1 /* Motorola 68k series support for 32-bit ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
27 #include "opcode/m68k.h"
30 elf_m68k_discard_copies (struct elf_link_hash_entry
*, void *);
32 static reloc_howto_type howto_table
[] =
34 HOWTO(R_68K_NONE
, 0, 3, 0, FALSE
,0, complain_overflow_dont
, bfd_elf_generic_reloc
, "R_68K_NONE", FALSE
, 0, 0x00000000,FALSE
),
35 HOWTO(R_68K_32
, 0, 2,32, FALSE
,0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_68K_32", FALSE
, 0, 0xffffffff,FALSE
),
36 HOWTO(R_68K_16
, 0, 1,16, FALSE
,0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_68K_16", FALSE
, 0, 0x0000ffff,FALSE
),
37 HOWTO(R_68K_8
, 0, 0, 8, FALSE
,0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_68K_8", FALSE
, 0, 0x000000ff,FALSE
),
38 HOWTO(R_68K_PC32
, 0, 2,32, TRUE
, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_68K_PC32", FALSE
, 0, 0xffffffff,TRUE
),
39 HOWTO(R_68K_PC16
, 0, 1,16, TRUE
, 0, complain_overflow_signed
, bfd_elf_generic_reloc
, "R_68K_PC16", FALSE
, 0, 0x0000ffff,TRUE
),
40 HOWTO(R_68K_PC8
, 0, 0, 8, TRUE
, 0, complain_overflow_signed
, bfd_elf_generic_reloc
, "R_68K_PC8", FALSE
, 0, 0x000000ff,TRUE
),
41 HOWTO(R_68K_GOT32
, 0, 2,32, TRUE
, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_68K_GOT32", FALSE
, 0, 0xffffffff,TRUE
),
42 HOWTO(R_68K_GOT16
, 0, 1,16, TRUE
, 0, complain_overflow_signed
, bfd_elf_generic_reloc
, "R_68K_GOT16", FALSE
, 0, 0x0000ffff,TRUE
),
43 HOWTO(R_68K_GOT8
, 0, 0, 8, TRUE
, 0, complain_overflow_signed
, bfd_elf_generic_reloc
, "R_68K_GOT8", FALSE
, 0, 0x000000ff,TRUE
),
44 HOWTO(R_68K_GOT32O
, 0, 2,32, FALSE
,0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_68K_GOT32O", FALSE
, 0, 0xffffffff,FALSE
),
45 HOWTO(R_68K_GOT16O
, 0, 1,16, FALSE
,0, complain_overflow_signed
, bfd_elf_generic_reloc
, "R_68K_GOT16O", FALSE
, 0, 0x0000ffff,FALSE
),
46 HOWTO(R_68K_GOT8O
, 0, 0, 8, FALSE
,0, complain_overflow_signed
, bfd_elf_generic_reloc
, "R_68K_GOT8O", FALSE
, 0, 0x000000ff,FALSE
),
47 HOWTO(R_68K_PLT32
, 0, 2,32, TRUE
, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_68K_PLT32", FALSE
, 0, 0xffffffff,TRUE
),
48 HOWTO(R_68K_PLT16
, 0, 1,16, TRUE
, 0, complain_overflow_signed
, bfd_elf_generic_reloc
, "R_68K_PLT16", FALSE
, 0, 0x0000ffff,TRUE
),
49 HOWTO(R_68K_PLT8
, 0, 0, 8, TRUE
, 0, complain_overflow_signed
, bfd_elf_generic_reloc
, "R_68K_PLT8", FALSE
, 0, 0x000000ff,TRUE
),
50 HOWTO(R_68K_PLT32O
, 0, 2,32, FALSE
,0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_68K_PLT32O", FALSE
, 0, 0xffffffff,FALSE
),
51 HOWTO(R_68K_PLT16O
, 0, 1,16, FALSE
,0, complain_overflow_signed
, bfd_elf_generic_reloc
, "R_68K_PLT16O", FALSE
, 0, 0x0000ffff,FALSE
),
52 HOWTO(R_68K_PLT8O
, 0, 0, 8, FALSE
,0, complain_overflow_signed
, bfd_elf_generic_reloc
, "R_68K_PLT8O", FALSE
, 0, 0x000000ff,FALSE
),
53 HOWTO(R_68K_COPY
, 0, 0, 0, FALSE
,0, complain_overflow_dont
, bfd_elf_generic_reloc
, "R_68K_COPY", FALSE
, 0, 0xffffffff,FALSE
),
54 HOWTO(R_68K_GLOB_DAT
, 0, 2,32, FALSE
,0, complain_overflow_dont
, bfd_elf_generic_reloc
, "R_68K_GLOB_DAT", FALSE
, 0, 0xffffffff,FALSE
),
55 HOWTO(R_68K_JMP_SLOT
, 0, 2,32, FALSE
,0, complain_overflow_dont
, bfd_elf_generic_reloc
, "R_68K_JMP_SLOT", FALSE
, 0, 0xffffffff,FALSE
),
56 HOWTO(R_68K_RELATIVE
, 0, 2,32, FALSE
,0, complain_overflow_dont
, bfd_elf_generic_reloc
, "R_68K_RELATIVE", FALSE
, 0, 0xffffffff,FALSE
),
57 /* GNU extension to record C++ vtable hierarchy. */
58 HOWTO (R_68K_GNU_VTINHERIT
, /* type */
60 2, /* size (0 = byte, 1 = short, 2 = long) */
62 FALSE
, /* pc_relative */
64 complain_overflow_dont
, /* complain_on_overflow */
65 NULL
, /* special_function */
66 "R_68K_GNU_VTINHERIT", /* name */
67 FALSE
, /* partial_inplace */
71 /* GNU extension to record C++ vtable member usage. */
72 HOWTO (R_68K_GNU_VTENTRY
, /* type */
74 2, /* size (0 = byte, 1 = short, 2 = long) */
76 FALSE
, /* pc_relative */
78 complain_overflow_dont
, /* complain_on_overflow */
79 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
80 "R_68K_GNU_VTENTRY", /* name */
81 FALSE
, /* partial_inplace */
86 /* TLS general dynamic variable reference. */
87 HOWTO (R_68K_TLS_GD32
, /* type */
89 2, /* size (0 = byte, 1 = short, 2 = long) */
91 FALSE
, /* pc_relative */
93 complain_overflow_bitfield
, /* complain_on_overflow */
94 bfd_elf_generic_reloc
, /* special_function */
95 "R_68K_TLS_GD32", /* name */
96 FALSE
, /* partial_inplace */
98 0xffffffff, /* dst_mask */
99 FALSE
), /* pcrel_offset */
101 HOWTO (R_68K_TLS_GD16
, /* type */
103 1, /* size (0 = byte, 1 = short, 2 = long) */
105 FALSE
, /* pc_relative */
107 complain_overflow_signed
, /* complain_on_overflow */
108 bfd_elf_generic_reloc
, /* special_function */
109 "R_68K_TLS_GD16", /* name */
110 FALSE
, /* partial_inplace */
112 0x0000ffff, /* dst_mask */
113 FALSE
), /* pcrel_offset */
115 HOWTO (R_68K_TLS_GD8
, /* type */
117 0, /* size (0 = byte, 1 = short, 2 = long) */
119 FALSE
, /* pc_relative */
121 complain_overflow_signed
, /* complain_on_overflow */
122 bfd_elf_generic_reloc
, /* special_function */
123 "R_68K_TLS_GD8", /* name */
124 FALSE
, /* partial_inplace */
126 0x000000ff, /* dst_mask */
127 FALSE
), /* pcrel_offset */
129 /* TLS local dynamic variable reference. */
130 HOWTO (R_68K_TLS_LDM32
, /* type */
132 2, /* size (0 = byte, 1 = short, 2 = long) */
134 FALSE
, /* pc_relative */
136 complain_overflow_bitfield
, /* complain_on_overflow */
137 bfd_elf_generic_reloc
, /* special_function */
138 "R_68K_TLS_LDM32", /* name */
139 FALSE
, /* partial_inplace */
141 0xffffffff, /* dst_mask */
142 FALSE
), /* pcrel_offset */
144 HOWTO (R_68K_TLS_LDM16
, /* type */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
148 FALSE
, /* pc_relative */
150 complain_overflow_signed
, /* complain_on_overflow */
151 bfd_elf_generic_reloc
, /* special_function */
152 "R_68K_TLS_LDM16", /* name */
153 FALSE
, /* partial_inplace */
155 0x0000ffff, /* dst_mask */
156 FALSE
), /* pcrel_offset */
158 HOWTO (R_68K_TLS_LDM8
, /* type */
160 0, /* size (0 = byte, 1 = short, 2 = long) */
162 FALSE
, /* pc_relative */
164 complain_overflow_signed
, /* complain_on_overflow */
165 bfd_elf_generic_reloc
, /* special_function */
166 "R_68K_TLS_LDM8", /* name */
167 FALSE
, /* partial_inplace */
169 0x000000ff, /* dst_mask */
170 FALSE
), /* pcrel_offset */
172 HOWTO (R_68K_TLS_LDO32
, /* type */
174 2, /* size (0 = byte, 1 = short, 2 = long) */
176 FALSE
, /* pc_relative */
178 complain_overflow_bitfield
, /* complain_on_overflow */
179 bfd_elf_generic_reloc
, /* special_function */
180 "R_68K_TLS_LDO32", /* name */
181 FALSE
, /* partial_inplace */
183 0xffffffff, /* dst_mask */
184 FALSE
), /* pcrel_offset */
186 HOWTO (R_68K_TLS_LDO16
, /* type */
188 1, /* size (0 = byte, 1 = short, 2 = long) */
190 FALSE
, /* pc_relative */
192 complain_overflow_signed
, /* complain_on_overflow */
193 bfd_elf_generic_reloc
, /* special_function */
194 "R_68K_TLS_LDO16", /* name */
195 FALSE
, /* partial_inplace */
197 0x0000ffff, /* dst_mask */
198 FALSE
), /* pcrel_offset */
200 HOWTO (R_68K_TLS_LDO8
, /* type */
202 0, /* size (0 = byte, 1 = short, 2 = long) */
204 FALSE
, /* pc_relative */
206 complain_overflow_signed
, /* complain_on_overflow */
207 bfd_elf_generic_reloc
, /* special_function */
208 "R_68K_TLS_LDO8", /* name */
209 FALSE
, /* partial_inplace */
211 0x000000ff, /* dst_mask */
212 FALSE
), /* pcrel_offset */
214 /* TLS initial execution variable reference. */
215 HOWTO (R_68K_TLS_IE32
, /* type */
217 2, /* size (0 = byte, 1 = short, 2 = long) */
219 FALSE
, /* pc_relative */
221 complain_overflow_bitfield
, /* complain_on_overflow */
222 bfd_elf_generic_reloc
, /* special_function */
223 "R_68K_TLS_IE32", /* name */
224 FALSE
, /* partial_inplace */
226 0xffffffff, /* dst_mask */
227 FALSE
), /* pcrel_offset */
229 HOWTO (R_68K_TLS_IE16
, /* type */
231 1, /* size (0 = byte, 1 = short, 2 = long) */
233 FALSE
, /* pc_relative */
235 complain_overflow_signed
, /* complain_on_overflow */
236 bfd_elf_generic_reloc
, /* special_function */
237 "R_68K_TLS_IE16", /* name */
238 FALSE
, /* partial_inplace */
240 0x0000ffff, /* dst_mask */
241 FALSE
), /* pcrel_offset */
243 HOWTO (R_68K_TLS_IE8
, /* type */
245 0, /* size (0 = byte, 1 = short, 2 = long) */
247 FALSE
, /* pc_relative */
249 complain_overflow_signed
, /* complain_on_overflow */
250 bfd_elf_generic_reloc
, /* special_function */
251 "R_68K_TLS_IE8", /* name */
252 FALSE
, /* partial_inplace */
254 0x000000ff, /* dst_mask */
255 FALSE
), /* pcrel_offset */
257 /* TLS local execution variable reference. */
258 HOWTO (R_68K_TLS_LE32
, /* type */
260 2, /* size (0 = byte, 1 = short, 2 = long) */
262 FALSE
, /* pc_relative */
264 complain_overflow_bitfield
, /* complain_on_overflow */
265 bfd_elf_generic_reloc
, /* special_function */
266 "R_68K_TLS_LE32", /* name */
267 FALSE
, /* partial_inplace */
269 0xffffffff, /* dst_mask */
270 FALSE
), /* pcrel_offset */
272 HOWTO (R_68K_TLS_LE16
, /* type */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
276 FALSE
, /* pc_relative */
278 complain_overflow_signed
, /* complain_on_overflow */
279 bfd_elf_generic_reloc
, /* special_function */
280 "R_68K_TLS_LE16", /* name */
281 FALSE
, /* partial_inplace */
283 0x0000ffff, /* dst_mask */
284 FALSE
), /* pcrel_offset */
286 HOWTO (R_68K_TLS_LE8
, /* type */
288 0, /* size (0 = byte, 1 = short, 2 = long) */
290 FALSE
, /* pc_relative */
292 complain_overflow_signed
, /* complain_on_overflow */
293 bfd_elf_generic_reloc
, /* special_function */
294 "R_68K_TLS_LE8", /* name */
295 FALSE
, /* partial_inplace */
297 0x000000ff, /* dst_mask */
298 FALSE
), /* pcrel_offset */
300 /* TLS GD/LD dynamic relocations. */
301 HOWTO (R_68K_TLS_DTPMOD32
, /* type */
303 2, /* size (0 = byte, 1 = short, 2 = long) */
305 FALSE
, /* pc_relative */
307 complain_overflow_dont
, /* complain_on_overflow */
308 bfd_elf_generic_reloc
, /* special_function */
309 "R_68K_TLS_DTPMOD32", /* name */
310 FALSE
, /* partial_inplace */
312 0xffffffff, /* dst_mask */
313 FALSE
), /* pcrel_offset */
315 HOWTO (R_68K_TLS_DTPREL32
, /* type */
317 2, /* size (0 = byte, 1 = short, 2 = long) */
319 FALSE
, /* pc_relative */
321 complain_overflow_dont
, /* complain_on_overflow */
322 bfd_elf_generic_reloc
, /* special_function */
323 "R_68K_TLS_DTPREL32", /* name */
324 FALSE
, /* partial_inplace */
326 0xffffffff, /* dst_mask */
327 FALSE
), /* pcrel_offset */
329 HOWTO (R_68K_TLS_TPREL32
, /* type */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
333 FALSE
, /* pc_relative */
335 complain_overflow_dont
, /* complain_on_overflow */
336 bfd_elf_generic_reloc
, /* special_function */
337 "R_68K_TLS_TPREL32", /* name */
338 FALSE
, /* partial_inplace */
340 0xffffffff, /* dst_mask */
341 FALSE
), /* pcrel_offset */
345 rtype_to_howto (bfd
*abfd
, arelent
*cache_ptr
, Elf_Internal_Rela
*dst
)
347 unsigned int indx
= ELF32_R_TYPE (dst
->r_info
);
349 if (indx
>= (unsigned int) R_68K_max
)
351 /* xgettext:c-format */
352 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
354 bfd_set_error (bfd_error_bad_value
);
357 cache_ptr
->howto
= &howto_table
[indx
];
361 #define elf_info_to_howto rtype_to_howto
365 bfd_reloc_code_real_type bfd_val
;
370 { BFD_RELOC_NONE
, R_68K_NONE
},
371 { BFD_RELOC_32
, R_68K_32
},
372 { BFD_RELOC_16
, R_68K_16
},
373 { BFD_RELOC_8
, R_68K_8
},
374 { BFD_RELOC_32_PCREL
, R_68K_PC32
},
375 { BFD_RELOC_16_PCREL
, R_68K_PC16
},
376 { BFD_RELOC_8_PCREL
, R_68K_PC8
},
377 { BFD_RELOC_32_GOT_PCREL
, R_68K_GOT32
},
378 { BFD_RELOC_16_GOT_PCREL
, R_68K_GOT16
},
379 { BFD_RELOC_8_GOT_PCREL
, R_68K_GOT8
},
380 { BFD_RELOC_32_GOTOFF
, R_68K_GOT32O
},
381 { BFD_RELOC_16_GOTOFF
, R_68K_GOT16O
},
382 { BFD_RELOC_8_GOTOFF
, R_68K_GOT8O
},
383 { BFD_RELOC_32_PLT_PCREL
, R_68K_PLT32
},
384 { BFD_RELOC_16_PLT_PCREL
, R_68K_PLT16
},
385 { BFD_RELOC_8_PLT_PCREL
, R_68K_PLT8
},
386 { BFD_RELOC_32_PLTOFF
, R_68K_PLT32O
},
387 { BFD_RELOC_16_PLTOFF
, R_68K_PLT16O
},
388 { BFD_RELOC_8_PLTOFF
, R_68K_PLT8O
},
389 { BFD_RELOC_NONE
, R_68K_COPY
},
390 { BFD_RELOC_68K_GLOB_DAT
, R_68K_GLOB_DAT
},
391 { BFD_RELOC_68K_JMP_SLOT
, R_68K_JMP_SLOT
},
392 { BFD_RELOC_68K_RELATIVE
, R_68K_RELATIVE
},
393 { BFD_RELOC_CTOR
, R_68K_32
},
394 { BFD_RELOC_VTABLE_INHERIT
, R_68K_GNU_VTINHERIT
},
395 { BFD_RELOC_VTABLE_ENTRY
, R_68K_GNU_VTENTRY
},
396 { BFD_RELOC_68K_TLS_GD32
, R_68K_TLS_GD32
},
397 { BFD_RELOC_68K_TLS_GD16
, R_68K_TLS_GD16
},
398 { BFD_RELOC_68K_TLS_GD8
, R_68K_TLS_GD8
},
399 { BFD_RELOC_68K_TLS_LDM32
, R_68K_TLS_LDM32
},
400 { BFD_RELOC_68K_TLS_LDM16
, R_68K_TLS_LDM16
},
401 { BFD_RELOC_68K_TLS_LDM8
, R_68K_TLS_LDM8
},
402 { BFD_RELOC_68K_TLS_LDO32
, R_68K_TLS_LDO32
},
403 { BFD_RELOC_68K_TLS_LDO16
, R_68K_TLS_LDO16
},
404 { BFD_RELOC_68K_TLS_LDO8
, R_68K_TLS_LDO8
},
405 { BFD_RELOC_68K_TLS_IE32
, R_68K_TLS_IE32
},
406 { BFD_RELOC_68K_TLS_IE16
, R_68K_TLS_IE16
},
407 { BFD_RELOC_68K_TLS_IE8
, R_68K_TLS_IE8
},
408 { BFD_RELOC_68K_TLS_LE32
, R_68K_TLS_LE32
},
409 { BFD_RELOC_68K_TLS_LE16
, R_68K_TLS_LE16
},
410 { BFD_RELOC_68K_TLS_LE8
, R_68K_TLS_LE8
},
413 static reloc_howto_type
*
414 reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
415 bfd_reloc_code_real_type code
)
418 for (i
= 0; i
< sizeof (reloc_map
) / sizeof (reloc_map
[0]); i
++)
420 if (reloc_map
[i
].bfd_val
== code
)
421 return &howto_table
[reloc_map
[i
].elf_val
];
426 static reloc_howto_type
*
427 reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
, const char *r_name
)
431 for (i
= 0; i
< sizeof (howto_table
) / sizeof (howto_table
[0]); i
++)
432 if (howto_table
[i
].name
!= NULL
433 && strcasecmp (howto_table
[i
].name
, r_name
) == 0)
434 return &howto_table
[i
];
439 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
440 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
441 #define ELF_ARCH bfd_arch_m68k
442 #define ELF_TARGET_ID M68K_ELF_DATA
444 /* Functions for the m68k ELF linker. */
446 /* The name of the dynamic interpreter. This is put in the .interp
449 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
451 /* Describes one of the various PLT styles. */
453 struct elf_m68k_plt_info
455 /* The size of each PLT entry. */
458 /* The template for the first PLT entry. */
459 const bfd_byte
*plt0_entry
;
461 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
462 The comments by each member indicate the value that the relocation
465 unsigned int got4
; /* .got + 4 */
466 unsigned int got8
; /* .got + 8 */
469 /* The template for a symbol's PLT entry. */
470 const bfd_byte
*symbol_entry
;
472 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
473 The comments by each member indicate the value that the relocation
476 unsigned int got
; /* the symbol's .got.plt entry */
477 unsigned int plt
; /* .plt */
480 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
481 The stub starts with "move.l #relocoffset,%d0". */
482 bfd_vma symbol_resolve_entry
;
485 /* The size in bytes of an entry in the procedure linkage table. */
487 #define PLT_ENTRY_SIZE 20
489 /* The first entry in a procedure linkage table looks like this. See
490 the SVR4 ABI m68k supplement to see how this works. */
492 static const bfd_byte elf_m68k_plt0_entry
[PLT_ENTRY_SIZE
] =
494 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
495 0, 0, 0, 2, /* + (.got + 4) - . */
496 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
497 0, 0, 0, 2, /* + (.got + 8) - . */
498 0, 0, 0, 0 /* pad out to 20 bytes. */
501 /* Subsequent entries in a procedure linkage table look like this. */
503 static const bfd_byte elf_m68k_plt_entry
[PLT_ENTRY_SIZE
] =
505 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
506 0, 0, 0, 2, /* + (.got.plt entry) - . */
507 0x2f, 0x3c, /* move.l #offset,-(%sp) */
508 0, 0, 0, 0, /* + reloc index */
509 0x60, 0xff, /* bra.l .plt */
510 0, 0, 0, 0 /* + .plt - . */
513 static const struct elf_m68k_plt_info elf_m68k_plt_info
=
516 elf_m68k_plt0_entry
, { 4, 12 },
517 elf_m68k_plt_entry
, { 4, 16 }, 8
520 #define ISAB_PLT_ENTRY_SIZE 24
522 static const bfd_byte elf_isab_plt0_entry
[ISAB_PLT_ENTRY_SIZE
] =
524 0x20, 0x3c, /* move.l #offset,%d0 */
525 0, 0, 0, 0, /* + (.got + 4) - . */
526 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
527 0x20, 0x3c, /* move.l #offset,%d0 */
528 0, 0, 0, 0, /* + (.got + 8) - . */
529 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
530 0x4e, 0xd0, /* jmp (%a0) */
534 /* Subsequent entries in a procedure linkage table look like this. */
536 static const bfd_byte elf_isab_plt_entry
[ISAB_PLT_ENTRY_SIZE
] =
538 0x20, 0x3c, /* move.l #offset,%d0 */
539 0, 0, 0, 0, /* + (.got.plt entry) - . */
540 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
541 0x4e, 0xd0, /* jmp (%a0) */
542 0x2f, 0x3c, /* move.l #offset,-(%sp) */
543 0, 0, 0, 0, /* + reloc index */
544 0x60, 0xff, /* bra.l .plt */
545 0, 0, 0, 0 /* + .plt - . */
548 static const struct elf_m68k_plt_info elf_isab_plt_info
=
551 elf_isab_plt0_entry
, { 2, 12 },
552 elf_isab_plt_entry
, { 2, 20 }, 12
555 #define ISAC_PLT_ENTRY_SIZE 24
557 static const bfd_byte elf_isac_plt0_entry
[ISAC_PLT_ENTRY_SIZE
] =
559 0x20, 0x3c, /* move.l #offset,%d0 */
560 0, 0, 0, 0, /* replaced with .got + 4 - . */
561 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
562 0x20, 0x3c, /* move.l #offset,%d0 */
563 0, 0, 0, 0, /* replaced with .got + 8 - . */
564 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
565 0x4e, 0xd0, /* jmp (%a0) */
569 /* Subsequent entries in a procedure linkage table look like this. */
571 static const bfd_byte elf_isac_plt_entry
[ISAC_PLT_ENTRY_SIZE
] =
573 0x20, 0x3c, /* move.l #offset,%d0 */
574 0, 0, 0, 0, /* replaced with (.got entry) - . */
575 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
576 0x4e, 0xd0, /* jmp (%a0) */
577 0x2f, 0x3c, /* move.l #offset,-(%sp) */
578 0, 0, 0, 0, /* replaced with offset into relocation table */
579 0x61, 0xff, /* bsr.l .plt */
580 0, 0, 0, 0 /* replaced with .plt - . */
583 static const struct elf_m68k_plt_info elf_isac_plt_info
=
586 elf_isac_plt0_entry
, { 2, 12},
587 elf_isac_plt_entry
, { 2, 20 }, 12
590 #define CPU32_PLT_ENTRY_SIZE 24
591 /* Procedure linkage table entries for the cpu32 */
592 static const bfd_byte elf_cpu32_plt0_entry
[CPU32_PLT_ENTRY_SIZE
] =
594 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
595 0, 0, 0, 2, /* + (.got + 4) - . */
596 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
597 0, 0, 0, 2, /* + (.got + 8) - . */
598 0x4e, 0xd1, /* jmp %a1@ */
599 0, 0, 0, 0, /* pad out to 24 bytes. */
603 static const bfd_byte elf_cpu32_plt_entry
[CPU32_PLT_ENTRY_SIZE
] =
605 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
606 0, 0, 0, 2, /* + (.got.plt entry) - . */
607 0x4e, 0xd1, /* jmp %a1@ */
608 0x2f, 0x3c, /* move.l #offset,-(%sp) */
609 0, 0, 0, 0, /* + reloc index */
610 0x60, 0xff, /* bra.l .plt */
611 0, 0, 0, 0, /* + .plt - . */
615 static const struct elf_m68k_plt_info elf_cpu32_plt_info
=
617 CPU32_PLT_ENTRY_SIZE
,
618 elf_cpu32_plt0_entry
, { 4, 12 },
619 elf_cpu32_plt_entry
, { 4, 18 }, 10
622 /* The m68k linker needs to keep track of the number of relocs that it
623 decides to copy in check_relocs for each symbol. This is so that it
624 can discard PC relative relocs if it doesn't need them when linking
625 with -Bsymbolic. We store the information in a field extending the
626 regular ELF linker hash table. */
628 /* This structure keeps track of the number of PC relative relocs we have
629 copied for a given symbol. */
631 struct elf_m68k_pcrel_relocs_copied
634 struct elf_m68k_pcrel_relocs_copied
*next
;
635 /* A section in dynobj. */
637 /* Number of relocs copied in this section. */
641 /* Forward declaration. */
642 struct elf_m68k_got_entry
;
644 /* m68k ELF linker hash entry. */
646 struct elf_m68k_link_hash_entry
648 struct elf_link_hash_entry root
;
650 /* Number of PC relative relocs copied for this symbol. */
651 struct elf_m68k_pcrel_relocs_copied
*pcrel_relocs_copied
;
653 /* Key to got_entries. */
654 unsigned long got_entry_key
;
656 /* List of GOT entries for this symbol. This list is build during
657 offset finalization and is used within elf_m68k_finish_dynamic_symbol
658 to traverse all GOT entries for a particular symbol.
660 ??? We could've used root.got.glist field instead, but having
661 a separate field is cleaner. */
662 struct elf_m68k_got_entry
*glist
;
665 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
667 /* Key part of GOT entry in hashtable. */
668 struct elf_m68k_got_entry_key
670 /* BFD in which this symbol was defined. NULL for global symbols. */
673 /* Symbol index. Either local symbol index or h->got_entry_key. */
674 unsigned long symndx
;
676 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
677 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
679 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
680 matters. That is, we distinguish between, say, R_68K_GOT16O
681 and R_68K_GOT32O when allocating offsets, but they are considered to be
682 the same when searching got->entries. */
683 enum elf_m68k_reloc_type type
;
686 /* Size of the GOT offset suitable for relocation. */
687 enum elf_m68k_got_offset_size
{ R_8
, R_16
, R_32
, R_LAST
};
689 /* Entry of the GOT. */
690 struct elf_m68k_got_entry
692 /* GOT entries are put into a got->entries hashtable. This is the key. */
693 struct elf_m68k_got_entry_key key_
;
695 /* GOT entry data. We need s1 before offset finalization and s2 after. */
700 /* Number of times this entry is referenced. */
706 /* Offset from the start of .got section. To calculate offset relative
707 to GOT pointer one should subtract got->offset from this value. */
710 /* Pointer to the next GOT entry for this global symbol.
711 Symbols have at most one entry in one GOT, but might
712 have entries in more than one GOT.
713 Root of this list is h->glist.
714 NULL for local symbols. */
715 struct elf_m68k_got_entry
*next
;
720 /* Return representative type for relocation R_TYPE.
721 This is used to avoid enumerating many relocations in comparisons,
724 static enum elf_m68k_reloc_type
725 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type
)
729 /* In most cases R_68K_GOTx relocations require the very same
730 handling as R_68K_GOT32O relocation. In cases when we need
731 to distinguish between the two, we use explicitly compare against
744 return R_68K_TLS_GD32
;
746 case R_68K_TLS_LDM32
:
747 case R_68K_TLS_LDM16
:
749 return R_68K_TLS_LDM32
;
754 return R_68K_TLS_IE32
;
762 /* Return size of the GOT entry offset for relocation R_TYPE. */
764 static enum elf_m68k_got_offset_size
765 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type
)
769 case R_68K_GOT32
: case R_68K_GOT16
: case R_68K_GOT8
:
770 case R_68K_GOT32O
: case R_68K_TLS_GD32
: case R_68K_TLS_LDM32
:
774 case R_68K_GOT16O
: case R_68K_TLS_GD16
: case R_68K_TLS_LDM16
:
778 case R_68K_GOT8O
: case R_68K_TLS_GD8
: case R_68K_TLS_LDM8
:
788 /* Return number of GOT entries we need to allocate in GOT for
789 relocation R_TYPE. */
792 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type
)
794 switch (elf_m68k_reloc_got_type (r_type
))
801 case R_68K_TLS_LDM32
:
810 /* Return TRUE if relocation R_TYPE is a TLS one. */
813 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type
)
817 case R_68K_TLS_GD32
: case R_68K_TLS_GD16
: case R_68K_TLS_GD8
:
818 case R_68K_TLS_LDM32
: case R_68K_TLS_LDM16
: case R_68K_TLS_LDM8
:
819 case R_68K_TLS_LDO32
: case R_68K_TLS_LDO16
: case R_68K_TLS_LDO8
:
820 case R_68K_TLS_IE32
: case R_68K_TLS_IE16
: case R_68K_TLS_IE8
:
821 case R_68K_TLS_LE32
: case R_68K_TLS_LE16
: case R_68K_TLS_LE8
:
822 case R_68K_TLS_DTPMOD32
: case R_68K_TLS_DTPREL32
: case R_68K_TLS_TPREL32
:
830 /* Data structure representing a single GOT. */
833 /* Hashtable of 'struct elf_m68k_got_entry's.
834 Starting size of this table is the maximum number of
835 R_68K_GOT8O entries. */
838 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
841 n_slots[R_8] is the count of R_8 slots in this GOT.
842 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
844 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
845 in this GOT. This is the total number of slots. */
846 bfd_vma n_slots
[R_LAST
];
848 /* Number of local (entry->key_.h == NULL) slots in this GOT.
849 This is only used to properly calculate size of .rela.got section;
850 see elf_m68k_partition_multi_got. */
851 bfd_vma local_n_slots
;
853 /* Offset of this GOT relative to beginning of .got section. */
857 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
858 struct elf_m68k_bfd2got_entry
863 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
864 GOT structure. After partitioning several BFD's might [and often do]
865 share a single GOT. */
866 struct elf_m68k_got
*got
;
869 /* The main data structure holding all the pieces. */
870 struct elf_m68k_multi_got
872 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
873 here, then it doesn't need a GOT (this includes the case of a BFD
874 having an empty GOT).
876 ??? This hashtable can be replaced by an array indexed by bfd->id. */
879 /* Next symndx to assign a global symbol.
880 h->got_entry_key is initialized from this counter. */
881 unsigned long global_symndx
;
884 /* m68k ELF linker hash table. */
886 struct elf_m68k_link_hash_table
888 struct elf_link_hash_table root
;
890 /* Small local sym cache. */
891 struct sym_cache sym_cache
;
893 /* The PLT format used by this link, or NULL if the format has not
895 const struct elf_m68k_plt_info
*plt_info
;
897 /* True, if GP is loaded within each function which uses it.
898 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
899 bfd_boolean local_gp_p
;
901 /* Switch controlling use of negative offsets to double the size of GOTs. */
902 bfd_boolean use_neg_got_offsets_p
;
904 /* Switch controlling generation of multiple GOTs. */
905 bfd_boolean allow_multigot_p
;
907 /* Multi-GOT data structure. */
908 struct elf_m68k_multi_got multi_got_
;
911 /* Get the m68k ELF linker hash table from a link_info structure. */
913 #define elf_m68k_hash_table(p) \
914 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
915 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
917 /* Shortcut to multi-GOT data. */
918 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
920 /* Create an entry in an m68k ELF linker hash table. */
922 static struct bfd_hash_entry
*
923 elf_m68k_link_hash_newfunc (struct bfd_hash_entry
*entry
,
924 struct bfd_hash_table
*table
,
927 struct bfd_hash_entry
*ret
= entry
;
929 /* Allocate the structure if it has not already been allocated by a
932 ret
= bfd_hash_allocate (table
,
933 sizeof (struct elf_m68k_link_hash_entry
));
937 /* Call the allocation method of the superclass. */
938 ret
= _bfd_elf_link_hash_newfunc (ret
, table
, string
);
941 elf_m68k_hash_entry (ret
)->pcrel_relocs_copied
= NULL
;
942 elf_m68k_hash_entry (ret
)->got_entry_key
= 0;
943 elf_m68k_hash_entry (ret
)->glist
= NULL
;
949 /* Destroy an m68k ELF linker hash table. */
952 elf_m68k_link_hash_table_free (bfd
*obfd
)
954 struct elf_m68k_link_hash_table
*htab
;
956 htab
= (struct elf_m68k_link_hash_table
*) obfd
->link
.hash
;
958 if (htab
->multi_got_
.bfd2got
!= NULL
)
960 htab_delete (htab
->multi_got_
.bfd2got
);
961 htab
->multi_got_
.bfd2got
= NULL
;
963 _bfd_elf_link_hash_table_free (obfd
);
966 /* Create an m68k ELF linker hash table. */
968 static struct bfd_link_hash_table
*
969 elf_m68k_link_hash_table_create (bfd
*abfd
)
971 struct elf_m68k_link_hash_table
*ret
;
972 bfd_size_type amt
= sizeof (struct elf_m68k_link_hash_table
);
974 ret
= (struct elf_m68k_link_hash_table
*) bfd_zmalloc (amt
);
975 if (ret
== (struct elf_m68k_link_hash_table
*) NULL
)
978 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
979 elf_m68k_link_hash_newfunc
,
980 sizeof (struct elf_m68k_link_hash_entry
),
986 ret
->root
.root
.hash_table_free
= elf_m68k_link_hash_table_free
;
988 ret
->multi_got_
.global_symndx
= 1;
990 return &ret
->root
.root
;
993 /* Set the right machine number. */
996 elf32_m68k_object_p (bfd
*abfd
)
998 unsigned int mach
= 0;
999 unsigned features
= 0;
1000 flagword eflags
= elf_elfheader (abfd
)->e_flags
;
1002 if ((eflags
& EF_M68K_ARCH_MASK
) == EF_M68K_M68000
)
1004 else if ((eflags
& EF_M68K_ARCH_MASK
) == EF_M68K_CPU32
)
1006 else if ((eflags
& EF_M68K_ARCH_MASK
) == EF_M68K_FIDO
)
1010 switch (eflags
& EF_M68K_CF_ISA_MASK
)
1012 case EF_M68K_CF_ISA_A_NODIV
:
1013 features
|= mcfisa_a
;
1015 case EF_M68K_CF_ISA_A
:
1016 features
|= mcfisa_a
|mcfhwdiv
;
1018 case EF_M68K_CF_ISA_A_PLUS
:
1019 features
|= mcfisa_a
|mcfisa_aa
|mcfhwdiv
|mcfusp
;
1021 case EF_M68K_CF_ISA_B_NOUSP
:
1022 features
|= mcfisa_a
|mcfisa_b
|mcfhwdiv
;
1024 case EF_M68K_CF_ISA_B
:
1025 features
|= mcfisa_a
|mcfisa_b
|mcfhwdiv
|mcfusp
;
1027 case EF_M68K_CF_ISA_C
:
1028 features
|= mcfisa_a
|mcfisa_c
|mcfhwdiv
|mcfusp
;
1030 case EF_M68K_CF_ISA_C_NODIV
:
1031 features
|= mcfisa_a
|mcfisa_c
|mcfusp
;
1034 switch (eflags
& EF_M68K_CF_MAC_MASK
)
1036 case EF_M68K_CF_MAC
:
1039 case EF_M68K_CF_EMAC
:
1040 features
|= mcfemac
;
1043 if (eflags
& EF_M68K_CF_FLOAT
)
1047 mach
= bfd_m68k_features_to_mach (features
);
1048 bfd_default_set_arch_mach (abfd
, bfd_arch_m68k
, mach
);
1053 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1054 field based on the machine number. */
1057 elf_m68k_final_write_processing (bfd
*abfd
,
1058 bfd_boolean linker ATTRIBUTE_UNUSED
)
1060 int mach
= bfd_get_mach (abfd
);
1061 unsigned long e_flags
= elf_elfheader (abfd
)->e_flags
;
1065 unsigned int arch_mask
;
1067 arch_mask
= bfd_m68k_mach_to_features (mach
);
1069 if (arch_mask
& m68000
)
1070 e_flags
= EF_M68K_M68000
;
1071 else if (arch_mask
& cpu32
)
1072 e_flags
= EF_M68K_CPU32
;
1073 else if (arch_mask
& fido_a
)
1074 e_flags
= EF_M68K_FIDO
;
1078 & (mcfisa_a
| mcfisa_aa
| mcfisa_b
| mcfisa_c
| mcfhwdiv
| mcfusp
))
1081 e_flags
|= EF_M68K_CF_ISA_A_NODIV
;
1083 case mcfisa_a
| mcfhwdiv
:
1084 e_flags
|= EF_M68K_CF_ISA_A
;
1086 case mcfisa_a
| mcfisa_aa
| mcfhwdiv
| mcfusp
:
1087 e_flags
|= EF_M68K_CF_ISA_A_PLUS
;
1089 case mcfisa_a
| mcfisa_b
| mcfhwdiv
:
1090 e_flags
|= EF_M68K_CF_ISA_B_NOUSP
;
1092 case mcfisa_a
| mcfisa_b
| mcfhwdiv
| mcfusp
:
1093 e_flags
|= EF_M68K_CF_ISA_B
;
1095 case mcfisa_a
| mcfisa_c
| mcfhwdiv
| mcfusp
:
1096 e_flags
|= EF_M68K_CF_ISA_C
;
1098 case mcfisa_a
| mcfisa_c
| mcfusp
:
1099 e_flags
|= EF_M68K_CF_ISA_C_NODIV
;
1102 if (arch_mask
& mcfmac
)
1103 e_flags
|= EF_M68K_CF_MAC
;
1104 else if (arch_mask
& mcfemac
)
1105 e_flags
|= EF_M68K_CF_EMAC
;
1106 if (arch_mask
& cfloat
)
1107 e_flags
|= EF_M68K_CF_FLOAT
| EF_M68K_CFV4E
;
1109 elf_elfheader (abfd
)->e_flags
= e_flags
;
1113 /* Keep m68k-specific flags in the ELF header. */
1116 elf32_m68k_set_private_flags (bfd
*abfd
, flagword flags
)
1118 elf_elfheader (abfd
)->e_flags
= flags
;
1119 elf_flags_init (abfd
) = TRUE
;
1123 /* Merge backend specific data from an object file to the output
1124 object file when linking. */
1126 elf32_m68k_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
1128 bfd
*obfd
= info
->output_bfd
;
1133 const bfd_arch_info_type
*arch_info
;
1135 if ( bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1136 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1139 /* Get the merged machine. This checks for incompatibility between
1140 Coldfire & non-Coldfire flags, incompability between different
1141 Coldfire ISAs, and incompability between different MAC types. */
1142 arch_info
= bfd_arch_get_compatible (ibfd
, obfd
, FALSE
);
1146 bfd_set_arch_mach (obfd
, bfd_arch_m68k
, arch_info
->mach
);
1148 in_flags
= elf_elfheader (ibfd
)->e_flags
;
1149 if (!elf_flags_init (obfd
))
1151 elf_flags_init (obfd
) = TRUE
;
1152 out_flags
= in_flags
;
1156 out_flags
= elf_elfheader (obfd
)->e_flags
;
1157 unsigned int variant_mask
;
1159 if ((in_flags
& EF_M68K_ARCH_MASK
) == EF_M68K_M68000
)
1161 else if ((in_flags
& EF_M68K_ARCH_MASK
) == EF_M68K_CPU32
)
1163 else if ((in_flags
& EF_M68K_ARCH_MASK
) == EF_M68K_FIDO
)
1166 variant_mask
= EF_M68K_CF_ISA_MASK
;
1168 in_isa
= (in_flags
& variant_mask
);
1169 out_isa
= (out_flags
& variant_mask
);
1170 if (in_isa
> out_isa
)
1171 out_flags
^= in_isa
^ out_isa
;
1172 if (((in_flags
& EF_M68K_ARCH_MASK
) == EF_M68K_CPU32
1173 && (out_flags
& EF_M68K_ARCH_MASK
) == EF_M68K_FIDO
)
1174 || ((in_flags
& EF_M68K_ARCH_MASK
) == EF_M68K_FIDO
1175 && (out_flags
& EF_M68K_ARCH_MASK
) == EF_M68K_CPU32
))
1176 out_flags
= EF_M68K_FIDO
;
1178 out_flags
|= in_flags
^ in_isa
;
1180 elf_elfheader (obfd
)->e_flags
= out_flags
;
1185 /* Display the flags field. */
1188 elf32_m68k_print_private_bfd_data (bfd
*abfd
, void * ptr
)
1190 FILE *file
= (FILE *) ptr
;
1191 flagword eflags
= elf_elfheader (abfd
)->e_flags
;
1193 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
1195 /* Print normal ELF private data. */
1196 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
1198 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1200 /* xgettext:c-format */
1201 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
1203 if ((eflags
& EF_M68K_ARCH_MASK
) == EF_M68K_M68000
)
1204 fprintf (file
, " [m68000]");
1205 else if ((eflags
& EF_M68K_ARCH_MASK
) == EF_M68K_CPU32
)
1206 fprintf (file
, " [cpu32]");
1207 else if ((eflags
& EF_M68K_ARCH_MASK
) == EF_M68K_FIDO
)
1208 fprintf (file
, " [fido]");
1211 if ((eflags
& EF_M68K_ARCH_MASK
) == EF_M68K_CFV4E
)
1212 fprintf (file
, " [cfv4e]");
1214 if (eflags
& EF_M68K_CF_ISA_MASK
)
1216 char const *isa
= _("unknown");
1217 char const *mac
= _("unknown");
1218 char const *additional
= "";
1220 switch (eflags
& EF_M68K_CF_ISA_MASK
)
1222 case EF_M68K_CF_ISA_A_NODIV
:
1224 additional
= " [nodiv]";
1226 case EF_M68K_CF_ISA_A
:
1229 case EF_M68K_CF_ISA_A_PLUS
:
1232 case EF_M68K_CF_ISA_B_NOUSP
:
1234 additional
= " [nousp]";
1236 case EF_M68K_CF_ISA_B
:
1239 case EF_M68K_CF_ISA_C
:
1242 case EF_M68K_CF_ISA_C_NODIV
:
1244 additional
= " [nodiv]";
1247 fprintf (file
, " [isa %s]%s", isa
, additional
);
1249 if (eflags
& EF_M68K_CF_FLOAT
)
1250 fprintf (file
, " [float]");
1252 switch (eflags
& EF_M68K_CF_MAC_MASK
)
1257 case EF_M68K_CF_MAC
:
1260 case EF_M68K_CF_EMAC
:
1263 case EF_M68K_CF_EMAC_B
:
1268 fprintf (file
, " [%s]", mac
);
1277 /* Multi-GOT support implementation design:
1279 Multi-GOT starts in check_relocs hook. There we scan all
1280 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1281 for it. If a single BFD appears to require too many GOT slots with
1282 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1284 After check_relocs has been invoked for each input BFD, we have
1285 constructed a GOT for each input BFD.
1287 To minimize total number of GOTs required for a particular output BFD
1288 (as some environments support only 1 GOT per output object) we try
1289 to merge some of the GOTs to share an offset space. Ideally [and in most
1290 cases] we end up with a single GOT. In cases when there are too many
1291 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1292 several GOTs, assuming the environment can handle them.
1294 Partitioning is done in elf_m68k_partition_multi_got. We start with
1295 an empty GOT and traverse bfd2got hashtable putting got_entries from
1296 local GOTs to the new 'big' one. We do that by constructing an
1297 intermediate GOT holding all the entries the local GOT has and the big
1298 GOT lacks. Then we check if there is room in the big GOT to accomodate
1299 all the entries from diff. On success we add those entries to the big
1300 GOT; on failure we start the new 'big' GOT and retry the adding of
1301 entries from the local GOT. Note that this retry will always succeed as
1302 each local GOT doesn't overflow the limits. After partitioning we
1303 end up with each bfd assigned one of the big GOTs. GOT entries in the
1304 big GOTs are initialized with GOT offsets. Note that big GOTs are
1305 positioned consequently in program space and represent a single huge GOT
1306 to the outside world.
1308 After that we get to elf_m68k_relocate_section. There we
1309 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1310 relocations to refer to appropriate [assigned to current input_bfd]
1315 GOT entry type: We have several types of GOT entries.
1316 * R_8 type is used in entries for symbols that have at least one
1317 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1318 such entries in one GOT.
1319 * R_16 type is used in entries for symbols that have at least one
1320 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1321 We can have at most 0x4000 such entries in one GOT.
1322 * R_32 type is used in all other cases. We can have as many
1323 such entries in one GOT as we'd like.
1324 When counting relocations we have to include the count of the smaller
1325 ranged relocations in the counts of the larger ranged ones in order
1326 to correctly detect overflow.
1328 Sorting the GOT: In each GOT starting offsets are assigned to
1329 R_8 entries, which are followed by R_16 entries, and
1330 R_32 entries go at the end. See finalize_got_offsets for details.
1332 Negative GOT offsets: To double usable offset range of GOTs we use
1333 negative offsets. As we assign entries with GOT offsets relative to
1334 start of .got section, the offset values are positive. They become
1335 negative only in relocate_section where got->offset value is
1336 subtracted from them.
1338 3 special GOT entries: There are 3 special GOT entries used internally
1339 by loader. These entries happen to be placed to .got.plt section,
1340 so we don't do anything about them in multi-GOT support.
1342 Memory management: All data except for hashtables
1343 multi_got->bfd2got and got->entries are allocated on
1344 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1345 to most functions), so we don't need to care to free them. At the
1346 moment of allocation hashtables are being linked into main data
1347 structure (multi_got), all pieces of which are reachable from
1348 elf_m68k_multi_got (info). We deallocate them in
1349 elf_m68k_link_hash_table_free. */
1351 /* Initialize GOT. */
1354 elf_m68k_init_got (struct elf_m68k_got
*got
)
1356 got
->entries
= NULL
;
1357 got
->n_slots
[R_8
] = 0;
1358 got
->n_slots
[R_16
] = 0;
1359 got
->n_slots
[R_32
] = 0;
1360 got
->local_n_slots
= 0;
1361 got
->offset
= (bfd_vma
) -1;
1367 elf_m68k_clear_got (struct elf_m68k_got
*got
)
1369 if (got
->entries
!= NULL
)
1371 htab_delete (got
->entries
);
1372 got
->entries
= NULL
;
1376 /* Create and empty GOT structure. INFO is the context where memory
1377 should be allocated. */
1379 static struct elf_m68k_got
*
1380 elf_m68k_create_empty_got (struct bfd_link_info
*info
)
1382 struct elf_m68k_got
*got
;
1384 got
= bfd_alloc (elf_hash_table (info
)->dynobj
, sizeof (*got
));
1388 elf_m68k_init_got (got
);
1393 /* Initialize KEY. */
1396 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key
*key
,
1397 struct elf_link_hash_entry
*h
,
1398 const bfd
*abfd
, unsigned long symndx
,
1399 enum elf_m68k_reloc_type reloc_type
)
1401 if (elf_m68k_reloc_got_type (reloc_type
) == R_68K_TLS_LDM32
)
1402 /* All TLS_LDM relocations share a single GOT entry. */
1408 /* Global symbols are identified with their got_entry_key. */
1411 key
->symndx
= elf_m68k_hash_entry (h
)->got_entry_key
;
1412 BFD_ASSERT (key
->symndx
!= 0);
1415 /* Local symbols are identified by BFD they appear in and symndx. */
1418 key
->symndx
= symndx
;
1421 key
->type
= reloc_type
;
1424 /* Calculate hash of got_entry.
1428 elf_m68k_got_entry_hash (const void *_entry
)
1430 const struct elf_m68k_got_entry_key
*key
;
1432 key
= &((const struct elf_m68k_got_entry
*) _entry
)->key_
;
1435 + (key
->bfd
!= NULL
? (int) key
->bfd
->id
: -1)
1436 + elf_m68k_reloc_got_type (key
->type
));
1439 /* Check if two got entries are equal. */
1442 elf_m68k_got_entry_eq (const void *_entry1
, const void *_entry2
)
1444 const struct elf_m68k_got_entry_key
*key1
;
1445 const struct elf_m68k_got_entry_key
*key2
;
1447 key1
= &((const struct elf_m68k_got_entry
*) _entry1
)->key_
;
1448 key2
= &((const struct elf_m68k_got_entry
*) _entry2
)->key_
;
1450 return (key1
->bfd
== key2
->bfd
1451 && key1
->symndx
== key2
->symndx
1452 && (elf_m68k_reloc_got_type (key1
->type
)
1453 == elf_m68k_reloc_got_type (key2
->type
)));
1456 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1457 and one extra R_32 slots to simplify handling of 2-slot entries during
1458 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1460 /* Maximal number of R_8 slots in a single GOT. */
1461 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1462 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1466 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1467 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1468 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1472 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1473 the entry cannot be found.
1474 FIND_OR_CREATE - search for an existing entry, but create new if there's
1476 MUST_FIND - search for an existing entry and assert that it exist.
1477 MUST_CREATE - assert that there's no such entry and create new one. */
1478 enum elf_m68k_get_entry_howto
1486 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1487 INFO is context in which memory should be allocated (can be NULL if
1488 HOWTO is SEARCH or MUST_FIND). */
1490 static struct elf_m68k_got_entry
*
1491 elf_m68k_get_got_entry (struct elf_m68k_got
*got
,
1492 const struct elf_m68k_got_entry_key
*key
,
1493 enum elf_m68k_get_entry_howto howto
,
1494 struct bfd_link_info
*info
)
1496 struct elf_m68k_got_entry entry_
;
1497 struct elf_m68k_got_entry
*entry
;
1500 BFD_ASSERT ((info
== NULL
) == (howto
== SEARCH
|| howto
== MUST_FIND
));
1502 if (got
->entries
== NULL
)
1503 /* This is the first entry in ABFD. Initialize hashtable. */
1505 if (howto
== SEARCH
)
1508 got
->entries
= htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1510 elf_m68k_got_entry_hash
,
1511 elf_m68k_got_entry_eq
, NULL
);
1512 if (got
->entries
== NULL
)
1514 bfd_set_error (bfd_error_no_memory
);
1520 ptr
= htab_find_slot (got
->entries
, &entry_
, (howto
!= SEARCH
1521 ? INSERT
: NO_INSERT
));
1524 if (howto
== SEARCH
)
1525 /* Entry not found. */
1528 /* We're out of memory. */
1529 bfd_set_error (bfd_error_no_memory
);
1534 /* We didn't find the entry and we're asked to create a new one. */
1536 BFD_ASSERT (howto
!= MUST_FIND
&& howto
!= SEARCH
);
1538 entry
= bfd_alloc (elf_hash_table (info
)->dynobj
, sizeof (*entry
));
1542 /* Initialize new entry. */
1545 entry
->u
.s1
.refcount
= 0;
1547 /* Mark the entry as not initialized. */
1548 entry
->key_
.type
= R_68K_max
;
1553 /* We found the entry. */
1555 BFD_ASSERT (howto
!= MUST_CREATE
);
1563 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1564 Return the value to which ENTRY's type should be set. */
1566 static enum elf_m68k_reloc_type
1567 elf_m68k_update_got_entry_type (struct elf_m68k_got
*got
,
1568 enum elf_m68k_reloc_type was
,
1569 enum elf_m68k_reloc_type new_reloc
)
1571 enum elf_m68k_got_offset_size was_size
;
1572 enum elf_m68k_got_offset_size new_size
;
1575 if (was
== R_68K_max
)
1576 /* The type of the entry is not initialized yet. */
1578 /* Update all got->n_slots counters, including n_slots[R_32]. */
1585 /* !!! We, probably, should emit an error rather then fail on assert
1587 BFD_ASSERT (elf_m68k_reloc_got_type (was
)
1588 == elf_m68k_reloc_got_type (new_reloc
));
1590 was_size
= elf_m68k_reloc_got_offset_size (was
);
1593 new_size
= elf_m68k_reloc_got_offset_size (new_reloc
);
1594 n_slots
= elf_m68k_reloc_got_n_slots (new_reloc
);
1596 while (was_size
> new_size
)
1599 got
->n_slots
[was_size
] += n_slots
;
1602 if (new_reloc
> was
)
1603 /* Relocations are ordered from bigger got offset size to lesser,
1604 so choose the relocation type with lesser offset size. */
1610 /* Add new or update existing entry to GOT.
1611 H, ABFD, TYPE and SYMNDX is data for the entry.
1612 INFO is a context where memory should be allocated. */
1614 static struct elf_m68k_got_entry
*
1615 elf_m68k_add_entry_to_got (struct elf_m68k_got
*got
,
1616 struct elf_link_hash_entry
*h
,
1618 enum elf_m68k_reloc_type reloc_type
,
1619 unsigned long symndx
,
1620 struct bfd_link_info
*info
)
1622 struct elf_m68k_got_entry_key key_
;
1623 struct elf_m68k_got_entry
*entry
;
1625 if (h
!= NULL
&& elf_m68k_hash_entry (h
)->got_entry_key
== 0)
1626 elf_m68k_hash_entry (h
)->got_entry_key
1627 = elf_m68k_multi_got (info
)->global_symndx
++;
1629 elf_m68k_init_got_entry_key (&key_
, h
, abfd
, symndx
, reloc_type
);
1631 entry
= elf_m68k_get_got_entry (got
, &key_
, FIND_OR_CREATE
, info
);
1635 /* Determine entry's type and update got->n_slots counters. */
1636 entry
->key_
.type
= elf_m68k_update_got_entry_type (got
,
1640 /* Update refcount. */
1641 ++entry
->u
.s1
.refcount
;
1643 if (entry
->u
.s1
.refcount
== 1)
1644 /* We see this entry for the first time. */
1646 if (entry
->key_
.bfd
!= NULL
)
1647 got
->local_n_slots
+= elf_m68k_reloc_got_n_slots (entry
->key_
.type
);
1650 BFD_ASSERT (got
->n_slots
[R_32
] >= got
->local_n_slots
);
1652 if ((got
->n_slots
[R_8
]
1653 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info
))
1654 || (got
->n_slots
[R_16
]
1655 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info
)))
1656 /* This BFD has too many relocation. */
1658 if (got
->n_slots
[R_8
] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info
))
1659 /* xgettext:c-format */
1660 _bfd_error_handler (_("%pB: GOT overflow: "
1661 "number of relocations with 8-bit "
1664 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info
));
1666 /* xgettext:c-format */
1667 _bfd_error_handler (_("%pB: GOT overflow: "
1668 "number of relocations with 8- or 16-bit "
1671 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info
));
1679 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1682 elf_m68k_bfd2got_entry_hash (const void *entry
)
1684 const struct elf_m68k_bfd2got_entry
*e
;
1686 e
= (const struct elf_m68k_bfd2got_entry
*) entry
;
1691 /* Check whether two hash entries have the same bfd. */
1694 elf_m68k_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
1696 const struct elf_m68k_bfd2got_entry
*e1
;
1697 const struct elf_m68k_bfd2got_entry
*e2
;
1699 e1
= (const struct elf_m68k_bfd2got_entry
*) entry1
;
1700 e2
= (const struct elf_m68k_bfd2got_entry
*) entry2
;
1702 return e1
->bfd
== e2
->bfd
;
1705 /* Destruct a bfd2got entry. */
1708 elf_m68k_bfd2got_entry_del (void *_entry
)
1710 struct elf_m68k_bfd2got_entry
*entry
;
1712 entry
= (struct elf_m68k_bfd2got_entry
*) _entry
;
1714 BFD_ASSERT (entry
->got
!= NULL
);
1715 elf_m68k_clear_got (entry
->got
);
1718 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1719 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1720 memory should be allocated. */
1722 static struct elf_m68k_bfd2got_entry
*
1723 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got
*multi_got
,
1725 enum elf_m68k_get_entry_howto howto
,
1726 struct bfd_link_info
*info
)
1728 struct elf_m68k_bfd2got_entry entry_
;
1730 struct elf_m68k_bfd2got_entry
*entry
;
1732 BFD_ASSERT ((info
== NULL
) == (howto
== SEARCH
|| howto
== MUST_FIND
));
1734 if (multi_got
->bfd2got
== NULL
)
1735 /* This is the first GOT. Initialize bfd2got. */
1737 if (howto
== SEARCH
)
1740 multi_got
->bfd2got
= htab_try_create (1, elf_m68k_bfd2got_entry_hash
,
1741 elf_m68k_bfd2got_entry_eq
,
1742 elf_m68k_bfd2got_entry_del
);
1743 if (multi_got
->bfd2got
== NULL
)
1745 bfd_set_error (bfd_error_no_memory
);
1751 ptr
= htab_find_slot (multi_got
->bfd2got
, &entry_
, (howto
!= SEARCH
1752 ? INSERT
: NO_INSERT
));
1755 if (howto
== SEARCH
)
1756 /* Entry not found. */
1759 /* We're out of memory. */
1760 bfd_set_error (bfd_error_no_memory
);
1765 /* Entry was not found. Create new one. */
1767 BFD_ASSERT (howto
!= MUST_FIND
&& howto
!= SEARCH
);
1769 entry
= ((struct elf_m68k_bfd2got_entry
*)
1770 bfd_alloc (elf_hash_table (info
)->dynobj
, sizeof (*entry
)));
1776 entry
->got
= elf_m68k_create_empty_got (info
);
1777 if (entry
->got
== NULL
)
1784 BFD_ASSERT (howto
!= MUST_CREATE
);
1786 /* Return existing entry. */
1793 struct elf_m68k_can_merge_gots_arg
1795 /* A current_got that we constructing a DIFF against. */
1796 struct elf_m68k_got
*big
;
1798 /* GOT holding entries not present or that should be changed in
1800 struct elf_m68k_got
*diff
;
1802 /* Context where to allocate memory. */
1803 struct bfd_link_info
*info
;
1806 bfd_boolean error_p
;
1809 /* Process a single entry from the small GOT to see if it should be added
1810 or updated in the big GOT. */
1813 elf_m68k_can_merge_gots_1 (void **_entry_ptr
, void *_arg
)
1815 const struct elf_m68k_got_entry
*entry1
;
1816 struct elf_m68k_can_merge_gots_arg
*arg
;
1817 const struct elf_m68k_got_entry
*entry2
;
1818 enum elf_m68k_reloc_type type
;
1820 entry1
= (const struct elf_m68k_got_entry
*) *_entry_ptr
;
1821 arg
= (struct elf_m68k_can_merge_gots_arg
*) _arg
;
1823 entry2
= elf_m68k_get_got_entry (arg
->big
, &entry1
->key_
, SEARCH
, NULL
);
1826 /* We found an existing entry. Check if we should update it. */
1828 type
= elf_m68k_update_got_entry_type (arg
->diff
,
1832 if (type
== entry2
->key_
.type
)
1833 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1834 To skip creation of difference entry we use the type,
1835 which we won't see in GOT entries for sure. */
1839 /* We didn't find the entry. Add entry1 to DIFF. */
1841 BFD_ASSERT (entry1
->key_
.type
!= R_68K_max
);
1843 type
= elf_m68k_update_got_entry_type (arg
->diff
,
1844 R_68K_max
, entry1
->key_
.type
);
1846 if (entry1
->key_
.bfd
!= NULL
)
1847 arg
->diff
->local_n_slots
+= elf_m68k_reloc_got_n_slots (type
);
1850 if (type
!= R_68K_max
)
1851 /* Create an entry in DIFF. */
1853 struct elf_m68k_got_entry
*entry
;
1855 entry
= elf_m68k_get_got_entry (arg
->diff
, &entry1
->key_
, MUST_CREATE
,
1859 arg
->error_p
= TRUE
;
1863 entry
->key_
.type
= type
;
1869 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1870 Construct DIFF GOT holding the entries which should be added or updated
1871 in BIG GOT to accumulate information from SMALL.
1872 INFO is the context where memory should be allocated. */
1875 elf_m68k_can_merge_gots (struct elf_m68k_got
*big
,
1876 const struct elf_m68k_got
*small
,
1877 struct bfd_link_info
*info
,
1878 struct elf_m68k_got
*diff
)
1880 struct elf_m68k_can_merge_gots_arg arg_
;
1882 BFD_ASSERT (small
->offset
== (bfd_vma
) -1);
1887 arg_
.error_p
= FALSE
;
1888 htab_traverse_noresize (small
->entries
, elf_m68k_can_merge_gots_1
, &arg_
);
1895 /* Check for overflow. */
1896 if ((big
->n_slots
[R_8
] + arg_
.diff
->n_slots
[R_8
]
1897 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info
))
1898 || (big
->n_slots
[R_16
] + arg_
.diff
->n_slots
[R_16
]
1899 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info
)))
1905 struct elf_m68k_merge_gots_arg
1908 struct elf_m68k_got
*big
;
1910 /* Context where memory should be allocated. */
1911 struct bfd_link_info
*info
;
1914 bfd_boolean error_p
;
1917 /* Process a single entry from DIFF got. Add or update corresponding
1918 entry in the BIG got. */
1921 elf_m68k_merge_gots_1 (void **entry_ptr
, void *_arg
)
1923 const struct elf_m68k_got_entry
*from
;
1924 struct elf_m68k_merge_gots_arg
*arg
;
1925 struct elf_m68k_got_entry
*to
;
1927 from
= (const struct elf_m68k_got_entry
*) *entry_ptr
;
1928 arg
= (struct elf_m68k_merge_gots_arg
*) _arg
;
1930 to
= elf_m68k_get_got_entry (arg
->big
, &from
->key_
, FIND_OR_CREATE
,
1934 arg
->error_p
= TRUE
;
1938 BFD_ASSERT (to
->u
.s1
.refcount
== 0);
1939 /* All we need to merge is TYPE. */
1940 to
->key_
.type
= from
->key_
.type
;
1945 /* Merge data from DIFF to BIG. INFO is context where memory should be
1949 elf_m68k_merge_gots (struct elf_m68k_got
*big
,
1950 struct elf_m68k_got
*diff
,
1951 struct bfd_link_info
*info
)
1953 if (diff
->entries
!= NULL
)
1954 /* DIFF is not empty. Merge it into BIG GOT. */
1956 struct elf_m68k_merge_gots_arg arg_
;
1958 /* Merge entries. */
1961 arg_
.error_p
= FALSE
;
1962 htab_traverse_noresize (diff
->entries
, elf_m68k_merge_gots_1
, &arg_
);
1966 /* Merge counters. */
1967 big
->n_slots
[R_8
] += diff
->n_slots
[R_8
];
1968 big
->n_slots
[R_16
] += diff
->n_slots
[R_16
];
1969 big
->n_slots
[R_32
] += diff
->n_slots
[R_32
];
1970 big
->local_n_slots
+= diff
->local_n_slots
;
1973 /* DIFF is empty. */
1975 BFD_ASSERT (diff
->n_slots
[R_8
] == 0);
1976 BFD_ASSERT (diff
->n_slots
[R_16
] == 0);
1977 BFD_ASSERT (diff
->n_slots
[R_32
] == 0);
1978 BFD_ASSERT (diff
->local_n_slots
== 0);
1981 BFD_ASSERT (!elf_m68k_hash_table (info
)->allow_multigot_p
1982 || ((big
->n_slots
[R_8
]
1983 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info
))
1984 && (big
->n_slots
[R_16
]
1985 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info
))));
1990 struct elf_m68k_finalize_got_offsets_arg
1992 /* Ranges of the offsets for GOT entries.
1993 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
1994 R_x is R_8, R_16 and R_32. */
1998 /* Mapping from global symndx to global symbols.
1999 This is used to build lists of got entries for global symbols. */
2000 struct elf_m68k_link_hash_entry
**symndx2h
;
2002 bfd_vma n_ldm_entries
;
2005 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2009 elf_m68k_finalize_got_offsets_1 (void **entry_ptr
, void *_arg
)
2011 struct elf_m68k_got_entry
*entry
;
2012 struct elf_m68k_finalize_got_offsets_arg
*arg
;
2014 enum elf_m68k_got_offset_size got_offset_size
;
2017 entry
= (struct elf_m68k_got_entry
*) *entry_ptr
;
2018 arg
= (struct elf_m68k_finalize_got_offsets_arg
*) _arg
;
2020 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2021 BFD_ASSERT (entry
->u
.s1
.refcount
== 0);
2023 /* Get GOT offset size for the entry . */
2024 got_offset_size
= elf_m68k_reloc_got_offset_size (entry
->key_
.type
);
2026 /* Calculate entry size in bytes. */
2027 entry_size
= 4 * elf_m68k_reloc_got_n_slots (entry
->key_
.type
);
2029 /* Check if we should switch to negative range of the offsets. */
2030 if (arg
->offset1
[got_offset_size
] + entry_size
2031 > arg
->offset2
[got_offset_size
])
2033 /* Verify that this is the only switch to negative range for
2034 got_offset_size. If this assertion fails, then we've miscalculated
2035 range for got_offset_size entries in
2036 elf_m68k_finalize_got_offsets. */
2037 BFD_ASSERT (arg
->offset2
[got_offset_size
]
2038 != arg
->offset2
[-(int) got_offset_size
- 1]);
2041 arg
->offset1
[got_offset_size
] = arg
->offset1
[-(int) got_offset_size
- 1];
2042 arg
->offset2
[got_offset_size
] = arg
->offset2
[-(int) got_offset_size
- 1];
2044 /* Verify that now we have enough room for the entry. */
2045 BFD_ASSERT (arg
->offset1
[got_offset_size
] + entry_size
2046 <= arg
->offset2
[got_offset_size
]);
2049 /* Assign offset to entry. */
2050 entry
->u
.s2
.offset
= arg
->offset1
[got_offset_size
];
2051 arg
->offset1
[got_offset_size
] += entry_size
;
2053 if (entry
->key_
.bfd
== NULL
)
2054 /* Hook up this entry into the list of got_entries of H. */
2056 struct elf_m68k_link_hash_entry
*h
;
2058 h
= arg
->symndx2h
[entry
->key_
.symndx
];
2061 entry
->u
.s2
.next
= h
->glist
;
2065 /* This should be the entry for TLS_LDM relocation then. */
2067 BFD_ASSERT ((elf_m68k_reloc_got_type (entry
->key_
.type
)
2069 && entry
->key_
.symndx
== 0);
2071 ++arg
->n_ldm_entries
;
2075 /* This entry is for local symbol. */
2076 entry
->u
.s2
.next
= NULL
;
2081 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2082 should use negative offsets.
2083 Build list of GOT entries for global symbols along the way.
2084 SYMNDX2H is mapping from global symbol indices to actual
2086 Return offset at which next GOT should start. */
2089 elf_m68k_finalize_got_offsets (struct elf_m68k_got
*got
,
2090 bfd_boolean use_neg_got_offsets_p
,
2091 struct elf_m68k_link_hash_entry
**symndx2h
,
2092 bfd_vma
*final_offset
, bfd_vma
*n_ldm_entries
)
2094 struct elf_m68k_finalize_got_offsets_arg arg_
;
2095 bfd_vma offset1_
[2 * R_LAST
];
2096 bfd_vma offset2_
[2 * R_LAST
];
2098 bfd_vma start_offset
;
2100 BFD_ASSERT (got
->offset
!= (bfd_vma
) -1);
2102 /* We set entry offsets relative to the .got section (and not the
2103 start of a particular GOT), so that we can use them in
2104 finish_dynamic_symbol without needing to know the GOT which they come
2107 /* Put offset1 in the middle of offset1_, same for offset2. */
2108 arg_
.offset1
= offset1_
+ R_LAST
;
2109 arg_
.offset2
= offset2_
+ R_LAST
;
2111 start_offset
= got
->offset
;
2113 if (use_neg_got_offsets_p
)
2114 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2115 i
= -(int) R_32
- 1;
2117 /* Setup positives ranges for R_8, R_16 and R_32. */
2120 for (; i
<= (int) R_32
; ++i
)
2125 /* Set beginning of the range of offsets I. */
2126 arg_
.offset1
[i
] = start_offset
;
2128 /* Calculate number of slots that require I offsets. */
2129 j
= (i
>= 0) ? i
: -i
- 1;
2130 n
= (j
>= 1) ? got
->n_slots
[j
- 1] : 0;
2131 n
= got
->n_slots
[j
] - n
;
2133 if (use_neg_got_offsets_p
&& n
!= 0)
2136 /* We first fill the positive side of the range, so we might
2137 end up with one empty slot at that side when we can't fit
2138 whole 2-slot entry. Account for that at negative side of
2139 the interval with one additional entry. */
2142 /* When the number of slots is odd, make positive side of the
2143 range one entry bigger. */
2147 /* N is the number of slots that require I offsets.
2148 Calculate length of the range for I offsets. */
2151 /* Set end of the range. */
2152 arg_
.offset2
[i
] = start_offset
+ n
;
2154 start_offset
= arg_
.offset2
[i
];
2157 if (!use_neg_got_offsets_p
)
2158 /* Make sure that if we try to switch to negative offsets in
2159 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2161 for (i
= R_8
; i
<= R_32
; ++i
)
2162 arg_
.offset2
[-i
- 1] = arg_
.offset2
[i
];
2164 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2165 beginning of GOT depending on use_neg_got_offsets_p. */
2166 got
->offset
= arg_
.offset1
[R_8
];
2168 arg_
.symndx2h
= symndx2h
;
2169 arg_
.n_ldm_entries
= 0;
2171 /* Assign offsets. */
2172 htab_traverse (got
->entries
, elf_m68k_finalize_got_offsets_1
, &arg_
);
2174 /* Check offset ranges we have actually assigned. */
2175 for (i
= (int) R_8
; i
<= (int) R_32
; ++i
)
2176 BFD_ASSERT (arg_
.offset2
[i
] - arg_
.offset1
[i
] <= 4);
2178 *final_offset
= start_offset
;
2179 *n_ldm_entries
= arg_
.n_ldm_entries
;
2182 struct elf_m68k_partition_multi_got_arg
2184 /* The GOT we are adding entries to. Aka big got. */
2185 struct elf_m68k_got
*current_got
;
2187 /* Offset to assign the next CURRENT_GOT. */
2190 /* Context where memory should be allocated. */
2191 struct bfd_link_info
*info
;
2193 /* Total number of slots in the .got section.
2194 This is used to calculate size of the .got and .rela.got sections. */
2197 /* Difference in numbers of allocated slots in the .got section
2198 and necessary relocations in the .rela.got section.
2199 This is used to calculate size of the .rela.got section. */
2200 bfd_vma slots_relas_diff
;
2203 bfd_boolean error_p
;
2205 /* Mapping from global symndx to global symbols.
2206 This is used to build lists of got entries for global symbols. */
2207 struct elf_m68k_link_hash_entry
**symndx2h
;
2211 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg
*arg
)
2213 bfd_vma n_ldm_entries
;
2215 elf_m68k_finalize_got_offsets (arg
->current_got
,
2216 (elf_m68k_hash_table (arg
->info
)
2217 ->use_neg_got_offsets_p
),
2219 &arg
->offset
, &n_ldm_entries
);
2221 arg
->n_slots
+= arg
->current_got
->n_slots
[R_32
];
2223 if (!bfd_link_pic (arg
->info
))
2224 /* If we are generating a shared object, we need to
2225 output a R_68K_RELATIVE reloc so that the dynamic
2226 linker can adjust this GOT entry. Overwise we
2227 don't need space in .rela.got for local symbols. */
2228 arg
->slots_relas_diff
+= arg
->current_got
->local_n_slots
;
2230 /* @LDM relocations require a 2-slot GOT entry, but only
2231 one relocation. Account for that. */
2232 arg
->slots_relas_diff
+= n_ldm_entries
;
2234 BFD_ASSERT (arg
->slots_relas_diff
<= arg
->n_slots
);
2238 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2239 or start a new CURRENT_GOT. */
2242 elf_m68k_partition_multi_got_1 (void **_entry
, void *_arg
)
2244 struct elf_m68k_bfd2got_entry
*entry
;
2245 struct elf_m68k_partition_multi_got_arg
*arg
;
2246 struct elf_m68k_got
*got
;
2247 struct elf_m68k_got diff_
;
2248 struct elf_m68k_got
*diff
;
2250 entry
= (struct elf_m68k_bfd2got_entry
*) *_entry
;
2251 arg
= (struct elf_m68k_partition_multi_got_arg
*) _arg
;
2254 BFD_ASSERT (got
!= NULL
);
2255 BFD_ASSERT (got
->offset
== (bfd_vma
) -1);
2259 if (arg
->current_got
!= NULL
)
2260 /* Construct diff. */
2263 elf_m68k_init_got (diff
);
2265 if (!elf_m68k_can_merge_gots (arg
->current_got
, got
, arg
->info
, diff
))
2267 if (diff
->offset
== 0)
2268 /* Offset set to 0 in the diff_ indicates an error. */
2270 arg
->error_p
= TRUE
;
2274 if (elf_m68k_hash_table (arg
->info
)->allow_multigot_p
)
2276 elf_m68k_clear_got (diff
);
2277 /* Schedule to finish up current_got and start new one. */
2281 Merge GOTs no matter what. If big GOT overflows,
2282 we'll fail in relocate_section due to truncated relocations.
2284 ??? May be fail earlier? E.g., in can_merge_gots. */
2288 /* Diff of got against empty current_got is got itself. */
2290 /* Create empty current_got to put subsequent GOTs to. */
2291 arg
->current_got
= elf_m68k_create_empty_got (arg
->info
);
2292 if (arg
->current_got
== NULL
)
2294 arg
->error_p
= TRUE
;
2298 arg
->current_got
->offset
= arg
->offset
;
2305 if (!elf_m68k_merge_gots (arg
->current_got
, diff
, arg
->info
))
2307 arg
->error_p
= TRUE
;
2311 /* Now we can free GOT. */
2312 elf_m68k_clear_got (got
);
2314 entry
->got
= arg
->current_got
;
2318 /* Finish up current_got. */
2319 elf_m68k_partition_multi_got_2 (arg
);
2321 /* Schedule to start a new current_got. */
2322 arg
->current_got
= NULL
;
2325 if (!elf_m68k_partition_multi_got_1 (_entry
, _arg
))
2327 BFD_ASSERT (arg
->error_p
);
2334 elf_m68k_clear_got (diff
);
2336 return !arg
->error_p
;
2339 /* Helper function to build symndx2h mapping. */
2342 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry
*_h
,
2345 struct elf_m68k_link_hash_entry
*h
;
2347 h
= elf_m68k_hash_entry (_h
);
2349 if (h
->got_entry_key
!= 0)
2350 /* H has at least one entry in the GOT. */
2352 struct elf_m68k_partition_multi_got_arg
*arg
;
2354 arg
= (struct elf_m68k_partition_multi_got_arg
*) _arg
;
2356 BFD_ASSERT (arg
->symndx2h
[h
->got_entry_key
] == NULL
);
2357 arg
->symndx2h
[h
->got_entry_key
] = h
;
2363 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2364 lists of GOT entries for global symbols.
2365 Calculate sizes of .got and .rela.got sections. */
2368 elf_m68k_partition_multi_got (struct bfd_link_info
*info
)
2370 struct elf_m68k_multi_got
*multi_got
;
2371 struct elf_m68k_partition_multi_got_arg arg_
;
2373 multi_got
= elf_m68k_multi_got (info
);
2375 arg_
.current_got
= NULL
;
2379 arg_
.slots_relas_diff
= 0;
2380 arg_
.error_p
= FALSE
;
2382 if (multi_got
->bfd2got
!= NULL
)
2384 /* Initialize symndx2h mapping. */
2386 arg_
.symndx2h
= bfd_zmalloc (multi_got
->global_symndx
2387 * sizeof (*arg_
.symndx2h
));
2388 if (arg_
.symndx2h
== NULL
)
2391 elf_link_hash_traverse (elf_hash_table (info
),
2392 elf_m68k_init_symndx2h_1
, &arg_
);
2396 htab_traverse (multi_got
->bfd2got
, elf_m68k_partition_multi_got_1
,
2400 free (arg_
.symndx2h
);
2401 arg_
.symndx2h
= NULL
;
2406 /* Finish up last current_got. */
2407 elf_m68k_partition_multi_got_2 (&arg_
);
2409 free (arg_
.symndx2h
);
2412 if (elf_hash_table (info
)->dynobj
!= NULL
)
2413 /* Set sizes of .got and .rela.got sections. */
2417 s
= elf_hash_table (info
)->sgot
;
2419 s
->size
= arg_
.offset
;
2421 BFD_ASSERT (arg_
.offset
== 0);
2423 BFD_ASSERT (arg_
.slots_relas_diff
<= arg_
.n_slots
);
2424 arg_
.n_slots
-= arg_
.slots_relas_diff
;
2426 s
= elf_hash_table (info
)->srelgot
;
2428 s
->size
= arg_
.n_slots
* sizeof (Elf32_External_Rela
);
2430 BFD_ASSERT (arg_
.n_slots
== 0);
2433 BFD_ASSERT (multi_got
->bfd2got
== NULL
);
2438 /* Copy any information related to dynamic linking from a pre-existing
2439 symbol to a newly created symbol. Also called to copy flags and
2440 other back-end info to a weakdef, in which case the symbol is not
2441 newly created and plt/got refcounts and dynamic indices should not
2445 elf_m68k_copy_indirect_symbol (struct bfd_link_info
*info
,
2446 struct elf_link_hash_entry
*_dir
,
2447 struct elf_link_hash_entry
*_ind
)
2449 struct elf_m68k_link_hash_entry
*dir
;
2450 struct elf_m68k_link_hash_entry
*ind
;
2452 _bfd_elf_link_hash_copy_indirect (info
, _dir
, _ind
);
2454 if (_ind
->root
.type
!= bfd_link_hash_indirect
)
2457 dir
= elf_m68k_hash_entry (_dir
);
2458 ind
= elf_m68k_hash_entry (_ind
);
2460 /* Any absolute non-dynamic relocations against an indirect or weak
2461 definition will be against the target symbol. */
2462 _dir
->non_got_ref
|= _ind
->non_got_ref
;
2464 /* We might have a direct symbol already having entries in the GOTs.
2465 Update its key only in case indirect symbol has GOT entries and
2466 assert that both indirect and direct symbols don't have GOT entries
2467 at the same time. */
2468 if (ind
->got_entry_key
!= 0)
2470 BFD_ASSERT (dir
->got_entry_key
== 0);
2471 /* Assert that GOTs aren't partioned yet. */
2472 BFD_ASSERT (ind
->glist
== NULL
);
2474 dir
->got_entry_key
= ind
->got_entry_key
;
2475 ind
->got_entry_key
= 0;
2479 /* Look through the relocs for a section during the first phase, and
2480 allocate space in the global offset table or procedure linkage
2484 elf_m68k_check_relocs (bfd
*abfd
,
2485 struct bfd_link_info
*info
,
2487 const Elf_Internal_Rela
*relocs
)
2490 Elf_Internal_Shdr
*symtab_hdr
;
2491 struct elf_link_hash_entry
**sym_hashes
;
2492 const Elf_Internal_Rela
*rel
;
2493 const Elf_Internal_Rela
*rel_end
;
2495 struct elf_m68k_got
*got
;
2497 if (bfd_link_relocatable (info
))
2500 dynobj
= elf_hash_table (info
)->dynobj
;
2501 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2502 sym_hashes
= elf_sym_hashes (abfd
);
2508 rel_end
= relocs
+ sec
->reloc_count
;
2509 for (rel
= relocs
; rel
< rel_end
; rel
++)
2511 unsigned long r_symndx
;
2512 struct elf_link_hash_entry
*h
;
2514 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2516 if (r_symndx
< symtab_hdr
->sh_info
)
2520 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
2521 while (h
->root
.type
== bfd_link_hash_indirect
2522 || h
->root
.type
== bfd_link_hash_warning
)
2523 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2526 switch (ELF32_R_TYPE (rel
->r_info
))
2532 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
2536 /* Relative GOT relocations. */
2542 /* TLS relocations. */
2544 case R_68K_TLS_GD16
:
2545 case R_68K_TLS_GD32
:
2546 case R_68K_TLS_LDM8
:
2547 case R_68K_TLS_LDM16
:
2548 case R_68K_TLS_LDM32
:
2550 case R_68K_TLS_IE16
:
2551 case R_68K_TLS_IE32
:
2553 case R_68K_TLS_TPREL32
:
2554 case R_68K_TLS_DTPREL32
:
2556 if (ELF32_R_TYPE (rel
->r_info
) == R_68K_TLS_TPREL32
2557 && bfd_link_pic (info
))
2558 /* Do the special chorus for libraries with static TLS. */
2559 info
->flags
|= DF_STATIC_TLS
;
2561 /* This symbol requires a global offset table entry. */
2565 /* Create the .got section. */
2566 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
2567 if (!_bfd_elf_create_got_section (dynobj
, info
))
2573 struct elf_m68k_bfd2got_entry
*bfd2got_entry
;
2576 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info
),
2577 abfd
, FIND_OR_CREATE
, info
);
2578 if (bfd2got_entry
== NULL
)
2581 got
= bfd2got_entry
->got
;
2582 BFD_ASSERT (got
!= NULL
);
2586 struct elf_m68k_got_entry
*got_entry
;
2588 /* Add entry to got. */
2589 got_entry
= elf_m68k_add_entry_to_got (got
, h
, abfd
,
2590 ELF32_R_TYPE (rel
->r_info
),
2592 if (got_entry
== NULL
)
2595 if (got_entry
->u
.s1
.refcount
== 1)
2597 /* Make sure this symbol is output as a dynamic symbol. */
2600 && !h
->forced_local
)
2602 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
2613 /* This symbol requires a procedure linkage table entry. We
2614 actually build the entry in adjust_dynamic_symbol,
2615 because this might be a case of linking PIC code which is
2616 never referenced by a dynamic object, in which case we
2617 don't need to generate a procedure linkage table entry
2620 /* If this is a local symbol, we resolve it directly without
2621 creating a procedure linkage table entry. */
2632 /* This symbol requires a procedure linkage table entry. */
2636 /* It does not make sense to have this relocation for a
2637 local symbol. FIXME: does it? How to handle it if
2638 it does make sense? */
2639 bfd_set_error (bfd_error_bad_value
);
2643 /* Make sure this symbol is output as a dynamic symbol. */
2644 if (h
->dynindx
== -1
2645 && !h
->forced_local
)
2647 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
2658 /* If we are creating a shared library and this is not a local
2659 symbol, we need to copy the reloc into the shared library.
2660 However when linking with -Bsymbolic and this is a global
2661 symbol which is defined in an object we are including in the
2662 link (i.e., DEF_REGULAR is set), then we can resolve the
2663 reloc directly. At this point we have not seen all the input
2664 files, so it is possible that DEF_REGULAR is not set now but
2665 will be set later (it is never cleared). We account for that
2666 possibility below by storing information in the
2667 pcrel_relocs_copied field of the hash table entry. */
2668 if (!(bfd_link_pic (info
)
2669 && (sec
->flags
& SEC_ALLOC
) != 0
2671 && (!SYMBOLIC_BIND (info
, h
)
2672 || h
->root
.type
== bfd_link_hash_defweak
2673 || !h
->def_regular
)))
2677 /* Make sure a plt entry is created for this symbol if
2678 it turns out to be a function defined by a dynamic
2688 /* We don't need to handle relocs into sections not going into
2689 the "real" output. */
2690 if ((sec
->flags
& SEC_ALLOC
) == 0)
2695 /* Make sure a plt entry is created for this symbol if it
2696 turns out to be a function defined by a dynamic object. */
2699 if (bfd_link_executable (info
))
2700 /* This symbol needs a non-GOT reference. */
2704 /* If we are creating a shared library, we need to copy the
2705 reloc into the shared library. */
2706 if (bfd_link_pic (info
)
2708 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
)))
2710 /* When creating a shared object, we must copy these
2711 reloc types into the output file. We create a reloc
2712 section in dynobj and make room for this reloc. */
2715 sreloc
= _bfd_elf_make_dynamic_reloc_section
2716 (sec
, dynobj
, 2, abfd
, /*rela?*/ TRUE
);
2722 if (sec
->flags
& SEC_READONLY
2723 /* Don't set DF_TEXTREL yet for PC relative
2724 relocations, they might be discarded later. */
2725 && !(ELF32_R_TYPE (rel
->r_info
) == R_68K_PC8
2726 || ELF32_R_TYPE (rel
->r_info
) == R_68K_PC16
2727 || ELF32_R_TYPE (rel
->r_info
) == R_68K_PC32
))
2728 info
->flags
|= DF_TEXTREL
;
2730 sreloc
->size
+= sizeof (Elf32_External_Rela
);
2732 /* We count the number of PC relative relocations we have
2733 entered for this symbol, so that we can discard them
2734 again if, in the -Bsymbolic case, the symbol is later
2735 defined by a regular object, or, in the normal shared
2736 case, the symbol is forced to be local. Note that this
2737 function is only called if we are using an m68kelf linker
2738 hash table, which means that h is really a pointer to an
2739 elf_m68k_link_hash_entry. */
2740 if (ELF32_R_TYPE (rel
->r_info
) == R_68K_PC8
2741 || ELF32_R_TYPE (rel
->r_info
) == R_68K_PC16
2742 || ELF32_R_TYPE (rel
->r_info
) == R_68K_PC32
)
2744 struct elf_m68k_pcrel_relocs_copied
*p
;
2745 struct elf_m68k_pcrel_relocs_copied
**head
;
2749 struct elf_m68k_link_hash_entry
*eh
2750 = elf_m68k_hash_entry (h
);
2751 head
= &eh
->pcrel_relocs_copied
;
2757 Elf_Internal_Sym
*isym
;
2759 isym
= bfd_sym_from_r_symndx (&elf_m68k_hash_table (info
)->sym_cache
,
2764 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
2768 vpp
= &elf_section_data (s
)->local_dynrel
;
2769 head
= (struct elf_m68k_pcrel_relocs_copied
**) vpp
;
2772 for (p
= *head
; p
!= NULL
; p
= p
->next
)
2773 if (p
->section
== sreloc
)
2778 p
= ((struct elf_m68k_pcrel_relocs_copied
*)
2779 bfd_alloc (dynobj
, (bfd_size_type
) sizeof *p
));
2784 p
->section
= sreloc
;
2794 /* This relocation describes the C++ object vtable hierarchy.
2795 Reconstruct it for later use during GC. */
2796 case R_68K_GNU_VTINHERIT
:
2797 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
2801 /* This relocation describes which C++ vtable entries are actually
2802 used. Record for later use during GC. */
2803 case R_68K_GNU_VTENTRY
:
2804 BFD_ASSERT (h
!= NULL
);
2806 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
2818 /* Return the section that should be marked against GC for a given
2822 elf_m68k_gc_mark_hook (asection
*sec
,
2823 struct bfd_link_info
*info
,
2824 Elf_Internal_Rela
*rel
,
2825 struct elf_link_hash_entry
*h
,
2826 Elf_Internal_Sym
*sym
)
2829 switch (ELF32_R_TYPE (rel
->r_info
))
2831 case R_68K_GNU_VTINHERIT
:
2832 case R_68K_GNU_VTENTRY
:
2836 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
2839 /* Return the type of PLT associated with OUTPUT_BFD. */
2841 static const struct elf_m68k_plt_info
*
2842 elf_m68k_get_plt_info (bfd
*output_bfd
)
2844 unsigned int features
;
2846 features
= bfd_m68k_mach_to_features (bfd_get_mach (output_bfd
));
2847 if (features
& cpu32
)
2848 return &elf_cpu32_plt_info
;
2849 if (features
& mcfisa_b
)
2850 return &elf_isab_plt_info
;
2851 if (features
& mcfisa_c
)
2852 return &elf_isac_plt_info
;
2853 return &elf_m68k_plt_info
;
2856 /* This function is called after all the input files have been read,
2857 and the input sections have been assigned to output sections.
2858 It's a convenient place to determine the PLT style. */
2861 elf_m68k_always_size_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
2863 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2865 if (!elf_m68k_partition_multi_got (info
))
2868 elf_m68k_hash_table (info
)->plt_info
= elf_m68k_get_plt_info (output_bfd
);
2872 /* Adjust a symbol defined by a dynamic object and referenced by a
2873 regular object. The current definition is in some section of the
2874 dynamic object, but we're not including those sections. We have to
2875 change the definition to something the rest of the link can
2879 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info
*info
,
2880 struct elf_link_hash_entry
*h
)
2882 struct elf_m68k_link_hash_table
*htab
;
2886 htab
= elf_m68k_hash_table (info
);
2887 dynobj
= htab
->root
.dynobj
;
2889 /* Make sure we know what is going on here. */
2890 BFD_ASSERT (dynobj
!= NULL
2895 && !h
->def_regular
)));
2897 /* If this is a function, put it in the procedure linkage table. We
2898 will fill in the contents of the procedure linkage table later,
2899 when we know the address of the .got section. */
2900 if (h
->type
== STT_FUNC
2903 if ((h
->plt
.refcount
<= 0
2904 || SYMBOL_CALLS_LOCAL (info
, h
)
2905 || ((ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2906 || UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
2907 && h
->root
.type
== bfd_link_hash_undefweak
))
2908 /* We must always create the plt entry if it was referenced
2909 by a PLTxxO relocation. In this case we already recorded
2910 it as a dynamic symbol. */
2911 && h
->dynindx
== -1)
2913 /* This case can occur if we saw a PLTxx reloc in an input
2914 file, but the symbol was never referred to by a dynamic
2915 object, or if all references were garbage collected. In
2916 such a case, we don't actually need to build a procedure
2917 linkage table, and we can just do a PCxx reloc instead. */
2918 h
->plt
.offset
= (bfd_vma
) -1;
2923 /* Make sure this symbol is output as a dynamic symbol. */
2924 if (h
->dynindx
== -1
2925 && !h
->forced_local
)
2927 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
2931 s
= htab
->root
.splt
;
2932 BFD_ASSERT (s
!= NULL
);
2934 /* If this is the first .plt entry, make room for the special
2937 s
->size
= htab
->plt_info
->size
;
2939 /* If this symbol is not defined in a regular file, and we are
2940 not generating a shared library, then set the symbol to this
2941 location in the .plt. This is required to make function
2942 pointers compare as equal between the normal executable and
2943 the shared library. */
2944 if (!bfd_link_pic (info
)
2947 h
->root
.u
.def
.section
= s
;
2948 h
->root
.u
.def
.value
= s
->size
;
2951 h
->plt
.offset
= s
->size
;
2953 /* Make room for this entry. */
2954 s
->size
+= htab
->plt_info
->size
;
2956 /* We also need to make an entry in the .got.plt section, which
2957 will be placed in the .got section by the linker script. */
2958 s
= htab
->root
.sgotplt
;
2959 BFD_ASSERT (s
!= NULL
);
2962 /* We also need to make an entry in the .rela.plt section. */
2963 s
= htab
->root
.srelplt
;
2964 BFD_ASSERT (s
!= NULL
);
2965 s
->size
+= sizeof (Elf32_External_Rela
);
2970 /* Reinitialize the plt offset now that it is not used as a reference
2972 h
->plt
.offset
= (bfd_vma
) -1;
2974 /* If this is a weak symbol, and there is a real definition, the
2975 processor independent code will have arranged for us to see the
2976 real definition first, and we can just use the same value. */
2977 if (h
->is_weakalias
)
2979 struct elf_link_hash_entry
*def
= weakdef (h
);
2980 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
2981 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
2982 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
2986 /* This is a reference to a symbol defined by a dynamic object which
2987 is not a function. */
2989 /* If we are creating a shared library, we must presume that the
2990 only references to the symbol are via the global offset table.
2991 For such cases we need not do anything here; the relocations will
2992 be handled correctly by relocate_section. */
2993 if (bfd_link_pic (info
))
2996 /* If there are no references to this symbol that do not use the
2997 GOT, we don't need to generate a copy reloc. */
2998 if (!h
->non_got_ref
)
3001 /* We must allocate the symbol in our .dynbss section, which will
3002 become part of the .bss section of the executable. There will be
3003 an entry for this symbol in the .dynsym section. The dynamic
3004 object will contain position independent code, so all references
3005 from the dynamic object to this symbol will go through the global
3006 offset table. The dynamic linker will use the .dynsym entry to
3007 determine the address it must put in the global offset table, so
3008 both the dynamic object and the regular object will refer to the
3009 same memory location for the variable. */
3011 s
= bfd_get_linker_section (dynobj
, ".dynbss");
3012 BFD_ASSERT (s
!= NULL
);
3014 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3015 copy the initial value out of the dynamic object and into the
3016 runtime process image. We need to remember the offset into the
3017 .rela.bss section we are going to use. */
3018 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0 && h
->size
!= 0)
3022 srel
= bfd_get_linker_section (dynobj
, ".rela.bss");
3023 BFD_ASSERT (srel
!= NULL
);
3024 srel
->size
+= sizeof (Elf32_External_Rela
);
3028 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
3031 /* Set the sizes of the dynamic sections. */
3034 elf_m68k_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
3035 struct bfd_link_info
*info
)
3042 dynobj
= elf_hash_table (info
)->dynobj
;
3043 BFD_ASSERT (dynobj
!= NULL
);
3045 if (elf_hash_table (info
)->dynamic_sections_created
)
3047 /* Set the contents of the .interp section to the interpreter. */
3048 if (bfd_link_executable (info
) && !info
->nointerp
)
3050 s
= bfd_get_linker_section (dynobj
, ".interp");
3051 BFD_ASSERT (s
!= NULL
);
3052 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
3053 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
3058 /* We may have created entries in the .rela.got section.
3059 However, if we are not creating the dynamic sections, we will
3060 not actually use these entries. Reset the size of .rela.got,
3061 which will cause it to get stripped from the output file
3063 s
= elf_hash_table (info
)->srelgot
;
3068 /* If this is a -Bsymbolic shared link, then we need to discard all
3069 PC relative relocs against symbols defined in a regular object.
3070 For the normal shared case we discard the PC relative relocs
3071 against symbols that have become local due to visibility changes.
3072 We allocated space for them in the check_relocs routine, but we
3073 will not fill them in in the relocate_section routine. */
3074 if (bfd_link_pic (info
))
3075 elf_link_hash_traverse (elf_hash_table (info
),
3076 elf_m68k_discard_copies
,
3079 /* The check_relocs and adjust_dynamic_symbol entry points have
3080 determined the sizes of the various dynamic sections. Allocate
3084 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
3088 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
3091 /* It's OK to base decisions on the section name, because none
3092 of the dynobj section names depend upon the input files. */
3093 name
= bfd_get_section_name (dynobj
, s
);
3095 if (strcmp (name
, ".plt") == 0)
3097 /* Remember whether there is a PLT. */
3100 else if (CONST_STRNEQ (name
, ".rela"))
3106 /* We use the reloc_count field as a counter if we need
3107 to copy relocs into the output file. */
3111 else if (! CONST_STRNEQ (name
, ".got")
3112 && strcmp (name
, ".dynbss") != 0)
3114 /* It's not one of our sections, so don't allocate space. */
3120 /* If we don't need this section, strip it from the
3121 output file. This is mostly to handle .rela.bss and
3122 .rela.plt. We must create both sections in
3123 create_dynamic_sections, because they must be created
3124 before the linker maps input sections to output
3125 sections. The linker does that before
3126 adjust_dynamic_symbol is called, and it is that
3127 function which decides whether anything needs to go
3128 into these sections. */
3129 s
->flags
|= SEC_EXCLUDE
;
3133 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
3136 /* Allocate memory for the section contents. */
3137 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3138 Unused entries should be reclaimed before the section's contents
3139 are written out, but at the moment this does not happen. Thus in
3140 order to prevent writing out garbage, we initialise the section's
3141 contents to zero. */
3142 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
3143 if (s
->contents
== NULL
)
3147 if (elf_hash_table (info
)->dynamic_sections_created
)
3149 /* Add some entries to the .dynamic section. We fill in the
3150 values later, in elf_m68k_finish_dynamic_sections, but we
3151 must add the entries now so that we get the correct size for
3152 the .dynamic section. The DT_DEBUG entry is filled in by the
3153 dynamic linker and used by the debugger. */
3154 #define add_dynamic_entry(TAG, VAL) \
3155 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3157 if (bfd_link_executable (info
))
3159 if (!add_dynamic_entry (DT_DEBUG
, 0))
3165 if (!add_dynamic_entry (DT_PLTGOT
, 0)
3166 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
3167 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
3168 || !add_dynamic_entry (DT_JMPREL
, 0))
3174 if (!add_dynamic_entry (DT_RELA
, 0)
3175 || !add_dynamic_entry (DT_RELASZ
, 0)
3176 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
3180 if ((info
->flags
& DF_TEXTREL
) != 0)
3182 if (!add_dynamic_entry (DT_TEXTREL
, 0))
3186 #undef add_dynamic_entry
3191 /* This function is called via elf_link_hash_traverse if we are
3192 creating a shared object. In the -Bsymbolic case it discards the
3193 space allocated to copy PC relative relocs against symbols which
3194 are defined in regular objects. For the normal shared case, it
3195 discards space for pc-relative relocs that have become local due to
3196 symbol visibility changes. We allocated space for them in the
3197 check_relocs routine, but we won't fill them in in the
3198 relocate_section routine.
3200 We also check whether any of the remaining relocations apply
3201 against a readonly section, and set the DF_TEXTREL flag in this
3205 elf_m68k_discard_copies (struct elf_link_hash_entry
*h
,
3208 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
3209 struct elf_m68k_pcrel_relocs_copied
*s
;
3211 if (!SYMBOL_CALLS_LOCAL (info
, h
))
3213 if ((info
->flags
& DF_TEXTREL
) == 0)
3215 /* Look for relocations against read-only sections. */
3216 for (s
= elf_m68k_hash_entry (h
)->pcrel_relocs_copied
;
3219 if ((s
->section
->flags
& SEC_READONLY
) != 0)
3221 info
->flags
|= DF_TEXTREL
;
3226 /* Make sure undefined weak symbols are output as a dynamic symbol
3229 && h
->root
.type
== bfd_link_hash_undefweak
3230 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3232 && !h
->forced_local
)
3234 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
3241 for (s
= elf_m68k_hash_entry (h
)->pcrel_relocs_copied
;
3244 s
->section
->size
-= s
->count
* sizeof (Elf32_External_Rela
);
3250 /* Install relocation RELA. */
3253 elf_m68k_install_rela (bfd
*output_bfd
,
3255 Elf_Internal_Rela
*rela
)
3259 loc
= srela
->contents
;
3260 loc
+= srela
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3261 bfd_elf32_swap_reloca_out (output_bfd
, rela
, loc
);
3264 /* Find the base offsets for thread-local storage in this object,
3265 for GD/LD and IE/LE respectively. */
3267 #define DTP_OFFSET 0x8000
3268 #define TP_OFFSET 0x7000
3271 dtpoff_base (struct bfd_link_info
*info
)
3273 /* If tls_sec is NULL, we should have signalled an error already. */
3274 if (elf_hash_table (info
)->tls_sec
== NULL
)
3276 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
3280 tpoff_base (struct bfd_link_info
*info
)
3282 /* If tls_sec is NULL, we should have signalled an error already. */
3283 if (elf_hash_table (info
)->tls_sec
== NULL
)
3285 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
3288 /* Output necessary relocation to handle a symbol during static link.
3289 This function is called from elf_m68k_relocate_section. */
3292 elf_m68k_init_got_entry_static (struct bfd_link_info
*info
,
3294 enum elf_m68k_reloc_type r_type
,
3296 bfd_vma got_entry_offset
,
3299 switch (elf_m68k_reloc_got_type (r_type
))
3302 bfd_put_32 (output_bfd
, relocation
, sgot
->contents
+ got_entry_offset
);
3305 case R_68K_TLS_GD32
:
3306 /* We know the offset within the module,
3307 put it into the second GOT slot. */
3308 bfd_put_32 (output_bfd
, relocation
- dtpoff_base (info
),
3309 sgot
->contents
+ got_entry_offset
+ 4);
3312 case R_68K_TLS_LDM32
:
3313 /* Mark it as belonging to module 1, the executable. */
3314 bfd_put_32 (output_bfd
, 1, sgot
->contents
+ got_entry_offset
);
3317 case R_68K_TLS_IE32
:
3318 bfd_put_32 (output_bfd
, relocation
- tpoff_base (info
),
3319 sgot
->contents
+ got_entry_offset
);
3327 /* Output necessary relocation to handle a local symbol
3328 during dynamic link.
3329 This function is called either from elf_m68k_relocate_section
3330 or from elf_m68k_finish_dynamic_symbol. */
3333 elf_m68k_init_got_entry_local_shared (struct bfd_link_info
*info
,
3335 enum elf_m68k_reloc_type r_type
,
3337 bfd_vma got_entry_offset
,
3341 Elf_Internal_Rela outrel
;
3343 switch (elf_m68k_reloc_got_type (r_type
))
3346 /* Emit RELATIVE relocation to initialize GOT slot
3348 outrel
.r_info
= ELF32_R_INFO (0, R_68K_RELATIVE
);
3349 outrel
.r_addend
= relocation
;
3352 case R_68K_TLS_GD32
:
3353 /* We know the offset within the module,
3354 put it into the second GOT slot. */
3355 bfd_put_32 (output_bfd
, relocation
- dtpoff_base (info
),
3356 sgot
->contents
+ got_entry_offset
+ 4);
3359 case R_68K_TLS_LDM32
:
3360 /* We don't know the module number,
3361 create a relocation for it. */
3362 outrel
.r_info
= ELF32_R_INFO (0, R_68K_TLS_DTPMOD32
);
3363 outrel
.r_addend
= 0;
3366 case R_68K_TLS_IE32
:
3367 /* Emit TPREL relocation to initialize GOT slot
3369 outrel
.r_info
= ELF32_R_INFO (0, R_68K_TLS_TPREL32
);
3370 outrel
.r_addend
= relocation
- elf_hash_table (info
)->tls_sec
->vma
;
3377 /* Offset of the GOT entry. */
3378 outrel
.r_offset
= (sgot
->output_section
->vma
3379 + sgot
->output_offset
3380 + got_entry_offset
);
3382 /* Install one of the above relocations. */
3383 elf_m68k_install_rela (output_bfd
, srela
, &outrel
);
3385 bfd_put_32 (output_bfd
, outrel
.r_addend
, sgot
->contents
+ got_entry_offset
);
3388 /* Relocate an M68K ELF section. */
3391 elf_m68k_relocate_section (bfd
*output_bfd
,
3392 struct bfd_link_info
*info
,
3394 asection
*input_section
,
3396 Elf_Internal_Rela
*relocs
,
3397 Elf_Internal_Sym
*local_syms
,
3398 asection
**local_sections
)
3400 Elf_Internal_Shdr
*symtab_hdr
;
3401 struct elf_link_hash_entry
**sym_hashes
;
3406 struct elf_m68k_got
*got
;
3407 Elf_Internal_Rela
*rel
;
3408 Elf_Internal_Rela
*relend
;
3410 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3411 sym_hashes
= elf_sym_hashes (input_bfd
);
3421 relend
= relocs
+ input_section
->reloc_count
;
3422 for (; rel
< relend
; rel
++)
3425 reloc_howto_type
*howto
;
3426 unsigned long r_symndx
;
3427 struct elf_link_hash_entry
*h
;
3428 Elf_Internal_Sym
*sym
;
3431 bfd_boolean unresolved_reloc
;
3432 bfd_reloc_status_type r
;
3433 bfd_boolean resolved_to_zero
;
3435 r_type
= ELF32_R_TYPE (rel
->r_info
);
3436 if (r_type
< 0 || r_type
>= (int) R_68K_max
)
3438 bfd_set_error (bfd_error_bad_value
);
3441 howto
= howto_table
+ r_type
;
3443 r_symndx
= ELF32_R_SYM (rel
->r_info
);
3448 unresolved_reloc
= FALSE
;
3450 if (r_symndx
< symtab_hdr
->sh_info
)
3452 sym
= local_syms
+ r_symndx
;
3453 sec
= local_sections
[r_symndx
];
3454 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
3458 bfd_boolean warned
, ignored
;
3460 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
3461 r_symndx
, symtab_hdr
, sym_hashes
,
3463 unresolved_reloc
, warned
, ignored
);
3466 if (sec
!= NULL
&& discarded_section (sec
))
3467 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
3468 rel
, 1, relend
, howto
, 0, contents
);
3470 if (bfd_link_relocatable (info
))
3473 resolved_to_zero
= (h
!= NULL
3474 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
));
3481 /* Relocation is to the address of the entry for this symbol
3482 in the global offset table. */
3484 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
3486 if (elf_m68k_hash_table (info
)->local_gp_p
)
3488 bfd_vma sgot_output_offset
;
3491 sgot
= elf_hash_table (info
)->sgot
;
3494 sgot_output_offset
= sgot
->output_offset
;
3496 /* In this case we have a reference to
3497 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3499 ??? Issue a warning? */
3500 sgot_output_offset
= 0;
3504 struct elf_m68k_bfd2got_entry
*bfd2got_entry
;
3507 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info
),
3508 input_bfd
, SEARCH
, NULL
);
3510 if (bfd2got_entry
!= NULL
)
3512 got
= bfd2got_entry
->got
;
3513 BFD_ASSERT (got
!= NULL
);
3515 got_offset
= got
->offset
;
3518 /* In this case we have a reference to
3519 _GLOBAL_OFFSET_TABLE_, but no other references
3520 accessing any GOT entries.
3521 ??? Issue a warning? */
3525 got_offset
= got
->offset
;
3527 /* Adjust GOT pointer to point to the GOT
3528 assigned to input_bfd. */
3529 rel
->r_addend
+= sgot_output_offset
+ got_offset
;
3532 BFD_ASSERT (got
== NULL
|| got
->offset
== 0);
3541 case R_68K_TLS_LDM32
:
3542 case R_68K_TLS_LDM16
:
3543 case R_68K_TLS_LDM8
:
3546 case R_68K_TLS_GD16
:
3547 case R_68K_TLS_GD32
:
3550 case R_68K_TLS_IE16
:
3551 case R_68K_TLS_IE32
:
3553 /* Relocation is the offset of the entry for this symbol in
3554 the global offset table. */
3557 struct elf_m68k_got_entry_key key_
;
3561 sgot
= elf_hash_table (info
)->sgot
;
3562 BFD_ASSERT (sgot
!= NULL
);
3566 got
= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info
),
3567 input_bfd
, MUST_FIND
,
3569 BFD_ASSERT (got
!= NULL
);
3572 /* Get GOT offset for this symbol. */
3573 elf_m68k_init_got_entry_key (&key_
, h
, input_bfd
, r_symndx
,
3575 off_ptr
= &elf_m68k_get_got_entry (got
, &key_
, MUST_FIND
,
3579 /* The offset must always be a multiple of 4. We use
3580 the least significant bit to record whether we have
3581 already generated the necessary reloc. */
3587 /* @TLSLDM relocations are bounded to the module, in
3588 which the symbol is defined -- not to the symbol
3590 && elf_m68k_reloc_got_type (r_type
) != R_68K_TLS_LDM32
)
3594 dyn
= elf_hash_table (info
)->dynamic_sections_created
;
3595 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
,
3596 bfd_link_pic (info
),
3598 || (bfd_link_pic (info
)
3599 && SYMBOL_REFERENCES_LOCAL (info
, h
))
3600 || ((ELF_ST_VISIBILITY (h
->other
)
3601 || resolved_to_zero
)
3602 && h
->root
.type
== bfd_link_hash_undefweak
))
3604 /* This is actually a static link, or it is a
3605 -Bsymbolic link and the symbol is defined
3606 locally, or the symbol was forced to be local
3607 because of a version file. We must initialize
3608 this entry in the global offset table. Since
3609 the offset must always be a multiple of 4, we
3610 use the least significant bit to record whether
3611 we have initialized it already.
3613 When doing a dynamic link, we create a .rela.got
3614 relocation entry to initialize the value. This
3615 is done in the finish_dynamic_symbol routine. */
3617 elf_m68k_init_got_entry_static (info
,
3627 unresolved_reloc
= FALSE
;
3629 else if (bfd_link_pic (info
)) /* && h == NULL */
3630 /* Process local symbol during dynamic link. */
3632 srela
= elf_hash_table (info
)->srelgot
;
3633 BFD_ASSERT (srela
!= NULL
);
3635 elf_m68k_init_got_entry_local_shared (info
,
3645 else /* h == NULL && !bfd_link_pic (info) */
3647 elf_m68k_init_got_entry_static (info
,
3658 /* We don't use elf_m68k_reloc_got_type in the condition below
3659 because this is the only place where difference between
3660 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3661 if (r_type
== R_68K_GOT32O
3662 || r_type
== R_68K_GOT16O
3663 || r_type
== R_68K_GOT8O
3664 || elf_m68k_reloc_got_type (r_type
) == R_68K_TLS_GD32
3665 || elf_m68k_reloc_got_type (r_type
) == R_68K_TLS_LDM32
3666 || elf_m68k_reloc_got_type (r_type
) == R_68K_TLS_IE32
)
3668 /* GOT pointer is adjusted to point to the start/middle
3669 of local GOT. Adjust the offset accordingly. */
3670 BFD_ASSERT (elf_m68k_hash_table (info
)->use_neg_got_offsets_p
3671 || off
>= got
->offset
);
3673 if (elf_m68k_hash_table (info
)->local_gp_p
)
3674 relocation
= off
- got
->offset
;
3677 BFD_ASSERT (got
->offset
== 0);
3678 relocation
= sgot
->output_offset
+ off
;
3681 /* This relocation does not use the addend. */
3685 relocation
= (sgot
->output_section
->vma
+ sgot
->output_offset
3690 case R_68K_TLS_LDO32
:
3691 case R_68K_TLS_LDO16
:
3692 case R_68K_TLS_LDO8
:
3693 relocation
-= dtpoff_base (info
);
3696 case R_68K_TLS_LE32
:
3697 case R_68K_TLS_LE16
:
3699 if (bfd_link_dll (info
))
3702 /* xgettext:c-format */
3703 (_("%pB(%pA+%#" PRIx64
"): "
3704 "%s relocation not permitted in shared object"),
3705 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
3711 relocation
-= tpoff_base (info
);
3718 /* Relocation is to the entry for this symbol in the
3719 procedure linkage table. */
3721 /* Resolve a PLTxx reloc against a local symbol directly,
3722 without using the procedure linkage table. */
3726 if (h
->plt
.offset
== (bfd_vma
) -1
3727 || !elf_hash_table (info
)->dynamic_sections_created
)
3729 /* We didn't make a PLT entry for this symbol. This
3730 happens when statically linking PIC code, or when
3731 using -Bsymbolic. */
3735 splt
= elf_hash_table (info
)->splt
;
3736 BFD_ASSERT (splt
!= NULL
);
3738 relocation
= (splt
->output_section
->vma
3739 + splt
->output_offset
3741 unresolved_reloc
= FALSE
;
3747 /* Relocation is the offset of the entry for this symbol in
3748 the procedure linkage table. */
3749 BFD_ASSERT (h
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1);
3751 splt
= elf_hash_table (info
)->splt
;
3752 BFD_ASSERT (splt
!= NULL
);
3754 relocation
= h
->plt
.offset
;
3755 unresolved_reloc
= FALSE
;
3757 /* This relocation does not use the addend. */
3768 if (bfd_link_pic (info
)
3769 && r_symndx
!= STN_UNDEF
3770 && (input_section
->flags
& SEC_ALLOC
) != 0
3772 || (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3773 && !resolved_to_zero
)
3774 || h
->root
.type
!= bfd_link_hash_undefweak
)
3775 && ((r_type
!= R_68K_PC8
3776 && r_type
!= R_68K_PC16
3777 && r_type
!= R_68K_PC32
)
3778 || !SYMBOL_CALLS_LOCAL (info
, h
)))
3780 Elf_Internal_Rela outrel
;
3782 bfd_boolean skip
, relocate
;
3784 /* When generating a shared object, these relocations
3785 are copied into the output file to be resolved at run
3792 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3794 if (outrel
.r_offset
== (bfd_vma
) -1)
3796 else if (outrel
.r_offset
== (bfd_vma
) -2)
3797 skip
= TRUE
, relocate
= TRUE
;
3798 outrel
.r_offset
+= (input_section
->output_section
->vma
3799 + input_section
->output_offset
);
3802 memset (&outrel
, 0, sizeof outrel
);
3805 && (r_type
== R_68K_PC8
3806 || r_type
== R_68K_PC16
3807 || r_type
== R_68K_PC32
3808 || !bfd_link_pic (info
)
3809 || !SYMBOLIC_BIND (info
, h
)
3810 || !h
->def_regular
))
3812 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
3813 outrel
.r_addend
= rel
->r_addend
;
3817 /* This symbol is local, or marked to become local. */
3818 outrel
.r_addend
= relocation
+ rel
->r_addend
;
3820 if (r_type
== R_68K_32
)
3823 outrel
.r_info
= ELF32_R_INFO (0, R_68K_RELATIVE
);
3829 if (bfd_is_abs_section (sec
))
3831 else if (sec
== NULL
|| sec
->owner
== NULL
)
3833 bfd_set_error (bfd_error_bad_value
);
3840 /* We are turning this relocation into one
3841 against a section symbol. It would be
3842 proper to subtract the symbol's value,
3843 osec->vma, from the emitted reloc addend,
3844 but ld.so expects buggy relocs. */
3845 osec
= sec
->output_section
;
3846 indx
= elf_section_data (osec
)->dynindx
;
3849 struct elf_link_hash_table
*htab
;
3850 htab
= elf_hash_table (info
);
3851 osec
= htab
->text_index_section
;
3852 indx
= elf_section_data (osec
)->dynindx
;
3854 BFD_ASSERT (indx
!= 0);
3857 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
3861 sreloc
= elf_section_data (input_section
)->sreloc
;
3865 loc
= sreloc
->contents
;
3866 loc
+= sreloc
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3867 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3869 /* This reloc will be computed at runtime, so there's no
3870 need to do anything now, except for R_68K_32
3871 relocations that have been turned into
3879 case R_68K_GNU_VTINHERIT
:
3880 case R_68K_GNU_VTENTRY
:
3881 /* These are no-ops in the end. */
3888 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3889 because such sections are not SEC_ALLOC and thus ld.so will
3890 not process them. */
3891 if (unresolved_reloc
3892 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
3894 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3895 rel
->r_offset
) != (bfd_vma
) -1)
3898 /* xgettext:c-format */
3899 (_("%pB(%pA+%#" PRIx64
"): "
3900 "unresolvable %s relocation against symbol `%s'"),
3903 (uint64_t) rel
->r_offset
,
3905 h
->root
.root
.string
);
3909 if (r_symndx
!= STN_UNDEF
3910 && r_type
!= R_68K_NONE
3912 || h
->root
.type
== bfd_link_hash_defined
3913 || h
->root
.type
== bfd_link_hash_defweak
))
3917 sym_type
= (sym
!= NULL
) ? ELF32_ST_TYPE (sym
->st_info
) : h
->type
;
3919 if (elf_m68k_reloc_tls_p (r_type
) != (sym_type
== STT_TLS
))
3924 name
= h
->root
.root
.string
;
3927 name
= (bfd_elf_string_from_elf_section
3928 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
3929 if (name
== NULL
|| *name
== '\0')
3930 name
= bfd_section_name (input_bfd
, sec
);
3934 ((sym_type
== STT_TLS
3935 /* xgettext:c-format */
3936 ? _("%pB(%pA+%#" PRIx64
"): %s used with TLS symbol %s")
3937 /* xgettext:c-format */
3938 : _("%pB(%pA+%#" PRIx64
"): %s used with non-TLS symbol %s")),
3941 (uint64_t) rel
->r_offset
,
3947 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
3948 contents
, rel
->r_offset
,
3949 relocation
, rel
->r_addend
);
3951 if (r
!= bfd_reloc_ok
)
3956 name
= h
->root
.root
.string
;
3959 name
= bfd_elf_string_from_elf_section (input_bfd
,
3960 symtab_hdr
->sh_link
,
3965 name
= bfd_section_name (input_bfd
, sec
);
3968 if (r
== bfd_reloc_overflow
)
3969 (*info
->callbacks
->reloc_overflow
)
3970 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
3971 (bfd_vma
) 0, input_bfd
, input_section
, rel
->r_offset
);
3975 /* xgettext:c-format */
3976 (_("%pB(%pA+%#" PRIx64
"): reloc against `%s': error %d"),
3977 input_bfd
, input_section
,
3978 (uint64_t) rel
->r_offset
, name
, (int) r
);
3987 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
3988 into section SEC. */
3991 elf_m68k_install_pc32 (asection
*sec
, bfd_vma offset
, bfd_vma value
)
3993 /* Make VALUE PC-relative. */
3994 value
-= sec
->output_section
->vma
+ offset
;
3996 /* Apply any in-place addend. */
3997 value
+= bfd_get_32 (sec
->owner
, sec
->contents
+ offset
);
3999 bfd_put_32 (sec
->owner
, value
, sec
->contents
+ offset
);
4002 /* Finish up dynamic symbol handling. We set the contents of various
4003 dynamic sections here. */
4006 elf_m68k_finish_dynamic_symbol (bfd
*output_bfd
,
4007 struct bfd_link_info
*info
,
4008 struct elf_link_hash_entry
*h
,
4009 Elf_Internal_Sym
*sym
)
4013 dynobj
= elf_hash_table (info
)->dynobj
;
4015 if (h
->plt
.offset
!= (bfd_vma
) -1)
4017 const struct elf_m68k_plt_info
*plt_info
;
4023 Elf_Internal_Rela rela
;
4026 /* This symbol has an entry in the procedure linkage table. Set
4029 BFD_ASSERT (h
->dynindx
!= -1);
4031 plt_info
= elf_m68k_hash_table (info
)->plt_info
;
4032 splt
= elf_hash_table (info
)->splt
;
4033 sgot
= elf_hash_table (info
)->sgotplt
;
4034 srela
= elf_hash_table (info
)->srelplt
;
4035 BFD_ASSERT (splt
!= NULL
&& sgot
!= NULL
&& srela
!= NULL
);
4037 /* Get the index in the procedure linkage table which
4038 corresponds to this symbol. This is the index of this symbol
4039 in all the symbols for which we are making plt entries. The
4040 first entry in the procedure linkage table is reserved. */
4041 plt_index
= (h
->plt
.offset
/ plt_info
->size
) - 1;
4043 /* Get the offset into the .got table of the entry that
4044 corresponds to this function. Each .got entry is 4 bytes.
4045 The first three are reserved. */
4046 got_offset
= (plt_index
+ 3) * 4;
4048 memcpy (splt
->contents
+ h
->plt
.offset
,
4049 plt_info
->symbol_entry
,
4052 elf_m68k_install_pc32 (splt
, h
->plt
.offset
+ plt_info
->symbol_relocs
.got
,
4053 (sgot
->output_section
->vma
4054 + sgot
->output_offset
4057 bfd_put_32 (output_bfd
, plt_index
* sizeof (Elf32_External_Rela
),
4060 + plt_info
->symbol_resolve_entry
+ 2);
4062 elf_m68k_install_pc32 (splt
, h
->plt
.offset
+ plt_info
->symbol_relocs
.plt
,
4063 splt
->output_section
->vma
);
4065 /* Fill in the entry in the global offset table. */
4066 bfd_put_32 (output_bfd
,
4067 (splt
->output_section
->vma
4068 + splt
->output_offset
4070 + plt_info
->symbol_resolve_entry
),
4071 sgot
->contents
+ got_offset
);
4073 /* Fill in the entry in the .rela.plt section. */
4074 rela
.r_offset
= (sgot
->output_section
->vma
4075 + sgot
->output_offset
4077 rela
.r_info
= ELF32_R_INFO (h
->dynindx
, R_68K_JMP_SLOT
);
4079 loc
= srela
->contents
+ plt_index
* sizeof (Elf32_External_Rela
);
4080 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
4082 if (!h
->def_regular
)
4084 /* Mark the symbol as undefined, rather than as defined in
4085 the .plt section. Leave the value alone. */
4086 sym
->st_shndx
= SHN_UNDEF
;
4090 if (elf_m68k_hash_entry (h
)->glist
!= NULL
)
4094 struct elf_m68k_got_entry
*got_entry
;
4096 /* This symbol has an entry in the global offset table. Set it
4099 sgot
= elf_hash_table (info
)->sgot
;
4100 srela
= elf_hash_table (info
)->srelgot
;
4101 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
4103 got_entry
= elf_m68k_hash_entry (h
)->glist
;
4105 while (got_entry
!= NULL
)
4107 enum elf_m68k_reloc_type r_type
;
4108 bfd_vma got_entry_offset
;
4110 r_type
= got_entry
->key_
.type
;
4111 got_entry_offset
= got_entry
->u
.s2
.offset
&~ (bfd_vma
) 1;
4113 /* If this is a -Bsymbolic link, and the symbol is defined
4114 locally, we just want to emit a RELATIVE reloc. Likewise if
4115 the symbol was forced to be local because of a version file.
4116 The entry in the global offset table already have been
4117 initialized in the relocate_section function. */
4118 if (bfd_link_pic (info
)
4119 && SYMBOL_REFERENCES_LOCAL (info
, h
))
4123 relocation
= bfd_get_signed_32 (output_bfd
,
4125 + got_entry_offset
));
4128 switch (elf_m68k_reloc_got_type (r_type
))
4131 case R_68K_TLS_LDM32
:
4134 case R_68K_TLS_GD32
:
4135 /* The value for this relocation is actually put in
4136 the second GOT slot. */
4137 relocation
= bfd_get_signed_32 (output_bfd
,
4139 + got_entry_offset
+ 4));
4140 relocation
+= dtpoff_base (info
);
4143 case R_68K_TLS_IE32
:
4144 relocation
+= tpoff_base (info
);
4151 elf_m68k_init_got_entry_local_shared (info
,
4161 Elf_Internal_Rela rela
;
4163 /* Put zeros to GOT slots that will be initialized
4168 n_slots
= elf_m68k_reloc_got_n_slots (got_entry
->key_
.type
);
4170 bfd_put_32 (output_bfd
, (bfd_vma
) 0,
4171 (sgot
->contents
+ got_entry_offset
4176 rela
.r_offset
= (sgot
->output_section
->vma
4177 + sgot
->output_offset
4178 + got_entry_offset
);
4180 switch (elf_m68k_reloc_got_type (r_type
))
4183 rela
.r_info
= ELF32_R_INFO (h
->dynindx
, R_68K_GLOB_DAT
);
4184 elf_m68k_install_rela (output_bfd
, srela
, &rela
);
4187 case R_68K_TLS_GD32
:
4188 rela
.r_info
= ELF32_R_INFO (h
->dynindx
, R_68K_TLS_DTPMOD32
);
4189 elf_m68k_install_rela (output_bfd
, srela
, &rela
);
4192 rela
.r_info
= ELF32_R_INFO (h
->dynindx
, R_68K_TLS_DTPREL32
);
4193 elf_m68k_install_rela (output_bfd
, srela
, &rela
);
4196 case R_68K_TLS_IE32
:
4197 rela
.r_info
= ELF32_R_INFO (h
->dynindx
, R_68K_TLS_TPREL32
);
4198 elf_m68k_install_rela (output_bfd
, srela
, &rela
);
4207 got_entry
= got_entry
->u
.s2
.next
;
4214 Elf_Internal_Rela rela
;
4217 /* This symbol needs a copy reloc. Set it up. */
4219 BFD_ASSERT (h
->dynindx
!= -1
4220 && (h
->root
.type
== bfd_link_hash_defined
4221 || h
->root
.type
== bfd_link_hash_defweak
));
4223 s
= bfd_get_linker_section (dynobj
, ".rela.bss");
4224 BFD_ASSERT (s
!= NULL
);
4226 rela
.r_offset
= (h
->root
.u
.def
.value
4227 + h
->root
.u
.def
.section
->output_section
->vma
4228 + h
->root
.u
.def
.section
->output_offset
);
4229 rela
.r_info
= ELF32_R_INFO (h
->dynindx
, R_68K_COPY
);
4231 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4232 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
4238 /* Finish up the dynamic sections. */
4241 elf_m68k_finish_dynamic_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
4247 dynobj
= elf_hash_table (info
)->dynobj
;
4249 sgot
= elf_hash_table (info
)->sgotplt
;
4250 BFD_ASSERT (sgot
!= NULL
);
4251 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
4253 if (elf_hash_table (info
)->dynamic_sections_created
)
4256 Elf32_External_Dyn
*dyncon
, *dynconend
;
4258 splt
= elf_hash_table (info
)->splt
;
4259 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
4261 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
4262 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
4263 for (; dyncon
< dynconend
; dyncon
++)
4265 Elf_Internal_Dyn dyn
;
4268 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4276 s
= elf_hash_table (info
)->sgotplt
;
4279 s
= elf_hash_table (info
)->srelplt
;
4281 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4282 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4286 s
= elf_hash_table (info
)->srelplt
;
4287 dyn
.d_un
.d_val
= s
->size
;
4288 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4293 /* Fill in the first entry in the procedure linkage table. */
4296 const struct elf_m68k_plt_info
*plt_info
;
4298 plt_info
= elf_m68k_hash_table (info
)->plt_info
;
4299 memcpy (splt
->contents
, plt_info
->plt0_entry
, plt_info
->size
);
4301 elf_m68k_install_pc32 (splt
, plt_info
->plt0_relocs
.got4
,
4302 (sgot
->output_section
->vma
4303 + sgot
->output_offset
4306 elf_m68k_install_pc32 (splt
, plt_info
->plt0_relocs
.got8
,
4307 (sgot
->output_section
->vma
4308 + sgot
->output_offset
4311 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
4316 /* Fill in the first three entries in the global offset table. */
4320 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
4322 bfd_put_32 (output_bfd
,
4323 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
4325 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
4326 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
4329 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
4334 /* Given a .data section and a .emreloc in-memory section, store
4335 relocation information into the .emreloc section which can be
4336 used at runtime to relocate the section. This is called by the
4337 linker when the --embedded-relocs switch is used. This is called
4338 after the add_symbols entry point has been called for all the
4339 objects, and before the final_link entry point is called. */
4342 bfd_m68k_elf32_create_embedded_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
4343 asection
*datasec
, asection
*relsec
,
4346 Elf_Internal_Shdr
*symtab_hdr
;
4347 Elf_Internal_Sym
*isymbuf
= NULL
;
4348 Elf_Internal_Rela
*internal_relocs
= NULL
;
4349 Elf_Internal_Rela
*irel
, *irelend
;
4353 BFD_ASSERT (! bfd_link_relocatable (info
));
4357 if (datasec
->reloc_count
== 0)
4360 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
4362 /* Get a copy of the native relocations. */
4363 internal_relocs
= (_bfd_elf_link_read_relocs
4364 (abfd
, datasec
, NULL
, (Elf_Internal_Rela
*) NULL
,
4365 info
->keep_memory
));
4366 if (internal_relocs
== NULL
)
4369 amt
= (bfd_size_type
) datasec
->reloc_count
* 12;
4370 relsec
->contents
= (bfd_byte
*) bfd_alloc (abfd
, amt
);
4371 if (relsec
->contents
== NULL
)
4374 p
= relsec
->contents
;
4376 irelend
= internal_relocs
+ datasec
->reloc_count
;
4377 for (irel
= internal_relocs
; irel
< irelend
; irel
++, p
+= 12)
4379 asection
*targetsec
;
4381 /* We are going to write a four byte longword into the runtime
4382 reloc section. The longword will be the address in the data
4383 section which must be relocated. It is followed by the name
4384 of the target section NUL-padded or truncated to 8
4387 /* We can only relocate absolute longword relocs at run time. */
4388 if (ELF32_R_TYPE (irel
->r_info
) != (int) R_68K_32
)
4390 *errmsg
= _("unsupported relocation type");
4391 bfd_set_error (bfd_error_bad_value
);
4395 /* Get the target section referred to by the reloc. */
4396 if (ELF32_R_SYM (irel
->r_info
) < symtab_hdr
->sh_info
)
4398 /* A local symbol. */
4399 Elf_Internal_Sym
*isym
;
4401 /* Read this BFD's local symbols if we haven't done so already. */
4402 if (isymbuf
== NULL
)
4404 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
4405 if (isymbuf
== NULL
)
4406 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
4407 symtab_hdr
->sh_info
, 0,
4409 if (isymbuf
== NULL
)
4413 isym
= isymbuf
+ ELF32_R_SYM (irel
->r_info
);
4414 targetsec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
4419 struct elf_link_hash_entry
*h
;
4421 /* An external symbol. */
4422 indx
= ELF32_R_SYM (irel
->r_info
) - symtab_hdr
->sh_info
;
4423 h
= elf_sym_hashes (abfd
)[indx
];
4424 BFD_ASSERT (h
!= NULL
);
4425 if (h
->root
.type
== bfd_link_hash_defined
4426 || h
->root
.type
== bfd_link_hash_defweak
)
4427 targetsec
= h
->root
.u
.def
.section
;
4432 bfd_put_32 (abfd
, irel
->r_offset
+ datasec
->output_offset
, p
);
4433 memset (p
+ 4, 0, 8);
4434 if (targetsec
!= NULL
)
4435 strncpy ((char *) p
+ 4, targetsec
->output_section
->name
, 8);
4438 if (isymbuf
!= NULL
&& symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
4440 if (internal_relocs
!= NULL
4441 && elf_section_data (datasec
)->relocs
!= internal_relocs
)
4442 free (internal_relocs
);
4446 if (isymbuf
!= NULL
&& symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
4448 if (internal_relocs
!= NULL
4449 && elf_section_data (datasec
)->relocs
!= internal_relocs
)
4450 free (internal_relocs
);
4454 /* Set target options. */
4457 bfd_elf_m68k_set_target_options (struct bfd_link_info
*info
, int got_handling
)
4459 struct elf_m68k_link_hash_table
*htab
;
4460 bfd_boolean use_neg_got_offsets_p
;
4461 bfd_boolean allow_multigot_p
;
4462 bfd_boolean local_gp_p
;
4464 switch (got_handling
)
4469 use_neg_got_offsets_p
= FALSE
;
4470 allow_multigot_p
= FALSE
;
4474 /* --got=negative. */
4476 use_neg_got_offsets_p
= TRUE
;
4477 allow_multigot_p
= FALSE
;
4481 /* --got=multigot. */
4483 use_neg_got_offsets_p
= TRUE
;
4484 allow_multigot_p
= TRUE
;
4492 htab
= elf_m68k_hash_table (info
);
4495 htab
->local_gp_p
= local_gp_p
;
4496 htab
->use_neg_got_offsets_p
= use_neg_got_offsets_p
;
4497 htab
->allow_multigot_p
= allow_multigot_p
;
4501 static enum elf_reloc_type_class
4502 elf32_m68k_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
4503 const asection
*rel_sec ATTRIBUTE_UNUSED
,
4504 const Elf_Internal_Rela
*rela
)
4506 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4508 case R_68K_RELATIVE
:
4509 return reloc_class_relative
;
4510 case R_68K_JMP_SLOT
:
4511 return reloc_class_plt
;
4513 return reloc_class_copy
;
4515 return reloc_class_normal
;
4519 /* Return address for Ith PLT stub in section PLT, for relocation REL
4520 or (bfd_vma) -1 if it should not be included. */
4523 elf_m68k_plt_sym_val (bfd_vma i
, const asection
*plt
,
4524 const arelent
*rel ATTRIBUTE_UNUSED
)
4526 return plt
->vma
+ (i
+ 1) * elf_m68k_get_plt_info (plt
->owner
)->size
;
4529 /* Support for core dump NOTE sections. */
4532 elf_m68k_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
4537 switch (note
->descsz
)
4542 case 154: /* Linux/m68k */
4544 elf_tdata (abfd
)->core
->signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
4547 elf_tdata (abfd
)->core
->lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 22);
4556 /* Make a ".reg/999" section. */
4557 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
4558 size
, note
->descpos
+ offset
);
4562 elf_m68k_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
4564 switch (note
->descsz
)
4569 case 124: /* Linux/m68k elf_prpsinfo. */
4570 elf_tdata (abfd
)->core
->pid
4571 = bfd_get_32 (abfd
, note
->descdata
+ 12);
4572 elf_tdata (abfd
)->core
->program
4573 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
4574 elf_tdata (abfd
)->core
->command
4575 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
4578 /* Note that for some reason, a spurious space is tacked
4579 onto the end of the args in some (at least one anyway)
4580 implementations, so strip it off if it exists. */
4582 char *command
= elf_tdata (abfd
)->core
->command
;
4583 int n
= strlen (command
);
4585 if (n
> 0 && command
[n
- 1] == ' ')
4586 command
[n
- 1] = '\0';
4592 #define TARGET_BIG_SYM m68k_elf32_vec
4593 #define TARGET_BIG_NAME "elf32-m68k"
4594 #define ELF_MACHINE_CODE EM_68K
4595 #define ELF_MAXPAGESIZE 0x2000
4596 #define elf_backend_create_dynamic_sections \
4597 _bfd_elf_create_dynamic_sections
4598 #define bfd_elf32_bfd_link_hash_table_create \
4599 elf_m68k_link_hash_table_create
4600 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4602 #define elf_backend_check_relocs elf_m68k_check_relocs
4603 #define elf_backend_always_size_sections \
4604 elf_m68k_always_size_sections
4605 #define elf_backend_adjust_dynamic_symbol \
4606 elf_m68k_adjust_dynamic_symbol
4607 #define elf_backend_size_dynamic_sections \
4608 elf_m68k_size_dynamic_sections
4609 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4610 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4611 #define elf_backend_relocate_section elf_m68k_relocate_section
4612 #define elf_backend_finish_dynamic_symbol \
4613 elf_m68k_finish_dynamic_symbol
4614 #define elf_backend_finish_dynamic_sections \
4615 elf_m68k_finish_dynamic_sections
4616 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4617 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4618 #define bfd_elf32_bfd_merge_private_bfd_data \
4619 elf32_m68k_merge_private_bfd_data
4620 #define bfd_elf32_bfd_set_private_flags \
4621 elf32_m68k_set_private_flags
4622 #define bfd_elf32_bfd_print_private_bfd_data \
4623 elf32_m68k_print_private_bfd_data
4624 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4625 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4626 #define elf_backend_object_p elf32_m68k_object_p
4627 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4628 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo
4630 #define elf_backend_can_gc_sections 1
4631 #define elf_backend_can_refcount 1
4632 #define elf_backend_want_got_plt 1
4633 #define elf_backend_plt_readonly 1
4634 #define elf_backend_want_plt_sym 0
4635 #define elf_backend_got_header_size 12
4636 #define elf_backend_rela_normal 1
4637 #define elf_backend_dtrel_excludes_plt 1
4639 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
4641 #include "elf32-target.h"