* elf.c (_bfd_elf_rela_local_sym): New.
[deliverable/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27
28 static reloc_howto_type *reloc_type_lookup
29 PARAMS ((bfd *, bfd_reloc_code_real_type));
30 static void rtype_to_howto
31 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
32 static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
33 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
34 static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
35 PARAMS ((bfd *));
36 static boolean elf_m68k_check_relocs
37 PARAMS ((bfd *, struct bfd_link_info *, asection *,
38 const Elf_Internal_Rela *));
39 static asection *elf_m68k_gc_mark_hook
40 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
41 struct elf_link_hash_entry *, Elf_Internal_Sym *));
42 static boolean elf_m68k_gc_sweep_hook
43 PARAMS ((bfd *, struct bfd_link_info *, asection *,
44 const Elf_Internal_Rela *));
45 static boolean elf_m68k_adjust_dynamic_symbol
46 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
47 static boolean elf_m68k_size_dynamic_sections
48 PARAMS ((bfd *, struct bfd_link_info *));
49 static boolean elf_m68k_relocate_section
50 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
51 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
52 static boolean elf_m68k_finish_dynamic_symbol
53 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
54 Elf_Internal_Sym *));
55 static boolean elf_m68k_finish_dynamic_sections
56 PARAMS ((bfd *, struct bfd_link_info *));
57
58 static boolean elf32_m68k_set_private_flags
59 PARAMS ((bfd *, flagword));
60 static boolean elf32_m68k_copy_private_bfd_data
61 PARAMS ((bfd *, bfd *));
62 static boolean elf32_m68k_merge_private_bfd_data
63 PARAMS ((bfd *, bfd *));
64 static boolean elf32_m68k_print_private_bfd_data
65 PARAMS ((bfd *, PTR));
66 static enum elf_reloc_type_class elf32_m68k_reloc_type_class
67 PARAMS ((const Elf_Internal_Rela *));
68
69 static reloc_howto_type howto_table[] = {
70 HOWTO(R_68K_NONE, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", false, 0, 0x00000000,false),
71 HOWTO(R_68K_32, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", false, 0, 0xffffffff,false),
72 HOWTO(R_68K_16, 0, 1,16, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", false, 0, 0x0000ffff,false),
73 HOWTO(R_68K_8, 0, 0, 8, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", false, 0, 0x000000ff,false),
74 HOWTO(R_68K_PC32, 0, 2,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", false, 0, 0xffffffff,true),
75 HOWTO(R_68K_PC16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", false, 0, 0x0000ffff,true),
76 HOWTO(R_68K_PC8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", false, 0, 0x000000ff,true),
77 HOWTO(R_68K_GOT32, 0, 2,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", false, 0, 0xffffffff,true),
78 HOWTO(R_68K_GOT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", false, 0, 0x0000ffff,true),
79 HOWTO(R_68K_GOT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", false, 0, 0x000000ff,true),
80 HOWTO(R_68K_GOT32O, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", false, 0, 0xffffffff,false),
81 HOWTO(R_68K_GOT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", false, 0, 0x0000ffff,false),
82 HOWTO(R_68K_GOT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", false, 0, 0x000000ff,false),
83 HOWTO(R_68K_PLT32, 0, 2,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", false, 0, 0xffffffff,true),
84 HOWTO(R_68K_PLT16, 0, 1,16, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", false, 0, 0x0000ffff,true),
85 HOWTO(R_68K_PLT8, 0, 0, 8, true, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", false, 0, 0x000000ff,true),
86 HOWTO(R_68K_PLT32O, 0, 2,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", false, 0, 0xffffffff,false),
87 HOWTO(R_68K_PLT16O, 0, 1,16, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", false, 0, 0x0000ffff,false),
88 HOWTO(R_68K_PLT8O, 0, 0, 8, false,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", false, 0, 0x000000ff,false),
89 HOWTO(R_68K_COPY, 0, 0, 0, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", false, 0, 0xffffffff,false),
90 HOWTO(R_68K_GLOB_DAT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", false, 0, 0xffffffff,false),
91 HOWTO(R_68K_JMP_SLOT, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", false, 0, 0xffffffff,false),
92 HOWTO(R_68K_RELATIVE, 0, 2,32, false,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", false, 0, 0xffffffff,false),
93 /* GNU extension to record C++ vtable hierarchy */
94 HOWTO (R_68K_GNU_VTINHERIT, /* type */
95 0, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 0, /* bitsize */
98 false, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_dont, /* complain_on_overflow */
101 NULL, /* special_function */
102 "R_68K_GNU_VTINHERIT", /* name */
103 false, /* partial_inplace */
104 0, /* src_mask */
105 0, /* dst_mask */
106 false),
107 /* GNU extension to record C++ vtable member usage */
108 HOWTO (R_68K_GNU_VTENTRY, /* type */
109 0, /* rightshift */
110 2, /* size (0 = byte, 1 = short, 2 = long) */
111 0, /* bitsize */
112 false, /* pc_relative */
113 0, /* bitpos */
114 complain_overflow_dont, /* complain_on_overflow */
115 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
116 "R_68K_GNU_VTENTRY", /* name */
117 false, /* partial_inplace */
118 0, /* src_mask */
119 0, /* dst_mask */
120 false),
121 };
122
123 static void
124 rtype_to_howto (abfd, cache_ptr, dst)
125 bfd *abfd ATTRIBUTE_UNUSED;
126 arelent *cache_ptr;
127 Elf_Internal_Rela *dst;
128 {
129 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K_max);
130 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
131 }
132
133 #define elf_info_to_howto rtype_to_howto
134
135 static const struct
136 {
137 bfd_reloc_code_real_type bfd_val;
138 int elf_val;
139 } reloc_map[] = {
140 { BFD_RELOC_NONE, R_68K_NONE },
141 { BFD_RELOC_32, R_68K_32 },
142 { BFD_RELOC_16, R_68K_16 },
143 { BFD_RELOC_8, R_68K_8 },
144 { BFD_RELOC_32_PCREL, R_68K_PC32 },
145 { BFD_RELOC_16_PCREL, R_68K_PC16 },
146 { BFD_RELOC_8_PCREL, R_68K_PC8 },
147 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
148 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
149 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
150 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
151 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
152 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
153 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
154 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
155 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
156 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
157 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
158 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
159 { BFD_RELOC_NONE, R_68K_COPY },
160 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
161 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
162 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
163 { BFD_RELOC_CTOR, R_68K_32 },
164 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
165 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
166 };
167
168 static reloc_howto_type *
169 reloc_type_lookup (abfd, code)
170 bfd *abfd ATTRIBUTE_UNUSED;
171 bfd_reloc_code_real_type code;
172 {
173 unsigned int i;
174 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
175 {
176 if (reloc_map[i].bfd_val == code)
177 return &howto_table[reloc_map[i].elf_val];
178 }
179 return 0;
180 }
181
182 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
183 #define ELF_ARCH bfd_arch_m68k
184 /* end code generated by elf.el */
185
186 #define USE_RELA
187 \f
188 /* Functions for the m68k ELF linker. */
189
190 /* The name of the dynamic interpreter. This is put in the .interp
191 section. */
192
193 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
194
195 /* The size in bytes of an entry in the procedure linkage table. */
196
197 #define PLT_ENTRY_SIZE 20
198
199 /* The first entry in a procedure linkage table looks like this. See
200 the SVR4 ABI m68k supplement to see how this works. */
201
202 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
203 {
204 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
205 0, 0, 0, 0, /* replaced with offset to .got + 4. */
206 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
207 0, 0, 0, 0, /* replaced with offset to .got + 8. */
208 0, 0, 0, 0 /* pad out to 20 bytes. */
209 };
210
211 /* Subsequent entries in a procedure linkage table look like this. */
212
213 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
214 {
215 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
216 0, 0, 0, 0, /* replaced with offset to symbol's .got entry. */
217 0x2f, 0x3c, /* move.l #offset,-(%sp) */
218 0, 0, 0, 0, /* replaced with offset into relocation table. */
219 0x60, 0xff, /* bra.l .plt */
220 0, 0, 0, 0 /* replaced with offset to start of .plt. */
221 };
222
223 #define CPU32_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_CPU32)
224
225 #define PLT_CPU32_ENTRY_SIZE 24
226 /* Procedure linkage table entries for the cpu32 */
227 static const bfd_byte elf_cpu32_plt0_entry[PLT_CPU32_ENTRY_SIZE] =
228 {
229 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
230 0, 0, 0, 0, /* replaced with offset to .got + 4. */
231 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
232 0, 0, 0, 0, /* replace with offset to .got +8. */
233 0x4e, 0xd1, /* jmp %a1@ */
234 0, 0, 0, 0, /* pad out to 24 bytes. */
235 0, 0
236 };
237
238 static const bfd_byte elf_cpu32_plt_entry[PLT_CPU32_ENTRY_SIZE] =
239 {
240 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
241 0, 0, 0, 0, /* replaced with offset to symbol's .got entry. */
242 0x4e, 0xd1, /* jmp %a1@ */
243 0x2f, 0x3c, /* move.l #offset,-(%sp) */
244 0, 0, 0, 0, /* replaced with offset into relocation table. */
245 0x60, 0xff, /* bra.l .plt */
246 0, 0, 0, 0, /* replaced with offset to start of .plt. */
247 0, 0
248 };
249
250 /* The m68k linker needs to keep track of the number of relocs that it
251 decides to copy in check_relocs for each symbol. This is so that it
252 can discard PC relative relocs if it doesn't need them when linking
253 with -Bsymbolic. We store the information in a field extending the
254 regular ELF linker hash table. */
255
256 /* This structure keeps track of the number of PC relative relocs we have
257 copied for a given symbol. */
258
259 struct elf_m68k_pcrel_relocs_copied
260 {
261 /* Next section. */
262 struct elf_m68k_pcrel_relocs_copied *next;
263 /* A section in dynobj. */
264 asection *section;
265 /* Number of relocs copied in this section. */
266 bfd_size_type count;
267 };
268
269 /* m68k ELF linker hash entry. */
270
271 struct elf_m68k_link_hash_entry
272 {
273 struct elf_link_hash_entry root;
274
275 /* Number of PC relative relocs copied for this symbol. */
276 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
277 };
278
279 /* m68k ELF linker hash table. */
280
281 struct elf_m68k_link_hash_table
282 {
283 struct elf_link_hash_table root;
284 };
285
286 /* Declare this now that the above structures are defined. */
287
288 static boolean elf_m68k_discard_copies
289 PARAMS ((struct elf_m68k_link_hash_entry *, PTR));
290
291 /* Traverse an m68k ELF linker hash table. */
292
293 #define elf_m68k_link_hash_traverse(table, func, info) \
294 (elf_link_hash_traverse \
295 (&(table)->root, \
296 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
297 (info)))
298
299 /* Get the m68k ELF linker hash table from a link_info structure. */
300
301 #define elf_m68k_hash_table(p) \
302 ((struct elf_m68k_link_hash_table *) (p)->hash)
303
304 /* Create an entry in an m68k ELF linker hash table. */
305
306 static struct bfd_hash_entry *
307 elf_m68k_link_hash_newfunc (entry, table, string)
308 struct bfd_hash_entry *entry;
309 struct bfd_hash_table *table;
310 const char *string;
311 {
312 struct elf_m68k_link_hash_entry *ret =
313 (struct elf_m68k_link_hash_entry *) entry;
314
315 /* Allocate the structure if it has not already been allocated by a
316 subclass. */
317 if (ret == (struct elf_m68k_link_hash_entry *) NULL)
318 ret = ((struct elf_m68k_link_hash_entry *)
319 bfd_hash_allocate (table,
320 sizeof (struct elf_m68k_link_hash_entry)));
321 if (ret == (struct elf_m68k_link_hash_entry *) NULL)
322 return (struct bfd_hash_entry *) ret;
323
324 /* Call the allocation method of the superclass. */
325 ret = ((struct elf_m68k_link_hash_entry *)
326 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
327 table, string));
328 if (ret != (struct elf_m68k_link_hash_entry *) NULL)
329 {
330 ret->pcrel_relocs_copied = NULL;
331 }
332
333 return (struct bfd_hash_entry *) ret;
334 }
335
336 /* Create an m68k ELF linker hash table. */
337
338 static struct bfd_link_hash_table *
339 elf_m68k_link_hash_table_create (abfd)
340 bfd *abfd;
341 {
342 struct elf_m68k_link_hash_table *ret;
343 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
344
345 ret = (struct elf_m68k_link_hash_table *) bfd_alloc (abfd, amt);
346 if (ret == (struct elf_m68k_link_hash_table *) NULL)
347 return NULL;
348
349 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
350 elf_m68k_link_hash_newfunc))
351 {
352 bfd_release (abfd, ret);
353 return NULL;
354 }
355
356 return &ret->root.root;
357 }
358
359 /* Keep m68k-specific flags in the ELF header */
360 static boolean
361 elf32_m68k_set_private_flags (abfd, flags)
362 bfd *abfd;
363 flagword flags;
364 {
365 elf_elfheader (abfd)->e_flags = flags;
366 elf_flags_init (abfd) = true;
367 return true;
368 }
369
370 /* Copy m68k-specific data from one module to another */
371 static boolean
372 elf32_m68k_copy_private_bfd_data (ibfd, obfd)
373 bfd *ibfd;
374 bfd *obfd;
375 {
376 flagword in_flags;
377
378 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
379 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
380 return true;
381
382 in_flags = elf_elfheader (ibfd)->e_flags;
383
384 elf_elfheader (obfd)->e_flags = in_flags;
385 elf_flags_init (obfd) = true;
386
387 return true;
388 }
389
390 /* Merge backend specific data from an object file to the output
391 object file when linking. */
392 static boolean
393 elf32_m68k_merge_private_bfd_data (ibfd, obfd)
394 bfd *ibfd;
395 bfd *obfd;
396 {
397 flagword out_flags;
398 flagword in_flags;
399
400 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
401 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
402 return true;
403
404 in_flags = elf_elfheader (ibfd)->e_flags;
405 out_flags = elf_elfheader (obfd)->e_flags;
406
407 if (!elf_flags_init (obfd))
408 {
409 elf_flags_init (obfd) = true;
410 elf_elfheader (obfd)->e_flags = in_flags;
411 }
412
413 return true;
414 }
415
416 /* Display the flags field */
417 static boolean
418 elf32_m68k_print_private_bfd_data (abfd, ptr)
419 bfd *abfd;
420 PTR ptr;
421 {
422 FILE *file = (FILE *) ptr;
423
424 BFD_ASSERT (abfd != NULL && ptr != NULL);
425
426 /* Print normal ELF private data. */
427 _bfd_elf_print_private_bfd_data (abfd, ptr);
428
429 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
430
431 /* xgettext:c-format */
432 fprintf (file, _ ("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
433
434 if (elf_elfheader (abfd)->e_flags & EF_CPU32)
435 fprintf (file, _ (" [cpu32]"));
436
437 fputc ('\n', file);
438
439 return true;
440 }
441 /* Look through the relocs for a section during the first phase, and
442 allocate space in the global offset table or procedure linkage
443 table. */
444
445 static boolean
446 elf_m68k_check_relocs (abfd, info, sec, relocs)
447 bfd *abfd;
448 struct bfd_link_info *info;
449 asection *sec;
450 const Elf_Internal_Rela *relocs;
451 {
452 bfd *dynobj;
453 Elf_Internal_Shdr *symtab_hdr;
454 struct elf_link_hash_entry **sym_hashes;
455 bfd_signed_vma *local_got_refcounts;
456 const Elf_Internal_Rela *rel;
457 const Elf_Internal_Rela *rel_end;
458 asection *sgot;
459 asection *srelgot;
460 asection *sreloc;
461
462 if (info->relocateable)
463 return true;
464
465 dynobj = elf_hash_table (info)->dynobj;
466 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
467 sym_hashes = elf_sym_hashes (abfd);
468 local_got_refcounts = elf_local_got_refcounts (abfd);
469
470 sgot = NULL;
471 srelgot = NULL;
472 sreloc = NULL;
473
474 rel_end = relocs + sec->reloc_count;
475 for (rel = relocs; rel < rel_end; rel++)
476 {
477 unsigned long r_symndx;
478 struct elf_link_hash_entry *h;
479
480 r_symndx = ELF32_R_SYM (rel->r_info);
481
482 if (r_symndx < symtab_hdr->sh_info)
483 h = NULL;
484 else
485 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
486
487 switch (ELF32_R_TYPE (rel->r_info))
488 {
489 case R_68K_GOT8:
490 case R_68K_GOT16:
491 case R_68K_GOT32:
492 if (h != NULL
493 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
494 break;
495 /* Fall through. */
496 case R_68K_GOT8O:
497 case R_68K_GOT16O:
498 case R_68K_GOT32O:
499 /* This symbol requires a global offset table entry. */
500
501 if (dynobj == NULL)
502 {
503 /* Create the .got section. */
504 elf_hash_table (info)->dynobj = dynobj = abfd;
505 if (!_bfd_elf_create_got_section (dynobj, info))
506 return false;
507 }
508
509 if (sgot == NULL)
510 {
511 sgot = bfd_get_section_by_name (dynobj, ".got");
512 BFD_ASSERT (sgot != NULL);
513 }
514
515 if (srelgot == NULL
516 && (h != NULL || info->shared))
517 {
518 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
519 if (srelgot == NULL)
520 {
521 srelgot = bfd_make_section (dynobj, ".rela.got");
522 if (srelgot == NULL
523 || !bfd_set_section_flags (dynobj, srelgot,
524 (SEC_ALLOC
525 | SEC_LOAD
526 | SEC_HAS_CONTENTS
527 | SEC_IN_MEMORY
528 | SEC_LINKER_CREATED
529 | SEC_READONLY))
530 || !bfd_set_section_alignment (dynobj, srelgot, 2))
531 return false;
532 }
533 }
534
535 if (h != NULL)
536 {
537 if (h->got.refcount == 0)
538 {
539 /* Make sure this symbol is output as a dynamic symbol. */
540 if (h->dynindx == -1)
541 {
542 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
543 return false;
544 }
545
546 /* Allocate space in the .got section. */
547 sgot->_raw_size += 4;
548 /* Allocate relocation space. */
549 srelgot->_raw_size += sizeof (Elf32_External_Rela);
550 }
551 h->got.refcount++;
552 }
553 else
554 {
555 /* This is a global offset table entry for a local symbol. */
556 if (local_got_refcounts == NULL)
557 {
558 bfd_size_type size;
559
560 size = symtab_hdr->sh_info;
561 size *= sizeof (bfd_signed_vma);
562 local_got_refcounts = ((bfd_signed_vma *)
563 bfd_zalloc (abfd, size));
564 if (local_got_refcounts == NULL)
565 return false;
566 elf_local_got_refcounts (abfd) = local_got_refcounts;
567 }
568 if (local_got_refcounts[r_symndx] == 0)
569 {
570 sgot->_raw_size += 4;
571 if (info->shared)
572 {
573 /* If we are generating a shared object, we need to
574 output a R_68K_RELATIVE reloc so that the dynamic
575 linker can adjust this GOT entry. */
576 srelgot->_raw_size += sizeof (Elf32_External_Rela);
577 }
578 }
579 local_got_refcounts[r_symndx]++;
580 }
581 break;
582
583 case R_68K_PLT8:
584 case R_68K_PLT16:
585 case R_68K_PLT32:
586 /* This symbol requires a procedure linkage table entry. We
587 actually build the entry in adjust_dynamic_symbol,
588 because this might be a case of linking PIC code which is
589 never referenced by a dynamic object, in which case we
590 don't need to generate a procedure linkage table entry
591 after all. */
592
593 /* If this is a local symbol, we resolve it directly without
594 creating a procedure linkage table entry. */
595 if (h == NULL)
596 continue;
597
598 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
599 h->plt.refcount++;
600 break;
601
602 case R_68K_PLT8O:
603 case R_68K_PLT16O:
604 case R_68K_PLT32O:
605 /* This symbol requires a procedure linkage table entry. */
606
607 if (h == NULL)
608 {
609 /* It does not make sense to have this relocation for a
610 local symbol. FIXME: does it? How to handle it if
611 it does make sense? */
612 bfd_set_error (bfd_error_bad_value);
613 return false;
614 }
615
616 /* Make sure this symbol is output as a dynamic symbol. */
617 if (h->dynindx == -1)
618 {
619 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
620 return false;
621 }
622
623 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
624 h->plt.refcount++;
625 break;
626
627 case R_68K_PC8:
628 case R_68K_PC16:
629 case R_68K_PC32:
630 /* If we are creating a shared library and this is not a local
631 symbol, we need to copy the reloc into the shared library.
632 However when linking with -Bsymbolic and this is a global
633 symbol which is defined in an object we are including in the
634 link (i.e., DEF_REGULAR is set), then we can resolve the
635 reloc directly. At this point we have not seen all the input
636 files, so it is possible that DEF_REGULAR is not set now but
637 will be set later (it is never cleared). We account for that
638 possibility below by storing information in the
639 pcrel_relocs_copied field of the hash table entry. */
640 if (!(info->shared
641 && (sec->flags & SEC_ALLOC) != 0
642 && h != NULL
643 && (!info->symbolic
644 || (h->elf_link_hash_flags
645 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
646 {
647 if (h != NULL)
648 {
649 /* Make sure a plt entry is created for this symbol if
650 it turns out to be a function defined by a dynamic
651 object. */
652 h->plt.refcount++;
653 }
654 break;
655 }
656 /* Fall through. */
657 case R_68K_8:
658 case R_68K_16:
659 case R_68K_32:
660 if (h != NULL)
661 {
662 /* Make sure a plt entry is created for this symbol if it
663 turns out to be a function defined by a dynamic object. */
664 h->plt.refcount++;
665 }
666
667 /* If we are creating a shared library, we need to copy the
668 reloc into the shared library. */
669 if (info->shared
670 && (sec->flags & SEC_ALLOC) != 0)
671 {
672 /* When creating a shared object, we must copy these
673 reloc types into the output file. We create a reloc
674 section in dynobj and make room for this reloc. */
675 if (sreloc == NULL)
676 {
677 const char *name;
678
679 name = (bfd_elf_string_from_elf_section
680 (abfd,
681 elf_elfheader (abfd)->e_shstrndx,
682 elf_section_data (sec)->rel_hdr.sh_name));
683 if (name == NULL)
684 return false;
685
686 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
687 && strcmp (bfd_get_section_name (abfd, sec),
688 name + 5) == 0);
689
690 sreloc = bfd_get_section_by_name (dynobj, name);
691 if (sreloc == NULL)
692 {
693 sreloc = bfd_make_section (dynobj, name);
694 if (sreloc == NULL
695 || !bfd_set_section_flags (dynobj, sreloc,
696 (SEC_ALLOC
697 | SEC_LOAD
698 | SEC_HAS_CONTENTS
699 | SEC_IN_MEMORY
700 | SEC_LINKER_CREATED
701 | SEC_READONLY))
702 || !bfd_set_section_alignment (dynobj, sreloc, 2))
703 return false;
704 }
705 if (sec->flags & SEC_READONLY)
706 info->flags |= DF_TEXTREL;
707 }
708
709 sreloc->_raw_size += sizeof (Elf32_External_Rela);
710
711 /* If we are linking with -Bsymbolic, we count the number of
712 PC relative relocations we have entered for this symbol,
713 so that we can discard them again if the symbol is later
714 defined by a regular object. Note that this function is
715 only called if we are using an m68kelf linker hash table,
716 which means that h is really a pointer to an
717 elf_m68k_link_hash_entry. */
718 if ((ELF32_R_TYPE (rel->r_info) == R_68K_PC8
719 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
720 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
721 && info->symbolic)
722 {
723 struct elf_m68k_link_hash_entry *eh;
724 struct elf_m68k_pcrel_relocs_copied *p;
725
726 eh = (struct elf_m68k_link_hash_entry *) h;
727
728 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
729 if (p->section == sreloc)
730 break;
731
732 if (p == NULL)
733 {
734 p = ((struct elf_m68k_pcrel_relocs_copied *)
735 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
736 if (p == NULL)
737 return false;
738 p->next = eh->pcrel_relocs_copied;
739 eh->pcrel_relocs_copied = p;
740 p->section = sreloc;
741 p->count = 0;
742 }
743
744 ++p->count;
745 }
746 }
747
748 break;
749
750 /* This relocation describes the C++ object vtable hierarchy.
751 Reconstruct it for later use during GC. */
752 case R_68K_GNU_VTINHERIT:
753 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
754 return false;
755 break;
756
757 /* This relocation describes which C++ vtable entries are actually
758 used. Record for later use during GC. */
759 case R_68K_GNU_VTENTRY:
760 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
761 return false;
762 break;
763
764 default:
765 break;
766 }
767 }
768
769 return true;
770 }
771
772 /* Return the section that should be marked against GC for a given
773 relocation. */
774
775 static asection *
776 elf_m68k_gc_mark_hook (abfd, info, rel, h, sym)
777 bfd *abfd;
778 struct bfd_link_info *info ATTRIBUTE_UNUSED;
779 Elf_Internal_Rela *rel;
780 struct elf_link_hash_entry *h;
781 Elf_Internal_Sym *sym;
782 {
783 if (h != NULL)
784 {
785 switch (ELF32_R_TYPE (rel->r_info))
786 {
787 case R_68K_GNU_VTINHERIT:
788 case R_68K_GNU_VTENTRY:
789 break;
790
791 default:
792 switch (h->root.type)
793 {
794 default:
795 break;
796
797 case bfd_link_hash_defined:
798 case bfd_link_hash_defweak:
799 return h->root.u.def.section;
800
801 case bfd_link_hash_common:
802 return h->root.u.c.p->section;
803 }
804 }
805 }
806 else
807 {
808 if (!(elf_bad_symtab (abfd)
809 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
810 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
811 && sym->st_shndx != SHN_COMMON))
812 {
813 return bfd_section_from_elf_index (abfd, sym->st_shndx);
814 }
815 }
816
817 return NULL;
818 }
819
820 /* Update the got entry reference counts for the section being removed. */
821
822 static boolean
823 elf_m68k_gc_sweep_hook (abfd, info, sec, relocs)
824 bfd *abfd;
825 struct bfd_link_info *info;
826 asection *sec;
827 const Elf_Internal_Rela *relocs;
828 {
829 Elf_Internal_Shdr *symtab_hdr;
830 struct elf_link_hash_entry **sym_hashes;
831 bfd_signed_vma *local_got_refcounts;
832 const Elf_Internal_Rela *rel, *relend;
833 unsigned long r_symndx;
834 struct elf_link_hash_entry *h;
835 bfd *dynobj;
836 asection *sgot;
837 asection *srelgot;
838
839 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
840 sym_hashes = elf_sym_hashes (abfd);
841 local_got_refcounts = elf_local_got_refcounts (abfd);
842
843 dynobj = elf_hash_table (info)->dynobj;
844 if (dynobj == NULL)
845 return true;
846
847 sgot = bfd_get_section_by_name (dynobj, ".got");
848 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
849
850 relend = relocs + sec->reloc_count;
851 for (rel = relocs; rel < relend; rel++)
852 {
853 switch (ELF32_R_TYPE (rel->r_info))
854 {
855 case R_68K_GOT8:
856 case R_68K_GOT16:
857 case R_68K_GOT32:
858 case R_68K_GOT8O:
859 case R_68K_GOT16O:
860 case R_68K_GOT32O:
861 r_symndx = ELF32_R_SYM (rel->r_info);
862 if (r_symndx >= symtab_hdr->sh_info)
863 {
864 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
865 if (h->got.refcount > 0)
866 {
867 --h->got.refcount;
868 if (h->got.refcount == 0)
869 {
870 /* We don't need the .got entry any more. */
871 sgot->_raw_size -= 4;
872 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
873 }
874 }
875 }
876 else if (local_got_refcounts != NULL)
877 {
878 if (local_got_refcounts[r_symndx] > 0)
879 {
880 --local_got_refcounts[r_symndx];
881 if (local_got_refcounts[r_symndx] == 0)
882 {
883 /* We don't need the .got entry any more. */
884 sgot->_raw_size -= 4;
885 if (info->shared)
886 srelgot->_raw_size -= sizeof (Elf32_External_Rela);
887 }
888 }
889 }
890 break;
891
892 case R_68K_PLT8:
893 case R_68K_PLT16:
894 case R_68K_PLT32:
895 case R_68K_PLT8O:
896 case R_68K_PLT16O:
897 case R_68K_PLT32O:
898 case R_68K_PC8:
899 case R_68K_PC16:
900 case R_68K_PC32:
901 case R_68K_8:
902 case R_68K_16:
903 case R_68K_32:
904 r_symndx = ELF32_R_SYM (rel->r_info);
905 if (r_symndx >= symtab_hdr->sh_info)
906 {
907 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
908 if (h->plt.refcount > 0)
909 --h->plt.refcount;
910 }
911 break;
912
913 default:
914 break;
915 }
916 }
917
918 return true;
919 }
920
921 /* Adjust a symbol defined by a dynamic object and referenced by a
922 regular object. The current definition is in some section of the
923 dynamic object, but we're not including those sections. We have to
924 change the definition to something the rest of the link can
925 understand. */
926
927 static boolean
928 elf_m68k_adjust_dynamic_symbol (info, h)
929 struct bfd_link_info *info;
930 struct elf_link_hash_entry *h;
931 {
932 bfd *dynobj;
933 asection *s;
934 unsigned int power_of_two;
935
936 dynobj = elf_hash_table (info)->dynobj;
937
938 /* Make sure we know what is going on here. */
939 BFD_ASSERT (dynobj != NULL
940 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
941 || h->weakdef != NULL
942 || ((h->elf_link_hash_flags
943 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
944 && (h->elf_link_hash_flags
945 & ELF_LINK_HASH_REF_REGULAR) != 0
946 && (h->elf_link_hash_flags
947 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
948
949 /* If this is a function, put it in the procedure linkage table. We
950 will fill in the contents of the procedure linkage table later,
951 when we know the address of the .got section. */
952 if (h->type == STT_FUNC
953 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
954 {
955 if (! info->shared
956 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
957 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
958 /* We must always create the plt entry if it was referenced
959 by a PLTxxO relocation. In this case we already recorded
960 it as a dynamic symbol. */
961 && h->dynindx == -1)
962 {
963 /* This case can occur if we saw a PLTxx reloc in an input
964 file, but the symbol was never referred to by a dynamic
965 object. In such a case, we don't actually need to build
966 a procedure linkage table, and we can just do a PCxx
967 reloc instead. */
968 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
969 h->plt.offset = (bfd_vma) -1;
970 return true;
971 }
972
973 /* GC may have rendered this entry unused. */
974 if (h->plt.refcount <= 0)
975 {
976 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
977 h->plt.offset = (bfd_vma) -1;
978 return true;
979 }
980
981 /* Make sure this symbol is output as a dynamic symbol. */
982 if (h->dynindx == -1)
983 {
984 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
985 return false;
986 }
987
988 s = bfd_get_section_by_name (dynobj, ".plt");
989 BFD_ASSERT (s != NULL);
990
991 /* If this is the first .plt entry, make room for the special
992 first entry. */
993 if (s->_raw_size == 0)
994 {
995 if (CPU32_FLAG (dynobj))
996 s->_raw_size += PLT_CPU32_ENTRY_SIZE;
997 else
998 s->_raw_size += PLT_ENTRY_SIZE;
999 }
1000
1001 /* If this symbol is not defined in a regular file, and we are
1002 not generating a shared library, then set the symbol to this
1003 location in the .plt. This is required to make function
1004 pointers compare as equal between the normal executable and
1005 the shared library. */
1006 if (!info->shared
1007 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1008 {
1009 h->root.u.def.section = s;
1010 h->root.u.def.value = s->_raw_size;
1011 }
1012
1013 h->plt.offset = s->_raw_size;
1014
1015 /* Make room for this entry. */
1016 if (CPU32_FLAG (dynobj))
1017 s->_raw_size += PLT_CPU32_ENTRY_SIZE;
1018 else
1019 s->_raw_size += PLT_ENTRY_SIZE;
1020
1021 /* We also need to make an entry in the .got.plt section, which
1022 will be placed in the .got section by the linker script. */
1023
1024 s = bfd_get_section_by_name (dynobj, ".got.plt");
1025 BFD_ASSERT (s != NULL);
1026 s->_raw_size += 4;
1027
1028 /* We also need to make an entry in the .rela.plt section. */
1029
1030 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1031 BFD_ASSERT (s != NULL);
1032 s->_raw_size += sizeof (Elf32_External_Rela);
1033
1034 return true;
1035 }
1036
1037 /* Reinitialize the plt offset now that it is not used as a reference
1038 count any more. */
1039 h->plt.offset = (bfd_vma) -1;
1040
1041 /* If this is a weak symbol, and there is a real definition, the
1042 processor independent code will have arranged for us to see the
1043 real definition first, and we can just use the same value. */
1044 if (h->weakdef != NULL)
1045 {
1046 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1047 || h->weakdef->root.type == bfd_link_hash_defweak);
1048 h->root.u.def.section = h->weakdef->root.u.def.section;
1049 h->root.u.def.value = h->weakdef->root.u.def.value;
1050 return true;
1051 }
1052
1053 /* This is a reference to a symbol defined by a dynamic object which
1054 is not a function. */
1055
1056 /* If we are creating a shared library, we must presume that the
1057 only references to the symbol are via the global offset table.
1058 For such cases we need not do anything here; the relocations will
1059 be handled correctly by relocate_section. */
1060 if (info->shared)
1061 return true;
1062
1063 /* We must allocate the symbol in our .dynbss section, which will
1064 become part of the .bss section of the executable. There will be
1065 an entry for this symbol in the .dynsym section. The dynamic
1066 object will contain position independent code, so all references
1067 from the dynamic object to this symbol will go through the global
1068 offset table. The dynamic linker will use the .dynsym entry to
1069 determine the address it must put in the global offset table, so
1070 both the dynamic object and the regular object will refer to the
1071 same memory location for the variable. */
1072
1073 s = bfd_get_section_by_name (dynobj, ".dynbss");
1074 BFD_ASSERT (s != NULL);
1075
1076 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
1077 copy the initial value out of the dynamic object and into the
1078 runtime process image. We need to remember the offset into the
1079 .rela.bss section we are going to use. */
1080 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1081 {
1082 asection *srel;
1083
1084 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1085 BFD_ASSERT (srel != NULL);
1086 srel->_raw_size += sizeof (Elf32_External_Rela);
1087 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1088 }
1089
1090 /* We need to figure out the alignment required for this symbol. I
1091 have no idea how ELF linkers handle this. */
1092 power_of_two = bfd_log2 (h->size);
1093 if (power_of_two > 3)
1094 power_of_two = 3;
1095
1096 /* Apply the required alignment. */
1097 s->_raw_size = BFD_ALIGN (s->_raw_size,
1098 (bfd_size_type) (1 << power_of_two));
1099 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1100 {
1101 if (!bfd_set_section_alignment (dynobj, s, power_of_two))
1102 return false;
1103 }
1104
1105 /* Define the symbol as being at this point in the section. */
1106 h->root.u.def.section = s;
1107 h->root.u.def.value = s->_raw_size;
1108
1109 /* Increment the section size to make room for the symbol. */
1110 s->_raw_size += h->size;
1111
1112 return true;
1113 }
1114
1115 /* Set the sizes of the dynamic sections. */
1116
1117 static boolean
1118 elf_m68k_size_dynamic_sections (output_bfd, info)
1119 bfd *output_bfd ATTRIBUTE_UNUSED;
1120 struct bfd_link_info *info;
1121 {
1122 bfd *dynobj;
1123 asection *s;
1124 boolean plt;
1125 boolean relocs;
1126
1127 dynobj = elf_hash_table (info)->dynobj;
1128 BFD_ASSERT (dynobj != NULL);
1129
1130 if (elf_hash_table (info)->dynamic_sections_created)
1131 {
1132 /* Set the contents of the .interp section to the interpreter. */
1133 if (!info->shared)
1134 {
1135 s = bfd_get_section_by_name (dynobj, ".interp");
1136 BFD_ASSERT (s != NULL);
1137 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1138 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1139 }
1140 }
1141 else
1142 {
1143 /* We may have created entries in the .rela.got section.
1144 However, if we are not creating the dynamic sections, we will
1145 not actually use these entries. Reset the size of .rela.got,
1146 which will cause it to get stripped from the output file
1147 below. */
1148 s = bfd_get_section_by_name (dynobj, ".rela.got");
1149 if (s != NULL)
1150 s->_raw_size = 0;
1151 }
1152
1153 /* If this is a -Bsymbolic shared link, then we need to discard all PC
1154 relative relocs against symbols defined in a regular object. We
1155 allocated space for them in the check_relocs routine, but we will not
1156 fill them in in the relocate_section routine. */
1157 if (info->shared && info->symbolic)
1158 elf_m68k_link_hash_traverse (elf_m68k_hash_table (info),
1159 elf_m68k_discard_copies,
1160 (PTR) NULL);
1161
1162 /* The check_relocs and adjust_dynamic_symbol entry points have
1163 determined the sizes of the various dynamic sections. Allocate
1164 memory for them. */
1165 plt = false;
1166 relocs = false;
1167 for (s = dynobj->sections; s != NULL; s = s->next)
1168 {
1169 const char *name;
1170 boolean strip;
1171
1172 if ((s->flags & SEC_LINKER_CREATED) == 0)
1173 continue;
1174
1175 /* It's OK to base decisions on the section name, because none
1176 of the dynobj section names depend upon the input files. */
1177 name = bfd_get_section_name (dynobj, s);
1178
1179 strip = false;
1180
1181 if (strcmp (name, ".plt") == 0)
1182 {
1183 if (s->_raw_size == 0)
1184 {
1185 /* Strip this section if we don't need it; see the
1186 comment below. */
1187 strip = true;
1188 }
1189 else
1190 {
1191 /* Remember whether there is a PLT. */
1192 plt = true;
1193 }
1194 }
1195 else if (strncmp (name, ".rela", 5) == 0)
1196 {
1197 if (s->_raw_size == 0)
1198 {
1199 /* If we don't need this section, strip it from the
1200 output file. This is mostly to handle .rela.bss and
1201 .rela.plt. We must create both sections in
1202 create_dynamic_sections, because they must be created
1203 before the linker maps input sections to output
1204 sections. The linker does that before
1205 adjust_dynamic_symbol is called, and it is that
1206 function which decides whether anything needs to go
1207 into these sections. */
1208 strip = true;
1209 }
1210 else
1211 {
1212 relocs = true;
1213
1214 /* We use the reloc_count field as a counter if we need
1215 to copy relocs into the output file. */
1216 s->reloc_count = 0;
1217 }
1218 }
1219 else if (strncmp (name, ".got", 4) != 0)
1220 {
1221 /* It's not one of our sections, so don't allocate space. */
1222 continue;
1223 }
1224
1225 if (strip)
1226 {
1227 _bfd_strip_section_from_output (info, s);
1228 continue;
1229 }
1230
1231 /* Allocate memory for the section contents. */
1232 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
1233 Unused entries should be reclaimed before the section's contents
1234 are written out, but at the moment this does not happen. Thus in
1235 order to prevent writing out garbage, we initialise the section's
1236 contents to zero. */
1237 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1238 if (s->contents == NULL && s->_raw_size != 0)
1239 return false;
1240 }
1241
1242 if (elf_hash_table (info)->dynamic_sections_created)
1243 {
1244 /* Add some entries to the .dynamic section. We fill in the
1245 values later, in elf_m68k_finish_dynamic_sections, but we
1246 must add the entries now so that we get the correct size for
1247 the .dynamic section. The DT_DEBUG entry is filled in by the
1248 dynamic linker and used by the debugger. */
1249 #define add_dynamic_entry(TAG, VAL) \
1250 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1251
1252 if (!info->shared)
1253 {
1254 if (!add_dynamic_entry (DT_DEBUG, 0))
1255 return false;
1256 }
1257
1258 if (plt)
1259 {
1260 if (!add_dynamic_entry (DT_PLTGOT, 0)
1261 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1262 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1263 || !add_dynamic_entry (DT_JMPREL, 0))
1264 return false;
1265 }
1266
1267 if (relocs)
1268 {
1269 if (!add_dynamic_entry (DT_RELA, 0)
1270 || !add_dynamic_entry (DT_RELASZ, 0)
1271 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1272 return false;
1273 }
1274
1275 if ((info->flags & DF_TEXTREL) != 0)
1276 {
1277 if (!add_dynamic_entry (DT_TEXTREL, 0))
1278 return false;
1279 }
1280 }
1281 #undef add_dynamic_entry
1282
1283 return true;
1284 }
1285
1286 /* This function is called via elf_m68k_link_hash_traverse if we are
1287 creating a shared object with -Bsymbolic. It discards the space
1288 allocated to copy PC relative relocs against symbols which are defined
1289 in regular objects. We allocated space for them in the check_relocs
1290 routine, but we won't fill them in in the relocate_section routine. */
1291
1292 static boolean
1293 elf_m68k_discard_copies (h, ignore)
1294 struct elf_m68k_link_hash_entry *h;
1295 PTR ignore ATTRIBUTE_UNUSED;
1296 {
1297 struct elf_m68k_pcrel_relocs_copied *s;
1298
1299 /* We only discard relocs for symbols defined in a regular object. */
1300 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1301 return true;
1302
1303 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1304 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rela);
1305
1306 return true;
1307 }
1308
1309 /* Relocate an M68K ELF section. */
1310
1311 static boolean
1312 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
1313 contents, relocs, local_syms, local_sections)
1314 bfd *output_bfd;
1315 struct bfd_link_info *info;
1316 bfd *input_bfd;
1317 asection *input_section;
1318 bfd_byte *contents;
1319 Elf_Internal_Rela *relocs;
1320 Elf_Internal_Sym *local_syms;
1321 asection **local_sections;
1322 {
1323 bfd *dynobj;
1324 Elf_Internal_Shdr *symtab_hdr;
1325 struct elf_link_hash_entry **sym_hashes;
1326 bfd_vma *local_got_offsets;
1327 asection *sgot;
1328 asection *splt;
1329 asection *sreloc;
1330 Elf_Internal_Rela *rel;
1331 Elf_Internal_Rela *relend;
1332
1333 dynobj = elf_hash_table (info)->dynobj;
1334 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1335 sym_hashes = elf_sym_hashes (input_bfd);
1336 local_got_offsets = elf_local_got_offsets (input_bfd);
1337
1338 sgot = NULL;
1339 splt = NULL;
1340 sreloc = NULL;
1341
1342 rel = relocs;
1343 relend = relocs + input_section->reloc_count;
1344 for (; rel < relend; rel++)
1345 {
1346 int r_type;
1347 reloc_howto_type *howto;
1348 unsigned long r_symndx;
1349 struct elf_link_hash_entry *h;
1350 Elf_Internal_Sym *sym;
1351 asection *sec;
1352 bfd_vma relocation;
1353 bfd_reloc_status_type r;
1354
1355 r_type = ELF32_R_TYPE (rel->r_info);
1356 if (r_type < 0 || r_type >= (int) R_68K_max)
1357 {
1358 bfd_set_error (bfd_error_bad_value);
1359 return false;
1360 }
1361 howto = howto_table + r_type;
1362
1363 r_symndx = ELF32_R_SYM (rel->r_info);
1364
1365 if (info->relocateable)
1366 {
1367 /* This is a relocateable link. We don't have to change
1368 anything, unless the reloc is against a section symbol,
1369 in which case we have to adjust according to where the
1370 section symbol winds up in the output section. */
1371 if (r_symndx < symtab_hdr->sh_info)
1372 {
1373 sym = local_syms + r_symndx;
1374 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1375 {
1376 sec = local_sections[r_symndx];
1377 rel->r_addend += sec->output_offset + sym->st_value;
1378 }
1379 }
1380
1381 continue;
1382 }
1383
1384 /* This is a final link. */
1385 h = NULL;
1386 sym = NULL;
1387 sec = NULL;
1388 if (r_symndx < symtab_hdr->sh_info)
1389 {
1390 sym = local_syms + r_symndx;
1391 sec = local_sections[r_symndx];
1392 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1393 }
1394 else
1395 {
1396 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1397 while (h->root.type == bfd_link_hash_indirect
1398 || h->root.type == bfd_link_hash_warning)
1399 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1400 if (h->root.type == bfd_link_hash_defined
1401 || h->root.type == bfd_link_hash_defweak)
1402 {
1403 sec = h->root.u.def.section;
1404 if (((r_type == R_68K_PLT8
1405 || r_type == R_68K_PLT16
1406 || r_type == R_68K_PLT32
1407 || r_type == R_68K_PLT8O
1408 || r_type == R_68K_PLT16O
1409 || r_type == R_68K_PLT32O)
1410 && h->plt.offset != (bfd_vma) -1
1411 && elf_hash_table (info)->dynamic_sections_created)
1412 || ((r_type == R_68K_GOT8O
1413 || r_type == R_68K_GOT16O
1414 || r_type == R_68K_GOT32O
1415 || ((r_type == R_68K_GOT8
1416 || r_type == R_68K_GOT16
1417 || r_type == R_68K_GOT32)
1418 && strcmp (h->root.root.string,
1419 "_GLOBAL_OFFSET_TABLE_") != 0))
1420 && elf_hash_table (info)->dynamic_sections_created
1421 && (! info->shared
1422 || (! info->symbolic && h->dynindx != -1)
1423 || (h->elf_link_hash_flags
1424 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1425 || (info->shared
1426 && ((! info->symbolic && h->dynindx != -1)
1427 || (h->elf_link_hash_flags
1428 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1429 && ((input_section->flags & SEC_ALLOC) != 0
1430 /* DWARF will emit R_68K_32 relocations in its
1431 sections against symbols defined externally
1432 in shared libraries. We can't do anything
1433 with them here. */
1434 || ((input_section->flags & SEC_DEBUGGING) != 0
1435 && (h->elf_link_hash_flags
1436 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1437 && (r_type == R_68K_8
1438 || r_type == R_68K_16
1439 || r_type == R_68K_32
1440 || r_type == R_68K_PC8
1441 || r_type == R_68K_PC16
1442 || r_type == R_68K_PC32)))
1443 {
1444 /* In these cases, we don't need the relocation
1445 value. We check specially because in some
1446 obscure cases sec->output_section will be NULL. */
1447 relocation = 0;
1448 }
1449 else
1450 relocation = (h->root.u.def.value
1451 + sec->output_section->vma
1452 + sec->output_offset);
1453 }
1454 else if (h->root.type == bfd_link_hash_undefweak)
1455 relocation = 0;
1456 else if (info->shared
1457 && (!info->symbolic || info->allow_shlib_undefined)
1458 && !info->no_undefined
1459 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1460 relocation = 0;
1461 else
1462 {
1463 if (!(info->callbacks->undefined_symbol
1464 (info, h->root.root.string, input_bfd,
1465 input_section, rel->r_offset,
1466 (!info->shared || info->no_undefined
1467 || ELF_ST_VISIBILITY (h->other)))))
1468 return false;
1469 relocation = 0;
1470 }
1471 }
1472
1473 switch (r_type)
1474 {
1475 case R_68K_GOT8:
1476 case R_68K_GOT16:
1477 case R_68K_GOT32:
1478 /* Relocation is to the address of the entry for this symbol
1479 in the global offset table. */
1480 if (h != NULL
1481 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1482 break;
1483 /* Fall through. */
1484 case R_68K_GOT8O:
1485 case R_68K_GOT16O:
1486 case R_68K_GOT32O:
1487 /* Relocation is the offset of the entry for this symbol in
1488 the global offset table. */
1489
1490 {
1491 bfd_vma off;
1492
1493 if (sgot == NULL)
1494 {
1495 sgot = bfd_get_section_by_name (dynobj, ".got");
1496 BFD_ASSERT (sgot != NULL);
1497 }
1498
1499 if (h != NULL)
1500 {
1501 off = h->got.offset;
1502 BFD_ASSERT (off != (bfd_vma) -1);
1503
1504 if (!elf_hash_table (info)->dynamic_sections_created
1505 || (info->shared
1506 && (info->symbolic || h->dynindx == -1)
1507 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1508 {
1509 /* This is actually a static link, or it is a
1510 -Bsymbolic link and the symbol is defined
1511 locally, or the symbol was forced to be local
1512 because of a version file.. We must initialize
1513 this entry in the global offset table. Since
1514 the offset must always be a multiple of 4, we
1515 use the least significant bit to record whether
1516 we have initialized it already.
1517
1518 When doing a dynamic link, we create a .rela.got
1519 relocation entry to initialize the value. This
1520 is done in the finish_dynamic_symbol routine. */
1521 if ((off & 1) != 0)
1522 off &= ~1;
1523 else
1524 {
1525 bfd_put_32 (output_bfd, relocation,
1526 sgot->contents + off);
1527 h->got.offset |= 1;
1528 }
1529 }
1530 }
1531 else
1532 {
1533 BFD_ASSERT (local_got_offsets != NULL
1534 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1535
1536 off = local_got_offsets[r_symndx];
1537
1538 /* The offset must always be a multiple of 4. We use
1539 the least significant bit to record whether we have
1540 already generated the necessary reloc. */
1541 if ((off & 1) != 0)
1542 off &= ~1;
1543 else
1544 {
1545 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1546
1547 if (info->shared)
1548 {
1549 asection *srelgot;
1550 Elf_Internal_Rela outrel;
1551
1552 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1553 BFD_ASSERT (srelgot != NULL);
1554
1555 outrel.r_offset = (sgot->output_section->vma
1556 + sgot->output_offset
1557 + off);
1558 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1559 outrel.r_addend = relocation;
1560 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1561 (((Elf32_External_Rela *)
1562 srelgot->contents)
1563 + srelgot->reloc_count));
1564 ++srelgot->reloc_count;
1565 }
1566
1567 local_got_offsets[r_symndx] |= 1;
1568 }
1569 }
1570
1571 relocation = sgot->output_offset + off;
1572 if (r_type == R_68K_GOT8O
1573 || r_type == R_68K_GOT16O
1574 || r_type == R_68K_GOT32O)
1575 {
1576 /* This relocation does not use the addend. */
1577 rel->r_addend = 0;
1578 }
1579 else
1580 relocation += sgot->output_section->vma;
1581 }
1582 break;
1583
1584 case R_68K_PLT8:
1585 case R_68K_PLT16:
1586 case R_68K_PLT32:
1587 /* Relocation is to the entry for this symbol in the
1588 procedure linkage table. */
1589
1590 /* Resolve a PLTxx reloc against a local symbol directly,
1591 without using the procedure linkage table. */
1592 if (h == NULL)
1593 break;
1594
1595 if (h->plt.offset == (bfd_vma) -1
1596 || !elf_hash_table (info)->dynamic_sections_created)
1597 {
1598 /* We didn't make a PLT entry for this symbol. This
1599 happens when statically linking PIC code, or when
1600 using -Bsymbolic. */
1601 break;
1602 }
1603
1604 if (splt == NULL)
1605 {
1606 splt = bfd_get_section_by_name (dynobj, ".plt");
1607 BFD_ASSERT (splt != NULL);
1608 }
1609
1610 relocation = (splt->output_section->vma
1611 + splt->output_offset
1612 + h->plt.offset);
1613 break;
1614
1615 case R_68K_PLT8O:
1616 case R_68K_PLT16O:
1617 case R_68K_PLT32O:
1618 /* Relocation is the offset of the entry for this symbol in
1619 the procedure linkage table. */
1620 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
1621
1622 if (splt == NULL)
1623 {
1624 splt = bfd_get_section_by_name (dynobj, ".plt");
1625 BFD_ASSERT (splt != NULL);
1626 }
1627
1628 relocation = h->plt.offset;
1629
1630 /* This relocation does not use the addend. */
1631 rel->r_addend = 0;
1632
1633 break;
1634
1635 case R_68K_PC8:
1636 case R_68K_PC16:
1637 case R_68K_PC32:
1638 if (h == NULL)
1639 break;
1640 /* Fall through. */
1641 case R_68K_8:
1642 case R_68K_16:
1643 case R_68K_32:
1644 if (info->shared
1645 && r_symndx != 0
1646 && (input_section->flags & SEC_ALLOC) != 0
1647 && ((r_type != R_68K_PC8
1648 && r_type != R_68K_PC16
1649 && r_type != R_68K_PC32)
1650 || (!info->symbolic
1651 || (h->elf_link_hash_flags
1652 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1653 {
1654 Elf_Internal_Rela outrel;
1655 boolean skip, relocate;
1656
1657 /* When generating a shared object, these relocations
1658 are copied into the output file to be resolved at run
1659 time. */
1660
1661 if (sreloc == NULL)
1662 {
1663 const char *name;
1664
1665 name = (bfd_elf_string_from_elf_section
1666 (input_bfd,
1667 elf_elfheader (input_bfd)->e_shstrndx,
1668 elf_section_data (input_section)->rel_hdr.sh_name));
1669 if (name == NULL)
1670 return false;
1671
1672 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1673 && strcmp (bfd_get_section_name (input_bfd,
1674 input_section),
1675 name + 5) == 0);
1676
1677 sreloc = bfd_get_section_by_name (dynobj, name);
1678 BFD_ASSERT (sreloc != NULL);
1679 }
1680
1681 skip = false;
1682
1683 if (elf_section_data (input_section)->stab_info == NULL)
1684 outrel.r_offset = rel->r_offset;
1685 else
1686 {
1687 bfd_vma off;
1688
1689 off = (_bfd_stab_section_offset
1690 (output_bfd, &elf_hash_table (info)->stab_info,
1691 input_section,
1692 &elf_section_data (input_section)->stab_info,
1693 rel->r_offset));
1694 if (off == (bfd_vma) -1)
1695 skip = true;
1696 outrel.r_offset = off;
1697 }
1698
1699 outrel.r_offset += (input_section->output_section->vma
1700 + input_section->output_offset);
1701
1702 if (skip)
1703 {
1704 memset (&outrel, 0, sizeof outrel);
1705 relocate = false;
1706 }
1707 /* h->dynindx may be -1 if the symbol was marked to
1708 become local. */
1709 else if (h != NULL
1710 && ((! info->symbolic && h->dynindx != -1)
1711 || (h->elf_link_hash_flags
1712 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1713 {
1714 BFD_ASSERT (h->dynindx != -1);
1715 relocate = false;
1716 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1717 outrel.r_addend = relocation + rel->r_addend;
1718 }
1719 else
1720 {
1721 if (r_type == R_68K_32)
1722 {
1723 relocate = true;
1724 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1725 outrel.r_addend = relocation + rel->r_addend;
1726 }
1727 else
1728 {
1729 long indx;
1730
1731 if (h == NULL)
1732 sec = local_sections[r_symndx];
1733 else
1734 {
1735 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1736 || (h->root.type
1737 == bfd_link_hash_defweak));
1738 sec = h->root.u.def.section;
1739 }
1740 if (sec != NULL && bfd_is_abs_section (sec))
1741 indx = 0;
1742 else if (sec == NULL || sec->owner == NULL)
1743 {
1744 bfd_set_error (bfd_error_bad_value);
1745 return false;
1746 }
1747 else
1748 {
1749 asection *osec;
1750
1751 osec = sec->output_section;
1752 indx = elf_section_data (osec)->dynindx;
1753 BFD_ASSERT (indx > 0);
1754 }
1755
1756 relocate = false;
1757 outrel.r_info = ELF32_R_INFO (indx, r_type);
1758 outrel.r_addend = relocation + rel->r_addend;
1759 }
1760 }
1761
1762 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1763 (((Elf32_External_Rela *)
1764 sreloc->contents)
1765 + sreloc->reloc_count));
1766 ++sreloc->reloc_count;
1767
1768 /* This reloc will be computed at runtime, so there's no
1769 need to do anything now, except for R_68K_32
1770 relocations that have been turned into
1771 R_68K_RELATIVE. */
1772 if (!relocate)
1773 continue;
1774 }
1775
1776 break;
1777
1778 case R_68K_GNU_VTINHERIT:
1779 case R_68K_GNU_VTENTRY:
1780 /* These are no-ops in the end. */
1781 continue;
1782
1783 default:
1784 break;
1785 }
1786
1787 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1788 contents, rel->r_offset,
1789 relocation, rel->r_addend);
1790
1791 if (r != bfd_reloc_ok)
1792 {
1793 switch (r)
1794 {
1795 default:
1796 case bfd_reloc_outofrange:
1797 abort ();
1798 case bfd_reloc_overflow:
1799 {
1800 const char *name;
1801
1802 if (h != NULL)
1803 name = h->root.root.string;
1804 else
1805 {
1806 name = bfd_elf_string_from_elf_section (input_bfd,
1807 symtab_hdr->sh_link,
1808 sym->st_name);
1809 if (name == NULL)
1810 return false;
1811 if (*name == '\0')
1812 name = bfd_section_name (input_bfd, sec);
1813 }
1814 if (!(info->callbacks->reloc_overflow
1815 (info, name, howto->name, (bfd_vma) 0,
1816 input_bfd, input_section, rel->r_offset)))
1817 return false;
1818 }
1819 break;
1820 }
1821 }
1822 }
1823
1824 return true;
1825 }
1826
1827 /* Finish up dynamic symbol handling. We set the contents of various
1828 dynamic sections here. */
1829
1830 static boolean
1831 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
1832 bfd *output_bfd;
1833 struct bfd_link_info *info;
1834 struct elf_link_hash_entry *h;
1835 Elf_Internal_Sym *sym;
1836 {
1837 bfd *dynobj;
1838 int plt_off1, plt_off2, plt_off3;
1839
1840 dynobj = elf_hash_table (info)->dynobj;
1841
1842 if (h->plt.offset != (bfd_vma) -1)
1843 {
1844 asection *splt;
1845 asection *sgot;
1846 asection *srela;
1847 bfd_vma plt_index;
1848 bfd_vma got_offset;
1849 Elf_Internal_Rela rela;
1850
1851 /* This symbol has an entry in the procedure linkage table. Set
1852 it up. */
1853
1854 BFD_ASSERT (h->dynindx != -1);
1855
1856 splt = bfd_get_section_by_name (dynobj, ".plt");
1857 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1858 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1859 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1860
1861 /* Get the index in the procedure linkage table which
1862 corresponds to this symbol. This is the index of this symbol
1863 in all the symbols for which we are making plt entries. The
1864 first entry in the procedure linkage table is reserved. */
1865 if ( CPU32_FLAG (output_bfd))
1866 plt_index = h->plt.offset / PLT_CPU32_ENTRY_SIZE - 1;
1867 else
1868 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1869
1870 /* Get the offset into the .got table of the entry that
1871 corresponds to this function. Each .got entry is 4 bytes.
1872 The first three are reserved. */
1873 got_offset = (plt_index + 3) * 4;
1874
1875 if ( CPU32_FLAG (output_bfd))
1876 {
1877 /* Fill in the entry in the procedure linkage table. */
1878 memcpy (splt->contents + h->plt.offset, elf_cpu32_plt_entry,
1879 PLT_CPU32_ENTRY_SIZE);
1880 plt_off1 = 4;
1881 plt_off2 = 12;
1882 plt_off3 = 18;
1883 }
1884 else
1885 {
1886 /* Fill in the entry in the procedure linkage table. */
1887 memcpy (splt->contents + h->plt.offset, elf_m68k_plt_entry,
1888 PLT_ENTRY_SIZE);
1889 plt_off1 = 4;
1890 plt_off2 = 10;
1891 plt_off3 = 16;
1892 }
1893
1894 /* The offset is relative to the first extension word. */
1895 bfd_put_32 (output_bfd,
1896 (sgot->output_section->vma
1897 + sgot->output_offset
1898 + got_offset
1899 - (splt->output_section->vma
1900 + h->plt.offset + 2)),
1901 splt->contents + h->plt.offset + plt_off1);
1902
1903 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
1904 splt->contents + h->plt.offset + plt_off2);
1905 bfd_put_32 (output_bfd, - (h->plt.offset + plt_off3),
1906 splt->contents + h->plt.offset + plt_off3);
1907
1908 /* Fill in the entry in the global offset table. */
1909 bfd_put_32 (output_bfd,
1910 (splt->output_section->vma
1911 + splt->output_offset
1912 + h->plt.offset
1913 + 8),
1914 sgot->contents + got_offset);
1915
1916 /* Fill in the entry in the .rela.plt section. */
1917 rela.r_offset = (sgot->output_section->vma
1918 + sgot->output_offset
1919 + got_offset);
1920 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
1921 rela.r_addend = 0;
1922 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1923 ((Elf32_External_Rela *) srela->contents
1924 + plt_index));
1925
1926 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1927 {
1928 /* Mark the symbol as undefined, rather than as defined in
1929 the .plt section. Leave the value alone. */
1930 sym->st_shndx = SHN_UNDEF;
1931 }
1932 }
1933
1934 if (h->got.offset != (bfd_vma) -1)
1935 {
1936 asection *sgot;
1937 asection *srela;
1938 Elf_Internal_Rela rela;
1939
1940 /* This symbol has an entry in the global offset table. Set it
1941 up. */
1942
1943 sgot = bfd_get_section_by_name (dynobj, ".got");
1944 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1945 BFD_ASSERT (sgot != NULL && srela != NULL);
1946
1947 rela.r_offset = (sgot->output_section->vma
1948 + sgot->output_offset
1949 + (h->got.offset &~ (bfd_vma) 1));
1950
1951 /* If this is a -Bsymbolic link, and the symbol is defined
1952 locally, we just want to emit a RELATIVE reloc. Likewise if
1953 the symbol was forced to be local because of a version file.
1954 The entry in the global offset table will already have been
1955 initialized in the relocate_section function. */
1956 if (info->shared
1957 && (info->symbolic || h->dynindx == -1)
1958 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1959 {
1960 rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
1961 rela.r_addend = bfd_get_signed_32 (output_bfd,
1962 (sgot->contents
1963 + (h->got.offset &~ (bfd_vma) 1)));
1964 }
1965 else
1966 {
1967 bfd_put_32 (output_bfd, (bfd_vma) 0,
1968 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
1969 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
1970 rela.r_addend = 0;
1971 }
1972
1973 bfd_elf32_swap_reloca_out (output_bfd, &rela,
1974 ((Elf32_External_Rela *) srela->contents
1975 + srela->reloc_count));
1976 ++srela->reloc_count;
1977 }
1978
1979 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1980 {
1981 asection *s;
1982 Elf_Internal_Rela rela;
1983
1984 /* This symbol needs a copy reloc. Set it up. */
1985
1986 BFD_ASSERT (h->dynindx != -1
1987 && (h->root.type == bfd_link_hash_defined
1988 || h->root.type == bfd_link_hash_defweak));
1989
1990 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1991 ".rela.bss");
1992 BFD_ASSERT (s != NULL);
1993
1994 rela.r_offset = (h->root.u.def.value
1995 + h->root.u.def.section->output_section->vma
1996 + h->root.u.def.section->output_offset);
1997 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
1998 rela.r_addend = 0;
1999 bfd_elf32_swap_reloca_out (output_bfd, &rela,
2000 ((Elf32_External_Rela *) s->contents
2001 + s->reloc_count));
2002 ++s->reloc_count;
2003 }
2004
2005 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2006 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2007 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2008 sym->st_shndx = SHN_ABS;
2009
2010 return true;
2011 }
2012
2013 /* Finish up the dynamic sections. */
2014
2015 static boolean
2016 elf_m68k_finish_dynamic_sections (output_bfd, info)
2017 bfd *output_bfd;
2018 struct bfd_link_info *info;
2019 {
2020 bfd *dynobj;
2021 asection *sgot;
2022 asection *sdyn;
2023
2024 dynobj = elf_hash_table (info)->dynobj;
2025
2026 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
2027 BFD_ASSERT (sgot != NULL);
2028 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2029
2030 if (elf_hash_table (info)->dynamic_sections_created)
2031 {
2032 asection *splt;
2033 Elf32_External_Dyn *dyncon, *dynconend;
2034
2035 splt = bfd_get_section_by_name (dynobj, ".plt");
2036 BFD_ASSERT (splt != NULL && sdyn != NULL);
2037
2038 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2039 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2040 for (; dyncon < dynconend; dyncon++)
2041 {
2042 Elf_Internal_Dyn dyn;
2043 const char *name;
2044 asection *s;
2045
2046 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2047
2048 switch (dyn.d_tag)
2049 {
2050 default:
2051 break;
2052
2053 case DT_PLTGOT:
2054 name = ".got";
2055 goto get_vma;
2056 case DT_JMPREL:
2057 name = ".rela.plt";
2058 get_vma:
2059 s = bfd_get_section_by_name (output_bfd, name);
2060 BFD_ASSERT (s != NULL);
2061 dyn.d_un.d_ptr = s->vma;
2062 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2063 break;
2064
2065 case DT_PLTRELSZ:
2066 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2067 BFD_ASSERT (s != NULL);
2068 if (s->_cooked_size != 0)
2069 dyn.d_un.d_val = s->_cooked_size;
2070 else
2071 dyn.d_un.d_val = s->_raw_size;
2072 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2073 break;
2074
2075 case DT_RELASZ:
2076 /* The procedure linkage table relocs (DT_JMPREL) should
2077 not be included in the overall relocs (DT_RELA).
2078 Therefore, we override the DT_RELASZ entry here to
2079 make it not include the JMPREL relocs. Since the
2080 linker script arranges for .rela.plt to follow all
2081 other relocation sections, we don't have to worry
2082 about changing the DT_RELA entry. */
2083 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2084 if (s != NULL)
2085 {
2086 if (s->_cooked_size != 0)
2087 dyn.d_un.d_val -= s->_cooked_size;
2088 else
2089 dyn.d_un.d_val -= s->_raw_size;
2090 }
2091 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2092 break;
2093 }
2094 }
2095
2096 /* Fill in the first entry in the procedure linkage table. */
2097 if (splt->_raw_size > 0)
2098 {
2099 if (!CPU32_FLAG (output_bfd))
2100 {
2101 memcpy (splt->contents, elf_m68k_plt0_entry, PLT_ENTRY_SIZE);
2102 bfd_put_32 (output_bfd,
2103 (sgot->output_section->vma
2104 + sgot->output_offset + 4
2105 - (splt->output_section->vma + 2)),
2106 splt->contents + 4);
2107 bfd_put_32 (output_bfd,
2108 (sgot->output_section->vma
2109 + sgot->output_offset + 8
2110 - (splt->output_section->vma + 10)),
2111 splt->contents + 12);
2112 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2113 = PLT_ENTRY_SIZE;
2114 }
2115 else /* cpu32 */
2116 {
2117 memcpy (splt->contents, elf_cpu32_plt0_entry, PLT_CPU32_ENTRY_SIZE);
2118 bfd_put_32 (output_bfd,
2119 (sgot->output_section->vma
2120 + sgot->output_offset + 4
2121 - (splt->output_section->vma + 2)),
2122 splt->contents + 4);
2123 bfd_put_32 (output_bfd,
2124 (sgot->output_section->vma
2125 + sgot->output_offset + 8
2126 - (splt->output_section->vma + 10)),
2127 splt->contents + 12);
2128 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2129 = PLT_CPU32_ENTRY_SIZE;
2130 }
2131 }
2132 }
2133
2134 /* Fill in the first three entries in the global offset table. */
2135 if (sgot->_raw_size > 0)
2136 {
2137 if (sdyn == NULL)
2138 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
2139 else
2140 bfd_put_32 (output_bfd,
2141 sdyn->output_section->vma + sdyn->output_offset,
2142 sgot->contents);
2143 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
2144 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2145 }
2146
2147 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
2148
2149 return true;
2150 }
2151
2152 /* Given a .data section and a .emreloc in-memory section, store
2153 relocation information into the .emreloc section which can be
2154 used at runtime to relocate the section. This is called by the
2155 linker when the --embedded-relocs switch is used. This is called
2156 after the add_symbols entry point has been called for all the
2157 objects, and before the final_link entry point is called. */
2158
2159 boolean
2160 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
2161 bfd *abfd;
2162 struct bfd_link_info *info;
2163 asection *datasec;
2164 asection *relsec;
2165 char **errmsg;
2166 {
2167 Elf_Internal_Shdr *symtab_hdr;
2168 Elf32_External_Sym *extsyms;
2169 Elf32_External_Sym *free_extsyms = NULL;
2170 Elf_Internal_Rela *internal_relocs;
2171 Elf_Internal_Rela *free_relocs = NULL;
2172 Elf_Internal_Rela *irel, *irelend;
2173 bfd_byte *p;
2174 bfd_size_type amt;
2175
2176 BFD_ASSERT (! info->relocateable);
2177
2178 *errmsg = NULL;
2179
2180 if (datasec->reloc_count == 0)
2181 return true;
2182
2183 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2184 /* Read this BFD's symbols if we haven't done so already, or get the cached
2185 copy if it exists. */
2186 if (symtab_hdr->contents != NULL)
2187 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
2188 else
2189 {
2190 /* Go get them off disk. */
2191 if (info->keep_memory)
2192 extsyms = (Elf32_External_Sym *) bfd_alloc (abfd, symtab_hdr->sh_size);
2193 else
2194 extsyms = (Elf32_External_Sym *) bfd_malloc (symtab_hdr->sh_size);
2195 if (extsyms == NULL)
2196 goto error_return;
2197 if (! info->keep_memory)
2198 free_extsyms = extsyms;
2199 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2200 || (bfd_bread (extsyms, symtab_hdr->sh_size, abfd)
2201 != symtab_hdr->sh_size))
2202 goto error_return;
2203 if (info->keep_memory)
2204 symtab_hdr->contents = (unsigned char *) extsyms;
2205 }
2206
2207 /* Get a copy of the native relocations. */
2208 internal_relocs = (_bfd_elf32_link_read_relocs
2209 (abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
2210 info->keep_memory));
2211 if (internal_relocs == NULL)
2212 goto error_return;
2213 if (! info->keep_memory)
2214 free_relocs = internal_relocs;
2215
2216 amt = (bfd_size_type) datasec->reloc_count * 12;
2217 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
2218 if (relsec->contents == NULL)
2219 goto error_return;
2220
2221 p = relsec->contents;
2222
2223 irelend = internal_relocs + datasec->reloc_count;
2224 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
2225 {
2226 asection *targetsec;
2227
2228 /* We are going to write a four byte longword into the runtime
2229 reloc section. The longword will be the address in the data
2230 section which must be relocated. It is followed by the name
2231 of the target section NUL-padded or truncated to 8
2232 characters. */
2233
2234 /* We can only relocate absolute longword relocs at run time. */
2235 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
2236 {
2237 *errmsg = _("unsupported reloc type");
2238 bfd_set_error (bfd_error_bad_value);
2239 goto error_return;
2240 }
2241
2242 /* Get the target section referred to by the reloc. */
2243 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2244 {
2245 Elf_Internal_Sym isym;
2246
2247 /* A local symbol. */
2248 bfd_elf32_swap_symbol_in (abfd,
2249 extsyms + ELF32_R_SYM (irel->r_info),
2250 &isym);
2251
2252 targetsec = bfd_section_from_elf_index (abfd, isym.st_shndx);
2253 }
2254 else
2255 {
2256 unsigned long indx;
2257 struct elf_link_hash_entry *h;
2258
2259 /* An external symbol. */
2260 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2261 h = elf_sym_hashes (abfd)[indx];
2262 BFD_ASSERT (h != NULL);
2263 if (h->root.type == bfd_link_hash_defined
2264 || h->root.type == bfd_link_hash_defweak)
2265 targetsec = h->root.u.def.section;
2266 else
2267 targetsec = NULL;
2268 }
2269
2270 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
2271 memset (p + 4, 0, 8);
2272 if (targetsec != NULL)
2273 strncpy (p + 4, targetsec->output_section->name, 8);
2274 }
2275
2276 if (free_extsyms != NULL)
2277 free (free_extsyms);
2278 if (free_relocs != NULL)
2279 free (free_relocs);
2280 return true;
2281
2282 error_return:
2283 if (free_extsyms != NULL)
2284 free (free_extsyms);
2285 if (free_relocs != NULL)
2286 free (free_relocs);
2287 return false;
2288 }
2289
2290 static enum elf_reloc_type_class
2291 elf32_m68k_reloc_type_class (rela)
2292 const Elf_Internal_Rela *rela;
2293 {
2294 switch ((int) ELF32_R_TYPE (rela->r_info))
2295 {
2296 case R_68K_RELATIVE:
2297 return reloc_class_relative;
2298 case R_68K_JMP_SLOT:
2299 return reloc_class_plt;
2300 case R_68K_COPY:
2301 return reloc_class_copy;
2302 default:
2303 return reloc_class_normal;
2304 }
2305 }
2306
2307 #define TARGET_BIG_SYM bfd_elf32_m68k_vec
2308 #define TARGET_BIG_NAME "elf32-m68k"
2309 #define ELF_MACHINE_CODE EM_68K
2310 #define ELF_MAXPAGESIZE 0x2000
2311 #define elf_backend_create_dynamic_sections \
2312 _bfd_elf_create_dynamic_sections
2313 #define bfd_elf32_bfd_link_hash_table_create \
2314 elf_m68k_link_hash_table_create
2315 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2316
2317 #define elf_backend_check_relocs elf_m68k_check_relocs
2318 #define elf_backend_adjust_dynamic_symbol \
2319 elf_m68k_adjust_dynamic_symbol
2320 #define elf_backend_size_dynamic_sections \
2321 elf_m68k_size_dynamic_sections
2322 #define elf_backend_relocate_section elf_m68k_relocate_section
2323 #define elf_backend_finish_dynamic_symbol \
2324 elf_m68k_finish_dynamic_symbol
2325 #define elf_backend_finish_dynamic_sections \
2326 elf_m68k_finish_dynamic_sections
2327 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
2328 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
2329 #define bfd_elf32_bfd_copy_private_bfd_data \
2330 elf32_m68k_copy_private_bfd_data
2331 #define bfd_elf32_bfd_merge_private_bfd_data \
2332 elf32_m68k_merge_private_bfd_data
2333 #define bfd_elf32_bfd_set_private_flags \
2334 elf32_m68k_set_private_flags
2335 #define bfd_elf32_bfd_print_private_bfd_data \
2336 elf32_m68k_print_private_bfd_data
2337 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
2338
2339 #define elf_backend_can_gc_sections 1
2340 #define elf_backend_can_refcount 1
2341 #define elf_backend_want_got_plt 1
2342 #define elf_backend_plt_readonly 1
2343 #define elf_backend_want_plt_sym 0
2344 #define elf_backend_got_header_size 12
2345
2346 #include "elf32-target.h"
This page took 0.13545 seconds and 5 git commands to generate.