != -1);
4294
4295 plt_info = elf_m68k_hash_table (info)->plt_info;
4296 splt = bfd_get_section_by_name (dynobj, ".plt");
4297 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
4298 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
4299 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4300
4301 /* Get the index in the procedure linkage table which
4302 corresponds to this symbol. This is the index of this symbol
4303 in all the symbols for which we are making plt entries. The
4304 first entry in the procedure linkage table is reserved. */
4305 plt_index = (h->plt.offset / plt_info->size) - 1;
4306
4307 /* Get the offset into the .got table of the entry that
4308 corresponds to this function. Each .got entry is 4 bytes.
4309 The first three are reserved. */
4310 got_offset = (plt_index + 3) * 4;
4311
4312 memcpy (splt->contents + h->plt.offset,
4313 plt_info->symbol_entry,
4314 plt_info->size);
4315
4316 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4317 (sgot->output_section->vma
4318 + sgot->output_offset
4319 + got_offset));
4320
4321 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4322 splt->contents
4323 + h->plt.offset
4324 + plt_info->symbol_resolve_entry + 2);
4325
4326 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4327 splt->output_section->vma);
4328
4329 /* Fill in the entry in the global offset table. */
4330 bfd_put_32 (output_bfd,
4331 (splt->output_section->vma
4332 + splt->output_offset
4333 + h->plt.offset
4334 + plt_info->symbol_resolve_entry),
4335 sgot->contents + got_offset);
4336
4337 /* Fill in the entry in the .rela.plt section. */
4338 rela.r_offset = (sgot->output_section->vma
4339 + sgot->output_offset
4340 + got_offset);
4341 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4342 rela.r_addend = 0;
4343 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4344 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4345
4346 if (!h->def_regular)
4347 {
4348 /* Mark the symbol as undefined, rather than as defined in
4349 the .plt section. Leave the value alone. */
4350 sym->st_shndx = SHN_UNDEF;
4351 }
4352 }
4353
4354 if (elf_m68k_hash_entry (h)->glist != NULL)
4355 {
4356 asection *sgot;
4357 asection *srela;
4358 struct elf_m68k_got_entry *got_entry;
4359
4360 /* This symbol has an entry in the global offset table. Set it
4361 up. */
4362
4363 sgot = bfd_get_section_by_name (dynobj, ".got");
4364 srela = bfd_get_section_by_name (dynobj, ".rela.got");
4365 BFD_ASSERT (sgot != NULL && srela != NULL);
4366
4367 got_entry = elf_m68k_hash_entry (h)->glist;
4368
4369 while (got_entry != NULL)
4370 {
4371 enum elf_m68k_reloc_type r_type;
4372 bfd_vma got_entry_offset;
4373
4374 r_type = got_entry->key_.type;
4375 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4376
4377 /* If this is a -Bsymbolic link, and the symbol is defined
4378 locally, we just want to emit a RELATIVE reloc. Likewise if
4379 the symbol was forced to be local because of a version file.
4380 The entry in the global offset table already have been
4381 initialized in the relocate_section function. */
4382 if (info->shared
4383 && SYMBOL_REFERENCES_LOCAL (info, h))
4384 {
4385 bfd_vma relocation;
4386
4387 relocation = bfd_get_signed_32 (output_bfd,
4388 (sgot->contents
4389 + got_entry_offset));
4390
4391 /* Undo TP bias. */
4392 switch (elf_m68k_reloc_got_type (r_type))
4393 {
4394 case R_68K_GOT32O:
4395 case R_68K_TLS_LDM32:
4396 break;
4397
4398 case R_68K_TLS_GD32:
4399 relocation += dtpoff_base (info);
4400 break;
4401
4402 case R_68K_TLS_IE32:
4403 relocation += tpoff_base (info);
4404 break;
4405
4406 default:
4407 BFD_ASSERT (FALSE);
4408 }
4409
4410 elf_m68k_init_got_entry_local_shared (info,
4411 output_bfd,
4412 r_type,
4413 sgot,
4414 got_entry_offset,
4415 relocation,
4416 srela);
4417 }
4418 else
4419 {
4420 Elf_Internal_Rela rela;
4421
4422 /* Put zeros to GOT slots that will be initialized
4423 at run-time. */
4424 {
4425 bfd_vma n_slots;
4426
4427 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4428 while (n_slots--)
4429 bfd_put_32 (output_bfd, (bfd_vma) 0,
4430 (sgot->contents + got_entry_offset
4431 + 4 * n_slots));
4432 }
4433
4434 rela.r_addend = 0;
4435 rela.r_offset = (sgot->output_section->vma
4436 + sgot->output_offset
4437 + got_entry_offset);
4438
4439 switch (elf_m68k_reloc_got_type (r_type))
4440 {
4441 case R_68K_GOT32O:
4442 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4443 elf_m68k_install_rela (output_bfd, srela, &rela);
4444 break;
4445
4446 case R_68K_TLS_GD32:
4447 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4448 elf_m68k_install_rela (output_bfd, srela, &rela);
4449
4450 rela.r_offset += 4;
4451 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4452 elf_m68k_install_rela (output_bfd, srela, &rela);
4453 break;
4454
4455 case R_68K_TLS_IE32:
4456 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4457 elf_m68k_install_rela (output_bfd, srela, &rela);
4458 break;
4459
4460 default:
4461 BFD_ASSERT (FALSE);
4462 break;
4463 }
4464 }
4465
4466 got_entry = got_entry->u.s2.next;
4467 }
4468 }
4469
4470 if (h->needs_copy)
4471 {
4472 asection *s;
4473 Elf_Internal_Rela rela;
4474 bfd_byte *loc;
4475
4476 /* This symbol needs a copy reloc. Set it up. */
4477
4478 BFD_ASSERT (h->dynindx != -1
4479 && (h->root.type == bfd_link_hash_defined
4480 || h->root.type == bfd_link_hash_defweak));
4481
4482 s = bfd_get_section_by_name (h->root.u.def.section->owner,
4483 ".rela.bss");
4484 BFD_ASSERT (s != NULL);
4485
4486 rela.r_offset = (h->root.u.def.value
4487 + h->root.u.def.section->output_section->vma
4488 + h->root.u.def.section->output_offset);
4489 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4490 rela.r_addend = 0;
4491 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4492 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4493 }
4494
4495 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4496 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4497 || h == elf_hash_table (info)->hgot)
4498 sym->st_shndx = SHN_ABS;
4499
4500 return TRUE;
4501 }
4502
4503 /* Finish up the dynamic sections. */
4504
4505 static bfd_boolean
4506 elf_m68k_finish_dynamic_sections (output_bfd, info)
4507 bfd *output_bfd;
4508 struct bfd_link_info *info;
4509 {
4510 bfd *dynobj;
4511 asection *sgot;
4512 asection *sdyn;
4513
4514 dynobj = elf_hash_table (info)->dynobj;
4515
4516 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
4517 BFD_ASSERT (sgot != NULL);
4518 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4519
4520 if (elf_hash_table (info)->dynamic_sections_created)
4521 {
4522 asection *splt;
4523 Elf32_External_Dyn *dyncon, *dynconend;
4524
4525 splt = bfd_get_section_by_name (dynobj, ".plt");
4526 BFD_ASSERT (splt != NULL && sdyn != NULL);
4527
4528 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4529 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4530 for (; dyncon < dynconend; dyncon++)
4531 {
4532 Elf_Internal_Dyn dyn;
4533 const char *name;
4534 asection *s;
4535
4536 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4537
4538 switch (dyn.d_tag)
4539 {
4540 default:
4541 break;
4542
4543 case DT_PLTGOT:
4544 name = ".got";
4545 goto get_vma;
4546 case DT_JMPREL:
4547 name = ".rela.plt";
4548 get_vma:
4549 s = bfd_get_section_by_name (output_bfd, name);
4550 BFD_ASSERT (s != NULL);
4551 dyn.d_un.d_ptr = s->vma;
4552 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4553 break;
4554
4555 case DT_PLTRELSZ:
4556 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4557 BFD_ASSERT (s != NULL);
4558 dyn.d_un.d_val = s->size;
4559 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4560 break;
4561
4562 case DT_RELASZ:
4563 /* The procedure linkage table relocs (DT_JMPREL) should
4564 not be included in the overall relocs (DT_RELA).
4565 Therefore, we override the DT_RELASZ entry here to
4566 make it not include the JMPREL relocs. Since the
4567 linker script arranges for .rela.plt to follow all
4568 other relocation sections, we don't have to worry
4569 about changing the DT_RELA entry. */
4570 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4571 if (s != NULL)
4572 dyn.d_un.d_val -= s->size;
4573 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4574 break;
4575 }
4576 }
4577
4578 /* Fill in the first entry in the procedure linkage table. */
4579 if (splt->size > 0)
4580 {
4581 const struct elf_m68k_plt_info *plt_info;
4582
4583 plt_info = elf_m68k_hash_table (info)->plt_info;
4584 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4585
4586 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4587 (sgot->output_section->vma
4588 + sgot->output_offset
4589 + 4));
4590
4591 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4592 (sgot->output_section->vma
4593 + sgot->output_offset
4594 + 8));
4595
4596 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4597 = plt_info->size;
4598 }
4599 }
4600
4601 /* Fill in the first three entries in the global offset table. */
4602 if (sgot->size > 0)
4603 {
4604 if (sdyn == NULL)
4605 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4606 else
4607 bfd_put_32 (output_bfd,
4608 sdyn->output_section->vma + sdyn->output_offset,
4609 sgot->contents);
4610 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4611 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4612 }
4613
4614 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4615
4616 return TRUE;
4617 }
4618
4619 /* Given a .data section and a .emreloc in-memory section, store
4620 relocation information into the .emreloc section which can be
4621 used at runtime to relocate the section. This is called by the
4622 linker when the --embedded-relocs switch is used. This is called
4623 after the add_symbols entry point has been called for all the
4624 objects, and before the final_link entry point is called. */
4625
4626 bfd_boolean
4627 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
4628 bfd *abfd;
4629 struct bfd_link_info *info;
4630 asection *datasec;
4631 asection *relsec;
4632 char **errmsg;
4633 {
4634 Elf_Internal_Shdr *symtab_hdr;
4635 Elf_Internal_Sym *isymbuf = NULL;
4636 Elf_Internal_Rela *internal_relocs = NULL;
4637 Elf_Internal_Rela *irel, *irelend;
4638 bfd_byte *p;
4639 bfd_size_type amt;
4640
4641 BFD_ASSERT (! info->relocatable);
4642
4643 *errmsg = NULL;
4644
4645 if (datasec->reloc_count == 0)
4646 return TRUE;
4647
4648 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4649
4650 /* Get a copy of the native relocations. */
4651 internal_relocs = (_bfd_elf_link_read_relocs
4652 (abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
4653 info->keep_memory));
4654 if (internal_relocs == NULL)
4655 goto error_return;
4656
4657 amt = (bfd_size_type) datasec->reloc_count * 12;
4658 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4659 if (relsec->contents == NULL)
4660 goto error_return;
4661
4662 p = relsec->contents;
4663
4664 irelend = internal_relocs + datasec->reloc_count;
4665 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4666 {
4667 asection *targetsec;
4668
4669 /* We are going to write a four byte longword into the runtime
4670 reloc section. The longword will be the address in the data
4671 section which must be relocated. It is followed by the name
4672 of the target section NUL-padded or truncated to 8
4673 characters. */
4674
4675 /* We can only relocate absolute longword relocs at run time. */
4676 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4677 {
4678 *errmsg = _("unsupported reloc type");
4679 bfd_set_error (bfd_error_bad_value);
4680 goto error_return;
4681 }
4682
4683 /* Get the target section referred to by the reloc. */
4684 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4685 {
4686 /* A local symbol. */
4687 Elf_Internal_Sym *isym;
4688
4689 /* Read this BFD's local symbols if we haven't done so already. */
4690 if (isymbuf == NULL)
4691 {
4692 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4693 if (isymbuf == NULL)
4694 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4695 symtab_hdr->sh_info, 0,
4696 NULL, NULL, NULL);
4697 if (isymbuf == NULL)
4698 goto error_return;
4699 }
4700
4701 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4702 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4703 }
4704 else
4705 {
4706 unsigned long indx;
4707 struct elf_link_hash_entry *h;
4708
4709 /* An external symbol. */
4710 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4711 h = elf_sym_hashes (abfd)[indx];
4712 BFD_ASSERT (h != NULL);
4713 if (h->root.type == bfd_link_hash_defined
4714 || h->root.type == bfd_link_hash_defweak)
4715 targetsec = h->root.u.def.section;
4716 else
4717 targetsec = NULL;
4718 }
4719
4720 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4721 memset (p + 4, 0, 8);
4722 if (targetsec != NULL)
4723 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4724 }
4725
4726 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4727 free (isymbuf);
4728 if (internal_relocs != NULL
4729 && elf_section_data (datasec)->relocs != internal_relocs)
4730 free (internal_relocs);
4731 return TRUE;
4732
4733 error_return:
4734 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4735 free (isymbuf);
4736 if (internal_relocs != NULL
4737 && elf_section_data (datasec)->relocs != internal_relocs)
4738 free (internal_relocs);
4739 return FALSE;
4740 }
4741
4742 /* Set target options. */
4743
4744 void
4745 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4746 {
4747 struct elf_m68k_link_hash_table *htab;
4748
4749 htab = elf_m68k_hash_table (info);
4750
4751 switch (got_handling)
4752 {
4753 case 0:
4754 /* --got=single. */
4755 htab->local_gp_p = FALSE;
4756 htab->use_neg_got_offsets_p = FALSE;
4757 htab->allow_multigot_p = FALSE;
4758 break;
4759
4760 case 1:
4761 /* --got=negative. */
4762 htab->local_gp_p = TRUE;
4763 htab->use_neg_got_offsets_p = TRUE;
4764 htab->allow_multigot_p = FALSE;
4765 break;
4766
4767 case 2:
4768 /* --got=multigot. */
4769 htab->local_gp_p = TRUE;
4770 htab->use_neg_got_offsets_p = TRUE;
4771 htab->allow_multigot_p = TRUE;
4772 break;
4773
4774 default:
4775 BFD_ASSERT (FALSE);
4776 }
4777 }
4778
4779 static enum elf_reloc_type_class
4780 elf32_m68k_reloc_type_class (rela)
4781 const Elf_Internal_Rela *rela;
4782 {
4783 switch ((int) ELF32_R_TYPE (rela->r_info))
4784 {
4785 case R_68K_RELATIVE:
4786 return reloc_class_relative;
4787 case R_68K_JMP_SLOT:
4788 return reloc_class_plt;
4789 case R_68K_COPY:
4790 return reloc_class_copy;
4791 default:
4792 return reloc_class_normal;
4793 }
4794 }
4795
4796 /* Return address for Ith PLT stub in section PLT, for relocation REL
4797 or (bfd_vma) -1 if it should not be included. */
4798
4799 static bfd_vma
4800 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4801 const arelent *rel ATTRIBUTE_UNUSED)
4802 {
4803 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4804 }
4805
4806 #define TARGET_BIG_SYM bfd_elf32_m68k_vec
4807 #define TARGET_BIG_NAME "elf32-m68k"
4808 #define ELF_MACHINE_CODE EM_68K
4809 #define ELF_MAXPAGESIZE 0x2000
4810 #define elf_backend_create_dynamic_sections \
4811 _bfd_elf_create_dynamic_sections
4812 #define bfd_elf32_bfd_link_hash_table_create \
4813 elf_m68k_link_hash_table_create
4814 /* ??? Should it be this macro or bfd_elfNN_bfd_link_hash_table_create? */
4815 #define bfd_elf32_bfd_link_hash_table_free \
4816 elf_m68k_link_hash_table_free
4817 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4818
4819 #define elf_backend_check_relocs elf_m68k_check_relocs
4820 #define elf_backend_always_size_sections \
4821 elf_m68k_always_size_sections
4822 #define elf_backend_adjust_dynamic_symbol \
4823 elf_m68k_adjust_dynamic_symbol
4824 #define elf_backend_size_dynamic_sections \
4825 elf_m68k_size_dynamic_sections
4826 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4827 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4828 #define elf_backend_relocate_section elf_m68k_relocate_section
4829 #define elf_backend_finish_dynamic_symbol \
4830 elf_m68k_finish_dynamic_symbol
4831 #define elf_backend_finish_dynamic_sections \
4832 elf_m68k_finish_dynamic_sections
4833 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4834 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
4835 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4836 #define bfd_elf32_bfd_merge_private_bfd_data \
4837 elf32_m68k_merge_private_bfd_data
4838 #define bfd_elf32_bfd_set_private_flags \
4839 elf32_m68k_set_private_flags
4840 #define bfd_elf32_bfd_print_private_bfd_data \
4841 elf32_m68k_print_private_bfd_data
4842 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4843 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4844 #define elf_backend_object_p elf32_m68k_object_p
4845
4846 #define elf_backend_can_gc_sections 1
4847 #define elf_backend_can_refcount 1
4848 #define elf_backend_want_got_plt 1
4849 #define elf_backend_plt_readonly 1
4850 #define elf_backend_want_plt_sym 0
4851 #define elf_backend_got_header_size 12
4852 #define elf_backend_rela_normal 1
4853
4854 #include "elf32-target.h"
This page took 0.132914 seconds and 4 git commands to generate.