* config/obj-bout.c (obj_crawl_symbol_chain): Don't take
[deliverable/binutils-gdb.git] / bfd / elf32-mips.c
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
31
32 #include "bfd.h"
33 #include "sysdep.h"
34 #include "libbfd.h"
35 #include "bfdlink.h"
36 #include "genlink.h"
37 #include "elf-bfd.h"
38 #include "elf/mips.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
48
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
51
52 struct mips_got_info
53 {
54 /* The global symbol in the GOT with the lowest index in the dynamic
55 symbol table. */
56 struct elf_link_hash_entry *global_gotsym;
57 /* The number of global .got entries. */
58 unsigned int global_gotno;
59 /* The number of local .got entries. */
60 unsigned int local_gotno;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno;
63 };
64
65 /* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
67
68 struct mips_elf_link_hash_entry
69 {
70 struct elf_link_hash_entry root;
71
72 /* External symbol information. */
73 EXTR esym;
74
75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
76 this symbol. */
77 unsigned int possibly_dynamic_relocs;
78
79 /* The index of the first dynamic relocation (in the .rel.dyn
80 section) against this symbol. */
81 unsigned int min_dyn_reloc_index;
82
83 /* If there is a stub that 32 bit functions should use to call this
84 16 bit function, this points to the section containing the stub. */
85 asection *fn_stub;
86
87 /* Whether we need the fn_stub; this is set if this symbol appears
88 in any relocs other than a 16 bit call. */
89 boolean need_fn_stub;
90
91 /* If there is a stub that 16 bit functions should use to call this
92 32 bit function, this points to the section containing the stub. */
93 asection *call_stub;
94
95 /* This is like the call_stub field, but it is used if the function
96 being called returns a floating point value. */
97 asection *call_fp_stub;
98 };
99
100 static bfd_reloc_status_type mips32_64bit_reloc
101 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
102 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
103 PARAMS ((bfd *, bfd_reloc_code_real_type));
104 static reloc_howto_type *mips_rtype_to_howto
105 PARAMS ((unsigned int));
106 static void mips_info_to_howto_rel
107 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
108 static void mips_info_to_howto_rela
109 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
110 static void bfd_mips_elf32_swap_gptab_in
111 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
112 static void bfd_mips_elf32_swap_gptab_out
113 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
114 #if 0
115 static void bfd_mips_elf_swap_msym_in
116 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
117 #endif
118 static void bfd_mips_elf_swap_msym_out
119 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
120 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
121 static boolean mips_elf_create_procedure_table
122 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
123 struct ecoff_debug_info *));
124 static INLINE int elf_mips_isa PARAMS ((flagword));
125 static INLINE int elf_mips_mach PARAMS ((flagword));
126 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
127 static boolean mips_elf_is_local_label_name
128 PARAMS ((bfd *, const char *));
129 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
130 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
131 static int gptab_compare PARAMS ((const void *, const void *));
132 static bfd_reloc_status_type mips16_jump_reloc
133 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
134 static bfd_reloc_status_type mips16_gprel_reloc
135 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
136 static boolean mips_elf_create_compact_rel_section
137 PARAMS ((bfd *, struct bfd_link_info *));
138 static boolean mips_elf_create_got_section
139 PARAMS ((bfd *, struct bfd_link_info *));
140 static bfd_reloc_status_type mips_elf_final_gp
141 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
142 static bfd_byte *elf32_mips_get_relocated_section_contents
143 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
144 bfd_byte *, boolean, asymbol **));
145 static asection *mips_elf_create_msym_section
146 PARAMS ((bfd *));
147 static void mips_elf_irix6_finish_dynamic_symbol
148 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
149 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
150 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
151 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
152 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
153 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
154 static bfd_vma mips_elf_global_got_index
155 PARAMS ((bfd *, struct elf_link_hash_entry *));
156 static bfd_vma mips_elf_local_got_index
157 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
158 static bfd_vma mips_elf_got_offset_from_index
159 PARAMS ((bfd *, bfd *, bfd_vma));
160 static boolean mips_elf_record_global_got_symbol
161 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
162 struct mips_got_info *));
163 static bfd_vma mips_elf_got_page
164 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
165 static const Elf_Internal_Rela *mips_elf_next_relocation
166 PARAMS ((unsigned int, const Elf_Internal_Rela *,
167 const Elf_Internal_Rela *));
168 static bfd_reloc_status_type mips_elf_calculate_relocation
169 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
170 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
171 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
172 boolean *));
173 static bfd_vma mips_elf_obtain_contents
174 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
175 static boolean mips_elf_perform_relocation
176 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
177 const Elf_Internal_Rela *, bfd_vma,
178 bfd *, asection *, bfd_byte *, boolean));
179 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
180 static boolean mips_elf_sort_hash_table_f
181 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
182 static boolean mips_elf_sort_hash_table
183 PARAMS ((struct bfd_link_info *, unsigned long));
184 static asection * mips_elf_got_section PARAMS ((bfd *));
185 static struct mips_got_info *mips_elf_got_info
186 PARAMS ((bfd *, asection **));
187 static boolean mips_elf_local_relocation_p
188 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
189 static bfd_vma mips_elf_create_local_got_entry
190 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
191 static bfd_vma mips_elf_got16_entry
192 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
193 static boolean mips_elf_create_dynamic_relocation
194 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
195 struct mips_elf_link_hash_entry *, asection *,
196 bfd_vma, bfd_vma *, asection *, boolean local_p));
197 static void mips_elf_allocate_dynamic_relocations
198 PARAMS ((bfd *, unsigned int));
199 static boolean mips_elf_stub_section_p
200 PARAMS ((bfd *, asection *));
201 static int sort_dynamic_relocs
202 PARAMS ((const void *, const void *));
203
204 extern const bfd_target bfd_elf32_tradbigmips_vec;
205
206 /* The level of IRIX compatibility we're striving for. */
207
208 typedef enum {
209 ict_none,
210 ict_irix5,
211 ict_irix6
212 } irix_compat_t;
213
214 /* This will be used when we sort the dynamic relocation records. */
215 static bfd *reldyn_sorting_bfd;
216
217 /* Nonzero if ABFD is using the N32 ABI. */
218
219 #define ABI_N32_P(abfd) \
220 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
221
222 /* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
223 true, yet. */
224 #define ABI_64_P(abfd) \
225 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
226
227 /* Depending on the target vector we generate some version of Irix
228 executables or "normal" MIPS ELF ABI executables. */
229
230 #define IRIX_COMPAT(abfd) \
231 (abfd->xvec == &bfd_elf32_tradbigmips_vec ? ict_none : \
232 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
233
234 /* Whether we are trying to be compatible with IRIX at all. */
235
236 #define SGI_COMPAT(abfd) \
237 (IRIX_COMPAT (abfd) != ict_none)
238
239 /* The name of the msym section. */
240 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
241
242 /* The name of the srdata section. */
243 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
244
245 /* The name of the options section. */
246 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
247 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
248
249 /* The name of the stub section. */
250 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
251 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
252
253 /* The name of the dynamic relocation section. */
254 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
255
256 /* The size of an external REL relocation. */
257 #define MIPS_ELF_REL_SIZE(abfd) \
258 (get_elf_backend_data (abfd)->s->sizeof_rel)
259
260 /* The size of an external dynamic table entry. */
261 #define MIPS_ELF_DYN_SIZE(abfd) \
262 (get_elf_backend_data (abfd)->s->sizeof_dyn)
263
264 /* The size of a GOT entry. */
265 #define MIPS_ELF_GOT_SIZE(abfd) \
266 (get_elf_backend_data (abfd)->s->arch_size / 8)
267
268 /* The size of a symbol-table entry. */
269 #define MIPS_ELF_SYM_SIZE(abfd) \
270 (get_elf_backend_data (abfd)->s->sizeof_sym)
271
272 /* The default alignment for sections, as a power of two. */
273 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
274 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
275
276 /* Get word-sized data. */
277 #define MIPS_ELF_GET_WORD(abfd, ptr) \
278 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
279
280 /* Put out word-sized data. */
281 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
282 (ABI_64_P (abfd) \
283 ? bfd_put_64 (abfd, val, ptr) \
284 : bfd_put_32 (abfd, val, ptr))
285
286 /* Add a dynamic symbol table-entry. */
287 #ifdef BFD64
288 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
289 (ABI_64_P (elf_hash_table (info)->dynobj) \
290 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
291 : bfd_elf32_add_dynamic_entry (info, tag, val))
292 #else
293 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
294 (ABI_64_P (elf_hash_table (info)->dynobj) \
295 ? (abort (), false) \
296 : bfd_elf32_add_dynamic_entry (info, tag, val))
297 #endif
298
299 /* The number of local .got entries we reserve. */
300 #define MIPS_RESERVED_GOTNO (2)
301
302 /* Instructions which appear in a stub. For some reason the stub is
303 slightly different on an SGI system. */
304 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
305 #define STUB_LW(abfd) \
306 (SGI_COMPAT (abfd) \
307 ? (ABI_64_P (abfd) \
308 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
309 : 0x8f998010) /* lw t9,0x8010(gp) */ \
310 : 0x8f998010) /* lw t9,0x8000(gp) */
311 #define STUB_MOVE(abfd) \
312 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
313 #define STUB_JALR 0x0320f809 /* jal t9 */
314 #define STUB_LI16(abfd) \
315 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
316 #define MIPS_FUNCTION_STUB_SIZE (16)
317
318 #if 0
319 /* We no longer try to identify particular sections for the .dynsym
320 section. When we do, we wind up crashing if there are other random
321 sections with relocations. */
322
323 /* Names of sections which appear in the .dynsym section in an Irix 5
324 executable. */
325
326 static const char * const mips_elf_dynsym_sec_names[] =
327 {
328 ".text",
329 ".init",
330 ".fini",
331 ".data",
332 ".rodata",
333 ".sdata",
334 ".sbss",
335 ".bss",
336 NULL
337 };
338
339 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
340 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
341
342 /* The number of entries in mips_elf_dynsym_sec_names which go in the
343 text segment. */
344
345 #define MIPS_TEXT_DYNSYM_SECNO (3)
346
347 #endif /* 0 */
348
349 /* The names of the runtime procedure table symbols used on Irix 5. */
350
351 static const char * const mips_elf_dynsym_rtproc_names[] =
352 {
353 "_procedure_table",
354 "_procedure_string_table",
355 "_procedure_table_size",
356 NULL
357 };
358
359 /* These structures are used to generate the .compact_rel section on
360 Irix 5. */
361
362 typedef struct
363 {
364 unsigned long id1; /* Always one? */
365 unsigned long num; /* Number of compact relocation entries. */
366 unsigned long id2; /* Always two? */
367 unsigned long offset; /* The file offset of the first relocation. */
368 unsigned long reserved0; /* Zero? */
369 unsigned long reserved1; /* Zero? */
370 } Elf32_compact_rel;
371
372 typedef struct
373 {
374 bfd_byte id1[4];
375 bfd_byte num[4];
376 bfd_byte id2[4];
377 bfd_byte offset[4];
378 bfd_byte reserved0[4];
379 bfd_byte reserved1[4];
380 } Elf32_External_compact_rel;
381
382 typedef struct
383 {
384 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
385 unsigned int rtype : 4; /* Relocation types. See below. */
386 unsigned int dist2to : 8;
387 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
388 unsigned long konst; /* KONST field. See below. */
389 unsigned long vaddr; /* VADDR to be relocated. */
390 } Elf32_crinfo;
391
392 typedef struct
393 {
394 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
395 unsigned int rtype : 4; /* Relocation types. See below. */
396 unsigned int dist2to : 8;
397 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
398 unsigned long konst; /* KONST field. See below. */
399 } Elf32_crinfo2;
400
401 typedef struct
402 {
403 bfd_byte info[4];
404 bfd_byte konst[4];
405 bfd_byte vaddr[4];
406 } Elf32_External_crinfo;
407
408 typedef struct
409 {
410 bfd_byte info[4];
411 bfd_byte konst[4];
412 } Elf32_External_crinfo2;
413
414 /* These are the constants used to swap the bitfields in a crinfo. */
415
416 #define CRINFO_CTYPE (0x1)
417 #define CRINFO_CTYPE_SH (31)
418 #define CRINFO_RTYPE (0xf)
419 #define CRINFO_RTYPE_SH (27)
420 #define CRINFO_DIST2TO (0xff)
421 #define CRINFO_DIST2TO_SH (19)
422 #define CRINFO_RELVADDR (0x7ffff)
423 #define CRINFO_RELVADDR_SH (0)
424
425 /* A compact relocation info has long (3 words) or short (2 words)
426 formats. A short format doesn't have VADDR field and relvaddr
427 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
428 #define CRF_MIPS_LONG 1
429 #define CRF_MIPS_SHORT 0
430
431 /* There are 4 types of compact relocation at least. The value KONST
432 has different meaning for each type:
433
434 (type) (konst)
435 CT_MIPS_REL32 Address in data
436 CT_MIPS_WORD Address in word (XXX)
437 CT_MIPS_GPHI_LO GP - vaddr
438 CT_MIPS_JMPAD Address to jump
439 */
440
441 #define CRT_MIPS_REL32 0xa
442 #define CRT_MIPS_WORD 0xb
443 #define CRT_MIPS_GPHI_LO 0xc
444 #define CRT_MIPS_JMPAD 0xd
445
446 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
447 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
448 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
449 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
450
451 static void bfd_elf32_swap_compact_rel_out
452 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
453 static void bfd_elf32_swap_crinfo_out
454 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
455
456 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
457
458 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
459 from smaller values. Start with zero, widen, *then* decrement. */
460 #define MINUS_ONE (((bfd_vma)0) - 1)
461
462 static reloc_howto_type elf_mips_howto_table[] =
463 {
464 /* No relocation. */
465 HOWTO (R_MIPS_NONE, /* type */
466 0, /* rightshift */
467 0, /* size (0 = byte, 1 = short, 2 = long) */
468 0, /* bitsize */
469 false, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_dont, /* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
473 "R_MIPS_NONE", /* name */
474 false, /* partial_inplace */
475 0, /* src_mask */
476 0, /* dst_mask */
477 false), /* pcrel_offset */
478
479 /* 16 bit relocation. */
480 HOWTO (R_MIPS_16, /* type */
481 0, /* rightshift */
482 1, /* size (0 = byte, 1 = short, 2 = long) */
483 16, /* bitsize */
484 false, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_bitfield, /* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_MIPS_16", /* name */
489 true, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 false), /* pcrel_offset */
493
494 /* 32 bit relocation. */
495 HOWTO (R_MIPS_32, /* type */
496 0, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 32, /* bitsize */
499 false, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_bitfield, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* special_function */
503 "R_MIPS_32", /* name */
504 true, /* partial_inplace */
505 0xffffffff, /* src_mask */
506 0xffffffff, /* dst_mask */
507 false), /* pcrel_offset */
508
509 /* 32 bit symbol relative relocation. */
510 HOWTO (R_MIPS_REL32, /* type */
511 0, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 32, /* bitsize */
514 false, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_bitfield, /* complain_on_overflow */
517 bfd_elf_generic_reloc, /* special_function */
518 "R_MIPS_REL32", /* name */
519 true, /* partial_inplace */
520 0xffffffff, /* src_mask */
521 0xffffffff, /* dst_mask */
522 false), /* pcrel_offset */
523
524 /* 26 bit branch address. */
525 HOWTO (R_MIPS_26, /* type */
526 2, /* rightshift */
527 2, /* size (0 = byte, 1 = short, 2 = long) */
528 26, /* bitsize */
529 false, /* pc_relative */
530 0, /* bitpos */
531 complain_overflow_dont, /* complain_on_overflow */
532 /* This needs complex overflow
533 detection, because the upper four
534 bits must match the PC. */
535 bfd_elf_generic_reloc, /* special_function */
536 "R_MIPS_26", /* name */
537 true, /* partial_inplace */
538 0x3ffffff, /* src_mask */
539 0x3ffffff, /* dst_mask */
540 false), /* pcrel_offset */
541
542 /* High 16 bits of symbol value. */
543 HOWTO (R_MIPS_HI16, /* type */
544 0, /* rightshift */
545 2, /* size (0 = byte, 1 = short, 2 = long) */
546 16, /* bitsize */
547 false, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 _bfd_mips_elf_hi16_reloc, /* special_function */
551 "R_MIPS_HI16", /* name */
552 true, /* partial_inplace */
553 0xffff, /* src_mask */
554 0xffff, /* dst_mask */
555 false), /* pcrel_offset */
556
557 /* Low 16 bits of symbol value. */
558 HOWTO (R_MIPS_LO16, /* type */
559 0, /* rightshift */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
561 16, /* bitsize */
562 false, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_dont, /* complain_on_overflow */
565 _bfd_mips_elf_lo16_reloc, /* special_function */
566 "R_MIPS_LO16", /* name */
567 true, /* partial_inplace */
568 0xffff, /* src_mask */
569 0xffff, /* dst_mask */
570 false), /* pcrel_offset */
571
572 /* GP relative reference. */
573 HOWTO (R_MIPS_GPREL16, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 16, /* bitsize */
577 false, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_signed, /* complain_on_overflow */
580 _bfd_mips_elf_gprel16_reloc, /* special_function */
581 "R_MIPS_GPREL16", /* name */
582 true, /* partial_inplace */
583 0xffff, /* src_mask */
584 0xffff, /* dst_mask */
585 false), /* pcrel_offset */
586
587 /* Reference to literal section. */
588 HOWTO (R_MIPS_LITERAL, /* type */
589 0, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 16, /* bitsize */
592 false, /* pc_relative */
593 0, /* bitpos */
594 complain_overflow_signed, /* complain_on_overflow */
595 _bfd_mips_elf_gprel16_reloc, /* special_function */
596 "R_MIPS_LITERAL", /* name */
597 true, /* partial_inplace */
598 0xffff, /* src_mask */
599 0xffff, /* dst_mask */
600 false), /* pcrel_offset */
601
602 /* Reference to global offset table. */
603 HOWTO (R_MIPS_GOT16, /* type */
604 0, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 16, /* bitsize */
607 false, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_signed, /* complain_on_overflow */
610 _bfd_mips_elf_got16_reloc, /* special_function */
611 "R_MIPS_GOT16", /* name */
612 false, /* partial_inplace */
613 0xffff, /* src_mask */
614 0xffff, /* dst_mask */
615 false), /* pcrel_offset */
616
617 /* 16 bit PC relative reference. */
618 HOWTO (R_MIPS_PC16, /* type */
619 0, /* rightshift */
620 2, /* size (0 = byte, 1 = short, 2 = long) */
621 16, /* bitsize */
622 true, /* pc_relative */
623 0, /* bitpos */
624 complain_overflow_signed, /* complain_on_overflow */
625 bfd_elf_generic_reloc, /* special_function */
626 "R_MIPS_PC16", /* name */
627 true, /* partial_inplace */
628 0xffff, /* src_mask */
629 0xffff, /* dst_mask */
630 true), /* pcrel_offset */
631
632 /* 16 bit call through global offset table. */
633 HOWTO (R_MIPS_CALL16, /* type */
634 0, /* rightshift */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
636 16, /* bitsize */
637 false, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_signed, /* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "R_MIPS_CALL16", /* name */
642 false, /* partial_inplace */
643 0xffff, /* src_mask */
644 0xffff, /* dst_mask */
645 false), /* pcrel_offset */
646
647 /* 32 bit GP relative reference. */
648 HOWTO (R_MIPS_GPREL32, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 false, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_bitfield, /* complain_on_overflow */
655 _bfd_mips_elf_gprel32_reloc, /* special_function */
656 "R_MIPS_GPREL32", /* name */
657 true, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 false), /* pcrel_offset */
661
662 /* The remaining relocs are defined on Irix 5, although they are
663 not defined by the ABI. */
664 EMPTY_HOWTO (13),
665 EMPTY_HOWTO (14),
666 EMPTY_HOWTO (15),
667
668 /* A 5 bit shift field. */
669 HOWTO (R_MIPS_SHIFT5, /* type */
670 0, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 5, /* bitsize */
673 false, /* pc_relative */
674 6, /* bitpos */
675 complain_overflow_bitfield, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
677 "R_MIPS_SHIFT5", /* name */
678 true, /* partial_inplace */
679 0x000007c0, /* src_mask */
680 0x000007c0, /* dst_mask */
681 false), /* pcrel_offset */
682
683 /* A 6 bit shift field. */
684 /* FIXME: This is not handled correctly; a special function is
685 needed to put the most significant bit in the right place. */
686 HOWTO (R_MIPS_SHIFT6, /* type */
687 0, /* rightshift */
688 2, /* size (0 = byte, 1 = short, 2 = long) */
689 6, /* bitsize */
690 false, /* pc_relative */
691 6, /* bitpos */
692 complain_overflow_bitfield, /* complain_on_overflow */
693 bfd_elf_generic_reloc, /* special_function */
694 "R_MIPS_SHIFT6", /* name */
695 true, /* partial_inplace */
696 0x000007c4, /* src_mask */
697 0x000007c4, /* dst_mask */
698 false), /* pcrel_offset */
699
700 /* A 64 bit relocation. */
701 HOWTO (R_MIPS_64, /* type */
702 0, /* rightshift */
703 4, /* size (0 = byte, 1 = short, 2 = long) */
704 64, /* bitsize */
705 false, /* pc_relative */
706 0, /* bitpos */
707 complain_overflow_bitfield, /* complain_on_overflow */
708 mips32_64bit_reloc, /* special_function */
709 "R_MIPS_64", /* name */
710 true, /* partial_inplace */
711 MINUS_ONE, /* src_mask */
712 MINUS_ONE, /* dst_mask */
713 false), /* pcrel_offset */
714
715 /* Displacement in the global offset table. */
716 HOWTO (R_MIPS_GOT_DISP, /* type */
717 0, /* rightshift */
718 2, /* size (0 = byte, 1 = short, 2 = long) */
719 16, /* bitsize */
720 false, /* pc_relative */
721 0, /* bitpos */
722 complain_overflow_bitfield, /* complain_on_overflow */
723 bfd_elf_generic_reloc, /* special_function */
724 "R_MIPS_GOT_DISP", /* name */
725 true, /* partial_inplace */
726 0x0000ffff, /* src_mask */
727 0x0000ffff, /* dst_mask */
728 false), /* pcrel_offset */
729
730 /* Displacement to page pointer in the global offset table. */
731 HOWTO (R_MIPS_GOT_PAGE, /* type */
732 0, /* rightshift */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
734 16, /* bitsize */
735 false, /* pc_relative */
736 0, /* bitpos */
737 complain_overflow_bitfield, /* complain_on_overflow */
738 bfd_elf_generic_reloc, /* special_function */
739 "R_MIPS_GOT_PAGE", /* name */
740 true, /* partial_inplace */
741 0x0000ffff, /* src_mask */
742 0x0000ffff, /* dst_mask */
743 false), /* pcrel_offset */
744
745 /* Offset from page pointer in the global offset table. */
746 HOWTO (R_MIPS_GOT_OFST, /* type */
747 0, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 16, /* bitsize */
750 false, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_bitfield, /* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_MIPS_GOT_OFST", /* name */
755 true, /* partial_inplace */
756 0x0000ffff, /* src_mask */
757 0x0000ffff, /* dst_mask */
758 false), /* pcrel_offset */
759
760 /* High 16 bits of displacement in global offset table. */
761 HOWTO (R_MIPS_GOT_HI16, /* type */
762 0, /* rightshift */
763 2, /* size (0 = byte, 1 = short, 2 = long) */
764 16, /* bitsize */
765 false, /* pc_relative */
766 0, /* bitpos */
767 complain_overflow_dont, /* complain_on_overflow */
768 bfd_elf_generic_reloc, /* special_function */
769 "R_MIPS_GOT_HI16", /* name */
770 true, /* partial_inplace */
771 0x0000ffff, /* src_mask */
772 0x0000ffff, /* dst_mask */
773 false), /* pcrel_offset */
774
775 /* Low 16 bits of displacement in global offset table. */
776 HOWTO (R_MIPS_GOT_LO16, /* type */
777 0, /* rightshift */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
779 16, /* bitsize */
780 false, /* pc_relative */
781 0, /* bitpos */
782 complain_overflow_dont, /* complain_on_overflow */
783 bfd_elf_generic_reloc, /* special_function */
784 "R_MIPS_GOT_LO16", /* name */
785 true, /* partial_inplace */
786 0x0000ffff, /* src_mask */
787 0x0000ffff, /* dst_mask */
788 false), /* pcrel_offset */
789
790 /* 64 bit subtraction. Used in the N32 ABI. */
791 HOWTO (R_MIPS_SUB, /* type */
792 0, /* rightshift */
793 4, /* size (0 = byte, 1 = short, 2 = long) */
794 64, /* bitsize */
795 false, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_bitfield, /* complain_on_overflow */
798 bfd_elf_generic_reloc, /* special_function */
799 "R_MIPS_SUB", /* name */
800 true, /* partial_inplace */
801 MINUS_ONE, /* src_mask */
802 MINUS_ONE, /* dst_mask */
803 false), /* pcrel_offset */
804
805 /* Used to cause the linker to insert and delete instructions? */
806 EMPTY_HOWTO (R_MIPS_INSERT_A),
807 EMPTY_HOWTO (R_MIPS_INSERT_B),
808 EMPTY_HOWTO (R_MIPS_DELETE),
809
810 /* Get the higher value of a 64 bit addend. */
811 HOWTO (R_MIPS_HIGHER, /* type */
812 0, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 false, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_MIPS_HIGHER", /* name */
820 true, /* partial_inplace */
821 0, /* src_mask */
822 0xffff, /* dst_mask */
823 false), /* pcrel_offset */
824
825 /* Get the highest value of a 64 bit addend. */
826 HOWTO (R_MIPS_HIGHEST, /* type */
827 0, /* rightshift */
828 2, /* size (0 = byte, 1 = short, 2 = long) */
829 16, /* bitsize */
830 false, /* pc_relative */
831 0, /* bitpos */
832 complain_overflow_dont, /* complain_on_overflow */
833 bfd_elf_generic_reloc, /* special_function */
834 "R_MIPS_HIGHEST", /* name */
835 true, /* partial_inplace */
836 0, /* src_mask */
837 0xffff, /* dst_mask */
838 false), /* pcrel_offset */
839
840 /* High 16 bits of displacement in global offset table. */
841 HOWTO (R_MIPS_CALL_HI16, /* type */
842 0, /* rightshift */
843 2, /* size (0 = byte, 1 = short, 2 = long) */
844 16, /* bitsize */
845 false, /* pc_relative */
846 0, /* bitpos */
847 complain_overflow_dont, /* complain_on_overflow */
848 bfd_elf_generic_reloc, /* special_function */
849 "R_MIPS_CALL_HI16", /* name */
850 true, /* partial_inplace */
851 0x0000ffff, /* src_mask */
852 0x0000ffff, /* dst_mask */
853 false), /* pcrel_offset */
854
855 /* Low 16 bits of displacement in global offset table. */
856 HOWTO (R_MIPS_CALL_LO16, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 16, /* bitsize */
860 false, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont, /* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_MIPS_CALL_LO16", /* name */
865 true, /* partial_inplace */
866 0x0000ffff, /* src_mask */
867 0x0000ffff, /* dst_mask */
868 false), /* pcrel_offset */
869
870 /* Section displacement. */
871 HOWTO (R_MIPS_SCN_DISP, /* type */
872 0, /* rightshift */
873 2, /* size (0 = byte, 1 = short, 2 = long) */
874 32, /* bitsize */
875 false, /* pc_relative */
876 0, /* bitpos */
877 complain_overflow_dont, /* complain_on_overflow */
878 bfd_elf_generic_reloc, /* special_function */
879 "R_MIPS_SCN_DISP", /* name */
880 false, /* partial_inplace */
881 0xffffffff, /* src_mask */
882 0xffffffff, /* dst_mask */
883 false), /* pcrel_offset */
884
885 EMPTY_HOWTO (R_MIPS_REL16),
886 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
887 EMPTY_HOWTO (R_MIPS_PJUMP),
888 EMPTY_HOWTO (R_MIPS_RELGOT),
889
890 /* Protected jump conversion. This is an optimization hint. No
891 relocation is required for correctness. */
892 HOWTO (R_MIPS_JALR, /* type */
893 0, /* rightshift */
894 0, /* size (0 = byte, 1 = short, 2 = long) */
895 0, /* bitsize */
896 false, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 bfd_elf_generic_reloc, /* special_function */
900 "R_MIPS_JALR", /* name */
901 false, /* partial_inplace */
902 0x00000000, /* src_mask */
903 0x00000000, /* dst_mask */
904 false), /* pcrel_offset */
905 };
906
907 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
908 is a hack to make the linker think that we need 64 bit values. */
909 static reloc_howto_type elf_mips_ctor64_howto =
910 HOWTO (R_MIPS_64, /* type */
911 0, /* rightshift */
912 4, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 false, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_signed, /* complain_on_overflow */
917 mips32_64bit_reloc, /* special_function */
918 "R_MIPS_64", /* name */
919 true, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 false); /* pcrel_offset */
923
924 /* The reloc used for the mips16 jump instruction. */
925 static reloc_howto_type elf_mips16_jump_howto =
926 HOWTO (R_MIPS16_26, /* type */
927 2, /* rightshift */
928 2, /* size (0 = byte, 1 = short, 2 = long) */
929 26, /* bitsize */
930 false, /* pc_relative */
931 0, /* bitpos */
932 complain_overflow_dont, /* complain_on_overflow */
933 /* This needs complex overflow
934 detection, because the upper four
935 bits must match the PC. */
936 mips16_jump_reloc, /* special_function */
937 "R_MIPS16_26", /* name */
938 true, /* partial_inplace */
939 0x3ffffff, /* src_mask */
940 0x3ffffff, /* dst_mask */
941 false); /* pcrel_offset */
942
943 /* The reloc used for the mips16 gprel instruction. */
944 static reloc_howto_type elf_mips16_gprel_howto =
945 HOWTO (R_MIPS16_GPREL, /* type */
946 0, /* rightshift */
947 2, /* size (0 = byte, 1 = short, 2 = long) */
948 16, /* bitsize */
949 false, /* pc_relative */
950 0, /* bitpos */
951 complain_overflow_signed, /* complain_on_overflow */
952 mips16_gprel_reloc, /* special_function */
953 "R_MIPS16_GPREL", /* name */
954 true, /* partial_inplace */
955 0x07ff001f, /* src_mask */
956 0x07ff001f, /* dst_mask */
957 false); /* pcrel_offset */
958
959 /* GNU extensions for embedded-pic. */
960 /* High 16 bits of symbol value, pc-relative. */
961 static reloc_howto_type elf_mips_gnu_rel_hi16 =
962 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
963 0, /* rightshift */
964 2, /* size (0 = byte, 1 = short, 2 = long) */
965 16, /* bitsize */
966 true, /* pc_relative */
967 0, /* bitpos */
968 complain_overflow_dont, /* complain_on_overflow */
969 _bfd_mips_elf_hi16_reloc, /* special_function */
970 "R_MIPS_GNU_REL_HI16", /* name */
971 true, /* partial_inplace */
972 0xffff, /* src_mask */
973 0xffff, /* dst_mask */
974 true); /* pcrel_offset */
975
976 /* Low 16 bits of symbol value, pc-relative. */
977 static reloc_howto_type elf_mips_gnu_rel_lo16 =
978 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
979 0, /* rightshift */
980 2, /* size (0 = byte, 1 = short, 2 = long) */
981 16, /* bitsize */
982 true, /* pc_relative */
983 0, /* bitpos */
984 complain_overflow_dont, /* complain_on_overflow */
985 _bfd_mips_elf_lo16_reloc, /* special_function */
986 "R_MIPS_GNU_REL_LO16", /* name */
987 true, /* partial_inplace */
988 0xffff, /* src_mask */
989 0xffff, /* dst_mask */
990 true); /* pcrel_offset */
991
992 /* 16 bit offset for pc-relative branches. */
993 static reloc_howto_type elf_mips_gnu_rel16_s2 =
994 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
995 2, /* rightshift */
996 2, /* size (0 = byte, 1 = short, 2 = long) */
997 16, /* bitsize */
998 true, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_signed, /* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
1002 "R_MIPS_GNU_REL16_S2", /* name */
1003 true, /* partial_inplace */
1004 0xffff, /* src_mask */
1005 0xffff, /* dst_mask */
1006 true); /* pcrel_offset */
1007
1008 /* 64 bit pc-relative. */
1009 static reloc_howto_type elf_mips_gnu_pcrel64 =
1010 HOWTO (R_MIPS_PC64, /* type */
1011 0, /* rightshift */
1012 4, /* size (0 = byte, 1 = short, 2 = long) */
1013 64, /* bitsize */
1014 true, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_signed, /* complain_on_overflow */
1017 bfd_elf_generic_reloc, /* special_function */
1018 "R_MIPS_PC64", /* name */
1019 true, /* partial_inplace */
1020 MINUS_ONE, /* src_mask */
1021 MINUS_ONE, /* dst_mask */
1022 true); /* pcrel_offset */
1023
1024 /* 32 bit pc-relative. */
1025 static reloc_howto_type elf_mips_gnu_pcrel32 =
1026 HOWTO (R_MIPS_PC32, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 true, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_signed, /* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_MIPS_PC32", /* name */
1035 true, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 true); /* pcrel_offset */
1039
1040 /* GNU extension to record C++ vtable hierarchy */
1041 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1042 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1043 0, /* rightshift */
1044 2, /* size (0 = byte, 1 = short, 2 = long) */
1045 0, /* bitsize */
1046 false, /* pc_relative */
1047 0, /* bitpos */
1048 complain_overflow_dont, /* complain_on_overflow */
1049 NULL, /* special_function */
1050 "R_MIPS_GNU_VTINHERIT", /* name */
1051 false, /* partial_inplace */
1052 0, /* src_mask */
1053 0, /* dst_mask */
1054 false); /* pcrel_offset */
1055
1056 /* GNU extension to record C++ vtable member usage */
1057 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1058 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1059 0, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 0, /* bitsize */
1062 false, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont, /* complain_on_overflow */
1065 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1066 "R_MIPS_GNU_VTENTRY", /* name */
1067 false, /* partial_inplace */
1068 0, /* src_mask */
1069 0, /* dst_mask */
1070 false); /* pcrel_offset */
1071
1072 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1073 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1074 the HI16. Here we just save the information we need; we do the
1075 actual relocation when we see the LO16. MIPS ELF requires that the
1076 LO16 immediately follow the HI16. As a GNU extension, we permit an
1077 arbitrary number of HI16 relocs to be associated with a single LO16
1078 reloc. This extension permits gcc to output the HI and LO relocs
1079 itself. */
1080
1081 struct mips_hi16
1082 {
1083 struct mips_hi16 *next;
1084 bfd_byte *addr;
1085 bfd_vma addend;
1086 };
1087
1088 /* FIXME: This should not be a static variable. */
1089
1090 static struct mips_hi16 *mips_hi16_list;
1091
1092 bfd_reloc_status_type
1093 _bfd_mips_elf_hi16_reloc (abfd,
1094 reloc_entry,
1095 symbol,
1096 data,
1097 input_section,
1098 output_bfd,
1099 error_message)
1100 bfd *abfd ATTRIBUTE_UNUSED;
1101 arelent *reloc_entry;
1102 asymbol *symbol;
1103 PTR data;
1104 asection *input_section;
1105 bfd *output_bfd;
1106 char **error_message;
1107 {
1108 bfd_reloc_status_type ret;
1109 bfd_vma relocation;
1110 struct mips_hi16 *n;
1111
1112 /* If we're relocating, and this an external symbol, we don't want
1113 to change anything. */
1114 if (output_bfd != (bfd *) NULL
1115 && (symbol->flags & BSF_SECTION_SYM) == 0
1116 && reloc_entry->addend == 0)
1117 {
1118 reloc_entry->address += input_section->output_offset;
1119 return bfd_reloc_ok;
1120 }
1121
1122 ret = bfd_reloc_ok;
1123
1124 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1125 {
1126 boolean relocateable;
1127 bfd_vma gp;
1128
1129 if (ret == bfd_reloc_undefined)
1130 abort ();
1131
1132 if (output_bfd != NULL)
1133 relocateable = true;
1134 else
1135 {
1136 relocateable = false;
1137 output_bfd = symbol->section->output_section->owner;
1138 }
1139
1140 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1141 error_message, &gp);
1142 if (ret != bfd_reloc_ok)
1143 return ret;
1144
1145 relocation = gp - reloc_entry->address;
1146 }
1147 else
1148 {
1149 if (bfd_is_und_section (symbol->section)
1150 && output_bfd == (bfd *) NULL)
1151 ret = bfd_reloc_undefined;
1152
1153 if (bfd_is_com_section (symbol->section))
1154 relocation = 0;
1155 else
1156 relocation = symbol->value;
1157 }
1158
1159 relocation += symbol->section->output_section->vma;
1160 relocation += symbol->section->output_offset;
1161 relocation += reloc_entry->addend;
1162
1163 if (reloc_entry->address > input_section->_cooked_size)
1164 return bfd_reloc_outofrange;
1165
1166 /* Save the information, and let LO16 do the actual relocation. */
1167 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1168 if (n == NULL)
1169 return bfd_reloc_outofrange;
1170 n->addr = (bfd_byte *) data + reloc_entry->address;
1171 n->addend = relocation;
1172 n->next = mips_hi16_list;
1173 mips_hi16_list = n;
1174
1175 if (output_bfd != (bfd *) NULL)
1176 reloc_entry->address += input_section->output_offset;
1177
1178 return ret;
1179 }
1180
1181 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1182 inplace relocation; this function exists in order to do the
1183 R_MIPS_HI16 relocation described above. */
1184
1185 bfd_reloc_status_type
1186 _bfd_mips_elf_lo16_reloc (abfd,
1187 reloc_entry,
1188 symbol,
1189 data,
1190 input_section,
1191 output_bfd,
1192 error_message)
1193 bfd *abfd;
1194 arelent *reloc_entry;
1195 asymbol *symbol;
1196 PTR data;
1197 asection *input_section;
1198 bfd *output_bfd;
1199 char **error_message;
1200 {
1201 arelent gp_disp_relent;
1202
1203 if (mips_hi16_list != NULL)
1204 {
1205 struct mips_hi16 *l;
1206
1207 l = mips_hi16_list;
1208 while (l != NULL)
1209 {
1210 unsigned long insn;
1211 unsigned long val;
1212 unsigned long vallo;
1213 struct mips_hi16 *next;
1214
1215 /* Do the HI16 relocation. Note that we actually don't need
1216 to know anything about the LO16 itself, except where to
1217 find the low 16 bits of the addend needed by the LO16. */
1218 insn = bfd_get_32 (abfd, l->addr);
1219 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1220 & 0xffff);
1221 val = ((insn & 0xffff) << 16) + vallo;
1222 val += l->addend;
1223
1224 /* The low order 16 bits are always treated as a signed
1225 value. Therefore, a negative value in the low order bits
1226 requires an adjustment in the high order bits. We need
1227 to make this adjustment in two ways: once for the bits we
1228 took from the data, and once for the bits we are putting
1229 back in to the data. */
1230 if ((vallo & 0x8000) != 0)
1231 val -= 0x10000;
1232 if ((val & 0x8000) != 0)
1233 val += 0x10000;
1234
1235 insn = (insn & ~0xffff) | ((val >> 16) & 0xffff);
1236 bfd_put_32 (abfd, insn, l->addr);
1237
1238 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1239 {
1240 gp_disp_relent = *reloc_entry;
1241 reloc_entry = &gp_disp_relent;
1242 reloc_entry->addend = l->addend;
1243 }
1244
1245 next = l->next;
1246 free (l);
1247 l = next;
1248 }
1249
1250 mips_hi16_list = NULL;
1251 }
1252 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1253 {
1254 bfd_reloc_status_type ret;
1255 bfd_vma gp, relocation;
1256
1257 /* FIXME: Does this case ever occur? */
1258
1259 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1260 if (ret != bfd_reloc_ok)
1261 return ret;
1262
1263 relocation = gp - reloc_entry->address;
1264 relocation += symbol->section->output_section->vma;
1265 relocation += symbol->section->output_offset;
1266 relocation += reloc_entry->addend;
1267
1268 if (reloc_entry->address > input_section->_cooked_size)
1269 return bfd_reloc_outofrange;
1270
1271 gp_disp_relent = *reloc_entry;
1272 reloc_entry = &gp_disp_relent;
1273 reloc_entry->addend = relocation - 4;
1274 }
1275
1276 /* Now do the LO16 reloc in the usual way. */
1277 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1278 input_section, output_bfd, error_message);
1279 }
1280
1281 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1282 table used for PIC code. If the symbol is an external symbol, the
1283 instruction is modified to contain the offset of the appropriate
1284 entry in the global offset table. If the symbol is a section
1285 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1286 addends are combined to form the real addend against the section
1287 symbol; the GOT16 is modified to contain the offset of an entry in
1288 the global offset table, and the LO16 is modified to offset it
1289 appropriately. Thus an offset larger than 16 bits requires a
1290 modified value in the global offset table.
1291
1292 This implementation suffices for the assembler, but the linker does
1293 not yet know how to create global offset tables. */
1294
1295 bfd_reloc_status_type
1296 _bfd_mips_elf_got16_reloc (abfd,
1297 reloc_entry,
1298 symbol,
1299 data,
1300 input_section,
1301 output_bfd,
1302 error_message)
1303 bfd *abfd;
1304 arelent *reloc_entry;
1305 asymbol *symbol;
1306 PTR data;
1307 asection *input_section;
1308 bfd *output_bfd;
1309 char **error_message;
1310 {
1311 /* If we're relocating, and this an external symbol, we don't want
1312 to change anything. */
1313 if (output_bfd != (bfd *) NULL
1314 && (symbol->flags & BSF_SECTION_SYM) == 0
1315 && reloc_entry->addend == 0)
1316 {
1317 reloc_entry->address += input_section->output_offset;
1318 return bfd_reloc_ok;
1319 }
1320
1321 /* If we're relocating, and this is a local symbol, we can handle it
1322 just like HI16. */
1323 if (output_bfd != (bfd *) NULL
1324 && (symbol->flags & BSF_SECTION_SYM) != 0)
1325 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1326 input_section, output_bfd, error_message);
1327
1328 abort ();
1329 }
1330
1331 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1332 dangerous relocation. */
1333
1334 static boolean
1335 mips_elf_assign_gp (output_bfd, pgp)
1336 bfd *output_bfd;
1337 bfd_vma *pgp;
1338 {
1339 unsigned int count;
1340 asymbol **sym;
1341 unsigned int i;
1342
1343 /* If we've already figured out what GP will be, just return it. */
1344 *pgp = _bfd_get_gp_value (output_bfd);
1345 if (*pgp)
1346 return true;
1347
1348 count = bfd_get_symcount (output_bfd);
1349 sym = bfd_get_outsymbols (output_bfd);
1350
1351 /* The linker script will have created a symbol named `_gp' with the
1352 appropriate value. */
1353 if (sym == (asymbol **) NULL)
1354 i = count;
1355 else
1356 {
1357 for (i = 0; i < count; i++, sym++)
1358 {
1359 register CONST char *name;
1360
1361 name = bfd_asymbol_name (*sym);
1362 if (*name == '_' && strcmp (name, "_gp") == 0)
1363 {
1364 *pgp = bfd_asymbol_value (*sym);
1365 _bfd_set_gp_value (output_bfd, *pgp);
1366 break;
1367 }
1368 }
1369 }
1370
1371 if (i >= count)
1372 {
1373 /* Only get the error once. */
1374 *pgp = 4;
1375 _bfd_set_gp_value (output_bfd, *pgp);
1376 return false;
1377 }
1378
1379 return true;
1380 }
1381
1382 /* We have to figure out the gp value, so that we can adjust the
1383 symbol value correctly. We look up the symbol _gp in the output
1384 BFD. If we can't find it, we're stuck. We cache it in the ELF
1385 target data. We don't need to adjust the symbol value for an
1386 external symbol if we are producing relocateable output. */
1387
1388 static bfd_reloc_status_type
1389 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1390 bfd *output_bfd;
1391 asymbol *symbol;
1392 boolean relocateable;
1393 char **error_message;
1394 bfd_vma *pgp;
1395 {
1396 if (bfd_is_und_section (symbol->section)
1397 && ! relocateable)
1398 {
1399 *pgp = 0;
1400 return bfd_reloc_undefined;
1401 }
1402
1403 *pgp = _bfd_get_gp_value (output_bfd);
1404 if (*pgp == 0
1405 && (! relocateable
1406 || (symbol->flags & BSF_SECTION_SYM) != 0))
1407 {
1408 if (relocateable)
1409 {
1410 /* Make up a value. */
1411 *pgp = symbol->section->output_section->vma + 0x4000;
1412 _bfd_set_gp_value (output_bfd, *pgp);
1413 }
1414 else if (!mips_elf_assign_gp (output_bfd, pgp))
1415 {
1416 *error_message =
1417 (char *) _("GP relative relocation when _gp not defined");
1418 return bfd_reloc_dangerous;
1419 }
1420 }
1421
1422 return bfd_reloc_ok;
1423 }
1424
1425 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1426 become the offset from the gp register. This function also handles
1427 R_MIPS_LITERAL relocations, although those can be handled more
1428 cleverly because the entries in the .lit8 and .lit4 sections can be
1429 merged. */
1430
1431 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1432 arelent *, asection *,
1433 boolean, PTR, bfd_vma));
1434
1435 bfd_reloc_status_type
1436 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1437 output_bfd, error_message)
1438 bfd *abfd;
1439 arelent *reloc_entry;
1440 asymbol *symbol;
1441 PTR data;
1442 asection *input_section;
1443 bfd *output_bfd;
1444 char **error_message;
1445 {
1446 boolean relocateable;
1447 bfd_reloc_status_type ret;
1448 bfd_vma gp;
1449
1450 /* If we're relocating, and this is an external symbol with no
1451 addend, we don't want to change anything. We will only have an
1452 addend if this is a newly created reloc, not read from an ELF
1453 file. */
1454 if (output_bfd != (bfd *) NULL
1455 && (symbol->flags & BSF_SECTION_SYM) == 0
1456 && reloc_entry->addend == 0)
1457 {
1458 reloc_entry->address += input_section->output_offset;
1459 return bfd_reloc_ok;
1460 }
1461
1462 if (output_bfd != (bfd *) NULL)
1463 relocateable = true;
1464 else
1465 {
1466 relocateable = false;
1467 output_bfd = symbol->section->output_section->owner;
1468 }
1469
1470 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1471 &gp);
1472 if (ret != bfd_reloc_ok)
1473 return ret;
1474
1475 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1476 relocateable, data, gp);
1477 }
1478
1479 static bfd_reloc_status_type
1480 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1481 gp)
1482 bfd *abfd;
1483 asymbol *symbol;
1484 arelent *reloc_entry;
1485 asection *input_section;
1486 boolean relocateable;
1487 PTR data;
1488 bfd_vma gp;
1489 {
1490 bfd_vma relocation;
1491 unsigned long insn;
1492 unsigned long val;
1493
1494 if (bfd_is_com_section (symbol->section))
1495 relocation = 0;
1496 else
1497 relocation = symbol->value;
1498
1499 relocation += symbol->section->output_section->vma;
1500 relocation += symbol->section->output_offset;
1501
1502 if (reloc_entry->address > input_section->_cooked_size)
1503 return bfd_reloc_outofrange;
1504
1505 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1506
1507 /* Set val to the offset into the section or symbol. */
1508 if (reloc_entry->howto->src_mask == 0)
1509 {
1510 /* This case occurs with the 64-bit MIPS ELF ABI. */
1511 val = reloc_entry->addend;
1512 }
1513 else
1514 {
1515 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1516 if (val & 0x8000)
1517 val -= 0x10000;
1518 }
1519
1520 /* Adjust val for the final section location and GP value. If we
1521 are producing relocateable output, we don't want to do this for
1522 an external symbol. */
1523 if (! relocateable
1524 || (symbol->flags & BSF_SECTION_SYM) != 0)
1525 val += relocation - gp;
1526
1527 insn = (insn & ~0xffff) | (val & 0xffff);
1528 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1529
1530 if (relocateable)
1531 reloc_entry->address += input_section->output_offset;
1532
1533 /* Make sure it fit in 16 bits. */
1534 if ((long) val >= 0x8000 || (long) val < -0x8000)
1535 return bfd_reloc_overflow;
1536
1537 return bfd_reloc_ok;
1538 }
1539
1540 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1541 from the gp register? XXX */
1542
1543 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1544 arelent *, asection *,
1545 boolean, PTR, bfd_vma));
1546
1547 bfd_reloc_status_type
1548 _bfd_mips_elf_gprel32_reloc (abfd,
1549 reloc_entry,
1550 symbol,
1551 data,
1552 input_section,
1553 output_bfd,
1554 error_message)
1555 bfd *abfd;
1556 arelent *reloc_entry;
1557 asymbol *symbol;
1558 PTR data;
1559 asection *input_section;
1560 bfd *output_bfd;
1561 char **error_message;
1562 {
1563 boolean relocateable;
1564 bfd_reloc_status_type ret;
1565 bfd_vma gp;
1566
1567 /* If we're relocating, and this is an external symbol with no
1568 addend, we don't want to change anything. We will only have an
1569 addend if this is a newly created reloc, not read from an ELF
1570 file. */
1571 if (output_bfd != (bfd *) NULL
1572 && (symbol->flags & BSF_SECTION_SYM) == 0
1573 && reloc_entry->addend == 0)
1574 {
1575 *error_message = (char *)
1576 _("32bits gp relative relocation occurs for an external symbol");
1577 return bfd_reloc_outofrange;
1578 }
1579
1580 if (output_bfd != (bfd *) NULL)
1581 {
1582 relocateable = true;
1583 gp = _bfd_get_gp_value (output_bfd);
1584 }
1585 else
1586 {
1587 relocateable = false;
1588 output_bfd = symbol->section->output_section->owner;
1589
1590 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1591 error_message, &gp);
1592 if (ret != bfd_reloc_ok)
1593 return ret;
1594 }
1595
1596 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1597 relocateable, data, gp);
1598 }
1599
1600 static bfd_reloc_status_type
1601 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1602 gp)
1603 bfd *abfd;
1604 asymbol *symbol;
1605 arelent *reloc_entry;
1606 asection *input_section;
1607 boolean relocateable;
1608 PTR data;
1609 bfd_vma gp;
1610 {
1611 bfd_vma relocation;
1612 unsigned long val;
1613
1614 if (bfd_is_com_section (symbol->section))
1615 relocation = 0;
1616 else
1617 relocation = symbol->value;
1618
1619 relocation += symbol->section->output_section->vma;
1620 relocation += symbol->section->output_offset;
1621
1622 if (reloc_entry->address > input_section->_cooked_size)
1623 return bfd_reloc_outofrange;
1624
1625 if (reloc_entry->howto->src_mask == 0)
1626 {
1627 /* This case arises with the 64-bit MIPS ELF ABI. */
1628 val = 0;
1629 }
1630 else
1631 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1632
1633 /* Set val to the offset into the section or symbol. */
1634 val += reloc_entry->addend;
1635
1636 /* Adjust val for the final section location and GP value. If we
1637 are producing relocateable output, we don't want to do this for
1638 an external symbol. */
1639 if (! relocateable
1640 || (symbol->flags & BSF_SECTION_SYM) != 0)
1641 val += relocation - gp;
1642
1643 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1644
1645 if (relocateable)
1646 reloc_entry->address += input_section->output_offset;
1647
1648 return bfd_reloc_ok;
1649 }
1650
1651 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1652 generated when addreses are 64 bits. The upper 32 bits are a simle
1653 sign extension. */
1654
1655 static bfd_reloc_status_type
1656 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1657 output_bfd, error_message)
1658 bfd *abfd;
1659 arelent *reloc_entry;
1660 asymbol *symbol;
1661 PTR data;
1662 asection *input_section;
1663 bfd *output_bfd;
1664 char **error_message;
1665 {
1666 bfd_reloc_status_type r;
1667 arelent reloc32;
1668 unsigned long val;
1669 bfd_size_type addr;
1670
1671 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1672 input_section, output_bfd, error_message);
1673 if (r != bfd_reloc_continue)
1674 return r;
1675
1676 /* Do a normal 32 bit relocation on the lower 32 bits. */
1677 reloc32 = *reloc_entry;
1678 if (bfd_big_endian (abfd))
1679 reloc32.address += 4;
1680 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1681 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1682 output_bfd, error_message);
1683
1684 /* Sign extend into the upper 32 bits. */
1685 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1686 if ((val & 0x80000000) != 0)
1687 val = 0xffffffff;
1688 else
1689 val = 0;
1690 addr = reloc_entry->address;
1691 if (bfd_little_endian (abfd))
1692 addr += 4;
1693 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1694
1695 return r;
1696 }
1697
1698 /* Handle a mips16 jump. */
1699
1700 static bfd_reloc_status_type
1701 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1702 output_bfd, error_message)
1703 bfd *abfd ATTRIBUTE_UNUSED;
1704 arelent *reloc_entry;
1705 asymbol *symbol;
1706 PTR data ATTRIBUTE_UNUSED;
1707 asection *input_section;
1708 bfd *output_bfd;
1709 char **error_message ATTRIBUTE_UNUSED;
1710 {
1711 if (output_bfd != (bfd *) NULL
1712 && (symbol->flags & BSF_SECTION_SYM) == 0
1713 && reloc_entry->addend == 0)
1714 {
1715 reloc_entry->address += input_section->output_offset;
1716 return bfd_reloc_ok;
1717 }
1718
1719 /* FIXME. */
1720 {
1721 static boolean warned;
1722
1723 if (! warned)
1724 (*_bfd_error_handler)
1725 (_("Linking mips16 objects into %s format is not supported"),
1726 bfd_get_target (input_section->output_section->owner));
1727 warned = true;
1728 }
1729
1730 return bfd_reloc_undefined;
1731 }
1732
1733 /* Handle a mips16 GP relative reloc. */
1734
1735 static bfd_reloc_status_type
1736 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1737 output_bfd, error_message)
1738 bfd *abfd;
1739 arelent *reloc_entry;
1740 asymbol *symbol;
1741 PTR data;
1742 asection *input_section;
1743 bfd *output_bfd;
1744 char **error_message;
1745 {
1746 boolean relocateable;
1747 bfd_reloc_status_type ret;
1748 bfd_vma gp;
1749 unsigned short extend, insn;
1750 unsigned long final;
1751
1752 /* If we're relocating, and this is an external symbol with no
1753 addend, we don't want to change anything. We will only have an
1754 addend if this is a newly created reloc, not read from an ELF
1755 file. */
1756 if (output_bfd != NULL
1757 && (symbol->flags & BSF_SECTION_SYM) == 0
1758 && reloc_entry->addend == 0)
1759 {
1760 reloc_entry->address += input_section->output_offset;
1761 return bfd_reloc_ok;
1762 }
1763
1764 if (output_bfd != NULL)
1765 relocateable = true;
1766 else
1767 {
1768 relocateable = false;
1769 output_bfd = symbol->section->output_section->owner;
1770 }
1771
1772 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1773 &gp);
1774 if (ret != bfd_reloc_ok)
1775 return ret;
1776
1777 if (reloc_entry->address > input_section->_cooked_size)
1778 return bfd_reloc_outofrange;
1779
1780 /* Pick up the mips16 extend instruction and the real instruction. */
1781 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1782 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1783
1784 /* Stuff the current addend back as a 32 bit value, do the usual
1785 relocation, and then clean up. */
1786 bfd_put_32 (abfd,
1787 (((extend & 0x1f) << 11)
1788 | (extend & 0x7e0)
1789 | (insn & 0x1f)),
1790 (bfd_byte *) data + reloc_entry->address);
1791
1792 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1793 relocateable, data, gp);
1794
1795 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1796 bfd_put_16 (abfd,
1797 ((extend & 0xf800)
1798 | ((final >> 11) & 0x1f)
1799 | (final & 0x7e0)),
1800 (bfd_byte *) data + reloc_entry->address);
1801 bfd_put_16 (abfd,
1802 ((insn & 0xffe0)
1803 | (final & 0x1f)),
1804 (bfd_byte *) data + reloc_entry->address + 2);
1805
1806 return ret;
1807 }
1808
1809 /* Return the ISA for a MIPS e_flags value. */
1810
1811 static INLINE int
1812 elf_mips_isa (flags)
1813 flagword flags;
1814 {
1815 switch (flags & EF_MIPS_ARCH)
1816 {
1817 case E_MIPS_ARCH_1:
1818 return 1;
1819 case E_MIPS_ARCH_2:
1820 return 2;
1821 case E_MIPS_ARCH_3:
1822 return 3;
1823 case E_MIPS_ARCH_4:
1824 return 4;
1825 case E_MIPS_ARCH_5:
1826 return 5;
1827 case E_MIPS_ARCH_32:
1828 return 32;
1829 case E_MIPS_ARCH_64:
1830 return 64;
1831 }
1832 return 4;
1833 }
1834
1835 /* Return the MACH for a MIPS e_flags value. */
1836
1837 static INLINE int
1838 elf_mips_mach (flags)
1839 flagword flags;
1840 {
1841 switch (flags & EF_MIPS_MACH)
1842 {
1843 case E_MIPS_MACH_3900:
1844 return bfd_mach_mips3900;
1845
1846 case E_MIPS_MACH_4010:
1847 return bfd_mach_mips4010;
1848
1849 case E_MIPS_MACH_4100:
1850 return bfd_mach_mips4100;
1851
1852 case E_MIPS_MACH_4111:
1853 return bfd_mach_mips4111;
1854
1855 case E_MIPS_MACH_4650:
1856 return bfd_mach_mips4650;
1857
1858 case E_MIPS_MACH_MIPS32_4K:
1859 return bfd_mach_mips32_4k;
1860
1861 case E_MIPS_MACH_SB1:
1862 return bfd_mach_mips_sb1;
1863
1864 default:
1865 switch (flags & EF_MIPS_ARCH)
1866 {
1867 default:
1868 case E_MIPS_ARCH_1:
1869 return bfd_mach_mips3000;
1870 break;
1871
1872 case E_MIPS_ARCH_2:
1873 return bfd_mach_mips6000;
1874 break;
1875
1876 case E_MIPS_ARCH_3:
1877 return bfd_mach_mips4000;
1878 break;
1879
1880 case E_MIPS_ARCH_4:
1881 return bfd_mach_mips8000;
1882 break;
1883
1884 case E_MIPS_ARCH_5:
1885 return bfd_mach_mips5;
1886 break;
1887
1888 case E_MIPS_ARCH_32:
1889 return bfd_mach_mips32;
1890 break;
1891
1892 case E_MIPS_ARCH_64:
1893 return bfd_mach_mips64;
1894 break;
1895 }
1896 }
1897
1898 return 0;
1899 }
1900
1901 /* Return printable name for ABI. */
1902
1903 static INLINE char *
1904 elf_mips_abi_name (abfd)
1905 bfd *abfd;
1906 {
1907 flagword flags;
1908
1909 if (ABI_N32_P (abfd))
1910 return "N32";
1911 else if (ABI_64_P (abfd))
1912 return "64";
1913
1914 flags = elf_elfheader (abfd)->e_flags;
1915 switch (flags & EF_MIPS_ABI)
1916 {
1917 case 0:
1918 return "none";
1919 case E_MIPS_ABI_O32:
1920 return "O32";
1921 case E_MIPS_ABI_O64:
1922 return "O64";
1923 case E_MIPS_ABI_EABI32:
1924 return "EABI32";
1925 case E_MIPS_ABI_EABI64:
1926 return "EABI64";
1927 default:
1928 return "unknown abi";
1929 }
1930 }
1931
1932 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1933
1934 struct elf_reloc_map {
1935 bfd_reloc_code_real_type bfd_reloc_val;
1936 enum elf_mips_reloc_type elf_reloc_val;
1937 };
1938
1939 static CONST struct elf_reloc_map mips_reloc_map[] =
1940 {
1941 { BFD_RELOC_NONE, R_MIPS_NONE, },
1942 { BFD_RELOC_16, R_MIPS_16 },
1943 { BFD_RELOC_32, R_MIPS_32 },
1944 { BFD_RELOC_64, R_MIPS_64 },
1945 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1946 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1947 { BFD_RELOC_LO16, R_MIPS_LO16 },
1948 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1949 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1950 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1951 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1952 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1953 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1954 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1955 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1956 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
1957 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1958 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1959 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1960 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1961 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
1962 };
1963
1964 /* Given a BFD reloc type, return a howto structure. */
1965
1966 static reloc_howto_type *
1967 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1968 bfd *abfd;
1969 bfd_reloc_code_real_type code;
1970 {
1971 unsigned int i;
1972
1973 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1974 {
1975 if (mips_reloc_map[i].bfd_reloc_val == code)
1976 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1977 }
1978
1979 switch (code)
1980 {
1981 default:
1982 bfd_set_error (bfd_error_bad_value);
1983 return NULL;
1984
1985 case BFD_RELOC_CTOR:
1986 /* We need to handle BFD_RELOC_CTOR specially.
1987 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1988 size of addresses on this architecture. */
1989 if (bfd_arch_bits_per_address (abfd) == 32)
1990 return &elf_mips_howto_table[(int) R_MIPS_32];
1991 else
1992 return &elf_mips_ctor64_howto;
1993
1994 case BFD_RELOC_MIPS16_JMP:
1995 return &elf_mips16_jump_howto;
1996 case BFD_RELOC_MIPS16_GPREL:
1997 return &elf_mips16_gprel_howto;
1998 case BFD_RELOC_VTABLE_INHERIT:
1999 return &elf_mips_gnu_vtinherit_howto;
2000 case BFD_RELOC_VTABLE_ENTRY:
2001 return &elf_mips_gnu_vtentry_howto;
2002 case BFD_RELOC_PCREL_HI16_S:
2003 return &elf_mips_gnu_rel_hi16;
2004 case BFD_RELOC_PCREL_LO16:
2005 return &elf_mips_gnu_rel_lo16;
2006 case BFD_RELOC_16_PCREL_S2:
2007 return &elf_mips_gnu_rel16_s2;
2008 case BFD_RELOC_64_PCREL:
2009 return &elf_mips_gnu_pcrel64;
2010 case BFD_RELOC_32_PCREL:
2011 return &elf_mips_gnu_pcrel32;
2012 }
2013 }
2014
2015 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2016
2017 static reloc_howto_type *
2018 mips_rtype_to_howto (r_type)
2019 unsigned int r_type;
2020 {
2021 switch (r_type)
2022 {
2023 case R_MIPS16_26:
2024 return &elf_mips16_jump_howto;
2025 break;
2026 case R_MIPS16_GPREL:
2027 return &elf_mips16_gprel_howto;
2028 break;
2029 case R_MIPS_GNU_VTINHERIT:
2030 return &elf_mips_gnu_vtinherit_howto;
2031 break;
2032 case R_MIPS_GNU_VTENTRY:
2033 return &elf_mips_gnu_vtentry_howto;
2034 break;
2035 case R_MIPS_GNU_REL_HI16:
2036 return &elf_mips_gnu_rel_hi16;
2037 break;
2038 case R_MIPS_GNU_REL_LO16:
2039 return &elf_mips_gnu_rel_lo16;
2040 break;
2041 case R_MIPS_GNU_REL16_S2:
2042 return &elf_mips_gnu_rel16_s2;
2043 break;
2044 case R_MIPS_PC64:
2045 return &elf_mips_gnu_pcrel64;
2046 break;
2047 case R_MIPS_PC32:
2048 return &elf_mips_gnu_pcrel32;
2049 break;
2050
2051 default:
2052 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2053 return &elf_mips_howto_table[r_type];
2054 break;
2055 }
2056 }
2057
2058 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2059
2060 static void
2061 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2062 bfd *abfd;
2063 arelent *cache_ptr;
2064 Elf32_Internal_Rel *dst;
2065 {
2066 unsigned int r_type;
2067
2068 r_type = ELF32_R_TYPE (dst->r_info);
2069 cache_ptr->howto = mips_rtype_to_howto (r_type);
2070
2071 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2072 value for the object file. We get the addend now, rather than
2073 when we do the relocation, because the symbol manipulations done
2074 by the linker may cause us to lose track of the input BFD. */
2075 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2076 && (r_type == (unsigned int) R_MIPS_GPREL16
2077 || r_type == (unsigned int) R_MIPS_LITERAL))
2078 cache_ptr->addend = elf_gp (abfd);
2079 }
2080
2081 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2082
2083 static void
2084 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2085 bfd *abfd;
2086 arelent *cache_ptr;
2087 Elf32_Internal_Rela *dst;
2088 {
2089 /* Since an Elf32_Internal_Rel is an initial prefix of an
2090 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2091 above. */
2092 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2093
2094 /* If we ever need to do any extra processing with dst->r_addend
2095 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2096 }
2097 \f
2098 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2099 routines swap this structure in and out. They are used outside of
2100 BFD, so they are globally visible. */
2101
2102 void
2103 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2104 bfd *abfd;
2105 const Elf32_External_RegInfo *ex;
2106 Elf32_RegInfo *in;
2107 {
2108 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2109 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2110 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2111 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2112 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2113 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
2114 }
2115
2116 void
2117 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2118 bfd *abfd;
2119 const Elf32_RegInfo *in;
2120 Elf32_External_RegInfo *ex;
2121 {
2122 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2123 (bfd_byte *) ex->ri_gprmask);
2124 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2125 (bfd_byte *) ex->ri_cprmask[0]);
2126 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2127 (bfd_byte *) ex->ri_cprmask[1]);
2128 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2129 (bfd_byte *) ex->ri_cprmask[2]);
2130 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2131 (bfd_byte *) ex->ri_cprmask[3]);
2132 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
2133 (bfd_byte *) ex->ri_gp_value);
2134 }
2135
2136 /* In the 64 bit ABI, the .MIPS.options section holds register
2137 information in an Elf64_Reginfo structure. These routines swap
2138 them in and out. They are globally visible because they are used
2139 outside of BFD. These routines are here so that gas can call them
2140 without worrying about whether the 64 bit ABI has been included. */
2141
2142 void
2143 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2144 bfd *abfd;
2145 const Elf64_External_RegInfo *ex;
2146 Elf64_Internal_RegInfo *in;
2147 {
2148 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2149 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2150 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2151 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2152 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2153 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2154 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2155 }
2156
2157 void
2158 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2159 bfd *abfd;
2160 const Elf64_Internal_RegInfo *in;
2161 Elf64_External_RegInfo *ex;
2162 {
2163 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2164 (bfd_byte *) ex->ri_gprmask);
2165 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2166 (bfd_byte *) ex->ri_pad);
2167 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2168 (bfd_byte *) ex->ri_cprmask[0]);
2169 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2170 (bfd_byte *) ex->ri_cprmask[1]);
2171 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2172 (bfd_byte *) ex->ri_cprmask[2]);
2173 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2174 (bfd_byte *) ex->ri_cprmask[3]);
2175 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2176 (bfd_byte *) ex->ri_gp_value);
2177 }
2178
2179 /* Swap an entry in a .gptab section. Note that these routines rely
2180 on the equivalence of the two elements of the union. */
2181
2182 static void
2183 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2184 bfd *abfd;
2185 const Elf32_External_gptab *ex;
2186 Elf32_gptab *in;
2187 {
2188 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2189 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2190 }
2191
2192 static void
2193 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2194 bfd *abfd;
2195 const Elf32_gptab *in;
2196 Elf32_External_gptab *ex;
2197 {
2198 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2199 ex->gt_entry.gt_g_value);
2200 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2201 ex->gt_entry.gt_bytes);
2202 }
2203
2204 static void
2205 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2206 bfd *abfd;
2207 const Elf32_compact_rel *in;
2208 Elf32_External_compact_rel *ex;
2209 {
2210 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2211 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2212 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2213 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2214 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2215 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2216 }
2217
2218 static void
2219 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2220 bfd *abfd;
2221 const Elf32_crinfo *in;
2222 Elf32_External_crinfo *ex;
2223 {
2224 unsigned long l;
2225
2226 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2227 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2228 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2229 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2230 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2231 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2232 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2233 }
2234
2235 /* Swap in an options header. */
2236
2237 void
2238 bfd_mips_elf_swap_options_in (abfd, ex, in)
2239 bfd *abfd;
2240 const Elf_External_Options *ex;
2241 Elf_Internal_Options *in;
2242 {
2243 in->kind = bfd_h_get_8 (abfd, ex->kind);
2244 in->size = bfd_h_get_8 (abfd, ex->size);
2245 in->section = bfd_h_get_16 (abfd, ex->section);
2246 in->info = bfd_h_get_32 (abfd, ex->info);
2247 }
2248
2249 /* Swap out an options header. */
2250
2251 void
2252 bfd_mips_elf_swap_options_out (abfd, in, ex)
2253 bfd *abfd;
2254 const Elf_Internal_Options *in;
2255 Elf_External_Options *ex;
2256 {
2257 bfd_h_put_8 (abfd, in->kind, ex->kind);
2258 bfd_h_put_8 (abfd, in->size, ex->size);
2259 bfd_h_put_16 (abfd, in->section, ex->section);
2260 bfd_h_put_32 (abfd, in->info, ex->info);
2261 }
2262 #if 0
2263 /* Swap in an MSYM entry. */
2264
2265 static void
2266 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2267 bfd *abfd;
2268 const Elf32_External_Msym *ex;
2269 Elf32_Internal_Msym *in;
2270 {
2271 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2272 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2273 }
2274 #endif
2275 /* Swap out an MSYM entry. */
2276
2277 static void
2278 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2279 bfd *abfd;
2280 const Elf32_Internal_Msym *in;
2281 Elf32_External_Msym *ex;
2282 {
2283 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2284 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2285 }
2286 \f
2287 /* Determine whether a symbol is global for the purposes of splitting
2288 the symbol table into global symbols and local symbols. At least
2289 on Irix 5, this split must be between section symbols and all other
2290 symbols. On most ELF targets the split is between static symbols
2291 and externally visible symbols. */
2292
2293 static boolean
2294 mips_elf_sym_is_global (abfd, sym)
2295 bfd *abfd ATTRIBUTE_UNUSED;
2296 asymbol *sym;
2297 {
2298 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2299 }
2300 \f
2301 /* Set the right machine number for a MIPS ELF file. This is used for
2302 both the 32-bit and the 64-bit ABI. */
2303
2304 boolean
2305 _bfd_mips_elf_object_p (abfd)
2306 bfd *abfd;
2307 {
2308 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2309 sorted correctly such that local symbols precede global symbols,
2310 and the sh_info field in the symbol table is not always right. */
2311 elf_bad_symtab (abfd) = true;
2312
2313 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2314 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2315 return true;
2316 }
2317
2318 /* The final processing done just before writing out a MIPS ELF object
2319 file. This gets the MIPS architecture right based on the machine
2320 number. This is used by both the 32-bit and the 64-bit ABI. */
2321
2322 void
2323 _bfd_mips_elf_final_write_processing (abfd, linker)
2324 bfd *abfd;
2325 boolean linker ATTRIBUTE_UNUSED;
2326 {
2327 unsigned long val;
2328 unsigned int i;
2329 Elf_Internal_Shdr **hdrpp;
2330 const char *name;
2331 asection *sec;
2332
2333 switch (bfd_get_mach (abfd))
2334 {
2335 default:
2336 case bfd_mach_mips3000:
2337 val = E_MIPS_ARCH_1;
2338 break;
2339
2340 case bfd_mach_mips3900:
2341 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2342 break;
2343
2344 case bfd_mach_mips6000:
2345 val = E_MIPS_ARCH_2;
2346 break;
2347
2348 case bfd_mach_mips4000:
2349 case bfd_mach_mips4300:
2350 val = E_MIPS_ARCH_3;
2351 break;
2352
2353 case bfd_mach_mips4010:
2354 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2355 break;
2356
2357 case bfd_mach_mips4100:
2358 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2359 break;
2360
2361 case bfd_mach_mips4111:
2362 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2363 break;
2364
2365 case bfd_mach_mips4650:
2366 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2367 break;
2368
2369 case bfd_mach_mips8000:
2370 val = E_MIPS_ARCH_4;
2371 break;
2372
2373 case bfd_mach_mips32:
2374 val = E_MIPS_ARCH_32;
2375 break;
2376
2377 case bfd_mach_mips32_4k:
2378 val = E_MIPS_ARCH_32 | E_MIPS_MACH_MIPS32_4K;
2379 break;
2380
2381 case bfd_mach_mips5:
2382 val = E_MIPS_ARCH_5;
2383 break;
2384
2385 case bfd_mach_mips64:
2386 val = E_MIPS_ARCH_64;
2387 break;
2388
2389 case bfd_mach_mips_sb1:
2390 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
2391 break;
2392 }
2393
2394 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2395 elf_elfheader (abfd)->e_flags |= val;
2396
2397 /* Set the sh_info field for .gptab sections and other appropriate
2398 info for each special section. */
2399 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2400 i < elf_elfheader (abfd)->e_shnum;
2401 i++, hdrpp++)
2402 {
2403 switch ((*hdrpp)->sh_type)
2404 {
2405 case SHT_MIPS_MSYM:
2406 case SHT_MIPS_LIBLIST:
2407 sec = bfd_get_section_by_name (abfd, ".dynstr");
2408 if (sec != NULL)
2409 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2410 break;
2411
2412 case SHT_MIPS_GPTAB:
2413 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2414 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2415 BFD_ASSERT (name != NULL
2416 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2417 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2418 BFD_ASSERT (sec != NULL);
2419 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2420 break;
2421
2422 case SHT_MIPS_CONTENT:
2423 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2424 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2425 BFD_ASSERT (name != NULL
2426 && strncmp (name, ".MIPS.content",
2427 sizeof ".MIPS.content" - 1) == 0);
2428 sec = bfd_get_section_by_name (abfd,
2429 name + sizeof ".MIPS.content" - 1);
2430 BFD_ASSERT (sec != NULL);
2431 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2432 break;
2433
2434 case SHT_MIPS_SYMBOL_LIB:
2435 sec = bfd_get_section_by_name (abfd, ".dynsym");
2436 if (sec != NULL)
2437 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2438 sec = bfd_get_section_by_name (abfd, ".liblist");
2439 if (sec != NULL)
2440 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2441 break;
2442
2443 case SHT_MIPS_EVENTS:
2444 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2445 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2446 BFD_ASSERT (name != NULL);
2447 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2448 sec = bfd_get_section_by_name (abfd,
2449 name + sizeof ".MIPS.events" - 1);
2450 else
2451 {
2452 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2453 sizeof ".MIPS.post_rel" - 1) == 0);
2454 sec = bfd_get_section_by_name (abfd,
2455 (name
2456 + sizeof ".MIPS.post_rel" - 1));
2457 }
2458 BFD_ASSERT (sec != NULL);
2459 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2460 break;
2461
2462 }
2463 }
2464 }
2465 \f
2466 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2467
2468 boolean
2469 _bfd_mips_elf_set_private_flags (abfd, flags)
2470 bfd *abfd;
2471 flagword flags;
2472 {
2473 BFD_ASSERT (!elf_flags_init (abfd)
2474 || elf_elfheader (abfd)->e_flags == flags);
2475
2476 elf_elfheader (abfd)->e_flags = flags;
2477 elf_flags_init (abfd) = true;
2478 return true;
2479 }
2480
2481 /* Copy backend specific data from one object module to another */
2482
2483 boolean
2484 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2485 bfd *ibfd;
2486 bfd *obfd;
2487 {
2488 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2489 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2490 return true;
2491
2492 BFD_ASSERT (!elf_flags_init (obfd)
2493 || (elf_elfheader (obfd)->e_flags
2494 == elf_elfheader (ibfd)->e_flags));
2495
2496 elf_gp (obfd) = elf_gp (ibfd);
2497 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2498 elf_flags_init (obfd) = true;
2499 return true;
2500 }
2501
2502 /* Merge backend specific data from an object file to the output
2503 object file when linking. */
2504
2505 boolean
2506 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2507 bfd *ibfd;
2508 bfd *obfd;
2509 {
2510 flagword old_flags;
2511 flagword new_flags;
2512 boolean ok;
2513 boolean null_input_bfd = true;
2514 asection *sec;
2515
2516 /* Check if we have the same endianess */
2517 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2518 return false;
2519
2520 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2521 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2522 return true;
2523
2524 new_flags = elf_elfheader (ibfd)->e_flags;
2525 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2526 old_flags = elf_elfheader (obfd)->e_flags;
2527
2528 if (! elf_flags_init (obfd))
2529 {
2530 elf_flags_init (obfd) = true;
2531 elf_elfheader (obfd)->e_flags = new_flags;
2532 elf_elfheader (obfd)->e_ident[EI_CLASS]
2533 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
2534
2535 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2536 && bfd_get_arch_info (obfd)->the_default)
2537 {
2538 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2539 bfd_get_mach (ibfd)))
2540 return false;
2541 }
2542
2543 return true;
2544 }
2545
2546 /* Check flag compatibility. */
2547
2548 new_flags &= ~EF_MIPS_NOREORDER;
2549 old_flags &= ~EF_MIPS_NOREORDER;
2550
2551 if (new_flags == old_flags)
2552 return true;
2553
2554 /* Check to see if the input BFD actually contains any sections.
2555 If not, its flags may not have been initialised either, but it cannot
2556 actually cause any incompatibility. */
2557 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2558 {
2559 /* Ignore synthetic sections and empty .text, .data and .bss sections
2560 which are automatically generated by gas. */
2561 if (strcmp (sec->name, ".reginfo")
2562 && strcmp (sec->name, ".mdebug")
2563 && ((!strcmp (sec->name, ".text")
2564 || !strcmp (sec->name, ".data")
2565 || !strcmp (sec->name, ".bss"))
2566 && sec->_raw_size != 0))
2567 {
2568 null_input_bfd = false;
2569 break;
2570 }
2571 }
2572 if (null_input_bfd)
2573 return true;
2574
2575 ok = true;
2576
2577 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2578 {
2579 new_flags &= ~EF_MIPS_PIC;
2580 old_flags &= ~EF_MIPS_PIC;
2581 (*_bfd_error_handler)
2582 (_("%s: linking PIC files with non-PIC files"),
2583 bfd_get_filename (ibfd));
2584 ok = false;
2585 }
2586
2587 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2588 {
2589 new_flags &= ~EF_MIPS_CPIC;
2590 old_flags &= ~EF_MIPS_CPIC;
2591 (*_bfd_error_handler)
2592 (_("%s: linking abicalls files with non-abicalls files"),
2593 bfd_get_filename (ibfd));
2594 ok = false;
2595 }
2596
2597 /* Compare the ISA's. */
2598 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2599 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2600 {
2601 int new_mach = new_flags & EF_MIPS_MACH;
2602 int old_mach = old_flags & EF_MIPS_MACH;
2603 int new_isa = elf_mips_isa (new_flags);
2604 int old_isa = elf_mips_isa (old_flags);
2605
2606 /* If either has no machine specified, just compare the general isa's.
2607 Some combinations of machines are ok, if the isa's match. */
2608 if (! new_mach
2609 || ! old_mach
2610 || new_mach == old_mach
2611 )
2612 {
2613 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
2614 using 64-bit ISAs. They will normally use the same data sizes
2615 and calling conventions. */
2616
2617 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
2618 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
2619 {
2620 (*_bfd_error_handler)
2621 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2622 bfd_get_filename (ibfd), new_isa, old_isa);
2623 ok = false;
2624 }
2625 }
2626
2627 else
2628 {
2629 (*_bfd_error_handler)
2630 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2631 bfd_get_filename (ibfd),
2632 elf_mips_mach (new_flags),
2633 elf_mips_mach (old_flags));
2634 ok = false;
2635 }
2636
2637 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2638 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2639 }
2640
2641 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2642 does set EI_CLASS differently from any 32-bit ABI. */
2643 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2644 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2645 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2646 {
2647 /* Only error if both are set (to different values). */
2648 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2649 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2650 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2651 {
2652 (*_bfd_error_handler)
2653 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2654 bfd_get_filename (ibfd),
2655 elf_mips_abi_name (ibfd),
2656 elf_mips_abi_name (obfd));
2657 ok = false;
2658 }
2659 new_flags &= ~EF_MIPS_ABI;
2660 old_flags &= ~EF_MIPS_ABI;
2661 }
2662
2663 /* Warn about any other mismatches */
2664 if (new_flags != old_flags)
2665 {
2666 (*_bfd_error_handler)
2667 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2668 bfd_get_filename (ibfd), (unsigned long) new_flags,
2669 (unsigned long) old_flags);
2670 ok = false;
2671 }
2672
2673 if (! ok)
2674 {
2675 bfd_set_error (bfd_error_bad_value);
2676 return false;
2677 }
2678
2679 return true;
2680 }
2681 \f
2682 boolean
2683 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2684 bfd *abfd;
2685 PTR ptr;
2686 {
2687 FILE *file = (FILE *) ptr;
2688
2689 BFD_ASSERT (abfd != NULL && ptr != NULL);
2690
2691 /* Print normal ELF private data. */
2692 _bfd_elf_print_private_bfd_data (abfd, ptr);
2693
2694 /* xgettext:c-format */
2695 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2696
2697 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2698 fprintf (file, _(" [abi=O32]"));
2699 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2700 fprintf (file, _(" [abi=O64]"));
2701 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2702 fprintf (file, _(" [abi=EABI32]"));
2703 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2704 fprintf (file, _(" [abi=EABI64]"));
2705 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2706 fprintf (file, _(" [abi unknown]"));
2707 else if (ABI_N32_P (abfd))
2708 fprintf (file, _(" [abi=N32]"));
2709 else if (ABI_64_P (abfd))
2710 fprintf (file, _(" [abi=64]"));
2711 else
2712 fprintf (file, _(" [no abi set]"));
2713
2714 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2715 fprintf (file, _(" [mips1]"));
2716 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2717 fprintf (file, _(" [mips2]"));
2718 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2719 fprintf (file, _(" [mips3]"));
2720 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2721 fprintf (file, _(" [mips4]"));
2722 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
2723 fprintf (file, _ (" [mips5]"));
2724 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
2725 fprintf (file, _ (" [mips32]"));
2726 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
2727 fprintf (file, _ (" [mips64]"));
2728 else
2729 fprintf (file, _(" [unknown ISA]"));
2730
2731 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2732 fprintf (file, _(" [32bitmode]"));
2733 else
2734 fprintf (file, _(" [not 32bitmode]"));
2735
2736 fputc ('\n', file);
2737
2738 return true;
2739 }
2740 \f
2741 /* Handle a MIPS specific section when reading an object file. This
2742 is called when elfcode.h finds a section with an unknown type.
2743 This routine supports both the 32-bit and 64-bit ELF ABI.
2744
2745 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2746 how to. */
2747
2748 boolean
2749 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2750 bfd *abfd;
2751 Elf_Internal_Shdr *hdr;
2752 char *name;
2753 {
2754 flagword flags = 0;
2755
2756 /* There ought to be a place to keep ELF backend specific flags, but
2757 at the moment there isn't one. We just keep track of the
2758 sections by their name, instead. Fortunately, the ABI gives
2759 suggested names for all the MIPS specific sections, so we will
2760 probably get away with this. */
2761 switch (hdr->sh_type)
2762 {
2763 case SHT_MIPS_LIBLIST:
2764 if (strcmp (name, ".liblist") != 0)
2765 return false;
2766 break;
2767 case SHT_MIPS_MSYM:
2768 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
2769 return false;
2770 break;
2771 case SHT_MIPS_CONFLICT:
2772 if (strcmp (name, ".conflict") != 0)
2773 return false;
2774 break;
2775 case SHT_MIPS_GPTAB:
2776 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2777 return false;
2778 break;
2779 case SHT_MIPS_UCODE:
2780 if (strcmp (name, ".ucode") != 0)
2781 return false;
2782 break;
2783 case SHT_MIPS_DEBUG:
2784 if (strcmp (name, ".mdebug") != 0)
2785 return false;
2786 flags = SEC_DEBUGGING;
2787 break;
2788 case SHT_MIPS_REGINFO:
2789 if (strcmp (name, ".reginfo") != 0
2790 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2791 return false;
2792 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2793 break;
2794 case SHT_MIPS_IFACE:
2795 if (strcmp (name, ".MIPS.interfaces") != 0)
2796 return false;
2797 break;
2798 case SHT_MIPS_CONTENT:
2799 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2800 return false;
2801 break;
2802 case SHT_MIPS_OPTIONS:
2803 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
2804 return false;
2805 break;
2806 case SHT_MIPS_DWARF:
2807 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2808 return false;
2809 break;
2810 case SHT_MIPS_SYMBOL_LIB:
2811 if (strcmp (name, ".MIPS.symlib") != 0)
2812 return false;
2813 break;
2814 case SHT_MIPS_EVENTS:
2815 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2816 && strncmp (name, ".MIPS.post_rel",
2817 sizeof ".MIPS.post_rel" - 1) != 0)
2818 return false;
2819 break;
2820 default:
2821 return false;
2822 }
2823
2824 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2825 return false;
2826
2827 if (flags)
2828 {
2829 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2830 (bfd_get_section_flags (abfd,
2831 hdr->bfd_section)
2832 | flags)))
2833 return false;
2834 }
2835
2836 /* FIXME: We should record sh_info for a .gptab section. */
2837
2838 /* For a .reginfo section, set the gp value in the tdata information
2839 from the contents of this section. We need the gp value while
2840 processing relocs, so we just get it now. The .reginfo section
2841 is not used in the 64-bit MIPS ELF ABI. */
2842 if (hdr->sh_type == SHT_MIPS_REGINFO)
2843 {
2844 Elf32_External_RegInfo ext;
2845 Elf32_RegInfo s;
2846
2847 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2848 (file_ptr) 0, sizeof ext))
2849 return false;
2850 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2851 elf_gp (abfd) = s.ri_gp_value;
2852 }
2853
2854 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2855 set the gp value based on what we find. We may see both
2856 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2857 they should agree. */
2858 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2859 {
2860 bfd_byte *contents, *l, *lend;
2861
2862 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2863 if (contents == NULL)
2864 return false;
2865 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2866 (file_ptr) 0, hdr->sh_size))
2867 {
2868 free (contents);
2869 return false;
2870 }
2871 l = contents;
2872 lend = contents + hdr->sh_size;
2873 while (l + sizeof (Elf_External_Options) <= lend)
2874 {
2875 Elf_Internal_Options intopt;
2876
2877 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2878 &intopt);
2879 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2880 {
2881 Elf64_Internal_RegInfo intreg;
2882
2883 bfd_mips_elf64_swap_reginfo_in
2884 (abfd,
2885 ((Elf64_External_RegInfo *)
2886 (l + sizeof (Elf_External_Options))),
2887 &intreg);
2888 elf_gp (abfd) = intreg.ri_gp_value;
2889 }
2890 else if (intopt.kind == ODK_REGINFO)
2891 {
2892 Elf32_RegInfo intreg;
2893
2894 bfd_mips_elf32_swap_reginfo_in
2895 (abfd,
2896 ((Elf32_External_RegInfo *)
2897 (l + sizeof (Elf_External_Options))),
2898 &intreg);
2899 elf_gp (abfd) = intreg.ri_gp_value;
2900 }
2901 l += intopt.size;
2902 }
2903 free (contents);
2904 }
2905
2906 return true;
2907 }
2908
2909 /* Set the correct type for a MIPS ELF section. We do this by the
2910 section name, which is a hack, but ought to work. This routine is
2911 used by both the 32-bit and the 64-bit ABI. */
2912
2913 boolean
2914 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
2915 bfd *abfd;
2916 Elf32_Internal_Shdr *hdr;
2917 asection *sec;
2918 {
2919 register const char *name;
2920
2921 name = bfd_get_section_name (abfd, sec);
2922
2923 if (strcmp (name, ".liblist") == 0)
2924 {
2925 hdr->sh_type = SHT_MIPS_LIBLIST;
2926 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2927 /* The sh_link field is set in final_write_processing. */
2928 }
2929 else if (strcmp (name, ".conflict") == 0)
2930 hdr->sh_type = SHT_MIPS_CONFLICT;
2931 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2932 {
2933 hdr->sh_type = SHT_MIPS_GPTAB;
2934 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2935 /* The sh_info field is set in final_write_processing. */
2936 }
2937 else if (strcmp (name, ".ucode") == 0)
2938 hdr->sh_type = SHT_MIPS_UCODE;
2939 else if (strcmp (name, ".mdebug") == 0)
2940 {
2941 hdr->sh_type = SHT_MIPS_DEBUG;
2942 /* In a shared object on Irix 5.3, the .mdebug section has an
2943 entsize of 0. FIXME: Does this matter? */
2944 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2945 hdr->sh_entsize = 0;
2946 else
2947 hdr->sh_entsize = 1;
2948 }
2949 else if (strcmp (name, ".reginfo") == 0)
2950 {
2951 hdr->sh_type = SHT_MIPS_REGINFO;
2952 /* In a shared object on Irix 5.3, the .reginfo section has an
2953 entsize of 0x18. FIXME: Does this matter? */
2954 if (SGI_COMPAT (abfd))
2955 {
2956 if ((abfd->flags & DYNAMIC) != 0)
2957 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2958 else
2959 hdr->sh_entsize = 1;
2960 }
2961 else
2962 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2963 }
2964 else if (SGI_COMPAT (abfd)
2965 && (strcmp (name, ".hash") == 0
2966 || strcmp (name, ".dynamic") == 0
2967 || strcmp (name, ".dynstr") == 0))
2968 {
2969 if (SGI_COMPAT (abfd))
2970 hdr->sh_entsize = 0;
2971 #if 0
2972 /* This isn't how the Irix 6 linker behaves. */
2973 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2974 #endif
2975 }
2976 else if (strcmp (name, ".got") == 0
2977 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
2978 || strcmp (name, ".sdata") == 0
2979 || strcmp (name, ".sbss") == 0
2980 || strcmp (name, ".lit4") == 0
2981 || strcmp (name, ".lit8") == 0)
2982 hdr->sh_flags |= SHF_MIPS_GPREL;
2983 else if (strcmp (name, ".MIPS.interfaces") == 0)
2984 {
2985 hdr->sh_type = SHT_MIPS_IFACE;
2986 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2987 }
2988 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
2989 {
2990 hdr->sh_type = SHT_MIPS_CONTENT;
2991 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2992 /* The sh_info field is set in final_write_processing. */
2993 }
2994 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
2995 {
2996 hdr->sh_type = SHT_MIPS_OPTIONS;
2997 hdr->sh_entsize = 1;
2998 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2999 }
3000 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3001 hdr->sh_type = SHT_MIPS_DWARF;
3002 else if (strcmp (name, ".MIPS.symlib") == 0)
3003 {
3004 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3005 /* The sh_link and sh_info fields are set in
3006 final_write_processing. */
3007 }
3008 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3009 || strncmp (name, ".MIPS.post_rel",
3010 sizeof ".MIPS.post_rel" - 1) == 0)
3011 {
3012 hdr->sh_type = SHT_MIPS_EVENTS;
3013 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3014 /* The sh_link field is set in final_write_processing. */
3015 }
3016 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
3017 {
3018 hdr->sh_type = SHT_MIPS_MSYM;
3019 hdr->sh_flags |= SHF_ALLOC;
3020 hdr->sh_entsize = 8;
3021 }
3022
3023 /* The generic elf_fake_sections will set up REL_HDR using the
3024 default kind of relocations. But, we may actually need both
3025 kinds of relocations, so we set up the second header here. */
3026 if ((sec->flags & SEC_RELOC) != 0)
3027 {
3028 struct bfd_elf_section_data *esd;
3029
3030 esd = elf_section_data (sec);
3031 BFD_ASSERT (esd->rel_hdr2 == NULL);
3032 esd->rel_hdr2
3033 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3034 if (!esd->rel_hdr2)
3035 return false;
3036 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3037 !elf_section_data (sec)->use_rela_p);
3038 }
3039
3040 return true;
3041 }
3042
3043 /* Given a BFD section, try to locate the corresponding ELF section
3044 index. This is used by both the 32-bit and the 64-bit ABI.
3045 Actually, it's not clear to me that the 64-bit ABI supports these,
3046 but for non-PIC objects we will certainly want support for at least
3047 the .scommon section. */
3048
3049 boolean
3050 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
3051 bfd *abfd ATTRIBUTE_UNUSED;
3052 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3053 asection *sec;
3054 int *retval;
3055 {
3056 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3057 {
3058 *retval = SHN_MIPS_SCOMMON;
3059 return true;
3060 }
3061 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3062 {
3063 *retval = SHN_MIPS_ACOMMON;
3064 return true;
3065 }
3066 return false;
3067 }
3068
3069 /* When are writing out the .options or .MIPS.options section,
3070 remember the bytes we are writing out, so that we can install the
3071 GP value in the section_processing routine. */
3072
3073 boolean
3074 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3075 bfd *abfd;
3076 sec_ptr section;
3077 PTR location;
3078 file_ptr offset;
3079 bfd_size_type count;
3080 {
3081 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3082 {
3083 bfd_byte *c;
3084
3085 if (elf_section_data (section) == NULL)
3086 {
3087 section->used_by_bfd =
3088 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
3089 if (elf_section_data (section) == NULL)
3090 return false;
3091 }
3092 c = (bfd_byte *) elf_section_data (section)->tdata;
3093 if (c == NULL)
3094 {
3095 bfd_size_type size;
3096
3097 if (section->_cooked_size != 0)
3098 size = section->_cooked_size;
3099 else
3100 size = section->_raw_size;
3101 c = (bfd_byte *) bfd_zalloc (abfd, size);
3102 if (c == NULL)
3103 return false;
3104 elf_section_data (section)->tdata = (PTR) c;
3105 }
3106
3107 memcpy (c + offset, location, count);
3108 }
3109
3110 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3111 count);
3112 }
3113
3114 /* Work over a section just before writing it out. This routine is
3115 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3116 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3117 a better way. */
3118
3119 boolean
3120 _bfd_mips_elf_section_processing (abfd, hdr)
3121 bfd *abfd;
3122 Elf_Internal_Shdr *hdr;
3123 {
3124 if (hdr->sh_type == SHT_MIPS_REGINFO
3125 && hdr->sh_size > 0)
3126 {
3127 bfd_byte buf[4];
3128
3129 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3130 BFD_ASSERT (hdr->contents == NULL);
3131
3132 if (bfd_seek (abfd,
3133 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3134 SEEK_SET) == -1)
3135 return false;
3136 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
3137 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
3138 return false;
3139 }
3140
3141 if (hdr->sh_type == SHT_MIPS_OPTIONS
3142 && hdr->bfd_section != NULL
3143 && elf_section_data (hdr->bfd_section) != NULL
3144 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3145 {
3146 bfd_byte *contents, *l, *lend;
3147
3148 /* We stored the section contents in the elf_section_data tdata
3149 field in the set_section_contents routine. We save the
3150 section contents so that we don't have to read them again.
3151 At this point we know that elf_gp is set, so we can look
3152 through the section contents to see if there is an
3153 ODK_REGINFO structure. */
3154
3155 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3156 l = contents;
3157 lend = contents + hdr->sh_size;
3158 while (l + sizeof (Elf_External_Options) <= lend)
3159 {
3160 Elf_Internal_Options intopt;
3161
3162 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3163 &intopt);
3164 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3165 {
3166 bfd_byte buf[8];
3167
3168 if (bfd_seek (abfd,
3169 (hdr->sh_offset
3170 + (l - contents)
3171 + sizeof (Elf_External_Options)
3172 + (sizeof (Elf64_External_RegInfo) - 8)),
3173 SEEK_SET) == -1)
3174 return false;
3175 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3176 if (bfd_write (buf, 1, 8, abfd) != 8)
3177 return false;
3178 }
3179 else if (intopt.kind == ODK_REGINFO)
3180 {
3181 bfd_byte buf[4];
3182
3183 if (bfd_seek (abfd,
3184 (hdr->sh_offset
3185 + (l - contents)
3186 + sizeof (Elf_External_Options)
3187 + (sizeof (Elf32_External_RegInfo) - 4)),
3188 SEEK_SET) == -1)
3189 return false;
3190 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3191 if (bfd_write (buf, 1, 4, abfd) != 4)
3192 return false;
3193 }
3194 l += intopt.size;
3195 }
3196 }
3197
3198 if (hdr->bfd_section != NULL)
3199 {
3200 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3201
3202 if (strcmp (name, ".sdata") == 0
3203 || strcmp (name, ".lit8") == 0
3204 || strcmp (name, ".lit4") == 0)
3205 {
3206 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3207 hdr->sh_type = SHT_PROGBITS;
3208 }
3209 else if (strcmp (name, ".sbss") == 0)
3210 {
3211 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3212 hdr->sh_type = SHT_NOBITS;
3213 }
3214 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3215 {
3216 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3217 hdr->sh_type = SHT_PROGBITS;
3218 }
3219 else if (strcmp (name, ".compact_rel") == 0)
3220 {
3221 hdr->sh_flags = 0;
3222 hdr->sh_type = SHT_PROGBITS;
3223 }
3224 else if (strcmp (name, ".rtproc") == 0)
3225 {
3226 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3227 {
3228 unsigned int adjust;
3229
3230 adjust = hdr->sh_size % hdr->sh_addralign;
3231 if (adjust != 0)
3232 hdr->sh_size += hdr->sh_addralign - adjust;
3233 }
3234 }
3235 }
3236
3237 return true;
3238 }
3239 \f
3240 /* MIPS ELF uses two common sections. One is the usual one, and the
3241 other is for small objects. All the small objects are kept
3242 together, and then referenced via the gp pointer, which yields
3243 faster assembler code. This is what we use for the small common
3244 section. This approach is copied from ecoff.c. */
3245 static asection mips_elf_scom_section;
3246 static asymbol mips_elf_scom_symbol;
3247 static asymbol *mips_elf_scom_symbol_ptr;
3248
3249 /* MIPS ELF also uses an acommon section, which represents an
3250 allocated common symbol which may be overridden by a
3251 definition in a shared library. */
3252 static asection mips_elf_acom_section;
3253 static asymbol mips_elf_acom_symbol;
3254 static asymbol *mips_elf_acom_symbol_ptr;
3255
3256 /* Handle the special MIPS section numbers that a symbol may use.
3257 This is used for both the 32-bit and the 64-bit ABI. */
3258
3259 void
3260 _bfd_mips_elf_symbol_processing (abfd, asym)
3261 bfd *abfd;
3262 asymbol *asym;
3263 {
3264 elf_symbol_type *elfsym;
3265
3266 elfsym = (elf_symbol_type *) asym;
3267 switch (elfsym->internal_elf_sym.st_shndx)
3268 {
3269 case SHN_MIPS_ACOMMON:
3270 /* This section is used in a dynamically linked executable file.
3271 It is an allocated common section. The dynamic linker can
3272 either resolve these symbols to something in a shared
3273 library, or it can just leave them here. For our purposes,
3274 we can consider these symbols to be in a new section. */
3275 if (mips_elf_acom_section.name == NULL)
3276 {
3277 /* Initialize the acommon section. */
3278 mips_elf_acom_section.name = ".acommon";
3279 mips_elf_acom_section.flags = SEC_ALLOC;
3280 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3281 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3282 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3283 mips_elf_acom_symbol.name = ".acommon";
3284 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3285 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3286 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3287 }
3288 asym->section = &mips_elf_acom_section;
3289 break;
3290
3291 case SHN_COMMON:
3292 /* Common symbols less than the GP size are automatically
3293 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3294 if (asym->value > elf_gp_size (abfd)
3295 || IRIX_COMPAT (abfd) == ict_irix6)
3296 break;
3297 /* Fall through. */
3298 case SHN_MIPS_SCOMMON:
3299 if (mips_elf_scom_section.name == NULL)
3300 {
3301 /* Initialize the small common section. */
3302 mips_elf_scom_section.name = ".scommon";
3303 mips_elf_scom_section.flags = SEC_IS_COMMON;
3304 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3305 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3306 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3307 mips_elf_scom_symbol.name = ".scommon";
3308 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3309 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3310 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3311 }
3312 asym->section = &mips_elf_scom_section;
3313 asym->value = elfsym->internal_elf_sym.st_size;
3314 break;
3315
3316 case SHN_MIPS_SUNDEFINED:
3317 asym->section = bfd_und_section_ptr;
3318 break;
3319
3320 #if 0 /* for SGI_COMPAT */
3321 case SHN_MIPS_TEXT:
3322 asym->section = mips_elf_text_section_ptr;
3323 break;
3324
3325 case SHN_MIPS_DATA:
3326 asym->section = mips_elf_data_section_ptr;
3327 break;
3328 #endif
3329 }
3330 }
3331 \f
3332 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3333 segments. */
3334
3335 int
3336 _bfd_mips_elf_additional_program_headers (abfd)
3337 bfd *abfd;
3338 {
3339 asection *s;
3340 int ret = 0;
3341
3342 /* See if we need a PT_MIPS_REGINFO segment. */
3343 s = bfd_get_section_by_name (abfd, ".reginfo");
3344 if (s && (s->flags & SEC_LOAD))
3345 ++ret;
3346
3347 /* See if we need a PT_MIPS_OPTIONS segment. */
3348 if (IRIX_COMPAT (abfd) == ict_irix6
3349 && bfd_get_section_by_name (abfd,
3350 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3351 ++ret;
3352
3353 /* See if we need a PT_MIPS_RTPROC segment. */
3354 if (IRIX_COMPAT (abfd) == ict_irix5
3355 && bfd_get_section_by_name (abfd, ".dynamic")
3356 && bfd_get_section_by_name (abfd, ".mdebug"))
3357 ++ret;
3358
3359 return ret;
3360 }
3361
3362 /* Modify the segment map for an Irix 5 executable. */
3363
3364 boolean
3365 _bfd_mips_elf_modify_segment_map (abfd)
3366 bfd *abfd;
3367 {
3368 asection *s;
3369 struct elf_segment_map *m, **pm;
3370
3371 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3372 segment. */
3373 s = bfd_get_section_by_name (abfd, ".reginfo");
3374 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3375 {
3376 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3377 if (m->p_type == PT_MIPS_REGINFO)
3378 break;
3379 if (m == NULL)
3380 {
3381 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3382 if (m == NULL)
3383 return false;
3384
3385 m->p_type = PT_MIPS_REGINFO;
3386 m->count = 1;
3387 m->sections[0] = s;
3388
3389 /* We want to put it after the PHDR and INTERP segments. */
3390 pm = &elf_tdata (abfd)->segment_map;
3391 while (*pm != NULL
3392 && ((*pm)->p_type == PT_PHDR
3393 || (*pm)->p_type == PT_INTERP))
3394 pm = &(*pm)->next;
3395
3396 m->next = *pm;
3397 *pm = m;
3398 }
3399 }
3400
3401 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3402 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3403 PT_OPTIONS segement immediately following the program header
3404 table. */
3405 if (IRIX_COMPAT (abfd) == ict_irix6)
3406 {
3407 asection *s;
3408
3409 for (s = abfd->sections; s; s = s->next)
3410 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3411 break;
3412
3413 if (s)
3414 {
3415 struct elf_segment_map *options_segment;
3416
3417 /* Usually, there's a program header table. But, sometimes
3418 there's not (like when running the `ld' testsuite). So,
3419 if there's no program header table, we just put the
3420 options segement at the end. */
3421 for (pm = &elf_tdata (abfd)->segment_map;
3422 *pm != NULL;
3423 pm = &(*pm)->next)
3424 if ((*pm)->p_type == PT_PHDR)
3425 break;
3426
3427 options_segment = bfd_zalloc (abfd,
3428 sizeof (struct elf_segment_map));
3429 options_segment->next = *pm;
3430 options_segment->p_type = PT_MIPS_OPTIONS;
3431 options_segment->p_flags = PF_R;
3432 options_segment->p_flags_valid = true;
3433 options_segment->count = 1;
3434 options_segment->sections[0] = s;
3435 *pm = options_segment;
3436 }
3437 }
3438 else
3439 {
3440 if (IRIX_COMPAT (abfd) == ict_irix5)
3441 {
3442 /* If there are .dynamic and .mdebug sections, we make a room
3443 for the RTPROC header. FIXME: Rewrite without section names. */
3444 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3445 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3446 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3447 {
3448 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3449 if (m->p_type == PT_MIPS_RTPROC)
3450 break;
3451 if (m == NULL)
3452 {
3453 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3454 if (m == NULL)
3455 return false;
3456
3457 m->p_type = PT_MIPS_RTPROC;
3458
3459 s = bfd_get_section_by_name (abfd, ".rtproc");
3460 if (s == NULL)
3461 {
3462 m->count = 0;
3463 m->p_flags = 0;
3464 m->p_flags_valid = 1;
3465 }
3466 else
3467 {
3468 m->count = 1;
3469 m->sections[0] = s;
3470 }
3471
3472 /* We want to put it after the DYNAMIC segment. */
3473 pm = &elf_tdata (abfd)->segment_map;
3474 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3475 pm = &(*pm)->next;
3476 if (*pm != NULL)
3477 pm = &(*pm)->next;
3478
3479 m->next = *pm;
3480 *pm = m;
3481 }
3482 }
3483 }
3484 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3485 .dynstr, .dynsym, and .hash sections, and everything in
3486 between. */
3487 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
3488 pm = &(*pm)->next)
3489 if ((*pm)->p_type == PT_DYNAMIC)
3490 break;
3491 m = *pm;
3492 if (IRIX_COMPAT (abfd) == ict_none)
3493 {
3494 /* For a normal mips executable the permissions for the PT_DYNAMIC
3495 segment are read, write and execute. We do that here since
3496 the code in elf.c sets only the read permission. This matters
3497 sometimes for the dynamic linker. */
3498 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3499 {
3500 m->p_flags = PF_R | PF_W | PF_X;
3501 m->p_flags_valid = 1;
3502 }
3503 }
3504 if (m != NULL
3505 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
3506 {
3507 static const char *sec_names[] =
3508 {
3509 ".dynamic", ".dynstr", ".dynsym", ".hash"
3510 };
3511 bfd_vma low, high;
3512 unsigned int i, c;
3513 struct elf_segment_map *n;
3514
3515 low = 0xffffffff;
3516 high = 0;
3517 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
3518 {
3519 s = bfd_get_section_by_name (abfd, sec_names[i]);
3520 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3521 {
3522 bfd_size_type sz;
3523
3524 if (low > s->vma)
3525 low = s->vma;
3526 sz = s->_cooked_size;
3527 if (sz == 0)
3528 sz = s->_raw_size;
3529 if (high < s->vma + sz)
3530 high = s->vma + sz;
3531 }
3532 }
3533
3534 c = 0;
3535 for (s = abfd->sections; s != NULL; s = s->next)
3536 if ((s->flags & SEC_LOAD) != 0
3537 && s->vma >= low
3538 && ((s->vma
3539 + (s->_cooked_size !=
3540 0 ? s->_cooked_size : s->_raw_size)) <= high))
3541 ++c;
3542
3543 n = ((struct elf_segment_map *)
3544 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3545 if (n == NULL)
3546 return false;
3547 *n = *m;
3548 n->count = c;
3549
3550 i = 0;
3551 for (s = abfd->sections; s != NULL; s = s->next)
3552 {
3553 if ((s->flags & SEC_LOAD) != 0
3554 && s->vma >= low
3555 && ((s->vma
3556 + (s->_cooked_size != 0 ?
3557 s->_cooked_size : s->_raw_size)) <= high))
3558 {
3559 n->sections[i] = s;
3560 ++i;
3561 }
3562 }
3563
3564 *pm = n;
3565 }
3566 }
3567
3568 return true;
3569 }
3570 \f
3571 /* The structure of the runtime procedure descriptor created by the
3572 loader for use by the static exception system. */
3573
3574 typedef struct runtime_pdr {
3575 bfd_vma adr; /* memory address of start of procedure */
3576 long regmask; /* save register mask */
3577 long regoffset; /* save register offset */
3578 long fregmask; /* save floating point register mask */
3579 long fregoffset; /* save floating point register offset */
3580 long frameoffset; /* frame size */
3581 short framereg; /* frame pointer register */
3582 short pcreg; /* offset or reg of return pc */
3583 long irpss; /* index into the runtime string table */
3584 long reserved;
3585 struct exception_info *exception_info;/* pointer to exception array */
3586 } RPDR, *pRPDR;
3587 #define cbRPDR sizeof (RPDR)
3588 #define rpdNil ((pRPDR) 0)
3589
3590 /* Swap RPDR (runtime procedure table entry) for output. */
3591
3592 static void ecoff_swap_rpdr_out
3593 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3594
3595 static void
3596 ecoff_swap_rpdr_out (abfd, in, ex)
3597 bfd *abfd;
3598 const RPDR *in;
3599 struct rpdr_ext *ex;
3600 {
3601 /* ecoff_put_off was defined in ecoffswap.h. */
3602 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3603 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3604 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3605 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3606 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3607 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3608
3609 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3610 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3611
3612 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3613 #if 0 /* FIXME */
3614 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3615 #endif
3616 }
3617 \f
3618 /* Read ECOFF debugging information from a .mdebug section into a
3619 ecoff_debug_info structure. */
3620
3621 boolean
3622 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3623 bfd *abfd;
3624 asection *section;
3625 struct ecoff_debug_info *debug;
3626 {
3627 HDRR *symhdr;
3628 const struct ecoff_debug_swap *swap;
3629 char *ext_hdr = NULL;
3630
3631 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3632 memset (debug, 0, sizeof (*debug));
3633
3634 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3635 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3636 goto error_return;
3637
3638 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3639 swap->external_hdr_size)
3640 == false)
3641 goto error_return;
3642
3643 symhdr = &debug->symbolic_header;
3644 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3645
3646 /* The symbolic header contains absolute file offsets and sizes to
3647 read. */
3648 #define READ(ptr, offset, count, size, type) \
3649 if (symhdr->count == 0) \
3650 debug->ptr = NULL; \
3651 else \
3652 { \
3653 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3654 if (debug->ptr == NULL) \
3655 goto error_return; \
3656 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3657 || (bfd_read (debug->ptr, size, symhdr->count, \
3658 abfd) != size * symhdr->count)) \
3659 goto error_return; \
3660 }
3661
3662 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3663 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3664 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3665 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3666 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3667 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3668 union aux_ext *);
3669 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3670 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3671 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3672 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3673 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3674 #undef READ
3675
3676 debug->fdr = NULL;
3677 debug->adjust = NULL;
3678
3679 return true;
3680
3681 error_return:
3682 if (ext_hdr != NULL)
3683 free (ext_hdr);
3684 if (debug->line != NULL)
3685 free (debug->line);
3686 if (debug->external_dnr != NULL)
3687 free (debug->external_dnr);
3688 if (debug->external_pdr != NULL)
3689 free (debug->external_pdr);
3690 if (debug->external_sym != NULL)
3691 free (debug->external_sym);
3692 if (debug->external_opt != NULL)
3693 free (debug->external_opt);
3694 if (debug->external_aux != NULL)
3695 free (debug->external_aux);
3696 if (debug->ss != NULL)
3697 free (debug->ss);
3698 if (debug->ssext != NULL)
3699 free (debug->ssext);
3700 if (debug->external_fdr != NULL)
3701 free (debug->external_fdr);
3702 if (debug->external_rfd != NULL)
3703 free (debug->external_rfd);
3704 if (debug->external_ext != NULL)
3705 free (debug->external_ext);
3706 return false;
3707 }
3708 \f
3709 /* MIPS ELF local labels start with '$', not 'L'. */
3710
3711 static boolean
3712 mips_elf_is_local_label_name (abfd, name)
3713 bfd *abfd;
3714 const char *name;
3715 {
3716 if (name[0] == '$')
3717 return true;
3718
3719 /* On Irix 6, the labels go back to starting with '.', so we accept
3720 the generic ELF local label syntax as well. */
3721 return _bfd_elf_is_local_label_name (abfd, name);
3722 }
3723
3724 /* MIPS ELF uses a special find_nearest_line routine in order the
3725 handle the ECOFF debugging information. */
3726
3727 struct mips_elf_find_line
3728 {
3729 struct ecoff_debug_info d;
3730 struct ecoff_find_line i;
3731 };
3732
3733 boolean
3734 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3735 functionname_ptr, line_ptr)
3736 bfd *abfd;
3737 asection *section;
3738 asymbol **symbols;
3739 bfd_vma offset;
3740 const char **filename_ptr;
3741 const char **functionname_ptr;
3742 unsigned int *line_ptr;
3743 {
3744 asection *msec;
3745
3746 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3747 filename_ptr, functionname_ptr,
3748 line_ptr))
3749 return true;
3750
3751 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3752 filename_ptr, functionname_ptr,
3753 line_ptr,
3754 ABI_64_P (abfd) ? 8 : 0,
3755 &elf_tdata (abfd)->dwarf2_find_line_info))
3756 return true;
3757
3758 msec = bfd_get_section_by_name (abfd, ".mdebug");
3759 if (msec != NULL)
3760 {
3761 flagword origflags;
3762 struct mips_elf_find_line *fi;
3763 const struct ecoff_debug_swap * const swap =
3764 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3765
3766 /* If we are called during a link, mips_elf_final_link may have
3767 cleared the SEC_HAS_CONTENTS field. We force it back on here
3768 if appropriate (which it normally will be). */
3769 origflags = msec->flags;
3770 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3771 msec->flags |= SEC_HAS_CONTENTS;
3772
3773 fi = elf_tdata (abfd)->find_line_info;
3774 if (fi == NULL)
3775 {
3776 bfd_size_type external_fdr_size;
3777 char *fraw_src;
3778 char *fraw_end;
3779 struct fdr *fdr_ptr;
3780
3781 fi = ((struct mips_elf_find_line *)
3782 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3783 if (fi == NULL)
3784 {
3785 msec->flags = origflags;
3786 return false;
3787 }
3788
3789 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3790 {
3791 msec->flags = origflags;
3792 return false;
3793 }
3794
3795 /* Swap in the FDR information. */
3796 fi->d.fdr = ((struct fdr *)
3797 bfd_alloc (abfd,
3798 (fi->d.symbolic_header.ifdMax *
3799 sizeof (struct fdr))));
3800 if (fi->d.fdr == NULL)
3801 {
3802 msec->flags = origflags;
3803 return false;
3804 }
3805 external_fdr_size = swap->external_fdr_size;
3806 fdr_ptr = fi->d.fdr;
3807 fraw_src = (char *) fi->d.external_fdr;
3808 fraw_end = (fraw_src
3809 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3810 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3811 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3812
3813 elf_tdata (abfd)->find_line_info = fi;
3814
3815 /* Note that we don't bother to ever free this information.
3816 find_nearest_line is either called all the time, as in
3817 objdump -l, so the information should be saved, or it is
3818 rarely called, as in ld error messages, so the memory
3819 wasted is unimportant. Still, it would probably be a
3820 good idea for free_cached_info to throw it away. */
3821 }
3822
3823 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3824 &fi->i, filename_ptr, functionname_ptr,
3825 line_ptr))
3826 {
3827 msec->flags = origflags;
3828 return true;
3829 }
3830
3831 msec->flags = origflags;
3832 }
3833
3834 /* Fall back on the generic ELF find_nearest_line routine. */
3835
3836 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3837 filename_ptr, functionname_ptr,
3838 line_ptr);
3839 }
3840 \f
3841 /* The mips16 compiler uses a couple of special sections to handle
3842 floating point arguments.
3843
3844 Section names that look like .mips16.fn.FNNAME contain stubs that
3845 copy floating point arguments from the fp regs to the gp regs and
3846 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3847 call should be redirected to the stub instead. If no 32 bit
3848 function calls FNNAME, the stub should be discarded. We need to
3849 consider any reference to the function, not just a call, because
3850 if the address of the function is taken we will need the stub,
3851 since the address might be passed to a 32 bit function.
3852
3853 Section names that look like .mips16.call.FNNAME contain stubs
3854 that copy floating point arguments from the gp regs to the fp
3855 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3856 then any 16 bit function that calls FNNAME should be redirected
3857 to the stub instead. If FNNAME is not a 32 bit function, the
3858 stub should be discarded.
3859
3860 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3861 which call FNNAME and then copy the return value from the fp regs
3862 to the gp regs. These stubs store the return value in $18 while
3863 calling FNNAME; any function which might call one of these stubs
3864 must arrange to save $18 around the call. (This case is not
3865 needed for 32 bit functions that call 16 bit functions, because
3866 16 bit functions always return floating point values in both
3867 $f0/$f1 and $2/$3.)
3868
3869 Note that in all cases FNNAME might be defined statically.
3870 Therefore, FNNAME is not used literally. Instead, the relocation
3871 information will indicate which symbol the section is for.
3872
3873 We record any stubs that we find in the symbol table. */
3874
3875 #define FN_STUB ".mips16.fn."
3876 #define CALL_STUB ".mips16.call."
3877 #define CALL_FP_STUB ".mips16.call.fp."
3878
3879 /* MIPS ELF linker hash table. */
3880
3881 struct mips_elf_link_hash_table
3882 {
3883 struct elf_link_hash_table root;
3884 #if 0
3885 /* We no longer use this. */
3886 /* String section indices for the dynamic section symbols. */
3887 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3888 #endif
3889 /* The number of .rtproc entries. */
3890 bfd_size_type procedure_count;
3891 /* The size of the .compact_rel section (if SGI_COMPAT). */
3892 bfd_size_type compact_rel_size;
3893 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3894 entry is set to the address of __rld_obj_head as in Irix 5. */
3895 boolean use_rld_obj_head;
3896 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3897 bfd_vma rld_value;
3898 /* This is set if we see any mips16 stub sections. */
3899 boolean mips16_stubs_seen;
3900 };
3901
3902 /* Look up an entry in a MIPS ELF linker hash table. */
3903
3904 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3905 ((struct mips_elf_link_hash_entry *) \
3906 elf_link_hash_lookup (&(table)->root, (string), (create), \
3907 (copy), (follow)))
3908
3909 /* Traverse a MIPS ELF linker hash table. */
3910
3911 #define mips_elf_link_hash_traverse(table, func, info) \
3912 (elf_link_hash_traverse \
3913 (&(table)->root, \
3914 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3915 (info)))
3916
3917 /* Get the MIPS ELF linker hash table from a link_info structure. */
3918
3919 #define mips_elf_hash_table(p) \
3920 ((struct mips_elf_link_hash_table *) ((p)->hash))
3921
3922 static boolean mips_elf_output_extsym
3923 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3924
3925 /* Create an entry in a MIPS ELF linker hash table. */
3926
3927 static struct bfd_hash_entry *
3928 mips_elf_link_hash_newfunc (entry, table, string)
3929 struct bfd_hash_entry *entry;
3930 struct bfd_hash_table *table;
3931 const char *string;
3932 {
3933 struct mips_elf_link_hash_entry *ret =
3934 (struct mips_elf_link_hash_entry *) entry;
3935
3936 /* Allocate the structure if it has not already been allocated by a
3937 subclass. */
3938 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3939 ret = ((struct mips_elf_link_hash_entry *)
3940 bfd_hash_allocate (table,
3941 sizeof (struct mips_elf_link_hash_entry)));
3942 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3943 return (struct bfd_hash_entry *) ret;
3944
3945 /* Call the allocation method of the superclass. */
3946 ret = ((struct mips_elf_link_hash_entry *)
3947 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3948 table, string));
3949 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3950 {
3951 /* Set local fields. */
3952 memset (&ret->esym, 0, sizeof (EXTR));
3953 /* We use -2 as a marker to indicate that the information has
3954 not been set. -1 means there is no associated ifd. */
3955 ret->esym.ifd = -2;
3956 ret->possibly_dynamic_relocs = 0;
3957 ret->min_dyn_reloc_index = 0;
3958 ret->fn_stub = NULL;
3959 ret->need_fn_stub = false;
3960 ret->call_stub = NULL;
3961 ret->call_fp_stub = NULL;
3962 }
3963
3964 return (struct bfd_hash_entry *) ret;
3965 }
3966
3967 void
3968 _bfd_mips_elf_hide_symbol (info, h)
3969 struct bfd_link_info *info;
3970 struct mips_elf_link_hash_entry *h;
3971 {
3972 bfd *dynobj;
3973 asection *got;
3974 struct mips_got_info *g;
3975 dynobj = elf_hash_table (info)->dynobj;
3976 got = bfd_get_section_by_name (dynobj, ".got");
3977 g = (struct mips_got_info *) elf_section_data (got)->tdata;
3978
3979 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
3980 h->root.plt.offset = (bfd_vma) -1;
3981 h->root.dynindx = -1;
3982
3983 /* FIXME: Do we allocate too much GOT space here? */
3984 g->local_gotno++;
3985 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
3986 }
3987
3988 /* Create a MIPS ELF linker hash table. */
3989
3990 struct bfd_link_hash_table *
3991 _bfd_mips_elf_link_hash_table_create (abfd)
3992 bfd *abfd;
3993 {
3994 struct mips_elf_link_hash_table *ret;
3995
3996 ret = ((struct mips_elf_link_hash_table *)
3997 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
3998 if (ret == (struct mips_elf_link_hash_table *) NULL)
3999 return NULL;
4000
4001 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
4002 mips_elf_link_hash_newfunc))
4003 {
4004 bfd_release (abfd, ret);
4005 return NULL;
4006 }
4007
4008 #if 0
4009 /* We no longer use this. */
4010 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
4011 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
4012 #endif
4013 ret->procedure_count = 0;
4014 ret->compact_rel_size = 0;
4015 ret->use_rld_obj_head = false;
4016 ret->rld_value = 0;
4017 ret->mips16_stubs_seen = false;
4018
4019 return &ret->root.root;
4020 }
4021
4022 /* Hook called by the linker routine which adds symbols from an object
4023 file. We must handle the special MIPS section numbers here. */
4024
4025 boolean
4026 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4027 bfd *abfd;
4028 struct bfd_link_info *info;
4029 const Elf_Internal_Sym *sym;
4030 const char **namep;
4031 flagword *flagsp ATTRIBUTE_UNUSED;
4032 asection **secp;
4033 bfd_vma *valp;
4034 {
4035 if (SGI_COMPAT (abfd)
4036 && (abfd->flags & DYNAMIC) != 0
4037 && strcmp (*namep, "_rld_new_interface") == 0)
4038 {
4039 /* Skip Irix 5 rld entry name. */
4040 *namep = NULL;
4041 return true;
4042 }
4043
4044 switch (sym->st_shndx)
4045 {
4046 case SHN_COMMON:
4047 /* Common symbols less than the GP size are automatically
4048 treated as SHN_MIPS_SCOMMON symbols. */
4049 if (sym->st_size > elf_gp_size (abfd)
4050 || IRIX_COMPAT (abfd) == ict_irix6)
4051 break;
4052 /* Fall through. */
4053 case SHN_MIPS_SCOMMON:
4054 *secp = bfd_make_section_old_way (abfd, ".scommon");
4055 (*secp)->flags |= SEC_IS_COMMON;
4056 *valp = sym->st_size;
4057 break;
4058
4059 case SHN_MIPS_TEXT:
4060 /* This section is used in a shared object. */
4061 if (elf_tdata (abfd)->elf_text_section == NULL)
4062 {
4063 asymbol *elf_text_symbol;
4064 asection *elf_text_section;
4065
4066 elf_text_section = bfd_zalloc (abfd, sizeof (asection));
4067 if (elf_text_section == NULL)
4068 return false;
4069
4070 elf_text_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4071 if (elf_text_symbol == NULL)
4072 return false;
4073
4074 /* Initialize the section. */
4075
4076 elf_tdata (abfd)->elf_text_section = elf_text_section;
4077 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4078
4079 elf_text_section->symbol = elf_text_symbol;
4080 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4081
4082 elf_text_section->name = ".text";
4083 elf_text_section->flags = SEC_NO_FLAGS;
4084 elf_text_section->output_section = NULL;
4085 elf_text_section->owner = abfd;
4086 elf_text_symbol->name = ".text";
4087 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4088 elf_text_symbol->section = elf_text_section;
4089 }
4090 /* This code used to do *secp = bfd_und_section_ptr if
4091 info->shared. I don't know why, and that doesn't make sense,
4092 so I took it out. */
4093 *secp = elf_tdata (abfd)->elf_text_section;
4094 break;
4095
4096 case SHN_MIPS_ACOMMON:
4097 /* Fall through. XXX Can we treat this as allocated data? */
4098 case SHN_MIPS_DATA:
4099 /* This section is used in a shared object. */
4100 if (elf_tdata (abfd)->elf_data_section == NULL)
4101 {
4102 asymbol *elf_data_symbol;
4103 asection *elf_data_section;
4104
4105 elf_data_section = bfd_zalloc (abfd, sizeof (asection));
4106 if (elf_data_section == NULL)
4107 return false;
4108
4109 elf_data_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4110 if (elf_data_symbol == NULL)
4111 return false;
4112
4113 /* Initialize the section. */
4114
4115 elf_tdata (abfd)->elf_data_section = elf_data_section;
4116 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4117
4118 elf_data_section->symbol = elf_data_symbol;
4119 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4120
4121 elf_data_section->name = ".data";
4122 elf_data_section->flags = SEC_NO_FLAGS;
4123 elf_data_section->output_section = NULL;
4124 elf_data_section->owner = abfd;
4125 elf_data_symbol->name = ".data";
4126 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4127 elf_data_symbol->section = elf_data_section;
4128 }
4129 /* This code used to do *secp = bfd_und_section_ptr if
4130 info->shared. I don't know why, and that doesn't make sense,
4131 so I took it out. */
4132 *secp = elf_tdata (abfd)->elf_data_section;
4133 break;
4134
4135 case SHN_MIPS_SUNDEFINED:
4136 *secp = bfd_und_section_ptr;
4137 break;
4138 }
4139
4140 if (SGI_COMPAT (abfd)
4141 && ! info->shared
4142 && info->hash->creator == abfd->xvec
4143 && strcmp (*namep, "__rld_obj_head") == 0)
4144 {
4145 struct elf_link_hash_entry *h;
4146
4147 /* Mark __rld_obj_head as dynamic. */
4148 h = NULL;
4149 if (! (_bfd_generic_link_add_one_symbol
4150 (info, abfd, *namep, BSF_GLOBAL, *secp,
4151 (bfd_vma) *valp, (const char *) NULL, false,
4152 get_elf_backend_data (abfd)->collect,
4153 (struct bfd_link_hash_entry **) &h)))
4154 return false;
4155 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4156 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4157 h->type = STT_OBJECT;
4158
4159 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4160 return false;
4161
4162 mips_elf_hash_table (info)->use_rld_obj_head = true;
4163 }
4164
4165 /* If this is a mips16 text symbol, add 1 to the value to make it
4166 odd. This will cause something like .word SYM to come up with
4167 the right value when it is loaded into the PC. */
4168 if (sym->st_other == STO_MIPS16)
4169 ++*valp;
4170
4171 return true;
4172 }
4173
4174 /* Structure used to pass information to mips_elf_output_extsym. */
4175
4176 struct extsym_info
4177 {
4178 bfd *abfd;
4179 struct bfd_link_info *info;
4180 struct ecoff_debug_info *debug;
4181 const struct ecoff_debug_swap *swap;
4182 boolean failed;
4183 };
4184
4185 /* This routine is used to write out ECOFF debugging external symbol
4186 information. It is called via mips_elf_link_hash_traverse. The
4187 ECOFF external symbol information must match the ELF external
4188 symbol information. Unfortunately, at this point we don't know
4189 whether a symbol is required by reloc information, so the two
4190 tables may wind up being different. We must sort out the external
4191 symbol information before we can set the final size of the .mdebug
4192 section, and we must set the size of the .mdebug section before we
4193 can relocate any sections, and we can't know which symbols are
4194 required by relocation until we relocate the sections.
4195 Fortunately, it is relatively unlikely that any symbol will be
4196 stripped but required by a reloc. In particular, it can not happen
4197 when generating a final executable. */
4198
4199 static boolean
4200 mips_elf_output_extsym (h, data)
4201 struct mips_elf_link_hash_entry *h;
4202 PTR data;
4203 {
4204 struct extsym_info *einfo = (struct extsym_info *) data;
4205 boolean strip;
4206 asection *sec, *output_section;
4207
4208 if (h->root.indx == -2)
4209 strip = false;
4210 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4211 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4212 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4213 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4214 strip = true;
4215 else if (einfo->info->strip == strip_all
4216 || (einfo->info->strip == strip_some
4217 && bfd_hash_lookup (einfo->info->keep_hash,
4218 h->root.root.root.string,
4219 false, false) == NULL))
4220 strip = true;
4221 else
4222 strip = false;
4223
4224 if (strip)
4225 return true;
4226
4227 if (h->esym.ifd == -2)
4228 {
4229 h->esym.jmptbl = 0;
4230 h->esym.cobol_main = 0;
4231 h->esym.weakext = 0;
4232 h->esym.reserved = 0;
4233 h->esym.ifd = ifdNil;
4234 h->esym.asym.value = 0;
4235 h->esym.asym.st = stGlobal;
4236
4237 if (h->root.root.type == bfd_link_hash_undefined
4238 || h->root.root.type == bfd_link_hash_undefweak)
4239 {
4240 const char *name;
4241
4242 /* Use undefined class. Also, set class and type for some
4243 special symbols. */
4244 name = h->root.root.root.string;
4245 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4246 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4247 {
4248 h->esym.asym.sc = scData;
4249 h->esym.asym.st = stLabel;
4250 h->esym.asym.value = 0;
4251 }
4252 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4253 {
4254 h->esym.asym.sc = scAbs;
4255 h->esym.asym.st = stLabel;
4256 h->esym.asym.value =
4257 mips_elf_hash_table (einfo->info)->procedure_count;
4258 }
4259 else if (strcmp (name, "_gp_disp") == 0)
4260 {
4261 h->esym.asym.sc = scAbs;
4262 h->esym.asym.st = stLabel;
4263 h->esym.asym.value = elf_gp (einfo->abfd);
4264 }
4265 else
4266 h->esym.asym.sc = scUndefined;
4267 }
4268 else if (h->root.root.type != bfd_link_hash_defined
4269 && h->root.root.type != bfd_link_hash_defweak)
4270 h->esym.asym.sc = scAbs;
4271 else
4272 {
4273 const char *name;
4274
4275 sec = h->root.root.u.def.section;
4276 output_section = sec->output_section;
4277
4278 /* When making a shared library and symbol h is the one from
4279 the another shared library, OUTPUT_SECTION may be null. */
4280 if (output_section == NULL)
4281 h->esym.asym.sc = scUndefined;
4282 else
4283 {
4284 name = bfd_section_name (output_section->owner, output_section);
4285
4286 if (strcmp (name, ".text") == 0)
4287 h->esym.asym.sc = scText;
4288 else if (strcmp (name, ".data") == 0)
4289 h->esym.asym.sc = scData;
4290 else if (strcmp (name, ".sdata") == 0)
4291 h->esym.asym.sc = scSData;
4292 else if (strcmp (name, ".rodata") == 0
4293 || strcmp (name, ".rdata") == 0)
4294 h->esym.asym.sc = scRData;
4295 else if (strcmp (name, ".bss") == 0)
4296 h->esym.asym.sc = scBss;
4297 else if (strcmp (name, ".sbss") == 0)
4298 h->esym.asym.sc = scSBss;
4299 else if (strcmp (name, ".init") == 0)
4300 h->esym.asym.sc = scInit;
4301 else if (strcmp (name, ".fini") == 0)
4302 h->esym.asym.sc = scFini;
4303 else
4304 h->esym.asym.sc = scAbs;
4305 }
4306 }
4307
4308 h->esym.asym.reserved = 0;
4309 h->esym.asym.index = indexNil;
4310 }
4311
4312 if (h->root.root.type == bfd_link_hash_common)
4313 h->esym.asym.value = h->root.root.u.c.size;
4314 else if (h->root.root.type == bfd_link_hash_defined
4315 || h->root.root.type == bfd_link_hash_defweak)
4316 {
4317 if (h->esym.asym.sc == scCommon)
4318 h->esym.asym.sc = scBss;
4319 else if (h->esym.asym.sc == scSCommon)
4320 h->esym.asym.sc = scSBss;
4321
4322 sec = h->root.root.u.def.section;
4323 output_section = sec->output_section;
4324 if (output_section != NULL)
4325 h->esym.asym.value = (h->root.root.u.def.value
4326 + sec->output_offset
4327 + output_section->vma);
4328 else
4329 h->esym.asym.value = 0;
4330 }
4331 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4332 {
4333 /* Set type and value for a symbol with a function stub. */
4334 h->esym.asym.st = stProc;
4335 sec = h->root.root.u.def.section;
4336 if (sec == NULL)
4337 h->esym.asym.value = 0;
4338 else
4339 {
4340 output_section = sec->output_section;
4341 if (output_section != NULL)
4342 h->esym.asym.value = (h->root.plt.offset
4343 + sec->output_offset
4344 + output_section->vma);
4345 else
4346 h->esym.asym.value = 0;
4347 }
4348 #if 0 /* FIXME? */
4349 h->esym.ifd = 0;
4350 #endif
4351 }
4352
4353 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4354 h->root.root.root.string,
4355 &h->esym))
4356 {
4357 einfo->failed = true;
4358 return false;
4359 }
4360
4361 return true;
4362 }
4363
4364 /* Create a runtime procedure table from the .mdebug section. */
4365
4366 static boolean
4367 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4368 PTR handle;
4369 bfd *abfd;
4370 struct bfd_link_info *info;
4371 asection *s;
4372 struct ecoff_debug_info *debug;
4373 {
4374 const struct ecoff_debug_swap *swap;
4375 HDRR *hdr = &debug->symbolic_header;
4376 RPDR *rpdr, *rp;
4377 struct rpdr_ext *erp;
4378 PTR rtproc;
4379 struct pdr_ext *epdr;
4380 struct sym_ext *esym;
4381 char *ss, **sv;
4382 char *str;
4383 unsigned long size, count;
4384 unsigned long sindex;
4385 unsigned long i;
4386 PDR pdr;
4387 SYMR sym;
4388 const char *no_name_func = _("static procedure (no name)");
4389
4390 epdr = NULL;
4391 rpdr = NULL;
4392 esym = NULL;
4393 ss = NULL;
4394 sv = NULL;
4395
4396 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4397
4398 sindex = strlen (no_name_func) + 1;
4399 count = hdr->ipdMax;
4400 if (count > 0)
4401 {
4402 size = swap->external_pdr_size;
4403
4404 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4405 if (epdr == NULL)
4406 goto error_return;
4407
4408 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4409 goto error_return;
4410
4411 size = sizeof (RPDR);
4412 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4413 if (rpdr == NULL)
4414 goto error_return;
4415
4416 sv = (char **) bfd_malloc (sizeof (char *) * count);
4417 if (sv == NULL)
4418 goto error_return;
4419
4420 count = hdr->isymMax;
4421 size = swap->external_sym_size;
4422 esym = (struct sym_ext *) bfd_malloc (size * count);
4423 if (esym == NULL)
4424 goto error_return;
4425
4426 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4427 goto error_return;
4428
4429 count = hdr->issMax;
4430 ss = (char *) bfd_malloc (count);
4431 if (ss == NULL)
4432 goto error_return;
4433 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4434 goto error_return;
4435
4436 count = hdr->ipdMax;
4437 for (i = 0; i < count; i++, rp++)
4438 {
4439 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4440 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4441 rp->adr = sym.value;
4442 rp->regmask = pdr.regmask;
4443 rp->regoffset = pdr.regoffset;
4444 rp->fregmask = pdr.fregmask;
4445 rp->fregoffset = pdr.fregoffset;
4446 rp->frameoffset = pdr.frameoffset;
4447 rp->framereg = pdr.framereg;
4448 rp->pcreg = pdr.pcreg;
4449 rp->irpss = sindex;
4450 sv[i] = ss + sym.iss;
4451 sindex += strlen (sv[i]) + 1;
4452 }
4453 }
4454
4455 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4456 size = BFD_ALIGN (size, 16);
4457 rtproc = (PTR) bfd_alloc (abfd, size);
4458 if (rtproc == NULL)
4459 {
4460 mips_elf_hash_table (info)->procedure_count = 0;
4461 goto error_return;
4462 }
4463
4464 mips_elf_hash_table (info)->procedure_count = count + 2;
4465
4466 erp = (struct rpdr_ext *) rtproc;
4467 memset (erp, 0, sizeof (struct rpdr_ext));
4468 erp++;
4469 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4470 strcpy (str, no_name_func);
4471 str += strlen (no_name_func) + 1;
4472 for (i = 0; i < count; i++)
4473 {
4474 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4475 strcpy (str, sv[i]);
4476 str += strlen (sv[i]) + 1;
4477 }
4478 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4479
4480 /* Set the size and contents of .rtproc section. */
4481 s->_raw_size = size;
4482 s->contents = (bfd_byte *) rtproc;
4483
4484 /* Skip this section later on (I don't think this currently
4485 matters, but someday it might). */
4486 s->link_order_head = (struct bfd_link_order *) NULL;
4487
4488 if (epdr != NULL)
4489 free (epdr);
4490 if (rpdr != NULL)
4491 free (rpdr);
4492 if (esym != NULL)
4493 free (esym);
4494 if (ss != NULL)
4495 free (ss);
4496 if (sv != NULL)
4497 free (sv);
4498
4499 return true;
4500
4501 error_return:
4502 if (epdr != NULL)
4503 free (epdr);
4504 if (rpdr != NULL)
4505 free (rpdr);
4506 if (esym != NULL)
4507 free (esym);
4508 if (ss != NULL)
4509 free (ss);
4510 if (sv != NULL)
4511 free (sv);
4512 return false;
4513 }
4514
4515 /* A comparison routine used to sort .gptab entries. */
4516
4517 static int
4518 gptab_compare (p1, p2)
4519 const PTR p1;
4520 const PTR p2;
4521 {
4522 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4523 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4524
4525 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4526 }
4527
4528 /* We need to use a special link routine to handle the .reginfo and
4529 the .mdebug sections. We need to merge all instances of these
4530 sections together, not write them all out sequentially. */
4531
4532 boolean
4533 _bfd_mips_elf_final_link (abfd, info)
4534 bfd *abfd;
4535 struct bfd_link_info *info;
4536 {
4537 asection **secpp;
4538 asection *o;
4539 struct bfd_link_order *p;
4540 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4541 asection *rtproc_sec;
4542 Elf32_RegInfo reginfo;
4543 struct ecoff_debug_info debug;
4544 const struct ecoff_debug_swap *swap
4545 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4546 HDRR *symhdr = &debug.symbolic_header;
4547 PTR mdebug_handle = NULL;
4548 asection *s;
4549 EXTR esym;
4550 bfd_vma last;
4551 unsigned int i;
4552 static const char * const name[] =
4553 {
4554 ".text", ".init", ".fini", ".data",
4555 ".rodata", ".sdata", ".sbss", ".bss"
4556 };
4557 static const int sc[] =
4558 {
4559 scText, scInit, scFini, scData,
4560 scRData, scSData, scSBss, scBss
4561 };
4562
4563 /* If all the things we linked together were PIC, but we're
4564 producing an executable (rather than a shared object), then the
4565 resulting file is CPIC (i.e., it calls PIC code.) */
4566 if (!info->shared
4567 && !info->relocateable
4568 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
4569 {
4570 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4571 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
4572 }
4573
4574 /* We'd carefully arranged the dynamic symbol indices, and then the
4575 generic size_dynamic_sections renumbered them out from under us.
4576 Rather than trying somehow to prevent the renumbering, just do
4577 the sort again. */
4578 if (elf_hash_table (info)->dynamic_sections_created)
4579 {
4580 bfd *dynobj;
4581 asection *got;
4582 struct mips_got_info *g;
4583
4584 /* When we resort, we must tell mips_elf_sort_hash_table what
4585 the lowest index it may use is. That's the number of section
4586 symbols we're going to add. The generic ELF linker only
4587 adds these symbols when building a shared object. Note that
4588 we count the sections after (possibly) removing the .options
4589 section above. */
4590 if (!mips_elf_sort_hash_table (info, (info->shared
4591 ? bfd_count_sections (abfd) + 1
4592 : 1)))
4593 return false;
4594
4595 /* Make sure we didn't grow the global .got region. */
4596 dynobj = elf_hash_table (info)->dynobj;
4597 got = bfd_get_section_by_name (dynobj, ".got");
4598 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4599
4600 if (g->global_gotsym != NULL)
4601 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4602 - g->global_gotsym->dynindx)
4603 <= g->global_gotno);
4604 }
4605
4606 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4607 include it, even though we don't process it quite right. (Some
4608 entries are supposed to be merged.) Empirically, we seem to be
4609 better off including it then not. */
4610 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4611 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4612 {
4613 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4614 {
4615 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4616 if (p->type == bfd_indirect_link_order)
4617 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
4618 (*secpp)->link_order_head = NULL;
4619 *secpp = (*secpp)->next;
4620 --abfd->section_count;
4621
4622 break;
4623 }
4624 }
4625
4626 /* Get a value for the GP register. */
4627 if (elf_gp (abfd) == 0)
4628 {
4629 struct bfd_link_hash_entry *h;
4630
4631 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4632 if (h != (struct bfd_link_hash_entry *) NULL
4633 && h->type == bfd_link_hash_defined)
4634 elf_gp (abfd) = (h->u.def.value
4635 + h->u.def.section->output_section->vma
4636 + h->u.def.section->output_offset);
4637 else if (info->relocateable)
4638 {
4639 bfd_vma lo;
4640
4641 /* Find the GP-relative section with the lowest offset. */
4642 lo = (bfd_vma) -1;
4643 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4644 if (o->vma < lo
4645 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4646 lo = o->vma;
4647
4648 /* And calculate GP relative to that. */
4649 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4650 }
4651 else
4652 {
4653 /* If the relocate_section function needs to do a reloc
4654 involving the GP value, it should make a reloc_dangerous
4655 callback to warn that GP is not defined. */
4656 }
4657 }
4658
4659 /* Go through the sections and collect the .reginfo and .mdebug
4660 information. */
4661 reginfo_sec = NULL;
4662 mdebug_sec = NULL;
4663 gptab_data_sec = NULL;
4664 gptab_bss_sec = NULL;
4665 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4666 {
4667 if (strcmp (o->name, ".reginfo") == 0)
4668 {
4669 memset (&reginfo, 0, sizeof reginfo);
4670
4671 /* We have found the .reginfo section in the output file.
4672 Look through all the link_orders comprising it and merge
4673 the information together. */
4674 for (p = o->link_order_head;
4675 p != (struct bfd_link_order *) NULL;
4676 p = p->next)
4677 {
4678 asection *input_section;
4679 bfd *input_bfd;
4680 Elf32_External_RegInfo ext;
4681 Elf32_RegInfo sub;
4682
4683 if (p->type != bfd_indirect_link_order)
4684 {
4685 if (p->type == bfd_fill_link_order)
4686 continue;
4687 abort ();
4688 }
4689
4690 input_section = p->u.indirect.section;
4691 input_bfd = input_section->owner;
4692
4693 /* The linker emulation code has probably clobbered the
4694 size to be zero bytes. */
4695 if (input_section->_raw_size == 0)
4696 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4697
4698 if (! bfd_get_section_contents (input_bfd, input_section,
4699 (PTR) &ext,
4700 (file_ptr) 0,
4701 sizeof ext))
4702 return false;
4703
4704 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4705
4706 reginfo.ri_gprmask |= sub.ri_gprmask;
4707 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4708 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4709 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4710 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4711
4712 /* ri_gp_value is set by the function
4713 mips_elf32_section_processing when the section is
4714 finally written out. */
4715
4716 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4717 elf_link_input_bfd ignores this section. */
4718 input_section->flags &= ~SEC_HAS_CONTENTS;
4719 }
4720
4721 /* Size has been set in mips_elf_always_size_sections */
4722 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4723
4724 /* Skip this section later on (I don't think this currently
4725 matters, but someday it might). */
4726 o->link_order_head = (struct bfd_link_order *) NULL;
4727
4728 reginfo_sec = o;
4729 }
4730
4731 if (strcmp (o->name, ".mdebug") == 0)
4732 {
4733 struct extsym_info einfo;
4734
4735 /* We have found the .mdebug section in the output file.
4736 Look through all the link_orders comprising it and merge
4737 the information together. */
4738 symhdr->magic = swap->sym_magic;
4739 /* FIXME: What should the version stamp be? */
4740 symhdr->vstamp = 0;
4741 symhdr->ilineMax = 0;
4742 symhdr->cbLine = 0;
4743 symhdr->idnMax = 0;
4744 symhdr->ipdMax = 0;
4745 symhdr->isymMax = 0;
4746 symhdr->ioptMax = 0;
4747 symhdr->iauxMax = 0;
4748 symhdr->issMax = 0;
4749 symhdr->issExtMax = 0;
4750 symhdr->ifdMax = 0;
4751 symhdr->crfd = 0;
4752 symhdr->iextMax = 0;
4753
4754 /* We accumulate the debugging information itself in the
4755 debug_info structure. */
4756 debug.line = NULL;
4757 debug.external_dnr = NULL;
4758 debug.external_pdr = NULL;
4759 debug.external_sym = NULL;
4760 debug.external_opt = NULL;
4761 debug.external_aux = NULL;
4762 debug.ss = NULL;
4763 debug.ssext = debug.ssext_end = NULL;
4764 debug.external_fdr = NULL;
4765 debug.external_rfd = NULL;
4766 debug.external_ext = debug.external_ext_end = NULL;
4767
4768 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4769 if (mdebug_handle == (PTR) NULL)
4770 return false;
4771
4772 esym.jmptbl = 0;
4773 esym.cobol_main = 0;
4774 esym.weakext = 0;
4775 esym.reserved = 0;
4776 esym.ifd = ifdNil;
4777 esym.asym.iss = issNil;
4778 esym.asym.st = stLocal;
4779 esym.asym.reserved = 0;
4780 esym.asym.index = indexNil;
4781 last = 0;
4782 for (i = 0; i < 8; i++)
4783 {
4784 esym.asym.sc = sc[i];
4785 s = bfd_get_section_by_name (abfd, name[i]);
4786 if (s != NULL)
4787 {
4788 esym.asym.value = s->vma;
4789 last = s->vma + s->_raw_size;
4790 }
4791 else
4792 esym.asym.value = last;
4793 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
4794 name[i], &esym))
4795 return false;
4796 }
4797
4798 for (p = o->link_order_head;
4799 p != (struct bfd_link_order *) NULL;
4800 p = p->next)
4801 {
4802 asection *input_section;
4803 bfd *input_bfd;
4804 const struct ecoff_debug_swap *input_swap;
4805 struct ecoff_debug_info input_debug;
4806 char *eraw_src;
4807 char *eraw_end;
4808
4809 if (p->type != bfd_indirect_link_order)
4810 {
4811 if (p->type == bfd_fill_link_order)
4812 continue;
4813 abort ();
4814 }
4815
4816 input_section = p->u.indirect.section;
4817 input_bfd = input_section->owner;
4818
4819 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4820 || (get_elf_backend_data (input_bfd)
4821 ->elf_backend_ecoff_debug_swap) == NULL)
4822 {
4823 /* I don't know what a non MIPS ELF bfd would be
4824 doing with a .mdebug section, but I don't really
4825 want to deal with it. */
4826 continue;
4827 }
4828
4829 input_swap = (get_elf_backend_data (input_bfd)
4830 ->elf_backend_ecoff_debug_swap);
4831
4832 BFD_ASSERT (p->size == input_section->_raw_size);
4833
4834 /* The ECOFF linking code expects that we have already
4835 read in the debugging information and set up an
4836 ecoff_debug_info structure, so we do that now. */
4837 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4838 &input_debug))
4839 return false;
4840
4841 if (! (bfd_ecoff_debug_accumulate
4842 (mdebug_handle, abfd, &debug, swap, input_bfd,
4843 &input_debug, input_swap, info)))
4844 return false;
4845
4846 /* Loop through the external symbols. For each one with
4847 interesting information, try to find the symbol in
4848 the linker global hash table and save the information
4849 for the output external symbols. */
4850 eraw_src = input_debug.external_ext;
4851 eraw_end = (eraw_src
4852 + (input_debug.symbolic_header.iextMax
4853 * input_swap->external_ext_size));
4854 for (;
4855 eraw_src < eraw_end;
4856 eraw_src += input_swap->external_ext_size)
4857 {
4858 EXTR ext;
4859 const char *name;
4860 struct mips_elf_link_hash_entry *h;
4861
4862 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4863 if (ext.asym.sc == scNil
4864 || ext.asym.sc == scUndefined
4865 || ext.asym.sc == scSUndefined)
4866 continue;
4867
4868 name = input_debug.ssext + ext.asym.iss;
4869 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4870 name, false, false, true);
4871 if (h == NULL || h->esym.ifd != -2)
4872 continue;
4873
4874 if (ext.ifd != -1)
4875 {
4876 BFD_ASSERT (ext.ifd
4877 < input_debug.symbolic_header.ifdMax);
4878 ext.ifd = input_debug.ifdmap[ext.ifd];
4879 }
4880
4881 h->esym = ext;
4882 }
4883
4884 /* Free up the information we just read. */
4885 free (input_debug.line);
4886 free (input_debug.external_dnr);
4887 free (input_debug.external_pdr);
4888 free (input_debug.external_sym);
4889 free (input_debug.external_opt);
4890 free (input_debug.external_aux);
4891 free (input_debug.ss);
4892 free (input_debug.ssext);
4893 free (input_debug.external_fdr);
4894 free (input_debug.external_rfd);
4895 free (input_debug.external_ext);
4896
4897 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4898 elf_link_input_bfd ignores this section. */
4899 input_section->flags &= ~SEC_HAS_CONTENTS;
4900 }
4901
4902 if (SGI_COMPAT (abfd) && info->shared)
4903 {
4904 /* Create .rtproc section. */
4905 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4906 if (rtproc_sec == NULL)
4907 {
4908 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4909 | SEC_LINKER_CREATED | SEC_READONLY);
4910
4911 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4912 if (rtproc_sec == NULL
4913 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4914 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4915 return false;
4916 }
4917
4918 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4919 info, rtproc_sec, &debug))
4920 return false;
4921 }
4922
4923 /* Build the external symbol information. */
4924 einfo.abfd = abfd;
4925 einfo.info = info;
4926 einfo.debug = &debug;
4927 einfo.swap = swap;
4928 einfo.failed = false;
4929 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4930 mips_elf_output_extsym,
4931 (PTR) &einfo);
4932 if (einfo.failed)
4933 return false;
4934
4935 /* Set the size of the .mdebug section. */
4936 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4937
4938 /* Skip this section later on (I don't think this currently
4939 matters, but someday it might). */
4940 o->link_order_head = (struct bfd_link_order *) NULL;
4941
4942 mdebug_sec = o;
4943 }
4944
4945 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4946 {
4947 const char *subname;
4948 unsigned int c;
4949 Elf32_gptab *tab;
4950 Elf32_External_gptab *ext_tab;
4951 unsigned int i;
4952
4953 /* The .gptab.sdata and .gptab.sbss sections hold
4954 information describing how the small data area would
4955 change depending upon the -G switch. These sections
4956 not used in executables files. */
4957 if (! info->relocateable)
4958 {
4959 asection **secpp;
4960
4961 for (p = o->link_order_head;
4962 p != (struct bfd_link_order *) NULL;
4963 p = p->next)
4964 {
4965 asection *input_section;
4966
4967 if (p->type != bfd_indirect_link_order)
4968 {
4969 if (p->type == bfd_fill_link_order)
4970 continue;
4971 abort ();
4972 }
4973
4974 input_section = p->u.indirect.section;
4975
4976 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4977 elf_link_input_bfd ignores this section. */
4978 input_section->flags &= ~SEC_HAS_CONTENTS;
4979 }
4980
4981 /* Skip this section later on (I don't think this
4982 currently matters, but someday it might). */
4983 o->link_order_head = (struct bfd_link_order *) NULL;
4984
4985 /* Really remove the section. */
4986 for (secpp = &abfd->sections;
4987 *secpp != o;
4988 secpp = &(*secpp)->next)
4989 ;
4990 *secpp = (*secpp)->next;
4991 --abfd->section_count;
4992
4993 continue;
4994 }
4995
4996 /* There is one gptab for initialized data, and one for
4997 uninitialized data. */
4998 if (strcmp (o->name, ".gptab.sdata") == 0)
4999 gptab_data_sec = o;
5000 else if (strcmp (o->name, ".gptab.sbss") == 0)
5001 gptab_bss_sec = o;
5002 else
5003 {
5004 (*_bfd_error_handler)
5005 (_("%s: illegal section name `%s'"),
5006 bfd_get_filename (abfd), o->name);
5007 bfd_set_error (bfd_error_nonrepresentable_section);
5008 return false;
5009 }
5010
5011 /* The linker script always combines .gptab.data and
5012 .gptab.sdata into .gptab.sdata, and likewise for
5013 .gptab.bss and .gptab.sbss. It is possible that there is
5014 no .sdata or .sbss section in the output file, in which
5015 case we must change the name of the output section. */
5016 subname = o->name + sizeof ".gptab" - 1;
5017 if (bfd_get_section_by_name (abfd, subname) == NULL)
5018 {
5019 if (o == gptab_data_sec)
5020 o->name = ".gptab.data";
5021 else
5022 o->name = ".gptab.bss";
5023 subname = o->name + sizeof ".gptab" - 1;
5024 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
5025 }
5026
5027 /* Set up the first entry. */
5028 c = 1;
5029 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
5030 if (tab == NULL)
5031 return false;
5032 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
5033 tab[0].gt_header.gt_unused = 0;
5034
5035 /* Combine the input sections. */
5036 for (p = o->link_order_head;
5037 p != (struct bfd_link_order *) NULL;
5038 p = p->next)
5039 {
5040 asection *input_section;
5041 bfd *input_bfd;
5042 bfd_size_type size;
5043 unsigned long last;
5044 bfd_size_type gpentry;
5045
5046 if (p->type != bfd_indirect_link_order)
5047 {
5048 if (p->type == bfd_fill_link_order)
5049 continue;
5050 abort ();
5051 }
5052
5053 input_section = p->u.indirect.section;
5054 input_bfd = input_section->owner;
5055
5056 /* Combine the gptab entries for this input section one
5057 by one. We know that the input gptab entries are
5058 sorted by ascending -G value. */
5059 size = bfd_section_size (input_bfd, input_section);
5060 last = 0;
5061 for (gpentry = sizeof (Elf32_External_gptab);
5062 gpentry < size;
5063 gpentry += sizeof (Elf32_External_gptab))
5064 {
5065 Elf32_External_gptab ext_gptab;
5066 Elf32_gptab int_gptab;
5067 unsigned long val;
5068 unsigned long add;
5069 boolean exact;
5070 unsigned int look;
5071
5072 if (! (bfd_get_section_contents
5073 (input_bfd, input_section, (PTR) &ext_gptab,
5074 gpentry, sizeof (Elf32_External_gptab))))
5075 {
5076 free (tab);
5077 return false;
5078 }
5079
5080 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5081 &int_gptab);
5082 val = int_gptab.gt_entry.gt_g_value;
5083 add = int_gptab.gt_entry.gt_bytes - last;
5084
5085 exact = false;
5086 for (look = 1; look < c; look++)
5087 {
5088 if (tab[look].gt_entry.gt_g_value >= val)
5089 tab[look].gt_entry.gt_bytes += add;
5090
5091 if (tab[look].gt_entry.gt_g_value == val)
5092 exact = true;
5093 }
5094
5095 if (! exact)
5096 {
5097 Elf32_gptab *new_tab;
5098 unsigned int max;
5099
5100 /* We need a new table entry. */
5101 new_tab = ((Elf32_gptab *)
5102 bfd_realloc ((PTR) tab,
5103 (c + 1) * sizeof (Elf32_gptab)));
5104 if (new_tab == NULL)
5105 {
5106 free (tab);
5107 return false;
5108 }
5109 tab = new_tab;
5110 tab[c].gt_entry.gt_g_value = val;
5111 tab[c].gt_entry.gt_bytes = add;
5112
5113 /* Merge in the size for the next smallest -G
5114 value, since that will be implied by this new
5115 value. */
5116 max = 0;
5117 for (look = 1; look < c; look++)
5118 {
5119 if (tab[look].gt_entry.gt_g_value < val
5120 && (max == 0
5121 || (tab[look].gt_entry.gt_g_value
5122 > tab[max].gt_entry.gt_g_value)))
5123 max = look;
5124 }
5125 if (max != 0)
5126 tab[c].gt_entry.gt_bytes +=
5127 tab[max].gt_entry.gt_bytes;
5128
5129 ++c;
5130 }
5131
5132 last = int_gptab.gt_entry.gt_bytes;
5133 }
5134
5135 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5136 elf_link_input_bfd ignores this section. */
5137 input_section->flags &= ~SEC_HAS_CONTENTS;
5138 }
5139
5140 /* The table must be sorted by -G value. */
5141 if (c > 2)
5142 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5143
5144 /* Swap out the table. */
5145 ext_tab = ((Elf32_External_gptab *)
5146 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
5147 if (ext_tab == NULL)
5148 {
5149 free (tab);
5150 return false;
5151 }
5152
5153 for (i = 0; i < c; i++)
5154 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
5155 free (tab);
5156
5157 o->_raw_size = c * sizeof (Elf32_External_gptab);
5158 o->contents = (bfd_byte *) ext_tab;
5159
5160 /* Skip this section later on (I don't think this currently
5161 matters, but someday it might). */
5162 o->link_order_head = (struct bfd_link_order *) NULL;
5163 }
5164 }
5165
5166 /* Invoke the regular ELF backend linker to do all the work. */
5167 if (ABI_64_P (abfd))
5168 {
5169 #ifdef BFD64
5170 if (!bfd_elf64_bfd_final_link (abfd, info))
5171 return false;
5172 #else
5173 abort ();
5174 return false;
5175 #endif /* BFD64 */
5176 }
5177 else if (!bfd_elf32_bfd_final_link (abfd, info))
5178 return false;
5179
5180 /* Now write out the computed sections. */
5181
5182 if (reginfo_sec != (asection *) NULL)
5183 {
5184 Elf32_External_RegInfo ext;
5185
5186 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5187 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5188 (file_ptr) 0, sizeof ext))
5189 return false;
5190 }
5191
5192 if (mdebug_sec != (asection *) NULL)
5193 {
5194 BFD_ASSERT (abfd->output_has_begun);
5195 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5196 swap, info,
5197 mdebug_sec->filepos))
5198 return false;
5199
5200 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5201 }
5202
5203 if (gptab_data_sec != (asection *) NULL)
5204 {
5205 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5206 gptab_data_sec->contents,
5207 (file_ptr) 0,
5208 gptab_data_sec->_raw_size))
5209 return false;
5210 }
5211
5212 if (gptab_bss_sec != (asection *) NULL)
5213 {
5214 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5215 gptab_bss_sec->contents,
5216 (file_ptr) 0,
5217 gptab_bss_sec->_raw_size))
5218 return false;
5219 }
5220
5221 if (SGI_COMPAT (abfd))
5222 {
5223 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5224 if (rtproc_sec != NULL)
5225 {
5226 if (! bfd_set_section_contents (abfd, rtproc_sec,
5227 rtproc_sec->contents,
5228 (file_ptr) 0,
5229 rtproc_sec->_raw_size))
5230 return false;
5231 }
5232 }
5233
5234 return true;
5235 }
5236
5237 /* This function is called via qsort() to sort the dynamic relocation
5238 entries by increasing r_symndx value. */
5239
5240 static int
5241 sort_dynamic_relocs (arg1, arg2)
5242 const PTR arg1;
5243 const PTR arg2;
5244 {
5245 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5246 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5247
5248 Elf_Internal_Rel int_reloc1;
5249 Elf_Internal_Rel int_reloc2;
5250
5251 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5252 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
5253
5254 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
5255 }
5256
5257 /* Returns the GOT section for ABFD. */
5258
5259 static asection *
5260 mips_elf_got_section (abfd)
5261 bfd *abfd;
5262 {
5263 return bfd_get_section_by_name (abfd, ".got");
5264 }
5265
5266 /* Returns the GOT information associated with the link indicated by
5267 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5268 section. */
5269
5270 static struct mips_got_info *
5271 mips_elf_got_info (abfd, sgotp)
5272 bfd *abfd;
5273 asection **sgotp;
5274 {
5275 asection *sgot;
5276 struct mips_got_info *g;
5277
5278 sgot = mips_elf_got_section (abfd);
5279 BFD_ASSERT (sgot != NULL);
5280 BFD_ASSERT (elf_section_data (sgot) != NULL);
5281 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5282 BFD_ASSERT (g != NULL);
5283
5284 if (sgotp)
5285 *sgotp = sgot;
5286 return g;
5287 }
5288
5289 /* Return whether a relocation is against a local symbol. */
5290
5291 static boolean
5292 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5293 check_forced)
5294 bfd *input_bfd;
5295 const Elf_Internal_Rela *relocation;
5296 asection **local_sections;
5297 boolean check_forced;
5298 {
5299 unsigned long r_symndx;
5300 Elf_Internal_Shdr *symtab_hdr;
5301 struct mips_elf_link_hash_entry *h;
5302 size_t extsymoff;
5303
5304 r_symndx = ELF32_R_SYM (relocation->r_info);
5305 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5306 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5307
5308 if (r_symndx < extsymoff)
5309 return true;
5310 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5311 return true;
5312
5313 if (check_forced)
5314 {
5315 /* Look up the hash table to check whether the symbol
5316 was forced local. */
5317 h = (struct mips_elf_link_hash_entry *)
5318 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5319 /* Find the real hash-table entry for this symbol. */
5320 while (h->root.root.type == bfd_link_hash_indirect
5321 || h->root.root.type == bfd_link_hash_warning)
5322 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5323 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5324 return true;
5325 }
5326
5327 return false;
5328 }
5329
5330 /* Sign-extend VALUE, which has the indicated number of BITS. */
5331
5332 static bfd_vma
5333 mips_elf_sign_extend (value, bits)
5334 bfd_vma value;
5335 int bits;
5336 {
5337 if (value & ((bfd_vma) 1 << (bits - 1)))
5338 /* VALUE is negative. */
5339 value |= ((bfd_vma) - 1) << bits;
5340
5341 return value;
5342 }
5343
5344 /* Return non-zero if the indicated VALUE has overflowed the maximum
5345 range expressable by a signed number with the indicated number of
5346 BITS. */
5347
5348 static boolean
5349 mips_elf_overflow_p (value, bits)
5350 bfd_vma value;
5351 int bits;
5352 {
5353 bfd_signed_vma svalue = (bfd_signed_vma) value;
5354
5355 if (svalue > (1 << (bits - 1)) - 1)
5356 /* The value is too big. */
5357 return true;
5358 else if (svalue < -(1 << (bits - 1)))
5359 /* The value is too small. */
5360 return true;
5361
5362 /* All is well. */
5363 return false;
5364 }
5365
5366 /* Calculate the %high function. */
5367
5368 static bfd_vma
5369 mips_elf_high (value)
5370 bfd_vma value;
5371 {
5372 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5373 }
5374
5375 /* Calculate the %higher function. */
5376
5377 static bfd_vma
5378 mips_elf_higher (value)
5379 bfd_vma value ATTRIBUTE_UNUSED;
5380 {
5381 #ifdef BFD64
5382 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5383 #else
5384 abort ();
5385 return (bfd_vma) -1;
5386 #endif
5387 }
5388
5389 /* Calculate the %highest function. */
5390
5391 static bfd_vma
5392 mips_elf_highest (value)
5393 bfd_vma value ATTRIBUTE_UNUSED;
5394 {
5395 #ifdef BFD64
5396 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5397 #else
5398 abort ();
5399 return (bfd_vma) -1;
5400 #endif
5401 }
5402
5403 /* Returns the GOT index for the global symbol indicated by H. */
5404
5405 static bfd_vma
5406 mips_elf_global_got_index (abfd, h)
5407 bfd *abfd;
5408 struct elf_link_hash_entry *h;
5409 {
5410 bfd_vma index;
5411 asection *sgot;
5412 struct mips_got_info *g;
5413
5414 g = mips_elf_got_info (abfd, &sgot);
5415
5416 /* Once we determine the global GOT entry with the lowest dynamic
5417 symbol table index, we must put all dynamic symbols with greater
5418 indices into the GOT. That makes it easy to calculate the GOT
5419 offset. */
5420 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5421 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5422 * MIPS_ELF_GOT_SIZE (abfd));
5423 BFD_ASSERT (index < sgot->_raw_size);
5424
5425 return index;
5426 }
5427
5428 /* Returns the offset for the entry at the INDEXth position
5429 in the GOT. */
5430
5431 static bfd_vma
5432 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5433 bfd *dynobj;
5434 bfd *output_bfd;
5435 bfd_vma index;
5436 {
5437 asection *sgot;
5438 bfd_vma gp;
5439
5440 sgot = mips_elf_got_section (dynobj);
5441 gp = _bfd_get_gp_value (output_bfd);
5442 return (sgot->output_section->vma + sgot->output_offset + index -
5443 gp);
5444 }
5445
5446 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5447 symbol table index lower than any we've seen to date, record it for
5448 posterity. */
5449
5450 static boolean
5451 mips_elf_record_global_got_symbol (h, info, g)
5452 struct elf_link_hash_entry *h;
5453 struct bfd_link_info *info;
5454 struct mips_got_info *g ATTRIBUTE_UNUSED;
5455 {
5456 /* A global symbol in the GOT must also be in the dynamic symbol
5457 table. */
5458 if (h->dynindx == -1
5459 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5460 return false;
5461
5462 /* If we've already marked this entry as need GOT space, we don't
5463 need to do it again. */
5464 if (h->got.offset != (bfd_vma) - 1)
5465 return true;
5466
5467 /* By setting this to a value other than -1, we are indicating that
5468 there needs to be a GOT entry for H. */
5469 h->got.offset = 0;
5470
5471 return true;
5472 }
5473
5474 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5475 the dynamic symbols. */
5476
5477 struct mips_elf_hash_sort_data
5478 {
5479 /* The symbol in the global GOT with the lowest dynamic symbol table
5480 index. */
5481 struct elf_link_hash_entry *low;
5482 /* The least dynamic symbol table index corresponding to a symbol
5483 with a GOT entry. */
5484 long min_got_dynindx;
5485 /* The greatest dynamic symbol table index not corresponding to a
5486 symbol without a GOT entry. */
5487 long max_non_got_dynindx;
5488 };
5489
5490 /* If H needs a GOT entry, assign it the highest available dynamic
5491 index. Otherwise, assign it the lowest available dynamic
5492 index. */
5493
5494 static boolean
5495 mips_elf_sort_hash_table_f (h, data)
5496 struct mips_elf_link_hash_entry *h;
5497 PTR data;
5498 {
5499 struct mips_elf_hash_sort_data *hsd
5500 = (struct mips_elf_hash_sort_data *) data;
5501
5502 /* Symbols without dynamic symbol table entries aren't interesting
5503 at all. */
5504 if (h->root.dynindx == -1)
5505 return true;
5506
5507 if (h->root.got.offset != 0)
5508 h->root.dynindx = hsd->max_non_got_dynindx++;
5509 else
5510 {
5511 h->root.dynindx = --hsd->min_got_dynindx;
5512 hsd->low = (struct elf_link_hash_entry *) h;
5513 }
5514
5515 return true;
5516 }
5517
5518 /* Sort the dynamic symbol table so that symbols that need GOT entries
5519 appear towards the end. This reduces the amount of GOT space
5520 required. MAX_LOCAL is used to set the number of local symbols
5521 known to be in the dynamic symbol table. During
5522 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5523 section symbols are added and the count is higher. */
5524
5525 static boolean
5526 mips_elf_sort_hash_table (info, max_local)
5527 struct bfd_link_info *info;
5528 unsigned long max_local;
5529 {
5530 struct mips_elf_hash_sort_data hsd;
5531 struct mips_got_info *g;
5532 bfd *dynobj;
5533
5534 dynobj = elf_hash_table (info)->dynobj;
5535
5536 hsd.low = NULL;
5537 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
5538 hsd.max_non_got_dynindx = max_local;
5539 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5540 elf_hash_table (info)),
5541 mips_elf_sort_hash_table_f,
5542 &hsd);
5543
5544 /* There shoud have been enough room in the symbol table to
5545 accomodate both the GOT and non-GOT symbols. */
5546 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
5547
5548 /* Now we know which dynamic symbol has the lowest dynamic symbol
5549 table index in the GOT. */
5550 g = mips_elf_got_info (dynobj, NULL);
5551 g->global_gotsym = hsd.low;
5552
5553 return true;
5554 }
5555
5556 /* Create a local GOT entry for VALUE. Return the index of the entry,
5557 or -1 if it could not be created. */
5558
5559 static bfd_vma
5560 mips_elf_create_local_got_entry (abfd, g, sgot, value)
5561 bfd *abfd;
5562 struct mips_got_info *g;
5563 asection *sgot;
5564 bfd_vma value;
5565 {
5566 if (g->assigned_gotno >= g->local_gotno)
5567 {
5568 /* We didn't allocate enough space in the GOT. */
5569 (*_bfd_error_handler)
5570 (_("not enough GOT space for local GOT entries"));
5571 bfd_set_error (bfd_error_bad_value);
5572 return (bfd_vma) -1;
5573 }
5574
5575 MIPS_ELF_PUT_WORD (abfd, value,
5576 (sgot->contents
5577 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5578 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
5579 }
5580
5581 /* Returns the GOT offset at which the indicated address can be found.
5582 If there is not yet a GOT entry for this value, create one. Returns
5583 -1 if no satisfactory GOT offset can be found. */
5584
5585 static bfd_vma
5586 mips_elf_local_got_index (abfd, info, value)
5587 bfd *abfd;
5588 struct bfd_link_info *info;
5589 bfd_vma value;
5590 {
5591 asection *sgot;
5592 struct mips_got_info *g;
5593 bfd_byte *entry;
5594
5595 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5596
5597 /* Look to see if we already have an appropriate entry. */
5598 for (entry = (sgot->contents
5599 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5600 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5601 entry += MIPS_ELF_GOT_SIZE (abfd))
5602 {
5603 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
5604 if (address == value)
5605 return entry - sgot->contents;
5606 }
5607
5608 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5609 }
5610
5611 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5612 are supposed to be placed at small offsets in the GOT, i.e.,
5613 within 32KB of GP. Return the index into the GOT for this page,
5614 and store the offset from this entry to the desired address in
5615 OFFSETP, if it is non-NULL. */
5616
5617 static bfd_vma
5618 mips_elf_got_page (abfd, info, value, offsetp)
5619 bfd *abfd;
5620 struct bfd_link_info *info;
5621 bfd_vma value;
5622 bfd_vma *offsetp;
5623 {
5624 asection *sgot;
5625 struct mips_got_info *g;
5626 bfd_byte *entry;
5627 bfd_byte *last_entry;
5628 bfd_vma index = 0;
5629 bfd_vma address;
5630
5631 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5632
5633 /* Look to see if we aleady have an appropriate entry. */
5634 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5635 for (entry = (sgot->contents
5636 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5637 entry != last_entry;
5638 entry += MIPS_ELF_GOT_SIZE (abfd))
5639 {
5640 address = MIPS_ELF_GET_WORD (abfd, entry);
5641
5642 if (!mips_elf_overflow_p (value - address, 16))
5643 {
5644 /* This entry will serve as the page pointer. We can add a
5645 16-bit number to it to get the actual address. */
5646 index = entry - sgot->contents;
5647 break;
5648 }
5649 }
5650
5651 /* If we didn't have an appropriate entry, we create one now. */
5652 if (entry == last_entry)
5653 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5654
5655 if (offsetp)
5656 {
5657 address = MIPS_ELF_GET_WORD (abfd, entry);
5658 *offsetp = value - address;
5659 }
5660
5661 return index;
5662 }
5663
5664 /* Find a GOT entry whose higher-order 16 bits are the same as those
5665 for value. Return the index into the GOT for this entry. */
5666
5667 static bfd_vma
5668 mips_elf_got16_entry (abfd, info, value, external)
5669 bfd *abfd;
5670 struct bfd_link_info *info;
5671 bfd_vma value;
5672 boolean external;
5673 {
5674 asection *sgot;
5675 struct mips_got_info *g;
5676 bfd_byte *entry;
5677 bfd_byte *last_entry;
5678 bfd_vma index = 0;
5679 bfd_vma address;
5680
5681 if (! external)
5682 {
5683 /* Although the ABI says that it is "the high-order 16 bits" that we
5684 want, it is really the %high value. The complete value is
5685 calculated with a `addiu' of a LO16 relocation, just as with a
5686 HI16/LO16 pair. */
5687 value = mips_elf_high (value) << 16;
5688 }
5689
5690 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5691
5692 /* Look to see if we already have an appropriate entry. */
5693 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5694 for (entry = (sgot->contents
5695 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5696 entry != last_entry;
5697 entry += MIPS_ELF_GOT_SIZE (abfd))
5698 {
5699 address = MIPS_ELF_GET_WORD (abfd, entry);
5700 if (address == value)
5701 {
5702 /* This entry has the right high-order 16 bits, and the low-order
5703 16 bits are set to zero. */
5704 index = entry - sgot->contents;
5705 break;
5706 }
5707 }
5708
5709 /* If we didn't have an appropriate entry, we create one now. */
5710 if (entry == last_entry)
5711 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5712
5713 return index;
5714 }
5715
5716 /* Returns the first relocation of type r_type found, beginning with
5717 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5718
5719 static const Elf_Internal_Rela *
5720 mips_elf_next_relocation (r_type, relocation, relend)
5721 unsigned int r_type;
5722 const Elf_Internal_Rela *relocation;
5723 const Elf_Internal_Rela *relend;
5724 {
5725 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5726 immediately following. However, for the IRIX6 ABI, the next
5727 relocation may be a composed relocation consisting of several
5728 relocations for the same address. In that case, the R_MIPS_LO16
5729 relocation may occur as one of these. We permit a similar
5730 extension in general, as that is useful for GCC. */
5731 while (relocation < relend)
5732 {
5733 if (ELF32_R_TYPE (relocation->r_info) == r_type)
5734 return relocation;
5735
5736 ++relocation;
5737 }
5738
5739 /* We didn't find it. */
5740 bfd_set_error (bfd_error_bad_value);
5741 return NULL;
5742 }
5743
5744 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5745 is the original relocation, which is now being transformed into a
5746 dynamic relocation. The ADDENDP is adjusted if necessary; the
5747 caller should store the result in place of the original addend. */
5748
5749 static boolean
5750 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5751 symbol, addendp, input_section, local_p)
5752 bfd *output_bfd;
5753 struct bfd_link_info *info;
5754 const Elf_Internal_Rela *rel;
5755 struct mips_elf_link_hash_entry *h;
5756 asection *sec;
5757 bfd_vma symbol;
5758 bfd_vma *addendp;
5759 asection *input_section;
5760 boolean local_p;
5761 {
5762 Elf_Internal_Rel outrel;
5763 boolean skip;
5764 asection *sreloc;
5765 bfd *dynobj;
5766 int r_type;
5767
5768 r_type = ELF32_R_TYPE (rel->r_info);
5769 dynobj = elf_hash_table (info)->dynobj;
5770 sreloc
5771 = bfd_get_section_by_name (dynobj,
5772 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
5773 BFD_ASSERT (sreloc != NULL);
5774 BFD_ASSERT (sreloc->contents != NULL);
5775
5776 skip = false;
5777
5778 /* We begin by assuming that the offset for the dynamic relocation
5779 is the same as for the original relocation. We'll adjust this
5780 later to reflect the correct output offsets. */
5781 if (elf_section_data (input_section)->stab_info == NULL)
5782 outrel.r_offset = rel->r_offset;
5783 else
5784 {
5785 /* Except that in a stab section things are more complex.
5786 Because we compress stab information, the offset given in the
5787 relocation may not be the one we want; we must let the stabs
5788 machinery tell us the offset. */
5789 outrel.r_offset
5790 = (_bfd_stab_section_offset
5791 (output_bfd, &elf_hash_table (info)->stab_info,
5792 input_section,
5793 &elf_section_data (input_section)->stab_info,
5794 rel->r_offset));
5795 /* If we didn't need the relocation at all, this value will be
5796 -1. */
5797 if (outrel.r_offset == (bfd_vma) -1)
5798 skip = true;
5799 }
5800
5801 /* If we've decided to skip this relocation, just output an empty
5802 record. Note that R_MIPS_NONE == 0, so that this call to memset
5803 is a way of setting R_TYPE to R_MIPS_NONE. */
5804 if (skip)
5805 memset (&outrel, 0, sizeof (outrel));
5806 else
5807 {
5808 long indx;
5809 bfd_vma section_offset;
5810
5811 /* We must now calculate the dynamic symbol table index to use
5812 in the relocation. */
5813 if (h != NULL
5814 && (! info->symbolic || (h->root.elf_link_hash_flags
5815 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5816 {
5817 indx = h->root.dynindx;
5818 /* h->root.dynindx may be -1 if this symbol was marked to
5819 become local. */
5820 if (indx == -1)
5821 indx = 0;
5822 }
5823 else
5824 {
5825 if (sec != NULL && bfd_is_abs_section (sec))
5826 indx = 0;
5827 else if (sec == NULL || sec->owner == NULL)
5828 {
5829 bfd_set_error (bfd_error_bad_value);
5830 return false;
5831 }
5832 else
5833 {
5834 indx = elf_section_data (sec->output_section)->dynindx;
5835 if (indx == 0)
5836 abort ();
5837 }
5838
5839 /* Figure out how far the target of the relocation is from
5840 the beginning of its section. */
5841 section_offset = symbol - sec->output_section->vma;
5842 /* The relocation we're building is section-relative.
5843 Therefore, the original addend must be adjusted by the
5844 section offset. */
5845 *addendp += symbol - sec->output_section->vma;
5846 /* Now, the relocation is just against the section. */
5847 symbol = sec->output_section->vma;
5848 }
5849
5850 /* If the relocation is against a local symbol was previously an
5851 absolute relocation, we must adjust it by the value we give
5852 it in the dynamic symbol table. */
5853 if (local_p && r_type != R_MIPS_REL32)
5854 *addendp += symbol;
5855
5856 /* The relocation is always an REL32 relocation because we don't
5857 know where the shared library will wind up at load-time. */
5858 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5859
5860 /* Adjust the output offset of the relocation to reference the
5861 correct location in the output file. */
5862 outrel.r_offset += (input_section->output_section->vma
5863 + input_section->output_offset);
5864 }
5865
5866 /* Put the relocation back out. We have to use the special
5867 relocation outputter in the 64-bit case since the 64-bit
5868 relocation format is non-standard. */
5869 if (ABI_64_P (output_bfd))
5870 {
5871 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5872 (output_bfd, &outrel,
5873 (sreloc->contents
5874 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5875 }
5876 else
5877 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5878 (((Elf32_External_Rel *)
5879 sreloc->contents)
5880 + sreloc->reloc_count));
5881
5882 /* Record the index of the first relocation referencing H. This
5883 information is later emitted in the .msym section. */
5884 if (h != NULL
5885 && (h->min_dyn_reloc_index == 0
5886 || sreloc->reloc_count < h->min_dyn_reloc_index))
5887 h->min_dyn_reloc_index = sreloc->reloc_count;
5888
5889 /* We've now added another relocation. */
5890 ++sreloc->reloc_count;
5891
5892 /* Make sure the output section is writable. The dynamic linker
5893 will be writing to it. */
5894 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5895 |= SHF_WRITE;
5896
5897 /* On IRIX5, make an entry of compact relocation info. */
5898 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5899 {
5900 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5901 bfd_byte *cr;
5902
5903 if (scpt)
5904 {
5905 Elf32_crinfo cptrel;
5906
5907 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5908 cptrel.vaddr = (rel->r_offset
5909 + input_section->output_section->vma
5910 + input_section->output_offset);
5911 if (r_type == R_MIPS_REL32)
5912 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5913 else
5914 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5915 mips_elf_set_cr_dist2to (cptrel, 0);
5916 cptrel.konst = *addendp;
5917
5918 cr = (scpt->contents
5919 + sizeof (Elf32_External_compact_rel));
5920 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5921 ((Elf32_External_crinfo *) cr
5922 + scpt->reloc_count));
5923 ++scpt->reloc_count;
5924 }
5925 }
5926
5927 return true;
5928 }
5929
5930 /* Calculate the value produced by the RELOCATION (which comes from
5931 the INPUT_BFD). The ADDEND is the addend to use for this
5932 RELOCATION; RELOCATION->R_ADDEND is ignored.
5933
5934 The result of the relocation calculation is stored in VALUEP.
5935 REQUIRE_JALXP indicates whether or not the opcode used with this
5936 relocation must be JALX.
5937
5938 This function returns bfd_reloc_continue if the caller need take no
5939 further action regarding this relocation, bfd_reloc_notsupported if
5940 something goes dramatically wrong, bfd_reloc_overflow if an
5941 overflow occurs, and bfd_reloc_ok to indicate success. */
5942
5943 static bfd_reloc_status_type
5944 mips_elf_calculate_relocation (abfd,
5945 input_bfd,
5946 input_section,
5947 info,
5948 relocation,
5949 addend,
5950 howto,
5951 local_syms,
5952 local_sections,
5953 valuep,
5954 namep,
5955 require_jalxp)
5956 bfd *abfd;
5957 bfd *input_bfd;
5958 asection *input_section;
5959 struct bfd_link_info *info;
5960 const Elf_Internal_Rela *relocation;
5961 bfd_vma addend;
5962 reloc_howto_type *howto;
5963 Elf_Internal_Sym *local_syms;
5964 asection **local_sections;
5965 bfd_vma *valuep;
5966 const char **namep;
5967 boolean *require_jalxp;
5968 {
5969 /* The eventual value we will return. */
5970 bfd_vma value;
5971 /* The address of the symbol against which the relocation is
5972 occurring. */
5973 bfd_vma symbol = 0;
5974 /* The final GP value to be used for the relocatable, executable, or
5975 shared object file being produced. */
5976 bfd_vma gp = (bfd_vma) - 1;
5977 /* The place (section offset or address) of the storage unit being
5978 relocated. */
5979 bfd_vma p;
5980 /* The value of GP used to create the relocatable object. */
5981 bfd_vma gp0 = (bfd_vma) - 1;
5982 /* The offset into the global offset table at which the address of
5983 the relocation entry symbol, adjusted by the addend, resides
5984 during execution. */
5985 bfd_vma g = (bfd_vma) - 1;
5986 /* The section in which the symbol referenced by the relocation is
5987 located. */
5988 asection *sec = NULL;
5989 struct mips_elf_link_hash_entry *h = NULL;
5990 /* True if the symbol referred to by this relocation is a local
5991 symbol. */
5992 boolean local_p;
5993 /* True if the symbol referred to by this relocation is "_gp_disp". */
5994 boolean gp_disp_p = false;
5995 Elf_Internal_Shdr *symtab_hdr;
5996 size_t extsymoff;
5997 unsigned long r_symndx;
5998 int r_type;
5999 /* True if overflow occurred during the calculation of the
6000 relocation value. */
6001 boolean overflowed_p;
6002 /* True if this relocation refers to a MIPS16 function. */
6003 boolean target_is_16_bit_code_p = false;
6004
6005 /* Parse the relocation. */
6006 r_symndx = ELF32_R_SYM (relocation->r_info);
6007 r_type = ELF32_R_TYPE (relocation->r_info);
6008 p = (input_section->output_section->vma
6009 + input_section->output_offset
6010 + relocation->r_offset);
6011
6012 /* Assume that there will be no overflow. */
6013 overflowed_p = false;
6014
6015 /* Figure out whether or not the symbol is local, and get the offset
6016 used in the array of hash table entries. */
6017 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6018 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6019 local_sections, false);
6020 if (! elf_bad_symtab (input_bfd))
6021 extsymoff = symtab_hdr->sh_info;
6022 else
6023 {
6024 /* The symbol table does not follow the rule that local symbols
6025 must come before globals. */
6026 extsymoff = 0;
6027 }
6028
6029 /* Figure out the value of the symbol. */
6030 if (local_p)
6031 {
6032 Elf_Internal_Sym *sym;
6033
6034 sym = local_syms + r_symndx;
6035 sec = local_sections[r_symndx];
6036
6037 symbol = sec->output_section->vma + sec->output_offset;
6038 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6039 symbol += sym->st_value;
6040
6041 /* MIPS16 text labels should be treated as odd. */
6042 if (sym->st_other == STO_MIPS16)
6043 ++symbol;
6044
6045 /* Record the name of this symbol, for our caller. */
6046 *namep = bfd_elf_string_from_elf_section (input_bfd,
6047 symtab_hdr->sh_link,
6048 sym->st_name);
6049 if (*namep == '\0')
6050 *namep = bfd_section_name (input_bfd, sec);
6051
6052 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
6053 }
6054 else
6055 {
6056 /* For global symbols we look up the symbol in the hash-table. */
6057 h = ((struct mips_elf_link_hash_entry *)
6058 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
6059 /* Find the real hash-table entry for this symbol. */
6060 while (h->root.root.type == bfd_link_hash_indirect
6061 || h->root.root.type == bfd_link_hash_warning)
6062 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6063
6064 /* Record the name of this symbol, for our caller. */
6065 *namep = h->root.root.root.string;
6066
6067 /* See if this is the special _gp_disp symbol. Note that such a
6068 symbol must always be a global symbol. */
6069 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6070 {
6071 /* Relocations against _gp_disp are permitted only with
6072 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6073 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6074 return bfd_reloc_notsupported;
6075
6076 gp_disp_p = true;
6077 }
6078 /* If this symbol is defined, calculate its address. Note that
6079 _gp_disp is a magic symbol, always implicitly defined by the
6080 linker, so it's inappropriate to check to see whether or not
6081 its defined. */
6082 else if ((h->root.root.type == bfd_link_hash_defined
6083 || h->root.root.type == bfd_link_hash_defweak)
6084 && h->root.root.u.def.section)
6085 {
6086 sec = h->root.root.u.def.section;
6087 if (sec->output_section)
6088 symbol = (h->root.root.u.def.value
6089 + sec->output_section->vma
6090 + sec->output_offset);
6091 else
6092 symbol = h->root.root.u.def.value;
6093 }
6094 else if (h->root.root.type == bfd_link_hash_undefweak)
6095 /* We allow relocations against undefined weak symbols, giving
6096 it the value zero, so that you can undefined weak functions
6097 and check to see if they exist by looking at their
6098 addresses. */
6099 symbol = 0;
6100 else if (info->shared && !info->symbolic && !info->no_undefined
6101 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
6102 symbol = 0;
6103 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6104 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
6105 {
6106 /* If this is a dynamic link, we should have created a
6107 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6108 in in mips_elf_create_dynamic_sections.
6109 Otherwise, we should define the symbol with a value of 0.
6110 FIXME: It should probably get into the symbol table
6111 somehow as well. */
6112 BFD_ASSERT (! info->shared);
6113 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6114 symbol = 0;
6115 }
6116 else
6117 {
6118 if (! ((*info->callbacks->undefined_symbol)
6119 (info, h->root.root.root.string, input_bfd,
6120 input_section, relocation->r_offset,
6121 (!info->shared || info->no_undefined
6122 || ELF_ST_VISIBILITY (h->root.other)))))
6123 return bfd_reloc_undefined;
6124 symbol = 0;
6125 }
6126
6127 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6128 }
6129
6130 /* If this is a 32-bit call to a 16-bit function with a stub, we
6131 need to redirect the call to the stub, unless we're already *in*
6132 a stub. */
6133 if (r_type != R_MIPS16_26 && !info->relocateable
6134 && ((h != NULL && h->fn_stub != NULL)
6135 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6136 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6137 && !mips_elf_stub_section_p (input_bfd, input_section))
6138 {
6139 /* This is a 32-bit call to a 16-bit function. We should
6140 have already noticed that we were going to need the
6141 stub. */
6142 if (local_p)
6143 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6144 else
6145 {
6146 BFD_ASSERT (h->need_fn_stub);
6147 sec = h->fn_stub;
6148 }
6149
6150 symbol = sec->output_section->vma + sec->output_offset;
6151 }
6152 /* If this is a 16-bit call to a 32-bit function with a stub, we
6153 need to redirect the call to the stub. */
6154 else if (r_type == R_MIPS16_26 && !info->relocateable
6155 && h != NULL
6156 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6157 && !target_is_16_bit_code_p)
6158 {
6159 /* If both call_stub and call_fp_stub are defined, we can figure
6160 out which one to use by seeing which one appears in the input
6161 file. */
6162 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6163 {
6164 asection *o;
6165
6166 sec = NULL;
6167 for (o = input_bfd->sections; o != NULL; o = o->next)
6168 {
6169 if (strncmp (bfd_get_section_name (input_bfd, o),
6170 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6171 {
6172 sec = h->call_fp_stub;
6173 break;
6174 }
6175 }
6176 if (sec == NULL)
6177 sec = h->call_stub;
6178 }
6179 else if (h->call_stub != NULL)
6180 sec = h->call_stub;
6181 else
6182 sec = h->call_fp_stub;
6183
6184 BFD_ASSERT (sec->_raw_size > 0);
6185 symbol = sec->output_section->vma + sec->output_offset;
6186 }
6187
6188 /* Calls from 16-bit code to 32-bit code and vice versa require the
6189 special jalx instruction. */
6190 *require_jalxp = (!info->relocateable
6191 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
6192
6193 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6194 local_sections, true);
6195
6196 /* If we haven't already determined the GOT offset, or the GP value,
6197 and we're going to need it, get it now. */
6198 switch (r_type)
6199 {
6200 case R_MIPS_CALL16:
6201 case R_MIPS_GOT16:
6202 case R_MIPS_GOT_DISP:
6203 case R_MIPS_GOT_HI16:
6204 case R_MIPS_CALL_HI16:
6205 case R_MIPS_GOT_LO16:
6206 case R_MIPS_CALL_LO16:
6207 /* Find the index into the GOT where this value is located. */
6208 if (!local_p)
6209 {
6210 BFD_ASSERT (addend == 0);
6211 g = mips_elf_global_got_index
6212 (elf_hash_table (info)->dynobj,
6213 (struct elf_link_hash_entry *) h);
6214 if (! elf_hash_table(info)->dynamic_sections_created
6215 || (info->shared
6216 && (info->symbolic || h->root.dynindx == -1)
6217 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6218 {
6219 /* This is a static link or a -Bsymbolic link. The
6220 symbol is defined locally, or was forced to be local.
6221 We must initialize this entry in the GOT. */
6222 asection *sgot = mips_elf_got_section(elf_hash_table
6223 (info)->dynobj);
6224 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6225 symbol + addend, sgot->contents + g);
6226 }
6227 }
6228 else if (r_type == R_MIPS_GOT16)
6229 /* There's no need to create a local GOT entry here; the
6230 calculation for a local GOT16 entry does not involve G. */
6231 break;
6232 else
6233 {
6234 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6235 if (g == (bfd_vma) -1)
6236 return false;
6237 }
6238
6239 /* Convert GOT indices to actual offsets. */
6240 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6241 abfd, g);
6242 break;
6243
6244 case R_MIPS_HI16:
6245 case R_MIPS_LO16:
6246 case R_MIPS_GPREL16:
6247 case R_MIPS_GPREL32:
6248 case R_MIPS_LITERAL:
6249 gp0 = _bfd_get_gp_value (input_bfd);
6250 gp = _bfd_get_gp_value (abfd);
6251 break;
6252
6253 default:
6254 break;
6255 }
6256
6257 /* Figure out what kind of relocation is being performed. */
6258 switch (r_type)
6259 {
6260 case R_MIPS_NONE:
6261 return bfd_reloc_continue;
6262
6263 case R_MIPS_16:
6264 value = symbol + mips_elf_sign_extend (addend, 16);
6265 overflowed_p = mips_elf_overflow_p (value, 16);
6266 break;
6267
6268 case R_MIPS_32:
6269 case R_MIPS_REL32:
6270 case R_MIPS_64:
6271 if ((info->shared
6272 || (elf_hash_table (info)->dynamic_sections_created
6273 && h != NULL
6274 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
6275 != 0)))
6276 && (input_section->flags & SEC_ALLOC) != 0)
6277 {
6278 /* If we're creating a shared library, or this relocation is
6279 against a symbol in a shared library, then we can't know
6280 where the symbol will end up. So, we create a relocation
6281 record in the output, and leave the job up to the dynamic
6282 linker. */
6283 value = addend;
6284 if (!mips_elf_create_dynamic_relocation (abfd,
6285 info,
6286 relocation,
6287 h,
6288 sec,
6289 symbol,
6290 &value,
6291 input_section, local_p))
6292 return false;
6293 }
6294 else
6295 {
6296 if (r_type != R_MIPS_REL32)
6297 value = symbol + addend;
6298 else
6299 value = addend;
6300 }
6301 value &= howto->dst_mask;
6302 break;
6303
6304 case R_MIPS_PC32:
6305 case R_MIPS_PC64:
6306 case R_MIPS_GNU_REL_LO16:
6307 value = symbol + addend - p;
6308 value &= howto->dst_mask;
6309 break;
6310
6311 case R_MIPS_GNU_REL16_S2:
6312 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6313 overflowed_p = mips_elf_overflow_p (value, 18);
6314 value = (value >> 2) & howto->dst_mask;
6315 break;
6316
6317 case R_MIPS_GNU_REL_HI16:
6318 value = mips_elf_high (addend + symbol - p);
6319 value &= howto->dst_mask;
6320 break;
6321
6322 case R_MIPS16_26:
6323 /* The calculation for R_MIPS_26 is just the same as for an
6324 R_MIPS_26. It's only the storage of the relocated field into
6325 the output file that's different. That's handled in
6326 mips_elf_perform_relocation. So, we just fall through to the
6327 R_MIPS_26 case here. */
6328 case R_MIPS_26:
6329 if (local_p)
6330 value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2;
6331 else
6332 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6333 value &= howto->dst_mask;
6334 break;
6335
6336 case R_MIPS_HI16:
6337 if (!gp_disp_p)
6338 {
6339 value = mips_elf_high (addend + symbol);
6340 value &= howto->dst_mask;
6341 }
6342 else
6343 {
6344 value = mips_elf_high (addend + gp - p);
6345 overflowed_p = mips_elf_overflow_p (value, 16);
6346 }
6347 break;
6348
6349 case R_MIPS_LO16:
6350 if (!gp_disp_p)
6351 value = (symbol + addend) & howto->dst_mask;
6352 else
6353 {
6354 value = addend + gp - p + 4;
6355 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6356 for overflow. But, on, say, Irix 5, relocations against
6357 _gp_disp are normally generated from the .cpload
6358 pseudo-op. It generates code that normally looks like
6359 this:
6360
6361 lui $gp,%hi(_gp_disp)
6362 addiu $gp,$gp,%lo(_gp_disp)
6363 addu $gp,$gp,$t9
6364
6365 Here $t9 holds the address of the function being called,
6366 as required by the MIPS ELF ABI. The R_MIPS_LO16
6367 relocation can easily overflow in this situation, but the
6368 R_MIPS_HI16 relocation will handle the overflow.
6369 Therefore, we consider this a bug in the MIPS ABI, and do
6370 not check for overflow here. */
6371 }
6372 break;
6373
6374 case R_MIPS_LITERAL:
6375 /* Because we don't merge literal sections, we can handle this
6376 just like R_MIPS_GPREL16. In the long run, we should merge
6377 shared literals, and then we will need to additional work
6378 here. */
6379
6380 /* Fall through. */
6381
6382 case R_MIPS16_GPREL:
6383 /* The R_MIPS16_GPREL performs the same calculation as
6384 R_MIPS_GPREL16, but stores the relocated bits in a different
6385 order. We don't need to do anything special here; the
6386 differences are handled in mips_elf_perform_relocation. */
6387 case R_MIPS_GPREL16:
6388 if (local_p)
6389 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6390 else
6391 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6392 overflowed_p = mips_elf_overflow_p (value, 16);
6393 break;
6394
6395 case R_MIPS_GOT16:
6396 if (local_p)
6397 {
6398 boolean forced;
6399
6400 /* The special case is when the symbol is forced to be local. We
6401 need the full address in the GOT since no R_MIPS_LO16 relocation
6402 follows. */
6403 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6404 local_sections, false);
6405 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6406 if (value == (bfd_vma) -1)
6407 return false;
6408 value
6409 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6410 abfd,
6411 value);
6412 overflowed_p = mips_elf_overflow_p (value, 16);
6413 break;
6414 }
6415
6416 /* Fall through. */
6417
6418 case R_MIPS_CALL16:
6419 case R_MIPS_GOT_DISP:
6420 value = g;
6421 overflowed_p = mips_elf_overflow_p (value, 16);
6422 break;
6423
6424 case R_MIPS_GPREL32:
6425 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6426 break;
6427
6428 case R_MIPS_PC16:
6429 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6430 value = (bfd_vma) ((bfd_signed_vma) value / 4);
6431 overflowed_p = mips_elf_overflow_p (value, 16);
6432 break;
6433
6434 case R_MIPS_GOT_HI16:
6435 case R_MIPS_CALL_HI16:
6436 /* We're allowed to handle these two relocations identically.
6437 The dynamic linker is allowed to handle the CALL relocations
6438 differently by creating a lazy evaluation stub. */
6439 value = g;
6440 value = mips_elf_high (value);
6441 value &= howto->dst_mask;
6442 break;
6443
6444 case R_MIPS_GOT_LO16:
6445 case R_MIPS_CALL_LO16:
6446 value = g & howto->dst_mask;
6447 break;
6448
6449 case R_MIPS_GOT_PAGE:
6450 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6451 if (value == (bfd_vma) -1)
6452 return false;
6453 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6454 abfd,
6455 value);
6456 overflowed_p = mips_elf_overflow_p (value, 16);
6457 break;
6458
6459 case R_MIPS_GOT_OFST:
6460 mips_elf_got_page (abfd, info, symbol + addend, &value);
6461 overflowed_p = mips_elf_overflow_p (value, 16);
6462 break;
6463
6464 case R_MIPS_SUB:
6465 value = symbol - addend;
6466 value &= howto->dst_mask;
6467 break;
6468
6469 case R_MIPS_HIGHER:
6470 value = mips_elf_higher (addend + symbol);
6471 value &= howto->dst_mask;
6472 break;
6473
6474 case R_MIPS_HIGHEST:
6475 value = mips_elf_highest (addend + symbol);
6476 value &= howto->dst_mask;
6477 break;
6478
6479 case R_MIPS_SCN_DISP:
6480 value = symbol + addend - sec->output_offset;
6481 value &= howto->dst_mask;
6482 break;
6483
6484 case R_MIPS_PJUMP:
6485 case R_MIPS_JALR:
6486 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6487 hint; we could improve performance by honoring that hint. */
6488 return bfd_reloc_continue;
6489
6490 case R_MIPS_GNU_VTINHERIT:
6491 case R_MIPS_GNU_VTENTRY:
6492 /* We don't do anything with these at present. */
6493 return bfd_reloc_continue;
6494
6495 default:
6496 /* An unrecognized relocation type. */
6497 return bfd_reloc_notsupported;
6498 }
6499
6500 /* Store the VALUE for our caller. */
6501 *valuep = value;
6502 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6503 }
6504
6505 /* Obtain the field relocated by RELOCATION. */
6506
6507 static bfd_vma
6508 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6509 reloc_howto_type *howto;
6510 const Elf_Internal_Rela *relocation;
6511 bfd *input_bfd;
6512 bfd_byte *contents;
6513 {
6514 bfd_vma x;
6515 bfd_byte *location = contents + relocation->r_offset;
6516
6517 /* Obtain the bytes. */
6518 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
6519
6520 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6521 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
6522 && bfd_little_endian (input_bfd))
6523 /* The two 16-bit words will be reversed on a little-endian
6524 system. See mips_elf_perform_relocation for more details. */
6525 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6526
6527 return x;
6528 }
6529
6530 /* It has been determined that the result of the RELOCATION is the
6531 VALUE. Use HOWTO to place VALUE into the output file at the
6532 appropriate position. The SECTION is the section to which the
6533 relocation applies. If REQUIRE_JALX is true, then the opcode used
6534 for the relocation must be either JAL or JALX, and it is
6535 unconditionally converted to JALX.
6536
6537 Returns false if anything goes wrong. */
6538
6539 static boolean
6540 mips_elf_perform_relocation (info, howto, relocation, value,
6541 input_bfd, input_section,
6542 contents, require_jalx)
6543 struct bfd_link_info *info;
6544 reloc_howto_type *howto;
6545 const Elf_Internal_Rela *relocation;
6546 bfd_vma value;
6547 bfd *input_bfd;
6548 asection *input_section;
6549 bfd_byte *contents;
6550 boolean require_jalx;
6551 {
6552 bfd_vma x;
6553 bfd_byte *location;
6554 int r_type = ELF32_R_TYPE (relocation->r_info);
6555
6556 /* Figure out where the relocation is occurring. */
6557 location = contents + relocation->r_offset;
6558
6559 /* Obtain the current value. */
6560 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6561
6562 /* Clear the field we are setting. */
6563 x &= ~howto->dst_mask;
6564
6565 /* If this is the R_MIPS16_26 relocation, we must store the
6566 value in a funny way. */
6567 if (r_type == R_MIPS16_26)
6568 {
6569 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6570 Most mips16 instructions are 16 bits, but these instructions
6571 are 32 bits.
6572
6573 The format of these instructions is:
6574
6575 +--------------+--------------------------------+
6576 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6577 +--------------+--------------------------------+
6578 ! Immediate 15:0 !
6579 +-----------------------------------------------+
6580
6581 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6582 Note that the immediate value in the first word is swapped.
6583
6584 When producing a relocateable object file, R_MIPS16_26 is
6585 handled mostly like R_MIPS_26. In particular, the addend is
6586 stored as a straight 26-bit value in a 32-bit instruction.
6587 (gas makes life simpler for itself by never adjusting a
6588 R_MIPS16_26 reloc to be against a section, so the addend is
6589 always zero). However, the 32 bit instruction is stored as 2
6590 16-bit values, rather than a single 32-bit value. In a
6591 big-endian file, the result is the same; in a little-endian
6592 file, the two 16-bit halves of the 32 bit value are swapped.
6593 This is so that a disassembler can recognize the jal
6594 instruction.
6595
6596 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6597 instruction stored as two 16-bit values. The addend A is the
6598 contents of the targ26 field. The calculation is the same as
6599 R_MIPS_26. When storing the calculated value, reorder the
6600 immediate value as shown above, and don't forget to store the
6601 value as two 16-bit values.
6602
6603 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6604 defined as
6605
6606 big-endian:
6607 +--------+----------------------+
6608 | | |
6609 | | targ26-16 |
6610 |31 26|25 0|
6611 +--------+----------------------+
6612
6613 little-endian:
6614 +----------+------+-------------+
6615 | | | |
6616 | sub1 | | sub2 |
6617 |0 9|10 15|16 31|
6618 +----------+--------------------+
6619 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6620 ((sub1 << 16) | sub2)).
6621
6622 When producing a relocateable object file, the calculation is
6623 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6624 When producing a fully linked file, the calculation is
6625 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6626 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6627
6628 if (!info->relocateable)
6629 /* Shuffle the bits according to the formula above. */
6630 value = (((value & 0x1f0000) << 5)
6631 | ((value & 0x3e00000) >> 5)
6632 | (value & 0xffff));
6633 }
6634 else if (r_type == R_MIPS16_GPREL)
6635 {
6636 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6637 mode. A typical instruction will have a format like this:
6638
6639 +--------------+--------------------------------+
6640 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6641 +--------------+--------------------------------+
6642 ! Major ! rx ! ry ! Imm 4:0 !
6643 +--------------+--------------------------------+
6644
6645 EXTEND is the five bit value 11110. Major is the instruction
6646 opcode.
6647
6648 This is handled exactly like R_MIPS_GPREL16, except that the
6649 addend is retrieved and stored as shown in this diagram; that
6650 is, the Imm fields above replace the V-rel16 field.
6651
6652 All we need to do here is shuffle the bits appropriately. As
6653 above, the two 16-bit halves must be swapped on a
6654 little-endian system. */
6655 value = (((value & 0x7e0) << 16)
6656 | ((value & 0xf800) << 5)
6657 | (value & 0x1f));
6658 }
6659
6660 /* Set the field. */
6661 x |= (value & howto->dst_mask);
6662
6663 /* If required, turn JAL into JALX. */
6664 if (require_jalx)
6665 {
6666 boolean ok;
6667 bfd_vma opcode = x >> 26;
6668 bfd_vma jalx_opcode;
6669
6670 /* Check to see if the opcode is already JAL or JALX. */
6671 if (r_type == R_MIPS16_26)
6672 {
6673 ok = ((opcode == 0x6) || (opcode == 0x7));
6674 jalx_opcode = 0x7;
6675 }
6676 else
6677 {
6678 ok = ((opcode == 0x3) || (opcode == 0x1d));
6679 jalx_opcode = 0x1d;
6680 }
6681
6682 /* If the opcode is not JAL or JALX, there's a problem. */
6683 if (!ok)
6684 {
6685 (*_bfd_error_handler)
6686 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6687 bfd_get_filename (input_bfd),
6688 input_section->name,
6689 (unsigned long) relocation->r_offset);
6690 bfd_set_error (bfd_error_bad_value);
6691 return false;
6692 }
6693
6694 /* Make this the JALX opcode. */
6695 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6696 }
6697
6698 /* Swap the high- and low-order 16 bits on little-endian systems
6699 when doing a MIPS16 relocation. */
6700 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6701 && bfd_little_endian (input_bfd))
6702 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6703
6704 /* Put the value into the output. */
6705 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6706 return true;
6707 }
6708
6709 /* Returns true if SECTION is a MIPS16 stub section. */
6710
6711 static boolean
6712 mips_elf_stub_section_p (abfd, section)
6713 bfd *abfd ATTRIBUTE_UNUSED;
6714 asection *section;
6715 {
6716 const char *name = bfd_get_section_name (abfd, section);
6717
6718 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6719 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6720 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
6721 }
6722
6723 /* Relocate a MIPS ELF section. */
6724
6725 boolean
6726 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6727 contents, relocs, local_syms, local_sections)
6728 bfd *output_bfd;
6729 struct bfd_link_info *info;
6730 bfd *input_bfd;
6731 asection *input_section;
6732 bfd_byte *contents;
6733 Elf_Internal_Rela *relocs;
6734 Elf_Internal_Sym *local_syms;
6735 asection **local_sections;
6736 {
6737 Elf_Internal_Rela *rel;
6738 const Elf_Internal_Rela *relend;
6739 bfd_vma addend = 0;
6740 boolean use_saved_addend_p = false;
6741 struct elf_backend_data *bed;
6742
6743 bed = get_elf_backend_data (output_bfd);
6744 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6745 for (rel = relocs; rel < relend; ++rel)
6746 {
6747 const char *name;
6748 bfd_vma value;
6749 reloc_howto_type *howto;
6750 boolean require_jalx;
6751 /* True if the relocation is a RELA relocation, rather than a
6752 REL relocation. */
6753 boolean rela_relocation_p = true;
6754 int r_type = ELF32_R_TYPE (rel->r_info);
6755
6756 /* Find the relocation howto for this relocation. */
6757 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6758 {
6759 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6760 64-bit code, but make sure all their addresses are in the
6761 lowermost or uppermost 32-bit section of the 64-bit address
6762 space. Thus, when they use an R_MIPS_64 they mean what is
6763 usually meant by R_MIPS_32, with the exception that the
6764 stored value is sign-extended to 64 bits. */
6765 howto = elf_mips_howto_table + R_MIPS_32;
6766
6767 /* On big-endian systems, we need to lie about the position
6768 of the reloc. */
6769 if (bfd_big_endian (input_bfd))
6770 rel->r_offset += 4;
6771 }
6772 else
6773 howto = mips_rtype_to_howto (r_type);
6774
6775 if (!use_saved_addend_p)
6776 {
6777 Elf_Internal_Shdr *rel_hdr;
6778
6779 /* If these relocations were originally of the REL variety,
6780 we must pull the addend out of the field that will be
6781 relocated. Otherwise, we simply use the contents of the
6782 RELA relocation. To determine which flavor or relocation
6783 this is, we depend on the fact that the INPUT_SECTION's
6784 REL_HDR is read before its REL_HDR2. */
6785 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6786 if ((size_t) (rel - relocs)
6787 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6788 * bed->s->int_rels_per_ext_rel))
6789 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6790 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6791 {
6792 /* Note that this is a REL relocation. */
6793 rela_relocation_p = false;
6794
6795 /* Get the addend, which is stored in the input file. */
6796 addend = mips_elf_obtain_contents (howto,
6797 rel,
6798 input_bfd,
6799 contents);
6800 addend &= howto->src_mask;
6801
6802 /* For some kinds of relocations, the ADDEND is a
6803 combination of the addend stored in two different
6804 relocations. */
6805 if (r_type == R_MIPS_HI16
6806 || r_type == R_MIPS_GNU_REL_HI16
6807 || (r_type == R_MIPS_GOT16
6808 && mips_elf_local_relocation_p (input_bfd, rel,
6809 local_sections, false)))
6810 {
6811 bfd_vma l;
6812 const Elf_Internal_Rela *lo16_relocation;
6813 reloc_howto_type *lo16_howto;
6814 int lo;
6815
6816 /* The combined value is the sum of the HI16 addend,
6817 left-shifted by sixteen bits, and the LO16
6818 addend, sign extended. (Usually, the code does
6819 a `lui' of the HI16 value, and then an `addiu' of
6820 the LO16 value.)
6821
6822 Scan ahead to find a matching LO16 relocation. */
6823 if (r_type == R_MIPS_GNU_REL_HI16)
6824 lo = R_MIPS_GNU_REL_LO16;
6825 else
6826 lo = R_MIPS_LO16;
6827 lo16_relocation
6828 = mips_elf_next_relocation (lo, rel, relend);
6829 if (lo16_relocation == NULL)
6830 return false;
6831
6832 /* Obtain the addend kept there. */
6833 lo16_howto = mips_rtype_to_howto (lo);
6834 l = mips_elf_obtain_contents (lo16_howto,
6835 lo16_relocation,
6836 input_bfd, contents);
6837 l &= lo16_howto->src_mask;
6838 l = mips_elf_sign_extend (l, 16);
6839
6840 addend <<= 16;
6841
6842 /* Compute the combined addend. */
6843 addend += l;
6844 }
6845 else if (r_type == R_MIPS16_GPREL)
6846 {
6847 /* The addend is scrambled in the object file. See
6848 mips_elf_perform_relocation for details on the
6849 format. */
6850 addend = (((addend & 0x1f0000) >> 5)
6851 | ((addend & 0x7e00000) >> 16)
6852 | (addend & 0x1f));
6853 }
6854 }
6855 else
6856 addend = rel->r_addend;
6857 }
6858
6859 if (info->relocateable)
6860 {
6861 Elf_Internal_Sym *sym;
6862 unsigned long r_symndx;
6863
6864 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6865 && bfd_big_endian (input_bfd))
6866 rel->r_offset -= 4;
6867
6868 /* Since we're just relocating, all we need to do is copy
6869 the relocations back out to the object file, unless
6870 they're against a section symbol, in which case we need
6871 to adjust by the section offset, or unless they're GP
6872 relative in which case we need to adjust by the amount
6873 that we're adjusting GP in this relocateable object. */
6874
6875 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6876 false))
6877 /* There's nothing to do for non-local relocations. */
6878 continue;
6879
6880 if (r_type == R_MIPS16_GPREL
6881 || r_type == R_MIPS_GPREL16
6882 || r_type == R_MIPS_GPREL32
6883 || r_type == R_MIPS_LITERAL)
6884 addend -= (_bfd_get_gp_value (output_bfd)
6885 - _bfd_get_gp_value (input_bfd));
6886 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6887 || r_type == R_MIPS_GNU_REL16_S2)
6888 /* The addend is stored without its two least
6889 significant bits (which are always zero.) In a
6890 non-relocateable link, calculate_relocation will do
6891 this shift; here, we must do it ourselves. */
6892 addend <<= 2;
6893
6894 r_symndx = ELF32_R_SYM (rel->r_info);
6895 sym = local_syms + r_symndx;
6896 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6897 /* Adjust the addend appropriately. */
6898 addend += local_sections[r_symndx]->output_offset;
6899
6900 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6901 then we only want to write out the high-order 16 bits.
6902 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6903 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6904 || r_type == R_MIPS_GNU_REL_HI16)
6905 addend = mips_elf_high (addend);
6906 /* If the relocation is for an R_MIPS_26 relocation, then
6907 the two low-order bits are not stored in the object file;
6908 they are implicitly zero. */
6909 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6910 || r_type == R_MIPS_GNU_REL16_S2)
6911 addend >>= 2;
6912
6913 if (rela_relocation_p)
6914 /* If this is a RELA relocation, just update the addend.
6915 We have to cast away constness for REL. */
6916 rel->r_addend = addend;
6917 else
6918 {
6919 /* Otherwise, we have to write the value back out. Note
6920 that we use the source mask, rather than the
6921 destination mask because the place to which we are
6922 writing will be source of the addend in the final
6923 link. */
6924 addend &= howto->src_mask;
6925
6926 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6927 /* See the comment above about using R_MIPS_64 in the 32-bit
6928 ABI. Here, we need to update the addend. It would be
6929 possible to get away with just using the R_MIPS_32 reloc
6930 but for endianness. */
6931 {
6932 bfd_vma sign_bits;
6933 bfd_vma low_bits;
6934 bfd_vma high_bits;
6935
6936 if (addend & ((bfd_vma) 1 << 31))
6937 sign_bits = ((bfd_vma) 1 << 32) - 1;
6938 else
6939 sign_bits = 0;
6940
6941 /* If we don't know that we have a 64-bit type,
6942 do two separate stores. */
6943 if (bfd_big_endian (input_bfd))
6944 {
6945 /* Store the sign-bits (which are most significant)
6946 first. */
6947 low_bits = sign_bits;
6948 high_bits = addend;
6949 }
6950 else
6951 {
6952 low_bits = addend;
6953 high_bits = sign_bits;
6954 }
6955 bfd_put_32 (input_bfd, low_bits,
6956 contents + rel->r_offset);
6957 bfd_put_32 (input_bfd, high_bits,
6958 contents + rel->r_offset + 4);
6959 continue;
6960 }
6961
6962 if (!mips_elf_perform_relocation (info, howto, rel, addend,
6963 input_bfd, input_section,
6964 contents, false))
6965 return false;
6966 }
6967
6968 /* Go on to the next relocation. */
6969 continue;
6970 }
6971
6972 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6973 relocations for the same offset. In that case we are
6974 supposed to treat the output of each relocation as the addend
6975 for the next. */
6976 if (rel + 1 < relend
6977 && rel->r_offset == rel[1].r_offset
6978 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
6979 use_saved_addend_p = true;
6980 else
6981 use_saved_addend_p = false;
6982
6983 /* Figure out what value we are supposed to relocate. */
6984 switch (mips_elf_calculate_relocation (output_bfd,
6985 input_bfd,
6986 input_section,
6987 info,
6988 rel,
6989 addend,
6990 howto,
6991 local_syms,
6992 local_sections,
6993 &value,
6994 &name,
6995 &require_jalx))
6996 {
6997 case bfd_reloc_continue:
6998 /* There's nothing to do. */
6999 continue;
7000
7001 case bfd_reloc_undefined:
7002 /* mips_elf_calculate_relocation already called the
7003 undefined_symbol callback. There's no real point in
7004 trying to perform the relocation at this point, so we
7005 just skip ahead to the next relocation. */
7006 continue;
7007
7008 case bfd_reloc_notsupported:
7009 abort ();
7010 break;
7011
7012 case bfd_reloc_overflow:
7013 if (use_saved_addend_p)
7014 /* Ignore overflow until we reach the last relocation for
7015 a given location. */
7016 ;
7017 else
7018 {
7019 BFD_ASSERT (name != NULL);
7020 if (! ((*info->callbacks->reloc_overflow)
7021 (info, name, howto->name, (bfd_vma) 0,
7022 input_bfd, input_section, rel->r_offset)))
7023 return false;
7024 }
7025 break;
7026
7027 case bfd_reloc_ok:
7028 break;
7029
7030 default:
7031 abort ();
7032 break;
7033 }
7034
7035 /* If we've got another relocation for the address, keep going
7036 until we reach the last one. */
7037 if (use_saved_addend_p)
7038 {
7039 addend = value;
7040 continue;
7041 }
7042
7043 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7044 /* See the comment above about using R_MIPS_64 in the 32-bit
7045 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7046 that calculated the right value. Now, however, we
7047 sign-extend the 32-bit result to 64-bits, and store it as a
7048 64-bit value. We are especially generous here in that we
7049 go to extreme lengths to support this usage on systems with
7050 only a 32-bit VMA. */
7051 {
7052 bfd_vma sign_bits;
7053 bfd_vma low_bits;
7054 bfd_vma high_bits;
7055
7056 if (value & ((bfd_vma) 1 << 31))
7057 sign_bits = ((bfd_vma) 1 << 32) - 1;
7058 else
7059 sign_bits = 0;
7060
7061 /* If we don't know that we have a 64-bit type,
7062 do two separate stores. */
7063 if (bfd_big_endian (input_bfd))
7064 {
7065 /* Undo what we did above. */
7066 rel->r_offset -= 4;
7067 /* Store the sign-bits (which are most significant)
7068 first. */
7069 low_bits = sign_bits;
7070 high_bits = value;
7071 }
7072 else
7073 {
7074 low_bits = value;
7075 high_bits = sign_bits;
7076 }
7077 bfd_put_32 (input_bfd, low_bits,
7078 contents + rel->r_offset);
7079 bfd_put_32 (input_bfd, high_bits,
7080 contents + rel->r_offset + 4);
7081 continue;
7082 }
7083
7084 /* Actually perform the relocation. */
7085 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
7086 input_section, contents,
7087 require_jalx))
7088 return false;
7089 }
7090
7091 return true;
7092 }
7093
7094 /* This hook function is called before the linker writes out a global
7095 symbol. We mark symbols as small common if appropriate. This is
7096 also where we undo the increment of the value for a mips16 symbol. */
7097
7098 boolean
7099 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
7100 bfd *abfd ATTRIBUTE_UNUSED;
7101 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7102 const char *name ATTRIBUTE_UNUSED;
7103 Elf_Internal_Sym *sym;
7104 asection *input_sec;
7105 {
7106 /* If we see a common symbol, which implies a relocatable link, then
7107 if a symbol was small common in an input file, mark it as small
7108 common in the output file. */
7109 if (sym->st_shndx == SHN_COMMON
7110 && strcmp (input_sec->name, ".scommon") == 0)
7111 sym->st_shndx = SHN_MIPS_SCOMMON;
7112
7113 if (sym->st_other == STO_MIPS16
7114 && (sym->st_value & 1) != 0)
7115 --sym->st_value;
7116
7117 return true;
7118 }
7119 \f
7120 /* Functions for the dynamic linker. */
7121
7122 /* The name of the dynamic interpreter. This is put in the .interp
7123 section. */
7124
7125 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7126 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7127 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7128 : "/usr/lib/libc.so.1")
7129
7130 /* Create dynamic sections when linking against a dynamic object. */
7131
7132 boolean
7133 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7134 bfd *abfd;
7135 struct bfd_link_info *info;
7136 {
7137 struct elf_link_hash_entry *h;
7138 flagword flags;
7139 register asection *s;
7140 const char * const *namep;
7141
7142 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7143 | SEC_LINKER_CREATED | SEC_READONLY);
7144
7145 /* Mips ABI requests the .dynamic section to be read only. */
7146 s = bfd_get_section_by_name (abfd, ".dynamic");
7147 if (s != NULL)
7148 {
7149 if (! bfd_set_section_flags (abfd, s, flags))
7150 return false;
7151 }
7152
7153 /* We need to create .got section. */
7154 if (! mips_elf_create_got_section (abfd, info))
7155 return false;
7156
7157 /* Create the .msym section on IRIX6. It is used by the dynamic
7158 linker to speed up dynamic relocations, and to avoid computing
7159 the ELF hash for symbols. */
7160 if (IRIX_COMPAT (abfd) == ict_irix6
7161 && !mips_elf_create_msym_section (abfd))
7162 return false;
7163
7164 /* Create .stub section. */
7165 if (bfd_get_section_by_name (abfd,
7166 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7167 {
7168 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7169 if (s == NULL
7170 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7171 || ! bfd_set_section_alignment (abfd, s,
7172 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7173 return false;
7174 }
7175
7176 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7177 && !info->shared
7178 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7179 {
7180 s = bfd_make_section (abfd, ".rld_map");
7181 if (s == NULL
7182 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
7183 || ! bfd_set_section_alignment (abfd, s,
7184 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7185 return false;
7186 }
7187
7188 /* On IRIX5, we adjust add some additional symbols and change the
7189 alignments of several sections. There is no ABI documentation
7190 indicating that this is necessary on IRIX6, nor any evidence that
7191 the linker takes such action. */
7192 if (IRIX_COMPAT (abfd) == ict_irix5)
7193 {
7194 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7195 {
7196 h = NULL;
7197 if (! (_bfd_generic_link_add_one_symbol
7198 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7199 (bfd_vma) 0, (const char *) NULL, false,
7200 get_elf_backend_data (abfd)->collect,
7201 (struct bfd_link_hash_entry **) &h)))
7202 return false;
7203 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7204 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7205 h->type = STT_SECTION;
7206
7207 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7208 return false;
7209 }
7210
7211 /* We need to create a .compact_rel section. */
7212 if (SGI_COMPAT (abfd))
7213 {
7214 if (!mips_elf_create_compact_rel_section (abfd, info))
7215 return false;
7216 }
7217
7218 /* Change aligments of some sections. */
7219 s = bfd_get_section_by_name (abfd, ".hash");
7220 if (s != NULL)
7221 bfd_set_section_alignment (abfd, s, 4);
7222 s = bfd_get_section_by_name (abfd, ".dynsym");
7223 if (s != NULL)
7224 bfd_set_section_alignment (abfd, s, 4);
7225 s = bfd_get_section_by_name (abfd, ".dynstr");
7226 if (s != NULL)
7227 bfd_set_section_alignment (abfd, s, 4);
7228 s = bfd_get_section_by_name (abfd, ".reginfo");
7229 if (s != NULL)
7230 bfd_set_section_alignment (abfd, s, 4);
7231 s = bfd_get_section_by_name (abfd, ".dynamic");
7232 if (s != NULL)
7233 bfd_set_section_alignment (abfd, s, 4);
7234 }
7235
7236 if (!info->shared)
7237 {
7238 h = NULL;
7239 if (SGI_COMPAT (abfd))
7240 {
7241 if (!(_bfd_generic_link_add_one_symbol
7242 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7243 (bfd_vma) 0, (const char *) NULL, false,
7244 get_elf_backend_data (abfd)->collect,
7245 (struct bfd_link_hash_entry **) &h)))
7246 return false;
7247 }
7248 else
7249 {
7250 /* For normal mips it is _DYNAMIC_LINKING. */
7251 if (!(_bfd_generic_link_add_one_symbol
7252 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7253 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7254 get_elf_backend_data (abfd)->collect,
7255 (struct bfd_link_hash_entry **) &h)))
7256 return false;
7257 }
7258 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7259 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7260 h->type = STT_SECTION;
7261
7262 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7263 return false;
7264
7265 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7266 {
7267 /* __rld_map is a four byte word located in the .data section
7268 and is filled in by the rtld to contain a pointer to
7269 the _r_debug structure. Its symbol value will be set in
7270 mips_elf_finish_dynamic_symbol. */
7271 s = bfd_get_section_by_name (abfd, ".rld_map");
7272 BFD_ASSERT (s != NULL);
7273
7274 h = NULL;
7275 if (SGI_COMPAT (abfd))
7276 {
7277 if (!(_bfd_generic_link_add_one_symbol
7278 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7279 (bfd_vma) 0, (const char *) NULL, false,
7280 get_elf_backend_data (abfd)->collect,
7281 (struct bfd_link_hash_entry **) &h)))
7282 return false;
7283 }
7284 else
7285 {
7286 /* For normal mips the symbol is __RLD_MAP. */
7287 if (!(_bfd_generic_link_add_one_symbol
7288 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7289 (bfd_vma) 0, (const char *) NULL, false,
7290 get_elf_backend_data (abfd)->collect,
7291 (struct bfd_link_hash_entry **) &h)))
7292 return false;
7293 }
7294 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7295 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7296 h->type = STT_OBJECT;
7297
7298 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7299 return false;
7300 }
7301 }
7302
7303 return true;
7304 }
7305
7306 /* Create the .compact_rel section. */
7307
7308 static boolean
7309 mips_elf_create_compact_rel_section (abfd, info)
7310 bfd *abfd;
7311 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7312 {
7313 flagword flags;
7314 register asection *s;
7315
7316 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7317 {
7318 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7319 | SEC_READONLY);
7320
7321 s = bfd_make_section (abfd, ".compact_rel");
7322 if (s == NULL
7323 || ! bfd_set_section_flags (abfd, s, flags)
7324 || ! bfd_set_section_alignment (abfd, s,
7325 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7326 return false;
7327
7328 s->_raw_size = sizeof (Elf32_External_compact_rel);
7329 }
7330
7331 return true;
7332 }
7333
7334 /* Create the .got section to hold the global offset table. */
7335
7336 static boolean
7337 mips_elf_create_got_section (abfd, info)
7338 bfd *abfd;
7339 struct bfd_link_info *info;
7340 {
7341 flagword flags;
7342 register asection *s;
7343 struct elf_link_hash_entry *h;
7344 struct mips_got_info *g;
7345
7346 /* This function may be called more than once. */
7347 if (mips_elf_got_section (abfd))
7348 return true;
7349
7350 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7351 | SEC_LINKER_CREATED);
7352
7353 s = bfd_make_section (abfd, ".got");
7354 if (s == NULL
7355 || ! bfd_set_section_flags (abfd, s, flags)
7356 || ! bfd_set_section_alignment (abfd, s, 4))
7357 return false;
7358
7359 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7360 linker script because we don't want to define the symbol if we
7361 are not creating a global offset table. */
7362 h = NULL;
7363 if (! (_bfd_generic_link_add_one_symbol
7364 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7365 (bfd_vma) 0, (const char *) NULL, false,
7366 get_elf_backend_data (abfd)->collect,
7367 (struct bfd_link_hash_entry **) &h)))
7368 return false;
7369 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7370 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7371 h->type = STT_OBJECT;
7372
7373 if (info->shared
7374 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7375 return false;
7376
7377 /* The first several global offset table entries are reserved. */
7378 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7379
7380 g = (struct mips_got_info *) bfd_alloc (abfd,
7381 sizeof (struct mips_got_info));
7382 if (g == NULL)
7383 return false;
7384 g->global_gotsym = NULL;
7385 g->local_gotno = MIPS_RESERVED_GOTNO;
7386 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7387 if (elf_section_data (s) == NULL)
7388 {
7389 s->used_by_bfd =
7390 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7391 if (elf_section_data (s) == NULL)
7392 return false;
7393 }
7394 elf_section_data (s)->tdata = (PTR) g;
7395 elf_section_data (s)->this_hdr.sh_flags
7396 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7397
7398 return true;
7399 }
7400
7401 /* Returns the .msym section for ABFD, creating it if it does not
7402 already exist. Returns NULL to indicate error. */
7403
7404 static asection *
7405 mips_elf_create_msym_section (abfd)
7406 bfd *abfd;
7407 {
7408 asection *s;
7409
7410 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7411 if (!s)
7412 {
7413 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7414 if (!s
7415 || !bfd_set_section_flags (abfd, s,
7416 SEC_ALLOC
7417 | SEC_LOAD
7418 | SEC_HAS_CONTENTS
7419 | SEC_LINKER_CREATED
7420 | SEC_READONLY)
7421 || !bfd_set_section_alignment (abfd, s,
7422 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7423 return NULL;
7424 }
7425
7426 return s;
7427 }
7428
7429 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7430
7431 static void
7432 mips_elf_allocate_dynamic_relocations (abfd, n)
7433 bfd *abfd;
7434 unsigned int n;
7435 {
7436 asection *s;
7437
7438 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7439 BFD_ASSERT (s != NULL);
7440
7441 if (s->_raw_size == 0)
7442 {
7443 /* Make room for a null element. */
7444 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7445 ++s->reloc_count;
7446 }
7447 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7448 }
7449
7450 /* Look through the relocs for a section during the first phase, and
7451 allocate space in the global offset table. */
7452
7453 boolean
7454 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
7455 bfd *abfd;
7456 struct bfd_link_info *info;
7457 asection *sec;
7458 const Elf_Internal_Rela *relocs;
7459 {
7460 const char *name;
7461 bfd *dynobj;
7462 Elf_Internal_Shdr *symtab_hdr;
7463 struct elf_link_hash_entry **sym_hashes;
7464 struct mips_got_info *g;
7465 size_t extsymoff;
7466 const Elf_Internal_Rela *rel;
7467 const Elf_Internal_Rela *rel_end;
7468 asection *sgot;
7469 asection *sreloc;
7470 struct elf_backend_data *bed;
7471
7472 if (info->relocateable)
7473 return true;
7474
7475 dynobj = elf_hash_table (info)->dynobj;
7476 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7477 sym_hashes = elf_sym_hashes (abfd);
7478 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7479
7480 /* Check for the mips16 stub sections. */
7481
7482 name = bfd_get_section_name (abfd, sec);
7483 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7484 {
7485 unsigned long r_symndx;
7486
7487 /* Look at the relocation information to figure out which symbol
7488 this is for. */
7489
7490 r_symndx = ELF32_R_SYM (relocs->r_info);
7491
7492 if (r_symndx < extsymoff
7493 || sym_hashes[r_symndx - extsymoff] == NULL)
7494 {
7495 asection *o;
7496
7497 /* This stub is for a local symbol. This stub will only be
7498 needed if there is some relocation in this BFD, other
7499 than a 16 bit function call, which refers to this symbol. */
7500 for (o = abfd->sections; o != NULL; o = o->next)
7501 {
7502 Elf_Internal_Rela *sec_relocs;
7503 const Elf_Internal_Rela *r, *rend;
7504
7505 /* We can ignore stub sections when looking for relocs. */
7506 if ((o->flags & SEC_RELOC) == 0
7507 || o->reloc_count == 0
7508 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7509 sizeof FN_STUB - 1) == 0
7510 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7511 sizeof CALL_STUB - 1) == 0
7512 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7513 sizeof CALL_FP_STUB - 1) == 0)
7514 continue;
7515
7516 sec_relocs = (_bfd_elf32_link_read_relocs
7517 (abfd, o, (PTR) NULL,
7518 (Elf_Internal_Rela *) NULL,
7519 info->keep_memory));
7520 if (sec_relocs == NULL)
7521 return false;
7522
7523 rend = sec_relocs + o->reloc_count;
7524 for (r = sec_relocs; r < rend; r++)
7525 if (ELF32_R_SYM (r->r_info) == r_symndx
7526 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7527 break;
7528
7529 if (! info->keep_memory)
7530 free (sec_relocs);
7531
7532 if (r < rend)
7533 break;
7534 }
7535
7536 if (o == NULL)
7537 {
7538 /* There is no non-call reloc for this stub, so we do
7539 not need it. Since this function is called before
7540 the linker maps input sections to output sections, we
7541 can easily discard it by setting the SEC_EXCLUDE
7542 flag. */
7543 sec->flags |= SEC_EXCLUDE;
7544 return true;
7545 }
7546
7547 /* Record this stub in an array of local symbol stubs for
7548 this BFD. */
7549 if (elf_tdata (abfd)->local_stubs == NULL)
7550 {
7551 unsigned long symcount;
7552 asection **n;
7553
7554 if (elf_bad_symtab (abfd))
7555 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
7556 else
7557 symcount = symtab_hdr->sh_info;
7558 n = (asection **) bfd_zalloc (abfd,
7559 symcount * sizeof (asection *));
7560 if (n == NULL)
7561 return false;
7562 elf_tdata (abfd)->local_stubs = n;
7563 }
7564
7565 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7566
7567 /* We don't need to set mips16_stubs_seen in this case.
7568 That flag is used to see whether we need to look through
7569 the global symbol table for stubs. We don't need to set
7570 it here, because we just have a local stub. */
7571 }
7572 else
7573 {
7574 struct mips_elf_link_hash_entry *h;
7575
7576 h = ((struct mips_elf_link_hash_entry *)
7577 sym_hashes[r_symndx - extsymoff]);
7578
7579 /* H is the symbol this stub is for. */
7580
7581 h->fn_stub = sec;
7582 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7583 }
7584 }
7585 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7586 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7587 {
7588 unsigned long r_symndx;
7589 struct mips_elf_link_hash_entry *h;
7590 asection **loc;
7591
7592 /* Look at the relocation information to figure out which symbol
7593 this is for. */
7594
7595 r_symndx = ELF32_R_SYM (relocs->r_info);
7596
7597 if (r_symndx < extsymoff
7598 || sym_hashes[r_symndx - extsymoff] == NULL)
7599 {
7600 /* This stub was actually built for a static symbol defined
7601 in the same file. We assume that all static symbols in
7602 mips16 code are themselves mips16, so we can simply
7603 discard this stub. Since this function is called before
7604 the linker maps input sections to output sections, we can
7605 easily discard it by setting the SEC_EXCLUDE flag. */
7606 sec->flags |= SEC_EXCLUDE;
7607 return true;
7608 }
7609
7610 h = ((struct mips_elf_link_hash_entry *)
7611 sym_hashes[r_symndx - extsymoff]);
7612
7613 /* H is the symbol this stub is for. */
7614
7615 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7616 loc = &h->call_fp_stub;
7617 else
7618 loc = &h->call_stub;
7619
7620 /* If we already have an appropriate stub for this function, we
7621 don't need another one, so we can discard this one. Since
7622 this function is called before the linker maps input sections
7623 to output sections, we can easily discard it by setting the
7624 SEC_EXCLUDE flag. We can also discard this section if we
7625 happen to already know that this is a mips16 function; it is
7626 not necessary to check this here, as it is checked later, but
7627 it is slightly faster to check now. */
7628 if (*loc != NULL || h->root.other == STO_MIPS16)
7629 {
7630 sec->flags |= SEC_EXCLUDE;
7631 return true;
7632 }
7633
7634 *loc = sec;
7635 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7636 }
7637
7638 if (dynobj == NULL)
7639 {
7640 sgot = NULL;
7641 g = NULL;
7642 }
7643 else
7644 {
7645 sgot = mips_elf_got_section (dynobj);
7646 if (sgot == NULL)
7647 g = NULL;
7648 else
7649 {
7650 BFD_ASSERT (elf_section_data (sgot) != NULL);
7651 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7652 BFD_ASSERT (g != NULL);
7653 }
7654 }
7655
7656 sreloc = NULL;
7657 bed = get_elf_backend_data (abfd);
7658 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7659 for (rel = relocs; rel < rel_end; ++rel)
7660 {
7661 unsigned long r_symndx;
7662 int r_type;
7663 struct elf_link_hash_entry *h;
7664
7665 r_symndx = ELF32_R_SYM (rel->r_info);
7666 r_type = ELF32_R_TYPE (rel->r_info);
7667
7668 if (r_symndx < extsymoff)
7669 h = NULL;
7670 else if (r_symndx >= extsymoff + (symtab_hdr->sh_size / symtab_hdr->sh_entsize))
7671 {
7672 (*_bfd_error_handler)
7673 (_("Malformed reloc detected for section %s"), name);
7674 bfd_set_error (bfd_error_bad_value);
7675 return false;
7676 }
7677 else
7678 {
7679 h = sym_hashes[r_symndx - extsymoff];
7680
7681 /* This may be an indirect symbol created because of a version. */
7682 if (h != NULL)
7683 {
7684 while (h->root.type == bfd_link_hash_indirect)
7685 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7686 }
7687 }
7688
7689 /* Some relocs require a global offset table. */
7690 if (dynobj == NULL || sgot == NULL)
7691 {
7692 switch (r_type)
7693 {
7694 case R_MIPS_GOT16:
7695 case R_MIPS_CALL16:
7696 case R_MIPS_CALL_HI16:
7697 case R_MIPS_CALL_LO16:
7698 case R_MIPS_GOT_HI16:
7699 case R_MIPS_GOT_LO16:
7700 case R_MIPS_GOT_PAGE:
7701 case R_MIPS_GOT_OFST:
7702 case R_MIPS_GOT_DISP:
7703 if (dynobj == NULL)
7704 elf_hash_table (info)->dynobj = dynobj = abfd;
7705 if (! mips_elf_create_got_section (dynobj, info))
7706 return false;
7707 g = mips_elf_got_info (dynobj, &sgot);
7708 break;
7709
7710 case R_MIPS_32:
7711 case R_MIPS_REL32:
7712 case R_MIPS_64:
7713 if (dynobj == NULL
7714 && (info->shared || h != NULL)
7715 && (sec->flags & SEC_ALLOC) != 0)
7716 elf_hash_table (info)->dynobj = dynobj = abfd;
7717 break;
7718
7719 default:
7720 break;
7721 }
7722 }
7723
7724 if (!h && (r_type == R_MIPS_CALL_LO16
7725 || r_type == R_MIPS_GOT_LO16
7726 || r_type == R_MIPS_GOT_DISP))
7727 {
7728 /* We may need a local GOT entry for this relocation. We
7729 don't count R_MIPS_GOT_PAGE because we can estimate the
7730 maximum number of pages needed by looking at the size of
7731 the segment. Similar comments apply to R_MIPS_GOT16. We
7732 don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because
7733 these are always followed by an R_MIPS_GOT_LO16 or
7734 R_MIPS_CALL_LO16.
7735
7736 This estimation is very conservative since we can merge
7737 duplicate entries in the GOT. In order to be less
7738 conservative, we could actually build the GOT here,
7739 rather than in relocate_section. */
7740 g->local_gotno++;
7741 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7742 }
7743
7744 switch (r_type)
7745 {
7746 case R_MIPS_CALL16:
7747 if (h == NULL)
7748 {
7749 (*_bfd_error_handler)
7750 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7751 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7752 bfd_set_error (bfd_error_bad_value);
7753 return false;
7754 }
7755 /* Fall through. */
7756
7757 case R_MIPS_CALL_HI16:
7758 case R_MIPS_CALL_LO16:
7759 if (h != NULL)
7760 {
7761 /* This symbol requires a global offset table entry. */
7762 if (!mips_elf_record_global_got_symbol (h, info, g))
7763 return false;
7764
7765 /* We need a stub, not a plt entry for the undefined
7766 function. But we record it as if it needs plt. See
7767 elf_adjust_dynamic_symbol in elflink.h. */
7768 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7769 h->type = STT_FUNC;
7770 }
7771 break;
7772
7773 case R_MIPS_GOT16:
7774 case R_MIPS_GOT_HI16:
7775 case R_MIPS_GOT_LO16:
7776 case R_MIPS_GOT_DISP:
7777 /* This symbol requires a global offset table entry. */
7778 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7779 return false;
7780 break;
7781
7782 case R_MIPS_32:
7783 case R_MIPS_REL32:
7784 case R_MIPS_64:
7785 if ((info->shared || h != NULL)
7786 && (sec->flags & SEC_ALLOC) != 0)
7787 {
7788 if (sreloc == NULL)
7789 {
7790 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
7791
7792 sreloc = bfd_get_section_by_name (dynobj, name);
7793 if (sreloc == NULL)
7794 {
7795 sreloc = bfd_make_section (dynobj, name);
7796 if (sreloc == NULL
7797 || ! bfd_set_section_flags (dynobj, sreloc,
7798 (SEC_ALLOC
7799 | SEC_LOAD
7800 | SEC_HAS_CONTENTS
7801 | SEC_IN_MEMORY
7802 | SEC_LINKER_CREATED
7803 | SEC_READONLY))
7804 || ! bfd_set_section_alignment (dynobj, sreloc,
7805 4))
7806 return false;
7807 }
7808 }
7809 if (info->shared)
7810 /* When creating a shared object, we must copy these
7811 reloc types into the output file as R_MIPS_REL32
7812 relocs. We make room for this reloc in the
7813 .rel.dyn reloc section. */
7814 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7815 else
7816 {
7817 struct mips_elf_link_hash_entry *hmips;
7818
7819 /* We only need to copy this reloc if the symbol is
7820 defined in a dynamic object. */
7821 hmips = (struct mips_elf_link_hash_entry *) h;
7822 ++hmips->possibly_dynamic_relocs;
7823 }
7824
7825 /* Even though we don't directly need a GOT entry for
7826 this symbol, a symbol must have a dynamic symbol
7827 table index greater that DT_MIPS_GOTSYM if there are
7828 dynamic relocations against it. */
7829 if (h != NULL
7830 && !mips_elf_record_global_got_symbol (h, info, g))
7831 return false;
7832 }
7833
7834 if (SGI_COMPAT (abfd))
7835 mips_elf_hash_table (info)->compact_rel_size +=
7836 sizeof (Elf32_External_crinfo);
7837 break;
7838
7839 case R_MIPS_26:
7840 case R_MIPS_GPREL16:
7841 case R_MIPS_LITERAL:
7842 case R_MIPS_GPREL32:
7843 if (SGI_COMPAT (abfd))
7844 mips_elf_hash_table (info)->compact_rel_size +=
7845 sizeof (Elf32_External_crinfo);
7846 break;
7847
7848 /* This relocation describes the C++ object vtable hierarchy.
7849 Reconstruct it for later use during GC. */
7850 case R_MIPS_GNU_VTINHERIT:
7851 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7852 return false;
7853 break;
7854
7855 /* This relocation describes which C++ vtable entries are actually
7856 used. Record for later use during GC. */
7857 case R_MIPS_GNU_VTENTRY:
7858 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7859 return false;
7860 break;
7861
7862 default:
7863 break;
7864 }
7865
7866 /* If this reloc is not a 16 bit call, and it has a global
7867 symbol, then we will need the fn_stub if there is one.
7868 References from a stub section do not count. */
7869 if (h != NULL
7870 && r_type != R_MIPS16_26
7871 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7872 sizeof FN_STUB - 1) != 0
7873 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7874 sizeof CALL_STUB - 1) != 0
7875 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7876 sizeof CALL_FP_STUB - 1) != 0)
7877 {
7878 struct mips_elf_link_hash_entry *mh;
7879
7880 mh = (struct mips_elf_link_hash_entry *) h;
7881 mh->need_fn_stub = true;
7882 }
7883 }
7884
7885 return true;
7886 }
7887
7888 /* Return the section that should be marked against GC for a given
7889 relocation. */
7890
7891 asection *
7892 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
7893 bfd *abfd;
7894 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7895 Elf_Internal_Rela *rel;
7896 struct elf_link_hash_entry *h;
7897 Elf_Internal_Sym *sym;
7898 {
7899 /* ??? Do mips16 stub sections need to be handled special? */
7900
7901 if (h != NULL)
7902 {
7903 switch (ELF32_R_TYPE (rel->r_info))
7904 {
7905 case R_MIPS_GNU_VTINHERIT:
7906 case R_MIPS_GNU_VTENTRY:
7907 break;
7908
7909 default:
7910 switch (h->root.type)
7911 {
7912 case bfd_link_hash_defined:
7913 case bfd_link_hash_defweak:
7914 return h->root.u.def.section;
7915
7916 case bfd_link_hash_common:
7917 return h->root.u.c.p->section;
7918
7919 default:
7920 break;
7921 }
7922 }
7923 }
7924 else
7925 {
7926 if (!(elf_bad_symtab (abfd)
7927 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7928 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7929 && sym->st_shndx != SHN_COMMON))
7930 {
7931 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7932 }
7933 }
7934
7935 return NULL;
7936 }
7937
7938 /* Update the got entry reference counts for the section being removed. */
7939
7940 boolean
7941 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7942 bfd *abfd ATTRIBUTE_UNUSED;
7943 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7944 asection *sec ATTRIBUTE_UNUSED;
7945 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7946 {
7947 #if 0
7948 Elf_Internal_Shdr *symtab_hdr;
7949 struct elf_link_hash_entry **sym_hashes;
7950 bfd_signed_vma *local_got_refcounts;
7951 const Elf_Internal_Rela *rel, *relend;
7952 unsigned long r_symndx;
7953 struct elf_link_hash_entry *h;
7954
7955 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7956 sym_hashes = elf_sym_hashes (abfd);
7957 local_got_refcounts = elf_local_got_refcounts (abfd);
7958
7959 relend = relocs + sec->reloc_count;
7960 for (rel = relocs; rel < relend; rel++)
7961 switch (ELF32_R_TYPE (rel->r_info))
7962 {
7963 case R_MIPS_GOT16:
7964 case R_MIPS_CALL16:
7965 case R_MIPS_CALL_HI16:
7966 case R_MIPS_CALL_LO16:
7967 case R_MIPS_GOT_HI16:
7968 case R_MIPS_GOT_LO16:
7969 /* ??? It would seem that the existing MIPS code does no sort
7970 of reference counting or whatnot on its GOT and PLT entries,
7971 so it is not possible to garbage collect them at this time. */
7972 break;
7973
7974 default:
7975 break;
7976 }
7977 #endif
7978
7979 return true;
7980 }
7981
7982 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7983 hiding the old indirect symbol. Process additional relocation
7984 information. */
7985
7986 void
7987 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
7988 struct elf_link_hash_entry *dir, *ind;
7989 {
7990 struct mips_elf_link_hash_entry *dirmips, *indmips;
7991
7992 _bfd_elf_link_hash_copy_indirect (dir, ind);
7993
7994 dirmips = (struct mips_elf_link_hash_entry *) dir;
7995 indmips = (struct mips_elf_link_hash_entry *) ind;
7996 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7997 if (dirmips->min_dyn_reloc_index == 0
7998 || (indmips->min_dyn_reloc_index != 0
7999 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
8000 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
8001 }
8002
8003 /* Adjust a symbol defined by a dynamic object and referenced by a
8004 regular object. The current definition is in some section of the
8005 dynamic object, but we're not including those sections. We have to
8006 change the definition to something the rest of the link can
8007 understand. */
8008
8009 boolean
8010 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
8011 struct bfd_link_info *info;
8012 struct elf_link_hash_entry *h;
8013 {
8014 bfd *dynobj;
8015 struct mips_elf_link_hash_entry *hmips;
8016 asection *s;
8017
8018 dynobj = elf_hash_table (info)->dynobj;
8019
8020 /* Make sure we know what is going on here. */
8021 BFD_ASSERT (dynobj != NULL
8022 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
8023 || h->weakdef != NULL
8024 || ((h->elf_link_hash_flags
8025 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
8026 && (h->elf_link_hash_flags
8027 & ELF_LINK_HASH_REF_REGULAR) != 0
8028 && (h->elf_link_hash_flags
8029 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
8030
8031 /* If this symbol is defined in a dynamic object, we need to copy
8032 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8033 file. */
8034 hmips = (struct mips_elf_link_hash_entry *) h;
8035 if (! info->relocateable
8036 && hmips->possibly_dynamic_relocs != 0
8037 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8038 mips_elf_allocate_dynamic_relocations (dynobj,
8039 hmips->possibly_dynamic_relocs);
8040
8041 /* For a function, create a stub, if needed. */
8042 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
8043 {
8044 if (! elf_hash_table (info)->dynamic_sections_created)
8045 return true;
8046
8047 /* If this symbol is not defined in a regular file, then set
8048 the symbol to the stub location. This is required to make
8049 function pointers compare as equal between the normal
8050 executable and the shared library. */
8051 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8052 {
8053 /* We need .stub section. */
8054 s = bfd_get_section_by_name (dynobj,
8055 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8056 BFD_ASSERT (s != NULL);
8057
8058 h->root.u.def.section = s;
8059 h->root.u.def.value = s->_raw_size;
8060
8061 /* XXX Write this stub address somewhere. */
8062 h->plt.offset = s->_raw_size;
8063
8064 /* Make room for this stub code. */
8065 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8066
8067 /* The last half word of the stub will be filled with the index
8068 of this symbol in .dynsym section. */
8069 return true;
8070 }
8071 }
8072 else if ((h->type == STT_FUNC)
8073 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
8074 {
8075 /* This will set the entry for this symbol in the GOT to 0, and
8076 the dynamic linker will take care of this. */
8077 h->root.u.def.value = 0;
8078 return true;
8079 }
8080
8081 /* If this is a weak symbol, and there is a real definition, the
8082 processor independent code will have arranged for us to see the
8083 real definition first, and we can just use the same value. */
8084 if (h->weakdef != NULL)
8085 {
8086 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8087 || h->weakdef->root.type == bfd_link_hash_defweak);
8088 h->root.u.def.section = h->weakdef->root.u.def.section;
8089 h->root.u.def.value = h->weakdef->root.u.def.value;
8090 return true;
8091 }
8092
8093 /* This is a reference to a symbol defined by a dynamic object which
8094 is not a function. */
8095
8096 return true;
8097 }
8098
8099 /* This function is called after all the input files have been read,
8100 and the input sections have been assigned to output sections. We
8101 check for any mips16 stub sections that we can discard. */
8102
8103 static boolean mips_elf_check_mips16_stubs
8104 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8105
8106 boolean
8107 _bfd_mips_elf_always_size_sections (output_bfd, info)
8108 bfd *output_bfd;
8109 struct bfd_link_info *info;
8110 {
8111 asection *ri;
8112
8113 /* The .reginfo section has a fixed size. */
8114 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8115 if (ri != NULL)
8116 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8117
8118 if (info->relocateable
8119 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8120 return true;
8121
8122 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8123 mips_elf_check_mips16_stubs,
8124 (PTR) NULL);
8125
8126 return true;
8127 }
8128
8129 /* Check the mips16 stubs for a particular symbol, and see if we can
8130 discard them. */
8131
8132 static boolean
8133 mips_elf_check_mips16_stubs (h, data)
8134 struct mips_elf_link_hash_entry *h;
8135 PTR data ATTRIBUTE_UNUSED;
8136 {
8137 if (h->fn_stub != NULL
8138 && ! h->need_fn_stub)
8139 {
8140 /* We don't need the fn_stub; the only references to this symbol
8141 are 16 bit calls. Clobber the size to 0 to prevent it from
8142 being included in the link. */
8143 h->fn_stub->_raw_size = 0;
8144 h->fn_stub->_cooked_size = 0;
8145 h->fn_stub->flags &= ~SEC_RELOC;
8146 h->fn_stub->reloc_count = 0;
8147 h->fn_stub->flags |= SEC_EXCLUDE;
8148 }
8149
8150 if (h->call_stub != NULL
8151 && h->root.other == STO_MIPS16)
8152 {
8153 /* We don't need the call_stub; this is a 16 bit function, so
8154 calls from other 16 bit functions are OK. Clobber the size
8155 to 0 to prevent it from being included in the link. */
8156 h->call_stub->_raw_size = 0;
8157 h->call_stub->_cooked_size = 0;
8158 h->call_stub->flags &= ~SEC_RELOC;
8159 h->call_stub->reloc_count = 0;
8160 h->call_stub->flags |= SEC_EXCLUDE;
8161 }
8162
8163 if (h->call_fp_stub != NULL
8164 && h->root.other == STO_MIPS16)
8165 {
8166 /* We don't need the call_stub; this is a 16 bit function, so
8167 calls from other 16 bit functions are OK. Clobber the size
8168 to 0 to prevent it from being included in the link. */
8169 h->call_fp_stub->_raw_size = 0;
8170 h->call_fp_stub->_cooked_size = 0;
8171 h->call_fp_stub->flags &= ~SEC_RELOC;
8172 h->call_fp_stub->reloc_count = 0;
8173 h->call_fp_stub->flags |= SEC_EXCLUDE;
8174 }
8175
8176 return true;
8177 }
8178
8179 /* Set the sizes of the dynamic sections. */
8180
8181 boolean
8182 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8183 bfd *output_bfd;
8184 struct bfd_link_info *info;
8185 {
8186 bfd *dynobj;
8187 asection *s;
8188 boolean reltext;
8189 struct mips_got_info *g = NULL;
8190
8191 dynobj = elf_hash_table (info)->dynobj;
8192 BFD_ASSERT (dynobj != NULL);
8193
8194 if (elf_hash_table (info)->dynamic_sections_created)
8195 {
8196 /* Set the contents of the .interp section to the interpreter. */
8197 if (! info->shared)
8198 {
8199 s = bfd_get_section_by_name (dynobj, ".interp");
8200 BFD_ASSERT (s != NULL);
8201 s->_raw_size
8202 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8203 s->contents
8204 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8205 }
8206 }
8207
8208 /* The check_relocs and adjust_dynamic_symbol entry points have
8209 determined the sizes of the various dynamic sections. Allocate
8210 memory for them. */
8211 reltext = false;
8212 for (s = dynobj->sections; s != NULL; s = s->next)
8213 {
8214 const char *name;
8215 boolean strip;
8216
8217 /* It's OK to base decisions on the section name, because none
8218 of the dynobj section names depend upon the input files. */
8219 name = bfd_get_section_name (dynobj, s);
8220
8221 if ((s->flags & SEC_LINKER_CREATED) == 0)
8222 continue;
8223
8224 strip = false;
8225
8226 if (strncmp (name, ".rel", 4) == 0)
8227 {
8228 if (s->_raw_size == 0)
8229 {
8230 /* We only strip the section if the output section name
8231 has the same name. Otherwise, there might be several
8232 input sections for this output section. FIXME: This
8233 code is probably not needed these days anyhow, since
8234 the linker now does not create empty output sections. */
8235 if (s->output_section != NULL
8236 && strcmp (name,
8237 bfd_get_section_name (s->output_section->owner,
8238 s->output_section)) == 0)
8239 strip = true;
8240 }
8241 else
8242 {
8243 const char *outname;
8244 asection *target;
8245
8246 /* If this relocation section applies to a read only
8247 section, then we probably need a DT_TEXTREL entry.
8248 If the relocation section is .rel.dyn, we always
8249 assert a DT_TEXTREL entry rather than testing whether
8250 there exists a relocation to a read only section or
8251 not. */
8252 outname = bfd_get_section_name (output_bfd,
8253 s->output_section);
8254 target = bfd_get_section_by_name (output_bfd, outname + 4);
8255 if ((target != NULL
8256 && (target->flags & SEC_READONLY) != 0
8257 && (target->flags & SEC_ALLOC) != 0)
8258 || strcmp (outname,
8259 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8260 reltext = true;
8261
8262 /* We use the reloc_count field as a counter if we need
8263 to copy relocs into the output file. */
8264 if (strcmp (name,
8265 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8266 s->reloc_count = 0;
8267 }
8268 }
8269 else if (strncmp (name, ".got", 4) == 0)
8270 {
8271 int i;
8272 bfd_size_type loadable_size = 0;
8273 bfd_size_type local_gotno;
8274 struct _bfd *sub;
8275
8276 BFD_ASSERT (elf_section_data (s) != NULL);
8277 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8278 BFD_ASSERT (g != NULL);
8279
8280 /* Calculate the total loadable size of the output. That
8281 will give us the maximum number of GOT_PAGE entries
8282 required. */
8283 for (sub = info->input_bfds; sub; sub = sub->link_next)
8284 {
8285 asection *subsection;
8286
8287 for (subsection = sub->sections;
8288 subsection;
8289 subsection = subsection->next)
8290 {
8291 if ((subsection->flags & SEC_ALLOC) == 0)
8292 continue;
8293 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8294 }
8295 }
8296 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8297
8298 /* Assume there are two loadable segments consisting of
8299 contiguous sections. Is 5 enough? */
8300 local_gotno = (loadable_size >> 16) + 5;
8301 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8302 /* It's possible we will need GOT_PAGE entries as well as
8303 GOT16 entries. Often, these will be able to share GOT
8304 entries, but not always. */
8305 local_gotno *= 2;
8306
8307 g->local_gotno += local_gotno;
8308 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8309
8310 /* There has to be a global GOT entry for every symbol with
8311 a dynamic symbol table index of DT_MIPS_GOTSYM or
8312 higher. Therefore, it make sense to put those symbols
8313 that need GOT entries at the end of the symbol table. We
8314 do that here. */
8315 if (!mips_elf_sort_hash_table (info, 1))
8316 return false;
8317
8318 if (g->global_gotsym != NULL)
8319 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8320 else
8321 /* If there are no global symbols, or none requiring
8322 relocations, then GLOBAL_GOTSYM will be NULL. */
8323 i = 0;
8324 g->global_gotno = i;
8325 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8326 }
8327 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8328 {
8329 /* Irix rld assumes that the function stub isn't at the end
8330 of .text section. So put a dummy. XXX */
8331 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8332 }
8333 else if (! info->shared
8334 && ! mips_elf_hash_table (info)->use_rld_obj_head
8335 && strncmp (name, ".rld_map", 8) == 0)
8336 {
8337 /* We add a room for __rld_map. It will be filled in by the
8338 rtld to contain a pointer to the _r_debug structure. */
8339 s->_raw_size += 4;
8340 }
8341 else if (SGI_COMPAT (output_bfd)
8342 && strncmp (name, ".compact_rel", 12) == 0)
8343 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8344 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8345 == 0)
8346 s->_raw_size = (sizeof (Elf32_External_Msym)
8347 * (elf_hash_table (info)->dynsymcount
8348 + bfd_count_sections (output_bfd)));
8349 else if (strncmp (name, ".init", 5) != 0)
8350 {
8351 /* It's not one of our sections, so don't allocate space. */
8352 continue;
8353 }
8354
8355 if (strip)
8356 {
8357 _bfd_strip_section_from_output (info, s);
8358 continue;
8359 }
8360
8361 /* Allocate memory for the section contents. */
8362 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
8363 if (s->contents == NULL && s->_raw_size != 0)
8364 {
8365 bfd_set_error (bfd_error_no_memory);
8366 return false;
8367 }
8368 }
8369
8370 if (elf_hash_table (info)->dynamic_sections_created)
8371 {
8372 /* Add some entries to the .dynamic section. We fill in the
8373 values later, in elf_mips_finish_dynamic_sections, but we
8374 must add the entries now so that we get the correct size for
8375 the .dynamic section. The DT_DEBUG entry is filled in by the
8376 dynamic linker and used by the debugger. */
8377 if (! info->shared)
8378 {
8379 /* SGI object has the equivalence of DT_DEBUG in the
8380 DT_MIPS_RLD_MAP entry. */
8381 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8382 return false;
8383 if (!SGI_COMPAT (output_bfd))
8384 {
8385 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8386 return false;
8387 }
8388 }
8389 else
8390 {
8391 /* Shared libraries on traditional mips have DT_DEBUG. */
8392 if (!SGI_COMPAT (output_bfd))
8393 {
8394 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8395 return false;
8396 }
8397 }
8398 if (reltext && SGI_COMPAT (output_bfd))
8399 {
8400 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8401 return false;
8402 info->flags |= DF_TEXTREL;
8403 }
8404
8405 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8406 return false;
8407
8408 if (bfd_get_section_by_name (dynobj,
8409 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
8410 {
8411 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8412 return false;
8413
8414 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8415 return false;
8416
8417 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8418 return false;
8419 }
8420
8421 if (SGI_COMPAT (output_bfd))
8422 {
8423 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
8424 return false;
8425 }
8426
8427 if (SGI_COMPAT (output_bfd))
8428 {
8429 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
8430 return false;
8431 }
8432
8433 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8434 {
8435 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
8436 return false;
8437
8438 s = bfd_get_section_by_name (dynobj, ".liblist");
8439 BFD_ASSERT (s != NULL);
8440
8441 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
8442 return false;
8443 }
8444
8445 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8446 return false;
8447
8448 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8449 return false;
8450
8451 #if 0
8452 /* Time stamps in executable files are a bad idea. */
8453 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
8454 return false;
8455 #endif
8456
8457 #if 0 /* FIXME */
8458 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
8459 return false;
8460 #endif
8461
8462 #if 0 /* FIXME */
8463 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
8464 return false;
8465 #endif
8466
8467 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8468 return false;
8469
8470 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8471 return false;
8472
8473 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8474 return false;
8475
8476 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8477 return false;
8478
8479 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8480 return false;
8481
8482 if (IRIX_COMPAT (dynobj) == ict_irix5
8483 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8484 return false;
8485
8486 if (IRIX_COMPAT (dynobj) == ict_irix6
8487 && (bfd_get_section_by_name
8488 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8489 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8490 return false;
8491
8492 if (bfd_get_section_by_name (dynobj,
8493 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
8494 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
8495 return false;
8496 }
8497
8498 return true;
8499 }
8500
8501 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8502 adjust it appropriately now. */
8503
8504 static void
8505 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
8506 bfd *abfd ATTRIBUTE_UNUSED;
8507 const char *name;
8508 Elf_Internal_Sym *sym;
8509 {
8510 /* The linker script takes care of providing names and values for
8511 these, but we must place them into the right sections. */
8512 static const char* const text_section_symbols[] = {
8513 "_ftext",
8514 "_etext",
8515 "__dso_displacement",
8516 "__elf_header",
8517 "__program_header_table",
8518 NULL
8519 };
8520
8521 static const char* const data_section_symbols[] = {
8522 "_fdata",
8523 "_edata",
8524 "_end",
8525 "_fbss",
8526 NULL
8527 };
8528
8529 const char* const *p;
8530 int i;
8531
8532 for (i = 0; i < 2; ++i)
8533 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8534 *p;
8535 ++p)
8536 if (strcmp (*p, name) == 0)
8537 {
8538 /* All of these symbols are given type STT_SECTION by the
8539 IRIX6 linker. */
8540 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8541
8542 /* The IRIX linker puts these symbols in special sections. */
8543 if (i == 0)
8544 sym->st_shndx = SHN_MIPS_TEXT;
8545 else
8546 sym->st_shndx = SHN_MIPS_DATA;
8547
8548 break;
8549 }
8550 }
8551
8552 /* Finish up dynamic symbol handling. We set the contents of various
8553 dynamic sections here. */
8554
8555 boolean
8556 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
8557 bfd *output_bfd;
8558 struct bfd_link_info *info;
8559 struct elf_link_hash_entry *h;
8560 Elf_Internal_Sym *sym;
8561 {
8562 bfd *dynobj;
8563 bfd_vma gval;
8564 asection *sgot;
8565 asection *smsym;
8566 struct mips_got_info *g;
8567 const char *name;
8568 struct mips_elf_link_hash_entry *mh;
8569
8570 dynobj = elf_hash_table (info)->dynobj;
8571 gval = sym->st_value;
8572 mh = (struct mips_elf_link_hash_entry *) h;
8573
8574 if (h->plt.offset != (bfd_vma) -1)
8575 {
8576 asection *s;
8577 bfd_byte *p;
8578 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8579
8580 /* This symbol has a stub. Set it up. */
8581
8582 BFD_ASSERT (h->dynindx != -1);
8583
8584 s = bfd_get_section_by_name (dynobj,
8585 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8586 BFD_ASSERT (s != NULL);
8587
8588 /* Fill the stub. */
8589 p = stub;
8590 bfd_put_32 (output_bfd, STUB_LW (output_bfd), p);
8591 p += 4;
8592 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), p);
8593 p += 4;
8594
8595 /* FIXME: Can h->dynindex be more than 64K? */
8596 if (h->dynindx & 0xffff0000)
8597 return false;
8598
8599 bfd_put_32 (output_bfd, STUB_JALR, p);
8600 p += 4;
8601 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, p);
8602
8603 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8604 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8605
8606 /* Mark the symbol as undefined. plt.offset != -1 occurs
8607 only for the referenced symbol. */
8608 sym->st_shndx = SHN_UNDEF;
8609
8610 /* The run-time linker uses the st_value field of the symbol
8611 to reset the global offset table entry for this external
8612 to its stub address when unlinking a shared object. */
8613 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8614 sym->st_value = gval;
8615 }
8616
8617 BFD_ASSERT (h->dynindx != -1
8618 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
8619
8620 sgot = mips_elf_got_section (dynobj);
8621 BFD_ASSERT (sgot != NULL);
8622 BFD_ASSERT (elf_section_data (sgot) != NULL);
8623 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8624 BFD_ASSERT (g != NULL);
8625
8626 /* Run through the global symbol table, creating GOT entries for all
8627 the symbols that need them. */
8628 if (g->global_gotsym != NULL
8629 && h->dynindx >= g->global_gotsym->dynindx)
8630 {
8631 bfd_vma offset;
8632 bfd_vma value;
8633
8634 if (sym->st_value)
8635 value = sym->st_value;
8636 else
8637 {
8638 /* For an entity defined in a shared object, this will be
8639 NULL. (For functions in shared objects for
8640 which we have created stubs, ST_VALUE will be non-NULL.
8641 That's because such the functions are now no longer defined
8642 in a shared object.) */
8643
8644 if (info->shared && h->root.type == bfd_link_hash_undefined)
8645 value = 0;
8646 else
8647 value = h->root.u.def.value;
8648 }
8649 offset = mips_elf_global_got_index (dynobj, h);
8650 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8651 }
8652
8653 /* Create a .msym entry, if appropriate. */
8654 smsym = bfd_get_section_by_name (dynobj,
8655 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8656 if (smsym)
8657 {
8658 Elf32_Internal_Msym msym;
8659
8660 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8661 /* It is undocumented what the `1' indicates, but IRIX6 uses
8662 this value. */
8663 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8664 bfd_mips_elf_swap_msym_out
8665 (dynobj, &msym,
8666 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8667 }
8668
8669 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8670 name = h->root.root.string;
8671 if (strcmp (name, "_DYNAMIC") == 0
8672 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8673 sym->st_shndx = SHN_ABS;
8674 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8675 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8676 {
8677 sym->st_shndx = SHN_ABS;
8678 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8679 sym->st_value = 1;
8680 }
8681 else if (strcmp (name, "_gp_disp") == 0)
8682 {
8683 sym->st_shndx = SHN_ABS;
8684 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8685 sym->st_value = elf_gp (output_bfd);
8686 }
8687 else if (SGI_COMPAT (output_bfd))
8688 {
8689 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8690 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8691 {
8692 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8693 sym->st_other = STO_PROTECTED;
8694 sym->st_value = 0;
8695 sym->st_shndx = SHN_MIPS_DATA;
8696 }
8697 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8698 {
8699 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8700 sym->st_other = STO_PROTECTED;
8701 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8702 sym->st_shndx = SHN_ABS;
8703 }
8704 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8705 {
8706 if (h->type == STT_FUNC)
8707 sym->st_shndx = SHN_MIPS_TEXT;
8708 else if (h->type == STT_OBJECT)
8709 sym->st_shndx = SHN_MIPS_DATA;
8710 }
8711 }
8712
8713 /* Handle the IRIX6-specific symbols. */
8714 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8715 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8716
8717 if (! info->shared)
8718 {
8719 if (! mips_elf_hash_table (info)->use_rld_obj_head
8720 && (strcmp (name, "__rld_map") == 0
8721 || strcmp (name, "__RLD_MAP") == 0))
8722 {
8723 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8724 BFD_ASSERT (s != NULL);
8725 sym->st_value = s->output_section->vma + s->output_offset;
8726 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8727 if (mips_elf_hash_table (info)->rld_value == 0)
8728 mips_elf_hash_table (info)->rld_value = sym->st_value;
8729 }
8730 else if (mips_elf_hash_table (info)->use_rld_obj_head
8731 && strcmp (name, "__rld_obj_head") == 0)
8732 {
8733 /* IRIX6 does not use a .rld_map section. */
8734 if (IRIX_COMPAT (output_bfd) == ict_irix5
8735 || IRIX_COMPAT (output_bfd) == ict_none)
8736 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8737 != NULL);
8738 mips_elf_hash_table (info)->rld_value = sym->st_value;
8739 }
8740 }
8741
8742 /* If this is a mips16 symbol, force the value to be even. */
8743 if (sym->st_other == STO_MIPS16
8744 && (sym->st_value & 1) != 0)
8745 --sym->st_value;
8746
8747 return true;
8748 }
8749
8750 /* Finish up the dynamic sections. */
8751
8752 boolean
8753 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
8754 bfd *output_bfd;
8755 struct bfd_link_info *info;
8756 {
8757 bfd *dynobj;
8758 asection *sdyn;
8759 asection *sgot;
8760 struct mips_got_info *g;
8761
8762 dynobj = elf_hash_table (info)->dynobj;
8763
8764 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8765
8766 sgot = mips_elf_got_section (dynobj);
8767 if (sgot == NULL)
8768 g = NULL;
8769 else
8770 {
8771 BFD_ASSERT (elf_section_data (sgot) != NULL);
8772 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8773 BFD_ASSERT (g != NULL);
8774 }
8775
8776 if (elf_hash_table (info)->dynamic_sections_created)
8777 {
8778 bfd_byte *b;
8779
8780 BFD_ASSERT (sdyn != NULL);
8781 BFD_ASSERT (g != NULL);
8782
8783 for (b = sdyn->contents;
8784 b < sdyn->contents + sdyn->_raw_size;
8785 b += MIPS_ELF_DYN_SIZE (dynobj))
8786 {
8787 Elf_Internal_Dyn dyn;
8788 const char *name;
8789 size_t elemsize;
8790 asection *s;
8791 boolean swap_out_p;
8792
8793 /* Read in the current dynamic entry. */
8794 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8795
8796 /* Assume that we're going to modify it and write it out. */
8797 swap_out_p = true;
8798
8799 switch (dyn.d_tag)
8800 {
8801 case DT_RELENT:
8802 s = (bfd_get_section_by_name
8803 (dynobj,
8804 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
8805 BFD_ASSERT (s != NULL);
8806 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8807 break;
8808
8809 case DT_STRSZ:
8810 /* Rewrite DT_STRSZ. */
8811 dyn.d_un.d_val =
8812 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
8813 break;
8814
8815 case DT_PLTGOT:
8816 name = ".got";
8817 goto get_vma;
8818 case DT_MIPS_CONFLICT:
8819 name = ".conflict";
8820 goto get_vma;
8821 case DT_MIPS_LIBLIST:
8822 name = ".liblist";
8823 get_vma:
8824 s = bfd_get_section_by_name (output_bfd, name);
8825 BFD_ASSERT (s != NULL);
8826 dyn.d_un.d_ptr = s->vma;
8827 break;
8828
8829 case DT_MIPS_RLD_VERSION:
8830 dyn.d_un.d_val = 1; /* XXX */
8831 break;
8832
8833 case DT_MIPS_FLAGS:
8834 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8835 break;
8836
8837 case DT_MIPS_CONFLICTNO:
8838 name = ".conflict";
8839 elemsize = sizeof (Elf32_Conflict);
8840 goto set_elemno;
8841
8842 case DT_MIPS_LIBLISTNO:
8843 name = ".liblist";
8844 elemsize = sizeof (Elf32_Lib);
8845 set_elemno:
8846 s = bfd_get_section_by_name (output_bfd, name);
8847 if (s != NULL)
8848 {
8849 if (s->_cooked_size != 0)
8850 dyn.d_un.d_val = s->_cooked_size / elemsize;
8851 else
8852 dyn.d_un.d_val = s->_raw_size / elemsize;
8853 }
8854 else
8855 dyn.d_un.d_val = 0;
8856 break;
8857
8858 case DT_MIPS_TIME_STAMP:
8859 time ((time_t *) &dyn.d_un.d_val);
8860 break;
8861
8862 case DT_MIPS_ICHECKSUM:
8863 /* XXX FIXME: */
8864 swap_out_p = false;
8865 break;
8866
8867 case DT_MIPS_IVERSION:
8868 /* XXX FIXME: */
8869 swap_out_p = false;
8870 break;
8871
8872 case DT_MIPS_BASE_ADDRESS:
8873 s = output_bfd->sections;
8874 BFD_ASSERT (s != NULL);
8875 dyn.d_un.d_ptr = s->vma & ~(0xffff);
8876 break;
8877
8878 case DT_MIPS_LOCAL_GOTNO:
8879 dyn.d_un.d_val = g->local_gotno;
8880 break;
8881
8882 case DT_MIPS_UNREFEXTNO:
8883 /* The index into the dynamic symbol table which is the
8884 entry of the first external symbol that is not
8885 referenced within the same object. */
8886 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8887 break;
8888
8889 case DT_MIPS_GOTSYM:
8890 if (g->global_gotsym)
8891 {
8892 dyn.d_un.d_val = g->global_gotsym->dynindx;
8893 break;
8894 }
8895 /* In case if we don't have global got symbols we default
8896 to setting DT_MIPS_GOTSYM to the same value as
8897 DT_MIPS_SYMTABNO, so we just fall through. */
8898
8899 case DT_MIPS_SYMTABNO:
8900 name = ".dynsym";
8901 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8902 s = bfd_get_section_by_name (output_bfd, name);
8903 BFD_ASSERT (s != NULL);
8904
8905 if (s->_cooked_size != 0)
8906 dyn.d_un.d_val = s->_cooked_size / elemsize;
8907 else
8908 dyn.d_un.d_val = s->_raw_size / elemsize;
8909 break;
8910
8911 case DT_MIPS_HIPAGENO:
8912 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
8913 break;
8914
8915 case DT_MIPS_RLD_MAP:
8916 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8917 break;
8918
8919 case DT_MIPS_OPTIONS:
8920 s = (bfd_get_section_by_name
8921 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8922 dyn.d_un.d_ptr = s->vma;
8923 break;
8924
8925 case DT_MIPS_MSYM:
8926 s = (bfd_get_section_by_name
8927 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8928 dyn.d_un.d_ptr = s->vma;
8929 break;
8930
8931 default:
8932 swap_out_p = false;
8933 break;
8934 }
8935
8936 if (swap_out_p)
8937 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8938 (dynobj, &dyn, b);
8939 }
8940 }
8941
8942 /* The first entry of the global offset table will be filled at
8943 runtime. The second entry will be used by some runtime loaders.
8944 This isn't the case of Irix rld. */
8945 if (sgot != NULL && sgot->_raw_size > 0)
8946 {
8947 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8948 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8949 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8950 }
8951
8952 if (sgot != NULL)
8953 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8954 = MIPS_ELF_GOT_SIZE (output_bfd);
8955
8956 {
8957 asection *smsym;
8958 asection *s;
8959 Elf32_compact_rel cpt;
8960
8961 /* ??? The section symbols for the output sections were set up in
8962 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8963 symbols. Should we do so? */
8964
8965 smsym = bfd_get_section_by_name (dynobj,
8966 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8967 if (smsym != NULL)
8968 {
8969 Elf32_Internal_Msym msym;
8970
8971 msym.ms_hash_value = 0;
8972 msym.ms_info = ELF32_MS_INFO (0, 1);
8973
8974 for (s = output_bfd->sections; s != NULL; s = s->next)
8975 {
8976 long dynindx = elf_section_data (s)->dynindx;
8977
8978 bfd_mips_elf_swap_msym_out
8979 (output_bfd, &msym,
8980 (((Elf32_External_Msym *) smsym->contents)
8981 + dynindx));
8982 }
8983 }
8984
8985 if (SGI_COMPAT (output_bfd))
8986 {
8987 /* Write .compact_rel section out. */
8988 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8989 if (s != NULL)
8990 {
8991 cpt.id1 = 1;
8992 cpt.num = s->reloc_count;
8993 cpt.id2 = 2;
8994 cpt.offset = (s->output_section->filepos
8995 + sizeof (Elf32_External_compact_rel));
8996 cpt.reserved0 = 0;
8997 cpt.reserved1 = 0;
8998 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8999 ((Elf32_External_compact_rel *)
9000 s->contents));
9001
9002 /* Clean up a dummy stub function entry in .text. */
9003 s = bfd_get_section_by_name (dynobj,
9004 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9005 if (s != NULL)
9006 {
9007 file_ptr dummy_offset;
9008
9009 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
9010 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
9011 memset (s->contents + dummy_offset, 0,
9012 MIPS_FUNCTION_STUB_SIZE);
9013 }
9014 }
9015 }
9016
9017 /* We need to sort the entries of the dynamic relocation section. */
9018
9019 if (!ABI_64_P (output_bfd))
9020 {
9021 asection *reldyn;
9022
9023 reldyn = bfd_get_section_by_name (dynobj,
9024 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9025 if (reldyn != NULL && reldyn->reloc_count > 2)
9026 {
9027 reldyn_sorting_bfd = output_bfd;
9028 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
9029 (size_t) reldyn->reloc_count - 1,
9030 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
9031 }
9032 }
9033
9034 /* Clean up a first relocation in .rel.dyn. */
9035 s = bfd_get_section_by_name (dynobj,
9036 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9037 if (s != NULL && s->_raw_size > 0)
9038 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
9039 }
9040
9041 return true;
9042 }
9043 \f
9044 /* This is almost identical to bfd_generic_get_... except that some
9045 MIPS relocations need to be handled specially. Sigh. */
9046
9047 static bfd_byte *
9048 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
9049 relocateable, symbols)
9050 bfd *abfd;
9051 struct bfd_link_info *link_info;
9052 struct bfd_link_order *link_order;
9053 bfd_byte *data;
9054 boolean relocateable;
9055 asymbol **symbols;
9056 {
9057 /* Get enough memory to hold the stuff */
9058 bfd *input_bfd = link_order->u.indirect.section->owner;
9059 asection *input_section = link_order->u.indirect.section;
9060
9061 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9062 arelent **reloc_vector = NULL;
9063 long reloc_count;
9064
9065 if (reloc_size < 0)
9066 goto error_return;
9067
9068 reloc_vector = (arelent **) bfd_malloc (reloc_size);
9069 if (reloc_vector == NULL && reloc_size != 0)
9070 goto error_return;
9071
9072 /* read in the section */
9073 if (!bfd_get_section_contents (input_bfd,
9074 input_section,
9075 (PTR) data,
9076 0,
9077 input_section->_raw_size))
9078 goto error_return;
9079
9080 /* We're not relaxing the section, so just copy the size info */
9081 input_section->_cooked_size = input_section->_raw_size;
9082 input_section->reloc_done = true;
9083
9084 reloc_count = bfd_canonicalize_reloc (input_bfd,
9085 input_section,
9086 reloc_vector,
9087 symbols);
9088 if (reloc_count < 0)
9089 goto error_return;
9090
9091 if (reloc_count > 0)
9092 {
9093 arelent **parent;
9094 /* for mips */
9095 int gp_found;
9096 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9097
9098 {
9099 struct bfd_hash_entry *h;
9100 struct bfd_link_hash_entry *lh;
9101 /* Skip all this stuff if we aren't mixing formats. */
9102 if (abfd && input_bfd
9103 && abfd->xvec == input_bfd->xvec)
9104 lh = 0;
9105 else
9106 {
9107 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9108 lh = (struct bfd_link_hash_entry *) h;
9109 }
9110 lookup:
9111 if (lh)
9112 {
9113 switch (lh->type)
9114 {
9115 case bfd_link_hash_undefined:
9116 case bfd_link_hash_undefweak:
9117 case bfd_link_hash_common:
9118 gp_found = 0;
9119 break;
9120 case bfd_link_hash_defined:
9121 case bfd_link_hash_defweak:
9122 gp_found = 1;
9123 gp = lh->u.def.value;
9124 break;
9125 case bfd_link_hash_indirect:
9126 case bfd_link_hash_warning:
9127 lh = lh->u.i.link;
9128 /* @@FIXME ignoring warning for now */
9129 goto lookup;
9130 case bfd_link_hash_new:
9131 default:
9132 abort ();
9133 }
9134 }
9135 else
9136 gp_found = 0;
9137 }
9138 /* end mips */
9139 for (parent = reloc_vector; *parent != (arelent *) NULL;
9140 parent++)
9141 {
9142 char *error_message = (char *) NULL;
9143 bfd_reloc_status_type r;
9144
9145 /* Specific to MIPS: Deal with relocation types that require
9146 knowing the gp of the output bfd. */
9147 asymbol *sym = *(*parent)->sym_ptr_ptr;
9148 if (bfd_is_abs_section (sym->section) && abfd)
9149 {
9150 /* The special_function wouldn't get called anyways. */
9151 }
9152 else if (!gp_found)
9153 {
9154 /* The gp isn't there; let the special function code
9155 fall over on its own. */
9156 }
9157 else if ((*parent)->howto->special_function
9158 == _bfd_mips_elf_gprel16_reloc)
9159 {
9160 /* bypass special_function call */
9161 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9162 relocateable, (PTR) data, gp);
9163 goto skip_bfd_perform_relocation;
9164 }
9165 /* end mips specific stuff */
9166
9167 r = bfd_perform_relocation (input_bfd,
9168 *parent,
9169 (PTR) data,
9170 input_section,
9171 relocateable ? abfd : (bfd *) NULL,
9172 &error_message);
9173 skip_bfd_perform_relocation:
9174
9175 if (relocateable)
9176 {
9177 asection *os = input_section->output_section;
9178
9179 /* A partial link, so keep the relocs */
9180 os->orelocation[os->reloc_count] = *parent;
9181 os->reloc_count++;
9182 }
9183
9184 if (r != bfd_reloc_ok)
9185 {
9186 switch (r)
9187 {
9188 case bfd_reloc_undefined:
9189 if (!((*link_info->callbacks->undefined_symbol)
9190 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9191 input_bfd, input_section, (*parent)->address,
9192 true)))
9193 goto error_return;
9194 break;
9195 case bfd_reloc_dangerous:
9196 BFD_ASSERT (error_message != (char *) NULL);
9197 if (!((*link_info->callbacks->reloc_dangerous)
9198 (link_info, error_message, input_bfd, input_section,
9199 (*parent)->address)))
9200 goto error_return;
9201 break;
9202 case bfd_reloc_overflow:
9203 if (!((*link_info->callbacks->reloc_overflow)
9204 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9205 (*parent)->howto->name, (*parent)->addend,
9206 input_bfd, input_section, (*parent)->address)))
9207 goto error_return;
9208 break;
9209 case bfd_reloc_outofrange:
9210 default:
9211 abort ();
9212 break;
9213 }
9214
9215 }
9216 }
9217 }
9218 if (reloc_vector != NULL)
9219 free (reloc_vector);
9220 return data;
9221
9222 error_return:
9223 if (reloc_vector != NULL)
9224 free (reloc_vector);
9225 return NULL;
9226 }
9227
9228 #define bfd_elf32_bfd_get_relocated_section_contents \
9229 elf32_mips_get_relocated_section_contents
9230 \f
9231 /* ECOFF swapping routines. These are used when dealing with the
9232 .mdebug section, which is in the ECOFF debugging format. */
9233 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
9234 /* Symbol table magic number. */
9235 magicSym,
9236 /* Alignment of debugging information. E.g., 4. */
9237 4,
9238 /* Sizes of external symbolic information. */
9239 sizeof (struct hdr_ext),
9240 sizeof (struct dnr_ext),
9241 sizeof (struct pdr_ext),
9242 sizeof (struct sym_ext),
9243 sizeof (struct opt_ext),
9244 sizeof (struct fdr_ext),
9245 sizeof (struct rfd_ext),
9246 sizeof (struct ext_ext),
9247 /* Functions to swap in external symbolic data. */
9248 ecoff_swap_hdr_in,
9249 ecoff_swap_dnr_in,
9250 ecoff_swap_pdr_in,
9251 ecoff_swap_sym_in,
9252 ecoff_swap_opt_in,
9253 ecoff_swap_fdr_in,
9254 ecoff_swap_rfd_in,
9255 ecoff_swap_ext_in,
9256 _bfd_ecoff_swap_tir_in,
9257 _bfd_ecoff_swap_rndx_in,
9258 /* Functions to swap out external symbolic data. */
9259 ecoff_swap_hdr_out,
9260 ecoff_swap_dnr_out,
9261 ecoff_swap_pdr_out,
9262 ecoff_swap_sym_out,
9263 ecoff_swap_opt_out,
9264 ecoff_swap_fdr_out,
9265 ecoff_swap_rfd_out,
9266 ecoff_swap_ext_out,
9267 _bfd_ecoff_swap_tir_out,
9268 _bfd_ecoff_swap_rndx_out,
9269 /* Function to read in symbolic data. */
9270 _bfd_mips_elf_read_ecoff_info
9271 };
9272 \f
9273 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
9274 #define TARGET_LITTLE_NAME "elf32-littlemips"
9275 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
9276 #define TARGET_BIG_NAME "elf32-bigmips"
9277 #define ELF_ARCH bfd_arch_mips
9278 #define ELF_MACHINE_CODE EM_MIPS
9279
9280 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
9281 a value of 0x1000, and we are compatible. */
9282 #define ELF_MAXPAGESIZE 0x1000
9283
9284 #define elf_backend_collect true
9285 #define elf_backend_type_change_ok true
9286 #define elf_backend_can_gc_sections true
9287 #define elf_backend_sign_extend_vma true
9288 #define elf_info_to_howto mips_info_to_howto_rela
9289 #define elf_info_to_howto_rel mips_info_to_howto_rel
9290 #define elf_backend_sym_is_global mips_elf_sym_is_global
9291 #define elf_backend_object_p _bfd_mips_elf_object_p
9292 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
9293 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9294 #define elf_backend_section_from_bfd_section \
9295 _bfd_mips_elf_section_from_bfd_section
9296 #define elf_backend_section_processing _bfd_mips_elf_section_processing
9297 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9298 #define elf_backend_additional_program_headers \
9299 _bfd_mips_elf_additional_program_headers
9300 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
9301 #define elf_backend_final_write_processing \
9302 _bfd_mips_elf_final_write_processing
9303 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
9304 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9305 #define elf_backend_create_dynamic_sections \
9306 _bfd_mips_elf_create_dynamic_sections
9307 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9308 #define elf_backend_adjust_dynamic_symbol \
9309 _bfd_mips_elf_adjust_dynamic_symbol
9310 #define elf_backend_always_size_sections \
9311 _bfd_mips_elf_always_size_sections
9312 #define elf_backend_size_dynamic_sections \
9313 _bfd_mips_elf_size_dynamic_sections
9314 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9315 #define elf_backend_link_output_symbol_hook \
9316 _bfd_mips_elf_link_output_symbol_hook
9317 #define elf_backend_finish_dynamic_symbol \
9318 _bfd_mips_elf_finish_dynamic_symbol
9319 #define elf_backend_finish_dynamic_sections \
9320 _bfd_mips_elf_finish_dynamic_sections
9321 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9322 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9323
9324 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9325 #define elf_backend_plt_header_size 0
9326
9327 #define elf_backend_copy_indirect_symbol \
9328 _bfd_mips_elf_copy_indirect_symbol
9329
9330 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
9331
9332 #define bfd_elf32_bfd_is_local_label_name \
9333 mips_elf_is_local_label_name
9334 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9335 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9336 #define bfd_elf32_bfd_link_hash_table_create \
9337 _bfd_mips_elf_link_hash_table_create
9338 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
9339 #define bfd_elf32_bfd_copy_private_bfd_data \
9340 _bfd_mips_elf_copy_private_bfd_data
9341 #define bfd_elf32_bfd_merge_private_bfd_data \
9342 _bfd_mips_elf_merge_private_bfd_data
9343 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9344 #define bfd_elf32_bfd_print_private_bfd_data \
9345 _bfd_mips_elf_print_private_bfd_data
9346 #include "elf32-target.h"
9347
9348 /* Support for traditional mips targets */
9349
9350 #define INCLUDED_TARGET_FILE /* More a type of flag */
9351
9352 #undef TARGET_LITTLE_SYM
9353 #undef TARGET_LITTLE_NAME
9354 #undef TARGET_BIG_SYM
9355 #undef TARGET_BIG_NAME
9356
9357 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
9358 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
9359 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
9360 #define TARGET_BIG_NAME "elf32-tradbigmips"
9361
9362 /* Include the target file again for this target */
9363 #include "elf32-target.h"
This page took 0.2912 seconds and 4 git commands to generate.